
GAMS/Cplex 6.5 User Notes

Table of Contents

Introduction 
How to Run a Model with Cplex 
Overview of Cplex 

Linear Programming 
Mixed-Integer Programming 

GAMS Options 
Summary of Cplex Options 

Preprocessing and General Options 
Simplex Algorithmic Options 
Simplex Limit Options 
Simplex Tolerance Options 
Barrier Specific Options 
MIP Algorithmic Options 
MIP Limit Options 
MIP Tolerance Options 
Output Options 
Example of a GAMS/Cplex Options File 

Special Notes 
Physical Memory Limitations 
Using Special Ordered Sets 
Running Out of Memory for MIP problems 
Failing to Prove Integer Optimality 

GAMS/Cplex Log file 
Detailed description of Cplex Options 
Appendix: Cplex Licensing 

PC Licensing 
Unix Licensing 
Licensing Commands 
Installing a New License 
Updating an Existing License 

1 Introduction 

GAMS/Cplex is a GAMS solver that allows users to combine the high level modeling capabilities of
GAMS with the power of Cplex optimizers. Cplex optimizers are designed to solve large, difficult
problems quickly and with minimal user intervention. Access is provided (subject to proper licensing) to
Cplex solution algorithms including the Linear Optimizer and the Barrier and Mixed Integer Solvers.
While numerous solving options are available, GAMS/Cplex automatically calculates and sets most
options at the best values for specific problems. 

1 of 35

GAMS/Cplex 6.5 User Notes



All Cplex options available through GAMS/Cplex are summarized at the end of this document. 

2 How to run a model with Cplex 

The following statement can be used inside your GAMS program to specify using Cplex 

     Option LP = Cplex ;   { or RMIP or MIP }

The above statement should appear before the Solve statement. The MIP capability is separately
licensed, so you may not be able to use Cplex for MIP problems on your system. If Cplex was specified
as the default solver during GAMS installation, the above statement is not necessary. 

3 Overview of Cplex 

3.1 Linear Programming 

Cplex solves LP problems using several alternative algorithms. The majority of LP problems solve best
using Cplex's state of the art modified primal simplex algorithm. Certain types of problems benefit from
using the alternative dual simplex algorithm, the network optimizer, or the barrier algorithm. The
algorithm that Cplex should use is specified with option lpalg. 

Solving linear programming problems is memory intensive. Even though Cplex manages memory very
efficiently, insufficient physical memory is one of the most common problems when running large LPs.
When memory is limited, Cplex will automatically make adjustments which may negatively impact
performance. If you are working with large models, study the section entitled Physical Memory
Limitations carefully. 

Cplex is designed to solve the majority of LP problems using default option settings. These settings
usually provide the best overall problem optimization speed and reliability. However, there are
occasionally reasons for changing option settings to improve performance, avoid numerical difficulties,
control optimization run duration, or control output options. 

Some problems solve faster with the dual simplex algorithm rather than the default primal simplex
algorithm. In particular, highly degenerate problems with little variability in the right-hand-side
coefficients but significant variability in the cost coefficients often solve much faster using dual simplex.
Also, very few problems exhibit poor numerical performance in both the primal and the dual. Therefore,
consider trying dual simplex if numerical problems occur while using primal simplex. 

Cplex has a very efficient algorithm for network models. Network constraints have the following
property: 

each non-zero coefficient is either a +1 or a -1 
each column appearing in these constraints has exactly 2 nonzero entries, one with a +1 coefficient
and one with a -1 coefficient 

Cplex can also automatically extract networks that do not adhere to the above conventions as long as

2 of 35

GAMS/Cplex 6.5 User Notes



they can be transformed to have those properties. 

The barrier algorithm is an alternative to the simplex method for solving linear programs. It employs a
primal-dual logarithmic barrier algorithm which generates a sequence of strictly positive primal and dual
solutions. Specifying the barrier algorithm may be advantageous for large, sparse problems. 

GAMS/Cplex also provides access to the Cplex Infeasibility Finder. The Infeasibility finder takes an
infeasible linear program and produces an irreducibly inconsistent set of constraints (IIS). An IIS is a set
of constraints and variable bounds which is infeasible but becomes feasible if any one member of the set
is dropped. GAMS/Cplex reports the IIS in terms of GAMS equation and variable names and includes
the IIS report as part of the normal solution listing. 

3.2 Mixed-Integer Programming 

The methods used to solve pure integer and mixed integer programming problems require dramatically
more mathematical computation than those for similarly sized pure linear programs. Many relatively
small integer programming models take enormous amounts of time to solve. 

For problems with integer variables, Cplex uses a branch and bound algorithm (with cuts) which solves
a series of LP subproblems. Because a single mixed integer problem generates many LP subproblems,
even small mixed integer problems can be very compute intensive and require significant amounts of
physical memory. 

4 GAMS Options 

The following GAMS options are used by GAMS/Cplex: 

Option IterLim = n; Sets the iteration limit. The algorithm will terminate and pass on the
current solution to GAMS. In case a pre-solve is done, the post-solve
routine will be invoked before reporting the solution. 

Cplex handles the iteration limit for MIP problems differently than some
other GAMS solvers. For MIP problems, controlling the length of the
solution run by limiting the execution time (ResLim) is preferable. 

IterLim is not used at all when solving an LP with the barrier algorithm.
By default, Cplex will use an iteration limit based on problem
characteristics. To specify a barrier iteration limit, use Cplex parameter
baritlim. 

OPTION ResLim = x; Sets the time limit in seconds. The algorithm will terminate and pass on
the current solution to GAMS. In case a pre-solve is done, the post-solve
routine will be invoked before reporting the solution. 

Option OptCA = x; Absolute optimality criterion for a MIP problem. 

Option OptCR = x ; Relative optimality criterion for a MIP problem. Notice that Cplex uses a
slightly different definition than GAMS normally uses. The OptCR option
signals Cplex to stop when 

3 of 35

GAMS/Cplex 6.5 User Notes



(|BP-BF|)/(1.0+|BP|) < OptCR

where BF is the objective function value of the current best integer
solution while BP is the best possible integer solution. The GAMS
definition is:

 (|BP-BF|)/(|BP|) < OptCR

Option Bratio = x; Determines whether or not to use an advanced basis. A value of 1.0
causes GAMS to instruct Cplex not to use an advanced basis. A value of
0.0 causes GAMS to construct a basis from whatever information is
available. The default value of 0.25 will nearly always cause GAMS to
pass along an advanced basis if a solve statement has previously been
executed. Note that using an advanced basis will disable the Cplex
presolve. Especially for mixed integer problems, the presolve may be
more beneficial than an advanced basis. 

Option SysOut = On; Will echo Cplex messages to the GAMS listing file. This option may be
useful in case of a solver failure. 

ModelName.OptFile = 1; Instructs Cplex to read the option file. The name of the option file is
cplex.opt. 

ModelName.Cheat = x; Cheat value: each new integer solution must be at least x better than the
previous one. Can speed up the search, but you may miss the optimal
solution. The cheat parameter is specified in absolute terms (like the
OptCA option). The Cplex option objdif overrides the GAMS cheat
parameter. 

ModelName.Cutoff = x; Cutoff value. When the branch and bound search starts, the parts of the
tree with an objective worse than x are deleted. This can sometimes speed
up the initial phase of the branch and bound algorithm. 

ModelName.PriorOpt = 1; Instructs Cplex to use priority branching information passed by GAMS
through the variable.prior parameters. 

ModelName.TryInt = x; Causes GAMS/Cplex to make use of current variable values when solving
a MIP problem. If a variable value is within x of a bound, it will be
moved to the bound and the preferred branching direction for that variable
will be set toward the bound. Moving the value to the bound allows the
variable to be part of an initial integer solution when using parameter
mipstart. The preferred branching direction will only be effective when
priorities are used. 

5 Summary of Cplex Options 

The various Cplex options are listed here by category, with a few words about each to indicate its
function. The options are listed again, in alphabetical order and with detailed descriptions, in the last
section of this document. 

5.1 Preprocessing and General Options 

4 of 35

GAMS/Cplex 6.5 User Notes



advind advanced basis use
aggfill aggregator fill parameter
aggind aggregator on/off
coeredind coefficient reduction on/off
depind dependency checker on/off
lpalg algorithm to use for solving an LP 
predual give dual problem to the optimizer
preind turn presolver on/off
prepass number of presolve applications to perform
printoptions write values of all options to the GAMS listing file
relaxpreind presolve for initial relaxation on/off
rerun rerun problem if presolve infeasible or unbounded
scaind matrix scaling on/off
tilim overrides the GAMS ResLim option

5.2 Simplex Algorithmic Options 

craind crash strategy (used to obtain starting basis)
dpriind dual simplex pricing
epper perturbation constant
iis run the IIS finder if the problem is infeasible
iisind IIS finder method to use
netfind attempt network extraction
netfinishalg algorithm to finish solution with after solving the network
perind force initial perturbation
perlim number of stalled iterations before perturbation
ppriind primal simplex pricing
pricelim pricing candidate list
reinv refactorization frequency
simthreads number of threads for parallel dual simplex algorithm

5.3 Simplex Limit Options 

itlim iteration limit
objllim objective function lower limit
objulim objective function upper limit
singlim limit on singularity repairs

5.4 Simplex Tolerance Options 

epmrk Markowitz pivot tolerance
epopt optimality tolerance

5 of 35

GAMS/Cplex 6.5 User Notes



eprhs feasibility tolerance

5.5 Barrier Specific Options 

baralg algorithm selection
barcolnz dense column handling
barepcomp convergence tolerance
bargrowth unbounded face detection
baritlim iteration limit
barmaxcor maximum correction limit
barobjrng maximum objective function
barorder row ordering algorithm selection
barthreads number of threads for parallel barrier algorithm
barvarup variable upper limit
crossoveralg crossover method

5.6 MIP Algorithmic Options 

bbinterval best bound interval
bndstrenind bound strengthening
brdir set branching direction
bttol backtracking limit
cliques clique cut generation
covers cover cut generation
cutlo lower cutoff for tree search
cutsfactor cut limit
cutup upper cutoff for tree search
flowcovers flow cover cut generation
gubcovers GUB cover cut generation
heurfreq heuristic frequency
heuristic initial integer solution heuristic
implbd implied bound cut generation
miphybalg crossover type when solving subproblems with barrier
mipordind priority list on/off
mipordtype priority order generation
mipstart use mip starting values
mipthreads number of threads for parallel mip algorithm
nodefiledir node storage directory
nodefileind node storage file indicator
nodefilelim node file size limit
nodelim maximum number of nodes to process

6 of 35

GAMS/Cplex 6.5 User Notes



nodesel node selection strategy
probe perform probing before solving a MIP
startalg algorithm for initial LP
strongcandlim size of the candidates list for strong branching
strongitlim limit on iterations per branch for strong branching
strongthreadlim number of threads for strong branching
subalg algorithm for subproblems
varsel variable selection strategy at each node

5.7 MIP Limit Options 

intsollim maximum number of integer solutions
nodelim maximum number of nodes to solve
trelim maximum space in memory for tree

5.8 MIP Tolerance Options 

epagap absolute stopping tolerance
epgap relative stopping tolerance
epint integrality tolerance
objdif over-rides GAMS Cheat parameter
relobjdif relative cheat parameter

5.9 Output Options 

bardisplay progress display level
mipdisplay progress display level
mipinterval progress display interval
netdisplay network display level
simdisplay simplex display level
writebas produce a Cplex basis file
writemps produce a Cplex MPS file
writelp produce a Cplex LP file
writesav produce a Cplex binary problem file
writesos produce a Cplex sos file

5.10 The GAMS/Cplex Options File 

The GAMS/Cplex options file consists of one option or comment per line. An asterisk (*) at the
beginning of a line causes the entire line to be ignored. Otherwise, the line will be interpreted as an
option name and value separated by any amount of white space (blanks or tabs). Anything after the value
will be ignored. 

Following is an example options file cplex.opt. 

7 of 35

GAMS/Cplex 6.5 User Notes



     lpalg dual
     simdisplay 2

It will cause Cplex to solve an LP with the dual simplex algorithm instead of the default primal
algorithm. The iteration log will have an entry for each iteration instead of an entry for each
refactorization. 

6 Special Notes 

6.1 Physical Memory Limitations 

For the sake of computational speed, Cplex should use only available physical memory rather than
virtual or paged memory. When Cplex recognizes that a limited amount of memory is available it
automatically makes algorithmic adjustments to compensate. These adjustments almost always reduce
optimization speed. Learning to recognize when these automatic adjustments occur can help to
determine when additional memory should be added to the computer. 

On virtual memory systems, if memory paging to disk is observed, a considerable performance penalty is
incurred. Increasing available memory will speed the solution process dramatically. 

Cplex performs an operation called refactorization at a frequency determined by the reinv option setting.
The longer Cplex works between refactorizations, the greater the amount of memory required to
complete each iteration. Therefore, one means for conserving memory is to increase the refactorization
frequency. Since refactorizing is an expensive operation, increasing the refactorization frequency by
reducing the reinv option setting generally will slow performance. Cplex will automatically increase the
refactorization frequency if it encounters low memory availability. This can be seen by watching the
iteration log. The default log reports problem status at every refactorization. If the number of iterations
between iteration log entries is decreasing, Cplex is increasing the refactorization frequency. Since
Cplex might increase the frequency to once per iteration, the impact on performance can be dramatic.
Providing additional memory should be beneficial. 

6.2 Using Special Ordered Sets 

For some models a special structure can be exploited. GAMS allows you to declare SOS1 and SOS2
variables (Special Ordered Sets of type 1 and 2). 

In Cplex the definition for SOS1 variables is: 

A set of variables for which at most one variable may be non-zero. 

The definition for SOS2 variables is: 

A set of variables for which at most two variables may be non-zero. If two variables are
non-zero, they must be adjacent in the set. 

6.3 Running Out of Memory for MIP problems 

8 of 35

GAMS/Cplex 6.5 User Notes



The most common difficulty when solving MIP problems is running out of memory. This problem arises
when the branch and bound tree becomes so large that insufficient memory is available to solve an LP
subproblem. As memory gets tight, you may observe frequent warning messages while Cplex attempts to
navigate through various operations within limited memory. If a solution is not found shortly the
solution process will be terminated with an unrecoverable integer failure message. 

The tree information saved in memory can be substantial. Cplex saves a basis for every unexplored node.
When utilizing the best bound method of node selection, the list of such nodes can become very long for
large or difficult problems. How large the unexplored node list can become is entirely dependent on the
actual amount of physical memory available and the actual size of the problem. Certainly increasing the
amount of memory available extends the problem solving capability. Unfortunately, once a problem has
failed because of insufficient memory, you can neither project how much further the process needed to
go nor how much memory would be required to ultimately solve it. 

Memory requirements can be limitted by using the trelim option with the nodefileind option. Setting
nodefileind to 2 or 3 will cause Cplex to store portions of the branch and bound tree on disk whenever it
grows to larger than the size specified by option trelim. That size should be set to something less than
the amount of physical memory available. 

Another approach is to modify the solution process to utilize less memory. 

Set option bttol to a number closer to 1.0 to cause more of a depth-first-search of the tree. 
Set option nodesel to use a best estimate strategy or, more drastically a depth-first-search. Depth
first search rarely generates a large unexplored node list since Cplex will be diving deep into the
branch and bound tree rather than jumping around within it. 
Set option varsel to use strong branching. Strong branching spends extra computation time at each
node to choose a better branching variable. As a result it generates a smaller tree. It is often faster
overall, as well. 
On some problems, a large number of cuts will be generated without a correspondingly large
benefit in solution speed. Cut generation can be turned off using options cliques, covers,
flowcovers, gubcovers, and implbd. 

6.4 Failing to Prove Integer Optimality 

One frustrating aspect of the branch and bound technique for solving MIP problems is that the solution
process can continue long after the best solution has been found. Remember that the branch and bound
tree may be as large as 2n nodes, where n equals the number of binary variables. A problem containing
only 30 binary variables could produce a tree having over one billion nodes! If no other stopping criteria
have been set, the process might continue ad infinitum until the search is complete or your computer's
memory is exhausted. 

In general you should set at least one limit on the optimization process before beginning an optimization.
Setting limits ensures that an exhaustive tree search will terminate in reasonable time. Once terminated,
you can rerun the problem using some different option settings. Consider some of the shortcuts
described previously for improving performance including setting the options for mip gap, objective
value difference, upper cutoff, or lower cutoff. 

9 of 35

GAMS/Cplex 6.5 User Notes



7 GAMS/Cplex Log file 

Cplex reports its progress by writing to the GAMS log file as the problem solves. Normally the GAMS
log file is directed to the computer screen. 

The log file shows statistics about the presolve and continues with an iteration log. 

For the primal simplex algorithm, the iteration log starts with the iteration number followed by the
scaled infeasibility value. Once feasibility has been attained, the objective function value is listed
instead. At the default value for option simdisplay there is a log line for each refactorization. The screen
log has the following appearance: 

Tried aggregator 1 time.
LP Presolve eliminated 2 rows and 39 columns.
Aggregator did 30 substitutions.
Reduced LP has 243 rows, 335 columns, and 3912 nonzeros.
Presolve time =    0.01 sec.
Using conservative initial basis.

Iteration log . . .
Iteration:     1    Scaled infeas =        193998.067174
Iteration:    29    Objective     =         -3484.286415
Switched to devex.
Iteration:    98    Objective     =         -1852.931117
Iteration:   166    Objective     =          -349.706562

Optimal solution found.

Objective :         901.161538

The iteration log for the dual simplex algorithm is similar, but the dual infeasibility and dual objective
are reported instead of the corresponding primal values: 

Tried aggregator 1 time.
LP Presolve eliminated 2 rows and 39 columns.
Aggregator did 30 substitutions.
Reduced LP has 243 rows, 335 columns, and 3912 nonzeros.
Presolve time =    0.01 sec.

Iteration log . . .
Iteration:     1   Scaled dual infeas =             3.890823
Iteration:    53   Dual objective     =          4844.392441
Iteration:   114   Dual objective     =          1794.360714
Iteration:   176   Dual objective     =          1120.183325
Iteration:   238   Dual objective     =           915.143030
Removing shift (1).

Optimal solution found.

Objective :         901.161538

10 of 35

GAMS/Cplex 6.5 User Notes



The log for the network algorithm adds statistics about the extracted network and a log of the network
iterations. The optimization is finished by one of the simplex algorithms and an iteration log for that is
produced as well. 

Tried aggregator 1 time.
LP Presolve eliminated 2 rows and 39 columns.
Aggregator did 30 substitutions.
Reduced LP has 243 rows, 335 columns, and 3912 nonzeros.
Presolve time =    0.01 sec.
Extracted network with 25 nodes and 116 arcs.
Extraction time =   -0.00 sec.
Iteration log . . .
Iteration:     0   Infeasibility     =          1232.378800 (-1.32326e+12)

Network - Optimal:  Objective =    1.5716820779e+03
Network time =    0.01 sec.  Iterations = 26 (24)

Iteration log . . .
Iteration:     1    Scaled infeas =        212696.154729
Iteration:    62    Scaled infeas =         10020.401232
Iteration:   142    Scaled infeas =          4985.200129
Switched to devex.
Iteration:   217    Objective     =         -3883.782587
Iteration:   291    Objective     =         -1423.126582

Optimal solution found.

Objective :         901.161538

The log for the barrier algorithm adds various algorithm specific statistics about the problem before
starting the iteration log. The iteration log includes columns for primal and dual objective values and
infeasibility values. A special log follows for the crossover to a basic solution. 

Tried aggregator 1 time.
LP Presolve eliminated 2 rows and 39 columns.
Aggregator did 30 substitutions.
Reduced LP has 243 rows, 335 columns, and 3912 nonzeros.
Presolve time =    0.02 sec.
Number of nonzeros in lower triangle of A*A' = 6545
Using Approximate Minimum Degree ordering
Total time for automatic ordering = 0.01 sec.
Summary statistics for Cholesky factor:
  Rows in Factor            = 243
  Integer space required    = 578
  Total non-zeros in factor = 8491
  Total FP ops to factor    = 410889
 Itn      Primal Obj        Dual Obj  Prim Inf Upper Inf  Dual Inf
   0  -1.2826603e+06   7.4700787e+08  2.25e+10  6.13e+06  4.00e+05
   1  -2.6426195e+05   6.3552653e+08  4.58e+09  1.25e+06  1.35e+05
   2  -9.9117854e+04   4.1669756e+08  1.66e+09  4.52e+05  3.93e+04
   3  -2.6624468e+04   2.1507018e+08  3.80e+08  1.04e+05  1.20e+04
   4  -1.2104334e+04   7.8532364e+07  9.69e+07  2.65e+04  2.52e+03

11 of 35

GAMS/Cplex 6.5 User Notes



   5  -9.5217661e+03   4.2663811e+07  2.81e+07  7.67e+03  9.92e+02
   6  -8.6929410e+03   1.4134077e+07  4.94e+06  1.35e+03  2.16e+02
   7  -8.3726267e+03   3.1619431e+06  3.13e-07  6.84e-12  3.72e+01
   8  -8.2962559e+03   3.3985844e+03  1.43e-08  5.60e-12  3.98e-02
   9  -3.8181279e+03   2.6166059e+03  1.58e-08  9.37e-12  2.50e-02
  10  -5.1366439e+03   2.8102021e+03  3.90e-06  7.34e-12  1.78e-02
  11  -1.9771576e+03   1.5960442e+03  3.43e-06  7.02e-12  3.81e-03
  12  -4.3346261e+02   8.3443795e+02  4.99e-07  1.22e-11  7.93e-04
  13   1.2882968e+02   5.2138155e+02  2.22e-07  1.45e-11  8.72e-04
  14   5.0418542e+02   5.3676806e+02  1.45e-07  1.26e-11  7.93e-04
  15   2.4951043e+02   6.5911879e+02  1.73e-07  1.43e-11  5.33e-04
  16   2.4666057e+02   7.6179064e+02  7.83e-06  2.17e-11  3.15e-04
  17   4.6820025e+02   8.1319322e+02  4.75e-06  1.78e-11  2.57e-04
  18   5.6081604e+02   7.9608915e+02  3.09e-06  1.98e-11  2.89e-04
  19   6.4517294e+02   7.7729659e+02  1.61e-06  1.27e-11  3.29e-04
  20   7.9603053e+02   7.8584631e+02  5.91e-07  1.91e-11  3.00e-04
  21   8.5871436e+02   8.0198336e+02  1.32e-07  1.46e-11  2.57e-04
  22   8.8146686e+02   8.1244367e+02  1.46e-07  1.84e-11  2.29e-04
  23   8.8327998e+02   8.3544569e+02  1.44e-07  1.96e-11  1.71e-04
  24   8.8595062e+02   8.4926550e+02  1.30e-07  2.85e-11  1.35e-04
  25   8.9780584e+02   8.6318712e+02  1.60e-07  1.08e-11  9.89e-05
  26   8.9940069e+02   8.9108502e+02  1.78e-07  1.07e-11  2.62e-05
  27   8.9979049e+02   8.9138752e+02  5.14e-07  1.88e-11  2.54e-05
  28   8.9979401e+02   8.9139850e+02  5.13e-07  2.18e-11  2.54e-05
  29   9.0067378e+02   8.9385969e+02  2.45e-07  1.46e-11  1.90e-05
  30   9.0112149e+02   8.9746581e+02  2.12e-07  1.71e-11  9.61e-06
  31   9.0113610e+02   8.9837069e+02  2.11e-07  1.31e-11  7.40e-06
  32   9.0113661e+02   8.9982723e+02  1.90e-07  2.12e-11  3.53e-06
  33   9.0115644e+02   9.0088083e+02  2.92e-07  1.27e-11  7.35e-07
  34   9.0116131e+02   9.0116262e+02  3.07e-07  1.81e-11  3.13e-09
  35   9.0116154e+02   9.0116154e+02  4.85e-07  1.69e-11  9.72e-13
Barrier time =    0.39 sec.

Primal crossover.
  Primal:  Fixing 13 variables.
       12 PMoves:  Infeasibility  1.97677059e-06  Objective  9.01161542e+02
        0 PMoves:  Infeasibility  0.00000000e+00  Objective  9.01161540e+02
  Primal:  Pushed 1, exchanged 12.
  Dual:  Fixing 3 variables.
        2 DMoves:  Infeasibility  1.28422758e-36  Objective  9.01161540e+02
        0 DMoves:  Infeasibility  1.28422758e-36  Objective  9.01161540e+02
  Dual:  Pushed 3, exchanged 0.
Using devex.
Total crossover time =    0.02 sec.

Optimal solution found.

Objective :         901.161540

For MIP problems, during the branch and bound search, Cplex reports the node number, the number of
nodes left, the value of the Objective function, the number of integer variables that have fractional
values, the current best integer solution, the best relaxed solution at a node and an iteration count. The
last column show the current optimality gap as a percentage. 

Tried aggregator 1 time.
MIP Presolve eliminated 1 rows and 1 columns.
Reduced MIP has 99 rows, 76 columns, and 419 nonzeros.
Presolve time =    0.00 sec.

12 of 35

GAMS/Cplex 6.5 User Notes



Iteration log . . .
Iteration:     1   Dual objective     =             0.000000
Root relaxation solution time =    0.01 sec.

        Nodes                                         Cuts/
   Node  Left     Objective  IInf  Best Integer     Best Node    ItCnt     Gap

      0     0        0.0000    24                      0.0000       40
*     0+    0        6.0000     0        6.0000        0.0000       40  100.00%
*    50+   50        4.0000     0        4.0000        0.0000      691  100.00%
    100    99        2.0000    15        4.0000        0.4000     1448   90.00%
Fixing integer variables, and solving final LP..
Tried aggregator 1 time.
LP Presolve eliminated 100 rows and 77 columns.
All rows and columns eliminated.
Presolve time =    0.00 sec.

Solution satisfies tolerances.

MIP Solution    :            4.000000    (2650 iterations, 185 nodes)
Final LP                :            4.000000    (0 iterations)

Best integer solution possible :           1.000000
Absolute gap                    :                  3
Relative gap                    :                1.5

8 Detailed Descriptions of Cplex Options 

These options should be entered in the options file after setting the GAMS ModelName.OptFile
parameter to 1. The name of the option file is 'cplex.opt'. The option file is case sensitive and the
keywords should be given in full. 

advind (integer) 

Use an Advanced Basis. GAMS/Cplex will automatically use an advanced basis from a previous solve
statement. The GAMS Bratio option can be used to specify when not to use an advanced basis. The
Cplex option advind can be used to ignore a basis passed on by GAMS (it overrides the Bratio option).
Note that using an advanced basis will disable the Cplex presolve. 
(default is determined by GAMS Bratio) 

0 do not use advanced basis
1 use advanced basis if available

aggfill (integer) 

Aggregator fill limit. If the net result of a single substitution is more non-zeros than the setting of the
AGGFILL parameter, the substitution will not be made. 
(default = 10) 

aggind (integer) 

13 of 35

GAMS/Cplex 6.5 User Notes



This option, when set to a nonzero value, will cause the Cplex aggregator to use substitution where
possible to reduce the number of rows and columns in the problem. If set to a positive value, the
aggregator will be applied the specified number of times, or until no more reductions are possible. At the
default value of -1, the aggregator is applied once for linear programs and an unlimited number of times
for mixed integer problems. 
(default = -1) 

-1 once for LP, unlimited for MIP
0 do not use

baralg (integer) 

Selects which barrier algorithm to use. The default setting of 0 uses the infeasibility-estimate start
algorithm for MIP subproblems and the standard barrier algorithm, option 3, for other cases. The
standard barrier algorithm is almost always fastest. The alternative algorithms, options 1 and 2, may
eliminate numerical difficulties related to infeasibility, but will generally be slower. 
(default = 0) 

0 Same as 1 for MIP subproblems, 3 otherwise
1 Infeasibility-estimate start
2 Infeasibility-constant start
2 standard barrier algorithm

barcolnz (integer) 

Determines whether or not columns are considered dense for special barrier algorithm handling. At the
default setting of 0, this parameter is determined dynamically. Values above 0 specify the number of
entries in columns to be considered as dense. 
(default = 0) 

bardisplay (integer) 

Determines the level of progress information to be displayed while the barrier method is running. 
(default = 1) 

0 No progress information
1 Display normal information
2 Display diagnostic information

barepcomp (real) 

Determines the tolerance on complementarity for convergence of the barrier algorithm. The algorithm
will terminate with an optimal solution if the relative complementarity is smaller than this value. 
(default = 1.0 e-8) 

bargrowth (real) 

14 of 35

GAMS/Cplex 6.5 User Notes



Used by the barrier algorithm to detect unbounded optimal faces. At higher values, the barrier algorithm
will be less likely to conclude that the problem has an unbounded optimal face, but more likely to have
numerical difficulties if the problem does have an unbounded face. 
(default = 1.0 e6) 

baritlim (integer) 

Determines the maximum number of iterations for the barrier algorithm. The default value of -1 allows
Cplex to automatically determine the limit based on problem characteristics. 
(default = -1) 

barmaxcor (integer) 

Specifies the maximum number of centering corrections that should be done on each iteration. Larger
values may improve the numerical performance of the barrier algorithm at the expense of computation
time. The default of -1 means the number is automatically determined. 
Range - [-1, 10] 
(default = -1) 

barobjrng (real) 

Determines the maximum absolute value of the objective function. The barrier algorithm looks at this
limit to detect unbounded problems. 
(default = 1.0 e20) 

barorder (integer) 

Determines the ordering algorithm to be used by the barrier method. By default, Cplex attempts to
choose the most effective of the available alternatives. Higher numbers tend to favor better orderings at
the expense of longer ordering runtimes. 
(default = 0) 

0 Automatic
1 Approximate Minimum Degree (AMD)
2 Approximate Minimum Fill (AMF)
3 Nested Dissection (ND)

barstartalg (integer) 

This option sets the algorithm to be used to compute the initial starting point for the barrier solver. The
default starting point is satisfactory for most problems. Since the default starting point is tuned for
primal problems, using the other starting points may be worthwhile in conjunction with the predual
parameter. 
(default = 1) 

15 of 35

GAMS/Cplex 6.5 User Notes



1 default primal, dual is 0
2 default primal, estimate dual
3 primal average, dual is 0
4 primal average, estimate dual

barthreads (integer) 

This option sets a limit on the number of threads available to the parallel barrier algorithm. The actual
number of processors used will be the minimum of this number and the number of available processors.
The parallel option is separately licensed. 
(default = the number of threads licensed) 

barvarup (real) 

Determines an upper bound for all variables that have no finite upper bound. This number is used by the
barrier algorithm to detect unbounded optimal faces. 
(default = 1.0 e20) 

bbinterval (integer) 

Set interval for selecting a best bound node when doing a best estimate search. Active only when nodesel
is 2 (best estimate). Decreasing this interval may be useful when best estimate is finding good solutions
but making little progress in moving the bound. Increasing this interval may help when the best estimate
node selection is not finding any good integer solutions. Setting the interval to 1 is equivalent to setting
nodesel to 1. 
(default = 7) 

bndstrenind (integer) 

Use bound strengthening when solving mixed integer problems. Bound strengthening tightens the
bounds on variables, perhaps to the point where the variable can be fixed and thus removed from
consideration during the branch and bound algorithm. This reduction is usually beneficial, but
occasionaly, due to its iterative nature, takes a long time. 
(default = -1) 

-1 Determine automatically
0 Don't use bound strengthening
1 Use bound strengthening

brdir (integer) 

Used to decide which branch (up or down) should be taken first at each node. 
(default = 0) 

16 of 35

GAMS/Cplex 6.5 User Notes



-1 Down branch selected first
0 Algorithm decides
1 Up branch selected first

bttol (real) 

This option controls how often backtracking is done during the branching process. At each node, Cplex
compares the objective function value or estimated integer objective value to these values at parent
nodes; the value of the bttol parameter dictates how much relative degradation is tolerated before
backtracking. Lower values tend to increase the amount of backtracking, making the search more of a
pure best-bound search. Higher values tend to decrease the amount of backtracking, making the search
more of a depth-first search. This parameter is used only once a first integer solution is found or when a
cutoff has been specified. 
Range: [0.0, 1.0] 
(default = 0.01) 

cliques (integer) 

Determines whether or not clique cuts should be generated during optimization. 
(default = 0) 

-1 Do not generate clique cuts
0 Determined automatically
1 Generate clique cuts at the root node only
2 Generate clique cuts throughout the tree

coeredind (integer) 

Coefficient reduction is a technique used when presolving mixed integer programs. The benefit is to
improve the objective value of the initial (and subsequent) linear programming relaxations by reducing
the number of non-integral vertices. However, the linear programs generated at each node may become
more difficult to solve. 
(default = 2) 

0 Do not use coefficient reduction
1 Reduce only to integral coefficients
2 Reduce all potential coefficients

covers (integer) 

Determines whether or not cover cuts should be generated during optimization. 
(default = 0) 

17 of 35

GAMS/Cplex 6.5 User Notes



-1 Do not generate cover cuts
0 Determined automatically
1 Generate cover cuts at the root node only
2 Generate cover cuts throughout the tree

craind (integer) 

The crash option biases the way Cplex orders variables relative to the objective function when selecting
an initial basis. 
(default = 1) 

Primal: 
0 ignore objective coefficients during crash
-1, 1 alternate ways of using objective coefficients

Dual: 
0, -1 aggressive starting basis
1 default starting basis

crossoveralg (string) 

Specifies the method to be used for creating a basis after solving with the barrier algorithm. 
(default = primal) 

primal primal crossover
dual dual crossover
none no crossover; solution is non-basic

cutlo (real) 

Lower cutoff value for tree search in maximization problems. This is used to cut off any nodes that have
an objective value below the lower cutoff value. This option overrides the GAMS Cutoff setting. A too
restrictive value may result in no integer solutions being found. 
(default = -1 e +75) 

cutsfactor (real) 

This option limits the number of cuts that can be added. The number of rows in the problem with cuts
added is limited to cutsfactor times the original (after presolve) number of rows. 
(default = 4.0) 

cutup (real) 

Upper Cutoff value for tree search in minimization problems. This is used to cut off any nodes that have
an objective value above the upper cutoff value. This option overrides the GAMS Cutoff setting. A too
restrictive value may result in no integer solutions being found. 

18 of 35

GAMS/Cplex 6.5 User Notes



(default = 1 e +75) 

depind (integer) 

This option determines if the dependency checker will be used. 
(default = 0) 

0 Do not use the dependency checker
1 Use the dependency checker

dpriind (integer) 

Pricing strategy for dual simplex method. Consider using dual steepest-edge pricing. Dual steepest-edge
is particularly efficient and does not carry as much computational burden as the primal steepest-edge
pricing. 
(default = 0) 

0 Determined automatically
1 Standard dual pricing
2 Steepest-edge pricing
3 Steepest-edge pricing in slack space
4 Steepest-edge pricing, unit initial norms

epagap (real) 

Absolute tolerance on the gap between the best integer objective and the objective of the best node
remaining. When the value falls below the value of the epagap setting, the optimization is stopped. This
option overrides GAMS OptCA which provides its initial value. 
(default = GAMS OptCA) 

epgap (real) 

Relative tolerance on the gap between the best integer objective and the objective of the best node
remaining. When the value falls below the value of the epgap setting, the mixed integer optimization is
stopped. Note the difference in the Cplex definition of the relative tolerance with the GAMS definition.
This option overrides GAMS OptCR which provides its initial value. 
Range: [0.0, 1.0] 
(default = GAMS OptCR) 

epint (real) 

Integrality Tolerance. This specifies the amount by which an integer variable can be different than an
integer and still be considered feasible. 
Range: [1.0e-9, 1.0] 
(default = 1.0e-5) 

epmrk (real) 

19 of 35

GAMS/Cplex 6.5 User Notes



The Markowitz tolerance influences pivot selection during basis factorization. Increasing the Markowitz
threshold may improve the numerical properties of the solution. 
Range - [0.0001, 0.99999] 
(default = 0.01) 

epopt (real) 

The optimality tolerance influences the reduced-cost tolerance for optimality. This option setting governs
how closely Cplex must approach the theoretically optimal solution. 
Range - [1.0e-9, 1.0e-4] 
(default = 1.0e-6) 

epper (integer) 

Perturbation setting. Highly degenerate problems tend to stall optimization progress. Cplex
automatically perturbs the variable bounds when this occurs. Perturbation expands the bounds on every
variable by a small amount thereby creating a different but closely related problem. Generally, the
solution to the less constrained problem is easier to solve. Once the solution to the perturbed problem
has advanced as far as it can go, Cplex removes the perturbation by resetting the bounds to their original
values. 

If the problem is perturbed more than once, the perturbation constant is probably too large. Reduce the
epper option to a level where only one perturbation is required. Any non-negative values are valid. 
(default = 1.0e-6) 

eprhs (real) 

Feasibility tolerance. This specifies the degree to which a problem's basic variables may violate their
bounds. This tolerance influences the selection of an optimal basis and can be reset to a lower value
when a problem is having difficulty maintaining feasibility during optimization. You may also wish to
lower this tolerance after finding an optimal solution if there is any doubt that the solution is truly
optimal. If the feasibility tolerance is set too low, Cplex may falsely conclude that a problem is
infeasible. 
Range - [1.0e-9, 1.0e-4] 
(default = 1.0e-6) 

flowcovers (integer) 

Determines whether or not flow cover cuts should be generated during optimization. 
(default = 0) 

-1 Do not generate flow cover cuts
0 Determined automatically
1 Generate flow cover cuts at the root node only
2 Generate flow cover cuts throughout the tree

gubcovers (integer) 

20 of 35

GAMS/Cplex 6.5 User Notes



Determines whether or not GUB (Generalized Upper Bound) cover cuts should be generated during
optimization. 
(default = 0) 

-1 Do not generate GUB cover cuts
0 Determined automatically
1 Generate GUB cover cuts at the root node only
2 Generate GUB cover cuts throughout the tree

heurfreq (integer) 

This option specifies how often to apply the node heuristic. 
(default = 0) 

-1 Do not use the node heuristic
0 Determined automatically

heuristic (integer) 

Affects the use of heuristics in finding an initial integer feasible solution. 
(default = -1) 

-1 Do not use heuristics
0 Determined automatically
1 Use a heuristic at node 0

iis (string) 

Find an IIS (Irreducably Inconsistent Set of constraints) and write an IIS report to the GAMS solution
listing if the model is found to be infeasible. Legal option values are yes or no. 
(default = yes) 

iisind (integer) 

This option specifies which method to use for finding an IIS (Irreducably Inconsistent Set of constraints).
Note that the iis option must be set to cause an IIS computation. This option just specifies the method. 
(default = 0) 

0 Method with minimum computation time
1 Method generating minimum size for the IIS

implbd (integer) 

Determines whether or not implied bound cuts should be generated during optimization. 
(default = 0) 

21 of 35

GAMS/Cplex 6.5 User Notes



-1 Do not generate implied bound cuts
0 Determined automatically
1 Generate implied bound cuts at the root node only
2 Generate implied bound cuts throughout the tree

intsollim (integer) 

This option limits the MIP optimization to finding only this number of mixed integer solutions before
stopping. 
(default = 2,100,000,000) 

itlim (integer) 

The iteration limit option sets the maximum number of iterations before the algorithm terminates,
without reaching optimality. This Cplex option overrides the GAMS IterLim option. Any non-negative
integer value is valid. 
(default = GAMS IterLim) 

lpalg (string) 

The algorithm to use when solving an LP. 
(default = primal) 

primal primal simplex
dual dual simplex
network network algorithm followed by primal or dual simplex as specified by option netfinishalg. 
barrier barrier algorithm with optional crossover to a basic solution as specified by option

crossoveralg. 

mipdisplay (integer) 

The amount of information displayed during MIP solution increases with increasing values of this
option. 
(default = 4) 

0 No display
1 Display integer feasible solutions.
2 Displays nodes under mipinterval control.
3 Same as 2 but adds information on cuts. 
4 Same as 3 but adds LP display for the root node.
5 Same as 3 but adds LP display for all nodes.

miphybalg (integer) 

22 of 35

GAMS/Cplex 6.5 User Notes



Determines the type of crossover to use when the barrier algorithm is used for solving MIP subproblems.

(default = 1) 

1 primal
2 dual

mipinterval (integer) 

The MIP interval option value determines the frequency of the node logging when the mipdisplay option
is set to 2 or 3. If the value of the MIP interval option setting is n, then only every nth node, plus all
integer feasible nodes, will be logged. This option is useful for selectively limiting the volume of
information generated for a problem that requires many nodes to solve. Any non-negative integer value
is valid. 
(default = 100) 

mipordind (integer) 

Use priorities. Priorities should be assigned based on your knowledge of the problem. Variables with
higher priorities will be branched upon before variables of lower priorities. This direction of the tree
search can often dramatically reduce the number of nodes searched. For example, consider a problem
with a binary variable representing a yes/no decision to build a factory, and other binary variables
representing equipment selections within that factory. You would naturally want to explore whether or
not the factory should be built before considering what specific equipment to purchased within the
factory. By assigning a higher priority to the build/nobuild decision variable, you can force this logic into
the tree search and eliminate wasted computation time exploring uninteresting portions of the tree. When
set at 0 (default), the mipordind option instructs Cplex not to use priorities for branching. When set to 1,
priority orders are utilized. 

Note: Priorities are assigned to discrete variables using the .prior suffix in the GAMS model. Lower
.prior values mean higher priority. The .prioropt model suffix has to be used to signal GAMS to export
the priorities to the solver. 
(default = 1) 

0 Do not use priorities for branching
1 Priority orders are utilized

mipordtype (integer) 

This option is used to select the type of generic priority order to generate when no priority order is
present. 
(default = 0) 
0 None
1 decreasing cost magnitude
2 increasing bound range
3 increasing cost per coefficient count

23 of 35

GAMS/Cplex 6.5 User Notes



mipstart (integer) 

This option controls the use of advanced starting values for mixed integer programs. A setting of 1
indicates that the values should be checked to see if they provide an integer feasible solution before
starting optimization. 
(default = 0) 

0 do not use the values
1 use the values

mipthreads (integer) 

This option sets a limit on the number of threads available to the parallel mip algorithm. The actual
number of processors used will be the minimum of this number and the number of available processors.
The parallel option is separately licensed. 
(default = the number of threads licensed) 

netdisplay (integer) 

This option controls the log for network iterations. 
(default = 2) 

0 No network log.
1 Displays true objective values.
2 Displays penalized objective values.

netfind (integer) 

Specifies the level of network extraction to be done. Note that option lpalg must be used to cause the
network algorithm to execute. This option only specifies the level of network extraction. 
(default = 2) 

0 Cplex automatically determines the level of network extraction to be done.
1 Extract pure network only
2 Try reflection scaling
3 Try general scaling

netfinishalg (string) 

When using the network algorithm, either the primal or dual simplex method can be used to finish the
solution. 
(default = primal) 

primal Use primal simplex.
dual Use dual simplex.

24 of 35

GAMS/Cplex 6.5 User Notes



nodefiledir (string) 

Directory for use in storing node files. This parameter can be overridden by using an environment
variable (TMPDIR under Unix and TMP under Windows 95 or NT). 
(default = GAMS scratch directory) 

nodefileind (integer) 

Node files are used when the tree memory limit (option trelim) is reached. At the default value of 0,
optimization is terminated if trelim is reached. Otherwise a group of nodes is removed from memory and
transferred to a node file. The group of nodes is returned to memory as needed. Using node files is a
much better option than using swap space. 
(default = 0) 

0 No node files
1 Node files in memory and compressed
2 Node files on disk
3 Node files on disk and compressed

nodefilelim (real) 

The maximum amount of disk space the node files can consume before the optimization is terminated. 
(default = 1.0e+75) 

nodelim (integer) 

The maximum number of nodes solved before the algorithm terminates, without reaching optimality. 

nodesel (integer) 

This option is used to set the rule for selecting the next node to process when backtracking. 
(default = 1) 

0 Depth-first search. This chooses the most recently created node.
1 Best-bound search. This chooses the unprocessed node with the best objective function for the

associated LP relaxation.
2 Best-estimate search. This chooses the node with the best estimate of the integer objective value that

would be obtained once all integer infeasibilities are removed.
3 Alternate best-estimate search.

objdif (real) 

A means for automatically updating the cutoff to more restrictive values. Normally the most recently
found integer feasible solution objective value is used as the cutoff for subsequent nodes. When this
option is set to a positive value, the value will be subtracted from (added to) the newly found integer
objective value when minimizing (maximizing). This forces the MIP optimization to ignore integer
solutions that are not at least this amount better than the one found so far. The option can be adjusted to

25 of 35

GAMS/Cplex 6.5 User Notes



improve problem solving efficiency by limiting the number of nodes; however, setting this option at a
value other than zero (the default) can cause some integer solutions, including the true integer optimum,
to be missed. Negative values for this option will result in some integer solutions that are worse than or
the same as those previously generated, but will not necessarily result in the generation of all possible
integer solutions. This option overrides the GAMS Cheat parameter. 
(default = 0.0) 

objllim (real) 

Setting a lower objective function limit will cause Cplex to halt the optimization process once the
minimum objective function value limit has been exceeded. 
(default = -1.0e+75) 

objulim (real) 

Setting an upper objective function limit will cause Cplex to halt the optimization process once the
maximum objective function value limit has been exceeded. 
(default = 1.0e+75) 

perind (integer) 

Perturbation Indicator. If a problem automatically perturbs early in the solution process, consider starting
the solution process with a perturbation by setting perind to 1. Manually perturbing the problem will
save the time of first allowing the optimization to stall before activating the perturbation mechanism, but
is useful only rarely, for extremely degenerate problems. 
(default = 0) 

0 not automatically perturbed
1 automatically perturbed

perlim (integer) 

Perturbation limit. The number of stalled iterations before perturbation is invoked. The default value of 0
means the number is determined automatically. 
(default = 0) 

ppriind (integer) 

Pricing algorithm. Likely to show the biggest impact on performance. Look at overall solution time and
the number of Phase I and total iterations as a guide in selecting alternate pricing algorithms. If you are
using the dual Simplex method use dpriind to select a pricing algorithm. If the number of iterations
required to solve your problem is approximately the same as the number of rows in your problem, then
you are doing well. Iteration counts more than three times greater than the number of rows suggest that
improvements might be possible. 
(default = 0) 

26 of 35

GAMS/Cplex 6.5 User Notes



-1 Reduced-cost pricing. This is less compute intensive and may be preferred if the problem is small or
easy. This option may also be advantageous for dense problems (say 20 to 30 nonzeros per column).

0 Hybrid reduced-cost and Devex pricing.
1 Devex pricing. This may be useful for more difficult problems which take many iterations to

complete Phase I. Each iteration may consume more time, but the reduced number of total iterations
may lead to an overall reduction in time. Tenfold iteration count reductions leading to threefold
speed improvements have been observed. Do not use devex pricing if the problem has many
columns and relatively few rows. The number of calculations required per iteration will usually be
disadvantageous.

2 Steepest edge pricing. If devex pricing helps, this option may be beneficial. Steepest-edge pricing is
computationally expensive, but may produce the best results on exceptionally difficult problems.

3 Steepest edge pricing with slack initial norms. This reduces the computationally intensive nature of
steepest edge pricing.

4 Full pricing

predual (integer) 

Solve the dual. Some linear programs with many more rows than columns may be solved faster by
explicitly solving the dual. The predual option will cause Cplex to solve the dual while returning the
solution in the context of the original problem. This option is ignored if presolve is turned off. 
(default = 0) 

0 do not give dual to optimizer
1 give dual to optimizer

preind (integer) 

Perform Presolve. This helps most problems by simplifying, reducing and eliminating redundancies.
However, if there are no redundancies or opportunities for simplification in the model, if may be faster
to turn presolve off to avoid this step. On rare occasions, the presolved model, although smaller, may be
more difficult than the original problem. In this case turning the presolve off leads to better performance.
Specifying 0 turns the aggregator off as well. 
(default = 1) 

0 Do not presolve the problem
1 Perform the presolve

prepass (integer) 

Number of MIP presolve applications to perform. By default, Cplex determines this automatically.
Specifying 0 turns off the presolve but not the aggregator. Set preind to 0 to turn both off. 
(default = -1) 

-1 Determined automatically
0 No presolve

27 of 35

GAMS/Cplex 6.5 User Notes



pricelim (integer) 

Size for the pricing candidate list. Cplex dynamically determines a good value based on problem
dimensions. Only very rarely will setting this option manually improve performance. Any non-negative
intege values are valid. 
(default = 0, in which case it is determined automatically) 

printoptions (string) 

Write the values of all options to the GAMS listing file. Valid values are no or yes. 
(default = no) 

probe (integer) 

Determines the amount of probing performed on a MIP. Probing can be both very powerful and very
time consuming. Setting the value to 1 can result in dramatic reductions or dramatic increases in solution
time depending on the particular model. 
(default = 0) 

-1 no probing
0 automatic
1 full probing

reinv (integer) 

Refactorization Frequency. This option determines the number of iterations between refactorizations of
the basis matrix. The default should be optimal for most problems. Cplex's performance is relatively
insensitive to changes in refactorization frequency. Only for extremely large, difficult problems should
reducing the number of iterations between refactorizations be considered. Any non-negative integer
value is valid. 
(default = 0, in which case it is determined automatically) 

relaxpreind (integer) 

This option will cause the Cplex presolve to be invoked for the initial relaxation of a mixed integer
program (according to the other presolve option settings). Sometimes, additional reductions can be made
beyond any MIP presolve reductions that may already have been done. 
(default = 0) 

0 do not presolve initial relaxation
1 use presolve on initial relaxation

relobjdif (real) 

The relative version of the objdif option. Ignored if objdif is non-zero. 
(default = 0) 

rerun (string) 

28 of 35

GAMS/Cplex 6.5 User Notes



The Cplex presolve can sometimes diagnose a problem as being infeasible or unbounded. When this
happens, GAMS/Cplex can, in order to get better diagnostic information, rerun the problem with the
presolve and aggregator turned off. The GAMS solution listing will then mark variables and equations as
infeasible or unbounded according to the final solution returned by the simplex algorithm. The iis option
can be used to get even more diagnostic information. The rerun option controls this behavior. Valid
values are yes or no. 
(default = yes) 

scaind (integer) 

This option influences the scaling of the problem matrix. 
(default = 0) 

-1 No scaling
0 Standard scaling - An equilibration scaling method is implemented which is generally very effective.
1 Modified, more aggressive scaling method that can produce improvements on some problems. This

scaling should be used if the problem is observed to have difficulty staying feasible during the
solution process.

simdisplay (integer) 

This option controls what Cplex reports (normally to the screen) during optimization. The amount of
information displayed increases as the setting value increases. 
(default = 1) 

0 No iteration messages are issued until the optimal solution is reported.
1 An iteration log message will be issued after each refactorization. Each entry will contain the

iteration count and scaled infeasibility or objective value.
2 An iteration log message will be issued after each iteration. The variables, slacks and artificials

entering and leaving the basis will also be reported.

simthreads (integer) 

This option sets a limit on the number of threads available to the parallel simplex algorithm. The actual
number of processors used will be the minimum of this number and the number of available processors.
The parallel option is separately licensed. 
(default = the number of threads licensed) 

singlim (integer) 

The singularity limit setting restricts the number of times Cplex will attempt to repair the basis when
singularities are encountered. Once the limit is exceeded, Cplex replaces the current basis with the best
factorizable basis that has been found. Any non-negative integer value is valid. 
(default = 10) 

startalg (integer) 

29 of 35

GAMS/Cplex 6.5 User Notes



Selects the algorithm to use for the initial relaxation of a MIP. 
(default = 2) 

1 primal simplex
2 dual simplex
3 network followed by dual simplex
4 barrier with crossover
5 dual simplex to iteration limit, then barrier
6 barrier without crossover

strongcandlim (integer) 

Limit on the length of the candidate list for strong branching (varsel = 3). 
(default = 10) 

strongitlim (integer) 

Limit on the number of iterations per branch in strong branching (varsel = 3). The default value of 0
causes the limit to be chosen automatically which is normally satisfactory. Try reducing this value if the
time per node seems excessive. Try increasing this value if the time per node is reasonable but Cplex is
making little progress. 
(default = 0) 

strongthreadlim (integer) 

Controls the number of parallel threads available for strong branching (varsel = 3). This option does
nothing if option mipthreads is greater than 1. 
(default = 1) 

subalg (integer) 

Strategy for solving linear sub-problems at each node. 
(default = 2) 

1 primal simplex
2 dual simplex
3 network optimizer followed by dual simplex
4 barrier with crossover
5 dual simplex to iteration limit, then barrier
6 barrier without crossover

tilim (real) 

The time limit setting determines the amount of time in seconds that Cplex will continue to solve a
problem. This Cplex option overrides the GAMS ResLim option. Any non-negative value is valid. 
(default = GAMS ResLim) 

30 of 35

GAMS/Cplex 6.5 User Notes



trelim (real) 

Maximum amount of space in megabytes that the branch and bound tree can consume in memory. Any
positive value is valid. Consider allocating half of a machine's memory to the tree to a maximum of
about 32 megabytes. Larger values provide only marginal improvement relative to the use of node files
(option nodefilind). 
(default = 1.0e+75) 

varsel (integer) 

This option is used to set the rule for selecting the branching variable at the node which has been
selected for branching. The default value of 0 allows Cplex to select the best rule based on the problem
and its progress. 
(default = 0) 

-1 Branch on variable with minimum infeasibility. This rule may lead more quickly to a first integer
feasible solution, but will usually be slower overall to reach the optimal integer solution.

0 Branch variable automatically selected.
1 Branch on variable with maximum infeasibility. This rule forces larger changes earlier in the tree,

which tends to produce faster overall times to reach the optimal integer solution.
2 Branch based on pseudo costs. Generally, the pseudo-cost setting is more effective when the

problem contains complex trade-offs and the dual values have an economic interpretation.
3 Strong Branching. This setting causes variable selection based on partially solving a number of

subproblems with tentative branches to see which branch is most promising. This is often effective
on large, difficult problems.

4 Branch based on pseudo reduced costs. 

writebas (character string) 

Write a basis file. 

writelp (character string) 

Write a file in Cplex LP format. 

writemps (character string) 

Write an MPS problem file. 

writesav (character string) 

Write a binary problem file. 

writesos (character string) 

Write a file containing the SOS structure. For models with SOS variables only. 

31 of 35

GAMS/Cplex 6.5 User Notes



Appendix: Cplex Licensing 

The Cplex library, upon which GAMS/Cplex is based, uses a license manager to control use of the
library. This is in addition to the normal GAMS license. 

GAMS/Cplex licensing operations are performed using a set of commands described below. Using these
commands (instead of running the Cplex licensing utility directly) will ensure that the license is set up in
a standard way. This will avoid potential conflicts with other products and will make support easier if
problems do arise. 

The same set of licensing commands is used on PCs and Unix machines. The differences in how they
operate are described in the next couple of sections. For both platforms, the command files reside in the
cplex subdirectory of the GAMS system directory. When they are run, though, the current directory
should be the GAMS system directory. The commands therefore look like cplex\update on a PC, or
cplex/update on a Unix machine. 

PC Licensing

If no evidence is seen of another Cplex license, a GAMS/Cplex demonstration license will be installed
automatically at GAMS installation (gamsinst) time. 

A GAMS/Cplex license is installed in a standard location. This location depends on the machine
configuration and the operating system that is being used, but that information is determined
automatically. An environment variable, CPLEXLICDIR, will be automatically defined whenever one of
the licensing commands is being run as well as when GAMS/Cplex is actually solving a model.
CPLEXLICDIR should not be set manually unless requested by GAMS support. 

Unix Licensing

A GAMS/Cplex demonstration license is not automatically installed on Unix systems. That is because,
under Unix, there is no good choice for a standard location for the license. The location must be
specified by the person doing the installation. 

The location for the license is specified by creating a license pointer file that contains the absolute path
of a license directory. The pointer file must be created in a standard place and the directory that it points
to should not exist yet (it will be created by the Cplex licensing utility). The location must be the cplex
subdiretory of the GAMS system directory and its name should be cplexlicfile. The suggested name for
the directory is cplexlicdir, but that is not enforced. 

The location for cplexlicdir should be picked so that it will not have to be moved. Moving it, or even
saving and restoring it from tape, will corrupt the Cplex license. It should not be kept under, or in a
subdirectory of, the GAMS system directory. Otherwise, you may inadvertently delete the license when
upgrading to a new version of GAMS. 

An environment variable, CPLEXLICENSE, will be automatically defined whenever one of the
licensing commands is being run as well as when GAMS/Cplex is actually solving a model.
CPLEXLICENSE should not be set manually unless requested by GAMS support. 

32 of 35

GAMS/Cplex 6.5 User Notes



Licensing Commands

A Cplex license is installed and maintained by running a few commands. These commands automate
defining the required environment variables, provide some GAMS specific checks, and call the Cplex
license utility. All commands should be run from the command prompt. The current directory must be
the GAMS system directory. 

The command descriptions that follow call for using e-mail to support@gams.com. Please include the
contents of both gamslice.txt and cpxlicen.log (PC) or cpxlicense.log (Unix) in the body of your e-mail.
This is the preferred method to avoid transcription errors and to provide an electronic record. If e-mail
cannot be used, a fax is the second choice. Transcribing license codes by phone can be done if necessary.

instdemo

Installs a demonstration license. GAMS/Cplex will work but will enforce size restrictions. This can be
installed for testing purposes even if an unrestricted license will be installed later. In that case, however,
the demonstration license will have to be be deleted with delete before getting an initial license code by
running initial. 

initial

Produces an initial license code that should be sent to support@gams.com. A copy of the file
gamslice.txt from the GAMS system directory should be included with the e-mail to avoid confusion
about which GAMS system is being licensed. This requires that a GAMS/Cplex license does not already
exist on the machine. 

update

Installs a permanent (or evaluation) license. The code is obtained from GAMS by first running initial
and sending the initial license code to support@gams.com. GAMS/Cplex should be operational after
running update. 

delete

Deletes both the GAMS/Cplex license and the license directory. This is usually only required if a
demonstration license is to be replaced with an evaluation or permanent license. 

transfer

Deletes the GAMS/Cplex license and produces a license code to be taken to another machine. Requires
an initial license code from the other machine as input. 

restore

Restores a corrupted license. This should be run only when requested by GAMS support. It requires a
restore code as input. 

Installing a New License

33 of 35

GAMS/Cplex 6.5 User Notes



The following steps must be followed to license a new GAMS/Cplex system. 

1. If a demo license has been installed, it should be deleted using the delete command. 
2. On Unix machines, the license directory pointer file, cplexlicfile, must be created. See Unix

Licensing above. 
3. An initial Cplex license code should be obtained by running the initial command. 
4. Copies of gamslice.txt and cpxlicen.log (cpxlicense.log for Unix) should be e-mailed to

support@gams.com with a request for a permanent or an evaluation license code. 
5. A new license code will be returned by e-mail -- usually later the same day. It should be installed by

running the update command. 

Updating an Existing License

The method used to install an update depends on how the old license was installed. 

PC Using cplex\update

If the existing license was installed using cplex\update, it can be updated the same way. Contact
support@gams.com for an update code. Don't forget to include the contents of gamslice.txt and
cpxlicen.log (cpxlicense.log for Unix). 

The cplex\update command can be used to find out if the existing license was installed the same way. If
it was, output similar to the following will be seen: 

A CPLEX license already exists on this machine.
The current license code is:
     30-C5-4E-F4-1C-EB-D5-4A-99-39-92-09-DC-BE

Environment variable settings:
  CPLEXLICDIR='C:\WINDOWS\gmscplic'

Type 'quit' or enter a license in the form:
   XX-XX-XX-XX-XX-XX-XX-XX-XX-XX-XX-XX-XX-XX

Otherwise a message will be seen that says "No CPLEX license was found on this machine..." 

PC Using CPLEXLICTYPE=DEFAULT

Some existing GAMS/Cplex systems were licensed by putting 

        SET CPLEXLICTYPE=DEFAULT

in the autoexec.bat file and running cpxlicen directly. For those systems, set up the new license using the
initial and update commands. After the new license is working, delete the old license by 1) making sure
the CPLEXLICDIR environment variable is not set and 2) running cpxlicen -d. You will need to send
the delete confirmation code to support@gams.com. 

To test if the existing license was installed with CPLEXLICTYPE=DEFAULT, simply type SET at the
command prompt to see if CPLEXLICTYPE is defined. 

PC Using a Hardware Key

34 of 35

GAMS/Cplex 6.5 User Notes



Cplex no longer supports licensing with a hardware key. To switch to keyless licensing, set up the new
license using the initial and update commands. You will need to return the key to GAMS Development
after testing the new license. 

Unix

Simply make cplex/cplexlicfile point to the existing license and ask support@gams.com for a code to
use with the update command. 

Last modified April 28, 1999 by PES

35 of 35

GAMS/Cplex 6.5 User Notes


