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For the past six years I have been meaning to put together a proper user's guide for
the GAMS/MPSGE economic modeling language. This is proven to be a di�cult task,
primarily because I have been too occupied with economics and software to ever think
about documentation.1 The present document is a �rst attempt to rectify this problem.
It consists of �ve chapters at present, with one more to be added before the end of the
summer. The �ve chapters included here still need work { I want to double or triple the
number of exercises here, as I have always found that to be an essential learning device.

It is my intention that this manual will in its �nal form be able to introduce a second year
graduate student working on a correspondence basis to economic equilibrium modeling
with GAMS and MPSGE. It seems that there are many such students at universities
everywhere, and I always regret that I am unable to provide much guidance for them
when I receive the occasional Email or phone call. I hope that this text answer some of
their questions.

The book is currently organized as follows. Chapter 1 provides an review of intermediate
microeconomics, speci�cally demand theory and general equilibrium; and it then shows
how these ideas can be illustrated using small MPSGE models. Chapter 2 is a somewhat
more advanced introduction to general equilibrium analysis with a focus on taxation and
public �nance. This chapter contains an appendix which describes the MPSGE language
in a complete yet compact manner. Chapter 3 concerns cost and expenditure functions,
particularly the constant-elasticity of substitution family. The chapter presents two sample
programs illustrating how the nested-CES functional form can be calibrated to arbitrary
cross-elasticities of substitution in the case of three or four inputs. The �nal section in
this paper collects some de�nitions and a description of some of the other functional forms
which have been widely used in economic equilibrium analysis.

Chapter 4 introduces the mixed complementarity problem in a general format with a
range of applications in economics. (This chapter still needs considerable work to produce
a set of parallell computational exercise.)

Chapter 5 relates the equilibrium and optimization perspectives on general equilibrium
allocations, showing how GAMS can be used to compute the same equilibria in either an
optimization or complementarity format. This chapter needs some editing, so that it is
clearer how these ideas relate to MPSGE. I will add a few sample programs which compare
the various algebraic formulations of the standard model with the corresponding MPSGE
models. Of course, this chapter also needs a number of exercises.

1 I will never forget the article in 1982 with those wonderful quotes, \Real programmers write programs,

not documentation." and \Real programmers can write Fortran in any language."
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The �nal chapter I wish to add describes how GAMS can be used to compute forward-
looking, dynamic general equilibrium models. It builds upon ideas from Chapter 5, com-
paring the familiar Ramsey model with the complementarity setup.

I will announce the release of the �nal version on the GAMS list, and I will make note
on the GAMS web site. I hope this will happen before the end of summer, 1998.
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1. An Overview

This document describes a mathematical programming system for general equilibrium
analysis named MPSGE which operates as a subsystem to the mathematical programming
language GAMS. MPSGE is a library of function and Jacobian evaluation routines which
facilitates the formulation and analysis of AGE models. MPSGE simpli�es the modelling
process and makes AGE modelling accessible to any economist who is interested in the
application of these models. In addition to solving speci�c modelling problems, the system
serves a didactic role as a structured framework in which to think about general equilibrium
systems.

MPSGE separates the tasks of model formulation and model solution, thereby freeing
model builders from the tedious task of writing model-speci�c function evaluation subrou-
tines. All features of a particular model are communicated to GAMS/MPSGE through a
tabular input format. To use MPSGE, a user must learn the syntax and conventions of
this model de�nition language.

The present paper is intended for students who have completed two semesters of study in
microeconomics. The purpose of this presentation is to give students a practical perspective
on microeconomic theory. The diligent student who works through all of the examples
provided here should be capable of building small models \from scratch" to illustrate
basic theory. This is a �rst step to acquiring a set of useable tools for applied work.

The remainder of this paper is organized as follows. Section 2 provides practical tips on
how to get started with GAMS/MPSGE. Section 3 reviews basic ideas from the theory of
the consumer. Section 4 introduces the modelling framework with three models illustrating
the representation of consumer demand within the MPSGE language. Section 5 reviews
the pure exchange model, and Section 5 presents two MPSGE models of exchange. Each
of the model-oriented sections present exercises based on the models which give students
a chance to work through the material on their own. Section 6 provides solutions to
exercises from this paper. Additional introductory examples for self-study can be found in
Jim Markusen's library of MPSGE examples, as well as in the GAMS model library (look
for models with names ending in \MGE").

The level of presentation and diagrammatic exposition adopted here is based on Hal
Varian's undergraduate microeconomics textbook ( Intermediate Microeconomics: A Mod-
ern Approach, Third Edition, W. W. Norton & Company, Inc., 1993).

The ultimate objective of this piece is to remind students of some theory which they
have already seen and illustrate how these ideas can be used to build numerical models
using GAMS with MPSGE. It is not my intention to provide a graduate level presentation
of this material. So far as possible, I have avoided calculus and even algebra. The objective
here is to demonstrate that what matters are economic ideas. With the proper tools, it is
possible to do concrete economic modeling without a lot of mathematical formalism.

2. Getting Started

(i) In order to use GAMS/MPSGE, you need to know how to create and edit text �les.
There are several methods for doing this. One approach is to use NOTEPAD, the standard
text editor under Windows 95. It is also possible to use a text processor such as Microsoft
Word as a text editor. If you take this approach, you will need to remember to always save
the edited �le in a text format. A �nal approach, one which I suggest to graduate students
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who are interested in using numerical modelling in their research, is that you take the
time to develop some facility with a \real" programmer's editor like Emacs, Epsilon or
Brief. These editors are far more powerful than Notepad, and they are far better suited
to computational work than is Microsoft Word.

(ii) You need to have a copy of GAMS with MPSGE to run on your computer. There are
versions of this program for PCs as well as for Unix workstations. Copies of the program can
be obtained directly from GAMS (gams@gams.com), or you may get a copy from someone
who already has the program. (Copyright restrictions apply only to GAMS license �les.)
When you copy the GAMS systems �les without the license �le and the program will only
operate in student/demonstration mode. The student version is perfectly adequate for
learning about modelling {in fact, it may be better because it's dimensionality restrictions
prevent the novice model builder from adding unnecessary details.

(iii) You need to install GAMS with MPSGE on your computer. To do this, follow the
standard installation procedures.

(iv) You should verify that the system is operational. Connect to a working directory
(never run models from the GAMS system directory! ). Then, extract and run one of the
library models, e.g.

C:\>MKDIR WORK

C:\>CD WORK

C:\WORK>GAMSLIB SCARFMGE

C:\WORK>GAMS SCARFMGE

If the GAMS system is properly installed, these commands will cause GAMS to solve a
sequence of models from the SCARFMGE sample problem. The output from this process is
written to �le SCARFMGE.LST . If you search for the word \STATUS". you can verify that
all the cases are processed.

There are a number of MPSGE models included in the GAMS library. If you are using
a student version of GAMS, you will be able to process some but not all of the library
models. The student version of the program limits the number of variables in the model
to 100. (I believe that GAMS imposes other limits on use of the student version, but the
variable limitation is the most severe constraint.)

Assuming that you have successfully installed the software, let us now proceed to some
examples which illustrate both the computing syntax and the underlying economics.

3. The Theory of Consumer Demand

A central idea underlying most microeconomic theory is that agents optimize subject to
constraints. The optimizing principle applied to consumer choice begins from the notion
that agents have preferences over consumption bundles and will always choose the most
preferred bundle subject to applicable constraints. To operationalize this theory, three
issues which must be addressed: (i) How can we represent preferences? (ii) What is the
nature of constraints on consumer choice? and (iii) How can the choice be modelled?

Preferences are relationships between alternative consumption \bundles". These can be
represented graphically using indi�erence curves, as illustrated in Figure 1. Focusing now
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Figure 1. An Indi�erence Curve

on the preferences of a single consumer, the indi�erence curve is a line which connects
all combinations of two goods x and y between which our consumer is indi�erent. As
this curve is drawn, we have represented an agent with well-behaved preferences: at
any allocation, more is better (monotonicity), and averages are preferred to extremes
(convexity). Exactly one indi�erence curve goes through each positive combination of x
and y. Higher indi�erence curves lie to the north-east.

If we wish to characterize an agent's preferences, the marginal rate of substitution
(MRS) is a useful point of reference. At a given combination of x and y, the marginal
rate of substitution is the slope of the associated indi�erence curve. As drawn, the MRS
increases in magnitude as we move to the northwest and the MRS decreases as we move
to the south east. The intuitive understanding is that the MRS measures the willingness
of the consumer to trade o� one good for the other. As the consumer has greater amounts
of x, she will be willing to trade more units of x for each additional unit of y { this results
from convexity.

An ordinal utility function U(x; y) provides a helpful tool for representing preferences.
This is a function which associates a number with each indi�erence curve. These numbers
increase as we move to the northeast, with each successive indi�erence curve representing
bundles which are preferred over the last. The particular number assigned to an indi�erence
curve has no intrinsic meaning. All we know is that if U(x1; y1) > U(x2; y2), then the
consumer prefers bundle 1 to bundle 2.

Figure 2 illustrates how it is possible to use a utility function to generate a diagram
with the associated indi�erence curves. This �gure illustrates Cobb-Douglas well-behaved
preferences which are commonly employed in applied work.

Up to this point, we have we have focused exclusively on the characterization of prefer-
ences. Let us now consider the other side of the consumer model { the budget constraint.
The simplest approach to characterizing consumer income is to assume that the consumer
has a �xed money income which she may spend on any goods. The only constraint on this
choice is that the value of the expenditure may not exceed the money income. This is the
standard budget constraint:

Pxx+ Pyy =M:
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This equation de�nes the line depicted graphically in Figure 3. All points inside the budget
line are a�ordable. The consumer faces a choice of which a�ordable bundle to select.

Within the framework of our theory, the consumer will choose the one combination of
x and y from the set of a�ordable bundles which maximizes her utility. This combination
of x and y will be at the point where the indi�erence curve is tangent the budget line.
This point is called the optimal choice. We see this illustrated in Figure 4.

The standard model of consumer behavior provides a starting point for learningMPSGE.
This introduction is \hands on" { I will discuss issues as they arise, assuming that you have
access to a computer and can invoke the program and read the output �le. You may wish
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to learn the rudiments of GAMS syntax before starting out, although you may be able to
pick up these ideas as they come, depending on your aptitude for computer languages.

4. Modeling Consumer Demand with MPSGE

Example 1 : Evaluating a Demand Function

Consider a standard consumer choice problem, one which might appear on a midterm
examination in intermediate microeconomics:

max U(x; y) = ln(x) + 2 ln(y) s.t. 1x+ 2y = 120

where 1 is the exogenous price of x and 2 is the price of y.
This type of problem is solved easily using GAMS/MINOS (as a nonlinear program).

Strictly speaking, it is not the sort of model for which you would need to use MPSGE. At
the same time, this can be an instructive example.

The key issue in this example is learning how to represent utility functions. MPSGE is
\non-algebraic" { so function speci�cation depends on an intuitive understanding of the
underlying economic structure.

Consider Figure 5 and focus on a single point, x = 1, y = 1. There is an indi�erence
curve through this point, and the marginal rate of substitution (MRS) at this point is
simply the slope of this curve. The benchmark MRS does not uniquely determine the
underlying preferences.

A utility function is represented in MPSGE by the speci�cation of: (i) benchmark
demand quantities, (ii) benchmark demand prices (iii) an elasticity of substitution at
the benchmark point. Benchmark quantities determine an anchor point for the set of
indi�erence curves. Benchmark prices �x the slope of the indi�erence curve at that point,
and the elasticity describes the curvature of the indi�erence curve. Speaking formally,
elasticities provide a \second order approximation" of the utility function. To understand
the importance of the benchmark elasticity of substitution, consider Figure 6. This �gure
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Figure 6. The Elasticity of Substitution

shows three indi�erence curves all of which share the same benchmark quantities and
benchmark prices. They di�er only in the elasticities of substitution. The least convex
(
attest) curve has the highest elasticity, the most convex curve has the lowest elasticity.
(When the elasticity of substitution is 0, the indi�erence curve is L-shaped with the corner
at the benchmark point.)

Let us now consider how the consumer optimization problem can be cast as a general
equilibrium model. We do this by adding a single factor of production and two \produc-
tion" sectors. For concreteness, let the factor of production be called labor with a price
PL. One production function converts one unit of labor into one unit of x, the other sector
converts 2 units of labor into one unit of y. Setting the labor endowment equal 120, the
market clearance condition for labor reads:

1x+ 2y = 120

which is precisely the budget constraint for the consumer's problem.
We will now present the program code, a few lines at a time. As part of working through

the example, the student should type these lines into a �le.
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A MPSGE model speci�cation is always listed between $ONTEXT and $OFFTEXT state-
ments. The �rst statement within an MPSGE model-description assigns a name to the
model. The model name must begin with a letter and must have 10 or fewer characters.

$ONTEXT

$MODEL:DEMAND

The model speci�cation begins by declaring variables for the model. In a standard
model, there are three types of variables: commodity prices, sectoral activity levels, and
consumer incomes. The end of each line may conclude with a \!", followed by a variable
description.
N.B. The variables associated with commodities are prices, not quantities. (In this and

subsequent models, I use P as the �rst letter for each of the commodity variables to remind
us that these variables are prices.)
N.B. The variable associated with a consumer is an income level, not a welfare index.

$SECTORS:

X ! ACTIVITY LEVEL FOR X = DEMAND FOR GOOD X

Y ! ACTIVITY LEVEL FOR Y = DEMAND FOR GOOD Y

$COMMODITIES:

PX ! PRICE OF X WHICH WILL EQUAL PL

PY ! PRICE OF Y WHICH WILL EQUAL 2 PL

PL ! PRICE OF THE ARTIFICIAL FACTOR L

$CONSUMERS:

RA ! REPRESENTATIVE AGENT INCOME

Function speci�cations follow the variable declarations. In this model, our �rst decla-
rations correspond to the two production sectors. In this model, the production structures
are particularly simple. Each of the sectors has one input and one output. In the MPSGE
syntax, I: denotes an input and O: denotes an output. The output quantity coe�cients
for both sectors are unity (Q:1). This means that the level values for x and y equal the
quantities produced.

The �nal function speci�ed in the model represents the utility function and endowments
for the single consumer. In this function, the E: entries correspond to endowments and the
D: entries are demands. Reference demands, reference prices and the substitution elasticity
(s:1) characterize preferences.

The demand entries shown here are consistent with a Cobb-Douglas utility function in
which the budget share for y is twice the budget share for x (i.e. the MRS at (1,1) equals
1/2):

$PROD:X
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O:PX Q:1

I:PL Q:1

$PROD:Y

O:PY Q:1

I:PL Q:2

$DEMAND:RA s:1

E:PL Q:120

D:PX Q:1 P:(1/2)

D:PY Q:1 P:1

$OFFTEXT

The �nal three statements in this �le invoke the MPSGE preprocessor, \generate" and
solve the model:

$SYSINCLUDE mpsgeset DEMAND

$INCLUDE DEMAND.GEN

SOLVE DEMAND USING MCP;

The preprocessor invocation (\$SYSINCLUDE mpsgeset") should be placed immediately
following the $OFFTEXT block containing the model description. The model generator code,
DEMAND.GEN, is produced by the previous statement and must be included immediately
before the SOLVE statement.

At this point, the reader should take the time to type the example into a �le and execute
the program with GAMS/MPSGE.

This is possibly the �rst GAMS model which some readers have solved, so it is worth
looking through the listing �le in some detail. After running the solver, we examine the
listing �le. I typically begin my assessment of a model's solution by searching for \STATUS".
For this model, we have the following:

S O L V E S U M M A R Y

MODEL DEMAND

TYPE MCP

SOLVER PATH FROM LINE 263

**** SOLVER STATUS 1 NORMAL COMPLETION

**** MODEL STATUS 1 OPTIMAL

RESOURCE USAGE, LIMIT 1.432 1000.000

ITERATION COUNT, LIMIT 5 1000

EVALUATION ERRORS 0 0
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Work space allocated -- 4.86 Mb

Default price normalization using income for RA

This information is largely self-explanatory. The most important items are the SOLVER
STATUS and MODEL STATUS indicators. When the solver status is 1 and the model status
is 1, the system has returned an equilibrium.

For small models such as this, the limits on resource usage (time) and solver iterations
have no e�ect. You can modify these values by adding statements \model.RESLIM =
number of cpu seconds;" and \model.ITERLIM = number of iterations;" before the SOLVE
statement.

The work space allocation for MPSGE models is determined by the number of variables
in the model. It is possible to exogenously specify the work space allocation by assigning
model.WORKSPACE = xx; where xx is the desired number of megabytes.

The �nal message, \Default price normalization..." reminds the user that an
Arrow-Debreu general equilibrium model determines only relative prices. In such an equi-
librium, the absolute scaling of prices is indeterminant. (I.e., if (p�;M�) are a set of
equilibrium prices and income levels, then (2p�; 2M�) is also a solution, etc.)

It is common practice in economics to address the normalization issue through the
speci�cation of a numeraire commodity. You can do this for an MPSGE model by \�xing"
a price, with a statement like: \PX.FX = 1;" entered following the model declaration
($SYSINCLUDE mpsgeset) but prior to the solver invocation. When any price or income
level is �xed, MPSGE recognizes that a numeraire has been speci�ed and does no automatic
normalization.

Following some output from the solver (PATH in this case), the listing �le provides
a complete report of equilibrium values. With MPSGE models, the equation listings are
super
uous. The variable listings provide all the relevant information.
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For this model, the solution listing appears as follows:

LOWER LEVEL UPPER MARGINAL

---- VAR X . 40.000 +INF .

---- VAR Y . 40.000 +INF .

---- VAR PX . 1.000 +INF .

---- VAR PY . 2.000 +INF .

---- VAR PL . 1.000 +INF .

---- VAR RA . 120.000 +INF .

X SUPPLY AND DEMAND OF GOOD X

Y SUPPLY AND DEMAND OF GOOD Y

PX PRICE OF X WHICH WILL EQUAL CX * PL

PY PRICE OF Y WHICH WILL EQUAL CY * PL

PL PRICE OF THE ARTIFICIAL FACTOR L

RA REPRESENTATIVE AGENT INCOME

The LOWER and UPPER columns report variable bounds applied in the model. In
these columns, zero is represented by \." and in�nity is represented by \+INF". The
LEVEL column reports the solution value returned by the algorithm. Here we see that
the equilibrium price of x is 1 and the price of y is 2, as determined by the speci�cation
of labor inputs. The MARGINAL column reports the net balance of a variable's associated
equation. In the case of an activity level, the MARGINAL entry is �1� the activity's net
pro�t. For a commodity price, MARGINAL reports the net market excess supply. For a
consumer, this column reports the income balance.

Exercises for Example 1:

(i) The utility function calibration point is arbitrary. Here, we have selected x=y=1 as
the reference quantity. Revise the program to use a di�erent calibration point where
x=2 and y=1, where MRS(2,1) = 1/4. (Remember to modify both the Q: and P:

�elds.) Rerun the model to demonstrate that this does not change the result.

(ii) Increase the price of x from 1 to 2 by changing the Q: coe�cient for PL in sector X
from 1 to 2. What happens to the demand for x? Explain why a change in the price
of x is represented by a change in the Q: �eld for sector X.

(iii) Compute an equilibrium in which commodity y is de�ned as the numeraire.

Example 2 : Evaluating the Marginal Rate of Substitution

This example further explores the representation of demand functions with MPSGE. It
sets up a trivial equilibrium model with two goods and one consumer which returns the
marginal rate of substitution of good x for good y at a given level of demand.

The underlying utility function is: U(x,y) = ln(x) + 4 ln(y) When x = y = 1, the
marginal rate of substitution of x for y is 1=4. We use this information to calibrate the
demand function, specifying the ratio of the reference prices of x to y equal to 1=4.
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In an equilibrium, �nal demand always equals endowments for both goods, because
these are the only sources of demand and supply. The model as parameterized demonstrates
that if we set endowments for this model equal to the demand function calibration point,
the model equilibrium price ratio equals the benchmark MRS.

This program begins with some GAMS statements in which three scalar parameters
are declared. These parameters will be used in the place of numbers within the MPSGE
model. The syntax for these GAMS statements is introduced in Chapter 2 of the GAMS
manual. In short, we declare x, y and MRS as scalar parameters and initialize the �rst
two of these to unity. The MRS parameter is assigned a value following the solution of the
model.

SCALAR

X QUANTITY OF X FOR WHICH THE MRS IS TO BE EVALUATED /1/

Y QUANTITY OF Y FOR WHICH THE MRS IS TO BE EVALUATED /1/

MRS COMPUTED MARGINAL RATE OF SUBSTITUTION;

The remainder of the MPSGE program is, in fact, simpler than Example 1.

$ONTEXT

$MODEL:MRSCAL

$COMMODITIES:

PX ! PRICE INDEX FOR GOOD X

PY ! PRICE INDEX FOR GOOD Y

$CONSUMERS:

RA ! REPRESENTATIVE AGENT

$DEMAND:RA s:1

D:PX Q:1 P:(1/4)

D:PY Q:1 P:1

E:PX Q:X

E:PY Q:Y

$OFFTEXT

$SYSINCLUDE mpsgeset MRSCAL

$INCLUDE MRSCAL.GEN

SOLVE MRSCAL USING MCP;

Following the solution, we compute a function of the solution values, the ratio of the
price of x to the price of y. We do this using the GAMS syntax which references the
equilibrium level values of the PX and PY and storing this result in the scalar MRS. This
scalar value is then displayed in the listing �le with 8 digits:
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MRS = PX.L / PY.L;

OPTION MRS:8;

DISPLAY MRS;

Exercises for Example 2:

(a) Show that the demand function is homothetic by uniform scaling of the x and y
endowments. The resulting MRS should remain unchanged.

(b) Modify the demand function calibration point so that the reference prices of both
x and y equal unity (hint: the marginal rate of substitution is:

MRS = x=(4y):

Example 3 : Goods Demand, Leisure Demand and Labor Supply

This model investigates the labor-leisure decision. A single consumer is endowed with labor
which is either supplied to the market or \repurchased" as leisure. The consumer utility
function over market goods (x and y) and leisure is Cobb-Douglas:

U(x; y; L) = ln(x) + ln(y) + ln(L)

Goods x and y may only be purchased using funds obtained from labor sales. This
constraint is written:

x+ y = � LS

where goods x and y both have a price of unity at base year productivity and � is an index
of labor productivity (� is denoted PHI in the program). An increase in productivity is
equivalent to a proportional decrease in the prices of x and y.

The model declaration is as follows:

SCALAR PHI AGGREGATE LABOR PRODUCTIVITY /1/,

CX COST OF X AT BASE YEAR PRODUCTIVITY /1/,

CY COST OF Y AT BASE YEAR PRODUCTIVITY /1/;

$ONTEXT

$MODEL:LSUPPLY

$SECTORS:

X ! SUPPLY=DEMAND FOR X

Y ! SUPPLY=DEMAND FOR Y

LS ! LABOR SUPPLY

$COMMODITIES:

PX ! MARKET PRICE OF GOOD X

PY ! MARKET PRICE OF GOOD Y

PL ! MARKET WAGE
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PLS ! CONSUMER VALUE OF LEISURE

$CONSUMERS:

RA ! REPRESENTATIVE AGENT

$PROD:LS

O:PL Q:PHI

I:PLS Q:1

$PROD:X

O:PX Q:1

I:PL Q:CX

$PROD:Y

O:PY Q:1

I:PL Q:CY

$DEMAND:RA s:1

E:PLS Q:120

D:PLS Q:1 P:1

D:PX Q:1 P:1

D:PY Q:1 P:1

$OFFTEXT

$SYSINCLUDE mpsgeset LSUPPLY

$INCLUDE LSUPPLY.GEN

SOLVE LSUPPLY USING MCP;

We can use this model to evaluate the wage elasticity of labor supply. In the initial
equilibrium (computed in the last statement) the demands for x, y and L all equal 40.
A subsequent assignment to PHI (below) increases labor productivity. After computing a
new equilibrium, we can use the change in labor supply to determine the wage elasticity
of labor supply, an important parameter in labor market studies.

It should be emphasized that the elasticity of labor supply should be an input rather
than an output of a general equilibrium model { this is a parameter for which econometric
estimates can be obtained.

Here is how the programming works. First, we declare some scalar parameters which
we will use for reporting, then save the \benchmark" labor supply in LS0:

SCALAR

LS0 REFERENCE LEVEL OF LABOR SUPPLY

ELS ELASTICITY OF LABOR SUPPLY WRT REAL WAGE;

LS0 = LS.L;
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Next, we modify the value of scalar PHI, increasing labor productivity by 1%. Because
this is a neoclassical model, this change is equivalent to increasing the real wage by 1%.
We need to recompute equilibrium prices after having changed the PHI value:

PHI = 1.01;

$INCLUDE LSUPPLY.GEN

SOLVE LSUPPLY USING MCP;

We use this solution to compute and report the elasticity of labor supply as the
percentage change in the LS activity:

ELS = 100 * (LS.L - LS0) / LS0;

DISPLAY ELS;

As the model is currently constructed, the wage elasticity of labor supply equals zero.
This is because the utility function is Cobb-Douglas over goods and leisure, and the
consumer's only source of income is labor. As the real wage rises, this increases both
the demand for goods (labor supply) and the demand for leisure. These e�ect exactly
balance out and the supply of labor is unchanged.

(a) One way in which the labor supply elasticity might di�er from zero in a model
with Cobb-Douglas �nal demand is if there were income from some other source. Let the
consumer be endowed with good x in addition to labor. What x endowment is consistent
with a labor supply elasticity equal to 0.15?

Hint: Let � be the uncompensated labor supply elasticity. Algebraic derivation leads
to the following formula:

� = (�`PxEX)=(PLL(1� �`)� �`PxEX)

where:

�` is the value share of leisure,

Px is the price of X,

EX is the endowment of commodity X,

PL is the price of labor,

L is the endowment of labor.

(b) A second way to calibrate the labor supply elasticity is to change the utility function.
We can do this by changing the s:1 to s:SIGMA, where SIGMA is a scalar value representing
the benchmark elasticity of substitution between x, y and L in �nal demand. Modify the
program to include SIGMA as a scalar, and �nd the value for SIGMA consistent with a labor
supply elasticity equal to 0.15.

Hint: Let � be the uncompensated labor supply elasticity. The algebraic derivation of
� using a CES utility function, leads to the following formula:

� =
LEIS

LSUP
(� � 1)(1 � �`)

where:
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Figure 7. The Edgeworth-Bowley Box

�` is the value share of leisure (Shl),

LEIS is the benchmark demand for leisure,

LSUP is the benchmark supply of labor, and

� is the compensated labor supply elasticity.

5. The Pure Exchange Model

Partial equilibrium analysis forms the basis of most economics courses at the undergrad-
uate level. In these models we focus on price, supply and demand for a single commodity.
The partial equilibrium approach neglects indirect e�ects, through which changes in the
demand or supply for one good may in
uence the market for another good.

In the previous section, we focused on the choices of a single consumer. In the present
section, we will explore the implications of interactions between many consumers with
heterogeneous preferences. Furthermore, the analysis will explore the potentially important
interaction between market prices and income which are determined jointly in a general
equilibrium.

The most widely-used graphical framework for multi-agent exchange equilibrium anal-
ysis is the Edgeworth-Bowley box as illustrated in Figure 7. In this diagram we model the
following economy:

Two types of consumers, denoted A and B. We consider A and H to each represent
many households, each with the same endowments and preferences. (This assumption
justi�es an assumption of perfectly competitive, price-taking behavior.) There are two
commodities in the model, denoted x and y Each consumer has �xed endowments of both
goods. The horizontal axis measures the total world endowment of good x. The vertical
axis measure the total world endowment of good y. Any point in the box then represents
an allocation of goods between the two agents. The agent H allocation is measured with
respect to the lower left origin. The agent F allocation is measured with respect to the
upper right origin.

Each agent has a given initial endowment, here denoted point E. Furthermore, we
assume that there is no possibility for trade. The indi�erence curves through point E
therefore represent autarchy welfare levels.
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The key idea in this model is that trade can improve both agents' welfare. One agent
gives some amount good x to the other in return for an amount of good y. The terms
of trade, the rate of exchange between x and y, is determined by the model. The model
illustrates a number of important properties of market economies:

(i) Trade is mutually bene�cial. So long as the transactions are voluntary, neither H nor
F will be hurt by engaging in trade.

(ii) Market prices can be used to guide the economy to a Pareto-e�cient allocation, a
state of a�airs in which further mutually-bene�cial trades are not possible.

(iii) There is no guarantee that the gains from trade will be \fairly distributed" across
consumers. A competitive equilibrium may produce a signi�cant welfare increase for
one consumer while have negligible impact on the other.

(iv) There are multiple Pareto-e�cient allocations, typically only one of which is a com-
petitive equilibrium.We can use this model to demonstrate that the issues of e�ciency
and equity can be separated when there is the possibility of lump-sum income transfers
between agents.

Example 4: A 2x2 Exchange Model

In this program, we examine the simple two good, two agent model of exchange equilib-
rium. The world endowments for goods x and y are both equal to 1. Six parameters are
used to parameterize the model. These are declared as scalars at the top of the program:

SCALAR XA AGENT A ENDOWMENT OF X ( 0 < XA < 1) /0.2/

YA AGENT A ENDOWMENT OF Y ( 0 < YA < 1) /0.8/

THETA_A AGENT A DEMAND SHARE PARAMETER FOR X /0.5/

THETA_B AGENT B DEMAND SHARE PARAMETER FOR X /0.8/

SIGMA_A AGENT A ELASTICITY PARAMETER /2.0/

SIGMA_B AGENT B ELASTICITY PARAMETER /0.5/;

This model is actually simpler than the models presented above because we have no
need for production. There are simply two commodities and two consumers. The consumers
di�er in terms of commodity endowments and preferences. The competitive equilibrium
prices are such that supply equals demand for both goods and both agents spend an
amount equal to their endowment income.

This model illustrates how to use computed function coe�cients. See, for example,
Q:(1-THETA A) in the $DEMAND:A block. Any numeric input �eld in an MPSGE model
may be \computed", provided that the algebraic expression is enclosed within parentheses
and legitimate GAMS code.

This model speci�cation uses the default values for reference prices in the demand
function blocks. When P:value is not speci�ed in a D:,I: or O: record, P:1 is assumed.

$ONTEXT
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$MODEL:EXCHANGE

$COMMODITIES:

PX ! EXCHANGE PRICE OF GOOD X

PY ! EXCHANGE PRICE OF GOOD Y

$CONSUMERS:

A ! CONSUMER A

B ! CONSUMER B

$DEMAND:A s:SIGMA_A

E:PX Q:XA

E:PY Q:YA

D:PX Q:THETA_A

D:PY Q:(1-THETA_A)

$DEMAND:B s:SIGMA_B

E:PX Q:(1-XA)

E:PY Q:(1-YA)

D:PX Q:THETA_B

D:PY Q:(1-THETA_B)

$OFFTEXT

$SYSINCLUDE mpsgeset EXCHANGE

$INCLUDE EXCHANGE.GEN

SOLVE EXCHANGE USING MCP;

SCALAR

PRATIO EQUILIBRIUM PRICE OF X IN TERMS OF Y,

IRATIO EQUILIBRIUM RATIO OF CONSUMER INCOMES;

PRATIO = PX.L / PY.L;

IRATIO = A.L / B.L;

DISPLAY IRATIO, PRATIO;

The foregoing sets up the model and computes the competitive equilibrium. After
GAMS returns from the solver, we declare and compute some report values.

Absolute levels of income and price returned from a general equilibrium model are not
meaningful because a model determines only relative prices. For this reason, we report
equilibrium income and price levels in relative terms.

In the �nal step, we compute an alternative e�cient equilibrium, one in which the
income levels for A and B are equal. The purpose of this exercise is to demonstrate the
second welfare theorem. When incomes are both �xed, the equilibrium remains e�cient,
but the connection between market prices and endowment income is eliminated.
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In GAMS/MPSGE, a variable may be �xed using an assignment statement such as:
\variable.fx = value;", as illustrated in this model:

A.FX = 1;

B.FX = 1;

$INCLUDE EXCHANGE.GEN

SOLVE EXCHANGE USING MCP;

SCALAR TRANSFER IMPLIED TRANSFER FROM A TO B AS A PERCENTAGE OF INCOME;

TRANSFER = 100 * ( A.L - PX.L * XA - PY.L * YA ); PRATIO = PX.L / PY.L;

IRATIO = A.L / B.L;

DISPLAY TRANSFER, PRATIO, IRATIO;

Exercises for Example 4:

(i) Set up a separate models which computes the autarchy price ratios for consumers A
and B. (You can use one of the earlier models as a starting point.)

(ii) Determine parameter values for which the endowment point is the equilibrium point.

(iii) Set up a series of computations from which you can sketch the e�ciency locus. Draw
the Edgeworth box diagram which is consistent with these values.

6. Import Tari�s and Market Power

The exchange model provides a remarkably useful tool for analyzing issues related to
international trade. Applied models of international trade typically include production
technologies, but these are omitted in this treatment for the sake of simplicity. In this
model, we will consider a generalization of the earlier 2 � 2 exchange model. In this
extension, we introduce independent markets for consumers A and B and trade activities
which deliver goods from one market to the other.

The set of input parameters largely the same as in the previous example. Two new
parameters are ad-valorem tari�s which apply on imports to each of the regions.

SCALAR XA AGENT A ENDOWMENT OF X ( 0 < XA < 1) /0.2/

YA AGENT A ENDOWMENT OF Y ( 0 < YA < 1) /0.8/

THETA_A AGENT A DEMAND SHARE PARAMETER FOR X /0.4/

THETA_B AGENT B DEMAND SHARE PARAMETER FOR X /0.6/

SIGMA_A AGENT A ELASTICITY PARAMETER /1.0/

SIGMA_B AGENT B ELASTICITY PARAMETER /1.0/,

T_A AD-VALOREM TARIFF ON IMPORTS TO AGENT A /0.10/

T_B AD-VALOREM TARIFF ON IMPORTS TO AGENT B /0.10/;
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The program di�ers from the previous example in several respects. First, we introduce a
separate commodity price for each agent. In the absence of tari�s, these prices are identical.

A second di�erence is that in this model trade activities deliver goods from one agent to
the other. These are denoted Mfgoodgfagentg for imports of good to agent. There are four

ows which may be operated in only one direction (the activity levels are non-negative).
In terms of initial endowments and preferences, this model has exactly the same economic
structure as the previous model.

$ONTEXT

$MODEL:TARIFFS

$SECTORS:

MXA ! TRADE IN X FROM B TO A

MXB ! TRADE IN X FROM A TO B

MYA ! TRADE IN Y FROM B TO A

MYB ! TRADE IN Y FROM A TO B

$COMMODITIES:

PXA ! PRICE OF GOOD X FOR AGENT A

PYA ! PRICE OF GOOD Y FOR AGENT A

PXB ! PRICE OF GOOD X FOR AGENT B

PYB ! PRICE OF GOOD Y FOR AGENT B

$CONSUMERS:

A ! CONSUMER A

B ! CONSUMER B

$DEMAND:A s:SIGMA_A

E:PXA Q:XA

E:PYA Q:YA

D:PXA Q:THETA_A

D:PYA Q:(1-THETA_A)

$DEMAND:B s:SIGMA_B

E:PXB Q:(1-XA)

E:PYB Q:(1-YA)

D:PXB Q:THETA_B

D:PYB Q:(1-THETA_B)

The trade activities each have one input and one output. They simply deliver a good
(X or Y ) from one agent's market to the other's market. The new syntax presented here is
speci�cation of an ad-valorem tax. Adding a tax requires two new �elds. The �rst is \A:"
which speci�es the tax agent, a consumer who collects the tax revenue as part of income.
The second is \T:" which speci�es the ad- valorem tax rate.
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N.B. In an MPSGE model taxes may be applied on production inputs and outputs,
but taxes may not be applied to �nal demand.

The tax applies on a net basis on inputs. For example, if we consider the MXA sector,
the price of one unit of input is given by: PxB(1 + TA), where PxB is the net of tax price
of a unit of x in the agent B market and TA is the ad-valorem tari� rate.

$PROD:MXA

O:PXA Q:1

I:PXB Q:1 A:A T:T_A

$PROD:MXB

O:PXB Q:1

I:PXA Q:1 A:B T:T_B

$PROD:MYA

O:PYA Q:1

I:PYB Q:1 A:A T:T_A

$PROD:MYB

O:PYB Q:1

I:PYA Q:1 A:B T:T_B

The �nal portions of the �le introduces MPSGE report variables. In this case, report
variables are used to recover a Hicksian money-metric welfare index for each of the agents.
In the REPORT block, a V: �eld designates a variable name which must be distinct, and a
W: �eld indicates that the variable is to return a welfare index for the speci�ed consumer.

We �rst compute the tari�-ridden equilibrium which de�nes benchmark welfare levels.
After this calculation, we set all tari�s to zero and compute the free-trade equilibrium.
Using welfare indices from the counterfactual and welfare levels from the benchmark, we
are able to report the change in welfare associated with the removal of tari� distortions.

$REPORT:

V:WA W:A

V:WB W:B

$OFFTEXT

$SYSINCLUDE mpsgeset TARIFFS

$INCLUDE TARIFFS.GEN

SOLVE TARIFFS USING MCP;

SCALAR

WA0 BENCHMARK WELFARE INDEX FOR AGENT A

WB0 BENCHMARK WELFARE INDEX FOR AGENT B;
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WA0 = WA.L;

WB0 = WB.L;

T_A = 0;

T_B = 0;

$INCLUDE TARIFFS.GEN

SOLVE TARIFFS USING MCP;

SCALAR

EVA HICKSIAN EQUIVALENT VARIATION FOR AGENT A

EVB HICKSIAN EQUIVALENT VARIATION FOR AGENT B;

EVA = 100 * (WA.L-WA0)/WA0;

EVB = 100 * (WB.L-WB0)/WB0;

DISPLAY EVA, EVB;

Exercises for Example 5:

(i) Find the optimal tari� in this model for agent A, assuming that agent B does not
retaliate and leaves her tari� rate at the benchmark level.

(ii) Insert the endowment and preference parameters from the previous problem, retaining
the same benchmark tari� rates. Does free trade bene�t both countries? If not, why
not?

7. Solutions to Exercises

Solution to Example 1

$TITLE: Solution to Example 1

* Declare the benchmark values as scalars to allow for changes when

* doing the exercises:

SCALAR

X0 LEVEL OF X AT BENCHMARK

Y0 LEVEL OF Y AT BENCHMARK

PX0 PX AT BENCHMARK

PY0 PY AT BENCHMARK

LX0 LABOR IN SECTOR X;

X0 = 1;

Y0 = 1;

PX0 = (1/2);
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PY0 = 1;

LX0 = 1;

$ONTEXT

$MODEL:DEMAND

$SECTORS:

X ! ACTIVITY LEVEL FOR X = DEMAND FOR GOOD X

Y ! ACTIVITY LEVEL FOR Y = DEMAND FOR GOOD Y

$COMMODITIES:

PX ! PRICE OF X WHICH WILL EQUAL PL

PY ! PRICE OF Y WHICH WILL EQUAL 2 PL

PL ! PRICE OF FACTOR L

$CONSUMERS:

RA ! REPRESENTATIVE AGENT INCOME

$PROD:X

O:PX Q:X0

I:PL Q:LX0

$PROD:Y

O:PY Q:Y0

I:PL Q:2

$DEMAND:RA s:1

E:PL Q:120

D:PX Q:X0 P:PX0

D:PY Q:Y0 P:PY0

$OFFTEXT

$SYSINCLUDE mpsgeset DEMAND

$INCLUDE DEMAND.GEN

SOLVE DEMAND USING MCP;

The solution listing appears as follows:

LOWER LEVEL UPPER MARGINAL

---- VAR X . 40.000 +INF .

---- VAR Y . 40.000 +INF .

---- VAR PX . 1.000 +INF .

---- VAR PY . 2.000 +INF .

---- VAR PL . 1.000 +INF .
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---- VAR RA . 120.000 +INF .

X ACTIVITY LEVEL FOR X = DEMAND FOR GOOD X

Y ACTIVITY LEVEL FOR Y = DEMAND FOR GOOD Y

PX PRICE OF X WHICH WILL EQUAL PL

PY PRICE OF Y WHICH WILL EQUAL 2 PL

PL PRICE OF FACTOR L

RA REPRESENTATIVE AGENT INCOME

Exercise (1.i): Use a di�erent calibration point where x = 2, y = 1, MRS(2; 1) = 1=4.
Rerun the model to show that this does not change the results.

X0 = 2;

Y0 = 1;

PX0 = (1/4);

PY0 = 1;

$INCLUDE DEMAND.GEN

SOLVE DEMAND USING MCP;

Solution listing for exercise (1.i): Di�erent calibration point.

LOWER LEVEL UPPER MARGINAL

---- VAR X . 40.000 +INF .

---- VAR Y . 40.000 +INF .

---- VAR PX . 0.500 +INF .

---- VAR PY . 2.000 +INF .

---- VAR PL . 1.000 +INF .

---- VAR RA . 120.000 +INF .

Exercise (1.ii): Increase the price of x from 1 to 2, by changing the Q:coe�cient for PL
in sector x from 1 to 2.

LX0 = 2;

$INCLUDE DEMAND.GEN

SOLVE DEMAND USING MCP;

The solution listing appears as follows:

LOWER LEVEL UPPER MARGINAL
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---- VAR X . 20.000 +INF .

---- VAR Y . 40.000 +INF .

---- VAR PX . 1.000 +INF .

---- VAR PY . 2.000 +INF .

---- VAR PL . 1.000 +INF .

---- VAR RA . 120.000 +INF .

Exercise (1.iii): Compute an equilibrium in which commodity Y is de�ned as the
numeraire.

This is done by �xing the value of Py equal to one. The MPSGE function evalua-
tion program detects that a price has been �xed, and it then does not apply any price
normalization.

PY.FX = 1;

$INCLUDE DEMAND.GEN

SOLVE DEMAND USING MCP;

Solution listing for exercise (1.iii): Commodity Y as numeraire.

LOWER LEVEL UPPER MARGINAL

---- VAR X . 20.000 +INF .

---- VAR Y . 40.000 +INF .

---- VAR PX . 0.500 +INF .

---- VAR PY 1.000 1.000 1.000 EPS

---- VAR PL . 0.500 +INF .

---- VAR RA . 60.000 +INF .

Solution to Example 2

$TITLE: Solution to Example 2

* Declare the benchmarck prices as scalars to allow for changes in the

* counterfactual models.

SCALAR

X QUANTITY OF X FOR WHICH THE MRS IS TO BE EVALUATED

Y QUANTITY OF Y FOR WHICH THE MRS IS TO BE EVALUATED

MRS COMPUTED MARGINAL RATE OF SUBSTITUTION

PX0 PRICE OF X

PY0 PRICE OF Y;

X = 1;

Y = 1;

PX0 = 1/4;
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PY0 = 1;

$ONTEXT

$MODEL:MRSCAL

$COMMODITIES:

PX ! PRICE INDEX FOR GOOD X

PY ! PRICE INDEX FOR GOOD Y

$CONSUMERS:

RA ! REPRESENTATIVE AGENT

$DEMAND:RA s:1

D:PX Q:1 P:PX0

D:PY Q:1 P:PY0

E:PX Q:X

E:PY Q:Y

$OFFTEXT

$SYSINCLUDE mpsgeset MRSCAL

$INCLUDE MRSCAL.GEN

SOLVE MRSCAL USING MCP;

* Compute the MRS using the solution values:

MRS = PX.L / PY.L;

* Display MRS with 8 decimals:

OPTION MRS:8;

DISPLAY MRS;

The solution listing appears as follows:

LOWER LEVEL UPPER MARGINAL

---- VAR PX . 0.400 +INF .

---- VAR PY . 1.600 +INF .

---- VAR RA . 2.000 +INF .

PX PRICE INDEX FOR GOOD X

PY PRICE INDEX FOR GOOD Y

RA REPRESENTATIVE AGENT

---- 191 PARAMETER MRS = 0.25000000 COMPUTED MARGINAL
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RATE OF SUBSTITUTION

Exercise (2.i): Show that the demand function is homothetic by uniform scaling of the
X and Y endowments. The resulting MRS should remain unchanged.

X = 20;

Y = 20;

$INCLUDE MRSCAL.GEN

SOLVE MRSCAL USING MCP;

* Compute the MRS using the new solution values:

MRS = PX.L / PY.L;

DISPLAY MRS;

The solution to exercise (1.i):

LOWER LEVEL UPPER MARGINAL

---- VAR PX . 0.400 +INF .

---- VAR PY . 1.600 +INF .

---- VAR RA . 40.000 +INF .

---- 255 PARAMETER MRS = 0.25000000 COMPUTED MARGINAL

RATE OF SUBSTITUTION

Exercise (2.ii): Modify the demand function calibration point so that the reference price
of both X and Y equal unity.

PX0 = 1;

PY0 = 1;

$INCLUDE MRSCAL.GEN

SOLVE MRSCAL USING MCP;

* Compute the MRS using solution values:

MRS = PX.L / PY.L;

DISPLAY MRS;
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Solution to exercise (2.ii):

LOWER LEVEL UPPER MARGINAL

---- VAR PX . 1.000 +INF .

---- VAR PY . 1.000 +INF .

---- VAR RA . 40.000 +INF .

---- 319 PARAMETER MRS = 1.00000000 COMPUTED MARGINAL

RATE OF SUBSTITUTION

Solution to Example 3

$TITLE: Solution to Example 3

* Declare as scalars EX0 and SIGMA to change their values in the

* counterfactual models

SCALAR

PHI AGGREGATE LABOR PRODUCTIVITY /1/

CX COST OF X AT BASE YEAR PRODUCTIVITY /1/

CY COST OF Y AT BASE YEAR PRODUCTIVITY /1/

EX0 ENDOWMENT OF X AT BENCHMARK /0/

SIGMA ELASTICITY OF SUBSTITUTION IN CONSUMPTION /1/;

$ONTEXT

$MODEL: LSUPPLY

$SECTORS:

X ! SUPPLY = DEMAND FOR X

Y ! SUPPLY = DEMAND FOR Y

LS ! LABOR SUPPLY

$COMMODITIES:

PX ! MARKET PRICE OF GOOD X

PY ! MARKET PRICE OF GOOD Y

PL ! MARKET WAGE

PLS ! CONSUMER VALUE OF LEISURE

$CONSUMERS:

RA ! REPRESENTATIVE AGENT

$PROD:LS

O:PL Q:PHI
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I:PLS Q:1

$PROD:X

O:PX Q:1

I:PL Q:CX

$PROD:Y

O:PY Q:1

I:PL Q:CY

* Add endowment of X (EX0) which in benchmark is 0, so we can change

* its value in exercise (a).

$DEMAND:RA s:sigma

E:PLS Q:120

E:PX Q:EX0

D:PLS Q:1 P:1

D:PX Q:1 P:1

D:PY Q:1 P:1

$OFFTEXT

$SYSINCLUDE mpsgeset LSUPPLY

$INCLUDE LSUPPLY.GEN

SOLVE LSUPPLY USING MCP;

* Save the solution value of labor supply with PHI=1, to compare with

* the labor supply in the counterfactual model with PHI = 1.01.

SCALAR

LS0 REFERENCE LEVEL OF LABOR SUPPLY

ELS ELASTICITY OF LABOR SUPPLY WRT REAL WAGE;

LS0 = LS.L;

* Counterfactual Model: Modify Labor Productivity.

PHI = 1.01;

$INCLUDE LSUPPLY.GEN

SOLVE LSUPPLY USING MCP;

* Compute the labor supply elasticity:

ELS = round(100 * (LS.L - LS0) / LS0);

DISPLAY ELS;
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Exercise (3.i): To get a labor supply elasticity di�erent than zero in a model with Cobb-
Douglas �nal demand, include income from some other source di�erent than labor income.
Let the consumer be endowed with good X in addition to labor. Find the X endowment
consistent with a labor supply elasticity of 0.15.

Solving for EX in the expression for � given in the hint, we have that:

EX = (�=(1 + �))L((1 � �`)=�`) � (PL=Px)
To compute EX in this exercise, we have the benchmark values: L = 120, �` = 1=3 (from

the solution of the model at benchmark: LS = 80). We are given: � = 0:15, P` = 1:01
(from the change in PHI).

$ontext

$offtext

* Compute EX0:

SCALARS ETA Elasticity of labor supply /0.15/

L Endowment of labor /120/

Prl Price of labor /1.01/

Prx Price of commodity X /1.0/

Shl Value share of leisure;

Shl = 1/3;

* X endowment consistent with ETA = 0.15:

EX0 = (ETA/(1+ETA)) * L *((1-Shl)/Shl) * (Prl/Prx);

DISPLAY EX0;

* Return to the benchmark labor productivity:

PHI = 1;

$INCLUDE LSUPPLY.GEN

SOLVE LSUPPLY USING MCP;

The solution listing appears as follows:

LOWER LEVEL UPPER MARGINAL

---- VAR X . 40.000 +INF .

---- VAR Y . 40.000 +INF .

---- VAR LS . 80.000 +INF .

---- VAR PX . 1.000 +INF .
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---- VAR PY . 1.000 +INF .

---- VAR PL . 1.000 +INF .

---- VAR PLS . 1.000 +INF .

---- VAR RA . 120.000 +INF .

X SUPPLY = DEMAND FOR X

Y SUPPLY = DEMAND FOR Y

LS LABOR SUPPLY

PX MARKET PRICE OF GOOD X

PY MARKET PRICE OF GOOD Y

PL MARKET WAGE

PLS CONSUMER VALUE OF LEISURE

RA REPRESENTATIVE AGENT

* Save the value of labor supply with PHI = 1;

LS0 = LS.L;

* Counterfactual model:

PHI = 1.01;

$INCLUDE LSUPPLY.GEN

SOLVE LSUPPLY USING MCP;

* Compute the labor supply elasticity with the solution values:

ELS = 100 * (LS.L - LS0) / LS0;

DISPLAY ELS;

Counterfactual model: PHI=1.01:

LOWER LEVEL UPPER MARGINAL

---- VAR X . 19.322 +INF .

---- VAR Y . 50.939 +INF .

---- VAR LS . 69.565 +INF .

---- VAR PX . 0.990 +INF .

---- VAR PY . 0.990 +INF .

---- VAR PL . 0.990 +INF .

---- VAR PLS . 1.000 +INF .

---- VAR RA . 151.304 +INF .

---- 646 PARAMETER ELS = 0.150 ELASTICITY OF LABOR
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SUPPLY WRT REAL WAGE

Exercise (3.ii) Alternatively, change the utiliy function. Let us change s:1 to s:SIGMA,
where SIGMA is a scalar value representing the benchmark elasticity of subsitution between
X, Y and L in �nal demand. Find the value for SIGMA consistent with a labor supply
elasticity of 0.15

Solving for � in the expression for � given in the hint, we have that:

� = �
LSUP

LEIS

1

1� �` + 1

To compute � in this exercise we are given: � = 0:15, �` = 1=3, change in PHI from
1.0 to 1.01, thus with � = 0:15 we have LSUP = 80:12 and LEIS = 39:88.

* Compute SIGMA:

SCALAR LSUP Labor supply /80.12/

LEIS Demand for leisure /39.88/;

* Value of SIGMA consistent with ELS = 0.15:

SIGMA = ETA * (LSUP/LEIS) * (1/(1-Shl)) + 1;

DISPLAY SIGMA;

* Return to the benchmark value of the endowment of X and labor prod:

EX0 = 0;

PHI = 1;

$INCLUDE LSUPPLY.GEN

SOLVE LSUPPLY USING MCP;

Listing output:

---- 679 PARAMETER SIGMA = 1.452 ELASTICITY OF

SUBSTITUTION IN

CONSUMPTION

LOWER LEVEL UPPER MARGINAL

---- VAR X . 40.000 +INF .

---- VAR Y . 40.000 +INF .

---- VAR LS . 80.000 +INF .

---- VAR PX . 1.000 +INF .

---- VAR PY . 1.000 +INF .

---- VAR PL . 1.000 +INF .
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---- VAR PLS . 1.000 +INF .

---- VAR RA . 120.000 +INF .

Continuing, we compute an equilibrium to evaluate the labor supply elasticity:

* Save the value of labor supply with PHI = 1;

LS0 = LS.L;

* Counterfactual model:

PHI = 1.01;

$INCLUDE LSUPPLY.GEN

SOLVE LSUPPLY USING MCP;

* Compute the labor supply elasticity:

ELS = 100 * (LS.L - LS0) / LS0;

DISPLAY ELS;

Model output is as follows:

LOWER LEVEL UPPER MARGINAL

---- VAR X . 40.461 +INF .

---- VAR Y . 40.461 +INF .

---- VAR LS . 80.120 +INF .

---- VAR PX . 0.990 +INF .

---- VAR PY . 0.990 +INF .

---- VAR PL . 0.990 +INF .

---- VAR PLS . 1.000 +INF .

---- VAR RA . 120.000 +INF .

---- 888 PARAMETER ELS = 0.150 ELASTICITY OF LABOR

Counterfactual model (Labor productivity = 1.01):

LOWER LEVEL UPPER MARGINAL

---- VAR X . 40.400 +INF .

---- VAR Y . 40.400 +INF .

---- VAR LS . 80.000 +INF .

---- VAR PX . 0.990 +INF .

---- VAR PY . 0.990 +INF .
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---- VAR PL . 0.990 +INF .

---- VAR PLS . 1.000 +INF .

---- VAR RA . 120.000 +INF .

---- 402 PARAMETER ELS = 0.000 ELASTICITY OF LABOR

SUPPLY WRT REAL WAGE

Exercise (a): Consumer is endowed with good X and labor (PHI=1.0):

---- 442 PARAMETER EX0 = 31.617 ENDOWMENT OF X AT

BENCHMARK

LOWER LEVEL UPPER MARGINAL

---- VAR X . 18.922 +INF .

---- VAR Y . 50.539 +INF .

---- VAR LS . 69.461 +INF .

---- VAR PX . 0.998 +INF .

---- VAR PY . 0.998 +INF .

---- VAR PL . 0.998 +INF .

---- VAR PLS . 0.998 +INF .

---- VAR RA . 151.304 +INF .

Solution to Example 4

$TITLE: Solution to Example 4

SCALAR XA AGENT A ENDOWMENT OF X (0 < XA < 1) /0.2/

YA AGENT A ENDOWMENT OF Y (0 < YA < 1) /0.8/

THETA_A AGENT A DEMAND SHARE PARAMETER FOR X /0.5/

THETA_B AGENT B DEMAND SHARE PARAMETER FOR X /0.8/

SIGMA_A AGENT A ELASTICITY PARAMETER /2.0/

SIGMA_B AGENT B ELASTICITY PARAMETER /0.5/;

$ONTEXT

$MODEL:EXCHANGE

$COMMODITIES:

PX ! EXCHANGE PRICE OF GOOD X

PY ! EXCHANGE PRICE OF GOOD Y

$CONSUMERS:

A ! CONSUMER A

B ! CONSUMER B
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$DEMAND:A s:SIGMA_A

E:PX Q:XA

E:PY Q:YA

D:PX Q:THETA_A

D:PY Q:(1-THETA_A)

$DEMAND:B s:SIGMA_B

E:PX Q:(1-XA)

E:PY Q:(1-YA)

D:PX Q:THETA_B

D:PY Q:(1-THETA_B)

* Recover the solution value of the demands of both consumers to

* construct the "efficiency locus" in exercise (c):

$REPORT:

V:XAD D:PX DEMAND:A

V:YAD D:PY DEMAND:A

V:XBD D:PX DEMAND:B

V:YBD D:PY DEMAND:B

$OFFTEXT

$SYSINCLUDE mpsgeset EXCHANGE

$INCLUDE EXCHANGE.GEN

SOLVE EXCHANGE USING MCP;

* Compute the price and income ratios:

SCALAR

PRATIO EQUILIBRIUM PRICE OF X IN TERMS OF Y

IRATIO EQUILIBRIUM RATIO OF INCOMES;

PRATIO = PX.L / PY.L;

IRATIO = A.L / B.L;

DISPLAY IRATIO, PRATIO;

Solution listing and other displayed output for exercise 4:

LOWER LEVEL UPPER MARGINAL

---- VAR PX . 1.546 +INF .

---- VAR PY . 0.864 +INF .

---- VAR A . 1.000 +INF .

---- VAR B . 1.409 +INF .

---- VAR XAD . 0.232 +INF .

---- VAR YAD . 0.743 +INF .

---- VAR XBD . 0.768 +INF .

---- VAR YBD . 0.257 +INF .

PX EXCHANGE PRICE OF GOOD X
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PY EXCHANGE PRICE OF GOOD Y

A CONSUMER A

B CONSUMER B

XAD

YAD

XBD

YBD

---- 281 PARAMETER IRATIO = 0.709 EQUILIBRIUM RATIO OF

CONSUMER INCOMES

PARAMETER PRATIO = 1.790 EQUILIBRIUM PRICE OF

X IN TERMS OF Y

Compute an alternative e�cient equilibrium where the income levels for A and B are
equal, to demonstrate that when incomes are both �xed, the equilibrium remains e�cient,
but the connection between market prices and endowment income is eliminated:

* Fix the income variables using: variable.FX = value:

A.FX = 1;

B.FX = 1;

$INCLUDE EXCHANGE.GEN

SOLVE EXCHANGE USING MCP;

SCALAR TRANSFER IMPLIED TRANSFER FROM A TO B AS A PERCENTAGE OF INCOME;

TRANSFER = 100 * (A.L - (PX.L * XA + PY.L * YA));

PRATIO = PX.L / PY.L;

IRATIO = A.L / B.L;

DISPLAY TRANSFER, PRATIO, IRATIO;

Listing �le output is as follows:

LOWER LEVEL UPPER MARGINAL

---- VAR PX . 1.223 +INF .

---- VAR PY . 0.777 +INF .

---- VAR A 1.000 1.000 1.000 EPS

---- VAR B 1.000 1.000 1.000 EPS

---- VAR XAD . 0.318 +INF .

---- VAR YAD . 0.786 +INF .

---- VAR XBD . 0.682 +INF .
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---- VAR YBD . 0.214 +INF .

---- 396 PARAMETER TRANSFER = 13.351 IMPLIED TRANSFER

FROM A TO B AS A

PERCENTAGE OF INCOME

PARAMETER PRATIO = 1.572 EQUILIBRIUM PRICE OF

X IN TERMS OF Y

PARAMETER IRATIO = 1.000 EQUILIBRIUM RATIO OF

CONSUMER INCOMES

Exercise (4.i): Set up separate models wich compute autarchy price ratios for consumers
A and B.

* Remove the fixed values of incomes:

A.LO = 0;

A.UP = +INF;

B.LO = 0;

B.UP = +INF;

$ONTEXT

$MODEL:AUTAR_A

$COMMODITIES:

PX ! AUTAR_A PRICE OF GOOD X

PY ! AUTAR_A PRICE OF GOOD Y

$CONSUMERS:

A ! CONSUMER A

$DEMAND:A s:SIGMA_A

E:PX Q:XA

E:PY Q:YA

D:PX Q:THETA_A

D:PY Q:(1-THETA_A)

$OFFTEXT

$SYSINCLUDE mpsgeset AUTAR_A

$INCLUDE AUTAR_A.GEN

SOLVE AUTAR_A USING MCP;

Solution listing for agent A autarchy equilibrium:

LOWER LEVEL UPPER MARGINAL

---- VAR PX . 1.667 +INF .
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---- VAR PY . 0.833 +INF .

---- VAR A . 1.000 +INF .

Store autarchy equilibriumprice ratio for agent A, then specify the autarchy equilibrium
for agent B and compute a second equilibrium:

* Compute the price ratio:

PARAMETER PRICER PRICE RATIO OF THE AUTARCHY MODELS;

PRICER("AUT_A","PRATIO") = PX.L / PY.L;

$ONTEXT

$MODEL:AUTAR_B

$COMMODITIES:

PX ! AUTAR_B PRICE OF GOOD X

PY ! AUTAR_B PRICE OF GOOD Y

$CONSUMERS:

B ! CONSUMER B

$DEMAND:B s:SIGMA_B

E:PX Q:(1-XA)

E:PY Q:(1-YA)

D:PX Q:THETA_B

D:PY Q:(1-THETA_B)

$OFFTEXT

$SYSINCLUDE mpsgeset AUTAR_B

$INCLUDE AUTAR_B.GEN

SOLVE AUTAR_B USING MCP;

* Compute the price ratio:

PRICER("AUT_B","PRATIO") = PX.L / PY.L;

DISPLAY PRICER;

Listing �le output with a solution for model AUTAR B and a comparison report of
autarchy price ratios:

LOWER LEVEL UPPER MARGINAL

---- VAR PX . 1.000 +INF .
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---- VAR PY . 1.000 +INF .

---- VAR B . 1.000 +INF .

---- 746 PARAMETER PRICER PRICE RATIO OF THE AUTARCHY MODELS

PRATIO

AUT_A 2.000

AUT_B 1.000

Exercise (4.ii): Determine parameter values for which the endowment point is equilib-
rium point.

* Change preferences of A to be the same as his/her endowent:

THETA_A = 0.2;

$INCLUDE EXCHANGE.GEN

SOLVE EXCHANGE USING MCP;

* Compute the price and income ratios:

PRATIO = PX.L / PY.L;

IRATIO = A.L / B.L;

DISPLAY PRATIO, IRATIO;

Listing �le output for exercise 4.ii solution:

LOWER LEVEL UPPER MARGINAL

---- VAR PX . 1.000 +INF .

---- VAR PY . 1.000 +INF .

---- VAR A . 1.000 +INF .

---- VAR B . 1.000 +INF .

---- VAR XAD . 0.200 +INF .

---- VAR YAD . 0.800 +INF .

---- VAR XBD . 0.800 +INF .

---- VAR YBD . 0.200 +INF .

---- 856 PARAMETER PRATIO = 1.000 EQUILIBRIUM PRICE OF

X IN TERMS OF Y

PARAMETER IRATIO = 1.000 EQUILIBRIUM RATIO OF

CONSUMER INCOMES

Exercise (4.iii): Set up a series of computations from which you can sketch the e�ciency
locus.
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* Return to the original value of the parameters:

THETA_A = 0.5;

* Loop using different values of endowments of X and extract the solution

* value of the demands:

SET SC SCENARIOS /SC1*SC7/;

PARAMETER XAVALUE(SC) VALUE SHARE OF "A" ENDOWMENT OF X

/SC1 0, SC2 0.1, SC3 0.3, SC4 0.5,

SC5 0.7, SC6 0.9, SC7 1/

DEMAND(SC,*) DEMAND BY SCENARIO;

LOOP (SC,

* Install a XA value for the current scenario:

XA = XAVALUE(SC);

$INCLUDE EXCHANGE.GEN

SOLVE EXCHANGE USING MCP;

* Extract the solution value of the demands:

DEMAND(SC, "XADEM") = XAD.L;

DEMAND(SC, "YADEM") = YAD.L;

DEMAND(SC, "XBDEM") = XBD.L;

DEMAND(SC, "YBDEM") = YBD.L;

);

DISPLAY XAVALUE, DEMAND;

Listings from the comparison (solution listings have been suppressed):

---- 984 PARAMETER XAVALUE VALUE SHARE OF "A" ENDOWMENT OF X

SC2 0.100, SC3 0.300, SC4 0.500, SC5 0.700, SC6 0.900, SC7 1.000

---- 984 PARAMETER DEMAND DEMAND BY SCENARIO

XADEM YADEM XBDEM YBDEM

SC1 0.068 0.598 0.932 0.402

SC2 0.151 0.690 0.849 0.310

SC3 0.311 0.783 0.689 0.217

SC4 0.466 0.845 0.534 0.155

SC5 0.620 0.896 0.380 0.104
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SC6 0.773 0.940 0.227 0.060

SC7 0.849 0.961 0.151 0.039

Solution to Example 5

$TITLE: Solution to Example 5

SCALAR XA AGENT A ENDOWMENT OF X (0 < XA < 1) /0.2/

YA AGENT A ENDOWMENT OF Y (0 < YA < 1) /0.8/

THETA_A AGENT A DEMAND SHARE PARAMETER FOR X /0.4/

THETA_B AGENT B DEMAND SHARE PARAMETER FOR X /0.6/

SIGMA_A AGENT A ELASTICITY PARAMETER /1/

SIGMA_B AGENT B ELASTICITY PARAMETER /1/

T_A AD VALOREM TARIFF ON IMPORTS TO AGENT A /0.10/

T_B AD VALOREM TARIFF ON IMPORTS TO AGENT B /0.10/;

$ONTEXT

$MODEL:TARIFFS

$SECTORS:

MXA ! TRADE IN X FROM B TO A

MXB ! TRADE IN X FROM A TO B

MYA ! TRADE IN Y FROM B TO A

MYB ! TRADE IN Y FROM A TO B

$COMMODITIES:

PXA ! PRICE OF GOOD X FOR AGENT A

PYA ! PRICE OF GOOD Y FOR AGENT A

PXB ! PRICE OF GOOD X FOR AGENT B

PYB ! PRICE OF GOOD Y FOR AGENT B

$CONSUMERS:

A ! CONSUMER A

B ! CONSUMER B

$DEMAND:A s:SIGMA_A

E:PXA Q:XA

E:PYA Q:YA

D:PXA Q:THETA_A

D:PYA Q:(1-THETA_A)

$DEMAND:B s:SIGMA_B

E:PXB Q:(1-XA)

E:PYB Q:(1-YA)
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D:PXB Q:THETA_B

D:PYB Q:(1-THETA_B)

* Trade activities

$PROD:MXA

O:PXA Q:1

I:PXB Q:1 A:A T:T_A

$PROD:MXB

O:PXB Q:1

I:PXA Q:1 A:B T:T_B

$PROD:MYA

O:PYA Q:1

I:PYB Q:1 A:A T:T_A

$PROD:MYB

O:PYB Q:1

I:PYA Q:1 A:B T:T_B

* Recover a Hicksian money-metric welfare index:

$REPORT:

V:WA W:A

V:WB W:B

$OFFTEXT

$SYSINCLUDE mpsgeset TARIFFS

$INCLUDE TARIFFS.GEN

SOLVE TARIFFS USING MCP;

The solution listing for this model appears as follows:

LOWER LEVEL UPPER MARGINAL

---- VAR MXA . 0.177 +INF .

---- VAR MXB . . +INF 0.243

---- VAR MYA . . +INF 0.243

---- VAR MYB . 0.177 +INF .

---- VAR PXA . 1.272 +INF .

---- VAR PYA . 1.156 +INF .

---- VAR PXB . 1.156 +INF .

---- VAR PYB . 1.272 +INF .

---- VAR A . 1.200 +INF .

---- VAR B . 1.200 +INF .

---- VAR WA . 0.999 +INF .

---- VAR WB . 0.999 +INF .
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MXA TRADE IN X FROM B TO A

MXB TRADE IN X FROM A TO B

MYA TRADE IN Y FROM B TO A

MYB TRADE IN Y FROM A TO B

PXA PRICE OF GOOD X FOR AGENT A

PYA PRICE OF GOOD Y FOR AGENT A

PXB PRICE OF GOOD X FOR AGENT B

PYB PRICE OF GOOD Y FOR AGENT B

A CONSUMER A

B CONSUMER B

WA

WB

Now compute a counterfactual equilibrium with zero tari�s in both countries:

SCALAR WA0 BENCHMARK WELFARE INDEX FOR AGENT A

WB0 BENCHMARK WELFARE INDEX FOR AGENT B;

WA0 = WA.L;

WB0 = WB.L;

* Counterfactual model: Free Trade (remove tariffs)

T_A = 0;

T_B = 0;

$INCLUDE TARIFFS.GEN

SOLVE TARIFFS USING MCP;

* Compute Hicksian equivalente variation:

SCALAR EV_A HICKSIAN EQUIVALENT VARIATION FOR AGENT A

EV_B HICKSIAN EQUIVALENT VARIATION FOR AGENT B;

EV_A = 100 * (WA.L - WA0)/WA0;

EV_B = 100 * (WB.L - WB0)/WB0;

DISPLAY EV_A, EV_B;

The solution listing for the Global Free Trade scenario are as follows:

LOWER LEVEL UPPER MARGINAL

---- VAR MXA . 0.200 +INF .

---- VAR MXB . . +INF EPS

---- VAR MYA . . +INF EPS

---- VAR MYB . 0.200 +INF .

---- VAR PXA . 1.179 +INF .

---- VAR PYA . 1.179 +INF .
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---- VAR PXB . 1.179 +INF .

---- VAR PYB . 1.179 +INF .

---- VAR A . 1.179 +INF .

---- VAR B . 1.179 +INF .

---- VAR WA . 1.000 +INF .

---- VAR WB . 1.000 +INF .

---- 543 PARAMETER EV_A = 0.108 HICKSIAN EQUIVALENT

VARIATION FOR AGENT A

PARAMETER EV_B = 0.108 HICKSIAN EQUIVALENT

VARIATION FOR AGENT B

Exercise (5.i): Find an "optimal tari�" in this model for agent A, assuming that Agent
B does not retaliate and leaves her tari� rate at the benchmark level.

* Return to original tariffs

T_A = 0.1;

T_B = 0.1;

* Loop using different tariff rates and extract welfare index to

* compute the Hicksian equivalent variation:

SET SC Scenarios /SC1*SC7/;

PARAMETER TVALUE(SC) TARIFF VALUE FOR SC

/SC1 0, SC2 0.2, SC3 0.4, SC4 0.6,

SC5 0.8, SC6 1.0, SC7 1.2/

SUMMARY(SC,*) HICKSIAN EQUIVALENT VARIATION BY SCENARIO;

LOOP(SC,

* Install a tariff rate impossed by Agent A in the current scenario:

* (T_B remains at the benchmark level).

T_A = TVALUE(SC);

$INCLUDE TARIFFS.GEN

SOLVE TARIFFS USING MCP;

* Extract welfare index and compute Hicksian EV:

SUMMARY(SC,"EV_A") = 100 * (WA.L - WA0)/WA0;

SUMMARY(SC,"EV_B") = 100 * (WB.L - WB0)/WB0;

);

OPTION TVALUE:2;

DISPLAY TVALUE, SUMMARY;
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Suppressing solution listings, the following summary report is generated:

---- 720 PARAMETER TVALUE TARIFF VALUE FOR SC

SC2 0.20, SC3 0.40, SC4 0.60, SC5 0.80, SC6 1.00, SC7 1.20

---- 720 PARAMETER SUMMARY HICKSIAN EV BY SCENARIO

EV_A EV_B

SC1 -0.911 1.073

SC2 0.697 -0.939

SC3 1.614 -2.497

SC4 2.075 -3.730

SC5 2.226 -4.721

SC6 2.160 -5.528

SC7 1.939 -6.193

Exercise (5.ii): Insert the endowment and preference parameters from the previous
problem, retaining the same "benchmark" tari� rates.

* Use parameter values from Example 4:

XA = 0.2;

YA = 0.8;

THETA_A = 0.5;

THETA_B = 0.8;

SIGMA_A = 2.0;

SIGMA_B = 0.5;

* Benchmark tariff rates from Example 5:

T_A = 0.1;

T_B = 0.1;

$INCLUDE TARIFFS.GEN

SOLVE tariffs USING MCP;

Equilibrium values for benchmark tari�s:

LOWER LEVEL UPPER MARGINAL

---- VAR MXA . 0.024 +INF .

---- VAR MXB . . +INF 0.396

---- VAR MYA . . +INF 0.236
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---- VAR MYB . 0.040 +INF .

---- VAR PXA . 2.076 +INF .

---- VAR PYA . 1.126 +INF .

---- VAR PXB . 1.887 +INF .

---- VAR PYB . 1.239 +INF .

---- VAR A . 1.320 +INF .

---- VAR B . 1.762 +INF .

---- VAR WA . 0.904 +INF .

---- VAR WB . 1.009 +INF .

Compute free trade equilibrium and report equivalent variations in income:

* Counterfactual model: Free Trade (remove tariffs)

T_A = 0;

T_B = 0;

$INCLUDE TARIFFS.GEN

SOLVE TARIFFS USING MCP;

EV_A = 100 * (WA.L - WA0)/WA0;

EV_B = 100 * (WB.L - WB0)/WB0;

DISPLAY EV_A, EV_B;

Free trade calculations with equivalent variation report:

LOWER LEVEL UPPER MARGINAL

---- VAR MXA . 0.032 +INF .

---- VAR MXB . . +INF 2.220E-16

---- VAR MYA . . +INF EPS

---- VAR MYB . 0.057 +INF .

---- VAR PXA . 1.928 +INF .

---- VAR PYA . 1.077 +INF .

---- VAR PXB . 1.928 +INF .

---- VAR PYB . 1.077 +INF .

---- VAR A . 1.247 +INF .

---- VAR B . 1.758 +INF .

---- VAR WA . 0.902 +INF .

---- VAR WB . 1.011 +INF .

---- 1030 PARAMETER EV_A = -9.657 HICKSIAN EQUIVALENT

VARIATION FOR AGENT A

PARAMETER EV_B = 1.242 HICKSIAN EQUIVALENT

VARIATION FOR AGENT B
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1. INTRODUCTION

This paper introduces a programming language for economic equilibrium modelling.
The paper presents the motivation for the system, the programming syntax, and three
small scale examples. A library of larger models are provided with the program. The
purpose of the paper is to provide a concise introduction to the modelling environment.

MPSGE is a language for concise representation of Arrow-Debreu economic equilibrium
models (Rutherford, 1987). The name stands for \mathematical programming system for
general equilibrium". MPSGE provides a short-hand representation for the complicated
systems of nonlinear inequalities which underly general equilibrium models. The MPSGE
framework is based on nested constant elasticity of substitution utility functions and
production functions. The data requirements for a model include share and elasticity
parameters, endowments, and tax rates for all the consumers and production sectors
included in the model. These may or may not be calibrated from a consistent benchmark
equilibrium dataset.

GAMS, the \Generalized Algebraic Modelling System", is a modeling language which
was originally developed for linear, nonlinear and integer programming. This language
was developed over 20 years ago by Alex Meeraus when he was working at the World
Bank. (See Brooke, Kendrick and Meeraus 1988.) Since that time, GAMS has been widely
applied for large-scale economic and operations research modeling projects.

Prior to their marriage, MPSGE and GAMS embodied di�erent design philosophies.
MPSGE was (and is) appropriate for a speci�c class of nonlinear equations, while GAMS
is capable of representing any system of algebraic equations. While GAMS is applicable
in several disciplines, MPSGE is only applicable in the analysis of economic equilibrium
models. The expert knowledge embodied in MPSGE is of particular use to economists who
are interested in the insights provided by formal models but who are unable to devote many
hours to programming. MPSGE provides a structured framework for novice modellers.
When used by experts, MPSGE reduces the setup cost of producing an operational model
and the cost of testing alternative speci�cations.

In contrast, the GAMS modelling language is designed for managing large datasets. The
use of sets and detached-coe�cient matrix notation makes the GAMS environment very
nice for both developing balanced benchmark datasets and for writing solution reports.
GAMS' main disadvantage for economic applications concerns the speci�cation of the
model structure. Economic equilibrium models, particularly those based on complicated
functions such as nested constant-elasticity-of-substitution (CES), are easier to understand
at an abstract level than they are to specify in detail, and the translation of a model from
input data into algebraic relations can be a tedious and error- prone undertaking.

The interface between GAMS and MPSGE combines the strengths of both programs.
The system uses GAMS as the \front end" and \back end" to MPSGE, facilitating data
handling and report writing. The language employs an extended MPSGE syntax based
on GAMS sets, so that model speci�cation is concise. In addition, the system includes
two large-scale solvers, MILES (Rutherford, 1993) and PATH (Ferris and Dirkse, 1993),
which may be used interchangeably. The availability of two algorithms greatly enhances
robustness and reliability.

The GAMS/MPSGE interface has been commercially available since 1993 and there
are a number of published applications based on the software. Appendix A provides a
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selected set of papers based on models programmed with GAMS/MPSGE. The range of
issues which have been addressed testi�es to the 
exibility of the modeling environment.

Of course, GAMS/MPSGE is not the only software available for formulating and solv-
ing CGE models. GEMPACK (General Equilibrium Modelling PACKage, Harrison and
Pearson (1996), Harrison, Pearson, Powell and Small (1994)) is a suite of general- purpose
economic modelling software for equilibrium models represented as a mixture of linearized
and level equations.

The remainder of this paper is organized as follows. Section 2 introduces MPSGE
input syntax and the GAMS interface using a small two-sector model of taxation. Section
3 extends the 2x2 model to illustrate how the software is used to perform equal-yield
(di�erential) tax policy analysis and to analyze tax reform in a model with endogenous
taxation. Section 4 provides a brief summary and conclusion. The paper introduces lan-
guage features largely through example. Details on language syntax and program structure
are provided in two appendices. Appendix B provides a complete statement of MPSGE
syntax. Appendix C provides an overview of the modeling environment and the structure of
GAMS input �les which employ MPSGE. Appendix D provides an algebraic speci�cation
of the three models considered in the paper.

If readers unfamiliar with GAMS wish to go through the examples, it would be helpful
to install a demonstration system (see http://www.gams.com for details), then retrieve and
process the library �le THREEMGE which contains three MPSGE models (HARBERGER,
SHOVEN and SAMUELSON). Once the GAMS system has been installed, two commands to
retrieve and run the models used in this paper:

gamslib threemge

gams threemge

After having processed this �le, print the listing �le (THREEMGE.LST) for reference.

2. THE MATHEMATICAL FORMULATION

Mathiesen (1985) demonstrated that an Arrow-Debreu general economic equilibriummodel
could be formulated and e�ciently solved as a complementarity problem. Mathiesen's
formulation may be posed in terms of three sets of \central variables":

p = a non-negative n-vector of commodity prices including all �nal goods, intermediate
goods and primary factors of production;

y = a non-negative m-vector of activity levels for constant returns to scale production
sectors in the economy; and

M = an h-vector of income levels, one for each \household" in the model, including any
government entities.

An equilibrium in these variables satis�es a system of three classes of nonlinear inequal-
ities.
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Zero Pro�t
The �rst class of constraint requires that in equilibrium no producer earns an \excess"
pro�t, i.e. the value of inputs per unit activity must be equal to or greater than the value
of outputs. This can be written in compact form as:

��j(p) = Cj(p)�Rj(p) � 0 8 j
where �j(p) is the unit pro�t function, the di�erence between unit revenue and unit cost,
de�ned as:

Cj(p) � minf
X
i

pixijfj(x) = 1g

and

Rj(p) � maxf
X
i

piyijgj(y) = 1g

where f and g are the associated production functions characterizing feasible input and
output. For example, if we have:

f(x) = �
Y
i

x�ii
X
i

�i = 1; �i � 0

and

g(y) =  max
i

yi
�i

�i � 0

then the dual functions will be:

C(p) =
1

�

Y
i

�
pi
�i

��i

and

R(p) =
X
i

�ipi

Market Clearance
The second class of equilibrium conditions is that at equilibrium prices and activity levels,
the supply of any commodity must balance or exceed excess demand by consumers. We
can express these conditions as:

X
j

yj
@�j(p)

@pi
+
X
h

!ih �
X
h

dih(p;Mh)

in which the �rst sum, by Shepard's lemma, represents the net supply of good i by the
constant-returns to scale production sectors, the second sum represents the aggregate
initial endowment of good i by households, and the sum on the right-hand-side represents
aggregate �nal demand for good i by households, given market prices p and household
income levels M.
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Final demand are derived from budget-constrained utility maximization:

dih(p;Mh) = argmax fUh(x)j
X
i

pixi =Mhg

in which Uh is the utility function for household h.

Income Balance
The third condition is that at an equilibrium, the value of each agent's income must equal
the value of factor endowments:

Mh =
X
i

pi!ih

We always work with utility functions which exhibit non-satiation, so Walras' law will
always hold: X

i

pidih =Mh =
X
i

pi!ih

Aggregating market clearance conditions using equilibrium prices and the zero pro�t
conditions using equilibrium activity levels, it then follows that:X

j

yj�j(p) = 0

or

yj�j(p) = 0 8j
Furthermore, it follows that:

pi

0
@X

j

yj
@�j(p)

@pi
+
X
h

!ih �
X
h

dih(p;Mh)

1
A = 0 8i

In other words, complementary slackness is a feature of the equilibrium allocation
even though it is not imposed as an equilibrium condition, per se. This means that in
equilibrium, any production activity which is operated makes zero pro�t and any produc-
tion activity which earns a negative net return is idle. Likewise, any commodity which
commands a positive price has a balance between aggregate supply and demand, and any
commodity in excess supply has an equilibrium price of zero.

3. A SMALL EXAMPLE

This section of the paper introduces MPSGE model building using a two- good, two-
factor (2x2) example. This is addressed to readers who may be unfamiliar with GAMS
and/or the original (scalar) MPSGE syntax. The discussion provides some details on the
formulation and speci�cation of one small model from the MPSGE library. Subsequently,
two extensions are presented, one which illustrates equal yield constraints and another
which introduces a pure public good. These examples are by no means exhaustive of the
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classes of equilibrium structures which can be investigated using the software, but they
do provide a starting point for new users.

The structure of MPSGE model HARBERGER is \generic" Arrow-Debreu with taxes.
Households obtain income by supplying factors of production to industry or collecting tax
revenue. This income is then allocated between alternative goods in order to maximize
welfare subject to the budget constraint.

Firms operate subject to constant returns to scale, selecting factor inputs in order to
minimize cost subject to technological constraints. For an algebraic description of a model
closely related to this one, see Shoven and Whalley (1984). The present model di�ers in
two respects from the Shoven-Whalley example. First, in this model there are intermediate
inputs to production while in the Shoven-Whalley model goods are produced using only
value-added. Second, this model incorporates a labor-leisure choice so that the excess
burden of factor taxes here incorporates the disincentive to work associated with a lower
net wage.

3.1. Benchmark Data

Figure 1 presents most of the input data for a two good, two factor, closed economy model.
This is an economy in which, initially, taxes are levied only on capital inputs to production.
We treat tax revenue as though it were returned lump-sum to the households.

Sectors Consumers

----------------------------------------------------

X Y OWNERS WORKERS GOVT

----------------------------------------------------

PX 100 -20 -30 -50

PY -10 80 -40 -30

PK -20 -40 60

PL -50 -10 60*

----------------------------------------------------

TK -20 -10 30

TRN 10 20 -30

----------------------------------------------------

* 60 = labor endowment net leisure demand= 100 - 40

Figure 1. The Benchmark Social Accounts

The input data is presented in the form of a balanced matrix, the entries in which
represent the value of economic transactions in a given period (typically one year). Social
accounting matrices (SAMs) can be quite detailed in their representation of an economy,
and they are also quite 
exible. All sorts of inter-account taxes, subsidies and transfers
can be represented through an appropriate de�nition of the accounts.

Traditionally, a SAM is square with an exact correspondence between rows and columns.
(For an introduction, see Pyatt and Round, \Social Accounting Matrices: A Basis for
Planning", The World Bank, 1985.) The numbers which appear in a conventional SAM
are typically positive, apart from very special circumstances, whereas the rectangular
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SAM displayed in Figure 1 follows a sign convention wherein supplies or receipts are
represented by positive numbers and demands or payments are represented by negative
numbers. Internal consistency of a rectangular SAM implies that row sums and column
sums are zero. This means that supply equals demand for all goods and factors, tax
payments equal tax receipts, there are no excess pro�ts in production, the value of each
household expenditure equals the value of factor income plus transfers, and the value of
government tax revenue equals the value of transfers to households.

With simple MPSGE models, it is convenient to use a rectangular SAM format. This
format emphasizes how the MPSGE program structure is connected to the benchmark
data. In the rectangular SAM, we have one row for every market (traded commodity),
one column for every production sector, and one column for every consumer. Benchmark
equilibrium is re
ected in the row and column sums. Columns corresponding to sectors
sum to zero re
ecting zero excess pro�t (the value of output equals the cost of inputs).
Columns corresponding to consumers sum to zero indicating income balance. Rows sum
to zero indicating market clearance.

In the present model, there are four markets, for goods X and Y and factors L and
K; two production sectors (X and Y) and three consumers (OWNERS, WORKERS and
GOVT).

3.2. Data Entry in GAMS

Consider a generalized version of the model in which the set of production sectors be
denoted S (here, S = fX,Yg ). Let the set of goods be G. Production sectors are mapped
one-to-one with the goods, so we see that sets S and G are in fact the same set. Let F

denote the set of primary factors (here, F=fL,Kg), and let H denote the set of households
(here H=fOWNER,WORKERg).

Now that we have identi�ed the underlying sets, we may interpret the input matrix
as a set of parameters with which we can easily specify the benchmark equilibrium. (See
Figure 2.) It is quite common to begin a general equilibrium modelling project with a
large input-output Figure or social accounting matrix which may then be mapped onto
a number of submatrices, each of which is dimensioned according to the underlying sets
used in the model.

It should be emphasized at this point that there is an enormous di�erence between
Figures 1 and 2. While Figure 1 concisely represents an equilibrium for a single two-sector
model, Figure 2 represents an arbitrary set of commodities, factors, production sectors
and households. Scalability is an enormous advantage of the GAMS/MPSGE modeling
environment. Model implementation and debugging can be conducted on a tiny prototype,
and then the same computer code can be employed with a large-scale dataset.

The GAMS speci�cation of benchmark data is presented in Figure 3 which begins with
a statement of the underlying sets (G, F, H). The statement \ALIAS (S,G);" simply
says that S and G both reference fX,Yg. Thereafter follows the social accounting data
table and declarations for the various submatrices. The parameters ELAS() and ESUB()

are elasticities (\free parameters") which can be chosen independently from the benchmark
accounts. The parameters TF and PF are calibrated tax and reference price arrays which
are computed given benchmark factor and tax payments. (In this model, average and
marginal tax rates are not distinguished, so the benchmark marginal tax rate is simply
the tax payment divided by the net factor income.)
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Sectors Consumers

------------------------------------------

(S) Households(H) Government

------------------------------------------

Goods Markets (G): A(G,S)-B(G,S) -C(G,H)

Factor Markets (F): -FD(F,S) E(F,H)-D(F,H)

Capital taxes: -T("K",S) GREV

Transfers: TRN(H) -GREV

Figure 2. Mapping from Benchmark Social Accounts into Parameters

* SECTION (i) DATA SPECIFICATION AND BENCHMARKING

SETS G GOODS AND SECTORS /X, Y/,

F PRIMARY FACTORS /K, L/,

H HOUSEHOLDS /OWNER, WORKER/;

ALIAS (S,G);

TABLE SAM(*,*) SOCIAL ACCOUNTING MATRIX

X Y OWNER WORKER GOVT

X 100 -20 -30 -50

Y -10 80 -40 -30

K -20 -40 60

L -50 -10 60

TK -20 -10 30

TRN 10 20 -30

Figure 3a. Set and Data Speci�cations for the 2x2 Model Harberger

A general equilibrium model determines only relative prices. For purposes of reporting
or constructing value-indices, we use a Laspeyres quantity index, THETA(G), the elements
of which correspond to shares of aggregate consumer expenditure in the benchmark period.

3.3. Model Specification

The MPSGE description of this model is shown in Figure 4. Declarations following the
$MODEL statement indicate that the model involves one class of production activities
(AL(S)), three classes of commodities (P(G), W(F) and PT), and two types of consumers,
private consumers (RA(H) ), and a government \consumer" (GOVT).

One $PROD: block describes the single class of production activities, and two $DEMAND:

blocks characterize endowments and preferences for the two classes of consumers.
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PARAMETER

A(S) BENCHMARK OUTPUT

B(G,S) USE MATRIX (GOODS INPUTS BY SECTOR)

C(G,H) HOUSEHOLD DEMAND

FD(F,S) FACTOR DEMAND BY SECTOR

E(F,H) FACTOR ENDOWMENTS

D(F,H) FACTOR DEMAND BY HOUSEHOLDS

T(F,S) TAX PAYMENT BY FACTOR BY SECTOR

TRN(H) TRANSFER REVENUE

ELAS(S) ELASTICITY OF SUBSTITUTION IN PRODUCTION

ESUB(H) ELASTICITY OF SUBSTITUTION IN DEMAND

GREV BENCHMARK GOVERNMENT REVENUE

TF(F,S) FACTOR TAX RATE

PF(F,S) BENCHMARK FACTOR PRICES GROSS OF TAX

THETA(G) WEIGHTS IN NUMERAIRE PRICE INDEX

WBAR(H) BENCHMARK WELFARE INDEX;

Figure 3b. Parameter Declarations for the 2x2 Model Harberger

* EXTRACT DATA FROM THE SOCIAL ACCOUNTING MATRIX:

A(S) = SAM(S,S); B(G,S) = MAX(0, -SAM(G,S));

C(G,H) = -SAM(G,H); FD(F,S) = -SAM(F,S);

E(F,H) = SAM(F,H); D(F,H) = 0;

T("K",S) = -SAM("TK",S); TRN(H) = SAM("TRN",H);

* INSTALL "FREE" ELASTICITY PARAMETERS:

E("L","WORKER") = 100; D("L","WORKER") = 40;

ELAS(S) = 1; ESUB(H) = 0.5;

* INSTALL FUNCTIONS OF BENCHMARK VALUES:

GREV = SUM(H, TRN(H));

TF(F,S) = T(F,S) / FD(F,S);

PF(F,S) = 1 + TF(F,S);

THETA(G) = SUM(H, C(G,H));

THETA(G) = THETA(G) / SUM(S, THETA(S));

WBAR(H) = SUM(G, C(G,H)) + SUM(F, D(F,H));

Figure 3c. Parameter Assignments for the 2x2 Model Harberger
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Consider the records associated with production sector AL(S). The entries on the �rst
line of a $PROD: block are elasticity values. The \s:0" �eld indicates that the top-level elas-
ticity of substitution between inputs is zero (Leontief). The entry \va:ELAS(S)" indicates
that inputs identi�ed as belonging to the \va:" aggregate trade o� with an elasticity of
substitution ELAS(S) (at the second level of the production function). In these production
functions, the primary factors (W(F)) are identi�ed as entering in the va: aggregate.

The nesting assignments within an MPSGE model can be easily modi�ed by the as-
signment of inputs to aggregates, as has been done in this model using the va: nest. This

exibility is very helpful when testing robustness with respect to changes in the elasticity
structure of a model. (A note on syntax: nesting identi�ers are limited to four characters.)

The records within a $PROD: block begin with \O:" or \I:". An \O:" indicates an
output and an \I:" represents an input. In both types of records, \Q:" is a \quantity �eld"
indicating a reference input or output level of the named commodity. A \P:" signi�es a
reference price �eld. This price is measured as a user cost, gross of applicable taxes. The
default values for reference price and reference quantity are both unity (i.e., a value of 1
is installed if a P: or Q: �eld is missing).

The va: and T: �elds in a $PROD: block indicate tax agent and ad-valorem tax rate,
respectively. The tax agent is speci�ed before the tax rate. A single input or output
coe�cient may have two or more taxes applied. Consumers are treated symmetrically, and
there is thus no restriction on the consumer to whom the tax is paid. Typically, however,
one consumer is associated with the government.

To better understand the relationship between reference prices and base year tax rates,
consider inputs of W.K to sector AL.X in this model. The benchmark payment to capital
in the X sector is 20 and the tax payment is 20. Hence the ad-valorem tax rate in the
benchmark equilibrium is 100% ( T:1), and the reference price of capital, market price
of unity times (1 + 100%), is 2 (P:2). If in a counterfactual experiment the tax rate on
capital inputs to sector X is altered, this will change the T: �eld but it will not change
the P: �eld. Q: and P: characterize a reference equilibrium point, and these are therefore
una�ected by subsequent changes in the exogenous parameters.

It is important to remember that the $PROD:AL(S) block represents as many individ-
ual production functions as there are elements in set S (two in this case). Within the
$PROD:AL(S) block, inputs refer to sets G and F , while the output coe�cient, O:P(S),
refers only to set S. Sets referenced within a commodity name in an I: or O: �eld may
be sets which are \controlled" by the sets referenced in the function itself, in which case
only a scalar entry is produced. In $PROD:AL(S) there are only outputs of commodity S

in sector S.
The �rst line of a $DEMAND block also contains �elds (e.g., s:, gds:, cl: etc.) which

represent elasticities of substitution. The subsequent records may begin with either an E:

�eld or a D: �eld. These, respectively, represent commodity endowments and demands. In
the demand �elds, the P: and Q: entries are interpreted as reference price and reference
quantity, analogous to the input �elds in a $PROD block. Ad-valorem taxes may not be
applied on �nal demands, so that if consumption taxes are to be applied in a model they
must be levied on production activities upstream of the �nal demand.

The benchmark values for all activity levels and prices are equal to the default value
of unity, and therefore we are able to specify values in the Q: �elds directly from the
benchmark data. An equivalent model could be speci�ed in which the benchmark activity
levels for AL(S) equal, for example, A(S,S). This would then require rescaling the input
and output coe�cients for those sectors, and it would not necessarily be helpful, because
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* SECTION (ii) MPSGE MODEL DECLARATION

$ONTEXT

$MODEL:HARBERGER

$SECTORS:

AL(S)

$COMMODITIES:

P(G) W(F) PT

$CONSUMERS:

RA(H) GOVT

$PROD:AL(S) s:0 va:ELAS(S)

O:P(S) Q:A(S)

I:P(G) Q:B(G,S)

I:W(F) Q:FD(F,S) P:PF(F,S) A:GOVT T:TF(F,S) va:

$DEMAND:RA(H) s:1 gds:ESUB(H)

D:P(G) Q:C(G,H) gds:

D:W(F) Q:D(F,H)

E:W(F) Q:E(F,H)

E:PT Q:TRN(H)

$DEMAND:GOVT

D:PT Q:GREV

$REPORT:

V:CD(G,H) D:P(G) DEMAND:RA(H)

V:DF(F,H) D:W(F) DEMAND:RA(H)

V:EMPLOY(S) I:W("L") PROD:AL(S)

V:WLF(H) W:RA(H)

$OFFTEXT

* Invoke the preprocessor to declare the model for GAMS:

$SYSINCLUDE mpsgeset HARBERGER

Figure 4a. MPSGE Model Declaration
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* ------------------------------------------------------------------

* SECTION (iii) BENCHMARK REPLICATION

HARBERGER.ITERLIM = 0;

$INCLUDE HARBERGER.GEN

SOLVE HARBERGER USING MCP;

ABORT$(ABS(HARBERGER.OBJVAL) GT 1.E-4)

"*** HARBERGER benchmark does not calibrate.";

HARBERGER.ITERLIM = 1000;

Figure 4b. MPSGE Model Speci�cation and Benchmark Replication

in a scaled model it is more di�cult to verify consistency of the benchmark accounts and
MPSGE input �le. Furthermore, for numerical reasons it is advisable to scale equilibrium
values for the central variables to be close to unity.

Government transfers to households are accomplished through the use of an \arti�cial
commodity" (PT). The government is identi�ed as the agent who receives all tax revenue
(see the A:GOVT entry in both of the $PROD: blocks). Commodity PT is the only commodity
on which GOVT spends this income, hence government tax revenue is divided between the
two households in proportion to their endowments of the arti�cial good. In order to scale
units so that the benchmark price of PT is unity, the $30 of government tax revenue chases
10 units of PT assigned to OWNER and 20 units assigned to WORKER. (See values for TRN(H)
in Figure 3.)

The $REPORT section of the input �le requests the solution system to return values
for inputs, outputs, �nal demands or welfare indices at the equilibrium. Only those items
which are requested will be written to the solution �le. Each record in the report block
begins with a V: (variable name) �eld. These names must be distinct from all other names
in the model. The second �eld of the report record must have one of the labels I:, O:
or D: followed by a commodity name, or the label W: followed by a consumer name. The
third �eld's label must be \PROD:" in an I: or O: record, and it must be \DEMAND:" if it
is a D: record.

An algebraic formulation of the Harberger model is provided in Appendix D for the
interested reader.

3.4. MPSGE Formulation: Key Ideas

There are two points regarding the MPSGE function format which are important yet easily
misunderstood by new users:

(i) The elasticities together with the reference quantities and reference prices of inputs
and outputs completely characterize the underlying nested CES functions. No other data
�elds in the $PROD: block alters the technology. If, for example, a tax rate changes as part
of a counter-factual experiment, this has no e�ect on the reference price. The value in the
P: �eld depends on the benchmark value of the T: �eld if the model has been calibrated,
but subsequent changes in T: do not change the underlying technology.

(ii) Tax rates are interpreted di�erently for inputs and outputs. The tax rate on inputs
is speci�ed on a net basis, while the tax rate on outputs is speci�ed on a gross basis. That
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is, the user cost of an input with market price p subject to an ad-valorem tax at rate t
is p (1 + t), while the user cost of an output subject to an ad-valorem tax at rate t is p
(1 - t). (A tax increases the producer cost of inputs and decreases the producer value of
outputs.)

MPSGE provides a limited number of economic components with which complex models
can be constructed. There are some models which lie outside the MPSGE domain, but
in many cases it is possible to recast the equilibrium structure in order to produce an
MPSGE model which is logically equivalent to the original model - usually after having
introduced some sort of arti�cial commodity or consumer. In the present model, the use
of commodity PT to allocate government revenue between households provides a fairly
typical example of how this can be done. In the process of making such a transformation,
one often gains a meaningful economic insight.

3.5. The Solution Listing

The detailed solution listing for model HARBERGER is shown in Figure 5. The standard
GAMS report facilities display solution values. Central variables are always either �xed
(upper = lower), or they are non-negative (lower bound = 0, upper bound = +INF). The
MARGINAL column in the solution report returns the value of the associated slack variable.
Complementarity implies that in equilibrium, either the level value of a variable will be
positive or the marginal value will be positive, but not both.

The output �le (not shown) also provides details on the computational process. For an
explanation of these statistics, see Rutherford (1993).

3.6. Computing Counter-factual Scenarios

Figure 6 presents the GAMS code for speci�cation and solution of three counterfactual
equilibria. In these experiments, the nonuniform system of capital taxes from the bench-
mark is replaced by three alternative uniform factor tax structures: a tax on labor, a tax on
capital, and a tax on both labor and capital. In each case, the tax rate is chosen to replace
the benchmark tax revenue at benchmark prices and demand (ignoring induced substi-
tution e�ects). Following each solution, the equilibrium values for tax revenue, welfare
(Hicksian equivalent variation), employment, prices and output are stored in parameter
REPORT.

4. ALTERNATIVE MODELS

The \standard" MPSGE model is based on �xed endowments and tax rates, but many
empirical models do not �t into this structure. For example, in the model HARBERGER, the
level of each replacement tax was speci�ed to be consistent with \equal yield", but as a re-
sult of the endogenous response of prices and quantities, the resulting tax revenues di�ered
signi�cantly from the benchmark levels. For example, when the capital tax is replaced by a
uniform labor tax at a rate which, in the absence of labor supply response, produces \equal
yield", we �nd that tax revenue in fact declines by 39%. In order to perform di�erential
(equal yield) tax policy analysis, it is therefore necessary to accommodate the endogenous
determination of tax rates as part of the equilibrium computation. This is one of many
possible uses of \auxiliary variables" in MPSGE.
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---- VAR AL

LOWER LEVEL UPPER MARGINAL

X . 1.000 +INF .

Y . 1.000 +INF .

---- VAR P

LOWER LEVEL UPPER MARGINAL

X . 1.000 +INF .

Y . 1.000 +INF .

---- VAR W

LOWER LEVEL UPPER MARGINAL

K . 1.000 +INF .

L . 1.000 +INF .

LOWER LEVEL UPPER MARGINAL

---- VAR PT . 1.000 +INF .

---- VAR RA

LOWER LEVEL UPPER MARGINAL

OWNER . 70.000 +INF .

WORKER . 120.000 +INF .

LOWER LEVEL UPPER MARGINAL

---- VAR GOVT . 30.000 +INF .

Figure 5a. GAMS Solution Listing for Model HARBERGER

4.1. Tax Analysis with Equal Yield

Figure 7 presents the MPSGE model de�nition for test problem SHOVEN. This model is
equivalent to the HARBERGER, apart from the addition of an auxiliary variable TAU.

Within MPSGE, auxiliary variables can either represent price-adjustment instruments
(endogenous taxes) or they can represent a quantity-adjustment instruments (endowment
rations). In model SHOVEN, TAU is used to proportionally scale factor taxes in order to
achieve a target level of government revenue. The auxiliary variable �rst appears in the
$PROD:AL(S) block, following the declaration of a tax agent. There are two �elds associated
with an endogenous tax. The �rst �eld (N:) gives the name of the auxiliary variable which
will scale the tax rate. The second �eld (M:) speci�es the multiplier. If the M: �eld is
omitted, the multiplier assumes a default value of unity. If the value in the M: �eld is zero,
the tax does not apply.
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---- VAR CD

LOWER LEVEL UPPER MARGINAL

X.OWNER . 30.000 +INF .

X.WORKER . 50.000 +INF .

Y.OWNER . 40.000 +INF .

Y.WORKER . 30.000 +INF .

---- VAR DF

LOWER LEVEL UPPER MARGINAL

K.OWNER . . +INF EPS

K.WORKER . . +INF EPS

L.OWNER . . +INF EPS

L.WORKER . 40.000 +INF .

---- VAR EMPLOY

LOWER LEVEL UPPER MARGINAL

X . 50.000 +INF .

Y . 10.000 +INF .

---- VAR WLF

LOWER LEVEL UPPER MARGINAL

OWNER . 1.000 +INF .

WORKER . 1.000 +INF .

**** REPORT SUMMARY : 0 NONOPT

0 INFEASIBLE

0 UNBOUNDED

0 ERRORS

Figure 5b. GAMS Solution Listing for Model HARBERGER (cont.)

The auxiliary variable TAU also appears at the bottom of the �le where it labels an
associated equation. An auxiliary variable may or may not appear in its associated con-
straint. The constraint associated with TAU is based on a price index de�ned by THETA(G).
The equilibrium level of TAU is selected to provide level of tax revenue such that the value
of transfers to households is held constant. (Endowments of the commodity PT are �xed,
so when the value of PT is �xed, then so too are the value of transfers from GOVT to each
of the households.)

SHOVEN illustrates how an auxiliary variable can be interpreted as a tax instrument. In
the MPSGE syntax, auxiliary variables may also be employed to endogenously determine
commodity endowments. There is no restrictions on how a particular auxiliary variable is to
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* ------------------------------------------------------------------

* SECTION (iv) COUNTER-FACTUAL SPECIFICATION AND SOLUTION:

SET SC COUNTERFACTUAL SCENARIOS TO BE COMPUTED /

UNIF_L UNIFORM TAX ON LABOR,

UNIF_K UNIFORM TAX ON CAPITAL,

UNIF_VA UNIFORM VALUE-ADDED TAX/

PARAMETER TAXRATE(F,S,SC) COUNTERFACTUAL TAX RATES,

REPORT(*,*,*,SC) SOLUTION REPORT - % CHANGES,

PINDEX PRICE DEFLATOR;

* SPECIFY COUNTER-FACTUAL TAX RATES TO ACHIEVE CETERIS

* PARIBUS BALANCED BUDGET:

TAXRATE("L",S,"UNIF_L") = GREV / SUM(G, FD("L",G));

TAXRATE("K",S,"UNIF_K") = GREV / SUM(G, FD("K",G));

TAXRATE("L",S,"UNIF_VA") = GREV / SUM((F,G), FD(F,G));

TAXRATE("K",S,"UNIF_VA") = GREV / SUM((F,G), FD(F,G));

Figure 6a. Speci�cation Counter-Factual Scenarios

be interpreted. A single variable could conceivably serve simultaneously as an endogenous
tax as well as a endowment ratio, although this would be rather unusual.

An algebraic formulation of the Shoven model is provided in Appendix D for the
interested reader.

4.2. Public Goods and Endogenous Taxation

Consider a �nal extension of the 2x2 model in which tax revenue funds a pure public good.
Model SAMUELSON presented in Figure 8. This model illustrates one of several ways that
public goods can be modelled in MPSGE. Here the level of public provision is determined
by a Samuelson-condition equating the sum of individual marginal rates of substitution
(marginal bene�t) with the marginal rate of transformation (marginal cost). Unlike the
equal yield formulation, the tax revenues collected by GOVT are not returned lump-sum
but are instead used to �nance provision of a pure public good. This representation of
government has not been widely adopted in the CGE literature, perhaps because of the
di�culties involved in specifying preferences for public goods.

The relevant characteristic of a pure public good entering �nal demand is that each
consumer \owns" the same quantity. Agents' attitudes toward public goods di�er, and
because there is no market, agents' valuations of the public good will also di�er. In an
MPSGE model, the separate valuations are accommodated through the introduction of
\personalized" markets for public good - one market for each consumer. In the model,
consumer expenditure encompasses both private and public \purchases", and consumer
income encompasses both private and public \endowments". An individual is endowed
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LOOP(SC,

* INSTALL TAX RATES FOR THIS COUNTERFACTUAL:

TF(F,S) = TAXRATE(F,S,SC);

$INCLUDE HARBERGER.GEN

SOLVE HARBERGER USING MCP;

* ------------------------------------------------------------------

* SECTION (v) REPORT WRITING:

* REPORT SOME RESULTS:

PINDEX = SUM(G, P.L(G) * THETA(G));

REPORT("REVENUE","_",SC) = 100 * (PT.L/PINDEX - 1);

REPORT("TAXRATE","_",SC) =

100 * SMAX((F,S), TAXRATE(F,S,SC));

REPORT("WELFARE",H,SC) = 100 * (WLF.L(H) - 1);

REPORT("EMPLOY",S,SC) = 100 * (EMPLOY.L(S)/FD("L",S) - 1);

REPORT("PRICE",G,SC) = 100 * (P.L(G)/PINDEX - 1);

REPORT("PRICE",F,SC) = 100 * (W.L(F)/PINDEX - 1);

REPORT("OUTPUT",S,SC) = 100 * (AL.L(S) - 1);

);

DISPLAY REPORT;

Figure 6b. Solution and Reporting

with a quantity of her own version of the public good determined by the level of public
expenditures. An increase in taxes, to the extent that it increases tax revenue, will increase
the level of public provision.

In this model, the structure of relative factor taxes is exogenous but the aggregate level
of taxes is not. Tax rates are scaled up or down so that the sum of individual valuations
of the public good (the marginal bene�t) equals the cost of supply of the public good (the
direct marginal cost).

Consider features of model SAMUELSON which do not appear in SHOVEN:
(i) There are new commodities PG and VG(H). The �rst of these represents the direct

marginal cost of public output from sector GP, a Leontief technology which converts private
goods inputs into the public good. For the SAMUELSON structure, all government revenues
apply to purchases of the public good (observe that the only good demanded by consumer
GOVT is PG ). The prices VG(H) represent the individual consumer valuations of the public
good. Commodity VG(H) appears only in the endowments and demands of consumer
RA(H). The endowment record for VG(H) includes a quantity V(H) which is the benchmark
valuation of the public good by agent H.
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$ONTEXT

$MODEL: SHOVEN

$SECTORS:

AL(S)

$COMMODITIES:

P(G) W(F) PT

$CONSUMERS:

RA(H) GOVT

$AUXILIARY:

TAU

$REPORT:

V:CD(G,H) D:P(G) DEMAND:RA(H)

V:DF(F,H) D:W(F) DEMAND:RA(H)

V:EMPLOY(S) I:W("L") PROD:AL(S)

V:WLF(H) W:RA(H)

$PROD:AL(S) s:0 va:ELAS(S)

O:P(G) Q:A(G,S)

I:P(G) Q:B(G,S)

I:W(F) Q:FD(F,S) P:PF(F,S)

+ A:GOVT N:TAU$TF(F,S) M:TF(F,S)$TF(F,S) va:

$DEMAND:RA(H) s:1 gds:ESUB(H)

D:P(G) Q:C(G,H) gds:

D:W(F) Q:D(F,H)

E:W(F) Q:E(F,H)

E:PT Q:TRN(H)

$DEMAND:GOVT

D:PT Q:GREV

$CONSTRAINT:TAU

PT =E= SUM(G, THETA(G) * P(G));

$OFFTEXT

Figure 7. Di�erential Tax Policy Analysis
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(ii) There are two auxiliary variables. TAU has the same interpretation as in the SHOVEN,
determining the aggregate tax level. Auxiliary variable LGP is a rationing instrument
representing an index of the \level of public goods provision", scaled to unity in the
benchmark. Consumer RA(H) thus is endowed with a quantity of VG(H) given by V(H) *

LGP .
(iii) The constraint for TAU in SAMUELSON di�ers from the TAU constraint in SHOVEN. Here

the constraint represents the Samuelson condition, equating the marginal cost (PG*GREV)
and the sum of individuals' marginal bene�t ( SUM(H,VG(H)*V(H)) ). The constraint
for LGP simply assigns LGP equal to the sector GP activity level. (The LGP variable and
constraint are only needed because the R: �eld only accepts auxiliary variables.)

An algebraic formulation of the Samuelson model is provided in Appendix D for the
interested reader.

4.3. Comparing Model Results

Although the foregoing discussion has focused on the nuances of MPSGE model syntax,
but there are many interesting economic questions which can be addressed using even
small-scale models such as the ones described here. Consider the output listing from
parameter REPORT is displayed in Figure 9. It is perhaps surprising to note that none of
the uniform tax structures represents a Pareto-superior choice compared to the benchmark
tax structure. Furthermore, from the standpoint of aggregate welfare (\WELFARE.TOTAL"
= income-weighted sum of individual EV's), only the uniform capital tax represents an
improvement.

5. SUMMARY

This paper has provided an introduction to a new GAMS subsystem for applied general
modeling. This extension of GAMS accomodates a tabular representation of highly non-
linear cost and expenditure functions through which model speci�cation is concise and
transparent. The paper has presented three small examples which illustrate the program-
ming environment and its application to traditional economic issues in public �nance for
which applied general equilibrium analysis is a standard tool.
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$ONTEXT

$MODEL: SAMUELSON

$SECTORS:

AL(S) GP

$COMMODITIES:

P(G) W(F) PG VG(H)

$CONSUMERS:

RA(H) GOVT

$AUXILIARY:

TAU LGP

$REPORT:

V:CD(G,H) D:P(G) DEMAND:RA(H)

V:DF(F,H) D:W(F) DEMAND:RA(H)

V:EMPLOY(S) I:W("L") PROD:AL(S)

V:WLF(H) W:RA(H)

$PROD:AL(S) s:0 va:ELAS(S)

O:P(G) Q:A(G,S)

I:P(G) Q:B(G,S)

I:W(F) Q:FD(F,S) P:PF(F,S)

+ A:GOVT N:TAU$TF(F,S) M:TF(F,S)$TF(F,S) va:

$PROD:GP s:0

O:PG Q:GREV

I:P(G) Q:GD(G)

$DEMAND:RA(H) s:1 gds:ESUB(H)

D:P(G) Q:C(G,H) gds:

D:W(F) Q:D(F,H)

D:VG(H) Q:V(H)

E:VG(H) Q:V(H) R:LGP

E:W(F) Q:E(F,H)

$DEMAND:GOVT

D:PG Q:GREV

$CONSTRAINT:TAU

GREV * PG =E= SUM(H, V(H) * VG(H));

$CONSTRAINT:LGP

LGP =E= GP;

$OFFTEXT

Figure 8. Endogenous Determination of Tax Revenue
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INDEX 1 = HARBERGER

UNIF_K UNIF_L UNIF_VA

REVENUE._ 3.9 -38.9 -0.8

TAXRATE._ 50.0 50.0 25.0

WELFARE.OWNER 1.9 42.4 18.5

WELFARE.WORKER -0.1 -26.8 -10.9

WELFARE.TOTAL 0.6 -1.3 -3.48143E-2

EMPLOY .X -5.3 -6.9 -8.4

EMPLOY .Y 20.5 34.4 22.1

PRICE .X -10.4 -11.2 -10.3

PRICE .Y 11.8 12.8 11.8

PRICE .K 3.9 59.5 24.5

PRICE .L -4.7 -38.9 -23.5

OUTPUT .X 3.6 -1.0 0.4

OUTPUT .Y -3.7 2.0 -2.0

INDEX 1 = SHOVEN

UNIF_K UNIF_L UNIF_VA

TAXRATE._ 47.1 134.2 25.3

WELFARE.OWNER 3.3 40.2 18.3

WELFARE.WORKER -1.0 -29.2 -10.8

WELFARE.TOTAL 0.6 -3.6 -3.51710E-2

EMPLOY .X -5.0 -19.7 -8.5

EMPLOY .Y 21.5 12.1 21.9

PRICE .X -10.4 -9.0 -10.3

PRICE .Y 11.9 10.2 11.8

PRICE .K 6.2 49.8 24.2

PRICE .L -5.0 -56.5 -23.6

OUTPUT .X 3.6 -7.9 0.3

OUTPUT .Y -3.4 -2.0 -2.1

INDEX 1 = SAMUELSON

UNIF_K UNIF_L UNIF_VA

REVENUE ._ -1.4 -14.5 -6.7

TAXRATE ._ 45.7 88.8 22.8

WELFARE .OWNER 4.7 43.9 21.1

WELFARE .WORKER -2.0 -31.4 -12.9

WELFARE .TOTAL 0.5 -3.7 -0.4

EMPLOY .X -4.9 -7.5 -5.9

EMPLOY .Y 24.5 37.5 29.7

PRICE .X -10.7 -11.3 -10.9

PRICE .Y 12.2 13.0 12.5

PRICE .K 7.8 60.3 29.0

PRICE .L -6.0 -51.8 -24.5

OUTPUT .X 3.0 -2.2 0.9

OUTPUT .Y -2.3 3.3 -2.58148E-2

PROVISION._ -0.8 -13.9 -6.1

Figure 9. Numerical Results from Alternative Models
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7. Language Syntax

7.1. General syntax rules

� All input is free format (spaces and tabs are ignored) except keywords for which "$"
must appear in column 1.

� End-of-line is signi�cant. Continuation lines are indicated by a \+" in column 1.

� In general, input is not case sensitive, except in the speci�cation of sub-nests for
production and demand functions.

� Numeric expression involving GAMS parameters or constants must be enclosed in
parentheses.

7.2. Keywords

Keywords typically appear in the following order:

$ONTEXT Indicate the beginning of a GAMS comment block containing an MPSGE model.

$MODEL:model-name model-name must be a legitimate �le name. This name is sub-
sequently used to form model-name.GEN (this �le name must be upper case when
running under UNIX).

$SECTORS:, $COMMODITIES:, $AUXILIARY:, $CONSUMERS: Four keywords de�ne variables
which are used in the model. Entries in these blocks share the same syntax. The
$AUXILIARY block is only used in models with side constraints and endogenous taxes
or rationed endowments.

$PROD:sector Production functions must be speci�ed for each production sector in the
model.

$DEMAND:consumer Demand functions must be speci�ed for every consumer in the model.
General structure is the same as for production functions above.

$CONSTRAINT:auxiliary Speci�es a side constraint to be associated with a speci�ed aux-
iliary variable.

$REPORT: Identi�es the set of additional variables to be calculated. These include outputs
and inputs by sector and demands by individual consumers.

$OFFTEXT Indicates the end of model speci�cation.

7.3. Variable Declarations

There are four classes of variables within an MPSGE model: activity levels for production
sectors, prices for commodities, income levels for consumers and level values for auxiliary
variables. These classes of variables are distinguished in order to permit additional se-
mantic checking by the MPSGE preprocessor. For example, if P has been declared as a
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price (within the $COMMODITIES: block), then the preprocessor would report an error if it
encountered \$PROD:P".

The $SECTORS:, $COMMODITIES:, $CONSUMERS: and $AUXILIARY: blocks contain im-
plicit GAMS variable declarations in which the index sets must be speci�ed in the GAMS
program above and the variable names must be distinct from all other symbols in the
GAMS program. One or more variables may be declared per line separated by one or
more spaces.

$SECTORS:

Y(R,T) ! Output in region R in period T

K(T) ! "Aggregate capital stock, period T"

In these declarations, the trailing comments (signi�ed by \!") are interpreted as variable
name descriptors which subsequently appear in the solution listing.

The equivalent GAMS declaration for these variables would be:

VARIABLES Y(R,T) Output in region R in period T

K(T) "Aggregate capital stock, period T";

As with the usual GAMS syntax, when a variable descriptor contains a punctuation
symbol such as \,", it is required to enclosed in quotes.

$SECTORS:

X(R,T)$(X0(R) GT 0)

Here, the GAMS conditional operator \$" is used to restrict the domain of the variable
X. The expression following the dollar sign is passed through to the GAMS compiler and
must conform to GAMS syntax rules.

$SECTORS:

X Y(R)$Y0(R) Z ! Descriptor for Z

W(G,R,T) ! Descriptor for W

More than one symbol may appear on a single line. The descriptor only applies to the
last one.

All MPSGE variables must be declared. When multidimensional variables are speci�ed,
they must be declared explicitly - declarations like X(*) are not permitted. Two further
restrictions are that the sets used in the declaration must be static rather than dynamic,
and any variable which is declared must be used in the model. There is a simple way
to work around these restrictions. Let me illustrate with an example. Suppose that in a
model the set of production sectors AL is employed for all elements of a static set S which
satisfy a particular condition, for example BMX(S) not equal to 0. This would require that
AL be declared as follows:
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$SECTORS:

AL(S)$BMX(S)

In this context, the symbol \$" is used as an \exception operator" which should be
read as \such that". In this case, we have generated one AL sector for each element of the
set S for which BMX(S) is nonzero.

7.4. Function Declarations

Functional declarations characterize nested CES functions which characterize both pref-
erences and technology. The former are written within a $DEMAND: block and the latter
within a $PROD: block. Tax entries may appear within a $PROD: block but not within a
$DEMAND: block, otherwise the syntax is nearly identical. The syntax for these blocks will
be described through a sequence of examples:

$PROD:Y(R) s:1

O:P(R) Q:Y0(R)

I:W(F,R) Q:FD0(F,R)

This block characterizes a Cobb-Douglas production function in which the elasticity of
substitution between inputs is one - "s:1" in the �rst line which sets a top level substitution
elasticity equal to unity. Variable Y(R) is an activity level declared within the $SECTORS:
block. Variables P(R) and W(F,R) are prices declared within the $COMMODITIES: block.
The O: label indicates an output, and the I: pre�x indicates an input. The Q: �elds in both
records represent \reference quantities". Y0(R) and FD0(F,R) must be GAMS parameters
de�ned previously in the program.

$PROD:X(R) s:ESUB(R) a:0 va:(ESUB(R)*0.2)

O:PX Q:X0(R)

I:PY(G) Q:YX0(G,R) a:

I:PL Q:LX0(R) va:

I:PK Q:KX0(R) va:

The keyword line speci�es three separate elasticities related to this function. ESUB(R) is
the top level elasticity of substitution. There are two sub-nests in the function. Nest a: is
a Leontief nest (in which the compensated elasticity is zero). The elasticity of subtitution
in nest va: is one-�fth of the top level elasticity.

In the function speci�cation, commodities PY(G) (one input for each element of set G)
enter in �xed proportions. Commodities PL and PK enter in nest b.

If this function has been speci�ed using a balance benchmark dataset with reference
prices equal to unity, then the following identity should be satis�ed:
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X0(R) = SUM(G, YX0(G,R)) + LX0(R) + KX0(R)

$PROD:AL(S) s:0 a:ELAS(S)

O:P(G) Q:A(G,S)

I:P(G) Q:B(G,S)

I:W(F) Q:FD(F,S) P:PF(F,S) A:GOVT T:TF(F,S) a:

In this function, we have two new ideas. The �rst is the use of a reference price denoted
by "P:". This entry indicates that the function should be calibrate to a reference point
where individual input prices (gross of tax) equal PF(F,S). If P: does not appear, prices
of one are assumed.

The second new idea here is that taxes may be levied on production inputs. The A:

label identi�es the name of the tax agent (a $CONSUMER:). The T: label identi�es the
ad-valorem tax rate.

$DEMAND:RA(R)$RA0(R) s:1

E:PL Q:LE(R)

D:P(G)$DG(G) Q:D0(G,R)$DD(G,R) P:P0(G,R)

This function speci�cation demonstrates the use of conditionals. This function is only
generated when RA0(R) is nonzero. The demands D: for a particular element of set G are
suppressed entirely when DG(G) equals 0. The Q: �eld also has an exception operator, so
that the default value for Q: (unity) is applied when DD(G,R) equals zero.

This example is somewhat arti�cial, but it illustrates the distinction between how
exception operators a�ect lead entries (I:, O:, D: and E:) and subsequent entries. When an
exception is encountered on the lead entry, the entire record may be suppressed. Exceptions
on subsequent entries only applied to a single �eld.

The valid labels in a function declaration ($PROD: or $DEMAND:) line include:

s: Top level elasticity of substitution between inputs or demands.

t: Elasticity of transformation between outputs in production. (valid only in $PROD blocks)

a:,va:,etc. Elasticities of substitution in individual input nests.

The recognized labels in an I: or O: line include:

Q: Reference quantity. Default value is 1. When speci�ed, it must be the second entry.

P: Reference price. Default value is 1.

A: Tax revenue agent. Must be followed by a consumer name.

T: Tax rate �eld identi�er. (More than one tax may apply to a single entry.)
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N: Endogenous tax. This label must be followed by the name of an auxiliary variable.

M: Endogenous tax multiplier. The advalorem tax rate is the product of the value of the
endogenous tax and this multiplier.

a:, va:, etc. Nesting assignments. Only one such label may appear per line, maximum
four characters.

The valid labels in an E: line include:

Q: Reference quantity.

R: Rationing instrument indicating an auxiliary variable.

The valid labels in a D: line include:

Q: Referene quantity.

P: Reference price.

a:,cl:,etc. Nesting assignment Maximum four characters.

7.5. Constraints

Auxiliary constraints in MPSGE models conform to standard GAMS equation syntax. The
may refer to any of the four classes of variables, $SECTORS, $COMMODITIES, $CONSUMERS
and $AUXILIARY, but they may not reference variables names declared within a $REPORT

block.
Complementarity conditions apply to upper and lower bounds on auxiliary variables

and the associated constraints. For this reason, the orientation of the equation is important.
When an auxiliary variable is designated POSITIVE (the default), the auxiliary constraint
should be expressed as a \greater or equal" inequality (=G=). If an auxiliary variable is
designated FREE, the associated constraint must be expressed as an equality (=E=).

$CONSTRAINT:TAU

G =G= X * Y;

$CONSTRAINT:MU(I)$MU0(I)

MU(I) * P(I) * Q(I) =G= SUM(J, THETA(I,J) * PX(J));

The exception applied in this example restricts the equation only to those elements of
set I for which MU0(I) is not zero.
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7.6. Report Declaration

The GAMS interface to MPSGE normally returns level values only for the central vari-
ables - those declared within $SECTORS:, $COMMODITIES:, $CONSUMERS: and $AUXILIARY:

sections. An equilibrium determines not only these values, but also levels of demand and
supply by individual sectors and consumers. Given benchmark information, elasticities
and the equilibrium values, all such demands can be computed, but this can be tedious to
do by hand. In order to have these values returned by MPSGE, it is necessary to indicate
the name of the variable into which the value is to be returned.

The general form is as follows:

$REPORT:

V:variable name I:commodity PROD:sector

V:variable name O:commodity PROD:sector

V:variable name D:commodity DEMAND:consumer

V:variable name W:consumer

The �rst row returns an input quantity, the second row returns an output quantity, the
third returns a demand quantity, and the fourth row returns a consumer welfare index.
(Note: the level value returned for a \consumer variable" is an income level, not a welfare
index.)

$REPORT:

V:DL(S) I:PF("L") PROD:Y(S)

V:DK(S) I:PF("K") PROD:Y(S)

V:SX(G,S)$SX0(G,S) O:PX(G) PROD:X(S)

V:D(G,H) D:P(G) DEMAND:RA(H)

V:W(H) W:RA(H)

Note that the \$" exception is only meaninful on the �rst entry. Also notice that the
domain of the report variable must conform to the domain of the subsequent two entries.

7.7. Exception Handling

The GAMS exception operator can be used on virtually any entry in the MPSGE input �le.
For example, if you want to have sector X(S) have one production structure for elements
S in a subset T(S), you can provide separate production function declarations as follows:

$PROD:X(S)$T(S)

... ! sector X described for S in T

$PROD:X(S)$(NOT T(S))

... ! sector X described for S not in T.
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The preprocessor does not require one and exactly one declaration for each sector. If
multiple declarations appear, the later set of coe�cients overwrites the earlier set.

7.8. Switches and Debug Output

Run-time tolerances and output switches may be speci�ed within the vector-syntax model
speci�cation or using the PUT facility, they can be written directly to the MPS input �le.
Output switches control the level of debug output written by the MPSGE subsystem to
the solver status �le. Reports provided by $ECHOP, $FUNLOG and $DATECH can be returned
to the listing �le by specifying "OPTION SYSOUT=ON;" within the GAMS program prior to
the SOLVE statement. The recognized MPSGE parameters are:

$ECHOP: logical Default=.FALSE.

is a switch for returning all or part of the scalar MPSGE �le to the solver status �le. In
order to have this output printed in the listing �le, enter the GAMS statement "OPTION
SYSOUT=ON;" prior to solving the model.

$PEPS: real Default=1.0E-6

is the smallest price for which price-responsive demand and supply functions are eval-
uated. If a price is below PEPS, it is perturbed (set equal to PEPS) prior to the evaluation.

$EULCHK: logical Default=.TRUE.

is a switch for evaluating Euler's identity for homogeneous equations. The output is
useful for monitoring the numerical precision of a Jacobian evaluation. When a price or
income level is perturbed in a function, the Euler check may fail.

$WALCHK: logical Default=.TRUE.

is a switch for checking Walras's law. Like EULCHK, this switch is provided primarily to
monitor numerical precision. When an income level is perturbed, the Walras check may
fail.

$FUNLOG: logical Default=.FALSE.

is a switch to generate a detailed listing of function evaluations for all production sectors
and consumers.
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FUNLOG triggers a function evaluation report which provides detailed output describing
the evaluation of supply and demand coe�cients. The information provide is su�cient that
an industrious graduate student should be able to reproduce the results (given a pencil,
paper and slide rule).

The evaluation report has the following headings:

T Coe�cient "type" with the following interpretation:

IA Input aggregate

OA Output aggregate

I Input

O Output

D Demand

E Endowment

N Name (either nest identi�er or commodity name)

PBAR Benchmark price (the P: �eld value)

P Current price (gross of tax)

QBAR Benchmark quantitity (the Q: �eld value)

Q Current quantity

KP Identi�er for parent entry in nesting structure.

ELAS Associated elasticity (input or output aggregates only)

When $FUNLOG:.TRUE is speci�ed, a complete report of demand and supply coe�cients
for every production and demand function in every iteration. Be warned that with large
models this can produce an enrmous amount of output!

The following two function evaluation reports are generated in the �rst iteration in
solving case "L" for model HARBERGER:

$DATECH: logical Default=.FALSE.

is a switch to generate a annotated listing of the function and Jacobian evaluation
including a complete listing of all the nonzero coe�cients.

MPSGE generates an analytic full �rst-order Taylor series expansion of the nonlinear
equations in every iteration. Nonzero elements of the Jacobian matrix are passed to the
system solver (MILES or PATH) which uses this information in the direction-�nding step
of the Newton algorithm. Coe�cients are produced with codes which help interpret where
they came from. The following codes are used:

W0 indicates an element from the orthogonal part of F().
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T N PBAR P QBAR Q KP ELAS

------------------------------------------------------------------------

IA s 1.0000E+00 8.9198E-01 1.0000E+02 1.0000E+02 0.00

OA t 1.0000E+00 1.0000E+00 1.0000E+02 1.0000E+02 0.00

IA a 1.0000E+00 8.7998E-01 9.0000E+01 9.0000E+01 s 1.00

O P.X 1.0000E+00 1.0000E+00 1.0000E+02 1.0000E+02 t

I P.Y 1.0000E+00 1.0000E+00 1.0000E+01 1.0000E+01 s

I W.K 2.0000E+00 1.5000E+00 2.0000E+01 2.3466E+01 a

I W.L 1.0000E+00 1.0000E+00 5.0000E+01 4.3999E+01 a

Function evaluation for: RA.OWNER

T N PBAR P QBAR Q KP ELAS

------------------------------------------------------------------------

IA s 1.0000E+00 1.0000E+00 7.0000E+01 7.0000E+01 1.00

OA t 1.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.00

IA a 1.0000E+00 1.0000E+00 7.0000E+01 7.0000E+01 s 0.50

D P.X 1.0000E+00 1.0000E+00 3.0000E+01 3.0000E+01 a

D P.Y 1.0000E+00 1.0000E+00 4.0000E+01 4.0000E+01 a

E W.K 1.0000E+00 1.0000E+00 6.0000E+01 0.0000E+00

E PT 1.0000E+00 1.0000E+00 1.0000E+01 0.0000E+00

Figure 10. Function Evaluation for: AL.X

W1 indicates an element from the non-orthogonal part of F().

B indicates a linear term from F.

E0 indicates a homogeneous Jacobian entry.

E1 indicates a non-homogeneous Jacobian entry.

The Euler checksum examines elements from the linearization which are type "E0".

The Walras check sum examines elements from the function evaluation which are type
\W0".

Needless to say, the $DATECH:.TRUE. switch produces a very big status �le for large
models. It is not something which is very useful for the casual user.

Here is a partial listing of nonzeros generated during the �rst linearization for scenario
\L" in model HARBERGER:
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---------------------------------------- Coefficients for sector:AL.X

P.X AL.X 1.0000E+02 B

AL.X P.X -1.0000E+02 B

P.Y AL.X -1.0000E+01 B

AL.X P.Y 1.0000E+01 B

W.K AL.X -2.3466E+01 B

AL.X W.K 3.5199E+01 B

W.L AL.X -4.3999E+01 B

AL.X W.L 4.3999E+01 B

W.K W.K 1.3037E+01 E0 1.3037E+01

W.K W.L -1.3037E+01 E0 -1.3037E+01

W.L W.K -1.9555E+01 E0 -1.9555E+01

W.L W.L 1.9555E+01 E0 1.9555E+01

GOVT AL.X -1.1733E+01 B

GOVT W.K -1.1733E+01 E1

GOVT W.K 6.5184E+00 E0 6.5184E+00

GOVT W.L -6.5184E+00 E0 -6.5184E+00

---------------------------------------- Income for consumer:RA.OWNER

W.K 6.0000E+01 W0

RA.OWNER W.K -6.0000E+01 B

PT 1.0000E+01 W0

RA.OWNER PT -1.0000E+01 B

RA.OWNER RA.OWNER 1.0000E+00 B

---------------------------------------- Demands for consumer:RA.OWNER

P.X -3.0000E+01 W0

P.Y -4.0000E+01 W0

P.X P.X 8.5714E+00 E0 8.5714E+00

P.X P.X 1.2857E+01 E0 1.2857E+01

P.X P.Y -8.5714E+00 E0 -8.5714E+00

P.X P.Y 1.7143E+01 E0 1.7143E+01

P.Y P.X -8.5714E+00 E0 -8.5714E+00

P.Y P.X 1.7143E+01 E0 1.7143E+01

P.Y P.Y 8.5714E+00 E0 8.5714E+00

P.Y P.Y 2.2857E+01 E0 2.2857E+01

P.X RA.OWNER -4.2857E-01 E0 -3.0000E+01

P.Y RA.OWNER -5.7143E-01 E0 -4.0000E+01

Figure 11. Partial Listing for HARBERGER
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8. File Structure

This appendix provides an overview of the structure of GAMS input �les which include
MPSGE models. The text of the paper presents many of these ideas by way of example,
but it may also be helpful for some users to have a \template" for constructing MPSGE
models. The discussion in this section focuses on a \generic" input �le, the schematic form
of which is presented in Figure 10. This section �rst presents a \top down" view of program
organization, and then it discusses aspects of the new syntax for model speci�cation.
8.1. Flow of Control

When a model is developed using GAMS as a front-end to MPSGE, the input �le generally
has �ve sections as identi�ed in Figure 10. Section (i), the benchmarking section, contains
standard GAMS statements. This includes GAMS SET declarations, input data (SCALARS,
PARAMETERS and TABLES ), and PARAMETER declarations for intermediate arrays used in
benchmarking or model speci�cation. In complex models, this section of the �le will
typically contain some algebraic derivations, the result of which is a calibrated benchmark
equilibrium dataset.

Users who are unfamiliar with GAMS can consult the manual. Beginning GAMS pro-
grammers should remember that the MPSGE interface to GAMS is unlike other solution
subsystems. \Level values" are passed between the GAMS program and MPSGE in the
usual fashion, but MPSGE models do not require the explicit use of the VARIABLE or
EQUATION statements.)

The second section of the �le consists of a GAMS comment range, beginning with
an $ONTEXT record and ending with an $OFFTEXT record, followed by an invocation of
the preprocessor. The preprocessor writes operates on statements in the MPSGE model
declaration which are \invisible" to the GAMS compiler. This program reads the MPSGE
model statements and generates GAMS-readable code, including a model-name.gen �le.
Additional GAMS code produced by the preprocessor includes declarations for each of the
central variables and report variables in the MPSGE model.

The third section of the generic input �le performs a \benchmark replication" and
may not be present in all applications. There are four statements required for benchmark
validation. The �rst statement sets the iteration limit to be zero; the second statement
causes the MPSGE model to be \generated", and the third statement causes the MPSGE
solver to read the model and return the pdeviations. In this call, the level values passed
to the solver are unaltered because the iteration limit is zero. Market excess supplies and
zero pro�t checks are returned in the \marginals" of the associated commodity prices and
activity levels, respectively. The �nal statement in this section resets the iteration limit to
1000 (the default value) for subsequent counter-factual computations.

Section (iv) de�nes and then computes a counter-factual equilibrium. A counter-factual
equilibrium is de�ned by parameter values such as tax rates or endowments which take
on values di�erent from those in the benchmark equilibrium. Within the GAMS interface
to MPSGE, it is also possible to �x one or more central variables. When any variable is
�xed, the associated equation is omitted from the equilibrium system during the solution
process but the resulting imbalance is then reported in the solution returned through the
marginal.

The �nal section of the �le represents the GAMS algebra required for comparing
counter-factual equilibria. It would be possible, for example, to construct welfare measures
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or to report percentage changes in certain values. All of these calculations are quite easy
because the equilibrium values are returned as level values in the associated variables.

For large models, the advantage of the vector format is that by using appropriately
de�ned GAMS sets, the number of individual functions which need to be de�ned is reduced
only to the number of \classes" of functions. This makes it possible to represent large
dimensional models using only a few lines of code.

To summarize, here are the basic features of a program which uses GAMS as a front-end
to MPSGE:

(i) An MPSGE model is de�ned within a GAMS comment range followed by

$sysinclude mpsgeset model-name

(ii) Every SOLVE statement for a particular model is preceded by $INCLUDE MODEL.GEN.
The GEN �le is written by the preprocessor based on the model structure.

(iii) Solution values for the cental variables in the MPSGE model and any declared
\report variables" are returned in GAMS variable level values. Level values for slacks are
returned as \marginals" for the associated variables.

(iv) The model description follows a format which is a direct extension of the scalar
data format. Certain aspects of the new language, such as case folding, are incompatible
with the original MPSGE syntax.

8.2. GAMS Code Generated by the Preprocessor: the GEN File

Most novice users will �nd it easiest to treat the preprocessor output �les as \black boxes".
These �les contain GAMS source code required for declaring and generating the MPSGE
input �le. Figure 11 contains portions of the GEN �le for the same model. Figure 12 shows
the preprocessor-generated listing and symbol table which are always appended to the
bottom of the GEN �le. If a preprocessor error occurs, it can be helpful to consult the
symbol table to track down the bug. Finally, Figure 13 shows the �rst page of scalar
format MPSGE input �le produced by HARBERGER.GEN. Normally, this �le is written and
then erased in the course of a GAMS run, although all or part of the �le may be retained
using the $ECHOP: switch.
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9. Algebraic Representations of Models in this Paper

9.1. The Harberger Model

Zero Net Pro�t
The unit cost of production in sector Ahs is given by a nested Leontief-CES function
de�ned over the cost of intermediate inputs and primary factors with ad-valorem taxes
on factor demands. In equilibrium, the unit cost must be no less than the market price of
output:
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Income Balance for Government
Government tax income (PT ) is determined by the value of tax revenue, calculated using
activity levels, compensated demands, market prices and ad-valorem tax rates:
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X
s

@�s

@(wf (1 + tfs))
ALswf tfs

Income Balance for Households
Household income is determined by the net of tax return to primary factors plus the
household share of government revenue:
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Market Clearance for Goods
Producer output is equal to the sum of intermediate plus �nal demand:
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h is the household budget share devoted to the consumption of goods, and ehh
is the \unit expenditure function" which may be written:
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Market Clearance for Factors
The aggregate supply of factors equals the sum of producer and consumer demand. Pro-
ducers pay taxes on factor inputs, consumers do not because we consider these demands
to be \leisure" or \household production". Consumer demands for factors are speci�ed as
Cobb-Douglas (constant budget shares):
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9.2. The Shoven Model

Zero Net Pro�t
The unit cost of production in sector Ahs is given by a nested Leontief-CES function
de�ned over the cost of intermediate inputs and primary factors with ad-valorem taxes
on factor demands. Unlike the Harberger models, tax rates in this model are determined
endogenously. In equilibrium, the unit cost must be no less than the market price of output:
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Income Balance for Government
Government tax income (PT ) is determined by the value of tax revenue, calculated using
activity levels, compensated demands, market prices and ad-valorem tax rates:
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Equal Yield
In equilibrium, tax rates are multiplicatively adjusted to achieve a target level of govern-
ment revenue:

PT =
X
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Income Balance for Households
Household income is determined by the net of tax return to primary factors plus the
household share of government revenue:
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X
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Market Clearance for Goods
Producer output is equal to the sum of intermediate plus �nal demand:
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h is the household budget share devoted to the consumption of goods, and ehh
is the \unit expenditure function" which may be written:
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Market Clearance for Factors
The aggregate supply of factors equals the sum of producer and consumer demand. Pro-
ducers pay taxes on factor inputs, consumers do not because we consider these demands
to be \leisure" or \household production". Consumer demands for factors are speci�ed as
Cobb-Douglas (constant budget shares):
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9.3. The Samuelson Model

Zero Net Pro�t for Private Production
The unit cost of production in sector Ahs is given by a nested Leontief - Cobb-Douglas
function de�ned over the cost of intermediate inputs and primary factors with ad-valorem
taxes on factor demands. Unlike the Harberger models, tax rates in this model are deter-
mined endogenously. In equilibrium, the unit cost must be no less than the market price
of output:
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Zero Net Pro�t for Public Sector Contractors
The unit cost of public provision is determined by the market price of commodity inputs
to the Leontief activity. Input requirements are de�ned by a vector of public sector input
coe�cients, ahg. In equilibrium, the price paid by the government equals the cost of market
inputs: X

g

pgag � pG � 0
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Income Balance for Government
Government tax income (PT ) is determined by the value of tax revenue, calculated us-
ing activity levels, compensated demands, market prices and ad-valorem tax rates. In
equilibrium, the value of tax revenue equals the market cost of public sector output:

PT =
X
s

@�s
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ALswf� tfs = pGG

Income Balance for Households
Household income is determined by the net of tax return to primary factors plus the
imputed value of public provision:
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X
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Market Clearance for Private Goods
Producer output is equal to the sum of intermediate plus �nal demand:
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where 
h is the household budget share devoted to the consumption of goods, and ehh
is the \unit expenditure function" which may be written:
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Personalized Markets for Public Goods
We assume a \pure" public good in this model, hence each household may attach a
di�erent marginal valuation to public provision in an equilibrium. In order to compute
these marginal values, we include a separate public good \market" for each houshold
which balances the level of provision with the household \demand":

G =
�GhMh

vh

in which �Gh is the budget share of public goods in the top-level Cobb-Douglas prefer-
ences of household h.

Market Clearance for Factors
The aggregate supply of factors equals the sum of producer and consumer demand. Pro-
ducers pay taxes on factor inputs, consumers do not because we consider these demands
to be \leisure" or \household production". Consumer demands for factors are speci�ed as
Cobb-Douglas (constant budget shares):
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Samuelson Rule for \Optimal" Provision of Public Goods
The tax rate multiplier is adjusted to balance the marginal cost of public provision with
the summation across households of marginal willingness to pay. Due to the existence of
household factor demand, factor taxes are necessarily distortionary and there will be an
excess social cost of public funds. For this reason, the Samuelson rule is neither neces-
sary nor su�cient for optimal provision. We apply the rule here merely to illustrate the
programming methodology, even though the resulting equilibrium may be \suboptimal":

pG =
X
h

vh



CES Preferences and Technology

A Practical Introduction

Abstract. This chapter describes practical approaches to the representation of constant elasticity de-
mand functions in computable equilibrium models. A number of examples are presented which relate the
mathematical derivation of these functional forms to their representation in MPSGE models.
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1. The Basics

In many economic textbooks the constant-elasticity-of-substitution (CES) utility function
is de�ned as:

U(x; y) = (�x� + (1� �)y�)1=�

It is a tedious but straight-forward application of Lagrangian calculus to demonstrate
that the associated demand functions are:
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�
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�� M
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and
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:

The corresponding indirect utility function has is:
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� 1
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Note that U(x; y) is linearly homogeneous:

U(�x; �y) = �U(x; y)

This is a convenient cardinalization of utility, because percentage changes in U are equiv-
alent to percentage Hicksian equivalent variations in income. Because U is linearly homo-
geneous, V is homogeneous of degree one in M :

V (px; py; �M) = �V (px; py;M)

and V is homogeneous of degree -1 in p.

V (�px; �py;M) =
V (px; py;M)

�
:

In the representation of technology, we have an analogous set of relationships, based
on the cost and compensated demand functions. If we have a CES production function of
the form:

y(K;L) = 
 (�K� + (1� �)L�)1=�

the unit cost function then has the form:
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and associated demand functions are:
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In most large-scale applied general equilibrium models, we have many function pa-
rameters to specify with relatively few observations. The conventional approach is to
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calibrate functional parameters to a single benchmark equilibrium. For example, if we
have benchmark estimates for output, labor, capital inputs and factor prices , we calibrate
function coe�cients by inverting the factor demand functions:

� =
�pK �K

�pK �K + �PL �L
; � =

� � 1

�
; � = � �K��

and


 = �y
�
� �K� + (1� �)�L���1=�

Exercises

1. Mikki once lived in Boulder and spent 30% of her income for rent, 10% for food and
60% for skiing. She then moved to Georgetown where rent and food prices are identical
to Boulder. In Georgetown, however, Mikki discovered that the quality-adjusted cost of
skiing was ten-times the cost of skiing in Boulder. She adopted a lifestyle in which she
spend only 30% of her income on skiing. Suppose that her preferences are characterized
by a CES utility function. What values of � and � describe Mikki's utility function?

2. What fraction of Mikki's income does she spend on rent in Georgetown?

3. How much larger would Mikki's income need to be to compensate for the higher cost
of skiing such that she would be indi�erent between living in Boulder or Georgetown.

2. The Calibrated Share Form

Calibration formulae for CES functions are messy and di�cult to remember. Consequently,
the speci�cation of function coe�cients is complicated and error-prone. For applied work
using calibrated functions, it is much easier to use the "calibrated share form" of the CES
function. In the calibrated form, the cost and demand functions explicitly incorporate

� benchmark factor demands

� benchmark factor prices

� the elasticity of substitution

� benchmark cost

� benchmark output

� benchmark value shares

In this form, the production function is written:

y = �y

�
�

�
K
�K
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�
L
�L

���1=�
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The only calibrated parameter, �, represents the value share of capital at the benchmark
point. The qcorresponding cost functions in the calibrated form is written:

c(pK ; pL) = �c
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�1��
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where
�c = �pL �L+ �pK �K

and the compensated demand functions are:
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Normalizing the benchmark utility index to unity, the utility function in calibrated

share form is written:

U(x; y) =

�
�
�x
�x

��
+ (1� �)

�
y

�y

���1=�

De�ning the unit expenditure function as:

e(px; py) =

"
�

�
px
�px

�1��

+ (1� �)
�
py
�py

�# 1
1��

the indirect utility function is:

V (px; py;M) =
M

�Me(px; py)

and the demand functions are:

x(px; py;M) = �x V (px; py;M)

�
e(px; py)�px

px

��

and

y(px; py;M) = �y V (px; py;M)

�
e(px; py)�py

py

��
The calibrated form extends directly to the n-factor case. An n-factor production

function is written:

y = f(x) = �y

"X
i

�i

�
xi
�xi

��#1=�

and has unit cost function:

C(p) = �C

"X
i

�i

�
pi
�pi

�1��
# 1

1��
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and compensated factor demands:

xi = �xi
y

�y

�
C �pi
�C pi

��

Exercises

1. Show that given a generic CES utility function:

U(x; y) = (�� + (1� �)y�)1=�

can be represented in share form using:

�x = 1; �y = 1; �px = t�; �py = t(1� �); �M = t:

for any value of t > 0.

2. Consider the utility function de�ned:

U(x; y) = (x� a)�(y � b)1��

A benchmark demand point with both prices equal and demand for y equal to twice
the demand for x. Find values for which are consistent with optimal choice at the
benchmark. Select these parameters so that the income elasticity of demand for x at
the benchmark point equals 1.1.

3. Consider the utility function:

U(x;L) = (�L� + (1� �)x�)1=�

which is maximized subject to the budget constraint:

pxx =M + w(�L� L)

in which M is interpreted as non-wage income, w is the market wage rate. Assume a
benchmark equilibrium in which prices for x and L are equal, demands for x and L
are equal, and non-wage income equals one-half of expenditure on x. Find values of �
and � consistent with these choices and for which the price elasticity of labor supply
equals 0.2.

4. Consider a consumer with CES preferences over two goods. A price change makes
the benchmark consumption bundle una�ordable, yet the consumer is indi�erent.
Graph the choice. Find an equation which determines the elasticity of substitution
as a function of the benchmark value shares. (You can write down the equation, but
it cannot be solved in closed form.)

5. Consider a model with three commodities, x, y and z. Preferences are CES. Benchmark
demands and prices are equal for all goods. Find demands for x, y and z for a doubling
in the price of x as a function of the elasticity of substitution.
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6. Consider the same model in the immediately preceeding question, except assume that
preferences are instead given by:

U(x; y; z) = (�min(x; y)� + (1� �)z�)1=�

Determine � from the benchmark, and �nd demands for x, y and z if the price of x
doubles.

3. Flexibility and Non-Separable CES functions

We let �i denote the user price of the ith input, and let xi(�) be the cost-minizing demand
for the ith input. The reference price and quantities are ��i and �xi. One can think of set
i as fK;L;E;Mg but the methods we employ may be applied to any number of inputs.
De�ne the reference cost, and reference value share for ith input by �C and �i, where

�C �
X
i

��i�xi

and

�i � �i�xi
�C

The single-level constant elasticity of substitution cost function in "calibrated share
form" is written:

C(�) = �C

 X
i

�i

�
�i
��i

�1��! 1
1��

Compensated demands may be obtained from Shephard's lemma:

xi(�) =
@C

@�i
� Ci = �xi

�
C(�)
�C

��i
�i

��
Cross-price Allen-Uzawa elasticities of substitution (AUES) are de�ned as:

�ij � CijC

CiCj

where

Cij � @2C(�)

@�i @�j
=
@xi
@�j

=
@xj
@�i

For single-level CES functions:

�ij = � 8i 6= j

The CES cost function exibits homogeneity of degree one, hence Euler's condition
applies to the second derivatives of the cost function (the Slutsky matrix):X

j

Cij(�) �j = 0
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or, equivalently: X
j

�ij�j = 0

The Euler condition provides a simple formula for the diagonal AUES values:

�ii =
�Pj 6=i �ij�j

�i

As an aside, note that convexity of the cost function implies that all minors of order
1 are negative, i.e. �ii < 0 8i. Hence, there must be at least one positive o�-diagonal
element in each row of the AUES or Slutsky matrices. When there are only two factors,
then the o�-diagonals must be negative. When there are three factors, then only one pair
of negative goods may be complements.

Let:

k index a second-level nest

sik denote the fraction of good i inputs assigned to the kth nest

!k denote the benchmark value share of total cost which enters through the kth nest


 denote the top-level elasticity of substitution

�k denote the elasticity of substitution in the kth aggregate

pk(�) denote the price index associated with aggregate k, normalized to equal unity in
the benchmark, i.e.:

pk(�) =

2
64

P
i sik�i

!k

�
�i
��i

�1��k
3
75

1

1��k

The two-level nested, nonseparable constant-elasticity-of-substitution (NNCES) cost
function is then de�ned as:

C(�) = �C

 X
k

!kpk(�)
1�


! 1
1�


Demand indices for second-level aggregates are needed to express demand functions in
a compact form. Let zk(�) denote the demand index for aggregate k, normalized to unity
in the benchmark; i.e.

zk(�) =

�
C(�)
�C

1

pk(�)

�

Compensated demand functions are obtained by di�erentiating C(�). In this derivative,

one term arise for each nest in which the commodity enters, so:

xi(�) = �xi
X
k

zk(�)

�
pk(�)��i
�i

��k
= �xi

X
k

�
C(�)
�C

1

pk(�)

�
 �pk(�)��i
�i

��k
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Simple di�erentiation shows that benchmark cross-elasticities of substitution have the
form:

�ij = 
 +
X
k

(�k � 
)siksjk
!k

Given the benchmark value shares �i and the benchmark cross-price elasticities of
substitution, �ij, we can solve for values of sik, !k, �

k and 
. A closed-form solution
of the calibration problem is not always practical, so it is convenient to compute these
parameters using a constrained nonlinear programming algorithm, CONOPT, which is
available through GAMS, the same programming environment in which the equilibrium
model is speci�ed. Perroni and Rutherford (EER, 1994) prove that calibration of the
NNCES form is possible for arbitrary dimensions whenever the given Slutsky matrix is
negative semi-de�nite. The two-level (N � N) function is 
exible for three inputs; and
although we have not proven that it is 
exible for 4 inputs, the only di�culties we have
encountered have resulted from inde�nite calibration data points.

Two GAMS programs are listed below. The �rst illustrates two analytic calibrations of
the three-factor cost function. The second illustrates the use of nonlinear programming to
calibrate a four-factor cost function.

4. Benchmarking Decreasing Returns to Scale Production Functions

This section describes how calibrate the �xed factor input for a constant returns to scale
CES technology and obtain an arbitrary price elasticity of supply at a reference point. For
concreteness, consider output as a function of labor and capital inputs. Consider the labor
input to be variable and the capital input to be �xed. We then have a CES cost function
which in equilibrium de�nes the price of output:

p = c(r; w)

in which w is the exogenous wage rate and r is the residual return to the sector's �xed
factor. Because this factor is �xed, by Shepard's lemma we have the following relationship
between output, the supply of the �xed factor and the return to the �xed factor:

y
@c(r; w)

@r
= �R

If we use the calibrated CES cost function of the form:

c(r; w) =
�
�r1�� + (1� �)w1��

� 1
1��

then the calibration problem consists of �nding a values for � and � for which:

@y

@(p=w)

(p=w)

y
= �

at the benchmark point.
Note that we are free to choose units of the speci�c factor such that its benchmark

price is unity. Hence, when we calibrate the share parameter, we are also determining the
supply of the �xed factor:

�R = ��y
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$TITLE Two nonseparable CES calibrations for a 3-input cost function.

* Model-specific data defined here:

SET I Production input aggregates / A,B,C /; ALIAS (I,J);

PARAMETER

THETA(I) Benchmark value shares /A 0.2, B 0.5, C 0.3/

AUES(I,J) Benchmark cross-elasticities (off-diagonals) /

A.B 2

A.C -0.05

B.C 0.5 /;

* Use an analytic calibration of the three-factor CES cost

* function:

ABORT$(CARD(I) NE 3) "Error: not a three-factor model!";

* Fill in off-diagonals:

AUES(I,J)$AUES(J,I) = AUES(J,I);

* Verify that the cross elasticities are symmetric:

ABORT$SUM((I,J), ABS(AUES(I,J)-AUES(J,I))) " AUES values non-symmetric?";

* Check that all value shares are positive:

ABORT$(SMIN(I, THETA(I)) LE 0) " Zero value shares are not valid:",THETA;

* Fill in the elasticity matrices:

AUES(I,I) = 0; AUES(I,I) = -SUM(J, AUES(I,J)*THETA(J))/THETA(I); DISPLAY AUES;

Figure 1a. Analytic Calibration: De�ne Benchmark Shares and Elasticities

in which we scale the benchmark price of output to unity.
If the relative price of output and the variable factor depart from their benchmark

values, the supply constraint for sector-speci�c can be inverted to obtain an explicit
expression for the return:

r = p

�
�y
�R

�1=�
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SET N Potential nesting /N1*N3/

K(N) Nesting aggregates used in the model

I1(I) Good fully assigned to first nest

I2(I) Good fully assigned to second nest

I3(I) Good split between nests;

SCALAR ASSIGNED /0/;

PARAMETER

ESUB(*,*) Alternative calibrated elasticities

SHR(*,I,N) Alternative calibrated shares

SIGMA(N) Second level elasticities

S(I,N) Nesting assignments (in model)

GAMMA Top level elasticity (in model);

* First the Leontief structure:

ESUB("LTF","GAMMA") = SMAX((I,J), AUES(I,J));

ESUB("LTF",N) = 0;

LOOP((I,J)$((AUES(I,J) EQ ESUB("LTF","GAMMA"))*(NOT ASSIGNED)),

I1(I) = YES;

I2(J) = YES;

ASSIGNED = 1;

);

I3(I) = YES$((NOT I1(I))*(NOT I2(I)));

DISPLAY I1,I2,I3;

LOOP((I1,I2,I3),

SHR("LTF",I1,"N1") = 1;

SHR("LTF",I2,"N2") = 1;

SHR("LTF",I3,"N1") = THETA(I1)*(1-AUES(I1,I3)/AUES(I1,I2)) /

( 1 - THETA(I3) * (1-AUES(I1,I3)/AUES(I1,I2)) );

SHR("LTF",I3,"N2") = THETA(I2)*(1-AUES(I2,I3)/AUES(I1,I2)) /

( 1 - THETA(I3) * (1-AUES(I2,I3)/AUES(I1,I2)) );

SHR("LTF",I3,"N3") = 1 - SHR("LTF",I3,"N1") - SHR("LTF",I3,"N2");

);

ABORT$(SMIN((I,N), SHR("LTF",I,N)) LT 0) "Benchmark AUES is indefinite.";

Figure 1b. Analytic Calibration: Nested Leontief Calibration

where we have substituted the equilibrium price for the cost function. Substituting back
into the cost function, we have

p1�� = �p1��
�
�y
�R

� 1��
�

+ (1� �)w1��
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* Now specify the two-level CES function:

ESUB("CES","GAMMA") = SMAX((I,J), AUES(I,J));

ESUB("CES","N1") = 0;

LOOP((I1,I2,I3),

SHR("CES",I1,"N1") = 1;

SHR("CES",I2,"N2") = 1;

ESUB("CES","N2") = (AUES(I1,I2)*AUES(I1,I3)-AUES(I2,I3)*AUES(I1,I1)) /

(AUES(I1,I3)-AUES(I1,I1));

SHR("CES",I3,"N1") =

(AUES(I1,I2)-AUES(I1,I3)) / (AUES(I1,I2)-AUES(I1,I1));

SHR("CES",I3,"N2") = 1 - SHR("CES",I3,"N1");

);

ABORT$(SMIN(N, ESUB("CES",N)) LT 0) "Benchmark AUES is indefinite?";

ABORT$(SMIN((I,N), SHR("CES",I,N)) LT 0) "Benchmark AUES is indefinite?";

Figure 1c. Analytic Calibration: Nested CES Calibration

or

y = �R�
1

��1

"
1� (1� �)

�
w

p

�1��
# �

1��

Di�erentiating this expression with respect the relative price of output, and setting all
prices equal to unit, we have:

� =
�(1� �)

�

This equation can be used in a variety of ways to calibrate the supply function. One
approach would be to choose the value share of the �xed factor � to match the base year
pro�ts, and then assign the elasticity according to:

� =
��

(1� �)
Alternatively, one choose to use a Cobb-Douglas function and set the speci�c factor

value share accordingly:

� =
1

1 + �

5. Analytic Calibration of the GEMTAP Final Demand System

Following Ballard, Fullerton, Shoven and Whalley (BFSW), we consider a representative
agent whose utility is based upon current consumption, future consumption and cur-
rent leisure. Changes in future consumption; in this static framework are associated with
changes in the level of savings. There are three prices which jointly determine the price
index for future consumption. These are:

PI the composite price index for investment goods
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PARAMETER PRICE(I) PRICE INDICES USING TO VERIFY CALIBRATION

AUESCHK(*,I,J) CHECK OF BENCHMARK AUES VALUES;

PRICE(I) = 1;

$ontext

$MODEL:CHKCALIB

$SECTORS:

Y ! PRODUCTION FUNCTION

D(I)

$COMMODITIES:

PY ! PRODUCTION FUNCTION OUTPUT

P(I) ! FACTORS OF PRODUCTION

PFX ! AGGREGATE PRICE LEVEL

$CONSUMERS:

RA

$PROD:Y s:GAMMA K.TL:SIGMA(K)

O:PY Q:1

I:P(I)#(K) Q:(THETA(I)*S(I,K)) K.TL:

$PROD:D(I)

O:P(I) Q:THETA(I)

I:PFX Q:(THETA(I)*PRICE(I))

$DEMAND:RA

D:PFX

E:PFX Q:2

E:PY Q:-1

$OFFTEXT

$SYSINCLUDE mpsgeset CHKCALIB

Figure 1d. Analytic Calibration: Simple MPSGE Model to Check Calibration

PK the composite rental price for capital services

PC the composite price of current consumption.

All of these prices equal unity in the benchmark equilibrium.
Capital income in each future year �nances future consumption, which is expected to

cost the same as in the current period, PC (static expectations). The consumer demand
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SCALAR DELTA /1.E-5/;

SET FUNCTION /LTF, CES/;

ALIAS (I,II);

LOOP(FUNCTION,

K(N) = YES$SUM(I, SHR(FUNCTION,I,N));

GAMMA = ESUB(FUNCTION,"GAMMA");

SIGMA(K) = ESUB(FUNCTION,K);

S(I,K) = SHR(FUNCTION,I,K);

LOOP(II,

PRICE(J) = 1; PRICE(II) = 1 + DELTA;

$INCLUDE CHKCALIB.GEN

SOLVE CHKCALIB USING MCP;

AUESCHK(FUNCTION,J,II) = (D.L(J)-1) / (DELTA*THETA(II));

));

AUESCHK(FUNCTION,I,J) = AUESCHK(FUNCTION,I,J) - AUES(I,J);

DISPLAY AUESCHK;

Figure 1e. Analytic Calibration: Use the MPSGE to Verify Calibration

for savings therefore depends not only on PI , but also on PK and PC , namely:

PS =
PIPC
PK

The price index for savings is unity in the benchmark period. In a counter-factual equi-
librium, however, we would expect generally that

PS 6= PI

. When these price indices are not equal, there is a virtual tax payment ; associated with
savings demand.

Following BFSW, we adopt a nested CES function to represent preferences. In this
function, at the top level demand for savings (future consumption) trades o� with a second
CES aggregate of leisure and current consumption. These preferences can be summarized
with the following expenditure function:

PU =
�
�PH

1��S + (1� �)PS1��S
� 1
1��S

Preferences are homothetic, so we have de�ned PU as a linearly homogeneous cost
index for a unit of utility. We conveniently scale this price index to equal unity in the
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* Evaluate the demand functions:

$LIBINCLUDE gnuplot

SET PR Alternative price levels /PR0*PR10/;

PARAMETER

DEMAND(FUNCTION,I,PR) Demand functions

DPLOT(PR,FUNCTION) Plotting output array;

LOOP(II,

LOOP(FUNCTION,

K(N) = YES$SUM(I, SHR(FUNCTION,I,N));

GAMMA = ESUB(FUNCTION,"GAMMA");

SIGMA(K) = ESUB(FUNCTION,K);

S(I,K) = SHR(FUNCTION,I,K);

LOOP(PR,

PRICE(J) = 1;

PRICE(II) = 0.2 * ORD(PR);

$INCLUDE CHKCALIB.GEN

SOLVE CHKCALIB USING MCP;

DEMAND(FUNCTION,II,PR) = D.L(II);

DPLOT(PR,FUNCTION) = D.L(II);

);

);

$LIBINCLUDE gnuplot DPLOT

);

DISPLAY DEMAND;

Figure 1f. Analytic Calibration: Compare Demand Functions

benchmark. In this de�nition,� is the benchmark value share for current consumption
(goods and leisure). PH is a compositive price for current consumption de�ned as:

PH =
�
�P`

1��L + (1� �)PC1��L
� 1
1��L

in which � is the benchmark value share for leisure within current consumption.
Demand functions are:

S = S0

�
PU
PF

��S I

I0PU
;

C = C0

�
PH
PC

��L �PU
PH

��S I

I0PU
;

and

` = `0

�
PH
PL

��L �PU
PH

��S I

I0PU
:
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$TITLE Numerical calibration of Nested CES from KLEM elasticities

SET I Production input aggregates / K, L, E, M/; ALIAS (I,J);

* Model-specific data defined here:

PARAMETER

THETA(I) Benchmark value shares /K 0.2, L 0.4, E 0.05, M 0.35/

AUES(I,J) Benchmark cross-elasticities (off-diagonals) /

K.L 1

K.E -0.1

K.M 0

L.E 0.3

L.M 0

E.M 0.1 /;

SCALAR EPSILON Minimum value share tolerance /0.001/;

* Fill in off-diagonals:

AUES(I,J)$AUES(J,I) = AUES(J,I);

* Verify that the cross elasticities are symmetric:

ABORT$SUM((I,J), ABS(AUES(I,J)-AUES(J,I))) " AUES values non-symmetric?";

* Check that all value shares are positive:

ABORT$(SMIN(I, THETA(I)) LE 0) " Zero value shares are not valid:",THETA;

* Fill in the elasticity matrices:

AUES(I,I) = 0; AUES(I,I) = -SUM(J, AUES(I,J)*THETA(J))/THETA(I); DISPLAY AUES;

Figure 2a. Numerical Calibration: De�ne Benchmark Shares and Elasticities

Demands are written here in terms of their benchmark values (S0, C0 and `0) and
current and benchmark income (I and I0).

There are four components in income. The �rst is the value of labor endowment (E),
de�ned inclusive of leisure. The second is the value of capital endowment (K). The third
is all other income (M). The fourth is the value of virtual tax revenue; associated with
di�erences between the shadow price of savings and the cost of investment.

I = PLE + PKK +M + (PS � PI)S

The following parameter values are speci�ed exogenously:
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* Define variables and equations for NNCES calibration:

SET N Nests within the two-level NNCES function /N1*N4/,

K(N) Nests which are in use;

VARIABLES

S(I,N) Fraction of good I which enters through nest N,

SHARE(N) Value share of nest N,

SIGMA(N) Elasticity of substitution within nest N,

GAMMA Elasticity of substitution at the top level,

OBJ Objective function;

POSITIVE VARIABLES S, SHARE, SIGMA, GAMMA;

EQUATIONS

SDEF(I) Nest shares must sum to one,

TDEF(N) Nest share in total cost,

ELAST(I,J) Consistency with given AUES values,

OBJDEF Maximize concentration;

ELAST(I,J)$(ORD(I) GT ORD(J))..

AUES(I,J) =E= GAMMA +

SUM(K, (SIGMA(K)-GAMMA)*S(I,K)*S(J,K)/SHARE(K));

TDEF(K).. SHARE(K) =E= SUM(I, THETA(I) * S(I,K));

SDEF(I).. SUM(N, S(I,N)) =E= 1;

* Maximize concentration at the same time keeping the elasticities

* to be reasonable:

OBJDEF.. OBJ =E= SUM((I,K),S(I,K)*S(I,K))

- SQR(GAMMA) - SUM(K, SQR(SIGMA(K)));

MODEL CESCALIB /ELAST, TDEF, SDEF, OBJDEF/;

* Apply some bounds to avoid divide by zero:

SHARE.LO(N) = EPSILON;

Figure 2b. Numerical Calibration: De�ne a Nonlinear Program for Calibration
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SCALAR SOLVED Flag for having solved the calibration problem /0/

MINSHR Minimum share in candidate calibration;

SET TRIES Counter on the number of attempted calibrations /T1*T10/;

OPTION SEED=0;

LOOP(TRIES$(NOT SOLVED),

* Initialize the set of active nests and the bounds:

K(N) = YES;

S.LO(I,N) = 0; S.UP(I,N) = 1;

SHARE.LO(N) = EPSILON; SHARE.UP(N) = 1;

SIGMA.LO(N) = 0; SIGMA.UP(N) = +INF;

* Install a starting point:

SHARE.L(K) = MAX(UNIFORM(0,1), EPSILON);

S.L(I,K) = UNIFORM(0,1);

GAMMA.L = UNIFORM(0,1);

SIGMA.L(K) = UNIFORM(0,1);

SDEF.M(I) = 0; TDEF.M(K) = 0; ELAST.M(I,J) = 0;

SOLVE CESCALIB USING NLP MAXIMIZING OBJ;

SOLVED = 1$(CESCALIB.MODELSTAT LE 2);

IF (SOLVED,

MINSHR = SMIN(K, SHARE.L(K)) - EPSILON;

IF (MINSHR EQ 0,

K(N)$(SHARE.L(N) EQ EPSILON) = NO;

S.FX(I,N)$(NOT K(N)) = 0;

SHARE.FX(N)$(NOT K(N)) = 0;

SIGMA.FX(N)$(NOT K(N)) = 0;

DISPLAY "Recalibrating with the following nests:",K;

SOLVE CESCALIB USING NLP MAXIMIZING OBJ;

IF (CESCALIB.MODELSTAT GT 2, SOLVED = 0;);

MINSHR = SMIN(K, SHARE.L(K)) - EPSILON;

IF (MINSHR EQ 0, SOLVED = 0;);

);

);

);

IF (SOLVED, DISPLAY "Function calibrated:",GAMMA.L,SIGMA.L,SHARE.L,S.L;

ELSE DISPLAY "Function calibration fails!";

);

Figure 2c. Numerical Calibration: Perform the Calibration
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� = 1:75 is the ratio of labor endowment to labor supply, � � E
L0
, where L0 is the

benchmark labor supply. Labor supply and � also de�ne benchmark leisure demand,
`0 = L0(� � 1).

� = 0:15 is the uncompensated elasticity of labor supply with respect to the net of tax
wage, i.e.

� =
@L

@PL

PL
L

=
@(E � `)
@PL

PL
L

= � @`

@PL

PL
L

� = 0:4 is the elasticity of savings with respect to the return to capital:

� � @S

@PK

S

PK

Shephard's lemma applied at benchmark prices provides the following identities which
are helpful in deriving expressions for � and �:

@PU
@PH

= �;
@PU
@PS

= 1� �; @PH
@PL

= �;
@PH
@PC

= 1� �

It is then a relatively routine application of the chain rule to show that:

� = (� � 1)

�
�L + �(�S � �L)� ��(�S � 1)� E

I0

�
and

� = �S�+
K

I0

The expression for � does not involve �L, so we may �rst solve for �S and use this value
in determining �L:

�S =
� � K

I0

�

and

�L =

�
��1 � �S�(1� �)� �� + E

I0

1� �
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$TITLE A Maquette Illustrating Labor Supply / Savings Demand Calibration

* Exogenous elasticity:

SCALAR XI UNCOMPENSATED ELASTICITY OF LABOR SUPPLY /0.15/,

ETA ELASTICITY OF SAVINGS WRT RATE OF RETURN /0.40/,

ZETA RATIO OF LABOR ENDOWMENT TO LABOR SUPPLY /1.75/;

* Benchmark data:

SCALAR C0 CONSUMPTION /2.998845E+2/,

S0 SAVINGS /70.02698974/,

LS0 LABOR SUPPLY / 2.317271E+2/,

K0 CAPITAL INCOME /93.46960577/,

PL0 MARGINAL WAGE /0.60000000/;

Figure 3a. Labor Supply and Savings Demand: Input Data
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* Calibrated parameters:

SCALAR EL0 LABOR ENDOWMENT

L0 LEISURE DEMAND

M0 NON-WAGE INCOME

I EXTENDED GROSS INCOME

ETAMIN SMALLEST PERMISSIBLE VALUE FOR ETA,

XIMIN SMALLEST PERMISSIBLE VALUE FOR XI,

ALPHA CURRENT CONSUMPTION VALUE SHARE

BETA LEISURE VALUE SHARE IN CURRENT CONSUMPTION

SIGMA_L ELASTICITY OF SUBSTITUTION WITHIN CURRENT CONSUMPTION

SIGMA_S ELASTICITY OF SUBSTITUTION - SAVINGS VS CURRENT CONSUMPTION

TS SAVINGS PRICE ADJUSTMENT;

LS0 = LS0 * PL0;

EL0 = ZETA * LS0;

L0 = EL0 - LS0;

M0 = C0 + S0 - LS0 - K0;

I = L0 + C0 + S0;

BETA = L0 / (C0 + L0);

ALPHA = (L0 + C0) / I;

SIGMA_S = (ETA - K0 / I) / ALPHA;

ETAMIN = K0 / I;

ABORT$(SIGMA_S LT 0) " Error: cannot calibrate SIGMA_S", ETAMIN;

SIGMA_L = (XI*(LS0/L0)-SIGMA_S*BETA*(1-ALPHA)-ALPHA*BETA+EL0/I)/(1-BETA);

XIMIN = -(L0/LS0) * (- SIGMA_S * BETA * (1-ALPHA) - ALPHA*BETA + EL0/I);

ABORT$(SIGMA_L LT 0) " Error: cannot calibrate SIGMA_L", XIMIN;

DISPLAY "Calibrated elasticities:", SIGMA_S, SIGMA_L;

Figure 3b. Labor Supply and Savings Demand: Calibration Assignments
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$ONTEXT

$MODEL:CHKCAL

$COMMODITIES:

PL

PK

PC

PS

$SECTORS:

Y

S

$CONSUMERS:

RA

$PROD:Y

O:PC Q:(K0+LS0-S0)

I:PL Q:(LS0-S0)

I:PK Q:K0

$PROD:S

O:PS A:RA T:TS

I:PL

$DEMAND:RA s:SIGMA_S a:SIGMA_L

E:PC Q:M0

E:PL Q:EL0

E:PK Q:K0

D:PS Q:S0

D:PC Q:C0 a:

D:PL Q:L0 a:

$OFFTEXT

$SYSINCLUDE mpsgeset CHKCAL

S.L = S0;

TS = 0;

* VERIFY THE BENCHMARK:

CHKCAL.ITERLIM = 0;

$INCLUDE CHKCAL.GEN

SOLVE CHKCAL USING MCP;

Figure 3c. Labor Supply and Savings Demand: Maquette Incorporating the Data
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PL.L = 1.001;

CHKCAL.ITERLIM = 0;

$INCLUDE CHKCAL.GEN

SOLVE CHKCAL USING MCP;

* Compute induced changes in labor supply using the labor market

* "marginal", PL.M. This marginal returns the net excess supply of

* labor at the given prices. We started from a balanced benchmark,

* with no change in labor demand (the iteration limit was zero).

* Hence, PL.M returns the magnitude of the change in labor supply.

* We multiply by the benchmark wage (1) and divide by the benchmark

* labor supply (LS0) to produce a finite difference approximation

* of the elasticity:

DISPLAY "CALIBRATION CHECK -- THE FOLLOWING VALUES SHOULD BE IDENTICAL:", XI;

XI = (PL.M / 0.001) * (1 / LS0);

DISPLAY XI;

Figure 3d. Labor Supply and Savings Demand: Check the Labor Supply Elasticity
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PL.L = 1.0;

* CHECK THE ELASTICITY OF SAVINGS WRT RENTAL RATE OF CAPITAL:

PK.L = 1.001;

PS.L = 1 / 1.001;

TS = 1 / 1.001 - 1;

CHKCAL.ITERLIM = 0;

* Compute elasticity of savings with respect to the rental rate of

* capital. This requires some recursion in order to account for the

* effect of changes in savings on effective income. When PK increases,

* PS declines -- there is an effective "subsidy" for saving, paid from

* consumer income. In order to obtain a difference approximation for

* the elasticity of savings response, we need to make sure the virtual

* tax payments are properly handled. In the MPSGE model, this means

* that the level value for S must be adjusted so that it exactly equals

* the savings. We do this recursively:

SET ITER /IT1*IT5/;

PS.M = 1;

LOOP(ITER$(ABS(PS.M) GT 1.0E-8),

$INCLUDE CHKCAL.GEN

SOLVE CHKCAL USING MCP;

S.L = S.L - PS.M;

);

DISPLAY "CALIBRATION CHECK -- THE FOLLOWING VALUES SHOULD BE IDENTICAL:", ETA;

ETA = ((S.L - S0) / 0.001) * (1 / S0);

DISPLAY ETA;

Figure 3e. Labor Supply and Savings Demand: Check the Savings Elasticity
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6. Alternative Elasticities and Functional Forms

A well known dimensionless index of second-order curvature is the compensated price
elasticity (CPE), which is de�ned as:

�Cij �
@ lnCi
@ ln pj

=
Cijpj
Ci

;

and a related measure of second-order curvature is the AUES, which has been already
discussed. This can also be written as

�Aij =
�Cij
�j
:

The AUES is a one-input-one-price elasticity of substitution (Mundlak, 1968), since,
as the de�nition of �Aij makes clear, it measures the responsiveness of the compensated
demand for one input to a change in one input price. In contrast, the Morishima elasticity of
substitution (MES; Morishima, 1967) constitutes a two-input- one-price elasticity measure,
being de�ned as

�Mij �
@ ln(Ci=Cj)

@ ln(pi=pj)
= �Cij � �Cjj:

Note that, in general, the MES is not symmetric, i.e. �Mij 6= �Mji .
A third type of curvature measure is represented by the class of two-input-two-price

elasticities of substitution, which take the form @ ln(Ci=Cj)=@ ln(pj=pi). One such index is
the shadow elasticity of substitution (SES; Frenger, 1985), which is de�ned as

�Sij �
�i�

M
ij + �j�

M
ji

(�i + �j)
:

When technologies are of the CES type, �Aij , �
M
ij and �Sij are all identical, but they are

generally di�erent otherwise.

6.1. The Translog Cost Function

The Translog unit cost function is de�ned as

lnC(p) � ln b0 +
X
i

bi ln pi +
1

2

X
ij

aij ln pi ln pj � ln b0 + L(p):

Compensated Demand Functions:

xi(p) =
@C(p)

@pi
=
@ ln C(p)

@pi
C =

C(p)

pi

2
4bi +X

j

aij ln pj

3
5

Restrictions: X
i

bi = 1;
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aij = aji; 8i;8j;X
j

aij = 0; 8i:

Calibration:

aij = �i�j(�
A
ij � 1); i 6= j;

aii = �
X
j 6=i

aij ; 8i;

bi = �i �
X
j

aij ln pj; 8i;

b0 = �Ce�L(p):

6.2. The Generalized Leontief Cost Function

The Generalized Leontief unit cost function is de�ned as

C(p) � 1

2

X
ij

aij
p
pipj:

Compensated Demand Functions:

xi(p) =
@C(p)

@pi
=
X
j

aij
2

r
pj
pi
:

Restrictions:

aij = aji; 8i;8j:

Calibration:

aij = 4�Aij �i�j
�Cp
pipj

; i 6= j;

aii = 2�i
�C

pi
�
X
j 6=i

aij

r
pj
pi

8i:

6.3. The Normalized Quadratic Cost Function

The Normalized Quadratic unit cost function is de�ned as

C(p) � 1

2

P
ij aijpipjP
i bipi

:

Compensated Demand Functions:

xi(p) =
@C(p)

@pi
=

P
j aijpj � C(p)biP

j bjpj
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Restrictions:

aij = aji; 8i;8j;
bi � 0; 8i;X

i

bi = 1:

Calibration:

aij =
�C�i�j
pipj

 
�Aij
X
k

bkpk +
bipi
�i

+
bjpj
�j

!
; 8i;8j;

We examined two alternative speci�cations, one in which bi = �i, and another in which
bi = 1=N . The �rst speci�cation is reported by Perroni and Rutherford [1998] to produce
a more stable function.

6.4. The Nonseparable Nested CES Cost Function

We restrict our discussion to the case N = 3 (for the general N -input case see Perroni
and Rutherford, 1995), and focus on a particular nesting structure which we call \Lower
Triangular Leontief" (LTL). Let us rearrange indices so that the maximum o�-diagonal
AUES element is �A12. Then the three-input NNCES-LTL cost function can be de�ned as

C(p) � �
h
�(a1p1 + a3p3)

1�
 + (1� �)(b2p1��2 + b3p
1��
3 )

1�

1��

i 1
1�


:

Compensated Demand Functions: We simplify the algebra by de�ning price indices for the
two nests:

p13 = a1p1 + a3p3

and

p23 =
h
b2p

1��
2 + b3p

1��
3

i 1
1��

we have:

x1(p) =
@C(p)

@p1
= a1��

�
C(p)

�p13

�


x2(p) =
@C(p)

@p2
= b2(1� �)�

�
C(p)

�p23

�
 ��p23
p2

��

x3(p) =
@C(p)

@p3
= a3��

�
C(p)

�p13

�

+ b3(1� �)�

�
C(p)

�p23

�
 ��p23
p3

��

Restrictions:

 � 0;

� � 0;

� � 0;
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ai � 0; 8i;
bi � 0; 8i:

Calibration:

Let us denote with s3 the fraction of the total input of commodity 3 which enters the
�rst subnest of the structure:

C(p) � �
h
�(a1p1 + a3p3)

1�
 + (1� �)(b2p1��2 + b3p
1��
3 )

1�

1��

i 1
1�


:

(with (1� s3) representing the fraction entering the second subnest). If we select


 = �A12;

� =
�A12�

A
13 � �A23�A11
�A13 � �A11

;

it can be shown that

s3 =
�A12 � �A13
�A12 � �A11

:

The remaining parameters can then be recovered as follows:

� = �C;

� = �1 + s3�3

a1 =
�1
�p1

a3 =
s3�3
�p3

b2 =
�2

(1� �)p1��2

b3 =
(1� s3)�3
(1� �)p1��3





Extensions of GAMS for Complementarity Problems in Economics

Abstract. This paper introduces new features of the GAMS modeling language which have been de-
veloped for solving nonlinear complementarity problems. The paper de�nes the "mixed complementarity
problem" (MCP) and its various manifestations. Complementarity formulations for three economic models
are developed, and computational benchmarks are presented for two large-scale MCP solvers. Finally,
procedures for local sensitivity analysis are described.
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1. Introduction

GAMS (General Algebraic Modelling System) is a computer language which was originally
developed to assist economists at the World Bank in the quantitative analysis of economic
policy questions (Meeraus (1983), Brooke, Kendrick and Meeraus (1987)). At the time
of its conception and initial development, linear programming (LP) was the standard
framework in which market equilibrium models were constructed. Subsequently, solution
algorithms and codes for general non-linear programming representations became more
common and alternative economic paradigms were developed. 1

During this time, GAMS was extended from an LP matrix-generator to accommodate
general nonlinear functions. GAMS was awarded the Computer Science Technical Section
prize by the Operations Research Society of America in 1987. The release of a PC-based
version of GAMS in 1988 lead to its wide-spread recognition as an e�ective tool for the
development of general purpose large-scale mathematical programming models.

This paper introduces new features of the GAMS modelling language which permit
formulating economic equilibrium models as systems of nonlinear equations, complemen-
tarity problems or variational inequalities. These extensions accommodate market and
game-theoretic equilibriummodels which are not easily studied in an optimization context.
These formulations are here referred to as \mixed complementarity problems" (MCPs),
re
ecting the fact that they may incorporate mixtures of equations and inequalities. 2

The MCP is a natural format for expressing a variety of economic models for both mar-
kets and games. Computational evidence suggests that algorithms for solving MCPs are
relatively reliable and e�cient, particulary for models which are not natural optimization
problems.

The development of the GAMS/MCP modelling format was motivated by recent theo-
retical and practical developments in algorithms for nonlinear complementarity problems
and variational inequalities. Some of these algorithms are extensions of classical methods
for nonlinear equations. Others exploit the variational structure which is characteristic of
many economic equilibriummodels (see Dafermos (1983)). The most recent techniques are
based on ideas from interior-point algorithms for linear programming (Kojima, Megiddo,
Noma and Yoshise (1991)). A survey of developments in the theory and application of
these methods is provided by Harker and Pang (1990).

At this time, two large-scale solvers are available through GAMS/MCP. MILES (a
Mixed Inequality and nonLinear Equation Solver) employs a modi�ed Newton algorithm
which was originally developed for applied general equilibrium modelling (see Rutherford
(1987, 1993), and Anstreicher, Lee and Rutherford (1992)). PATH is a recently developed
solver based on a promising new path-following procedure (Dirkse and Ferris (1993), Ralph
(1994)). Both codes incorporate implicit bounds, mixtures of constrained and uncon-
strained variables, sparse matrix algebra and dynamic memory allocation. Both solvers
employ the basis factorization package from MINOS 5.4, LUSOL (Gill et al.(1991)).

MILES executes a generalized Newton algorithm with a backtracking line search. This
method is based on an algorithm investigated by Mathiesen (1985) who proposed a mod-
eling format and sequential method for solving economic equilibrium models. Mathiesen's
method is closely related to algorithms proposed by Robinson (1972), Hogan (1975), Eaves
(1978) and Josephy (1979). The algorithm executed by PATH is a \global Newton" method

1 A chronology of these developments might include Samuelson (1952), Gale (1960), Takayama and
Judge (1971), Goreux and Manne (1973) and Adelman and Robinson (1978).

2 van der Laan and Tallman (1985) refer to these as \generalized complementarity problems".
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in which the backtracking line search is replaced by a \path search". The algorithms share
the same quadratic rate of convergence near a solution, but they may follow di�erent
trajectories away from the equilibrium. Because convergence cannot always be guaranteed
with either algorithm, it is helpful to have both algorithms available when working with
large or di�cult problems.

There are two methods for expressing mixed complementarity problems in GAMS. The
�rst is based on \standard" GAMS algebra with extended syntax to signify complemen-
tarity links between equations and variables. The second method is a GAMS interface
for general equilibrium modeling with MPSGE (a Mathematical Programming System for
General Equilibrium). MPSGE is a function and Jacobian evaluation program for a broad
class of economic models. Nonlinear equations in an MPSGE model are automatically
generated from a tabular description of cost and expenditure functions. The MPSGE
interface is well suited for a speci�c class of functions, whereas GAMS/MCP can be applied
to any complementarity problem which can be written with standard GAMS algebra. Any
MPSGE model can be written in GAMS/MCP but not all GAMS/MCP models can be
cast using MPSGE functions.3

The remainder of this paper is organized as follows. Section 2 de�nes the general class
of mathematical programs which can be cast in an MCP format, Section 3 presents MCP
formulations for three models which arise in market equilibrium analysis and game theory
and computational benchmarks for MILES and PATH. Section 4 describes how local
sensitivity analysis can be conducted within GAMS by using a nonlinear optimizer in
conjunction with GAMS/MCP. Section 5 summarizes of GAMS/MCP syntax, and section
6 provides a brief conclusion. An appendix (available upon request) contains program
listings for models described in the paper.

2. Manifestations of the Mixed Complementarity Problem

The \mixed-complementarity problem" (MCP) is de�ned here as:

Given: F : RN ! RN ; `; u 2 RN (MCP)

Find: z; w; v 2 RN

s.t. F (z)� w + v = 0

` � z � u; w � 0; v � 0

wT (z � `) = 0; vT (u� z) = 0

in which �1 � ` � u � +1. F must be continuously di�erentiable in order to express a
model using GAMS/MCP algebra. Su�cient conditions for convergence of a Newton-type
algorithm place additional restrictions on F . Once such condition would be that F is a
P -function (see Harker and Pang (1990).)4

3 The present paper does not present details of the MPSGE syntax. The interested reader is referred to
Rutherford (1992b). MPSGE accommodates \auxiliary constraints" written in GAMS/MCP algebra for
economic features which fall outside the standard Arrow-Debreu framework.

4 In practice, it is quite di�cult to determine whether the properties of a particular mapping guarantee
convergence. For applied work, it is normal practice to �rst con�rm convergence for a small-scale prototype
and then proceed to develop a large scale model.
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This MCP format encompasses a number of special cases, including the following:
(i) a linear system of equations:

Given: A 2 Rn�n; b 2 Rn (LSYS)

Find: x 2 Rn

s.t. Ax = b

which is represented as an MCP by letting ` = �1; u = +1; z = x; and F (z) =
Az � b;

(ii) a nonlinear system of equations:

Given: f : Rn ! Rn; b 2 Rn (NLSYS)

Find: x 2 Rn

s.t. f(x) = 0

which is represented as an MCP by letting ` = �1; u = +1; z = x; and F (z) =
f(z);

(iii) a linear complementarity problem:

Given: M 2 Rn�n; q 2 Rn (LCP)

Find: z 2 Rn

s.t. q +Mz � 0; z � 0; zT (q +Mz) = 0

which is represented as an MCP by letting ` = 0; u = +1; and F (z) = q +Mz;
(iv) a nonlinear complementarity problem:

Given: f : Rn ! Rn (NCP)

Find: z 2 Rn

s.t. f(z) � 0; z � 0; zT f(z) = 0

which is represented as an MCP by setting ` = 0; u = +1; and F (z) = f(z);
(v) a nonlinear program:

Given: f : Rn ! R; g : Rn ! Rm; ^̀; û 2 Rn (NLP)

Find: x 2 Rn to

max f(x)

s.t. g(x) = 0

^̀� x � û



GAMS Extensions for Complementarity 121

which (when f() is concave and g() is convex) may be represented as an MCP by setting
N = n+m, and partitioning5:

z =

�
x
y

�
; ` =

�
^̀

�1
�
; u =

�
û

+1
�
; F (z) =

�rf(x)�rg(x)T y
g(x)

;
(v) a �nite-dimensional system of variational inequalities:

Given: f : Rn !n R; g : Rn ! Rm (VIP)

Find: x� 2 X � f� 2 Rnjg(�) � 0g

max f(x�)T (x� x�) � 0 8x 2 X

which (when f() is convex and g() is concave) is represented as an MCP by setting
N = n+m, and partitioning6

z =

�
x
y

�
; ` =

��1
0

�
; u = (+1) ; F (z) =

�
f(x)�rg(x)T y

g(x)

.
When a model can be directly expressed as a linear or nonlinear program, it is typically

more e�cient and reliable to apply a linear or nonlinear programming algorithm, several of
which are available through GAMS. MCP is particularly useful for mathematical programs
which cannot be processed as optimization problems. Local sensitivity techniques for MCP
models may be employed for any of these mathematical programs.

3. Economic Models

3.1. Spatial Equilibrium Models

As an introduction to the MCP format, consider the Hitchcock-Koopmans transportation
problem as described by Dantzig (1963). The data include a set of suppliers I and a set of
markets J , with supplies ai, demands bj, transport costs cij from supplier i to market j.
Figure 1 presents GAMS code de�ning the sets and data parameters used in the various
models which are to be subsequently presented. Cast as a planning problem, this linear
program seeks a transport schedule which minimizes the cost of supplying all markets.

5 y corresponds to the Lagrange multipliers on the constraints in the nonlinear program.
6 Observe that x� in (VIP) solves:

min
x2X

f(x�)Tx

Provided that the relevant convexity and regularity conditions are satis�ed, the MCP system constitutes
necessary and su�cient conditions for minimization, and therefore an MCP solution is a solution to the
original system of variational inequalities.
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That is:
min

P
ij cijxij

s.t.
P

j xij � aiP
i xij � bj

x � 0

The GAMS code for the linear programming formulation is in Figure 2.7

It is well known that this problem can be interpreted as a market equilibrium problem
in which the dual multiplier for an equation from the �rst set of constraints, wi, represents
the price in supply market i, and the dual multiplier for an equation in the second set of
constraints, pj , represents the price in demand market j.

Cast as a market equilibrium problem, a system of IJ inequalities and associated
complementary slackness conditions replace the minimization operator. \Zero pro�t con-
ditions" for transportation activities characterize a competitive, constant-returns-to-scale
(CRTS) \transportation" industry in which free entry drives excess pro�ts to zero for active
trade links and no unpro�table activities are operated. The equations which characterize
this equilibrium are:

P
j xij � ai; wi � 0; wi

�
ai �

P
j xij

�
= 0 8i

P
i xij � bj ; pj � 0; pj (bj �

P
i xij) = 0 8i

wi + cij � pij; xij � 0; xij (wi + cij � pj) = 0 8i; j
This system of inequalities is a linear complementarity problem which may be speci�ed

in GAMS/MCP syntax as shown in Figure 3.
There would be no particular reason to formulate a linear program as an MCP. Suppose,

however, that demands and supplies were price responsive and all markets perfectly com-
petitive. These assumptions alone would not rule out an optimization approach, but they
would require use of a nonlinear programming algorithm. For concreteness, let demand
and supply functions be isoelastic. The revised equilibrium conditions are:

P
j xij � �iw�i

i ; wi � 0; wi

�
�iw

�i
i �

P
j xij

�
= 0 8i

P
i xij � �jp

��j
j ; pj � 0; pj

�
�jp

��j
j �Pi xij

�
= 0 8i

wi + cij � pij; xij � 0; xij (wi + cij � pj) = 0 8i; j
This is a nonlinear complementarity problem.
When the matrix of cross-price elasticities for a partial equilibriummodel is symmetric,

there is an associated optimization problem which can be used to compute the equilibrium
prices and quantities. (The model is said to be integrable - see Takayama and Judge (1971).)

7 This and subsequent Figures contain GAMS program fragments which illustrate ideas. Full program
listings are provided in Appendix B. The MCP transportation model is in the GAMS model library. To
copy it to your current directory execute \gamslib transmcp". Readers unfamiliar with the rudiments of
the GAMS language may refer to Chapter 2 of the GAMS Users Guide (1987).
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SETS

I canning plants / SEATTLE, SAN-DIEGO /

J markets / NEW-YORK, CHICAGO, TOPEKA / ;

PARAMETERS

A(I) capacity of plant i in cases (when prices are unity)

/ SEATTLE 325

SAN-DIEGO 575 /,

B(J) demand at market j in cases (when prices equal unity)

/ NEW-YORK 325

CHICAGO 300

TOPEKA 275 /,

ETA(I) Price elasticity of supply

/ SEATTLE 1.0

SAN-DIEGO 1.0 /,

SIGMA(J) Price elasticity of demand

/ NEW-YORK 1.5

CHICAGO 1.2

TOPEKA 2.0 /;

TABLE DIST(I,J) distance in thousands of miles

NEW-YORK CHICAGO TOPEKA

SEATTLE 2.5 1.7 1.8

SAN-DIEGO 2.5 1.8 1.4 ;

SCALAR F freight in dollars per case per thousand miles /90/ ;

PARAMETER C(I,J) transport cost in thousands of dollars per case ;

C(I,J) = F * DIST(I,J) / 1000 ;

PARAMETER PBAR(J) Reference price at demand node J (suppy price = 1)

/ NEW-YORK 1.225

CHICAGO 1.153

TOPEKA 1.126 /;

Figure 1a. GAMS Set and Data Statements for the Transportation Model

In the present example, cross-price elasticities are zero, and the associated optimization
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PARAMETER ALPHA(I) Supply function share coefficient (MCP),

BETA(J) Demand function share coefficient (MCP),

GAMMA(I) Supply function share coefficient (NLP),

KAPPA(J) Demand function share coefficient (NLP),

EPSD(J) Demand function elasticity coefficient,

EPSY(I) Supply function elasticity coefficient;

ALPHA(I) = A(I);

BETA(J) = B(J) * PBAR(J)**SIGMA(J);

GAMMA(I) = (ETA(I) / (1 + ETA(I))) * (1/ALPHA(I))**(1/ETA(I));

KAPPA(J) = (SIGMA(J) / (SIGMA(J)-1)) * BETA(J)**(1/SIGMA(J));

EPSD(J) = (SIGMA(J) - 1) / SIGMA(J);

EPSY(I) = (ETA(I) + 1) / ETA(I);

Figure 1b. GAMS Parameter Declarations and Assignments for the Transportation Model

VARIABLES

X(I,J) SHIPMENT QUANTITY FROM I TO J

COST MINIMAND - TOTAL COST OF SHIPMENT

POSITIVE VARIABLE X;

EQUATIONS

SUPPLY(I) SUPPLY LIMIT

DEMAND(J) DEMAND CONSTRAINT (FIXED)

OBJDEF DEFINES COST;

SUPPLY(I).. A(I) =G= SUM(J, X(I,J));

DEMAND(J).. SUM(I, X(I,J)) =G= B(J);

OBJDEF.. COST =E= SUM((I,J), C(I,J) * X(I,J));

MODEL MINCOST / SUPPLY, DEMAND, OBJDEF/;

SOLVE MINCOST USING LP MINIMIZING COST;

Figure 2. The Transportation Model Formulated as a Linear Program

problem is:

max
P

i 
iy
�yi
i +

P
j �jd

�dj
j �

P
ij cijxij

s.t.
P

j xij � yiP
i xij � dj

xij � 0; dj � 0; yi � 0
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POSITIVE VARIABLES

W(I) SHADOW PRICE AT SUPPLY NODE I,

P(J) SHADOW PRICE AT DEMAND NODE J,

X(I,J) SHIPMENT QUANTITIES IN CASES;

EQUATIONS

SUPPLY(I) SUPPLY LIMIT AT PLANT I,

DEMAND(J) FIXED DEMAND AT MARKET J,

PROFIT(I,J) ZERO PROFIT CONDITIONS;

PROFIT(I,J).. W(I) + C(I,J) =G= P(J);

SUPPLY(I).. A(I) =G= SUM(J, X(I,J));

DEMAND(J).. SUM(I, X(I,J)) =G= B(J);

MODEL TRNSP / PROFIT.X, SUPPLY.W, DEMAND.P/ ;

SOLVE TRNSP USING MCP;

Figure 3. The Transportation LP Formulated as an LCP

where:


i =
�i

1 + �i

�
1

�i

�1=�i

; �j =
�j

1 + �j
�
1=�j
j ; �yi =

1 + �i
�i

; and �dj =
�j � 1

�j

In economic terms, the market allocation \maximizes the sum of producer and consumer
surplus".

Economic equilibrium models are typically used to assess the consequences of market
distortions, typically in the form of taxes, tari�s or other types of government policies.
In public �nance, equilibrium models are often used to measure the \excess burden" of a
given tax structure. When ad-valorem taxes are present, the NLP formulation of a market
equilibrium problem is not straight-forward. No single optimization problem characterizes
the equilibrium because the resulting allocation is ine�cient. Such an equilibrium could
be computed by solving a sequence of nonlinear programs, but in these cases the MCP
formulation is certainly more transparent.

As illustration of a model which is di�cult to treat in an optimization framework but
easy to pose as an MCP, consider applying ad-valorem taxes on trade 
ows in the spatial
equilibrium model from above. This causes the supply price to be a non-unitary multiple
of the marginal cost of supply, destroying integrability (notice that speci�c taxes do not
cause this problem, as they can simply be added to the transport cost coe�cients). The
GAMS/MCP model is shown in Figure 4.

There are several directions in which the spatial price equilibrium model can be ex-
tended. Harker (1986) describes several spatial equilibrium models with imperfect compe-
tition. The variational and complementarity versions of these models are implemented in
GAMS library models HARKER and HARKERMCP, respectively.
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PARAMETER T(I,J) AD-VALOREM TAX RATE;

POSITIVE VARIABLES

W(I) SHADOW PRICE AT SUPPLY NODE I,

P(J) SHADOW PRICE AT DEMAND NODE J,

X(I,J) SHIPMENT QUANTITIES IN CASES;

EQUATIONS

SUPPLY(I) SUPPLY LIMIT

DEMAND(J) DEMAND CONSTRAINT (FIXED)

PROFIT(I,J) ZERO PROFIT CONDITIONS;

SUPPLY(I).. ALPHA(I) * W(I)**ETA(I) =G= SUM(J, X(I,J));

DEMAND(J).. SUM(I, X(I,J)) =G= BETA(J) * P(J)**(-SIGMA(J));

PROFIT(I,J).. (1 + T(I,J)) * (W(I) + C(I,J)) =G= P(J);

MODEL TRNSP / PROFIT.X, SUPPLY.W, DEMAND.P/ ;

* Avoid function evaluation errors by installing positive bounds:

P.LO(J) = 0.001; W.LO(I) = 0.001;

* 10% tax on all trade:

T(I,J) = 0.10;

SOLVE TRNSP USING MCP;

Figure 4. Spatial Price Equilibrium with Ad-Valorem Taxes

3.2. An Intertemporal General Equilibrium Model

Many economic problems involves decision-making over time with \dated commodities".
The Ramsey model of forward-looking investment and savings decisions is one such model.
In a closed economy setting, Ramsey's model can be formulated as a nonlinear program.
In a multi-regional framework, however, international capital 
ows are endogenous and an
equilibrium cannot be determined by solving a single optimization problem. In the simplest
model (see GAMS library models RAMSEY and MR5MCP), a single, homogeneous good
is produced throughout the world and this good may be used for either consumption or
investment. The market equilibrium can be supported by separate optimization problems
for representative agents in each region, taking international prices as given. The region r
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planning problem is:

max
PT

t=1�rt log Crt

s.t. Crt = Yrt +Mrt �Xrt � Irt

Yrt = �rK
�r
rt
�L1��rrt

Krt =

8<
:

�Kr1 t = 1

�Krt�1 + �n2 Irt�1 +
n
2 Irt t 6= 1

IrT = (gr + �r)KrTPT
t=1 �pt(Mrt �Xrt) = 0

The parameters for this planning problem are:

� pt the present-value international market price of period t output,

� �Lrt; �Kr1 the exogenous primary factor endowments (labor and initial capital stock),

� �rt the period t discount parameter re
ecting di�erences across countries in the rate
of time preference and thus in the rate of return to capital,

�rt � 0;
X
t

�rt = 1 8r

,

� n the number of years per period,

� �r the one-period survival share for physical capital subject to \evaporative decay",

� gr + �r the sum of growth and depreciation rates in the terminal period, and

� �; �r parameters of region r's Cobb-Douglas production function.

The planning problem takes international prices, pt, as given and it produces a vector
of net exports �rt(p) = Xrt(p)�Mrt(p).

An international equilibrium is a vector of present value prices for which
P

r pt�rt(p) =
0 8r. This interpretation suggests an algorithm in which p is iteratively adjusted in order
to clear international markets. This and more sophisticated adjustment procedures can be
applied to solve multi-consumer general equilibrium models (see Rutherford (1992a)), but
in most cases the MCP formulation is both more easily implemented and more e�cient.

The complementarity formulation for this model is as follows:

� 1.r The present value of expenditure equals factor income:

Er =
X
t

wrt �Lrt + pKr1
�Kr1
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� 2.t Aggregate world output equals consumption plus investment:

X
r

Yrt �
X
r

DeltartEr

pt
+ Irt

� 3.rt The present value cost of output is a Cobb-Douglas cost function based on the
regional wage and rental rate:

crt =
1

�r

�
rKrt
�r

��r � wrt
1� �r

�1��r

� 4.rt Perfect competition assures no excess pro�ts:

crt � pt

� 5.rt The supply of capital equals demand for capital use:

Krt � Yrt (1� �r)crt
rKrt

� 6.rt The exogenous labor supply equals demand:

�Lrt � Yrt�rcrt
wrt

� 7.rt The capital stock equals depreciated stock from the previous period together with
new investments from the previous and current period:

Krt =

8<
:

�Kr1 t = 1

�Krt�1 + �n2 Irt�1 +
n
2 Irt t 6= 1

� 8.rt Unrestricted international capital 
ows assure that the current consumption price
is no less than the return on current investment:

pt �
8<
:

n
2 p

K
rt +

n
2�p

K
rt+1 t < T

n
2 p

K
rt + pTr t 6= 1

� 9.rt The cost of capital is no less than the current rental price plus the salvage value
from sales in the subsequent period:

pKt �
8<
:
rKrt + �pKrt+1 t < T

rKrt � pTr (gr + �r) t 6= 1

� 10.r Terminal investment must be su�cient to assure steady-state growth in the post-
terminal period:

IrT = (grT + �r)KrT
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$TITLE MULTI-REGION RAMSEY MODEL

SET R REGIONS /USA, OOECD, USSR, CHINA, ROW/,

T TIME PERIODS /T1*T11/,

TINIT(T) INITIAL PERIOD /T1/

TTERM(T) TERMINAL PERIOD /T11/;

SCALAR N NUMBER OF YEARS PER PERIOD /10/

PARAMETERS

L(T,R) LABOR STOCK IN EFFICIENCY UNITS

BETA(T,R) INTERTEMPORAL UTILITY PARAMETER

KINIT(R) INITIAL PERIOD CAPITAL STOCK

PHI(R) PRODUCTION FUNCTION SCALE PARAMETER

ALPHA(R) CAPITAL VALUE SHARE

DELTA(R) ANNUAL CAPITAL DEPRECIATION RATE

GAMMA(R) TERMINAL PERIOD GROWTH RATE

LAMBDA(R) ONE PERIOD CAPITAL SURVIVAL SHARE;

Figure 5. Set and Parameter Declarations for the Multi-Region Ramsey Model

Figure 5 displays set and parameter de�nitions for this model (input data tables are
suppressed). The GAMS/MCP equations and solution statements are presented in Figure
6. These equations correspond more or less exactly to the formulation given above.

There are two successive solution statements shown in this Figure, illustrating an solu-
tion scheme which is advisable for any general equilibriummodel in which a good estimate
of equilibrium values is not easily deduced. The �rst MCP solves the \partial equilibrium
relaxation" of the model by �xing relative income levels. (See Rutherford (1992a).) After
having obtained this approximate equilibrium, the model with uncompensated demand
functions is solved - using the partial equilibrium values as a starting point and holding
the income for one agent �xed to normalize prices.

3.3. An MCP Formulation for N-Player Non-cooperative Games

The Lemke-Howson (1964) algorithm �nds equilibria for two-player non-cooperative games
with �nite action spaces in pure or mixed strategies. An N-player extension of bimatrix
games is conveniently expressed with the following notation:

� j denotes players j 2 f1 : : : Ng
� i denotes pure strategies i 2 f1 : : : Mg (the same number of strategies are assumed

available to all players to simplify notation)

� s denotes a \pure strategy pro�le" in which one pure strategy is assigned to each
player, s 2 f1 : : : MNg

� i(s; j) denotes the pure strategy assigned to player j in strategy pro�le s.

� ajs denotes the payo� to player j which arises from strategy pro�le s.
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POSITIVE VARIABLES

E(R) FACTOR INCOME

P(T) PRESENT VALUE PRICE OF OUTPUT

Y(R,T) NEW VINTAGE PRODUCTION

I(R,T) INVESTMENT

K(R,T) CAPITAL STOCK

C(R,T) UNIT COST OF PRODUCTION

W(R,T) WAGE RATE

RK(R,T) RENTAL PRICE ON CAPITAL

PK(R,T) PRESENT VALUE COST OF CAPITAL

PT(R) TERMINAL CAPITAL PRICE;

EQUATIONS INCOME(R) PRESENT VALUE OF FACTOR INCOME,

SUPPLY(T) GLOBAL SUPPLY-DEMAND,

COST(R,T) UNIT COST OF PRODUCTION

PROFIT(R,T) UNIT PROFIT,

K_USE(R,T) CAPITAL RENTAL MARKET

LABOR(R,T) LABOR MARKET

K_SUPPLY(R,T) CAPITAL STOCK,

PROFIT_I(R,T) INVESTMENT PROFIT,

COST_K(R,T) CAPITAL VALUE CONDITION,

TERM_I(R) TERMINAL INVESTMENT;

INCOME(R).. E(R) =E= SUM(T, W(R,T) * L(T,R)) + KINIT(R) * PK(R,"T1");

SUPPLY(T).. SUM(R, Y(R,T)) =G= SUM(R, BETA(T,R)*E(R)/P(T) + I(R,T));

COST(R,T).. C(R,T) =E= (1/PHI(R)) * (RK(R,T)/ALPHA(R))**ALPHA(R) *

(W(R,T)/(1-ALPHA(R)))**(1-ALPHA(R));

PROFIT(R,T).. C(R,T) =G= P(T);

K_USE(R,T).. K(R,T) =G= Y(R,T) * ALPHA(R) * C(R,T) / RK(R,T);

LABOR(R,T).. L(T,R) =G= Y(R,T) * (1-ALPHA(R)) * C(R,T) / W(R,T);

K_SUPPLY(R,T).. (N/2)*I(R,T) + (N/2)*LAMBDA(R)*I(R,T-1)

+ LAMBDA(R)*K(R,T-1) + KINIT(R)$TINIT(T) =G= K(R,T);

PROFIT_I(R,T).. P(T) =G= (N/2)*PK(R,T) + (N/2)*LAMBDA(R)*PK(R,T+1) + PT(R)$TTERM(T);

COST_K(R,T).. PK(R,T) =G= RK(R,T) + LAMBDA(R)*PK(R,T+1)

- ( PT(R) * (GAMMA(R)+DELTA(R)) )$TTERM(T);

TERM_I(R).. SUM(TTERM, I(R,TTERM)) =G= SUM(TTERM, K(R,TTERM)*(GAMMA(R)+DELTA(R)));

MODEL RAMSEY_MCP / INCOME.E, SUPPLY.P, COST.C, PROFIT.Y, K_USE.RK,

PROFIT_I.I, COST_K.K, TERM_I.PT/;

Figure 6a. MCP Formulation of the Multi-Regional Ramsey Model
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Y.L(R,T)=1; E.L(R)=1; I.L(R,T)=1; K.L(R,T)=1; C.L(R,T)=1; P.L(T)=1; W.L(R,T)=1;

RK.L(R,T)=1; PK.L(R,T)=1; PT.L(R)=1; RK.LO(R,T)=0.0001; W.LO(R,T)=0.0001; P.LO(T)=0.0001;

* FIRST SOLVE THE FIXED-INCOME RELAXATION:

E.FX(R)=SUM(T, L(T,R));

SOLVE RAMSEY_MCP USING MCP;

* THEN FIX ONLY ONE INCOME LEVEL TO NORMALIZE THE PRICE SYSTEM:

E.LO(RG) = 0; E.UP(RG) = +INF;

E.FX(RG)$(ORD(RG) EQ 1) = INCOME(RG);

SOLVE MRG USING MCP;

Figure 6b. Assign Initial Values and Solve the Multi-Region Ramsey Model

Each player j chooses a vector of probabilities, pij, representing the probability of
playing pure strategy i in the equilibrium. By de�nition:

pij � 0 8i; j; and
X
i

pij = 1 8j

.
Letqjs denote the probability that player j is confronted by pure strategy pro�le s in

the equilibrium. Formally:

qjs = �j0 6=jpi(j0;s);j0

We assume that player j chooses a strategy pro�le to maximize the expected payo�,
taking actions of the other players as given:

maxpij �j =
P

i pij

�P
sji(s;j)=i ajsqjs

�
s.t.

P
i pij = 1; pij � 0

A workable MCP formulation for the equilibrium problem needs to incorporate indi-
vidual simplex constraints in a way which does not render the mapping singular at the
equilibrium. In the formulation presented here, an additional variable yj is associated with
the simplex constraint for player j. It is easy to show that in any solution to this MCP,
yj must have a value of unity. The MCP formulation is:

�j =
P

s ajs

h
�j0

�
pi(s;j0);j0

yj0

�i
8j

�j �
P

sji(s;j)=i ajs

�
�j0 6=j

pi(s;j0);j0

yj0

�
; pij � 0;

pij

n
�j �

P
sji(s;j)=i ajs

�
�j0 6=j

pi(s;j0);j0

yj0

�o
= 0; 8i; j

P
i pij � 1; yj � 0; yj (1�

P
i pij) = 1 8j
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SET J PLAYERS /J1*J3/,

I ACTIONS /I1*I2/,

SS STRATEGY PROFILES /S1*S1000/,

S(SS) ACTIVE STRATEGY PROFILES,

LINK(SS,I,J) CONNECTION BETWEEN ACTIONS AND PROFILES;

ABORT$(CARD(SS) LT CARD(I1)**3) " SET SS IS NOT LARGE ENOUGH.";

PARAMETER

PAYOFF(SS,J) PAYOFF DATA IN STRATEGY-PROFILE FORMAT;

* READ THE DATA:

TABLE LOSS(J,I,I,I) PAYOFF DATA IN DENSE FORM

I1.I1 I1.I2 I2.I1 I2.I2

J1.I1 1 2 8 5

J1.I2 8 8 2 2

J2.I1 4 2 2 1

J2.I2 2 6 1 1

J3.I1 4 1 4 2

J3.I2 8 8 2 1;

* LET I1, I2 AND I3 ALL STAND FOR SET I:

ALIAS (I,I1),(I,I2),(I,I3);

* ASSIGN PLAYER ACTIONS TO STRATEGY PROFILES USING

* DYNAMIC SET S().

* INITIALIZE SET S WITH A SINGLE ENTRY, THE FIRST ELEMENT OF SS:

S("S1") = YES;

* ONE ELEMENT OF SET S IS GENERATED FOR EACH COMBINATION OF PURE STRATEGIES:

LOOP((I1,I2,I3),

* SET S CONTAINS A SINGLE ELEMENT FOR THE FOLLOWING STATEMENT:

LINK(S,I1,"J1") = YES;

LINK(S,I2,"J2") = YES;

LINK(S,I3,"J3") = YES;

PAYOFF(S,J) = -LOSS(J,I1,I2,I3);

* THE NEXT STATEMENTS MOVE S THE SUBSEQUENT ELEMENT OF SS:

S(SS)$S(SS-1) = YES;

S(SS)$S(SS+1) = NO;

);

* THE NEXT STATEMENTS DEFINE THE SET OF ACTION PROFILES AS

* THOSE ELEMENTS OF SS FOR WHICH PAYOFFS HAVE BEEN ASSIGNED:

S(SS) = NO; S(SS) = YES$SUM(J, ABS(PAYOFF(SS,J)));
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POSITIVE

VARIABLE P(I,J) PROBABILITY OF STRATEGY I BY PLAYER J,

Y(J) SIMPLEX VARIABLE (=1 IN EQUILIBRIUM)

PI(J) EXPECTED RETURN TO PLAYER J;

EQUATION PIDEF(J) EXPECTED PAYOFF DEFINITION,

SIMPLEX(J) SIMPLEX CONSTRAINT

EQUIL(I,J) EXCESS RETURN FROM PURE STRATEGY;

* EXPECTED PAYOFF:

PIDEF(J)..

PI(J) =E= SUM(S, PAYOFF(S,J) * PROD(JJ, SUM(I$LINK(S,I,JJ), P(I,JJ)/Y(JJ))));

* STRATEGY I BY PLAYER J YIELDS NO MORE THAN EXPECTED RETURN:

EQUIL(I,J)..

PI(J) =G= SUM(S$LINK(S,I,J), PAYOFF(S,J) *

PROD(JJ$(ORD(JJ) NE ORD(J)), SUM(II$LINK(S,II,JJ), P(II,JJ)/Y(JJ))));

* PROBABILITIES SUM TO 1:

SIMPLEX(J).. SUM(I, P(I,J)) =G= 1;

Figure 8. GAMS/MCP Code for the General N-Player M-Strategy Nash Game

The GAMS implementation of this model is displayed in Figures 7 and 8. Figure 7 sets
up the data structures using dynamic sets to produce the mapping i(s,j).

This is the "trickiest" part of the programming because it relies on the use of dynamic
ordered sets. Once the data structure LINK(S,I,J) has been installed, it is straightforward
to formulate the equilibrium conditions shown in Figure 8.

3.4. Computational Benchmarks

The two solvers available for solving mixed complementarity problems in GAMS are both
Newton-type algorithms, hence they share the same local convergence properties. The
solvers di�er in the adjustment process far from the equilibria.

Some statistics comparing their performance on the the multi-regional Ramsey model
and the N-player Nash equilibrium models are presented in Figure 9.8

8 In this Figure "convergence rate%" is 100 times the number of convergent runs divided by the total
number of starting points evaluated, "equilibria" is the number of distinct equilbria identi�ed by either
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For these tests, both solvers are using default tolerances, iteration and resource limits.
The Ramsey model results con�rm that both algorithms are capable of processing very
large-dimensional models when they are sparse. PATH is generally more e�cient for these
test problems.9

Both solvers �nd the non-cooperative games di�cult. The �rst three problems are
from van der Laan et al. (1987).10 The fourth problem is based on randomly generated
payo�s. MILES is more robust for these problems, but this may be due to lower e�ective
iteration limits for PATH. The usefulness of having two solvers is illustrated with the
non-cooperative games, where use of both solvers considerably increases convergence rates
(see values for PATH & MILES).

The comparison between alternative solvers available within GAMS/MCP is not as
revealing as a comparison between these solvers and other programming tools. The use
of analytical gradients and sparse data structures provide a signi�cant advantage for
GAMS/MCP relative to other approaches. Sparsity is not unusual. For many economic
equilibrium problems, the most natural set of variables and equations is one in which many
equations involve only a small number of variables. This causes the underlying Jacobian
matrix to have a large number of zeros - i.e., it is sparse.

In order to illustrate the advantages of analytic gradients and sparse data structures,
GAMS/MCP was compared with the widely advertised econometric software package
GAUSS which includes a dense-matrix nonlinear system solver in which Jacobians are
generated by numerical di�erencing. The GAUSS NLSYS solver otherwise implements a
standard Newton algorithm with the same number of iterations. The test problem was a
static, multi-sectoral general equilibriummodel GEMMCP from the GAMS model library.
This problem is a system of 262 nonlinear equations. In the test, four related equilibria
were computed. The resulting clock times were 32 seconds for GAMS/MILES and 14
minutes for GAUSS.

4. Local Sensitivity Analysis

Suppose that GAMS/MCP has been used to solve a nonlinear system of the form:

F (z; t) = 0

where z is an N -vector of decision variables, t is an M -vector of parameters, and F is a
function mapping RN+M to RN .

Given a solution z�, it is often helpful to know the local dependence of z� on t.
Let Jz denote the Jacobian of F with respect to z (i.e. rzF ), and let Jt denote the

Jacobian of F with respect to t (i.e. rtF ). It is easy to show that:

dz = �J�1z Jtdt � Sdt
algorithm during these tests, and "density" is 100 times the number of Jacobian non-zeros divided by the
square of the number of variables.

9 The subroutines for crashing a complementary basis described in Anstreicher et al. (1992) are not yet
included in this version of MILES. Consequently, MILES solution time for the Ramsey test problems is
spent largely on the �rst linear subproblem which is computed from a default Lemke starting point because
the initial basis is typically singular.
10 In their computational results, van der Laan et al. (1987) make no mention of the multiplicity of

equilibria. Their computational results for a specialized �xed-point procedure are cited in terms of the
cumulative number of function evaluations and are therefore di�cult to compare.
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Statistics for Multi-region Ramsey Model (starting point: all values = 1)

Size

Regions 5 5 5 12 12 12

Time periods 10 15 20 10 15 20

Variables 369 549 729 873 1298 1723

Non-zeros 1330 1985 2640 3178 4743 6308

Density 1.0% 0.7% 0.5% 0.4% 0.3% 0.2%

Pivots

PATH 388 578 775 886 1364 1834

MILES 380 573 773 888 1431 ***

Solution time (seconds, 33MHz 80486)

PATH 31.85 55.91 83.43 97.33 181.59 282.65

MILES 35.93 72.39 133.69 175.65 585.62 ***

Statistics for N-Player Game (25 randomly selected starting points)

Size

Players 3 3 4 4

Actions 2 3 2 4

Variables 12 15 16 24

Non-zeros 78 129 140 356

Density 54.2% 57.3% 54.7% 61.8%

Equilibria 1 6 3 11

Convergence Rate (%)

PATH 80% 60% 60% 12%

MILES 64% 80% 64% 48%

PATH&MILES 80% 92% 76% 56%

Average Solution Time (seconds, 33 MHz 80486)

PATH 2.8 6.6 6.7 27.5

MILES 2.8 5.0 6.8 102.6

Figure 9. Solver Performance for Ramsey and N-Player Problems

where J�1z is the inverse of Jz . This equation de�nes the \local sensitivity matrix", S =
�J�1z Jt. If the system of equations is speci�ed so that Jz has full rank at the solution, then
the gradients fall out as the solution of a linear system of equations. Setting up the linear
system with the Jacobian matrices is easy in theory but tedious in practice. Fortunately,
there is an easier approach by which GAMS generates the derivatives automatically.
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Consider the following nonlinear program:

maxz;t zi

s.t. F (z; t) = 0

t = �t

The implicit function theorem (see Varian (1992)) implies that the ith row of S cor-
responds to the dual multipliers associated with the bounds on t. To compute the entire
sensitivity matrix therefore requires the solution of N separate sets of nonlinear programs,
all of which may be initiated at the equilibrium point.

A minor variation on this technique applies to complementarity problems involving
mixtures of equations and inequalities. In the MCP case, the nonlinear system passed
to the nonlinear program only include those equations which are binding at the solution
(i.e., any equations which are slack in the MCP solution must be omitted from the NLP
using GAMS exception (\$") operators). An illustration of this technique is provided in
the Appendix.

5. GAMS/MCP Syntax

In a GAMS/MCP program, the central unknowns, z, are declared as VARIABLES, the
vectors u and are speci�ed as upper and lower bounds. The function F () is written using
GAMS matrix algebra in equation statements. All aspects of the GAMS/MCP language
are identical to GAMS/NLP except that in an MCP problem no objective function is
speci�ed, and bounded variables must be mapped to complementary inequalities.

In the canonical MCP structure, the equations wT (z � `) = 0 and vT (u� z) = 0 imply
a particular association of variables with equations. Quite naturally, zi is complementary
with Fi(z). In an empirical model, there are typically several classes of variables and
equations, and the declaration sequence is arbitrary, so the rule ziFi = 0 is impossible to
interpret.11

To �x the complementarity structure, a GAMS/MCP program explicitly associates
variables with equations in the MODEL statement. Unlike an NLP in which only equation
names appear on the model statement, in an MCP program both equation and variable
names may be listed. The syntax is:

MODEL NAME /EQU1.VAR1, EQU2.VAR2, .../;

In this list, EQU i and VAR i must be de�ned over the same domains.
Complementarity associations are only required for variables which are subject to upper

or lower bounds. Otherwise, GAMS/MCP only requires that the number of unrestricted

11 One way to make this association would have been to use the same name for both equations and
variables. This syntax was rejected because it would not be \upward compatible" with NLP models. The
present structure permits \sharing" a system of equations in both complementarity and optimization
models within the same program. Furthermore, the present structure makes it quite simple to convert
existing GAMS/NLP models into the complementarity structure.
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variables equal the number of unassociated equations in the model. It is a simple matter to
\mix" equations with inequalities in this format. The speci�cation of linear and nonlinear
systems of equations with no bounds and complementarity conditions requires no variable
names on the MODEL list.

Joint consistency of inequalities and complements assignments is important when �nite
bounds are imposed on z. In the MCP structure, slack variables w and v are implicitly
represented in a GAMS/MCP model through the equation statement. The fact that the
lower bound slack variable (w) appears with a coe�cient of �1 and the upper bound
slack variable (v) appears with a coe�cient of +1 means that the \orientation" of the
inequality is signi�cant. In GAMS/MCP, the equations \F (z) � 0" and \�F (z) � 0"
are not equivalent. In the �rst case, the inequality is assumed to be complementary with
the lower bound slack of the associated variable while in the second case the inequality is
taken to be complementary with the upper bound slack.

Compiler error conditions can result from improperly speci�ed bounds and associated
equation types. If an equation is written using =G= then the associated lower bound must
be �nite. Likewise, if a constraint is written as =L= the associated upper bound must be
�nite. Table A.1 outlines the rules which apply when variables are associated with di�erent
types of equations.
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Associated Equation Type

Variable =G= =L= =E=

Lower OK Error OK/warning

Upper Error OK OK/warning

Both OK/warning OK/warning OK/warning

Free OK/message OK/message OK

Fixed OK OK OK

Key:
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problem will not be processed.
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Sequential Joint Maximization

Relating Optimization and General Equilibrium

Abstract. This paper describes a new method by which a competitive market economymay be represented
as the optimal solution to a planning problem.The resulting sequential joint maximization (SJM) algorithm
solves a sequence of \partial equilibrium relaxations" of the underlying general equilibrium model. The
partial equilibrium submodels can be solved as nonlinear complementarity problems or as constrained
nonlinear optimization problems in either a primal or dual form. This paper introduces the three SJM
algorithms, evaluates performance and examines convergence theory. Computational tests demonstrate
that SJM is not always as e�cient as complementarity methods. A counterexample is presented which
demonstrates that local convergence of SJM cannot be guaranteed. Although SJM may have neither the
theoretical pedigree of a �xed-point algorithm nor the local convergence rate of a Newton algorithm, the
usefulness of the SJM algorithm is demonstrated by the range of real models for which the procedure has
been sucessfully applied. SJM bene�ts from the availability of robust, large-scale nonlinear programming
codes. Consequently, for large scale equilibrium models with inequalities SJM may not be the \best"
algorithm in theory, but it works extremely well in practice.
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1. Introduction

There is a close connection between the allocation of a competitive market economy and
the optimal solution to a representative agent's planning problem.1 This paper describes
a new method by which this relationship can be exploited in computing equilibrium prices
and quantities. This optimization{based algorithm can be applied to �nd equilibria for
models in which consumers have heterogeneous preferences and where production sets may
involve point-to-set mappings. Large-scale models may be solved through this technique.
Extensions of the algorithm may be applied to models with tax distortions, price rigidities,
monopolistic competition and arbitrary preferences. The present paper, however, only con-
siders applications in which producers are perfectly competitive and consumer preferences
are homothetic.

The algorithm is a Negishi or \joint maximization" procedure based on a sequence
of convex nonlinear programming problems. Typically this sequence will converge to the
equilibrium prices and quantities of a competitive market economy. This paper introduces
and interprets the algorithm, provides some computational evidence and developes local
convergence theory for a simple example.

The idea behind the SJM algorithm is found in the literature concerning conditions
under which the demand function describing a set of heterogeneous consumers can be
replaced by the demand function for a single agent. In many settings, this is known as the
problem of exact aggregation. In neoclassical trade theory this relates to the \existence
of community indi�erence curves". This literature investigates the conditions under which
a country's o�er curve may be represented as though it arose from a single optimizing
agent. In trade theory, at least two such conditions have been identi�ed. The �rst, due to
Samuelson (1956), is that all consumers have identical, homothetic preferences. A second,
less widely cited result is due to Eisenberg (1961) and Chipman (1974). This condition
places restrictions on endowment vectors in addition to preferences. Eisenberg's result, as
summarized by Chipman (1974), is:

\if each of m individuals has a �xed money income, and if they all have ho-
mogeneous utility functions (not necessarily identical, it must be emphasized),
then their aggregate demand function is integrable, that is, it may be thought of
as resulting from the maximization of some �ctitious aggregate utility function,
subject to total expenditure being equal to total income."
In the algorithm described in this paper, Eisenberg's aggregate demand function is

embedded in an iterative procedure which accounts for changes in the relative incomes of
agents in the equilibrium system.

The aggregation approach developed by Eisenberg and subsequently interpreted in an
economic context by Chipman is presented in a \primal" form. This approach begins with
an explicit representation of consumer preferences in which the utility of an individual is
speci�ed in terms of quantities consumed of di�erent goods. An analogous result is obtained
using preferences characterized in a \dual" form (using the indirect utility function which

1 The use of an optimization problem to characterize equilibrium allocations in a general equilibrium
framework is due to Negishi (1960). His original paper was primarily concerned with optimization as a
means of proving existence. Dixon (1975) developed the theory and computational e�ectiveness of \joint
maximization algorithms" for multi-country trade models. A survey of early applications of Negishi's theory
is provided by Carey (1977). See also Dantzig, Eaves and Gale (1979). Extensions of joint maximization
methods to account for tari�s and labor market imperfections are provided by Ginsburgh and Van der
Heyden (1988) and Kehoe, Levine and Romer (1992).
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maps prices and income into utility) which provides an interesting connection between
the duality theory of linear programming and the duality of demand function theory.
This formulation also renders the computational procedure applicable to models based on
econometrically- estimated functions for which primal forms may not exist.

There is an interesting correspondence between the sequential joint maximization (SJM)
algorithm and both Mathiesen's (1985) sequential linear complementarity (SLCP) algo-
rithm and Goldsman and Harker's (1990) variational inequality (VI) algorithm for general
equilibrium models. SJM can be regarded as a robust form of SLCP; one in which income
and price adjustments are e�ectively decoupled. The SJM algorithm computes a sequence
of \partial equilibrium relaxations" of the underlying general equilibrium model. Unlike
SLCP (see Mathiesen, 1987), in SJM the choice of numeraire does not a�ect convergence.

In SJM, subproblems may, in some cases, be guaranteed solvable; however, the outer
sequence generated by the algorithm may not converge in all cases. A small example from
Manne, Chow and Wilson (1983) demonstrates that when income e�ects are exceptionally
large, a backtracking line search is needed for convergence. A second small example from
Scarf (1960) demonstrates that local convergence cannot be guaranteed, even in rela-
tively simple models. In spite of these contrived examples, the experience with large-scale
empirical models has been excellent.

Two large scale applications which rely on SJM can be cited.2 Manne and Richels
(1992,1995) use the primal form SJM algorithm to solve ATL, a 13 period, 5 region
stochastic decision analysis model of energy-economy interactions, carbon emissions and
climate change. The nonlinear programming subproblems for ATL involve 6,800 rows,
8,500 columns and 27,000 nonzeros. The SJM iterations typically converge in 5 major
iterations (without a line search) to a satisfactory tolerance. Harrison, Tarr and Rutherford
(1992) used the dual SJM algorithm for solving MRT, a 23 commodity, 12 region static
international trade model with scale economies and imperfect competition. Monopoly
markups and scale economies are handled through Jacobi iterations. Again, convergence
involves at most 5 iterations.

Both ATL and MRT are of such size that the complementarity and variational ap-
proaches seem infeasible.3 The fact of the matter is that nonlinear programming solvers
like MINOS (Murtaugh and Saunders 1982), CONOPT (Drud 1985, 1994) and CNLP
(Kallio and Rosa 1994) are e�cient and robust, and SJM makes it possible to use them
for equilibrium computations.

The remainder of this paper is organized as follows. Section 2 reviews the formulation of
general equilibrium models in a complementarity format, indicating how the equilibrium
model reduces to an optimization problem when there is a single household. Section 3
introduces Eisenberg's result in the present context, showing how the multi-agent model
with heterogenous, homethetic preferences can be reduced to a single agent model when-
ever consumers' endowment vectors are strictly proportional. This section also describes
the iterative algorithm based on this formulation. Section 4 introduces the dual form of
the SJM algorithm. Section 5 relates the SJM algorithm to the complementarity and vari-
ational inequality formulations. Section 6 developes necessary conditions for convergence

2 These following claims amount to \proof by testimonial", a technique commonly employed in medical
research.

3 A recently developed complementarity solver, PATH (Ferris and Dirkse 1993) is promising, but it
remains to be seen whether it can outperform the optimization-based SJM algorithm, particularly on
sparse, large-scale scale models with activity analysis process modules.
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of SJM with Scarf's globally unstable exchange model. Section 7 reports on computational
experience with large scale models and concludes.

2. General Equilibrium in a Complementarity Format

Mathiesen (1985) provides a convenient framework in which to represent both partial and
general economic equilibrium models. In Mathiesen's formulation, two types of variables
characterize an equilibrium: prices, � 2 <n, for n commodities, and activity levels, y 2 <m,
for m production activities. For simplicity, let an activity analysis matrix A = faijg
characterize production possibilities.4 The element aij represents the output minus input
of commodity i per unit operation of sector j. An equilibrium satis�es two classes of
conditions:

1) Perfectly competitive markets assure that no sector earns an excess pro�t:

�AT� � 0

2) Perfectly 
exible prices assure non-positive excess demand for every commodity:

Ay � �(�) � 0

In the market clearance equation, �(�) represents the vector of excess consumer demand
for market prices � . This vector is the sum of excess demands for each of the consumers:
�(�) =

P
h(dh(�)� !h), where h is the vector of initial endowments for consumer h, and

dh(�) is the vector of �nal demands for consumer h which solves:

max Uh(d)

s:t: �Td � �T!h
Note two features of this equilibrium. First, the equilibrium determines only rela-

tive prices because the excess pro�t equations (�AT� � 0) and the budget constraints
(�Td � �T!h) are linearly homogeneous in � . For this reason, if (��,y�) constitutes an
equilibrium then so does (���,y�) for any � > 0. The second feature of the equilibrium
is complementary slackness. If utility functions are weakly increasing in all inputs and
strictly increasing in at least one commodity, then the excess demand vector will obey
Walras' law: �(�)T� = 0; and, as a result, equilibrium market excess demands will exhibit
complementary slackness with market prices, and equilibrium activity levels will be com-
plementary with unit pro�ts. (Complementary slackness is a feature of the equilibrium,
and not an equilibrium condition, per se.)

When there is only one household, the general equilibrium system corresponds to the
�rst-order conditions for the optimization problem:

max U(d)

s:t: d � AT y + !

4 The extension to models with smooth (nonlinear) constant returns to scale production technologies is
presented in Appendix A. The activity analysis framework is adopted here to simplify notation and also
to emphasize the applicability of this procedure for point-to-set mappings, e.g. staircase- shaped supply
curves.
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Equilibrium prices correspond to the optimal Lagrange multipliers on the system of
constraints. The Karush-Kuhn-Tucker conditions impose non-negative pro�ts and com-
plementary slackness on the production activities.

3. Integrable Heterogenous Demand and a Joint Maximization Algorithm

Let us now consider a model in which all utility functions are homothetic and commodity
endowments are strictly proportional. Homotheticity assures that the composition of a
utility-maximizing commodity bundle is una�ected by the level of income. As income
levels are varied while relative prices remain constant, demand quantities all change in
�xed proportions (i.e., the Engel curves are straight lines from the origin). Without loss
of generality, we may then assume that utility functions are linearly homogeneous.5

De�ne the expenditure function for household h as:

eh(�) = min�T d

s:t: Uh(d) = 1

Because U() is linearly homogeneous, the expenditure function provides an index of
the \price of a unit of utility". The maximum attainable utility at market prices is then
given by the indirect utility function Vh(�) = �T!h=eh(�).

Let 
 =
P

h !h stand for the aggregate (world) endowment vector, and assume that
there exists a vector � for which !h = �h
 . It can now be shown that the excess demand
function representing these preferences and endowments is integrable. Consider the joint
maximization problem:

maxdhW (U1(d1); : : : ; UH(dH); �) �
Q
Uh(dh)

�h

s:t: �T
P

h dh � �T


where W () is a Cobb-Douglas aggregation function into which are nested the utility
functions of the di�erent households. Due to homogeneity, we can reduce this problem to:

max
Q
Uh(dh)

�h

s:t:
P

h eh(�) � �T


where expenditure functions eh(�) are evaluated at prices de�ned by Lagrange multi-
pliers at the maximum. A global Cobb-Douglas utility function implies demand functions
based on �xed expenditure shares for each household. Here, this implies the following

5 An arbitrary function f(x) is homothetic if and only if there exists a non- decreasing function G such
that g(x) = G(f(x)) is linearly homogeneous in x, i.e. g(�x) = �g(x). These models are based on ordinal
rather than cardinal utility, hence g(x) and f(x) may be used interchangeably.
It should be possible to accomodate non-homothetic demand using ideas from Perroni (1992), but I leave

this extension for future research.



146

relations:6

�Tdh=
1
eh(�)Uh=

2
�h�

T
=
3
�T (�h
)=

4
�T!h

In other words, the value of consumer h expenditures equals the value of consumer h
endowments. This is true because the Cobb-Douglas value shares in W (U ; �) correspond
exactly to shares of aggregate endowments. It follows that for any price vector �, the
demand vector arising from the joint-maximization problem is the same as would result
from summing H independent demand vectors. This result corresponds to Theorem 4 in
Eisenberg (1961). (See Chipman (1974) for an economic interpretation.)

In practical applications, endowment vectors are typically not proportional. At the
same time, it is typical that changes in relative income are small relative to changes in
relative prices or quantities. To account for changes in relative shares of aggregate income,
the algorithm applies an iterative re�nement of the share parameters �h.

As an introduction to the algorithm, consider a two-commodity, two- consumer ex-
change economy in which utility functions have the following (homothetic) form:

Uh(x; y) = �hx
(�h�1)=�h(1� �h)y(�h�1)=�h :

Each agent has a �xed endowment of the goods x and y, and in equilibrium the sum
of demands from agents h = (A;B) equals the sum of their endowments. Furthermore,
at equilibrium prices, the value of each agent's consumption bundle equals the value of
endowments.

It is convenient to use an Edgeworth-Bowley box diagram to illustrate both the equi-
librium allocations and the joint maximization algorithm. Figure 1 provides a geometric
interpretation of the equilibrium. In this diagram, the length of the horizontal axis mea-
sures allocations of commodity x and the vertical axis allocations of commodity y. Point
e represents initial endowments - consumer A is endowed with (0:9; 0:1) units of (x; y)
and consumer B is endowed with (0:1; 0:9) units; thus there is an economy-wide supply
of 1 unit of each good. Point c in �gure 1 represents the equilibrium allocation. It lies
on the contract curve, the locus of tangency points for agent A and agent B iso-utility
curves which runs above the diagonal of the factor box. The contract curve lies above the
diagonal because agent A has a stronger preference for y over x as compared with agent
B.

The equilibrium point on the contract curve is distinguished as that point from which
the line tangent to both agent A and agent B utility surfaces runs directly through the
endowment point. Thus, at this point both agents are on their respective budget lines.
Point c is an equilibrium allocation for point e as well as for any point along the line from
e through c, including point d which lies on the diagonal of the factor box.7

Figure 2 illustrates the sequential joint maximization iterative sequence. The equilib-
rium values of the Negishi weights are the shares of each agent in the value of global

6 Justi�cation:
1 : Implied by the de�nition of eh()
2 : Follows from the Cobb-Douglas structure of the aggregation function.
3 : Follows from linear algebra.
4 : From the de�nition of !h (proportional endowments).
7 The numerical parameters for this example are �A = 0:3, �B = 0:8, �A = 2 and �B = 1:5. The

equilibrium price ratio (good x in terms of good y) is 1:127. A GAMS program which illustrates the
various SJM formulations of the Arrow-Debreu model is presented in Appendix B.
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Figure 1. Equilibrium in a 2x2 Exchange Model

endowments. We begin with a price estimate higher than the equilibrium value, �0 = 4.
These prices de�ne a line (with slope �4) passing through the endowment point e and
intersecting the diagonal of the factor box at the point labelled �1. This point lies exactly
0:74 of the way from 0A to 0B . This ratio represents the value share of agent A endowment
as a fraction of the total economy-wide endowment, at the initial price estimate (�0 = 4):

�1 =
0:9�0 + 0:1

�0 + 1
=

0:9(4) + 0:1

(4) + 1
= 0:74

Given a value for �1, we then solve the joint maximization problem:8

max 1:48 log(0:3x
1=2
A + 0:7y

1=2
A ) + 0:78 log(0:8x

1=3
B + 0:7y

2=3
A )

s:t: xA + xB = 1; yA + yB = 1

The solution to this optimization problem corresponds to point 1 in Figure 2 (the
equilibrium allocation for an economy with endowments �1). The ratio of the Lagrange
multipliers on the x constraint to the multiplier on the y constraint equals 0:721. This
is taken as the price ratio for the start of iteration 2. Continuing in this fashion, we
�nd successively more precise approximations, as indicated by points i1, i2 and i3 in the
diagram. Table 1 shows the values of prices, Negishi weights, equilibrium allocations and
deviations for 10 iterations of the procedure. Deviations are measured here as the maximum
deviation between expenditure and endowment income, as a percentage of endowment
income for either agent. In a two agent model, the imbalances for the two agents are
always of equal magnitude and opposite sign.

8 In forming the maximand, the homothetic utility functions have been scaled monotonically to be
rendered linearly homogeneous. Hence, we use UA = U2

A, so � logUA = 2� logUA, and � logUB = 3� logUB
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Figure 2. Iterations in the 2x2 model

Table I. Iterative Sequence for the 2x2 Exchange
Model.

Iter P �A XA YA Dev

1 4.000 0.740 0.540 0.910 58.300

2 0.850 0.468 0.229 0.751 12.500

3 1.186 0.534 0.290 0.799 3.400

4 1.086 0.517 0.273 0.787 0.900

5 1.111 0.521 0.277 0.790 0.200

6 1.105 0.520 0.276 0.789 0.100

7 1.106 0.520 0.277 0.790 0.000

8 1.106 0.520 0.277 0.790 0.000

9 1.106 0.520 0.277 0.790 0.000

10 1.106 0.520 0.277 0.790 0.000

Key:

Iter SJM iteration

P relative price of X to Y

�A implied income share for consumer A

XA, YA consumption levels for consumer A

DEV percentage deviation in income balance
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If k = 1 or �(�k) < �(�k�1),
set �k+1 = �,
k  k + 1
return to step (1.k)
else
repeat:
� �=2
� = �� + (1� �)�k

solve JM-P in order to compute �(�)
if � < � or �(�) < �(�k)
set �k+1 = �
return to step (2.k)
endif
continue
endif

3.0.1. Algorithm SJM-P - Formal Statement
Initialize: Read an initial estimate of prices, �0, and set an initial value for the value shares
in W :

�0h =
�0!h
�0


Set the iteration index, k  1, and specify the convergence tolerance (") and the
minimum step size (�). Repeat until �(k) < ". In iteration k = 1; 2; : : ::

(1.k) Solve:

max
Q

h Uh(dh)
�h

s:t:
P

h dh � Ay
(JM-P)

(2.k) Read prices from the Lagrange multipliers, �(�k).
(3.k) Evaluate the deviation, de�ned as the largest percentage deviation in any agent's

budget constraint:

�(�k) = max

������(�
k)T

�
dh(�

k)� !h
�

�(�k)T!h

������ 100

(4.k) Perform an Armijo line search (optional)
Initialize � = 1, and de�ne:

�h =
�(�k)T!h
�(�k)T


The foregoing describes the algorithm as it may be applied for a \generic" model. Some
adjustments of the procedure are required to treat models with features such as ad-valorem
taxes, nonlinear production, non- homothetic utility functions, etc. (See the Appendix B
for the key ideas.)
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4. Joint Maximization with Dual Functions

In economic analysis, preferences may be described by a primal-form utility function
(Uh(d)) or, equivalently, using a dual-form indirect utility function (Vh(�;Mh) which
expresses welfare as a function of prices and income).9

When preferences are homothetic, the unit expenditure function (eh(�)) conveys all of
the information concerning the underlying preferences. The joint maximization problem
(JM-P) can be represented using the expenditure function in place of the utility function,
and in many models the computational complexity of the dual-form model is considerably
less than for the primal form model.

Let Mh be the current estimate of consumer h income. Consider then the following
optimization problem:

max
P

hMh log(eh(�))� �T


s:t: AT� � 0

The constraints for this problem are the zero pro�t conditions for the underlying equi-
librium problem. The dual variables associated with these constraints are interpreted as
the activity levels. The market clearance conditions for the equilibrium are incorporated in
the �rst-order optimality conditions. To see this, di�erentiate the Lagrangian with respect
to �i. We have: X

h

Mh

eh(�)

@eh(�)

@�i
�
X
j

aijyj �
X
h

!h � 0

Notice that from the de�nition of the indirect utility function:

Mh

eh(�)
= Vh(�;Mh)

According to Sheppard's lemma (Varian 1991), the demand for good i by consumer h
equals the utility level times the gradient of the expenditure function, hence:

Vh(�;Mh)
@eh(�)

@�i
= dhi(�;Mh)

Substituting into the �rst order condition, we see that the optimality conditions for
(JM-D) correspond to the market clearance conditions which appear explicitly in (JM-P).

The dual problem is low-dimensional. If we are working with a model in which all goods
are demanded by all consumers, problem (JM-D) has n variables and m constraints while
(JM-P) involves n x p + m variables and n constraints.10

As illustration, consider the two agent exchange example from above. In this model,
the primal and dual forms are both available in closed form. We have:

eh(px; py) =
�
�hp

1��h
x + (1� �h)p1��hy

� 1
1��h

9 See, for example, Varian (1991). Closed form expressions for U() and V () are not always available.
Most "
exible functional forms" have a dual form but no explicit primal form. The constant elasticity
functions used in the examples below admit both primal and dual forms.
10 When production functions are nonlinear, there are as many additional choice variables in JM-P as

there are nonlinear inputs and outputs.
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so that when �0 = 4, the (JM-D) problem is:

max 0:74 log( 3
px

+ 7
py
) + 0:52 log( 8

p
1=2
x

+ 2

p
1=2
y

)� px � py

s:t: px � 0; py � 0

5. The Connection between SJM, SLCP and VI

This section relates the sequential joint maximization algorithm to SLCP. To make this
correspondence, we need to make a minor reformulation of Mathiesen's equilibrium con-
ditions, following Rutherford (1987). Consider formulating the model with three classes of
variables: commodity prices (�), activity levels (y) and income levels (M). An equilibrium
satis�es three sets of conditions:

1) Zero excess pro�t: �AT� � 0
2) Market clearance: Ay � �(�;M) � 0
3) Income balance: M = !�

Apart from the intermediate income variables, these conditions are identical to Math-
iesen's formulation. The vector of excess consumer demand remains the sum of excess
demands for each of the consumers: �(�;M) =

P
h(dh(�;Mh) � !h), but the demand

vectors dh(�;Mh) here solve:
max Uh(d)

s:t: �Td �Mh

SLCP is a Newton method which takes into account inequality constraints and com-
plementary slackness conditions. In each iteration, the system of nonlinear inequalities is
approximated by a �rst-order Taylor series expansion, and the resulting linear system is
solved using Lemke's algorithm (Lemke 1965, Anstreicher, Lee and Rutherford 1992).

SJM may be interpreted as a version of SLCP in which prices and activity levels
are solved in a simultaneous nonlinear system of inequalities while income levels are
adjusted using Gauss-Seidel iterations. The optimization step of the joint maximization
algorithm solves the system of zero pro�t and market clearance conditions, the \�xed
income relaxation." During these computations, the income balance equations are (tem-
porarily) ignored. After computing an equilibrium for this nonlinear inequality system,
the income variables can be updated using the resulting market prices. Exact replication
of the SJM iterative sequence requires that the nonlinear system of market clearance and
zero pro�t conditions be solved completely between income revisions. In the numerical
tests reported below, this algorithm is named SJM-C (sequential joint maximization with
complementarity subproblem).

A mixture of the SJM and SLCP approaches is related to the variational inequality
algorithm proposed by Goldsman and Harker (1990). In the VI algorithm, a �xed-income
relaxation is employed for linearized subproblems while incomes levels are revised in every
Newton iteration. Subproblems have the form:

�AT� � 0 ? y � 0

Ay �r�(�;M )� � �(�;M) ? � � 0
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This linear complementarity problem corresponds to the �rst-order conditions for the
following quadratic program:

max bT� + 1
2�

TQ�

s:t: AT� � 0

where b = �(�;M ) and Q = r�(�;M ).
The iterative sequence produced by this sequential quadratic programming algorithm

will di�er from the VI algorithm because income levels are treated as exogenous in each
subproblem. By decoupling income and price adjustments, the required number of Newton
iterations may increase relative to SLCP. At the same time, this approach may help to
avoid defective subproblems which can plague SLCP. (See Mathiesen 1987.)

6. Convergence

Computational experiments demonstrate that a line search is sometimes necessary for
convergence. This is the case for a modi�ed version of the Jack{Sprat problem presented
in Manne, Chao andWilson (1980). When Jack{Sprat is initiated from a particular starting
point, the SJM procedure with � = 1 (i.e. without a line search) after four iterations begins
to cycle between two sets of Negishi weights. When the Armijo line search is applied, the
outer iterations converge in �ve steps. (See model Jack-Sprat in Appendix B.)

The second small model presents more serious theoretical problems for the algorithm.
Scarf (1960) provides a model which demonstrates that the SJM di�erential process (for
� ! 0) may be non-convergent. Furthermore, it can be shown that the conditions for
convergence of the Negishi process locally reduce to exactly the same conditions for
convergence of a simple Tatonnement adjustment process.

Scarf's model involves an equal number of n consumers and goods. Consumer h is
endowed with 1 unit of good h and demands only goods h and h + 1. Let dih represent
demand for good i by consumer h. Preferences are represented by constant elasticity of
substitution utility functions with the following structure:

Uh(d) =

�
�1=�d

��1
�

hh

� �
��1

There are two utility function parameters.11. � can be interpreted as the benchmark
value share of good i in consumer i demand , and 1� � is then the benchmark value share
of good i+ 1. (Consumer n demands goods n and 1.)

The joint maximization algorithm works with consumer income levels, denoted Mh for
household h. These may be normalized so that

P
hMh = n. Market clearing commodity

prices are determined given the income levels. Let �i(M) denote the price of good i

consistent with income levelsM =

0
BB@
M1

M2
...

MH

1
CCA. Provided that � > 0, utility functions exhibit

non-satiation, so
P

i �i =
P

hMh.

11 The parameters of this function correspond to Scarf's parameters a and b (Scarf (1960, page 168)) as:
� = 1

1+a
and � = b

1+b
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Let �(p;M) denote the market excess demand function for �xed income. Given the
special structure of preferences and endowments, this function has the form:

�i(p;M) = dii + di;i�1 � 1

Given our de�nition of p(M), we have xi(p(M);M) = 0 8i.
Let Hh(M) denote the di�erence between the value of agent h allocated income and

the market value of the agent h endowment for prices p(M). That is:

Hh(M) = ph(M)�Mh

The structure of demand and endowments assure an equilibrium in which all income
levels and prices equal unity. When M�

i = 1 then �i(M
�) = 1 8i, and

Hh(M
�) = 0 8h

The SJM algorithm, as the step length goes to zero, represents an income adjustment
process:

Mh = ph(M)�Mh

Let the initial estimate M0 be selected on the n-simplex (i.e.,
P

hM
0
h = n). The

adjustment process then remains on the n-simplex:

d

dt

X
h

Mh =
X
h

Mh =
X
h

(ph �Mh) =
X
i

pi(M)�
X
h

Mh = 0

Local convergence concerns properties of the Jacobian matrix evaluated at the equilib-
rium point, rH(M�) = [Hij]. This Jacobian has entries which are de�ned as follows:

Hij � @Hi

@Mj
=

(
@pi
@Mi
� 1 i = j

@pi
@Mj

i 6= j

If all prinicpal minors ofrH(M�) are negative, the income adjustment process is locally

convergent. If, however, @pi
@Mh

> 1, the process is "locally unstable" { a small increase from
the equilibrium income level for consumer h causes consumer h endowment revenue to
increase more than proportionally. When an equilibrium is unique and the process is
uninterrupted, then local instability implies global instability.

For this model, the Tatonnement price adjustment process is unstable (in the case n=3)
when �

1�� >
1

1�2� (Scarf, 1960). It is shown in the following that the same condition im-
plies instability for the income adjustment process, even though these algorithms produce
di�erent search directions away from a neighborhood of the equilibrium.

The function p(M) is de�ned implicitly by the equation:

�(p;M) = 0

In order to evaluate rp at M�, we make a �rst-order Taylor series expansion:

rp�(p;M)dp+rM�(p;M)dM = 0;

So

rp =
�
@pi
@Mh

�
= �r�1

p rM�
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Given the special structure of �i(p;M), we have:

@�i
@pi

=
@dii
@pi

+
@di;i�1
@pi

;
@�i
@pi�1

=
@di;i�1
@pi�1

; and
@�i
@pi+1

=
@dii
@pi+1

:

If we de�ne the "unit-utility" expenditure function for consumer i as:

ei(p) =
�
�p1��i + (1� �)p1��i+1

� 1
1��

demand functions are:

dii =
�Mi

e1��i p�i
; and di+1;i =

(1� �)Mi

e1��i p�i+1

Evaluating gradients at p� = 1, it is apparent that the "�xed income Slutsky matrix"
has a tri-diagonal structure:

rp� =

2
66666664

� � 0 : : : 0 �

� � � 0
... 0

0 � � �
...

...
0 0 � � � � � �
� 0 � � � 0 � �

3
77777775

where � = �� � (1� �) ��2 + (1� �)2� and � = �(1� �)�(1� �). The inverse matrix,
rp�

�1, is:

r�1
p � =

2
666664


 � � � � � �
� 
 � � � � �

� � 
 � � � ...
...

. . .

� � � � � 


3
777775

where 
 = �(�+�)
(2�+�)(���) and � = �

(2�+�)(���) .

The gradients of excess demands with respect to income at the equilibrium are:

rM� =

2
666664

� 0 0 � � � 1� �
1� � � 0 � � � 0

0 1� � � � � � ...
...

. . .

0 0 0 1� � �

3
777775

Hence:
@pi(M)

@Mi
= �� + (1� �)�

Local instability for n � 3 therefore implies:

��2 � �2 � ��
3(��2 � �2 � ��) + 3� � 1

� 1
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which reduces to the same condition as Scarf demonstrated for the Tatonnement process
when n = 3.

Given the equivalent local behavior, one might be lead to believe that the income and
price-adjustment processes are identical. This is not true. Only local to the equilibrium,
where price e�ects dominate income e�ects, do these processes follow the same path. This
is apparent in Figure 3 where the two vector �elds are superimposed. In this diagram, the
tatonnement �eld becomes more divergent than the SJM �eld as one moves further from
the equilibrium point at the center of the simplex. At the equilibrium point the two �elds
coincide exactly, as demonstrated above.

7. Conclusion

This paper has described a new income adjustment procedure which makes it easy to apply
the joint maximization algorithm proposed originally by Negishi and Dixon. The paper
presented three alternative implementations of the solution procedure, based on primal
optimization, dual optimization and complementarity subproblems.

Scarf's model demonstrates that convergence of SJM cannot be guaranteed. At the
same time, the SJM approach seems to be the only reliable method for solving large
scale models with activity analysis, such as Manne and Richels (1995). Even though SJM
has neither the theoretical pedigree of a �xed-point algorithm nor the local convergence
properties of a Newton algorithm, the usefulness of the SJM algorithm is demonstrated
by the range of real models for which the procedure has been sucessfully applied.
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Appendix

A. Extensions of the SJM Algorithm

A.1. Nonlinear Production

As in the body of the paper, let eh(�) represent the unit expenditure function for consumer
h. Let �j(�) be the analogous "unit revenue function" for sector j, de�ned as:

�j(�) � max�Tx s:t: x 2 T j

where Tj is the feasible set for the constant returns to scale technology for sector j,
operated at unit intensity.

Shepard's lemma characterizes provides optimal producer netput (output minus input
per unit activity):

xj(�) = r�j(�)
A competitive equilibrium is supported by a solution to:

max
P

hMh log(eh(�))� �T!h

s:t: �j(�) � 0 8j
which has �rst-order conditions:X

j

r�j(�)yj +
X
h

!h �
X
h

reh(�) Mh

eh(�)

A.2. Ad-Valorem Taxes

In the general equilibrium structure, price distortions can, without loss of generality, be
applied only to producer inputs. Suppose that xj is chosen to solve:

max �̂Tx

s:t: x 2 T j

in which �̂ is a vector of tax-distorted prices (users costs), for example: �̂ij = �i(1+ tij)
. When tax distortions are present, the tax revenue returned per unit operation of sector
j is given by � � �̂)Tx.

In order to accommodate price distortions in the dual joint maximization procedure, the
tax distortions are introduced into the constraints, and the tax revenue e�ects are treated
symmetrically with factor endowments - using lagged values for production activities. The
generic dual-form optimization problem is:

max
P

h

h
Mh log(eh(�)) � �T!h �

P
j ~yj(� � �̂)T ~xj

i
s:t: �j(�̂) � 0

Within the outer loop of the SJM algorithm, income levels are updated by:

Mh = �T!h +
X
j

�jh~yj(� � �̂)T ~xj

in which �jh is the share of sector j tax revenue which accrues to household h.
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Appendix

A. GAMS Code

A.1. Two-by-Two Exchange

$TITLE: A pure exchange model solved with joint maximization

SET H HOUSEHOLDS / A, B/

ALIAS (H,HH);

PARAMETER

EX(H) ENDOWMENTS OF X /A 0.9, B 0.1/

EY(H) ENDOWMENTS OF Y /A 0.1, B 0.9/

ALPHA(H) PREFERENCE FOR X /A 0.3, B 0.8/

SIGMA(H) ELASTICITY OF SUBSTITUTION /A 2.0, B 1.5/

RHO(H) ELASTICITY PARAMETER (PRIMAL FORM)

THETA(H) NEGISHI WEIGHTS;

RHO(H) = (SIGMA(H)-1)/SIGMA(H) ;

VARIABLES U(H) UTILITY LEVELS

X(H) FINAL DEMAND FOR X

Y(H) FINAL DEMAND FOR Y

NEGISHI NEGISHI ITERATION MAXIMAND

EQUATIONS OBJDEF DEFINES THE SJM MAXIMAND

UDEF(H) DEFINES UTILITY INDICES

EQUILX MARKET CLEARANCE FOR GOOD X

EQUILY MARKET CLEARANCE FOR GOOD Y;

OBJDEF..

NEGISHI =E= SUM(H, THETA(H) * LOG(U(H)));

UDEF(H)..

U(H) =E= ( ALPHA(H)**(1/SIGMA(H)) * X(H)**RHO(H) +

(1-ALPHA(H))**(1/SIGMA(H)) * Y(H)**RHO(H) )**(1/RHO(H));

EQUILX..

1 =E= SUM(H, X(H));

EQUILY..

1 =E= SUM(H, Y(H));
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MODEL SJM /OBJDEF, UDEF, EQUILX, EQUILY /;

THETA(H) = 1;

U.LO(H) = 0.01;

X.LO(H) = 0.01;

Y.LO(H) = 0.01;

PARAMETER ITLOG ITERATION LOG;

SCALAR PXBAR RELATIVE PRICE OF X IN TERMS OF Y /4/;

SET ITER NEGISHI ITERATIONS /1*10/;

LOOP(ITER,

ITLOG(ITER,"P") = PXBAR;

THETA(H) = (EX(H) * PXBAR + EY(H))

/ SUM(HH, EX(HH) * PXBAR + EY(HH));

ITLOG(ITER,"THETA") = THETA("A");

SOLVE SJM USING NLP MAXIMIZING NEGISHI;

ITLOG(ITER,"X") = X.L("A");

ITLOG(ITER,"Y") = Y.L("A");

PXBAR = EQUILX.M / EQUILY.M;

ITLOG(ITER,"DEV") = ROUND(100 *

ABS( PXBAR*X.L("A") + Y.L("A")

- EX("A")*PXBAR - EY("A"))

/ ( EX("A") * PXBAR + EY("A") ), 1);

);

DISPLAY ITLOG;

A.2. Manne's Jack-Sprat Example

$TITLE: The Jack Sprat Problem

* Prices highly depend on income distribution

* Alan Manne 12/28/91

* The relaxation parameter is theta.
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* The SJM procedure cycles when theta = 0, converges

* when theta=0.5.

* From: A. S. Manne, H-P Chao, and R. Wilson:

* Computation of Competitive Equilibria by a Sequence of

* Linear Programs

* Econometrica, Vol. 48, No. 7, November 1980, p 1595-1615.

*

* with a nasty modification of original a(i,j) table.

set i commodities / 1*5 /

j activity levels / 1*5 /

h households / jack,wife /

table a(i,j) input-output matrix

1 2 3 4 5

1 -1 .5 -1 -1

2 -1 -1

3 -1 -1

4 1

5 1

* Note: in the version of this problem appearing in MCW,

* the (1,2) coefficient 0.5 is equal to zero.

table b(i,h) endowments

jack wife

1 1. 1.

2 1.5

3 1.5

table u(i,h) requirements for good i per unit of utility

jack wife

4 1

5 1

parameters nwt(h) Negishi weights - initial guess

/jack .1

wife .9 /

scalar theta relaxation parameter / 0 /
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* Turn off solution output for the Negishi iterations:

option limrow = 0;

option limcol = 0;

option sysout = off;

option solprint = on;

variables y(j) activity levels

x(h) utility levels

gwf global welfare function

positive variables y,x

equations sd(i) supply-demand balance

gw global welfare definition;

sd(i)..

sum(j, a(i,j)*y(j) ) + sum(h, b(i,h)) =e= sum(h, u(i,h)*x(h));

gw..

sum(h, nwt(h)*log(x(h))) =e= gwf

model jacksp / all /;

x.lo(h) = .01;

* declare Negishi iteration limit

set iter /it1*it10/;

parameters

p(i) prices

n(h) endowment values

tn total endowment value

rwt(iter,h) revised Negishi weights;

* loop over revised Negishi weights

loop(iter,

rwt(iter,h) = nwt(h);

solve jacksp using nlp maximizing gwf;
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p(i) = - sd.m(i);

n(h) = sum(i, p(i)*b(i,h));

tn = sum(h,n(h));

nwt(h) = theta*nwt(h) + (1 - theta)*n(h)/tn

);

display p,n,tn,rwt;

A.3. Scarf's globally unstable exchange model

$TITLE: Scarf's globally unstable exchange model

* This program computes SJM and Tatonnement search

* directions on a grid over the 3-simplex.

FILE KSJM /SJM.DAT/; KSJM.NR = 2; KSJM.NW = 15; KSJM.ND = 6;

FILE KTAT /TAT.DAT/; KTAT.NR = 2; KTAT.NW = 15; KTAT.ND = 6;

SET ITER TATONNEMENT ITERATION COUNT /IT1*IT2000/

SET H HOUSEHOLDS AND GOODS /G1*G3/;

ALIAS (I,H), (J,H);

PARAMETER

WEIGHT(H) INCOME BY HOUSEHOLD,

PP(I) PRICE BY COMMODITY (FOR TATONNEMENT)

EE(I) EXPENDITURE BY HOUSEHOLD

X(I) EXCESS DEMAND;

SCALAR THETA OWN GOOD BUDGET SHARE,

SIGMA ELASTICITY PARAMETER /0.4/,

LAMBDA SPEED OF ADJUSTMENT /0.1/;

* SET THETA SO THAT TATONNEMENT IS MARGINALLY UNSTABLE:

THETA = 0.5 / (1 - SIGMA) + 0.15;

ABORT$(THETA LT 0) " THETA IS LESS THAN ZERO?";

ABORT$(THETA GT 1) " THETA IS GREATER THAN 1?";

VARIABLE E(H) EXPENDITURE FUNCTION

P(J) MARKET PRICE

OBJ OBJECTIVE FUNCTION;
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EQUATIONS EDEF(H)

OBJDEF;

EDEF(H)..

E(H)**(1-SIGMA) =E= THETA * P(H)**(1-SIGMA) +

(1-THETA) * P(H++1)**(1-SIGMA);

OBJDEF..

OBJ =E= SUM(H, WEIGHT(H) * LOG(E(H))) - SUM(J, P(J));

MODEL SJM /ALL/;

E.LO(H) = 0.01;

P.LO(H) = 0.01;

E.L(H) = 1;

P.L(H) = 1;

* EVALUATE DIRECTIONS ON A GRID ON THE 3-SIMPLEX:

SCALAR NGRID NUMBER OF GRID POINTS FOR FLAGS /20/,

M GRID POINTS IN SUBSIMPLEX

NPOINT FULL SIMPLEX POINT COUNT

NP SUBSIMPLEX POINT COUNT

INDP PRICE INDEX

LENGTH FLAG LENGTH;

* THIS LENGTH SEEMS ABOUT RIGHT:

LENGTH = 3 / (2 * NGRID);

* TOTAL NUMBER OF GRID POINTS:

NPOINT = (NGRID+1) * (NGRID+2) / 2;

LOOP(ITER$(ORD(ITER) LE NPOINT),

INDP = ORD(ITER);

* THESE STATEMENTS GENERATE A GRID ON THE

* PRICE SIMPLEX:

M = ROUND(0.5 * SQRT(1.0+8.0*INDP) - 1.5);

IF (M GT (0.5 * SQRT(1.0+8.0*INDP) - 1.5), M = M - 1);
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NP = (M+1) * (M+2) / 2;

IF (NP LT INDP, M = M + 1; NP=(M+1)*(M+2)/2; );

WEIGHT("G3") = NGRID - M;

WEIGHT("G1") = NP - INDP;

WEIGHT("G2") = NGRID - WEIGHT("G1") - WEIGHT("G3");

* SCALE TO THE 3-SIMPLEX:

WEIGHT(I) = WEIGHT(I) / SUM(J, WEIGHT(J));

* SKIP POINTS ON THE BOUNDARY:

IF (SMIN(I, WEIGHT(I)) GT 0,

* Generate the SJM direction:

PUT KSJM; LOOP(I, PUT WEIGHT(I));

SOLVE SJM USING NLP MAXIMIZING OBJ;

PUT KSJM; LOOP(I, PUT P.L(I)); PUT /;

* Generate the Tatonnement direction:

PP(I) = 3 * WEIGHT(I);

EE(H) = ( THETA * PP(H)**(1-SIGMA) +

(1-THETA) * PP(H++1)**(1-SIGMA))**(1/(1-SIGMA));

* EVALUATE EXCESS DEMANDS:

X(I) = THETA * (PP(I)/EE(I))

* (EE(I)/PP(I))**SIGMA +

(1-THETA) * (PP(I--1)/EE(I--1))

* (EE(I--1)/PP(I))**SIGMA - 1;

* SCALE ALL THE ARROWS TO BE THE SAME LENGTH:

LAMBDA = LENGTH / SQRT(SUM(I, X(I) * X(I)));

PUT KTAT; LOOP(I, PUT (PP(I)/3););

PP(I) = PP(I) + LAMBDA * X(I);

PUT KTAT; LOOP(I, PUT (PP(I)/3)); PUT /;

);

);
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A.4. Hansen's Activity Analysis Example

$TITLE: Joint Maximization: Three Alternative Formulations

$ontext

Reference: Herbert Scarf with Terje Hansen (1973)

The Computation of Economic Equilibria,

Yale University Press.

This program generates the following output on a 90 MHz Pentium:

---- 291 PARAMETER ITLOG Iteration log

DEV CPU ITER

PRIMAL.ITER1 9.8 1.0 243.0

PRIMAL.ITER2 0.9 0.4 22.0

PRIMAL.ITER3 7.748711E-2 0.3 19.0

PRIMAL.ITER4 6.915353E-3 0.3 15.0

PRIMAL.TOTAL 2.0 299.0

DUAL .ITER1 9.8 0.4 40.0

DUAL .ITER2 0.9 0.3 4.0

DUAL .ITER3 7.746462E-2 0.3 4.0

DUAL .ITER4 6.914645E-3 0.3 3.0

DUAL .TOTAL 1.3 51.0

MCP .ITER1 9.8 0.4 14.0

MCP .ITER2 0.9 0.3 2.0

MCP .ITER3 7.746431E-2 0.3 1.0

MCP .ITER4 6.914911E-3 0.3 1.0

MCP .TOTAL 1.3 18.0

For the most part, this is a standard GAMS program. There

is one subtlety involved in representing the functions

which may appear somewhat obscure to non-GAMS users. In

evaluating the SJM maximand, we want to write:

WELFARE =E= SUM(H, THETA(H) * (1/RHO(H))

* LOG( SUM(C, ALPHA(C,H) * (D(C,H)/DBAR(C,H))**RHO(H)) ) );

but we need to account for some special cases. For one

thing, if household H has Cobb-Douglas preferences, RHO(H)

goes to -INF and the function form (by L'Hopital's lemma)

becomes:



Joint Maximization 167

SUM(C, ALPHA(C,H) * LOG(D(C,H)/DBAR(C,H)))

To incorporate both functional forms in a single statement,

I have used the GAMS dollar operator, writing:

WELFARE =E= SUM(H, THETA(H) *

( ( (1/RHO(H)) *

LOG( SUM(C, ALPHA(C,H) * (D(C,H)/DBAR(C,H))**RHO(H)))

)$(ESUB(H) NE 1) +

(

SUM(C, ALPHA(C,H) * LOG(D(C,H)/DBAR(C,H)))

)$(ESUB(H) EQ 1)

) );

This simply says, use the CES form if ESUB(H) is not unity,

and use Cobb-Douglas if ESUB(H) is unity.

One additional adjustment of the equation is required

because some of the share parameters, ALPHA(C,H), may be

zero. To avoid evaluating 0/0, I have put another dollar

exception operator on the loops over C.

It is an unfortunate fact of life that computers require a

precise statement of things, and they get cranky if you ask

them to evaluate functions involving 0 times infinity.

$offtext

SETS C COMMODITIES

/ AGRIC, FOOD, TEXTILES, HSERV, ENTERT, HOUSEOP, CAPEOP,

STEEL, COAL, LUMBER, HOUSBOP, CAPBOP, LABOR, EXCHANGE/

N(C) NUMERAIRE /LABOR/

H CONSUMERS

/ AGENT1, AGENT2, AGENT3, AGENT4 /

S SECTORS

/ DOM1, DOM2, DOM3, DOM4, DOM5, DOM6, DOM7,

DOM8, DOM9, DOM10, DOM11, DOM12,

IMP1, IMP2, IMP3, IMP4, IMP5, IMP6, IMP7,

EXP1, EXP2, EXP3, EXP4, EXP5, EXP6, EXP7 /
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ALIAS (C,CC);

TABLE E(C,H) Commodity endowments

AGENT1 AGENT2 AGENT3 AGENT4

HOUSBOP 2 0.4 0.8

CAPBOP 3 2 7.5

LABOR 0.6 0.8 1 0.6

TABLE DBAR(C,H) Reference demands

AGENT1 AGENT2 AGENT3 AGENT4

AGRIC 0.1 0.2 0.3 0.1

FOOD 0.2 0.2 0.2 0.2

TEXTILES 0.1 0.1 0.3 0.1

HSERV 0.1 0.1 0.1 0.1

ENTERT 0.1 0.1 0.1 0.1

HOUSEOP 0.3 0.1 0.1

CAPEOP 0.1 0.2 0.3;

PARAMETER ESUB(H) Elasticities in demand

/ AGENT1 1, AGENT2 1,

AGENT3 1, AGENT4 1 /;

TABLE IODATA(*,C,S) Activity analysis matrix

DOM1 DOM2 DOM3 DOM4 DOM5

OUTPUT.AGRIC 5.00

OUTPUT.FOOD 5.00

OUTPUT.TEXTILES 2.00

OUTPUT.HSERV 2.00

OUTPUT.ENTERT 4.00

OUTPUT.HOUSEOP 0.32

OUTPUT.CAPEOP 0.40 1.30 1.20

INPUT .AGRIC 3.50 0.10 0.70

INPUT .FOOD 0.90 0.10 0.80

INPUT .TEXTILES 0.20 0.50 0.10 0.10

INPUT .HSERV 1.00 2.00 2.00 2.00

INPUT .STEEL 0.20 0.40 0.20 0.10

INPUT .COAL 1.00 0.10 0.10 1.00

INPUT .LUMBER 0.50 0.40 0.30 0.30

INPUT .HOUSBOP 0.40

INPUT .CAPBOP 0.50 1.50 1.50 0.10 0.10

INPUT .LABOR 0.40 0.20 0.20 0.02 0.40

+ DOM6 DOM7 DOM8 DOM9 DOM10
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OUTPUT.HOUSEOP 0.80

OUTPUT.CAPEOP 1.10 6.00 1.80 1.20 0.40

OUTPUT.STEEL 2.00

OUTPUT.COAL 2.00

OUTPUT.LUMBER 1.00

INPUT .TEXTILES 0.80 0.40 0.10 0.10 0.10

INPUT .HSERV 0.40 1.80 1.60 0.80 0.20

INPUT .STEEL 1.00 2.00 0.50 0.20

INPUT .COAL 0.20 1.00 0.20

INPUT .LUMBER 3.00 0.20 0.20 0.50

INPUT .CAPBOP 1.50 2.50 2.50 1.50 0.50

INPUT .LABOR 0.30 0.10 0.10 0.40 0.40

+ DOM11 DOM12 IMP1 IMP2 IMP3

OUTPUT.AGRIC 1.00

OUTPUT.FOOD 1.00

OUTPUT.TEXTILES 1.00

OUTPUT.HOUSEOP 0.36

OUTPUT.CAPEOP 0.90

INPUT .HSERV 0.40 0.20 0.20

INPUT .HOUSBOP 0.40

INPUT .CAPBOP 1.00 0.20 0.10 0.10

INPUT .LABOR 0.04 0.02 0.02

INPUT .EXCHANGE 0.50 0.40 0.80

+ IMP4 IMP5 IMP6 IMP7 EXP1

OUTPUT.CAPEOP 1.00

OUTPUT.STEEL 1.00

OUTPUT.COAL 1.00

OUTPUT.LUMBER 1.00

OUTPUT.EXCHANGE 0.50

INPUT .AGRIC 1.00

INPUT .HSERV 0.40 0.40 0.40 0.40 0.20

INPUT .CAPBOP 0.20 0.20 0.20 0.20 0.20

INPUT .LABOR 0.04 0.04 0.04 0.04 0.04

INPUT .EXCHANGE 1.20 0.60 0.70 0.40

+ EXP2 EXP3 EXP4 EXP5 EXP6

OUTPUT.EXCHANGE 0.40 0.80 1.20 0.60 0.70

INPUT .FOOD 1.00

INPUT .TEXTILES 1.00

INPUT .HSERV 0.20 0.20 0.40 0.40 0.40

INPUT .CAPEOP 1.00

INPUT .STEEL 1.00



170

INPUT .COAL 1.00

INPUT .CAPBOP 0.10 0.10 0.20 0.20 0.20

INPUT .LABOR 0.02 0.02 0.04 0.04 0.04

+ EXP7

OUTPUT.EXCHANGE 0.40

INPUT .HSERV 0.40

INPUT .LUMBER 1.00

INPUT .CAPBOP 0.20

INPUT .LABOR 0.04 ;

* DECLARE SETS, PARAMETERS AND EQUATIONS FOR THE SJM ALGORITHM:

SETS ITER SJM ITERATION INDEX /ITER1*ITER10/

STATS STATISTICS /DEV, CPU, ITER/

PARAMETER

THETA(H) Budget shares for Negishi model

P(C) Market prices

P0(C) Initial prices (random starting point)

INCOME(H) Endowment income

EXPEND(H) Value of allocated demand

ITLOG Iteration log;

SCALAR

DEV Current deviation

CONTOL Convergence tolerance (\%) / 0.01/,

LAMDA Damping factor /1/;

ALIAS (C,CC), (H,HH);

PARAMETER

ALPHA(C,H) Demand function share parameter,

IBAR(H) Reference income associated with DBAR,

RHO(H) Primal form elasticity exponent,

A(C,S) Activity analysis matrix;

ALPHA(C,H) = DBAR(C,H) / SUM(CC, DBAR(CC,H));

IBAR(H) = SUM(C, DBAR(C,H));

RHO(H) = (ESUB(H) - 1)/ESUB(H);

A(C,S) = IODATA("OUTPUT",C,S) - IODATA("INPUT",C,S);

*===========================================================

* PRIMAL MODEL:
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VARIABLES Y(S) ACTIVITY LEVELS

D(C,H) CONSUMPTION LEVELS

WELFARE SOCIAL WELFARE INDEX;

POSITIVE VARIABLE Y;

EQUATIONS MARKET(C) MARKET CLEARANCE FOR PRIMAL MODEL

NEGISHI MAXIMAND FOR PRIMAL PROBLEM;

MARKET(C)..

SUM(H,D(C,H)) =L= SUM(S,A(C,S) * Y(S)) + SUM(H,E(C,H));

NEGISHI..

WELFARE =E= SUM(H, THETA(H) * (

( (1/RHO(H)) *

LOG( SUM(C$ALPHA(C,H), ALPHA(C,H) * (D(C,H)/DBAR(C,H))**RHO(H)))

)$(ESUB(H) NE 1) +

( SUM(C$ALPHA(C,H), ALPHA(C,H) * LOG(D(C,H)/DBAR(C,H)))

)$(ESUB(H) EQ 1)

) );

MODEL PRIMAL / MARKET, NEGISHI/;

*===========================================================

* DUAL MODEL:

VARIABLES PI(C) MARKET PRICE

WELFARE SOCIAL WELFARE INDEX;

POSITIVE VARIABLE PI;

EQUATIONS PROFIT(S) PROFIT CONDITION

DAFERMOS MAXIMAND FOR DUAL PROBLEM;

PROFIT(S)..

0 =G= SUM(C, A(C,S) * PI(C));

DAFERMOS..

WELFARE =E= SUM(H, THETA(H) *

( ( (1/(1-ESUB(H))) *

LOG( SUM(C$ALPHA(C,H), ALPHA(C,H) * PI(C)**(1-ESUB(H))))
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)$(ESUB(H) NE 1)

+ ( SUM(C$ALPHA(C,H), ALPHA(C,H) * LOG(PI(C)) )

)$(ESUB(H) EQ 1)

)

- SUM(C, PI(C) * E(C,H)) );

MODEL DUAL / PROFIT, DAFERMOS/;

*===========================================================

* COMPLEMENTARITY MODEL:

VARIABLES

PI(C) MARKET PRICES

Y(S) ACTIVITY LEVELS

EQUATIONS

MCPMKT(C) MARKET CLEARANCE (FOR THE MCP MODEL);

MCPMKT(C)..

SUM(S, Y(S) * A(C,S)) + SUM(H, E(C,H)) =G=

SUM(H, ( ALPHA(C,H) * INCOME(H) / PI(C)

)$(ESUB(H) EQ 1)

+ ( DBAR(C,H)*INCOME(H)*

SUM(CC$ALPHA(CC,H),

ALPHA(CC,H)*PI(CC)**(1-ESUB(H)))*(1/PI(C))**ESUB(H)

)$(ESUB(H) NE 1) );

MODEL MCP / PROFIT.Y, MCPMKT.PI/;

*===========================================================

* Randomly chosen starting point:

OPTION SEED=1001;

P0(C) = UNIFORM(0,2);

*===========================================================

* Run the primal SJM algorithm:

P(N) = 1;

P(C) = P0(C);

THETA(H) = SUM(C, P(C) * E(C,H));

INCOME(H) = THETA(H);
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D.L(C,H) =

( ALPHA(C,H) * INCOME(H) / P(C) )$(ESUB(H) EQ 1) +

( DBAR(C,H)*INCOME(H)*

SUM(CC$ALPHA(CC,H),ALPHA(CC,H)*P(CC)**(1-ESUB(H)))

* (1/P(C))**ESUB(H) )$(ESUB(H) NE 1);

D.LO(C,H)$ALPHA(C,H) = 1.E-5;

D.FX(C,H)$(ALPHA(C,H) EQ 0) = 0;

DEV = +INF;

LOOP(ITER$(DEV GT CONTOL),

SOLVE PRIMAL USING NLP MAXIMIZING WELFARE;

P(C) = MARKET.M(C);

LOOP(N, P(C)$P(N) = P(C) / MARKET.M(N) );

INCOME(H) = SUM(C, P(C) * E(C,H));

EXPEND(H) = SUM(C, P(C) * D.L(C,H));

DEV = 100 * SMAX(H$INCOME(H), ABS(INCOME(H)-EXPEND(H))

/ INCOME(H));

ITLOG("PRIMAL",ITER,"DEV") = DEV;

ITLOG("PRIMAL",ITER,"ITER") = PRIMAL.ITERUSD;

ITLOG("PRIMAL",ITER,"CPU") = PRIMAL.RESUSD;

THETA(H) = LAMDA * INCOME(H) + (1 - LAMDA) * THETA(H);

);

ITLOG("PRIMAL","TOTAL","CPU")

= SUM(ITER, ITLOG("PRIMAL",ITER,"CPU"));

ITLOG("PRIMAL","TOTAL","ITER")

= SUM(ITER, ITLOG("PRIMAL",ITER,"ITER"));

*===========================================================

* Run the dual SJM algorithm from the same starting point --

* this should generate an identical sequence:

P(N) = 1;

P(C) = P0(C);

THETA(H) = SUM(C, P(C) * E(C,H));

PI.L(C) = P(C);

PI.LO(C)$SMAX(H, ALPHA(C,H)) = 1.E-5;

DEV = +INF;
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LOOP(ITER$(DEV GT CONTOL),

SOLVE DUAL USING NLP MAXIMIZING WELFARE;

P(C) = PI.L(C);

LOOP(N, P(C)$P(N) = P(C) / PI.L(N); );

INCOME(H) = SUM(C, P(C) * E(C,H));

EXPEND(H) = THETA(H);

LOOP(N, EXPEND(H)$P(N) = THETA(H) / PI.L(N); );

DEV = 100 * SMAX(H$INCOME(H), ABS(INCOME(H)-EXPEND(H))

/ INCOME(H));

ITLOG("DUAL",ITER,"DEV") = DEV;

ITLOG("DUAL",ITER,"ITER") = DUAL.ITERUSD;

ITLOG("DUAL",ITER,"CPU") = DUAL.RESUSD;

THETA(H) = LAMDA * INCOME(H) + (1 - LAMDA) * THETA(H);

);

ITLOG("DUAL","TOTAL","CPU")

= SUM(ITER, ITLOG("DUAL",ITER,"CPU"));

ITLOG("DUAL","TOTAL","ITER")

= SUM(ITER, ITLOG("DUAL",ITER,"ITER"));

*===========================================================

* Run the complementarity-based SJM algorithm from the same

* starting point -- this should generate an identical sequence:

P(N) = 1;

P(C) = P0(C);

THETA(H) = SUM(C, P(C) * E(C,H));

INCOME(H) = THETA(H);

PI.L(C) = P(C);

PI.LO(C)$SMAX(H, ALPHA(C,H)) = 1.E-5;

DEV = +INF;

LOOP(ITER$(DEV GT CONTOL),

SOLVE MCP USING MCP;

P(C) = PI.L(C);

LOOP(N, P(C)$P(N) = P(C) / PI.L(N); );

INCOME(H) = SUM(C, P(C) * E(C,H));

EXPEND(H) = THETA(H);
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LOOP(N, EXPEND(H) = THETA(H) / PI.L(N); );

DEV = 100 * SMAX(H$INCOME(H), ABS(INCOME(H)-EXPEND(H))

/ INCOME(H));

ITLOG("MCP",ITER,"DEV") = DEV;

ITLOG("MCP",ITER,"ITER") = MCP.ITERUSD;

ITLOG("MCP",ITER,"CPU") = MCP.RESUSD;

THETA(H) = LAMDA * INCOME(H) + (1 - LAMDA) * THETA(H);

);

ITLOG("MCP","TOTAL","CPU")

= SUM(ITER, ITLOG("MCP",ITER,"CPU"));

ITLOG("MCP","TOTAL","ITER")

= SUM(ITER, ITLOG("MCP",ITER,"ITER"));

* Produce a summary report:

OPTION ITLOG:1:2:1;

DISPLAY ITLOG;




