

Is Utility Computing suitable for providing Mathematical Programming Resources?

Franz Nelißen FNelissen@gams.com

GAMS Software GmbH www.gams.de

APMOD 2008 Bratislava, Slovak Republic May 27-31, 2008

Agenda

Introduction

Two different Approaches

GAMS and Grid Computing

Challenges and Conclusions

GAMS Development / GAMS Software

- Roots: Research project World Bank 1976
- Pioneer in Algebraic
 Modeling Systems
 used for economic modeling
- Went **commercial** in 1987
- Offices in Washington, D.C and Cologne
- Professional software tool provider, not a consulting company
- Operating in a segmented niche market
- Broad academic & commercial user base and network

General Algebraic Modeling System

What is Utility Computing?

...the packaging of computing resources, such as computation and storage, as a metered service similar to a physical public utility...

(http://en.wikipedia.org/wiki/Utility computing)

... a **business model for computing** in which resources are made available to the user on an **as-needed** basis... (http://www.sun.com/service/sungrid/index.jsp)

Predecessors: Time Sharing Systems

- Sharing expansive computing resources
- Full service operations
- Charges:
 - fixed rent
 - per usage
- Success of Personal Computer terminated businesses

Math Programming Applications

Wide Range of possible Demands:

- Lots of Memory and CPU time
- Off-line / Batch operations
- Parallel operations only sometimes possible
- Optimization may fail!
- Delivery of Results time critical (?)
- Confidentiality issues (?)
- GUI very application spécific
- ...

Agenda

Introduction

Two different Approaches

GAMS and Grid Computing

Challenges and Conclusions

Amazon Elastic Computing Cloud

- Access to an unlimited number of virtual machines
- Provides Hardware and OS
- Pay per Usage

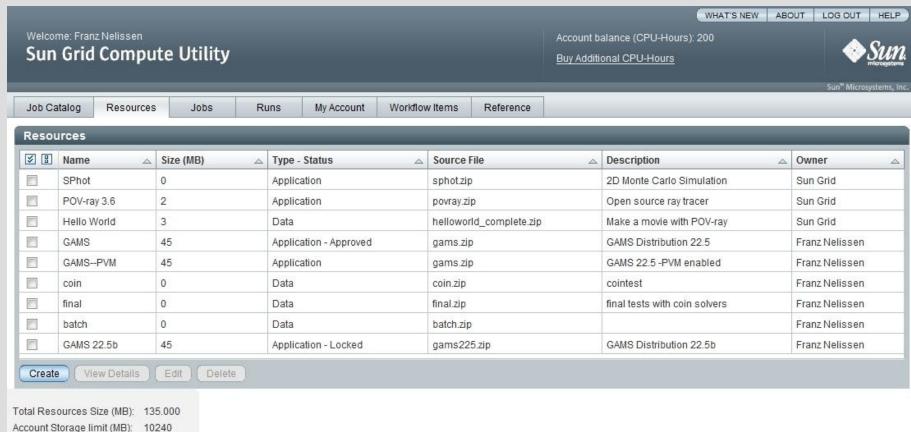
Amazon EC2: Available Instances

- Small: 1.7 GB RAM, 1 virtual core, 160 GB HD (\$0.1 per CPU h)
- Large: 7.5 GB RAM, 4 virtual cores, 850 GB HD (\$0.4 per CPU h)
- Extra Large: 15 GB RAM, 8 virtual cores, 1690 HD (\$0.8 per CPU h)

Using Amazon EC2....

```
_ 0 X
             - PuTTY
login as:
```

Growing Network of Service Provider



Network.com operated by Sun

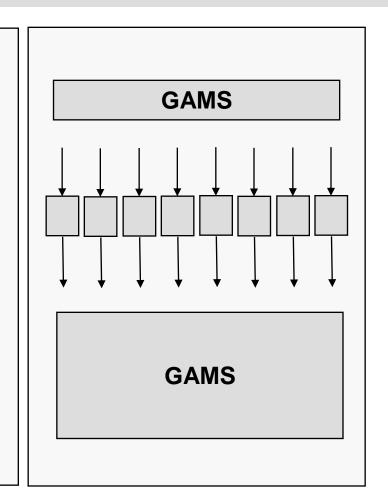
- On-demand grid computing service
- A few hundred CPU's (AMD Opteron, 2 CPU SMP, 2 *4 GB RAM, Solaris 10)
- Pay as you go utility: 1 \$ / CPU-hour
- Network of Service Provider

Using Network.com...

→ More Information at: http://www.gams.com/sungrid/

Agenda

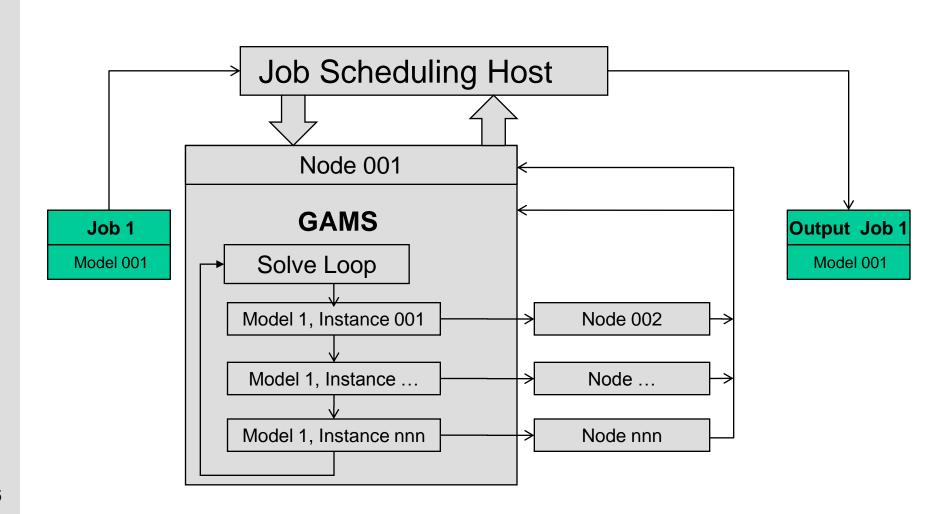
Two different Approaches


GAMS and Grid Computing

Challenges and Conclusions

GRID Specific Enhancements

- Submission of jobs
- 2. "Grid Middleware"
 - Distribution
 - Execution
- 3. Collection of solutions
- 4. Processing of results



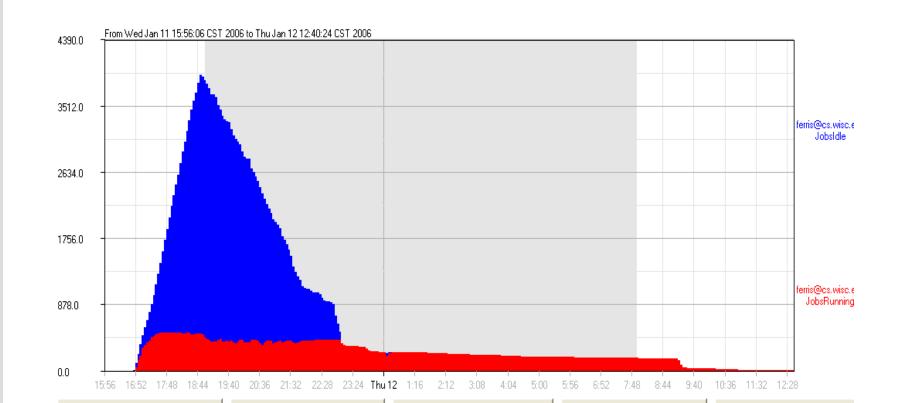
GAMS & Grid Computing

- Scalable and Platform independent
 - massive grids
 - multi-cpu machines
 - "1 CPU Grid"
- Only minor changes to model required
- Separation of model and solution method

Using the GAMS GRID Facilities

Advantages of Grid Computing

- Solve a certain number of scenarios faster:
 - sequential: 50 hours
 - parallel (200 CPUs): ~15 minutes
 - Better results by running more scenarios*:


#SIM	VaR error	CVaR error
1000	5.42%	6.74%
20,000	1.21%	1.49%

^{*} http://www.tc.cornell.edu/NR/shared/Presentations/24Feb04.Garp.pdf

Results for 4096 MIPS on Condor Grid

- 20 hours wall time
- 5000 CPU hours
- Peak number of CPU's: 500

Agenda

- Introduction

 Two different Approaches
- GAMS and Grid Computing
- Challenges and Conclusions

Challenges

- Interfaces
- Reliability, Scalability & Performance
- Confidentiality
- Business Models

Conclusions

- Utility computing still at a early stage, but may become more important
- Grid Computing offers lots of promising developments
- Algebraic Modeling Languages are supporting parallel environments
- Lots of Challenges ahead

The End

Thank you!

... Questions?

Contacting GAMS

Europe:

GAMS Software GmbH Eupener Str. 135-137 50933 Cologne Germany

Phone: +49 221 949 9170

Fax: +49 221 949 9171

http://www.gams.de

USA:

GAMS Development Corp. 1217 Potomac Street, NW Washington, DC 20007 USA

Phone: +1 202 342 0180 Fax: +1 202 342 0181

http://www.gams.com