
GAMS – Documentation

© March 2024 GAMS Development Corporation

Contents

1 GAMS Documentation Center 1
1.1 Model Libraries . 1
1.2 Further Help . 2

2 Preface 3

3 Release Notes 5
3.1 Release Types . 5
3.2 Release History . 5
3.3 46 Distribution . 11

3.3.1 46.1.0 Major release (February 17, 2024) . 11
3.3.2 46.2.0 Minor release (March 05, 2024) . 22

3.4 45 Distribution . 23
3.4.1 45.1.0 Major release (October 14, 2023) . 23
3.4.2 45.2.0 Minor release (October 30, 2023) . 32
3.4.3 45.3.0 Minor release (November 11, 2023) . 33
3.4.4 45.4.0 Minor release (November 27, 2023) . 34
3.4.5 45.5.0 Minor release (December 14, 2023) . 36
3.4.6 45.6.0 Minor release (January 04, 2024) . 37
3.4.7 45.7.0 Minor release (January 18, 2024) . 38

3.5 44 Distribution . 38
3.5.1 44.1.0 Major release (July 20, 2023) . 38
3.5.2 44.1.1 Maintenance release (August 03, 2023) . 45
3.5.3 44.2.0 Minor release (August 17, 2023) . 45
3.5.4 44.3.0 Minor release (September 01, 2023) . 47
3.5.5 44.4.0 Minor release (September 19, 2023) . 48

3.6 43 Distribution . 49
3.6.1 43.1.0 Major release (April 27, 2023) . 49
3.6.2 43.2.0 Minor release (May 04, 2023) . 60
3.6.3 43.3.0 Minor release (May 18, 2023) . 62
3.6.4 43.3.1 Maintenance release (June 01, 2023) . 63
3.6.5 43.4.0 Minor release (June 15, 2023) . 63
3.6.6 43.4.1 Maintenance release (June 22, 2023) . 64

3.7 42 Distribution . 65
3.7.1 42.1.0 Major release (February 01, 2023) . 65
3.7.2 42.2.0 Minor release (February 16, 2023) . 75
3.7.3 42.3.0 Minor release (March 02, 2023) . 76
3.7.4 42.4.0 Minor release (March 16, 2023) . 78
3.7.5 42.5.0 Minor release (March 30, 2023) . 80

3.8 41 Distribution . 81
3.8.1 41.1.0 Major release (October 28, 2022) . 81
3.8.2 41.2.0 Minor release (November 14, 2022) . 92
3.8.3 41.3.0 Minor release (November 28, 2022) . 93
3.8.4 41.4.0 Minor release (December 14, 2022) . 94
3.8.5 41.5.0 Minor release (January 03, 2023) . 95

3.9 40 Distribution . 96

ii CONTENTS

3.9.1 40.1.0 Major release (August 01, 2022) . 96
3.9.2 40.1.1 Maintenance release (August 16, 2022) . 105
3.9.3 40.2.0 Minor release (September 01, 2022) . 106
3.9.4 40.3.0 Minor release (September 16, 2022) . 107
3.9.5 40.4.0 Minor release (October 03, 2022) . 108

3.10 39 Distribution . 109
3.10.1 39.1.0 Major release (May 03, 2022) . 109
3.10.2 39.1.1 Maintenance release (May 18, 2022) . 120
3.10.3 39.2.0 Minor release (June 02, 2022) . 121
3.10.4 39.2.1 Maintenance release (June 21, 2022) . 122
3.10.5 39.3.0 Minor release (July 07, 2022) . 123

3.11 38 Distribution . 124
3.11.1 38.1.0 Major release (January 31, 2022) . 124
3.11.2 38.2.0 Minor release (February 17, 2022) . 136
3.11.3 38.2.1 Maintenance release (February 19, 2022) . 138
3.11.4 38.3.0 Minor release (April 05, 2022) . 138

3.12 37 Distribution . 141
3.12.1 37.1.0 Major release (November 11, 2021) . 141

3.13 36 Distribution . 148
3.13.1 36.1.0 Major release (August 02, 2021) . 148
3.13.2 36.2.0 Minor release (September 03, 2021) . 159

3.14 35 Distribution . 160
3.14.1 35.1.0 Major release (April 29, 2021) . 160
3.14.2 35.2.0 Minor release (June 02, 2021) . 178

3.15 34 Distribution . 180
3.15.1 34.1.0 Major release (January 29, 2021) . 180
3.15.2 34.2.0 Minor release (February 05, 2021) . 192
3.15.3 34.3.0 Minor release (February 25, 2021) . 192

3.16 33 Distribution . 195
3.16.1 33.1.0 Major release (November 01, 2020) . 195
3.16.2 33.2.0 Minor release (December 01, 2020) . 203

3.17 32 Distribution . 204
3.17.1 32.1.0 Major release (July 31, 2020) . 204
3.17.2 32.2.0 Minor release (August 26, 2020) . 212

3.18 31 Distribution . 213
3.18.1 31.1.0 Major release (May 01, 2020) . 213
3.18.2 31.1.1 Maintenance release (May 16, 2020) . 225
3.18.3 31.2.0 Minor release (June 19, 2020) . 227

3.19 30 Distribution . 228
3.19.1 30.1.0 Major release (January 10, 2020) . 228
3.19.2 30.2.0 Minor release (February 07, 2020) . 234
3.19.3 30.3.0 Minor release (March 06, 2020) . 235

3.20 29 Distribution . 237
3.20.1 29.1.0 Major release (November 15, 2019) . 237

3.21 28 Distribution . 242
3.21.1 28.1.0 Major release (August 02, 2019) . 242
3.21.2 28.2.0 Minor release (August 19, 2019) . 246

3.22 27 Distribution . 247
3.22.1 27.1.0 Major release (April 24, 2019) . 247
3.22.2 27.2.0 Minor release (May 23, 2019) . 254
3.22.3 27.3.0 Minor release (July 04, 2019) . 255

3.23 26 Distribution . 257
3.23.1 26.1.0 Major release (February 02, 2019) . 257

3.24 25.1 Distribution . 269
3.24.1 25.1.1 Major release (May 19, 2018) . 269
3.24.2 25.1.2 Minor release (August 01, 2018) . 277
3.24.3 25.1.3 Minor release (October 30, 2018) . 279

3.25 25.0 Distribution . 281

CONTENTS iii

3.25.1 25.0.1 Major release (January 17, 2018) . 281
3.25.2 25.0.2 Maintenance release (January 31, 2018) . 291
3.25.3 25.0.3 Minor release (March 21, 2018) . 292

3.26 24.9 Distribution . 294
3.26.1 24.9.1 Major release (August 30, 2017) . 294
3.26.2 24.9.2 Minor release (November 14, 2017) . 304

3.27 24.8 Distribution . 307
3.27.1 24.8.1 Major release (December 21, 2016) . 307
3.27.2 24.8.2 Maintenance release (January 03, 2017) . 317
3.27.3 24.8.3 Minor release (January 28, 2017) . 317
3.27.4 24.8.4 Minor release (April 10, 2017) . 319
3.27.5 24.8.5 Maintenance release (May 10, 2017) . 321

3.28 24.7 Distribution . 322
3.28.1 24.7.1 Major release (March 14, 2016) . 322
3.28.2 24.7.2 Minor release (July 07, 2016) . 325
3.28.3 24.7.3 Maintenance release (July 11, 2016) . 328
3.28.4 24.7.4 Minor release (September 19, 2016) . 328

3.29 24.6 Distribution . 330
3.29.1 24.6.1 Major release (January 18, 2016) . 330

3.30 24.5 Distribution . 335
3.30.1 24.5.1 Major release (September 23, 2015) . 335
3.30.2 24.5.2 Maintenance release (September 29, 2015) 344
3.30.3 24.5.3 Maintenance release (October 01, 2015) . 345
3.30.4 24.5.4 Maintenance release (October 15, 2015) . 345
3.30.5 24.5.5 Maintenance release (November 25, 2015) 346
3.30.6 24.5.6 Maintenance release (November 27, 2015) 347

3.31 24.4 Distribution . 347
3.31.1 24.4.1 Major release (December 20, 2014) . 347
3.31.2 24.4.2 Minor release (March 15, 2015) . 357
3.31.3 24.4.3 Maintenance release (April 02, 2015) . 360
3.31.4 24.4.4 Maintenance release (May 12, 2015) . 360
3.31.5 24.4.5 Maintenance release (May 26, 2015) . 362
3.31.6 24.4.6 Minor release (June 26, 2015) . 362

3.32 24.3 Distribution . 363
3.32.1 24.3.1 Major release (July 31, 2014) . 363
3.32.2 24.3.2 Minor release (August 29, 2014) . 373
3.32.3 24.3.3 Minor release (September 19, 2014) . 376

3.33 24.2 Distribution . 376
3.33.1 24.2.1 Major release (December 09, 2013) . 376
3.33.2 24.2.2 Maintenance release (March 04, 2014) . 385
3.33.3 24.2.3 Maintenance release (May 22, 2014) . 388

3.34 24.1 Distribution . 390
3.34.1 24.1.1 Major release (May 30, 2013) . 390
3.34.2 24.1.2 Maintenance release (June 16, 2013) . 402
3.34.3 24.1.3 Maintenance release (July 26, 2013) . 403

3.35 24.0 Distribution . 406
3.35.1 24.0.1 Major release (December 24, 2012) . 406
3.35.2 24.0.2 Maintenance release (February 14, 2013) . 414

3.36 23.9 Distribution . 417
3.36.1 23.9.1 Major release (July 04, 2012) . 417
3.36.2 23.9.2 Maintenance release (August 29, 2012) . 423
3.36.3 23.9.3 Maintenance release (September 26, 2012) 425
3.36.4 23.9.4 Maintenance release (October 20, 2012) . 425
3.36.5 23.9.5 Maintenance release (November 09, 2012) 426

3.37 23.8 Distribution . 427
3.37.1 23.8.1 Major release (March 17, 2012) . 427
3.37.2 23.8.2 Maintenance release (April 05, 2012) . 436

3.38 23.7 Distribution . 437

iv CONTENTS

3.38.1 23.7.1 Major release (July 14, 2011) . 437
3.38.2 23.7.2 Maintenance release (July 22, 2011) . 445
3.38.3 23.7.3 Maintenance release (August 23, 2011) . 445

3.39 23.6 Distribution . 446
3.39.1 23.6.2 Major release (December 13, 2010) . 446
3.39.2 23.6.3 Maintenance release (February 15, 2011) . 452
3.39.3 23.6.4 Maintenance release (April 01, 2011) . 452
3.39.4 23.6.5 Maintenance release (April 08, 2011) . 452

3.40 23.5 Distribution . 452
3.40.1 23.5.1 Major release (July 05, 2010) . 452
3.40.2 23.5.2 Maintenance release (August 18, 2010) . 454

3.41 23.4 Distribution . 455
3.41.1 23.4.1 Major release (May 21, 2010) . 455
3.41.2 23.4.3 Maintenance release (May 24, 2010) . 462

3.42 23.3 Distribution . 462
3.42.1 23.3.1 Major release (November 01, 2009) . 462
3.42.2 23.3.2 Maintenance release (November 18, 2009) 465
3.42.3 23.3.3 Maintenance release (December 17, 2009) 466

3.43 23.2 Distribution . 466
3.43.1 23.2.1 Minor release (August 14, 2009) . 466

3.44 23.1 Distribution . 466
3.44.1 23.1.1 Major release (July 13, 2009) . 466
3.44.2 23.1.2 Maintenance release (July 23, 2009) . 471

3.45 23.0 Distribution . 472
3.45.1 23.0.2 Major release (February 14, 2009) . 472

3.46 22.9 Distribution . 475
3.46.1 22.9.2 Major release (December 01, 2008) . 475

3.47 22.8 Distribution . 483
3.47.1 22.8.1 Major release (August 01, 2008) . 483

3.48 22.7 Distribution . 486
3.48.1 22.7.1 Major release (May 01, 2008) . 486
3.48.2 22.7.2 Maintenance release (May 13, 2008) . 491

3.49 22.6 Major release (December 24, 2007) . 491
3.49.1 Acknowledgements . 491
3.49.2 New Platforms . 491
3.49.3 GAMS System . 491
3.49.4 Solvers . 492

3.50 22.5 Major release (June 01, 2007) . 493
3.50.1 Acknowledgements . 493
3.50.2 GAMS System . 494
3.50.3 Solvers . 494

3.51 22.4 Major release (February 12, 2007) . 495
3.51.1 Acknowledgements . 495
3.51.2 GAMS System . 496
3.51.3 Solvers . 496

3.52 22.3 Major release (November 27, 2006) . 497
3.52.1 Acknowledgements . 497
3.52.2 GAMS System . 497
3.52.3 Solvers . 499

3.53 22.2 Minor release (April 21, 2006) . 500
3.53.1 Acknowledgements . 500
3.53.2 GAMS System . 500
3.53.3 Solvers . 500

3.54 22.1 Major release (March 15, 2006) . 501
3.54.1 GAMS System . 501
3.54.2 Solvers . 503

3.55 22.0 Major release (August 01, 2005) . 505
3.55.1 New platforms supported . 505

CONTENTS v

3.55.2 Updated build for the Linux platform . 505
3.55.3 GAMS System . 505
3.55.4 Solvers . 506

3.56 21.7 Major release (April 01, 2005) . 506
3.56.1 Acknowledgements . 506
3.56.2 New platforms supported . 507
3.56.3 GAMS System . 507
3.56.4 Solvers . 507

3.57 21.6 Minor release (January 26, 2005) . 508
3.57.1 Acknowledgements . 508
3.57.2 Solvers . 508
3.57.3 GAMS System . 509
3.57.4 Documentation . 510

3.58 21.5 Minor release (November 11, 2004) . 510
3.58.1 Acknowledgements . 510
3.58.2 Solvers . 510
3.58.3 GAMS System . 511

3.59 21.4 Major release (September 06, 2004) . 512
3.59.1 Acknowledgements . 512
3.59.2 GAMS System . 513
3.59.3 Pricing . 516
3.59.4 Solvers . 516

3.60 21.3 Major release (January 19, 2004) . 518
3.60.1 GAMS System . 518
3.60.2 Solvers . 523

3.61 21.2 Maintenance release (September 03, 2003) . 524
3.62 21.1 Maintenance release (June 02, 2003) . 524
3.63 21.0 Major release (May 15, 2003) . 524

3.63.1 GAMS System . 524
3.63.2 Solvers . 525
3.63.3 Documentation . 527

3.64 20.7 Maintenance release (June 14, 2002) . 527
3.65 20.6 Major release (May 25, 2002) . 527

3.65.1 GAMS System . 527
3.65.2 Solvers . 528
3.65.3 Beta Solvers . 528

3.66 20.5 Maintenance release (January 28, 2002) . 529
3.67 20.4 Maintenance release (January 21, 2002) . 529
3.68 20.3 Major release (December 24, 2001) . 529

3.68.1 GAMS System . 529
3.68.2 Solvers . 529

3.69 20.2 Maintenance release (November 22, 2001) . 530
3.69.1 Solvers . 530

3.70 20.1 Major release (October 31, 2001) . 531
3.70.1 GAMS System . 531
3.70.2 Solvers . 533
3.70.3 Solvers in Beta Version . 534

4 User's Guide 535
4.1 Installation and Licensing . 535
4.2 Tutorials and Examples . 535
4.3 GAMS Language and Environment . 536
4.4 Glossary . 537
4.5 Supported Platforms . 537
4.6 Installation Notes for macOS . 538

4.6.1 Installation using the PKG installer (GAMS46.2.0.pkg) 538
4.6.2 Uninstall PKG installation . 540
4.6.3 Installation using the self-extracting archive (osx x64 64 sfx.exe or osx arm64 sfx.exe)540

vi CONTENTS

4.7 Installation Notes for Unix . 544
4.7.1 Installation . 544
4.7.2 Access to GAMS . 545

4.8 Installation Notes for Windows . 546
4.8.1 Installation . 546
4.8.2 Visual C++ Redistributable Dependency . 548
4.8.3 Command Line Use of GAMS . 548
4.8.4 Warning from Microsoft SmartScreen Filter . 548

4.9 Standard Locations . 549
4.9.1 Standard Locations on macOS . 549
4.9.2 Standard Locations on Unix . 550
4.9.3 Standard Locations on Windows . 551

4.10 Licensing . 552
4.10.1 General Information . 552
4.10.2 GAMS Community License . 552
4.10.3 GAMS Licenses . 552
4.10.4 Installing or updating a license file . 553
4.10.5 License Problems . 553
4.10.6 Warnings . 555
4.10.7 The GAMS/BASE Module . 555
4.10.8 Additional Limits for the Demo and Community License 556

4.11 A GAMS Tutorial by Richard E. Rosenthal . 557
4.11.1 Introduction . 557
4.11.2 Structure of a GAMS Model . 559
4.11.3 Sets . 561
4.11.4 Data . 562
4.11.5 Variables . 564
4.11.6 Equations . 565
4.11.7 Objective Function . 568
4.11.8 Model and Solve Statements . 568
4.11.9 Display Statements . 569
4.11.10 The .lo, .l, .up, .m Database . 569
4.11.11 GAMS Output . 572
4.11.12 Summary . 580

4.12 Quick Start Tutorial . 580
4.12.1 Three Basic Models . 581
4.12.2 Components of the Example Models . 583
4.12.3 Running a GAMS Job . 587
4.12.4 Examining The Output . 588
4.12.5 Exploiting the Algebraic Structure . 593
4.12.6 Components of the Revised Example Models . 596
4.12.7 Documenting the GAMS Code . 600
4.12.8 Guidelines on Ordering GAMS Statements and Formatting GAMS Programs . . . 602
4.12.9 Adding Complexity . 602
4.12.10 Advantages of Algebraic Modeling in General . 606

4.13 Good Coding Practices . 609
4.13.1 Using Longer Names and Descriptive Text . 609
4.13.2 Including Comments on Procedures and the Nature and Sources of Data 611
4.13.3 Choosing Raw Data Instead Of Computed Data 612
4.13.4 Avoiding the Universal Set in the Context of Data Input 612
4.13.5 Defining Sets and Subsets Wisely . 613
4.13.6 Structuring and Formatting Files to Improve Readability 614
4.13.7 Other Suggestions . 616

4.14 Fixing Compilation Errors . 616
4.14.1 Preliminary Remarks . 617
4.14.2 Resolving Common Compilation Errors . 619

4.15 Finding and Fixing Execution Errors and Performance Problems 633
4.15.1 Resolving Execution Errors . 633

CONTENTS vii

4.15.2 Small to Large: Aid in Development and Debugging 641
4.15.3 Increasing Efficiency: Reducing GAMS Execution Time 646
4.15.4 Increasing Efficiency: Reducing Memory Use . 654

4.16 Comparative Analyses with GAMS . 657
4.16.1 Manual Approach . 658
4.16.2 An Automated Approach - Avoiding Repeated Work 663
4.16.3 Ranging analysis . 667

4.17 Good NLP Formulations . 667
4.17.1 Specifying Initial Values . 667
4.17.2 Setting Variable Bounds . 669
4.17.3 Avoiding Expressions in Nonlinear Functions . 669
4.17.4 Scaling Variables and Equations . 670
4.17.5 Blocking Degenerate Cycling . 670
4.17.6 Reformulating DNLP Models . 671

4.18 Data Exchange with Other Applications . 674
4.18.1 Data Exchange with Text Files . 675
4.18.2 Data Exchange with Microsoft Excel . 681
4.18.3 Data Exchange with Databases . 688

4.19 Executing GAMS from other Environments . 715
4.19.1 Some General Comments . 715
4.19.2 Spawning GAMS from VBA . 716
4.19.3 Spawning GAMS from C . 718
4.19.4 Spawning GAMS from Visual Basic . 719
4.19.5 Spawning GAMS from Delphi . 721
4.19.6 Spawning GAMS from Visual C++ . 723
4.19.7 Spawning GAMS from C# . 723
4.19.8 Spawning GAMS from Java . 723
4.19.9 Spawning GAMS from a Web Server . 724
4.19.10 Spawning GAMS from PHP . 725

4.20 Using GAMS Studio . 727
4.20.1 What Is It? . 727
4.20.2 Installation . 728
4.20.3 Using STUDIO after Installation . 729
4.20.4 The Welcome and Explorer Windows . 741
4.20.5 Fixing Compilation Errors . 741
4.20.6 Ways to find and/or replace text strings . 743
4.20.7 Matching Parentheses . 744
4.20.8 Moving Blocks . 745
4.20.9 Syntax Coloring . 746
4.20.10 Showing where a symbol appears . 747
4.20.11 Accessing Documentation Via the Help . 747
4.20.12 Making GDX files . 749
4.20.13 Examining GDX files . 750
4.20.14 A difficulty you will have . 752
4.20.15 Command Line Parameters . 752
4.20.16 Solver Option Files . 754
4.20.17 Using Libraries . 754
4.20.18 Using reference files - Listing and Unraveling Data items 755
4.20.19 Editing Solver Option Files . 761
4.20.20 When is it Not Worth Using? . 762
4.20.21 What does it not do? . 762
4.20.22 What does it not do so well? . 762

4.21 Introduction . 763
4.21.1 Summary . 763
4.21.2 The Origins of GAMS . 763
4.21.3 Background and Motivation . 763
4.21.4 Design Goals and Changing Focus . 764

4.22 GAMS Programs . 765

viii CONTENTS

4.22.1 Introduction . 765
4.22.2 The Structure of GAMS Programs . 766
4.22.3 Data Types and Definitions . 770
4.22.4 Language Items . 771
4.22.5 Summary . 781

4.23 Set Definition . 781
4.23.1 Introduction . 781
4.23.2 Simple Sets . 782
4.23.3 The Alias Statement: Multiple Names for a Set . 784
4.23.4 Subsets . 785
4.23.5 Multi-Dimensional Sets . 786
4.23.6 Singleton Sets . 790
4.23.7 The Universal Set: ∗ as Set Identifier . 791
4.23.8 Set and Set Element Referencing . 792
4.23.9 Set Attributes . 792
4.23.10 Finding Sets from Data . 794
4.23.11 Domain Checking . 795
4.23.12 Implicit Set Definition (or: Domain Defining Symbol Declarations) 796
4.23.13 Summary . 798

4.24 Dynamic Sets . 798
4.24.1 Introduction . 798
4.24.2 Assigning Membership to Dynamic Sets . 799
4.24.3 Set Operations . 802
4.24.4 Using Dollar Controls with Dynamic Sets . 803

4.25 Sets as Sequences: Ordered Sets . 808
4.25.1 Introduction . 808
4.25.2 Ordered and Unordered Sets . 808
4.25.3 Sorting a Set . 809
4.25.4 Ord and Card Operators . 810
4.25.5 Lag and Lead Operators . 811
4.25.6 Summary . 818

4.26 Data Manipulations with Parameters . 818
4.26.1 Introduction . 818
4.26.2 The Assignment Statement . 818
4.26.3 Expressions . 822
4.26.4 Functions . 825
4.26.5 Extended Range Arithmetic and Error Handling 839
4.26.6 Predefined Symbols . 841
4.26.7 Summary . 842

4.27 Data Entry: Parameters, Scalars and Tables . 842
4.27.1 Introduction . 842
4.27.2 Scalars . 843
4.27.3 Parameters . 844
4.27.4 Tables . 847
4.27.5 Constant Evaluation . 851
4.27.6 Data Entry by Assignment . 851
4.27.7 Acronyms . 852
4.27.8 Summary . 854

4.28 Variables . 854
4.28.1 Introduction . 854
4.28.2 Variable Declarations . 854
4.28.3 Variable Attributes . 858
4.28.4 Variables in Display and Assignment Statements 861
4.28.5 Summary . 864

4.29 Equations . 864
4.29.1 Introduction . 864
4.29.2 Declaring Equations . 864
4.29.3 Defining Equations . 866

CONTENTS ix

4.29.4 Expressions in Equation Definitions . 870
4.29.5 Equation Attributes . 872
4.29.6 Summary and Quick Reference . 873

4.30 Model and Solve Statements . 874
4.30.1 Introduction . 874
4.30.2 The Model Statement . 874
4.30.3 The Solve Statement . 890
4.30.4 Programs with Several Solve Statements . 892
4.30.5 Choosing a Solver . 895
4.30.6 Making New Solvers Available with GAMS . 896

4.31 Conditional Expressions, Assignments and Equations . 896
4.31.1 Introduction . 896
4.31.2 The Dollar Condition . 897
4.31.3 Logical Conditions . 897
4.31.4 Conditional Assignments . 904
4.31.5 Conditional Indexed Operations . 906
4.31.6 Conditional Equations . 907
4.31.7 Filtering Sets . 909

4.32 The Display Statement . 912
4.32.1 Introduction . 912
4.32.2 The Syntax . 912
4.32.3 Displaying Multi-Dimensional Identifiers: Label Order 914
4.32.4 Display Controls . 916
4.32.5 Conditional Displays . 921

4.33 Programming Flow Control Features . 921
4.33.1 Introduction . 921
4.33.2 The If Statement . 922
4.33.3 The Loop Statement . 923
4.33.4 The While Statement . 927
4.33.5 The For Statement . 929
4.33.6 The Repeat Statement . 930
4.33.7 The Break Statement . 932
4.33.8 The Continue Statement . 934
4.33.9 The Abort Statement . 934

4.34 The Option Statement . 936
4.34.1 Introduction . 936
4.34.2 List of Options . 938

4.35 System Attributes . 950
4.35.1 Introduction . 950
4.35.2 System Suffixes . 951
4.35.3 System Data . 954
4.35.4 Access to Hidden Functions . 955

4.36 The Grid and Multi-Threading Solve Facility . 956
4.36.1 Introduction . 956
4.36.2 The Grid Facility: Basic Concepts . 956
4.36.3 The Grid Facility: A First Example . 957
4.36.4 Advanced Use of Grid Features . 960
4.36.5 Summary of Grid Features . 962
4.36.6 The Grid Facility: Architecture and Customization 965
4.36.7 Multi-Threading . 967

4.37 Special Features for Mathematical Programs . 968
4.37.1 Introduction . 968
4.37.2 Special Mixed Integer Programming (MIP) Features 968
4.37.3 Model Scaling - The Scale Option . 976
4.37.4 Conic Programming in GAMS . 979
4.37.5 Indicator Constraints . 983

4.38 GAMS Output . 987
4.38.1 Introduction . 987

x CONTENTS

4.38.2 An Illustrative Model . 988
4.38.3 Compilation Output . 989
4.38.4 Execution Output . 995
4.38.5 Model Generation Output . 995
4.38.6 The Solution Report . 1000
4.38.7 Post-Solution Output . 1006
4.38.8 Error Reporting . 1007
4.38.9 Customizing the Output File . 1011

4.39 GAMS Log . 1013
4.39.1 Introduction . 1013
4.39.2 Header . 1013
4.39.3 Compilation Log . 1014
4.39.4 Execution Output . 1015

4.40 The GAMS Call and Command Line Parameters . 1016
4.40.1 The Generic GAMS Call . 1017
4.40.2 Double Dash Parameters, Compile-Time Variables and Environment Variables . . 1025
4.40.3 Compile-Time Constants . 1030
4.40.4 GAMS Compile Time and Execution Time Phase 1033
4.40.5 List of Command Line Parameters . 1034
4.40.6 Detailed Descriptions of All Options . 1039
4.40.7 Executing an External Program . 1117
4.40.8 Executing a GAMS Tool . 1118

4.41 Dollar Control Options . 1119
4.41.1 Introduction . 1119
4.41.2 List of Dollar Control Options . 1120
4.41.3 Detailed Description of Dollar Control Options . 1126
4.41.4 Conditional Compilation . 1222
4.41.5 Macros in GAMS . 1231
4.41.6 Compressing and Decompressing Files . 1235
4.41.7 Encrypting Files . 1237

4.42 The Put Writing Facility . 1241
4.42.1 Introduction . 1241
4.42.2 The Syntax . 1242
4.42.3 A First Example . 1244
4.42.4 Put Files . 1245
4.42.5 Put File Pages . 1255
4.42.6 Output Items . 1261
4.42.7 The Put Utility Statement . 1274
4.42.8 Conditional Put Statements . 1283
4.42.9 Errors Associated with Put Statements . 1283
4.42.10 Creating a Report for the Model MEXSS . 1284

4.43 Solver Usage . 1288
4.43.1 Controlling a Solver via GAMS Options . 1288
4.43.2 The Solver Options File . 1289
4.43.3 Starting Point and Initial Basis . 1291
4.43.4 Trace Features . 1292
4.43.5 Branch-and-Cut-and-Heuristic Facility (BCH) . 1300
4.43.6 Choosing an appropriate Solver . 1304

4.44 The Save and Restart Feature . 1306
4.44.1 Basic Usage . 1307
4.44.2 Use Cases . 1310
4.44.3 Secure Work Files . 1314
4.44.4 Obfuscated Work Files . 1321

4.45 Embedded Code Facility . 1322
4.45.1 Motivation . 1322
4.45.2 Concept . 1322
4.45.3 Simple Example . 1323
4.45.4 Syntax . 1328

CONTENTS xi

4.45.5 Python . 1330
4.45.6 Connect . 1344
4.45.7 GAMS . 1346

4.46 GAMS Connect . 1350
4.46.1 Concept . 1350
4.46.2 Usage . 1351
4.46.3 Connect Agents Summary . 1354
4.46.4 Getting Started . 1355
4.46.5 Connect Agents . 1360
4.46.6 Examples . 1403
4.46.7 Text Substitutions in YAML File . 1408
4.46.8 Use Connect Agents in Custom Python Code . 1409
4.46.9 Command Line Utility gamsconnect . 1410

4.47 Extrinsic Functions . 1411
4.47.1 Introduction . 1411
4.47.2 Using Function Libraries . 1411
4.47.3 Libraries that are included in the GAMS Distribution 1412
4.47.4 Build Your Own Library . 1422
4.47.5 Extrinsic Functions vs. External Equations . 1425

4.48 External Equations . 1426
4.48.1 Examples in the GAMS Test Library . 1427
4.48.2 Model Interface . 1428
4.48.3 Programming Interface . 1429
4.48.4 Implementation . 1433

4.49 GAMS Return Codes . 1438
4.49.1 List of the Error/Return Codes . 1439

4.50 GAMS Data eXchange (GDX) . 1440
4.50.1 Reading a GDX file . 1441
4.50.2 Writing a GDX file . 1449
4.50.3 Inspecting contents of a GDX file . 1455
4.50.4 General notes on GDX files . 1458
4.50.5 GAMS Data eXchange Tools . 1458

4.51 Extended Mathematical Programming (EMP) . 1459
4.51.1 EMP Annotations: the EMP Info File . 1460
4.51.2 Soft Constraints . 1461
4.51.3 Variational Inequalities (VI) . 1463
4.51.4 Quasi-Variational Inequalities (QVI) . 1466
4.51.5 Equilibrium Problems . 1468
4.51.6 Embedded Complementarity Systems . 1474
4.51.7 Equilibrium Problems with Shared Constraints . 1476
4.51.8 Equilibrium Problems with Shared Variables . 1478
4.51.9 Bilevel Programs . 1482
4.51.10 Disjunctive Programming . 1487
4.51.11 Stochastic Programming . 1492
4.51.12 EMP Keywords . 1528

4.52 Accessing Model Libraries . 1531
4.52.1 Usage . 1532

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1534
4.53.1 Introduction to MPSGE . 1534
4.53.2 MPSGE Models in GAMS . 1581
4.53.3 Demand Theory and General Equilibrium: An Intermediate Level Introduction to

MPSGE . 1611
4.53.4 Constant Elasticity of Substitution Functions: Some Hints and Useful Formulae . . 1632

5 Solver Manuals 1653
5.1 Model Types . 1654
5.2 Supported Platforms . 1656
5.3 AlphaECP . 1656

xii CONTENTS

5.3.1 Introduction . 1656
5.3.2 GAMS/AlphaECP Output . 1658
5.3.3 Notes about Options . 1661
5.3.4 Summary of AlphaECP Options . 1661
5.3.5 Detailed Descriptions of AlphaECP Options . 1663
5.3.6 FAQ . 1670

5.4 ANTIGONE . 1671
5.4.1 Introduction . 1671
5.4.2 GAMS/ANTIGONE Output . 1672
5.4.3 Summary of ANTIGONE Options . 1673
5.4.4 Detailed Descriptions of ANTIGONE Options . 1676
5.4.5 ANTIGONE Algorithmic Features . 1682

5.5 BARON . 1683
5.5.1 Introduction . 1684
5.5.2 Model requirements . 1684
5.5.3 BARON output . 1685
5.5.4 Some BARON features . 1688
5.5.5 The BARON options . 1692

5.6 CBC . 1699
5.6.1 Usage . 1699
5.6.2 List of Options . 1700
5.6.3 Detailed Options Description . 1704

5.7 CONOPT 3 . 1730
5.7.1 Introduction . 1730
5.7.2 Iteration Output . 1731
5.7.3 CONOPT Termination Messages . 1733
5.7.4 Function Evaluation Errors . 1737
5.7.5 The CONOPT Options File . 1738
5.7.6 Hints on Good Model Formulation . 1738
5.7.7 NLP and DNLP Models . 1745
5.7.8 APPENDIX A: Algorithmic Information . 1749
5.7.9 APPENDIX B - Options . 1773
5.7.10 APPENDIX C: References . 1791

5.8 CONOPT . 1791
5.8.1 Introduction . 1791
5.8.2 The CONOPT Algorithm . 1792
5.8.3 Iteration Output . 1793
5.8.4 Termination Messages . 1796
5.8.5 Preprocessor . 1799
5.8.6 Adjust Initial Point . 1801
5.8.7 Phase 0 - Finding an Initial Feasible Solution . 1802
5.8.8 Transition between SLP and SQP . 1802
5.8.9 Bad Iterations . 1803
5.8.10 Saddle Points and Directions of Negative Curvature 1803
5.8.11 Alternative Sub-Models . 1804
5.8.12 Scaling . 1808
5.8.13 CNS Models . 1809
5.8.14 Multiple Threads . 1810
5.8.15 Loss of Feasibility . 1811
5.8.16 Stalling . 1811
5.8.17 APPENDIX A - Options . 1812

5.9 CONVERT . 1829
5.9.1 Introduction . 1829
5.9.2 How to use CONVERT . 1829
5.9.3 The GAMS Scalar Format . 1829
5.9.4 The OSiL Format . 1832
5.9.5 User-Specified Options . 1833

5.10 COPT . 1835

CONTENTS xiii

5.10.1 Usage . 1835
5.10.2 List of COPT Options . 1839

5.11 CPLEX . 1845
5.11.1 Introduction . 1845
5.11.2 How to Run a Model with Cplex . 1845
5.11.3 Overview of Cplex . 1845
5.11.4 GAMS Options . 1852
5.11.5 Summary of CPLEX Options . 1854
5.11.6 Special Notes . 1864
5.11.7 GAMS/Cplex Log File . 1870
5.11.8 Detailed Descriptions of CPLEX Options . 1873
5.11.9 Setting up a GAMS/Cplex-Link license . 1929

5.12 Deterministic Equivalent (DE) . 1929
5.12.1 Introduction . 1929
5.12.2 Random Variables . 1930
5.12.3 Sampling Procedures . 1931
5.12.4 The Expected Value Problem . 1932
5.12.5 What types of models can DE handle? . 1932
5.12.6 Reformulation Techniques . 1933
5.12.7 Logfile . 1936
5.12.8 Summary of DE Options . 1939
5.12.9 Detailed Descriptions of DE Options . 1940

5.13 DECIS . 1942
5.13.1 DECIS . 1942
5.13.2 GAMS/DECIS . 1946
5.13.3 Description of GAMS/DECIS Options . 1958
5.13.4 Appendix A - GAMS/DECIS Illustrative Examples 1960
5.13.5 Appendix B - Error Messages . 1965
5.13.6 DECIS License and Warranty . 1967

5.14 DICOPT . 1968
5.14.1 Introduction . 1968
5.14.2 Requirements . 1968
5.14.3 How to Run a Model with GAMS/DICOPT . 1969
5.14.4 Overview of DICOPT . 1969
5.14.5 The Algorithm . 1970
5.14.6 Modeling . 1971
5.14.7 GAMS Options . 1974
5.14.8 DICOPT Options . 1976
5.14.9 DICOPT Output . 1988
5.14.10 Special Notes . 1989

5.15 EXAMINER . 1992
5.15.1 Introduction . 1992
5.15.2 Usage . 1992
5.15.3 Options . 1995

5.16 GAMSCHK . 1996
5.16.1 GAMSCHK USER DOCUMENTATION . 1997
5.16.2 General Notes on Package Usage . 1997
5.16.3 Use of the Procedures . 2001
5.16.4 Options File . 2006
5.16.5 Known Bugs . 2008
5.16.6 Tables . 2009
5.16.7 Appendix A: Reserved Names . 2014
5.16.8 Appendix B: GAMSCHK One Page Summary . 2015
5.16.9 Appendix C: Summary of GAMSCHK Options . 2016
5.16.10 GAMSCHK References . 2016

5.17 Gurobi . 2017
5.17.1 Introduction . 2017
5.17.2 How to Run a Model with Gurobi . 2017

xiv CONTENTS

5.17.3 Overview of GAMS/Gurobi . 2018
5.17.4 GAMS Options . 2028
5.17.5 Summary of GUROBI Options . 2029
5.17.6 GAMS/Gurobi Log File . 2037
5.17.7 Detailed Descriptions of GUROBI Options . 2039
5.17.8 Setting up a GAMS/Gurobi-Link license . 2074

5.18 Gather-Update-Solve-Scatter (GUSS) . 2077
5.18.1 Introduction . 2077
5.18.2 Design Methodology . 2077
5.18.3 GUSS Options . 2079
5.18.4 Implementation Details . 2081
5.18.5 Applications . 2081

5.19 HiGHS . 2093
5.19.1 Usage . 2094
5.19.2 List of HiGHS Options . 2094

5.20 IPOPT and IPOPTH . 2100
5.20.1 Available linear solvers . 2101
5.20.2 The linear algebra library . 2101
5.20.3 Usage . 2102
5.20.4 Output . 2103
5.20.5 List of IPOPT Options . 2108
5.20.6 Detailed Options Description . 2119

5.21 JAMS and LogMIP . 2163
5.21.1 Introduction . 2163
5.21.2 JAMS: a reformulation tool . 2164
5.21.3 Forming Optimality Conditions: NLP2MCP . 2166
5.21.4 Soft Constraints . 2167
5.21.5 Bilevel Programs . 2168
5.21.6 Variational Inequalities . 2170
5.21.7 Embedded Complementarity Systems . 2172
5.21.8 MOPECs . 2174
5.21.9 Extended Nonlinear Programs . 2175
5.21.10 Disjunctive Programs (LogMIP) . 2179
5.21.11 Empinfo file details . 2180

5.22 KESTREL - Remote Solver Execution on NEOS Servers 2181
5.22.1 Background . 2181
5.22.2 Using GAMS/KESTREL . 2181

5.23 KNITRO . 2183
5.23.1 Introduction . 2183
5.23.2 Usage . 2184
5.23.3 GAMS Options . 2184
5.23.4 Summary of Knitro Options . 2185
5.23.5 Detailed Descriptions of Knitro Options . 2193
5.23.6 Knitro Termination Test and Optimality . 2233
5.23.7 Knitro Output . 2235
5.23.8 Algorithm Options . 2237
5.23.9 Other Knitro special features . 2238

5.24 LINDO and LINDOGlobal . 2241
5.24.1 Introduction . 2241
5.24.2 Supported nonlinear functions . 2243
5.24.3 Diagnosis of Infeasible or Unbounded Models . 2243
5.24.4 GAMS/LINDO output . 2244
5.24.5 The GAMS/LINDO Options . 2246
5.24.6 Summary of GAMS/Lindo Options . 2246
5.24.7 Detailed Descriptions of GAMS/Lindo Options . 2258
5.24.8 Stochastic Programming (SP) in GAMS/Lindo . 2313

5.25 MILES . 2314
5.25.1 Abstract . 2314

CONTENTS xv

5.25.2 Introduction . 2314
5.25.3 The Newton Algorithm . 2315
5.25.4 Lemke's Method with Implicit Bounds . 2317
5.25.5 The Options File . 2320
5.25.6 Log File Output . 2323
5.25.7 Status File Output . 2324
5.25.8 Termination Messages . 2329
5.25.9 References . 2330

5.26 MINOS and QUADMINOS . 2334
5.26.1 Introduction . 2334
5.26.2 How to Run a Model with GAMS/MINOS . 2335
5.26.3 Overview of GAMS/MINOS . 2335
5.26.4 Modeling Issues . 2339
5.26.5 GAMS Options . 2342
5.26.6 Summary of MINOS Options . 2343
5.26.7 Special Notes . 2345
5.26.8 The GAMS/MINOS Log File . 2346
5.26.9 Detailed Description of MINOS Options . 2351
5.26.10 Exit Conditions . 2365

5.27 MOSEK . 2367
5.27.1 Introduction . 2368
5.27.2 Solver Options . 2370
5.27.3 The MOSEK Log File . 2382
5.27.4 Semidefinite Programming with GAMS/MOSEK (experimental) 2386
5.27.5 Detailed Descriptions of MOSEK Options . 2391
5.27.6 Setting up a GAMS/MOSEK-Link license . 2423

5.28 NLPEC . 2424
5.28.1 Introduction . 2424
5.28.2 Usage . 2424
5.28.3 Reformulation . 2424
5.28.4 Options . 2432
5.28.5 Open Architecture . 2435

5.29 ODHCPLEX . 2436
5.29.1 Introduction . 2436
5.29.2 Specifying Model Structure . 2437
5.29.3 Heuristic Parameters . 2438
5.29.4 Parallel execution using multiple threads . 2449
5.29.5 Determinism . 2450
5.29.6 Detailed Descriptions of ODHCLPEX Options . 2450

5.30 PATHNLP . 2476
5.30.1 Introduction . 2476
5.30.2 Usage . 2477
5.30.3 Options . 2477

5.31 PATH . 2480
5.31.1 Complementarity . 2480
5.31.2 PATH . 2491
5.31.3 PATH Options . 2497
5.31.4 Advanced Topics . 2500
5.31.5 Case Study: Von Thunen Land Model . 2510

5.32 quadMINOS . 2515
5.33 SBB . 2515

5.33.1 Introduction . 2515
5.33.2 The Branch and Bound Algorithm . 2515
5.33.3 SBB with Pseudo Costs . 2516
5.33.4 The SBB Options . 2516
5.33.5 The SBB Log File . 2522
5.33.6 Comparison of SBB and other MINLP Solvers . 2524

5.34 SCIP . 2525

xvi CONTENTS

5.34.1 Usage . 2525
5.34.2 Special Features . 2526
5.34.3 Components . 2529
5.34.4 List of SCIP Options . 2541

5.35 SHOT . 2718
5.35.1 Algorithm . 2718
5.35.2 Usage . 2718
5.35.3 List of SHOT Options . 2719

5.36 SNOPT . 2731
5.36.1 Introduction . 2731
5.36.2 Description of the method . 2733
5.36.3 Starting points and advanced bases . 2737
5.36.4 GAMS Options . 2740
5.36.5 SNOPT Options . 2741
5.36.6 The SNOPT log . 2759

5.37 SoPlex . 2767
5.37.1 Usage . 2767
5.37.2 List of SoPlex Options . 2767

5.38 XPRESS . 2772
5.38.1 Introduction . 2772
5.38.2 Usage . 2773
5.38.3 Summary of XPRESS Options . 2776
5.38.4 Detailed Descriptions of XPRESS Options . 2801
5.38.5 Helpful Hints . 2918
5.38.6 Setting up a GAMS/XPRESS-Link license . 2918

6 Tools Manuals 2919
6.1 Tools Category . 2919

6.1.1 GAMS Integrated Development Environments . 2919
6.1.2 GAMS Tools Library . 2919
6.1.3 Data Exchange . 2921
6.1.4 GDX Service . 2921
6.1.5 Data Transformation . 2921
6.1.6 Other Tools . 2921

6.2 List of Tools . 2921
6.3 Supported Platforms . 2923

6.3.1 LibInclude Tools Library . 2924
6.4 ASK . 2925

6.4.1 Usage . 2925
6.4.2 Calling ASK utility from GAMS . 2927
6.4.3 Radio Button . 2930
6.4.4 Combo Box . 2932
6.4.5 List and Checklist Box . 2934
6.4.6 File Open Dialog Box . 2935

6.5 Cholesky . 2936
6.5.1 Usage . 2937
6.5.2 Examples . 2937

6.6 CSV2GDX . 2938
6.6.1 Usage . 2938
6.6.2 Options . 2939
6.6.3 Advances and limitations . 2942
6.6.4 Getting Started . 2942
6.6.5 Additional Examples for extended Use . 2950

6.7 Eigenvalue . 2954
6.7.1 Usage . 2954
6.7.2 Example . 2955

6.8 Eigenvector . 2955
6.8.1 Usage . 2955

CONTENTS xvii

6.8.2 Example . 2956
6.9 ENDECRYPT . 2957

6.9.1 Usage . 2957
6.10 ExcelDump . 2957

6.10.1 Usage . 2957
6.10.2 example . 2958

6.11 ExcelMerge . 2958
6.11.1 Usage . 2958
6.11.2 Example . 2959

6.12 ExcelTalk . 2959
6.12.1 Usage . 2959
6.12.2 Example: Save and close an Excel workbook . 2960

6.13 FINDTHISGAMS . 2960
6.13.1 Introduction . 2960
6.13.2 Usage . 2960
6.13.3 Registry Keys . 2961

6.14 GAMS Studio . 2961
6.14.1 Motivation . 2962
6.14.2 Central Widgets . 2962
6.14.3 Further Studio Widgets . 2996
6.14.4 Debugger . 3015
6.14.5 MIRO . 3016
6.14.6 NEOS . 3016
6.14.7 GAMS Engine . 3017
6.14.8 Dialogs and Actions . 3019
6.14.9 Terminal . 3030
6.14.10 Command Line Options . 3030
6.14.11 General Shortcuts . 3031
6.14.12 Usage Hints . 3032
6.14.13 System Requirements . 3033
6.14.14 Comparing GAMS Studio and GAMSIDE . 3034

6.15 GDX2ACCESS . 3037
6.15.1 Overview . 3037
6.15.2 Usage . 3037
6.15.3 Options . 3037
6.15.4 Examples . 3039
6.15.5 References . 3045

6.16 GDX2SQLITE . 3045
6.16.1 Introduction . 3045
6.16.2 Usage . 3046
6.16.3 How data is stored . 3046
6.16.4 SQLite Browsers and compatible software . 3048

6.17 GDX2VEDA . 3051
6.17.1 Usage . 3051
6.17.2 Examples . 3051
6.17.3 Detailed Help Message . 3052

6.18 GDX2XLS . 3054
6.18.1 Overview . 3054
6.18.2 AutoFilter . 3055
6.18.3 Options . 3055
6.18.4 Examples . 3058

6.19 GDXCOPY . 3061
6.19.1 Usage . 3061
6.19.2 Example . 3063

6.20 GDXDIFF . 3063
6.20.1 Usage . 3063
6.20.2 Options . 3064
6.20.3 Examples . 3066

xviii CONTENTS

6.21 GDXDUMP . 3066
6.21.1 Usage . 3067
6.21.2 Options . 3067
6.21.3 Examples . 3071
6.21.4 Adding double Quotes to an user defined Header when writing to CSV 3076

6.22 GDXEncoding . 3076
6.22.1 Usage . 3077
6.22.2 Example . 3077

6.23 GDXMERGE . 3077
6.23.1 Usage . 3078
6.23.2 Options . 3078
6.23.3 Examples . 3079

6.24 GDXMRW . 3081
6.24.1 Introduction . 3082
6.24.2 Data Transfer . 3083
6.24.3 Extended use . 3096
6.24.4 Acknowledgements . 3099
6.24.5 APPENDIX A - Configuring GDXMRW . 3099
6.24.6 APPENDIX B - Utility functions: gdxWhos and gdxInfo 3101
6.24.7 APPENDIX C - Calling GAMS model from MATLAB 3101

6.25 GDXRename . 3106
6.25.1 Usage . 3106
6.25.2 Example . 3107

6.26 GDXRRW . 3107
6.27 GDXVIEWER . 3108

6.27.1 Overview . 3108
6.27.2 Requirements . 3108
6.27.3 Creating GDX files . 3109
6.27.4 Viewing GDX files . 3110
6.27.5 Exporting an identifier . 3111
6.27.6 Exporting to a Text File . 3112
6.27.7 Exporting to a CSV files . 3113
6.27.8 Exporting to an XLS file . 3113
6.27.9 Exporting to an XLS Pivot Table . 3115
6.27.10 Exporting to a GAMS Include Files . 3115
6.27.11 Exporting to an Access Tables . 3116
6.27.12 Exporting to an SQL Table . 3117
6.27.13 Exporting to MS SQL Server . 3118
6.27.14 Exporting to SQL Insert script . 3118
6.27.15 Exporting to SQL Update script . 3119
6.27.16 Exporting HTML . 3119
6.27.17 Exporting XML . 3120
6.27.18 Exporting fields . 3122
6.27.19 Special Values . 3122
6.27.20 Plotting Data . 3123
6.27.21 Cube View . 3127
6.27.22 Exporting cubes . 3127
6.27.23 Commandline operation . 3128
6.27.24 Notes . 3130

6.28 GDXXRW . 3130
6.28.1 Usage . 3130
6.28.2 Options . 3131
6.28.3 Return Codes . 3143
6.28.4 Warning . 3144
6.28.5 Reading from Spreadsheet - Examples: . 3145
6.28.6 Writing to Spreadsheet - Examples: . 3155
6.28.7 Reading and Writing, Extended Use - Examples: 3161
6.28.8 Changes in the Set Values Parameter . 3167

CONTENTS xix

6.29 Invert . 3168
6.29.1 Usage . 3168
6.29.2 Example . 3169

6.30 MDB2GMS . 3169
6.30.1 Overview . 3169
6.30.2 Requirements . 3170
6.30.3 Batch Usage . 3170
6.30.4 Multi-Query Batch Usage . 3186
6.30.5 Interactive Usage . 3189
6.30.6 Strategies . 3195
6.30.7 Command Files . 3200
6.30.8 Notes . 3201

6.31 MessageReceiverWindow . 3203
6.31.1 Introduction . 3203
6.31.2 Usage . 3203
6.31.3 Special Commands . 3204
6.31.4 Usage With put utility . 3204
6.31.5 Usage With Python . 3205

6.32 MODEL2TEX . 3205
6.32.1 Introduction . 3206
6.32.2 Usage . 3206
6.32.3 Options . 3206
6.32.4 Using a JSON style file . 3207
6.32.5 Example . 3207

6.33 MPS2GMS . 3209
6.33.1 Usage . 3210

6.34 MSAppAvail . 3211
6.34.1 Usage . 3211
6.34.2 Example: Checking whether MS Access is available 3212

6.35 Ordinary Least Squares (OLS) . 3212
6.35.1 Usage . 3212
6.35.2 Example . 3213

6.36 GAMS Posix Utilities . 3213
6.37 Rank . 3215

6.37.1 Usage . 3215
6.37.2 Example . 3215

6.38 SCENRED . 3216
6.38.1 Release Notes . 3216
6.38.2 Introduction . 3216
6.38.3 Scenario Reduction Algorithms . 3216
6.38.4 Using GAMS/SCENRED . 3217
6.38.5 The SCENRED Input File . 3218
6.38.6 SCENRED Options and the Option File . 3220
6.38.7 The SCENRED Output File . 3221
6.38.8 Diagnostic Check of Scenario Trees . 3222
6.38.9 SCENRED Errors and Error Numbers . 3222
6.38.10 SCENRED Warnings . 3223

6.39 SCENRED2 . 3224
6.39.1 Introduction . 3224
6.39.2 Using Gams/Scenred2 . 3224
6.39.3 Scenario Reduction . 3226
6.39.4 Scenario Tree Construction . 3227
6.39.5 Visualization . 3230
6.39.6 Command Line Interface . 3231
6.39.7 A Simplified Interface to Scenred2: $libinclude runscenred2 3234

6.40 ShellExecute . 3235
6.40.1 Usage . 3235
6.40.2 Example: Opening MS Access database . 3236

xx CONTENTS

6.41 SQL2GMS . 3237
6.41.1 Overview . 3237
6.41.2 Requirements . 3238
6.41.3 Batch Usage . 3238
6.41.4 Multi-Query Batch Usage . 3253
6.41.5 Interactive Usage . 3257
6.41.6 Connection Strings . 3263
6.41.7 ODBC Examples . 3264
6.41.8 Strategies . 3270
6.41.9 Parameter Files . 3275
6.41.10 Notes . 3276

6.42 XLS2GMS . 3279
6.42.1 Overview . 3279
6.42.2 Requirements . 3280
6.42.3 Converting spreadsheet data to GAMS data . 3280
6.42.4 Importing sets . 3281
6.42.5 Importing sets and tables . 3282
6.42.6 Multidimensional parameters . 3284
6.42.7 Interactive use . 3285
6.42.8 Options . 3286
6.42.9 Batch use . 3288
6.42.10 Command-line Arguments . 3288
6.42.11$CALL command . 3290
6.42.12 Command files . 3291
6.42.13 Multiple-area ranges and post-processing . 3291

6.43 XLSDUMP . 3295
6.43.1 Usage . 3295
6.43.2 Example . 3295

6.44 Multi-Objective Optimization (MOO) . 3296
6.44.1 Introduction . 3296
6.44.2 Usage . 3297
6.44.3 Methods . 3299
6.44.4 Examples . 3301

6.45 Model Instances (pyEmbMI) . 3305
6.46 Sorting (rank) . 3309

6.46.1 Examples . 3310

7 Application Programming Interfaces 3319
7.1 Object-oriented APIs . 3319

7.1.1 Reference Manuals . 3320
7.1.2 Tutorials . 3320
7.1.3 Examples . 3320
7.1.4 Release Notes . 3325
7.1.5 Supported Platforms . 3325

7.2 Expert-Level APIs . 3325
7.2.1 Supported Platforms . 3326

7.3 C++ API . 3326
7.4 Java API . 3326
7.5 Python API . 3327

7.5.1 Migrate import statements . 3328
7.5.2 GAMS Python API Structure . 3329
7.5.3 Magic (Jupyter Notebooks) . 3329
7.5.4 Transfer . 3330
7.5.5 Getting Started . 3457

7.6 Matlab API . 3461
7.6.1 Control . 3461

7.7 R API . 3465
7.7.1 GAMS Transfer R . 3465

CONTENTS xxi

7.8 Tutorial . 3533
7.8.1 Getting Started . 3534
7.8.2 Important Classes of the API . 3536
7.8.3 How to use API . 3536

7.9 Tutorial . 3549
7.9.1 Getting Started . 3549
7.9.2 Important Classes of the API . 3552
7.9.3 How to use API . 3553
7.9.4 How to use the pre configured example projects . 3565

7.10 Tutorial . 3567
7.10.1 Getting started . 3567
7.10.2 Important Classes of the API . 3573
7.10.3 How to use API . 3573

7.11 Control . 3588
7.11.1 Recommended Import . 3589
7.11.2 Important Classes of the API . 3589
7.11.3 How to use the API . 3590

7.12 Tutorial . 3602
7.12.1 Choose the GAMS system . 3603
7.12.2 Export data to GDX . 3603
7.12.3 Import data from GDX . 3604
7.12.4 Run a Job from file . 3604
7.12.5 Retrieve a solution from an output database . 3605
7.12.6 Specify solver using Options . 3605
7.12.7 Run Job with solver option file and capture log . 3605
7.12.8 Use include files . 3605
7.12.9 Set non-default working directory . 3606
7.12.10 Read data from string and export to GDX . 3606
7.12.11 Run Job using data from GDX . 3606
7.12.12 Run Job using implicit database communication 3607
7.12.13 Define data using Matlab data structures . 3607
7.12.14 Prepare Database from Matlab data structures . 3607
7.12.15 Initialize Checkpoint by running Job . 3608
7.12.16 Initialize Job from Checkpoint . 3608
7.12.17 Create ModelInstance from Checkpoint . 3609
7.12.18 Modify parameter of ModelInstance using Modifier 3609
7.12.19 Modify variable of ModelInstance using Modifier 3609
7.12.20 Create and use save/restart file . 3610

7.13 Release Notes . 3610
7.13.1 44.1.0 (July 2023) . 3610
7.13.2 43.1.0 (April 2023) . 3611
7.13.3 39.1.0 (April 2022) . 3611
7.13.4 35.1.0 (April 2021) . 3611
7.13.5 32.1.0 (July 2020) . 3611
7.13.6 29.1.0 (November 2019) . 3611
7.13.7 28.2.0 (August 2019) . 3612
7.13.8 28.1.0 (August 2019) . 3612
7.13.9 25.1.1 (May 2018) . 3612
7.13.10 25.0.1 (January 2018) . 3612
7.13.11 24.8.1 (December 2016) . 3613
7.13.12 24.7.4 (September 2016) . 3613
7.13.13 24.7.1 (March 2016) . 3613
7.13.14 24.5.1 (August 2015) . 3613
7.13.15 24.4.2 (March 2015) . 3613
7.13.16 24.4.1 (December 2014) . 3613
7.13.17 24.3.3 (September 2014) . 3614
7.13.18 24.3.2 (August 2014) . 3614
7.13.19 24.3.1 (July 2014) . 3614

xxii CONTENTS

7.13.20 24.2.3 (May 2014) . 3615
7.13.21 24.2.2 (March 2014) . 3616
7.13.22 24.2.1 (December 2013) . 3616
7.13.23 24.1.3 (July 2013) . 3617
7.13.24 24.1.1 (May 2013) . 3617
7.13.25 24.0.2 (February 2013) . 3619
7.13.26 24.0.1 (December 2012) . 3620

7.14 GAMS Environment Object Options . 3620
7.15 GAMS Modeling Object Design . 3622

7.15.1 Introduction . 3622
7.15.2 Basic organization . 3623
7.15.3 Solver Access to GMO . 3624
7.15.4 Modeler Access to GMO . 3625
7.15.5 Updating a GMO instance . 3626

8 Appendix 3627
8.1 Glossary . 3627
8.2 Third-Party Codes . 3634

Index 3643

Bibliography 3673

Chapter 1

GAMS Documentation Center

The GAMS Documentation Center provides you with the technical information on getting started, using
and maintaining our GAMS (General Algebraic Modeling System) products.

• Preface

• Release Notes - 46.2.0 Minor release (March 05, 2024)

• User's Guide

– Installation and Licensing - Guides on installing GAMS for various platforms and using a
GAMS license

– Tutorials and Examples - Step-by-step guides including a number of examples

– GAMS Language and Environment - Guide through components of GAMS Language and the
environment for executing a GAMS model

• Solver Manuals - Manuals of solvers available in the distribution

• Tools Manuals - Manuals of tools available in the distribution

• Application Programming Interfaces - Manuals of Application Programming Interfaces

• Appendix - Glossary, bibliography, and list of third-party codes

1.1 Model Libraries

From the early stages of the development of GAMS we have collected models to be used in libraries
of examples. Many of these are standard textbook examples and can be used in classes on problem
formulation or to illustrate points about GAMS. Others are models that have been used in policy or
sector analysis and are interesting for both the methods and the data they use. These model libraries are
included with all GAMS systems and are also available online.

The following model libraries are available:

• GAMS Model Library - includes GAMS models representing interesting and sometimes classic
problems, ranged from production and shipment by firms, investment planning, cropping patterns
in agriculture, operation of oil refineries and petrochemical plants, macroeconomics stabilization,
applied general equilibrium, international trade in aluminum and in copper, water distribution
networks, and many more.

2 GAMS Documentation Center

• GAMS Test Library - includes GAMS models developed for testing and quality control, both for
the GAMS base module and the many solvers distributed with the GAMS system.

• GAMS Data Library - includes GAMS models demonstrating various utilities to interface GAMS
with other tools and applications such as spreadsheets and database interface.

• GAMS EMP Library - includes GAMS Extended Mathematical Programming (EMP) models
that illustrate and test the capabilities of GAMS/EMP.

• GAMS API Library - includes GAMS Models used as scripts to compile and execute application
programs in various programming languages interfacing to GAMS.

• FIN Library - includes GAMS practical financial optimization models described in the book
Practical Financial Optimization: Decision Making for Financial Engineers

by Consiglio, Nielsen and Zenios,

• NOA Library - includes GAMS nonlinear optimization applications models based on the book
Nonlinear Optimization Applications Using the GAMS Technology by Neculai Andrei.

• PSOPT Library - includes GAMS optimization models based on the book Power System

Optimization Modelling in GAMS by by Alireza Soroudi.

See Accessing Model Libraries on how to access a GAMS model from the model libraries.

For large parts of the documentation, references to models from the model libraries are enclosed in square
parenthesis (for example, [TRNSPORT]).

1.2 Further Help

If you have a further question which is not answered by the documentation above, you can get further
help from our GAMS-FAQ which contains materials collected from various support activities or post your
question to GAMS World Forum. You can also sign up to our Newsletters to get the latest information
from GAMS. There is also GAMS Lessons, a YouTube Video Channel providing you with some tutorials
on how to use our system.

There are a number of contributed documentations that have been contributed by GAMS users as
well as presentations, books, posters, and advertisements contributed by people working with
GAMS.

You can also visit our upcoming courses and workshops.

If you experience a problem using GAMS please contact our Technical Support. If you have a
confidential model that you cannot share as is, please read the information on conversion of models

before submitting your models to our technical support.

https://www.amazon.com/Practical-Financial-Optimization-Decision-Engineers/dp/1405132019/ref=ed_oe_p
https://www.amazon.com/Practical-Financial-Optimization-Decision-Engineers/dp/1405132019/ref=ed_oe_p
https://www.amazon.com/Nonlinear-Optimization-Applications-Technology-Springer/dp/1461467969
https://www.amazon.com/Nonlinear-Optimization-Applications-Technology-Springer/dp/1461467969
https://books.google.de/books/about/Power_System_Optimization_Modeling_in_GA.html?id=-kszDwAAQBAJ&redir_esc=y
https://books.google.de/books/about/Power_System_Optimization_Modeling_in_GA.html?id=-kszDwAAQBAJ&redir_esc=y
https://forum.gamsworld.org/viewforum.php?f=15
https://forum.gamsworld.org/
https://www.gams.com/newsletter/signup/
http://www.youtube.com/user/GAMSLessons
https://forum.gamsworld.org/viewforum.php?f=16&sid=60f52f2a7983d94c0202a0834f780778
https://www.gams.com/archives/presentations/
https://www.gams.com/courses/
https://www.gams.com/support/
https://www.gams.com/documents/convert/

Chapter 2

Preface

The GAMS documentation has changed considerably since it was first released in 1988: in format, in scope
and content, and in how it is distributed and accessed. At the same time, it maintains many elements
of the original style: part tutorial, part user's guide, and part reference manual. We describe here the
evolution of the GAMS documentation and related topics.

Figure 2.1 Covers of GAMS User's Guide and Solver Manual

The first published GAMS documentation is the book GAMS: A User's Guide (aka the ”red book”) by
Brooke, Kendrick, and Meeraus, published in 1988 by The Scientific Press. Copies were sold in bookstores
and included a chapter on the model library (100 models at that time), a much-appreciated and well-used
index, appendices describing the solvers available (MINOS and ZOOM), and a 5.25 inch floppy disk
containing a student version of ”PC-GAMS version 2.05”. This was followed up in 1992 with GAMS: A
User's Guide, Release 2.25 (aka the ”blue book”) by a different publisher (Boyd & Fraser), a soft cover,
and no floppy disk: by this time the software was available directly from GAMS. The final section of
installation notes in the red book was replaced in the blue book by notes on the new features in GAMS
2.25, but the content was otherwise unchanged.

As the pace of development increased, it became clear that we needed a new documentation scheme,
one that would allow us to update the document continuously as language features, models and model
libraries, solvers, and tools/utilities were added to or updated in the system. Consequently, we converted
the existing documentation to MS Word, expanded, updated, and edited it as appropriate, and sent it
to the copy shop to be printed. This was a group effort spearheaded by Ramesh Raman, whose name
was included as an author in the User's Guide first included (along with a CD) in shipments of our 18.0
release in Feb 1999. The solver manuals in this release were collected from various sources (with varying
styles, content, and organization) and put into a separate binder. A further push was required to unify
this solver documentation (using LaTeX) to use a common style and organization: this unified Solver
Manual was included with the 21.0 release of May 2003. In addition to hard-copy, all of these documents
were included as PDF in the GAMS system and freely available via the Web. Thus, the shift away from
published documentation to manuals produced in-house went hand-in-hand with a shift from printed
documents to viewing and searching PDF documents.

4 Preface

During this time Bruce McCarl had been regularly teaching GAMS courses: basic and advanced, targeting
a general audience but with a distinct flavor of agricultural economics. As part of this he developed course
material to use in his classes, and he was in a good position to notice that the GAMS User Guide was not
keeping up with all the updates to the software. With some encouragement from GAMS, Bruce started
the ambitious project of creating a new GAMS User's Guide, one that would be more complete, more to
his taste with an increase in tutorial flavor, and designed to take full advantage of being a Web document:
linked, cross-referenced, searchable, and indexed. The end result was the McCarl Guide that emerged as a
PDF based on a Word document in 2002. This was redone in the more convenient CHM format with the
22.1 release of Mar 2006 and renamed as the Expanded GAMS Guide (McCarl) in release 22.3 of Nov
2006. We also kept the original GAMS User's Guide, by this time as PDF generated from LaTeX source.
With its improved content, organization, and navigability, Bruce's new guide was a boon to all GAMS
users, not just those taking his courses. We owe a debt of gratitude to Bruce for this and many other
contributions.

The Expanded GAMS Guide (McCarl) was never intended to be printed and was not shipped as hard-copy
with GAMS. In 2013, GAMS stopped making physical shipments altogether and moved to an online
order-fulfillment system. For those who still wanted printed documentation, the documents were also
made available via Amazon's CreateSpace, but most users browsed the documents online or as part of
an installed GAMS system, often via the GAMS IDE, so the need for printable documents was small and
growing smaller.

Having two user's guides was counter-intuitive or confusing for some users, especially when the content for
some topics was different, missing, or even contradictory. The additional effort required to maintain two
documents became more noticeable, especially since the Expanded User Guide (McCarl) was implemented
using a Windows-only product that did not lend itself to version control via SVN or git. When we
documented our object-oriented APIs in Feb 2013, we used the opportunity to experiment with a doxygen-
based authoring process that uses text files as source, is platform-independent, and produces output in
multiple formats. The results were good, and in 2015 we hired a consultant, Martha Loewe, to research
what it would take to convert all of the GAMS documentation to use the doxygen-based process and to
set up a framework for this. We eventually committed fully to this process and produced a unified set
of documentation as of release 24.9 in Aug 2017. This involved reorganizing things somewhat to better
fit a linked document, merging the two user guides into one (while trying to maintain the best qualities
of each), adding links throughout, and submitting everything to review and editing by internal subject
matter experts so the content is accurate, updated, and complete. The end result is something we believe
is an improvement over its predecessors, but it is also something we are committed to maintaining and
improving. The current system allows and encourages immediate updates by the whole GAMS team and
has helped foster a culture and attitude where this takes place.

https://www.amazon.com/GAMS-Users-Gams-Development-Corporation/dp/1482390299/ref=sr_1_fkmrnull_1

Chapter 3

Release Notes

3.1 Release Types

Major releases contain substantial changes to the GAMS system. The License Check date is set to the
release date of the major release.

Minor releases are mainly issued to provide bug fixes, performance improvements, and maintenance
releases of solver libraries. Additionally, they can provide a few new features that do not change existing
behavior. The License Check Date remains the same as for the prior major release. This means that any
license file that worked with the prior major release will also work with this minor release.

Maintenance releases do not provide any new features. They are issued to provide bug fixes, performance
improvements, and maintenance releases of solver libraries. The License Check Date remains the same as
for the prior major release. This means that any license file that worked with the prior major release will
also work with this maintenance release.

3.2 Release History

• 46 Distribution (distribution start page)

– 46.1.0 Major release (February 17, 2024)

– 46.2.0 Minor release (March 05, 2024)

• 45 Distribution (distribution start page)

– 45.1.0 Major release (October 14, 2023)

– 45.2.0 Minor release (October 30, 2023)

– 45.3.0 Minor release (November 11, 2023)

– 45.4.0 Minor release (November 27, 2023)

– 45.5.0 Minor release (December 14, 2023)

– 45.6.0 Minor release (January 04, 2024)

– 45.7.0 Minor release (January 18, 2024)

• 44 Distribution (distribution start page)

– 44.1.0 Major release (July 20, 2023)

– 44.1.1 Maintenance release (August 03, 2023)

https://www.gams.com/46
https://www.gams.com/45
https://www.gams.com/44

6 Release Notes

– 44.2.0 Minor release (August 17, 2023)

– 44.3.0 Minor release (September 01, 2023)

– 44.4.0 Minor release (September 19, 2023)

• 43 Distribution (distribution start page)

– 43.1.0 Major release (April 27, 2023)

– 43.2.0 Minor release (May 04, 2023)

– 43.3.0 Minor release (May 18, 2023)

– 43.3.1 Maintenance release (June 01, 2023)

– 43.4.0 Minor release (June 15, 2023)

– 43.4.1 Maintenance release (June 22, 2023)

• 42 Distribution (distribution start page)

– 42.1.0 Major release (February 01, 2023)

– 42.2.0 Minor release (February 16, 2023)

– 42.3.0 Minor release (March 02, 2023)

– 42.4.0 Minor release (March 16, 2023)

– 42.5.0 Minor release (March 30, 2023)

• 41 Distribution (distribution start page)

– 41.1.0 Major release (October 28, 2022)

– 41.2.0 Minor release (November 14, 2022)

– 41.3.0 Minor release (November 28, 2022)

– 41.4.0 Minor release (December 14, 2022)

– 41.5.0 Minor release (January 03, 2023)

• 40 Distribution (distribution start page)

– 40.1.0 Major release (August 01, 2022)

– 40.1.1 Maintenance release (August 16, 2022)

– 40.2.0 Minor release (September 01, 2022)

– 40.3.0 Minor release (September 16, 2022)

– 40.4.0 Minor release (October 03, 2022)

• 39 Distribution (distribution start page)

– 39.1.0 Major release (May 03, 2022)

– 39.1.1 Maintenance release (May 18, 2022)

– 39.2.0 Minor release (June 02, 2022)

– 39.2.1 Maintenance release (June 21, 2022)

– 39.3.0 Minor release (July 07, 2022)

• 38 Distribution (distribution start page)

– 38.1.0 Major release (January 31, 2022)

– 38.2.0 Minor release (February 17, 2022)

– 38.2.1 Maintenance release (February 19, 2022)

– 38.3.0 Minor release (April 05, 2022)

• 37 Distribution (distribution start page)

– 37.1.0 Major release (November 11, 2021)

https://www.gams.com/43
https://www.gams.com/42
https://www.gams.com/41
https://www.gams.com/40
https://www.gams.com/39
https://www.gams.com/38
https://www.gams.com/37

3.2 Release History 7

• 36 Distribution (distribution start page)

– 36.1.0 Major release (August 02, 2021)

– 36.2.0 Minor release (September 03, 2021)

• 35 Distribution (distribution start page)

– 35.1.0 Major release (April 29, 2021)

– 35.2.0 Minor release (June 02, 2021)

• 34 Distribution (distribution start page)

– 34.1.0 Major release (January 29, 2021)

– 34.2.0 Minor release (February 05, 2021)

– 34.3.0 Minor release (February 25, 2021)

• 33 Distribution (distribution start page)

– 33.1.0 Major release (November 01, 2020)

– 33.2.0 Minor release (December 01, 2020)

• 32 Distribution (distribution start page)

– 32.1.0 Major release (July 31, 2020)

– 32.2.0 Minor release (August 26, 2020)

• 31 Distribution (distribution start page)

– 31.1.0 Major release (May 01, 2020)

– 31.1.1 Maintenance release (May 16, 2020)

– 31.2.0 Minor release (June 19, 2020)

• 30 Distribution (distribution start page)

– 30.1.0 Major release (January 10, 2020)

– 30.2.0 Minor release (February 07, 2020)

– 30.3.0 Minor release (March 06, 2020)

• 29 Distribution (distribution start page)

– 29.1.0 Major release (November 15, 2019)

• 28 Distribution (distribution start page)

– 28.1.0 Major release (August 02, 2019)

– 28.2.0 Minor release (August 19, 2019)

• 27 Distribution (distribution start page)

– 27.1.0 Major release (April 24, 2019)

– 27.2.0 Minor release (May 23, 2019)

– 27.3.0 Minor release (July 04, 2019)

• 26 Distribution (distribution start page)

– 26.1.0 Major release (February 02, 2019)

• 25.1 Distribution (distribution start page)

– 25.1.1 Major release (May 19, 2018)

– 25.1.2 Minor release (August 01, 2018)

– 25.1.3 Minor release (October 30, 2018)

https://www.gams.com/36
https://www.gams.com/35
https://www.gams.com/34
https://www.gams.com/33
https://www.gams.com/32
https://www.gams.com/31
https://www.gams.com/30
https://www.gams.com/29
https://www.gams.com/28
https://www.gams.com/27
https://www.gams.com/26
https://www.gams.com/25.1

8 Release Notes

• 25.0 Distribution

– 25.0.1 Major release (January 17, 2018)

– 25.0.2 Maintenance release (January 31, 2018)

– 25.0.3 Minor release (March 21, 2018)

• 24.9 Distribution

– 24.9.1 Major release (August 30, 2017)

– 24.9.2 Minor release (November 14, 2017)

• 24.8 Distribution

– 24.8.1 Major release (December 21, 2016)

– 24.8.2 Maintenance release (January 03, 2017)

– 24.8.3 Minor release (January 28, 2017)

– 24.8.4 Minor release (April 10, 2017)

– 24.8.5 Maintenance release (May 10, 2017)

• 24.7 Distribution

– 24.7.1 Major release (March 14, 2016)

– 24.7.2 Minor release (July 07, 2016)

– 24.7.3 Maintenance release (July 11, 2016)

– 24.7.4 Minor release (September 19, 2016)

• 24.6 Distribution

– 24.6.1 Major release (January 18, 2016)

• 24.5 Distribution

– 24.5.1 Major release (September 23, 2015)

– 24.5.2 Maintenance release (September 29, 2015)

– 24.5.3 Maintenance release (October 01, 2015)

– 24.5.4 Maintenance release (October 15, 2015)

– 24.5.5 Maintenance release (November 25, 2015)

– 24.5.6 Maintenance release (November 27, 2015)

• 24.4 Distribution

– 24.4.1 Major release (December 20, 2014)

– 24.4.2 Minor release (March 15, 2015)

– 24.4.3 Maintenance release (April 02, 2015)

– 24.4.4 Maintenance release (May 12, 2015)

– 24.4.5 Maintenance release (May 26, 2015)

– 24.4.6 Minor release (June 26, 2015)

• 24.3 Distribution

– 24.3.1 Major release (July 31, 2014)

– 24.3.2 Minor release (August 29, 2014)

– 24.3.3 Minor release (September 19, 2014)

• 24.2 Distribution

– 24.2.1 Major release (December 09, 2013)

3.2 Release History 9

– 24.2.2 Maintenance release (March 04, 2014)

– 24.2.3 Maintenance release (May 22, 2014)

• 24.1 Distribution

– 24.1.1 Major release (May 30, 2013)

– 24.1.2 Maintenance release (June 16, 2013)

– 24.1.3 Maintenance release (July 26, 2013)

• 24.0 Distribution

– 24.0.1 Major release (December 24, 2012)

– 24.0.2 Maintenance release (February 14, 2013)

• 23.9 Distribution

– 23.9.1 Major release (July 04, 2012)

– 23.9.2 Maintenance release (August 29, 2012)

– 23.9.3 Maintenance release (September 26, 2012)

– 23.9.4 Maintenance release (October 20, 2012)

– 23.9.5 Maintenance release (November 09, 2012)

• 23.8 Distribution

– 23.8.1 Major release (March 17, 2012)

– 23.8.2 Maintenance release (April 05, 2012)

• 23.7 Distribution

– 23.7.1 Major release (July 14, 2011)

– 23.7.2 Maintenance release (July 22, 2011)

– 23.7.3 Maintenance release (August 23, 2011)

• 23.6 Distribution

– 23.6.2 Major release (December 13, 2010)

– 23.6.3 Maintenance release (February 15, 2011)

– 23.6.4 Maintenance release (April 01, 2011)

– 23.6.5 Maintenance release (April 08, 2011)

• 23.5 Distribution

– 23.5.1 Major release (July 05, 2010)

– 23.5.2 Maintenance release (August 18, 2010)

• 23.4 Distribution

– 23.4.1 Major release (May 21, 2010)

– 23.4.3 Maintenance release (May 24, 2010)

• 23.3 Distribution

– 23.3.1 Major release (November 01, 2009)

– 23.3.2 Maintenance release (November 18, 2009)

– 23.3.3 Maintenance release (December 17, 2009)

• 23.2 Distribution

– 23.2.1 Minor release (August 14, 2009)

10 Release Notes

• 23.1 Distribution

– 23.1.1 Major release (July 13, 2009)

– 23.1.2 Maintenance release (July 23, 2009)

• 23.0 Distribution

– 23.0.2 Major release (February 14, 2009)

• 22.9 Distribution

– 22.9.2 Major release (December 01, 2008)

• 22.8 Distribution

– 22.8.1 Major release (August 01, 2008)

• 22.7 Distribution

– 22.7.1 Major release (May 01, 2008)

– 22.7.2 Maintenance release (May 13, 2008)

• 22.6 Major release (December 24, 2007)

• 22.5 Major release (June 01, 2007)

• 22.4 Major release (February 12, 2007)

• 22.3 Major release (November 27, 2006)

• 22.2 Minor release (April 21, 2006)

• 22.1 Major release (March 15, 2006)

• 22.0 Major release (August 01, 2005)

• 21.7 Major release (April 01, 2005)

• 21.6 Minor release (January 26, 2005)

• 21.5 Minor release (November 11, 2004)

• 21.4 Major release (September 06, 2004)

• 21.3 Major release (January 19, 2004)

• 21.2 Maintenance release (September 03, 2003)

• 21.1 Maintenance release (June 02, 2003)

• 21.0 Major release (May 15, 2003)

• 20.7 Maintenance release (June 14, 2002)

• 20.6 Major release (May 25, 2002)

• 20.5 Maintenance release (January 28, 2002)

• 20.4 Maintenance release (January 21, 2002)

• 20.3 Major release (December 24, 2001)

• 20.2 Maintenance release (November 22, 2001)

• 20.1 Major release (October 31, 2001)

3.3 46 Distribution 11

3.3 46 Distribution

3.3.1 46.1.0 Major release (February 17, 2024)

3.3.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Marcel Adenauer, Simon Wesley Bowen, Ruud Egging-Bratseth,
Wolfgang Britz, Katja Jensen, Bruce McCarl, Scott McDonald, Evangelos Panos, Hailie Petrick, Alfonso
Rodriguez Osuna, and Tom Rutherford.

3.3.1.2 Platforms

• As announced, dropped support for macOS 11 (Big Sur).

3.3.1.3 GAMS System

GAMS

• Added new put utility commands stdOut and stdErr to send a message to standard output and
error streams independent of the GAMS log file.

• Added new command line parameter gdxSymbols to select symbols that get exported when command
line parameter GDX is set.

• Print warning to the log if execute load or execute loaddc is called without specifying any symbols
to be loaded.

• Changed default for option threads to 0. The new meaning of setting threads=0 is that the solver
will decide on the number of processors to use. In particular, the following changes in behavior can
be observed for threads=0:

– MIP solvers called by BARON no longer use multiple processors.

– CBC may use multiple processors in linear algebra subroutines, but not for parallelization in
root node processing or the tree search.

– COPT, CPLEX, GUROBI, KNITRO, and XPRESS now decide automatically on the number
of processors to use.

– IPOPT(H) and LINDO / LINDOGlobal use 1 processor.

– MOSEK now uses the number of processor cores instead of the number of virtual processors to
determine the number of threads (i.e., hyperthreading is disregarded).

– SCIP now decides automatically on the number of processors to use in MILP presolving and
LP solving. It uses 1 thread for some linear algebra routines.

– MIP solvers called by SHOT now decide automatically how many processors to use.

• Added new option value 22 for dumpOpt that writes processed input with all comments into a
separate dump file for each block.

• Removed misleading message about matched rows for CNS models.

• Fixed a potentially wrong result of a sameAs statement, when it is used in a loop construct with a
singleton set which gets changed in the loop execution.

• Fixed a wrong dump file, when $onVerbatim was used with $onPut or EmbeddedCode.

• Fixed a potential crash with dumpOpt and dumpOptGdx.

12 Release Notes

3.3.1.4 Documentation

• The McCarl GAMS User Guide will be dropped with the next major release.

Embedded Python Code Facility

• As announced, the command line parameter pyMultInst has been dropped.

• Fixed a problem with empty code blocks.

GAMS Connect

• Added new option skip for the Concatenate agent that allows to indicate if sets or parameters should
be skipped.

• Added new ExcelReader and ExcelWriter agents for reading and writing Excel files.

• PandasExcelReader and PandasExcelWriter are deprecated and will be removed in a future release.
Use ExcelReader and ExcelWriter instead.

• Harmonized the sorting behavior of Connect agents. Please check the Usage section for details.

• Improved exception handling for GDXWriter with better error message in case of duplicate records
and duplicateRecords set to all.

• Fixed a bug where GAMSWriter would not raise an error in case of duplicate records and
duplicateRecords set to all.

• Fixed that GAMSWriter and GDXWriter agents were changing the Connect database when dropping
duplicate records.

GMSPython

• The Python version of GMSPython has been upgraded to 3.12.1.

• Added the package scipy to GMSPython.

3.3.1.5 Solvers

Antigone, CBC, Ipopt, SCIP, SHOT

• Updated MKL to version 2024.0 on Linux and version 2023.0.0 on Windows.

BARON

• New libraries 24.1.30.

– Improved algorithms for integer linear and nonlinear programs, including local search, reformu-
lations, relaxations, cutting planes, and presolve.

3.3 46 Distribution 13

CBC

• New libraries nauty 2.8.8.

CONOPT

• New libraries 4.32.

– Bounds larger than Lim Variable will now be reset to inf (analogously for -inf). Previously,
CONOPT terminated with an error.

– Fixed projection of initial point into bounded interval after linear infeasibility model.

– Fixed issue with Hessian evaluation when multithreading is enabled.

• Solver alias conopt now equals conopt4. Use conopt3 to solve with CONOPT 3.

CPLEX

• Added possibility to define multiple mipstopexpr in one option file. If any of the given stop
expressions is true, the algorithm stops.

GUROBI

• New libraries 11.0.0.

– MINLP: Can now use spatial branching and outer approximation to solve models with
non-linear constraints in a form that is supported by Gurobi, instead of using static piecewise-
linear (PWL) approximations.

– New option concurrentmethod: Chooses continuous solvers to run concurrently.

– New option tunedynamicjobs: Enables distributed tuning using a dynamic set of workers.

– New option mixingcuts: Mixing cut generation.

– New option funcnonlinear: Controls whether general function constraints are treated as nonlin-
ear functions or via PWL approximation.

– New option solutiontarget: Specify the solution target for LP.

– New option value -2 for tuneresults.

– Changed both upper bound and default for option tunetimelimit to infinity.

– Changed default for option nonconvex to accept models with non-convex objective or constraints.

– Changed default for option dofuncpieces to use the relative error approach.

• New option nlreform: Reform nonlinear equations to Gurobi general constraints.

• Added possibility to define multiple mipstopexpr in one option file. If any of the given stop
expressions is true, the algorithm stops.

GUSS

• In rare (mostly internal) places GUSS was previously called SCENSOLVER, e.g. in gmscmpun.txt files
or the system attribute solverNames. This synonym has been removed and replaced by GUSS.

14 Release Notes

JAMS

• Update solution reporting for VI agents: for VI functions that have been flipped, the value of the
matching variable is now returned in the equation marginal, instead of its negative.

• Fixed model reformulation for VI agents: corrected reformulation in cases where VI constraints were
flipped.

KESTREL

• The client-side implementation now strictly enforces TLS 1.2 or later.

KNITRO

• New libraries 14.0.0.

– Performance improvements on mixed-integer and QP/QCQP problems.

– Improvemed presolve.

– Improvemed quasi-Newton Hessian approximations.

– New option linsolver nodeamalg: Controls the node amalgamation setting for the MA57, MA86,
and MA97 linear solvers.

– New option linsolver ordering: Sets the ordering method used for the linear system solver.

– New option linsolver scaling: Enables scaling for the linear system solver.

– New option scale vars: Specifies the strategy for scaling variables.

– New option presolveop substitution tol: Tolerance for applying a substitution.

– New option presolveop substitution: Determine whether or not to enable the Knitro presolve
operation to substitute out variables when possible.

– New option bar globalize: Specifies the globalization strategy used in the interior-point algo-
rithms.

– New option bar maxmu: Specifies the maximum allowable value for the barrier parameter µ
used with the barrier algorithms.

– New option mip cut flowcover: Specifies rules for adding flow cover cuts.

– New option mip cut probing: Specifies rules for adding probing cuts.

– New option mip heuristic localsearch: Specifies whether or not to enable the MIP local search
heuristic.

– New option ms initpt cluster: The strategy for clustering initial points in multi-start.

– New option value 4 for ms terminate.

– New option values -1 and 4 for blasoption.

• For discrete models the initial point is now added as MIP start in addition to the root relaxation
start.

Octeract

• As announced, Octeract has been removed.

3.3 46 Distribution 15

PATH

• Avoid multi-threaded Jacobian evaluation for models with external equations (aka =X= rows) as
thread-safe external evaluation cannot be assumed.

SCIP

• Added sassy 1.1 (9847fa1) as graph preprocessor for symmetry detection.

XPRESS

• Added possibility to define multiple mipstopexpr in one option file. If any of the given stop
expressions is true, the algorithm stops.

3.3.1.6 Tools

$LibInclude files

• As announced, the libinclude files gdxservice, linalg, and win32 have been removed. Please use
the corresponding tools from the GAMS tools library instead.

Cholesky, Eigenvalue, Eigenvector, Invert

• As announced, the tools cholesky, eigenvalue, eigenvector, and invert have been removed. Please use
the linear algebra tools from the GAMS tools library instead.

GAMS IDE

• Fixed an error reading certain reference files.

GAMS Studio

• New version 1.17.2.

– Added install license button for the ”GAMS Licensing” dialog.

– Added highlighting of the system log tab when new messages are available. In case of warnings
and errors the tab will be focused.

– Added new options ”Compare Defaults”, ”Compare Domains”, and ”Ignore Order” to the
GDX Diff dialog.

– Added the ability to resume to an ongoing GAMS Engine job after Studio is restarted.

– Added symbol sub types to the ”Type” column of the symbol table in the GDXViewer.

– GDXViewer export improvements:

∗ The dialog now uses the ExcelReader instead of the PandasExcelReader (deprecated). This
changes the following aspects:

· All GAMS special values are exported as string representation per default.

· Visual appearance of the generated Excel files has changed.

16 Release Notes

· Exported data does not contain the ”value” and ”element text” headers anymore.

· No extra blank row between column header and data anymore.

· Labels are not written into merged cells anymore.

∗ Added support for specifying custom values for GAMS special values.

– Navigator improvements:

∗ Improved performance after large searches.

∗ Fixed duplicate entries for files that are also opened in a tab.

∗ Fixed file navigation when starting path with ...

∗ Fixed problem handling long path names.

∗ Fixed directories being listed as files.

∗ Fixed filesystem navigation for absolute path on Windows.

∗ Fixed filesystem navigation improperly handling file switching.

∗ Fixed that unnecessary spaces broke Navigator modes.

– Stability improvements, bug fixes, and minor enhancements, e.g.:

∗ Added Esc as a shortcut to abort the search.

∗ Added abort of ongoing search when search dialog is closed (but not hidden).

∗ Improved LST viewer performance.

∗ Improved performance when searching very large folders.

∗ Improved file handling for unexpected events while writing a file, i.e., write to temporary
file and rename after success.

∗ Fixed crash when closing a project during a GAMS debug run.

∗ Fixed crash when opening file from welcome page.

∗ Fixed crash when loading an empty lxi/lst file.

∗ Fixed crash in lxiViewer with invalid model index.

∗ Fixed crash in project explorer on macOS with invalid model index.

∗ Fixed crash in Connect Editor when adding ExcelWriter schema data.

∗ Fixed problem where ”Replace All” in unopened files appended extra characters.

∗ Fixed stop and interrupt button for macOS and Linux.

∗ Fixed LST viewer sometimes jumping to wrong position in file.

∗ Fixed help view showing empty page when document linked to a page in new tab or new
window.

∗ Fixed unresponsive Abort button in Search Dialog.

∗ Fixed that search was not properly interrupted when pressing Abort.

∗ Fixed deactivated search elements when project settings are focussed.

∗ Fixed unwanted partial matches in the Search Dialog file filter section.

∗ Fixed project explorer not updated when using ”save as”.

∗ Fixed encoding resets to UTF-8 after restart.

∗ Fixed Windows interrupt not working in some cases.

∗ Fixed Open As Text button in Connect Editor not showing file contents in text editor.

∗ Fixed Save for newly added data by drag and drop schema in Connect Editor.

∗ Fixed overwritten clp when moving/copying a file from one project to another.

GDX2HAR/HAR2GDX

• As announced, the tools gdx2har and har2gdx have been removed. The tools can be accessed from
the CoPS web site.

https://www.copsmodels.com/gp-gams.htm

3.3 46 Distribution 17

GDXRank, GDXRename

• As announced, the tools gdxrank and gdxrename have been removed. Please use the
GDX service tools from the GAMS tools library instead.

• The $libInclude rank functionality now uses executeTool 'alg.rank' to sort a one dimensional
parameter instead of the gdxrank tool.

MCFilter

• As announced, the tool mcfilter has been removed. This discussion at the GAMS World

Forum gives an alternative.

MOO

• A new LibInclude tool moo has been added. It provides methods for multi-objective optimization in
GAMS (e.g. Augmented Epsilon Constraint).

MSAppAvail and Shellexecute

• As announced, the tools msappavail and shellexecute have been removed. Please use the
Windows only tools from the GAMS tools library instead.

3.3.1.7 APIs

C++

• Added client-side enforcement of TLS 1.2 or later in GAMSJob::runEngine.

• New libraries curl 8.6.0.

C4U

• As announced, the C4U API has been removed from the distribution.

GAMS Transfer Matlab

Attention

GAMS Transfer Matlab has been moved and restructured! The API

• is located in api/matlab (previously: apifiles/Matlab/api) and

• comes as the Matlab package gams.transfer (previously: GAMSTransfer).

• Now available for macOS on ARM64 CPUs.

• Added gams.transfer.setup and ∗.c MEX source files of internal interface to gams.transfer.cmex.
Calling gams.transfer.setup allows to build GAMS Transfer Matlab from source. Check with
mex -setup which C compiler is enabled in Matlab.

https://forum.gamsworld.org/viewtopic.php?f=15&t=11979
https://forum.gamsworld.org/viewtopic.php?f=15&t=11979

18 Release Notes

GAMS Transfer Python

• Symbol property .container now holds a reference to the Container instead of a weakref.

• Relaxed axis uniqueness requirement when setting records with uels on axes=True.

• Fixed error encountered with non-unique axis elements when setting records with uels on axes=True.

• Fixed that the pivot method failed for DataFrames with non-str column names.

• Fixed failure with getSparsity by adding new isValid test to efficiently detect domain violations
in certain situations.

• Fixed bug that did not allow mixed case gdx file extensions.

GAMS Transfer R

• New libraries 3.0.0.

– GDX API changed to the new GDX C++ API, which allows for significant performance
improvements.

– Performance improvements in reading GDX file.

– The systemDirectory argument in the Container constructor is deprecated and will be
removed in the future.

– Bug fix: Container property summary changed from a method to active binding.

– Bug fix: Symbol method equals incorrectly returned FALSE when the symbol records contain
NA.

– Fixed overriding PKG CXXFLAGS in Makevars.

GDX

• New libraries 7.10.1 (synchronized with open-source release of GDX expert-level API):

– Added gdxAllowBogusDomains as boolean option to toggle allowing potentially unsafe writing
of records to symbols with one dimensional sets as domain, when GDX has no lookup table
for the elements of this set. This can happen when gdxStoreDomainSets was disabled by
the user to save memory. For backwards compatibility, this is enabled by default. When
the user explicitly disables it, e.g. via gdxAllowBogusDomainsSet(false), then using a one
dimensional set as domain will cause a GDX error (ERR NODOMAINDATA).

– Added boolean property gdxMapAcronymsToNaN (disabled by default) that maps all acronym
values to special value ”Not a Number” (NaN).

GEV

• Add alternative function gevSwitchLogStatEx to better handle cases where the current log/status
destination is independent of the one switched to.

GMO

• Added gmoObj None to enum gmoObjectiveSense for model instances without objective. This
return value of gmoSense() was possible before, but is used more consistently now.

https://github.com/GAMS-dev/gdx

3.3 46 Distribution 19

Matlab

Attention

The (object-oriented) Matlab API has been renamed, moved and restructured! The API

• is now called GAMS Control (previously: object-oriented GAMS API),

• is located in api/matlab (previously: apifiles/Matlab/api),

• comes as the Matlab package gams.control or its alias gc (previously: GAMS),

• now has sub-packages gams.control.engine, gams.control.globals and gams.control.options,
and

• removed GAMS from class names. For example, use gams.control.Workspace (or the alias
gc.Workspace) instead of GAMS.GAMSWorkspace. The old class names are still available as
aliases to the new names, but are deprecated and may be removed in an upcoming release. See
also mapping of old to new class names.

Furthermore, the enumeration classes have changed. They are now normal classes that behave like
enumeration classes for better support of software products that do not support enumerations, e.g.,
Octave. This has changed:

• Enumeration values are now constant properties of the class. Syntax for using those values
does not change.

• The new enumeration-like classes have properties select and value that store the current
selection (name of the enumeration value) and value of the enumeration, respectively. These
properties can be changed to other enumeration selections or values. Use select when printing
the enumeration.

• Removed method lookup. Use the class constructor instead.

• Removed method value. Use the property value instead.

• Setting the environment variable GAMS MATLAB ENUM ALT has no effect anymore.

• Added option value SplitBlocksDumpWithComments to option DumpOpt: Write processed input with
all comments into a separate dump file for each block.

• Removed option PyMultInst.

.Net

• Changed the TargetFramework of the GAMS .Net API and all dependent examples from 4.5 to
4.6.2.

PAL

• Added routine palExistingConfigFiles() that returns an ordered list of GAMS configuration
files.

20 Release Notes

Python

• The gams.transfer.numpy API has been moved to gams.core.numpy.

• Added new value KeepFilesOnError to DebugLevel which keeps temporary files only in case of
an error. Its internal numerical value is 1 and all values for DebugLevel.KeepFiles or greater have
been increased by one.

• Changed the default of GamsWorkspace from DebugLevel.Off to DebugLevel.KeepFilesOnError
with the effect that temporary files do not get deleted anymore in case of an error.

• The client-side implementation of gams.control.GamsJob.run engine() now enforces TLS 1.2 or
later when using urllib3 prior to version 2.0.

• Improved log output of GamsJob.run() to be always live (per line).

• Fixed log output of GamsJob.run() containing duplicate carriage returns for line endings on
Windows.

• Fixed GamsOptions.optdir property used with GamsModelInstance.instantiate() having
no effect in GamsModelInstance.solve().

3.3.1.8 Model Libraries

FIN Library

• Updated CreditImmunization : Factor Immunization model for corporate bonds..

• Updated MeanVar : Mean-variance efficient portfolios.

• Updated MeanVarShort : Mean-variance model allowing short sales.

• Updated PutCall : Put/Call efficient frontier model..

• Updated ReadData : Reads excel files and converts them to gdx format.

• Updated SelectiveHedging : Scenario Optimization for selective hedging.

• Updated ThreeStageSPDA : A three stage stochastic programming model for SPDA.

GAMS Data Library

• Removed embeddedMultiInstance.

• Added EngineSolve.gms : Demonstrate how to submit just a solve statement to Engine.

• Added EngineSolveAsync.gms : Demonstrate how to asynchronously submit solve
statements to Engine.

• Added moo01.gms : Solve scalable multi-objective knapsack model.

• Added moo02.gms : Solve multi-objective power generation model.

• Updated connect01.gms : Complex Connect Example with Spreadsheets.

• Updated connect05.gms : Simple Connect Example for Excel.

3.3 46 Distribution 21

GAMS Model Library

• dice and dicex: Fixed big-M and ensured fval to be integral after solve in dice.

• Added boxpacking.gms : Container Packing Problem.

• Added cvrp.gms : Capacitated Vehicle Routing Problem.

• Updated cta.gms : Controlled Tabular Adjustments.

• Updated herves.gms : Herves (Transposable Element) Activity Calculations.

• Updated qmeanvar.gms : Financial Optimization: Risk Management using MIQCP.

• Updated sddp.gms : Multi-stage Stochastic Water Reservoir Model solved with SDDP.

GAMS Test Library

• Removed har1.

• Added unload16.gms : Test command line parameter gdxSymbols.

• Added emp34.gms : JAMS: test of flipping functions with VI.

• Added emp35.gms : JAMS: test of flipping constraints with VI.

• Added moo1.gms : Test libInclude tool moo.

• Added caxlsr.gms : Test Connect agent ExcelReader.

• Added caxlsrw.gms : Test Connect agents ExcelReader and ExcelWriter.

• Added gamsincr.gms : Test GAMS incrementalMode.

• Updated capcode.gms : Test Connect agent PythonCode.

PSOPT Library

• Updated DED-PB : Price based Dynamic Economic Load Dispatch.

• Updated DED-wind : Dynamic Economic Load Dispatch considering Wind generation.

• Updated DED : Dynamic Economic Load Dispatch.

• Updated DEDESS : Cost based Dynamic Economic Dispatch integrated with Energy
Storage.

• Updated DEDESSwind : Cost based Dynamic Economic Dispatch integrated with
Energy Storage and Wind.

• Updated ESSDCOPFwind : DC-OPF integrated with Energy Storage and Wind.

• Updated MultiperiodACOPF24bus : Multi-period AC-OPF for IEEE 24-bus network
considering wind and load shedding.

• Updated MultiperiodDCOPF24bus : Multi-period DC-OPF for IEEE 24-bus network
considering wind and load shedding.

• Updated PBUC : Price based Unit commitment.

• Updated RampSenDED : Ramp rate sensitivity analysis for Dynamic Economic Load
Dispatch.

22 Release Notes

3.3.2 46.2.0 Minor release (March 05, 2024)

3.3.2.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Jinggang Guo, Scott McDonald, and Anne Sofie Skak-Iversen.

3.3.2.2 GAMS System

Embedded Code Facility

• Fixed error if embedded Python/Connect code arguments (gams.arguments) contain single quotes.

GAMS Connect

• Fixed ExcelReader error when reading from empty sheet.

• Fixed ExcelWriter error when writing an empty symbol.

• Improved ExcelReader error messages for insufficient ranges.

3.3.2.3 Solvers

BARON

• New libraries 24.3.1.

– Performance improvements for QCQPs.

CONOPT

• New libraries 4.33.

MOSEK

• New libraries 10.1.27.

3.3.2.4 Tools

GAMS Studio

• New version 1.17.3 with bug fixes and minor enhancements:

– Added ”Last Projects” to the welcome page.

– Added close button to remove an entry from the welcome page.

– Added search and replace for block-edit.

– Fixed that project file got cleared when opening a file of the same base name.

3.4 45 Distribution 23

3.3.2.5 APIs

DCT

• Fixed a wrong error message in case of an overflow in dctSetBasicCountsEx.

3.3.2.6 Model Libraries

GAMS Test Library

• Updated caxlsr.gms : Test Connect agent ExcelReader.

• Updated caxlsrw.gms : Test Connect agents ExcelReader and ExcelWriter.

• Updated connectsub.gms : Test substitution for Connect.

• Updated embpy01.gms : Test for embedded code facility.

• Updated embpy02.gms : Test for embedded code facility.

3.4 45 Distribution

3.4.1 45.1.0 Major release (October 14, 2023)

3.4.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Saran Chanpuang, Aidana Ermatova, Michael Ferris, Adderly Huerta,
Auke Greijdanus, Mogens Bech Laursen, and Christoph Pahmeyer.

3.4.1.2 Platforms

• We will drop support for macOS 11 (Big Sur) with the next major release.

• Added support for macOS 14 (Sonoma).

3.4.1.3 GAMS System

GAMS

• Added an additional note to the log about the expiration date of the license used.

• Extended the $declareAndLoad capability to also declare new acronyms found in the input GDX
file.

• Minor performance improvement for execute unload.

• Fixed a bug which caused a wrong dump file when $onEmpty is active.

• Fixed a broken message in the log when a $call gets executed with a command that exceeds 255
characters.

• Fixed a data-dependent bug that resulted in an unexpected execution error and was triggered by
re-loading data at execution time in a loop via Embedded Code.

• Fixed sys15 being ignored in option statements.

24 Release Notes

Embedded Python Code Facility

• We plan to drop the command line parameter pyMultInst with a future major release. The ability
to maintain independent Python sessions can not be maintained in a reliable way.

GAMS Connect

• The CSVWriter now supports unstacking multiple dimensions to header rows.

GMSPython

• The Python version of GMSPython has been updated to 3.8.17.

3.4.1.4 Documentation

• Added list of 156 third-party codes that are redistributed with GAMS.

3.4.1.5 Installer

• The Windows installer does not create the GAMS sub directory in the users documents directory
anymore.

3.4.1.6 Solvers

CONOPT

• New libraries 4.31.

– Added option Flg AdjIniP to disable sometimes expensive adjustments to initial point.

– Added option Flg NoDefc to disable definitional constraints.

– Added evaluation of post-triangular constraints if a CNS model was interrupted.

– Improved AttemptCNS.

– Changed the logic for improving the conditioning of the basis to fix problems with superbasic
slacks.

– Function evaluation errors are made silent after ill-conditioned steps.

– Reset reduced Hessian and superbasis after singularities or numerical problems.

– Fixed a problem in SQP when a critical bound was infinite. This could have given huge steps
and domain errors.

– Fixed an error in the pre-processor where minimax constraints could be converted into an
incorrect equality.

CONVERT

• Fixed writing eps for 0 as variable coefficients in GAMS format.

3.4 45 Distribution 25

COPT

• New libraries 7.0.1.

– Performance improvements.

– New option BarStart: method to compute starting point for Barrier solver.

– New option FAPHeurLevel: level of fix-and-propagate heuristic.

CPLEX, GUROBI, MOSEK, FICO XPRESS

Attention

The bare-bone link mode (previously OsiCplex, OsiGurobi, OsiMosek, OsiXpress), which required
only a GAMS base license and a standalone solver license to solve LP or MIP, has been removed.
Please contact sales@gams.com to arrange for a solver-link license to be added to your GAMS
license.

GUROBI

• New libraries 10.0.3.

HiGHS

• New libraries 1.6 (c070f1253).

– Improved handling of user-interrupt.

– New option mip min logging interval.

• Added functionality to write solve trace files. New options solvetrace, solvetracenodefreq, and
solvetracetimefreq.

Ipopt

• New libraries METIS 5.2.1.

• Fix in METIS adapter code used by HSL linear solvers.

MOSEK

• New libraries 10.1.13.

– Improved branching variable selection: Automatic choice of variable selection method and
adjustment of strong branching work limits. New options MSK IPAR MIO VAR SELECTION
and MSK IPAR MIO MIN REL.

– Knapsack cover cuts are now enabled by default, that is, changed default of option
MSK IPAR MIO CUT KNAPSACK COVER from MSK OFF to MSK ON.

– Added conflict analysis based on dual rays. New option MSK IPAR MIO DUAL RAY ANALYSIS LEVEL.

– New option MSK IPAR MIO MAX NUM RESTARTS.

– New option MSK IPAR PRESOLVE LINDEP NEW.

– Removed options MSK IPAR CHECK CONVEXITY and MSK IPAR LOG CHECK CONVEXITY.

– Removed value MSK STARTING POINT SATISFY BOUNDS for option MSK IPAR INTPNT STARTING POINT.

mailto:sales@gams.com

26 Release Notes

SCIP Optimization Suite

• New libraries PaPILO 2.1 (9ef45bfa).

• New libraries SoPlex 6.0 (5a9b664d).

• New libraries SCIP 8.0 (6c8c7c8d90).

SHOT

• New libraries 1.1 (424b5e48).

3.4.1.7 Tools

GAMS Studio

• New version 1.16.1.

– Removed the ”Go To” dialog, as the functionality is integrated into the Navigator.

– Improvements for the GDX Viewer:

∗ Added support for Shift + Left Click to select/deselect multiple labels in the GDX
Viewer filters.

∗ Added thousands separator to symbol record count and symbol number in GDX Viewer.

– Added HTTPS support to check for update feature, removed dependency on C4U library.

– Added authorization provider support to GAMS Engine.

– Stability improvements, bug fixes, and minor enhancements, e.g.:

∗ Improved performance of the Navigator for sessions with a lot of files.

∗ Fixed check for GAMS license.

∗ Fixed crash when reading a corrupted Reference File.

∗ Fixed crash on using nested $echo commands.

∗ Fixed partly saved auto-save files.

∗ Fixed recovering outdated auto-save files.

Info-ZIP

• Updated gmszip to Zip 3.0-13 on Linux and macOS.

• Updated gmsunzip to UnZip 6.0-28 on Linux and macOS.

3.4.1.8 APIs

C

• As announced, removed gcmt.h, gcmt.c, gclgms.c, and gcdllinit.h from apifiles/C/api.

https://packages.debian.org/sid/zip
https://packages.debian.org/sid/unzip

3.4 45 Distribution 27

C++

• Added function GAMSJob::runEngine to run jobs on GAMS Engine, rather than locally.

• Adjusted GAMSJob::run public function signature.

• Added transportEngine example to show usage of new Engine feature.

C4U

• We plan to remove the C4U API from the distribution with an upcoming major release.

GDX

• The user-specified special value mapping set via gdxSetReadSpecialValues now also affects the
type-specific default values (level, lower, upper, marginal, scale) for empty 0-dimensional (scalar)
variables and equations.

• Reverted gdxSetDomain to write 0 instead of -1 as domain index for unknown domains.

• Adjust default behavior to store negative zero as zero. This is more space-efficient due to our internal
storage scheme and is consistent with pre-GAMS-38 behavior.

• Fixed incorrect default record for empty equation symbols with equation type different than ”equals”.

GMD

• Added new function gmdFindUel (counterpart for gmdGetUelByIndex) which queries the UEL index
for a given UEL label. Returns false on failure. UEL index is set to -1 in case the UEL label is not
found in the UEL table.

• Performance improvements when dealing with larger datasets due to more efficient symbol and UEL
handling.

GMO

• Fixed a bug in functions gmoGNLNZ64 and gmoGNLNZ: they computed counts incorrectly in case of
degenerate quadratic forms like x ∗ (1 + eps∗y).

GAMS Transfer Matlab

• Breaking: Renamed records field text of Sets to element text.

• Added symbol UniverseAlias to represent aliases to the universe set.

• Added possibility to change symbol name case with Container.renameSymbol.

• Added possibility to reorder UELs by record order with Symbol.reorderUELs (passing no argu-
ments).

• Added Container.getSets, Container.getParameters, Container.getVariables, Container.getEquations,
and Container.getAliases to get list of symbol objects of corresponding type.

28 Release Notes

• Added possibility to get/remove all symbols with Container.getSymbols or Container.removeSymbols,
respectively.

• Added Container.lowerUELs, Container.upperUELs, Symbol.lowerUELs, and Symbol.upperUELs

to convert (all) UELs to lower or upper case, respectively.

• Added columns where min and where max to output of Container.describeParameters.

• Changed column names in output of Container.describe∗ methods: dim → dimension, num recs

→ number records, num vals→ number values, min value→ min, max value→ max, mean value

→ mean.

• Removed ∗ marginal, count ∗, where max abs value, and is alias columns in output of
Container.describe∗ methods.

• Removed ConstContainer.

• Added GDX library unload before each read/write operation.

• Changed used GDX library to gdxcclib64.

• Fixed bug that limited the number of used UELs in Symbol.transformRecords and
Symbol.getUELs.

• Fixed Container.eq in case of containers with different number of symbols.

GAMS Transfer Python

• Officially removing the beta label.

• Improved performance for both reading/writing of GAMS data from/to GDX and GMD.

• Allow users to update symbol records by repeating calls to the symbol constructor (new objects will
not be created).

• Added new symbol/container methods to easily modify UEL strings (lowerUELs, upperUELs,
lstripUELs, rstripUELs, stripUELs, capitalizeUELs, casefoldUELs, titleUELs, ljustUELs,
and rjustUELs).

• Added new container methods to retrieve symbol objects (getSets, getAliases, getParameters,
getVariables, and getEquations).

• Added support for reading data that originated with different encodings.

• Enabled different GDX/GMD read/write modes (defaults should be used to maintain performance,
except in rare instances).

• Passing None (new default) to <container>.removeSymbols() will remove all symbols.

• Passing None (new default) to <container>.getSymbols() will return a list of all symbol objects.

• Renamed symbol property ref container to container.

• Added eps to zero=True (changes default behavior) argument to <container>.write() to control
writing all GAMS EPS (i.e., -0.0 in GTP) special values to 0.0.

• Enabled the symbol property name (and <container>.renameSymbol()) to change the casing of a
symbol name.

• Container property system directory can now accept either str or PathLike objects.

• Added symbols argument to Container methods (getDomainViolations, hasDomainViolations,
countDomainViolations, dropDomainViolations, getDuplicateRecords, hasDuplicateRecords,
countDuplicateRecords, dropDuplicateRecords, isValid).

3.4 45 Distribution 29

• Reorganized the describe∗ tables for clarity and brevity.

• Added Container.hasSymbols() method to test for symbols in a container (can also use the in

operator).

• Updated the symbol summary properties for all symbol types.

• Added a container summary property.

• Added support for setting GAMS special values with str types when setting records with MultiIndex
DataFrames.

• Function setRecords no longer drops zero valued records when setting records with MultiIndex
DataFrames.

• Added new symbol methods to drop (potentially) unwanted records: dropZeros (parameters only),
dropDefaults, dropNA, dropUndef, dropMissing, and dropEps.

• Exposed a new public property default records for variables and equations.

• Added support for Pandas 2.1.0.

• Function toDense now checks categorical ordering before creating an array (for relaxed domain
symbols).

• Fixed a bug when reading in an Alias symbol from GMD objects.

• Fixed a bug where a symbol's UEL (categorical) order was not maintained from GDX.

GAMS Transfer R

• New libraries 2.6.

– Officially removing the beta label.

– Breaking: removed all Const∗ classes. ConstContainer is no longer supported. Use
Container instead.

– Breaking: Symbol field refContainer renamed to container.

– Breaking: removed getUniverseSet method from Container. Use getUELs instead.

– Records columns that are not specified by the user in a dataframe are not auto completed
to save memory. For example, a set with only the domain columns will now not have the
element text columns. A default value is assumed for the missing attributes.

– New field defaultValues for symbols of type Parameter, Variable, and Equation.

– Reorganized describe∗ Container methods for clarity and brevity.

– Refined field summary for Symbol objects for clarity.

– Container objects now have a summary field.

– New convenience methods for Container objects: getSets, getAliases, getParameters,
getVariables, and getEquations.

– Enabled registering any UEL using uelPriority argument in Container method write.

– Container method write now supports mapped write mode with the help of new argument
mode.

– Following Container methods do not support list input for symbols argument: describeSets,
describeAliases, describeParameters, describeVariables, describeEquations, read,
removeSymbols, getSymbols. Use vector inputs instead.

– Argument types in the Container methods listVariables and listEquations does not
support the input of type list. Use vector inputs instead.

– Argument uelPriority in the Container method write does not support the input of type
list. Use vector inputs instead.

30 Release Notes

– Fixed bug in failed Symbol constructor call resulting in symbol being added to the Container.

– Fixed bug in registering unused UELs when not all symbols from the container are written to
a GDX file.

– Fixed bug in read for Variable and Equation classes where the lower and upper attributes
were interchanged.

– Fixed bug in the Symbol method equals where identical domain symbols exist in different
containers.

– Fixed bug in Symbol methods reorderUELs and toDense for symbols with relaxed domain.

Jupyter Notebooks

• The newly introduced back-end class gams.magic.GamsInteractive can be used to translate GAMS
Jupyter notebooks into standalone Python scripts.

Matlab

• Added GAMS Engine support:

– Added classes GAMSEngineConfiguration, GAMSEngineJob, GAMSEngineJob-
Builder, and GAMSEngineRunParameters.

– Added method GAMSJob.runEngine().

– Added example transport engine.m to show how to run a job with GAMS Engine from within
the GAMS Matlab API (requires Matlab with at least Java SE 11).

• Added classes AbstractRunParameters, GAMSRunParameters, MIIMode, Replace,
SolveOpt, and PrintStream (thin wrapper around a Java print stream).

• Changed method signatures of GAMSJob.run() and GAMSModelInstance.solve() to use
PrintStream for output handling.

• Changed handling of Java null pointers: Instead of raising an error, GAMS Matlab now uses [] to
indicate null.

• Fixed internal handling of Java lists, sets, and maps.

PAL

• Added new functions to query the expiration date for time-limited licenses (palLicenseGetEvalDate)
and the maintenance end-date for perpetual licenses (palLicenseGetMaintDate).

Python

• As announced, dropped support for Python 3.7.

• The gams.numpy API has been moved to gams.transfer.numpy and is now considered an internal
API of gams.transfer. The documentation as well as the examples g2np example[1|2].py have
been removed and users are encouraged to use gams.transfer as a replacement.

• Renamed the gams Python wheel to gamsapi, this change will not impact import statements, but
users will need to use install differently with pip install gamsapi.

• New optional parameter container for gams.connect.ConnectDatabase constructor that allows
to use an already existing instance of gams.transfer.Container.

• Fixed wrong model status/solver status after calling gams.control.GamsModelInstance.solve()
with debug=True.

3.4 45 Distribution 31

3.4.1.9 Model Libraries

GAMS API Library

• Dropped Pgams2numpy.

• Updated PBuildXPLevelAPI.gms : Test building and installing the GAMS Python API
from source distribution.

GAMS Data Library

• Updated GMSPythonLib.gms : GMSPYTHONLIB compatibility check.

GAMS Model Library

• Improved numerics of fdesign.gms : Linear Phase Lowpass Filter Design.

GAMS Test Library

• Updated gams2numpy01.gms : Test gams.core.numpy Python API string mode.

• Updated gams2numpy02.gms : Test gams.core.numpy Python API raw mode.

• Updated gamsjupyter01.gms : Test GAMS Jupyter Notebooks.

• Added knitro02.gms : KNITRO test suite - model setup issue.

• Added knitro03.gms : KNITRO test suite - model setup issue.

3.4.1.10 Solver/Platform availability matrix

x86 64bit
MS Windows

x86 64bit
Linux

x86 64bit
macOS

arm 64bit
macOS

ALPHAECP 2.11 X X X X
ANTIGONE 1.1 X X X X
BARON X X X X
CBC 2.10 X X X X
CONOPT 3 X X X X
CONOPT 4 X X X X
COPT 7.0 X X X X
CPLEX 22.1 X X X X
DECIS X X X X
DICOPT 2 X X X X
GUROBI 10.0 X X X X
GUSS X X X X
IPOPT 3.14 X X X X
HiGHS 1.6 X X X X
KESTREL X X X X
KNITRO 13.2 X X X X
LINDO 14.0 X X X X
LINDOGLOBAL 14.0 X X X X

32 Release Notes

x86 64bit
MS Windows

x86 64bit
Linux

x86 64bit
macOS

arm 64bit
macOS

MILES X X X X
MINOS 5.6 X X X X
MOSEK 10 X X X X
NLPEC X X X X
OCTERACT 4 X X
ODHCPLEX 7 X X
PATH X X X X
QUADMINOS 5.6 X X X X

SBB X X X X
SCIP 8.0 X X X X
SHOT 1.1 X X X X
SNOPT 7.7 X X X X
SOPLEX 6.0 X X X X
XPRESS 41.01 X X X

3.4.2 45.2.0 Minor release (October 30, 2023)

3.4.2.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release.

3.4.2.2 Solvers

CBC

• New libraries Cbc 2.10.11 and Clp 1.17.9.

COPT

• New libraries 7.0.2.

– New option SolTimeLimit to set a timelimit (for the whole solve) that is only effective after a
feasible solution has been found.

3.4.2.3 APIs

C++

• Added CMake option USE-GCC for example subproject to change library selection to prefer GCC
over clang.

GAMS Transfer R

• New libraries 2.8.

– Fixed bug in reading symbols from GDX with unused UELs from domain.

– Fixed bug in symbol method getDomainViolations when the domain symbol has NULL records.

3.4 45 Distribution 33

Java

• Fixed wrong ModelStatus/SolveStatus after calling GAMSModelInstance.solve() with debug

option set to true.

.Net

• Fixed wrong ModelStatus/SolveStatus after calling GAMSModelInstance.Solve() with
debug=true.

3.4.3 45.3.0 Minor release (November 11, 2023)

3.4.3.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release.

3.4.3.2 GAMS System

GAMS

• Fixed a problem with command line parameter etLim which was ignored in many cases at compile
time.

3.4.3.3 Solvers

Ipopt

• New libraries Ipopt 3.14.13.

• New libraries MUMPS 5.6.2.

MOSEK

• New libraries 10.1.16.

SCIP Optimization Suite

• New libraries SCIP 8.0 (6f841064d0).

• New libraries PaPILO 2.1 (ee0677c4).

34 Release Notes

3.4.3.4 Tools

GAMS Studio

• New version 1.16.2 with bug fixes and minor enhancements:

– Enhanced GAMS Engine dialog:

∗ Compute remaining time depending on instance factor and always show remaining seconds.

∗ Added support for JobTag for job identification.

∗ Fixed alignment.

∗ Fixed error message when server not found.

– Fixed rare crash in search.

– Fixed search result not clickable after changing search term.

GAMS Tools Library

• Modified tool ExcelTalk to provide better error messages. Moreover, the matching of the workbook
name is done on the base name (without the path) of the file.

3.4.3.5 APIs

Python

• Added support for Python 3.12.

Control

• Fixed unwanted side effect when passing engine options dictionary to gams.control.GamsJob.run engine()

method.

• gams.control.GamsJob.run engine() now correctly handles the response status code 429 Too

Many Requests from the server.

Transfer

• Fixed a bug that prevented syncing of records (in jupyter environments) when setting records with
a tabular dataframe or int/float data type.

3.4.4 45.4.0 Minor release (November 27, 2023)

3.4.4.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Josef Kallrath.

3.4 45 Distribution 35

3.4.4.2 MPSGE

• Fixed issues solving MPSGE-generated problems with multithreading enabled due to incorrect
parallel Jacobian evaluation.

3.4.4.3 Solvers

COPT

• New libraries 7.0.3.

MINOS and SNOPT

• Fixed incorrect global optimal model status for non-convex models with linear constraints.

3.4.4.4 Tools

GAMS Studio

• New version 1.16.3 with bug fixes and minor enhancements:

– Relaxed boundaries of the GDX Viewer splitter to allow for more resizing flexibility.

– Reduced allowed SSL warnings when the user accepts self-certified GAMS Engine connection.

– Fixed that command line changes were lost when switching to another project.

– Fixed that a double click on a .gsp-file did not activate the project.

– Fixed that the position of the search dialog was not saved when closing with close button in
titlebar.

GAMS Tools Library

• Fixed a bug in tool ExcelMerge when accessing the number of sheets in a workbook and improved
error messages.

3.4.4.5 APIs

GEV

• Disable multi-threaded Jacobian evaluation in gevEvalJacLegacyX for model instances with external
equations (aka =X= rows): it cannot be assumed that the user-provided evaluation function is thread-
safe.

Python

• Fixed a Python 3.12 SyntaxWarning in the Control API.

36 Release Notes

3.4.5 45.5.0 Minor release (December 14, 2023)

3.4.5.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Rob Davies, Gabriel Homsi, and Sherman Robinson.

3.4.5.2 GAMS System

GAMS Connect

• Fixed a bug in the PandasExcelReader that prevented reading columns containing both numerical
values and dates.

3.4.5.3 Solvers

MOSEK

• New libraries 10.1.21.

– Option MSK DPAR CHECK CONVEXITY REL TOL is no longer effective.

SCIP

• New libraries 8.1.0.

3.4.5.4 Tools

GAMS Tools Library

• Fixed a bug in tool ExcelTalk when Excel files are located in (sub)directories.

• Added command open and named argument quit=0|1 to tool ExcelTalk.

3.4.5.5 APIs

GMD

• Fixed memory leak related to not freeing a symbol record iterator when updating a symbol inside a
model.

Python

• Fixed a potential memory leak in the control API observed when iterating multiple times over the
same symbol. This was also affecting GAMSModelInstance.solve().

• Fixed a warning when building the gamsapi wheel using the source distribution.

3.4 45 Distribution 37

3.4.6 45.6.0 Minor release (January 04, 2024)

3.4.6.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Simon Wesley Bowen, Rob Davies, and Mart Saluri.

3.4.6.2 GAMS System

GAMS

• Changed $loadDCR to not complain anymore when it should be used to clear a set, that is used as
domain, if that set had no data so far.

• Fixed a bug which could have caused a wrong dump file with an empty data statement when
dumpOptGDX is set.

• Fixed a bug which could have caused a wrong dump file when $loadM is used while dumpOptGDX
is set.

• Fixed a potentially wrong result of a sameAs statement, when it is used in a loop construct with a
singleton set which is empty when entering the construct and gets a value in it.

GAMS Connect

• Improved exception messages of several agents when handling symbols that do not exist.

3.4.6.3 Solvers

COPT

• New libraries 7.0.4.

SCIP

• New libraries 8.1 (0dff9f8a3e).

3.4.6.4 Tools

GAMS Studio

• New version 1.16.4 with bug fixes:

– Fixed that check for update crashed when Studio is opened and immediately closed.

– Fixed check for update redirect policy (NoLessSafeRedirectPolicy) and check for update
behavior when disabled.

– Fixed wrong sorting behavior in the export dialog of the GDX Viewer.

38 Release Notes

3.4.7 45.7.0 Minor release (January 18, 2024)

3.4.7.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release.

3.4.7.2 GAMS System

GAMS

• Fixed MIIMode to implicitly set keep=1 as expected.

• Fixed a problem when loading from a GDX file at compile time which could have caused an
incomplete load of data, if the data depends on a domain set that was reloaded before from the
same file replacing already existing records.

• Fixed a bug which could have caused a broken dump file with certain data statements.

GMSPython

• Packages Jinja2 and urllib3 have been updated to version 3.1.3 and 2.1.0, respectively, which
include fixes for known vulnerabilities.

3.4.7.3 Solvers

COPT

• New libraries 7.0.6.

IPOPT

• New libraries 3.14.14.

MOSEK

• Reduce overhead when calling MOSEK for final solve and avoid its output to stdout when it should
have been disabled.

3.5 44 Distribution

3.5.1 44.1.0 Major release (July 20, 2023)

3.5.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Marcel Adenauer, Wolfgang Britz, Rob Davies, Michael Ferris, Bruce
McCarl, and Thomas Rutherford.

3.5 44 Distribution 39

3.5.1.2 GAMS System

GAMS

• Added new function gdxLoad to have a flexible way of loading from GDX files at execution time.
The load behavior can be modified using the new options filtered and replace. This new function
can be used for both, explicit loading of single symbols but also a bulk load of all symbols in the
GDX file that match the declaration in the model.

• The requirements for logic equations have been relaxed to make them more useful in future releases.
For example, continuous variables and non-boolean functions/operators can now be present in logic
equations. This relaxed use of algebra in logic equations prevents some simple preprocessing steps,
e.g. not not x is only x if x is either 0 or 1. Since this is not the case anymore, such preprocessing
has been disabled. This might impact some (linear) reformulation of pure boolean logic equations
done by LOGMip.

• Added new command line parameter solveOpt to initialize the already existing option solveOpt.

• Added new command line parameter MIIMode.

• As announced, the command line parameter logOption was changed. LogOption=1 was marked as
deprecated and became a synonym for the default logOption=3, which sends the log output to the
standard output.

• PreviousWork now writes a workfile compatible with GAMS 43 and newer.

• Fixed a potential bug with $save and put utility save.

GAMS Connect

• As announced, the debug option of the Options agent has been dropped.

• The CSVReader now supports using the symbolic constant lastCol without a header or names. If
no header or names is provided, lastCol will be determined by the first line of data.

• The CSVReader now supports reading multi-row headers for parameters.

• Added LabelManipulator agent to Connect.

3.5.1.3 Installer

• Docker images with a pre-installed GAMS distribution for linux/amd64 are now available at Docker

Hub.

3.5.1.4 Licensing

• A GAMS demo license is now included in the GAMS distribution. It is valid for approximately 5
months.

3.5.1.5 Documentation

• The HTML documentation now uses a new style based on Doxygen Awesome.

https://hub.docker.com/r/gams/gams
https://hub.docker.com/r/gams/gams
https://jothepro.github.io/doxygen-awesome-css/

40 Release Notes

3.5.1.6 Solvers

BARON

• New libraries 23.6.22.

– Improved continuous and integer presolve and facilities for quadratic programs.

– New reformulator.

– Added options AllowCbc, AllowCplex, AllowHsl, AllowXpress to adjust which solvers can be
picked by automatic LP/MIP/QP solver selection.

– Added support for macOS on ARM64 CPUs. Ipopt and Xpress cannot be used as NLP
and LP/MIP/QP solver, respectively, by BARON on this platform so far, that is, options
AllowIpopt and AllowXpress are 0 by default.

Gurobi

• New libraries 10.0.2.

HiGHS

• New libraries 1.5.3.

– New option presolve reduction limit.

– New option ipx dualize strategy.

– Renamed option simplex dualise strategy to simplex dualize strategy.

IPOPT

• New libraries MUMPS 5.6.1.

LINDO/LINDOGLOBAL

• New libraries 14.0.279.

Mosek

• New libraries 10.0.46.

Octeract

• We plan to drop Octeract with one of the following major releases.

3.5 44 Distribution 41

SCIP Optimization Suite

• New libraries SCIP 8.0 (bf58b8fcd5).

– Removed non-default values for option propagating/symmetry/recomputerestart, that is, re-
computing symmetry information after a restart can no longer be enabled (as this can produce
wrong results).

• New libraries PaPILO 2.1 (2ed99c46).

SELKIE

• As announced, the research solver SELKIE has been dropped from the GAMS distribution. It is
expected that it will be made available directly from the authors.

3.5.1.7 Tools

GAMS Studio

• New version 1.15.1.

– New feature GAMS Debugger: This allows to pause the execution at the beginning of
execution statements and review the current data in a temporary GDX file.

– Improvements for the GDX Viewer:

∗ Added search facility to the data view.

∗ Added settings to specify default numerical formatting options and show/hide attributes.

∗ Disable preferences menu for sets and aliases.

– Improvements for the GAMS Configuration Editor:

∗ Move tab selection from bottom to top.

∗ Fixed status in definition section when editing a Key.

– Improvements for the GAMS Configuration Editor / Parameter File Edior / Extended Parameter
Editor:

∗ Add group in parameter/option definition.

∗ List all available solvers for Solver parameter/option definition.

– Stability improvements, bug fixes, and minor enhancements, e.g.:

∗ Fixed OpenSSL issue for Manjaro, Ubuntu 22.04 LTS and similar Linux distributions.

∗ Fixed a bug where precision=Full was not restored properly in the GDX Viewer.

∗ Fixed path issue for project files: existing projects with a path starting with ”.” can be
fixed manually using ”Move Project File...”

GDX2ACCESS

• Fixed gdx2access for systems where both 32-bit Office and 64-bit Access runtime are installed.

MDB2GMS

• Fixed mdb2gms for systems where both 32-bit Office and 64-bit Access runtime are installed.

• Made table browser in MDB2GMS not crash when field sizes for memo or long binary fields cannot
be queried (now showing ??? instead).

42 Release Notes

3.5.1.8 APIs

C

• File apifiles/C/api/gcmt.c does no longer need to compiled to use C or Fortran API files. Files
gcmt.c and gcmt.h are now empty and will be removed in a future version.

• File apifiles/C/api/gclgms.c does no longer need to compiled to have the arrays and functions
from gclgms.h defined (they are inlined now). File gclgms.c is now empty and will be removed in
a future version.

• File apifiles/C/api/gcdllinit.h is now empty and will be removed in a future version.

• The definitions GAMSVERSION, GAMSMAJOR, GAMSMINOR, and GAMSGOLD in gclgms.h are deprecated
and will be removed in a future version.

Delphi

• The Delphi API files in apifiles/Delphi will be removed with a future major release.

Fortran

• The Fortran API files in apifiles/Fortran will be removed with a future major release.

GAMS Transfer Python

• Breaking: Dropped ConstContainer and all Const∗ symbols – users should only use Container

and accompanying symbols.

• Method setRecords (and the records argument) now supports setting records with pandas.Series

and DataFrames with Index or MultiIndex axes (must set uels on axes=True).

• Method toDense now requires domain sets to have self-consistent ordering (i.e., record data order
and category order must be equal).

• Method reorderUELs now reorders UELs to data order (and append unused categories) if uels is
None (the default).

• Fixed bug when attempting to load libraries from different GAMS versions with the
system directory argument.

GAMS Transfer R

• New libraries 2.2.0

– Fixed bug with library unload upon read or write.

– Performance improvement in setting records for symbols.

• Note: ConstContainer and the corresponding symbols will be dropped with the next major GAMS
version. Users are advised to use Container and accompanying symbols.

3.5 44 Distribution 43

GDX

• The dynamic library file on Linux (.so), macOS (.dylib), and Windows (.DLL) has been changed
from (lib)gdxdclib64 to (lib)gdxcclib64 after porting the GDX codebase from Delphi to C++.
While the GDX API remains compatible, the underlying shared library is very different and cannot be
renamed back. Therefore, a copy of the old (lib)gdxdclib64.{so,dylib,DLL} is still distributed
with GAMS for now. Eventually the Delphi library will be dropped, hence it is sensible to compile
existing user applications against the new C++-based GDX library and corresponding API files.

• Modified function gdxDataReadRawFastEx to allow the callback function to stop the reading after
each record. The callback must now return an integer indicating if reading should be continued
(>=1) or stopped (=0).

GMD

• Fixed a problem that resulted in a crash when retrieving the domain list with an alias of symbol
(gmdGetDomain).

GMO

• As announced, the functions gmoEvalFuncNLCluster and gmoEvalFuncNLCluster MT have been
removed.

Java

• Added method runEngine to GAMSJob class to run jobs on GAMS Engine.

• Changed minimum requirement of Java SE to compile and run a Java program using the latest
GAMS Java API:

– All classes in [Path/To/GAMS]/apifiles/Java/api/GAMSJavaAPI.jar require Java SE 11 or
later to run.

– GAMSJavaAPI.jar has an additional dependency on JSON.simple, located in [Path/To/GAMS]/apifiles/Java/api/json-simple-1.1.1.jar.

– GAMSJavaAPI.jar and json-simple-1.1.1.jar are required to be in the same directory to
run.

• Changed GAMS Java API name for a Java program that still requires Java SE 8 to compile and run:

– All classes that target Java SE 8 are in [Path/To/GAMS]/apifiles/Java/api/GAMSJavaAPI-8.jar.

– New or updated functionalities may not be made available in this version, only corrective
maintenance support will be provided in the future.

– GAMSJavaAPI-8.jar has no additional dependency.

Python

• We plan to drop support for Python 3.7 in a future GAMS release.

https://github.com/fangyidong/json-simple

44 Release Notes

3.5.1.9 Model Libraries

GAMS Test Library

• Dropped SELKIE test models selkie01 through selkie19.

• Added load18.gms : Test gdxLoad.

• Added calabelm.gms : Test Connect agent LabelManipulator.

• Added solveopt01.gms : Test solveopt option and command line parameter.

3.5.1.10 Solver/Platform availability matrix

x86 64bit
MS Windows

x86 64bit
Linux

x86 64bit
macOS

arm 64bit
macOS

ALPHAECP 2.11 X X X X
ANTIGONE 1.1 X X X X
BARON X X X X
CBC 2.10 X X X X
CONOPT 3 X X X X
CONOPT 4 X X X X
COPT 6.5 X X X X
CPLEX 22.1 X X X X
DECIS X X X X
DICOPT 2 X X X X
GUROBI 10.0 X X X X
GUSS X X X X
IPOPT 3.14 X X X X
HiGHS 1.5 X X X X
KESTREL X X X X
KNITRO 13.2 X X X X
LINDO 14.0 X X X X
LINDOGLOBAL 14.0 X X X X
MILES X X X X
MINOS 5.6 X X X X
MOSEK 10 X X X X
NLPEC X X X X
OCTERACT 4 X X
ODHCPLEX 7 X X
PATH X X X X
QUADMINOS 5.6 X X X X

SBB X X X X
SCIP 8.0 X X X X
SHOT 1.1 X X X X
SNOPT 7.7 X X X X
SOPLEX 6.0 X X X X
XPRESS 41.01 X X X

3.5 44 Distribution 45

3.5.2 44.1.1 Maintenance release (August 03, 2023)

3.5.2.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Hugo Joudrier-Faure.

3.5.2.2 Solvers

COPT

• New libraries 6.5.7.

HiGHS

• New libraries 1.5.4.

NLPEC

• Fixed that the setting of option NCPBounds was not being honored for doubly-bounded variables.

• Fixed implementation of reformulation type FB neg.

• Fixed implementation of reformulation type min for the case of upper-bounded variables and no
slack variables.

3.5.2.3 APIs

GAMS Transfer Matlab

• Fixed bug when using more than 255 UELs.

GAMS Transfer R

• New libraries 2.4.0.

– Fixed read for Variable and Equation classes where the lower and upper attributes were
interchanged.

3.5.3 44.2.0 Minor release (August 17, 2023)

3.5.3.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz, Mogens B. Laursen, Orenzo Porporino, and Hannes
Wornig.

46 Release Notes

3.5.3.2 GAMS System

GAMS

• Fixed errors with $declareAndLoad and $gdxLoadAll which could have caused problems when
dealing with aliases.

• Fixed a memory leak with the Multi-Threading Solve Facility (solveLink=6/7).

Embedded Python Code Facility

• Fixed a problem when command line parameter pyMultInst has been set to 1. Please note that the
interrupt signal (e.g., from Ctrl-C) in embedded Python code does not work with pyMultInst=1.

GAMS Connect

• Allow the LabelManipulator agent to convert multiple labels to the same target label.

3.5.3.3 Installer

• Fixed a bug of the Windows installer overwriting an existing license file from a previous installation
with the demo license.

3.5.3.4 Solvers

SoPlex

• Improved performance for passing the LP to SoPlex.

3.5.3.5 Tools

GAMS Studio

• New version 1.15.3 with some bug fixes and minor enhancements:

– Fixed missing OpenSSL library on Linux.

– Fixed missing projects when a project path is missing.

– Fixed a bug in the GDX Viewer where restoring a symbol state of a partially loaded symbol
resulted in a crash.

– Fixed crash on closing a GDX Viewer instance while symbol data is loading.

– Fixed GAMS process not terminating when closing Studio.

– Improved handling of interrupt and stop.

3.5 44 Distribution 47

3.5.4 44.3.0 Minor release (September 01, 2023)

3.5.4.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release.

3.5.4.2 Solvers

BARON

• Fixed that setting GAMS option threads to a negative value did not enable parallelization in MIP
solver.

CBC

• Fixed that solver did not stop on interrupt signal.

CPLEX

• Fixed model status for CPLEX's termination CPXMIP OPTIMAL POPULATED TOL and incorrect infea-
sibility warning for CPXMIP OPTIMAL POPULATED and CPXMIP OPTIMAL POPULATED TOL.

HiGHS

• Fixed issue when running HiGHS more than once in the same process with multiple threads enabled.

NLPEC

• Fixed an incorrect reformulation (required equations were omitted from the reformulated model)
that occured when aggregate was set to partial none.

• Fixed case where an invalid option combination (aggregate set to full but different
reformulation type set for single and double) was allowed: this is now shifted to a valid op-
tion combination.

SHOT

• Fixed use of multiple threads with CBC as MIP solver.

3.5.4.3 Tools

GAMS Studio

• New version 1.15.4 with some bug fixes and a minor enhancement:

– Added tab key support for filter widgets in GDX Viewer.

– Fixed the GDX Viewer not displaying symbol data with too many records by only showing
about the first 107 million entries.

– Fixed path selection for GAMS license installation.

48 Release Notes

3.5.4.4 Model Libraries

GAMS Test Library

• Updated casqlr.gms : Test Connect agent SQLReader.

• Updated casqlw.gms : Test Connect agent SQLWriter.

• Added nlpec03.gms : NLPEC test suite - loop over option combos.

3.5.5 44.4.0 Minor release (September 19, 2023)

3.5.5.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Alan Fox, Erwin Kalvelagen, and Nick Sahinidis.

3.5.5.2 GAMS System

GAMS

• Fixed potential problem with $declareAndLoad when loading symbols with name clash for internal
symbols or functions.

3.5.5.3 Solvers

CONOPT 3

• New libraries 3.17O.

CONVERT

• Fixed equation type in =B= and =X= equations in GAMS format.

3.5.5.4 Tools

GAMS Studio

• New version 1.15.5 with a bug fix and a minor enhancement:

– Fixed crash in Reference File Viewer when searching for a symbol in FileUsed tab.

– Removed the obsolete studio command line option --help-all.

3.6 43 Distribution 49

3.5.5.5 APIs

GDX

• Fixed a bug causing large GDX files to be read incorrectly due to storing the number of remaining
bytes (in the file) in a variable of wrong (not wide enough) type.

3.6 43 Distribution

3.6.1 43.1.0 Major release (April 27, 2023)

3.6.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Pedro Andres Sanchez-Perez, Mogens Bech Laursen, Bruce McCarl,
Scott McDonald, and Thomas Rutherford.

3.6.1.2 Platforms

• The GAMS distribution is now also available as a native build for macOS 13 on ARM64 CPUs
(Apple M1/M2). Compared to the macOS system for x86 64 CPUs, these are the differences:

– Third-party software for which no native builds are available (so far):

∗ BARON and hence no GAMS/BARON

∗ FICO XPRESS and hence no GAMS/XPRESS

∗ Matlab and hence no GAMS Transfer Matlab

– Effects from Intel's Math Kernel Library not being available:

∗ Pardiso is not available as linear solver in Ipopt.

∗ Intel MKL is not available as blasoption for Knitro.

∗ Apple's Accelerate Framework is used instead by ANTIGONE, CBC, IPOPT, SCIP,
and SHOT.

– The clang compiler frontend is Apple's preferred way to build C/C++ programs on macOS.
A GCC variant of the high-level C++ API library has therefore not been included for this
platform. GCC users can build the library from source.

– Components marked as deprecated have not been ported:

∗ GDXMRW

∗ GDXRRW

– Support for Python 3.7 and macOS versions 11 and 12 are not included.

https://en.wikipedia.org/wiki/Math_Kernel_Library
https://developer.apple.com/documentation/accelerate
https://github.com/GAMS-dev/gams-cpp

50 Release Notes

3.6.1.3 GAMS System

GAMS

• The command line parameter logOption will change with the next major release. Currently,
logOption=1 sends the log output to the console (i.e. con: or /dev/tty). This feature is planned
to be dropped. LogOption=1 will become a synonym for the default logOption=3, which sends the
log output to the standard output.

• Added new command line parameter writeOutput, which allows to suppress the creation of the
output file completely.

• Added new keyword executeTool and put utility 'execTool' to invoke tools from the GAMS tools
library (see below) at execution time.

• Added new dollar control options $callTool and $hiddenCallTool to invoke tools from the GAMS
tools library (see below) at compile time.

• Added new dollar control options $gdxLoadAll and $declareAndLoad, which allow a convenient
import of all (even undeclared) symbols from a GDX file at compile time.

• Added new dollar control options $on/offImplicitAssign, which allow to suppress compilation error
141 (”Symbol declared but no values have been assigned.”). This is useful in situations where the com-
piler is unaware that symbols are loaded implicitly (e.g. execute loadpoint "solutionfile.gdx").

• Added a new section to the end of the reference file that lists all files included.

• Extended some internal limits to allow generation of huge scalar models.

• Renamed compile time constants platformCode.DEG and platformCode.LEG to platformCode.DEX
and platformCode.LEX, respectively, to be consistent with the system attribute platform.

• Minor adjustment to the return code of the function readyCollect: In the past, it returned 0 only if
it waited until a job is ready to be collected. Now, it also returns 0 when there is a job ready to be
collected without the need to wait for it (that case returned 1 in the past; now the meaning of 1 has
changed to ”There is neither an active job to wait for nor a job ready to be collected”).

• Fixed function platformCode (was not working properly on macOS and Linux).

• Fixed an issue converting strings of length 255, which could cause problems when creating GDX
files.

• Fixed a bug where scalars where not updated properly when implicitly loaded from embedded code
inside a loop.

Documentation

• The PDF version of the documentation will be dropped in a future release.

Embedded Code Facility

• React on interrupt signal (e.g., from Ctrl-C) when executing embedded code. If an interrupt signal
is received, the execution is interrupted and a compilation or execution error gets issued.

• Setting gams.debug only affects the debug behavior of the GamsWorkspace since the exception
traceback is always enabled now.

• Fixed exception traceback being written to stdout instead of GAMS log.

• Fixed wrong line numbers in exception traceback.

3.6 43 Distribution 51

GAMS Connect

• Exception traceback has been enabled for unhandled Python exceptions.

• The debug option of the Options agent has been deprecated and will be removed in a future version.
Use the Options agent with trace > 0 instead to get the exception traceback of Connect errors .

• Fixed exception traceback being written to stdout instead of GAMS log.

• Added RawCSVReader agent to Connect.

• Updated long label renaming logic in RawExcelReader so that the suffix number ∼n gets incremented
only when necessary.

• With pandas version 1.5.0, the mad aggregation method is deprecated and, therefore, will not be
available for the Projection agent in a future release.

• The Concatenate agent now supports concatenating the same symbol more than once.

• The SQLReader and SQLWriter agents (former PandasSQLReader and PandasSQLWriter) have
been revised and now support native SQL connections for faster read/write operations. Both agents
now connect to MySQL, Postgres, MS-SQL (SQL-Server), SQLite and PyODBC through their
respective python package. pandas.DataFrame class' I/O API methods read sql and to sql can be
used in combination with connectionType sqlalchemy and allows to connect to any other database
if the relevant drivers are present on the system.

• The SQLWriter agent supports writeAll. If True, all symbols (sets and parameters) in the Connect
database will be written to the specified database.

GMSPython

• Added the packages pymssql and pymysql. For macOS on ARM64 CPUs the additional package
freetds has been added as a dependency for pymssql.

3.6.1.4 Solvers

ANTIGONE, CBC, Ipopt, SCIP, SHOT

• New libraries Intel MKL 2023.1 on Linux and macOS for x86 64.

CBC

• New libraries Cbc 2.10.10, Cgl 0.60.7, Clp 1.17.8, CoinUtils 2.11.8.

– Extensions to symmetry handling.

– New values fastish, lightweight, moreprinting, cuts, and cutslight for option
OrbitalBranching.

• New libraries nauty 2.8.6.

• As announced, the CBC alias COINCBC has been dropped.

CONOPT

• As announced, the CONOPT3 alias CONOPTD has been dropped.

52 Release Notes

CONVERT

• The AMPL .nl writer can now write equation marginals as well.

• Added options AmplNlInitDual and AmplNlInitPrimal to specify which equation marginal and
variable level values to write to AMPL .nl file.

• As announced, the CONVERT alias CONVERTD has been dropped.

COPT

• New libraries 6.5.2.

– Enhanced support for special ordered sets and indicator constraints.

• Added possibility to write solve trace files. New options solvetrace, solvetracenodefreq, and
solvetracetimefreq.

CPLEX and OSICPLEX

• GAMS/CPLEX can now be used to solve LPs and MIPs without a GAMS/CPLEX or GAMS/CPLEX
Link license, but with a OSICPLEX license. It is thus similar to the GAMS/CPLEX Link license,
but restricted to (mixed-integer) linear problems. To use ranging, conflict analysis, feasopt, tuning,
column generation, solution pool, lazy constraints, quadratic constraints, indicator constraints,
linear user cuts, multi-objective optimization, priorities, benders decomposition, or user callbacks, a
GAMS/CPLEX or GAMS/CPLEX Link license is still required.

• GAMS/OSICPLEX is now an alias for GAMS/CPLEX. The alias GAMS/OSICPLEX will be
dropped with a future major release. Former GAMS/OSICPLEX option files cannot be processed
by GAMS/CPLEX.

• As announced, the CPLEX alias CPLEXD has been dropped.

DE

• Introduced an experimental and hidden option deDict to produce a text file with dictionary type
information of the generated deterministic equivalent.

DECIS

• As announced, the EMP-SP solver DECIS has been dropped. This does not effect the stochastic LP
solvers DECISC and DECISM. They remain in the system.

Examiner

• Examiner is now solveLink=5 capable. Some cosmetic output changes were made.

3.6 43 Distribution 53

GUROBI and OSIGUROBI

• New libraries 10.0.1.

• GAMS/GUROBI can now be used to solve LPs and MIPs without a GAMS/GUROBI or
GAMS/GUROBI Link license if a separate GUROBI license is installed on the machine. It is
thus similar to the GAMS/GUROBI Link license, but restricted to (mixed-integer) linear problems.
To use quadratic constraints, indicator constraints, general or nonlinear constraints, lazy constraints,
multi-objective optimization, multiple MIP starts, partitions, MIP stop expression, solution pool,
feasopt, iis, sensitivity analysis, or tuning, a GAMS/GUROBI or GAMS/GUROBI Link license is
still required.

• GAMS/OSIGUROBI is now an alias for GAMS/GUROBI. The alias GAMS/OSIGUROBI will be
dropped with a future major release.

IPOPT

• As announced, the IPOPT alias COINIPOPT has been dropped.

• New libraries 3.14.12.

– Fixed that for a square problem, the dual solution sometimes did not satisfy optimality
conditions even though the problem was claimed to be solved to optimality.

KESTREL

• Removed access to discontinued IBM DOcloud.

LINDO/LINDOGLOBAL

• New libraries 14.0.255.

MILES

• As announced, the MILES alias MILESE has been dropped.

MINOS

• As announced, the MINOS aliases MINOS5 and MINOS55 have been dropped.

MOSEK and OSIMOSEK

• GAMS/MOSEK can now be used to solve LPs and MIPs without a GAMS/MOSEK or
GAMS/MOSEK Link license if a separate MOSEK license is installed on the machine. It is
thus similar to the GAMS/MOSEK Link license, but restricted to (mixed-integer) linear problems.
To use second-order, semidefinite, power, or exponential cones, a GAMS/MOSEK or GAMS/MOSEK
Link license is still required.

• GAMS/OSIMOSEK is now an alias for GAMS/MOSEK. The alias GAMS/OSIMOSEK will be
dropped with a future major release.

• GAMS/MOSEK should work equivalently to GAMS/OSIMOSEK in most cases. The main differences
are:

– A MIP solve is now followed by an LP solve with all discrete variables fixed by default. Use
option SOLVEFINAL to turn this off.

– Setting GAMS option integer2 does not enable writing the instance to a file anymore. Set
option MSK SPAR DATA FILE NAME instead.

54 Release Notes

Octeract

• New libraries 4.7.1.

ODHCPLEX

• New libraries 7.07.

– New option addcuts: Indicator for adding cuts from CPLEX master solve.

– New option firstfeaslpitlim: Limit on number of relaxed re-solves in first feasible heuristic.

– New option firstfeasrelaxcrit: Smallest sum of infeasibilites/row where relaxed solution used.

– New option ignoresetslvrparams: Flag to control whether solver parameters can be dynamically
altered by ODH.

– New option keypartition: Use of solver partition information.

– New option keysminimum: Minimum number of keys that the automatic decomposition method
attempts to find.

– New option localsearch: Indicator for local search heuristic.

– New option loosefeastol: Loose feasibility tolerance.

– New option objthreshold: Threshold for absolute value of objective coefficients.

– New option sosfind: Automatic detection of special ordered sets (SOSs).

– New option sosinkey: Assign each SOS to its own sub-model component (key).

– New option sosmember: Automatically detect SOSs whose variable member names match this
pattern.

– New option sosovar: Automatically detect SOSs whose output variable name matches this
pattern.

– New option sosselect: Select sub-set of SOS members.

– New option sosselect16: Select sub-set of SOS members for sets with 16 or fewer members only.

– New option soswvar: Automatically detect SOSs whose input(weight) variable name matches
this pattern.

– New option strictdeterministic: Terminate ODH deterministically when improvement heuristic
finishes.

– New option subcheckfreq: Frequency with which sub-model LPs are interrupted for mutual
communication.

– New option tightenprebounds: Level of bound tightening in ODH presolved model.

– New option trialbound: Trial bound heuristic.

– New option trialboundfile: Trial bound file.

– New option trialboundsetsize: Size adjustment to automatically generated trial bound sets.

– New option usehistory: Use of past sub-model selections in current selection.

– New option varcleanlpmethod: Method used to solve variable cleaning LPs.

– Changed lower bound of option interdiv to 1.

– Removed lower bound of option seed. Changed default value to 12345.

– Changed lower bound of option feastol to 0 and upper bound to 1.

– Changed lower bound of option subnodelimit to -2.

– Changed lower bound of option divisor to 2 and default value to 4.

– Changed upper bound of option decompdensity to 1.

– Changed upper bound of option firstfeascontinue to 2. Changed option type to integer.

– Changed default value of option firstfeasshift to 0.

– Changed default value of option recurseminiterlim to 10.

– Changed default value of option variableclean to 1.

– Removed option newcallback.

– Removed option odhpresolve.

– Removed option subpresolve.

3.6 43 Distribution 55

PATH

• The PATH alias PATHC has been dropped.

SCIP

• New libraries bliss 0.77.

• As announced, the SCIP alias COINSCIP has been dropped.

SOPLEX

• As announced, the SOPLEX alias OSISOPLEX has been dropped.

XPRESS and OSIXPRESS

• New libraries 41.01.03.

• GAMS/XPRESS can now be used to solve LPs and MIPs without a GAMS/XPRESS or
GAMS/XPRESS Link license if a separate XPRESS license is installed on the machine. It is
thus similar to the GAMS/XPRESS Link license, but restricted to (mixed-integer) linear problems.
To use quadratic constraints, nonlinear constraints, indicator constraints, priorities, MIP trace,
solution pool, a GAMS/XPRESS or GAMS/XPRESS Link license is still required.

• GAMS/OSIXPRESS is now an alias for GAMS/XPRESS. The alias GAMS/OSIXPRESS will be
dropped with a future major release.

3.6.1.5 Tools

$LibInclude files

• The libinclude files gdxservice, linalg and win32 are deprecated and will be removed in a future
release. Please use the corresponding tools of the more flexible and convenient GAMS tools library
instead.

CHK4UPD

• As announced, the command line tool CHK4UPD has been dropped. The functionality of that tool is
still available through GAMS Studio.

CSDP

• As announced, the tool csdp has been dropped. GAMS/MOSEK could be used instead.

56 Release Notes

GAMS Studio

• New version 1.14.2.

– Improved command line parameter handling for projects:

∗ Added editor for parameter file.

∗ Added ”Add new GAMS Parameter File” to Project Explorer context menu.

∗ Added selection of main and parameter file in Project Settings.

– Added GAMS Engine authorization by token.

– Added GDX Viewer setting to control decimal separator used when copying data.

– Added ”File Used” section in reference file viewer.

GAMS Tools Library

• The GAMS tools library is a collection of tools to provide an easy access to a complex task. The
traditional tool collection will be replaced over time by GAMS Connect agents and tools in the
GAMS tools library. For some time both ways will be supported but the executable tools will go
away, so when in doubt what tool to pick, select Connect or a tool from the GAMS tools library.

• The GAMS tools library currently consists of the categories alg with Rank, data with ExcelDump,
gdxservice with GDXEncoding and GDXRename, linalg with Cholesky, Eigenvalue, Eigenvector,
Invert, and OLS (Ordinary Least Squares), and win32 with ExcelMerge, ExcelTalk, MSAppAvail,
and ShellExecute.

• From within a GAMS program, tools from the GAMS tools library can be invoked via $callTool
(compile time) and executeTool or put utility 'execTool' (execution time).

• From a shell/command prompt the script gamstool can be used to run tools from the GAMS tools
library.

GDXTROLL

• As announced, the tool gdxtroll has been dropped.

MPS2GMS

• MPS2GMS can now be instructed to add up or ignore multiple coefficients for the same term in the
objective or a constraint of an LP file. See new option DUPLICATES in the MPS2GMS documentation.

3.6.1.6 APIs

GAMS Engine API

• Updated for GAMS Engine version 23.03.31.

3.6 43 Distribution 57

GAMS Transfer Matlab

• Breaking: Symbol.domain labels now mirrors the column or field names for domains in
Symbol.records. Changing Symbol.domain labels will change Symbol.records and vice versa.
Symbol.domain labels now exists in struct and table format only. Domain fields in records are
those fields that are not one of the following:

– Variables and equations: level, marginal, lower, upper, scale.

– Parameters: value.

– Sets: text.

Furthermore, the default labels changed: If Symbol.domain names is a unique list of domain names,
then those names are used as domain labels. Otherwise, the previous label strategy ”<name> <dim>”
is used. For example, a symbol with domain {i, j}, now has domain labels i and j in records and
with a domain {i, j, i} it stays i 1, j 2, i 3 (unless the table columns or struct fields are named
differently by the user).

• Added possibility to modify Symbol.domain labels to any unique list of domain labels. If
Symbol.domain is modified, domain labels are reset to default label strategy, described above.

• Changed Symbol.domain forwarding to be a vector of length Symbol.dimension to enable/disable
domain forwarding for each dimension independently.

• Removed Symbol.getCardinality, Symbol.getUELLabels, Symbol.initUELs, and Container.getUniverseSet.

• Fixed possibly incorrect order of UELs of symbols in dense matrix or sparse matrix format.

• Fixed Symbol.setRecords for cell input and symbols of dimension >= 3.

GAMS Transfer Python

• Breaking: renamed generateRecords argument densities to density.

• Breaking: removed the getCardinality method.

• Breaking: renamed ∗ column for UniverseAlias symbols to uni to be more consistent with other
symbol formats.

• Breaking: new dataframe column naming convention. Defaults to domain names if unique. If
not unique, domain names will be tagged with a dimension index. Can be customized with new
domain labels setter functionality.

• Container and ConstContainer have been made iterable.

• Exposed Const∗ symbol classes to the user in order to enable better tab completion behavior.

• New symbol method toValue (for scalar symbols) – returns symbol records as float (underlying
Pandas DataFrame is not modified).

• New symbol method toList (for all symbols) – returns symbol records as a python list.

• New symbol method toDict (for only Parameter, Variable and Equation symbol types) – returns
symbol records as a python dict.

• Allow a list of bool to be passed to domain forwarding to selectively forward set elements.

• Following GAMS convention, singleton sets can no longer be used to define a symbol domain.

• Small adjustments to the object string representation (repr) functions.

• Added an is scalar symbol property to (Const)Variable and (Const)Equation symbols.

58 Release Notes

• Added support for len function to Container and ConstContainer – returns the number of symbols
in the container.

• Added support for PathLike objects in load from argument.

• Better handling of str type relative paths in load from argument.

• Drop unused categories from columns when using generateRecords.

• Fixed bug in getUELs when there were unused categories in the domain set and the data were out
of order from the category order. Impacted behavior of toDense and toSparseCoo methods.

• Removed the previously deprecated getUniverseSet method, use <container>.getUELs() in-
stead.

• Better error message with whereMin, whereMax, whereMaxAbs functions if all symbol values are NaN.

GAMS Transfer R

• New libraries 1.16.0.

– Added checks for singleton and multidimensional checks in Symbol method isValid().

– Changed the default domain labels. User-specified domain labels are preserved if unique.

– Performance improvement in Container method read.

GDX

• Added new function gdxDataReadRawFastEx that behaves like gdxDataReadRawFast but works
with a callback function that also has the DimFrst and UserMem argument.

GMO

• Added new function gmoGetObjL to get objective activity level. This is useful when reformulating
models.

• Functions gmoEvalFuncNLCluster and gmoEvalFuncNLCluster MT are declared deprecated and will
be removed with the next major release.

Java

• GAMSModelInstance of this version is no longer compatible with GAMS 33 or older.

Matlab

• Added option implicitAssign to GAMSOptions and enumeration class ImplicitAssign.

.Net

• GAMSModelInstance of this version is not compatible anymore with GAMS 33 or older.

3.6 43 Distribution 59

Python

• Added support for Python 3.11.

• GamsModelInstance of this version is not compatible anymore with GAMS 33 or older.

• The Python examples located in <sysdir>/api/python/examples have been updated and revised.

– The examples xp example[1|2].py have been renamed to core example[1|2].py.

3.6.1.7 Model Libraries

GAMS EMP Library

• Updated farmsp.gms : The Farmer's Problem - Stochastic.

GAMS Model Library

• Updated schulz.gms : Termination routine to ensure solvers stay with resource limit.

• gqapsdp and kqkpsdp: SDPs are now solved with Mosek.

GAMS Test Library

• Updated carxr.gms : Test Connect agent RawExcelReader.

• Added carcr.gms : Test Connect agent RawCSVReader.

• Added output01.gms : Test Output related Command Line Parameters.

• Added conopt03.gms : CONOPT test suite - different libraries in one process.

• Added interrupt.gms : Check Ctrl-C/Interrupt handling of Embedded Code, MIP
solver, and GAMS.

• Added load17.gms : Test $declareAndLoad and $gdxLoadAll.

• Added implassign01.gms : Test implicitAssign.

• Renamed capdsqlr to casqlr.gms : Test Connect agent SQLReader and updated for revised
SQLReader.

• Renamed capdsqlw to casqlw.gms : Test Connect agent SQLWriter and updated for revised
SQLWriter.

60 Release Notes

x86 64bit
MS Windows

x86 64bit
Linux

x86 64bit
macOS

arm 64bit
macOS

3.6.1.8 Solver/Platform availability matrix

x86 64bit
MS Windows

x86 64bit
Linux

x86 64bit
macOS

arm 64bit
macOS

ALPHAECP 2.11 X X X X
ANTIGONE 1.1 X X X X
BARON X X X X
CBC 2.10 X X X X
CONOPT 3 X X X X
CONOPT 4 X X X X
COPT 6.5 X X X X
CPLEX 22.1 X X X X
DECIS X X X X
DICOPT 2 X X X X
GUROBI 10.0 X X X X
GUSS X X X X
IPOPT 3.14 X X X X
HiGHS 1.5 X X X X
KESTREL X X X X
KNITRO 13.2 X X X X
LINDO 14.0 X X X X
LINDOGLOBAL 14.0 X X X X
MILES X X X X
MINOS 5.6 X X X X
MOSEK 10 X X X X
NLPEC X X X X
OCTERACT 4 X X
ODHCPLEX 7 X X
PATH X X X X
QUADMINOS 5.6 X X X X

SBB X X X X
SCIP 8.0 X X X X
SHOT 1.1 X X X X
SNOPT 7.7 X X X X
SOPLEX 6.0 X X X X
XPRESS 41.01 X X X

3.6.2 43.2.0 Minor release (May 04, 2023)

3.6.2.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Michael Ferris and Mehmet Sert.

3.6 43 Distribution 61

3.6.2.2 GAMS System

GAMS

• Improved the dollar control options $declareAndLoad to consider domain information and the
subtype of a symbol as well (i.e., distinguish between positive and free variables).

3.6.2.3 Solvers

CPLEX, GUROBI, XPRESS

• Fixed that the bare-bone mode to solve LPs or MIPs was not accessible.

GUROBI

• Fixed that models with quadratic equations were rejected when using model type (D/(R)MI)NLP.

3.6.2.4 Tools

GAMS IDE

• Fixed that GAMS did not run anymore.

3.6.2.5 APIs

GAMS Transfer R

• New version 1.18.

– Added isScalar property for the symbols of type Variable and Equation.

– Updated symbol method reorderUELs(). If the argument uels is not passed, UELs are
reordered based on the records.

– Symbol method isValid now checks also for scalars with more than one record entries.

– Breaking: Symbol method toDense() now requires domain UELs and domain records to be in
the same order and unused UELs in the domain (if any) at the end of the UEL list.

– Breaking: Container method read now preserves the domain type from the source and avoids
domain linking by symbol name.

– Breaking: Symbol method getCardinality is removed.

– Fixed bug in longer symbol description.

– Fixed bug in accessing Container symbols in a case-insensitive manner.

– Fixed bug in the Container method describeAliases.

Jupyter Notebooks

• New optional argument --system directory=<path/to/gams> for gams reset used to explicitly
specify a GAMS system directory.

62 Release Notes

Python

• The pip extras all and connect now install psycopg2-binary instead of psycopg2 in order to
avoid additional dependencies when installing the GAMS Python API.

3.6.2.6 Model Libraries

GAMS Test Library

• Updated gamsjupyter01.gms : Test GAMS Jupyter Notebooks.

3.6.3 43.3.0 Minor release (May 18, 2023)

3.6.3.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release.

3.6.3.2 GAMS System

GAMS

• Fixed a wrong default value of 255 for the command line parameter putPW (the default is actually
32767).

3.6.3.3 Solvers

COPT

• New libraries 6.5.3.

HIGHS

• Fixed that solver link crashed when interrupted.

3.6.3.4 Tools

GAMS Studio

• New version 1.14.3 with some bug fixes and minor enhancements, for example:

– Added abort and abort.noError to highlighter and completer.

– Fixed connecting to GAMS Engine via HTTPS on macOS.

– Fixed GAMS Engine failing when using a parameter file.

– Fixed false detection of parmFile command line parameter.

– Fixed font not immediately updating after changing it in ”Settings > Editor & Log”.

– Fixed crash in Connect Editor when opening a file containing unknown schema name.

3.6 43 Distribution 63

3.6.3.5 APIs

Jupyter Notebooks

• Fixed a bug where specifying the --system directory argument of gams reset had no effect.

Python

• Fixed a problem with the debug output of Control API destructors.

3.6.4 43.3.1 Maintenance release (June 01, 2023)

3.6.4.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Gabriel Homsi.

3.6.4.2 GAMS System

Installer

• Fixed a problem of the Windows installer that prevented successful installation with a system
account that misses a user documents directory.

3.6.4.3 Solvers

HiGHS

• Fixed crash when resolving model instance after modification of constraint coefficients.

3.6.5 43.4.0 Minor release (June 15, 2023)

3.6.5.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Bruce McCarl, Alberto Valsecchi, and Wolfgang Britz.

3.6.5.2 GAMS System

GAMS

• Removed the capability to execute tools via the put utility 'execTool'.

• Fixed a bug in $declareAndLoad which caused any Alias being loaded as Singleton Set.

64 Release Notes

3.6.5.3 Solvers

COPT

• New libraries 6.5.4.

3.6.5.4 Tools

GAMS Studio

• New version 1.14.4 with some bug fixes and minor enhancements, for example:

– Delay license dialog to ensure Studio is already visible.

– Added information to system log with Studio start arguments.

– Added warning to system log if setting files could not be created.

– Fixed issues with parameter file on macOS and Linux.

– Fixed project setting for parameter file lost or reset on Studio restart.

– Fixed OpenSSL issue for Manjaro, Ubuntu 22.04 LTS, and similar Linux distributions.

3.6.6 43.4.1 Maintenance release (June 22, 2023)

3.6.6.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Guido M. Bazzani, Hirotaka Isogai and Bruce McCarl.

3.6.6.2 Solvers

CONOPT

• Fixed that when CONOPT reported about variables or equations to the listing file, the wrong
variable/equation was refered to (the prior variable/equation was mentioned instead).

CPLEX

• Fixed that a wrong CPLEX algorithm was called for final solve of a MIQP with fixed discrete
variables.

• Automatically change the optimality target to look only for a locally optimal solution (value 2) of a
fixed MIQP solve.

3.7 42 Distribution 65

3.6.6.3 Tools

GAMS Studio

• New version 1.14.5 with some bug fixes:

– Fixed error link from lst to code not working.

– Fixed parameters ignored when no pf-file is assigned to the project.

– Fixed order of parameters: parameter-box can overrule pf-file.

– Fixed parameters were cleared when project settings were opened.

– Fixed pf-file set to -none- hasn't been stored.

– Fixed project file name contains suffix like ”.gms” when automatically created.

3.7 42 Distribution

3.7.1 42.1.0 Major release (February 01, 2023)

3.7.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz and Brian Sergi.

3.7.1.2 Platforms

• As announced, dropped support for macOS 10.15 (Catalina).

• As announced, dropped support for Windows 8.

• Added support for macOS 13 (Ventura).

3.7.1.3 GAMS System

• The End User License Agreement (eula.pdf in the GAMS system directory) has been updated to
version 01/2023.

GAMS

• Change for the profile option: Entry Solve Alg was renamed to Solver. The value reported with it
matches now the value from model attribute etSolver. In previous versions, Solve Alg was reported
to be zero when running with solveLink=0. This has been fixed.

• Improved speed in GAMS and GDX for models with many labels.

• In case the overall GAMS program uses some extrinsic functions but the particular model instance
does not, then the extrinsic functions are not loaded any longer into the solver link.

• Added dollar control option $save[.keepCode] to create a work file during compilation.

66 Release Notes

Connect

• Added new Filter agent to reduce symbol data by applying filters on labels and numerical values.

• The PandasExcelReader now enforces sufficient ranges. A range must cover the complete dimension
of a symbol including its value (parameter) or text (set). Reading set element text is mandatory
and can no longer be skipped. Dropping unwanted text can be achieved using the Projection agent.

• The PandasExcelWriter supports .xlsx and .xlsm files. .xls files are not supported. For other file
formats, such as .ods files, it might be required to install additional Python packages.

• The PandasExcelReader supports .xlsx and .xlsm files. For other file formats, such as .xls or
.ods files, it might be required to install additional Python packages.

• Improved exception messages for various Connect agents.

• Fixed bug where writer agents would fail if a symbol was read empty by one of the reader agents.

• Fixed a bug in the PythonCode agent that prevented local variables to be accessible in a subsequent
enclosing namespace.

Embedded GAMS Code Facility

• Added GAMS to the family of supported embedded code languages.

Embedded Python Code Facility

• Fixed a crash when using gams.printLog() with LogOption being set to 0 (no log output).

GMSPython

• The Python version of GMSPython has been updated to 3.8.16.

3.7.1.4 Solvers

BARON

• New libraries 23.1.5.

– Significant improvements for quadratic programs, tree management strategies, and integer
presolve.

CBC

• The time reported back to GAMS (e.g., resUsd attribute) is now measured by the clock that is
specified by the clocktype option.

• We plan to drop the CBC alias COINCBC with the next major release.

3.7 42 Distribution 67

CONOPT

• We plan to drop the CONOPT3 alias CONOPTD with the next major release.

CONVERT

• Added concurrent mode (value 3) to option qextractalg.

• We plan to drop the CONVERT alias CONVERTD with the next major release.

COPT

• New libraries 6.0.4.

– COPT can now solve convex MIQCPs and MISOCPs. Enabled GAMS model type MIQCP for
COPT.

– A parameter tuning tool has been added. New options Tuning, TuneParams, TuneMethod,
TuneMode, TuneMeasure, TunePermutes, TuneOutputLevel, TuneTargetRelGap, TuneTargetTime,
TuneTimeLimit.

– Option Crossover is now an integer option with possible values -1, 0, and 1.

– Added possible value 5 for option LpMethod: automatic choice of LP method

• Changed type of option iis from boolean to integer. Added value 2 to request an IIS computation
without a previous solve.

CPLEX

• New libraries 22.1.1.0.

– Added option cardls: decides how often to apply the cardinality local search heuristic (CLSH).

• Added concurrent mode (value 3) to option qextractalg.

• Changed default of rerun to nono. With this change the solver may not be able to distinguish
between unbounded and infeasible models anymore and may just report the model to be infeasible.
In order to check for unbounded models, set rerun to yes to rerun the optimization with presolve
turned off.

• We plan to drop the CPLEX alias CPLEXD with the next major release.

DE

• Added option empInfoFile to DE.

DECIS

• We plan to drop the EMP-SP solver DECIS with the next major release. This does not effect the
stochastic LP solvers DECISC and DECISM. They will remain in the system.

68 Release Notes

GUROBI

• New libraries 10.0.0.

– Added option softmemlimit: Soft memory limit.

– Added option obbt: Controls aggressiveness of optimality-based bound tightening.

– Added option networkalg: Network simplex algorithm.

– Added support of nonlinear constraint r =e= sigmoid(x) (or r =e= 1 / (1 + exp(-x))),
see Gurobi: Nonlinear Programming.

• Added concurrent mode (value 3) to option qextractalg.

• Changed default of rerun to -1 (no). With this change the solver may not be able to distinguish
between unbounded and infeasible models anymore and may just report the model to be infeasible.
In order to check for unbounded models, set rerun to 1 to rerun the optimization with presolve
turned off.

• Fixed multimipstart: Initial guess could have been sent to Gurobi in a wrong order and thus be
rejected by Gurobi, e.g., as infeasible.

• Removed requirement of being a MIP to use mipstart, multimipstart, or varhint because Gurobi
may switch to ”MIP mode” (branch-and-bound) during solve (e.g. for nonconvex QCPs).

HiGHS

• New libraries 1.4.1.

– Added option mipstart: Initial level values can be passed as starting point to a MIP (if no
semicontinuous or semiinteger variables are present). If infeasible, then HiGHS attempts to
find a feasible assignment of the continuous variables by solving an LP.

– Improved reliability of interior-point solver if cross-over is not always run.

– Option run crossover changed from boolean to string. New possible value ”choose”, to run
crossover only if the result without crossover is imprecise.

– Added options to enable and adjust ”iCrash”: icrash, icrash approx iter, icrash breakpoints,
icrash dualize, icrash exact, icrash iterations, icrash starting weight, icrash strategy.

– Option write solution style: New value -1 now specifies ”oldraw” format (was value 2 before);
value 2 and new value 3 now allow to print solution in GMPL format.

– New options presolve rule logging and presolve rule off.

IPOPT

• We plan to drop the IPOPT alias COINIPOPT with the next major release.

KNITRO

• New libraries 13.2.0.

– New option presolveop redundant: Determine whether or not to enable the Knitro presolve
operation to detect and remove redundant constraints.

– New option mip gomory: Specifies rules for adding Gomory mixed-integer cuts.

– New value for option presolveop tighten: 2 and 3.

– New value for option mip clique: -1 (new default). Removed value 3.

– New value for option mip knapsack: -1 (new default). Removed value 3.

– New value for option mip zerohalf: -1 (new default). Removed value 3.

– New value for option mip liftproject: -1 (new default). Changed option type to integer.

– Changed default value of option mip cutting plane: 1.

• Added concurrent mode (value 3) to option qextractalg.

3.7 42 Distribution 69

LINDO/LINDOGLOBAL

• New libraries 14.0.204.

• Added option empInfoFile to LINDO.

MILES

• We plan to drop the MILES alias MILESE with the next major release.

MINOS

• We plan to drop the MINOS aliases MINOS5 and MINOS55 with the next major release.

MOSEK

• Made parameters MSK IPAR PTF WRITE PARAMETERS and MSK IPAR PTF WRITE SOLUTIONS
available.

• Added concurrent mode (value 3) to option QEXTRACTALG.

OCTERACT

• New libraries 4.6.0.

– Removed the possibility to use Gurobi or Xpress as MIP solver. Removed GUROBI and
XPRESS from possible values for options MILP SOLVER and MIP SOLVER.

ODHCPLEX

• Added concurrent mode (value 3) to option qextractalg.

• Changed default of rerun to nono. With this change the solver may not be able to distinguish
between unbounded and infeasible models anymore and may just report the model to be infeasible.
In order to check for unbounded models, set rerun to yes to rerun the optimization with presolve
turned off.

SCIP

• We plan to drop the SCIP alias COINSCIP with the next major release.

SELKIE

• We plan to drop the research solver SELKIE with the next major release.

70 Release Notes

SHOT

• Added concurrent mode (value 3) to option ModelingSystem.GAMS.QExtractAlg.

SOPLEX

• We plan to drop the SOPLEX alias OSISOPLEX with the next major release.

XPRESS

• New libraries 41.01.01.

– Dynamic adjustment of the reliability threshold for pseudo cost updates.

– Improved branching strategies on MIP models with highly degenerate objective function.

– Extended the effect of numericalEmphasis to some bound tightening reductions. This can help
to avoid wrong answers in case of numerically challenging problems.

– New option globalBoundingBox: If a nonlinear problem cannot be solved due to appearing
unbounded, it can automatically be regularized by the application of a bounding box on the
variables.

– New option timeLimit: Maximum time in seconds that the Optimizer will run before it
terminates, including the problem setup time and solution time.

– New option solTimeLimit: Maximum time in seconds that the Optimizer will run a MIP solve
before it terminates, given that a solution has been found.

– New option preConfiguration: Determines whether binary rows with only few repeating coeffi-
cients should be reformulated.

– New option primalOps: Allows fine tuning the variable selection in the primal simplex solver.

– New options cutSelect gomory and treeCutSelect gomory: Strong Chvatal-Gomory cuts.

– New options cutSelect farkas and treeCutSelect farkas: Farkas cuts.

– New option feasibilityJump: Decides if the Feasibility Jump heuristic should be run.

– New bits in cutSelect, treeCutSelect and barRegularize.

– New option value (2) for xslp solver: Use Xpress-Optimizer if possible (convex quadratic
problems only).

– New default for option xslp iterLimit: 1000.

– New default for option xslp mipDefaultAlgorithm: 3.

– Option xslp postsolve has been changed from boolean to integer with new default -1: Postsolve
if the problem could be solved to optimality/infeasibility.

– Options maxStallTime and maxCutTime have been changed from integer to double options.

– Deprecated options maxTime (use timeLimit or solTimeLimit instead), cacheSize, l1Cache
and sleepOnThreadWait.

– Removed options extraPresolve and lpThreads.

• Added concurrent mode (value 3) to option qextractalg.

• New bit options barPresolveOps standard, barPresolveOps extra, barPresolveOps full.

3.7.1.5 Tools

$LibInclude gdxservice

• Added tool GDXEncoding to convert labels in a GDX file from one encoding to another one.

3.7 42 Distribution 71

CHK4UPD

• We plan to drop the command line tool CHK4UPD with the next major release. The functionality of
that tool will still be available through GAMS Studio.

CSDP

• We will remove the tool/solver csdp in a future GAMS release. GAMS/MOSEK should be used
instead.

GAMS Studio

• New version 1.13.1.

– New feature: GAMS Connect editor.

– Project handling / Project Explorer improvements:

∗ Projects get now saved to separate files automatically (GSP - GAMS Studio Project).

· Each project is stored in a separate file, the Project Settings show a representation
of that.

· File menu and context menu now provide Open Project, New project, Move Project

File, and Copy Project.

· Import project and Export project have been removed.

· A project name is tied to the name of the project file.

· Projects in different paths with the same name get a number added. This number is
assigned in the ”name and path” order, so changing the path of a project may change
the assigned number.

∗ Fixed that projects were not always saved properly.

– GDX Viewer improvements:

∗ Improved numerical formatting of the GDX Viewer when using g-format with Full

precision.

∗ State of GDX files is now persistent even after restarting Studio.

∗ Added symbol filter to GDX state and persist it.

∗ Added support for label and value filters in GDX Viewer export functionality.

– Improved Check for Update dialog, including HTML output and text updates.

– Studio checks now online for a new available GAMS version when started (can be changed in
the settings).

– Stability improvements, bug fixes, and minor enhancements, e.g.:

∗ Improved request behavior of GAMS Engine server communication.

∗ Adjusted Replace All to show search term in clear text instead of internal representation.

GDXCOPY

• Fixed a problem with missing relaxed domain information in the copied GDX file.

GDXTROLL

• We will remove the tool gdxtroll in a future GAMS release.

72 Release Notes

GDX2XLS

• We will remove the tool gdx2xls in a future GAMS release. GAMS Connect agent PandasExcelWriter
should be used instead.

MPS2GMS

• New libraries HiGHS 1.4.1 for LP/MPS reading.

XLS2GMS

• We will remove the tool xls2gms in a future GAMS release. GAMS Connect agent PandasExcelReader
should be used instead.

XLSDUMP

• We will remove the tool xlsdump in a future GAMS release. GAMS Connect agent RawExcelReader
should be used instead.

3.7.1.6 APIs

.Net

• Changed the TargetFramework of the GAMS .Net API from 4.0 to 4.5.

• Added method RunEngine to GAMSJob class to run jobs on GAMS Engine, rather than locally.

Matlab

• Added option SuffixAlgebraVars.

• Added option values RoundedFloatingDec (3) and ForEFloatingDec (4) to option PutNR.

GAMS Transfer Matlab

• Improved performance of Container.hasSymbols. Among others, this has a significant effect when
adding many symbols.

• Added support of partial write.

• Added parameter symbols to Container.write, Container.getDomainViolations, Container.resolveDomainViolations
and Container.isValid.

• Added parameter allow merge to Container.renameUELs and Symbol.renameUELs in order support
merging UELs while renaming (renaming a UEL to an already existing UEL).

3.7 42 Distribution 73

GAMS Transfer Python

• New generateRecords method to automatically generate records from domain information.

• New pivot convenience method to pivot symbol records into various shapes.

• Removed possible dict type for rtol and atol in equals method.

GAMS Transfer R

• removeSymbols removes symbol links in other symbols.

• Added symbols argument to Container methods renameUELs and removeUELs.

• findDuplicateRecords now returns a data frame instead of row indices.

• Breaking: Container data field is now an ordered dictionary from collections package instead
of named list. Instead of m$data$<symbolname>, use m[<symbolname>].

• Performance improvement to Container method hasSymbols. This results in significant speed-ups
when adding multiple symbols to the container.

• Added symbols argument to Container methods getDomainViolations, hasDomainViolations,
countDomainViolations, dropDomainViolations, hasDuplicateRecords, countDuplicateRecords,
dropDuplicateRecords, isValid, and write for partial operation.

• Container method getSymbols now always returns a list.

• Added equals method to Symbols to check if symbols are equal.

• Bugfix in SpecialValues$isNA.

• Bugfix in getUELs for scalar symbols.

• Bugfix in Symbol method isValid for symbols containing only NA.

• Bugfix in Variable and Equation set records for numeric inputs.

• Added equals method for Container and ConstContainer.

Jupyter Notebooks

• Removed methods gams.pivot and gams.pivot2d. This functionality is now available from GAMS
Transfer Python via the pivot method.

• As announced, the package gams magic legacy has been removed, use gams.magic instead.

Python

• The GAMS Python API structure has been revised. Detailed information about the new structure
can be found in the Python API documentation:

–

Attention

Due to the changed structure of the API, import statements in existing code might not
work anymore - please refer to Migrate import statements for details on how to migrate.

– Replaced the use of distutils by setuptools. Installation/uninstallation of the Python API
is now done using pip.

– All examples have been moved to <sysdir>/api/python/examples and are organized by sub
packages.

– Documentation has been restructured and contains information on the GAMS numpy API (pre-
viously gams2numpy) now.

74 Release Notes

3.7.1.7 Model Libraries

GAMS Model Library

• Added binpacking.gms : Bin packing problem with different ways to estimate number
of bins.

• maxcut.gms : Goemans/Williamson Randomized Approximation Algorithm for Max-
Cut : SDP is now solved with Mosek if called with --SDPSOLVER=MOSEK.

• tablelayout.gms : Configuring text layout in table cells to minimize table height : Uses
now embedded code GAMS.

GAMS Test Library

• Added scensol10.gms : MCP GUSS Test.

• Added cafilter.gms : Test Connect agent Filter.

• Added gdxencoding1.gms : Simple gdxencoding test.

• Added save3.gms : Test DCO save.

• Added embgms01.gms : Test for embedded code facility.

• Added embgms02.gms : Test for embedded code facility.

• Added embgms03.gms : Test projection operator when loading data from embedded
code.

• Added embgms04.gms : Test continuation of embedded code blocks.

• Added embgms05.gms : Test merge/replace when loading data from embedded code.

• Added embgms06.gms : Test domain check/filtered when loading data from embedded
code.

• Added embgms08.gms : Test filtered load from Embedded Code.

• Added embgms09.gms : Test Embedded Code after restart.

• Added gdxcopy6.gms : Test gdxcopy with relaxed domain information.

API Library

• Added gdxperf.gms : Test various GDX APIs and report run times.

• Added generate.gms : Generate some random but structured GDX files.

3.7 42 Distribution 75

x86 64bit
MS Windows

x86 64bit
Linux

x86 64bit
macOS

3.7.1.8 Solver/Platform availability matrix

x86 64bit
MS Windows

x86 64bit
Linux

x86 64bit
macOS

ALPHAECP 2.11 X X X
ANTIGONE 1.1 X X X
BARON X X X
CBC 2.10 X X X
CONOPT 3 X X X
CONOPT 4 X X X
COPT 6.0 X X X
CPLEX 22.1 X X X
DECIS X X X
DICOPT 2 X X X
GUROBI 10.0 X X X
GUSS X X X
IPOPT 3.14 X X X
HiGHS 1.4 X X X
KESTREL X X X
KNITRO 13.2 X X X
LINDO 14.0 X X X
LINDOGLOBAL 14.0 X X X
MILES X X X
MINOS 5.6 X X X
MOSEK 10 X X X
NLPEC X X X
OCTERACT 4 X X
ODHCPLEX 6 X X
PATH X X X
QUADMINOS 5.6 X X X

SBB X X X
SCIP 8.0 X X X
SHOT 1.1 X X X
SNOPT 7.7 X X X
SOPLEX 6.0 X X X
XPRESS 41.01 X X X

3.7.2 42.2.0 Minor release (February 16, 2023)

3.7.2.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Lorena Reyes-Rubiano.

76 Release Notes

3.7.2.2 GAMS System

GAMS

• Fixed a potential problem that did not allow to execute an embedded code block as first statement
in a repeat loop.

• Improved the way, the Grid Facility is executed to resolve a problem when running a GAMS model
with solveLink=3 under GAMS MIRO.

3.7.2.3 Solvers

CONOPT

• New libraries 4.30.

– Fixes an error (stop without termination message) for models with dummy objective function.

3.7.2.4 Tools

MPS2GMS

• Fixed that parameter COLUMNINTVARSAREBINARY could not be set.

• Fixed that objective function was lost if MPS reading falled back to the reader for the fixed MPS
format.

3.7.2.5 APIs

GAMS Transfer R

• Significant performance improvement when reading from a GDX file.

• Partial domain forwarding is now allowed by passing a logical vector as the domainForwarding

argument.

• Added generateRecords method for Symbols to automatically generate records.

3.7.3 42.3.0 Minor release (March 02, 2023)

3.7.3.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Yuzar Aryadi, Wolfgang Britz, Geoffroy Duparc-Portier, Scott
McDonald, and Tom Rutherford.

https://gams.com/miro/index.html

3.7 42 Distribution 77

3.7.3.2 GAMS System

GAMS

• Fixed a bug which could have caused a crash when option clear/kill was used inside a loop on
symbol attributes.

• Fixed a bug which caused a potentially wrong dump file when Singleton Sets are loaded.

• Fixed a bug that could have caused an unwanted error in rare cases when relaxed punctuation was
used to declare a list of symbols without separating them by comma.

GAMS Connect

• Fixed a problem with labels containing non-printable characters as well as wrong sheet size calcula-
tions in RawExcelReader.

• Fixed a problem in RawExcelReader with workbooks that did not have any cells with numerical
data.

• Fixed bug in the CSVReader agent where indexSubstitutions in a stacked dimension would lead
to NaN.

• Fixed bug in the CSVReader agent where indexSubstitutions would also substitute in the value
column of parameters.

• Fixed bug in the CSVReader agent where index and text columns were read as numeric.

• Fixed bug where the CSVWriter agent converts the text column of a set to numeric.

• Fixed bug where the Concatenate agent converts GAMS NA into GAMS UNDF for a symbol that
solely has GAMS NA und UNDF records.

3.7.3.3 Solvers

CPLEX

• Fix for the case that solvefinal failed: GAMS/CPLEX will now return the solution from the
preceeding full solve.

MOSEK

• Added workaround for crash when GAMS/Mosek link terminates after running Mosek with multiple
threads.

3.7.3.4 Tools

GAMS Studio

• New version 1.13.3 with some bug fixes and minor enhancements, for example:

– Added a special group -GAMS-System- on project level to bundle files like Changelog and
gamsconfig.yaml.

– Added support for macro symbol in Reference File Viewer.

– Enabled controls for empty symbols in GDX Viewer as well.

– Fixed crash when reloading an empty GDX symbol in table view mode.

– Fixed several memory leaks.

78 Release Notes

3.7.4 42.4.0 Minor release (March 16, 2023)

3.7.4.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Erwin Kalvelagen and Pedro Andres Sanchez-Perez.

3.7.4.2 GAMS System

GAMS

• Fixed duplicate prints of some lines in the output file when $onDollar is set.

GAMS Connect

• Fixed bug where the Projection agent unintentionally alters source symbols in the Connect database.

3.7.4.3 Solvers

BARON

• New libraries 23.3.11.

– Fixed that a wrong dual bound was reported for a maximization problem when interrupted by
the user (SIGINT).

CONOPT

• Worked around some library symbol mix-ups when using both CONOPT 3 and CONOPT 4 in the
same GAMS process with solvelink 5 or higher on Linux.

COPT

• New libraries 6.0.5.

CPLEX

• Fixed hanging program after fulfilled or ignored mipstopexpr.

HiGHS

• New libraries 1.5.1.

– New value 4 for option write solution style.

– Changed default for option presolve rule logging from 1 to 0.

3.7 42 Distribution 79

MOSEK

• New libraries 10.0.38.

SCIP Optimization Suite

• New libraries SCIP 8.0 (1870b6ada8).

• New libraries PaPILO 2.1 (cf0c6277).

SHOT

• New libraries 1.1 (3ba57397).

3.7.4.4 Tools

GAMS Studio

• New version 1.13.4 with some bug fixes and minor enhancements, for example:

– Added support for Connect filter agent to Studio connect editor.

– Fixed crash on creating an .opt file via context menu in the Project Explorer.

– Fixed wrong .opt file extension which prevented saving.

– Fixed value edit in GAMS Configuration Editor and allowed to delete minVersion and
maxVersion values.

– Fixed GdxDiffDialog crash after opening an input file on macOS.

3.7.4.5 APIs

GAMS Transfer Python

• Fixed a bug associated with long symbol descriptions

Python

• Fixed a bug where GamsWorkspace.add job from file did not raise an exception in case of a
non-existing file.

• Fixed a bug where GamsModelInstance.copy modelinstance did fail if the source instance
was instantiated with GamsModifiers for parameters.

• Fixed the == operator of GamsSymbol and its subclasses that resulted in True even for different
symbols.

• Fixed GamsWorkspace.add database from gdx not raising an exception in case of argument
gdx file name being None or the empty string.

• Changed return type of the == operator of GamsSymbolRecord and its subclasses from int to
bool.

80 Release Notes

3.7.5 42.5.0 Minor release (March 30, 2023)

3.7.5.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Jason Hayes and Scott McDonald.

3.7.5.2 GAMS System

GAMS Connect

• Fixed the Projection agent failing on empty symbols.

Installer

• Fixed a problem of the Windows installer that prevented successful installation with a system
account (e.g. when using SCCM).

3.7.5.3 Solvers

PATH and PATHNLP

• New libraries 5.0.07.

CONVERT

• Fixed writing eps instead of 0 for linear coefficients in GAMS format.

3.7.5.4 Tools

subsubsection g4250 STUDIO GAMS Studio

• New version 1.13.5 with some bug fixes and minor enhancements, for example:

– Added automatic opening of project editor after creating a new project.

– Fixed duplicated tab in reference file viewer when reloading a reference file.

– Fixed crash on macOS when a GAMS related file is opened via double-click in Finder.

– Fixed broken compilation error link to .gms file in .lst file.

3.8 41 Distribution 81

3.7.5.5 APIs

GAMS Transfer R

• Significant performance improvements when writing a GDX file from a Container.

• Fixed bug in Container read when reading a Symbol with unused UELs.

• Fixed bug in todense method for Symbol.

• Fixed bug in writing empty container.

• Added Symbol method copy to copy symbol from one Container or ConstContainer to another
Container.

• Added Container and ConstContainer method copy to copy symbols to another Container.

• Fixed bug in using ConstContainer Alias methods when the aliased parent set is absent.

3.8 41 Distribution

3.8.1 41.1.0 Major release (October 28, 2022)

3.8.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Marcel Adenauer, Sebastian Braun, Wolfgang Britz, Arne Stolbjerg
Drud, Michael Ferris, Mitch Phillipson, and Zhang Tao.

3.8.1.2 Platforms

• We plan to drop support for macOS 10.15 with the next major release.

• We plan to drop support for Windows 8.1 with the next major release.

3.8.1.3 GAMS System

Connect

• Symbol names in Connect are now case insensitive. The global attribute caseSensitiveLookup has
been removed.

• Added new Concatenate agent that allows concatenating multiple symbols into a single symbol.

• The CSVReader, PandasExcelReader, and PandasSQLReader now read relaxed domain information.

• The PandasSQLReader now supports pyodbc connections. The connection type can be configured
via the new option connectionType.

• Options readAll and writeAll available in some agents allow and default to value auto. So if the
symbols section is missing, auto becomes True, otherwise False.

• Fixed bug where PandasExcelWriter and PandasSQLWriter would not properly close the
file/database connection in case of an exception.

• Fixed bug where GAMSWriter and GDXWriter would fail when writing an empty symbol with relaxed
domains.

• Fixed bug where PandasExcelReader and CSVReader would generated NaN entries for labels with
trailing spaces.

82 Release Notes

GAMS

• As announced we have removed language elements to access some commercial and licensing infor-
mation:

– System suffixes components, clipCodes, clipComponentMap, componentSolverMap,
gamsLicenses, gamsLicenseTypes, lice1, lice2, licenseDateEvalN, licenseDateEvalS,
licenseDateMaintN, licenseDateMaintS, licenseDateN, licenseDateS, licenseDateSysN,
licenseDateSysS, licenseDaysEval, licenseDaysMaint, licenseDC, licenseEval,
licenseID, licenseInstitution, licenseLevelText, licenseLicensee, licenseMudText,
licensePlatform, licensePlatformText, licenseStatus, licenseStatusText, licenseType,
licenseVendor, and vendors.

– Predefined sets componentEDate, componentMDate, and componentLicenseOptions.

– Many of these elements were used in the GAMS Model Library model licememo, which we
also dropped.

• Added new intrinsic functions lseMax, lseMaxSc, lseMin, and lseMinSc.

• Added new dollar control options $on/offSuffixAlgebraVars and related command line parameter
SuffixAlgebraVars to disallow the use of variable suffixes (aka. attributes) in model algebra. This
option allows to easily detect unintentional use of variables with suffixes in equation algebra.

• Improved message when exceeding the limit of the GAMS Community License or Demo License.

• Patched up the Windows memory reporting for showOSMemory and procTreeMemMonitor, and
added clarifying documentation.

GMSPython

• Added the package psycopg2.

• Removed the package pyyaml-include.

Embedded Python Code Facility

• On Windows, the directory with the Python DLL is automatically added to PATH, so some DLLs
are properly found.

3.8.1.4 Solvers

ANTIGONE, CBC, Ipopt, SCIP, SHOT

• Updated MKL to 2022.2.0 on Linux and macOS.

BARON

• New libraries 22.9.30.

– Better treatment of convex and quadratic problems, including improved relaxations for binary
quadratic programs.

– Improved cutting, range reduction, and branching strategies.

– Improved continuous and integer presolve algorithms.

– Improved interfaces to CPLEX, CBC, and IPOPT.

3.8 41 Distribution 83

CONOPT

• New libraries 3.17N.

• New libraries 4.29.

CONVERT

• Added option AmplNL: Generates AMPL .nl file.

• Added option AmplNLBin: Enables to write .nl file in binary format.

COPT

• New libraries 5.0.5.

• Value 1 for option Presolve has been changed to mean ”fast presolve”. Additional values 2 and 3
have been added to specify normal and aggressive presolving levels.

CPLEX

• Changed iis from boolean to integer option and added option value 2: Conflict analysis without
previous solve.

• The time reported in model attribute resUsd now corresponds to the chosen clock type. That is,
the CPU time spend by CPLEX is reported if clocktype is changed to 1.

DICOPT

• Added option dumpsubprob to activate writing of MIP and NLP subproblems as GAMS files.

GUROBI

• Added support for more nonlinear constraints: 1-norm, 2-norm, and inf-norm specified as nonlinear
expressions.

• Deprecated dot-option .GenConstrType: Please use nonlinear expressions instead.

• Changed iis from boolean to integer option and added option value 2: Conflict analysis without
previous solve.

Ipopt

• New libraries 3.14.10.

• Small performance improvement for problems with i) linear objective function, ii) quadratic objective
and linear constraints, iii) only linear equality constraints, or iv) only linear inequality constraints.

84 Release Notes

Lindo/LindoGlobal

• New libraries 14.0.162:

– LP Solver Improvements:

∗ Improved algorithms for searching alternative optima.

– MIP Solver Improvements:

∗ Improved selection of search parameters when solving difficult instances.

– Linearization:

∗ Recognition of more expressions than previous versions.

∗ Advanced linearization of QP and conic models.

– Nonlinear Solver Improvements:

∗ Recognition of fractional linear programs and algorithmic improvements for this class.

– Global Solver Improvements:

∗ Introduce auxiliary variables to optimize in hyperspace for improved performance.

∗ Improved warning messages for possible sub-optimal solutions.

∗ Improved bound-tightening process.

• Added support for new intrinsic function lseMax.

MOSEK

• New libraries 10.0.25.

– Improved presolve for conic problems.

– Improved performance of interior-point optimizer for large-scale LPs and when running on
recent AMD CPUs.

– Improved cutting plane separation and presolve for mixed-integer programs.

∗ Default of option MSK IPAR MIO CUT IMPLIED BOUND changed from off to on.

∗ New option MSK IPAR MIO CUT LIPRO to enable lift-and-project cuts.

∗ New option MSK IPAR MIO PRESOLVE AGGREGATOR USE to control use of aggre-
gator.

– Added symmetry detection and exploitation for mixed-integer programs. New option
MSK IPAR MIO SYMMETRY LEVEL to control level of symmetry detection and handling.

– Introduced reformulations for MIQCPs, which allows solution of more non-convex MIQCPs that
can be reformulated into convex ones. New option MSK IPAR MIO QCQO REFORMULATION METHOD
to set reformulation method.

– Added possibilities to enable memory saving and higher numerical emphasis for mixed-
integer programs by use of new options MSK IPAR MIO MEMORY EMPHASIS LEVEL and
MSK IPAR MIO NUMERICAL EMPHASIS LEVEL, respectively.

– Added possibility to solve continuous problem obtained from fixing all integer variables to
initial level values by enabling new option MSK IPAR MIO CONSTRUCT SOL.

– Additional option changes:

∗ New option MSK DPAR PRESOLVE TOL PRIMAL INFEAS PERTURBATION to
specify amount by which Mosek can perturb problem in presolve to avoid infeasibility.

∗ Removed option MSK IPAR INTPNT MULTI THREAD.

∗ Removed moderate and aggressive scaling options from MSK IPAR INTPNT SCALING
and MSK IPAR SIM SCALING.

∗ New option MSK IPAR MIO DATA PERMUTATION METHOD to enable permutation
of mixed-integer problems.

∗ New option MSK IPAR WRITE JSON INDENTATION to control whether json files are
written with indentation.

∗ Removed options MSK IPAR WRITE LP QUOTED NAMES, MSK IPAR WRITE LP STRICT FORMAT,
MSK IPAR WRITE LP TERMS PER LINE, and MSK IPAR WRITE PRECISION.

3.8 41 Distribution 85

Octeract

• New libraries 4.5.1.

ODHCPLEX

• The time reported in model attribute resUsd now corresponds to the chosen clock type. That is,
the CPU time spend by ODHCPLEX is reported if clocktype is changed to 1.

SCIP

• New libraries 8.0.2.

XA

• As announced, dropped XA.

XPRESS

• New libraries 40.01.03.

3.8.1.5 Tools

GAMS Studio

• New version 1.12.1.

– New feature: Navigator (Ctrl+k)

∗ Please note: this feature is currently in beta and does not have mouse support yet!

∗ Filter files by typing a search term, wildcards are also supported (e.g.: ∗.gms).

∗ Press Enter to jump to a selected file.

∗ Type ? to show help about all available prefixes.

∗ The GoTo- and TabBrowser-dialogs are now obsolete and will be removed in the future.

– GDX Viewer improvements:

∗ New feature: Added first version of an export dialog, currently supporting Excel output
only.

∗ New feature: Added quick selection to GDX Viewer filters.

∗ Improved auto-resizing behavior.

∗ Improved symbol table colors especially when the theme has changed.

– Search and Replace improvements:

∗ Added highlighting to matches in Search Result View.

∗ Added capture group support for regular expressions in Search Dialog.

– Added filter to MIRO deploy dialog and EFI editor.

– Added function to open directly in Pin-View from Project Explorer by Ctrl+double-click

(for horizontal pin) or Ctrl+Shift+double-click (for vertical pin).

– Added icons to the main tabs (except for macOS).

86 Release Notes

– Added editor settings to skip syntax highlighting for long lines (this can improve performance
significantly).

– Stability improvements, bug fixes, and minor enhancements, e.g.:

∗ Changed GAMS version mismatch error message to a warning message.

∗ Fixed GDX Viewer crash when reloading a file with an alias selected.

∗ Fixed crash when switching tabs on macOS.

∗ Fixed project changes on search over multiple files where a file is linked to more than one
project.

∗ Fixed unexpected behavior when adding the main file to an EFI file.

∗ Fixed wrong context menu for new entry in Project Explorer after using Save as....

∗ Fixed that models with names containing spaces failed to be executed on NEOS and
Engine.

GDXRRW

• GDXRRW is now deprecated and will be removed in a future release. Please use GAMS Transfer R
instead. If you encounter issues with the transition to GAMS Transfer R or if you have any feature
requests for GAMS Transfer R or concerns about the transition, do not hesitate to contact GAMS
support.

GDXXRW

• When the limit on number of supported of rows or columns is reached when reading from a file, a
warning is now given that subsequent entries might have been skipped.

$libInclude win32

• Added XLSMerge functionality to <sysdir>\inclib\win32.gms to merge two Excel workbooks.

3.8.1.6 APIs

gams2numpy

• Non-UTF-8 characters do not result in an exception anymore. Instead, such characters are transferred
to an alternative representation by using the Python error handler backslashreplace. This
change affects gams2numpy and all its clients – GAMS Transfer, Connect, and gams magic (Jupyter
notebooks).

• The binaries are now build with numpy 1.21.6 for Python 3.7 and numpy 1.23.3 for Python 3.8,
3.9, and 3.10.

3.8 41 Distribution 87

GAMS Transfer Matlab

• Breaking: Symbol name uniqueness is now checked case insensitively. For example, it is not possible
anymore to have three different symbols named symbol, Symbol, and SYMBOL.

• Breaking: Changed Symbol.addUELs signature from addUELs(dim, uels) to addUELs(uels, dim).
dim is now allowed to accept a vector of dimensions.

• Breaking: Changed Symbol.setUELs signature from setUELs(dim, uels) to setUELs(uels,

dim) and setUELS(, "rename", true/false). Setting rename to true triggers the old
Symbol.initUELs. dim is now allowed to accept a vector of dimensions.

• Breaking: Changed Symbol.removeUELs signature from removeUELs(dim, uels) to removeUELs(),
removeUELs(uels), and removeUELs(uels, dim). dim is now allowed to accept a vector of dimen-
sions.

• Breaking: Changed Symbol.renameUELs signature from renameUELs(dim, olduels, newuels)

to renameUELs(uels) and renameUELs(uels, dim). uels can now be cellstr, struct, or
containers.Map. dim is now allowed to accept a vector of dimensions.

• Added method Container.getSymbolNames to return the original symbol names for a list of symbol
names of any case.

• Added method Container.hasSymbols to check if symbol name (case insensitive) exists.

• Added method Container.getUELs to get UELs from all symbols.

• Added method Container.removeUELs to remove UELs from all symbols.

• Added method Container.renameUELs to rename UELs in all symbols.

• Added method Symbol.reorderUELs to reorder UELs without changing the meaning of records.

• Added flags Container.modified and Symbol.modified to indicate if a container and/or symbol
has been modified since last reset.

• Added possibility to filter UEL codes in Symbol.getUELs.

• Added possibility to pass a vector of dimensions to Symbol.getUELs.

• Added possibility to overwrite symbols with Container.add∗ if main symbol definition (e.g. type,
domain) is equal.

• Changed Container.getSymbols, Container.removeSymbol, Container.renameSymbol,
Container.describe∗, and others that use Container.getSymbols to accept symbol names
case insensitively.

• Changed behaviour of default records: Default records do not get written to GDX anymore if the
records format is dense matrix and either the container is in indexed mode or if the symbol has a
regular domain.

• Changed behaviour of getDomainViolations: As in GDX, different character case does not lead to
a domain violation.

• Categoricals for record domain labels are now created with Ordinal set to true, but ordinal
categoricals are not enforced, i.e., users may pass categoricals with Ordinal set to false.

• Changed symbol read order when reading a subset of symbols: Symbol order is defined by source
order (e.g., symbol order in GDX file) rather than user supplied order. To establish a custom order
after the read, use reorderSymbols.

• Deprecated Symbol.getUELLabels. Use Symbol.getUELs instead.

• Deprecated Symbol.initUELs. Use Symbol.setUELs instead.

• Deprecated Container.getUniverseSet. Use Container.getUELs instead.

88 Release Notes

• Fixed failing symbol constructors when using domain forwarding, but none of the optional argu-
ments.

• Fixed Symbol.transformRecords (table-like to matrix-like formats) in case the domain set records
and UELs differ.

• Fixed write of sets defined over sets.

GAMS Transfer Python

• The API has been redesigned to more closely mimic GAMS behavior (i.e., GAMS is case preserving,
not case sensitive).

• The .data dict has been replaced with a custom dict that preserves the case of symbol names.
This mimics the convention in GAMS. Symbol lookup from this custom dict is case insensitive.

• Added new methods to customize dimension, symbol, and container UELs: getUELs, setUELs,
renameUELs, removeUELs, addUELs, and reorderUELs

• New Symbol method equals can be used to compare symbol objects.

• Deprecated the container method getUniverseSet. This method will be removed in a future major
release. Use <Container>.getUELs() instead.

• Container methods addSet, addAlias, addParameter, addVariable, and addEquation now allow
for symbol overwriting. Previously, an error was raised and the symbol had to be removed before
recreation.

• New class UniverseAlias and new Container method addUniverseAlias to allows creation of a
symbol which is an alias to the universe (fixes bug).

• Container no longer link symbol categoricals together when setting records with setRecords; data
that results in domain violations is not immediately lost and the user has greater flexibility to
modify inplace to the Container.

• Updated behavior of removeSymbols: the domain of dependent symbols is relaxed to ”∗” if a
set/alias is removed. If a parent set of an alias is removed, the alias symbol will also be removed
automatically.

• Implemented a new class called DomainViolation to organize where domain violations occur in
data.

• New method getDomainViolations to return a list of DomainViolation objects, should they exist.

• Methods ∗DomainViolations locate domain violations by referencing all appropriate domain sets.
findDomainViolations now returns a view of the records DataFrame that contains all domain
violations (previously returned only an Index where domain violations occurred).

• Methods ∗DuplicateRecords locate duplicate records on a case insensitive basis (consistent with
GAMS behavior).

• Removed tests for duplicate records and domain violations from the <Symbol>.isValid() method.
<Symbol>.isValid() validates the structural aspects of the data, not the quality of the data. This
improves performance by not looping over all records.

• Created a Symbol modified flag that tracks if any changes have been made to a symbol. These
flags can be set/reset by setting <Container>.modified=True/False.

• Enabled the use of the Python in operator to test if a symbol is in a container
with the syntax <symbol object> in <container object> or <symbol string name> in

<container object>, where <symbol string name> is case insensitive.

3.8 41 Distribution 89

• The Container is now subscriptable, i.e., m[<symbol name>] returns the symbol object. Symbol
objects are still accessible through the underlying dictionary, i.e., m.data[<symbol name>].

• setRecords now maintains user specified categoricals when passing a DataFrame.

• setRecords, getUELs, setUELs, renameUELs, and addUELs methods now strip any trailing whites-
pace from UELs.

• Improved Container behavior if reading from ConstContainer/Container: lists passed to the
symbols argument read(<source>, symbols) are no longer considered to be ordered – previously,
if an alias was listed before its parent set, an exception would occur.

• Fixed bug when attempting to read in a symbol named all, but the Container read in all symbols.

• Exposed (previously hidden) ConstContainer methods getCardinality() and getSparsity().

• An exception is now raised if attempting to read a symbol that does not exist in the data source.
Previously, such symbol names were silently ignored.

• Improved clarity of some exception messages and other error handling.

• Fixed bug that prevented dict keys and dict items (returns from dict methods .keys() and
.items(), respectively) objects from being passed directly into setRecords.

• Fixed bug that resulted in a NameError when calling .whereMin() or .whereMax() on variables or
equations.

• New tests within <Container>.isValid() method to detect broken container references in symbols
and inconsistent symbol naming between the <Container>.data dict and the symbol objects. These
issues can occur when creating new symbols in a container with a copy/deepcopy operation.

• Restructured ConstContainer symbol classes to improve read-only behavior.

GAMS Transfer R

• Breaking: Symbol name uniqueness is now checked case insensitively. For example, it is not possible
anymore to have three different symbols named symbol, Symbol, and SYMBOL.

• Breaking: Symbol records and symbol names are treated in a case insensitive manner. Symbols
domain is not checked automatically.

• Added a new class ConstContainer for efficient data transfer.

• Allow read from Container/ConstContainer into another Container.

• Added a method Container$getSymbolNames to return the original symbol names for a list of
symbol names of any case.

• Added a method Container$hasSymbols to check if symbol name (case insensitive) exists.

• Changed Container$getSymbols, Container$removeSymbols, Container$renameSymbol,
Container$describe∗, and others that use Container$getSymbols to accept symbol names
case insensitively.

• New Symbol methods hasDuplicateRecords, countDuplicateRecords, findDuplicateRecords,
and dropDuplicateRecords to help debug and resolve errors with duplicate records.

• New Container methods hasDuplicateRecords, countDuplicateRecords, and dropDuplicateRecords

to help find symbols that contain duplicate records that cause the Symbol to be invalid.

• New tests within Container$isValid() method to detect broken container references in symbols
and inconsistent symbol naming between the <Container>$data field and the symbol objects.

• Method isValid does not check for symbol record domain columns being factors, for duplicates,
and for domain violations.

90 Release Notes

• New Symbol methods hasDomainViolations, countDomainViolations, findDomainViolations,
dropDomainViolations, and getDomainViolations.

• New Container methods hasDomainViolations, countDomainViolations, and dropDomainViolations.

• Allowed symbol overwriting with addSet/addParameter/addVariable/addEquation/addAlias

methods when everything other than records and description is unchanged.

• Added methods SpecialValues$isNA, SpecialValues$isEps, SpecialValues$isUndef,
SpecialValues$isPosInf, SpcialValues$isNegInf to test for special values.

• The argument for where∗ methods changed from columns to column.

• Trailing whitespaces is now removed automatically from UELs in setRecords and ∗UEL methods.

GMO

• Added a concurrent mode for QP extraction. In this mode, independent extraction methods are run
in parallel threads. Extraction terminates when the first method completes. This is done row-wise:
the concurrent threads work on each row in turn, using the result of the first thread to finish for that
row and moving on together to the next row. Setting the gmoQExtractAlg property to 3 selects this
method.

• Added new function gmoGetQMakerStats to get statistics about QP extraction.

• Added new function gmoFillMatches to complete the row/column matching for MCP models.

• Added new function gmoLoadDataLegacyEx to API: this function differs from the existing
gmoLoadDataLegacy function in that the new function includes a flag fillMatches to toggle
the completion of matching information for MCP models during the load.

• Changed the behavior of gmoLoadDataLegacy vis-a-vis matching information for MCP. Previ-
ously, gmoLoadDataLegacy behaved like gmoLoadDataLegacyEx(fillMatches=true). With this
release, it behaves like gmoLoadDataLegacyEx(fillMatches=false). Users of this function that
require the old behavior must switch to calling gmoLoadDataLegacyEx(fillMatches=true) or call
gmoFillMatches explicitly.

Jupyter Notebooks

• The data synchronization between Python and GAMS relies now entirely on GAMS Transfer.

• Environments allow working with different GAMS instances.

• Instead of gams push and gams pull with various Python data formats, GAMS lines and cells
automatically synchronize symbols between GAMS and Python.

• GAMS Symbols can now be declared in the Transfer container in Python rather than in the GAMS
cells. Please inspect the Magic (Jupyter Notebooks) Magic ”GAMS Jupyter API description” for
details.

• The older version of GAMS magic commands is still available under apifiles/Python/gams/gams magic legacy.
This will be removed with one of the next major versions.

Python

• Added example transport gt.py that demonstrates how to combine the GAMS Python high level
API with a GAMS Transfer Container, essentially replacing the GAMSDatabase class.

• Added method run engine to GAMSJob class to run jobs on GAMS Engine, rather than locally.

3.8 41 Distribution 91

3.8.1.7 Model Libraries

GAMS Data Library

• Added connect05.gms : Simple Connect Example for Excel.

GAMS Model Library

• Dropped licememo.

GAMS Test Library

• Added fnlse.gms : Rough correctness test for LSE max/min intrinsics.

• Added fnlsemax.gms : Test correctness of LSEMax intrinsic.

• Added fnlsemaxsc.gms : Test correctness of LSEMaxSc intrinsic.

• Added fnlsemin.gms : Test correctness of LSEMin intrinsic.

• Added fnlseminsc.gms : Test correctness of LSEMinSc intrinsic.

• Added fnlseslv.gms : Rough solver correctness test for LSEMax intrinsics.

• Added caconcat.gms : Test Connect agent Concatenate.

• Added suffix02.gms : Test CLP suffixAlgebraVars.

FIN Library

• Fixed ThreeStageSPDA : A three stage stochastic programming model for SPDA.

PSOPT Library

• Fixed DED : Dynamic Economic Load Dispatch.

• Fixed DED-PB : Price based Dynamic Economic Load Dispatch.

• Fixed DED-wind : Dynamic Economic Load Dispatch considering Wind generation.

• Fixed DEDESS : Cost based Dynamic Economic Dispatch integrated with Energy
Storage.

• Fixed DEDESSwind : Cost based Dynamic Economic Dispatch integrated with Energy
Storage and Wind.

• Fixed ESSDCOPFwind : DC-OPF integrated with Energy Storage and Wind.

• Fixed MultiperiodDCOPF24bus : Multi-period DC-OPF for IEEE 24-bus network
considering wind and load shedding.

• Fixed PBUC : Price based Unit commitment.

3.8.1.8 Solver/Platform availability matrix

92 Release Notes

x86 64bit
MS Windows

x86 64bit
Linux

x86 64bit
macOS

ALPHAECP 2.11 X X X
ANTIGONE 1.1 X X X
BARON X X X
CBC 2.10 X X X
CONOPT 3 X X X
CONOPT 4 X X X
COPT 5.0 X X X
CPLEX 22.1 X X X
DECIS X X X
DICOPT 2 X X X
GUROBI 9.5 X X X
GUSS X X X
IPOPT 3.14 X X X
HiGHS 1.2 X X X
KESTREL X X X
KNITRO 13.1 X X X
LINDO 14.0 X X X
LINDOGLOBAL 14.0 X X X
MILES X X X
MINOS 5.6 X X X
MOSEK 10 X X X
NLPEC X X X
OCTERACT 4 X X
ODHCPLEX 6 X X
PATH X X X
QUADMINOS 5.6 X X X

SBB X X X
SCIP 8.0 X X X
SHOT 1.1 X X X
SNOPT 7.7 X X X
SOPLEX 6.0 X X X
XPRESS 40.01 X X X

3.8.2 41.2.0 Minor release (November 14, 2022)

3.8.2.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz.

3.8.2.2 GAMS System

GAMS

• Improved the dollar control options $abort[.noError], $error, and $log, so that the text given as an
optional argument is not limited to 255 characters anymore.

• Fixed the creation of a potentially wrong dump file with dumpOptGDX.

3.8 41 Distribution 93

3.8.2.3 APIs

GAMS Transfer Python

• Enabled writing of partial Containers to GDX with write symbols argument.

• Changed Container.write() argument write symbols to symbols to better harmonize with Mat-
lab and R versions of GAMS Transfer.

• Fixed bug with equals symbol method when comparing UniverseAliases.

Jupyter Notebooks

• Fixed a bug in %gams line magic that prevented code containing dashes preceded by a space from
being executed properly.

3.8.3 41.3.0 Minor release (November 28, 2022)

3.8.3.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Mart Saluri.

3.8.3.2 GAMS System

GAMS

• Improved performance when using the command line parameter GDX for programs with many
labels.

• Fixed a potential problem using a platform specific license with the pLicense parameter.

3.8.3.3 Solvers

COPT

• Fixed that option AbsGap was not available.

Lindo/LindoGlobal

• New libraries 14.0.191.

94 Release Notes

3.8.3.4 Tools

GAMS Studio

• New version 1.12.2 with some bug fixes and minor enhancements, for example:

– Added support for trailing :NUMBER when choosing files in Navigator.

– Fixed crash when moving line in text file.

– Fixed crash when reloading an invalid GDX file.

3.8.3.5 APIs

GMO

• Fixed function gmoNameInput: in case old control files are read, the result string was uninitialized.

3.8.4 41.4.0 Minor release (December 14, 2022)

3.8.4.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release.

3.8.4.2 Solvers

GUSS

• Fixed a bug that could have caused unwanted skipping of scenarios when the scenario data is sparse.

MOSEK

• New libraries 10.0.31.

SCIP Optimization Suite

• New libraries SCIP 8.0.3.

• New libraries SoPlex 6.0.3.

• New libraries PaPILO 2.1.2.

3.8 41 Distribution 95

3.8.4.3 Tools

GAMS Studio

• New version 1.12.3 with some bug fixes and minor enhancements, for example:

– Added x prefix to Navigator to access Quick Actions.

– Unified Navigator input field with other search fields, adding regex and exact match modifiers.

– Fixed behavior of Squeeze Trailing Zeroes check box in GDX Viewer when using g-format

or e-format with Full precision.

– Fixed help view being empty on some Linux distributions.

3.8.4.4 APIs

GAMS Transfer Python

• Fixed setRecords throwing an exception in case of labels that differ in trailing spaces only.

• Fixed a bug when reading data from multiple sources with a single Container instance.

• Fixed a bug when writing a GDX file with a symbol list.

• Fixed a bug that prevented writing when the first symbol in the Container is a UniverseAlias.

Jupyter Notebooks

• Utilize partial GDX writing of GAMS Transfer containers in GAMS magic. Only symbols that are
new or modified will be written to GDX. This improves the data exchange performance between
Python and GAMS.

3.8.5 41.5.0 Minor release (January 03, 2023)

3.8.5.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release.

3.8.5.2 Solvers

CONVERT

• Fixed error messages to be thrown incorrectly when using external functions (files were written
correctly).

GUSS

• Fixed a problem with MCP models and variable fixings as scenario data.

96 Release Notes

Mosek

• New libraries 10.0.33.

3.8.5.3 APIs

gams2numpy

• Fixed a memory leak in gdxWriteSymbol[Raw|Str] and gmdFillSymbol[Raw|Str].

• Fixed a problem with uel and string numbers that do not point to a label or element text.

• Improve performance converting GDX/GMD strings to Python strings.

• Allow to specify an optional encoding string for methods [gdx|gmd]GetUelList and
[gdx|gmd]ReadSymbol[Raw|Str].

3.9 40 Distribution

3.9.1 40.1.0 Major release (August 01, 2022)

3.9.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz, Daniel Dias, and Scott McDonald.

3.9.1.2 GAMS System

GAMS

• Added two new indexed operators sAnd and sOr.

• The file containing the collection of legacy default values has been renamed from gams31config.yaml

to gamsLegacyConfig.yaml, as legacy behavior is not entirely identical to GAMS 31.

• Changed default of command line parameter digit to off. As a result, extremely large or small
constants in the GAMS source will not result in compilation errors but rather in special values
(e.g. 1e300 becomes UNDF, 1e-300 becomes EPS). The old default digit=on has been added to
gamsLegacyConfig.yaml.

• Changed default of model attribute tolProj to 0. This means that GAMS no longer by default
modifies solution values returned by the solver that are close to variable bounds or equation sides.

• Throw a compilation error consistently, when one tries to load data into an Alias. In the past, this
was just ignored in some cases. It appears that when writing to an alias in embedded code an
exception is made and GAMS implicitly imports into a set, not an alias. Details about this subtlety
can be found in the embedded code chapter.

• Made command line parameter IDCProtect available as runtime option as well (the runtime option
gets initialized by the command line parameter).

3.9 40 Distribution 97

• Do not allow to load a symbol implicitly from $offEmbeddedCode under $onExternalInput, when
it was not declared as external input symbol (the same check was so far done for explicit loading
only).

• Changed the interaction of external input and $gdxIn to allow the continued use of a $gdxIn file
over multiple external input sections. So, the following code works now, but threw an error in the
past:

$onExternalInput

$gdxIn trnsport.gdx

Set i(*) canning plants ;

$load i

$offExternalInput

* Do something but not opening another GDX file

$onExternalInput

Set j(*) markets ;

$load j

$offExternalInput

• Changed the behavior when encountering a symbol with unknown dimension with an execution time
load or embedded code statement. In the past, this resulted in an error, now the dimension of that
symbol is set to 0 (or 1, if it is a set) implicitly. As a result, the following code runs without error
now:

$call gams trnsport gdx=default

Variable z;

execute_load ’trnsport.gdx’, z;

display z.l;

• Also changed the behavior when encountering a symbol with unknown dimension with a compile
time embedded code statement. In the past, this resulted in an error, now the dimension of that
symbol is set to the dimension defined in the embedded code block.

• Make sure that we do not change the loop control index by implicit loading from endEmbeddedCode
(the same check was so far done for explicit loading only).

• Added an explicit error check to ensure that the command line parameter restartNamed is used
together with the command line parameter restart only.

• Changed the put utility facility to ignore the extra double quotes added when the print control is
set to 4, 5, or 6. In the past that lead to an error since the commands were not recognized when
they are quoted.

• We plan to remove language elements to access some commercial and licensing information with the
next major release:

– System suffixes: components, clipCodes, clipComponentMap, componentSolverMap,
gamsLicenses, gamsLicenseTypes, lice1, lice2, licenseDateEvalN, licenseDateEvalS,
licenseDateMaintN, licenseDateMaintS, licenseDateN, licenseDateS, licenseDateSysN,
licenseDateSysS, licenseDaysEval, licenseDaysMaint, licenseDC, licenseEval,
licenseID, licenseInstitution, licenseLevel, licenseLevelText, licenseLicensee,
licenseMudText, licensePlatform, licensePlatformText, licenseStatus, licenseStatusText,
licenseType, licenseVendor, and vendors.

– Predefined sets componentEDate, componentMDate, and componentLicenseOptions.

– Many of these are used in the GAMS Model Library model licememo, which we also plan to
remove.

• Fixed that exceeding the internal limit of 2.1 billion instructions did not raise an error.

98 Release Notes

• Fixed a rare problem which stopped GAMS from terminating if a solver invoked in an
asynchronous thread did not return.

• Fixed an error causing missing domain information, when implicit sets are used while creating a
dump file.

GMSPython

• Added the packages sqlalchemy and greenlet to GMSPython. On Windows, also added the
packages sqlalchemy-access, pyodbc, and pywintypes.

Connect

• Domain information is copied into the Connect database when using agents GAMSReader and
GDXReader. Agent GDXWriter exports the domain information to the GDX file.

• Added attribute duplicateRecords to GAMSWriter and GDXWriter to control the way to deal
with duplicate records in a Connect container symbol when writing to GAMS or GDX. Note that
both agents currently deal with duplicate records in a case sensitive way.

• Added new DomainWriter agent to modify domain information of Connect symbols.

• Added new PandasSQLReader and PandasSQLWriter agents to read from and write to SQL
databases.

• Updated Projection agent:

– Changed boolean attribute dropText to a string attribute text.

– Added boolean attribute asParameter to turn variables into parameters with an extra index to
store the suffixes.

– Allow a list of symbol names for attribute name to combine multiple scalar symbols into a
single one-dimensional symbol.

• Symbol names in Connect are now case sensitive by default. So casing in the YAML file is important
and needs to match e.g. when reading from GDX or GAMS (which use case in-sensitive symbol name
lookup) or across agents. There is now a global attribute caseSensitiveLookup in agent Options to
control the case-(in)sensitive symbol lookup.

• Added new attribute debug in agent Options to provide traceback information in case of an exception.

• Dropped support for writing variables and equations with CSVWriter and PandasExcelWriter.
Variables and equations can be turned into parameters using the Projection agent.

• Added attribute trace to GAMSReader, GAMSWriter, GDXReader, and GDXWriter.

• Fixed bug where PandasExcelWriter failed when writing no data.

Embedded Python Code Facility

• Allow to specify source code encoding by providing a comment of format # coding=<encoding
name> as first line in an embedded Python code section.

• If gams. debug is set to an integer greater than 0 a traceback is printed to stdout in case of an
exception.

3.9 40 Distribution 99

Installer

• For Windows, updated the text in the file association dialog to make clear that the GAMS IDE is
deprecated.

3.9.1.3 Solvers

BARON

• New libraries 22.7.23.

– Improved presolve.

Bonmin and BonminH

• As announced, the solvers Bonmin and BonminH have been removed. For the time being, libraries
of GAMS/Bonmin are available at the COIN-OR GAMSlinks project. Note, that GAMS does not
test or offer support for these libraries.

CBC, SCIP, SHOT

• New libraries Cbc 2.10.8, Cgl 0.60.0, Clp 1.17.7, Osi 0.108.7, CoinUtils 2.11.6, nauty 2.7r3.

CONVERT

• Export prettier formulas (x for x∗∗1, power(x,1), vcpower(x,1) or rpower(x,1)).

COPT

• New libraries 5.0.2.

– Added possibility to compute feasible relaxation for infeasible problem. New options FeasRelax
and FeasRelaxMode to enable this feature and set relaxation mode, respectively. New dot
option .feaspref to specify preferences on relaxation of variable bounds and linear constraint
sides.

– Added options MipStartMode and MipStartNodeLimit to adjust handling of complete and
partial MIP starts.

– Added option ReqFarkasRay.

– Option crossover has been made available.

• Changed handling of MIP starting point:

– GAMS/COPT will pass on a partial instead of a full MIP start also if MipStartMode = 2 is
selected.

– When setting the value for a discrete variable in a partial MIP start (tryint > 0), it will be
rounded to an integer value.

• For an unbounded LP, a primal ray is now returned in the variables level values and UNBND markers
are set in the solution listing.

• For an infeasible LP, a Farkas proof is now returned in the equations marginal values and INFES

markers are set in the solution listing.

https://github.com/coin-or/GAMSlinks/releases

100 Release Notes

GLOMIQO

• As announced, dropped GLOMIQO. The use of ANTIGONE is equivalent.

GUROBI

• New libraries 9.5.2.

– Changed aggregate option type from bool to int. Allowed values are 0 (off), 1 (moderate)
and 2 (aggressive).

• Added support of certain nonlinear constraints: max, min, smax, smin, and, or, sand, sor, abs, exp,
∗∗, log, log2, log10, sin, cos, tan, edist, poly.
To make these accessible, Gurobi can now be used for model types (D)NLP and (R)MINLP as well,
but equations need to follow a special form.

• Added option multimipstart: Use multiple (partial) mipstarts provided via GDX files.

HiGHS

• New LP/MIP solver HiGHS 1.2.2 developed by the Edinburgh Research Group in Optimization.
HiGHS is included in the GAMS base system for users with an academic GAMS license. Users with
a commercial GAMS license need to contact sales@gams.com to enable the use of HiGHS.

Ipopt

• New libraries Ipopt 3.14.9.

– Added options ma27 print level, ma57 print level, and mumps print level.

– Fixed that variable names for variable bounds in detailed log output were wrong for problems
with fixed variables.

• New libraries Mumps 5.5.0.

KNITRO

• New libraries 13.1.0.

– Significant performance improvements when using the BFGS/LBFGS Hessian approximation.

– New options:

∗ findiff estnoise: Estimate of the noise in the model when using finite-difference.

∗ bar mpec heuristic: Enable heuristic approach when solving MPEC models with the barrier
algorithm.

∗ mip heuristic misqp: Enable the MIP MISQP heuristic.

∗ mip restart: Enable the MIP restart procedure.

∗ conic numthreads: Number of threads to use for operations in the conic algorithm.

LGO

• As announced, dropped LGO.

mailto:sales@gams.com

3.9 40 Distribution 101

MPSGE

• Increased the internal MAXFUN limit (from 10000 to 50000) on the number of components (inputs,
outputs, taxes, etc.) in any MPSGE row.

• Print info about the size of the largest MPSGE function (i.e. the one with the most in-
put/output/tax/etc coefficients) to the sysout file.

MSNLP

• As announced, dropped MSNLP.

Octeract

• The GAMS/Octeract link has been rewritten.

– Temporary files are now removed, unless GAMS option keep is enabled.

– Octeract is now also available for solvelink=5 and solvelink=6.

– Octeract options are now documented and Octeract option files can be created via the GAMS
Studio options editor.

– The default for MAX SOLVER ITERATIONS is now set to GAMS iterlim.

– The default for MAX SOLVER MEMORY is now set to GAMS workspace.

– New option nlbinary.

• New libraries 4.4.1.

SCIP

• Added support for logical functions bool and, bool eqv, bool imp, bool not, bool or, bool xor.
Only constants, binary variable, and logical functions are allowed as arguments for these operators.
The GAMS/SCIP link introduces additional variables and constraints of types and, or, and xor to
handle these functions.

• New libraries SCIP 8.0 (504f5f2749).

– Improved and extended cut selection statistics.

– Added options presolving/milp/maxbadgesizepar and presolving/milp/maxbadgesizeseq.

• New libraries PaPILO 2.1 (79da073).

XPRESS

• New libraries 40.01.01.

– MIP performance improvements:

∗ Improved separation of Mixed Integer Rounding (MIR) cuts in the tree.

∗ Improved selection of cutting planes based on orthogonality measures.

∗ Some subMIP heuristics at the root node now solve the subMIPs using multiple threads.

∗ More advanced MIP presolve operations.

– Improved crash heuristic for dual simplex.

– Improved parallel performance of the crossover algorithm.

– Improved sparse matrix-vector multiplication selection method in dual crossover.

– New option numericalEmphasis: specify emphasis to place on numerical stability over solving
time.

– Changed default of treeCutSelect to -1.

– Changed default of treeCutSelect mirRowAggregation to 1.

• Support mipCleanup also for nonlinear models.

102 Release Notes

3.9.1.4 Tools

GAMS IDE

• Added a startup message to announce the drop of the classic GAMS IDE.

GAMS Studio

• New version 1.11.1.

– New feature: Allow to open a directory to add all files in that directory to a project.

– New feature: Added HTML format when copying text to clipboard.

– GDX Viewer improvements:

∗ Saves/restore state (e.g. filters, sorting, ...) when data has to be reloaded from file.

∗ Added invert selection for column filter and for the attribute selection.

∗ Fixed that auto resize of columns was not triggered for 1-dimensional symbols when the
table view has been selected as default view.

– Added zoom for editors/viewers with proportional fonts (GDX Viewer and Option Editor).

– Added editor to edit efi files for GAMS Engine.

– Improved and unified filter line edits for tables and trees to support regular expressions and
exact matches.

– Stability improvements, bug fixes, and minor enhancements, e.g.:

∗ Moved result files from an GAMS Engine run to the working directory.

∗ Added link to MIRO output that opens the directory in the file explorer.

∗ Improved trimming behavior of search results.

∗ Adjusted wording in search results table header.

∗ Fixed focus and auto-fill when re-triggering search dialog while it is already open.

∗ Fixed ”All Files” filter not showing files without extension on Linux and macOS.

∗ Fixed error in restoring selection of MIRO deployment dialog.

GDX2ACCESS

• We will remove the tool gdx2access in a future GAMS release. GAMS Connect agent
PandasSQLWriter should be used instead.

GDX2SQLITE

• We will remove the tool gdx2sqlite together with the tool sqlite3 in a future GAMS release. GAMS
Connect agent PandasSQLWriter should be used instead.

GDXVIEWER

• For the interactive mode added a startup message to announce the drop of the GDXVIEWER.

MDB2GMS

• We will remove the tool mdb2gms in a future GAMS release. GAMS Connect agent
PandasSQLReader should be used instead.

3.9 40 Distribution 103

MPS2GMS

• Fixed that non-continuous variables in cones (CSECTION) were missing in =c= equations in written
GAMS file.

• Polished written GAMS file, in particular eliminate use of $batinclude.

• Quadratic cones (CSECTION) are now reformulated into quadratic equations. New option CEQUATIONS

can be used to enable previous behavior of writing =c= equations.

• Input files that were compressed with gzip (.gz) can now be handled.

• Added support for input in LP format.

• Updated MPS reader to HiGHS 892691737.

SQL2GMS

• We will remove the tool sql2gms in a future GAMS release. GAMS Connect agent PandasSQLReader
should be used instead.

3.9.1.5 APIs

GAMS Transfer Python

• Modified behavior of registering UELs: Previously, GAMS Transfer generated UELs from data in
record order (i.e., all UELs from the first data row are registered, then all UELs from the next row
are registered, etc.). GAMS Transfer now registers UELs columnwise (i.e., all UELs from the first
domain column are registered, then all UELs from the next domain column are registered, etc.).
This behavior change will impact symbols written over "∗" or with relaxed domains.

• New Symbol methods hasDuplicateRecords, countDuplicateRecords, findDuplicateRecords,
and dropDuplicateRecords to help debug and resolve errors with duplicate records.

• New Container methods hasDuplicateRecords, countDuplicateRecords, and dropDuplicateRecords

to help find symbols that contain duplicate records that cause the Symbol to be invalid.

• New Symbol methods hasDomainViolations, countDomainViolations, and dropDomainViolations

to help debug and resolve errors with domain violations.

• New Container methods hasDomainViolations, countDomainViolations, and dropDomainViolations

to help debug and resolve errors with domain violations.

• Fixed that the column headings of the records DataFrame were not updated when a domain set/alias
was renamed or the .domain attribute of a symbol was updated directly.

• Fixed read of equation with unknown subtype (recast as =E=/eq).

GAMS Transfer R

• New API GAMS Transfer R to exchange data between GAMS and R.

Python

• As announced, dropped support for Python 3.6.

104 Release Notes

3.9.1.6 Model Libraries

GAMS Data Library

• Added connect04.gms : Simple Connect Example for SQL.

GAMS Test Library

• Added load15.gms : Test consistent compile time error checking when loading symbols.

• Added gurobi07.gms : GUROBI test suite - nonlinear constraints to general constraints.

• Added load16.gms : Test implicit dimension setting when loading a symbol.

• Added gamsxcppmex.gms : Test calling and validating new C++ compiler against
legacy Delphi compiler.

• Added gdxdiff2.gms : Test GDXDIFFs fldonly option.

• Added capdsqlr.gms : Test Connect agent PandasSqlReader.

• Added capdsqlw.gms : Test Connect agents PandasSqlWriter.

• Added cadomainw.gms : Test Connect agent DomainWriter.

3.9.1.7 Solver/Platform availability matrix

x86 64bit
MS Windows

x86 64bit
Linux

x86 64bit
macOS

ALPHAECP 2.11 X X X
ANTIGONE 1.1 X X X
BARON X X X
CBC 2.10 X X X
CONOPT 3 X X X
CONOPT 4 X X X
COPT 5.0 X X X
CPLEX 22.1 X X X
DECIS X X X
DICOPT 2 X X X
GUROBI 9.5 X X X
GUSS X X X
IPOPT 3.14 X X X
HiGHS 1.2 X X X
KESTREL X X X
KNITRO 13.1 X X X
LINDO 13.0 X X X
LINDOGLOBAL 13.0 X X X
MILES X X X
MINOS 5.6 X X X
MOSEK 9 X X X
NLPEC X X X
OCTERACT 4 X X
ODHCPLEX 6 X X
PATH X X X

3.9 40 Distribution 105

x86 64bit
MS Windows

x86 64bit
Linux

x86 64bit
macOS

QUADMINOS 5.6 X X X

SBB X X X
SCIP 8.0 X X X
SHOT 1.1 X X X
SNOPT 7.7 X X X
SOPLEX 6.0 X X X
XA X X
XPRESS 40.01 X X X

3.9.2 40.1.1 Maintenance release (August 16, 2022)

3.9.2.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release.

3.9.2.2 GAMS System

GAMS

• Fixed a bug that cause restart files containing sums that add set elements to execute incorrectly.
Restart files created with GAMS 40.1.0 carry this bug and should not be used but recreated.

3.9.2.3 Solvers

COPT

• New libraries 5.0.3.

MOSEK

• New libraries 9.3.21.

OCTERACT

• The options documentation provided on the Octeract webpage was apparently not uptodate when
their last releases were made. Therefore, for the GAMS/Octeract link, the available options and
their documentation also did not match the solvers libraries. We have updated these now and
provide the list of changes to available options here:

– Changed default for BOUND VIOLATION TOLERANCE from 1e-8 to 1e-6.

– Added values MOST FRACTIONAL VARIABLE and MODIFIED MOST NONCONVEX VARIABLE for op-
tion BRANCHING STRATEGY.

– New option STRONG BRANCHING DEPTH.

– Removed CBC LB MAX NODES. Added option MILP LB MAX NODES.

106 Release Notes

– Removed CBC PRESOLVE.

– Added values GUROBI and XPRESS for MIP SOLVER (see also docu).

– New options HEUR INEQUALITY and HEUR SUPREME.

– Changed default for HEUR NL FEASIBILITY PUMP from 0 to 1.

– Replaced IS PURGE CUTS ENABLED by new option PURGE CUTS.

– Added option LOCAL SEARCH.

– New option PRESOLVE.

– New options REDUCE LINEAR CONSTRAINTS and STRENGTHEN LINEAR CONSTRAINTS.

– Changed type of option REFORMULATE INTEGERS IN MIQCQP to boolean.

– New option USE NONLINEAR RELAXATION.

– Changed default for OUTPUT FREQUENCY from ∞ to 1.

• Fixed default for CONVERGENCE TOLERANCE: Since Octeract uses this value as both absolute and
relative gap tolerance, the default is now min(GAMS optcr, GAMS optca) to avoid too early
termination on instances with objective value in (-1,1).

• Added workaround for wrong dual bound reported by Octeract if problem is reformulated into MILP
and the MILP solver does not solve to optimality (e.g., stops due to a timelimit). This resulted in
wrongly declaring solutions as global optimal.

SCIP

• New libraries 8.0 (0e5ff0a6b5).

– Added options estimation/showstats, heuristics/alns/shownbstats, misc/showdivingstats to
reenable some statistics that are now disabled.

3.9.3 40.2.0 Minor release (September 01, 2022)

3.9.3.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release.

3.9.3.2 GAMS System

GAMS

• Fixed the creation of a potentially wrong dump file with dumpOptGDX.

3.9.3.3 Solvers

COPT

• New libraries 5.0.4.

3.9 40 Distribution 107

IPOPT

• New libraries MUMPS 5.5.1.

SCIP

• New libraries 8.0 (f0a1490e3b).

• Added parameter gams/infbound to instruct the GAMS/SCIP link to replace all missing variable
bounds by a given value (off by default).

SHOT

• Fixed use of Gurobi for solving relaxations.

3.9.3.4 APIs

Python

• Fixed setup.py not copying schema files for Connect agents.

GAMS Transfer Matlab

• New version 0.2.2:

– Fixed read of equation with unknown subtype (recast as =e=).

– Fixed partial read of symbols in indexed container.

– Fixed equals method in indexed container.

– Fixed possible segfault when reading a subset of symbols as dense matrix with at least one
scalar symbol.

3.9.4 40.3.0 Minor release (September 16, 2022)

3.9.4.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz.

3.9.4.2 GAMS System

• Fixed an error with command line parameter dumpOpt, that ignored the SemiInt modifier for a
variable.

108 Release Notes

3.9.4.3 Solvers

CPLEX

• Fixed reporting of final (fixed) solve objective value instead of MIP solve objective value if final
solve is enabled.

3.9.4.4 Tools

MODEL2TEX

• Added support for more (singleton) set attributes.

GAMS Studio

• New version 1.11.2 with some bug fixes, for example:

– Updated tooltip of a tab after filename changed with ”save as...”.

– Removed link to outdated introduction video.

– Fixed occasional crash when opening search dialog after closing all files.

– Fixed drag'n'drop creating group with invalid working directory.

– Fixed GDX Viewer showing wrong data in table view because of a falsely restored symbol
which dimension or type has changed.

– Fixed GDX Viewer crash occurring when a file is reloaded during a drag'n'drop operation in
table view mode.

– Fixed disabled ”Create” button in MIRO dialog on missing assembly file.

3.9.5 40.4.0 Minor release (October 03, 2022)

3.9.5.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release.

3.9.5.2 GAMS System

GAMS

• Fixed wrong result for set attributes .tlen and .tval when used with Singleton Sets.

• Fixed an unexpected compilation error, when an embedded code section starts right after an else

statement.

3.9.5.3 Solvers

CONVERT

• Fix model statement in GAMS format for MCP models with incomplete matching information.

3.10 39 Distribution 109

3.9.5.4 Tools

GAMS Studio

• New version 1.11.3 with some bug fixes and minor enhancements, for example:

– Added shortcut Ctrl + G to also close the GoTo dialog.

– Added Ctrl + C shortcut to system log.

– Added Clear Log action to the system log context menu.

– Added shortcut descriptions for various actions in context menu of editor.

– Fixed drag'n'drop not working in project explorer on macOS.

– Fixed wrong dialog title for ”New Project”.

3.10 39 Distribution

3.10.1 39.1.0 Major release (May 03, 2022)

3.10.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Marcel Adenauer, Wolfgang Britz, Rob Davies, Torbjoern Jansson,
Bruce McCarl, and Yihe Zhuo.

3.10.1.2 GAMS System

GAMS

• Added basic model statistics (range of absolute non-zero values for the bounds, right hand sides and
matrix coefficients) to the output file, and log.

• Added model attributes to access the values of the basic model statistics also programmatically:
rngBndMax, rngBndMin, rngMatMax, rngMatMin, rngRhsMax, rngRhsMin.

• Added new command line parameter multi to initialize the state of $on/offMuli and $on/offMultiR.

• Extended the syntax of $(on|off)Echo[S|V], $(on|off)Put[S|V], $(on|off)EmbeddedCode[S|V], and
(end|pause)EmbeddedCode[S|V] with an optional suffix to allow nested use. Note that this might
trigger an error for code that was OK before. In the following example, the suffix at $onEcho was
ignored in the past. Now, this will result in an error, since there is no $offEcho with matching
suffix:

$onEcho.abc > x.txt

abc

$offEcho

• In embedded code Python, the Python interpreter stays alive even when the embedded code section
ends with $offEmbeddedCode and endEmbeddedCode. So one has access to Python objects across
embedded Python code sections. Nevertheless, the gams object gets newly initialized (with the
exception of continueEmbeddedCode). Hence old references to gams or derived objects, e.g. sym =

gams.get("sym") still exist in Python but the connected external resources are no longer available.
Accessing these objects results in a crash as demonstrated in the following example:

110 Release Notes

Set s1 / i1*i3 /, s2 / j1*j3 /;

parameter p1(s1, s2);

$onEmbeddedCode Python:

s1 = gams.get(’s1’)

s2 = gams.get(’s2’)

$offEmbeddedCode

$onEmbeddedCode Python:

p1 = [(i, j, 3.14) for i,j in zip(s1, s2)]

gams.set(’p1’, p1)

$offEmbeddedCode p1

In the second embedded Python code section the object references s1 and s2 use unavailable external
resources, and the code in the section will crash GAMS. There is no need to use gams or derived
objects from previous embedded code sections, since one can always use the current gams object.
For legacy code that makes use of this unintended feature, we allow the use of the deprecated
(and hidden) command line option freeEmbeddedPython=0 for some time to get the old behavior.
If you find yourself in need to set this option, you need to rework your embedded Python code
section to prevent use of previous gams and derived objects. The option freeEmbeddedPython will
(as announced) eventually be removed.

• Added new command line parameter and option ECImplicitLoad, as well as related dollar control
options $on/offECImplicitLoad.

• Added new command line parameters ConnectIn and ConnectOut to instruct GAMS to pass the
Connect YAML files provided by these option to the Connect framework at the beginning of a
GAMS job (ConnectIn) and at the end (ConnectOut) of the GAMS job.

• Added new put utility command ECArguments to extend the embedded code arguments with a
dynamic text.

• Added explicit range checking for some Put File Attributes. In the past, unexpected values for some
attributes (e.g. file.nr = 8;) could have led to unwanted output. Now, unacceptable values get
projected to the nearest acceptable value.

• Updated use of decimals (file.nd) value in floating-point put output. Previously, the decimals value
was treated as a specification, with putfile error messages resulting if the output contained fewer
decimals. We treat the decimals value as a limit now: it's not an error if fewer digits are shown
because of the width limit or for other reasons.

• Removed the GDX file gmspfmap.gdx that contained some partial mapping of files to components
from the system directory.

• There was a hidden option work. This cannot be used anymore. The command line parameter or
model attribute workSpace should be used instead.

• Allow holdFixed=1 for EMP, but not EMPSP models. The partly reverts the change of holdFixed
for EMP models from GAMS 38.

• Fixed a bug where the command line parameters holdFixed, nodLim, workFactor and workSpace
took precedence over the related model attributes.

• Fixed an error with constant evaluation in data statements for scalar symbols in a
parameter statement.

• Fixed output of very large negative numbers (e.g. -DBL MAX) to trace files.

• Fixed minor rounding and display issues with double-precision numbers. This is relevant to values
displayed in the listing file, in put files, and less commonly in the GAMS log. Ties are now resolved
using the round-to-even rule instead of round-towards-zero. This new tie-breaking rule is
consistent with the display routines in C++, Python, Julia, and R. For example:

– with option decimals=5, scalar p / 9999998.4 / was displayed as 1.000000E+7 – now as
9.999998E+6

3.10 39 Distribution 111

– with option dispwidth=9, decimals=5, scalar p / -8.123441235 / was displayed as
-0.8123E+1 – now as -8.1234412

– very small values (1e-250 or less) were displayed as 0 but are now displayed using E-format in
the usual way

– displaying 1.5 or 2.5 with zero decimals both now show 2, while previously 1.5 would display
as 1

– similarly, 1.75 with decimals=1 now displays as 1.8 instead of 1.7 as it did previously

Connect

• We have added the Connect framework to the distribution. Connect gives unified and platform
independent access to data exchange with different formats (e.g., CSV and Excel). The instructions
how to access the various data sources are given in YAML syntax. Connect is available as a standalone
command line utility (gamsconnect), via the GAMS command line parameters ConnectIn and
ConnectOut, and via embedded Connect code. The Connect framework is currently in beta status.

Embedded Code

• Allow implicit loading of symbols in embedded code. In the past the embedded code had to ”set” a
symbol and the symbol has to be explicitly imported on the $off/end/pauseEmbeddedCode line.
This is no longer necessary. By default, a symbol that has been ”set” by the embedded code will
be imported into GAMS. The behavior with respect to this implicit loading is controlled by the
command line parameter ECImplicitLoad and the dollar control options $on/offECImplicitLoad.

Embedded Connect Code Facility

• We added the new embedded code engine Connect. The embedded Connect code gives access to the
Connect framework. The YAML formatted ”code” can be utilized to import and export data with
GAMS during compile and execution time.

Embedded Python Code Facility

• The Python version of GMSPython has been updated to 3.8.13.

• Added the packages cerberus and pyyaml-include to GMSPython.

• Removed decoration (---) from log messages printed using gams.printLog() and fixed a bug that
prevented long messages from being displayed correctly.

Extrinsic Function libraries

• As announced the extrinsic function library parcclib has been dropped.

• The mutex library mtxcclib, hidden in the system since 24.6, has now been documented and
modified. With this version a mutex first has to be created via the function Create before it can be
used (e.g. locked).

112 Release Notes

Windows Installer

• The installer no longer creates a Desktop icon for the GAMS IDE by default.

• Fixed bug that prevented command line parameter /desktopIcons=no from having an effect.

3.10.1.3 Solvers

CONOPT

• New libraries 3.17M.

– Fixed issue with incorrect infeasibility reporting for infeasible CNS models or models with
infinite post-triangular variables.

• New libraries 4.27.

– Improved preprocessor on models with very small coefficients and models with constant nonlinear
Jacobian elements.

– Improved detection of post-triangular parts in CNS models.

– Improved speed of analyzing the numerical stability and density of definitional constraints.

– Improved numerical stability of creating and testing the initial basis.

– Added options:

∗ Flg TraceCNS: Flag for tracing a CNS solution.

∗ Trace MinStep: Minimum step between reinversions when using TraceCNS.

COPT

• New libraries 4.0.5.

– Improved performance for LP and MIP solving.

– Added support for convex quadratic equations in continuous problems (model types QCP and
RMIQCP). Currently, marginals are not provided if quadratic constraints are present.

– Added option to find an Irreducible Inconsistent Subsystem (IIS) for an infeasible LP or MIP.
New options iis to enable the IIS finder and IISMethod to specify IIS finder method.

– New parameter BarOrder to specify ordering algorithm in Barrier solver.

– For GAMS/COPT-Link users: If no COPT license is available, COPT can still be used for
non-commercial use and LPs with at most 10000 variables and 10000 constraints and for
MIPs/QCPs with at most 2000 variables and 2000 constraints.

CPLEX

• New libraries 22.1.0.

– New options:

∗ lowerobjstop: in a minimization MILP or MIQP, the solver will abort the optimization
process as soon as it finds a solution of value lower than or equal to the specified value.

∗ upperobjstop: in a maximization MILP or MIQP, the solver will abort the optimization
process as soon as it finds a solution of value greater than or equal to the specified value.

– Removed CPLEX Remote Object Server and Distributed MIP.

3.10 39 Distribution 113

– Removed options computeserver, polishtime, rampupdettimelimit, rampupduration and
rampuptimelimit.

• New option exactkappa: Report exact condition number in quality report. Note: Previously, the
exact condition number has always been reported. Now, default is to not do it due to possibly high
computation times.

• Add previously hidden options:

– iafile: secondary option file to be read in interactive mode triggered by iatriggerfile.

– iatriggerfile: file that triggers the reading of a secondary option file in interactive mode.

– iatriggertime: time interval in seconds the link looks for the trigger file in interactive mode.

– ltol: basis identification primal tolerance.

– mtol: basis identification dual tolerance.

– readparams: read CPLEX parameter file.

DE

• Introduced an experimental and hidden option pipsStages to annotate the resulting deterministic
equivalent with PIPS-IPM++ conforming block information.

EMPSP

• For EMPSP models feasible empty rows will no longer be sent to the solver.

GLOMIQO

• We plan to drop GLOMIQO with the next major release. The ANTIGONE solver (a superset of
GLOMIQO) remains in the system.

GUSS/ScenarioSolver

• GUSS/ScenarioSolver allows now to manually scale model instances via the .scale variable and
equation suffix together with model attribute scaleOpt=1.

Ipopt

• New libraries 3.14.6.

KNITRO

• Added support for models with more than 231 entries in the coefficients matrix.

• Changed handling of initial levels and marginals, see initvalues0 and initvalues.

• Only scale the model instance if scaleOpt is set to 1.

• Added options:

– initvalues0: enable use of initial guess for levels and marginals (first solve).

– initvalues: enable use of initial guess for levels and marginals (subsequent solve).

114 Release Notes

LGO

• We plan to drop LGO with the next major release.

Lindo/LindoGlobal

• New libraries 13.0.340.

MOSEK

• New libraries 9.3.20.

• For GAMS/MOSEK and GAMS/OsiMosek, a separate MOSEK license is now required also for
academic GAMS licenses that include a GAMS/MOSEK link license but no full GAMS/MOSEK
license.

MSNLP

• We plan to drop MSNLP with the next major release.

Octeract

• New libraries 4.3.1.

– Fixed that GAMS options were ignored when a solver options file was specified.

ODHCPLEX

• New libraries 6.11.

SCIP Optimization Suite

• New libraries PaPILO 2.0 (60ab076).

• New libraries SoPlex 6.0 (f084e555).

• New libraries SCIP 8.0 (899dc92dda).

XA

• We plan to drop XA with the next major release.

XPRESS

• New libraries 39.01.06.

3.10 39 Distribution 115

3.10.1.4 Tools

GAMS Studio

• New version 1.10.1.

– New feature: Added pin view: The main edit area can be split vertically or horizontally to
show a second editor.

∗ Ctrl + Left Click on a tab creates a vertical split.

∗ Ctrl + Shift + Left Click on a tab creates a horizontal split.

– Added new search scope: Folder (aka Find in Files).

∗ This allows users to search a directory on disk without having to load the whole directory
in Studio first.

– Some rework of the ”Search and Replace” dialog:

∗ Added file exclusion pattern input field and functionality.

∗ Added info about number of files searched to search dialog.

∗ Changed default position of search dialog to top right.

∗ Search now respects open file behavior settings when jumping to results in unopened files.

∗ Fixed crash in search when current editor has no file associated.

∗ Fixed search not being interruptible when searching many small files.

– Added GDX Viewer tab to the settings dialog.

– Added new setting to specify the default symbol view of the GDX Viewer.

– User model libraries have been moved to the first tab of the Model Library Explorer.

– Stability improvements, bug fixes, and minor enhancements, e.g.:

∗ Configuration editor now displays gamsconfig.yaml file only.

∗ Added search related group to project explorer when files where found that were unknown
to Studio.

∗ Added automatic deactivation of search selection when leaving ”Selection” search scope.

∗ Added feedback for empty search term, invalid regex, and invalid path in search dialog.

∗ Added completer handling for $offEcho.

∗ Changed behavior of completer: Allow all keywords after opening a paired dollar control
option (DCO) and showing closing DCOs first.

∗ Ensure unique project name and keep log name in sync with project name.

∗ Fixed crash in ModelLibrary dialog on Ctrl-rightClick on entry.

∗ Fixed white table headers in dark mode.

∗ Fixed code completer activation issues.

∗ Fixed broken syntax in data statements with division.

MPS2GMS

• The tool has been reimplemented and now uses the readers of the HiGHS solver.

• If the MPS file appears to be in fixed form (row or character names with spaces and at most 8
characters), then parsing in fixed form is attempted.

• GDX and GMS files are now also written if no GDX and GMS filenames are provided explicitly.

• Dropped support for writing an MPS file.

• Dropped support for OBJNAME section.

https://github.com/ERGO-Code/HiGHS

116 Release Notes

• Sections SOS and SETS are now assumed to follow the format used by CPLEX, GUROBI, and FICO
XPRESS.

• Dropped parameters NAME, N, RHS, RANGES, BOUNDS, MPSOut, Trace.

• Added parameter COLUMNINTVARSAREBINARY to specify how to handle integer variables that appear
first in COLUMNS section.

• Quadratic coefficient matrices are no longer written in symmetric form. Zero coefficients (eps) that
were written to GDX in certain situations are now omitted.

• See also the MPS2GMS documentation.

3.10.1.5 APIs

GAMS Transfer Matlab

• New version 0.2.0:

– Improved documentation.

– Added ”equals” method to Container and Symbol classes to compare containers or symbols,
respectively.

– Added ”copy” method to Symbol classes to copy symbols to another container.

– Added support to read symbols directly from Container (not just ConstContainer).

GAMS Transfer Python

• GAMS Transfer will now accept any mixed-case string representations of special values for undef,
na, and eps (i.e., Undef or UnDeF are now valid).

• Performance enhancements associated with reading/writing GAMS special values.

• Performance enhancement in .removeSymbols(): isValid check flag is no longer reset for all
symbols in the Container if removing a Parameter, Variable or Equation.

• Fixed bug when replacing string special values in a dataframe whose index was not uniformly spaced.

• Fixed bug when testing scalar values with .isUndef.

GMD

• Special value -0.0 for EPS is now properly recognized.

• gmdCopySymbol allows to copy parameter, variable, and equation symbols into a set symbol.

• Added gmdGetUserSpecialValues to access special values GMD currently accepts.

GMO

• Added properties gmoHessNZ64, gmoHessMaxNZ64, and gmoHessLagNZ64 and functions
gmoHessStruct64 and gmoHessValue64 to get Hessian element counts as 64-bit integer.

• Added properties gmoQNZ64 and gmoGNLNZ64: all properties returning 32-bit Jacobian nonzero
counts now have 64-bit counterparts.

• Fixed a memory leak in the Hessian evaluation: the leak occurred during speculative Hessian
evaluations, i.e., evaluations with a tight memory limit intended to see how memory-intensive
Hessian evaluation is and if Hessians should be used by the solver.

3.10 39 Distribution 117

High-level APIs

• GamsModelInstance.solve() falls back to a warm start in case a hot start fails.

• Added read property for GAMSSet.SetType (.NET, Python) and GAMSSet.getSetType (Java) to
distinguish multi and singleton sets.

• New optional argument setType=SetType.multi in GAMSDatabase.AddSet() (.NET), GamsDatabase.add set()

and GamsDatabase.add set dc() (Python), and GAMSDatabase.addSet (Java) to set type of set.

• Fixed defined enumerated value for options FDOpt and DumpOpt in Java interface.

3.10.1.6 Model Libraries

GAMS Model Library

• Dropped deploy.

• Dropped dplytst.

• Updated cta.gms : Controlled Tabular Adjustments.

• Updated dicegrid.gms : MIP Decomposition and Parallel Grid Submission - DICE
Example.

• Updated herves.gms : Herves (Transposable Element) Activity Calculations.

• Updated qmeanvar.gms : Financial Optimization: Risk Management using MIQCP.

• Updated sddp.gms : Multi-stage Stochastic Water Reservoir Model solved with SDDP.

• Updated seders.gms : ERS Data Manipulations with SED.

• Updated tsp5.gms : TSP solution with Miller et al subtour elimination.

• Added asyncincbi.gms : Asynchronous processing of incumbents reported by
GAMS/CPLEX.

• Added springchain.gms : Equilibrium of System with Piecewise Linear Springs.

• Added trussm.gms : Truss Toplogy Design with Multiple Loads.

GAMS Data Library

• Added gtmvn.gms : Demonstrate the use of numpy.multivariate normal on stock return
data using Transfer.

• Added connect01.gms : Complex Connect Example with Spreadsheets.

• Added connect02.gms : Complex Connect Example with CSV Files.

• Added connect03.gms : Simple Connect Example with CSV Files.

118 Release Notes

GAMS Test Library

• Updated embpy04.gms : Test continuation of embedded code blocks to remove tests related
to freeEmbeddedPython.

• Updated mtxlib.gms : Test basics of the mutex library to reflect changes in extrinsic function
mutex library.

• Dropped parlib01 and corresponding library [lib]parcclib64 and source parsource.zip.

• Dropped pfmaptst.

• Added embmihws.gms : ModelInstance hot/warmstart switch.

• Added convert17.gms : CONVERT test suite - check stage and scale export in dumpgdx.

• Added caproject.gms : Test Connect agent Projection.

• Added cagamsrw.gms : Test Connect agent GAMSReader/Writer.

• Added cagdxrw.gms : Test Connect agent GDXReader/Writer.

• Added capdxlsrw.gms : Test Connect agents PandasExcelReader and PandasExcel-
Writer.

• Added carxr.gms : Test Connect agent RawExcelReader.

• Added capcode.gms : Test Connect agent PythonCode.

• Added cacsvw.gms : Test Connect agent CSVWriter.

• Added embpy12.gms : Test implicit/explicit loading in Embedded Code.

• Added cacsvr.gms : Test Connect agent CSVReader.

• Added capdxlsr.gms : Test Connect agent PandasExcelReader.

• Added embpy13.gms : Test implicit/explicit loading in Embedded Code (execution
time).

• Added connectsub.gms : Test substitution for Connect.

• Added nestblock01.gms : Test the use of nested blocks.

FIN Library

• Use Connect instead of Windows-only gdxxrw to allow running the models on all platforms.

• Updated CreditImmunization : Factor Immunization model for corporate bonds..

• Updated MeanVar : Mean-variance efficient portfolios.

• Updated MeanVarShort : Mean-variance model allowing short sales.

• Updated PutCall : Put/Call efficient frontier model..

• Updated ReadData : Reads excel files and converts them to gdx format.

• Updated SelectiveHedging : Scenario Optimization for selective hedging.

• Updated ThreeStageSPDA : A three stage stochastic programming model for SPDA.

3.10 39 Distribution 119

PSOPT Library

• Use Connect instead of Windows-only gdxxrw to allow running the models on all platforms.

• Updated DED : Dynamic Economic Load Dispatch.

• Updated DED-PB : Price based Dynamic Economic Load Dispatch.

• Updated DED-wind : Dynamic Economic Load Dispatch considering Wind generation.

• Updated DEDESS : Cost based Dynamic Economic Dispatch integrated with Energy
Storage.

• Updated DEDESSwind : Cost based Dynamic Economic Dispatch integrated with
Energy Storage and Wind.

• Updated ESSDCOPFwind : DC-OPF integrated with Energy Storage and Wind.

• Updated MultiperiodACOPF24bus : Multi-period AC-OPF for IEEE 24-bus network
considering wind and load shedding.

• Updated MultiperiodDCOPF24bus : Multi-period DC-OPF for IEEE 24-bus network
considering wind and load shedding.

• Updated PBUC : Price based Unit commitment.

• Updated RampSenDED : Ramp rate sensitivity analysis for Dynamic Economic Load
Dispatch.

3.10.1.7 Solver/Platform availability matrix

x86 64bit
MS Windows

x86 64bit
Linux

x86 64bit
macOS

ALPHAECP 2.11 X X X
ANTIGONE 1.1 X X X
BARON X X X
BONMIN 1.8 X X X
CBC 2.10 X X X
CONOPT 3 X X X
CONOPT 4 X X X
COPT 4.0 X X X
CPLEX 22.1 X X X
DECIS X X X
DICOPT 2 X X X
GLOMIQO 2.3 X X X

GUROBI 9.5 X X X
GUSS X X X
IPOPT 3.14 X X X
KESTREL X X X
KNITRO 13.0 X X X
LGO X X X
LINDO 13.0 X X X
LINDOGLOBAL 13.0 X X X
MILES X X X
MINOS 5.6 X X X
MOSEK 9 X X X
MSNLP X X X

120 Release Notes

x86 64bit
MS Windows

x86 64bit
Linux

x86 64bit
macOS

NLPEC X X X
OCTERACT 4 X X
ODHCPLEX 6 X X
PATH X X X
QUADMINOS 5.6 X X X

SBB X X X
SCIP 8.0 X X X
SHOT 1.1 X X X
SNOPT 7.7 X X X
SOPLEX 6.0 X X X
XA X X
XPRESS 39.01 X X X

3.10.2 39.1.1 Maintenance release (May 18, 2022)

3.10.2.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz and Arne Schulz.

3.10.2.2 Solvers

CPLEX

• Fixed mipkappastats report in case of relaxed or fixed solve after MIP solve (enabled by rerun = no
and solvefinal = yes, respectively).

KNITRO

• Fixed incorrect detection as an infeasible model when it actually was feasible (happened if KNITRO
terminated due to small relative change in objective).

3.10.2.3 Tools

GAMSCONNECT

• Fixed problem with gamsconnect command line tool not working properly when environment
variables PYTHONPATH or PYTHONHOME were set.

GAMS Studio

• New version 1.10.2 with some bug fixes, stability improvements, and minor enhancements, e.g.:

– Made sure the correct file gets the focus on Studio start-up.

– Fixed crash on closing a tab when project settings are active.

– Fixed closing behavior of search dialog on Windows when using X button.

3.10 39 Distribution 121

GDXDIFF

• Fixed wrong differences of parameters with option fldOnly.

MODEL2TEX

• Fixed problem with model2tex not working properly when environment variables PYTHONPATH or
PYTHONHOME were set.

3.10.3 39.2.0 Minor release (June 02, 2022)

3.10.3.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Dominic Lencz.

3.10.3.2 GAMS System

GAMS

• Fixed potential wrong dump file with implicit sets.

Connect

• Fixed a problem in GAMSWriter agent that registered unused labels with GAMS.

Embedded Python Code Facility

• Fixed a problem with ignoring gams.ws.my eps.

3.10.3.3 Solvers

CONOPT

• New libraries 4.28.

3.10.3.4 Tools

GAMS Studio

• New version 1.10.4 with some bug fixes, and minor enhancements, namely:

– Added support for optional suffixes for $(on|off)Echo[S|V], $(on|off)Put[S|V], $(on|off)EmbeddedCode[S|V],
and (end|pause)EmbeddedCode[S|V].

– Fixed GAMS Engine not adding files in subdirectories from ∗.efi file.

– Fixed problem receiving results from Engine when there is an execution error.

122 Release Notes

3.10.3.5 APIs

GAMS Transfer Matlab

• New version 0.2.1:

– Fixed read of variable with unknown subtype (recast as free).

– Fixed check of variable type on variable creation.

– Fixed isEps, isNA, and isUndef of SpecialValues for sparse matrix input.

– Fixed default values of external, conic, and boolean equations.

GAMS Transfer Python

• Fixed read of variable with unknown subtype (recast as free).

• Fixed default values of equation subtypes (eq, geq, leq, cone, external, and boolean).

GMD

• Fixed a problem with aliases to the universe.

3.10.4 39.2.1 Maintenance release (June 21, 2022)

3.10.4.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz and Erwin Kalvelagen.

3.10.4.2 GAMS System

GAMS

• Report correct number in Solve Summary if iteration count exceeds maxInt.

• Added missing entry for empty scalar equations to the tree view of the output file.

Connect

• Fixed a problem with indexSubstitutions in CSVReader agent where labels in the last index
column where not substituted when reading a set without text columns.

3.10.4.3 Solvers

CPLEX

• Fixed crash after singular basis error.

• Fixed overflow in node and iteration counts.

3.10 39 Distribution 123

SHOT

• New libraries 1.1 (c9bc78df).

3.10.5 39.3.0 Minor release (July 07, 2022)

3.10.5.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Bruce McCarl and Tom Rutherford.

3.10.5.2 GAMS System

GAMS

• Fixed a problem that limited the number of characters written to a single line in the log using
put files to 255.

3.10.5.3 Solvers

SCIP Optimization Suite

• New libraries SCIP 8.0 (95d63636d5).

• New libraries PaPILO 2.1.0.

SHOT

• New libraries 1.1 (033622c6).

3.10.5.4 Tools

GAMS Studio

• New version 1.10.5 with some bug fixes, and minor enhancements, for example:

– Fixed Studio ignoring setting to open in current project when opening a file from Explorer.

– Fixed search not reacting to changes in project file list.

– Fixed search not always adding new files to correct search group.

– Fixed potential crash when closing Studio while search dialog is open.

– Fixed opening of empty editor when using search results to open a deleted file.

– Added automatic update of results list when still open from last search.

124 Release Notes

3.10.5.5 APIs

GMO

• Fixed a crash caused by memory corruption in the Hessian evaluation: the crash occurred while
cleaning up after speculative Hessian evaluations that exceed a user-specified memory limit.

3.11 38 Distribution

3.11.1 38.1.0 Major release (January 31, 2022)

3.11.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Marcel Adenauer, Albert Brouwer, Arne Drud, Daniel Jungen, Scott
McDonald, Tom Rutherford, Seyed Amin Sedgh, and Wenjin Zhou.

3.11.1.2 Platforms

• As announced, dropped support for macOS 10.14 (Mojave).

• Added support for macOS 12 (Monterey).

3.11.1.3 GAMS System

GAMS

• Added new command line parameter dumpOptGDX to load the data needed in dumpOpt files from
GDX instead of data statements.

• Added new command line parameter ReferenceLineNo to control the line numbers written to a
reference file.

• We plan to drop the command line parameter freeEmbeddedPython with the next major release.

• Extended the Solve Summary written with asyncSolLst=1 to include information about controlling
loop indices during job submission, name of the solver called, source line number of the solve
statement, resource and iteration limit.

• Make handling of execution errors during model generation (e.g. division by zero in an equation)
more consistent across different settings for the solveLink option. In the past, the error count was
set to 0 automatically when returning from a solve with solveLink=0 only (which is equivalent to
setting execError=0 after the solve statement). This is not done anymore.

• Write additional information about execution errors during model generation (e.g. division by zero
error) to the lst file, e.g., the equation name and index causing the problem.

• Improve recognition of '/' as path delimiter on Windows.

• Pause automated time dependent log update while executing embedded code sections.

• Check for certain byte order marks (BOMs) in GAMS input files. Files with UTF8 BOM can be
processed now, other BOMs generate a compilation error.

3.11 38 Distribution 125

• Added support for (mixed-integer) quadratic models whose Q matrices contain more than 231 =
2,147,483,648 nonzeros in their upper triangle. At this time, only the solver links for CPLEX and
ODHCPLEX are capable of handling such large model instances.

• Changed system suffix isAlfaBeta to isAlphaBeta.

• Fixed a problem for EMP models with holdFixed model attribute.

• Fixed a problem where IDCGenerateGDXInput, IDCGenerateGDXOutput, IDCGDXOutput , and
IDCGenerateGDX did not write a GDX file if the execution was stopped with abort[.noError].

Extended Mathematical Programming (EMP)

• Stochastic EMP: Changed the stage behavior so that it creates an explicit error when a stage gets
assigned twice for the symbol. In the past, this caused erratic behavior.

Embedded Python Code Facility

• The Python version of GMSPython has been updated to 3.8.12.

Extrinsic Function libraries

• With the next distribution we will drop the extrinsic function library parcclib.

3.11.1.4 Solvers

BARON

• New libraries 22.1.16.

– new presolve implementation with novel presolve techniques for linear and nonlinear optimization
problems improves performance for many problem classes

– more classes of SOCPs are now recognized

– new lift-and-project implementation that extends the previous RLT implementations to generic
NLPs and MINLPs and leads to substantial reduction of duality gaps for difficult problems

– improved tree management, including restarts of branch-and-bound search

– improved branching routines for the identification of most important branching variables

– dynamic LP algorithm selection strategy improves robustness for numerically difficult problems
by automatically choosing between CPLEX (if licensed) and CLP/CBC and possibly switching
during the search, see also option LPSol

– improved control on the effect of floating point round-off errors

– faster hashing routines

– the embedded FilterSD algorithm is now off by default

– better integration with GAMS NLP subsolvers

– improvements to CBC and IPOPT interfaces

– update the Xpress interface to work with FICO XPRESS 39

• Fixed reporting of proven irreducible infeasible sets (”IIS” instead of ”(I)IS”).

126 Release Notes

CONOPT

• New libraries 4.25.

– General improvements in the construction of the initial basis and in the startup of the
optimization process, especially for very large models.

– Many small improvements and corrections of errors found by users.

CONVERT

• The symbol We in DumpGDX is now stored sparse.

• Changed option default of GDXHessian and GDXQuadratic to 0.

COPT

• Added new parallel LP and MIP solver COPT 3.0.5 by Cardinal Operations (https://www.shanshu.ai/copt).

• For GAMS demo and community licenses, model size limitations as for other solvers apply. For an
unlimited GAMS/COPT or GAMS/COPT-Link license, contact sales@gams.com.

CPLEX

• Fix appending userjobid to userincbicall, usergdxin, and usergdxnameinc in BCH calls.

• Fixed computing dual multipler at cone top (QCP models).

DICOPT

• Fixed that non-default stage information was setup in sub-MIPs when prioropt=0.

KNITRO

• New libraries 13.0.

– Introduces an updated, parallel, branch-and-bound solver for mixed-integer optimization. This
updated solver is able to exploit parallelism and uses improved heuristics to solve mixed-integer
problems much faster than before.

– Offers new initial point strategies for non-convex quadratic programs (QPs) and quadratically
constrained quadratic programs (QCQPs). These new initial point strategies improve the
likelihood of finding the global solution, and can be used in conjunction with the Knitro
multi-start procedure to search for global or better local solutions for non-convex QP and
QCQP models.

– Offers significant robustness and speed improvements on difficult nonlinear optimization
problems.

– Offers improved performance when using the SQP and MISQP algorithms on larger models.

– Added options:

∗ ncvx qcqp init: Specifies the initialization strategy used for non-convex QPs and QCQPs.

∗ mip cutoff: This value specifies the objective cutoff value for MIP.

https://www.shanshu.ai/copt
mailto:sales@gams.com

3.11 38 Distribution 127

∗ mip heuristic lns: Specifies whether or not to enable the MIP large neighborhood search
(LNS) heuristics.

∗ mip liftproject: Specifies rules for adding lift and project cuts.

∗ mip multistart: Use to enable MIP multi-start at the branch-and-bound level.

∗ mip numthreads: Specify the number of threads to use for MIP branch and bound.

– Renamed options (old option names still available as synonyms but deprecated):

∗ bar pencons to bar penaltycons.

∗ bar penrule to bar penaltyrule.

∗ mip integral gap abs to mip opt gap abs.

∗ mip integral gap rel to mip opt gap rel.

∗ par msnumthreads to ms numthreads.

∗ par blasnumthreads to blas numthreads.

∗ par lsnumthreads to linsolver numthreads.

∗ tuner maxtimecpu to tuner maxtime cpu.

∗ tuner maxtimereal to tuner maxtime real.

– Added option values:

∗ blasoption: 3.

∗ mip heuristic diving: bits 1 - 4.

– Changed option defaults:

∗ restarts: -1 (auto).

∗ mip strong candlim: 128.

• Fixed possible error of incorrect Jacobian for QCP models.

Lindo/LindoGlobal

• New libraries 13.0.319.

LocalSolver

• As announced, dropped LocalSolver and LocalSolver70.

MOSEK

• New libraries 9.3.11.

• Added support for LPs and MIPs with more than 231 entries in the coefficients matrix.

Octeract

• New libraries 4.1.0.

– Reduced memory requirement and improved performance.

ODHCPLEX

• New libraries 6.0.8.

• Added support of solution pool export via solnpool and solnpoolmerge.

128 Release Notes

SCIP Optimization Suite

• New libraries PaPILO 2.0.0.

– Added dual postsolve functionality for LPs.

– Immediate application of a presolvers reductions if run sequentially.

– Improvements in performance and functionality of many presolvers.

– For more details, see [22] and the PaPILO CHANGELOG.

– Updated TBB to version 2021.5.0.

• New libraries SoPlex 6.0.0.

– PaPILO can now be enabled as presolver by setting int:simplifier to the new value 2.

– SoPlex can now be interrupted by Ctrl+C/SIGINT.

– Changed default for option int:simplifier from 1 to new value 3. The value 1 now means ”auto”.

– New option real:simplifier modifyrowfac.

– For more details, see [22] and the SoPlex CHANGELOG.

• New libraries SCIP 8.0.0.

– Symmetry handling:

∗ New symmetry handling inequalities based on the Schreier Sims table, which are able to
handle symmetries of arbitrary kinds of variables.

∗ The symmetry code can now heuristically search for orbitopes that do not completely
handle a symmetry component and add certain Schreier Sims cuts to such components.

∗ In-tree restarts due to tree size estimation have been made compatible with orbital fixing.

∗ Improved performance of upgrades to packing/partitioning orbitopes, symresack cover
separation, and propagation for orbisack and symresack.

∗ Symmetry handling has been extended to detect also symmetries between variables that
also appear in nonlinear constraints.

– Cutting planes:

∗ New separator mixing to generate mixing cuts.

∗ New separator rlt to compute cuts via the reformulation-linearization technique (RLT).

∗ New separator minor to compute cuts from 2x2 minors of a violated semidefiniteness
constraint that is implied by the extended formulation for bilinear products.

∗ New separator interminor to compute intersection cuts from 2x2 (not only principle) minors
of a violated rank-one constraint that is implied by the extended formulation for bilinear
products (currently disabled by default).

∗ Separator ”aggregation” now uses the objective cutoff row as base row and separates lifted
cover cuts based on newer lifting function of Letchford and Souli (2019).

∗ Separators ”strongcg” and ”gomory” now share the same computed basis.

– Primal Heuristics:

∗ New construction heuristic DPS which additionally needs a user-provided decomposition
and splits the problem into several sub-SCIPs according to this decomposition. The sub-
SCIPs are solved and updated repeatedly until a feasible solution of the original problem
is found.

∗ PADM can now reoptimize found solution with original objective function.

∗ The RENS neighborhood in the heuristic ALNS now fixes fractional variables if necessary
for reaching its target fixing rate.

∗ Revised and improved heuristic subNLP, in particular choice of NLP iteration limit and
starting condition and reuse of subSCIP.

– The handling of algebraic expressions and nonlinear constraints has been rewritten:

∗ Support for trigonometric functions sine and cosine and for the entropy function has been
added.

https://raw.githubusercontent.com/scipopt/papilo/182ffcca5de6e957be134adc2c5d7d973cdb52f6/CHANGELOG
https://soplex.zib.de/doc-6.0.0/html/CHANGELOG.php

3.11 38 Distribution 129

∗ Improved recognition of common subexpressions, in particular square and bilinear terms.

∗ All type of nonlinear constraints, including quadratic and second-order-cones, are now
handled by the constraint handler for nonlinear constraints. The specialized constraint
handlers have been removed. However, methods that work on a particular nonlinear
structure are now implemented via nonlinear handlers (nlhdlr).

∗ Added nonlinear handler for quadratic, bilinear, convex, concave, and quotient expressions,
second-order cone constraints, and perspective tightening for expressions in semi-continuous
variables.

∗ As before, an extended formulation for nonlinear constraints is constructed. However,
this formulation is now handled implicitly and used to construct the LP relaxation only,
while the original formulation is used to check feasibility, propagate variable domains, etc.
This difference should drastically improved the likelihood that a solution that satisfies the
nonlinear constraints in the presolved problem is also feasible for the original problem.

∗ Products in nonlinear constraints are no longer disaggregated for the extended formulation.

∗ Improved analysis on which nonlinear variables in nonlinear constraints can be increased
or decreased without harming feasibility by taking monotonicity into account.

∗ Improved linearization of (sums of) products of binary variables, e.g., clique information is
now taken into account.

∗ When a variable appears in only one concave less-or-equal constraint, it will be fixed to
one of its bounds in more cases now.

∗ New branching rule for variables in nonlinear constraints that scores candidates based on
constraint violation, variable type, and pseudo-costs simultaneously. Variables that are
added for the extended formulation of a nonlinear constraint are no longer branched on by
default.

∗ New strategies to deal with weak estimators for nonlinear functions and small violations of
nonlinear constraints.

∗ Improved under/overestimation of multidimensional vertex-polyhedral (e.g., multilinear or
concave) functions by use of scaling and keeping the cut-generating LP around.

∗ Added tables to print statistics of nonlinear constraint handler, nonlinear handlers, and
handlers for all supported functions.

– Revised and improved interfaces to Ipopt and CppAD, e.g.:

∗ Optimization of taped expressions and sparse Hessian evaluation of CppAD are used now.

∗ Added table to print statistics on NLP solvers.

– The interfaces to Gurobi and Mosek are thread-safe now.

– Parameters removed:

∗ gams/resolvenlp

∗ constraints/abspower/∗, constraints/bivariate/∗, constraints/quadratic/∗,
constraints/soc/∗

∗ constraints/nonlinear/cutmaxrange, constraints/nonlinear/linfeasshift,
constraints/nonlinear/reformulate, constraints/nonlinear/sepanlpmincont,
constraints/nonlinear/enfocutsremovable, constraints/nonlinear/maxexpansionexponent,
constraints/nonlinear/upgrade/abspower, constraints/nonlinear/upgrade/and,
constraints/nonlinear/upgrade/bivariate, constraints/nonlinear/upgrade/quadratic

∗ constraints/orbitope/usedynamicprop

∗ heuristics/multistart/nlpminimpr

∗ heuristics/subnlp/iteroffset, heuristics/subnlp/iterquotient, heuristics/subnlp/nlpiterlimit,
heuristics/subnlp/nlptimelimit, heuristics/subnlp/runalways, heuristics/subnlp/minimprove,
heuristics/subnlp/nlpoptfile, heuristics/subnlp/resolvefromscratch, heuristics/subnlp/resolvetolfactor

∗ propagating/symmetry/disableofrestart

∗ separating/convexproj/nlptimelimit, separating/gauge/nlptimelimit

∗ separating/strongcg/dynamiccuts, separating/strongcg/maxrounds, separating/strongcg/maxroundsroot,
separating/strongcg/maxsepacuts, separating/strongcg/maxsepacutsroot

– Parameters added:

130 Release Notes

∗ branching/inference/conflictprio, branching/inference/cutoffprio

∗ constraints/nonlinear/bilinmaxnauxexprs, constraints/nonlinear/linearizeheursol, constraints/nonlinear/reformbinprods,
constraints/nonlinear/reformbinprodsand, constraints/nonlinear/reformbinprodsfac,
constraints/nonlinear/checkvarlocks, constraints/nonlinear/conssiderelaxamount, constraints/nonlinear/enfoauxviolfactor,
constraints/nonlinear/forbidmultaggrnlvar, constraints/nonlinear/forcestrongcut, constraints/nonlinear/propauxvars,
constraints/nonlinear/propinenforce, constraints/nonlinear/rownotremovable, constraints/nonlinear/strongcutefficacy,
constraints/nonlinear/strongcutmaxcoef, constraints/nonlinear/tightenlpfeastol, constraints/nonlinear/varboundrelax,
constraints/nonlinear/varboundrelaxamount, constraints/nonlinear/violscale, constraints/nonlinear/vpadjfacetthresh,
constraints/nonlinear/vpdualsimplex, constraints/nonlinear/vpmaxperturb, constraints/nonlinear/weakcutminviolfactor,
constraints/nonlinear/weakcutthreshold, constraints/nonlinear/upgrade/setppc, constraints/nonlinear/branching/∗

∗ cutselection/hybrid/∗
∗ decomposition/disablemeasures

∗ expr/log/minzerodistance, expr/pow/minzerodistance

∗ heuristics/alns/nodesquotmin, heuristics/alns/initduringroot, heuristics/alns/maxcallssamesol

∗ heuristics/dps/∗
∗ heuristics/padm/reoptimize

∗ heuristics/subnlp/expectinfeas, heuristics/subnlp/feastolfactor, heuristics/subnlp/iterinit,
heuristics/subnlp/ninitsolves, heuristics/subnlp/nodesfactor, heuristics/subnlp/nodesoffset,
heuristics/subnlp/presolveemphasis, heuristics/subnlp/setcutoff, heuristics/subnlp/successrateexp,
heuristics/subnlp/opttol,

∗ misc/avoidmemout

∗ nlhdlr/bilinear/∗, nlhdlr/concave/∗, nlhdlr/convex/∗, nlhdlr/default/∗, nlhdlr/perspective/∗,
nlhdlr/quadratic/∗, nlhdlr/quotient/∗, nlhdlr/soc/∗

∗ nlpi/ipopt/∗
∗ presolving/milp/probfilename

∗ propagating/obbt/createlincons,

∗ propagating/symmetry/addconflictcuts, propagating/symmetry/addstrongsbcs, propagating/symmetry/addweaksbcs,
propagating/symmetry/detectsubgroups, propagating/symmetry/maxnconsssubgroup,
propagating/symmetry/onlybinarysymmetry, propagating/symmetry/preferlessrows,
propagating/symmetry/sstaddcuts propagating/symmetry/sstleaderrule, propagating/symmetry/sstleadervartype,
propagating/symmetry/sstmixedcomponents, propagating/symmetry/ssttiebreakrule,
propagating/symmetry/usedynamicprop

∗ separating/maxcoefratiofacrowprep, separating/filtercutpoolrel

∗ separating/gomory/genbothgomscg, separating/gomory/trystrongcg separating/gomorymi

∗ separating/interminor/∗
∗ separating/knapsackcover

∗ separating/minor/∗
∗ separating/mixing/∗
∗ separating/rlt/∗
∗ table/cons nonlinear/active, table/cutsel/active, table/exprhdlr/active, table/nlhdlr/active,

table/nlhdlr bilinear/active, table/nlhdlr quadratic/active, table/nlpi/active

∗ timing/nlpieval

– Parameters changed:

∗ default of constraints/nonlinear/maxproprounds changed from 1 to 10

∗ default of display/nexternbranchcands/active changed from 2 to 1 also for nonlinear in-
stances

∗ default of display/nfrac/active changed from 2 to 1 also if discrete variables are present

∗ default of heuristics/dualval/priority changed from 0 to -10

∗ default of heuristics/lpface/priority changed from -1104000 to -1104010

∗ default of heuristics/mutation/priority changed from -1103000 to -1103010

∗ default of heuristics/nlpdiving/priority changed from -1003000 to -1003010

∗ default of heuristics/repair/priority changed from 0 to -20

∗ default of heuristics/simplerounding/priority from 0 to -30

3.11 38 Distribution 131

∗ default of heuristics/subnlp/forbidfixings from 1 to 0

∗ default of heuristics/subnlp/itermin changed from 300 to 20

∗ default of SCIPheuristics subnlp priority heuristics/subnlp/priority changed from -2000000
to -2000010

∗ default of heuristics/trivialnegation/priority changed from 40000 to 39990

∗ default of heuristics/trustregion/priority changed from -1102000 to -1102010

∗ default of heuristics/trysol/priority changed from -3000000 to -3000010

∗ default of misc/usesymmetry changed from 3 to 7 and range changed from {0,...,3} to
{0,...,7}

∗ default of presolving/qpkktref/maxrounds changed from -1 to 0

∗ default of propagating/obbt/onlynonconvexvars changed from 0 to 1

∗ default of propagating/symmetry/addsymresacks changed from 1 to 0

∗ type of propagating/symmetry/recomputerestart changed from boolean to int with range
{0,...,2}

∗ default of separating/strongcg/maxbounddist changed from 1 to 0

∗ default of separating/strongcg/priority changed from -2000 to -100000

∗ replaced separating/minortho by cutselection/hybrid/minortho, replaced separating/minorthoroot

by cutselection/hybrid/minorthoroot, replaced separating/dircutoffdistfac

by cutselection/hybrid/dircutoffdistweight, replaced separating/efficacyfac by
cutselection/hybrid/efficacyweight, replaced separating/intsupportfac by cutselection/hybrid/intsupportweight,
replaced separating/objparalfac by cutselection/hybrid/objparalweight

– For more details, see [22] and the SCIP release notes.

• Added support for GAMS functions sin, cos, and entropy for GAMS/SCIP.

• Since SCIP has dropped support for min and max, the GAMS/SCIP link reformulates GAMS
functions min and max by use of abs now.

• Removed the feature that ran Ipopt from a returned solution that is recognized by SCIP to be not
feasible in the original (non-presolved) nonlinear problem in order to obtain a feasible solution.

SHOT

• New libraries 1.1 (e225a002).

– Added parameter Model.Reformulation.Quadratics.EigenValueDecomposition.Tolerance.

XPRESS

• New libraries 39.01.03.

– Improved MIP performance:

∗ The Optimizer now uses an ML module to decide whether to use in-tree cutting. See
autoCutting.

∗ Improved separation of Mixed Integer Rounding (MIR) cuts.

∗ Improved cut activation and deactivation strategies.

∗ Improved application of strong branching during the tree search.

∗ More information carried through a MIP restart.

∗ The 'R' local search heuristic will now be called more frequently in the early phase of a
MIP solve.

– Improved crossover performance after a Barrier solve through automatic objective perturbation.
See barObjPerturb.

https://www.scipopt.org/doc-8.0.0/html/RN80.php

132 Release Notes

– Improved Barrier performance for large problems on CPUs that support AVX2 (requires setting
cpuPlatform to -2).

– New options:

∗ autoCutting: Automatically decide whether to generate cutting planes at local nodes in
the tree.

∗ barObjPerturb: Defines how the barrier perturbs the objective.

∗ ioTimeout: Maximum number of seconds to wait for an I/O operation before it is cancelled.

∗ maxStallTime: Maximum time in seconds that the Optimizer will continue to search for
improving solution after finding a new incumbent.

∗ preCliqueStrategy: Determines how much effort to spend on clique covers in presolve.

∗ siftPresolveOps: Determines the presolve operations for solving the subproblems during
the sifting algorithm.

– Changed option default of xslp mipDefaultAlgorithm: 1.

• Added option fixoptfile: name of option file which is read just before solving the fixed problem.

• Changed default value of option mipAddCutoff and mipRelCutoff to 0.

• Fixed unnecessary solve of fixed MIP (see mipCleanup) when solving a linear program as MIP.

3.11.1.5 Tools

BIB2GMS

• As announced, dropped the tool bib2gms.

CSV2GDX

• Check for certain byte order marks (BOMs) in input files. Files with UTF8 BOM can be processed
now, other BOMs generate an explicit error.

GAMS Studio

• New version 1.9.4.

– Added Project Options editor.

– Added possibility to create an empty project.

– Adjusted loading from a model library to add files to active project working directory if ”Open
in existing project” is checked.

– Added selection of user instances on GAMS Engine SaaS.

– Added selection of namespaces on GAMS Engine Server.

– Stability improvements, bug fixes, and minor enhancements, e.g.:

∗ Expanded MIRO installation location on macOS if AppBundle has been selected.

∗ Adjusted check if the MIRO data contract is available before the MIRO app is deployed.

∗ Changed mouse wheel behavior in tab bars:

· Mouse Wheel Up/Down: moves active tab

· Ctrl + Mouse Wheel Up/Down: changes active tab

∗ Added touch pad support for tab bars.

∗ Added highlight in LST file for current section header of LXI viewer.

https://www.gams.com/blog/2022/01/introducing-engine-saas/

3.11 38 Distribution 133

∗ Changed behavior of search in selection: the search selection is now only set once until the
user resets it.

∗ Changed ”Clear” button to remove search selection on first click when present.

∗ Fixed non-overridden recurrence of immediate options on command line parameters.

∗ Fixed jump behavior of search when using ”This File” and navigating different files.

∗ Fixed Find Next broken for results across multiple files.

∗ Fixed crash on showing ”Project Options” for a project without a runnable gms file.

∗ Fixed search not updating cache when document has changed.

∗ Fixed Clear Selection button not working as intended, when search scope was set to
anything but ”Selection”.

∗ Fixed random crash in Search and Replace dialog.

∗ Fixed that checks for file type did not ignore casing (gms, Gms, GMS are all valid).

∗ Fixed that the default file filter in search dialog expected files to include a '.' character on
non-windows platforms.

∗ Fixed file filter in search dialog not being ignored for scopes ”This File” and ”Selection”.

∗ Fixed search jump behavior when current file is excluded by file filter.

∗ Fixed completer and syntax help activation for user defined GAMS source files.

GDXDIFF

• Reduce size of output GDX file in case of input files without differences.

• Added new option ignoreOrder.

GDXMRW

• We mark GDXMRW as deprecated and may remove it in a future release. Please use GAMS
Transfer Matlab instead. If you encounter issues with the transition to GAMS Transfer Matlab or
if you have any feature requests for GAMS Transfer Matlab, do not hesitate to contact us through
support.

HEXDUMP

• As announced, dropped the tool hexdump.

3.11.1.6 APIs

C++ high-level API

• Removed conversion of mapped network drives to UNC paths.

• Fixed addition of GAMS system directory to PATH on Windows.

134 Release Notes

GAMS Transfer Matlab

• New read-only ConstContainer (high reading performance).

• Container now supports to read from a ConstContainer in addition to a GDX file.

• New argument types in Container::listVariables and Container::listEquations to filter by
variable or equation type, respectively.

• Container::listSets does not include aliases in the returned list anymore. However, it is still
possible to include aliases in Container::describeSets.

• New argument records in Container::read to toggle reading records in addition to symbol meta
data.

GAMS Transfer Python

• GAMS Transfer now works with Embedded Python Code.

• New read-only Container type called ConstContainer (high reading performance).

• New argument types for methods listVariables() and listEquations() to filter by variable or
equation type, respectively.

• The method listSets() does not include aliases in the returned list anymore.

• The Container.read() argument values has been renamed to records.

• Fixed bug in SpecialValues.isNegInf() that did not properly detect scalar -inf.

• Fixed error handling when invalid records are set directly with .records.

GDX

• Internal adjustment to detection of special values when writing to GDX. The updated GDX behavior
will allow better differentiation between distinct double-precision values that the user wants mapped
to distinct special values. For example, -0.0 is no longer confused with +0.0, and different IEEE
NaN values can map to different GAMS special values.

GMO

• Added routines gmoGetRowQNZOne64, gmoMaxQNZ64, and gmoObjQMatNZ64 to get element counts as
64-bit integer.

• Adjust routines gmoGetRowQNZOne, gmoMaxQNZ, and gmoObjQMatNZ to return -1 if the element count
is too large for a 32-bit integer.

• Added routines gmoLNZEx and gmoLNZEx64 to get the exact count of linear nonzeros in the Jacobian
matrix, and adjusted the description of gmoLNZ and gmoLNZ64 to make clear that these are legacy
routines returning an overestimate of this count, especially when gmoUseQ is true.

• Fix gradient intervals for functions involving power(x,i) for i >= 4 and even.

High-level APIs

• The GAMSDatabase GDX export method now writes regular instead of just relaxed domain information
if available.

3.11 38 Distribution 135

PAL

• Added function palIsAlpha. palIsAlfa has been deprecated.

Python

• Added support for Python 3.10.

• We plan to drop support for Python 3.6 in a future GAMS release.

3.11.1.7 Model Libraries

GAMS Data Library

New model:

• GMSPythonLib.gms : GMSPYTHONLIB compatibility check (142)

GAMS Test Library

New models:

• dumpopt2.gms : Test dumpOpt with dumpOptGDX

• encoding01.gms : Test processing of source files with BOM

3.11.1.8 Solver/Platform availability matrix

x86 64bit
MS Windows

x86 64bit
Linux

x86 64bit
macOS

ALPHAECP 2.11 X X X
ANTIGONE 1.1 X X X
BARON X X X
BONMIN 1.8 X X X
CBC 2.10 X X X
CONOPT 3 X X X
CONOPT 4 X X X
COPT 3.0 X X X
CPLEX 20.1 X X X
DECIS X X X
DICOPT 2 X X X
GLOMIQO 2.3 X X X

GUROBI 9.5 X X X
GUSS X X X
IPOPT 3.14 X X X
KESTREL X X X
KNITRO 13.0 X X X
LGO X X X

136 Release Notes

x86 64bit
MS Windows

x86 64bit
Linux

x86 64bit
macOS

LINDO 13.0 X X X
LINDOGLOBAL 13.0 X X X
MILES X X X
MINOS 5.6 X X X
MOSEK 9 X X X
MSNLP X X X
NLPEC X X X
OCTERACT 4 X X
ODHCPLEX 6 X X
PATH X X X
QUADMINOS 5.6 X X X

SBB X X X
SCIP 8.0 X X X
SHOT 1.1 X X X
SNOPT 7.7 X X X
SOPLEX 6.0 X X X
XA X X
XPRESS 39.01 X X X

3.11.2 38.2.0 Minor release (February 17, 2022)

3.11.2.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Gwendal Nivanen.

3.11.2.2 GAMS System

GAMS

• Fixed an incorrect evaluation of intrinsic functions (and their derivatives) having a variable number
of arguments (e.g. edist or poly). This error did not occur in all cases: it depended on a missing
or incorrect initialization in the calling environment.

• Fixed a problem in the extrinsic function declaration which required <FuncName> to be case sensi-
tive.

3.11.2.3 Solvers

BARON

• New libraries 22.2.3.

CONOPT

• New libraries 4.26.

– Removed option ”Flg Crash Basis”.

– Changed default of option Lim Start Degen from 10 to 100.

3.11 38 Distribution 137

CONVERT

• Fix missing semi-colon at end of comment in lingo output.

• Fix unary minus in lingo output.

COPT

• Added option readparams to instruct COPT to read an additional parameters file.

CPLEX

• Fix solution pool export: Previously the solution pool was only exported if CPLEX terminated
successfully with a solution. Now, the solution pool GDX is exported independent of the CPLEX
termination status, but may contain no solution. solnpoolpoprepeat and solnpoolpopdel still don't
have any effect if CPLEX terminated unsuccessfully.

GAMSCHK

• Add a missing initialization for the case where no subsolver is called. Without this initialization,
incorrect output would occur.

Ipopt

• New libraries 3.14.5.

– Fixed that marginals were always zero if Ipopt stopped due to reaching a timelimit.

XPRESS

• New libraries 39.01.04.

3.11.2.4 APIs

High-level APIs

• Fixed a problem with GAMSModelInstance.Instantiate complaining about a missing dictionary
file. This happened when a (default) solver for the model type of the instance is active which does
not use a dictionary.

138 Release Notes

GAMS Transfer Python

• Added new property shape to Parameter, Variable, and Equation to report the corresponding
matrix shape if toDense or toSparseCoo are called.

• Fixed bug with array generation (1D symbols): toDense will now generate a (n,) array instead
(1,n); harmonized this behavior with toSparseCoo.

• Fixed behavior: when toDense is called on a scalar symbol an array of shape () will be returned
instead of a float.

• Fixed behavior: when toSparseCoo is called on a scalar symbol a sparse coo matrix of shape (1,1)

will be returned instead of a float.

• Better handling of numeric domain information within setRecords methods: numeric entries are
now converted to str and generate categories from the str equivalents.

GMO

• The default for the property gmoHessInclQRows was accidentally changed to false with GAMS
35.1.0. With this release, it has been changed back to its original setting of true. That is, also if
useQ is set, the Hessian will include information on quadratic equations by default again.

3.11.3 38.2.1 Maintenance release (February 19, 2022)

3.11.3.1 Solvers

CONOPT

• Fixed warning about unknown option name ”FLG CRASH BASIS” (introduced with GAMS 38.2.0).

Convert

• Fixed error when exporting CNS models with ampl, jump, lingo and pyomo.

Octeract

• Avoid that an ObjEst of ±1.797693134E308 is reported as 1797693134 in GAMS tracefile.

3.11.4 38.3.0 Minor release (April 05, 2022)

3.11.4.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Daniel Dias, Antti Lehtila, Scott MacDonald, Evangelos Panos,
Richard Waltz and Eric Williams.

3.11 38 Distribution 139

3.11.4.2 GAMS System

GAMS

• Fixed wrong numbers about infeasibilities (e.g., in the report summary) when bounds with value
EPS are involved.

• Fixed potential unwanted domain violation error when implicit set definition is used while $onMulti
is active to allow a redefinition of symbol data.

• Fixed potential error when loading data filtered from embedded code.

3.11.4.3 Solvers

BARON

• New libraries 22.3.21.

CONVERT

• Fixed export of variable attribute stage for discrete variables when using option DumpGDX.

• Fixed that coefficients in QCMATRIX section were wrong. They had only half its value.

• Fixed missing asterisk for bilinear terms in CplexLP format.

COPT

• Fixed that indicators from solver options file were ignored.

CPLEX

• Fixed bug with registering an advanced basis.

• Fixed CPLEX solution status CPX STAT NUM BEST. This status is mapped to GAMS model status
feasible.

• Fixed interactive mode (when no trigger file is set).

GUROBI

• New libraries 9.5.1.

IPOPT

• Fixed that names for vector entries corresponding to inequality equations (as shown with print level
≥ 8) could be incorrect due to a wrong mapping of indices.

140 Release Notes

KNITRO

• Fixed unnecessary calls to Knitro evaluation callbacks for linear or quadratic constraints.

Mosek

• New libraries 9.3.18.

Octeract

• New libraries 4.2.0.

– Improved performance, in particular for problems with quadratic structures.

– CPLEX is now automatically chosen as subsolver, if licensed.

SCIP Optimization Suite

• New libraries SCIP 8.0 (189beeaf30).

– Clique lifting for setpartitioning/packing/covering constraints is now only disabled if it has
been applied.

• New libraries PaPILO 2.0 (g166dea4).

XPRESS

• New libraries 39.01.05.

• Changed option default of xslp iterLimit: -1 (auto).

3.11.4.4 Tools

MODEL2TEX

• Fixed a crash that occurred when SameAs was used in equations.

MPS2GMS

• Fixed that variables in SOS of type 2 were written as SOS of type 1 to GDX file.

• Fixed that upper bounds of 100 for (semi)integer variables were lost.

• Fixed that N-rows that did not specify objective functions were not omitted in parameter p (equation
right-hand sides).

• Fixed that nonzero coefficients with absolute value at most 1e-20 were lost.

• Fixed that C-rows had arbitrary right-hand side value in GDX file (though this value was not
accessed from the GAMS model).

• Fixed that an objective constant (nonzero RHS for objective row in MPS file) was lost.

• Fixed that off-diagonal elements in QUADOBJ and QSECTION sections were not handled correctly.

3.12 37 Distribution 141

GAMS Studio

• New version 1.9.6 with various bug fixes, stability improvements, and minor enhancements, e.g.:

– Added Page-up/-down keys to extend block edit selection.

– Added separator line on Windows in horizontal headers of tables and tree views.

– Remote jobs now can be kept active on Studio exit.

– Fixed crash in GDX Viewer related to reading a file containing negative UELs.

– Fixed empty log file when using logOption=2.

– Fixed search not properly counting search results across multiple files.

– Fixed ”Replace All” preview wrongfully including read-only files.

– Fixed ”Search” not always jumping to a result outside current file.

– Fixed NEOS freezing when the GMS file is not located in the working directory.

3.11.4.5 APIs

GAMS Transfer Python

• Fixed memory leak associated with gams2numpy.

3.12 37 Distribution

3.12.1 37.1.0 Major release (November 11, 2021)

3.12.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Marcel Adenauer, Boyan Atanasov, Edna Johanna Molina Bacca,
Abhijit Bora, Wolfgang Britz, Bruno Charlier, Hancheng Dai, Rob Davies, Ricardo M. Pinto de Lima,
Bruce McCarl, Scott McDonald, Guillaume Nimal, Gwendal Nivanen, Zack Pecenak, Tom Rutherford,
Nick Sahinidis, Shima Sasanpour, and Denys Yemshanov.

3.12.1.2 Platforms

• We will drop support for macOS 10.14 (Mojave) with the next major release.

142 Release Notes

3.12.1.3 GAMS System

GAMS

• Added new intrinsic function logit.

• Added new conditional expression onState to check the state of certain dollar control options. An
example can be seen here.

• Added command line parameter and option EpsToZero as well es dollar control options $onEpsToZero
and $offEpsToZero to allow writing EPS values as zero to GDX.

• Made command line parameters holdFixedAsync, sys15, sys16, sys17, sys18, and sys19 available in
option statements as well.

• Avoid warnings if $abort or $call.checkErrorLevel are used within a $ifThen ... $else statement.

• Allow space in limited domain declaration like this: Model transport / all, x (ij) /;

• In the past, GAMS threw an execution error, when execute unload failed because of an invalid file
name given. Now, it tries to write to a file with a generic file name first (like it was always done
with put files as well).

• Added a new command line parameter and option maxGenericFiles to specify the number of tries
to write to a generic file as mentioned above.

• Extended the influence of $offInclude to suppress the include file summary and the creation of an
expanded include file as well.

• Added support for (mixed-integer) linear models that generate more than 231 = 2,147,483,648
nonzeros. At this time, only the solver links for CPLEX, GUROBI, and XPRESS are capable of
handling such large model instances. The number of rows and columns is still limited to 231.

• Removed a limitation for the model attribute handle that did not allow to set a value which is
anything but a Grid handle (specifically, a multi threading handle was rejected before).

• Throw an explicit execution error, if a solver that comes without executable gets called with the
Grid Facility (at the moment, this affects DECIS only).

• Fixed calling a solver with the Grid Facility that is not located in the GAMS system directory.

• Fixed alignment of dmpSym and dmpUserSym output in case of long symbol names.

• Fixed handling of paths with spaces in gamsconfig.yaml for items scriptName and executableName

in section solverConfig.

• $Call, execute, and it's variants allow now spaces in the path of the script/program to be called if
properly quoted.

• Fixed a zero digit display bug, where 0 was shown as 0..

• Fixed wrong matrix error detections for discrete variables and right hand side of external equations
in certain cases.

• Fixed that the GAMS execution system corrupted control or status information in the CPUs SSE
registers on Linux when using $IfE, $IfThenE, and related.

Embedded Python Code Facility

• Print the Python script line number in case an exception is raised.

• Register alias symbols in gams.db.

• Provide domain information for symbols via gams.db[sym].domains and gams.db[sym].domains as strings.

• Fix a problem in pyEmbMI for double bounded but not fixed variables.

• The Python version of GMSPython has been updated to 3.8.11.

• Removed package schema and its dependency contextlib2 from GMSPython.

3.12 37 Distribution 143

Extended Mathematical Programming (EMP)

• Added new stochastic EMP keyword stageDefault to change the default stage of symbols not assigned
to a stage explicitly.

• Changed the stage behavior so that it does not count as a terminating error if it is used with a
symbol missing in the model.

Windows Installer

• Associate .gsp (GAMS Studio project) files with GAMS Studio.

3.12.1.4 Solvers

ANTIGONE, IPOPT, SHOT, SCIP

• Updated Intel MKL to version 2021.2.0 on Windows.

CONVERT

• Fix default behavior if reading option file fails.

CPLEX

• Fixed duplicate CPLEX output in GUSS cold starts with GUSS logoption 2.

• Fixed unwanted consideration of some GAMS command line options in tuning.

• Fixed possible ignorance of an interrupt signal (Ctrl+C).

• Disabling CPLEX solution pool on default (when solnpool and solnpoolmerge are not set).

• Fixed invocation of solution pool export in case of CPLEX termination code 104: solution limit
reached.

• Fixed possible crash when using mipstopexpr.

GUROBI

• New libraries 9.5.0.

– Added norm constraints to general constraint type.

– New option memlimit: Memory limit.

– New option worklimit: Work limit.

– New option lpwarmstart: Warm start usage in simplex.

– New option nlpheur: Controls the NLP heuristic for non-convex quadratic models.

– New option presos1encoding: Controls SOS1 reformulation.

– New option presos2encoding: Controls SOS2 reformulation.

– New option tunemetric: Metric to aggregate results into a single measure.

– New option tunetargetmipgap: A target gap to be reached.

– New option tunetargettime: A target runtime in seconds to be reached.

– New option liftprojectcuts: Lift-and-project cut generation.

– Changed default option value of TuneTrials: 0 (auto).

– Changed default option value of CrossoverBasis: -1 (auto). The option type changed from
boolean to integer.

144 Release Notes

GUSS

• Fixed detection of update requests with symbols that are not present in the generated model.

• Fixed incorrect behavior of option SolveEmpty (not only empty but all scenarios were skipped after
threshold reached).

KNITRO

• Added support for MCP model type.

Lindo/LindoGlobal

• New libraries 13.0.309.

• Added support for function logit.

LocalSolver

• New libraries 10.5 (20211014).

Mosek

• New libraries 9.3.7.

Octeract

• Added new global MINLP solver Octeract 3.5.0.

• Octeract can be used for model types QCP, RMIQCP, MIQCP, NLP, DNLP, RMINLP, and MINLP
and is available for Linux and Windows systems.

• For GAMS demo and community licenses, model size limitations similar to other global solvers
apply. For an unlimited GAMS/Octeract license, contact sales@gams.com.

SCIP

• New libraries 7.0 (b2afa5403b).

SHOT

• New libraries 1.1.0 (11fda1ec).

– New option Model.Reformulation.Quadratics.EigenValueDecomposition.Formulation.

– New option Model.Reformulation.Quadratics.EigenValueDecomposition.Method.

– Renamed option Model.Reformulation.Quadratics.UseEigenValueDecomposition to
Model.Reformulation.Quadratics.EigenValueDecomposition.Use.

– Default value for option Subsolver.Gurobi.NumericFocus changed from 2 to 1.

mailto:sales@gams.com

3.12 37 Distribution 145

SOPLEX

• New libraries 5.0 (ad7592b9).

XPRESS

• New libraries 38.01.05.

3.12.1.5 Tools

BIB2GMS

• We will remove the tool bib2gms in a future GAMS release.

FINDTHISGAMS

• Support for registry keys for .gsp (GAMS Studio project) file association has been added.

GAMS Studio

• New version 1.8.2.

– New feature: Added tooltips to source code for keywords and Dollar Control Options (can be
deactivated in the settings dialog).

– Rework of the Project Explorer:

∗ Changed naming from ”group” to ”project”.

∗ Files now appear in folders relative to the working directory of the assigned project.

∗ Added import and export of projects.

∗ The projects context menu ”Project options” allows to change the name and working
directory of the project.

∗ Added individual working directories for each project.

∗ Added dialog to set the base directory on project import.

– Highlight remotely executed log (NEOS or GAMS Engine).

– Removed obsolete MIRO Hypercube mode.

– Replace TAB characters by the proper amount of spaces when pasting text.

– Set default TAB size to 8.

– Allow to use GAMS Engine on a HTTP server when the local SSL is not present.

– Skipped log duplicate in the NEOS log.

– Added new search scope Selection which allows users to search inside a text selection.

– Added zoom for lxi tree view when zooming in lst files.

– Stability improvements and minor bug fixes, e.g.:

∗ Fixed NEOS and GAMS Engine being inactive due to an SSL detection issue.

∗ Fixed links to model in NEOS log.

∗ Fixed crash when editing long lines ending in an error mark.

∗ Fixed highlighting of wrong results in Search Result View.

∗ Fixed broken syntax highlighting of execute ∗.
∗ Fixed completer not opening or staying open unwanted.

146 Release Notes

GDX2HAR/HAR2GDX

• We will remove the tools gdx2har and har2gdx in a future GAMS release. The tools can be accessed
from the CoPS web site.

HEXDUMP

• We will remove the tool hexdump in a future GAMS release. A similar functionality is available on
Unix systems via the od utility with parameters od -A x -t x1z -v. On Windows od is distributed
as part of the POSIX utilities.

SCENRED

• We will remove the tool SCENRED in a future GAMS release. The tool SCENRED2 should be
used instead.

3.12.1.6 APIs

C++ high-level API

• Fixed GAMSOption::setOutput parameter being ignored in GAMSJob::run().

gams2numpy

• The binaries are now build with numpy 1.20.3 instead of numpy 1.19.5 for Python 3.7, 3.8, and
3.9.

GAMS Transfer

• New APIs GAMS Transfer Matlab and GAMS Transfer for Python to exchange data between
GAMS and Matlab and Python, respectively.

GMD

• Allow to add symbols via gmdAddSymbol and gmdAddSymbolX of type alias (GMS DT ALIAS).

• Added function gmdFindSymbolWithAlias that provides the actual alias symbol rather than the
aliased set in case the requested symbol is an alias.

• Added function gmdGetSymbolByNumber that provides the symbol based on the GMD NUMBER
which includes the alias symbols.

• Added information key GMD NRSYMBOLSWITHALIAS for function gmdInfo to retrieve the number of
symbols including alias symbols.

https://www.copsmodels.com/gp-gams.htm

3.12 37 Distribution 147

GMO

• Adjusted routine gmoGetMatrixCol to fail if called where quadratic structure is explicitly de-
tected/handled (i.e. useQ is set). This routine was not intended to be used in this case.

• Added routines gmoNZ64, gmoNLNZ64, and gmoLNZ64 to get non-zero counts as 64-bit integer.

• Fixed routine gmoDirtySetRowFNLInstr: it was not computing the number of stored NL instructions
correctly.

PAL

• Added routines palLicenseSolverCheckSizes64 and palLicenseCheck64 for solvers that use
64-bit integers for non-zero counts.

Python high-level API

• Fixed a problem with property domains of a symbol in case the domain list consists of a GamsSet

and string elements.

3.12.1.7 Model Libraries

GAMS Model Library

• MS Access and Excel files have been updated to the MS Office 2007 format, i.e., files with the xls

extension were changed to xlsx or xlsm files, files with the mdb extension were changed to accdb

files.

• The structured bibliographic information has been removed. As a consequence, the Author column
in the table of models (documentation and Studio/IDE) has been removed as well as the Reference
section for the individual model page (web). The bibliographic references remain part of the model
source.

New Models:

• rcpsp.gms : Resource-Constrained Project Scheduling Problem (429)

GAMS Test Library

New models:

• asyncfix02.gms : Test asynchronous solves with holdFixedAsync setting

• genfile01.gms : Test generic file names

• offinc01.gms : Test dollar control option $offInclude

• embpy11.gms : Test proper domain info in Embedded Code

• dco01.gms : Test default state and switching state for dollar control options

• epstozero1.gms : Test writing eps as zero to GDX

• fnlogit.gms : Test correctness of logit intrinsic

• empsp01.gms : Test EMPSP keyword stageDefault

• gurobi06.gms : GUROBI test suite - general constraints norm

3.12.1.8 Solver/Platform availability matrix

148 Release Notes

x86 64bit
MS Windows

x86 64bit
Linux

x86 64bit
macOS

ALPHAECP 2.11 X X X
ANTIGONE 1.1 X X X
BARON X X X
BONMIN 1.8 X X X
CBC 2.10 X X X
CONOPT 3 X X X
CONOPT 4 X X X
CPLEX 20.1 X X X
DECIS X X X
DICOPT 2 X X X
GLOMIQO 2.3 X X X

GUROBI 9.5 X X X
GUSS X X X
IPOPT 3.14 X X X
KESTREL X X X
KNITRO 12.4 X X X
LGO X X X
LINDO 13.0 X X X
LINDOGLOBAL 13.0 X X X
LOCALSOLVER 10.5 X X X
MILES X X X
MINOS X X X
MOSEK 9 X X X
MSNLP X X X
NLPEC X X X
OCTERACT 3.5 X X
ODHCPLEX 6 X X
PATH X X X
SBB X X X
SCIP 7.0 X X X
SHOT 1.1 X X X
SNOPT 7.7 X X X
SOPLEX 5.0 X X X
XA X X
XPRESS 38.01 X X X

3.13 36 Distribution

3.13.1 36.1.0 Major release (August 02, 2021)

3.13.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz, Ricardo Manuel Pinto de Lima, Bruce McCarl, Scott
McDonald, and Kirk A. Yost.

3.13.1.2 GAMS System

• The End User License Agreement (eula.pdf in the GAMS system directory) has been updated to
version 08/2021.

3.13 36 Distribution 149

GAMS

• Improved performance of model generation for certain equations where the index order of the
equations caused an out of order index reference of variables like in this example:

ejk(j,k).. sum(i, x(i,j,k)) =e= 42;

Added new command line parameter sys19 to deactivate this performance optimization.

• Added new function platformCode and new compile time constants to be used with it.

• Added information about available CPU sockets, cores, and threads to the log.

• Improve error message for invalid values of the .scale attribute.

• Allow to read environment variables and command line parameters at execution time in put context.

• Added Put Utility commands setEnv and dropEnv to allow environment variable modification at
execution time.

• Added Python function gams.get env to EmbeddedCode Python to access modified environment
variables after Python module os has been initialized.

• Fixed a problem causing an unexpected error when beginning execution time embedded code as
first statement after starting from a restart file.

• Fixed a potential warning using execution time embedded code after starting from a restart file
which was created with action=c.

Windows Installer

• Windows installer is now built with Inno Setup 6.

• Command line parameter /allUsers=yes|no has been deprecated and will be removed in a future
GAMS release. Use the new parameter /installAllUsers=yes|no instead.

• New command line flags /allUsers and /currentUser can be used to explicitly control if the
installation is performed in administrative or non-administrative installation mode.

GMSPython

• The Python version has been updated to 3.8.10.

3.13.1.3 Solvers

Bonmin

• We plan to drop Bonmin and BonminH with one of the next major releases.

CONVERT

• Added support for quadratic constraints in formats CplexLP, CplexMPS, and FixedMPS.

• Added option SkipNRows.

• Added option QExtractAlg.

• Fixed writing eps for zero marginals of non-basic variables or equations in format Gams.

150 Release Notes

CPLEX

• Added the following options:

– multobjoptfiles: List of option files used for individual solves within multi-objective optimiza-
tion.

– usercut: User cut activation.

– usercutpool: Indicator to use user cuts.

– qextractalg: quadratic extraction algorithm in GAMS interface.

• Fixed handling of special values (incl. missing zero values) in multimipstart.

• Fixed update of Jacobian elements within GUSS scenarios.

• Fixed setting gubcovers via cuts.

GUROBI

• Added option qextractalg: quadratic extraction algorithm in GAMS interface.

GUSS

• Added support of option savepoint for scenario solves.

Ipopt and IpoptH

• New libraries 3.14.1.

–

Attention

Value pardiso of option linear solver to choose Pardiso from Intel MKL has been re-
named to pardisomkl. Renamed pardiso ∗ options to pardisomkl ∗.

– Added value pardiso for option linear solver to choose to use Pardiso from the Pardiso

Solver Project. This solver is not included in the GAMS distribution. A user needs to
provide a Pardiso library. Added option pardisolib to specify name and path of Pardiso library.
Added pardiso ∗ options.

– Added option hsllib to specify name and path of HSL library to be loaded at runtime (for users
of GAMS/Ipopt or users that want to use HSL MA77).

– Changed default of honor original bounds to no. In addition, Ipopt now ensures that, in
addition to option bound relax factor, variable bounds are relaxed by at most constr viol tol.
The Ipopt log now shows the violation of variable bounds in the solution.

– Fixed that marginals for fixed variables were not computed if fixed variable treatment is set to
make parameter (the default). Added value make parameter nodual for this option to disable
calculation of marginals for fixed variables (which can cost an extra evaluation of the Jacobian).

– Added options max wall time, print options mode, print advanced options, and timing statistics.

– Ipopt should now be threadsafe also when used with MUMPS as linear solver (a mutex ensures
that only one thread executes MUMPS at a time).

– For more information, including bugfixes, see the Ipopt 3.14.0 release notes.

• Changed default of constr viol tol to 1e-6.

• GAMS ResLim now sets the default for Ipopt option max wall time instead of max cpu time.

https://pardiso-project.org/
https://pardiso-project.org/
https://github.com/coin-or/Ipopt/releases/tag/releases%2F3.14.0

3.13 36 Distribution 151

• If GAMS ScaleOpt is set, i.e., the model has been scaled manually, then the default of option
nlp scaling method is set to none.

• The interface has been extended to warmstart Ipopt if a modified model instance is solved, e.g., in
the context of GUSS. For the warmstart, previously initialized Ipopt data structures are reused if
possible and option warm start init point is enabled, see also Warmstarting IPOPT.

• Enabled solvelink=6 capability for Ipopt and IpoptH.

• Update of HSL routines (IpoptH only):

– MA57 3.11.0.

– HSL MC68 3.3.1.

– HSL MA86 1.6.0.

– HSL MA97 2.6.0.

• Update of MUMPS to version 5.4.0.

• Changed default of mumps pivot order from 5 to 7.

JAMS

• Updated behavior and logging for models with equ.var matches in the model statement. If the
trivial (aka empty or default) model transformation is specified in the EMP info file, nothing changes:
the matches are used as before. In contrast, if a nontrivial or nonempty transformation is specified,
the matches are ignored when creating the reformulated model and a message to this effect is sent
to the log.

KNITRO

• New libraries 12.4.

– Improved performance on mixed-integer nonlinear problems (MINLP).

– Improved performance when using the limited-memory quasi-Newton Hessian approximation.

– Added option linsolver maxitref: Indicates the maximum allowable number of iterative refine-
ment steps applied when a linear system is solved inside Knitro.

– Added option bfgs scaling: Specify the initial scaling to use for the BFGS or L-BFGS Hessian
approximation.

– Added option bar linsys storage: Indicates how to store in memory the linear systems used
inside the Interior/Direct algorithm for computing primal-dual steps.

– Added option mip cutting plane: Specifies when to apply the cutting plane procedure.

– Added option mip heuristic diving: Specifies whether or not to enable the MIP diving heuristic.

– Added option mip heuristic feaspump: Specifies whether or not to enable the MIP feasibility
pump heuristic.

– Added option mip heuristic mpec: Specifies whether or not to enable the MIP MPEC heuristic.

– Added option mip heuristic strategy: Specifies the level of effort applied for the MIP heuristic
search used to try to find an initial integer feasible point.

– Deprecated option mip heuristic: Use mip heuristic strategy instead.

• Added option qextractalg: quadratic extraction algorithm in GAMS interface.

Lindo/LindoGlobal

• New libraries 13.0.291.

152 Release Notes

LocalSolver

• New libraries 10.5 (20210624).

MOSEK

• Added option QEXTRACTALG.

• New libraries 9.2.47.

ODHCPLEX

• New libraries 6.0.4.

PATH

• New libraries 5.0.04 (maintenance release) include capability to further limit preprocessor output by
specifying output preprocess level -1.

SCIP

• New libraries 7.0 (d012dac064).

• Updated Ipopt to Ipopt 3.14.1, see also above.

SHOT

• New libraries 1.1 (c898dd84).

– SHOT can now call itself to solve fixed NLP problems. Activated with new value 2 for option
Primal.FixedInteger.Solver. For nonconvex problems it is still recommended to use an external
NLP solver.
Added also options Subsolver.SHOT.ReuseHyperplanes.Fraction, Subsolver.SHOT.ReuseHyperplanes.Use,
Subsolver.SHOT.UseFBBT.

– Partition convex nonseparable quadratic functions as separate constraints using an eigenvalue
decomposition-based reformulation. Activated with new option Model.Reformulation.Quadratics.UseEigenValueDecomposition.

– Support for performing an initial polyhedral approximation of the nonlinear fea-
sible set before feasibility-based bound tightening. Activated with new option
Model.BoundTightening.InitialPOA.Use.
Added also options Model.BoundTightening.InitialPOA.CutStrategy, Model.BoundTightening.InitialPOA.IterationLimit,
Model.BoundTightening.InitialPOA.StagnationIterationLimit, Model.BoundTightening.InitialPOA.ConstraintTolerance,
Model.BoundTightening.InitialPOA.ObjectiveConstraintTolerance, Model.BoundTightening.InitialPOA.ObjectiveGapAbsolute,
Model.BoundTightening.InitialPOA.ObjectiveGapRelative, Model.BoundTightening.InitialPOA.StagnationConstraintTolerance,
Model.BoundTightening.InitialPOA.TimeLimit.

– Added support for semi-continuous and semi-integer variables.

– Added support for special ordered sets.

– Improved support for generating supporting hyperplanes for the entire nonlinear feasible set
instead of the feasible sets for the individual constraint functions. Activated with new option
Dual.ESH.Rootsearch.UseMaxFunction.

3.13 36 Distribution 153

– Improved support for passing nonconvex quadratic functions directly to the MIP solver (if
supported).

– Added option ModelingSystem.GAMS.QExtractAlg.

– Added option Output.GAMS.AlternateSolutionsFile.

– Added option Dual.HyperplaneCuts.SaveHyperplanePoints.

– Added option Dual.MIP.InfeasibilityRepair.Use.

– Added option Dual.ReductionCut.Use.

– Changed default of option Subsolver.Cbc.Scaling from 0 to 4.

– Changed default of option Subsolver.Cplex.NumericalEmphasis from 0 to 1.

– Changed default of option Subsolver.Gurobi.PoolSolution from 1 to 10.

– Changed default of option Model.BoundTightening.FeasibilityBased.TimeLimit from 5 to 2.

– Changed default of option Termination.DualStagnation.IterationLimit from 50 to ∞.

– Changed meaning of values 1 and 2 for option Model.Reformulation.Bilinear.IntegerFormulation.

• Updated Ipopt to Ipopt 3.14.1, see also above.

XPRESS

• New libraries 38.01.03.

– Xpress Optimizer Release Notes:

∗ Improved MIP performance.

∗ It is now possible to activate a special heuristic solve mode for MIPs, which emphasizes
finding new solutions.

∗ Improved sifting algorithm when used with Barrier.

∗ Improved numerical stability of the Barrier algorithm.

– Xpress Nonlinear Release Notes:

∗ Significant MINLP performance improvements due to improved nonlinear presolver.

∗ Improved performance on instances with very large separable nonlinear expressions due to
imroved automatic differentiation.

∗ Multistart now uses the nonlinear primal integral for tie breaking.

– Added options:

∗ barPerturb: In numerically challenging cases it is often advantageous to apply perturbations
on the KKT system to improve its numerical properties.

∗ barRefIter: After terminating the barrier algorithm, further refinement steps can be
performed.

∗ clamping: Allows for the adjustment of returned solution values such that they are always
within bounds.

∗ clamping dual: Adjust primal slack values to always be within constraint bounds.

∗ clamping primal: Adjust primal solution to always be within primal bounds.

∗ clamping rdj: Adjust reduced costs to always be within dual bounds implied by the primal
solution.

∗ clamping slacks: Adjust dual solution to always be within the dual bounds implied by the
slacks.

∗ genConsAbsTransformation: Specifies the reformulation method for absolute value general
constraints at the beginning of the search.

∗ heurEmphasis: Specifies an emphasis for the search w.r.t. primal heuristics and other
procedures that affect the speed of convergence of the primal-dual gap.

∗ inputTol: Tolerance on input values elements.

154 Release Notes

∗ mipComponents: Determines whether disconnected components in a MIP should be solved
as separate MIPs.

∗ mipConcurrentNodes: Sets the node limit for when a winning solve is selected when
concurrent MIP solves are enabled.

∗ mipConcurrentSolves: Selects the number of concurrent solves to start for a MIP.

∗ mipRestartFactor: Fine tune initial conditions to trigger an in-tree restart.

∗ mipRestartGapThreshold: Initial gap threshold to delay in-tree restart.

∗ netStallLimit: Limit the number of degenerate pivots of the network simplex algorithm,
before switching to either primal or dual simplex.

∗ nodeProbingEffort: Adjusts the overall level of node probing.

∗ outputControls: Toggles the printing of all control settings at the beginning of the search.

∗ ppFactor: Partial pricing candidate list sizing parameter.

∗ preFolding: Determines if a folding procedure should be used to aggregate continuous
columns in an equitable partition.

∗ siftPasses: Determines how quickly we allow to grow the worker problems during the sifting
algorithm.

∗ siftSwitch: Determines which algorithm to use for solving the subproblems during sifting.

∗ xslp presolveOps noLinear: Avoid performing linear reductions at the NLP level.

∗ xslp presolveOps noSimplifier: Avoid simplifying nonlinear expressions.

– Added option values:

∗ deterministic: 2.

∗ mipRestart: 2.

– Changed option defaults:

∗ mipPresolve: -257 to -1.

∗ mipPresolve symmetryReductions: 0 to 1.

– Deprecated options:

∗ heurStrategy. Use heurEmphasis instead.

∗ xslp matrixTol. Use matrixTol instead.

– Removed options:

∗ treePresolve keepBasis.

∗ treePresolve.

∗ treePresolveOps.

∗ xslp analyze autosavePool.

∗ xslp analyze recordLinearization.

∗ xslp analyze recordLinesearch.

∗ xslp presolvePassLimit.

∗ xslp timePrint.

• Added option algAfterNetwork: Algorithm to be used for the clean up step after the network simplex
solver.

• Added option qextractalg: quadratic extraction algorithm in GAMS interface.

• Removed options that were marked deprecated in GAMS 35.

3.13.1.4 Tools

Cholesky, Eigenvalue, Eigenvector, Invert

• We will remove the tools cholesky, eigenvalue, eigenvector, invert in a future GAMS release. Similar
functionality has been added via $libInclude linalg {cholesky,eigenvalue,eigenvector,invert}.
See the header of the file in <sysdir>\inclib\linalg.gms for details.

3.13 36 Distribution 155

GAMS Studio

• New version 1.7.2.

– Dropped support for Ubuntu 16.04 LTS and openSUSE Leap 15.2 because the updated
AppImage now requires glibc 2.27. Dropped support for Debian 9.

– New feature: Allow specifying location of User Model Libraries in Settings dialog.

– Improved visual distinction between current and other groups in Project Explorer.

– Added a warning message before printing large files.

– Added a list of solvers for each model type to be selected in Extended Parameter Editor and
Configuration Editor.

– Added shortcut Alt+I (macOS: Option+I) to fold blocks of dollar control options.

– Added setting to automatically collapse dollar control option blocks when opening a file (default:
off).

– Changed shortcuts to show/hide Extended Parameter Editor

∗ Windows/Linux: From Ctrl-Alt-3 to Shift+Ctrl+3.

∗ macOS: From Shift-Command-3 to Control-Option-3.

– Improvements for syntax highlighter and code completer, e.g.:

∗ Added support for system attributes and compile-time constants.

∗ Added support of quoted elements in syntax highlighter.

∗ Disabled code completer for certain code blocks like $onEmbeddedCode or $onPut.

– Improvements for remote execution support, e.g.:

∗ Added support for GAMS Engine server with self-signed certificate (https).

∗ Added support for GAMS Engine server with http protocol.

∗ Added option to remember login credentials for GAMS Engine in Settings.

∗ Renamed ”MIRO” Settings page to ”Remote” to better reflect new content.

∗ Improved GAMS Engine dialog.

∗ Added file type EFI to send additional files to a GAMS Engine server.

– Stability improvements and minor bug fixes, e.g.:

∗ Fixed duplicate file entries in the Project Explorer when having two references with different
case to a single file

∗ Fixed Studio title bar appearing outside of screen in some cases.

∗ Fixed wrong content of ”File” tab in Reference File Viewer.

∗ Fixed missing check of some data locations for GAMS license file.

∗ Fixed ESC key not behaving like close button in Settings dialog.

∗ Fixed crash when reopening a closed log tab.

∗ Fixed that MIRO menu entries were not enabled when MIRO was automatically discovered.

∗ Fixed that theme could be broken in Settings dialog when using cancel button.

GDXRank, GDXRename

• We will remove the tools gdxrank and gdxrename in a future GAMS release. Similar functionality
has been added via $libInclude gdxservice {gdxrank,gdxservice}. See the header of the file
in <sysdir>\inclib\gdxservice.gms for details.

• The $libInclude rank functionality now uses $libInclude gdxservice gdxrank to sort a one
dimensional parameter instead of the gdxrank tool.

156 Release Notes

MCFilter

• We will remove the tool mcfilter in a future GAMS release. In case you depend on this tool, this

discussion at GAMS World Forum gives an alternative.

MSAppAvail, Shellexecute, XLSTalk

• We will remove the tools msappavail, shellexecute, xlstalk in a future GAMS release. Similar
functionality has been added via $libInclude win32 {msappavail,shellexecute,xlstalk}. See
the header of the file in <sysdir>\inclib\win32.gms for details.

3.13.1.5 APIs

• As announced we removed all Delphi variants but the dcp version (i.e. gdxdcpdef.pas) and all
Fortran variants but the f9 version (i.e. gdxf9def.f90) of the low-level APIs.

CFG

• The function cfgAlgAllowsModifyProblem now reports correctly for all solvers if they provide the
xyzModifyProblem functionality instead of a only for a fixed (and incorrect) list of solvers.

C++ high-level API

• Removed dependency on Qt. Now requiring C++17.

• Added support for Microsoft Visual Studio 2019.

• As announced we dropped support for Microsoft Visual Studio 2015.

• As announced, the Clang compiled version of libgamscpp.dylib does not work on macOS 10.14 or
older anymore. It has been moved to the subfolder apifiles/C++/lib/Clang/.
The new libgamscpp.dylib in apifiles/C++/lib/ is compiled with GCC.

gams engine

• Updated for GAMS Engine version 21.06.09 and now using OpenAPI Generator version 5.1.1.

gams2numpy

• New optional parameter merge in gams2numpy.gmdFillSymbolStr that allows duplicate records in
the numpy array as well as writing to non-empty symbols.

• New optional parameter relaxedType in gams2numpy.gmdFillSymbol(Str|Raw), and gams2numpy.gdxWriteSymbol(Str|Raw)
that allows to automatically convert the columns of the numpy array into the required data types if
possible.

• Fixed a bug that prevented error messages from being shown on Linux and further improved error
handling.

https://forum.gamsworld.org/viewtopic.php?f=15&t=11979
https://forum.gamsworld.org/viewtopic.php?f=15&t=11979

3.13 36 Distribution 157

GAMSX

• As announced, we have dropped the GAMSX API with this release. The example xp example2 for
various languages has been adjusted to call the GAMS executable instead of the gamsxRunExecDLL

GAMS API function.

GEV

• The gmoptr argument in function gevGetCurrentSolver is deprecated and not used anymore. It
will be removed from this function in some future release. Moreover, the function should only be
used in solver link library functions xyzReadyAPI or xyzCallSolver.

• Add GEV option SavePoint to query the savePoint option.

GMO

• Added option qExtractAlg to control the technique used to extract quadratic structure from GAMS
models. This structure extraction happens automatically for any QCP model type (e.g. QCP,
MIQCP) and the current default choice ThreePass (= 1) is almost always the best one. But there
some cases where DoubleForward (= 2) performs much better.

Solverlink library interface

• The API of a solver link library has changed. This will only effect users that install additional
solvers or build and maintain own solver link libraries. The older version of the API is deprecated
and will be removed in a future GAMS release. Moreover, COIN-OR project GAMSlinks provides
a template to work with both new and old APIs.

3.13.1.6 Model Libraries

GAMS API Library

• Updated models CPPex2, CSex2, Cex2, Fex2, Jex1, Jex2, PBuildXPLevelAPI, and
VBex2 to adjust for the removal of the GAMSX API.

• Updated model Pgams engine to be compatible with the latest gams engine API.

GAMS Data Library

• Many models have been adjusted to use the library include win32 to compensate for the future drop
of the utilities msappavail and shellexecute.

• Updated models CHP, CHP2, Portfolio, Samurai, SpawnGAMSExcel, Sudoku, and
transxls. The corresponding Excel files have been changed from format .xls to .xlsm. Moreover,
the VBA code has been adjusted to work without the dropped GAMSX API. The registry key to
find the GAMS system directory has been updated.

• Model Samurai2 has been dropped since it became a duplicate of model Samurai after the removal
of the GAMSX API.

• Model LeastSquares has been updated to use $libInclude linalg OLS for solving the linear
regression problem. The model also works now with more descriptive data set (diabetes data).

https://github.com/coin-or/GAMSlinks

158 Release Notes

GAMS Test Library

New models:

• platform01.gms : Test platform function

• qcp12.gms : Test different GMO Q extraction algorithms

• asyncfix01.gms : Test asynchronous solves with holdFixed

• savep2.gms : Test savepoint with async solves

• convert16.gms : CONVERT test suite - Basic test of convert output for quadratic
model

• embpy09.gms : Test Embedded Code after restart

• scensol8.gms : Check if solver with modify problem use hotstart in GUSS

• gdxrename1.gms : Simple gdxrename test

• gdxrename2.gms : Tests some gdxrename stuff

• scensol9.gms : Test option savepoint in GUSS

• embpy10.gms : Test Embedded Code for Environment Variables

• etsuf01.gms : Test Execution Time Suffixes

• emp33.gms : JAMS: matches from model statement may be ignored

Models trilib01, trilib02, trilib03, parlib01, cpplib00:

• Removed jinja2 from associated source archive. It is now required to have the Python package
jinja2 installed to run the ql.py script.

3.13.1.7 Solver/Platform availability matrix

x86 64bit
MS Windows

x86 64bit
Linux

x86 64bit
macOS

ALPHAECP 2.11 X X X
ANTIGONE 1.1 X X X
BARON X X X
BONMIN 1.8 X X X
CBC 2.10 X X X
CONOPT 3 X X X
CONOPT 4 X X X
CPLEX 20.1 X X X
DECIS X X X
DICOPT 2 X X X
GLOMIQO 2.3 X X X

GUROBI 9.1 X X X
GUSS X X X
IPOPT 3.14 X X X
KESTREL X X X
KNITRO 12.4 X X X
LGO X X X

3.13 36 Distribution 159

x86 64bit
MS Windows

x86 64bit
Linux

x86 64bit
macOS

LINDO 13.0 X X X
LINDOGLOBAL 13.0 X X X
LOCALSOLVER 10.5 X X X
MILES X X X
MINOS X X X
MOSEK 9 X X X
MSNLP X X X
NLPEC X X X
ODHCPLEX 6 X X
PATH X X X
SBB X X X
SCIP 7.0 X X X
SHOT 1.1 X X X
SNOPT 7.7 X X X
SOPLEX 5.0 X X X
XA X X
XPRESS 38.01 X X X

3.13.2 36.2.0 Minor release (September 03, 2021)

3.13.2.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz, Daniel Dias, Andreas Lundell, Bruce McCarl, and
Tom Rutherford.

3.13.2.2 GAMS System

GAMS

• Added new command line parameter holdFixedAsync to allow the use of holdFixed for models
solved asynchronously. Activating this option can lead to inconsistent solutions being reported.

• Fixed a potential crash introduced with GAMS 36.1.0 related to the improved performance of model generation.

3.13.2.3 Solvers

CONVERT

• Fixed MCP mapping for DumpGDX.

GAMSCHK

• Fix default solve behavior: if no GCK file is specified, no subsolver should be called as no solution is
wanted.

160 Release Notes

GUSS

• Fixed options OptfileInit and Optfile being ignored.

• Added fallback to cold start in case of hot start failure.

IPOPT

• New libraries 3.14.3.

• Updated MUMPS to version 5.4.1.

MOSEK

• New libraries 9.3.4.

SHOT

• New libraries 1.1 (9a8893e7).

3.13.2.4 Tools

GAMS Studio

• New version 1.7.3 with various bug fixes, stability improvements, and minor enhancements, e.g.:

– Allow to duplicate multiple lines at once.

– Added navigation and selection by word using ctrl+left/right in LOG-Viewer.

– Fixed highlighting issue when a symbol declaration ends with a space.

– Fixed horizontal scroll in LST viewer when cursor is out of view.

– Fixed that searching backwards in modified document was not working.

– Fixed ”Replace” ignoring case sensitivity option.

3.14 35 Distribution

3.14.1 35.1.0 Major release (April 29, 2021)

3.14.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Matthew Adams, Jürgen Apfelbeck, Wolfgang Britz, Yacine Gaoua,
Carolin Kellenbrink, Masoud Javadi, Bruce McCarl, Scott McDonald, Will Raymond, Tom Rutherford,
Sebastian Spieker, and Kirk A. Yost.

3.14 35 Distribution 161

3.14.1.2 Platforms

• macOS 11 (on Intel CPUs) has been added to the list of supported macOS versions.

3.14.1.3 GAMS System

GAMS

• Added new dollar control options gdxLoad and gdxUnload to load and unload symbols from and to
GDX files in a single instruction at compile time.

• Print an extra log line for echo dollar control options $echo, $echoN, and $onEcho, which write to
an external file. When running GAMS from one of the GAMS IDEs, this log line can be clicked to
open the file created.

• Extended the report generated by dmpSym and dmpUserSym to include another column reporting
a memory estimate for each set, parameter, variable, and equation.

• Removed the columns DIM-OK, ACCESS, SPECVAL, EXTERN, TABLE, DOMAIN, and LAGLEAD from the
report generated by dmpUserSym. This information is very technical and mostly of internal interest.
These columns are still available with dmpSym.

• The status of Multi-Threading for the Grid and Multi-Threading Solve Facility has been changed
from beta to released and fully supported.

• Fixed that the stars option was ignored for some messages in the output file.

• Fixed a problem that causes default records in the data statement or when loaded from GDX (see
$load) being ignored with implicit set definition. So with

Set i;

Parameter p(i<) / i0 0, i1 1, i2 2 /;

only i1 and i2 made it into i. Now, i0 is added as well.

• Fixed a problem, where $onDotL and $onDotScale were ignored in put statements.

• Fixed a problem, where $onDelim was applied incorrectly to display and option statements.

• Fixed a problem, where $onSymXRef and $onUElXRef were ignored when there were too many
references.

• Fixed and extended the behavior of $eval: If a GAMS function was hidden by a user defined symbol,
$eval ignored the latter. This has been changed. Now, the GAMS function needs to be prefixed
with system. to be accessed in this case. An example for this behavior is given here.

• Fixed a potential problem when doing a filtered load of symbols with domain violations through
EmbeddedCode.

• Fixed an unwanted compilation error that happened if $onExternalInput or $onExternalOutput
were used on the same line and after $if.

• Fixed a problem where dumpOpt in combination with $onVerbatim skipped a leading substitution
character in an $ifThen block.

162 Release Notes

3.14.1.4 Solvers

AlphaECP

• New version 2.11.01.

– New options:

∗ ECPtoltype: AlphaECP termination criterion.

∗ MIPoptcrlimtype: Strategy to increase MIPoptcrlim.

∗ MIPoptimaliter: MIP is solved to optimality with this frequency.

∗ TOLoptcr: Relative termination tolerance for MINLP.

– Minor bugfixes.

– For more information, see the release paper.

ANTIGONE, IPOPT, SHOT, SCIP

• Updated Intel MKL to version 2021.2.0 on Linux and macOS.

BARON

• The NLP solver selected with option extNLPSolver is used in case NLPSol is set to -1 or 6 (and
AllowExternal is 1). In the previous releases Conopt was used with NLPSol value -1.

BONMIN

• Fixed an issue where a problem with SOS constraints was rejected due to falsely detected negative
variable bounds.

CONOPT

• New libraries for CONOPT3: 3.17K

– Fixed perturbations of the Jacobian for external equations where 2nd order derivatives are not
available.

• Fixed an issue resulting in insufficient CONOPT3 memory.

• Fixed an issue with multi-threading in CONOPT 4.

CPLEX

• New libraries 20.1.0.1.

• Added option usercallparmfile: Command-line parameter include file used in GAMS command-line
calls triggered by BCH.

• Fixed incorrect reporting of infeasible solutions of the unrelaxed model in feasopt mode.

• Fixed incorrect variable matching for options objnreltol and objnabstol.

• Fixed parsing of individual objective functions for multiobjective optimization (any ordering of
equation definitions is allowed now).

http://users.abo.fi/twesterl/MINLPLib_with_AlphaECP_v2_11_01.pdf

3.14 35 Distribution 163

GAMSCHK

• Fix problem with handling of row/column patterns introduced in GAMS 34.3.

GUROBI

• New libraries 9.1.2.

• Added possibility to write a single GDX file with the solution pool (see solnpoolmerge).

• Added the following options:

– solnpoolmerge: Enable merged solution pool GDX.

– solnpoolnumsym: Number of variable symbols in merged solution pool GDX.

– solnpoolprefix: Prefix for variable symbols in merged solution pool GDX.

– miptrace: Filename of MIP trace file (formerly hidden and undocumented).

– miptracenode: Node interval when a trace record is written (formerly hidden and undocu-
mented).

– miptracetime: Time interval when a trace record is written (formerly hidden and undocu-
mented).

• Fixed incorrectly processed (hidden) options isvname and appname.

GUSS/Scenario Solver

• Measure time internally rather then relying on solvers' reported resUsd to determine the overall
running time.

KNITRO

• New GAMS/Knitro link using the KN interface.

• Enabled the possibility to use solvelink = 5 on Linux (other platforms were already enabled).

• Added support of variable and equation scaling.

• Added options:

– names: Enable to pass variable and equation names to Knitro.

– blasoptionlib: Specifies a dynamic library name that contains object code for BLAS/LAPACK
functions.

– bndrange: Specifies max limits on the magnitude of constraint and variable bounds.

– cg pmem: Specifies the amount of nonzero elements per column of the Hessian of the Lagrangian
which are retained when computing the incomplete Cholesky preconditioner.

– cg precond: Specifies whether an incomplete Cholesky preconditioner is applied during CG
iterations in barrier algorithms.

– cg stoptol: Specifies the relative stopping tolerance used for the conjugate gradient (CG)
subproblem solves.

– convex: Declare the problem as convex by setting to 1 or non-convex by setting to 0.

– cpuplatform: Specify the target instruction set architecture.

– initpenalty: Specifies the initial penalty parameter used in the Knitro merit functions.

164 Release Notes

– linesearch: Indicates which linesearch strategy to use for the Interior/Direct or SQP algorithm
to search for a new acceptable iterate.

– newpoint: Specifies additional action to take after every iteration in a solve of a continuous
problem.

– presolve level: Set the level of presolve operations to enable through the Knitro presolver.

– presolve initpt: Control whether the Knitro presolver can shift a user-supplied initial point.

– presolve passes: Set a maximum limit on the number of passes through the Knitro presolve
operations.

– presolveop tighten: Determine whether or not to enable the Knitro presolve operation to
tighten variable bounds.

– restarts: Specifies whether or not to enable automatic restarts in Knitro.

– restarts maxit: When restarts are enabled, this option can be used to specify a maximum
number of iterations before enforcing a restart.

– strat warm start: Specifies whether or not to invoke a warm-start strategy.

– findiff relstepsize: Specifies the relative stepsize used for finite-difference gradients.

– findiff terminate: Specifies the termination criteria when using finite-difference gradients.

– infeastol iters: The optimization process will terminate if the relative change in the feasibility
error is less than infeastol for infeastol iters consecutive infeasible iterations.

– xtol iters: The optimization process will terminate if the relative change in all components of
the solution point estimate is less than xtol for xtol iters.

– bar conic enable: Enable special treatments for conic constraints when using the Interior/Direct
algorithm (has no affect when using the Interior/CG algorithm).

– bar initpi mpec: Specifies the initial value for the MPEC penalty parameter π used when
solving problems with complementarity constraints using the barrier algorithms.

– bar linsys: Indicates which linear system form is used inside the Interior/Direct algorithm for
computing primal-dual steps.

– bar maxcorrectors: Specifies the maximum number of corrector steps allowed for primal-dual
steps.

– bar slackboundpush: Specifies the amount by which the barrier slack variables are initially
pushed inside the bounds.

– bar switchobj: Indicates which objective function to use when the barrier algorithms switch to
a pure feasibility phase.

– act lpfeastol: Specifies the feasibility tolerance used for linear programming subproblems solved
when using the Active Set or SQP algorithms.

– act lppenalty: Indicates whether to use a penalty formulation for linear programming subprob-
lems in the Knitro Active Set or SQP algorithms.

– act lppresolve: Indicates whether to apply a presolve for linear programming subproblems in
the Knitro Active Set or SQP algorithms.

– act parametric: Indicates whether to use a parametric approach when solving linear program-
ming (LP) subproblems when using the Knitro Active Set or SQP algorithms.

– act qppenalty: Indicates whether to use a penalty formulation for quadratic programming
subproblems in the Knitro SQP algorithm.

– mip clique: Specifies rules for adding clique cuts.

– mip cutfactor: This value specifies a limit on the number of cuts added to a node subproblem.

– mip heuristic terminate: Specifies the condition for terminating the MIP heuristic.

– mip intvar strategy: Specifies how to handle integer variables.

– mip mir: Specifies rules for adding mixed integer rounding cuts.

– mip selectdir: Specifies the MIP node selection direction rule (for tiebreakers) for choosing the
next node in the branch and bound tree.

3.14 35 Distribution 165

– mip zerohalf: Specifies rules for adding zero-half cuts.

– ma outsub: Enable writing algorithm output to files for the multi-algorithm (algorithm=5)
procedure.

– ms num to save: Specifies the number of distinct feasible points to save in a file named
knitro mspoints.

– ms outsub: Enable writing algorithm output to files for the parallel multistart procedure.

– ms savetol: Specifies the tolerance for deciding if two feasible points are distinct.

– par msnumthreads: Specify the number of threads to use for multistart (when ms enable = 1).

– out csvinfo: Controls whether or not to generates a file knitro solve.

– out csvname: Use to specify a custom csv filename when using out csvinfo.

– out hints: Specifies whether to print diagnostic hints (e.g. about user option settings) after
solving.

– outappend: Specifies whether output should be started in a new file, or appended to existing
files.

– outdir: Specifies a single directory as the location to write all output files.

– outmode: Specifies where to direct the output from Knitro.

– outname: Use to specify a custom filename when output is written to a file using outmode.

• Added values to the following options:

– blasoption: 2 (dynamic)

– bar pencons: -1 (auto), 3 (equalities)

– hessopt: 7 (gauss newton)

– honorbnds: -1 (auto)

– ma terminate: 3

– mip knapsack: 3 (all)

– mip outlevel: 2 (iterstime), 3 (root)

– mip rootalg: 4 (sqp), 5 (multi)

– scale: 2 (user none), 3 (internal)

• Updated the following options to KNITRO defaults:

– fstopval: maxdouble

– honorbnds: -1 (auto)

– par blasnumthreads: 0

– par lsnumthreads: 0

– xtol: 1e-12

– bar pencons: -1 (auto)

– bar switchrule: -1 (auto)

– mip maxnodes: 0

– mip maxsolves: 0

– mip rounding: -1 (auto)

• Deprecated options:

– bar maxbacktrack: Use linesearch maxtrials instead.

– maxcgit: Use cg maxit instead.

– pivot: Use linsolver pivottol instead.

• Removed formerly deprecated options:

– maxcrossit

166 Release Notes

– mu

– feasible

– feasmodetol

– barrule

• Removed unused option reform.

• Fixed an issue with options not being forwarded to Knitro.

Lindo/LindoGlobal

• New libraries 13.0.262:

– LP Solver Improvements:

∗ With new enhancements made to the simplex solvers, the average performance on large
instances where the number of variables is several times larger than the number of constraints
has increased by several folds compared to the previous version.

∗ Improved performance on LP’s when using multiple cores with concurrent execution of
Primal, Dual, and Barrier.

– MIP (Mixed Integer Program) Solver:

∗ Improved selection of defaults for cuts and heuristics.

– Global Solver Improvements:

∗ Highly improved ability to recognize convexity of various composite functions, especially
involving logarithms and sums, which can gives a performance improvement of one order-
of-magnitude in these cases.

∗ Performance improvement for convex-concave type functions.

∗ Enhanced capabilities for converting nonlinear functions to linear forms.

∗ Substantial performance improvement for non-convex quadratic models.

LocalSolver

• New libraries 10.0 (20210330).

• We plan to drop LocalSolver and LocalSolver70 by the end of 2021.

MOSEK

• New libraries 9.2.41.

MPSGE

• Increased the internal MAXFUN limit (from 5000 to 10000) on the number of components (inputs,
outputs, taxes, etc.) in any MPSGE row.

ODHCPLEX

• New libraries 5.34.

3.14 35 Distribution 167

SBB

• Added option usercallparmfile: Command-line parameter include file used in GAMS command-line
calls triggered by BCH.

SCIP

• New libraries 7.0 (c53330372e).

SNOPT

• New libraries 7.7.7 and new GAMS/SNOPT link.

• Changed option value to SNOPT default for the following options:

– Linesearch Tolerance: 0.9

– LI Singularity Tolerance: 3.2e-11

• Removed the following parameters:

– Start Objective Check

– Start Constraint Check

– Stop Objective Check

– Stop Constraint Check

– Derivative Level

XPRESS

• Added support for choosing a different algorithm than primal simplex for solving the fixed MIP (see
mipCleanup). The algorithm can be chosen with defaultAlg and lpFlags.

• Deprecated the following options:

– algorithm: Use defaultAlg or lpFlags instead.

– extraPresolve

– lpThreads

• Added the following options:

– algAfterCrossover: Algorithm to be used for the final clean up step after the crossover.

– autoPerturb: Simplex: Indicates whether automatic perturbation is performed.

– autoScaling: Whether the Optimizer should automatically select between different scaling
algorithms.

– backtrackTie: Branch and Bound: Specifies how to break ties when selecting the next node to
work on when a full backtrack is performed.

– barCores: If set to a positive integer it determines the number of physical CPU cores assumed
to be present in the system by the barrier algorithm.

– barFailIterLimit: Newton barrier: Maximum number of consecutive iterations that fail to
improve the solution in the barrier algorithm.

– barFreeScale: Defines how the barrier algorithm scales free variables.

– barGapTarget: Newton barrier: Target tolerance for the relative duality gap.

168 Release Notes

– barKernel: Newton barrier: Defines how centrality is weighted in the barrier algorithm.

– barObjScale: Defines how the barrier scales the objective.

– barOrderThreads: If set to a positive integer it determines the number of concurrent threads
for the sparse matrix ordering algorithm in the Newton barrier method.

– barPresolveOps: Controls the Newton barrier specific presolve operations.

– barRegularize: Determines how the barrier algorithm applies regularization on the KKT system.

– barRhsScale: Defines how the barrier scales the right hand side.

– branchChoice: Once a global entity has been selected for branching, this control determines
which of the branches is solved first.

– branchDisj: Branch and Bound: Determines whether the optimizer should attempt to branch
on general split disjunctions during the branch and bound search.

– branchStructural: Branch and Bound: Determines whether the optimizer should search for
special structure in the problem to branch on during the branch and bound search.

– cacheSize: Newton barrier: L2 or L3 (see notes) cache size in kB (kilobytes) of the CPU.

– choleskyAlg: Newton barrier: Type of Cholesky factorization used.

– choleskyTol: Newton barrier: Tolerance for pivot elements in the Cholesky decomposition of
the normal equations coefficient matrix, computed at each iteration of the barrier algorithm.

– conflictCuts: Branch and Bound: Specifies how cautious or aggressive the optimizer should be
when searching for and applying conflict cuts.

– coresPerCpu: Used to override the detected value of the number of cores on a CPU.

– cpuTime: How time should be measured when timings are reported in the log and when
checking against time limits.

– crossoverAccuracyTol: Newton barrier: Determines how crossover adjusts the default relative
pivot tolerance.

– crossoverIterLimit: Newton barrier: Maximum number of iterations that will be performed in
the crossover procedure before the optimization process terminates.

– crossoverOps: Newton barrier: Bit vector for adjusting the behavior of the crossover procedure.

– cutFactor: Limit on the number of cuts and cut coefficients the optimizer is allowed to add to
the matrix during global search.

– cutSelect: Bit vector providing detailed control of the cuts created for the root node of a global
solve.

– dualGradient: Simplex: Dual simplex pricing method.

– dualize: Whether presolve should form the dual of the problem.

– dualizeOps: Bit-vector control for adjusting the behavior when a problem is dualized.

– dualPerturb: Factor by which the problem will be perturbed prior to optimization by dual
simplex.

– dualStrategy: Bit-vector control specifies the dual simplex strategy.

– elimFillin: Amount of fill-in allowed when performing an elimination in presolve.

– elimTol: Markowitz tolerance for the elimination phase of the presolve.

– feasibilityPump: Branch and Bound: Decides if the Feasibility Pump heuristic should be run
at the top node.

– feasTolPerturb: Determines how much a feasible primal basic solution is allowed to be perturbed
when performing basis changes.

– feasTolTarget: Target feasibility tolerance for the solution refiner.

– forceParallelDual: Dual simplex: Specifies whether the dual simplex solver should always use
the parallel simplex algorithm.

– genConsDualReductions: Parameter specifies whether dual reductions should be applied to
reduce the number of columns and rows added when transforming general constraints to MIP
structs.

3.14 35 Distribution 169

– heurBeforeLp: Branch and Bound: Determines whether primal heuristics should be run before
the initial LP relaxation has been solved.

– heurDiveIterLimit: Branch and Bound: Simplex iteration limit for reoptimizing during the
diving heuristic.

– heurDiveRandomize: Level of randomization to apply in the diving heuristic.

– heurDiveSoftRounding: Enables a more cautious strategy for the diving heuristic.

– heurDiveSpeedUp: Branch and Bound: Changes the emphasis of the diving heuristic from
solution quality to diving speed.

– heurDiveStrategy: Branch and Bound: Chooses the strategy for the diving heuristic.

– heurForceSpecialObj: Branch and Bound: Whether local search heuristics without objective
or with an auxiliary objective should always be used, despite the automatic selection of the
Optimizer.

– heurFreq: Branch and Bound: Frequency at which heuristics are used in the tree search.

– heurSearchEffort: Adjusts the overall level of the local search heuristics.

– heurSearchFreq: Branch and Bound: How often the local search heuristic should be run in the
tree.

– heurSearchRootCutFreq: How frequently to run the local search heuristic during root cutting.

– heurSearchRootSelect: Bit vector control for selecting which local search heuristics to apply
on the root node of a global solve.

– heurSearchTreeSelect: Bit vector control for selecting which local search heuristics to apply
during the tree search of a global solve.

– heurStrategy: Branch and Bound: Heuristic strategy.

– historyCosts: Branch and Bound: How to update the pseudo cost for a global entity when a
strong branch or a regular branch is applied.

– indLinBigM: Indicator constraints can be internally converted to regular rows (i.e. linearized)
using a BigM coefficient whenever the BigM coefficient is smaller or equal to this value.

– indPreLinBigM: During presolve, indicator constraints can be internally replaced with regular
rows (i.e. linearized) using a BigM coefficient whenever the BigM coefficient is smaller or equal
to this value.

– l1Cache: Newton barrier: L1 cache size in kB (kilo bytes) of the CPU.

– lnpBest: Number of infeasible global entities to create lift-and-project cuts for during each
round of Gomory cuts at the top node (see gomCuts).

– lnpIterLimit: Number of iterations to perform in improving each lift-and-project cut.

– localChoice: Controls when to perform a local backtrack between the two child nodes during a
dive in the branch and bound tree.

– lpFlags: Bit-vector control which defines the algorithm for solving an LP problem or the initial
LP relaxation of a MIP problem.

– lpFolding: Simplex and barrier: Whether to fold an LP problem before solving it.

– lpLogDelay: Time interval between two LP log lines.

– lpLogStyle: Simplex: Style of the simplex log.

– lpRefineIterLimit: Simplex iteration limit the solution refiner can spend.

– markowitzTol: Markowitz tolerance used for the factorization of the basis matrix.

– maxCutTime: Maximum amount of time allowed for generation of cutting planes and reopti-
mization.

– maxImpliedBound: Presolve: When tighter bounds are calculated during MIP preprocessing,
only bounds whose absolute value are smaller than maxImpliedBound will be applied to the
problem.

– maxLocalBacktrack: Branch-and-Bound: How far back up the current dive path the optimizer
is allowed to look for a local backtrack candidate node.

170 Release Notes

– maxMemoryHard: Sets the maximum amount of memory in megabytes the optimizer should
allocate.

– maxMemorySoft: When resourceStrategy is enabled, this control sets the maximum amount
of memory in megabytes the optimizer targets to allocate.

– maxMipTasks: Branch-and-Bound: The maximum number of tasks to run in parallel during a
MIP solve.

– maxScaleFactor: Determines the maximum scaling factor that can be applied during scaling.

– maxTime: Maximum time in seconds that the Optimizer will run before it terminates, including
the problem setup time and solution time.

– mipDualReductions: Branch and Bound: Limits operations that can reduce the MIP solution
space.

– mipFracReduce: Branch and Bound: Specifies how often the optimizer should run a heuristic
to reduce the number of fractional integer variables in the node LP solutions.

– mipKappaFreq: Branch and Bound: Specifies how frequently the basis condition number (also
known as kappa) should be calculated during the branch-and-bound search.

– mipRampUp: Controls the strategy used by the parallel MIP solver during the ramp-up phase
of a branch-and-bound tree search.

– mipRefineIterLimit: Defines an effort limit expressed as simplex iterations for the MIP solution
refiner.

– mipRestart: Branch and Bound: Controls strategy for in-tree restarts.

– mipToltarget: Target mipTol value used by the automatic MIP solution refiner as defined by
refineOps.

– miqcpAlg: Determines which algorithm is to be used to solve mixed integer quadratically
constrained and mixed integer second order cone problems.

– xslp mipAlgorithm: Bitmap describing the MISLP algorithms to be used.

– xslp mipFixStepBounds: Bitmap describing the step-bound fixing strategy during MISLP.

– xslp mipRelaxStepBounds: Bitmap describing the step-bound relaxation strategy during
MISLP.

– netCuts: Determines the addition of multi-commodity network cuts to a problem.

– objScaleFactor: Custom global objective scaling factor, expressed as a power of 2.

– optimalityTolTarget: Target optimality tolerance for the solution refiner.

– outputLog: Controls the level of output produced by the Optimizer during optimization.

– outputTol: Zero tolerance on print values.

– preAnalyticCenter: Determines whether analytic centers should be computed and used for
variable fixing and the generation of alternative reduced costs.

– preBasisRed: Determines whether a lattice basis reduction algorithm should be attempted as
part of presolve.

– preBndRedCone: Determines whether second order cone constraints should be used for inferring
bound reductions on variables when solving a MIP.

– preBndRedQuad: Determines whether convex quadratic contraints should be used for inferring
bound reductions on variables when solving a MIP.

– preCoefElim: Presolve: Specifies whether the optimizer should attempt to recombine constraints
in order to reduce the number of non zero coefficients when presolving a mixed integer problem.

– preComponents: Determines whether small independent components should be detected and
solved as individual subproblems during root node processing.

– preComponentsEffort: Presolve: Adjusts the overall effort for the independent component
presolver.

– preConeDecomp: Presolve: Decompose regular and rotated cones with more than two elements
and apply Outer Approximation on the resulting components.

3.14 35 Distribution 171

– preConvertSeparable: Presolve: Reformulate problem with non-diagonal quadratic objective
and/or constraints as diagonal quadratic or second-order conic constraints.

– preDomCol: Presolve: Determines the level of dominated column removal reductions to perform
when presolving a mixed integer problem.

– preDomRow: Presolve: Determines the level of dominated row removal reductions to perform
when presolving a problem.

– preDupRow: Presolve: Determines the type of duplicate rows to look for and eliminate when
presolving a problem.

– preElimQuad: Presolve: Allows for elimination of quadratic variables via doubleton rows.

– preImplications: Presolve: Determines whether to use implication structures to remove redun-
dant rows.

– preLinDep: Presolve: Determines whether to check for and remove linearly dependent equality
constraints when presolving a problem.

– preObjCutDetect: Presolve: Determines whether to check for constraints that are parallel or
near parallel to a linear objective function, and which can safely be removed.

– presolveMaxGrow: Limit on how much the number of non-zero coefficients is allowed to grow
during presolve, specified as a ratio of the number of non-zero coefficients in the original
problem.

– presolveOps: Specifies the operations which are performed during the presolve.

– presolvePasses: Number of reduction rounds to be performed in presolve.

– primalPerturb: Factor by which the problem will be perturbed prior to optimization by primal
simplex.

– primalUnshift: Determines whether primal is allowed to call dual to unshift.

– qcCuts: Branch and Bound: Limit on the number of rounds of outer approximation cuts
generated for the root node, when solving a mixed integer quadratically constrained or mixed
integer second order conic problem with outer approximation.

– qcRootAlg: Determines which algorithm is to be used to solve the root of a mixed integer
quadratically constrained or mixed integer second order cone problem, when outer approximation
is used.

– qSimplexOps: Controls the behavior of the quadratic simplex solvers.

– quadraticUnshift: Determines whether an extra solution purification step is called after a
solution found by the quadratic simplex (either primal or dual).

– randomSeed: Sets the initial seed to use for the pseudo-random number generator in the
Optimizer.

– refineOps: Specifies when the solution refiner should be executed to reduce solution infeasibili-
ties.

– relaxTreeMemoryLimit: When the memory used by the branch and bound search tree exceeds
the target specified by the treeMemoryLimit control, the optimizer will try to reduce this by
writing nodes to the global file.

– repairIndefInitEq: Controls if the optimizer should make indefinite quadratic matrices positive
definite when it is possible.

– resourceStrategy: Controls whether the optimizer is allowed to make nondeterministic decisions
if memory is running low in an effort to preserve memory and finish the solve.

– rootPresolve: Determines if presolving should be performed on the problem after the global
search has finished with root cutting and heuristics.

– sbBest: Number of infeasible global entities to initialize pseudo costs on each node.

– sbEffort: Adjusts the overall amount of effort when using strong branching to select an infeasible
global entity to branch on.

– sbEstimate: Branch and Bound: How to calculate pseudo costs from the local node when
selecting an infeasible global entity to branch on.

172 Release Notes

– sbIterLimit: Number of dual iterations to perform in strong branching for each entity.

– sifting: Determines whether to enable sifting algorithm with the dual simplex method.

– xslp algorithm: Bitmap describing the SLP algorithm(s) to be used.

– xslp analyze: Bitmap activating additional options supporting model / solution path analyzis.

– xslp augmentation: Bitmap describing the SLP augmentation method(s) to be used.

– xslp barStartOps: Controls behaviour when the barrier is used to solve the linearizations.

– xslp convergenceOps: Bitmap describing which convergence tests should be carried out.

– xslp filter: Bitmap for controlling solution updates.

– xslp presolveOps: Bitmap indicating the SLP presolve actions to be taken.

– xslp zeroCriterion: Bitmap determining the behavior of the placeholder deletion procedure.

– sosRefTol: Minimum relative gap between the ordering values of elements in a special ordered
set.

– treeCompression: When writing nodes to the global file, the optimizer can try to use data-
compression techniques to reduce the size of the global file on disk.

– treeCutSelect: Bit vector providing detailed control of the cuts created during the tree search
of a global solve.

– treeMemoryLimit: Soft limit, in megabytes, for the amount of memory to use in storing the
branch and bound search tree.

– treeMemorySavingTarget: When the memory used by the branch-and-bound search tree exceeds
the limit specified by the treeMemoryLimit control, the optimizer will try to save memory by
writing lower-rated sections of the tree to the global file.

– treeQCCuts: Branch and Bound: Limit on the number of rounds of outer approximation cuts
generated for nodes other than the root node, when solving a mixed integer quadratically
constrained or mixed integer second order conic problem with outer approximation.

• Added options to conveniently set bits of XPRESS bitmap options:

– New bits of refineOps:

∗ refineOps lpOptimal

∗ refineOps mipSolution

∗ refineOps mipNodeLp

∗ refineOps lpPresolve

∗ refineOps iterativeRefiner

∗ refineOps refinerPrecision

∗ refineOps refinerUsePrimal

∗ refineOps refinerUseDual

∗ refineOps mipFixGlobals

∗ refineOps mipFixGlobalsTarget

– New bits of mipPresolve:

∗ mipPresolve reducedCostFixing

∗ mipPresolve logicPreprocessing

∗ mipPresolve allowChangeBounds

∗ mipPresolve dualReductions

∗ mipPresolve globalCoefTightening

∗ mipPresolve objBasedReductions

∗ mipPresolve allowTreeRestart

∗ mipPresolve symmetryReductions

– New bits of presolveOps:

∗ presolveOps singletonColRemoval

∗ presolveOps singletonRowRemoval

3.14 35 Distribution 173

∗ presolveOps forcingRowRemoval

∗ presolveOps dualReductions

∗ presolveOps redundantRowRemoval

∗ presolveOps duplicateColRemoval

∗ presolveOps duplicateRowRemoval

∗ presolveOps strongDualReductions

∗ presolveOps variableEliminations

∗ presolveOps noIpReductions

∗ presolveOps noGlobalDomainChange

∗ presolveOps noAdvIpReductions

∗ presolveOps linDependRowRemoval

∗ presolveOps noIntVarEliminations

∗ presolveOps noIntVarAndSosDetect

– New bits of scaling:

∗ scaling rowScaling

∗ scaling colScaling

∗ scaling rowScalingAgain

∗ scaling maximum

∗ scaling curtisReid

∗ scaling byMaxElemNotGeoMean

∗ scaling bigM

∗ scaling simplexObjScaling

∗ scaling ignoreQuadRowPart

∗ scaling beforePresolve

∗ scaling noScalingRowsUp

∗ scaling noScalingColsDown

∗ scaling disableGlobalObjScaling

∗ scaling rhsScaling

∗ scaling noAggressiveQScaling

∗ scaling slackScaling

– New bits of lpFlags:

∗ lpFlags dual

∗ lpFlags primal

∗ lpFlags barrier

∗ lpFlags network

– New bits of cutSelect:

∗ cutSelect clique

∗ cutSelect mir

∗ cutSelect cover

∗ cutSelect mirRowAggregation

∗ cutSelect flowpath

∗ cutSelect implication

∗ cutSelect liftAndProject

∗ cutSelect disableCutRows

∗ cutSelect gubCover

∗ cutSelect zeroHalf

∗ cutSelect indicator

– New bits of treeCutSelect:

∗ treeCutSelect clique

∗ treeCutSelect mir

174 Release Notes

∗ treeCutSelect cover

∗ treeCutSelect mirRowAggregation

∗ treeCutSelect flowpath

∗ treeCutSelect implication

∗ treeCutSelect liftAndProject

∗ treeCutSelect disableCutRows

∗ treeCutSelect gubCover

∗ treeCutSelect zeroHalf

∗ treeCutSelect indicator

• Renamed the following options to match the original XPRESS options names. Old option names
currently serve as alias, but are deprecated and will be removed in an upcoming release:

– treePresolveKeepBasis to treePresolve keepBasis.

– slpKnitroOptFile to knitroOptFile.

– All XPRESS Nonlinear (SLP) options, e.g., slpSolver to xslp solver.

• Fixed default values of single bit options for XPRESS bitmap options with negative default values.

3.14.1.5 Tools

GAMS Studio

• New version 1.6.1.

– New feature: Static Code Completion which can be activated by pressing Ctrl + Space.

– New feature: Allow to move multiple lines up and down using Ctrl + Shift + Arrow.

– New feature: Allow to close view tabs using the middle mouse button.

– Added instant update of tab size in editor when changing corresponding setting.

– Added word under cursor as default search entry when no text selection is present.

– Allow to move block selections using the arrow keys.

– Added ∗.inc as common extension for GAMS files.

– Added user defined extensions for GAMS files.

– Added automatic reloading of files that appear in the GAMS log.

– Added setting for user defined extensions for files to be automatically reloaded.

– Added auto-reload button to file-changed dialog.

– Added Studio Documentation entry in Help menu.

– Added setting to change default open file behavior (new group or current group) and adjusted
menu entry for alternative file opening behavior.

– Hotkey F1 jumps to the corresponding documentation entry for Project Explorer, Process Logs,
GDX Diff Dialog, and Search Widget.

– Improved GDX Viewer, e.g.:

∗ Added facility to access domains and filters in Table View.

∗ Show original index position of domains in both list view and table view.

∗ Improved automatic column widths.

– Stability improvements and minor bug fixes, e.g.:

∗ Fixed crash when LST file is missing (e.g. because of setting output=NUL).

∗ Fixed ”Reset View” not resetting splitter in the LST/LXI-Viewer.

∗ Fixed crash related to comment shortcut in solver option editor when pressing it multiple
times.

3.14 35 Distribution 175

∗ Fixed wrong sort order after resetting GDX Viewer.

∗ Fixed GAMS engine not appending /api to the URL on macOS when clicking OK directly
after editing the URL.

∗ Fixed eolCom not working in some dollar control option lines (like $include).

∗ Fixed jump to next search result if the result is in a different file and the current one has
no results.

∗ Fixed jump to search result occasionally not working.

∗ Fixed Find Next/Prev behavior for .opt files.

GDXDUMP

• Added a new line at the end of the file, which was missing if the option noHeader is set.

GDXMERGE

• Added command line option strict. When set to true, gdxmerge will terminate with an error in
case input files cannot be found or the output file already exists.

GDXXRW

• Fixed a potential missing initialization if incRC is set for symbols with either cDim or rDim equal 0.

3.14.1.6 APIs

CFG

• With the next major release the last argument opt: pointer of function cfgAlgReadyAPI will be
dropped.

DCT

• Functions dctLoadWithHandle, dctSymDomIdx, dctDomNameCount, and dctDomName have been dep-
recated and will be removed in the near future.

gams2numpy

• Improved error handling.

• New optional parameter domains for gdxWriteSymbolStr and gdxWriteSymbolRaw that can be
used to specify the domains of the symbol. Parameter needs to be a list of strings.

176 Release Notes

GMO

• Updated to better handle cases where quadratic structure is explicitly detected (i.e. useQ is set)
and some but not all of the nonlinear equations are quadratic. Several new functions have been
added. In addition, some existing functions have been renamed - the new names are more descriptive
and/or more consistent with new and existing function names. The old names are still available
as deprecated synonyms - we expect to remove these synonyms in the near future and potentially
without warning.

– Updated API version to 20 - compatible with some older API versions.

– New read-only properties:

∗ gmoObjLNZ: Number of linear nonzeros in objective gradient.

∗ gmoObjNLNZEx: Number of GMOORDER NL nonzeros in objective gradient.

∗ gmoObjQNZEx: Number of GMOORDER Q nonzeros in objective gradient.

∗ gmoObjCVecNZ: Number of nonzeros in c vector of objective (-1 if Q information not used).

∗ gmoObjConstEx: Objective constant - this is independent of useQ.

∗ gmoObjQConst: Constant in solvers quadratic objective.

– New functions:

∗ gmoGetObjCVec: Get c vector of quadratic objective.

∗ gmoGetObjSparseEx: Get information for gradient of objective function (sparse).

∗ gmoGetRowStatEx: Get Jacobian row nonzero counts: total and by GMOORDER XX.

∗ gmoGetRowCVecNZOne: Number of nonzeros in c vector of row si (-1 if Q information not
used).

∗ gmoGetRhsOneEx: Get individual equation RHS - independent of useQ.

∗ gmoGetRowSparseEx: Get info for one row of Jacobian (sparse).

∗ gmoGetRowCVec: Get c vector of the quadratic form for one row.

∗ gmoGetRowQConst: Get the constant of the quadratic form for one row.

– New read-write properties:

∗ gmoHessInclQRows: if useQ is true, this boolean property toggles the inclusion of GMO-
ORDER Q rows in the Hessian.

Attention

The default was originally true but has accidentally been changed to false with
this release (35.1.0). That is, if useQ is set, then the Hessian does not include entries
from quadratic equations anymore. The default is changed back to true in GAMS
38.2.0.

– Renamed properties/functions:

∗ gmoObjQNZ→ gmoObjQMatNZ: Number of nonzeros in lower triangle of Q matrix of objective
(-1 if useQ is false).

∗ gmoGetObjQ → gmoGetObjQMat: Get lower triangle of Q matrix of objective.

∗ gmoGetRowQ → gmoGetRowQMat: Get lower triangle of Q matrix of one row.

High-Level APIs

• We might drop support for macOS 10.14 for the C++ API with the next major release.

• Fixed an issue with an updater symbol that tries to update a non-existing symbol in the model
instance. This used to make the solve method of GAMSModelInstance fail, but now just increases
the no-match count.

• Fixed GAMSOptions.Output (.NET), GAMSOptions.setOutput (Java), and GamsOptions.output

(Python) parameter being ignored in GAMSJob::Run().

3.14 35 Distribution 177

Low-Level APIs

• For the next major releases, some clean-up of the distributed APIs is planned. In particular, it is
planned to remove all Delphi variants but the dcp version (i.e. gdxdcpdef.pas) and all Fortran
variants but the f9 version (i.e. gdxf9def.f90). Please contact us, if that causes any trouble for
your operation.

PAL

• Added functions palDataDirs and palConfigDirs to retrieve standard locations searched by
GAMS.

3.14.1.7 Model Libraries

GAMS Model Library

• nurses.gms : A Nurse Scheduling Problem (428)

GAMS Test Library

New models:

• gdxmerg3.gms : Test strict mode

• unload15.gms : Test $gdxUnload

• load13.gms : Test $gdxLoad

• conopt02.gms : CONOPT test suite - multi-thread test

• implset2.gms : Test for Implicit Set Definition with default records

• prevwork1.gms : PreviousWork Test

• decla3.gms : Test correct loading after multi declaration of domain set

• delim5.gms : Limited scope for $onDelim

• load14.gms : Test loading of GDX file with bad UELs

• eval08.gms : Test $eval with hidden functions

• embpy07.gms : Test no match limit for model instance

• embpy08.gms : Test filtered load from Embedded Code

178 Release Notes

x86 64bit
MS Windows

x86 64bit
Linux

x86 64bit
macOS

3.14.1.8 Solver/Platform availability matrix

x86 64bit
MS Windows

x86 64bit
Linux

x86 64bit
macOS

ALPHAECP 2.11 X X X
ANTIGONE 1.1 X X X
BARON X X X
BONMIN 1.8 X X X
CBC 2.10 X X X
CONOPT 3 X X X
CONOPT 4 X X X
CPLEX 20.1 X X X
DECIS X X X
DICOPT 2 X X X
GLOMIQO 2.3 X X X

GUROBI 9.1 X X X
GUSS X X X
IPOPT 3.13 X X X
KESTREL X X X
KNITRO 12.3 X X X
LGO X X X
LINDO 13.0 X X X
LINDOGLOBAL 13.0 X X X
LOCALSOLVER 10.0 X X X
MILES X X X
MINOS X X X
MOSEK 9 X X X
MSNLP X X X
NLPEC X X X
ODHCPLEX 5 X X
PATH X X X
SBB X X X
SCIP 7.0 X X X
SHOT 1.0 X X X
SNOPT 7.7 X X X
SOPLEX 5.0 X X X
XA X X
XPRESS 36.01 X X X

3.14.2 35.2.0 Minor release (June 02, 2021)

3.14.2.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz, Johannes Hedtrich, Bruce McCarl, Evangelos Panos,
Thomas Rutherford, and Kirk A. Yost.

3.14 35 Distribution 179

3.14.2.2 GAMS System

GAMS

• Allow to write point files with asynchronous solves as well.

• Moved the log line pointing to a reference file from the end of the compilation phase to the end of
the run, to make it easier to recognize.

• Automatically deactivate holdFixed if a model is solved asynchronously, since this could lead to
inconsistent solutions otherwise. Note that this can make a square model non-square as in cns01.
Also note, that this could require some adjustment to models which actually relied on the fact, that
models solved like this did not update the solution for fixed variables. Such a change was done for
the model jacobi.

• Fixed a problem where the file path specified with $gdxIn or $gdxLoad was ignored when inputDir
was applied.

• Fixed a potentially broken work file written with previousWork.

• Fixed the default for command line parameter empty. It should be on but was off.

• Fixed the dollar control options $setComps, $setNames, and $splitOption: They should generate
scoped compile-time variable but generated local ones.

• Fixed potentially wrongly reported bounds for models solved with solveLink=6.

• Fixed missing info about objective variable with solveLink = 3 and asyncSolLst = 1.

EMP

• Fixed handling of the empty UEL in the EMP info file

GMSPython

• Removed package tqdm.

3.14.2.3 Solvers

AlphaECP

• New library with some minor bug fixes.

CONVERT

• Fixed exporting of variable scale attribute in DumpGDX format.

CPLEX

• Fixed incorrect model status for feasible models after time out in multi-objective optimization.

180 Release Notes

KNITRO

• Fixed incorrect model status for KNITRO return code ”All nodes have been explored. Integer
feasible point found.” (KN RC MIP EXH FEAS).

3.14.2.4 Tools

GAMS Studio

• New version 1.6.2. with various bug fixes, stability improvements and minor enhancements, e.g.:

– Fixed issues with enumerated parameters in extended parameter editor.

– Fixed issues with ”set”, ”option”, and ”table” in code-completer.

– Fixed code-completer opening in non-code files.

– Fixed ”Open in current group” not being used for ”User Model Library” and ”New file”.

3.14.2.5 APIs

Python

• Fixed a bug in the GDX expert-level API that required gdxSymbolGetDomain to be called in a read
context (e.g. after gdxDataReadStrStart).

• Fixed a bug in gams2numpy functions gdxReadSymbolStr and gdxReadSymbolRaw that altered the
case of the symName argument.

DCT

• Fixed broken function dctSymDomNames for symbols that have the universe as part of their domain.
This caused a crash in sensitivity analysis of CPLEX and Gurobi for models with such variable or
equation symbols.

3.14.2.6 Model Libraries

GAMS Model Library

• Changed jacobi.gms : Asynchronous Jacobi Methods to work with the changed holdFixed

behavior with asynchronous solves, mentioned above.

3.15 34 Distribution

3.15.1 34.1.0 Major release (January 29, 2021)

3.15.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Marcel Adenauer, Wolfgang Britz, Michael Ferris, Erwin Kalvelagen,
Antti Lehtila, Bruce McCarl, Scott McDonald, Cornelius Rüther, Shima Sasanpour, Kaushik Sinha,
Elizabeth Wong, and Qi Yuan.

3.15 34 Distribution 181

3.15.1.2 Platforms

• The minimal required GLIBC version of the distribution for GNU/Linux is now 2.17.

• macOS 10.13 (High Sierra) is no longer supported.

3.15.1.3 GAMS System

GAMS

• Improved performance of dense operations with out-of-order index positions, as in the following
code snippet, where the assignment to d1 was significantly slower than the one to d2 in the past:

d1(j,i) = sum(ij(i,j), exp(pij(i,j)));

d2(j,i) = sum(ij(i,j), abs(pij(i,j)));

• Added new debugging option dmpUserSym, to print all symbols defined by the user.

• Added new variants $showFiles, $showMacros, and $showVariables of $show for shorter reports.

• Print an extra log line for compile time GDX operations $gdxIn and $gdxOut. When running
GAMS from one of the GAMS IDEs, these log line can be clicked to open the file referenced.

• Add anchors to the log that can be clicked when running GAMS from one of the GAMS IDEs for
each mention of an input/include file.

• Added extra info to the log in case of an unmatched $ifThen and its variants, that can be clicked
when a GAMS IDE is used to jump to the initial dollar control option.

• Added more details about the problem to the log in case of an error analyzing the solve statement.

• Added new variants for the command line parameter fileCase which allow to use upper or lower
case for referenced filenames only and not for the path to the files.

• Fixed a bug where certain checks for errors in the model structure were skipped, if upper and lower
bound of a variable are the same. While the selected solver would already have rejected the problem
most likely, now GAMS generates an execution error also if lower and upper bounds are the same
and

– the bounds of discrete variables do not have integer values,

– the lower and upper bounds of binary variables are not equal to 0 or 1, or,

– the lower bounds of semiCont/semiInt variables are smaller than 0.

• Altered the behavior of execute.checkErrorLevel, put utility exec.checkErrorLevel, and
put utility shell.checkErrorLevel so the execution would stop right away also within a
Flow Control structure, like a loop, if an error is encountered. In the past, it would just
stop after executing the flow control structure completely.

• Changed the behavior for unloading symbols with $unload. In previous versions the writing of the
symbols happened while the compiler processed the $unload instructions. With this version forward
the writing of the symbols and data to GDX is delayed until the GDX file is about to be closed.
This has several advantages, e.g. writing of aliases and full domain information, but it can result in
different content of the GDX file in some corner cases. Please check for details in the documentation.

• Avoid export of predefined symbols diag and sameAs to GDX. When all symbols should be exported,
these are skipped. When they are tried to be exported explicitly, there will be a compilation error.

• Allow to use Put Utility save to write a save file of the current state of execution inside loops and
other flow control structures as well.

• Fixed a wrongly raised compilation error which could happen when an implicit set definition was
used with a table statement without data.

• Fixed a problem where dumpOpt in combination with $onVerbatim skipped parts of an $ifThen
block.

182 Release Notes

GMSPython

• Added the packages pyexcelerate, pyyaml, xlsxwriter, and their dependencies.

3.15.1.4 Solvers

AMPL

• As announced, dropped the meta-solver AMPL.

BARON

• New libraries 21.1.13.

– Improved interface to IPOPT for local search.

– Changed default for option LPSol to new value -1, which makes BARON use CPLEX for LP
or MIP relaxations, if licensed, and CLP/CBC otherwise.

– Further performance improvements and bugfixes.

• Added option BarName to specify name of file into which to write problem in BARON format.

BDMLP

• As announced, dropped the solver BDMLP.

BENCH

• As announced, dropped the tool BENCH.

CONOPT

• New library 4.22.

– Some improvements for models with external equations.

3.15 34 Distribution 183

CONVERT

• The two solver links CONVERT and CONVERTD were merged under the name CONVERT.
Features that were formerly available in only one of the two solver links are now all usable with
the new CONVERT link (except for the dropped features, see below). CONVERTD is an alias for
CONVERT now.

• JuMP format:

– Added constraint names.

– Using @NLconstraint and @NLobjective instead of add NL constraint and set NL objective,
respectively.

– Changed default of option JuMP to jump.jl.

• Pyomo format:

– Fix export of SOS1 and SOS2 variable types.

– Changed default of option Pyomo to pyomo.py.

• DumpGDX format (formerly Hessian or Jacobian):

– The current behaviour of disabling variable and equation names or UELs when setting the option
to ”NOVENAMES.gdx” or ”NOUELS.gdx” has no special effect anymore. Use GDXNames
and GDXUELs instead.

• New options:

– Width

– DumpGDX (replaces options Hessian and Jacobian)

– GDXNames (instead of setting the former options Hessian or Jacobian to ”NOVENAMES.gdx”)

– GDXUELs (instead of setting the former options Hessian or Jacobian to ”NOUELS.gdx”)

– GDXHessian (enables hessian information for DumpGDX)

– GDXQuadratic (enables quadratic information for DumpGDX)

• Options PermuteEqus and PermuteVars are now available for all target languages.

• Removed the following formats:

– AlphaECP

– AmplNLC

– Analyze

– AnalyzeS

– Baron (GAMS/Baron link provides the option BarName to export this format)

– Lgo

– LindoMPI (GAMS/Lindo link provides the option WRITEMPI to export this format)

– LocalSolver (GAMS/Localsolver link provides the option writelsp to export this format)

– LSPSol

– Memo

– Minopt

– SFS

– ViennaDag

• Removed the following experimental formats:

– AmplNLCG

– CHull

184 Release Notes

– CppAD

– Lago

– NLP2MCPE

– PDCO

– Qmaker (use DumpGDX with GDXQuadratic enabled instead)

– UnitBC

• The following formats are deprecated and may be removed in an upcoming release:

– Hessian (use DumpGDX with GDXHessian enabled instead)

– Jacobian (use DumpGDX instead)

• The following options don't have any effect anymore and will be removed in an upcoming release:

– ConeReform

– IntervalEvalDebug

– Match

– Terminate

CPLEX

• New libraries 20.1.0.

– Conflict Analysis (iis) now supports SOS variables and indicator constraints.

– Added options:

∗ prereform: allows to set presolve reformulations

∗ conflictalg: algorithm CPLEX uses in the conflict refiner to discover a minimal set of
conflicting constraints in an infeasible model

∗ nodecuts: allows to decide whether or not cutting planes are separated at the nodes of the
branch-and-bound tree

∗ sos1reform: automatic logarithmic reformulation of special ordered sets of type 1 (SOS1)

∗ sos2reform: automatic logarithmic reformulation of special ordered sets of type 2 (SOS2)

∗ Value 5 to mipemphasis: finding high quality feasible solutions as early as possible

– Deprecated options:

∗ prelinear: Use prereform instead

– Deprecated features (will be removed in a future CPLEX release):

∗ Remote Object functionality.

∗ Distributed parallel optimization of mixed integer programming models (MIP).

• Fixed error messages for CPLEX error 5002 (CPXERR Q NOT POS DEF).

• Fixed an error that caused a crash for special option file input.

• Fixed an error that wrote additional quotes in GDX files of ranging and column generation
information.

• Fixed miptrace timing info.

3.15 34 Distribution 185

Gurobi

• New libraries 9.1.1.

• Added the following options:

– SolFiles: location to store intermediate solution files

– DualReductions: disables dual reductions in presolve

– ProjImpliedCuts: projected implied bound cut generation

– PSDCuts: PSD cut generation

– FeasRelaxBigM: Big-M value for feasibility relaxations

• Added possible option values for the following options:

– MinRelNodes: -1 (automatic)

– NodeMethod: -1 (automatic)

– PumpPasses: -1 (automatic)

– StartNodeLimit: -3 (shut off)

– ZeroObjNodes: -1 (automatic)

– AggFill: -1 (automatic)

– PreSparsify: -1 (automatic)

– TuneResults: -1 (best results)

– IISMethod: 2 (ignores bound constraints)

– IISMethod: 3 (IIS the LP relaxation)

– Method: 5 (both primal and dual simplex)

• Set option value to GUROBI default for the following options:

– scaleflag: -1

– Cutoff: maxdouble

– ImproveStartGap: 0

– MinRelNodes: -1

– NodeMethod: -1

– PartitionPlace: 15

– PumpPasses: -1

– ZeroObjNodes: -1

– AggFill: -1

– PreSOS2BigM: -1

– PreSparsify: -1

– TuneResults: -1

– TuneTrials: 3

• Removed the following options:

– premiqpmethod

– workerport

• Options for how to access the Gurobi compute server, cluster manager, or Instant Cloud can all be
set through the Gurobi license file. Therefore, the following link options have been removed:

– computeserver

– csgroup

– cspassword

https://www.gurobi.com/documentation/9.1/remoteservices/client_license_file.html
https://www.gurobi.com/documentation/9.1/remoteservices/client_license_file.html

186 Release Notes

– csport

– cspriority

– csrouter

– cstimeoutfrac

– cstlsinsecure

– icsecretkey

– icpool

– icpriority

– instantcloud

• Fixed issue of missing logfile output for logoption = 4.

• Fixed an error that wrote additional quotes in GDX files of ranging information.

Ipopt

• Updated MUMPS to version 5.3.5.

KESTREL

• The environment variable NEOS EMAIL can now be used to provide an e-mail address when submitting
a job to NEOS.

• Fixed unintentional reading from option file.

KNITRO

• New libraries 12.3.0.

– Improvements in performance, memory usage, numerical stability, and overall stability.

LINGO

• As announced, dropped the meta-solver LINGO.

LS

As announced, dropped the tool LS.

One possibility to adapt existing GAMS code is to use the Python function numpy.linalg.lstsq via
the GAMS embedded code facility.

For example, the GAMS code

https://numpy.org/doc/stable/reference/generated/numpy.linalg.lstsq.html

3.15 34 Distribution 187

Set i;

Parameter x(i), y(i);

Variables b0, b1, sse;

Equations sumsq, fit(i);

sumsq.. sse =n= 0;

fit(i).. y(i) =e= b0 + b1*x(i);

option lp = ls;

model leastsq /fit,sumsq/;

solve leastsq using lp minimizing sse;

to compute a linear regression for (x,y) can be replaced by

Set i;

Parameter x(i), y(i);

Scalars b0, b1, sse;

embeddedCode Python:

import numpy as np

x = np.array(gams.get(’x’, keyFormat=KeyFormat.SKIP))

y = np.array(gams.get(’y’, keyFormat=KeyFormat.SKIP))

A = np.vstack([np.ones(len(x)), x,]).T

res = np.linalg.lstsq(A, y, rcond=None)

gams.set(’b0’, [res[0][0]])

gams.set(’b1’, [res[0][1]])

gams.set(’sse’, [res[1][0]])

endEmbeddedCode b0 b1 sse

For a more detailed example, see the new LeastSquares.gms model from the GAMS Data Library.

Mosek

• New libraries 9.2.35.

MPECDUMP

• As announced, dropped the tool MPECDUMP.

NLPEC

• Set the (hidden) GAMS option relPath to 1 for the execution of the scalar GAMS model. This
fixes a problem when running NLPEC under KESTREL on NEOS.

ODHCPLEX

• New libraries 5.31.

• Fixed missing output of final CPLEX solve for fixed model.

• Fixed possible values of option odhpresolve to 1 and 2.

188 Release Notes

PYOMO

• As announced, dropped the meta-solver PYOMO.

SCIP

• New libraries 7.0 (9a11615b47).

SoPlex

• New libraries 5.0.2.

XPRESS

• Non-convex QCPs don't have to be solved as NLP anymore, but are solved by XPRESS Nonlinear
if a XPRESS-NLP or XPRESS-MINLP license is used (XPRESS-MINLP for MIQCPs).

• Fixed an issue that prevented the use of XPRESS Knitro with a XPRESS link license.

• Fixed a bug that prevented to solve (MI)QCP models with an XPRESS-MIP license.

3.15.1.5 Tools

CSV2GDX

• Report the line/field records to the log that lead to UNDF conversion for trace level 1 or bigger.

GAMS Studio

• New version 1.5.2.

– New feature: Allow to edit and store custom color themes in the settings dialog.

– New feature: Allow to define custom sections in the code, that can be folded using $onFold /
$offFold.

– Improved MIRO deploy dialog.

– Added e-mail field for NEOS submissions in NEOS dialog. This can also be initialized from
environment variable NEOS EMAIL (which can be set permanently in gamsconfig.yaml).

– Changed ”Autosave on Run” setting to save ALL modified files, not just files of the current
group.

– Changed default light theme comment color to grey for better distinction from declarations.

– Disabled GAMS syntax highlighting between $onPut/$offPut and $onEcho/$offEcho.

– Added ”select entry” on clicking timestamp in log.

– Pressing Enter in the LXI tree scrolls to the corresponding position in the LST view.

– Adjusted list of files in Reference File Viewer to be sorted by order in which they have been
used.

– Stability improvements and minor bug fixes, e.g.:

∗ Fixed rare problem with undetected external file changes.

3.15 34 Distribution 189

∗ Fixed broken include file links in combination with end of line comments.

∗ Fixed missing request for new search cache after switching file.

∗ Fixed rare crash related to LOG output.

∗ Fixed endlessly recurring message box for invalid GDX file.

∗ Fixed missing update of parameter history for a file assigned to more than one group.

∗ Fixed search results not being highlighted in .log files.

∗ Fixed search performance problem after reset search parameters.

∗ Fixed behavior of ESC key when current widget has a selection.

∗ Fixed syntax highlighting of table statements not detecting row headers.

∗ Fixed print dialog shortcut not working directly after Studio launch.

GDX2VEDA

• Increase the maximum length of symbol names in the Veda definition file from 31 to 63.

GDXDUMP

• When using the option noData, empty symbols were still written with a data statement. Now empty
symbols are also loaded from GDX.

GDXMRW

• Switch from C to C++ as the compiler for these utilities.

• An unordered map container is now used to address a performance issue with rgdx and filtered
reads.

3.15.1.6 APIs

C++

• We plan to drop support for Microsoft Visual Studio 2015 for the C++ API with the next major
release.

Python

• Added support for Python 3.9.

• gams2numpy:

– New functions gdxGetUelList and gmdGetUelList allow to retrieve the list of UELs.

– gdxReadSymbolRaw and gmdReadSymbolRaw do not return the list of UELs anymore.

– gdxReadSymbolStr and gmdReadSymbolStr have a new optional input parameter uelList.

– Fixed a bug that prevented loading of required shared objects in certain cases.

190 Release Notes

Matlab

• New GAMS Matlab API

– The API is distributed as package GAMS located in apifiles/Matlab/api.

– Examples can be found in apifiles/Matlab/examples.

GMO

• Fixed the functions gmoGetObjSparse, gmoGetRowSparse, gmoGetColSparse, gmoHessLoad,
gmoHessLagStruct, and gmoHessLagVal: they now work properly when forceLinear is set,
e.g., when using GUSS.

3.15.1.7 Model Libraries

GAMS API Library

• Changed the following examples to use the MONO compiler mcs instead of dmcs on Unix:

– CSBenders.gms : Test object oriented C# API using a (multi-threaded) Benders
Decomposition Algorithm

– CSCalcInverse.gms : Test expert level C# API to read and write indexed GDX

– CSCutstock.gms : Test object oriented C# API using a cutting stock example

– CSex1.gms : Test expert level C# API to read and write GDX

– CSex2.gms : Test expert level C# API to read and write GDX, set options and
execute GAMS

– CSWarehouse.gms : Test object oriented C# API using a warehouse location
problem

GAMS Data Library

New models:

• LeastSquares.gms : Demonstrate the use of numpy.linalg.lstsq on the diabetes test
problem using linalg ols (141)

GAMS Test Library

New models:

• show01.gms : Test $show feature

• dmpsym01.gms : Test dmpSym and dmpUserSym feature

• ide01.gms : Basic test for IDE mode

• cplex08.gms : CPLEX test suite - conflict analysis (841)

• convert13.gms : CONVERT test suite - apply dict to gams format (842)

3.15 34 Distribution 191

• convert14.gms : CONVERT test suite - nonlinear expression reformulations (843)

• convert15.gms : CONVERT test suite - support of nonlinear functions (844)

• unload12.gms : Make sure that sameAs and diag cannot be exported to GDX (845)

• unload13.gms : Unload with relaxed and full domain (846)

• unload14.gms : Check that unload happens at GDX file closing time (847)

• dumpopt1.gms : Test verbatim dumpOpt (848)

Removed models:

• LS01 (394)

• LS02 (395)

• LS03 (397)

• LS04 (398)

3.15.1.8 Solver/Platform availability matrix

x86 64bit
MS Windows

x86 64bit
Linux

x86 64bit
macOS

ALPHAECP 2.10 X X X
ANTIGONE 1.1 X X X
BARON X X X
BONMIN 1.8 X X X
CBC 2.10 X X X
CONOPT 3 X X X
CONOPT 4 X X X
CPLEX 20.1 X X X
DECIS X X X
DICOPT 2 X X X
GLOMIQO 2.3 X X X

GUROBI 9.1 X X X
GUSS X X X
IPOPT 3.13 X X X
KESTREL X X X
KNITRO X X X
LGO X X X
LINDO 12.0 X X X
LINDOGLOBAL 12.0 X X X
LOCALSOLVER 9.5 X X X
MILES X X X
MINOS X X X
MOSEK 9 X X X
MSNLP X X X
NLPEC X X X
ODHCPLEX 5 X X
PATH X X X
SBB X X X
SCIP 7.0 X X X

192 Release Notes

x86 64bit
MS Windows

x86 64bit
Linux

x86 64bit
macOS

SHOT 1.0 X X X
SNOPT X X X
SOPLEX 5.0 X X X
XA X X
XPRESS 36.01 X X X

3.15.2 34.2.0 Minor release (February 05, 2021)

3.15.2.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz and Bruce McCarl.

3.15.2.2 Solvers

CONOPT

• New libraries 4.23.

– Improvements for models with external equations, models with very large objective terms, and
models with variables that only appear in the objective function.

• Fix parallel function evaluation.

CONVERT

• Fix variable coefficients in JuMP format.

CPLEX

• Fixed issue of non-working option userincbicall.

GAMSCHK

• The output formatting for the BLOCKPIC and MATCHIT procedures was adjusted to better handle
very small or large values.

3.15.3 34.3.0 Minor release (February 25, 2021)

3.15.3.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Luis Alberto Herrero Rozas, Robert Howlett, Erwin Kalvelagen,
Antti Lehtila, Bruce McCarl, and Shima Sasanpour.

3.15 34 Distribution 193

3.15.3.2 GAMS System

GAMS

• Fixed a problem with embedded Python code and directory names longer than 128 characters.

• Fixed embedded Python code exceptions not handled correctly in case the exception message is
empty.

• Fixed a problem where dumpOpt in combination with $onVerbatim produced wrong dollar conditions
in an $ifThen block.

• Fixed an abnormal termination issue that occurred on Windows with pathologically-structured large
QP models and solvers that use QP structure explicitly.

• Fixed a potentially broken work file written with previousWork. There was a problem introduced
with GAMS 34.1 for models written to the work file.

• Fixed wrong behavior of break in certain loops over a set with a single element.

3.15.3.3 Solvers

CONOPT

• New libraries 4.24:

– The pre-processor has been updated so it will always return a solution.

• Fixed incorrect reference of row / column in error message.

CONVERT

• Fixed possibly incorrect sign of objective function in formats with explicit objective function (e.g.,
Ampl or JuMP).

• Fixed missing objective constant in formats with explicit objective function (e.g., Ampl or JuMP).

• Fixed possibly missing variable / equation in formats GAMS, DictMap and DumpGDX when
converting multiple formats at a time.

• Fixed possibly missing parenthesis when dealing with minus zero.

GAMSCHK

• An error in the POSTOPT procedure that could lead to a segmentation fault or undefined behavior
was fixed.

• The output formatting in the BLOCKLIST procedure was improved.

MOSEK

• New libraries 9.2.38.

194 Release Notes

ODHCPLEX

• Fixed issue of possibly incorrect objective bound reported by GAMS.

OsiMosek

• Fixed reported dual bound (ObjEst) and model status if solved without having closed the optimality
gap.

3.15.3.4 Tools

GAMS Studio

• New version 1.5.4. with various bug fixes, stability improvements and minor enhancements, e.g.:

– Added support for ports in GAMS Engine URL.

– Improved visibility of current word and parentheses highlighting.

– Fixed wrong color initialization for dark theme.

– Fixed unwanted cursor jump when searching listing files without results.

– Fixed MIRO execution issue if model filenames contain spaces.

– Fixed GDX file reloading while being rewritten.

– Fixed file links in log not handling relative paths on Windows.

GDXDUMP

• With option noData the empty symbols are marked with an end of line comment !!empty.

• The dollar control options are written in a consistent camel-case style if the output is in GAMS
syntax.

GDXXRW

• Fixed a crash which happened when the rng was defined multiple times for a text by accident.

3.15.3.5 APIs

3.15.3.6 Expert Level APIs

• When introducing gdxStoreDomainSets with GAMS 33 the default was accidentally set to 0 (don't
enable use of one dimensional sets as domain sets). This has been corrected with this version.
Setting gdxStoreDomainSets to 0 is for real experts only, since it can cause inconsistent GDX files
when used in combination with gdxSymbolSetDomain.

Matlab

• Fixed Java class attribute access to support Matlab versions down to 2017b.

3.16 33 Distribution 195

3.16 33 Distribution

3.16.1 33.1.0 Major release (November 01, 2020)

3.16.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz, Pablo Cachinero, Michael Ferris, and Ben Huebner.

3.16.1.2 Platforms

• We plan to increase the minimal required GLIBC version of the distribution for GNU/Linux to 2.17
with the next major release.

• We plan to drop support for macOS 10.13 (High Sierra) with the next major release.

3.16.1.3 GAMS System

GAMS

• Allow to set the .stage attribute for discrete variables as well. This can be useful for certain solvers
like SCIP.

• The status of the Embedded Code Facility has been changed from beta to released and fully sup-
ported. The nature of embedded code (especially Python embedded code) prohibits a level of
backward compatibility as we guarantee for intrinsic GAMS language features: The Python inter-
preter together with distributed packages are evolving. Moreover, the GAMS/Python communication
(e.g. via gams.get()/set()) will be subject to necessary modifications.

• Allow multi-line Python strings constructed with triple quotes (''' or """) in embedded Python code
without getting additional spaces from the internal extra indentation. For multiple lines of Python
code that use the line continuation character \, extra indentation is not omitted.

• Added new dollar control options $on/offIDCProtect to control if symbols which are declared as
external input can be changed at execution time.

• Quoted text in a display statement adds now an entry to the navigation pane of the
LST Viewer in GAMS Studio as well.

• Print an extra log line when execute load (or one of its variants) is executed. When running GAMS
from one of the GAMS IDEs, this log line can be clicked to open the file loaded. Also the log lines
generated for execute unload[idx] were adjusted for better distinction. So adding these lines to a
model

execute_unload ’t.gdx’, f;

execute_unloadidx ’t.gdx’, f;

execute_load ’t.gdx’, f;

generates this log:
--- GDX File (execute unload) C:\t m p\t.gdx
--- GDX File (execute unloadidx) C:\t m p\t.gdx
--- GDX File (execute load) C:\t m p\t.gdx

• Fixed a problem using captureModelInstance with solveLink=5/6/7; if captureModelInstance=1
and solveLink=6/7, solveLink will be reset to 3/4 automatically.

• Fixed a problem with file names longer than 128 characters for option IDCGenerateJSON.

196 Release Notes

GMSPython

• Added the packages urllib3, certifi, and their dependencies.

3.16.1.4 Solvers

AMPL, LINGO, MPECDUMP, PYOMO

• We plan to drop the meta-solvers AMPL, LINGO, MPECDUMP, and PYOMO with the next major
release. Convert will continue to produce model instances in these formats with the exception of
MPECDUMP.

ANTIGONE, IPOPT, SHOT, SCIP

• Updated Intel MKL to version 2020.2 on Linux and macOS.

BARON

• New libraries 20.10.16.

– Performance improvements including faster automatic differentiation, improved probing, im-
proved local search, and improvements in BARON's cutting plane routines.

– Changed default of option WantDual to 1. That is, dual values are now provided by default
for nonlinear problems, too.

– CBC updated to 2.10.5.

BDMLP

• We plan to drop the LP/MIP solver BDMLP with the next major release. Other free alternatives
like Cbc outperform BDMLP.

BENCH

• We plan to drop the meta-solver BENCH with the next major release. Scripting tools provide much
better facilities to generate benchmarks.

CONOPT

• New library 4.21.

– Added a warning if the unscaled residuals in a feasible model are large due to very large scale
factors.

– Updated the selection of definitional constraints and improved the numerical behavior.

– Changed tolerances in the derivative debugger related to very large derivatives.

– Logic for Definition constraints updated:

∗ Infeasibilities are handled with a forward push routine and a backward pull routine.

∗ The way dense fill-in is removed is updated and the runtime is improved.

– Changed a tolerance in the Derivative debugger.

– Fixed an error in one-dimensional search when there are large 2nd derivatives or discontinuous
1st derivatives. Tried to recover a point that did not exist.

– Fixed an error with model hda: there was a conflict between monotonicity and a tolerance.

– Fixed some occurrences of system errors 12371, 12372, 88120.

– Fixed a problem with a very small pivot (non-default tolerance) that created an incorrect
penalty constraint.

– Fixed an error that could appear in models with very long constraints.

3.16 33 Distribution 197

Convert and ConvertD

• Added support for semi-integer and semi-continuous variables and complementarity constraints to
scalar JuMP output format.

• Added information about discrete variables to the GDX files created by options Hessian and
Jacobian for CONVERTD.

• The Hessian and Jacobian option for CONVERTD report the .stage variable and equation
attribute in the variable and equations records only. In the past, the .prior and .scale attributes
were reported.

• Fixed an error with suppressed complementarity constraints in Pyomo output.

• Fixed handling of semicontinuous variables with lower bound equal upper bound when writing MPS
files.

Couenne

• As announced, the solver Couenne has been removed from the GAMS system. For the time being,
libraries of GAMS/Couenne are available at the COIN-OR GAMSlinks project. Note, that GAMS
does not test or offer support for these libraries.

CPLEX

• The two solver links CPLEX and CPLEXD were merged under the name CPLEX. Features that
were formerly available in only one of the two solver links are now all usable with the new CPLEX
link. Those features include:

– Formerly only CPLEX:

∗ SOS1 and SOS2 sets

∗ Branching priorities

∗ Indicator constraints

∗ Conflict refiner

∗ Ranging / sensitivity analysis

∗ Solution pool for mixed-integer (quadratic) problems

– Formerly only CPLEXD:

∗ Better handling of quadratic constraints (e.g. providing duals)

∗ Hot start capability in GUSS

∗ Solving multiple instances of GAMSModelInstance in parallel using GAMS APIs

∗ Solvelink=solvelink.asyncThreads

∗ Cplex remote object and distributed MIP

∗ Benders decomposition

• New features:

– Partial MIP starts: allow to only include variable levels to the MIP start that are integer
(within the tolerance tryint, see mipstart)

– Multiple MIP starts provided via GDX (see multimipstart)

– Lower / upper bound ranging / sensitivity analysis (see bndrng)

– Lazy constraints (see userlazyconcall or .lazy)

– Added MIP statistics (e.g. number of nodes, solve time, objective lower and upper bounds) to
BCH call via GDX files usergdxnameinc and usergdxname.

https://github.com/coin-or/GAMSlinks/releases

198 Release Notes

• Added options:

– Added option multimipstart for multiple MIP starts

– Added option conflictdisplay

– Added option multobjtolmip: the default value changes the behavior of the multi-objective
optimization for continuous models

– Added option bndrng: lower / upper bound ranging / sensitivity analysis

– Added option indicoptstrict: handle erroneous indicator constraints

– Added option userlazyconcall: adding lazy constraints using BCH

– Added dot option .lazy: select linear constraints as lazy constraints

– Added option mipstopexpr: custom MIP stopping criterion to terminate during branch-and-
bound

• Changed options:

– Changed behaviour of rngrestart: If the specified file extension is GDX, the ranging results
will be exported as GDX instead of GMS.

– Changed behaviour of miptracenode and miptracetime: option has no effect and MIP trace is
appended when the solver reports global progress

– Changed behaviour of quality: added entries regarding indicator constraints and MIP condition
numbers

– Changed default of randomseed from 0 to 201909284

– Changed default of tuningtilim from 10000 to 1e75

– Changed default of tuningdettilim from 1e7 to 1e75

– Changed default of workmem from 128 to 2048

– Changed name rtlcuts to rltcuts

– Added documentation for partial MIP starts to mipstart

• Updated documentation for multiobjective optimization about CPLEX's two different strategies for
continuous and discrete models (see also multobjtolmip).

• Fixed an error in BCH user heuristics where a false objective function of the incumbent was reported
to CPLEX (in former CPLEXD link).

GUROBI

• New libraries 9.1.0.

• New option rngrestart: Export sensitivity information as GAMS readable format (GMS or GDX).

• New option mipstopexpr: Custom MIP stopping criterion to terminate during branch-and-bound.

• New option norelheurwork: controls NoRel heuristic.

• New option norelheurtime: controls NoRel heuristic.

• New option tunecleanup: Enables a tuning cleanup phase.

• New option poolgapabs: Maximum absolute gap for stored solutions.

• New option integralityfocus: Indicator for stricter enforcement of integrality constraints.

• New option value -1 for option .lazy: Treat as a user cut.

• Removed option norelheuristic. A finer control of Gurobi's NoRelHeuristic is done through the
newly introduced options norelheurwork and norelheurtime.

3.16 33 Distribution 199

IPOPT

• Changed default of option acceptable iter from 15 to 0. This disables a heuristic in Ipopt to stop
early with a solution that doesn't satisfy the usual termination tolerances when progress is slow.

Kestrel

• Fixed a bug that prevented job submission on Linux and macOS due to a missing certificate.

Lindo/LindoGlobal

• New libraries 12.0.210.

• Added the facility to detect irreducible infeasible and unbounded sets (IIS and IUS) and some
options to control this.

• Added support for functions div, log2, round, and trunc.

LocalSolver

• New libraries 9.5 (20200923).

LS

• We plan to drop the least-square solver LS with the next major release. The Python method
numpy.linalg.lstsq included in the GAMS distribution can be used within an embedded Python
code section to efficiently minimize the sum of squared residuals.

MOSEK

• New libraries 9.2.28.

ODHCPLEX

• More features available in the GAMS link:

– SOS1 and SOS2 sets

– Branching priorities

– Indicator constraints

– Partial MIP starts: allow to only include variable levels to the MIP start that are integer
(within the tolerance tryint, see mipstart).

– Multiple MIP starts provided via GDX (see multimipstart)

200 Release Notes

SCIP

• New libraries 7.0 (5b13bda).

• The workaround to assign a non-continuous variable to a block for problem decomposition (use suffix
.prior without priorOpt=1) is not necessary anymore (.stage is now available for non-continuous
variables). If one runs a model that continues to use this workaround with this version of GAMS,
all non-continuous variables will end up in block 1 independent of the .prior value.

SHOT

• Gurobi is now available as solver for the MIP or MIQCP relaxation on macOS, too.

• Fixed return of final dual bound found by SHOT to GAMS (objEst attribute).

SolveEngine

• Dropped link to Satalia SolveEngine because Satalia retired SolveEngine Beta and a successor is not
yet available.

SoPlex

• New libraries 5.0 (2afa64b6).

XPRESS

• New libraries 8.10.1.

– Removed option mislpAlgorithmFinalSLP.

– Removed option mislpAlgorithmNoFinalRounding.

– Added option mislpCutStrategy.

– Added option mipstopexpr: Custom MIP stopping criterion to terminate during branch-and-
bound.

3.16.1.5 Tools

GAMS IDE and GAMS Studio

• Fixed that Bonmin and Ipopt solver option files could not be created or edited via the options editor.

3.16 33 Distribution 201

GAMS Studio

• New version 1.4.2.

– New feature: Remote execution with GAMS Engine.

– New feature: Allow to open $[bat|lib]include files by context menu, F2 shortcut, or holding
Ctrl and click on the filename.

– Renamed About GAMS dialog to GAMS Licensing dialog to make it more clear, that this allows
to install a GAMS license.

– Improved GAMS license detection during Studio start and in GAMS Licensing dialog; if the
content of a license file is in the clipboard when starting Studio, a dialog to install the license
is started.

– Added support for comma separated list as file filter in search dialog.

– Changed behavior of ”Whole Words” search option: $ is now considered a word boundary.

– Reworked NEOS integration, e.g.:

∗ Allowing to kill submitted active jobs.

∗ Moved NEOS control options into dialog.

∗ Changed default parameter from forceWork=1 to previousWork=1.

∗ Improved handling of network errors.

– Minor bug fixes and improvements, e.g.:

∗ Added dialog for confidentiality and terms of use confirmation before submitting models
to NEOS.

∗ Added Arrow Up/Down as shortcuts to jump to search results when Results View is
focused.

∗ Added tooltips to options in search dialog.

∗ Syntax coloring improvements.

∗ Fixed file codec selection for the model assembly dialog.

∗ Fixed and enhanced reloading mechanism of the GDX Viewer.

∗ Fix to ensure that lowercase directory names are always used for MIRO directories, e.g.
data mymodel instead of data myModel.

∗ Fixed empty history on welcome page when starting Studio with no tabs open.

∗ Fixed potential crash if files are modified in the background while a dialog is open.

MessageReceiverWindow

• Since GAMS does not support any 32bit platform anymore, this tool is compiled for x64 instead of
Any CPU now.

MODEL2TEX

• Deprecated command line parameter -e has been removed.

3.16.1.6 APIs

.NET

• Since GAMS does not support any 32bit platform anymore, the .Net DLL is compiled for x64 instead
of Any CPU now.

https://www.gams.com/engine/

202 Release Notes

C++

• Adjusted compilation of examples to new handling of critical sections in expert level APIs.

• Adjusted some examples since GAMS/CplexD is now a synonym for GAMS/Cplex.

Python

• New experimental API gams magic that enables the use of GAMS in Jupyter notebooks has been
added. This release of gams magic should be considered a beta product and will be subject to
changes in the future that may result in compatibility issues.

• New API gams engine that allows the creation of Python clients for GAMS Engine has been added.

3.16.1.7 Expert Level APIs

• The new files gcmt.c and gcmt.h are now required when compiling/linking C expert level API files
(e.g. gdxcc.c/h) to protect critical sections in the interface for multi-threaded applications. On
some platforms, this might also require linking against additional libraries, e.g. libpthread on
Linux. Adding the define GC NO MUTEX when compiling the C expert level API files provides the old
behavior.

• Added new call gdxStoreDomainSets to the GDX API to control the use of one-dimensional sets
as domain sets. Disabling the storage of domain information for a one-dimensional set when writing
to GDX saves memory but prevents the set from being used for domain checking.

3.16.1.8 Model Libraries

GAMS API Library

New models:

• Pgams engine.gms : Test gams engine API (60)

• Pneos.gms : Test submitting GAMS models to NEOS server (61)

GAMS Test Library

New models:

• lindgl05.gms : Test new functions added to GAMS/Lindo(Global) (828)

• cplex04.gms : CPLEX test suite - free gams model test (829)

• cplex05.gms : CPLEX test suite - interactive (830)

• cplex06.gms : CPLEX test suite - multiobjective (831)

• cplex07.gms : CPLEX test suite - bch incumbent checker (832)

• sens01.gms : sensitivity / ranging test (833)

• mipstopexpr1.gms : mip stop expression test (834)

• attrib01.gms : Test attribute setting and preservation in Convert (835)

• gamsjupyter01.gms : Test GAMS Jupyter Notebooks (836)

• cmi01.gms : Test captureModelInstance option with all solveLink combinations (837)

3.16.1.9 Solver/Platform availability matrix

https://jupyter.org/
https://www.gams.com/engine/

3.16 33 Distribution 203

x86 64bit
MS Windows

x86 64bit
Linux

x86 64bit
macOS

ALPHAECP 2.10 X X X
ANTIGONE 1.1 X X X
BARON X X X
BDMLP X X X
BONMIN 1.8 X X X
CBC 2.10 X X X
CONOPT 3 X X X
CONOPT 4 X X X
CPLEX 12.10 X X X
DECIS X X X
DICOPT 2 X X X
GLOMIQO 2.3 X X X

GUROBI 9.1 X X X
GUSS X X X
IPOPT 3.13 X X X
KESTREL X X X
KNITRO X X X
LGO X X X
LINDO 12.0 X X X
LINDOGLOBAL 12.0 X X X
LOCALSOLVER 9.5 X X X
MILES X X X
MINOS X X X
MOSEK 9 X X X
MSNLP X X X
NLPEC X X X
ODHCPLEX 5 X X
PATH X X X
SBB X X X
SCIP 7.0 X X X
SHOT 1.0 X X X
SNOPT X X X
SOPLEX 5.0 X X X
XA X X
XPRESS X X X

3.16.2 33.2.0 Minor release (December 01, 2020)

3.16.2.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release.

3.16.2.2 GAMS System

GAMS

• Fixed some problems with Implicit set definition:

– When doing a filtered load from GDX or embeddedCode, the defined set only gets the elements
actually loaded but not the ones that were filtered out.

– Merging to start of existing data (with $onMulti) does not lead to out-of-order data anymore.

204 Release Notes

3.16.2.3 Solvers

CPLEX

• Fixed issue where option writemst did not produce any output.

KNITRO

• Add workaround to avoid abnormal termination of Knitro 12.2 libraries on AMD processors.

3.16.2.4 Tools

GAMS Studio

• New version 1.4.5 with various bug fixes, stability improvements and minor enhancements, e.g.:

– Added error output to system log if the given MIRO installation location is invalid.

– Disabled run actions and MIRO menu when active group has no active executable file.

– Fixed a problem with GAMS parameters being ignored in rare cases.

– Fixed a potential crash when reloading a large gms file while the syntax highlighter was still
processing that file.

– Improved Search and Replace, e.g.:

∗ Improved performance of Find Next/Previous.

∗ Added possibility to interrupt Find Next/Previous.

∗ Fixed a problem which did not allow to jump to search results beyond the 50,000th match
of the search term.

∗ Fixed handling of wrapped lines in search.

– Improved MIRO and Engine dialogs, e.g.:

∗ Removed standalone MIRO assembly file dialog and added it to a new reworked MIRO
deploy dialog instead.

∗ Fixed version comparison in GAMS Engine dialog.

3.17 32 Distribution

3.17.1 32.1.0 Major release (July 31, 2020)

3.17.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Youngdae Kim, Michaja Pehl, Thomas Rutherford, and Igor Sheleg.

3.17.1.2 Platforms

• Dropped support for Sparc Solaris and AIX systems.

3.17.1.3 GAMS System

GAMS

• New default values for some GAMS options:

3.17 32 Distribution 205

new default old default

logOption 3 1

empty on off

errMsg 1 0

errorLog 2147483647 0

lstTitleLeftAligned 1 0

putPW 32767 255

pageContr 2 3

pageSize 0 58

pageWidth 32767 255

optCR 0.0001 0.1

intVarUp 0 1

resLim 1e10 1000

solveLink 2 0

iterLim 2147483647 2e9

In order to work with the default values active in GAMS 31, copy the file gams31config.yaml (part
of the GAMS system directory) into the location searched by GAMS for configuration files (e.g. the
GAMS system directory) with the name gamsconfig.yaml.

• Extended the impact of command line parameter etLim, so that it reduces resLim for models solved
automatically if that is greater than etLim - timeElapsed.

• Added new option zeroToEps to allow reading zero values as EPS at execution time.

• Added new options procTreeMemMonitor and procTreeMemTicks to enable monitoring of a memory
high-water mark for the GAMS process and all its children.

• Adjusted behavior of command line parameters restart, restartNamed, save, saveObfuscate, xsave,
and xsaveObfuscate: If a file name is given including a file extension, this extension is kept. In the
past it was replaced by a default extension. Also, ? is not allowed in the file name when writing a
save file anymore.

• Extended influence of command line parameter inputDir, so that it also extends the search path for
GDX files loaded with $gdxIn.

• Extended the search space for files included via $libInclude, extrinsic function libraries,
and external equation libraries: Now, the directories inclib, extrinsic functions, and
external equations, resp., are checked in all GAMS standard locations before [GAMS System

Directory]/inclib, [GAMS System Directory], and [GAMS Working Directory], respectively.

• Renamed the command line parameter execErr to maxExecError to be in sync with the related
function maxExecError. The old name is still available as a synonym.

• Added command line parameter previousWork to instruct GAMS to write a workfile using the
format of an older GAMS version. This is useful in particular with submission to the NEOS server.

• Adjusted the function values returned by the power functions (e.g. x∗∗y). In some cases where
x is very small and positive the derivatives may become unbounded but the function values are
well-behaved and can still be computed precisely and without overflow.

• Fixed a problem on Linux when the XGD CONFIG DIRS or XGD DATA DIRS variables have more than
7 directory entries.

GMSPython

• Added the packages pandas, numpy, openpyxl, schema, tqdm and their dependencies.

206 Release Notes

macOS Installer

• New way to install GAMS on macOS using a PKG installer, see the installation notes.

Windows Installer

• Added a checkbox for enabling/disabling the creation of a start menu entry to the Select Start

Menu Folder Wizard page. The default state of the checkbox is inherited from previous installations.

• Command line argument /noIcons can be used in order to check the Don't create a Start Menu

folder checkbox on the Select Start Menu Folder page.

• New command line argument /desktopIcons=yes|no (default:yes) can be used in order to turn
on/off the creation of Desktop icons.

• The installer now writes all registry entries either to HKEY CURRENT USER\Software\Classes (current
user) or HKEY LOCAL MACHINE\Software\Classes (all users).

• Show warning in case the system GAMSDIR environment variable is updated, but a user GAMSDIR

environment variable exists and not vice versa.

• Always notify the operating system about changed environment variables.

• Changed the default installation location from C:\GAMS\win64\XX.Y to C:\GAMS\XX (e.g.
C:\GAMS\32).

• Desktop shortcut names have been changed to GAMS IDE 32 and GAMS Studio 32.

• Start menu entry reads GAMS XX (e.g. GAMS 32) instead of GAMS XX.Y (win32/win64).

• Fixed a bug that prevented file associations (.gdx and .gms files) from working properly in certain
cases.

3.17.1.4 Solvers

Bonmin, CBC, Couenne, LocalSolver, Osi links, SHOT, SoPlex

• Fixed that a setting of GAMS option iterlim to 2000000000 (the previous default) was not passed
on to the solver.

CONOPT

• Added Conopt4 to the thread-safe solvers. It now can be used with solveLink=6.

CONVERT

• New output format: JuMP scalar model.

GUROBI

• Fixed a bug introduced with 31.1.0 and only partly fixed in 31.1.1 where the GRB LICENSE FILE

environment variable was incorrectly dropped.

3.17 32 Distribution 207

Ipopt

• Updated Mumps to 5.3.3.

KESTREL

• Kestrel interface source code has been ported from Python 2 to Python 3.

• Also on Windows, the source code of the link is now distributed instead of a binary.

• The GAMS distributed Python intepreter (GMSPython) is used for running the Kestrel client.

KNITRO

• New libraries 12.2.2.

– Knitro 12 adds many improvements to the Knitro mixed-integer (MIP/MINLP) branch-and-cut
solver. Several new cuts controlled by Knitro user options have been introduced including
mixed-integer rounding cuts, zero-half cuts and clique cuts. In addition, improvements were
made to the knapsack cuts implementation.

– Knitro 12 offers several enhancements to the Knitro presolver. The presolver has been extended
to allow multiple passes through the presolve operations. There are new presolve operations
for variables in complementarity constraints and to tighten variable bounds.

– Knitro 12 offers efficiency and storage/memory improvements in the callable library C API -
the one used in the GAMS link!

– Knitro 12.2 enables default parallelism when using multi-start or multi-algorithm features.

– Knitro 12.2 offers several performance speed-ups:

∗ on very large models with the default (i.e. interior-point) algorithm: potentially dramatic

∗ when using the limited-memory BFGS Hessian option

∗ in the SQP algorithm

– A number of minor bug fixes and performance improvements are included in this release: rare
segmentation fault with knapsack cuts fixed, bug in convexity detection fixed, poor/slow choice
of algorithm for LP sub-problems fixed, poor/slow presolve issue on MIP models fixed.

LocalSolver

• New libraries 9.5 (20200701).

• Setting iterlim to the maximal possible value (2147483647) will not change the default iteration
limit of LocalSolver anymore, see also the documentation.

Mosek

• New libraries 9.2.14.

208 Release Notes

ODHCPLEX

• New libraries 5.2.2.

• New options integerTol, subOrder, subPresolve, zeroTol, penPerturb, and threadZeroSync have
been added. The options newCallback and variableClean allow for more option values.

• New handling of solutions that are not quite integer but within the integer feasibility tolerance of
CPLEX but become infeasible if one rounds the integer variables. ODHCPLEX used to reject such
solutions (while in CPLEX (and other MIP solvers) such solutions are considered acceptable for the
user).

SoPlex

• Setting iterlim to the maximal possible value (2147483647) will not change the iteration limit of
SoPlex anymore, so that SoPlex will run without a limit.

XPRESS

• New libraries 8.8.5.

• New solver: XPRESS SLP and XPRESS Knitro for nonlinear (mixed-integer) programming.

– XPRESS SLP is a sequential linear programming (SLP) solver and XPRESS Knitro equals
Knitro, but the problem is passed through the XPRESS nonlinear presolve.

– Both can solve convex MINLP to global optimality and act as a heuristic method for general
nonconvex problems.

– XPRESS SLP offers a multistart to run different configurations in parallel or to start with
multiple initial guesses.

– If both XPRESS SLP and XPRESS Knitro are licensed, XPRESS can choose the nonlinear
solver automatically based on instance attributes.

– For more information about the XPRESS SLP algorithm, see FICO Xpress Optimization

Help (Nonlinear Reference Manual).

– XPRESS SLP and XPRESS Knitro are available on all supported platforms.

– XPRESS SLP requires a license for continuous nonlinear models or for mixed-integer nonlinear
models.

– XPRESS Knitro requires a GAMS/Knitro license in addition to the XPRESS license for
(mixed-integer) nonlinear models.

3.17.1.5 Tools

CHK4UPD

• If the components of the checked license have different expiration dates, the validity of the license
always refers to the base component now. In the past, the component with the oldest expiration
date was used.

FINDTHISGAMS

• Support for registry key changes of the Windows installer has been added.

• New command line parameters list, delete, write, and ide. See the documentation for detailed
information.

https://www.fico.com/fico-xpress-optimization/docs/latest/solver/nonlinear/HTML/
https://www.fico.com/fico-xpress-optimization/docs/latest/solver/nonlinear/HTML/

3.17 32 Distribution 209

GAMS Studio

• New version 1.3.3.

– New feature: Code Folding

∗ Shortcut Alt+L switches folding state of the current block.

∗ Shortcut Alt+O folds and Shift+Alt+O unfolds all foldable blocks.

∗ Code folding is possible for pairs of parentheses that span multiple lines or Dollar Control
Options that come in pairs.

– New feature: Remote execution on NEOS Server for Optimization

∗ Models can be executed remotely via the menu GAMS -> Run NEOS or the execute button
located in the toolbar.

∗ Note: Usually it takes some time before the GAMS version at NEOS gets updated. During
that time one might get an error because of an incompatible workfile version. This can be
avoided by setting the command line parameter previousWork to 1.

– New feature: Navigation History

∗ Mouse button 4/5 or Alt+Left/Right on Windows/Linux and Ctrl+[/] on macOS can
now be used to jump back to a previous text cursor positions or forward again. This is
helpful to quickly navigate between different locations in files that one is currently working
with.

– New feature: Distraction Free Mode

∗ Distraction Free Mode quickly turns off everything except for the editor window for
better focus on modeling work. This is especially useful for small screens. When leaving
Distraction Free Mode all Studio widgets will be put back where they were. To switch
to and from Distraction Free Mode go to the Menu > View > Distraction Free Mode, or
press Ctrl+Alt+Enter on Windows and Linux, or Cmd+Option+Enter on macOS.

– New feature: Print support for text files (gms, txt, lst, dmp, ...). This is accessible with the
shortcut Ctrl+P or in the menu File -> Print.

– Added automatic switch to first non-empty tab when searching the Model Library Explorer.
The old tab selection is restored if that tab contains results again.

– Added header labels to copy actions in GDX Viewer table view. Two additional entries that
allow to copy without the labels are available via the context menu.

– Added dmp extension to list of executable file types.

– Added Shift+Option+Up/Down hotkey to start block-edit on macOS.

– Changed terminal to native macOS Terminal on macOS.

– Stability improvements and minor bug fixes, e.g.:

∗ Fixed syntax highlighter not recognizing ”+” and ”-” in ”Model” statement.

∗ Fixed missing LXI pane for files containing more than one dot.

∗ Fixed group name for gms files containing more than one dot in the name.

∗ Fixed rare random crash when opening the MIRO Model Assembly File dialog.

∗ Fixed some icons not following selected theme.

∗ Fixed line wrapping behavior not following settings.

∗ Fixed that bookmarks in help view were not being saved permanently.

∗ Fixed crash on reading LXI files containing empty lines.

∗ Fixed some issues with the license file detection and info in the ”About GAMS” dialog.

∗ Fixed missing reload if a opened GDX file gets recreated.

MODEL2TEX

• Source code of model2tex has been ported to Python 3 and does not support Python 2 anymore.

• Distribute source code instead of binary on Windows. model2tex.exe has been replaced by
model2tex.cmd.

• The GAMS distributed Python interpreter (GMSPython) is used for executing model2tex.

• Command line parameter -e has been deprecated and will be removed in the future.

https://neos-server.org/neos/

210 Release Notes

3.17.1.6 APIs

• Automatically finding a GAMS installation from the Windows registry has been changed according to
the changes to the Windows installer ([HKEY CURRENT USER|HKEY LOCAL MACHINE]\Software\Classes\gams.location).

• The performance of the Object-oriented APIs (in particular the class GAMSDatabase) has been
improved.

.NET

• Change to GAMSWorkspace.AddCheckpoint: The checkpointName is now determined automatically
as well when given as string.Empty, not only when set to null or being omitted.

Python

• As announced, dropped support for Python 2. The Object-oriented API as well as the expert-level
APIs can be used with Python 3.6, Python 3.7, and Python 3.8.

• An experimental object oriented data interface called gamstransfer has been added. This interface
is built on the expert-level Python APIs and simplifies the work of reading and writing GDX files.
The underlying data structure is built on structured numpy arrays; this structure allows data to be
easily converted directly to Pandas DataFrames (or other native Python data types). This release of
gamstransfer should be considered a beta product and will be subject to changes in the future
that may result in compatibility issues.

• New experimental API gams2numpy for communicating data between GAMS and numpy arrays has
been added. This release of gams2numpy should be considered a beta product and will be subject to
changes in the future that may result in compatibility issues.

3.17.1.7 Model Libraries

GAMS Model Library

New models:

• scenmerge.gms : Combining scenario results in a directory tree with gdxmerge (427)

GAMS Test Library

New models:

• zerotoeps1.gms : Test data loading with $onEps and option zeroToEps (821)

• idir01.gms : Test including files from different locations (822)

• mrw02.gms : Test MessageReceiverWindow.exe from Python (823)

• memmon1.gms : Test procTreeMemMonitor=1 behavior (824)

• gams2numpy01.gms : Test gams.core.numpy Python API string mode (826)

• gams2numpy02.gms : Test gams.core.numpy Python API raw mode (827)

3.17 32 Distribution 211

GAMS API Library

New models:

• Pgamstransfer.gms : Test gamstransfer API (58)

• Pgams2numpy.gms : Test gams.numpy API (59)

3.17.1.8 Solver/Platform availability matrix

x86 64bit
MS Windows

x86 64bit
Linux

x86 64bit
macOS

ALPHAECP 2.10 X X X
ANTIGONE 1.1 X X X
BARON X X X
BDMLP X X X
BONMIN 1.8 X X X
CBC 2.10 X X X
CONOPT 3 X X X
CONOPT 4 X X X
COUENNE 0.5 X X X
CPLEX 12.10 X X X
DECIS X X X
DICOPT 2 X X X
GLOMIQO 2.3 X X X

GUROBI 9.0 X X X
GUSS X X X
IPOPT 3.13 X X X
KESTREL X X X
KNITRO X X X
LGO X X X
LINDO 12.0 X X X
LINDOGLOBAL 12.0 X X X
LOCALSOLVER 9.5 X X X
MILES X X X
MINOS X X X
MOSEK 9 X X X
MSNLP X X X
NLPEC X X X
ODHCPLEX 5 X X
PATH X X X
SBB X X X
SCIP 7.0 X X X
SHOT 1.0 X X X
SNOPT X X X
SOLVEENGINE X X X
SOPLEX 5.0 X X X
XA X X
XPRESS 35.01 X X X

212 Release Notes

3.17.2 32.2.0 Minor release (August 26, 2020)

3.17.2.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Charles Chan, Ricardo Lima, Sandro Konrad Luh, Ami Reznik, Tom
Rutherford, and Berk Uzundere.

3.17.2.2 GAMS System

GAMS

• Introduced new values 3 and 4 for option savePoint that allow to save the point file in the scratch
directory.

• Fixed a bug which in rare cases caused GAMS to write files exceeding 80,000 characters per line
(and thus the maximum line length GAMS can handle) when the command line parameter dumpopt
was set.

• Fixed a bug in restart files that incorrectly stored the location of the GAMS configuration file
(gmscmpXX.txt).

• Fixed a bug that is related to providing the GAMS configuration file (gmscmpXX.txt) explicitly via
command line parameter subSys.

• Fixed reporting of compilation errors in encrypted input files.

• Fixed the count of discrete variables in the model statistics in case any discrete variable was fixed.

Windows Installer

• Fixed a bug that prevented registry entries from being removed correctly during uninstallation.

3.17.2.3 Solvers

Gurobi

• New libraries 9.0.3.

Lindo/LindoGlobal

• New libraries 12.0.208.

– Fixed a rare problem with stochastic problems.

Mosek

• New libraries 9.2.18.

3.18 31 Distribution 213

SCIP

• New libraries 7.0 (80549b8905).

• PaPILO updated to 1.0 (d0e5444cd).

SoPlex

• New libraries 5.0 (3623dbc0).

3.17.2.4 Tools

GAMS Studio

• New version 1.3.4.

– Minor bug fixes, e.g.:

∗ Show community license type in the solver matrix.

∗ Fixed missing tab browser button when Studio starts in maximized or full-screen mode.

∗ Fixed insertion of auto-closing characters in unwanted situations (e.g. beginning of a word).

GDX2VEDA

• Fixed a bug which in rare cases crashed the tool for large data sets on Windows.

3.17.2.5 Model Libraries

GAMS Test Library

Updated models:

• savep1.gms : execute loadpoint: save point - clear - loadpoint - reoptimize (65)

3.18 31 Distribution

3.18.1 31.1.0 Major release (May 01, 2020)

3.18.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Christoph Böhringer, Wolfgang Britz, Andreas Lundell, Scott
McDonald, Victor Nechifor, Renger van Nieuwkoop, A. Omidi, Christoph Pahmeyer, Soummya Roy,
Thomas Rutherford, Alireza Soroudi, Tim Varelmann, and Elizabeth Wong.

214 Release Notes

3.18.1.2 Platforms

• As announced, dropped support for 32-bit MS Windows.

3.18.1.3 GAMS System

GAMS

• Extended the syntax of the model statement to allow to restrict the domain of variables used in the
model at one spot.

• Added dollar control options $on|offSuffixDLVars and command line parameter SuffixDLVars to
control whether it is allowed to use suffixes on variables with limited domains in a model.

• Added new command line parameters to initialize the state of certain dollar control options: Digit,
Empty, EolCom, Filtered, InlineCom, Listing.

• Extended the behavior of the command line parameter checkErrorLevel, so that it also initializes
the state of the dollar control option $on/offCheckErrorLevel.

• Extended the behavior of the command line parameter strictSingelton, so that it also initializes the
state of the dollar control option $on/offStrictSingleton.

• Added new command line parameters to set the default values for certain put file attributes: PutND,
PutNR, PutPS, PutPW.

• Removed the limit on the number of significant digits allowed in floating-point values in GAMS
source.
Historically, GAMS has run on widely different platforms where even the floating-point arithmetic
varied. To ensure the precision specified in the GAMS input didn't exceed what could be stored and
computed with as GAMS ran, we limited the amount of precision (i.e. the number of digits used for
numbers in the GAMS source) that could be specified. This limit could be relaxed by using the
$offDigit control.
Modern computers all support IEEE double-precision arithmetic. It's a well-accepted and familiar
standard, and the new behavior - to convert the decimal value in the GAMS source into the nearest
double-precision value, regardless of the number of digits specified - is what is generally expected.
There is a limit (currently 40) on the number of digits treated as significant: digits beyond this
point are quietly treated as zero.
For ”nice” values (i.e. those with fewer than 17 digits of precision and exponents of limited size, like
3.14159 or 2.5032e10) there is no difference in the old and new behavior. But for values specified
with 17 or more digits of precision or having exponents of large size, the double-precision values can
vary slightly between the old and new systems. The new values are the correct ones.
The new command line parameter sys18 has been added in case any users require the old behavior.

• New options encryptKey and decryptKey to encrypt and decrypt source based on a key rather than
a target license. This allows developers to create encrypted input files that can be executed with
any GAMS license and the right key.

• GAMS will search standard locations for the license file gamslice.txt including the GAMS system
directory. The standard locations for your operating system are described in the installation notes.
You can also continue to use the license command line parameter to point to a specific license file.

• GAMS can now use a configuration file gamsconfig.yaml to specify default values for command
line parameters and environment variables: see details in GAMS Configuration in YAML Format.
This can be used to implement user-specific default option settings that are shared between different
GAMS versions. In the future, we also expect to use this capability to support the setting of options
and defaults that support backward compatibility: this will become important as we change GAMS
defaults in significant ways to modernize the user experience in the light of current computing
environments and user expectations.

3.18 31 Distribution 215

• Added system suffixes %system.licenseFileName%, %system.userConfigDir%, and %system.userDataDir%.

• Embedded Python Code Facility:

– Embedded Python code can be used with Python 3.6, 3.7, and 3.8. GMSPython is used for
embedded code by default on the core platforms.

– The GAMS command line parameter pySetup has been deprecated. The environment variable
GMSPYTHONLIB that needs to point to the Python library (e.g. python38.dll on Windows)
determines the Python installation to be used in embedded Python code.

– The gams.set method to write data back to GAMS has a new argument mapKeys that allows
to pass a callable to remap the elements of the key.

• Removed GAMS return code 116 (”Could not find GMSPython”).

• Fixed the card operator for scalar symbols, so that it always returns 1 when the symbol has data.
In the past it might have been wrong for symbols that had no data in the declaration, but just from
an assignment.

• Fixed issues where GAMS would crash on exceptionally large models (more than 268 million rows
or columns) with certain non-default options selected.

• Fixed a problem which allowed multiple declarations of the same equation or variable when $offMulti
was active.

• Fixed some 3-argument intrinsic functions whose third argument was optional (e.g. ncpVUSin) -
these were not taking the default value for the third argument correctly into account when called
with two arguments.

• Fixed a bug which caused wrong execution of $onPut and embeddedCode after Programming Flow Controls
that were not terminated with a semicolon.

• Fixed a bug which caused variable and equation records fixed at 0 to be dumped incorrectly with
dumpOpt.

• Fixed incomplete warning when writing a non-default status of $on/offEmpty to a save file.

• execMode did not prevent the execution of scriptExit. This has been fixed.

GMSPython

• GMSPython has been upgraded from Python 3.6 to Python 3.8 and comes without Python package
installer pip.

• Added the package ply.

Libinclude

• The libinclude file rank.gms got a complete overhaul. The temporary GDX files resides now in
the scratch directory, so multiple GAMS models using rank.gms can coexist in the same working
directory. Moreover, the percentile calculation works with sort values that may include +inf/-inf.
Some checks have been added that result in execution errors in case the operation was not successful,
e.g. if rank failed to sort.

• Fixed a bug in pyEmbMI.gms that prevented string options from being set properly.

Documentation

• Improved the layout. The new layout provides a more responsive view on a smaller screen.

216 Release Notes

Windows Installer

• Default installation mode has been changed from All Users to Current User. This can be changed
on the Advanced Options page or by providing /allUsers=yes when running the installer from a
command prompt.

• The default application used for associating GAMS (.gms) and GDX (.gdx) files has been changed
from the GAMS IDE to GAMS Studio.

• New command line argument /allUsers=yes|no (default:no) can be used in order to install for All
Users instead of Current User.

• New command line argument /noLicense=yes|no (default:no) can be used in order to prevent any
GAMS license from being written.

• New GAMS License page:

– Allows to select a GAMS license to be used. The installer tries to find GAMS licenses in
different locations and automatically selects a license to be used with the following precedence:

∗ Clipboard

∗ C:\Users\username\Documents\GAMS
∗ Previous GAMS installation found from the registry (User)

∗ Previous GAMS installation found from the registry (System)

– A license file is written to C:\Users\username\Documents\GAMS when installing for Current

User (default). Installing for All Users or checking Write License to System Directory

will write the license to the system directory instead.

3.18.1.4 Solvers

ANTIGONE, Bonmin, Couenne, Ipopt, SCIP

• Updated Intel MKL libraries to version 2020.0 on Windows.

BARON

• New libraries 20.4.14.

– Improved local search strategies.

– Increased effectiveness of cut pool manager.

– Improved relaxations for MIQPs.

– Added new LP subsolver based on HSL's LA04.

CBC

• GAMS/CBC did not use the default value for all parameters as documented and as used in the CBC
standalone program. This has been fixed. To restore some of the previous behavior, the following
parameter setting can be used:
nodeStrategy hybrid
preprocess off
cuts off
cliqueCuts off
flowCoverCuts off
gomoryCuts off
knapsackCuts off
mirCuts off
twoMirCuts off
probingCuts off
zeroHalfCuts off
heuristics 0
feaspump off
greedyHeuristic off
roundingHeuristic off

gamside/contents.htm

3.18 31 Distribution 217

CONOPT

• New libraries 3.13L.

– Added new facilities to print the variables changed by the pre-processor. See options prprec,
rtpprec, and rtprel.

• New libraries 4.19.

– Some errors related to the duals and basic/nonbasic flags for some definitional constraints and
forcing constraints have been corrected.

– The two tolerances Tol IFixed and Tol DFixed for when a variables is fixed have been unified
into a single tolerance, Tol Fixed.

– The routine for detecting definitional constraints has been simplified and some options from
previous versions are no longer used (Flg DC Unique, Lim DFVars, and Tol Def Ini) and
Tol Def Mult has a new default value.

CONVERT

• Added support for option HeaderTimeStamp, which was added for ConvertD before, in Convert.

COUENNE

• We plan to drop Couenne with one of the next major releases.

CPLEX

• Fixed incorrect display of selection of LPMethod when rerunning without presolve for infeasible
model.

• Fixed incorrect selection of LPMethod when rerunning without presolve for infeasible model in
CplexD.

GUROBI

• New libraries 9.0.2.

• If GAMS/Gurobi is licensed, the setting of the environment variable GRB LICENSE FILE is ignored.
The setting of this environment variable interfered with the GAMS/Gurobi licensing.

IPOPT

• New libraries 3.13.2.

– MA28 can no longer be loaded at run-time from a user-provided HSL library. Removed option
'ma28 pivtol'.

– The default of option ma77 order has changed from 'amd' to 'metis'.
– The default of option ma97 print level has changed from 0 to -1.

– The default of option mumps pivot order has been changed from 7 to 5 to work around a bug
in MUMPS.

• Updated MUMPS to version 5.3.1. MUMPS has been build with OpenMP support enabled.

• Updated METIS (used by HSL codes and MUMPS) to version 5.1.0.

218 Release Notes

KESTREL

• Fixed a problem with the control file version that prevented Kestrel from being used in GAMS 30.

Lindo/LindoGlobal

• Increased the number of allowed nonlinear nonzeros in the global solver from 30 to 50 when operating
under a demo license.

LocalSolver

• New libraries 9.5 (20200409).

– Performance improvements on mixed-variable models like unit commitment or network design
problems.

– Performance improvements on routing and scheduling problems like CVRPTW or jobshop
scheduling problems.

– Better and faster lower bounds for nonlinear problems as well as for combinatorial problems
like TSP.

• New parameter verbosity.

• Fixed handling of semi-integer variables.

MOSEK

• New libraries 9.2.4.

• Avoid MOSEK error 1243 on general nonlinear models.

SCIP

• New libraries 7.0.0 (0bc4dc9c65).

– The symmetry code has been completely restructured and modularity has been increased.

∗ It is now possible to use orbitopes (i.e., polyhedral symmetry handling techniques) and
orbital fixing on the same instance.

∗ Branching decisions can now take symmetry information into account by filter-
ing first variables from orbits (new parameter branching/relpscost/filtercandssym)
and transfering pseudo cost information to variables in orbit (new parameter
branching/relpscost/transsympscost).

∗ Improved performance of orbital fixing and orbitope propagation.

∗ Reduced memory usage of symmetry detection.

∗ Improved detection of packing/partitioning orbitopes.

∗ New possible value 3 for misc/usesymmetry and changed default from 2 to 3.

∗ Renamed parameter propagating/orbitalfixing/enableafterrestart to propagating/symmetry/recomputerestart,
which decides whether to recompute symmetries after a restart or not.

∗ Changed default of constraints/orbitope/propfreq from 5 to 1.

∗ Changed default of constraints/orbitope/sepafreq from 5 to -1.

∗ Removed parameters constraints/orbisack/checkalwaysfeas, constraints/orbitope/checkalwaysfeas,
constraints/symresack/checkalwaysfeas.

3.18 31 Distribution 219

∗ Removed parameters presolving/symmetry/maxgenerators, presolving/symmetry/checksymmetries,
and presolving/symmetry/displaynorbitvars and added various new parameters in
group propagating/symmetry.

∗ Removed parameters presolving/symbreak/conssaddlp, presolving/symbreak/addsymresacks,
presolving/symbreak/computeorbits, presolving/symbreak/detectorbitopes, and
presolving/symbreak/addconsstiming.

∗ Removed parameters propagating/orbitalfixing/symcomptiming, propagating/orbitalfixing/performpresolving,
and propagating/orbitalfixing/recomputerestart.

∗ New parameter constraints/orbitope/usedynamicprop to enable propagation of or-
bitope constraints by reordering the rows based on the branching strategy.

∗ New parameter constraints/symresack/checkmonotonicity to enable upgrade to pack-
ing/partitioning symresacks even if the underlying permutation is not monotone.

∗ New parameters constraints/orbisack/forceconscopy, constraints/orbitope/forceconscopy,
and constraints/symresack/forceconscopy.

– Presolve:

∗ The presolve library PaPILO (Parallel Presolve for Integer and Linear Optimization) 1.0
has been integrated as additional presolver for mixed-integer linear programs.

∗ Expressions of form |x|px in a nonlinear constraint are now sometimes recognized and
handled by abspower constraints.

∗ Some more quadratic constraints are now recognized as second-order cone constraints.

∗ New presolver dualsparsify that tries to combine variables to cancel nonzero coefficients in
the constraint matrix of a MIP.

∗ Improved performance of tworowbnd presolver. New parameters added. Changed default
of presolving/tworowbnd/priority from -500000 to -2000.

∗ Extended presolver dualinfer by the ability to perform convex combinations of continuous
variables to calculate better bounds for the dual variables. New parameters added.

∗ Huge clique tables are now avoided by restriciting the number of nonzero entries relative
to the number of nonzeros in the problem. New parameter presolving/clqtablefac.

∗ New parameter constraints/linear/extractcliques to turn clique extraction off.

∗ Improved presolver ”domcol” to not require a complete representation of all constraints in
the matrix.

∗ Enabling aggressive presolving now activates all available presolving plugins, and decreases
parameter presolving/restartfac correctly with respect to default.

∗ New parameter constraints/linear/maxdualmultaggrquot and constraints/linear/maxmultaggrquot
to limit the maximum coefficient dynamism of an equation on which multiaggregation is
performed. Smaller values make multiaggregations numerically more stable.

∗ Changed default of constraints/quadratic/empathy4and from 0 to 2. This leads to
stronger but larger reformulations for products of binary variables.

– Primal heuristics:

∗ New Large Neighborhood Search heuristic ”Trust region”, available as both a
standalone heuristic and a neighborhood inside of Adaptive Large Neighborhood Search.

∗ New heuristic Adaptive Diving, which registers all publicly available dive sets from other
diving heuristics, learns online which divesets reach the best score, and executes them
more frequently.

∗ New penalty alternating direction heuristic PADM that splits the problem into several
sub-SCIPs according to a user-provided decomposition (see below). The sub-SCIPs are
solved on an alternating basis until a feasible solution of the original problem is found.

∗ The GINS heuristic can make use of a user-provided decomposition (see below) by selecting
a block of variables that maximizes the potential, and randomly selecting a start variable
for the neighborhood and/or by selecting an interval of consecutive blocks as neighborhood,
until fixing rate is reached. In this case, no variable is randomly selected. Several new
parameters added for the use of a decomposition in GINS.

∗ The LP face heuristic now wastes less time if it decides not to run.

∗ Improved performance of Adaptive Large Neighborhood Search heuristic on merely contin-
uous problems.

https://github.com/lgottwald/PaPILO

220 Release Notes

∗ All primal heuristics that use sub-SCIPs are now disabled within the heuristics fast emphasis
setting.

∗ Replaced parameter heuristics/localbranching/useuct by heuristics/useuctsubscip,
which affects all LNS heuristics.

∗ New parameters heuristics/shiftandpropagate/minfixingratelp and heuristics/locks/minfixingratelp
to stop the heuristics after propagating integer fixings if no sufficient fixing of the all
variables (including continuous) could be achieved.

∗ Changed default value of heuristics/coefdiving/freq from 10 to -1.

∗ Changed default value of heuristics/conflictdiving/freq from -1 to 10.

∗ Changed default value of heuristics/conflictdiving/lockweight from 1.0 to 0.75.

∗ Changed default value of heuristics/rins/nodesquot from 0.1 to 0.3 (due to other code
changes, this should not affect default behavior).

∗ New value l available for heuristics/gins/potential to allow computation based on local
LP solution.

∗ The display column for memory usage (”mem”) now shows the creator name for every
new incumbent solution. The heuristic display characters now represents the type of the
heuristic (diving, Large Neighborhood Search, propagation, etc.). Changed default of
display/width from 139 to 143.

– Branching:

∗ New rule vanillafullstrong, mostly for scientific purpose.

∗ Improved branching point selection when branching on nonlinear variables. Instead of
using exactly the LP solution, a point closer to the middle of the variables domain is chosen.
Added parameters branching/midpull and branching/midpullreldomtrig.

∗ Many updates to parameters of lookahead branching rule.

∗ New parameter branching/relpscost/degeneracyaware to switch degeneracy-aware hybrid
branching, which adjusts weights of different scores in relpscost (hybrid) branching rule
based on degeneracy information and skips strong branching for very high degeneracy
rates.

– Separation:

∗ Improvements in cut presolving and cgmip separator.

∗ New parameter separating/cgmip/genprimalsols that allows to generate initial primal
solutions from Gomory cuts.

∗ Changed default of separating/rapidlearning/freq from -1 to 5. Various new parameters
for rapidlearning.

∗ Changed default of separating/efficacyfac from 1.0 to 0.6.

– Approximations on the search tree completion and estimates on the tree size have been added.

∗ The approximate search tree completion is shown in a new display column.

∗ The tree size estimate is used to trigger a restart if, after a reasonable initialization, the
estimated size of the remaining tree is large.

∗ New parameter group branching/treemodel to specify the tree model.

– SCIP can now store user decompositions. A GAMS user can specify one decomposition
via the .stage variable suffix. Statistics regarding the decomposition are printed to the
log before presolving (if display/statistics is enabled) and after presolving. New parameter
decomposition/maxgraphedge.

– Extended the dual proof analysis for infeasible LPs to consider also locally valid rows (new
parameter conflict/uselocalrows).

– If a reference value is given, the primal-reference and reference-dual integrals are calculated
automatically and printed within the SCIP statistics.

– Emphasis settings for numerically challenging instances have been added. They increase
numerical stability of (mostly) presolving operations such as (multi-)aggregations at the cost of
performance.

– Renamed parameters misc/allowdualreds and misc/allowobjprop to misc/allowstrongdualreds
and misc/allowweakdualreds, respectively.

3.18 31 Distribution 221

– Replaced parameter numerics/lpfeastol by numerics/lpfeastolfactor to specify which factor
should be applied to the SCIP feasibility tolerance to initialize the primal feasibility tolerance
of the LP solver.

– New parameter lp/minmarkowitz to set the Markowitz stability threshold. High values sacrifice
performance for stability.

– Changed default of propagating/redcost/useimplics from TRUE to FALSE.

– See also the full release notes and the release paper.

• Symmetry detection and handling is now available on Windows, too.

• Updated Ipopt to 3.13, see above.

• Removed value soplex2 for option lp/solver. soplex is now the default if no CPLEX license is
available.

SHOT

• New solver by Andreas Lundell (Åbo Akademi University, Finland) and Jan Kronqvist (Imperial
College London, UK).

• SHOT is a deterministic solver for mixed-integer nonlinear programming problems (MINLPs). It can
solve convex and some nonconvex MINLP problems to global optimality. For other nonconvex prob-
lems, SHOT acts as a heuristic method, i.e., without providing guarantees of global optimality. For
more information, see the GAMS/SHOT solver manual, the SHOT website, and the publications
[126] [122].

• SHOT 1.0.0 (527f1a11) is available for Linux, macOS (≥ 10.13), and Windows. It can be used with
a GAMS base system license.

SoPlex

• New libraries 5.0.0 (6535a3c8).

– Improvements in memory management.

– The number of violations is now shown in the log.

– New options bool:forcebasic, int:stattimer, and real:min markowitz. Replaced option
int:printcondition by int:printbasismetric.

• GAMS/SoPlex is now available for multithreaded solves.

XPRESS

• New libraries v8.8.3 (aka Optimizer 35.01.04). It has been a longer-than-usual time since the
previous library update, so the list of updates and improvements enhancing performance, stability,
and correctness is extensive and not reproduced here.

3.18.1.5 Tools

GAMS IDE and GDXVIEWER

• As mentioned above, we switched the default application to be associated with GAMS files on
Windows from the GAMS IDE to GAMS Studio with this release. The classic GAMS IDE has
been shipped with the GAMS system for the last 20 years and is still the workhorse for many
GAMS programmers. However, it does not provide all the features we see in modern development
environments.
Both the GAMS IDE and GDXVIEWER rely on a rather old software stack, which is hard to
maintain with current operating systems and will become even harder over time. So we plan to drop
the GAMS IDE and GDXVIEWER with an upcoming major release.

https://www.scipopt.org/doc-7.0.0/html/RN70.php
http://nbn-resolving.de/urn:nbn:de:0297-zib-78023
https://shotsolver.dev/

222 Release Notes

GAMS Studio

• New version 1.1.0.

– Stability improvements.

– Introduced new settings format.

Attention

This required a reset of all settings. They are saved now in JSON format. As a consequence,
Studio 1.0.0 cannot use settings that were written by Studio versions prior to 1.0.0 and
vice versa.

– Changed the default file encoding to UTF-8 for all platforms (this mostly affects Windows,
there should be no change for other platforms).

– Added option to change the default text encoding to Edit -> Encoding -> Select

encodings.

– Introduced Dark Theme for Windows and Linux as well (can be changed through Settings

-> Editor).

– Added editor for GAMS Configuration and menu entry for default GAMS Configuration file.

– Added option to change display format of numerical values in GDX Viewer.

– Changed location of default workspace and model library.

– Changed location where gamslice.txt is put when created using the ”About GAMS” dialog
to the new standard locations searched by GAMS (see installation notes for details).

– Improved shortcut layout:

∗ Reintroduced ”Open Terminal” shortcut as Ctrl+T.

∗ Introduced shortcut for ”Run MIRO base mode”: F8.

∗ Introduced shortcut for ”Run MIRO hypercube mode”: Shift + F8.

∗ Introduced shortcut for ”Run MIRO configuration mode”: Shift + F7.

∗ Changed shortcut for focus ”Project Explorer” to Ctrl + 1.

∗ Changed shortcut for focus ”Editor” to Ctrl + 2.

∗ Changed shortcut for focus ”Parameter Editor” to Ctrl + 3.

∗ Changed shortcut to extend and collapse ”Parameter Editor” to Ctrl + Alt + 3

∗ Changed shortcut for focus ”Tab Browser” to Ctrl + 4.

∗ Changed shortcut for focus ”Process Log” to Ctrl + 5.

∗ Changed shortcut of duplicate line to Ctrl+D.

∗ Changed shortcut of ”Toggle Comment” in ”Parameter Editor” to Ctrl + ∗
∗ Changed shortcut of action ”Go to matching parentheses” to: Ctrl + B

∗ Changed shortcut of action ”Select to matching parentheses” to: Ctrl + Shift + B

∗ Fixed shortcut on macOS: block edit mode is now CMD+Shift+Arrow Key.

GDXMERGE

• Fixed a problem when merging a GDX file with name .gdx.

GDXXRW

• Added new option dSetText to control the reading of explanatory text for set elements of domain sets.

3.18 31 Distribution 223

3.18.1.6 Object Oriented APIs

• Option pySetup has been removed from the class GAMSOptions.

• Removed GAMS return code 116 (”Could not find GMSPython”) from the enumerate type repre-
senting the GAMS return code.

• Fixed a memory leak with GAMSModelInstance.solve.

C++

• As announced, dropped support for Microsoft Visual Studio 2013.

Python

• GAMS Python API is now distributed in source code under the MIT open source license.

• To access the GAMS API, the Python interpreter needs to find files in<GAMS Systemdirectory>/apifiles/Python/api XY

and <GAMS Systemdirectory>/apifiles/Python/gams, where XY corresponds to the Python
version X.Y, e.g. 3.7. The GMSPython installation is already set up to find all required files. The
Getting Started documentation section gives details on how to connect an external Python system
with GAMS.

• There is a different directory structure in <GAMS Systemdirectory>/apifiles/Python. The
content of the api directory has been moved to different places:

– api 27 for the binary Python 2.7 API files,

– src for the files required to build the expert-level API files from source,

– gams for source files of the GAMS Python API plus a few extra Python source files for working
with indexed EMP syntax, e.g. emppython1, and

– thirdparty for the Python package ply for processing of indexed EMP syntax.

3.18.1.7 Expert Level APIs

• We plan to remove the GAMSX API with one of the next major releases.

• Added palSetSystemName to setup a generic auditline in PAL. Increased PAL API version to 3.

3.18.1.8 Model Libraries

GAMS API Library

• All Python examples have been reworked. Tests are performed also with the Python installation in
GMSPython.

• New model PBuildXPLevelAPI.gms : Test building and installing the GAMS Python
API from source distribution (57).

apis/expert-level/palqdrep.html#palSetSystemName

224 Release Notes

GAMS Data Library

New models:

• rank01.gms : Rank a vector, and display the data in sorted order (135)

• rank02.gms : Generate percentiles for a random vector (136)

• rank03.gms : Use libinclude rank to report multisectoral Monte Carlo results (137)

• rank04.gms : Repeated computation of percentiles within a loop (138)

• rank05.gms : Percentile ranking of household expenditure data with heterogenous
household size (139)

• GMSPythonCheck.gms : Consistency check for GMSPython (140)

GAMS Model Library

• Updated model encrypt.gms : Input file encyption demo (318)

• New model: waterld.gms : Design of a Water Distribution Network with Limited
Domain of Variables (426)

GAMS Test Library

New models:

• gdxxrw15.gms : GDXXRW - Testing option dSetText (810)

• card03.gms : Test card operator for scalar symbols (811)

• limdom01.gms : Test limited domains for variables in model (812)

• limdom02.gms : Test performance of limited domains for variables in model (813)

• limdom03.gms : Test the syntax of the model statement for limited domains for
variables (814)

• limdom04.gms : Advanced test for limited domains for variables in model (815)

• fnncpf3.gms : Test correctness of ncpf intrinsic (816)

• fnncpvupow2.gms : Test correctness of NCPVUpow intrinsic (817)

• fnncpvusin2.gms : Test correctness of NCPVUsin intrinsic (818)

• loop10.gms : Test relaxed punctuation for control structures (819)

• dirs01.gms : Test search and processing of gamslice.txt and gamsconfig.yaml in user
space (820)

PSOPT Model Library

• Updated model MultiperiodDCOPF24bus : Multi-period DC-OPF for IEEE 24-bus
network considering wind and load shedding

3.18.1.9 Solver/Platform availability matrix

3.18 31 Distribution 225

x86 64bit
MS Windows

x86 64bit
Linux

x86 64bit
macOS

Sparc 64bit
SOLARIS

IBM Power
64bit

AIX

ALPHAECP
2.10

X X X X X

ANTIGONE 1.1 X X X
BARON X X X
BDMLP X X X X X
BONMIN 1.8 X X X
CBC 2.10 X X X
CONOPT 3 X X X X X
CONOPT 4 X X X X X
COUENNE 0.5 X X X
CPLEX 12.10 X X X 12.6 X
DECIS X X X X
DICOPT 2 X X X X X
GLOMIQO 2.3 X X X

GUROBI 9.0 X X X X
GUSS X X X X X
IPOPT 3.13 X X X
KESTREL X X X X X
KNITRO 11.1 X X X
LGO X X X X
LINDO 12.0 X X X
LINDOGLOBAL
12.0

X X X

LOCALSOLVER
9.5

X X X

MILES X X X X X
MINOS X X X X X
MOSEK 9 X X X
MSNLP X X X X
NLPEC X X X X X
ODHCPLEX 4 X X
PATH X X X X X
SBB X X X X X
SCIP 7.0 X X X
SHOT 1.0 X X X
SNOPT X X X X X
SOLVEENGINE X X X
SOPLEX 5.0 X X X
XA X X
XPRESS 35.01 X X X 32.01 29.01

3.18.2 31.1.1 Maintenance release (May 16, 2020)

3.18.2.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Jan Abrell, Michael Ferris, Nick Sahinidis, and Karlo Šepetanc.

226 Release Notes

3.18.2.2 GAMS System

GAMS

• Fixed a bug where loading an empty universe from a GDX file caused an error.

• Fixed a bug in gamsinst that is used by the IDE to display available solvers.

• GAMS continues to search directories for the license and configuration file even if the construction
of some directory names fails due to the absence of some environment variables, e.g. HOME.

GAMS Data Exchange (GDX)

• Fixed a bug where domain violations in higher dimensions might have been undetected when writing
symbols to GDX.

3.18.2.3 Solvers

GUROBI

• Fixed a bug introduced with 31.1.0 where the GRB LICENSE FILE environment variable was incorrectly
dropped.

MOSEK

• New libraries 9.2.7.

3.18.2.4 Tools

GAMS Studio

• New version 1.1.1.

– Added command line parameter editor warnings for missing values.

– Fixed problem with command line parameters not being updated when changing group.

– Fixed behavior of Ctrl - End shortcut in process log and lst file view.

– Fixed settings export not working when file already exists.

– Fixed numpad not working when running Studio from an AppImage on Linux.

– Fixed Shift+Arrow Key not working when running Studio from an AppImage on Linux.

3.18.2.5 Object Oriented APIs

• Fixed a bug in the Python API when exporting options (GAMSOptions.export()) that contain
defines.

3.18 31 Distribution 227

3.18.2.6 Model Libraries

GAMS Test Library

• Updated model dirs01.gms : Test search and processing of gamslice.txt and gamscon-
fig.yaml in user space (820)

3.18.3 31.2.0 Minor release (June 19, 2020)

3.18.3.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz, Salvador Doménech Mart́ınez, and Kaushik Sinha.

3.18.3.2 GAMS System

GAMS

• The demo/community license limit of indexed external in- and output symbols for the GAMS/MIRO
connector has been increased from 5 to 10. There is no limit on scalar external in- and output
symbols. Starting with this version, one dimensional singleton sets are also not limited.

• Extend the influence of the command line parameter multiPass, so that it also ignores errors about
unknown dimension with empty data statements when set to 2.

• Added three new put utility commands incMsg, incLog, and incMsgLog to include the content of a
file into the log or listing file.

• Fixed a crash for CNS models which get solved asynchronously while asyncSolLst is set to 1.

3.18.3.3 Solvers

Gurobi

• Added option dumpBCSol to write incumbent solutions to GDX point files while Gurobi optimizes.

LocalSolver

• New libraries 9.5 (20200429).

Mosek

• New libraries 9.2.10.

SCIP

• New library 7.0 (01ae80d797).

• Fixed default setting for option misc/usesymmetry on Windows (was still set to 0, but should be 3).

228 Release Notes

SHOT

• New library 1.0.1.

3.18.3.4 Tools

GAMS Studio

• New version 1.1.2.

– Performance improvements.

– Stability improvements and minor bug fixes, e.g.,

∗ Fixed crash when reopening a tab of a file that was removed from Project Explorer.

∗ Fixed behavior of hotkeys to jump to beginning and end of line and page up/down.

∗ Fixed Goto dialog jumping to beginning of file when entering invalid values.

∗ Fixed shortcuts to focus Project Explorer and Editor not working when undocked.

∗ Fixed that sizes of dock-widgets were not stored in FullScreen or Maximized window.

3.18.3.5 Object Oriented APIs

.NET

• Fixed a problem with reading labels which contain non-ASCII characters trough GAMSSymbolRecord.Keys.

3.18.3.6 Expert Level APIs

C#

• Fixed a problem with reading arrays of strings which contain non-ASCII characters through different
APIs.

3.19 30 Distribution

3.19.1 30.1.0 Major release (January 10, 2020)

3.19.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Todd Munson, Suguru Otani, Nick Sahinidis, and Dimitri Tomanos.

3.19.1.2 Platforms

• As announced, dropped support for Windows 7. The minimal required Windows version is now 8.1.

• Moved platform 32-bit MS Windows to peripheral platforms. We will completely drop support for
32-bit MS Windows with GAMS 31 (which was originally announced for GAMS 30).

3.19 30 Distribution 229

3.19.1.3 Licensing and Demo Limits

• The GAMS demo limits have been increased. GAMS will generate linear (LP, RMIP, MIP) models
up to 2000 constraints and 2000 variables and up to 1000 constraints and 1000 variables for all other
model types. No other limits apply (e.g. non-zeros or discrete variables). Some solvers (e.g., the
global solvers ANTIGONE, BARON, and LindoGlobal) might enforce additional restrictions.

• GAMS provides a free community license for users on request. This community license allows
generating even larger models: up to 5000 constraint and variables for linear and 2500 constraints
and variables for other model types. These free licenses are for demonstration and evaluation but
not for commercial and production work, see the GAMS End User License Agreement.

• Starting with this release, GAMS requires a valid license even for the free demo system. Free demo
licenses (time-limited for 12 months) can be generated at the download page. The free demo and
community licenses require also a recent version (not older than 18 months) of GAMS to run. Please
check the license documentation for details.

• GAMS Beta versions will stop working 90 days after their release. This is to prevent accidental use
of beta software.

3.19.1.4 GAMS System

GAMS

• Added system suffix MACAddress, which contains the MAC address of the first network adapter.

• Allow to declare more than one parameter as table on a single line.

• Added new dollar control options $(on|off)Filtered: These control how GAMS loads data from GDX
with $load, $loadR, and $loadM as well as from $offEmbeddedCode.

• Added new dollar control options $loadFiltered, $loadFilteredM, and $loadFilteredR to load data
from GDX in filtered mode explicitly.

• Added new dollar control options $(on|off)ExternalInput to load data implicitly from an external
source and $(on|off)ExternalOutput to save data implicitly to an external target.

• Added new command line parameters IDCGDXInput, IDCGDXOutput, IDCGenerateGDX,
IDCGenerateGDXInput, IDCGenerateGDXOutput, IDCGenerateJSON, and IDCJSON.

• Embedded Python Code:

– Changed the optional boolean argument domCheck to an enumerated option DomainCheckType

in the gams.set method in embedded code. This might break existing code. Even if the domCheck
argument was not used, the default behavior at execution time changes. In previous versions
the content was domain checked, now it is read filtered.

– The argument mergeType was documented incorrectly. With type MergeType.DEFAULT (or no
argument given) GAMS merged the content, in contrast to what the documentation said (here
replace was mentioned).

• Terminate with a proper error message if lines in the EMP info file exceed the maximum line length
of 1020 characters.

• Fixed a problem where the order of a semicolon and certain dollar control options changed the
behavior of the compiler.

Installer

• In addition to .gms files, the Windows installer also associates .gdx files with either the GAMS IDE
or GAMS Studio.

https://www.gams.com/GAMS_EULA.pdf
https://www.gams.com/download

230 Release Notes

3.19.1.5 Solvers

BARON

• New libraries 19.12.7.

– Performance improvements for large-scale and mixed-integer quadratic problems.

– Improvements in interface to IPOPT.

CBC

• New libraries.

CONOPT

• New library 4.16 with bug fixes.

– Improvement in the transition from Phase 0 to Phase 1 and in the one-dimensional search close
to optimality.

CPLEX

• New libraries 12.10.0.0.

• New options epLin and heuristicEffort.

GUROBI

• New libraries 9.0.0.

– Gurobi 9 comes with a new bilinear solver, which allows to solve non-convex quadratic
programming problems. The new parameter nonConvex needs to be set.

• New general constraint types have been added to model functions like log, exp, sin, cos, and
tan. New options funcPieces, funcPieceError, funcPieceRatio, funcPieceLength, and funcMaxVal
have been added to control the piece-wise-linear discretization. The dot options doFuncPieces,
doFuncPieceError, doFuncPieceRatio, and doFuncPieceLength allow control on an individual con-
straint basis.

• New parameters for new cutting planes: BQPCuts, relaxLiftCuts, and RLTCuts.

• Fixed a problem when reporting the primal solution only.

• Report the dual bound for continuous non-convex QP and QCP problems.

JAMS/LogMIP

• New option userPFFile to provide additional GAMS command line parameters for the GAMS run
of the reformulated model.

3.19 30 Distribution 231

LocalSolver

• New libraries 9.0 (20191219).

MOSEK

• New libraries 9.1.9.

ODHCPLEX

• New libraries 4.3.2 with bug fixes and performance improvements.

PATH

• New library 5.0.01 with bug fixes.

– Fix seg fault when using the hidden option output hidden options.

SCIP

• New libraries 6.0 (90a56e0b).

– Default for option heuristics/rins/nodesquot changed from 0.1 to 0.3.

3.19.1.6 Tools

GAMS Studio

• New version 0.14.1.

– Stability improvements.

– Added GDX Diff dialog to compare two GDX files. It can be opened by choosing Tools >
GDX Diff from the menu or through the context menu off a GDX file in the Project Explorer.

– Allow to open OS specific terminal in current working directory (Tools > Terminal) or in
working directory of a specific group (using the context menu in the Project Explorer)

∗ Note: This feature does not work on all Linux distributions, e.g., Ubuntu, yet.

– Added basic integration of GAMS MIRO .

∗ Note: This requires a separate installation of the GAMS MIRO package.

– Improved GDX Viewer layout to optimize used screen space.

– Adjusted layout of Reference File Viewer.

– Added clear button to filter input field in GDX Viewer and Reference File Viewer.

3.19.1.7 Object Oriented APIs

C++

• We plan to drop support for Microsoft Visual Studio 2013 and maybe also 2015 with the next major
release.

https://www.gams.com/miro/

232 Release Notes

Python

• Added support for Python 3.8.

• As announced, dropped support for Python 3.4.

3.19.1.8 Expert Level APIs

• Added support for Python 3.8.

• As announced, dropped support for Python 3.4.

3.19.1.9 Model Libraries

GAMS Data Library

New models:

• pickstock.gms : Stock selection problem with MIRO (133)

• transport.gms : Classical transportation problem with MIRO (134)

GAMS Test Library

New models:

• embpy05.gms : Test merge/replace when loading data from embedded code (804)

• embpy06.gms : Test domain check/filtered when loading data from embedded code
(805)

• load12.gms : Tests filtered load (806)

• idc01.gms : Implicit Data Contract Test (807)

• gurobi05.gms : GUROBI test suite - general constraints sin/cos (808)

• studio01.gms : Test Studio Startup (809)

3.19 30 Distribution 233

x86 32bit
MS

Windows

x86 64bit
MS

Windows

x86 64bit
Linux

x86 64bit
macOS

Sparc
64bit

SOLARIS

IBM
Power
64bit
AIX

3.19.1.10 Solver/Platform availability matrix

x86 32bit
MS

Windows

x86 64bit
MS

Windows

x86 64bit
Linux

x86 64bit
macOS

Sparc
64bit

SOLARIS

IBM
Power
64bit
AIX

ALPHAECP X X X X X X
ANTIGONE
1.1

X X X X

BARON 18.5.8 X X X
BDMLP X X X X X X
BONMIN
1.8

X X X X

CBC 2.10 X X X X
CONOPT 3 X X X X X X
CONOPT 4 X X X X X X
COUENNE
0.5

X X X X

CPLEX
12.10

12.6 X X X 12.6 X

DECIS X X X X X
DICOPT X X X X X X
GLOMIQO
2.3

X X X X

GUROBI
9.0

7.5 X X X X

GUSS X X X X X X
IPOPT 3.12 X X X X
KESTREL X X X X X X
KNITRO
11.1

11.0 X X X

LGO X X X X X
LINDO 12.0 X X X X
LINDOGLOBAL
12.0

X X X X

LOCALSOLVER
9.0

8.5 X X X

MILES X X X X X X
MINOS X X X X X X
MOSEK 9 X X X X
MSNLP X X X X X
NLPEC X X X X X X
ODHCPLEX
4

X X

PATH X X X X X X
SBB X X X X X X
SCIP 6.0 X X X X
SNOPT X X X X X X

234 Release Notes

x86 32bit
MS

Windows

x86 64bit
MS

Windows

x86 64bit
Linux

x86 64bit
macOS

Sparc
64bit

SOLARIS

IBM
Power
64bit
AIX

SOLVEENGINE X X X X
SOPLEX
4.0

X X X X

XA X X X
XPRESS
33.01

X X X X 32.01 29.01

3.19.2 30.2.0 Minor release (February 07, 2020)

3.19.2.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz, Iswar Radhakrishnan, Simon Scolan, and Kirk Yost.

3.19.2.2 GAMS System

GAMS

• Fixed a problem when writing implicit data contract in JSON format (IDCGenerateJSON) with
symbols that use a set more than once in its domain.

• Fixed a potential wrong domain violation error for symbols declared under $onExternalInput.

• Fixed gamsinst and the IDE to give better messages in case a license file is absent.

• GAMS incorrectly removed indexed semi-integer and semi-continuous variables that have been fixed
at a level other than zero with holdFixed set to 1. This has been fixed.

• GAMS also removes scalar semi-integer and semi-continuous variables now, when they have been
fixed at zero with holdFixed set to 1.

• Fixed an issue where protected symbols could be changed using certain option statements.

• Added new command line parameter IDCProtect to control assignment behavior of external input
symbols at execution time: 0 allows assignment, 1 (default) protects external input symbols from
being changed.

• Adjusted reading of GAMS command-line arguments on non-Windows platforms to allow for empty
arguments and arguments with preceding and trailing blanks. Windows users will not be affected by
this change, nor will users who do not use quotes to protect arguments. But these invocations will
now work differently on Unix, and will give the same result as on Windows:

– gams main.gms --myPrefix "" user1 " four blanks here "

– $call gams subjob.gms --cityA Tokyo --cityB ""

3.19.2.3 Solvers

CONOPT

• New library 4.17 with bug fixes.

– Fixed a problem where small infeasibilities were not correctly reported back to GAMS.

3.19 30 Distribution 235

DICOPT

• Fixed a possible crash during exit when having used Ipopt as NLP solver.

GUROBI

• New libraries 9.0.1.

• Fixed a problem with tuning of lp/mps files. In contrast to the documention, the tuning suite
contained the model generated by GAMS when providing a list of models in lp/mps files to tune.

• Made value 3 available for Gurobi option scaleFlag, available since Gurobi 7.5.

MOSEK

• New libraries 9.1.11.

PATH

• New library 5.0.02.

– Fix to two preprocessor issues: wrong solutions were being returned.

3.19.2.4 Tools

GAMS Studio

• New version 0.14.3.

– Stability improvements.

– New icon design.

– Added filter facility for value columns in GDX Viewer.

3.19.3 30.3.0 Minor release (March 06, 2020)

3.19.3.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Andres J. Calderon, Antti Lehtila, Grégoire Pichenot, and Karlo
Šepetanc.

236 Release Notes

3.19.3.2 GAMS System

GAMS

• Allow to create a secure work file on any platform for any target license platform.

• Fixed a bug which could have caused wrong domain violation errors with $offEmbeddedCode.

• Symbols set in embedded Python code via the GAMS Python object oriented API (i.e.
gams.db[sym]) were imported with MergeType ”replace” and DomainCheckType ”filtered”. This
has been adjusted to both MergeType and DomainCheckType set to ”default”.

• Fixed a problem which was introduced with GAMS 30.1: The default for $(on|off)Filtered should
always be $onFiltered. This was not the case when restarting from an old work file.

3.19.3.3 Solvers

Antigone, Bonmin, Cbc, Couenne, Ipopt, SCIP

• The number of threads as specified by option threads was disregarded. This has been fixed.

CONOPT

• New library 4.18 with bug fixes.

• The degeneracy-breaking logic has been improved for numerically difficult models and the interaction
between defined variables and initialized variables has been improved.

JAMS/LogMIP

• The maximum length of the directory name plus file name that GAMS can execute is 255. JAMS
and LogMIP stopped working earlier. This has been fixed.

LocalSolver

• Added missing lskeygen tool for Linux system.

MOSEK

• New libraries 9.1.13.

3.19.3.4 Tools

GAMS Studio

• New version 0.14.4.

– Stability improvements.

– Introduced Dark Mode support for macOS.

3.20 29 Distribution 237

3.20 29 Distribution

3.20.1 29.1.0 Major release (November 15, 2019)

3.20.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Marcel Adenauer, David Bernal Neira, Erwin Kalvelagen, and Scolan
Simon.

3.20.1.2 Platforms

• As announced, dropped support for macOS 10.12 (Sierra).

• After more than 20 years we plan to drop support for 32-bit MS Windows with the next major
release. Some components, e.g., GAMS IDE and gdxxrw, will remain 32-bit executables in the
64-bit MS Windows GAMS distribution.

• We plan to drop support for MS Windows 7 with the next major release.

3.20.1.3 GAMS System

GAMS

• Extended the GAMS log to print out the Double Dash Parameters set in addition to the non-default
Command Line Parameters.

• Added dollar control option $setDDList.Cont to allow to define a list of double dash parameters to
be checked over multiple lines.

• Added new ways to execute external programs which implicitly check the errorLevel returned
and raise a compilation or execution error if it is not zero, namely $call.checkErrorLevel,
$hiddencall.checkErrorLevel, execute.checkErrorLevel, put utility exec.checkErrorLevel and
put utility shell.checkErrorLevel. This behavior can also be triggered without using the
checkErrorLevel suffix by setting $onCheckErrorlevel and checkErrorLevel, respectively.

• Added command line option captureModelInstance to capture all model instances generated and
solved by a solve statement during a GAMS run.

• Allow to declare a parameter as table without entering data.

• Added new Dollar Control Options eval.Set, evalGlobal.Set, and evalLocal.Set to define a compile-
time variable based on the content of a GAMS set.

• Removed limit of 10,000 columns in table declaration.

• Changed trace record fields of quadratic model types from historic to today's names (QP --> QCP,
QMIP --> MIQCP, RQMIP --> RMIQCP).

• The gams.exe and gamskeep.exe programs on 64-bit Windows are now native 64-bit executables.
Because of some technical requirements related to the Interrupt functionality, the IDE invokes
GAMS via the new 32-bit program gams32.exe.

• Fixed wrong return string for %gams.action%.

• Fixed a problem with interval evaluation for Extrinsic Functions.

• Fixed a problem with GAMS parameter scriptExit when running from the object-oriented APIs,
GAMS Studio, or GAMS IDE.

• Fixed a problem with trace record field ETSolve which reported NA always.

• Fixed a problem with potentially wrong explanatory text when implicit sets are loaded using $load.

238 Release Notes

Installer

• The DMG installer for macOS has been reorganized and is now notarized, so that it should work on
macOS 10.15.

• The selfextracting archive for macOS is now a 64-bit application.

3.20.1.4 Solvers

ANTIGONE, Bonmin, Couenne, Ipopt, SCIP

• Updated Intel MKL libraries to version 2019.5 on Linux and macOS.

• Updated Intel MKL libraries to version 2018.4 on Windows 64-bit again.

CBC

• New libraries.

CONOPT

• New library 4.15 with bug fixes.

• Option DF Method has been replaced by the options Tol Def Mult and Tol Def Ini.

Convert

• Fixed a bug that caused a crash with option nlp2mcp selected.

DICOPT

• Fixed so called ”integer cuts” when both binary and integer variables are present. DICOPT generated
two integer cuts in this case, one that excluded the current values of binary variables and another
one that excluded the current values of integer values. Now a single combined cut is generated,
which allows that the values of the binary variables can repeat if the values of the integer values
change and vice versa.

• Setting option weight to a value larger 1020 now disables the augmented penaly relaxation, that is,
linearizations of nonlinear equations are added as hard constraints to the MIP relaxation instead of
soft constraints.

• Enabling option convex now changes the default for option weight to maxdouble.

Examiner

• Added option objvarAutoAdjust to adjust objective variable to make objective equation feasible for
models that allow objective reformulation.

3.20 29 Distribution 239

Lindo/LindoGlobal

• New libraries 12.0.169.

• Added support for function signPower.

LocalSolver

• New libraries 9.0 (20191004) for Linux, macOS, and 64-bit Windows.

– Performance improvements on packing, routing, and scheduling problems as well as on nonlinear
continuous problems.

LGO

• Fixed a bug in the computation of the best feasible solution - an uninitialized variable was used.

MOSEK

• New libraries 9.1.1.

• Correct rejection of problems with non-quadratic nonlinear objective function when constraints are
linear.

SoPlex

• New libraries 4.0 (083219e0).

SCIP

• New libraries 6.0 (a15f6c41).

3.20.1.5 Tools

GAMS Studio

• New version 0.13.2

– Stability and performance improvements.

– Allow to adjust the numerical precision in the GDX Viewer.

– Added dialog to create/update license file (pops up when a license is in the user's clipboard
and ”About GAMS” is opened).

– Added full screen mode (shortcut on Windows and Linux: ALT+Return, shortcut on macOS:
META+CMD+F).

– Added auto-resizing of columns when opening the Reference File Viewer.

– Reworked process log to better handle long and fast output.

– Improved behavior of F1 (Help) Key: Studio now opens widget specific help if available.

– Renamed ”Output View” to ”Process Log”.

• Added a tutorial about the usage of GAMS Studio to the documentation.

• As announced, dropped Studio for 32-bit Windows.

240 Release Notes

3.20.1.6 Object Oriented APIs

Python

• Added support for Python 3.7 on Windows 64-bit, Linux, and macOS.

• We plan to drop support for Python 3.4 with the next major release.

• Support for Python 2.7 officially stops January 1, 2020. We plan to drop support for Python 2.7
with some future release. If you rely heavily on the availability and support of the GAMS API for
Python 2.7 please contact support@gams.com to discuss your options.

Java

• Increase the minimum version requirement of the Java Runtime Environment to Java SE 8.

• The remove operation GAMSDatabaseIterator.remove is no longer supported. The method now
throws an instance of java.lang.UnsupportedOperationException and performs no other actions.
(To remove all records of the current iterating symbol, use the method GAMSSymbol.clear
instead.)

• Fixed the behavior of the remove operation GAMSSymbolIterator.remove. The method now
removes all records of the last GAMSSymbol element returned by an instance of GAMSSymbol-
Iterator and can be called only once per call to GAMSSymbolIterator.next. The behavior of
an iterator is unspecified if the underlying collection is modified while iterating.

3.20.1.7 Expert Level APIs

• Added support for Python 3.7 on Windows 64-bit, Linux, and macOS.

• We plan to drop support for Python 3.4 with the next major release.

• We plan to drop support for Python 2.7 with some future release.

3.20.1.8 Model Libraries

GAMS Model Library

• Added inscribedsquare.gms : Inscribed Square Problem.

GAMS Test Library

• Extrinsic function test models: Upgraded query-library generation code ql.py to Python 3. The
default for property ”description” has been changed to be an empty string.

3.20.1.9 Solver/Platform availability matrix

mailto:support@gams.com

3.20 29 Distribution 241

x86 32bit
MS

Windows

x86 64bit
MS

Windows

x86 64bit
Linux

x86 64bit
macOS

Sparc
64bit

SOLARIS

IBM
Power
64bit
AIX

ALPHAECP X X X X X X
ANTIGONE
1.1

X X X X

BARON 18.5.8 X X X
BDMLP X X X X X X
BONMIN
1.8

X X X X

CBC 2.10 X X X X
CONOPT 3 X X X X X X
CONOPT 4 X X X X X X
COUENNE
0.5

X X X X

CPLEX
12.9

12.6 X X X 12.6 X

DECIS X X X X X
DICOPT X X X X X X
GLOMIQO
2.3

X X X X

GUROBI
8.1

7.5 X X X X

GUSS X X X X X X
IPOPT 3.12 X X X X
KESTREL X X X X X X
KNITRO
11.1

11.0 X X X

LGO X X X X X
LINDO 12.0 X X X X
LINDOGLOBAL
12.0

X X X X

LOCALSOLVER
9.0

8.5 X X X

MILES X X X X X X
MINOS X X X X X X
MOSEK 9 X X X X
MSNLP X X X X X
NLPEC X X X X X X
ODHCPLEX
4

X X

PATH X X X X X X
SBB X X X X X X
SCIP 6.0 X X X X
SNOPT X X X X X X
SOLVEENGINE X X X X
SOPLEX
4.0

X X X X

XA X X X
XPRESS
33.01

X X X X 32.01 29.01

242 Release Notes

3.21 28 Distribution

3.21.1 28.1.0 Major release (August 02, 2019)

3.21.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Johan Löfberg, Hans Mittelmann, and José Luis Vilar Zanón.

3.21.1.2 Platforms

• We plan to drop support for macOS 10.12 (Sierra) with the next GAMS major release.

3.21.1.3 GAMS System

GAMS

• Added new dollar control option $scratchFileName.

• Fixed a bug which caused a problem when unloading a multi-dimensional Alias at compile-time.

Documentation

• Improved ranking of results in offline search by minimizing the effect of the length of a document
on the importance of a search term in that document.

• When searching the index, only relevant results are shown for subcategories as well.

• The full-text search now shows also results for a search in the index.

3.21.1.4 Solvers

ANTIGONE, Bonmin, Couenne, Ipopt, SCIP

• Downgraded Intel MKL libraries to version 2018.3 on Windows 64-bit.

ANTIGONE

• The timelimit is now applied to the wallclock time and wallclock time is reported in the log and
back to GAMS.

search.html
keyword.html
search.html
keyword.html

3.21 28 Distribution 243

BARON

• New libraries 19.7.13.

– New relaxations and branching rules for nonconvex mixed-integer quadratic programs, leading
to significant speedups for this class of problems.

– Increased robustness in various range reduction routines.

– Increased solvability of large-scale problems by BARON's cut generators.

– Enhanced convexity recognition routines.

– Updated to IPOPT 3.12.13 and CBC 2.10.1.

• Fixed passing constant equations to BARON.

CBC

• Revised solver options.

– Updated the documentation and possible values for many options, bringing them closer to the
original Cbc option names and values.

– The following options changed their type from boolean to string: crossover, cutoffConstraint,
combineSolutions, Dins, DivingRandom, DivingCoefficient, DivingFractional, DivingGuided,
DivingLineSearch, DivingPseudoCost, DivingVectorLength, feaspump, naiveHeuristics,
pivotAndFix, randomizedRounding, Rens, Rins, roundingHeuristic, proximitySearch, presolve

– For options dualPivot, primalPivot, and scaling value ”auto” has been renamed to ”automatic”.

– For option costStrategy, values ”binaryfirst” and ”binarylast” have been renamed to ”01first”
and ”01last”, respectively.

– The following options have been added: factorization, denseThreshold, smallFactorization,
sparseFactor, biasLU, psi, substitution, primalWeight, autoScale, bscale, gamma, KKT,
expensiveStrong, OrbitalBranching, infeasibilityWeight, fixOnDj, sosPrioritize, cutLength,
lagomoryCuts, latwomirCuts, hOptions, combine2Solutions, diveSolves, feaspump artcost,
feaspump fracbab, feaspump cutoff, feaspump increment, dwHeuristic, pivotAndComplement,
VndVariableNeighborhoodSearch

CONOPT

• CONOPT3 accepts models with empty rows. The GAMS/CONOPT3 link sets the hidden option
LSAZRW to true.

Convert

• Replaced the OSiL writer. The new writer supports more GAMS intrinsic functions and produces
slightly smaller OSiL files with more compact expression trees.

IPOPT

• Fixed handling of Ipopt's feasible-point-found status.

LocalSolver

• Added option logfreq.

244 Release Notes

MOSEK

• New libraries 9.0.98.

– Introduced the power and exponential cones, see also Conic Programming.

– As announced, the optimizer for general convex nonlinear problems has been removed. Thus,
solving a NLP, DNLP, MINLP, or RMINLP for which a conic reformulation is not recognized
will now result in a missing capability solver status with GAMS/Mosek.

– Improved presolve for particular conic problems.

– Tighten the stopping criteria when solving conic optimization problems: Changed default of
MSK DPAR INTPNT CO TOL INFEAS from 1e-10 to 1e-12, of MSK DPAR INTPNT CO TOL REL GAP
from 1e-7 to 1e-8, and of MSK DPAR INTPNT QO TOL INFEAS from 1e-10 to 1e-
12. However, note that one can let Mosek relax feasibility and optimality tolerances if
it cannot make sufficient progress, see MSK DPAR INTPNT CO TOL NEAR REL and
MSK DPAR INTPNT QO TOL NEAR REL.

– Changed scaling of interior-point optimizer so better accuracy is obtained in some cases.

– Introduced an outer approximation method for solving conic mixed integer optimization prob-
lems. This can be enabled with the parameter MSK IPAR MIO CONIC OUTER APPROXIMATION.

– Much improved performance on recent AMD CPUs. For linear algebra, the BLIS library is
employed when run on AMD CPUs.

– Better performance on CPUs that support AVX-512 instructions.

– Removed parameters: MSK DPAR DATA TOL AIJ, MSK DPAR INTPNT NL ∗,
MSK DPAR MIO DISABLE TERM TIME, MSK DPAR MIO NEAR TOL ABS GAP,
MSK DPAR MIO NEAR TOL REL GAP, MSK IPAR MIO CONSTRUCT SOL and syn-
onym ”mipstart” (GAMS now always passes the starting point of a MIP to Mosek),
MSK IPAR OPF MAX TERMS PER LINE, MSK IPAR WRITE DATA FORMAT

– Further new parameters: MSK IPAR PRESOLVE MAX NUM PASS, MSK IPAR PRESOLVE MAX NUM PASS,
MSK IPAR SIM SEED, MSK IPAR INTPNT ORDER GP NUM SEEDS, MSK IPAR MIO MAX NUM ROOT CUT ROUNDS,
MSK IPAR MIO PROPAGATE OBJECTIVE CONSTRAINT, MSK IPAR MIO SEED,
MSK IPAR MIO FEASPUMP LEVEL, MSK IPAR WRITE COMPRESSION, MSK IPAR OPF WRITE LINE LENGTH,
MSK IPAR PTF WRITE TRANSFORM

– Changed default of MSK DPAR MIO TOL ABS GAP from 0 to value of GAMS op-
tion OptCA (was used for MSK DPAR MIO NEAR TOL ABS GAP before) and of
MSK DPAR MIO TOL REL GAP from 0 to value of GAMS option OptCR (was used
for MSK DPAR MIO NEAR TOL REL GAP before).

• Fixed handling of Mosek certificiates for primal and dual infeasibility, see Infeasible/Unbounded Models.

SCIP

• New libraries 6.0 (f79421d).

3.21.1.5 Tools

GAMS Studio

• New version 0.12.3.

– Stability and performance improvements.

– Added GAMS Solver Option Editor to view and edit a solver-specific option file.

3.21 28 Distribution 245

– Renamed Option Editor to Parameter Editor to better distinguish solver options and GAMS
parameters.

– Added menu entry GAMS -> Delete scratch directories to delete all scratch directories in
current working directory. A similar dialog will also be triggered if GAMS returns 110 (”Too
many scratch directories”).

– Added file associations and icons for .gms and .gdx files on macOS.

– Changed shortcut to focus Main widget from Ctrl+H to CTRL+E (there was a collision on
macOS).

– Improved keyboard navigation between files and widgets.

• We plan to drop Studio for 32 bit Windows with the next major release.

3.21.1.6 APIs

• As announced, dropped support for Python 2.6.

• We plan to increase the minimum version requirement of the Java Runtime Environment to Java
SE 8 with the next major release.

3.21.1.7 Model Libraries

GAMS Model Library

• Changed model sigma in immun to minimize standard-deviation instead of variance.

• Added missing nonnegativity requirement on variables in model wall.

3.21.1.8 Solver/Platform availability matrix

x86 32bit
MS

Windows

x86 64bit
MS

Windows

x86 64bit
Linux

x86 64bit
macOS

Sparc
64bit

SOLARIS

IBM
Power
64bit
AIX

ALPHAECP X X X X X X
ANTIGONE
1.1

X X X X

BARON 18.5.8 X X X
BDMLP X X X X X X
BONMIN
1.8

X X X X

CBC 2.10 X X X X
CONOPT 3 X X X X X X
CONOPT 4 X X X X X X
COUENNE
0.5

X X X X

CPLEX
12.9

12.6 X X X 12.6 X

DECIS X X X X X
DICOPT X X X X X X
GLOMIQO
2.3

X X X X

246 Release Notes

x86 32bit
MS

Windows

x86 64bit
MS

Windows

x86 64bit
Linux

x86 64bit
macOS

Sparc
64bit

SOLARIS

IBM
Power
64bit
AIX

GUROBI
8.1

7.5 X X X X

GUSS X X X X X X
IPOPT 3.12 X X X X
KESTREL X X X X X X
KNITRO
11.1

11.0 X X X

LGO X X X X X
LINDO 12.0 X X X X
LINDOGLOBAL
12.0

X X X X

LOCALSOLVER
8.5

X X X X

MILES X X X X X X
MINOS X X X X X X
MOSEK 9 X X X X
MSNLP X X X X X
NLPEC X X X X X X
ODHCPLEX
4

X X

PATH X X X X X X
SBB X X X X X X
SCIP 6.0 X X X X
SNOPT X X X X X X
SOLVEENGINE X X X X
SOPLEX
4.0

X X X X

XA X X X
XPRESS
33.01

X X X X 32.01 29.01

3.21.2 28.2.0 Minor release (August 19, 2019)

3.21.2.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Nayeem Chowdhury, Salvador Doménech Mart́ınez, Michael Ferris,
Antti Lehtila, Evangelos Panos, Jochen Uhrich, and Alexey Ziuzin.

3.21.2.2 GAMS System

GAMS

• Setting $onMultiR allows the redefinition of macros as well now.

• Fixed a problem finding the Python interpreter, that comes with GAMS, in certain cases.

• Fixed a bug in the model generation, which could have caused a crash or wrong results in some
cases.

3.22 27 Distribution 247

3.21.2.3 Solvers

CPLEXD

• Corrected reporting of solution for (MI)QCP problems when using feasopt.

• CplexD now reports the objective of the feasible relaxation in the solution summary when using
feasopt.

3.21.2.4 Tools

GAMS Studio

• New version 0.12.4

– Stability and performance improvements.

– Improved robustness of glb file parser (see User Libraries).

– Added ”What's new” menu entry to show latest changes of Studio.

3.21.2.5 Object Oriented APIs

• Fixed a problem, where GAMSDatabase.Export triggered an exception because of domain violations,
even if only relaxed domains were used.

Java

• Added new method GAMSSymbolRecord.dispose for on-demand release of external resources
hold by non-java library.

3.22 27 Distribution

3.22.1 27.1.0 Major release (April 24, 2019)

3.22.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Arne Drud, Jan-Erik Justkowiak, Renger van Nieuwkoop, and Manuel
Wetzel.

3.22.1.2 Platforms

• As announced, support for Mac OS X 10.11 (El Capitan) has been dropped.

• As announced, support for Windows Vista has been dropped.

248 Release Notes

3.22.1.3 GAMS System

GAMS

• Embedded Python Code:

– Allow Implicit Set Definition (or: Domain Defining Symbol Declarations) now for symbols
loaded from embedded code as well.

– Changed the default behavior of $offEmbeddedCode and endEmbeddedCode: Previously,
internal resources got freed and with the next start of an embedded Python code section, the
Python environment had to be reinitialized. This is not the case anymore. Also, the interpreter
stays ”alive” now, which allows to access Python symbols defined in one embedded code block
in a following block. The old behavior could still be activated by setting the new command
line parameter freeEmbeddedPython to 1.

– Changed the optional boolean argument merge to an enumerated option mergeType in the
gams.set method in embedded code. This might break existing code. Even if the merge

argument was not used, the default behavior at compile time changes. In previous versions
the content of an already defined symbol was quietly replaced while GAMS now triggers a
compilation error 194 Symbol redefined.

– Fixed a bug in embedded code when setting pySetup to 0. Additional steps are required on
Linux and macOS to use an alternative Python installation. Details can be found in section
Porting to a Different Version of Python.

– A GAMSDatabase created in embedded code via gams.ws.add database(source database =

gams.db) had all the symbols but no data. This has been fixed.

– gams.db.export(file name) in embedded code resulted in an error for scalar symbols without
data. This has been fixed.

– Fixed a problem with embeddedCode/continueEmbeddedCode after an assignment that was
not finished with a ; like in this example:

Set i /1*3/;

Parameter xl(i);

xl(i) = uniform(0.5,1)

embeddedCode Python:

print(list(gams.get(’xl’)))

endEmbeddedCode

Display xl;

This leads to an error now. In the past, the assignment in line 3 was executed after the
embeddedCode block leading to unexpected results.

• Extended the GAMS log to print out the non-default Command Line Parameters.

• Improved performance of execute unload when option gdxUELs is set to full.

• Improve performance of model generation when multi-dimensional variables are used, where the
controlling set for dimension n>1 is big, e.g.:

Set tiny /1*2/, huge /1*100000/ ;

Variable x(i,j); Equation e;

...

e.. sum((tiny,huge), x(tiny,huge)) =e= 42;

...

• Fixed a potential crash when more than 250 million labels are used in one model.

• Fixed a bug with Implicit Set Definition: When used with $onMulti to merge data into a non-empty
set, it could have happened that an element was added twice in some cases.

• Fixed a bug causing a broken dump file if $onVerbatim and $ifThen was used with DumpOpt.

3.22 27 Distribution 249

Documentation

• Added documentation for the put utility keyword assignText (which has been in the system since
24.6).

GDX library

• Improve the behavior of GDX when handling large data sets (e.g. writing a set with 210 million
elements, each having its own lengthy set text). Performance is better - less memory and less time
are required. The limits on the amount of data that can be handled have been extended somewhat,
and when these limits are reached this is handled more gracefully than previously - with a helpful
message instead of a segmentation fault or erroneous results.

• Introduce consistent handling of the empty string vis-a-vis set text for UELs. This is only relevant
for user applications that use the low-level GDX API in an unsupported way.

– Previously the proper usage was to avoid adding the empty string to the list of set text strings.
Applications that broke this rule would produce a GDX file with an abnormal internal structure.
This structure may lead to jumbled set text.

– With the updated GDX, it is not necessary to avoid adding an empty string to the set text list.

– Applications holding to previous proper usage (i.e. those that avoid adding the empty string to
the list of set text strings) will produce good GDX files regardless of GAMS version, and these
files will behave as expected regardless of the GAMS version in which they are used.

3.22.1.4 Solvers

ANTIGONE, Bonmin, Couenne, Ipopt, SCIP

• Updated Intel MKL libraries to version 2019.3 on Linux and macOS and to 2018.4 on Windows
64-bit.

BARON

• New libraries 19.3.24.

– Improved automatic differentiator that is up to two orders of magnitude faster for large-scale
problems.

– Improved data structures and cut pool manager to reduce memory footprint and time require-
ments for large-scale problems.

– Improvements in various components, including parallel threads and BARON's IPOPT interface
for macOS.

– New tree management algorithms.

– Improved range reduction and probing algorithms.

– Using Intel MKL for faster BLAS and LAPACK routines.

– Ipopt now uses METIS for linear system partitioning.

– New option FirstLoc to terminate BARON as soon as a local optimum is found.

• New option ClockType to determine whether wall-clock or CPU time should be reported back to
GAMS.

250 Release Notes

BDMLP and SBB

• The definition of SOS1 and SOS2 variables has changed. BDMLP and SBB used to count the
number of elements in a set that are off the lower bound. BDMLP and SBB were the only two
solvers in the GAMS solver portfolio with this definition. All other solvers counted elements that
are off zero. The definition of SOS1 and SOS2 variables in BDMLP and SBB has been changed to
the off zero definition to make their behavior more consistent with other GAMS solvers.

CBC

• New libraries 2.10.

– Improved handling of SOS, starting point, and symmetries.

– Improved performance of primal heuristics regarding the handling of implicit integer variables.

– Mini-B&B is now disabled when solving with multiple threads.

– Changed default value for zero half cuts parameter from off to ifmove.

CONOPT 4

• New library 4.11 with improvements in reliability and efficiency for large and difficult models.

• New option Tol Opt LinF: Optimality tolerance when infeasible in Linear Feasibility Model.

CPLEX/CPLEXD

• New libraries 12.9.0.

– New options: CPLEXfolding, CPLEXwriteprob (CplexD only), CPLEXwarninglimit.

– New hierarchical multi-objective optimization (CplexD only): CPLEXmultobj, CPLEXmultobjmethod,
CPLEXobjnabstol, CPLEXobjnreltol.

– The symmetry breaking parameter CPLEXsymmetry now applies only to MIP models. Use
the new CPLEXfolding parameter for LP models.

GUROBI

• New libraries 8.1.1.

JAMS

• Experimental indexed EMP syntax has been updated: It can now take all the equilibrium related
keywords (max, min, vi, qvi, dualvar, visol, and implicit) and shared constraints and variables.

LocalSolver

• New libraries 8.5 (20190130).

– Strong lower bounds based on nonlinear relaxation techniques coupled with innovative branch-
and-bound heuristics.

3.22 27 Distribution 251

Mosek

• New libraries 8.1.0.80.

ODHCPLEX

• New libraries 4.23.

OQNLP

• As announced, OQNLP has been dropped.

3.22.1.5 Tools

CSDP

• See ANTIGONE, Bonmin, Couenne, Ipopt, SCIP.

• New library 6.2.0 on macOS.

GAMS Studio

• New version 0.11.1.

– Stability and performance improvements.

– Introduced a toolbar to replace the ”Execution and Option Parameter Editor”.

– Editor

∗ Improved the syntax highlighting.

∗ Allow to open huge read-only (lst) files without significant memory requirement.

∗ Added bookmark support.

∗ Added Ctrl+Up/Ctrl+Down as shortcut for line wise scrolling without moving the text
cursor.

∗ Added Ctrl+Home/Ctrl+End as shortcut for page wise scrolling without moving the text
cursor.

∗ Added warning pop-up when trying to open a >50 Mb file in edit mode.

– Various

∗ Added Ctrl+Alt+L to extend/collapse the extended option editor

– Forced light application theme on macOS to circumvent problems using the Dark Mode of
macOS Mojave.

GDXDUMP

• New command line option setText to show the list of set text stored in a GDX file.

• Option symbols now lists the cardinality of a symbol in the column Records.

252 Release Notes

GDXXRW

• Fixed exit behavior if there were some duplicate records found when reading a symbol but less than
specified by maxDupeErrors: If there are no other errors the exit code is 0 now (it was 16 in the
past)

GMSZIP/GMSUNZIP

• Replaced the 32bit binaries gmszip and gmsunzip by more recent 64bit versions on macOS.

MPS2GMS

• Turn some errors that can be safely ignored when reading an MPS file into warnings.

3.22.1.6 Object Oriented APIs

Python

• Fixed a bug with default variable levels being 1.0 instead of 0.0.

3.22.1.7 Model Libraries

GAMS Data Library

• GDX2ACCESSExample1.gms : Dumping the Contents of trnsport.gdx (125)

• GDX2ACCESSExample2.gms : Writing Explanatory Text to Database (126)

• GDX2ACCESSExample3.gms : Dumping a large Table to Database (127)

• GDX2ACCESSExample4.gms : Special Value Mapping (128)

• GDX2ACCESSExample5.gms : Renaming Fields (129)

GAMS Test Library

• sosmiqcp01.gms : SOS1 and SOS2 behavior - MIQCP (794)

• sosmip01.gms : SOS1 and SOS2 behavior - MIP (795)

• sosminlp01.gms : SOS1 and SOS2 behavior - MINLP (796)

3.22.1.8 Solver/Platform availability

3.22 27 Distribution 253

x86 32bit
MS

Windows

x86 64bit
MS

Windows

x86 64bit
Linux

x86 64bit
macOS

Sparc
64bit

SOLARIS

IBM
Power
64bit
AIX

ALPHAECP X X X X X X
ANTIGONE
1.1

X X X X

BARON 18.5.8 X X X
BDMLP X X X X X X
BONMIN
1.8

X X X X

CBC 2.10 X X X X
CONOPT 3 X X X X X X
CONOPT 4 X X X X X X
COUENNE
0.5

X X X X

CPLEX
12.9

12.6 X X X 12.6 X

DECIS X X X X X
DICOPT X X X X X X
GLOMIQO
2.3

X X X X

GUROBI
8.1

7.5 X X X X

GUSS X X X X X X
IPOPT 3.12 X X X X
KESTREL X X X X X X
KNITRO
11.1

11.0 X X X

LGO X X X X X
LINDO 12.0 X X X X
LINDOGLOBAL
12.0

X X X X

LOCALSOLVER
8.5

X X X X

MILES X X X X X X
MINOS X X X X X X
MOSEK 8 X X X X
MSNLP X X X X X
NLPEC X X X X X X
ODHCPLEX
4

X X

PATH X X X X X X
SBB X X X X X X
SCIP 6.0 X X X X
SNOPT X X X X X X
SOLVEENGINE X X X X
SOPLEX
4.0

X X X X

XA X X X
XPRESS
33.01

X X X X 32.01 29.01

254 Release Notes

3.22.2 27.2.0 Minor release (May 23, 2019)

3.22.2.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz, Michael Burkhardt, and Karlo Šepetanc.

3.22.2.2 GAMS System

GAMS

• Fix problem with missing entries for scalar variables and equations in the index file for the
GAMS Output in certain cases.

3.22.2.3 Solvers

CONOPT

• New library 3.17J.

• New library 4.12.

Lindo/LindoGlobal

• New libraries 12.0.157.

LOCALSOLVER

• New libraries 8.5 (20190430).

NLPEC

• Added new option parmFile to allow to point to additional options for the GAMS run of the scalar
model produced by NLPEC.

ODHCPLEX

• New libraries 4.26.

OSIXPRESS

• Fixed use of standalone Xpress license.

3.22 27 Distribution 255

3.22.2.4 Tools

GAMS Studio

• New version 0.11.2.

– Stability and performance improvements.

– GDX Viewer

∗ Added Drag and Drop feature in GDX Table View

3.22.2.5 Object Oriented APIs

Python

• Fixed a memory leak in the Python 3 version of the API.

• We plan to drop support for Python 2.6 with the next major release.

3.22.2.6 Expert Level APIs

• Fixed a memory leak in the Python 3 version of the APIs.

• We plan to drop support for Python 2.6 with the next major release.

3.22.3 27.3.0 Minor release (July 04, 2019)

3.22.3.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz, Erwin Kalvelagen, Wolfgang Kuehn, Bruce McCarl,
and Michael Winkler.

3.22.3.2 GAMS System

• Fixed a bug that resulted in undercounting the number of physical and logical processors on Windows
systems with more than 64 logical processors. GAMS/Base and many solvers use this count, e.g.
when setting threads to 0 or -1.

GAMS

• Allow domain projection with $load also if the source symbol is a variable or equation.

• Fixed the cause for an unwanted compilation error with embeddedCode in certain situations.

• Unified behavior of the profile option: In the past, the Profile Summary was always written, when
the profiling was activated from the command line, but was sometimes omitted when set as an
option. Now, the summary gets always written. It does not matter anymore, where profiling was
activated.

256 Release Notes

Documentation

• Added a Preface that reflects the history of the GAMS documentation. In particular it points out
the importance of external contributors, in particular Bruce McCarl.

3.22.3.3 Solvers

BARON

• Fixed load of Xpress library on Linux.

CBC

• New libraries.

CONOPT

• New library 3.17K.

• Bug fix in library 4.12.

GAMSCHK

• Fixed error in postopt report. Previously, the report for the column occurring last in the listing file
would be omitted, and all its entries would appear in the report for the preceding column.

• Fixed crash that occurred in some cases.

• The above problems occurred in GAMS 26 and previous. A fix was introduced with GAMS 27, but
this fix went too far and introduced new problems. With this version, the fix to 27.1 is reverted and
a more moderate fix is used instead.

LocalSolver

• Fixed missing solver log.

Mosek

• New libraries 8.1.0.81.

• Fixed ignoring option solvefinal.

SCIP

• New libraries 6.0.2.

3.23 26 Distribution 257

SoPlex

• New libraries 4.0.2.

3.22.3.4 Tools

GAMS Studio

• New version 0.11.5

– Stability and performance improvements.

– Added buttons to toolbar to show/hide Project Explorer, Output-, and Help widget.

– Added shortcut Ctrl+H to focus Main widget.

– Added shortcut Ctrl+Shift+G to focus Output widget.

– Added shortcut Esc to close several widgets.

– GDX Viewer:

∗ Columns in the data view are now resized to the minimum width necessary to see all the
data automatically.

∗ Added shortcut to auto-resize all columns in the data view after the width was changed by
hand (Ctrl+R).

– Search:

∗ Added shortcut Ctrl+Enter for ”Search All”.

∗ Added ability to replace in more than one file at a time.

∗ Find Next/Previous now respects all search options and will jump to the next file if there
are also matches.

3.22.3.5 Object Oriented APIs

Python

• Fixed a bug in GamsJob.interrupt() that caused an OverflowError on 64 bit platforms.

3.23 26 Distribution

3.23.1 26.1.0 Major release (February 02, 2019)

3.23.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Stefano Alva, Adam Christensen, Hanna Donau, Stephen Frank,
Anastasis Giannousakis, Jan-Erik Justkowiak, David Laudy, Andreas Lundell, Thomas Maindl, Nils
Mattus, Scott McDonald, Noah Rhodes, Tom Rutherford, and Anna Straubinger.

258 Release Notes

3.23.1.2 Versioning

From this release on, we use a new interpretation on the GAMS version number scheme XX.Y.Z. XX
alone now indicates the GAMS distribution number (was XX.Y before). Y is used to distinguish between
beta, major, and minor releases of the XX distribution. Z is used to distinguish different maintenance
releases. That is, we now use

• XX.0.Z for beta versions,

• XX.1.0 for the major release of distribution XX,

• XX.Y.0, Y > 1, for minor releases,

• XX.Y.Z, Y ≥ 1, Z > 0, for maintenance releases.

See Release Types regarding the meaning or what constitutes a major, minor, or maintenance release. As
before, we increase the required license date for major releases only.

Further, we changed the default installation directory of the GAMS system from using only the distribution
number to also include the minor version number. Thus, as before, GAMS is now installed into directory
names which contain the XX.Y part of the GAMS version number.

3.23.1.3 Platforms

• We plan to drop support for Mac OS X 10.11 (El Capitan) with the next major release.

• We plan to drop support for Windows Vista with the next major release.

• Fixed problem using solvers with Fortran dependencies on a Mac OS X 10.11 system.

3.23.1.4 GAMS System

GAMS

• Changed behavior of $compress, $decompress, and $encrypt: source and target cannot be identical
anymore; this could have lead to unreliable behavior in the past.

• Extended the influence of $onMulti: This affects the model statement as well now.

• Added new dollar control option $onMultiR, which is similar to $onMulti but replaces existing data
instead of merging into it.

• Added put utility keyword solver to select a solver for a given or all possible model types by name
at execution time.

• Extended the syntax to allow Implicit Set Definition (or: Domain Defining Symbol Declarations).
Here is a small example showing how this can be used:

Set

i ’canning plants’

j ’markets’;

Table d(i<,j<) ’distance in thousands of miles’

new-york chicago topeka

seattle 2.5 1.7 1.8

san-diego 2.5 1.8 1.4;

Display i,j;

3.23 26 Distribution 259

And this is the result of the Display statement:

---- 10 SET i canning plants

seattle , san-diego

---- 10 SET j markets

new-york, chicago , topeka

• Updated the base module and components as necessary to allow for spaces in names of any files
and directory used by GAMS, including the system directory, the working directory, the scratch
directory, the process directory, and remove any checks warning about and preventing this. While
the Windows system had already allowed spaces in previous versions, this change updates the other
platforms to behave similarly.

• Changed the reading of command-line arguments on non-Windows platforms! This should only affect
how arguments with spaces in them are passed on to GAMS. Previously, such arguments needed
extra quoting or protection on non-Windows platforms. With this update, the extra protection is
no longer needed: the same quoting of space-containing arguments can be used on all platforms.
For example, with GAMS 25.1 and previous, two pairs of quotes were required on non-Windows
platforms to protect spaces in an argument:

gams xx.gms --MY_GDX ’"outer space"’

while now only one pair of quotes is needed on all platforms:

gams xx.gms --MY_GDX "outer space"

• Increased the number of labels, which can be handled by GAMS from 200 million to ∼2.1 billion
and let GAMS terminate with the meaningful error message, if that limit is reached.

• Windows only: Fixed a bug which treated a path (e.g. to an input file or used as inputDir)
as relative path, if it starts with /. Example: When running cd C:\tmp && gams.exe

/data/myModel.gms, GAMS tried to load the file C:\tmp\data\myModel.gms in the past. Now, it
loads C:\data\myModel.gms.

• Fixed some problems with option asyncSolLst.

• Fixed a bug which could have caused GAMS to accept duplicate entries in a data statement, when
they came in unsorted order.

• Fixed the dollar control option $onUpper (it did not do anything before).

GMSPython

• Updated pip to work with recent macOS versions.

3.23.1.5 Solvers

ANTIGONE, Bonmin, Couenne, Ipopt, SCIP

• Fixed an MKL error when running any of these solvers after CPLEX with solvelink=5 in the same
GAMS run on Linux.

• Updated Intel MKL libraries to version 2019.0 on Linux and to version 2018.3 on Windows 64-bit.

260 Release Notes

BARON

• New libraries 18.11.12 for 64-bit platforms.

– New cutting planes for convex-transformable functions.

– New cutting planes for polynomial optimization problems.

– More robust treatment of cutting planes.

– Improved optimality-based range reduction mechanisms.

– CBC can now use multiple threads on Windows, too.

• We plan to drop BARON for Windows 32-bit with some future release.

• The solver time reported back to GAMS (resource usage) is now the wall clock time instead of the
CPU time.

Bonmin, CBC, Couenne, Ipopt

• New libraries.

CONOPT 4

• New library 4.09 with many reliability improvements and a fix for wrong non-opt markers.

CPLEX

• Ctrl-C (or Interrupt) was broken for GAMS/CplexD. This has been fixed.

• Improved performance of retrieving the solution for a QCP with many quadratic rows.

Gurobi

• The solver time reported back to GAMS (resource usage) is now the wall clock time instead of the
CPU time on Unix.

• Allow quadratic rows with =E= and let Gurobi deal with potential errors. Gurobi can sometimes
substitue quadratic terms defined by =E= rows. The check of quadratic row to be either =L= or =G=
in the GAMS/Gurobi link prevented this.

KESTREL

• Added support for MPSGE models.

Knitro

• New libraries 11.1.1 (11.0.1 for 32-bit Windows) containing several bug fixes and performance
improvements, including:

– improved performance on convex quadratic models,

– improved generation of knapsack cuts, resulting in faster performance on some MINLP models,

– improved performance when using the SQP algorithm,

– new values for option linsolver to choose parallel factorization routines MA97 and MA86.

• Artelys has announced that Knitro 11.0 was the last Knitro release to support 32-bit Windows. We
will be dropping GAMS/Knitro for 32-bit Windows in the near future.

3.23 26 Distribution 261

Lindo/LindoGlobal

• New libraries 12.0.90.

– LP Solver Improvements:

∗ With new enhancements made to the simplex solvers, the average performance on large
instances has increased by 18% for the primal simplex and 15% for the dual simplex
compared to the previous version.

∗ Improved performance on LP’s when using multiple cores with concurrent execution of
Primal, Dual, and Barrier.

– Quadratic and Nonlinear Solver Improvements:

∗ Much faster handling of large quadratic matrices, e.g. 1000 x 1000.

– Global Solver Improvements:

∗ Improved handling of discontinuous functions, e.g., MOD(x,k), ROUND(x).

LocalSolver

• New libraries 8.0 (20181106).

– Performance improvements on routing & scheduling problems, especially Pickup & Delivery
problems.

– Learning algorithms inside LocalSolver, which allow to automatically and dynamically tune up
the search process for each solved instance, were improved. This leads to improved performances,
especially for short resolution times (minutes).

Mosek

• New libraries 8.1.0.72.

ODHCPLEX

• New libraries 4.09 for Linux with many reliability improvements.

• New libraries 4.13 for Windows 64-bit with many reliability improvements and addressing dynamic
loading in concurrent threads and processes.

• Updated options: DynamicSearch, FirstFeas, and Strategy

• New options: DecompDensity, Divisor, ODHFeasOpt, MaxBacktrack, NewCallback, Recurse,
RecurseDecomp, RecurseIterLim, RecurseLog, RecurseMinIterLim, RecurseSolIterLim, RelaxSOS2,
and ThreadLog.

OQNLP

• We plan to drop OQNLP with the next major release.

262 Release Notes

PATH

• New libraries 5.0.00.

– Fixed crash in Lemke's method that could happen for models with extremely poor scaling.

– New capability to use alternate basis-handling packages via dynamic loading of shared libraries.
Two alternate packages are currently supported:

∗ BLU-LUSOL: Block LU updating using the LUSOL routines. The shared library required
for this is included in the distribution.

∗ UMFPACK: Tim Davis' multifrontal LU factorization package. The shared library required
for this is not included in the GAMS distribution, but can be downloaded from the
SuiteSparse site. N.B.: We have verified UMFPACK on Linux, macOS, and Windows
using UMFPACK v5.7.7 from SuiteSparse 5.3.0.

SCIP

• New libraries 6.0.1.

– Primal Heuristics

∗ new diving heuristic farkasdiving that dives into the direction of the pseudosolution and
tries to construct Farkas-proofs

∗ new diving heuristic conflictdiving that considers locks from conflict constraints

∗ performance improvements for Adaptive Large Neighborhood Search

· changed default of parameter heuristics/alns/adjustminimprove from 1 to 0

· changed default of parameter heuristics/alns/alpha from 0.2 to 0.0016

· new parameter heuristics/alns/adjusttargetnodes

· changed default of parameter heuristics/alns/eps from 0.5 to 0.468584

· changed default of parameter heuristics/alns/gamma from 0.2 to 0.0704146

· changed default of parameter heuristics/alns/minimprovehigh from 0.1 to 0.01

· changed default of parameter heuristics/alns/minimprovelow from 0.0001 to 0.01

· removed parameter heuristics/alns/stallnodefactor

· changed default of parameter heuristics/alns/startminimprove from 0.05 to 0.01

· changed default of parameter heuristics/alns/targetnodefactor from 1.5 to 1.05

· new parameter heuristics/alns/unfixtol

· changed default of parameter heuristics/alns/crossover/minfixingrate from 0.4 to 0.3

· changed default of parameter heuristics/alns/dins/maxfixingrate from 0.5 to 0.9

· changed default of parameter heuristics/alns/dins/minfixingrate from 0.1 to 0.3

· changed default of parameter heuristics/alns/localbranching/minfixingrate from 0 to
0.3

· changed default of parameter heuristics/alns/mutation/minfixingrate from 0.4 to 0.3

· changed default of parameter heuristics/alns/proximity/minfixingrate from 0 to 0.3

· changed default of parameter heuristics/alns/rens/maxfixingrate from 0.7 to 0.9

· changed default of parameter heuristics/alns/rins/maxfixingrate from 0.6 to 0.9

· changed default of parameter heuristics/alns/rins/minfixingrate from 0.2 to 0.3

· changed default of parameter heuristics/alns/zeroobjective/minfixingrate from 0 to
0.3

– New branching rule lookahead that evaluates potential child and grandchild nodes to determine
a branching decision

– LP Solver Interface

∗ lp/checkstability is now properly implemented for use with SoPlex

∗ new parameter lp/alwaysgetduals

http://faculty.cse.tamu.edu/davis/suitesparse.html
http://faculty.cse.tamu.edu/davis/suitesparse.html

3.23 26 Distribution 263

∗ new parameter lp/checkfarkas

– Separation (cutting planes)

∗ cuts generated from certain quadratic constraints with convex feasible region are now
global

∗ new parameter separating/dircutoffdistfac

∗ new parameter separating/efficacyfac

∗ removed parameter separating/maxincrounds

∗ new parameter separating/zerohalf/dircutoffdistweight

∗ new parameter separating/zerohalf/efficacyweight

∗ changed default of parameter separating/zerohalf/goodscore from 0.9 to 1

∗ new parameter separating/zerohalf/goodmaxparall

∗ new parameter separating/zerohalf/initseed

∗ new parameter separating/zerohalf/maxparall

∗ new parameter separating/zerohalf/objparalweight

– Symmetry Handling

∗ restructured timing of symmetry computation to allow to add symmetry handling compo-
nents within presolving

∗ changed default of parameter constraints/symresack/ppsymresack from 0 to 1

∗ new parameter presolving/symbreak/addconsstiming

∗ changed default of parameter presolving/symbreak/detectorbitopes from 1 to 0

∗ removed parameter ”presolving/symmetry/computepresolved”

∗ new parameter propagating/orbitalfixing/enabledafterrestarts

∗ new parameter propagating/orbitalfixing/performpresolving

∗ changed default of parameter propagating/orbitalfixing/presolpriority from 0 to
-1000000

∗ changed default of parameter propagating/orbitalfixing/presoltiming from 28 to 16

∗ new parameter propagating/orbitalfixing/symcomptiming

– improved bound tightening for some quadratic equations

– new parameter display/relevantstats

– new parameter misc/scaleobj

– removed implfree presolver

– See also the full release notes and the release paper.

SELKIE

The SELKIE solver - new to GAMS with this release - is an EMP solver that implements decomposition
methods for multi-agent equilibrium and related models.

SoPlex

• New libraries 4.0.1.

– new simplifier step to perform variable aggregation for equations with two variables

– new parameter bool:ensureray to re-solve the original problem in case of infeasibil-
ity/unboundedness to get a valid proof/ray

– See also the full release notes and the release paper.

https://www.scipopt.org/doc-6.0.1/html/RN60.php
http://nbn-resolving.de/urn:nbn:de:0297-zib-69361
https://soplex.zib.de/doc-4.0.1/html/CHANGELOG.php
http://nbn-resolving.de/urn:nbn:de:0297-zib-69361

264 Release Notes

Xpress

• New libraries 33.01.10.

– local symmetry re-detection in MIP tree search

– improved branching for highly symmetric MIPs

– new or improved cuts, degeneracy handling, crossover, preprocessing

– FICO does not release patches for all platforms with each patch release, so some platforms lag
behind the most-used ones.

3.23.1.6 Tools

CSDP

• See ANTIGONE, Bonmin, Couenne, Ipopt, SCIP.

CSV2GDX

• Extended recognition of special values:

– N/A is recognized as NA,

– TRUE is recognized as 1,

– FALSE, NONE and NULL are recognized as 0.

• Added new option text to specify the column to get explanatory text from when reading a set.

• Changed handling of bad UELs: Reading a bad UEL (e.g. a UEL exceeding the maximum length)
causes an error now. The old behavior can be enabled again using the new option acceptBadUels.

GAMS Studio

• New version 0.10.3

– Stability and performance improvements.

– Added a new section Comparing GAMS Studio and GAMSIDE to the documentation.

– Added a Reference File Viewer to navigate the source code of GAMS models via a reference
file, especially when multiple files are involved. A reference file contains all symbol references
of GAMS models and is created using the reference parameter when running the model.

– Added a Tab Browser (Deprecated) to list and search through all open files. It is accessible
with a button next to the main tab bar or via the shortcut Ctrl+K.

– GDX Viewer :

∗ Added a first, basic version of a Table View : The new button ”Table View” switches the
view to a table based representation. The button is only enabled for multidimensional
symbols and puts the last dimension into the header of the table. Drag and drop of items
is not yet supported but will be in the future.

∗ Added option to hide specific value columns for variables and equations.

∗ Added support for the use of different encodings using the ”Edit->Encoding” menu. The
default encoding for a GDX file generated in Studio by running a GMS file with automatic
GDX creation (F10) is the one used by the GMS file.

– Editor

3.23 26 Distribution 265

∗ Added smart typing: Automatic insertion of closing character for brackets and quotes.

∗ Added ability to select text and press either a opening bracket or quote to surround text
with these symbols.

∗ Improved backspace behavior, if auto indentation is active.

– Output Widget

∗ Added info, warning, and error messages to GAMS Studio system log.

∗ GAMS log files are now written to disk (can be disabled in settings).

∗ Added ”clear log” context menu entry.

– Project Explorer

∗ Studio automatically adds all files specified through GAMS parameters (.gdx, .ref, .lst) to
the Project Explorer.

∗ Allow to rename Project Explorer groups.

∗ Groups are closed if they are empty.

∗ If a group is closed the associated GAMS process will be stopped.

∗ Added drag and drop of files between groups.

∗ Added shortcut to focus Project Explorer (Ctrl+J) and allow to navigate using arrow keys
to select a file.

∗ Added ”Select all”, ”Expand all” and ”Collapse all” to the context menu.

∗ Added shortcut to select all files (Ctrl+A).

– Various

∗ Added context menu for tabs (offering different close actions).

∗ Added animation for groups with running GAMS processes.

∗ Studio comes to foreground when double clicking a Studio-associated file.

∗ The ”About GAMS” dialog contains many important information like used GAMS version,
system directory, or license information. It features a ”Copy System Information” button
which copies all of these information to easily attach them to a support request. The dialog
has a second tab which gives an overview about solvers, their license status, and what
kinds of capabilities they have.

∗ ”File -> New...” dialog starts with a default for a new file name.

∗ ”File -> Open...” (or drag'n'drop) of one file now focuses that file if it is already present
in the Project Explorer.

∗ New entry ”File -> Open... in new group” to force creation of new group (even if the is
already present in the Project Explorer).

∗ ”File -> Open...” (or drag'n'drop) of multiple files puts all files opened at once into a single
group instead of individuals.

∗ Added shortcut to focus command line parameter edit field (Ctrl+L).

∗ Added Ctrl+F as close shortcut for search dialog.

∗ Changed shortcut to open Settings dialog to F7.

Note

This version of GAMS Studio does not support the Dark Mode of MacOS Mojave. Please disable
this mode to use GAMS Studio.

GDXDUMP

• New options for writing out special values: NAOut, UndfOut, PInfOut, MInfOut, and ZeroOut.

• Fixed broken generated GAMS code, if UelTable option was used, but there were no UELs.

• Lower and upper bounds of equations are dumped always now (even if their values are the default).
This fixes a potential problem, that the equation type is unknown for the generated GAMS code.

• When writing CSV files the element text of set elements could not be written. Now with enabled
option CSVSetText the element text of a set element is written as the last column in the CSV file.

266 Release Notes

GDXXRW

• Fixed a bug which could have caused a crash when reading merged cells from Excel using the
GDXXXRW options useRC and cMErge=1.

MODEL2TEX

• The new script model2tex.sh sets the required dependencies for the model2tex tool on Linux and
macOS. Using this script is the recommended way for using model2tex. Calling the Python script
directly is not recommended anymore since the used Python interpreter would need to be configured
manually. model2tex.sh uses the Python interpreter that comes with the GAMS distribution.

3.23.1.7 Object Oriented APIs

Python

• The setup.py script now installs the idx expert-level API.

3.23.1.8 Model Libraries

GAMS Data Library

New models added:

• csv2gdx2.gms : CSV2GDX Example 2 - Reading CSV Files with CSV2GDX (111)

• csv2gdx3.gms : CSV2GDX Example 3 - Reading Semicolon separated Data (112)

• csv2gdx4.gms : CSV2GDX Example 4 - Dealing with missing Labels and Duplicates
(113)

• csv2gdx5.gms : CSV2GDX Example 5 - Reading more than one Parameter from a
single Input File (114)

• csv2gdx6.gms : CSV2GDX Example 6 - Reading economic Data from the World Bank
Data Catalog (115)

• csv2gdx7.gms : CSV2GDX Example 7 - Reading special Values with CSV2GDX (116)

• csv2gdx8.gms : CSV2GDX Example 8 - Reading an compressed encrypted Input File
(117)

• csv2gdx9.gms : CSV2GDX Example 9 - Reading Options from an external File (118)

• GDXXRWExample17.gms : Reading several Scalars from Spreadsheet (119)

• GDXXRWExample18.gms : Reading Sets from Spreadsheet (120)

• GDXXRWExample19.gms : Writing Parameter to Spreadsheet including Zero Values
(121)

• GDXXRWExample20.gms : Reading empty Cells with colMerge and reading merged
Excel Ranges with cMerge (122)

• GDXXRWExample21.gms : Skipping empty Rows or Columns and Ignoring Rows or
Columns (123)

• GDXDUMPExample1.gms : GDXDUMP - Adding double Quotes to an user defined
Header when writing to CSV (124)

3.23 26 Distribution 267

GAMS EMP Library

New model added:

• emppython1.gms : Three Simple EMP Models with Indexed EMP Syntax and Python
Parser (104)

GAMS Test Library

New models added:

• csv2gdx7.gms : CSV2GDX - Checking the Error Messages for incorrect Parameter
Input (752)

• csv2gdx8.gms : CSV2GDX - Testing the valueDim Option (753)

• csv2gdx9.gms : CSV2GDX - Testing the Field Separator Tab (754)

• csv2gdx10.gms : CSV2GDX - Testing the Field Separator Semicolon (755)

• csv2gdx11.gms : CSV2GDX - Testing the Field Separator Comma (756)

• selkie01.gms : SELKIE test suite (757)

• selkie02.gms : SELKIE test suite (758)

• selkie03.gms : SELKIE test suite (759)

• selkie04.gms : SELKIE test suite (760)

• selkie05.gms : SELKIE test suite (761)

• selkie06.gms : SELKIE test suite (762)

• selkie07.gms : SELKIE test suite (763)

• selkie08.gms : SELKIE test suite (764)

• selkie09.gms : SELKIE test suite (765)

• selkie10.gms : SELKIE test suite (766)

• selkie11.gms : SELKIE test suite (767)

• selkie12.gms : SELKIE test suite: sub-diagonalization (768)

• selkie13.gms : SELKIE test suite: dualvar (769)

• selkie14.gms : SELKIE test suite: isolated implicit variable (770)

• selkie15.gms : SELKIE test suite: proximal perturbation (771)

• selkie16.gms : SELKIE test suite: obj variable setting (772)

• selkie17.gms : SELKIE test suite: obj variable setting (773)

• selkie18.gms : SELKIE test suite: obj variable not free (774)

• selkie19.gms : SELKIE test suite: equation marginal values (775)

• put12.gms : Testing put utility solver (776)

• gdxxrw8.gms : GDXXRW - Testing the Option intAsText (777)

268 Release Notes

• gdxxrw9.gms : GDXXRW - Testing the Option checkDate (778)

• gdxxrw10.gms : GDXXRW - Testing cMerge when reading Sets with the values Option
(779)

• gdxxrw11.gms : GDXXRW - Reading and writing special Values (780)

• gdxxrw12.gms : GDXXRW - Testing the skipEmpty and cMerge Option (781)

• gdxxrw13.gms : GDXXRW - Testing the values Option when reading or writing Set
Elements (782)

• gdxxrw14.gms : GDXXRW - Testing different Excel Range Specifications (783)

• gdxdump2.gms : GDXDUMP - Testing the dumping Functionality on several GDX
Files (784)

• gdxdump3.gms : GDXDUMP - Dumping special Values of a Parameter from GDX
(785)

• gdxdump4.gms : GDXDUMP - Dumping special Values of Variable-Subfields from
GDX (786)

• onmulti8.gms : Test for $onMultiR (787)

• implset1.gms : Test for Implicit Set Definition (788)

• emppy1.gms : Test an equilibrium model using emp python (789)

• emppy2.gms : Formulate the simplevi.gms example using emp python (790)

• emppy3.gms : Test a combination of optimization and vi agents using emp python
(791)

• miqcp04.gms : Test behavior for integer infeasible model (792)

• duplic01.gms : Detecting duplicate entries in unsorted data (793)

3.23.1.9 Solver/Platform availability

x86 32bit
MS

Windows

x86 64bit
MS

Windows

x86 64bit
Linux

x86 64bit
macOS

Sparc
64bit

SOLARIS

IBM
Power
64bit
AIX

ALPHAECP X X X X X X
ANTIGONE
1.1

X X X X

BARON 18.5.8 X X X
BDMLP X X X X X X
BONMIN
1.8

X X X X

CBC 2.9 X X X X
CONOPT 3 X X X X X X
CONOPT 4 X X X X X X
COUENNE
0.5

X X X X

CPLEX
12.8

12.6 X X X 12.6 X

DECIS X X X X X
DICOPT X X X X X X

3.24 25.1 Distribution 269

x86 32bit
MS

Windows

x86 64bit
MS

Windows

x86 64bit
Linux

x86 64bit
macOS

Sparc
64bit

SOLARIS

IBM
Power
64bit
AIX

GLOMIQO
2.3

X X X X

GUROBI
8.1

7.5 X X X X

GUSS X X X X X X
IPOPT 3.12 X X X X
KESTREL X X X X X X
KNITRO
11.1

11.0 X X X

LGO X X X X X
LINDO 12.0 X X X X
LINDOGLOBAL
12.0

X X X X

LOCALSOLVER
8.0

X X X X

MILES X X X X X X
MINOS X X X X X X
MOSEK 8 X X X X
MSNLP X X X X X
NLPEC X X X X X X
ODHCPLEX
4

X X

OQNLP X 32bit

PATH X X X X X X
SBB X X X X X X
SCIP 6.0 X X X X
SNOPT X X X X X X
SOLVEENGINE X X X X
SOPLEX
4.0

X X X X

XA X X X
XPRESS
33.01

X X X X 32.01 29.01

3.24 25.1 Distribution

3.24.1 25.1.1 Major release (May 19, 2018)

3.24.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Eden Huang, Katja Buhrkal Jensen, Jan-Erik Justkowiak, Erwin
Kalvelagen, Marko Loparic, Bruce McCarl, Scott McDonald, Edmund Moshammer, Andres Ramos, Tom
Rutherford, Wilfredo Sifuentes, and Tapio Westerlund.

270 Release Notes

3.24.1.2 Platforms

• On Windows, some solvers in the GAMS distribution as well as GAMS Studio have dependencies on
certain MS Visual C++ runtime libraries. Most of them are included in the GAMS distribution or
are present on most Windows systems. However, we are aware that in in rare cases, some libraries
are missing. In such situations, we advise to run the appropriate installer for these libraries:

– On a 32-bit GAMS version, execute [GAMS system]\apifiles\C++\lib\vs2013\vcredist x86.exe,
followed by [GAMS system]\apifiles\C++\lib\vs2015\vcredist x86.exe.

– On a 64-bit GAMS version, execute [GAMS system]\apifiles\C++\lib\vs2017\vcredist x64.exe.

3.24.1.3 GAMS System

GAMS

• New conditional expressions to be used in conditional compilation, namely gdxDimension,
gdxEquType, gdxParType, gdxSetType, gdxSymExist, gdxVarType, and uelExist. Details about
these can be found here.

• New command line option LstTitleLeftAligned: Write title of LST file left aligned.

• New command line option ShowOSMemory: Show the memory usage reported by the operating
system (either resident set size or virtual set size) instead of the internal counting.

• GAMS throws now a compilation error if an unexpected suffix at a symbol is encountered in an
option statement involving identifiers. In the past such suffixes were ignored, which could have
given the impression that they were actually doing something. So, all the .dim1 suffixes in the
following example will create an error now:

Set i(*)

j(*)

ij(*,*) / i1.j1, i1.j2, i2.j1, i2.j2 /;

Option i < ij.dim1;

Option i <= ij.dim1;

Set k / k1*k6 /;

Parameter ii(*) / i1 4, i2 5, i3 6 /

iii(k,*);

Option iii > ii.dim1;

Option shuffle = ii.dim1;

• The details of the expansion of multi-line macros were changed with this release. In the past, trailing
white space in the macro definition was always removed. Now, in multi-line macros, the white space
before the continuation character \ is preserved. This example demonstrates the difference:

$macro xAndY(x,y) x and \

y

scalar x /1/;

if(xAndY(1,x), display ’true’);

In the past, this caused a compilation error, since the macro was expanded to if(1 andy, display

'true'); (”and” and ”y” were concatenated to ”andy”). Now that the white space after ”and” is
preserved, this does not cause a problem anymore.

• The statement Alias (k,k); for an unknown symbol k causes a compilation error now.

3.24 25.1 Distribution 271

• In rare cases, embedded code recognized indented Python code incorrectly. This has been fixed.

• New property gams.debug for controlling debug information of the Object-oriented API in embedded
code sections.

• Fixed a problem related to SSL support in GMSPython that prevented certain tools (e.g. pip) from
working on Linux and macOS.

• Models of type MCP can now be solved with modifiable parameters in the GUSS framework and as
OO-API GAMSModelInstance.

3.24.1.4 Solvers

BARON

• New libraries 18.5.8.

– Updated to Ipopt 3.12.8 and CBC 2.9.9.

– Replaced Ipopt's linear solver MUMPS by MA57 from HSL, a collection of Fortran codes for
large-scale scientific computation. Thus, when using IPOPT as NLP solver, BARON may now
be more robust and a little faster, especially for problems without integer variables.

– New bounds reduction strategies based on optimality conditions can reduce the size of the
branch-and-bound tree.

– Rewrote core memory management routines for speed increase and memory reduction.

– On some problems, BARON currently provides incorrect marginal values. This problem will
be fixed in the near future.

• The use of Ipopt in BARON on macOS is no longer disabled by default.

• There will be no future updates of BARON for Windows 32-bit.

Bonmin(H), CBC, Couenne

• Wall-clock time is now always used to apply a timelimit to Branch-and-Bound. The nww option
clocktype can be used to switch back to CPU time.

CONOPT

• New libraries 4.05 for CONOPT 4.

– Improvements for multi-threading.

• New libraries for CONOPT 3.

• Fixed problems with redundancy in preprocessor and an issue related to system error 2024.

ConvertD

• Added options PermuteVars and PermuteEqus to permute the declaration of variables and equations,
respectively, in scalar GAMS output.

• Tweaked printing of variable bounds and activity levels in scalar GAMS ouput.

• Fixed handling of infinite upper bounds for integer variables in scalar GAMS output: A line that
sets GAMS option intvarup to 0 is now added to the output.

http://www.hsl.rl.ac.uk

272 Release Notes

Couenne

• New libraries.

DICOPT

• Improvements to Feasibility Pump:

– Fixed handling of nonlinear objective function when maximizing.

– Fixed update of cutoff decrement after a solution with objective value very close to zero has
been found.

– Fixed translation of NLP projection problem optimal value to norm of associated projection.
Changed default for option fp projzerotol from 1e-6 to 1e-4.

– Added creation of cuts derived from solution of NLP projection problem. Use option fp projcuts
to disable.

– Added option fp integercuts to disable integer cuts or enable them for mixed-binary problems
only. The latter is the new default.

– Added option fp mipgap to specify an optimality tolerance (relative gap limit) for the MIP
projection problem.

– The stall limit is now only applied after a first solution has been found. Changed default for
option fp iterlimit to 20.

GUROBI

• New libraries 8.0.

– As announced for GAMS 24.9, Gurobi 8 is no longer supported for Windows 32-bit. We
continue to ship Gurobi 7.5 for this platform.

• New partition heuristic based on user annotation via the new dot option .partition and enabled
with new option PartitionPlace.

• Completely new interface to Gurobi's Remote Services (i.e. compute server, distributed algorithm,
and instant cloud). For details see Compute Server and the following sections.

JAMS

• Added capability to handle QVI models.

• The options controlling the reformulation strategy for shared variables in multi-agent EMP models
have changed: see ImplVarModel for details.

LocalSolver

• New libraries 7.5 (20180405).

• To use LocalSolver 7.5, a machine-specific LocalSolver license is now required on Linux, too. See the
solver manual on how to obtain such a license. Alternatively, it is still possible to use LocalSolver
7.0 by choosing LOCALSOLVER70 instead of LOCALSOLVER as solver.

3.24 25.1 Distribution 273

Mosek

• New libraries 8.1.0.53.

ODHCPLEX

• A new solver GAMS/ODHCPLEX from Optimization Direct Inc. has been added to the GAMS
solver portfolio.

• The solver implements a set of heuristic methods (named ODHeuristics) for finding feasible solutions
to Mixed Integer Programming (MIP and MIQCP) models and uses IBM CPLEX as its underlying
solver engine.

• The heuristics decomposition method works in an automatic fashion or can be guided by user
specified selections.

• Users will need a GAMS/CPLEX or GAMS/Cplex link license for this solver to work. Commercial
users will also need a GAMS/ODHCPLEX license.

• Currently, the solver is available for Windows 64-bit only.

SCIP

• New libraries 5.0 (09c736f).

– changed default for parameter constraints/quadratic/gaugecuts from 1 to 0

– changed default for parameter heuristics/completesol/freq from 1 to 0

– changed default for parameter separating/cmir/freq from -1 to 10

– changed default for parameter separating/cmir/freq from 1 to 0

– changed default for parameter separating/flowcover/freq from -1 to 10

– changed default for parameter separating/flowcover/freq from 1 to 0

Xpress

• New libraries 32.01.10 containing several minor bug fixes and performance improvements.

3.24.1.5 Tools

GAMS Studio

• This release contains the first preview version of GAMS Studio - a completely new integrated
development environment for GAMS. GAMS Studio is still in a very early stage of development,
but we believe it is already mature enough to be a productive tool. GAMS Studio is available for
Linux, macOS, and Windows only.

• GAMS Studio combines many (but not all) features of the classic GAMS IDE with some new
elements:

– a code editor to write GAMS models (including basic syntax coloring, block edit mode, etc.),

– execution of GAMS models,

– an output panel that presents the progressing GAMS log,

274 Release Notes

– a listing viewer (including a tree view to navigate through the file) to inspect the listing file,

– an interactive option editor to set GAMS parameters,

– a GDX viewer that shows the table of content and data of GDX files and offers useful details
like sorting and filtering of data,

– a project explorer helps to manage different projects in one session, and

– an integrated help system to make it easier to find additional information, e.g., by pressing F1
while the cursor is on a GAMS keyword in the code editor.

• We encourage our users to weigh in, help prioritize GAMS Studio's future development directions,
or provide any other feedback. If you find problems, miss features, or have comments, please send a
note to studio@gams.com.

• It is also possible to contribute directly or build on top of GAMS Studio, since the source code is
available on GitHub (https://github.com/GAMS-dev/studio) under the GNU GPL license (see
https://github.com/GAMS-dev/studio).

• We plan to provide updates for GAMS Studio frequently in the near future, also separate from new
releases of the GAMS distribution. To facilitate the update process, Studio includes an interactive
check (requiring an Internet connection) for the availability of newer versions. This ”Check for
Update” button can be found below the menu ”Help”.

• A short overview about GAMS Studio can be found in the YouTube channel GAMS Lessons.

•

Note

– New options to define the association for GAMS files (.gms) have been added to the
installer for GAMS on Windows. For now, the GAMS IDE is still the default choice, but
this may change for future releases.

– On Linux, Studio is installed in the form of an AppImage as part of the GAMS system
directory.

– On macOS, Studio is part of the DMG installer only. It is installed as an additional
application in the Applications directory next to the GAMS Terminal application and is
available through the Launchpad. GAMS files (.gms) are associated with GAMS Studio.

•

Attention

– In rare cases, GAMS Studio crashes when the Open or Save dialog gets opened. This is
mostly related to third party software, e.g. older versions of ”Dell Backup and Recovery”.
It is recommend to update, switch off or uninstall the software.

– We are aware of some performance issues at this stage of development. So while things
work well, for example, with the models from our model libraries, you might experience
some delay when working with huge files, e.g., while searching or when the log is processed
for very long output.

XLSDump

• Sometimes, Excel Spreadsheets contain links to pictures, which cannot be found. This situation
caused an error in XLSDump in previous versions. Now, such an error is ignored.

3.24.1.6 Object Oriented APIs

• New implementation of GAMSJob.Interrupt() on Linux and macOS that removes dependency to
the command line tool pstree.

C++

• Added support for Microsoft Visual Studio 2015 on Windows 32-bit.

mailto:studio@gams.com
https://github.com/GAMS-dev/studio
https://github.com/GAMS-dev/studio
https://github.com/GAMS-dev/studio
https://youtu.be/p1D86dpyFfY

3.24 25.1 Distribution 275

Java

• Changed the naming scheme of a temporary working directory to be created from yyyyMMdd HHmmss

to the prefixed gams (defined by GAMSGlobals.workingDirectoryPrefix, in case no working
directory has been specified.

• Fixed the behavior when a GAMSDatabase is added with a name that already exists. A GAMSEx-
ception will be raised now (see GAMSWorkspace.addDatabase(String databaseName) and
GAMSWorkspace.addDatabaseFromGDX(String gdxFileName, String databaseName)).

• Calls on GAMSWorkspace.finalize and GAMSSymbolIterator.finalize are no longer available,
because calling a finalizer method can arbitrarily delay the reclamation of object instances and
potentially create unpredictable outcome. Whenever the object is no longer needed it is recommened
to explicitly dispose the object rather than to rely on the Java garbage collector to do the job. See
GAMSDatabase.dispose, GAMSModelInstance.dispose, and GAMSOptions.dispose.

3.24.1.7 Expert Level APIs

• All Java native interfaces to expert-level APIs are now included in `[Path/To/GAMS]/apifiles/Java/api/GAMSJavaAPI.jar.

GMO

• The constant MAXEVALTHREADS (i.e. the number of parallel threads supported for function and
derivative evaluations in the solver interface library GMO) has been increased from 16 to 64. This
effectively increases the same limit in the CONOPT4 solver.

3.24.1.8 Model Libraries

PSOPTLIB - Power System Optimization Modelling in GAMS

• This new library by Alireza Soroudi has been added to the GAMS system. This is a collection of the
models based on the book Power System Optimization Modelling in GAMS by Alireza Soroudi.
The library contains a selection of 32 models from various areas of power system optimization
expressed in GAMS. Book and library describe how the General Algebraic Modeling System (GAMS)
can be used to solve various power system operation and planning optimization problems. The book
is the first of its kind to provide readers with a comprehensive reference that includes the solution
codes for basic/advanced power system optimization problems in GAMS, a computationally efficient
tool for analyzing optimization problems in power and energy systems. The book covers theoretical
background as well as the application examples and test case studies. It is a suitable reference for
dedicated and general audiences including power system professionals as well as researchers and
developers from the energy sector and electrical power engineering community and will be helpful to
undergraduate and graduate students.

• You can retrieve the individual models through the IDE and Studio model library browser, via the
command line utility psoptlib or through calls in the Object Oriented APIs.

GAMS EMP Library

• simpleqvi1.gms : Simple Quasi-Variational Inequality (101)

• simpleqvi2.gms : Simple Quasi-Variational Inequality (102)

• simpequil3.gms : Simple Generalized Nash Equilibrium Problem (103)

https://books.google.de/books/about/Power_System_Optimization_Modeling_in_GA.html?id=-kszDwAAQBAJ&redir_esc=y

276 Release Notes

GAMS Model Library

• guss2dim.gms : Two dimensional scenario GUSS Example (423)

• obstacle.gms : An Obstacle Problem (424)

• csched: Added two more formulations for a related problem. Contributed by Tapio Westerlund.

3.24.1.9 Solver/Platform availability

x86 32bit
MS

Windows

x86 64bit
MS

Windows

x86 64bit
Linux

x86 64bit
macOS

Sparc
64bit

SOLARIS

IBM
Power
64bit
AIX

ALPHAECP X X X X X X
ANTIGONE
1.1

X X X X

BARON X X X X
BDMLP X X X X X X
BONMIN
1.8

X X X X

CBC 2.9 X X X X
CONOPT 3 X X X X X X
CONOPT 4 X X X X X X
COUENNE
0.5

X X X X

CPLEX
12.8

12.6 X X X 12.6 X

DECIS X X X X X
DICOPT X X X X X X
GLOMIQO
2.3

X X X X

GUROBI
7.5

X X X X X

GUSS X X X X X X
IPOPT 3.12 X X X X
KESTREL X X X X X X
KNITRO
10.3

X X X X

LGO X X X X X
LINDO 11.0 X X X X
LINDOGLOBAL
11.0

X X X X

LOCALSOLVER
7.5

X X 7.0 X

MILES X X X X X X
MINOS X X X X X X
MOSEK 8 X X X X
MSNLP X X X X X
NLPEC X X X X X X
OQNLP X 32bit

PATH X X X X X X
SBB X X X X X X
SCIP 5.0 X X X X

3.24 25.1 Distribution 277

x86 32bit
MS

Windows

x86 64bit
MS

Windows

x86 64bit
Linux

x86 64bit
macOS

Sparc
64bit

SOLARIS

IBM
Power
64bit
AIX

SNOPT X X X X X X
SOLVEENGINE X X X X
SOPLEX
3.1

X X X X

XA X X X
XPRESS
32.01

X X X X X 29.01

3.24.2 25.1.2 Minor release (August 01, 2018)

3.24.2.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Marcel Adenauer, Shaoyan Guo, Eden Huang, David Laudy, Evangelos
Panos, Wilfredo Sifuentes and Larissa de Vries.

3.24.2.2 Platforms

• Fixed problem using solvers with Fortran dependencies on a Mac OS X 10.11 system.

3.24.2.3 GAMS System

GAMS

• Fixed a bug which caused an unexpected error when using the + operator in a model statement
with the following symbol being a model itself, like this:

variable x;

equation e1, e2;

e1.. x =L= 5;

e2.. x =G= 3;

model m2 /e2/;

model m /e1+m2/;

solve m min x use lp;

3.24.2.4 Solvers

BARON

• Fixed translation of branching priority values when specified in BARON options file and GAMS
option PriorOpt not enabled.

• Specifying maxdouble as branching priority in a BARON options file now behaves as if specifying
inf as branching priority in a GAMS model.

278 Release Notes

BONMIN

• The default for option number cpx threads is now initialized according to the value of the GAMS
option threads.

CONOPT

• New libraries 3.17I for CONOPT 3.

• New libraries 4.06 for CONOPT 4.

GUSS

• Models with variable parameters and model attribute holdFixed=1 could not be solved with 25.1.1.
In this release the holdFixed option is automatically turned off.

Ipopt

• New libraries.

– Fixed problems in handling of time limit (reslim).

LocalSolver

• New libraries 7.5 (20180601).

ODHCPLEX

• New libraries 3.4.3.

• ODHCPLEX is now available for Linux, too.

SoPlex

• New libraries 3.1 (b0e0048).

SCIP

• New libraries 5.0 (1d9c207).

3.24.2.5 Tools

MODEL2TEX

• Backslashes in the explanatory text of symbols are replaced automatically with \textbackslash.

3.24 25.1 Distribution 279

GAMS Studio

• New version 0.9.2

– Stability improvements

– Allow only one instance of Studio to run at the same time (when file association for Studio is
active, a double click on a gms file will open that file in a running Studio instance and does not
open a new Studio)

– Added startup parameter --gams-dir to specify a non-default GAMS system folder to be used

– Added shortcuts for Interrupt and Stop (F12 and Shift+F12)

– Restructured the File -> Encoding menu

– About dialog: added button to copy product information to clipboard

– GDX Viewer: added facility to search for symbols

– Option Editor: allow to use F1 to open help

– Project Explorer:

∗ ”Add Existing Files” allows to add multiple files at once

∗ Added context menu entry to open the log for a group-node

–

Note

When migrating from an older version of GAMS Studio, one might have an empty project
explorer and no recent files listed. This is expected behavior because of a bug fix within
the GAMS Studio settings file.

3.24.2.6 Object Oriented APIs

Python

• Fixed a bug that prevented the setup.py file to be called with parameter -noCheck for turning off
the version check.

• The setup.py script can be used from an arbitrary location. It is not required anymore to switch to
the files location before installing.

3.24.3 25.1.3 Minor release (October 30, 2018)

3.24.3.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release.

3.24.3.2 GAMS System

GAMS

• Fixed a bug which caused the sysIdent property not being set correctly after a solve statement.

• Fixed a bug which could have caused a problem with execute load being called after
endEmbeddedCode in a loop.

280 Release Notes

3.24.3.3 Solvers

ANTIGONE

• If interrupting ANTIGONE (using Ctrl+C, for example), the final trydual NLP solve does no longer
stop immediately in the first iteration.

ANTIGONE, Bonmin, Couenne, Ipopt, SCIP

• Updated Intel MKL libraries to version 2018.4 on macOS.

CONVERTD

• When using options Jacobian or Hessian, new symbols iobj, objConst, and objJacVal are written
to the GDX file. If the model can be reformulated with a true objection function, the symbol iobj
contains the label of the objective defining equation, while the symbols objConst and objJacVal

constain the objective constant and the coefficient of the objective variable. If the model cannot be
reformulated with a true objective, iobj will be empty and objConst and objJacVal will be 0.

GUROBI

• New libraries 8.1.0.

• Option GUROBIpreqlinearize allows the value of 2 (Force Linearization and get compact relaxation).

JAMS

• Added some experimental indexed EMP syntax. See example model emppython1.gms : Three
Simple EMP Models with Indexed EMP Syntax and Python Parser.

Lindo/LindoGlobal

• New libraries 11.0.338.

MOSEK

• New libraries 8.1.0.64.

3.24.3.4 Tools

CSDP

• See ANTIGONE, Bonmin, Couenne, Ipopt, SCIP.

3.25 25.0 Distribution 281

3.24.3.5 Object Oriented APIs

Python

• The UpdateAction Primal and Dual in a GamsModifier were not recognized and triggered an
exception. This has been fixed.

3.24.3.6 Model Libraries

GAMS EMP Library

• emppython1.gms : Three Simple EMP Models with Indexed EMP Syntax and Python
Parser (104)

3.25 25.0 Distribution

3.25.1 25.0.1 Major release (January 17, 2018)

3.25.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz, Jeff Dischler, Michael Ferris, Dhruv Gupta, Erwin
Kalvelagen, Florian Landis, Andre Lemelin, Erfan Mohagheghi, Anthony Paul, and Nathan Sudermann-
Merx.

3.25.1.2 Platforms

• Due to the discontinuation of Cplex on Windows 32bit (with Cplex 12.7 in 2016) we are faced
with potentially phasing out/dropping solvers depending on Cplex on Windows 32bit with the
next major release. The most likely candidate for this is ANTIGONE. These solvers will still be
available for 64-bit Windows and other supported platforms. Other solver vendors (e.g. Gurobi
and FICO-Xpress) have also announced the discontinuation of their product on the Windows 32bit
platform. If you rely heavily on the availability and support of the Windows 32bit platform please
contact support@gams.com to discuss your options.

• As announced, dropped support for x86-64 Solaris.

• As announced, increased the minimal required MacOS X version to 10.11.

• As announced, increased the minimal required GLIBC version on Linux to 2.12.

mailto:support@gams.com

282 Release Notes

3.25.1.3 GAMS System

GAMS

• Extended the $offEmbeddedCode facility to allow the use of a ”projection operator”:
$offEmbeddedCode {symbol[<[=]embSymbol[.dimX]]}
More information can be found here.

• Added support for the Object-oriented GAMS Python API in the Embedded Code Facility for
Python. The method gams.set() accepts instances of type GamsParameter, GamsSet, etc. as data.
Instances of GamsWorkspace and GamsDatabase can be retrieved using the properties gams.ws and
gams.db. The property gams.wsWorkingDir can be used to specify the working directory of the
created GamsWorkspace.

• Added $libinclude pyEmbMI to conveniently work with Python OO-API GamsModelInstance from
embedded code. See embmiex1.gms : Simple Embedded Code ModelInstance example.

• Fixed a problem in embedded code when reading an empty scalar symbol.

• Fixed a problem when solving a model with solveLink 5, 6, or 7 with communicating scales without
scaleOpt active.

• The EPS value in the Embedded Code Facility for Python has been changed to 4.94066E-324. This
is the same value that is used for EPS in the Object-oriented Python API.

• New Put Utility save: Writes a save file of the current state of execution.

• Improvement for the Put Utility Statement: It is no longer required to define a file and activate it,
just to use a put utility.

• New command line option fileStemApFromEnv: Append a string read from an environment variable
to the fileStem.

• Change to command line option fileStem: Create an immediate error when the value contains a \ or
/ character to avoid problems later on.

• Fixed a bug with execute unload, which could have caused a set to be exported mistakenly as
alias to a different set, if symbol renaming was used.

• Fixed a bug which prevented to open more than 65,000 put files.

• Solves with scaleOpt=1 using GUSS or instantiations of OO-API GAMSModelInstances resulted in
some circumstances in the report of scaled solutions or other erroneous behavior. Hence GAMS
will now reset the modelname.scaleOpt attribute to NA before such a solve or GAMSModelInstance
generation. As a consequence, models solved via GUSS or as a GAMSModelInstance in the OO-APIs
will not be scaled by GAMS.

• Solving MCP models with scaleOpt=1 using the solvers AMPL or PYOMO creates an execution
error now. In the past this lead to wrong results potentially.

3.25.1.4 Solvers

ANTIGONE, Bonmin, Couenne, Ipopt, SCIP

• Updated Intel MKL libraries to version 2018.0 for Linux and Mac OS X and to version 2018.1 on
Windows 64-bit.

CBC

• New libraries.

3.25 25.0 Distribution 283

CONOPT

• New libraries 3.17G (Conopt3).

• New libraries 4.04 (Conopt4).

– Fixed a system error 65666.

Couenne

• New libraries.

– Bugfixes and tuning for fixed point bound tightening.

• If Couenne does not find a feasible solution, but the initial point is feasible, then the initial point is
now reported back to GAMS.

CONVERT

• If the filename provided for the Jacobian or Hessian option contains the string novenames ConvertD
will not export the original equation and variable names as set text to elements of sets i and j.
Having the original equation and variable names can make the GDX file significantly larger and
slow to write and read.

• Fixed a problem when trying to write scaled MCP models.

CPLEX

• New libraries 12.8.0.

• New parameters

– SubMIPScale: Parameter to scale the problem matrix when CPLEX solves a subMIP during
MIP optimization

– SubMIPStartAlg: Starting algorithm for subMIP of a MIP

– SubMIPSubAlg: Algorithm for subproblems of a subMIP of a MIP

– DynamicRows: Switch for dynamic management of rows

– Sifting: Switch for sifting from simplex optimization

• In CplexD allow the BendersPartition to be set via the .stage variable suffix together with option
BendersPartitionInStage.

Gurobi

• Fixed a problem for model with SOS variables but no constraints.

KESTREL

• New options neos username and neos user password can be used in the option file in order to
submit authenticated jobs using a NEOS user account.

284 Release Notes

LocalSolver

• New libraries 7.5 (20171117) for Mac OS X and Windows.

– Preprocessing entirely rewritten: size reduction by a factor up to 10 on some huge instances.

– Combinatorial models based on booleans and integers: performance improvement and increased
ability to prove optimality.

– Continuous linear and nonlinear models: performance improvement through the integration of
state-of-the-art algorithms.

• Note, that to use LocalSolver 7.5, a machine-specific LocalSolver license is now required. See the
solver manual on how to obtain such a license. Alternatively, it is still possible to use LocalSolver
7.0 by choosing LOCALSOLVER70 instead of LOCALSOLVER as solver.

Mosek

• New libraries 8.1.0.34.

SBB

• Fixed a bug introduced in 24.8 that prevents the infeasSeq option to work.

SCIP

• New libraries 5.0 (2b35b18).

– SCIP can now automatically detect and exploit symmetries in MIPs (Linux and Mac OS X
only)

∗ added parameter misc/usesymmetry to determine which symmetry handling should be
used

∗ added parameter groups presolving/symmetry, presolving/symbreak, constraints/symresack,
constraints/orbisack, constraints/orbitope

– Presolving

∗ new presolver sparsify that tries to cancel nonzero coefficients in linear constraints by
adding multiples of linear equalities

∗ disabled reformulation of products of a binary variable with a linear term that does not
solely involve binary variables

· added parameter constraints/quadratic/binreformbinaryonly to disable reformu-
lation of products of binary and non-binary variables

∗ revised disaggregation of quadratic constraints: the number of created constraints can now
be controlled and the disaggregated constraints are scaled in order to increase numerical
accuracy

· replaced constraints/quadratic/disaggregate by constraints/quadratic/maxdisaggrsize

to bound the total number of created constraints when disaggregating a quadratic
constraint

· added parameter constraints/quadratic/disaggrmergemethod to change the strat-
egy of how to merge independent blocks of quadratic constraints

– Primal Heuristics

∗ new primal heuristic ALNS that orchestrates eight different LNS heuristics adaptively
using algorithms for the multi-armed bandit problem

3.25 25.0 Distribution 285

∗ new primal heuristic MPEC that solves a MPEC reformulation of a mixed-binary nonlinear
problem by regularized NLP reformulations

∗ improved the clique and variable bound pre-root heuristics, which are now often able to fix
many more variables

· removed parameters heuristics/clique/{multiplier,initseed}
· replaced parameter heuristics/{clique,vbounds}/minfixingrate by heuristics/clique/minintfixingrate,

heuristics/vbounds/minintfixingrate, heuristics/clique/minmipfixingrate, and
heuristics/vbounds/minmipfixingrate, which check the fixing rate before LP solv-
ing and after sub-MIP presolve

· added parameters heuristics/clique/maxbacktracks and heuristics/vbounds/maxbacktracks
to limit the number of backtracks in the fix-and-propagate phase

· added parameters heuristics/clique/uselockfixings and heuristics/vbounds/uselockfixings
to enable fixing of additional variables based on variable locks

· added parameters heuristics/vbounds/feasvariant and heuristics/vbounds/tightenvariant
to specify the fixing variants used by the vbounds heuristic

· changed default for parameters heuristics/clique/freq and heuristics/vbounds/freq
from -1 to 0

· changed default for parameter heuristics/clique/priority from -1000500 to 5000

· changed default for parameter heuristics/vbounds/priority from -1100600 to 2501

∗ added parameters heuristics/completesol/beforepresol, heuristics/completesol/maxlpiter,
and heuristics/completesol/maxcontvars

∗ changed default for parameter heuristics/indicator/oneopt from 1 to 0

∗ changed default for parameter heuristics/locks/minfixingrate from 0.25 to 0.65

∗ changed default for parameter heuristics/locks/priority from 2000 to 3000

– Separation (cutting planes)

∗ utilizing linear inequalities (computed in the OBBT propagator) to compute stronger
linearizations for bilinear terms

· added parameters constraints/quadratic/usebilinineqbranch, constraints/quadratic/minscorebilinterms,
and constraints/quadratic/bilinineqmaxseparounds

· added parameter constraints/quadratic/mincurvcollectbilinterms to change
the minimal curvature of constraints to be considered when returning bilinear terms to
other plugins

· added parameters propagating/obbt/itlimitfactorbilin, propagating/obbt/minnonconvexity,
and propagating/obbt/createbilinineqs

∗ improved cut post-processing (apply coefficient tightening, enforce maximal dynamism),
selection, and management

· added parameters separating/maxlocalbounddist, separating/maxcoefratio, and
separating/intsupportfac

· removed parameter separating/orthofac

· changed default for parameter separating/cutagelimit from 100 to 80

· changed default for parameter separating/minefficacy from 0.05 to 0.0001

· changed default for parameter separating/minefficacyroot from 0.001 to 0.0001

· changed defaults for parameters separating/minortho and separating/minorthoroot

from 0.5 to 0.9

· changed default for parameter separating/objparalfac from 0.0001 to 0.1

· changed default for parameter separating/poolfreq from 0 to 10

∗ MIP cutting planes are now separated within the tree search, too

· parameter separating/maxstallrounds only applies to nodes in the tree (not the root
node, anymore); use the new parameter separating/maxstallroundsroot for the root
node

· added parameters separating/∗/expbackoff to all separators, which increases the fre-
quency exponentially over the depth in the tree

· added parameter separating/maxincrounds

286 Release Notes

· changed default for parameter separating/maxstallrounds from 5 to 1

· changed default for parameter separating/maxrounds from 5 to -1

· changed default for parameter separating/maxroundsrootsubrun from 1 to -1

· changed default for parameter separating/gomory/delayedcuts from 1 to 0

· changed default for parameter separating/gomory/freq from 0 to 10

· changed default for parameter separating/gomory/maxbounddist from 0 to 1

· changed default for parameter separating/impliedbounds/freq from 0 to 10

· changed default for parameter separating/impliedbounds/maxbounddist from 0 to 1

· changed default for parameter separating/strongcg/freq from 0 to 10

· changed default for parameter separating/strongcg/maxbounddist from 0 to 1

· changed default for parameter separating/strongcg/maxsepacuts from 50 to 20

· changed default for parameter separating/zerohalf/freq from -1 to 4

· changed default for parameter separating/zerohalf/maxbounddist from 0 to 1

∗ new implementation of zerohalf separator

· added parameters separating/zerohalf/badscore, separating/zerohalf/densityoffset,
separating/zerohalf/goodscore, separating/zerohalf/maxcutcands, separating/zerohalf/maxrowdensity,
separating/zerohalf/maxslack, separating/zerohalf/maxslackroot, and separating/zerohalf/minviol

· removed parameters separating/zerohalf/delayedcuts, separating/zerohalf/ignoreprevzhcuts,
separating/zerohalf/maxcutsfound, separating/zerohalf/maxcutsfoundroot separat-
ing/zerohalf/maxdepth, separating/zerohalf/maxncalls, separating/zerohalf/maxtestdelta,
separating/zerohalf/onlyorigrows, separating/zerohalf/relaxcontvars, separat-
ing/zerohalf/scalefraccoeffs, separating/zerohalf/trynegscaling, separating/zerohalf/usezhcutpool,
separating/zerohalf/preprocessing/∗, and separating/zerohalf/separating/∗

· changed default for parameter separating/zerohalf/maxroundsroot from 10 to 20

· changed default for parameter separating/zerohalf/maxsepacuts from 50 to 20

· changed default for parameter separating/zerohalf/maxsepacutsroot from 500 to 100

∗ faster implementation of CMIR cut generation heuristic

· moved many parameters for flowcover and cmir separators to new parameter group
separating/aggregation

· changed default for parameters separating/cmir/freq and separating/flowcover/freq
from 0 to -1

· changed default for parameters separating/cmir/maxbounddist and separating/flowcover/maxbounddist
from 0 to 1

· changed default for parameter separating/cmir/priority from -3000 to -100000

· changed default for parameter separating/flowcover/priority from -4000 to -100000

∗ additional parameter changes

· removed parameter separating/feastolfac

· removed parameter separating/cgmip/allowlocal

· removed parameters separating/{gomory,strongcg}/maxweightrange

· changed default for parameter separating/gomory/makeintegral from 1 to 0

· changed default for parameter separating/gomory/maxrank from 3 to -1

· changed default for parameter separating/gomory/sidetypebasis from 0 to 1

· added parameter constraints/indicator/maxsepanonviolated to stop separation after
separation of non violated cuts

· removed parameters constraints/{abspower,bivariate,quadratic,nonlinear}/mincutefficacysepa,
constraints/{abspower,bivariate,quadratic,nonlinear}/mincutefficacyenfofac, and con-
straints/soc/minefficacy

– Propagation

∗ use disjoint set to reduce peak memory usage and time to compute clique table connectedness
information

∗ added analysis of the clique table which identifies possible aggregations via the search for
strongly connected components and may detect infeasible assignments on the way

3.25 25.0 Distribution 287

· added parameter propagating/vbounds/minnewcliques to specify the minimum number
of new cliques to trigger another clique table analysis

· added parameters propagating/vbounds/maxcliquesmedium and propagating/vbounds/maxcliquesexhaustive
to limit the number of cliques relative to the number of binary variable for performing
clique table analysis

· changed default for parameter propagating/vbounds/presolpriority from 0 to -90000

· changed default for parameter propagating/vbounds/presoltiming from 28 to 24

∗ extended conflict analysis by analyzing dual solutions of boundexceeding LPs and improved
dual ray analysis

· removed parameters conflict/usemir and conflict/prefermir

· added parameter conflict/sepaaltproofs

· added parameter conflict/prefinfproof to determine whether to prefer infeasibility proof
to boundexceeding proof

· changed default for parameter conflict/useboundlp to 'b'
· changed default for parameter conflict/maxvarsfac from 0.1 to 0.15

· changed default for parameter conflict/maxvarsfac from 30 to 0

– LP Relaxation

∗ use LP solution polishing during probing and diving mode to activate it during many
primal heuristics; remains disabled during strong branching and OBBT

· only effective if using SoPlex as LP solver

· added value 3 for parameter lp/solutionpolishing to enable LP polishing only during
probing and diving mode

∗ added parameter lp/refactorinterval to change the refactorization interval of the LP solver

– removed parameters constraints/{abspower,bivariate,nonlinear,quadratic,soc}/scaling

– added parameter groups table/∗ to control statistic output

– See also the full release notes, the changelog, and the release paper.

• Fixed a problem when solving a model with solveLink 6 or 7 with scaleOpt active.

SolveEngine

• The GAMS time limit (reslim) is now passed to SolveEngine. Added solver option hardtimelimit to
specify a time limit that is enforced on the GAMS side.

SoPlex

• New libraries 3.1.0 (876e6e8).

– New scaling method that combines geometric and equilibrium scaling. Use new value 6 for
option int:scaler to activate this.

– See also the release paper.

Xpress

• New libraries 32.01.05.

3.25.1.5 Tools

CDSP

• See ANTIGONE, Bonmin, Couenne, Ipopt, SCIP.

https://www.scipopt.org/SCIP-release-notes-5.0
https://www.scipopt.org/doc-5.0.0/html/CHANGELOG.php
http://nbn-resolving.de/urn:nbn:de:0297-zib-66297
http://nbn-resolving.de/urn:nbn:de:0297-zib-66297

288 Release Notes

GDXXRW

• Sometimes, Excel is not ready (e.g. because some data needs to be refreshed, when a worksheet
is opened), when a read request is sent by GDXXRW. This could cause an exception. With this
release we changed the behavior of GDXXRW to wait a second and resend the request in this case.
This basically mimics the behavior of setting RWait to 1000 in case of the mentioned exception.

3.25.1.6 Object Oriented APIs

C++

• Changed the compiler from GCC to Clang on Mac OS X.

• Added support for Microsoft Visual Studio 2015 and Microsoft Visual Studio 2017 on Windows
64-bit.

• API binaries have been moved to apifiles/C++/lib. On Windows, there are further subdirectories
for different compiler versions.

• Update of Visual Studio solutions for the examples on Windows. Three different solutions reflecting
the supported versions of Microsoft Visual Studio are available (e.g. examples-vs2013.sln, examples-
vs2015.sln, examples-vs2017.sln).

• The GAMS C++ API tutorial has been reworked. Information about building the C++ API
examples via cmake, qmake, and Microsoft Visual Studio has been added.

• New example TransportGDX that shows how to import and export GDX files. A description has
been added to the tutorial.

.NET

• Changes for GAMSSymbol and GAMSSymbolRecord: Both classes got the IEquatable<T> Interface.
As a result the behavior of the Equals function as well as the == and != operators were modified.
For both classes Equals and == returns now true, if the internal data reference is the same. Here is
an example:
GAMSVariable x1 = db.GetVariable("x");
GAMSVariable x2 = db.GetVariable("x");
if(x1 == x2)

Console.WriteLine("x1 == x2");
else

Console.WriteLine("x1 != x2");
if (x1.Equals(x2))

Console.WriteLine("x1 equals x2");
else

Console.WriteLine("x1 does not equal x2");

In previous versions we got this output:
x1 != x2
x1 does not equal x2

Now we get:
x1 == x2
x1 equals x2

• New example TransportGDX that shows how to import and export GDX files.

3.25 25.0 Distribution 289

Java

• The minimum version requirement of the Java Runtime Environment for using the GAMS Java API
is now Java SE 7.

• New TransportGDX example to demonstrate how to import and export GDX files.

• Removed method GAMSSymbol.compact, deprecated since 24.8.1 (December 2016).

• Changed equivalence behavior of GAMSSymbol and GAMSSymbolRecord objects. As a result, two
symbol objects with the same internal reference are now equivalent, similar to symbol record objects:

– Two symbols are equivalent if and only if they have the same internal reference.

– Two symbol records are equivalent if and only if they have the same internal reference.

The behavior of operator == remains unchanged. The following exmaple illustrates the new equiva-
lence behavior:
GAMSVariable x1 = db.getVariable("x");
GAMSVariable x2 = db.getVariable("x");
GAMSVariable x3 = x1;
assertTrue(x1.equals(x2)); // true, previously false
assertFalse(x1 == x2); // false, previously false
assertTrue(x1.equals(x3)); // true, previously true
assertTrue(x1 == x3); // true, previously true

Python

• Added implementation of eq () and ne () to classes GamsSymbol and GamsSymbolRecord

and its derived classes. As a result the behavior of the operators == and != has changed. == now
returns True, if the internal data reference is the same. The behavior of is remains unchanged. The
following example illustrates the change:
x1 = db["x"]
x2 = db["x"]
print(x1 == x2) # now: True, before: False
print(x1 is x2) # now: False, before: False

• New example transport gdx.py that shows how to import and export GDX files. A description
has been added to the tutorial.

3.25.1.7 Expert Level APIs

• As announced, the expert-level C++ API files were removed from the distribution. Users should
switch to the expert-level C API files. The object-oriented C++ API introduced in the last major
release could also be a good alternative for replacement if the user C++ code exchanges data and
runs a GAMS model.

• The expert-level Java API files now ensure the load of jni libraries in the similar order as those
employed by the Object Oriented Java API: first load from java.library.path, if neither specified
nor found then from the directory where the API classes are located.

GDX

• Do not allow empty filename as argument for gdxOpenAppend, gdxOpenRead, gdxOpenWrite, and
gdxOpenWriteEx. This will create an error right away now.

290 Release Notes

3.25.1.8 Model Libraries

GAMS Model Library

• embmiex1.gms : Simple Embedded Code ModelInstance example (417)

• spbenders1.gms : Stochastic Benders - Sequential GAMS Loop (418)

• spbenders2.gms : Stochastic Benders - Async Subsolve GAMS Loop (419)

• spbenders3.gms : Stochastic Benders - Sequential GamsModelInstance (420)

• spbenders4.gms : Stochastic Benders - Parallel MPI (421)

• spbenders5.gms : Stochastic Benders - Parallel MPI with GAMSModelInstance (422)

• Most models in the GAMS Model library have been refurbished to reflect a common syntax style
and features introduced since the model was added.

• prime: Make use of the break statement for a little nicer and faster formulation.

GAMS Test Library

• scensol7.gms : Test GUSS Option ReportLastScen (737)

• emp27.gms : Test LOGMIP/EMP on x.fx=0 handling (738)

• embpy03.gms : Test projection operator when loading data from embedded code (739)

• qcp11.gms : Test dual solution of SOCP (740)

• put11.gms : Put Utility without file handle (741)

3.25.1.9 Solver/Platform availability

x86 32bit
MS

Windows

x86 64bit
MS

Windows

x86 64bit
Linux

x86 64bit
Mac OS X

Sparc
64bit

SOLARIS

IBM
Power
64bit
AIX

ALPHAECP X X X X X X
ANTIGONE
1.1

X X X X

BARON X X X X
BDMLP X X X X X X
BONMIN
1.8

X X X X

CBC 2.9 X X X X
CONOPT 3 X X X X X X
CONOPT 4 X X X X X X
COUENNE
0.5

X X X X

CPLEX
12.8

12.6 X X X 12.6 X

DECIS X X X X X
DICOPT X X X X X X
GLOMIQO
2.3

X X X X

3.25 25.0 Distribution 291

x86 32bit
MS

Windows

x86 64bit
MS

Windows

x86 64bit
Linux

x86 64bit
Mac OS X

Sparc
64bit

SOLARIS

IBM
Power
64bit
AIX

GUROBI
7.5

X X X X X

GUSS X X X X X X
IPOPT 3.12 X X X X
KESTREL X X X X X X
KNITRO
10.3

X X X X

LGO X X X X X
LINDO 11.0 X X X X
LINDOGLOBAL
11.0

X X X X

LOCALSOLVER
7.5

X X 7.0 X

MILES X X X X X X
MINOS X X X X X X
MOSEK 8 X X X X
MSNLP X X X X X
NLPEC X X X X X X
OQNLP X 32bit

PATH X X X X X X
SBB X X X X X X
SCIP 5.0 X X X X
SNOPT X X X X X X
SOLVEENGINE X X X X
SOPLEX
3.1

X X X X

XA X X X
XPRESS
32.01

X X X X X 29.01

3.25.2 25.0.2 Maintenance release (January 31, 2018)

3.25.2.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Tom Rutherford.

3.25.2.2 GAMS System

GAMS

• Bugfix: $offEmbeddedCode does not ignore $onUNDF anymore.

• Bugfix: Special values (NA, EPS, INF, ...) are correctly communicated from embedded code back
to GAMS.

• Bugfix: Took care about a problem, which caused an unexpected execution error for certain uses of
Put Utility.

• Fixed a bug in GMSPython on Mac OS X which prevented the Python interpreter from working.
This problem occurred with the DMG installer only.

292 Release Notes

3.25.2.3 Solvers

ANTIGONE, Bonmin, Couenne, Ipopt, SCIP

• On Linux, removed the MKL libraries that were optimized to certain x86 instruction sets (AVX,
etc.) as this resulted in errors when running ANTIGONE or SCIP, probably due to library conflicts.

CPLEX

• Option Tuning can be repeated in a GAMS/Cplex option file to provide a larger number of model
instances for tuning. Before this change the number was restricted by the maxium line length of an
option line (256 characters).

LocalSolver

• New libraries 7.5 (20180119) for Mac OS X and Windows.

3.25.2.4 Tools

CSDP

• See ANTIGONE, Bonmin, Couenne, Ipopt, SCIP.

CSV2GDX

• Bugfix: Reading sets (no Value or Values option) with the option AutoRow works again.

3.25.3 25.0.3 Minor release (March 21, 2018)

3.25.3.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving this
release. In particular, we thank Dominik Bongartz, Wolfgang Britz, Erwin Kalvelagen, Maria Kannavou,
Hans Mittelmann, Christoph Pahmeyer, Gilles Scouvart, and Hermann Westerholt.

3.25.3.2 GAMS System

GAMS

• Bugfix for Put Utility: If a put utility statement was used as the first statement to mark a file as
active (so no statement like put fx; was used before) and following put or put utility statements
did not mention this file explicitly, then the file association got lost.

• Bugfix: Avoid a crash when one of the following attributes was used on an empty Singleton Set:
.len, .uel, .val (an execution error is generated instead now)

• Bugfix for command line option fileStemApFromEnv: In the past, if the input file was defined
including a file extension, the value of this option was extended to the extension and not to the file
stem as intended. This is fixed now.

• Bugfix for $if exist File on Windows: In the past, if a file was specified as <Drive>:/<File>, e.g.,
C:/t.txt (note the forward slash '/' after the colon ':'), this always returned false, even if the file
exists. That has been fixed now.

3.25 25.0 Distribution 293

3.25.3.3 Solvers

BARON

• Fixed use of .EquClass option.

BONMIN(H), CBC, Couenne

• Branch-and-bound now checks wallclock-time, if running with multiple threads.

CONOPT4

• New libraries 4.05.

– Improved the selection of post-triangular variables when there are multiple candidates.

CPLEX

• Bugfix: If the Cplex conflict refiner (triggered by option iis) could not identify a conflict the behavior
was erratic. This has been fixed.

• Bugfix: Value 6 for option MIPStart was documented but got rejected. This has been fixed.

DICOPT

• Fixed setup of NLP projection problem in feasibility pump.

• Fixed stopping criterion when using stop on crossover: DICOPT was stopping as soon as the relative
gap between the objective value of the best known solution and the bound provided by the MIP
relaxation was below 0.001, thus might have declared suboptimal solutions as optimal. With this
release, DICOPT will use the value of GAMS option optcr as optimality tolerance. Note, that the
default for this option is 0.1 (!).

Ipopt(H)

• New libraries.

MOSEK

• No update, but be aware that Mosek announced to drop the convex nonlinear optimizer in their
next major release (Mosek 9). Thus, in a future GAMS release, GAMS/Mosek will not accept
models with model types NLP or DNLP anymore. Note, that linear or quadratic problems (LP,
MIP, (MI)QCP) are not affected.

SCIP

• New libraries 5.0.1 (227c4c7).

– New option presolving/symmetry/displaynorbitvars.

https://themosekblog.blogspot.dk/2018/01/version-9-roadmap_31.html

294 Release Notes

SoPlex

• New libraries 3.1.1 (ab921a5).

3.25.3.4 Tools

MODEL2TEX

• Added support for singleton sets.

• Fixed a dependency bug on Mac OS X which prevented model2tex from working.

• Fixed a bug regarding SOS variables.

• Fixed a bug regarding domain jumps.

• Added support for Python 3 on Linux and Mac OS X.

3.26 24.9 Distribution

3.26.1 24.9.1 Major release (August 30, 2017)

3.26.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving this
release. In particular, we thank Jan Abrell, Etienne Ayotte-Sauvé, Wolfgang Britz, Florian Habermacher,
Florian Häberlein, Maximilian Held, Ignacio Herrero, Hanspeter Höschle, Erwin Kalvelagen, Toni Lastusilta,
John Ross, Tom Rutherford, and Linus Schrage.

3.26.1.2 Platforms

• The set of supported platforms has not changed, but we've divided it into the core platforms
(Windows 32-bit, Windows 64-bit, Linux, and Mac OS X) and the peripheral platforms (AIX, x86-64
Solaris, and Sparc64 Solaris). See Supported Platforms for more details. Please note, however, that
we are not changing the content or behavior of GAMS based on this division: GAMS models will
continue to work in the same cross-platform way for both core and peripheral platforms.

• We will drop support for x86-64 Solaris with GAMS 25.0.

• We may increase the minimal required GLIBC version on Linux to 2.12 with GAMS 25.0.

• We may increase the minimal required MacOS X version to 10.11 with GAMS 25.0.

3.26 24.9 Distribution 295

3.26.1.3 GAMS System

GAMS

• New feature, the Embedded Code Facility: This extends the connectivity of GAMS to other pro-
gramming languages. It allows the use of Python code during compile and execution time. GAMS
symbols are shared with the external code, so no communication via disk is necessary.
The embedded code feature is available on Linux, MacOS X, and Windows. For these platforms, a
Python 3.6 installation is included with the GAMS distribution. If the user wants to work with a
different Python 3.6, installed separately, for models with embedded code the new command line
option pySetup needs to be set to 0.

Note

This feature is currently in beta status. Any feedback to support@gams.com is appreciated.

• New command line option procDirPath: Specifies the directory where the process directory should
be created.

• New compile time constants to set the model attribute solPrint:

– 0 = %solPrint.off%

– 1 = %solPrint.on%

– 2 = %solPrint.silent%

• New compile time constants to set the model attribute solveOpt:

– 0 = %solveOpt.Replace%

– 1 = %solveOpt.Merge%

– 2 = %solveOpt.Clear%

• Allow new string synonyms to set the integer values of the following command line options:

– solPrint: Off (=0); On (=1); Silent (=2)

– sysOut: Off (=0); On (=1);

• Fixed a bug where the following dollar control options did not get written to the dump file when the
command line parameter dumpOpt was used. Sometimes this caused an error in the generated file.

– $[on|off]DotScale

– $[on|off]Embedded

– $[on|off]Expand

– $[on|off]Local

– $[on|off]Macro

– $[on|off]Margin

– $[on|off]Order

– $[on|off]StrictSingleton

– $[on|off]UNDF

• Fixed an error which caused the loss of equation information when using the Grid facility in certain
cases. This could have caused problems when a hot start should be performed.

• A parameter error is now created if the key of a 'double dash' GAMS parameter exceeds 63 characters
(in the past, the key was truncated silently in this case).

• Fixed a crash which happened if the .tl suffix was used on an empty Singleton Set in a put
statement.

• Fixed a bug which could have caused a crash if nested loops where used in a particular combination.

• Fixed a bug with $onPut ... $offPut in a for and repeat structure: When $onPut was the first
statement inside one of these programming flow control features, it was executed just once and not
repeatedly.

mailto:support@gams.com

296 Release Notes

Special Functions

• Several of the more exotic GAMS intrinsic functions (aka ”special functions”) were re-implemented
to address some bug reports and to pass a more rigorous set of tests. The updated functions
include the loggamma, gamma, logbeta, beta, and binomial functions. In general, the updated
functions offer improved precision and a more consistent behavior in exceptional cases (e.g. overflows,
singularities, and domain violations) compared to the previous versions. In addition, the gamma and
beta functions are now classified as smooth (NLP) instead of nonsmooth (DNLP) and the domains
of the beta and binomial functions have been changed.

Documentation

• The contents of GAMS User's Guide and the McCarl (Expanded) User's Guide have been merged,
revised, and reorganized as User's Guide as well as A GAMS Tutorial by Richard E. Rosenthal.
Also other parts of the documentation has been reorganized and are now more closely integrated.

• The McCarl GAMS User Guide (CHM and PDF) can now be found in the mccarl/ subdirectory in
the distribution.

• The PDFs containing the solver manuals and the GAMS User's Guide have been replaced by a
single PDF containing large parts of the current documentation. However, the main format for the
documentation is HTML.

3.26.1.4 Solvers

BARON

• New libraries 17.8.7.

– New range reduction techniques and relaxations for quadratic constraints.

– New heuristics for finding feasible solutions of integer programs.

– Improvements in interfaces to local NLP solvers, including the use of second-order derivatives.

– FilterSQP added to the list of local solvers. New option AllowFilterSQP and added new
possible value 14 for option NLPSol.

– Bugfixes.

CBC

• New libraries.

– Fixed some problems with the handling of SOS type 2 in presolve.

• Added option dumpsolutionsmerged to write all found alternate solutions into a single GDX file.

Conopt

• New libraries 3.17E and 4.03.

– Fixed a serious error in Conopt4 for exactly threads=8. Moreover, improved multi-threading
performance.

– Major revisions to Conopt4 for reliability and performance.

• The option Rtzern is now user settable for Conopt3.

index.html

3.26 24.9 Distribution 297

CONVERT

• The GAMS equation and variable scale values (suffix .scale) will be communicated to CONVERT
independent of the ScaleOpt model attribute.

CPLEX

• Added option workerAlgorithm to select the method for optimizing Benders subproblems.

• Added option writeAnnotation to create Cplex annotation file.

• The header of MIP/solve trace files contains now the option number and the name of the model.

DECIS

• DecisC, DecisM, and the EMP-SP solver Decis are now available for MacOS X.

GAMSCHK

• The procedures that generate output in the listing file are summarized at the end of the GAMSCHK
execution. If you use the IDE, these summary lines are clickable and locate the cursor to the
corresponding subsection in the IDE. Moreover, the procedures are also entered in the listing file
index after the Solution Report.

• The lower bound for options LevelFilt and MargFilt has been reset from 1 to -5.

GUROBI

• New libraries 7.5.1.

– Fewer constraint violations in MIQP solutions: Gurobi has tightened the internal tolerances
for MIQP models to reduce the number of cases where the solution exhibits small constraint
violations.

• New parameter startNodeLimit provides additional control over how much is performed to complete
a partial MIP start.

• Gurobi 7.5 will be the last Gurobi release that supports 32-bit Windows. You should plan to migrate
your applications to 64-bit Windows in the future.

• The header of MIP/solve trace files contain now the active option number and the name of the
model.

GUSS/Scenario Solver

• Fixed a problem when initializing variables bounds to 0 (updateType=0) that have scenario update
parameters for lower and upper bounds.

298 Release Notes

Lindo/LindoGlobal

• New libraries 11.0

– LP Solver Improvements:

∗ With new enhancements made to the simplex solvers, the average performance on large
instances has increased by 20% for the primal simplex and 15% for the dual simplex
compared to the previous version.

– MIP Solver Improvements:

∗ New symmetry detection capabilities to reduce overall branch-bound effort. This may
dramatically reduce the time needed to prove optimality on some models with integer
variables.

∗ Perspective and soft-clique cuts effective on difficult MIQP and models with assignment
constraints.

– Global Solver Improvements:

∗ Improved stability and robustness through several enhancements to quadratic recognition
and range reduction.

– Nonlinear Solver Improvements:

∗ New major release of the nonlinear solver.

∗ Improved preprocessor.

∗ Use of interval function and derivative computations.

∗ Advanced scaling leading to improved solution quality.

LocalSolver

• New libraries 7.0 (20170728).

– Reinforcement of mixed-integer linear programming (LP & MIP) techniques for combinatorial
optimization.

– Reinforcement of nonlinear programming techniques (NLP) for numerical optimization.

MINOS/QUADMINOS

• New libraries 5.6 (dated July 2016).

– Improved handling of singularites and empty cols in pivoting code.

– Further bug fixes and improvements.

• Fix improper handling of scaled CNS models.

• Fix handling of logging frequency.

• QUADMINOS, the quadruple-precision version of MINOS, has been available in previous releases
(since 24.4). This release includes the library model [DQQ], an example of how to use MINOS and
QUADMINOS together to compute greatly improved solutions at moderate cost.

MOSEK

• New libraries 8.1.0.23.

– Performance of the presolve has been improved slightly.

– Multi-thread performance of the conic optimizer has been improved for certain large models.

– Changed scaling for quadratic and quadratically constraint optimization problems.

– Bugfixes.

3.26 24.9 Distribution 299

MPSGE

• The MPSGE $sysInclude mpsgeset allows now for an optional argument -mt=0 or 1 after the
model name. The default value for the argument mt can be controlled via the double dash option
--MPSGEMT=0 or 1. If the mt option is set to 1 the MODEL.GEN file is created in the GAMS scratch di-
rectory. Hence the $include before the solve needs to read $include "%gams.scrdir%MODEL.GEN".
This allows to run multiple MPSGE jobs with the same model in the same working directory. The
default of this option is 0. The model hansmge demonstrates the use.

SBB

• The header of MIP/solve trace files contains now the option number and the name of the model.

SCIP

• New libraries 4.0 (9d3c1b1).

– Improved conflict analysis through central conflict pool and dual ray analysis for primal
infeasible LPs.

– New solution polishing to improve integrality of LP solutions when using SoPlex as LP solver.

– Added adaptive solving behavior of SCIP based on solving phases and heuristic transitions.

– Revised pseudo random number generation and introduced central random seed for all plugins.

– Randomized tie-breaking in different parts of the code to reduce performance variability.

– New primal heuristics GINS, LP face, Complete Sol, Locks, Repair, and Multistart.

– The 1-opt heuristic is now iterated as long as new incumbents are found.

– Improved tuning of heuristic timings.

– Reduced memory usage of primal heuristics that use problem copies.

– New presolving steps that disaggregate SOC constraints, reformulate QP's by adding KKT conditions,
and treat variables appearing only in a single quadratic constraint with proper square coeffi-
cients.

– New separators for gauge cuts, convex projection cuts, and perspective cuts for indicator constraints.

– Improved knapsack approximation algorithms, greedy knapsack solution for the flow cover
separation, clique partitioning, and clique separation.

– New propagator for OBBT on convex NLP relaxation.

– Tuned propagation methods of several constraint handlers and propagation timings.

– Improved and extended stuffing for linear constraints.

– Changed handling of coupling constraints for indicator constraints.

– See also the full release notes, the changelog, and the release paper.

– Changed parameters:

∗ presolving/components/∗ moved to constraints/components/∗
∗ conflict/depthscorefac renamed to conflict/graph/depthscorefac

∗ misc/permutationseed renamed to randomization/permutationseed

∗ misc/permuteconss renamed to randomization/permuteconss

∗ misc/permutevars renamed to randomization/permutevars

∗ branching/random/seed: default changed from 0 to 41

∗ constraints/indicator/sepacouplingcuts: default changed from 0 to 1

∗ constraints/SOS1/perfimplanalysis: default changed from 1 to 0

∗ heuristics/ofins/freq: default changed from -1 to 0

https://www.scipopt.org/SCIP-release-notes-4.0
https://www.scipopt.org/doc-4.0.0/html/CHANGELOG.php
http://nbn-resolving.de/urn:nbn:de:0297-zib-62170

300 Release Notes

∗ heuristics/reoptsols/freq: default changed from -1 to 0

∗ heuristics/trivialnegation/freq: default changed from -1 to 0

∗ heuristics/clique/initseed: default changed from 0 to 61

∗ lp/solver: default changed from soplex to soplex2, if CPLEX is not licensed

∗ presolving/abortfac: default changed from 0.001 to 0.0008

∗ separating/clique/cliquedensity: default changed from 0.05 to 0

∗ conflict/usesb: default changed from 0 to 1

• Added option gams/dumpsolutionsmerged to write all found alternate solutions into a single GDX
file.

• Changed default for timing/clocktype to wallclock time.

• Initial variable levels can now be passed as partial solution to SCIP. To control the various possibilities,
the type of option gams/mipstart has changed from bool to integer. See also subsection Starting point
in the GAMS/SCIP solver manual.

SolveEngine

• New solver SolveEngine to solve LP and MIP problems remotely via the Satalia SolveEngine. The
SolveEngine aggregates different solution algorithms for optimization problems and automatically
selects an algorithm that seems to suite best for a given model instance.

• GAMS/SolveEngine comes free of charge with any licensed GAMS system. Users must have an API
key for the Satalia SolveEngine to submit jobs.

SoPlex

• New libraries 3.0 (c32c55a).

– Added a new scaling implementation Least squares (Curtis-Reid scaling).

– Added persistent scaling to keep scaled LP for multiple reoptimizations.

– Added an experimental version of a decomposition based approach to avoid degener-
acy in the dual simplex method. This feature is activated by setting the parameter
bool:decompositiondualsimplex to true, which sets the basis representation to 'row' and the
algorithm to 'dual'.

– New parameter bool:computedegen to enable computation of the degeneracy of the basis in
each iteration.

– New parameter int:printcondition to enable printing the condition number of the basis
during solve.

– Automatically use the row representation for problems with more than 20% more constraints
than variables.

– Changed default for parameter int:factor update max from 200 to new value 0.

– See also the full release notes and the release paper.

• Changed default type of timer to wallclock time.

http://soplex.zib.de/notes-300.txt
http://nbn-resolving.de/urn:nbn:de:0297-zib-62170

3.26 24.9 Distribution 301

XPRESS

• New libraries: Optimizer 31.01.09 (aka XPRESS 8.3). There are many improvements and additions:

– The parallel MIP code has been completely rewritten to improve performance and scalability.

∗ Reduced overhead for small, easy MIPs.

∗ Reduced the memory usage for very large MIPs, especially those that are significantly
reduced during the initial preprocessing.

∗ Heuristics can now be run in parallel with cutting in deterministic mode. Previously,
heuristics would only be run in parallel after cutting.

∗ Improved implementation of zero-half cutting.

∗ Aggregated Mixed Integer Rounding cuts have been improved for network-type problems.

– New presolve reductions, strengthenings and reformulations for convex quadratic problems.

– Improved performance and numerical stability of crossover.

– Code support for AVX2 in the barrier solver: use option cpuPlatform to select the target
instruction set.

– Crossover after a barrier solve is now multi-threaded: see option crossoverThreads for details.

• The header of MIP/solve trace files contains now the option number and the name of the model.

3.26.1.5 Tools

CSV2GDX

• New option ValueDim: Indicate if an extra dimension for values is added even if there is just one
value column. This is ignored, if there is no value column.

GDXDUMP

• Fixed a problem with writing a scalar variable or equation in CSV format with all fields.

GDXMERGE

• Improved feedback about problems when processing input files.

3.26.1.6 Object Oriented APIs

• Fixed a bug regarding SymbolUpdateType.Zero that prevented records from being updated in
GAMSModelInstance.Solve().

C++

• This release contains a beta version of the object-oriented C++ API that can be used to control
GAMS from within C++11 and later. It allows the seamless integration of GAMS into C++
applications by providing appropriate classes for the interaction with GAMS. The GAMSDatabase
class for in-memory representation of data can be used for convenient exchange of input data and
model results. Models written in GAMS can be run with the GAMSJob class and by using the
GAMSModelInstance class a sequence of closely related model instances can be solved in an efficient
way.

• The API is available in the distributions for Linux, MacOS X, and Windows.

• Futhermore, the C++ API is published under MIT license and is hosted at the GAMS GitHub

organization.

• To use this API please check the GAMS API documentation.

https://github.com/GAMS-dev

302 Release Notes

.NET

• New functions GAMSWorkspace.AddJobFromApiLib, GAMSWorkspace.AddJobFromNoaLib to create
GAMSJob from models from the GAMS API Library and the Nonlinear Optimization Applications
Library.

Python

• New functions GamsWorkspace.add job from apilib, GamsWorkspace.add job from noalib to
create GamsJob from models from the GAMS API Library and the Nonlinear Optimization Appli-
cations Library.

• Added a version check for the setup.py scripts to avoid unintentional installation of wrong versions.

3.26.1.7 Expert Level APIs

• With GAMS 25.0, the expert-level C++ API files will be removed from the distribution. Users
should switch to the expert-level C API files. The object-oriented C++ API introduced in this
release could also be a good alternative for replacement if the user C++ code exchanges data and
runs a GAMS model.

GAMS Modeling Object

• Changed the function gmoGetModelTypeTxt: Added argument for model type number instead of
using the model type of the stored model.

3.26.1.8 Model Libraries

GAMS Data Library

• embeddedSort.gms : Sorting of numerical data using the embedded code facility (108)

• embeddedSplit.gms : Splitting of labels using the embedded code facility (109)

• embeddedMultiInstance.gms : Handling multiple instances of the embedded code facility at once
(110)

GAMS Model Library

• dqq.gms : Warm-starting quad-precision MINOS (414)

• cbenders.gms : Cplex Benders for a Simple Facility Location Problem (415)

• robustlp.gms : Robust linear programming as an SOCP (416)

3.26 24.9 Distribution 303

GAMS Test Library

• mpsge14.gms : MPSGE sync test: .GEN/integer1/nsolves (713)

• fnsincosintrv.gms : Test sin/cos func/grad interval evals (714)

• procdir1.gms : Test correct behavior of procDir, scrDir and procDirPath (715)

• empbp06.gms : Bilevel model with phantom vars owned by leader (716)

• fnslexp.gms : Test correctness of slexp intrinsic (717)

• fnslexp2.gms : Test correctness of slexp intrinsic (718)

• fnsqexp.gms : Test correctness of sqexp intrinsic (719)

• fnsqexp2.gms : Test correctness of sqexp intrinsic (720)

• fnsllog10.gms : Test correctness of sllog10 intrinsic (721)

• fnsllog102.gms : Test correctness of sllog10 intrinsic (722)

• fnsqlog10.gms : Test correctness of sqlog10 intrinsic (723)

• fnsqlog102.gms : Test correctness of sqlog10 intrinsic (724)

• fnslrec.gms : Test correctness of slrec intrinsic (725)

• fnslrec2.gms : Test correctness of slrec intrinsic (726)

• fnsqrec.gms : Test correctness of sqrec intrinsic (727)

• fnsqrec2.gms : Test correctness of sqrec intrinsic (728)

• fnloggamma.gms : Test correctness of loggamma intrinsic (729)

• fnbinomial.gms : Test correctness of binomial intrinsic (730)

• breakcont2.gms : Advanced test for break and continue statements (731)

• fnlogbeta.gms : Test correctness of logbeta intrinsic (732)

• fnbeta.gms : Test correctness of beta intrinsic (733)

• ssuffix.gms : List of all System Suffixes (734)

• embpy01.gms : Test for embedded code facility (735)

• embpy02.gms : Test for embedded code facility (736)

3.26.1.9 Solver/Platform availability

x86
32bit

MS Win-
dows

x86
64bit

MS Win-
dows

x86
64bit
Linux

x86
64bit

Mac OS
X

x86
64bit

SOLARIS

Sparc
64bit

SOLARIS

IBM
Power
64bit
AIX

ALPHAECP X X X X X X X
ANTIGONE
1.1

X X X X

BARON X X X X
BDMLP X X X X X X X
BONMIN
1.8

X X X X X

CBC 2.9 X X X X X

304 Release Notes

x86
32bit

MS Win-
dows

x86
64bit

MS Win-
dows

x86
64bit
Linux

x86
64bit

Mac OS
X

x86
64bit

SOLARIS

Sparc
64bit

SOLARIS

IBM
Power
64bit
AIX

CONOPT
3

X X X X X X X

CONOPT
4

X X X X X X X

COUENNE
0.5

X X X X X

CPLEX
12.7

12.6 X X X 12.6 12.6 X

LINDO
11.0

X X X X

DECIS X X X X X
DICOPT X X X X X X X
GLOMIQO
2.3

X X X X

GUROBI
7.5

X X X X X

GUSS X X X X X X X
IPOPT
3.12

X X X X X

KESTREL X X X X X X X
KNITRO
10.2

X X X X

LGO X X X X X X
SBB X X X X X X X
LINDOGLOBAL
11.0

X X X X

LOCALSOLVER
7.0

X X X X

MILES X X X X X X X
MINOS X X X X X X X
MOSEK 8 X X X X
MSNLP X X X X X
NLPEC X X X X X X X
OQNLP X 32bit

PATH X X X X X X X
SCIP 4.0 X X X X X
SNOPT X X X X X X X
SOLVEENGINE X X X X
SOPLEX
3.0

X X X X X

XA X X X
XPRESS
31.01

X X X X X X 29.01

3.26.2 24.9.2 Minor release (November 14, 2017)

3.26.2.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz, Paul Buckland, William N. Caballero, Xin Fang,
Christophe Gouel, Fabricio Porras-Ortiz, Shigeru Tsubakitani, and Haoshui Yu.

3.26 24.9 Distribution 305

3.26.2.2 GAMS System

GAMS

• Added prefixing of PYTHONPATH with the site-packages directory of the GAMS Python 3.6 installation
in GMSPython.

• Added support for Python sets in the Embedded Python Code method gams.set().

• Speed up detection/extraction of quadratic terms for QCP models.

• Do not allow the use of Embedded Code if execMode is set to 2 or higher.

Installer

• Removed the execution of a Python script during the Windows installation process that patches the
path of certain Python programs in GMSPython\Scripts.

3.26.2.3 Solvers

BARON

• New libraries 17.10.16.

• Due to a problem with the Ipopt interface in BARON on Mac OS X, the use of Ipopt in BARON is
currently disabled on Mac OS X.

• GAMS can now pass a term like (negativeConstant)∗∗negativeIntegerVariable to BARON.

Note

By default, GAMS correctly rejects such a formulation, though. To work around this,
MaxExecError needs to be set to a positive number and the option sys12 needs to be set to 1.
Here is an example, how this could be used:

scalar a /-2/;

integer variable x;

x.lo = -3;

x.up = 3;

variable z;

equation e;

e.. z =e=a**x;

model m /e/;

x.l=1;

MaxExecError = 10;

option sys12 = 1;

solve m min z use minlp;

CPLEX

• Removed any limits on the number of Threads in a GAMS/CPLEX option file. Previously, the
maximum for option Threads was 128.

306 Release Notes

CONOPT

• New libraries 3.17F.

– Fixed an infinite loop when using option LMMXSF.

CONVERT

• Fix for variables with negative lower and infinite upper bound in LINGO output. The LINGO
output has been changed to always use the @Bnd keyword to write variable bounds.

GUROBI

• New libraries 7.5.2.

GUSS/Scenario Solver

• Added the GUSS option ReportLastScen. If this is set to 1 the solution of the last scenario will
be reported back to GAMS rather than solution of the base case. This is particularly useful when
GUSS is used to implement a homotopy approach where the shock to a parameter is sliced in several
small shocks and hence the last scenario represents the solution to the shocked system.

Lindo/LindoGlobal

• New libraries 11.0.300.

LogMIP

• Fixed improper handling of variables fixed at zero that occurred if they were used in nonlinear
equations in a disjunction reformulated via the convex hull.

Mosek

• New libraries 8.1.0.31.

• Fixed dual solution for conic quadratic problems.

SCIP

• New libraries 4.0 (#22b4564).

SoPlex

• New libraries 3.0 (#3bfa247).

3.27 24.8 Distribution 307

3.26.2.4 Object Oriented APIs

C++

• Added a try/catch block around the code that uses the classes from the GAMS C++ OO-API in
all examples. Without this, the exceptions thrown by the methods of the GAMS classes will not
be reported and harmless exceptions, like a compilation or execution error in the GAMSJob.run
method result in application crashes.

Python

• Fixed a bug in the setup script that prevented files from being installed in the correct location in
certain cases.

3.27 24.8 Distribution

3.27.1 24.8.1 Major release (December 21, 2016)

3.27.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Etienne Ayotte-Sauvé, Wolfgang Britz, Göran Bylund, Wietse
Dol, Gregory Dourbois, Katja Jensen, Josef Kallrath, Toni Lastusilta, Renger van Nieuwkoop, and Tom
Rutherford.

3.27.1.2 Platforms

• On Linux, the minimal required GLIBC version is now 2.7.

• On MacOS X, for some solvers (ANTIGONE, BARON, CPLEX, COIN-OR, SOPLEX, SCIP) the
minimal required Mac OS X version is now 10.10. We will drop support for older Mac OS X versions
for the complete GAMS system with the next major release.

• A generic license (with platform code GEN) is now limited to the platforms Windows, Linux, and
Mac OS X. If you have a generic license and need a license for one of the other platforms (e.g. AIX),
please contact sales or support to receive an additional license file for that platform free of charge.

3.27.1.3 GAMS System

GAMS

• The statements Break and Continue were added to allow more control over the execution of control
structures (loop/while/repeat/for):

– Break [n];: Terminate the n inner most control structures (n is optional, if it is omitted, it is
set to 1).

– Continue;: Jump to the end of the inner most control structure.

308 Release Notes

• Extend the report summary of the solution report to print the number of variables and equations
where the level was projected to one of the bounds (compare model attribute tolProj), if that number
is greater than 0.

• The model attribute tolProj to project levels to bounds is no longer ignored when the GAMS Grid
Facility (solveLink = 3 or 4) is used.

• New command line option fileStem: Sets the file stem for output files which use the input file
name as stem by default, see fileStem for more details.

• New option MCPRHoldfx (can be set using the option statement, a command line parameter, or
model attribute):

– Prints list of rows that are perpendicular to variables removed due to the holdfixed setting if
set to 1.

• New option AsyncSolLst (can be set using the option statement, or a command line parameter):

– If set to 1, GAMS prints a solution listing to the lst file also when an asynchronous solve (see
The Grid and Multi-Threading Solve Facility) is used.

– The default value is 0.

• New variant for the solveLink option and model attribute: 7 (compile time constant
%solveLink.threadsSimulate%) - The problem is passed to the solver in core without use
of temporary files, GAMS waits for the solver to come back but uses same submission process as 6
(see Multi-threading Submission Testing)

• New function numCores (available at both compile and execution time): Returns the number of
logical cores in the system.

• Allow macro expansion in the domain list of a symbol declaration.

• New dollar control splitOption that splits a string representing a option/value pair into option name
and option value.

• Fixed a problem with the optional maxWait parameter of the function readyCollect.

• Fixed potential error in file created by dumpOpt, if there were symbols loaded from GDX.

• Fixed an error which could lead to wrong results when assigning to a symbol while the symbol's
alias was used on the right hand side of the assignment.

• Fixed an error which could lead to a crash if a phantom set element was used to control an assignment
inside a loop.

• Fixed a problem with unscaling solutions for MCP models that resulted in incorrect dual values for
scaled MCPs. For an example, compare the new test library model mcp11 when run with 24.8
and with something previous.

Documentation

• The offline documentation now provides search and keyword indexing functionalities in addition
to navigating the documentation.

• The Microsoft Compiled HTML help file gams.chm is no longer available.

• The table of contents for browsing the GAMS model libraries is now available offline in HTML
format.

search.html
keyword.html

3.27 24.8 Distribution 309

3.27.1.4 Solvers

BARON

• New libraries 16.12.7.

CPLEX

• New libraries 12.7.0.0.

• Support for the platfrom MS Windows 32 bit, Solaris i86pc, and Solaris SPARC 64bit has been
dropped by IBM for Cplex 12.7. The GAMS system for these platforms contains Cplex 12.6.3.

• Cplex 12.7 implements Benders Algorithm. This is available in CplexD only.

• The IIS option triggers now the conflict refiner. The IIS function in Cplex 12.7 has been replaced
by the conflict refiner. The IIS option now also works on infeasible models with model status
Infeasible No Solution as well as on problems with discrete variables.

• New parameters

– BendersFeasCutTol: Tolerance for whether a feasibility cut has been violated in Benders
decomposition

– BendersOptCutTol: Tolerance for optimality cuts in Benders decomposition

– BendersStrategy: Benders decomposition algorithm as a strategy

– DataCheck: Data consistency checking and modeling assistance

– RLTCuts: Reformulation Linearization Technique (RLT) cuts

• Modified parameters:

– MipStart: A value of 6 accepts the (partical) MipStart without any checks

CONOPT

• This distribution includes the first official release of the CONOPT4 solver. The chapter in the solver
manual has an interesting subsection on when you should use CONOPT4 for all existing CONOPT
users.

• The current solver alias CONOPT still points to the CONOPT3 solver. This might change in the next,
or next but one major release. We invite you to share your experience with this new version of
CONOPT via support (support@gams.com) with us.

ConvertD

• Write proper scale and prior information for equations and variables with option Jacobian.

DICOPT

• An implementation of a Feasibility Pump primal heuristic (for convex MINLP) has been added to
DICOPT. This heuristic can be run before the actual DICOPT algorithm. Outer approximation
cuts from the MIP subproblem of the Feasibility Pump are transferred to initialize the MIP outer
approximation of the main DICOPT algorithm. Option feaspump can be used to enable the
Feasibility Pump and various other options are available to tune the feasibility pump.

• Option convex has been added to indicate the presence of convex MINLP. If this option is set, the
defaults for various other options are modified.

mailto:support@gams.com

310 Release Notes

GUROBI

• New libraries 7.0.1.

• Explore alternative solutions via the Solution Pool.

• New parameters

– BestObjStop: Objective value to stop optimization

– BestBdStop: Objective bound to stop optimization

– InfProofCuts: Infeasibility proof cut generation

– StrongCGCuts: Strong-CG cut generation

– DegenMoves: Degenerate simplex moves

– TuneCriterion: Tuning criterion

– SolNPool: Activate export of alternative solution

– PoolSolutions, PoolSearchMode, and PoolGap to control generation of alternative solutions

• Gurobi 7 supports general constraints. With the help of the dot-option .GenConstrType the user
can classify a constraint to be of type Max, Min, Abs, And, and Or.

• Gurobi 7 supports indicator constraints.

• Gurobi 7 supports multi objective hierarchical optimization. Details can be found in the
GAMS/Gurobi manual, in subsection Multiple Objectives.

JAMS

• New option ZipDebug=xxx.zip to specify that, in the event of abnormal termination or behavior, a
zip file of debugging info be created.

• New reformulation options to handle shared or duplicated equations and variables in equilibrium
models.

Knitro

• New libraries 10.2.0.

– Significant speed and robustness improvements when using BFGS (hessopt=2) or L-BFGS
(hessopt=6) Hessian approximations with the default Knitro interior-point method.

– General performance improvement on mixed-integer models.

– Minor bug fixes.

– New mixed-integer SQP (MISQP) algorithm for nonlinear mixed-integer models
(mip method=3). This new algorithm is intended for small, potentially non-convex models
with possibly expensive function evaluations. It can be used even when integer variables are
not relaxable (i.e. functions can only be evaluated with integer variables at integer points) by
setting mip relaxable=0, and can be used with parallel multistart.

– New option mip nodealg to control algorithm used at B&B nodes: overrides the generic
algorithm option.

• The Knitro Tuner is now available from the GAMS/Knitro link.

3.27 24.8 Distribution 311

Lindo/LindoGlobal

• New libraries 10.0.131.

– LP Solver Improvements:

∗ With new enhancements made to the simplex solvers, the average performance on large
instances has increased by 35% for the primal simplex and by 20% for the dual simplex
compared to the previous version.

– MIP Solver Improvements:

∗ New heuristic algorithms help to find significantly better solutions for many models with
knapsack constraints and block structures.

∗ New MIP preprocessing level devoted to tightening variable bounds for some nonlinear
models.

– Stochastic Solver Improvements:

∗ Improved cut management for Nested Benders Decomposition Method leading to speed
improvements over 60% for large linear multistage SP instances.

∗ Better handling of multistage SP models which do not have full-recourse.

– Global Solver Improvements:

∗ Incorporates bound tightening process to the linearization procedure and improve solvability
of linearized model.

LocalSolver

• New libraries 6.5 (20160729).

– For near-linear (discrete or continuous) problems, new moves have been introduced based on
linear programming and mixed-integer linear programming techniques. These moves allow to
intensify the search on near-linear models by exploring optimally larger neighborhoods.

• Added possibility for ”Hierarchical Optimization of Multiple Objective Functions”.

• Removed option origlog. GAMS/LocalSolver will now always print the original LocalSolver log.

• Fixed level values of aggregated variables in solution.

Mosek

• New libraries 8.0.0.48 (Mosek release notes)

– Presolve performance has been improved.

– The eliminator in the presolve has been reimplemented, is usually faster, and requires much
less memory.

– Presolve has been improved on conic quadratic problems.

– The numerical stability of conic optimizer has been improved significantly, particularly for
semidefinite optimization problems.

– The scaling routine for the conic optimizer is more aggressive.

– Quadratic and quadratically constrained problems are now internally converted to conic form
and are solved using the conic optimizer. Nevertheless full primal and dual information to the
original problems is available.

– A dualizer for conic quadratic problems is now available. By default it dualize the problems
before optimizing if deemed worthwhile. The dualization is transparent to the user and can be
turned off.

http://docs.mosek.com/8.0/releasenotes/changes.html

312 Release Notes

– The conic optimizer linear algebra is now parallelized using Cilk Plus and scales better when
the number of threads is increased for large problems. Moreover, for smallish problems using
too many threads does not hurt performance.

– The computational efficiency graph partitioning based ordering method in the interior-point
optimizer has been improved.

– It is now possible to force the interior-point optimizer to run in the calling thread.

– Only one mixed integer optimizer is available now, which corresponds to the mixed integer
conic optimizer that was introduced with version 7.

– The primal network simplex optimizer has been removed. It is suggested to use the dual
simplex optimizer instead.

– The primal-dual simplex optimizer has been removed. It is suggested to use the dual simplex
optimizer instead.

– The concurrent optimizer has been removed. It is suggested to use the interior-point optimizer
instead.

– The following GAMS/Mosek options have been removed:

∗ MSK IPAR ANA SOL BASIS

∗ MSK IPAR ANA SOL PRINT VIOLATED

∗ MSK IPAR CONCURRENT NUM OPTIMIZERS

∗ MSK IPAR CONCURRENT PRIORITY DUAL SIMPLEX

∗ MSK IPAR CONCURRENT PRIORITY FREE SIMPLEX

∗ MSK IPAR CONCURRENT PRIORITY INTPNT

∗ MSK IPAR CONCURRENT PRIORITY PRIMAL SIMPLEX

∗ MSK DPAR FEASREPAIR TOL

∗ MSK IPAR FEASREPAIR OPTIMIZE

∗ MSK IPAR INTPNT FACTOR DEBUG LVL

∗ MSK IPAR INTPNT FACTOR METHOD

∗ MSK IPAR LOG CONCURRENT

∗ MSK IPAR LOG NONCONVEX

∗ MSK IPAR LOG PARAM

∗ MSK IPAR LOG SENSITIVITY

∗ MSK IPAR LOG SENSITIVITY OPT

∗ MSK IPAR MAX NUM WARNINGS

∗ MSK IPAR MIO CONT SOL

∗ MSK IPAR MIO CUT CG

∗ MSK IPAR MIO CUT LEVEL ROOT

∗ MSK IPAR MIO CUT LEVEL TREE

∗ MSK IPAR MIO FEASPUMP LEVEL

∗ MSK DPAR MIO HEURISTIC TIME

∗ MSK IPAR MIO HOTSTART

∗ MSK IPAR MIO KEEP BASIS

∗ MSK IPAR MIO LOCAL BRANCH NUMBER

∗ MSK DPAR MIO MAX TIME APRX OPT

∗ MSK IPAR MIO PRESOLVE AGGREGATE

∗ MSK IPAR MIO PRESOLVE PROBING

∗ MSK IPAR MIO PRESOLVE USE

∗ MSK DPAR MIO REL ADD CUT LIMITED

∗ MSK IPAR MIO STRONG BRANCH

∗ MSK DPAR MIO TOL MAX CUT FRAC RHS

∗ MSK DPAR MIO TOL MIN CUT FRAC RHS

∗ MSK DPAR MIO TOL REL RELAX INT

3.27 24.8 Distribution 313

∗ MSK DPAR MIO TOL X

∗ MSK IPAR MIO USE MULTITHREADED OPTIMIZER

∗ MSK IPAR NONCONVEX MAX ITERATIONS

∗ MSK DPAR NONCONVEX TOL FEAS

∗ MSK DPAR NONCONVEX TOL OPT

∗ MSK IPAR PRESOLVE ELIM FILL (use MSK IPAR PRESOLVE ELIMINATOR MAX FILL
instead)

∗ MSK IPAR PRESOLVE ELIMINATOR USE

∗ MSK IPAR PRIMAL REPAIR OPTIMIZER

∗ MSK IPAR QO SEPARABLE REFORMULATION

∗ MSK IPAR WARNING LEVEL

∗ MSK IPAR WRITE IGNORE INCOMPATIBLE CONIC ITEMS (use MSK IPAR WRITE IGNORE INCOMPATIBLE ITEMS
instead)

∗ MSK IPAR WRITE IGNORE INCOMPATIBLE NL ITEMS (use MSK IPAR WRITE IGNORE INCOMPATIBLE ITEMS
instead)

∗ MSK IPAR WRITE IGNORE INCOMPATIBLE PSD ITEMS (use MSK IPAR WRITE IGNORE INCOMPATIBLE ITEMS
instead)

– The following GAMS/Mosek options have been added:

∗ MSK DPAR DATA SYM MAT TOL: Absolute zero tolerance for elements in in symmetric
matrices.

∗ MSK DPAR DATA SYM MAT TOL HUGE: An element in a symmetric matrix which is
larger than this value in absolute size causes an error.

∗ MSK DPAR DATA SYM MAT TOL LARGE: An element in a symmetric matrix which
is larger than this value in absolute size causes a warning message to be printed.

∗ MSK DPAR INTPNT QO TOL DFEAS: Dual feasibility tolerance used when the interior-
point optimizer is applied to a quadratic optimization problem.

∗ MSK DPAR INTPNT QO TOL INFEAS: Controls when the conic interior-point opti-
mizer declares the model primal or dual infeasible.

∗ MSK DPAR INTPNT QO TOL MU RED: Relative complementarity gap feasibility tol-
erance used when interior-point optimizer is applied to a quadratic optimization problem.

∗ MSK DPAR INTPNT QO TOL NEAR REL: Termination tolerance multiplier that is
used if no accurate solution can be found.

∗ MSK DPAR INTPNT QO TOL PFEAS: Primal feasibility tolerance used when the
interior-point optimizer is applied to a quadratic optimization problem.

∗ MSK DPAR INTPNT QO TOL REL GAP: Relative gap termination tolerance used
when the interior-point optimizer is applied to a quadratic optimization problem.

∗ MSK IPAR INTPNT MULTI THREAD: Controls whether the interior-point optimizers can em-
ploy multiple threads if available.

∗ MSK IPAR MIO CUT CLIQUE: Controls whether clique cuts should be generated.

∗ MSK IPAR MIO CUT GMI: Controls whether GMI cuts should be generated.

∗ MSK IPAR MIO CUT IMPLIED BOUND: Controls whether implied bound cuts should
be generated.

∗ MSK IPAR MIO CUT KNAPSACK COVER: Controls whether knapsack cover cuts
should be generated.

∗ MSK IPAR MIO CUT SELECTION LEVEL: Controls how aggressively generated cuts
are selected to be included in the relaxation.

∗ MSK IPAR MIO PERSPECTIVE REFORMULATE: Enables or disables perspective re-
formulation in presolve.

∗ MSK IPAR MIO ROOT REPEAT PRESOLVE LEVEL: Controls whether presolve can
be repeated at root node.

∗ MSK IPAR MIO VB DETECTION LEVEL: Controls how much effort is put into detect-
ing variable bounds.

∗ MSK IPAR OPF WRITE HEADER: Write a text header with date and MOSEK version
in an OPF file.

314 Release Notes

∗ MSK IPAR OPF WRITE HINTS: Write a hint subsection with problem dimensions in
the beginning of an OPF file.

∗ MSK IPAR OPF WRITE PROBLEM: Write objective, constraints, bounds etc.

∗ MSK IPAR OPF WRITE SOL BAS: Whether to include basic solution in OPF files.

∗ MSK IPAR OPF WRITE SOL ITG: Whether to include integer solution in OPF files.

∗ MSK IPAR OPF WRITE SOL ITR: Whether to include interior solution in OPF files.

∗ MSK IPAR OPF WRITE SOLUTIONS: Enable inclusion of solutions in the OPF files.

∗ MSK IPAR PRESOLVE ELIMINATOR MAX FILL: Controls the maximum amount of
fill-in that can be created by one pivot in the elimination phase of presolve.

∗ MSK DPAR SEMIDEFINITE TOL APPROX: Tolerance to define a matrix to be positive
semidefinite.

∗ MSK IPAR WRITE DATA PARAM: If this option is turned on the parameter settings
are written to the data file as parameters.

∗ MSK IPAR WRITE LP FULL OBJ: Write all variables, including the ones with 0-
coefficients, in the objective.

∗ MSK IPAR WRITE MPS FORMAT: Controls in which format the MPS is written.

∗ MSK IPAR WRITE TASK INC SOL: Controls whether the solutions are stored in the
task file too.

∗ MSK SPAR WRITE LP GEN VAR NAME: Sometimes when an LP file is written addi-
tional variables must be inserted.

– For the following options, the default value has changed:

∗ MSK DPAR MIO TOL FEAS from 1e-7 to 1e-6

∗ MSK IPAR LOG MIO FREQ from 1000 to 10

∗ MSK IPAR WRITE PRECISION from 8 to 15

• Fixed selection of optimizer for ”fixed solve” of a mixed-integer conic problem.

Pyomo

• Fixed compatibility issues with different versions of Pyomo.

SCIP

• New libraries 3.2 (#0d4fc08).

• Changed the default LP solver to SoPlex also for the case where a CPLEX license is available, due
to problems when using CPLEX 12.7.0.0 as LP solver in SCIP.

SoPlex

• The GAMS/SoPlex interface has been rewritten and does not use the OsiSpx layer anymore. The
solver OSISOPLEX is now an alias for the solver SoPlex.

• SoPlex parameter files can now be used.

• SoPlex can now be warmstarted when only the model instance data changes (e.g., via GUSS).

• New libraries 2.2 (df190de).

3.27 24.8 Distribution 315

3.27.1.5 Tools

CSV2GDX

• Improved error reporting.

GDXDUMP

• New command line option CSVAllFields to get all fields (level, marginal, lower, upper, and scale)
when writing a variable or equation symbol in CSV format.

MODEL2TEX

• Increased the page width of the txt file generated by the GAMS command line option docfile to
32767 (max. value).

• Changed the default encoding to latin and added a new command line parameter that allows to
change the encoding (-e=ENCODING)

• Changed the default format of the symbol tables.

• The JSON style file contains a new property called columnSetting that allows to adjust the columns.

• Avoid some unnecessary parentheses in sum and product operators.

• Minor change in the equations subsection that removes several warnings.

• Several minor bug fixes.

GDXXRW

• Fixed a problem when writing a symbol with option merge or clear to a range with CDim=0 or
RDim=0.

GMSZIP/GMSUNZIP

• New versions of Info-ZIP's tools zip (version 3.1c02) and unzip (version 6.00). The executable
names have been prefixed with ”gms” for clear identification.

3.27.1.6 Object Oriented APIs

• New option GAMSOptions.ErrorLog: Maximal number of error message lines written to the log for
each error.

.NET

• New examples that demonstrate the use of the API in a graphical environment: TransportGUI,
CutstockGUI, FarmGUI.

• Distribute compiled GUI examples in directory <GAMSDir>\apifiles\GUIexamples on Windows.

• GAMSWorkspace.AddJobFromFile: Throw an exception if a given file does not exist.

http://infozip.sourceforge.net/
http://infozip.sourceforge.net/Zip.html
http://infozip.sourceforge.net/UnZip.html

316 Release Notes

Python

• The option GamsOptions. errorlog has been renamed to GamsOptions.errorlog in order to
indicate it as public.

3.27.1.7 Model Libraries

GAMS API Library

• PInterrupt.gms : Test GamsJob interrupt mechanism in object oriented Python API
(54)

• CSInterrupt.gms : Test GamsJob interrupt mechanism in object oriented .Net API
(55)

GAMS Model Library

• asyncloop.gms : Transportation Problem with async loop body execution (411)

• trnsindic.gms : Fixed Charge Transportation Problem with Indicator Constraints (412)

• timesteps.gms : Accessing previous (or next) time steps in an equation fast (413)

• Modified models:

– Make use of the new break statement to formulate the following models a little nicer: tsp1,
tsp4, cutstock, awktsp, sddp, sipres, allbases, qfilter

– tgridmix: The of logic of submission and collection has been reworked so that the scenario
sets do not have to be one dimensional and ordered (contributed by Tom Rutherford).

– asyncjobs: The logic for putting out the log line in time intervals was flawed and has been
corrected.

GAMS Test Library

• emp17.gms : Simple test of one optimizing agent (693)

• breakcont1.gms : Test break and continue statements (694)

• lindgl04.gms : Test non-convex quadartic program with Lindo(Global) (695)

• mcp11.gms : Test marginals for a scaled MCP problem (696)

• csv2gdx1.gms : Test csv2gdx on input containing spaces (697)

• gdxxrw7.gms : Test merge and clear option for special data layout (698)

• scale02.gms : Test that an MCP with scales is rejected when appropriate (699)

• emp18.gms : Test JAMS/EMP on implicit variable handling (700)

• emp19.gms : Test JAMS/EMP on implicit variable handling (701)

• emp20.gms : Test JAMS/EMP on implicit variable handling (702)

• emp21.gms : Test JAMS/EMP on implicit variable handling (703)

• emp22.gms : Test JAMS/EMP on implicit variable handling (704)

3.27 24.8 Distribution 317

• emp23.gms : Test JAMS/EMP on implicit variable handling (705)

• emp24.gms : Test JAMS/EMP on implicit variable handling (706)

• emp25.gms : Test JAMS/EMP on implicit variable handling (707)

• emp26.gms : Test JAMS/EMP on implicit variable handling (708)

• gurobi02.gms : GUROBI test suite - general constraints max,min,abs (709)

• gurobi03.gms : GUROBI test suite - general constraints and,or (710)

• slx01.gms : run tests for different solvelink values (711)

• gurobi04.gms : GUROBI test suite - multi objective (712)

3.27.2 24.8.2 Maintenance release (January 03, 2017)

3.27.2.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Evangelos Panos.

3.27.2.2 GAMS System

GAMS

• Change for command line parameter MultiPass: If it is set to 2, als errors from $gdxIn are ignored
now

• Fixed a bug which caused wrong results in some assignments which use symbols that were used
out-of-order in previous assignments.

3.27.2.3 Solvers

SCIP

• Added a workaround that allows for using CPLEX 12.7.0.0 as LP solver in SCIP again. For the
moment, the default is still to use SoPlex.

3.27.3 24.8.3 Minor release (January 28, 2017)

3.27.3.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz, Mohammad R. Hesamzadeh, and Katja Jensen.

3.27.3.2 GAMS System

GAMS

• Fixed potentially wrong values for model attribute etSolver for cases where the command line
option solveLink was set to 1, 2 or 5.

318 Release Notes

3.27.3.3 Solvers

BARON

• New libraries 17.1.2.

– More robust links with COIN-OR solvers and a better link with FICO Xpress.

– Some new RLT cuts are included in relaxations.

DE

• Create a capability error if DE is called to solve a model of type EMP without stochastic information.

DECIS

• Create a capability error if DECIS is called to solve a model of type EMP without stochastic
information.

Examiner2

• Fix behavior when the subsolver returns a model status like 19 Infeasible - No Solution. The
model status can be passed unchanged back to GAMS in such a case.

Kestrel

• Adjusted the default URL to https using port 3333.

• Fixed a bug that prevented to specify the protocol in the neos server parameter in an option file.
The complete format of the parameter is now protocol://host:port.

LINDO

• Create a capability error if LINDO is called to solve a model of type EMP without stochastic
information.

MOSEK

• New libraries 8.0.0.53.

SCIP

• Changed the default LP solver back to CPLEX, if available (see also 24.8.1 and 24.8.2 release
notes).

3.27 24.8 Distribution 319

3.27.3.4 Tools

GDXDUMP

• Fixed wrong output in case of nested quotes in symbol text.

3.27.3.5 Model Libraries

GAMS Model Library

• linearne: Minor fix to model formulation (contributed by Mohammad R. Hesamzadeh).

3.27.4 24.8.4 Minor release (April 10, 2017)

3.27.4.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz, Ivan Leung, Tara Rengarajan, and Sajjad Shafiei.

3.27.4.2 GAMS System

GAMS

• Fixed an issue which caused unnecessary memory consumption if many indexed symbols with explicit
labels were used.

3.27.4.3 Solvers

BARON

• New libraries 17.4.1.

– Bug fixes and an enhanced convexity detector.

CPLEX

• New libraries 12.7.1.0.

– Note that with this update the log generated by Cplex changed in a way that the Cplex options
set (either by the user or by GAMS defaults) are displayed. This is intentional and no sign of a
problem. So one could see something like this in the log when running GAMS/Cplex:

CPXPARAM_Simplex_Limits_Iterations 2000000000

CPXPARAM_TimeLimit 1000

CPXPARAM_Threads 1

320 Release Notes

DICOPT

• Fixed serious bug in feasibility pump implementation.

Examiner, Examiner2

• The list of checks to perform for solved models was set incorrectly when the trace option was used.

GUROBI

• New libraries Gurobi 7.0.2.

• Added options MultiObjMethod and MultiObjPre.

• Fixed a problem that lead to wrong error messages when setting the ObjNAbsTol and ObjNRelTol
parameters.

• Fixed a problem that reported back the wrong alternative solution.

JAMS

• Fix problem with bilevel models having variables owned by the leader but not appearing in the
leader objective or constraints.

Lindo/LindoGlobal

• New libraries 10.0.179.

MOSEK

• New libraries 8.0.0.60.

NLPEC

• Fix problem handling empty constraints (e.g. f.. eps∗x =G= 0) that appear in MPEC models.
Note that such models can easily be produced by JAMS/EMP.

3.27.4.4 Object Oriented APIs

Python

• Added support for Python 3.6.

• Fixed a bug in GamsJob.run() that prevented the underlying GAMS model from terminating, if
executables spawned by GAMS generate log output that is not captured.

3.27 24.8 Distribution 321

3.27.5 24.8.5 Maintenance release (May 10, 2017)

3.27.5.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Ana Carolina, Gary Goldstein, Erwin Kalvelagen, Amit Kanudia,
Toni Lastusilta, Antti Lehtila, Bruce McCarl, and Hans Kristian Ringkjob.

3.27.5.2 Platforms

• The AIX system is now build on AIX 7.1.

3.27.5.3 GAMS System

GAMS

• Fixed a bug which could cause a crash in particular assignments involving singleton sets or explicit
labels. This was introduced with GAMS 24.8.4.

• Fixed problems with the break statement:

– There was a potential crash if break was used in a ”sparse loop”, e.g., loop(j$x(j), ...).

– If break was used in a loop with more than one index, e.g., loop((i,j), ...), that loop was
treated as multiple loops for the break statement, one for each index. Now it is treated as just
one loop as intended.

– Fixed a problem where a loop was not correctly recognized as a loop if it runs over just one
fixed element, e.g., loop(i('i2'), ...).

3.27.5.4 Solvers

BARON

• Initialize BARON option Threads with value of GAMS option Threads, if the latter is at least 1.

CBC

• New libraries.

– Fixed a bug in presolve that caused problems with fixed discrete variables.

GUROBI

• Suboptimal solutions were not reported back to GAMS. This has been fixed.

Lindo/LindoGlobal

• New libraries 10.0.182.

322 Release Notes

MOSEK

• New libraries 8.0.0.69.

3.28 24.7 Distribution

3.28.1 24.7.1 Major release (March 14, 2016)

3.28.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz, Alex Dowling, Johannes Hedtrich, Austin Milt, and
Salvador Pineda.

3.28.1.2 GAMS System

GAMS

• Be more strict when the syntax $LOAD par=var.L is used: This creates an error now, if par is not
a parameter (if par was a variable before, the complete variable var was loaded as if the suffix was
omitted)

• GAMS Grid Facility (solveLink = 3 or 4)

– Fixed a bug for the model attribute objval: This could have been wrong when the objective
variable was scaled.

– Fixed a bug for the marginals: These could have been wrong when the objective variable was
scaled.

• Solving in parallel threads (solveLink = 6)

– Allow to solve scaled models (model attribute scaleOpt is set to 1) as well (this generated an
execution error before).

3.28.1.3 Solvers

BARON

• New libraries 16.3.4.

– Faster LP interfaces.

– Additional checks on solution reliability of LP and NLP subsolvers.

– New automatic differentiation routines.

– Improved handling of memory-intensive problems.

– Enhanced presolving for continuous and integer programs.

– New primal heuristic for integer programs.

– New facilities for solving constraint (non)linear systems (CNS).

3.28 24.7 Distribution 323

CBC

• New libraries.

ConvertD

• The GDX file created with option Jacobian contains now a set ANl that indicates the non-linear
Jacobian elements.

CPLEX

• For an unbounded model Cplex did not mark the unbounded variables correctly. This has been
fixed.

GUROBI

• Gurobi Optimization, Inc. has decided to end the current arrangement that allows us to offer
GAMS/Gurobi integrated licenses. GAMS will continue to offer the latest version of Gurobi but
users will need to get a Gurobi license from Gurobi Optimization, Inc. plus a GAMS/Gurobi link
license from GAMS or use the free OsiGurobi link. This includes evaluation and demo licenses.
For existing GAMS/Gurobi customers the following transition arrangements have been negotiated.
The GAMS/Gurobi integrated license will continue to work as long as the license stays under
maintenance. Academic GAMS/Gurobi customers will not be able to renew maintenance on their
GAMS/Gurobi integrated license, their license will be changed into a GAMS/Gurobi link license.
Academic users can get free Gurobi licenses from www.gurobi.com.
In the past, academic GAMS/Gurobi link or GAMS/OsiGurobi licenses did not require a Gurobi
license installed. This has changed with this release

• New libraries 6.5.1

• The option PreSOS1BigM and PreSOS2BigM were incorrectly classified as integer options. They
have been reclassified as real option.

IPOPTH

• Fixed a memory access issue in the linear solver HSL MA86 in case of very large models.

LocalSolver

• New libraries 6.0 (20160308).

MOSEK

• New libraries 7.1.0.49.

SBB

• Fixed a problem with option UserHeurCall. This option required that all discrete variables were
declared first in the model. This is not necessary anymore.

324 Release Notes

SCIP

• New libraries 3.2 (#f69c505).

– The timing mask for parameters constraints/.../presoltiming, presolving/.../timing,
and propagating/.../presoltiming changed from 2/4/8 for fast/medium/exhaustive to
4/8/16.

– Parameter constraints/SOS1/updateconflpresol has been renamed to constraints/SOS1/perfimplanalysis.

– Detailed Changelog.

SOPLEX

• New libraries 2.2 (#12d3858).

3.28.1.4 Tools

GAMS IDE

• Fixed a bug which caused an error when opening the FINLIB (Practical Financial Optimization
Models).

MODEL2TEX

• Fixed a bug regarding negative variables.

• Fixed a bug regarding subscripts of symbol names with underscores.

• Fixed a bug that prevented alternative names from being replaced in Ord constructs.

• New parameter -o (–OUTPUT) that allows to specify an alternative output file.

• Use UTF8 encoding.

• The columns of the symbol table have a fixed (equal) width.

• The original name of a symbol that is changed using the JSON style file is displayed in the symbol
table.

• The JSON style file is alphabetically sorted by keys.

3.28.1.5 Object Oriented APIs

• Fixed a bug with the property GAMSOptions.Defines (.NET), GAMSOptions.defines (Java), and
GamsOptions.defines (Python): When too many entries were added, all of them were ignored.

Python

• Fixed a memory leak in GamsDatabase.

https://www.scipopt.org/doc-3.2.1/html/CHANGELOG.php

3.28 24.7 Distribution 325

3.28.1.6 Model Libraries

GAMS Test Library

• scale01.gms : Test results of scaled model (692)

3.28.2 24.7.2 Minor release (July 07, 2016)

3.28.2.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Peter Alexander, Daniel Balistrieri, Paul Buckland, Denis Hess, Eden
Huang, Josef Kallrath, Sherman Robinson, Tom Rutherford, Jhih-Shyang Shih, and Loic Ventre.

3.28.2.2 Platforms

• With the next major release, the minimal glibc version requirement for the GAMS distribution on
Linux will be increased to 2.7.

3.28.2.3 GAMS System

GAMS

• Improved the performance for assignments from one large symbol to itself inside a loop, when only
one element gets changed, e.g.:

loop((j,cty,yrs,sim), ...; par(j,cty,'Total',yrs,sim) = sum(lnd, par(j,cty,lnd,yrs,sim));)

• Fixed a performance issue which caused very long model generation time for large scalar models.

3.28.2.4 Solvers

BARON

• New libraries 16.5.16.

– Added option WantDual to indicate whether BARON should make a final call to an NLP solver
to try to compute duals if an inexpensive method of calculating them failed.

• CompIIS option did not print IIS into listing file. This has been fixed.

CBC

• New libraries.

326 Release Notes

CPLEX

• New libraries 12.6.3.0.2.

• A memory leak in Cplex has been fixed that showed up in combination with the OO-API GAMSMod-
elInstance class.

• Fixed a problem with CplexD option FreeGamsModel.

• Fixed a problem with MipStart in combination with SemiInt or SemiCont variables with lower
bound 0.

GUROBI

• New libraries 6.5.2.

JAMS

• Fix handling of objectives in optimizing agents of equilibrium systems in cases where the objective
coefficient was not 1 or -1, and in the equation level returned for the objective row(s).

LocalSolver

• New libraries 6.0 (20160625).

Mosek

• New libraries 7.1.0.52.

OsiMosek

• Fixed handling of gap tolerances and node limit of MIP solves.

SBB

• Fixed a problem with models that have domain violations in the root NLP.

• Clearly identify text written to the listing file as output from the root solver.

SCIP

• New libraries 3.2 (#e99d344).

SoPlex

• New libraries 2.2 (#3c5e86f).

3.28 24.7 Distribution 327

PATH

• Fixed a problem with bogus report of empty rows/cols when benchmarking a model, i.e. solving
with iterlim=0.

XPRESS

• Maintenance update of Optimizer libraries for Windows, Linux, and Mac to 28.01.14.

• Several minor bug fixes that affect correctness and performance in some uncommon cases.

3.28.2.5 Tools

• Increase maximum available memory for GDXVIEWER, MDB2GMS, SQL2GMS, XLS2GMS,
GDX2HAR, and HAR2GDX to 3GB.

CSV2GDX

• Fixed a problem with labels with trailing blanks. Labels with trailing blanks potentially resulted in
a broken GDX file.

• Introduced the symbolic constant LastCol for the Values parameter.

• Report duplicate keys.

GDXXRW

• Fixed a problem with unnecessary memory consumption when writing with option clear or merge.

• Symbols and text were not written in sequence as instructed. This has been fixed.

• Added command line parameter ReCalc that by default prevents frequent recalculations in Excel
while writing to the spreadsheet.

3.28.2.6 Object Oriented APIs

• Fixed a bug which did not clear a pending Ctrl-C event, so that it might have been applied to a
following GAMSModelinstance.Solve by accident.

• Fixed a problem, that caused a crash instead of a GAMSException in some rare cases.

Python

• Fixed a minor bug regarding the names of GamsJob listing files.

3.28.2.7 Model Libraries

• Some URLs in various models have been updated.

328 Release Notes

3.28.3 24.7.3 Maintenance release (July 11, 2016)

3.28.3.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Josef Kallrath, and Toni Lastusilta.

3.28.3.2 Tools

CSV2GDX

• Fixed a bug which caused an error when reading sets from a csv file.

MODEL2TEX

• Fixed a bug regarding wrongly generated equations in the generated LaTeX file.

3.28.4 24.7.4 Minor release (September 19, 2016)

3.28.4.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Manuel Alvarez, Felix Färber, Ricardo Manuel Pinto de Lima, and
Tara Rengarajan.

3.28.4.2 GAMS System

GAMS

• Fixed a problem when using extrinsic function libraries using API version 1.

• Extend possible range of n in fact(n) at compile time. It was limited to 20 in the past. Now it can
be up to 166 (as in assignments at execution time).

Installer

• New default group name (GAMS xx.x (xx bit)) for the start menu on Windows 10.

3.28.4.3 Solvers

BARON

• New libraries 16.8.24.

– Small performance improvements and robustification of LP solver interfaces and bugfixes.

– The starting point is now utilized before invoking projection and other initialization strategies.

– The option DeltaTerm is now recognized again.

3.28 24.7 Distribution 329

Couenne

• New libraries.

CPLEXD

• The option MipStart accepts now values other than 0 and 1. The value describes the effort level
Cplex uses to determine a MipStart from the starting variable levels. The value 2 is interesting
because it just checks for feasibility of the MipStart. In this case the level of all variables, not only
the discrete ones, are passed on to Cplex.

DE

• DE crashed if multiple joint variables were present in one stage. This has been fixed.

Lindo/LindoGlobal

• New libraries 9.0.293.

Mosek

• New libraries 7.1.0.55.

SCIP

• New libraries 3.1 (#6b9196f).

SoPlex

• New libraries 2.2 (#074950a).

3.28.4.4 Tools

CSV2GDX

• Fixed a bug which lead to a rejection of unquoted labels with spaces. This bug was introduced in
24.7.2.

GDXXRW

• Fixed a bug which caused an error message when reading a sheet with a non-empty range that
contained no data.

330 Release Notes

3.28.4.5 Object Oriented APIs

• GAMSModelInstance.Instantiate: Skip creation of GDX file, which was unreachable from within
the APIs anyway.

Python

• Added support for Python 3.4 on Mac OS X.

• Fixed a problems with Exceptions in GamsWorkspace.

3.29 24.6 Distribution

3.29.1 24.6.1 Major release (January 18, 2016)

3.29.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz, Etienne Ayotte-Sauvé, Michael Ferris, Per Ivar
Helgesen, Erwin Kalvelagen, Martha Loewe, Geoff Moore, and Renger van Nieuwkoop.

3.29.1.2 Platforms

• The minimal supported Mac OS X version has been increased to 10.9 (Mavericks). COIN-OR solvers,
Gurobi, SCIP, and SoPlex now require a system with at least Mac OS X 10.9. The GAMS base
system, tools, and other solvers are still working on Mac OS X 10.7 and 10.8, but may stop working
in a future release without extra announcement.

• The installer for Wine on Linux has been dropped.

3.29.1.3 GAMS System

GAMS

• Increased controlled set nesting limit from 120 to 300.

• New option SHUFFLE.

• New option for command line parameter MultiPass:

– 0: standard compilation

– 1: check-out compilation

– 2: as 1 and in addition skip $call and ignore errors because of missing files with $include
(NEW)

• Allow to load variable and equation attributes into a parameter at compile time, e.g. $LOAD
par=var.L (par being a parameter and var a variable)

3.29 24.6 Distribution 331

• Solving in parallel threads (beta feature)

A new variant for the solveLink option and model attribute has been added. If solveLink is set
to 6 (compile time constant %solveLink.asyncThreads%), GAMS does not wait for the solver to
return and does not collect the result when a solve statement is executed. Instead, the model is
generated and then passed to the solver in a separate thread while GAMS continues the execution.
This way, multiple models can be solved in parallel and the results can be collected later.

This is similar to the Grid Facility (solveLink = %solveLink.asyncGrid%=3) with the difference,
that the solver does not operate in its own process space but in a separate thread, which allows
efficient in-memory communication between GAMS and the solver (like it is done with solveLink

= %solveLink.loadLibrary%=5). After the solve statement, one can store a handle of the model
instance (using the model attribute mymodel.handle) and use the same functions that are used for
the Grid Facility to collect the solution and deal with the model instance: HandleCollect(handle),
HandleStatus(handle), and HandleDelete(handle).

The new function ReadyCollect(handleParameter [, maxWait]) can be used to wait until a
model is ready to be collected. It can be used for both solveLink = %solveLink.asyncThreads%

and solveLink = %solveLink.asyncGrid%. The arguments and return codes are:

– Arguments

∗ handleParameter: parameter holding handles of model instances to wait for

∗ maxWait: maximum time to wait (+INF if omitted)

– Return Codes

∗ 0: (one of) the requested job(s) is ready

∗ 1: no active job to wait for

∗ 2: no handle provided

∗ 3: invalid handle

∗ 4: user specified time-out when using a solveLink = %solveLink.asyncThreads% handle

∗ 5: user specified time-out when using a solveLink = %solveLink.asyncGrid% handle

∗ 8: unknown error (should not happen)

The new option threadsAsync (available on the command line and with the option statement) sets
the maximum number of threads that should be used for the asynchronous solves. If a negative
number is set, this specifies how many of the available processors on the host machine should not be
used. The default setting is -1.

Currently, the following solvers can be used with solveLink = %solveLink.asyncThreads%:

– CONOPT

– CPLEXD

– GUROBI

– MOSEK

– OSICPLEX

– OSIGUROBI

– SCIP

If another solver is selected, solveLink = %solveLink.asyncGrid% will be used instead (which is
noted in the log).

An example of how this new feature can be used, can be seen in the GAMS Model Library model
tgridmix.

Stochastic Programming with EMP

• Fixed a bug which caused wrong expected values for parametric distribution using the RandVar

keyword.

332 Release Notes

3.29.1.4 Solvers

ANTIGONE

• New libraries.

BARON

• The handling of branching priorities in a GAMS/BARON options file has changed. Priorities should
now always be given in the GAMS convention.

Convert

• GAMS branching priorities are now converted to BARON branching priorities when writing a
BARON input file.

CPLEX

• New libraries 12.6.3.

• Cplex and CplexD now report the deterministic time spend (in ticks not in seconds) in the
model attribute ETAlg.

• IBM's Cplex cloud offering ”DOcloud” can be accessed via the ”Kestrel solver”.

DICOPT

• New option usexinit instructs DICOPT to start the NLP sub-solves from the user supplied input
point.

GUROBI

• New libraries 6.5.

• New option PreMIQCPForm that determines the format of the presolved version of an MIQCP
model.

• New option WorkerPort specifies a non-default port number for the distributed worker machines.

• New option VarHint. The variable hints communicated through level and tryint will affect the
heuristics that Gurobi uses to find feasible solutions, and the branching decisions that Gurobi makes
to explore the MIP search tree.

• GAMS/Gurobi supports solving models in the Gurobi Instant Cloud.

• Fixed a problem with option IIS for models with SOS variables.

IPOPT

• MKL Pardiso is now available as linear solver on Mac OS X, too.

3.29 24.6 Distribution 333

KESTREL

• The Kestrel client provides experimental access to ”IBM's DOcloud” offering.

PATH

• Minor fix for zero tolerance in the basis reset routine of the Lemke method.

Sulum

• Sulum will be dropped from the distribution with GAMS 24.8.

XPRESS

• Updated Optimizer libraries for Windows and Linux: 28.01.05 → 28.01.10.

• Several minor bug fixes that affect correctness and performance in some corner cases.

3.29.1.5 Tools

ASK

• New feature SelectDirectory.

GAMS IDE

• Sorting by symbol name is no longer case sensitive.

• GDX viewer can now show numbers with full precision.

• The option editor no longer shows the dot options.

• Fixed a bug where the cursor was not shown after double-clicking on a red line.

GDX2SQLITE

• New version 0.7.

– Added option varchar to export character columns as VARCHAR(255) instead of TEXT.

– Better names of columns when option small is used.

– Adding timing info.

GDXMERGE

• Protect against very large symbols causing memory errors.

• Added option EXCLUDE to exclude symbols from being merged.

334 Release Notes

GDXXRW

• An empty range is no longer an error.

SQL2GMS

• In the old version double quotes were removed when reading a command file. In this version we
keep double quotes to be able to escape SQL names (table names, column names). E.g. we now can
handle non-standard names by double quoting them in a query. Depending on the database you can
do:

q=select "Some COLUMN" from "This Table"

Note that some databases (such as SQL Server) use [] for this goal.

In the special case where you write:

q="select c from t"

the surrounding double quotes are removed before passing the query on to the database.

MODEL2TEX

• If an identifier is changed using the specifications in the JSON style file, underscores are no longer
changed from ” ” to ”\ ”. This makes it possible to use subscripts when replacing an identifier.

3.29.1.6 Object Oriented APIs

Java

• Fixed a bug in GAMSModelInstance.copyModelInstance method when duplicating scratch directory.

Python

• New example transport8a.py.

3.29.1.7 Model Libraries

GAMS EMP Library

• nbcontindep: use sampling for continuous distributions if another solver than Lindo is selected

• nbcontjoint: use sampling for continuous distributions if another solver than Lindo is selected

• nbsimple: use discrete distribution

GAMS Test Library

• shuffle1.gms : Test for option shuffle (690)

• sl601.gms : Check correct behavior when using solveLink=6 (691)

3.30 24.5 Distribution 335

3.30 24.5 Distribution

3.30.1 24.5.1 Major release (September 23, 2015)

3.30.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz, Guillaume Erbs, Michael Ferris, Mahbube Habibian,
Josef Kallrath, Jean Mercenier, Stan Peter, Ingmar Schlecht, and Mark Thissen.

3.30.1.2 Platforms

• Support for Windows XP has been dropped completely with this release (as announced).

3.30.1.3 GAMS System

GAMS

• New model attributes

– maxInfes: Maximum of infeasibilities

– meanInfes: Arithmetic mean of infeasibilities

• New option solver. This simplifies the selection of the (default) solver for multiple model types.

– The command line option solver=abc initializes the default solver for the model types solver
abc is capable of to abc. This initialization is done before the default solvers of individual model
types are set via command line options. So a command line with lp=conopt solver=bdmlp

will first set BDMLP as the default solver for model types LP, RMIP, and MIP (these are the
model types BDMLP can handle) and then reset Conopt as the default solver for LP. The
order of these parameters on the command line has no impact (i.e. lp=conopt solver=bdmlp

behaves identically to solver=bdmlp lp=conopt). If multiple occurrences of option solver

appear, the last one sets the option as it is with other options, including LP, MIP, ...

– The solver for multiple model types can be set via the Option solver=abc; in the GAMS
model source code. This sets the solver for model types abc can handle to abc. With the
option solver=abc; the order among other solver setting options is significant. For example,
option lp=conopt, solver=bdmlp; will first set the solver for LP to Conopt and in the next
step to BDMLP because BDMLP is capable of handling model type LP. Setting solver twice
can also make sense: option solver=conopt, solver=cbc; will result into setting the solver
for model types CNS, DNLP, NLP, QCP, RMIQCP, and RMINLP to Conopt and the solver
for model types LP, RMIP, and MIP to CBC.

• When using $LOADDC the reporting of domain errors has been improved.

• This release features several improvements of the execution system. The following lists some
(extreme) examples:

– Improved performance when indices of accessed symbol are in ”wrong” order, e.g.:

$if not set size $set size 10000

set v / v1*v%size% /

e / e1*e%size% /;

alias(v,w);

set evw(e,v,w) /#e:#v:#w/

vw(v,w);

vw(v,w) = sum(e, evw(e,v,w));

336 Release Notes

The final assignment can be done in less than 1% of the time required by GAMS 24.4.

– Improved performance when assigning to non-empty symbols when the assignment is driven by
their domain, e.g.:

$if not set size $set size 5000

set i / i1*i%size% /; alias (i,j);

parameter a(i,j), b(i,j);

a(i,j)$(uniform(0,1)<0.95) = 1;

b(i,j) = not a(i,j);

a(i,j) = b(i,j);

The final assignment can be done in just ∼5% of the time required by GAMS 24.4.

– Improved performance when executing certain combinations of mappings, e.g.:

$if not set size1 $set size1 8000

$if not set size2 $set size2 24

set hi / 1*%size1% /

ti / 1*%size2% /

h / h1*h%size1% /

t / t1*t%size2% /

hmapx(h,hi) / #h:#hi /

tmapx(t,ti) / #t:#ti /;

parameter xi(hi,ti), x1(h,t);

xi(hi,ti) = uniform(0,1);

x1(h,t) = sum((hmapx(h,hi),tmapx(t,ti)), xi(hi,ti));

The final assignment can be done in just ∼2% of the time required by GAMS 24.4.

– Improved performance when ”searching” a lot in a large symbol, e.g.:

$if not set size1 $set size1 50

$if not set size2 $set size2 200000

$if not set size3 $set size3 150000

set f /f1*f%size1%/

j /j1*j%size2%/

l /l1*l%size3%/

flmap(f,l);

flmap(f,l)=uniform(0,1)<0.25;

parameter jlpar(j,l) /#j:#l 10/

fjpar(f,j);

fjpar(f,j) = sum(l$flmap(f,l), jlpar(j,l));

The final assignment can be done in just ∼1% of the time required by GAMS 24.4.

Documentation

• The complete GAMS technical documentation (release and installation notes, user's guides, solver
and tools manuals, API reference manuals) is now available in HTML format with a unified table of
contents. The documentation is available in the following forms:

– The online GAMS documentation provides search and keyword indexing functionalities in
addition to navigating the GAMS documentation.

– The offline documentation allows access without a network connection:

∗ The main navigation page can be found at [GAMS system directory]/docs/index.html

(not linked from the GAMS IDE).

∗ For Windows, additionally a Microsoft Compiled HTML Help file is available at [GAMS

system directory]/docs/gams.chm and linked from the GAMS IDE Menu: Help ->
GAMS Documentation.

• The following documents are still available in PDF format: GAMS User's guide, McCarl Expanded
GAMS User's guide, all solver manuals, and GAMS GDX API.

https://www.gams.com/latest/docs/keyword.html

3.30 24.5 Distribution 337

Installer

• New way to install GAMS on Mac OS X using a DMG file.

3.30.1.4 Solvers

ANTIGONE

• Added option conopt optfile to set name of options file to be used for CONOPT calls in ANTIGONE.

BARON

• Now also available for Mac OS X.

• New libraries 15.9.22.

• New NLP solver for local search: FilterSD.

• Options:

– New option Threads: Number of cores used for solution of MIP subproblems.

– New option IISOrder: Order in which constraints are considered in the search for an IIS.

– Options ConTol and IntTol removed. Tolerances are now set by AbsConFeasTol,
RelConFeasTol, AbsIntFeasTol, and RelIntFeasTol.

– Options MultMSize, MultRel, NLPDoLin, MipGap, MipNodes, MipRel, NoutIterMip, BilRel,
Cvxbt, CvxInitOA, CvxRel, MipCuts, and RLTRel: Algorithmic features that have been param-
eterized are now handle in an automatic way.

• The time limit is enforced based on CPU time for single-threaded jobs and based on wall-clock time
for multi-threaded jobs.

• Simplified the screen output (eliminated some details and simplified time to a real number in
seconds).

• Updated CBC to 2.9.5.

• Updated Ipopt to 3.12.3.

CBC

• New libraries 2.9.

– Introduced specialized branching methods for dealing with ”big Ms”.

– Introduction of conflict cuts (off by default, enable with option conflictcuts).

– Introduced new methods for dealing with symmetry.

Conopt

• New libraries 3.17A.

– Corrected problem with options Ls2ndi and Lmusdf.

– Systems errors related to very tight memory (984) and the inversion routine (2027) have been
removed.

– Three new options have been added to allow the modeler to see the order of the pre-triangular
and post-triangular part of the model and the definitional equations:

∗ PRPRET: Flag for printing the pre-triangular part of the model.

∗ PRDEF: Flag for printing the defined variables and their defining constraints.

∗ PRPOST: Flag for printing the post-triangular part of the model.

338 Release Notes

Couenne

• New libraries 0.5 (major update).

• Better handling of function signpower(x,k) for positive integer k≤10.

• The default values for the following options have changed:

– cont var priority from 2000 to 99.

– int var priority from 1000 to 98.

– feas pump milpmethod from -1 to 0.

– feas pump poolcomp from 0 to 4.

– output level from 0 to 4.

CPLEX

• New option FreeGamsModel. This option preserves memory by dumping the GAMS model instance
representation temporarily to disk. This option is available in CplexD only.

GUROBI

• New libraries 6.0.5 (technical release).

• New option FreeGamsModel. This option preserves memory by dumping the GAMS model instance
representation temporarily to disk.

GUSS/ScenarioSolver

• The set of GUSS model attributes (Set ma "GUSS Model Attributes" / System.GUSSModelAttributes

/;) has changed:

– The attribute NumNOpt has been removed.

– The attributes MaxInfes and MeanInfes have been added.

IPOPT

• New libraries 3.12 (minor changes).

JAMS

• SubSolver option fixed: it was sometimes ignored.

Kestrel

• The option file can be omitted. In this case, the Kestrel call is done with default settings.

3.30 24.5 Distribution 339

Lindo/LindoGlobal

• Dropped Lindo/LindoGlobal libraries for Intel Solaris as announced previously.

• New libraries 9.0.225.

LocalSolver

• New libraries 5.5.

– Improved accuracy and performance on numerical or mixed-variable optimization problems.

MINOS

• Adjusted default upper bound on the superbasics limit from 500 to 5000 and consider the number
of nonlinear constraint variables, not just the nonlinear objective variables, when computing the
superbasics limit: memory is plentiful and cheap.

• Fixed case of memory corruption that resulted when using an initial point containing very many
superbasic variables. If the initial point contains more than 5000 superbasics, limit the Hessian
dimension to 5000 even though the superbasic limit is larger.

MOSEK

• New libraries 7.1.0.33.

• The GAMS option iterlim now sets the iteration limit for both simplex and interior point algorithms.

• More MOSEK options are now available in GAMS/Mosek:

– MSK IPAR MIO CUT CG: Controls whether CG (Chvatal-Gomory) cuts should be generated.

– MSK IPAR MIO CUT CMIR: Controls whether mixed integer rounding cuts should be gener-
ated.

– MSK IPAR MIO PROBING LEVEL: Controls the amount of probing employed by the mixed-
integer optimizer in presolve.

– MSK IPAR MIO RINS MAX NODES: Controls the maximum number of nodes allowed in
each call to the RINS heuristic.

– MSK DPAR MIO TOL MAX CUT FRAC RHS: Maximum value of fractional part of right
hand side to generate CMIR and CG cuts for.

– MSK DPAR MIO TOL MIN CUT FRAC RHS: Minimum value of fractional part of right
hand side to generate CMIR and CG cuts for.

– MSK DPAR MIO TOL REL DUAL BOUND IMPROVEMENT: If the relative improvement
of the dual bound is smaller than this value, the solver will terminate the root cut generation.

OS

• Now a hidden solver. Will be dropped from the distribution at some time (without further notice).

340 Release Notes

PATH

• New libraries 4.07.03.

• Adjusted to use wall-clock time on all platforms.

• Time limit checked more frequently, e.g. at each pivot.

• The presolve has been extended to find more reductions.

• Minor bug fixes.

SCIP

• New libraries 3.2 #c9c4375 (major update):

– New presolvers ”tworowbnd”, ”dualagg”, ”implfree”, ”redvub”, and ”stuffing”, and improved
presolve for ranged- and equality-type linear constraints.

– Presolving levels FAST, MEDIUM, and EXHAUSTIVE are now used to better coordinate the
various presolvers.

– Generalized upgrade from (SOC-representable) quadratic constraints to SOC constraints.

– New primal heuristics ”distribution diving”, ”indicator”, and ”bound”, improved clique and
variable bound heuristics, and adjusted diving heuristics to solve fewer LPs.

– New branching rules ”distribution”, ”multaggr”, and a new rule for SOS1 constraints.

– New reliability notions and improved treatment of nonlinearities in hybrid reliability pseudo
cost branching.

– New separator ”eccuts” for generating edge-concave cuts for quadratic constraints and improved
separation for convex quadratic constraints.

– Decreased total memory usage by using more buffer data structures.

– Improved propagation and separation for SOS of type 1 by using information from a conflict
graph.

– See also the full release notes, the change log, and the technical report.

• The following options were removed or replaced:

– constraints/.../delaypresol and constraints/.../timingmask replaced by constraints/.../presoltiming

and constraints/.../proptiming.

– presolving/domcol/singcolstuffing replaced by presolving/stuffing/....

– presolving/.../delay replaced by presolving/.../timing.

– propagating/.../presoldelay replaced by propagating/.../presoltiming.

– propagating/obbt/maxlookahead removed.

• For the following options, the default value changed:

– constraints/SOS1/sepafreq from 0 to 10.

– ”heuristics/clique/minfixingrate” from 0.5 to 0.25.

– ”heuristics/vbounds/minfixingrate” from 0.5 to 0.25.

– heuristics/actconsdiving/maxdiveavgquotnosol from 0 to 1.

– heuristics/actconsdiving/maxdiveubquotnosol from 0.1 to 1.

– heuristics/dins/nwaitingnodes from 0 to 200.

– lp/rowrepswitch from -1 to 1.2.

– presolving/abortfac from 0.0001 to 0.001.

– presolving/restartfac from 0.05 to 0.025.

– presolving/immrestartfac from 0.2 to 0.1.

– presolving/dualinfer/priority from 20010000 to -200.

– propagating/obbt/itlimitfactor from 5 to 10.

https://www.scipopt.org/doc-3.2.0/html/RELEASENOTES.php
https://www.scipopt.org/doc-3.2.0/html/CHANGELOG.php
http://nbn-resolving.de/urn:nbn:de:0297-zib-57675

3.30 24.5 Distribution 341

SoPlex

• New libraries 2.2.0 (major update).

SULUM

• New libraries 4.3.892.

– Several bug fixes in both the MIP solver and the LP solver.

– Improved numeric stability, degeneracy handling, and perturbation scheme in LP optimizer.

– Added a new combined pricing scheme to the dual simplex optimizer.

– Improved presolve and restart in MIP optimizer.

XPRESS

• New libraries for XPRESS v7.9: Optimizer 28.01.05.

– Significantly improved linear algebra routines for the simplex solvers improving efficiency of a
wide range of problems.

– Improvement heuristics called more often.

– The MIP log now provides information which heuristic finds a solution.

– Improved linear dependency checker for large problems.

– Improved scaling, including scaling of big-M type rows and of the Curtis-Reid scaling option.

– Improved inference-learning from infeasible subproblem during the MIP search.

– Improved presolver for quadratic instances.

– Improved handling of Special Ordered Sets.

– Improved propagation of conflict cuts.

3.30.1.5 Tools

GAMS IDE

• In the model library browser the IDE may provide hints about the content of the column when
hovering over the headers.

• Option to specify file extensions for files that will be reloaded without a confirmation dialog.

GDXDIFF

• When renaming the temporary file to gdxdiff.gdx fails, issue a ViewClose command in case the
file is open in the GAMSIDE and try to rename again.

• If no difference was found, issue a message in the log indicating this.

• Add a set with two elements with explanatory text of the two files compared.

GDXMERGE

• When a filename cannot be used as a UEL, use a generated name instead.

342 Release Notes

GDXXRW

• New options IgnoreRows and IgnoreColumns to ignore a set of rows or columns for a sym-
bol. Rows can be specified as IgnoreRows=1,4:5 and columns IgnoreColumns=A,D:F or
IgnoreColumns=1,4:6.

MODEL2TEX

• The beta version of this tool allows the automatic generation of LaTeX code that documents a given
GAMS model.

MPSGE

• The documentation of MPSGE has moved again. It can now be found in the User's Guide.

3.30.1.6 Object Oriented APIs

• New examples SpecialValues and Clad (Java: specialvalues/SpecialValues.java,
clad/Clad.java; Python: special values.py, clad.py).

• New functions to retrieve models from the GAMS API Library and the Nonlinear Optimization
Applications Library:

– .NET: GAMSWorkspace.ApiLib and GAMSWorkspace.NoaLib.

– Java: GAMSWorkspace.addJobFromApiLib and GAMSWorkspace.addJobFromNoaLib.

– Python: GamsWorkspace.apilib and GamsWorkspace.noalib.

Python

• Added support for Python 3.4 (Windows and Linux only). The examples have been changed to be
compatible with all supported Python versions.

3.30.1.7 Model Libraries

NOALIB - Nonlinear Optimization Applications Using the GAMS Technology

• This new library by Neculai Andrei has been added to the GAMS system. This is a collec-
tion of the models based on the book Nonlinear Optimization Applications Using the GAMS

Technology by Neculai Andrei. The library contains a wide spectrum of nonlinear optimization ap-
plications expressed in GAMS. The book and library emphasize the local solutions of the large-scale,
complex, continuous nonlinear optimization applications, and the abundant examples in GAMS are
highlighted by those involving ODEs, PDEs, and optimal control. The collection of these examples
will be useful for software developers and testers.

• You can retrieve the individual models through the IDE model library browser or via the command
line utility noalib.

https://www.amazon.com/Nonlinear-Optimization-Applications-Technology-Springer/dp/1461467969
https://www.amazon.com/Nonlinear-Optimization-Applications-Technology-Springer/dp/1461467969

3.30 24.5 Distribution 343

GAMS API Library

• CSSpecialValues.gms : Test handling of Special Values in object oriented C# API (47)

• PSpecialValues.gms : Test handling of Special Values in object oriented Python API
(48)

• JSpecialValues.gms : Test handling of Special Values in object oriented Java API (49)

• CSNUnit.gms : Compiles and runs NUnit tests for object oriented C# API (50)

• CSClad.gms : Test changing solver options while running using the interrupt method
(51)

• PClad.gms : Test changing solver options while running using the interrupt method
(52)

• JClad.gms : Test changing solver options while running using the interrupt method
(53)

GAMS Data Library

• invert1: Pass gams.sysdir% to R script to make linkage between GAMS and R explicit.

• gdxmrw tr3: Canonical form LP created in Matlab and solved via gams() Mex-function.

• gdxmrw tr4: Better example of gams() usage.

• gdxmrw tr5: Better example of gams() usage.

GAMS EMP Library

• transecs: Fix formulation as embedded complementarity system and provide equivalent alternative
as single-agent equilibrium system.

• farmnbd.gms : The Farmer's Problem - Stochastic with NBD (100)

GAMS Model Library

• In the IDE the GAMS Model Library browser has now a Lic column indicating the license requirement
of a model. The letters D and G indicate that the model does not require a license. Models with
G can even be solved by a global solver without a license (the demo limit for global solvers is 10
variables and 10 equations). A letter L indicates that a license is required.

– tgridmix: Fix the logic for sleeping. Only do that if no more jobs to be scheduled or all cores
are busy.

344 Release Notes

GAMS Test Library

• asynntrp: Make this model work under Unix that have the pstree utility available.

• call6.gms : Call GAMS in a folder containing a % (674)

• cmexrc01.gms : Trigger unexpected cmexRC error (675)

• rs02.gms : Solving Three-dimensional Noughts and Crosses using Cplex and Gurobi
distributed MIP (676)

• single04.gms : Check handling of singleton sets assigned and referenced in a loop (677)

• model2tex1.gms : Test that model2tex produces a tex file (678)

• exmcp6.gms : External Equation - Example MCP 6 (679)

• scensol6.gms : Test execute loadhandle for GUSS/GRID (680)

• idxperm1.gms : Check correct behavior when permuting indices in model generation
(684)

• idxperm2.gms : Check correct behavior when permuting indices in loop etc (685)

3.30.2 24.5.2 Maintenance release (September 29, 2015)

3.30.2.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Kevin Doran and Renger van Nieuwkoop.

3.30.2.2 GAMS System

GAMS

• Fixed a bug which caused a crash for certain assignments, in particular it had to be an assignment
to a symbol that was also referenced on the RHS, with permuted indices and we actually set some
of the records to zero which were non-zero before.

3.30.2.3 Object Oriented APIs

.NET

• Fixed a bug that lead to a crash on Linux when the GAMS system directory is a symbolic link.
(This is for Mono only.)

Python

• Fixed a bug that lead to a crash on Linux when the GAMS system directory is a symbolic link.
The property GamsWorkspace.system directory now always returns the canonical path with all
symbolic links resolved.

3.30 24.5 Distribution 345

3.30.2.4 Model Libraries

GAMS Test Library

• idxperm3.gms : Check correct behavior when permuting indices of symbol used on
LHS and RHS (686)

3.30.3 24.5.3 Maintenance release (October 01, 2015)

3.30.3.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz.

3.30.3.2 GAMS System

GAMS

• Fixed a bug which caused wrong results in some cases of out-of-order assignments

3.30.4 24.5.4 Maintenance release (October 15, 2015)

3.30.4.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Per Ivar Helgesen and Jan Imhof.

3.30.4.2 GAMS System

GAMS

• Fixed a bug which caused wrong results in some cases of out-of-order assignments, in particular it
had to be an assignment using the same controlling set more than once in one symbol, e.g. p(i,j,i).

• Fixed a bug when handling suffixes (e.g. .val) of Singleton Sets in Equations.

3.30.4.3 Object Oriented APIs

.NET

• Fixed a bug with the property GAMSOptions.IDir.

346 Release Notes

3.30.4.4 Model Libraries

GAMS Test Library

• single05.gms : Check correctness of set attributes for singleton sets (687)

• idxperm4.gms : Check correct behavior when permuting indices of symbol using same
controlling set multiple times (688)

3.30.5 24.5.5 Maintenance release (November 25, 2015)

3.30.5.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Albrecht, Stefan Kemnitz, Martha Loewe, Thomas Maindl,
Bruce McCarl, and Andres Ramos.

3.30.5.2 GAMS System

GAMS

• GAMS now always reports the upper bound that is sent to the solver in the column listing and
solution report. Hence, with IntVarUp=1 GAMS prints the value of 100 for integer and semiint
variables that are at default bound value +INF.

• Fixed a bug which could cause a crash when referencing attributes of equations (e.g. marginals)
after a model was solved with a non-default solveLink setting and there was no solution returned.

Stochastic Programming with EMP

• Fixed a bug which caused wrong sample sizes if the sample keyword was used more than once and
with different sample sizes.

3.30.5.3 Solvers

Cbc

• New libraries.

CplexD

• Fixed a problem with the computeserver option. The value for the computeserver option is limited
to 255 characters. In order to specify a longer list of workers, one can now use multiple lines with
the computeserver option.

Ipopt

• New libraries.

3.31 24.4 Distribution 347

LocalSolver

• New libraries 5.5 (20151028).

Mosek

• New libraries 7.1.0.41.

SCIP

• New libraries 3.2 (#e9a5ca7).

– Removed options constraints/SOS1/bipbranch, constraints/SOS1/neighbranch, and
constraints/SOS1/sos1branch.

SoPlex

• New libraries 2.2 (#f17b9e7).

3.30.5.4 Tools

put toexcel, put tohtml

• Fixed a problem with put toexcel and put tohtml.

3.30.6 24.5.6 Maintenance release (November 27, 2015)

3.30.6.1 Solvers

COUENNE

• New libraries.

IPOPT, BONMIN, SCIP

• Fixed issue that Ipopt and Bonmin always read ipopt.opt, despite of the optfile setting in GAMS.

3.31 24.4 Distribution

3.31.1 24.4.1 Major release (December 20, 2014)

3.31.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Erwin Kalvelagen, Jeff Linderoth, and Erkka Rinne.

348 Release Notes

3.31.1.2 GAMS System

GAMS

• Fixed a bug causing a potential crash when solving an EMP model having an open file handle
without an external file name at the same time.

• The execMode setting is not ignored by put utility anymore.

• Added gbin/md5sum.exe to Windows distribution. This utility allows users to verify the file integrity
of newly downloaded GAMS installation files.

• The gbin new directory will be removed with the next distribution.

Installer

• Windows installer removes the GAMS entry in the current user hive of the registry, if GAMS is
installed for all users. Previously, the hive for the current user remained unchanged in this situation.

Extrinsic Function libraries

• The new extrinsic function library parcclib was added to the system. This library demonstrates
how to access the GAMS parameter file and use it's information through the GAMS Option Object.
Further information can be found in the GAMS User's Guide, Appendix J.

• Allow up to 20 arguments (used to be 10).

• Support for extrinsic function libraries that do not provide gradient and/or Hessian values. GAMS
uses finite differences (same method as for .gradn and .hessn) to approximate the derivatives, even
inside a solver. The example function library trilib now implements function Sine without any
derivatives and leaves their calculation to GAMS.

• New GAMS options have been introduced to parameterize the numerical derivative calculations.
While these are most important for extrinsic functions, they also apply to the .gradn/.hessn
calculations of intrinsic functions.

– FDDelta: step size in the numeric gradient and Hessian calculation. For single argument
functions, GAMS evaluates the function at f(x-d) and f(x+d) for the numerical gradient. If
function values are used for the numerical Hessian, GAMS evaluates at f(x-2d), f(x), and
f(x+2d). For multi argument functions, the same is done for the components of the input
argument vector. The default for FDDelta is 1e-5. This option can be set from the command
line, in an option statement, and as a model attribute.

– Note: In previous releases it was possible to set the step size for .gradn/.hessn using the
option Real1. This does not work anymore.

– FDOpt: The option value packs two option in the different digits: ij. The i digit indicates if
scaling of the step size (FDDelta) by the value of the input argument should be turned off.
If i=0 (scaling on) the following step size is used: max(1,|x|)∗FDDelta. The j digit is mostly
for testing, but has one setting that might be relevant when the extrinsic function provides
gradient but no Hessian values. The numerical derivatives routine in this case uses the gradient
calculation from the extrinsic function to approximate the Hessian. If the gradient is expensive
to calculate compared to a function evaluation, it could be beneficial to use multiple function
values to approximate the Hessian. In this case set the j digit to 1. Here are all possible values
for this option:

∗ 0: All derivatives analytically if available, for numerical Hessian use gradient values, scale
delta

3.31 24.4 Distribution 349

∗ 1: All derivatives analytically if available, for numerical Hessian use function values, scale
delta

∗ 2: Gradient analytically, force Hessian numerically using gradient values, scale delta (testing
only)

∗ 3: Gradient analytically, force Hessian numerically using function values, scale delta (testing
only)

∗ 4: Force gradient and Hessian numerically, scale delta (testing only)

∗ 10: Same as 0, but no scale of delta

∗ 11: Same as 1, but no scale of delta

∗ 12: Same as 2, but no scale of delta (testing only)

∗ 13: Same as 3, but no scale of delta (testing only)

∗ 14: Same as 4, but no scale of delta (testing only)

– Note: In previous releases it was possible to deactivate the scaling for .gradn/.hessn using
the option Integer1. This does not work anymore.

• Renamed and better documented the EXTRFUNC ERROR enum to EXTRFUNC EVALERROR in the C
header extrfunc.h. The old values are deprecated and will be removed in a future release.

Documentation

• The manuals of all solver and several tools are now available in HTML format. A PDF that contains
all solver manuals is still available (docs/solvers/allsolvers.pdf).

3.31.1.3 Solvers

AlphaECP

• Alpha-ECP v2.10.06.

– Added support for solver trace file, i.e. new option solvetrace.

ANTIGONE, GloMIQO

• Now also available for Mac OS X.

BARON

• New libraries 14.4.0.

– Added reliability branching for integer variables.

– Bug fixes in CBC interface and IIS module.

– Improved performance of problem reading and reformulation.

– Updated Ipopt to version 3.11.9.

BENCH

• Removed option cumulative. This option makes no sense anymore since all solvers are spawned
asynchronously and all get the same limits.

350 Release Notes

CBC

• Fixed a race-condition in log output when using multiple threads.

• New libraries.

Couenne

• New libraries.

CONOPT

• New libraries 3.16D.

– Tolerance adjustments that make sense if NaN appears in intermediate calculations.

CPLEX

• Don't rerun primal simplex in cases where there is already an infeasibility status.

• New libraries 12.6.1.

• New parameters:

– qtolin controls the linearization of the quadratic terms in the objective function of a QP or
MIQP model

– localimplied controls the generation of locally valid implied bound cuts

DICOPT

• Added support for =N= rows.

GUROBI

• New libraries 6.0.0.

• Fixed problem in tuning. Previous version did not write out link options in the tuned option file.

• Gurobi 6.0 supports a distributed MIP algorithm (option DistributedMIPJobs). This requires the
Gurobi Compute Server to be licensed.

• Explicit lazy constraint: Users can use the ”dot” option .lazy to mark constraints as lazy. Possible
values are 0, 1, 2, and 3. See option .lazy for details.

• Option ConcurrentMIPJobs has been renamed to ConcurrentJobs. The distributed concurrent
optimizer now also handles LP models.

• Option ScaleFlag allows now value 2 which enables aggressive scaling.

• New parameters:

– DistributedMIPJobs controls the number of workers of the distributed MIP algorithm

– .lazy marks constraints as lazy constraints

– LazyConstraints controls the use of lazy constraints

3.31 24.4 Distribution 351

Knitro

• New libraries 9.1.0.

– Overall speed and robustness improvements on NLP and MINLP models.

– New algorithm choice introduced: active-set SQP.

– Optional barrier solution refinement procedure: option bar refinement = NO/yes.

– Deterministic parallel multi-start: option ms deterministic = no/YES.

• Dropped Knitro for Solaris on Intel CPUs (as announced).

LocalSolver

• Added the hybrid mathematical programming solver LocalSolver 5.0 (Beta) from Innovation 24
to the GAMS solvers portfolio.

• LocalSolver can be applied to large-scale, mixed-variable, non-convex optimization problems (GAMS
model types MIP, (MI)QCP, (MI/D)NLP). It combines local search techniques, constraint propa-
gation and inference techniques, linear and mixed-integer programming techniques, and nonlinear
programming techniques in a unique hybrid neighborhood search approach to find high-quality
feasible solutions. Hence, LocalSolver offers an alternative for problems where conventional branch-
and-bound and/or outer-approximation based solution methods do not provide satisfactory results.

• It is suggested to set the GAMS options for iteration or timelimit (iterlim, reslim) appropriately to
limit the effort that LocalSolver spends on the problem.

Lindo/LindoGlobal

• We will drop Lindo/LindoGlobal libraries for Intel Solaris with the next major release (24.5).

• New libraries 9.0.142 for Linux, Mac OS X, and Windows:

– Support for semi-continuous variables.

– Simplex LP algorithm implementation has been improved for speed and robustness. The
performance improvements compared to previous version are 90% for primal simplex and 45%
for the dual simplex.

– Knapsack related cuts improvements. Significantly faster solve times on models with certain
knapsack-like constraints.

– Improved default node selection rules improves performance on most MIPs.

– New branching variable rule options: maximum coefficients and neighborhood branching. Can
reduce number of branches on certain MIPs.

– Perspective reformulation capability gives improved performance on quadratic portfolio models
with semi-continuous variables, e.g. min-buy quantities.

– Improved default settings for NLPs gives 5% average speed improvement.

– New preprocessing for LP/MIP significantly reduces coefficient density of certain dense matrices.

Mosek

• New libraries 7.1.0.12.

– Improved performance of the mixed-integer conic optimizer.

http://www.localsolver.com

352 Release Notes

MSNLP/OQNLP

• These solvers now use Conopt as their default solver if Conopt is licensed. Otherwise they will use
lsgrg as before.

OS

• We plan to drop the OS solver with GAMS 24.5. The capability of convert to write OSiL files will
be kept.

SCIP

• New libraries 3.1 #020d055.

SoPlex

• New libraries 2.0 #d67b17b.

Sulum

• New libraries 4.0.665.

– Improvements in presolve, leading to more reductions.

– General improvements in obtaining a feasible solution faster, especially with focus on the root
node to obtain a good bound. Rewrite and improvements of feasibility pump, objective diving.

– The simplex algorithm is now exchanging more information with the branch and cut method.
Improvement of SINS heuristic (finding a better basis after the node solve).

– Added a MIP root restart feature based on reductions.

– Cutting planes generation was both improved and extended.

– Changed default for option mipmaxrestarts from 5 to 1.

XPRESS

• New libraries for XPRESS v7.8: Optimizer 27.01.02.

– Automatic solution refinement for LP and MIP models.

– Improved deterministic concurrent LP.

3.31.1.4 Tools

GAMSIDE

• Added option to suppress trailing zeroes in GDX viewer.

• Improved ability to open files from the Windows Shell.

• Cutoff for number of lines to be syntax colored or not.

• When saving a file, the Undo buffer is no longer cleared.

3.31 24.4 Distribution 353

GDXDUMP

• Text quoted with a single quote did not have a separator when writing SymbolAsSet.

• Added option SymbolAsSetDI.

• Avoid string overflow when quoting text.

• Added more types for sets and equations.

GDXXRW

• Added option values=All which is the new default when CDim=0 or RDim=0.

GDXVIEWER

• Added ACCDB format as an output option for MSAccess.

GDX2SQLite, Scenred, Scenred2

• These tools are now also available for AIX.

• Moved documentation of Scenred and Scenred2 from docs/solvers to docs/tools.

IDECMDS

• Allow a pattern to be specified to close files.

MPS2GMS

• The mps2gms tool now produces proper generic GAMS source for models with quadratic terms.

• Bug fix for MPS files written by Cplex that contain SOS constraints.

MPSGE

• Moved manual to ''docs/tools''.

3.31.1.5 Expert Level APIs

• There are new API files for the ”Indexed GDX” (IDX) library in<GAMS Dir>\apifiles\<Language>\api:

– The indexed GDX library can be used to read and write indexed GDX files.

– Each symbol in such a GDX file must be a parameter.

– Each parameter must have a domain consisting of a UELs which forms an integer sequence
starting at 1.

– This way the data is provided in a format convenient to store in arrays in the target language.

– In GAMS such a file can be read using $LoadIDX during compilation.

– In GAMS such a file can be written using execute unloadIDX during execution.

– The new example <GAMS Dir>\apifiles\CSharp\xp CalcInverseIDX makes use of this API,
this example is also used in the APILib model CSCalcInverse.

354 Release Notes

Python

• Fixed a bug regarding lists of strings in Python 3 (e.g. gdxDataWriteStr()).

3.31.1.6 Object Oriented APIs

• We changed the handling of GAMS Aliases in the object oriented APIs:

– If we ask for the number of GAMSSymbols in a GAMSDatabase, the Aliases will be excluded.

– If we iterate over all GAMSSymbols in a GAMSDatabase, Aliases will be skipped.

– If we ask explicitly for an Alias in a GAMSDatabase (GAMSDatabase.GetSet("a") with a

being an Alias) we will get a reference to the GAMSSet referenced by the Alias, not the Alias
itself.

– Note: Aliases can appear in a GAMSDatabase only, if it was initialized by a GDX file containing
an Alias.

– The new examples Alias demonstrate this new behavior for the different OO API languages.

Python

• Fixed a bug in GamsDatabase.merge record that prevented the function from creating a record if
none was found.

3.31.1.7 Model Libraries

GAMS API Library

This is a new collection of GAMS models. It can be accessed in the GAMS IDE at Model Libraries ->
GAMS API Library or through the command line tool apilib. The models in this collection can be used
as scripts to compile and execute the example applications using the GAMS object oriented APIs as well
as the expert level APIs, which can be found in <GAMS Dir>/apifiles.

• apiutil.gms : Generates the API Model Library files (01)

• testapi.gms : API Quality Assurance Test (02)

• Cex1.gms : Test expert level C API to read and write GDX (03)

• CSex1.gms : Test expert level C# API to read and write GDX (04)

• CPPex1.gms : Test expert level C API to read and write GDX in C++ (05)

• DCex1.gms : Test expert level Delphi (function) API to read and write GDX (06)

• DOex1.gms : Test expert level Delphi (object) API to read and write GDX (07)

• DPex1.gms : Test expert level Delphi (pure) API to read and write GDX (08)

• Fex1.gms : Test expert level Fortran API to read and write GDX (09)

• Jex1.gms : Test expert level Java API to read and write GDX (10)

• Pex1.gms : Test Python core API to read and write GDX (11)

• VBex1.gms : Test expert level VB.Net API to read and write GDX (12)

3.31 24.4 Distribution 355

• Cex2.gms : Test expert level C API to read and write GDX, set options and execute
GAMS (13)

• CSex2.gms : Test expert level C# API to read and write GDX, set options and
execute GAMS (14)

• CPPex2.gms : Test expert level C API to read and write GDX, set options, and
execute GAMS in C++ (15)

• DOex2.gms : Test expert level Delphi (object) API to read and write GDX, set options
and execute GAMS (16)

• Fex2.gms : Test expert level Fortran API to read and write GDX, set options and
execute GAMS (17)

• Jex2.gms : Test expert level Java API to read and write GDX, set options and execute
GAMS (18)

• Pex2.gms : Test Python core API to read and write GDX, set options and execute
GAMS (19)

• VBex2.gms : Test expert level VB.Net API to read and write GDX, set options and
execute GAMS (20)

• CStrseq.gms : Test object oriented C# API running a sequence of examples based on
a transport model (21)

• CPPtrseq.gms : Test object oriented C++ API running a sequence of examples based
on a transport model (22)

• Jtrseq.gms : Test object oriented Java API running a sequence of examples based on
a transport model (23)

• Ptrseq.gms : Test object oriented Python API running a sequence of examples based
on a transport model (24)

• VBtrseq.gms : Test object oriented VB.Net API running a sequence of examples
based on a transport model (25)

• CSBenders.gms : Test object oriented C# API using a (multi-threaded) Benders
Decomposition Algorithm (26)

• JBenders.gms : Test object oriented Java API using a (multi-threaded) Benders
Decomposition Algorithm (27)

• PBenders.gms : Test object oriented Python API using a (multi-threaded) Benders
Decomposition Algorithm (28)

• CSCutstock.gms : Test object oriented C# API using a cutting stock example (29)

• JCutstock.gms : Test object oriented Java API using a cutting stock example (30)

• PCutstock.gms : Test object oriented Python API using a cutting stock example (31)

• CSDomainChecking.gms : Test object oriented C# API for domain checks (32)

• JDomainCheck.gms : Test object oriented Java API for domain checks (33)

• PDomainChecking.gms : Test object oriented Python API for domain checks (34)

• JInterrupt.gms : Test object oriented Java API for interrupting running GAMS jobs
(35)

• CSTsp.gms : Test object oriented C# API using a Traveling Salesman Problem (36)

• JTsp.gms : Test object oriented Java API using a Traveling Salesman Problem (37)

356 Release Notes

• PTsp.gms : Test object oriented Python API using a Traveling Salesman Problem (38)

• CSWarehouse.gms : Test object oriented C# API using a warehouse location problem
(39)

• JWarehouse.gms : Test object oriented Java API using a warehouse location problem
(40)

• PWarehouse.gms : Test object oriented Python API using a warehouse location
problem (41)

• CSAlias.gms : Test handling of Aliases in object oriented C# API (42)

• JAlias.gms : Test handling of Aliases in object oriented Java API (43)

• PAlias.gms : Test handling of Aliases in object oriented Python API (44)

• apihtm.gms : Generates HTM apilib library files (45)

• CSCalcInverse.gms : Test expert level C# API to read and write indexed GDX (46)

GAMS Data Library

• Note: Opening an Excel file (.xls) in protected view may work improperly due to Microsoft issue

2745652. Fix: Enable editing of the Excel file and reopen the file.

• gdxmrw qp1 starter.gms : Portfolio Analysis with Matlab and GAMS (91)

• gdxmrw qp2 starter.gms : Portfolio Analysis with Matlab and GAMS (92)

• gdxmrw tr1.gms : Transport LP with non-indexed GDX data interface (93)

• gdxmrw tr2.gms : Transport LP with indexed GDX data interface (94)

• gdxmrw qp3.gms : QP solver M-file using GAMS and GDXMRW (95)

• gdxxrw autoopen.gms : Tests that gdxxrw calls the auto open macro facility (96)

• gdxmrw qp4.gms : Calling GAMS model from Matlab (97)

• gdxmrw intro01 init.gms : Introduction to data transfer between Matlab and GAMS
(98)

• gdxmrw intro02 init.gms : Introduction to calling GAMS from Matlab (99)

• gdxmrw irgdx01 init.gms : Reading data from a indexed GDX file with IRGDX (100)

• gdxmrw iwgdx01 init.gms : Writing data into a indexed GDX file with IWGDX (101)

• gdxmrw rgdx01 init.gms : Reading data from a GDX file into a structure with RGDX
(102)

• gdxmrw wgdx01 init.gms : Writing structured data into a GDX file with WGDX (103)

• gdxmrw ext01 init.gms : Extended use of GDXMRW (104)

http://support.microsoft.com/kb/2745652
http://support.microsoft.com/kb/2745652

3.31 24.4 Distribution 357

GAMS Model Library

• Modified models

– tsp1 and tsp4 now use Singleton Sets

– flowchan had incorrect boundary conditions

– licememo: give a full solver/model type matrix independent of the actual license

• partssupply.gms : Parts Supply Problem (404) (contains ps2 f s .. ps5 s mn, which are still
available, as submodels)

• qfilter.gms : Audio filter design using quad-precision MINOS (405)

• derivtst.gms : How to test derivatives of functions (406)

• carseq.gms : Car Sequencing (407)

• pmedian.gms : P-Median problem (408)

• sgolfer.gms : Social Golfer Problem (409)

GAMS Test Library

• Modified Models

– trilib01, trilib02, and trilib03: Compare numeric gradient and Hessian values in the models.
Function Sine in the library does not provide derivatives anymore. Lower the tolerances for
acceptance due to numerical derivatives of function Sine

• indic04.gms : Test of indicator constraints with explicit labels (663)

• parlib01.gms : Test extrinsic functions in parcclib (667)

• convert10.gms : CONVERT test suite - check interval evaluator in Convert (668)

• convert11.gms : CONVERT test suite - check interval evaluator in Convert (669)

• convert12.gms : CONVERT test suite - check interval evaluator in Convert (670)

• lazy01.gms : Test lazy constraints (671)

• mps2gms1.gms : Test mps2gms (672)

• execmode01.gms : Test execmode behavior (673)

3.31.2 24.4.2 Minor release (March 15, 2015)

3.31.2.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Sergey Kuznetsov, Ricardo M. De Lima, and Corey Noone.

3.31.2.2 GAMS System

GAMS

• Fixed potential problem when running on Windows in a workDir containing a %.

• Fixed problem with EMP solves with solvelink=solveLink.asyncGrid%.

• Fixed problem with GUSS/Grid when using execute loadhandle instead of handlecollect.

358 Release Notes

3.31.2.3 Solvers

ANTIGONE

• New libraries.

CONOPT

• Introduced new boolean option PreTri2Log that send message from Conopt's pre-triangular analyzer
that go to the listing file also to the GAMS log. The option requires the generation of the model
dictionary, so mymodel.DictFile=1; has to be added before the Solve statement.

CONVERT

• Convert and ConvertD: Fix for writing scalar MCP models that contained fixed variables removed
by holdfixed=1.

• ConvertD: Add support for external equations in scalar GAMS models.

• ConvertD: Propagate EPS to scalar GAMS models.

Couenne

• New libraries.

Examiner2

• Support added for custom trace files.

GUROBI

• New libraries 6.0.2.

Lindo/LindoGlobal

• New libraries 9.0.157 for Linux, Mac OS X, and Windows.

LocalSolver

• New libraries 5.0 (20150119).

Mosek

• New libraries 7.1.0.24.

3.31 24.4 Distribution 359

SCIP

• New libraries 3.1 #67d713c.

• Fixed overwriting of solvetrace file by final NLP resolving.

SoPlex

• New libraries 2.0 #8381aa4.

3.31.2.4 Tools

GDXMRW

• gdxInfo: fix output of domains in symbol declaration

• gdxInfo: handle aliases properly

3.31.2.5 Object Oriented APIs

• Fixed overwriting of the default value for the integer1 option when running with
GAMSModelInstance, which lead to unexpected solver behavior.

• Fixed potential problem with GAMSModelInstance used with BARON.

.NET

• New property GAMSSymbol.DomainsAsStrings: Domains of Symbol, each element is a string, if the
domain is an alias in GAMS, this call will return the name of the Alias, not the name of the aliased
Set.

Java

• Changed naming scheme of GDX output scratch file to sequence number.

Python

• Fixed a bug in the constructor of all subclasses of GamsSymbol that occurred when the explanatory
text was omitted.

• New property GamsSymbol.domains as strings: Domains of Symbol, each element is a string. If
the domain is an alias in GAMS, this call will return the name of the alias, not the name of the
aliased set.

360 Release Notes

3.31.2.6 Expert Level APIs

GMO

• Fixes to gmoGetRowJacInfoOne and gmoGetColJacInfoOne: In case of an empty row/column, now
return -1 in colidx/rowidx if index base is 0.

3.31.2.7 Model Libraries

GAMS Model Library

• dyncge.gms : A Recursive-Dynamic Standard CGE Model (410)

3.31.3 24.4.3 Maintenance release (April 02, 2015)

3.31.3.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Guillaume Erbs and Emiliano Traversi.

3.31.3.2 Solvers

Examiner2

• Fixed incapability to continue on a trace file that already has trace records in it.

LocalSolver

• Corrected computation of values for free variables that appeared (linearly) in one equation only.

3.31.3.3 Tools

GDXXRW

• In 24.4.2 we quietly introduced a new way to determine the content of a sheet. This resulted in a
bug for empty sheets and sheets that have been saved with an active filter. This has been fixed.

3.31.4 24.4.4 Maintenance release (May 12, 2015)

3.31.4.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Thomas Counsell, Michael Ferris, Jean Mercenier, and Löıc Ventre.

3.31 24.4 Distribution 361

3.31.4.2 Solvers

Gurobi

• New libraries 6.0.4.

• The new libraries do not work on Windows XP anymore. As the library for COIN-OR solvers, SCIP,
and SoPlex link to the Gurobi library, these solvers also do not work on Windows XP anymore.

Ipopt

• New libraries for Linux and Mac OS X.

– Fixed an issue in the MA97 interface that lead to convergence problems.

Minos

• Consider the number of nonlinear constraint variables, not just the nonlinear objective variables,
when computing the superbasics limit: memory is plentiful and cheap.

• Fixed case of memory corruption that resulted when using an initial point containing very many
superbasic variables. If the initial point contains more than 500 superbasics, limit the Hessian
dimension to 500 even though the superbasic limit is larger.

Mosek

• New libraries 7.1.0.30.

Xpress

• New libraries Optimizer 27.01.08 (was 27.01.02 before).

3.31.4.3 Tools

GDXDUMP

• Fixed a problem when writing a scalar or scalar variable/equation in format CSV.

3.31.4.4 Object Oriented APIs

• Fixed a potential problem with GAMSModelinstance and certain OS culture settings.

3.31.4.5 Model Libraries

GAMS EMP Library

• transecs: Fixed formulation as embedded complementarity system and provide equivalent alterna-
tive as single-agent equilibrium system.

362 Release Notes

3.31.5 24.4.5 Maintenance release (May 26, 2015)

3.31.5.1 Solvers

COIN-OR solvers, SCIP, SoPlex

• On Windows 32bit, OsiGurobi was split off into a separate library, so that other COIN-OR solvers
(e.g., Bonmin, Cbc, Couenne, Ipopt) and SCIP and SoPlex do not require the Gurobi 6.0.4 library
anymore. Thus, for this release, only Gurobi and OsiGurobi do not run on Windows XP anymore
(see 24.4.4 notes on Gurobi).

3.31.6 24.4.6 Minor release (June 26, 2015)

3.31.6.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Erwin Kalvelagen, Rich Roberts, and Jens Schulz.

3.31.6.2 Solvers

CONOPT

• New libraries 3.16F.

• New option LMUSDF for handling definitional equations.

• New option RVFILL for memory allocation when memory is tight.

• Changed a sorting procedure in the preprocessor. Models with some very dense rows and many
pre-triangular variables can experience a significant speedup for the preprocessor.

CPLEX

• New libraries 12.6.2.0.

• Option changes:

– The popular option value -1 for BarCrossAlg to turn off the crossover after a run with barrier
has been deprecated. The new way to turn off crossover is to set the new option SolutionType

to 2.

– The option SolutionTarget has been renamed to OptimalityTarget.

– The option CutsFactor has a new default (-1).

• New options:

– BQPCuts: Boolean Quadric Polytope cuts for solving nonconvex QP or MIQP to global
optimality.

– CPUMask: Switch and mask to bind threads to processors. Binding threads to processors/cores
helps to reduce variability in running time when using multiple threads.

– SolutionType: Type of solution (basic or non basic) for an LP or QP. Set this option to 2 to
prevent crossover after barrier.

3.32 24.3 Distribution 363

MOSEK

• New libraries 7.1.0.31.

3.31.6.3 Tools

GAMSIDE

• Added .ref for reference file to the files open dialog.

• Left arrow in the first character position now moves to the end of the previous line.

GDXXRW

• Restore the old behavior when reading a set with Values=Strings; all elements will be included,
not only the ones with a string.

– Option Values=String and All are now deprecated and results in a warning; replaced with
Dense.

– New options Values=Dense or Sparse.

XLSTalk

• Allow for up to 9 parameters for macro call.

3.32 24.3 Distribution

3.32.1 24.3.1 Major release (July 31, 2014)

3.32.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Michael Bond, Sebastian Bothor, Jared Erickson, Michael Ferris,
Josef Kallrath, Bastian Niebel, Matt Preston, and Tom Rutherford.

3.32.1.2 Platforms

• The Linux 32bit and Solaris 32bit distributions have been dropped (as announced).

• Support for Windows XP may be dropped with some future GAMS version. As several of our solver
vendors have already dropped support for Windows XP, some components of a GAMS system may
cease to work under Windows XP in the future. If you notice that a 64bit GAMS system is not
working on your Windows XP 64bit machine, please let us know.

364 Release Notes

3.32.1.3 GAMS System

GAMS

• Introduced new keyword Singleton Set: A Singleton Set in GAMS is a special Set that has at
most one element (zero elements are allowed as well). Singleton Sets can be especially useful in
assignment statements since they don't need to be controlled by a controlling index nor an indexed
operator, e.g.:

Set s / s1*s3 /;

Singleton Set single(s) / s2 /;

Parameter p(s);

Scalar x;

p(s) = ord(s);

x = p(single);

NOTE: Assigning membership to Singleton Sets is different than to usual sets. Since Singleton

Sets can never have more than one element, any assignment to a Singleton Set first clears or
empties the set, so no explicit clear is necessary. This is illustrated in the following example:

Set i Static Set / a, b, c /

ii(i) Dynamic Set / b /;

Singleton Set si(i) Dynamic Singleton Set / b /;

ii(’c’) = yes;

si(’c’) = yes;

Display ii, si;

Here is the output from the display statement in the listing file:

---- 8 SET ii Dynamic Set

b, c

---- 8 SET si Dynamic Singleton Set

c

More information can be found in the GAMS Users Guide.

– The behavior of assignments to Singleton Sets can be influenced by the new option
strictSingleton [0/1]: This option affects the behavior of a membership assignment to
a Singleton Set. With strictSingleton = 0 GAMS does not complain about an assign-
ment with more than one element on the right hand side but takes the first one. With
strictSingleton = 1 (default), such an assignment raises an error. This option be set via an
option statement and via a command line option.

– Similarly, data statements for Singleton Sets can be influenced by the new dollar control
options $onStrictSingleton/$offStrictSingleton: With $offStrictSingleton GAMS
does not complain about a data statement for a Singleton Set that has more than one
element but takes the first one. With $onStrictSingleton (default), such an assignment
raises an error.

• Introduced so-called obfuscated save files, which are save files where symbol and UEL names have
been obfuscated. The new options saveobfuscate (so) and xsaveobfuscate (xso) can be used
to generate uncompressed and compressed, respectively, obfuscated save files. Additionally, a new
option restartNamed (rn) has been added which can be used to bring back the original names when
restarting from an obfuscated save file. The intended use is the following.

– Compile (only) a GAMS model into a named and an obfuscated save file:

3.32 24.3 Distribution 365

$call gams trnsport a=c s=0named saveobfuscate=0anon

– Move the obfuscated save file to a non-secure machine and execute it there:

$echo * Empty > empty.gms

$call gams empty r=0anon s=1anon

– Bring the new (still obfuscated) save file with the results back to the safe machine and do a
continued compilation with reporting and export. The continued compilation restarts from
the obfuscated save file with all the results, etc., but gets a second save file with proper names
through option restartNamed:

$echo execute_unload ’supply’, supply.m; > unload.gms

$call gams unload r=1anon restartNamed=0named

In this execution, everything is taken from the obfuscated restart file, except for the symbol and UEL
names and the listing file title and subtitle, which are taken from the file specified via restartNamed.

• Allow to load the universe of labels from a GDX file into a set at run-time:

execute_load ’someFile’, someSet=*;

Note, that only labels known to the GAMS program will be loaded.

• Fixed a bug that caused wrong results when evaluating prod (or smin/smax) over an empty set
inside sum like in the following example:

sets r / 1 /

s / 1, 2 /

rs(r,s) / 1.1 /

subrs(r,s) / 1.2 /;

scalar z1;

z1 = sum(rs, prod(subrs(rs), 2));

display z1;

• Fixed a bug in calling error logging routine for extrinsic functions from within solvers.

Function libraries

• The extrinsic function library cppcclib has been expanded to include functions for the PDF and
CDF of the trivariate normal distribution. Additionally, documentation for cppcclib has been
added to Appendix J of the GAMS User's Guide and the relevant testlib models cpplib00 thru
cpplib05 have been added or updated.

3.32.1.4 Solvers

ANTIGONE, Bonmin, Cbc, Couenne, SCIP, Sulum

• Solvetrace files now include the GAMS input name (usually GAMS model name with .gms extension
stripped) in the header line.

366 Release Notes

BARON

• New libraries 14.0.2

– Significant advances in the handling of integer programs. In addition to several classes of
integer cutting planes, calls to MIP solvers and hybrid LP/MIP/NLP relaxations for MINLPs
have been added.

– Complete rewrite of the interfaces to LP solvers.

– Improvements in probing routines.

– More robust checks for the validity of the solution of LP/NLP subsolvers.

– Introduced interfaces to COIN-OR/OSI and CBC 2.8.9.

– Increased numerical robustness for numerically challenging problems.

– New range reduction techniques.

– Systematic treatment of infeasible problems. With the CompIIS option, which by default is
0, the computation of an Irreducible Inconsistent Set (IIS) can be requested. Five different
algorithms are available, with corresponding values of CompIIS equal to 1, ..., 5. Algorithm 1
is a fast heuristic, while algorithms 2 through 5 are more time consuming exact algorithms.
If an IIS is found, it is reported in the GAMS listing file. BARON does not consider bounds
on binary variables to be part of the IIS. For general integers, the option IISint can be be
used to signal that general integers should be considered as potential members of the IIS, i.e,
integrality constraints are questioned.

• Fixed handling of BARON termination status when activating DeltaTerm option.

BONMIN

• Dropped MIP capability (use CBC instead).

CONOPT

• New libraries 3.16B.

– The new option Lsusdf was added. If turned on (the default) CONOPT's preprocessor will
look for definitional constraints which are constraints of the form x = f(y) where the bounds
on x are wider than the range of the function f, given the bounds on y. CONOPT will search
for and select a maximal set of independent definitional constraints. The dependent variable in
a definitional constraints will be selected for the initial basis and CONOPT will try to use the
definition to initialize x. There are two other options associated with this procedure: If Lsuqdf
is enabled (default), then only unique definitional constraints are selected. If it is disabled,
then option Lfusdf specifies a limit (default 2) on the number of candidates a definitional
constraint can have.

– The option Lsflsh – flush the buffer, has now been implemented and is automatically turned
on if there is a systems error.

– The lower bound on option Rtipvr changed from 1.e-3 to 1.e-10.

Convert

• The AMPL writer supports special ordered sets, semicontinuous variables, and semiinteger variables
now.

• Row names in .lp and .mps files now start with 'e' instead of 'c', so they match the names written
by the dict option.

3.32 24.3 Distribution 367

CPLEX

• New libraries 12.6.0.1.

CPLEX, SCIP, XPRESS

• Fixed handling of indicator constraints when specified with explicit labels.

DE

• New option VaRBigM to control the Big M for a Value at Risk reformulation.

EMPSP

• New keywords VaRUp (=VaR) and VaRLo: These keywords can be used to optimize the Value at Risk
for a certain confidence level. The syntax is similar to the one from cVaRUp (=cVaR) and cVaRLo:

VaR [rv var] scalar

More information can be found here.

• Changed the order of the parameters for the triangular distribution from

randvar <name> triangular <low> <high> <mid>

to

randvar <name> triangular <low> <mid> <high>

Examiner2

• Fixed a bug in processing special ordered sets.

GUSS/Scenario Solver

• GUSS/Scenario solver can now be combined with the GAMS Grid Facility (see example GUSSGRID

in the GAMS Model Library).

• New option RestartType to determines restart point for the scenarios:

– 0: Restart from last solution (default)

– 1: Restart from solution of base case

– 2: Restart from input point

• New option SolveEmpty (default 0) to limit the number of empty scenarios (no scenario data) that
are being solved. When the limit is reached, further empty scenarios will be skipped. Skipped
scenarios will be reported to the log and listing file.

368 Release Notes

Ipopt

• New libraries.

Knitro

• As Ziena Optimization has dropped support for Knitro on Solaris (x86) a while ago, we plan to
drop GAMS/Knitro on Solaris with the next release.

Lindo/LindoGlobal

• New libraries 8.0.550.

• LindoGlobal is no longer available for Sparc Solaris (as announced).

Mosek

• New libraries 7.0.0.121 (Linux, Mac OS X) and 7.0.0.123 (Windows).

OQNLP

• OQNLP is no longer available for Linux (as announced).

OS

• GAMS to OSiL conversion now creates more compact instances, especially for quadratic equations
and long sums or products in general nonlinear expressions.

SCIP

• New libraries 3.1 #695c979.

– Added new primal heuristics ”random rounding”, ”proximity”, and ”dual value”, new branching
rule ”cloud branching”, and new node selectors ”breadthfirst” and ”uct”.

– Added support for strong branching with domain propagation in full strong and reliability
pseudo cost branching.

– Improved numerical stability (now taking the rank of cuts into account; more checks on LP
solution; disabled scaling in feasibility check of nonlinear constraints).

– Many improvements in presolving.

– Strong branching LP solutions are now checked for feasibility.

– Changed or removed parameters:

∗ branching/relpscost/maxlookahead: default changed from 9 to 8.

∗ branching/relpscost/maxreliable: default changed from 8 to 5.

∗ constraints/bivariate/scaling: default changed from TRUE to 'o' (type changed to charac-
ter).

∗ constraints/quadratic/scaling: default changed from TRUE to 'o' (type changed to charac-
ter).

https://www.scipopt.org/doc-3.1.0/html/RELEASENOTES.php

3.32 24.3 Distribution 369

∗ constraints/soc/scaling: default changed from TRUE to 'o' (type changed to character).

∗ constraints/varbound/maxlpcoef: default changed from 1E6 to 1E9.

∗ heuristics/crossover/minnodes: default changed from 500 to 50.

∗ heuristics/dins/minnodes: default changed from 500 to 50.

∗ heuristics/feaspump/objfactor: default changed from 1 to 0.1.

∗ heuristics/rens/minnodes: default changed from 500 to 50.

∗ heuristics/rins/freq: default changed from -1 to 25.

∗ heuristics/rins/freqofs: default changed from 5 to 0.

∗ heuristics/rins/minfixingrate: default changed from 0 to 0.3.

∗ heuristics/rins/minnodes: default changed from 500 to 50.

∗ heuristics/shiftandpropagate/sortkey: default changed from 'u' to 'v'.
∗ lp/checkfeas: replaced by new parameters lp/checkdualfeas and lp/checkprimfeas.

∗ numerics/dualfeastol: default changed from 1E-6 to 1E-7.

∗ presolving/dualfix/∗: replaced by propagating/dualfix/∗
∗ propagating/pseudoobj/presoldelay: default changed from TRUE to FALSE.

∗ propagating/pseudoobj/timingmask: default changed from 5 to 7.

∗ propagating/redcost/timingmask: default changed from 2 to 6.

∗ separating/cgmip/objweighsize: renamed to separating/cgmip/objweightsize and default
changed from FALSE to TRUE.

∗ separating/minefficacyroot: default changed from 0.01 to 0.001.

∗ separating/closecuts/relintnormtype: removed

SoPlex

• New libraries 2.0.0.

XPRESS

• New libraries 26.01.08.

3.32.1.5 Tools

GDX2SQLITE

• GDX2SQLITE is a new tool to dump the complete contents of a GAMS GDX file into a SQLite
database file.

GDXDUMP

• New option SymbolsAsSet to write the symbol table for a set as data.

GDXMRW

• New utilities irgdx and iwgdx for exchanging indexed GDX data with Matlab.

http://soplex.zib.de/notes-200.txt

370 Release Notes

GDXRENAME

• New utility to rename the same unique elements in a GDX file using a mapping given by a second
GDX file.

GDXXRW

• New option to allow the use of R1C1 notation to specify a cell or a range.

• Reading a set using the option Values=string now skips empty cells.

3.32.1.6 Expert Level APIs

GMO

• Removed previously deprecated function gmoDirtyExtractDefVar.

• Added a number of functions to access information from an EMP info file, to compute the optimality
gap, to access extrinsic function libraries, and to get the name of the GAMS input file.

3.32.1.7 Object Oriented APIs

• New example transport14.

• New method GAMSSymbolRecord.Key(int index) (Java: GAMSSymbolRecord.getKey, Python:
GamsSymbolRecord.key(int index)) to retrieve the key of GAMSSymbolRecord (Python:
GamsSymbolRecord) for a given positional index.

• GAMSSymbol.CopySymbol now works for the universe of a GAMSDatabase (GAMSDatabase.GetSet("∗")).
When copying into the Universe, a merge will be performed.

• Real domains are now registered when exporting a GAMSDatabase to GDX (so far, only relaxed
domains were registered).

• GAMSJob.Run (Python: GamsJob.run) now creates OutDB (Python: out db) also if it raises a
GAMSExceptionExecution.

• GamsModelInstance.Solve (Java/Python: GamsModelInstance.solve) now also works for solvers
which require a subsolver, e.g., DICOPT.

.NET

• Fixed default value for systemDirectory argument in GAMSWorkspace constructor when using
MONO: If no value is given, first the PATH and then the (DY)LD LIBRARY PATH is checked for a valid
GAMS system directory.

3.32 24.3 Distribution 371

Java

• It is no longer necessary to specify -Djava.library.path when running a program. If
java.library.path is specified, the shared libraries will be loaded from java.library.path.
Otherwise, the shared libraries will be loaded from the class path that contains GAMSJavaAPI.jar.

• It is no longer necessary to set up environment variables (PATH, (DY)LD LIBRARY PATH) before running
a program to find the GAMS system directory, as it can now be specified during run time.

• In the GAMSWorkspace default constructor, the default setting for finding the GAMS system directory
from environment variables in the following order (depends on the target platform) are applied:

– Windows: first from PATH environment variable. If not found, then from the Windows registry
gams.location,

– Mac OS X: first from PATH environment variable. If not found, then from DYLD LIBRARY PATH,

– other Unix: from PATH environment variable. If not found, then from LD LIBRARY PATH.

• In the non-default GAMSWorkspace constructor, the following rules are applied:

– In case a user specifies a system directory, the API will verify the directory and will not search
for GAMS system directory from an environment variable, even when the directory is invalid.

– In case the specified system directory is null or a user does not specify a system directory, the
API will apply the default setting from above.

• A memory leak in GAMSDatabaseIterator has been closed.

• Issues when using a non-standard locale (LANG environment variable) have been fixed.

• All deprecated classes and methods since 24.1 have been removed.

Python

• New behavior on determining a system directory automatically when a workspace is created.

– Linux: If no system directory is specified in the GamsWorkspace constructor, check PATH first.
If no system directory was found, check LD LIBRARY PATH.

– Mac OS X: If no system directory is specified in the GamsWorkspace constructor, check PATH

first. If no system directory was found, check DYLD LIBRARY PATH.

– Windows: If no system directory is specified in the GamsWorkspace constructor, check the
Windows registry.

3.32.1.8 Model Libraries

GAMS Data Library

• MakeQL: Moved querylibrary generator into trisource.zip, which comes with Test Library models
trilib01, trilib02, trilib03, and trilib04. Removed MakeQL model.

• invert1.gms : Matrix inversion via R (89)

• invert2.gms : Matrix inversion via Matlab (90)

372 Release Notes

GAMS Model Library

• clad.gms : Computation of Fairs extramarital affairs model estimates (397)

• gussex1.gms : Simple GUSS example (398)

• gussrisk.gms : Simple investment example with varying weight for risk using GUSS
(399)

• gussgrid.gms : Simple GUSS Grid example (400)

• circpack.gms : Pack circles in the smallest possible rectangle (401)

• tablelayout.gms : Configuring text layout in table cells to minimize table height (402)

• asyncjobs.gms : Execute asynchronously several GAMS jobs and collect the fastest
(403)

GAMS Test Library

• trilib01: Reworked tricclib.c source code. Rewrote querylibrary generator.

• single01.gms : Check handling of singleton sets (639)

• execerr1.gms : Test for execerr option (640)

• single02.gms : Check assignment to singleton sets (641)

• scensol4.gms : Basic GUSS Test (642)

• gdxmrw06.gms : run a battery of GDXMRW tests (643)

• single03.gms : Check singleton sets in put statement (644)

• unload11.gms : Check that GAMS does not crash when writing to non-existing folder
(645)

• refact00.gms : Check that GAMS produces expected workfile with option sys14=1
(646)

• refact01.gms : Refactor suite test 1 (647)

• scenempty.gms : Empty scenario GUSS Test (648)

• obfusc01.gms : Test use if obfuscated workfile (649)

• load11.gms : Load UEL Table (650)

• gussskip.gms : Simple GUSS example with skipped scenario (651)

• refact02.gms : Refactor suite test 2 (653)

• cpplib03.gms : Test extrinsic functions in cppcclib (654)

• cpplib04.gms : Test extrinsic functions in cppcclib (655)

• cpplib05.gms : Test extrinsic functions in cppcclib (656)

• cpplib00.gms : Test build of CPP library (657)

• syschk2.gms : Test impact of sys10 setting (658)

• scensol5.gms : Test handling of scenario dictionary sets with more than 50 entries (659)

• call5.gms : Check that gams works with COMSPEC unset (660)

• idxoper1.gms : Test indexed operations (661)

• gdxsqlite1.gms : Test basic functionality of GDX2SQLITE tool (662)

3.32 24.3 Distribution 373

3.32.2 24.3.2 Minor release (August 29, 2014)

3.32.2.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Alvaro Lorca Galvez, Scott McDonald, Tom Rutherford, Nick
Sahinidis, and Uwe Schneider.

3.32.2.2 GAMS System

GAMS

• Allow empty scalar data statements:

$onempty

scalar xyz / /;

Extrinsic Function libraries

• Pass on parameter file name via LibInit call.

3.32.2.3 Solvers

BARON

• New libraries 14.0.3.

CBC

• New libraries.

CONOPT

• New libraries 3.16C.

– Added checks for internal intermediate results being NaN (Not A Number). If this happens,
CONOPT will stop and return a message about it. The solver status will return 4 ”Terminated
by Solver” and model status 6 or 7, ”Intermediate Infeasible” or ”Intermediate Feasible.”

CONVERT

• Fixed bug in interval evaluations for functions and gradients.

• The interval evaluations are now triggered by their own option (e.g. intervalEval=yes) instead of
being part of every Jacobian or Hessian dump.

374 Release Notes

Cplex

• Some Cplex tuning parameters had no or the wrong effect. This has been fixed.

• The BCH usercutcall was not called in case of new constrains only for true cuts (see e.g. GAMS
Model library model bchtsp). This has been fixed.

Examiner2

• Fixed error in processing options file.

• Fixed error in trace file generation.

Ipopt

• New libraries.

Mosek

• New libraries 7.0.0.126.

– Fixed an issue with using the Mosek extended license for MIP solving on Mac OS X.

Osi links

• Fixed writing MPS files with row and column names.

SCIP

• New libraries 3.1 #322574a

– Changed default of option heuristics/proximity/minimprove from 0.25 to 0.02.

– Changed default of option heuristics/proximity/usefinallp from TRUE to FALSE.

XPRESS

• New libraries 26.01.14 for Linux and Windows.

3.32.2.4 Tools

GDXDUMP

• When generating $GDXIN filename, the filename now includes the full path of the GDX input file.

3.32 24.3 Distribution 375

GDXXRW

• In the previous release, we changed the behavior that when reading with Values=String, the empty
cells no longer created an entry. Because reading with this option was the default for the cases with
RDim=0 or CDim=0, we changed this default to Values=NoData in order not to break existing code.

Shellexecute

• Fixed error causing problems during parameter processing.

3.32.2.5 Expert Level APIs

• Delphi: Distinguish between 32 bit and 64 bit compiler.

3.32.2.6 Object Oriented APIs

• Make more GAMS options available through the GAMSOptions class:

– GAMSOptions.AppendExpand: Expand file append option

– GAMSOptions.AppendOut: Output file append option

– GAMSOptions.DumpOpt: Writes preprocessed input to the file input.dmp

– GAMSOptions.DumpParms: GAMS parameter logging

– GAMSOptions.ErrMsg: Placing of compilation error messages

– GAMSOptions.Expand: Expanded (include) input file name

– GAMSOptions.FErr: Alternative error message file

– GAMSOptions.JobTrace: Job trace string to be written to the trace file at the end of a Gams
job

– GAMSOptions.LimCol: Maximum number of columns listed in one variable block

– GAMSOptions.LimRow: Maximum number of rows listed in one equation block

– GAMSOptions.LogLine: Amount of line tracing to the log file

– GAMSOptions.On115: Generate errors for unknown unique element in an equation

– GAMSOptions.Output: Output file

– GAMSOptions.PageContr: Output file page control option

– GAMSOptions.PageSize: Output file page size (=0 no paging)

– GAMSOptions.PageWidth: Output file page width

– GAMSOptions.Reference: Symbol reference file

– GAMSOptions.ScriptExit: Program or script to be executed at the end of a GAMS run

– GAMSOptions.Suppress: Compiler listing option

– GAMSOptions.Symbol: Symbol table file

– GAMSOptions.TraceLevel: Solvestat threshold used in conjunction with a=GT

3.32.2.7 Model Libraries

GAMS Data Library

• Fixed some errors in some Matlab examples.

376 Release Notes

3.32.3 24.3.3 Minor release (September 19, 2014)

3.32.3.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Henrik Dahl.

3.32.3.2 Solvers

ANTIGONE, Bonmin, CBC, Couenne, Ipopt, SCIP

• Fixed issue loading MKL libraries on Linux machines with AVX2 instruction set.

3.32.3.3 Tools

ASK, GDXVIEWER, SQL2GMS, XLS2GMS

• Fixed problem with character set used for error messages.

GDXXRW

• Fixed error when reading special values from Excel.

MDB2GMS, SQL2GMS

• Fixed problem when using comma as decimal separator.

3.32.3.4 Object Oriented APIs

Java

• Fixed a location of listing file when creating a job from (full-path) file without giving a job name.

3.33 24.2 Distribution

3.33.1 24.2.1 Major release (December 09, 2013)

3.33.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz, Fernando Consigli, Eligius Hendrix, Erwin Kalvelagen,
Alexander Lieder, Phani Murukutla, Yaser Tohidi, and Alexander Weber.

3.33 24.2 Distribution 377

3.33.1.2 Platforms

• Sparc Solaris builds are now built on a SunOS 5.10 (Solaris 10) machine.

• We plan to drop support for Linux 32bit and Sparc Solaris 32bit with the next major release (24.3).
As a consequence, we plan to also drop OQNLP on Linux 64bit.

3.33.1.3 GAMS System

Installer

• The dialog for choosing a license file to be copied starts from the user's desktop now

• Fixed a bug, when trying to copy license file to itself

3.33.1.4 Function libraries

• A new extrinsic function library cppcclib was added to the system. This library is coded in C++
and implements PDFs and CDFs for the univariate and bivariate normal distributions. The use
of C++ is crucial here, as an expression class together with operator overloading is used to do all
the relevant computation. In this way, we can automatically compute exact derivatives (first and
second) for the function values being computed. Further information on extrinsic function libraries
can be found in the GAMS User's Guide, Appendix J. The testlib models cpplib01 and cpplib02

are also relevant.

3.33.1.5 GAMS

• Fix bug that caused a negative value for model attribute etSolver

• EXECUTE LOADDC: Enhanced execute load with domain checking. Any domain violation will be
reported and flagged as execution error. In contrast, execute load ignores all domain violations
and loads only data that meets the domain restrictions.

• EXECUTE UNLOADDI: This new keyword does not only write the defined symbols to GDX but also
the domain sets.

• Loading one dimensional sets from multi-dimensional parameters/sets via load i<gdxsym. De-
tails can be found in the gdxutils document in the tools section of the documentation tree.

• New (command line) option gdxUELs [squeezed/full]: If gdxUELs is set to squeezed (default) only
the UELs that are required by the exported symbols are registered to GDX (compared to all UELs
with gdxUELs=full, which behaves like the former default).

• New (command line) option DumpParmsLogPrefix (synonym DPLP) prefixes log lines that are
triggered by DumpParms=2 with a specific string for easy filtering of these lines.

• New (command line) option intVarUp as a replacement for the command line option pf4 (which is
still usable as a synonym for intVarUp)

• The option sys10, which changes rpower to ipower when the exponent is constant and within e-12
of an integer, is also available as command line option now

• New option DmpOpt: This writes all options, which can be set using the option statement, and their
values to the listing file

378 Release Notes

• GAMS checks now more frequently if a GAMS program exceeds the preset elapsed time limit EtLim
(default 1e20 seconds). In the past this was done only before solve and execute statements. Now,
GAMS checks this limit at the same time GAMS checks for a pending Ctrl-C event.

• Renamed model status 7 Intermediate Nonoptimal to 7 Feasible Solution. The string con-
stant %modelStat.intermediateNonOptimal% is still recognized by the GAMS compiler, but it
is advised to switch to %modelStat.feasibleSolution%. The model status test is e.g. printed
in the solve summary in the listing file and can be written to put files with the model attribute
mymodel.tModStat.

• New model attributes:

– myModel.marginals: Indicates the presence (1) or absence (0) of a dual solution from the
solver after the solve statement. In some circumstances, a solver does not provide a dual
solution (.m), in such a case GAMS will not print the marginal column in the solution listing
and set the marginal field in variables and equations to NA.

– myModel.defPoint: If this attribute determines what point is passed to the solver as an input
point. By default, the user supplied point (set via x.l(j)=... and e.m(i)=...) is passed
to the solver. In some circumstances (mostly during debugging) it can be useful to pass a
standard default input point, i.e. level set to 0 or lower bound in case 0 is not within the
bounds and marginal set to 0. myModel.defPoint controls this behavior: Values other than 1
or 2 result in default behavior, value 1 results in passing default levels and marginals, value 2
results in passing the levels set by the user and defaults (0) for the marginals.

• Added %system.dirsep% and system.dirsep (for use in put files) to get access to the OS specific
file/directory separator character. On Windows platforms this is \ and on Unix and Mac this is /.
This helps writing platform independent GAMS models.

• Added option 6 to [file].TF (text fill) fills .te() with quoted element names separated by spaces

• Allow the Alias statement on multidimensional sets as well:

Set i / i0*i9 /

j / j0*j9 /

ij(i,j) / #i.#j /;

Alias (ij, ji);

3.33.1.6 Solvers

ANTIGONE, BARON, Couenne, SCIP

• Now return model status 7 (feasible but not necessarily optimal) instead of 2 (locally optimal)
when finding feasible solution for a model without discrete variables and not having proven global
optimality (local optimality cannot be guaranteed).

ANTIGONE

• Fixed bug where optimality gaps were reported for convex problems.

3.33 24.2 Distribution 379

BARON

• New libraries 12.7.3

• Performance improvements in local search, branching, integer presolve, and relaxations for problems
with bilinear and/or integer variables

• Added facilities for complementarity problems

• Absolute and relative constraint feasibility and integrality feasibility tolerances

• Added flexible termination criteria based on progress

• Improved treatment of unbounded/infeasible problems

• Selection of specific NLP solvers to be included in BARON's dynamic NLP solver selection strategy

• Automatic setting of many options based on problem characteristics and learning algorithms. As a
result, many options are now deprecated

• New options:

– AbsConFeasTol: Absolute constraint feasibility tolerance

– AbsIntFeasTol: Absolute integer feasibility tolerance

– AllowExternal: Indicator for use of External NLP solver with automatic NLP solver selection

– AllowIpopt: Indicator for use of IPOPT with automatic NLP solver selection

– AllowMinos: Indicator for use of MINOS with automatic NLP solver selection

– AllowSnopt: Indicator for use of SNOPT with automatic NLP solver selection

– DeltaA: Absolute improvement for insufficient progress termination

– DeltaR: Relative improvement for insufficient progress termination

– DeltaT: Time interval for insufficient progress termination

– DeltaTerm: Indicates whether insufficient progress termination is on or off

– RelConFeasTol: Relative constraint feasibility tolerance

– RelIntFeasTol: Relative integer feasibility tolerance

• Options deprecated: modbrpt, convexratio, maxredpass, maxnodepass, redreltol, redabstol,
postreltol, postabstol, hreltol,habstol, maxheur, pbin, twoways, pstart, pend, pfreq,
profra, pxdo, maxpretime, basfra, baskp, prelpdo, numbranch and numstore.

Bonmin(H), CBC, Couenne, Ipopt(H), OS, OsiCplex, OsiGurobi, OsiMosek, OsiXpress,
SoPlex

• The solver manual coin.pdf has been split into one document for each solver(group) (bonmin.pdf,
cbc.pdf, couenne.pdf, ipopt.pdf, os.pdf, osi.pdf).

CPLEX

• New libraries 12.6.0.

• Cplex 12.6 solves non-convex (MI)QP problems to global optimality when parameter SOLUTIONTARGET
is set to 3.

• Cplex 12.6 also offers the capability to solve a single MIP instance distributed over a number of
machines. The feature, knows as Distributed MIP, is available with GAMS/CplexD only and requires
a special license and additional software.

380 Release Notes

CONOPT

• New libraries 3.15M.

– Fixed a problem with the definition and execution of 'implied free' post-triangular variables.
The tolerance was too loose compared with other tolerances and a projection was missing. That
could result in functions or derivatives being called with variables slightly outside their bounds
(by up to 4.e-10).

Convert

• Fixed writing of mod operator in AMPL syntax.

ConvertD

• The converter to OSiL format can now handle SOS1 and SOS2 variables.

EMPSP

For the keyword cvarup (which is the same as cvar), the meaning of the defined scalar was changed:

cvarup [rv var] scalar

Scalar represents now the confidence level for the Conditional Value at Risk. It holds NewScalar = 1 -

OldScalar.

Gurobi

• New libraries 5.6

• New options:

– PreSOS1BigM and PreSOS2BigM: These new parameters provide user control of presolve SOS
linearization

– Disconnected: MIP models are sometimes made up of multiple, independent sub-models. This
parameter controls the strategy used to exploit this structure

• Distributed MIP algorithms (in connection with Gurobi's Compute Server):

– distributed tuning (option TuneJobs)

– distributed concurrent MIP (option ConcurrentMIPJobs)

– See also option ServerPool and ServerPassword

Ipopt/IpoptH, Bonmin/BonminH, Couenne

• On Linux and Windows, MKL PARDISO has been enabled as additional linear solver for Ipopt
(experimental). To try it out, set the option linear solver pardiso.

• For users with an IpoptH license, OpenMP support has been enabled for the HSL codes MA86 and
MA97.
The number of threads to use for HSL MA86, HSL MA97, and PARDISO is controlled by the GAMS
threads option.

3.33 24.2 Distribution 381

KNITRO

• New libraries 9.0.0.

• MPEC models are now supported.

Lindo/LindoGlobal

• New libraries 8.0.483.

Mosek

• New libraries 7.0.0.96.

• Mosek provides two algorithms for solving problems with discrete variables: 1) mixed-integer
optimizer (MSK OPTIMIZER MIXED INT) and 2) mixed-integer optimizer for conic and linear problems
(MSK OPTIMIZER MIXED INT CONIC). Algorithm 1 has been available since the introduction of MOSEK
to GAMS, but requires an additional license code. Algorithm 2 has been introduced with version
7 of MOSEK (GAMS 24.1). Benchmarks have shown that both algorithms perform very similar.
While we will support algorithm 1 for existing GAMS/MOSEK customers for some time, it will not
be possible to purchase this option for new GAMS/MOSEK users. They will have to use algorithm
2.

• Fixed issues with solution obtained from fixed solve when using Mosek's conic MIP solver.

• An experimental interface to Mosek's semidefinite programming (SDP) solver has been added, see
the GAMS/Mosek solver documentation for details. Note, that the interface is likely to change in
the future.

OsiCplex

• Fixed report of CPLEX Error 1217 at end of MIP solve.

OsiCplex, OsiGurobi

• Fixed setting of LP algorithm via solver specific options file.

OsiMosek

• The MIP solver choice has been changed to Mosek's conic mixed-integer programming solver.

OS

• New libraries 2.8

SoPlex

• New libraries 1.7.2

S_MOSEK.html

382 Release Notes

SCIP

• New libraries 3.0 #6078424

• SCIP setting files can be setup with the options editor of the GAMS IDE now.

SULUM

• New libraries 2.0.432.

• Branching priorities are now supported.

XPRESS

• New libraries 25.01.05.

• Fixed best bound field of start record in MIP trace file.

3.33.1.7 Tools & APIs

Tools

• New GDX tool MCFilter. This tool removes duplicate and dominated points in a multi-criteria
solution set.

Expert Level APIs

VBA

• Use camel case instead of all lower case for public functions

VB.NET

• Use camel case instead of all lower case for public functions

• Use dynamic loading of DLLs

Object Oriented APIs

• Do not throw an Exception if an Alias is read by GetSet

• Fix wrong equation subtype definition when reading equation from GAMSDatabase

• Throw an GAMSException if UEL exceeds the maximum size of 63 characters

• Throw an GAMSException if explanatory text exceeds the maximum size of 255 characters

3.33 24.2 Distribution 383

.NET

• Add MONO implementation of the object oriented GAMS .Net API for Mac OS X and Linux.

• New version of function GAMSWorkspace.AddOptions creating an instance of GAMSOptions
initialized by an existing option file

– If we pass a nullptr to this Function from C++, we need to cast this to GAMSObject∧ now
because of the overloading

• New properties: GAMSWorkspace.APIVersion, GAMSWorkspace.APIMajorRelNumber,
GAMSWorkspace.APIMinorRelNumber and GAMSWorkspace.APIGOLDRelNumber

• New property GAMSWorkspace.MyEPS: Reset value to be stored in and read from GAMSDatabase
for Epsilon, default is double.Epsilon

• New function GAMSOptions.Export: Write GAMSOptions into a parameter file

• Switching type of property GAMSOptions.NoNewVarEqu from Integer to Enum (ENoNewVarEqu)

• Renaming of GAMSEnum.ModelStat.NonOptimalIntermed to GAMSEnum.ModelStat.Feasible

• Renaming of GAMSOptions.PoolFree4 to GAMSOptions.IntVarUp

• New C# Example GAMSRemoteObject

Java

• New

– tutorial: (GAMS java Tutorial.pdf) under <Path/To/GAMS>/docs/API. From the
GAMSIDE this document can be accessed at Help -> Docs -> API.

– method in GAMSOptions: export, to write GAMSOptions into a parameter file

– methods in GAMSWorkspace: addOptions to create a GAMSOptions object from either another
object or an option file

– methods in GAMSWorkspace: getAPIVersion, getAPIMajorReleaseNumber, getAPIMinorReleaseNumber,
and getAPIGoldReleaseNumber, to retrieve API version number

– method in GAMSWorkspace: setMyEPS to reset GAMSGlobals.SpecialValues.EPS, the value
to be stored in and read from GAMSDatabase for Epsilon.

• Changed

– default value of GAMSGlobals.SpecialValues: NAN, PLUS INF, MINUS INF, and EPS

– deprecated GAMSGlobals.ModelStat.NONOPTIMAL INTERMED, replaced by GAMSGlobals.ModelStat.FEASIBLE

– deprecated GAMSOptions.PoolFree4, replaced by GAMSOptions.IntVarUp

– deprecated the type of GAMSOptions.NoNewVarEqu, replaced by enum GAMSOptions.ENoNewVarEq

• Fixed

– a bug when running a job with an input directory IDir added into GAMSOptions object.

http://www.mono-project.com

384 Release Notes

Python

• Add tutorial (GAMS python Tutorial.pdf) to <Path/To/GAMS>/docs/API. From the GAM-
SIDE this document can be accessed at Help -> Docs -> API.

• New parameter opt file in function GamsWorkspace.add options allows to create an instance of
GamsOptions that is initialized by an existing option file.

• New function GamsOptions.export: Write GamsOptions into a parameter file

• New properties: GamsWorkspace.api version, GamsWorkspace.api major rel number, GamsWorkspace.api minor rel number
and GamsWorkspace.api gold rel number

• New property GamsWorkspace.my eps: Reset value to be stored in and read from GamsDatabase
for Epsilon.

• New class NoNewVarEqu providing static fields to set option nonewvarequ

• Renaming of GamsOptions.PoolFree4 to GamsOptions.IntVarUp and property poolfree4 to intvarup

• Renaming of ModelStat.NonOptimalIntermed to ModelStat.Feasible

• The following functions throw an exception, when a wrong data type is passed for the keys/slice
parameter: delete record, find record, add record, merge record, first record, last record. Valid data
types are str, list, tuple and their subclasses

• Fixed a bug in GamsSymbol.add record() that occurred when using empty strings as keys

• Fixed a bug in GamsModelInstance.solve() that affected the logging behavior

3.33.1.8 Model Libraries

GAMS Data Library

• GDXMRWShowJac1 (86): Visualize model Jacobian in Matlab

• SpawnGAMSAccess (87): SpawnGAMS: Spawn GAMS from Access

• triobal (88): Tommasino-Rao Input Output Balance Software

GAMS EMP Library

• vidualvar (96): VI with dualvar specified for VI constraint

• vi equil (97): Identical VI models with and without containing equilibrium

• vi mcp (98): Identical models specified using MCP and VI syntax

• equil bilevel (99): Equilibrium model with and without containing bilevel

GAMS Model Library

• gastrans (217): Added a simple straightforward NLP formulation of the problem, which is now
solved by default.

• knp (321): Removed redundant model equations, now regarding best bounds reported by solvers,
improved readability.

• tricp (395): Triangular Graph Circle Packing

• allbases (396): Enumerate All Basic Solutions of an LP

3.33 24.2 Distribution 385

GAMS Test Library

• load7 (613): Tests execute loaddc

• unload10 (614): Test unload options new with GAMS 24.2

• mpec04 (615): MPEC model testing free rows

• mpec05 (616): Simple MPEC unique solution lower bounded matches

• mpec06 (617): Simple MPEC unique solution upper bounded matches

• mpec07 (618): Simple MPEC unique solution doubly-bounded matches

• mpec08 (619): Simple MPEC unique solution LB matches integer var

• mpsge13 (620): MPSGE test - model returns invalid income level

• card02 (621): Tests miniparser card() function

• uldidx01 (622): UnloadIdx - basic operation

• uldidx02 (623): UnloadIdx - checking execution restrictions

• uldidx03 (624): UnloadIdx - checking compilation restrictions

• ldidx01 (625): $loadIdx - checking basic operation

• ldidx02 (626): $loadIdx - checking restrictions

• ldidx03 (627): $loadIdx - checking restrictions

• ldidx04 (628): $loadIdx - checking restrictions

• ldidx05 (629): $loadIdx - checking restrictions

• sdp01 (630): Test of correct solving a simple conic program

• load8 (631): Domain projection load tests

• load9 (632): Domain projection load tests

• lindgl03 (633): Check that Lindo(Global) Option NLP QUADCHK works

• dbg01 (634): Test debugging option on Windows

• cpplib01 (635): Test extrinsic functions in cppcclib

• cpplib02 (636): Test extrinsic functions in cppcclib

• alias01 (637): Check handling of multidimensional aliases

• load10 (638): Domain projection load tests

3.33.1.9 Solver/Platform Availability Matrix

3.33.2 24.2.2 Maintenance release (March 04, 2014)

3.33.2.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Michael Bond, Michael Ferris, Erwin Kalvelagen, Timo Lohmann,
Kourosh Marjani Rasmussen, Javier Salmeron, Bassel Timani, Shigeru Tsubakitani, Tom Walker, and
Jürgen Wolpert.

386 Release Notes

3.33.2.2 Platforms

• Including now the correct Fortran and C++ standard libraries in a Solaris 64bit Intel system.

3.33.2.3 GAMS System

• Fix a bug that could cause a crash when unloading an alias to the universe to GDX.

• Fix a bug when unloading to a GDX file failed.

• Accept a Mac license when using the GAMS Windows Distribution via Wine.

3.33.2.4 Solvers

BARON

• New libraries 12.7.7.

• Missing option results added.

• Option PrLevel accepts only 0 or 1.

Bonmin

• New libraries.

CBC

• New libraries.

• Add solution report for LPs that have not been solved to optimality (with corresponding infeasibility,
non-optimality, unboundedness markers).

CONOPT

• New library 3.15N.

Couenne

• New libraries.

Cplex

• Fix a bug that resulted in Cplex solving an LP as a MIP in case of solvelink=5.

3.33 24.2 Distribution 387

Gurobi

• New libraries 5.6.2.

• This Gurobi version introduces an experimental no relaxation heuristic that attempts to find good
quality feasible solutions to MIP models without first solving the root relaxation. This can be useful
in situations where the root relaxation is extremely large or difficult.

GUSS/Scenario Solver

• Fix a bug with keyword 'opt' when retrieving model attributes from the scenario solves.

KNITRO

• New libraries 9.0.1.

Lindo/LindoGlobal

• We will drop LindoGlobal libraries for Sparc Solaris with the next major release (24.3).

• Fix potential problem using multiple threads on LP problem.

• New libraries 8.0.498.

Mosek

• New libraries 7.0.0.106.

SCIP

• New libraries 3.0 #70041f0.

XPRESS

• New libraries 25.01.07.

3.33.2.5 Tools & APIs

GDX Tools

• Fixed a problem with gdxrank that surfaced with the new default Squeezed of option gdxUELs.

• CSV formatted output of gdxdump no longer includes a Val column for sets.

• Tools like gdxdump, gdxdiff and gdxrank will process an input file without a file extension if that
file exists. If the file does not exist, the file with the .gdx file extension will be used.

388 Release Notes

Object Oriented APIs

• Fix error when exporting GAMSDatabase with Aliases.

• Fixed a bug regarding the subtype of equations and their default records, when the equation was
added to a GamsDatabase from the APIs.

• Fix GAMSExitCodes.

• Make sure that GAMSModelInstance.Instantiate() does not solve the model, but only prepares
everything required for the following Solve().

Java

• Changed

– null string is treated as an invalid key for all record operations of GAMSSymbol.

• Fixed

– a bug when creating GAMSDatabase from source database.

– a bug when initializing a variable type in GAMSVariable.

– a bug in GAMSSymbols: methods getVarType() and getEquType().

– a bug in GAMSWorkspaceInfo: method getSystemDirectory().

Python

• Fixed a bug in GamsSymbol.delete record().

3.33.3 24.2.3 Maintenance release (May 22, 2014)

3.33.3.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Michael Bond, Wolfgang Britz, Carla Caldeira, Markus Drouven,
Guillaume Erbs, Michael Ferris, Inki Kim, Bruce McCarl, Nazmi Sener.

3.33.3.2 Platforms

• On AIX, GAMS executables could allocate at most 2 GB of memory. This limit has been increased
to 200 GB.

3.33.3.3 GAMS System

• Fixed option sys10

3.33 24.2 Distribution 389

3.33.3.4 Solvers

CONOPT

• New libraries 3.15P.

CBC

• New libraries.

CPLEX, Gurobi and Xpress

• Fixed issues regarding missing libraries and wrong library dependencies on AIX.

DICOPT

• Fixed option setting relaxed = 0.

EMPSP

• Fixed a bug with chance constraints.

• Fixed a bug where a certain order of random variables could cause a crash.

Gurobi

• New libraries 5.6.3.

• The writeprob option now writes an additional mipstart file (.mst.gz), if a MIP is written and
the mipstart option has been set.

GUSS/Scenario Solver

• Previously, GUSS only solved scenarios that had some update data. Now, GUSS solves also an
empty scenario, i.e., a scenario without any update data. It now depends on the update type which
scenario is solved.

• Fixed a bug which caused a crash when the scenario dictionary set has more than 50 entries.

Ipopt

• New library.

– Fixed a bug that lead to convergence issues on some instances.

390 Release Notes

Lindo

• Fixed option NSAMPLE PER STAGE.

Mosek, OsiMosek

• New libraries 7.0.0.114.

• Fixed deadlock on Windows when using Mosek or OsiMosek with a user (i.e., non-GAMS) license.

3.33.3.5 Tools & APIs

• har2gdx implements -H option

• gdxxrw understands RC notation for cells when using option UseRC.

Object Oriented APIs

• Fixed memory leak in GAMSDatabase.

Java

• Fixed a bug in GAMSDatabase.getDatabaseDomainViolation.

3.34 24.1 Distribution

3.34.1 24.1.1 Major release (May 30, 2013)

3.34.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Étienne Ayotte-Sauvé, Stephen Frank, Youngdae Kim, Andres Ramos,
Steffen Rebennack, and Francisco Trespalacios.

3.34.1.2 GAMS System

Installer

• The GAMS installer for Windows is now digitally signed which allows to verify the authenticity

Documentation

• McCarl guide has been updated

3.34 24.1 Distribution 391

GAMS

• new log output option lo=4 has been added: writes simultaneously to log file and stdout.

• Memory leak for GUSS/ScenarioSolver fixed. This also was a problem for the GAMSModelInstance
in the OO-API.

• Command line option OptFile does not overwrite model.optfile anymore. OptFile now behaves
as other GAMS options e.g. like ResLim. A new command line option ForceOptFile overwrites all
other methods of setting a solver option.

• New option NoNewVarEqu will trigger a compilation error when new equation or variable symbols
are introduced. This is useful for testing GAMS run-time environments.

• New option SymPrefix that prefixes all user symbols compiled in this run with the string value of
this option before saving to a save/restart file. This is useful when merging multiple models together
to avoid name clashes.

GAMS IDE

• The text comparison utility menu has been changed and now has a structure similar to the GDXDIFF
menu; previous file selections are available in the drop-down fields

• The help menu has a link to the search page on the GAMS website

3.34.1.3 Solvers

”D” Solvers

• The ”D” solvers GAMS/ConvertD and GAMS/CplexD started as research and development versions
of the production solvers GAMS/Convert and GAMS/Cplex and offer some interesting new features
that eventually will migrate into the production version.

ALPHAECP

• Alpha-ECP v2.10.02. New option ECPmaster and minor performance improvements.

ANTIGONE

• The new solver ANTIGONE (Algorithms for coNTinuous / Integer Global Optimization of Nonlinear
Equations) is a computational framework for deterministic global optimization of nonconvex MINLP.
ANTIGONE performs equivalently to GloMIQO when all nonlinearities in MINLP are quadratic.

• ANTIGONE has been developed by Computer-Aided Systems Laboratory at Princeton University;
it was completed in collaboration with the Centre for Process Systems Engineering at Imperial
College.

• GAMS/ANTIGONE is available for the 32-bit and 64-bit versions of Windows and Linux.

• GAMS/ANTIGONE requires the presence of a GAMS/CPLEX license and either a GAMS/CONOPT
or a GAMS/SNOPT license.

392 Release Notes

Bonmin, Couenne, Osi∗, SCIP

• Marginals are now reported as 'NA', if not available, instead of 0.

Baron

• New libraries 12.3

• New relaxations for certain types of quadratic problems

• Clp 1.14.8

• Farkas infeasibility test to validate LP subsolver claims of infeasibility (Cplex and Clp only)

• Dynamic memory allocation, options workspace and workfactor have been removed

• Improved integer presolve

• Incorporation of convex envelopes for certain low-dimensional functions

CBC

• New libraries Clp 1.15 and Cbc 2.8

• An implementation of zero-half cuts is now available. So far, they may help only on a small subset
of problems and may need some tuning, so they are off by default. The new option zerohalfcuts can
be used to enable them.

• Alternative implementations of Gomory mixed-integer and reduce and split cuts are now available.
By default, these cuts are off. The new options gomorycuts2 and reduceandsplitcuts2 can be used
to enable them.

• Added new parameter cut passes slow to encourage the use of some of the more exotic/expensive
cut generators.

• The random seeds for CLP and CBC can now be set by user via the new options randomseedclp
and randomseedcbc.

• Cbc can now solve the root node multiple times, each with its own different seed. This can be
enabled via the new option multiplerootpasses.

• New option extravariables that switches on a trivial re-formulation that introduces extra integer
variables to group together variables with same cost.

• New option cutoffconstraint to add the objective function as a constraint which right hand side is
set to the current cutoff value to the problem.

• New option parallelmode to switch between deterministic and opportunistic parallelization. NOTE:
The default is deterministic, while it was opportunistic in the past.

Cplex

• New libraries 12.5.0.1 (fix pack 1)

• New link option solnpoolmerge to write all solutions into a single GDX file

• Solutions from the solution pool are written in sorted order from best to worst

• GAMS/CplexD supports the Cplex remote object. See option ComputeServer.

3.34 24.1 Distribution 393

CONOPT

• New libraries 3.15K

• Fixed a system error (303) related to inversion of very large matrices.

• Adjusted some test output to handle more than 1 mill rows and columns.

• If the directional 2nd-derivative routines returned an error and should be turned off they were not
turned off after all and the result was poor performance and many strange messages. Problem Fixed.

• The final model could be infeasible and still declared feasible if the initial and final scaling factors
were very different. Problem Fixed.

DICOPT

• added parameter 'infbnd' to control which value to use for missing bounds in integer cuts (default is
10000)

EMPSP

New experimental keywords making use of the extrinsic function library lsadclib to sample random
variables with parametric distributions, any feedback will be appreciated:

• sample <rv1> [rv2 ... rvn] <sampleSize> [varRedGroup]

– sample: keyword

– rv?: name of random variable

– sampleSize: size of sample

– varRed: variance reduction group, mapped to variance reduction method using solver option
file

– Example:

∗ %emp.info%:

· sample d 5 group1

– lindo.opt

∗ SVR LS ANTITHETIC=group1

• setSeed <seed>

– Sets the seed for sample

GloMIQO

• New libraries 2.2

• Fixed bug in detecting when aBB cuts should be generated.

394 Release Notes

Gurobi

• New libraries 5.5

• New options

– GAMS/Gurobi support Gurobi's Compute Server. See options ComputeServer and options
starting with CS

– Parameter Tuning Tool: See option Tuning and options starting with Tune

– ConcurrentMIP: This new feature launches multiple, independent solves on the same MIP
model, using different settings for each. The solve returns when the first one finishes. This
approach allows you to exploit multiple cores to explore a diverse set of search strategies

– NumericFocus: This new parameter allows you to indicate that a model is likely to experience
numerical trouble, which then causes our internal algorithms to favor numerical robustness
over speed

Ipopt, IpoptH

• New libraries 3.11

• default for option ma57 automatic scaling changed to no

• new options print frequency iter and print frequency time to adjust amount of iteration summary
output

• fixed assignment of INFES markers in listing file (infeasibilities between constraint violation tolerance
and acceptable constraint tolerance were not marked)

IpoptH

• Added a new linear system solver HSL MA97

• Updated linear system solver HSL MA86

• Both MA57 and HSL MA97 should be considered as alternative to the default MA27 (see Ipopt
option linear solver)

JAMS

• fixed a bug in substituting variables in a nonlinear equation during a convex-hull reformulation

KNITRO

• new libraries 8.1.1

3.34 24.1 Distribution 395

Lindo, LindoGlobal

• New libraries Lindo 8.0

• Multithreading support

– The new GAMS/Lindo/LindoGlobal option num threads defines the number of threads to be
used, it is initialized by the GAMS option threads

– The new GAMS/Lindo/LindoGlobal option multithread mode defines the threading mode
(auto, concurrent or parallel)

• Stochastic Solver Improvements

– Nested Benders Decomposition implementation has been improved significantly, achieving
speed factors up to 6X compared to the previous version

– The Chance-programming solver adds a Genetic Algorithm to find high-quality feasible solutions
to large-scale instances. Models in this class can now also be solved using the Simple Benders
Decomposition method

– Multithreading with Nested Benders Decomposition (NBD) solver leads to speed improvements
from 2.5 to 3.5 when using 4 threads

• MIP Solver Improvements

– The heuristics are improved significantly, simple rounding and feasibility pump now use bound
propagation to improve the current path to a new feasible MIP solution

– Multithreading can lead to speed improvements from 1.5 to 3.0 times on difficult problems
using 4 threads rather than 1, for easy MIP problems, e.g., < 600 seconds, multi-threading
may give not much speedup

• Multistart Solver Improvements

– Multistart solver has been improved significantly, achieving speed factors up to 2X compared
to the previous version

– The likelihood of getting the global optimum has improved by 10-15% over a wide range of
nonconvex models

– Multithreading often leads to speed improvements from 2.0 to 3.0 times when using 4 threads,
speed improvements tend to improve as the model size and the number of multistarts increase

• Changed meaning of objwgt in chance constraints (CC): now it gets multiplied by the violation
ratio of the CC before it was added to the objective, in previous versons it was multiplied by (1 -
the violation ratio)

• Further new options

– find block: graph partitioning method to find block structures

– gop linearz: flag indicating if GOP exploits linearizable model

Mosek

• Mosek 7.0.0.65

• An additional parallelized mixed integer optimizer has been added. This optimizer is chosen for
MIP solves if no Mosek/MIP license is available. See also option MSK IPAR OPTIMIZER.

• Recognizes some quadratic constraints as cone constraints, so =c= equations can be avoided.

• AVX instructions in the latest INTEL CPUs are now exploited.

• Dropped support for Solaris Intel 64bit platform.

396 Release Notes

• The option writembt is now deprecated. Please consider using the option MSK SPAR DATA FILE NAME
instead.

• The option mipstart is now a synonym for MSK IPAR MIO CONSTRUCT SOL and thus takes
values MSK ON and MSK OFF.

• Numeric values for options with symbolic constants (e.g. MSK IPAR INTPNT BASIS) are not
supported anymore.

MSNLP, OQNLP

• fixed function evaluation issues in lsgrg when using external equations

OsiMosek

• dropped OsiMosek on Solaris Intel 64bit platform

OSL/OSLSE

• dropped OSL and OSLSE from this and future GAMS distributions

SCIP

• New libraries 3.0 #a4a627b

SULUM

• New libraries 2.0.263 (Beta)

• The new SULUM libraries comes with support for mixed-integer linear programs (MIP). The new
MIP optimizer is an advanced implementation of a branch and cut method, with many performance
enhancements added. The key features of the MIP optimizer can be highlighted as :

– Advanced MIP presolve to reduce the problem size and provide a better formulation for the
optimizer.

– Tight integration with the Sulum LP optimizer to efficiently solve LP's in node and during
heuristics.

– Various branching and node selection methods from computational inexpensive to more expen-
sive schemes.

– Cutting plane generation and filtering if deemed necessary.

– Heuristics to either find an initial solution or improve the current incumbent, which includes
rounding, diving and sub-mipping heuristics types.

– Improvements to ensure numerical stability.

XPRESS

• New libraries 24.01.04

– Improved concurrent LP solve

– Improved performance when using the parallel barrier solver

– Fix faulty dispatch of SSE3 instructions in QP

• New link option solnpoolmerge to write all solutions into a single GDX file

3.34 24.1 Distribution 397

3.34.1.4 Tools & APIs

Object Oriented APIs

• New features were added to the object oriented GAMS APIs including e.g. the capability to specify
the domains of symbols, check for domain violations, copying ModelInstances, or setting the debug
level using a environment variable. More details about new and modified functions can be found in
the following sections about the different languages.

.NET

• Documentation

– Add tutorial (GAMS.net4.Tutorial.chm) to <Path/To/GAMS>/docs/API. From the GAM-
SIDE this document can be accessed at Help → Docs → API.

• GAMSDatabase

– New function CheckDomains: Check for all symbols if all records are within the specified
domain of the symbol

– New function GetDatabaseDVs: Return all GAMSDatabaseDomainViolations

– New property SuppressAutoDomainChecking: Controls whether domain checking is called in
GAMSDatabase export

– New variants of the functions AddEquation, AddParameter, AddSet, AddVariable: Allow to
specify domain information

– Function Compact becomes obsolete and will be dropped in future

• GAMSModelinstance

– New function CopyModelInstance: Copies a ModelInstance to a new ModelInstance which gets
constructed at this call

– New function Interrupt: Sends interrupt signal to running GAMSModelInstance

• GAMSModifier

– Allow to define SymbolUpdateType for each GAMSModifier separately

• GAMSSymbol (GAMSEquation, GAMSParameter, GAMSSet, GAMSVariable):

– New function CheckDomains: Check if all records are within the specified domain of the symbol

– New function CopyToArray: Copies values of a dense symbol into a dense array

– New function CopyToSqzdArray: Copies values of a sparse symbol into a squeezed array

– New function CopySparseToDenseArray: Copies values of a sparse symbol into a dense array

– New function CopyFromDenseArray: Copies values from dense array into a symbol

– New function CopySliceFromDenseArray: Copies values from slice of dense array into a symbol

– New function GetSymbolDVs: Return all GAMSSymbolDomainViolations

– New function MergeRecord: Finds record in GAMSSymbol if it exists, adds it if not

– New property Domains: Domains of Symbol, each element is either a GAMSSet (real domain)
or a string (relaxed domain)

• GAMSWorkspace

– Change the Debug parameter from a Boolean flag to an enum type called DebugLevel

– The Debug parameter can be overwritten by the system environment variable ”GAMSOOAPI-
DEBUG” if set to one of the following: Off, KeepFiles, ShowLog, Verbose

398 Release Notes

– Improve performance significantly for function AddDatabase(GAMSDatabase)

– New functions: AddJobFromGamsLib, AddJobFromTestLib, AddJobFromEmpLib, Ad-
dJobFromDataLib and AddJobFromFinLib

– New properties: Version, MajorRelNumber, MinorRelNumber and GOLDRelNumber

– New optional parameter inModelName for functions AddDatabaseFromGDX/AddDatabase:
GAMS string constant that is used to access this database

• Add new sub class of GAMSException: GAMSExceptionExecution. This provides additional info
about the reason of the failed execution.

• New examples:

– C#: DomainChecking, Markowitz, SimpleCutstock, Transport13, TSP, MessageReceiverWin-
dow

– C++: Transport Sequence

– VB.NET: Transport Sequence

Java

• Changes in GAMSDatabase:

– deprecates the compact method, as it has no effect anymore.

• Changes in GAMSGlobals:

– the default value of working directory has been changed from System.getProperty(”user.dir”)
to System.getProperty(”java.io.tmpdir”).

• Changes in GAMSModelInstance:

– deprecates the instantiate(GAMSOptions options), instantiate(GAMSModifier[]), and instanti-
ate(GAMSOptions, GAMSModifier[]) methods and replaced by instantiate(String, GAMSMod-
ifier ...) and instantiate(String, GAMSOptions, GAMSModifier ...) methods.

• Changes in GAMSWorkspace and GAMSWorkspaceInfo:

– deprecates boolean debug flag and replaced by a debug level flag (type of a new class GAMS-
Globals.DebugLevel).

– allows an override of debug level flag from an environment variable ”GAMSOOAPIDEBUG”

• Fixed a bug when iterating through the records of a GAMSSymbol.

• New enumeration class GAMSGlobals.DebugLevel:

– defines values of different GAMS Debug Levels.

• New enumerated value of GAMSModelInstance.SymbolUpdateType:

– GAMSModelInstance.SymbolUpdateType.INHERIT: to specify SymbolUpdateType separately
for each GAMSModifier.

• New methods in GAMSDatabase:

– addEquation, addParameter, addSet, and addVariable: to add symbols with domain informa-
tion.

– checkDomains: to check whether or not all records of all symbols are within the specified
domain of the symbols.

– getDatabaseDomainViolations: to retrieve a domain violation information as a list of GAMS-
DatabaseDomainViolation objects.

3.34 24.1 Distribution 399

– isAutoDomainCheckingSuppressed and suppressAutoDomainChecking: to control whether
domain checking will be called when exporting a database.

• Changes in GAMSDatabase:

– the compact method is obsolete and has no effect anymore. It will be removed in the future.

• New class GAMSDatabaseDomainViolation:

– contains domain violation information of all symbols (if any) in the database.

– returns call from a new method GAMSDatabase.getDatabaseDomainViolations.

• New methods in GAMSModelInstance:

– copyModelInstance: to copy a GAMSModelInstance object.

– interrupt: to send an interrupt signal to a running GAMSModelInstance.

• new methods in GAMSModifier:

– constructor: to specify SymbolUpdateType for each GAMSModifier object.

– getUpdateType: to retrieve SymbolUpdateType property of the object.

• New methods in GAMSSymbol:

– checkDomains: to check whether or not all records of the symbol are within the specified
domain.

– getDomains: to retrieve a list of domains of the symbol, each element is either a GAMSSet
(real domain) or a String (relaxed domain).

– getSymbolDomainViolations: to retrieve a domain violation information as a list of GAMSSym-
bolDomainViolation objects.

– mergeRecord: to add a new symbol record in case the record does not exist.

• Fixed a bug when iterating through the records of a GAMSSymbol.

• New class GAMSSymbolDomainViolation:

– contains domain violation information of the symbol (if any).

– returns call from a new method GAMSSymbol.getSymbolDomainViolations.

• New methods in GAMSWorkspace:

– getGAMSVersion: to retrieve information about GAMS Version.

– getGoldReleaseNumber: to retrieve GAMS GOLD Release Number.

– getMajorReleaseNumber: to retrieve GAMS Major Release Number.

– getMinorReleaseNumber: to retrieve GAMS Minor Release Number.

• Changes of location of examples:

– from<Path/To/GAMS>/apifiles/Java/Benders∗.java to<Path/To/GAMS>/apifiles/Java/benders/Benders∗.java

– from<Path/To/GAMS>/apifiles/Java/Custock.java to<Path/To/GAMS>/apifiles/Java/cutstock/Cutstock.java

– from<Path/To/GAMS>/apifiles/Java/ConsoleInterrupt.java to<Path/To/GAMS>/apifiles/Java/interrupt/ConsoleInterrupt.java

– from<Path/To/GAMS>/apifiles/Java/Transport∗.java to<Path/To/GAMS>/apifiles/Java/transport/Transport∗.java

– from<Path/To/GAMS>/apifiles/Java/Warehouse.java to<Path/To/GAMS>/apifiles/Java/warehouse/Warehouse.java

• New examples:

– <Path/To/GAMS>/apifiles/Java/cutstock/SimpleCutstock.java

– <Path/To/GAMS>/apifiles/Java/domain/DomainCheck.java

– <Path/To/GAMS>/apifiles/Java/transport/Transport13.java

– <Path/To/GAMS>/apifiles/Java/tsp/Tsp.java

400 Release Notes

Python

• New examples: markowitz.py, tsp.py, transport13.py, simple cutstock.py, domain checking.py

• New facility for GamsSymbols with domain information:

– GamsDatabase:

∗ New functions add parameter dc, add variable dc, add equation dc and add set dc: Create
GamsSymbols with domain information

∗ New function check domains: Check for all symbols if all records are within the specified
domain of the symbol

∗ New function get database dvs: Return all GamsDatabaseDomainViolations

∗ New property suppress auto domain checking: Controls whether domain checking is called
in GamsDatabase export

– GamsSymbol and its derived classes:

∗ New function check domains: Check if all records are within the specified domain of the
symbol

∗ New function get symbol dvs: Return all GamsDatabaseDomainViolations

∗ New property domains: Domains of Symbol, each element is either a GamsSet (real domain)
or a string (relaxed domain)

– New classes GamsDatabaseDomainViolation and GamsSymbolDomainViolation that are re-
turned by GamsDatabase.get database dvs and GamsSymbol.get symbol dvs

• New functions in GamsModelInstance:

– copy modelinstance: Copies a GamsModelInstance to a new GamsModelInstance which gets
constructed at this call

– interrupt: Sends interrupt signal to running GamsModelInstance

• New function in GamsSymbol and its derived classes: merge record finds a record if it exists and
adds it if not

• New functions in GamsWorkspace: add job from gamslib, add job from testlib, add job from emplib,
add job from datalib and add job from finlib

• New properties in GamsWorkspace: version, major rel number, minor rel number, gold rel number

• New optional parameter in model name for functions add database from gdx/add database in
GamsWorkspace: GAMS string constant that is used to access this database

• Changed the debug argument passed to the GamsWorkspace constructor. Use members of class
DebugLevel: Off, KeepFiles, ShowLog and Verbose instead of True and False

• New sub class of GamsException: GamsExceptionExecution, which provides additional info about
the reason of the failed execution

• Allow to define SymbolUpdateType for each GamsModifier seperately

• Significant performance improvement for function GamsWorkspace.add database when creating
from an already existing database

• Changed the unicode settings on Linux from UCS2 to UCS4

• The Debug parameter of GamsWorkspace can be overwritten by the system environment variable
”GAMSOOAPIDEBUG” if set to one of the following: Off, KeepFiles, ShowLog, Verbose

• The compact method of GamsDatabase is obsolete and has no effect anymore. It will be removed in
the future

• Fixed a bug in GamsModelInstance.solve()

• Fixed a bug in GamsDatabase, where the special value for undefined was set to 0 instead of 1.0E300
(SV UNDEF)

• Fixed a bug when iterating through the records of a GamsSymbol

3.34 24.1 Distribution 401

GDXXRW

• Some format of range names are now recognized

• More details in error message for a bad range

GDXDUMP

• Option to replace header

• Option EpsOut

• Performance improvement when writing a large CSV file

CSV2GDX

• New utility to convert a CSV file to a GDX file

– A simple example is in the GAMS data library

MessageReceiverWindow

• New Windows tool that receives messages from GAMS. The GAMS Test Library model mrw01
demonstrates its usage.

3.34.1.5 Model Libraries

GAMS Data Library

• SpawnGAMSExcel (84): Spawn an arbitrary model from Excel

• csv2gdx1 (85): testing CSV file conversions

GAMS Model Library

• cpack (387): Packing identical size circles in the unit circle

• trigx (388): Another Trigonometric Example

• stablem (389): Stable Marriage Problem

• srtree (390): Simple Scenario Tree Construction Example

• tgridmix (391): Grid Transportation Problem with Single Submit and Collect Loop

• prisoner (392): Prisoners dilemma as EMP and MCP

• cesam2 (393): Cross Entropy SAM Estimation

• solmpool (394): Cplex Solution Pool for a Simple Facility Location Problem with Merged GDX
Solution File

402 Release Notes

GAMS Test Library

• nlcode7 (586): Test for NL code bug from Dist 24.0.1

• n3707 (587): MIP model used by CTRLC test

• mod011 (588): MIP model used by CTRLC test

• fuzzy (589): MINLP model used by CTRLC test

• nuclear49b (590): MINLP model used by CTRLC test

• enpro56 (591): MINLP model used by CTRLC test

• popdynmMCP25 (592): MCP model used by CTRLC test

• popdynmMCP250 (593): MCP model used by CTRLC test

• popdynmMCP1000 (594): MCP model used by CTRLC test

• gft (595): MPSGE model used by CTRLC test

• pf4mip (596): Test unbounded integer variables (MIP)

• pf4minlp (597): Test unbounded integer variables (MINLP)

• emp12 (598): Test of EMP equilibrium models and fixed vars

• emp13 (599): Test of EMP equilibrium models and fixed vars

• emp14 (600): Test of EMP equilibrium model with vi func

• emp15 (601): Test of EMP equilibrium model with vi func

• emp16 (602): Test of NLP -> MCP via JAMS

• miqcp03 (603): Test modsolstat & solution correctness - multiple QCons & binaries

• mcp10 (604): MCP model with negative equ.var

• convert8 (605): Test that eps in nonlinear code is kept by convert

• gurobi01 (606): GUROBI test suite - tuning test

• lp15 (607): LP with many zeros at solution

• convert9 (608): CONVERT test suite - handling of fixed vars for nlp2mcp

• lsalib01 (609): Test extrinsic functions in lsadclib

• mrw01 (610): Test MessageReceiverWindow.exe

• rs01 (611): Solving a Transportation Problem using Cplex and Gurobi remote server

• xpress06 (612): Solution enumerator example with solnPoolMerge

3.34.1.6 Solver/Platform Availability Matrix

3.34.2 24.1.2 Maintenance release (June 16, 2013)

3.34.2.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Sergio Corvalan, George Mavrotas, Renger van Nieuwkoop, and
Andres Ramos.

3.34 24.1 Distribution 403

3.34.2.2 GAMS System

GAMS

• Fixed a problem when restarting from restart files from 24.0 and previous if extrinsic functions were
present

3.34.2.3 Solvers

BARON

• New libs 12.3.3

– SNOPT 7.2-12.1 with fixes

– New defaults for options PreLPDo (0) and PDo (-2) which lets BARON decide about probing

• Fixed an issue with reporting the correct solve time back to GAMS

Cplex/CplexD

• new libs 12.5.1

• new parameters LiftProjCuts and CalcQCPDuals

• Fixed a problem in CplexD where models with all discrete variables relaxed (prior=inf) were still
solved as discrete problems

MOSEK

• New libraries 7.0.0.70

SULUM

• New libraries 2.0.284 (Beta)

3.34.2.4 Tools & APIs

GDXXRW

• Fixed a bug where a range like B5:B5 became a single anchor point

3.34.3 24.1.3 Maintenance release (July 26, 2013)

3.34.3.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz, Sebastian Dilly, Sascha Herrmann, Aida Khajavirad,
and Johan Villaume.

404 Release Notes

3.34.3.2 GAMS System

Installer

• The GAMS installer for Windows now asks if an existing GAMSDIR environment variable from a
previous installation should be updated.

GAMS

• Fix crash with huge dictionary files

GAMS IDE

• Fixed formatting of Ipopt, Bonmin, and Couenne options files when written by options editor.

• Using Help | About now uses the project directory for temporary files avoiding issues with a write
protected system directory.

3.34.3.3 Solvers

ANTIGONE and GloMIQO

• New libraries ANTIGONE 1.1 and GloMIQO 2.3

– eliminate constraint on the number of variables (ANTIGONE/GloMIQO was previously limited
to 45,000 variables)

– improve nonlinear term bound inferences

– improve automatic scaling of problems with many disparate scales

– track numerically sensitive variables for possible instability associated with optimality-based
bounds tightening

COIN-OR / SCIP / SoPlex

• fixed an issue loading coincclib64.dll on some Windows 64bit machines

CONOPT

• New Libraries 3.15L

IPOPTH

• New HSL libraries MA57 3.8, HSL MC68 3.3, HSL MA86 1.5, HSL MA97 2.2

• Changed default of option ma27 meminc factor from 10 to 2

3.34 24.1 Distribution 405

MOSEK

• New library 7.0.0.75

SCIP

• New library 3.0 #0b46aef

SULUM

• New library 2.0.314

3.34.3.4 Tools & APIs

Object Oriented APIs

Java

Improve data iterator:

• New classes:

– GAMSDatabaseIterator implements java.util.Iterator

– GAMSSymbolIterator implements java.util.Iterator

• Deprecated class:

– GAMSSymbolIterable

• Changes in GAMSDatabase:

– GAMSDatabase implements GAMSDatabaseIterator instead of GAMSSymbolIterable

– deprecated the implemented methods of GAMSSymbolIterable: next(), hasnext(), and
remove()

• Changes in GAMSSymbol:

– GAMSSymbol implements GAMSSymbolIterator instead of GAMSSymbolIterable

– deprecated the implemented methods of GAMSSymbolIterable: next(), hasnext(), and
remove()

• new methods in GAMSSymbolRecord:

– moveNext(): to iterate to the next record using the current data iterator criterion

– movePrevious(): to iterate to the previous record using the current data iterator criterion

Updated example:

• <Path/To/GAMS>/apifiles/Java/transport/Transport12.java

406 Release Notes

GDXXRW

• Better error reporting for certain range errors

• Issue a warning when writing to an XLSX file by default when there is a file with the same name
that has the extension .XLS

3.35 24.0 Distribution

3.35.1 24.0.1 Major release (December 24, 2012)

3.35.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release.

3.35.1.2 Platforms

• Dropped Mac OS X 32bit build

• Mac OS X 64bit build now on Lion (10.7)

3.35.1.3 GAMS System

APIs

Documentation

• Moved existing documentation about the APIs to <Path/To/GAMS>/docs/API. Also added new
documentation there. In the GAMSIDE this documentation can be accessed at Help → Docs

→ API.

.NET

• Add function Interrupt to GAMSJob: Sends interrupt signal to running GAMSJob

Java

This release contains a beta version of the object-oriented Java API that can be used to control GAMS
from a Java program. It allows the seamless integration of GAMS into Java by providing appropriate
classes for the interaction with GAMS. GAMS Java API objects allow a convenient way to exchange input
data and model results with in-memory representation of data (GAMSDatabase), and to create and run
GAMS models (GAMSJob) that can be customized by GAMS options (GAMSOptions). Furthermore,
they introduce a way to solve a sequence of closely related model instances in the more efficient way
(GAMSModelInstance).

• A Java program that uses object-oriented Java API requires at least Java SE 5 to compile and run.

• All classes are distributed within one single jar file GAMSJavaAPI.jar with a namespace
com.gams.api, located under the <Path/To/GAMS>/apifiles/Java/api/ directory.

• Java program examples are distributed with a namespace com.gams.examples, located under the
<Path/To/GAMS>/apifiles/Java/ directory.

• Installation and detailed documents can be found in <Path/To/GAMS>/apifiles/readme.txt and
<Path/To/GAMS>/docs/API/GAMS java.pdf.

• Javadoc for GAMSJavaAPI.jar can be found under the<Path/To/GAMS>/apifiles/java/api/javadoc
directory.

3.35 24.0 Distribution 407

Python

• In the API to the option object the signature of the function optGetStrStr has changed from: value
= optGetStrStr(optHandle, "GDX", dummyString) to value = optGetStrStr(optHandle,

"GDX")

• The compiled Python libraries are built with Python 2.7 now.

• This release contains a beta version of the object-oriented Python API that can be used to control
GAMS from within Python 2.7. It allows the seamless integration of GAMS into Python by
providing appropriate classes for the interaction with GAMS. The GamsDatabase class for in-
memory representation of data can be used for convenient exchange of input data and model results.
Models written in GAMS can be run with the GamsJob class and by using the GamsModelInstance
class a sequence of closely related model instances can be solved in an efficient way. To use this API
one has to perform one of the following steps:

Installing the API and the required low level APIs:

cd <Path/To/GAMS>/apifiles/Python/api && python setup.py install && cd ..

Using the API without installing:

export PYTHONPATH=<Path/To/GAMS>/apifiles/Python/api (Unix)

set PYTHONPATH=<Path\To\GAMS>\apifiles\Python\api (Windows)

Running transport1.py example:

export LD_LIBRARY_PATH=<Path/To/GAMS>:$LD_LIBRARY_PATH (DYLD_LIBRARY_PATH on OS X, not required on Windows)

python transport1.py

Documentation about this API can be found in <Path/To/GAMS>/docs/API/GAMS python.pdf.

Documentation

• added separate GAMS installation notes for Mac OS X

External Equations

• Added a list of examples to the GAMS Test Library.

GAMS

• If Solvelink is set to a non-default value. The GAMS log prints out the solvelink selection: ---

Executing SOLVER (Solvelink=i): elapsed 0:00:00.000

• New date in audit line. Each GAMS component writes an audit line to the GAMS log, e.g.
GAMS/Cplex write IBM ILOG CPLEX Jul 14, 2011 23.7.3 WIN 27723.27726 VS8 x86/MS

Windows. The date in this line used to be the license check date, which does not change
with maintenance releases (23.9.X). Starting with 24.0.1 the date displayed in the audit line is the
build date of the system and changes with every release including maintenance releases.

408 Release Notes

• When GAMS is run from the command line on Windows systems and a solver is interrupted, the
OS issued a message Terminate batch job (Y/N)? and the user had to interact. Now the message
is still printed, but GAMS does not wait for a user action anymore. This has a rare side effect that
solver keyboard interactions (e.g. in GAMS/Cplex with option Interactive and GAMS/SCIP with
option GAMS/Interactive) will not work unless the new GAMS option InteractiveSolver is set
to 1.

• For compile time commands like $include, the $ had to be in column 1. Leading blanks are now
allowed for such commands, but require an additonal $: $$include. The $$ can only be used for
the first dollar command in a line. For example, $set a 'aa' $$set b 'bb' does not work.

• GAMS has added UserName and ComputerName to the recorded fields of the GAMS Trace facility.
Besides many uses in quality assurance testing, the trace facility e.g. can be used to audit the
GAMS activities in a multi user environment with a shared GAMS installation.

• Report equations with general non-linearity in lst file for QCP models

• New put utility feature WinMsg allows to send a Windows message to a window:

put_utility fx ’WinMsg’ / ’WindowTitle’ / ’Message’;

• Asynchronous calls on Windows can be started with a new console rather than sharing the console of
the parent process. $CALL.ASYNCNC, Execute.AsyncNC and Put Utility keywords Exec.AsyncNC

and Shell.AsyncNC have been added. NC and non NC calls behave identical on non-Windows
platforms.

GAMS IDE

• The IDE has now an integrated Text differ to compare two text files; see File | Diff Textfiles

GDXRRW

• GDXRRW is a suite of utilities to import/export data between GAMS and R and to call GAMS
conveniently from R. The software gives R users the ability to use all the optimization capabilities
of GAMS, and allows visualization and other operations on GAMS data directly within R.

• GDXRRW is unique among the GDX interface utilities in that it is an R extension made available
as an R package. As such, it is run as part of an R session or script, not as part of a GAMS run,
and it follows the usual R package conventions.

• Source and binary packages for GDXRRW are part of the GAMS distribution.

3.35.1.4 Solvers

BARON

• New libs 11.8.0

• BARON uses an improved link to Clp

• BARON uses latest SNOPT 7.2-12

• BARON uses latest IPOPT 3.10.3

• Memory requirements have been significantly reduced

3.35 24.0 Distribution 409

Bonmin

• Faster reaction to user interrupt during solve of initial NLP relaxation.

• Changed default setting for parameters variable selection and milp strategy to strong-branching
and solve to optimality, respectively.

• Renamed miptrace options to solvetrace.

CBC

• New library 2.8

– A new primal heuristic ”Proximity Search” (proposed by Fischetti and Monaci, 2012) has been
added. The idea is to define a sub-MIP without additional constraints but with a modified
objective function intended to attract the search in the proximity of the incumbent. The
heuristic is off by default and can be enabled by setting proximitysearch 1 in a GAMS/Cbc
options file.

• Parallel branch-and-bound search (multithreading) is now also possible under Windows by using
[POSIX threads for Win32] (http://sourceware.org/pthreads-win32).

• New option dumpsolutions to output alternative solutions to gdx files.

• The miptrace options have been renamed to solvetrace and activating them does not affect the
solving process anymore.

ConvertD

• Added option localsolver to convert GAMS models into [LocalSolver language] (
http://www.localsolver.com). This is still an experimental feature, i.e., it may not always be
possible to process the created .lsp files with LocalSolver. A major limitation is the restriction to
binary and bounded integer variables in LocalSolver. To allow for continuous variables that can be
defined via other variables, ConvertD can read information about defined variables from a ConvertD
options file. In such an option file, a line defvar x1 e1 denotes that the continuous variable x1 is
defined via equation e1. Equation e1 then needs to be an equality constraint which contains x1 in a
linear expression. Analogously, a statement defvar y(n,i,j) e(n,i,j) indicates that variable
y(n,i,j) is defined via equation e(n,i,j) for all (n,i,j).

Couenne

• Couenne is now linked against the [nauty library] (http://cs.anu.edu.au/∼bdm/nauty), which
enables symmetry recognition for MINLPs and their utilization for orbital branching.

• The miptrace options have been renamed to solvetrace.

http://sourceware.org/pthreads-win32
http://www.localsolver.com
http://www.localsolver.com
http://cs.anu.edu.au/~bdm/nauty

410 Release Notes

Cplex/CplexD

• New library 12.5

• The number of threads for CPLEX to use can now be set to any positive integer number, even if this
number exceeds the number of cores on the machine. The default behavior of GAMS/CPLEX with
respect to the number of threads and cores remains unchanged. That is, by default, GAMS/CPLEX
continues to run with a single thread. Setting THREADS to 0, result in setting the threads to the
number of cores.

• New parameters:

– ProbeDetTime: Limits the amount of time (expressed in deterministic ticks) spent probing

– PolishAfterDetTime: Sets the amount of time expressed in deterministic ticks to spend during
a normal mixed integer optimization after which CPLEX starts to polish a feasible solution

– TuningDetTiLim: Sets a time limit in deterministic ticks per model and per test set (that is,
suite of models) applicable in tuning

– RandomSeed: Sets the random seed differently for diversity of solutions.

• GAMS/Cplex prints the time spend in Cplex optimization calls. The time is printed in elapsed
seconds and elapsed deterministic time in ticks.

• GAMS/CplexD returns proper duals for QCP models

CONOPT

• new library 3.15H

GloMIQO

• new library GloMIQO 2.1:

– improved reformulation strategies

– better recognition of special mathematical structure allowing for dominant polyhedral cuts

– additional strategies for deterministically inferring missing variable bounds

• new option cplex optfile specifies a GAMS/CPLEX options file that will be applied to every LP and
MILP subsolve

• new option dumpsolutions to output alternative solutions to gdx files

GUROBI

• New library 5.0.2

IPOPT and IPOPTH, BONMIN and BONMINH

• IPOPT is now available in two variations. The Open Source IPOPT is part of the Base Module.
IPOPTH uses higher performance (but not Open Source) linear algebra routines (HSL) and is
separately priced.

• Analogously, BONMIN is part of the Base Module and uses IPOPT. BONMINH requires a license
for IPOPTH.

• For Couenne and SCIP, IPOPTH is used to solve NLP subproblems if a corresponding license is
available, otherwise IPOPT is used.

3.35 24.0 Distribution 411

LogMIP

• Fixed a bug when reformulating disjunctions with terms that are indicated by a negated variable
(disjunction not y1 e1 else ...).

MINOS

• Maintenance updates, primarily for memory allocation issues.

MOSEK

• New libs Mosek 6 Rev 148.

Optimization Services

• New library 2.6

OsiXpress

• OsiXpress is now also available on Mac OS X.

SCIP

• New library 3.0.1

– New presolvers have been added, among them one that recognizes and utilizes block structures
in an instance.

– New primal heuristics NLP diving (for MINLPs) and Zero-Objective (”Hail Mary”) have been
added.

– New propagators for optimization-based bound tightening for MINLPs have been added.

– The variable bounds propagator has been extended to cliques and implications.

– Memory limits are now better handled, especially for larger problems.

– The probing algorithm has been revised and should give better performance.

– The performance for pseudo-boolean optimization problems has been improved.

– The complete release notes can be found [here] (https://www.scipopt.org/doc/html/RELEASENOTES.shtml)
and a list of all changes (including changes to parameters and their default values) can be
found [here] (https://www.scipopt.org/doc/html/CHANGELOG.shtml)

• The GAMS workspace option can now be used to set the SCIP memory limit ('limits/memory' in
optionfile).

• The gams/miptrace options have been renamed to gams/solvetrace.

• The gams/printstatistics option has been renamed to display/statistics.

• The gams/interactive option is now a string option that takes commands for the SCIP shell as
arguments. If the commands do not end with a 'quit' command, the SCIP shell still open for user
interaction. Note, that in order to be able to input commands interactively on Windows, you have
to set the GAMS option interactivesolver to 1 (see above).

• The LP solver in SCIP can now be changed by the lp/solver option. Supported values are ”cplex”,
”soplex”, and ”clp”. The default LP solver is now CPLEX, if a CPLEX license is available, and
SoPlex otherwise.

https://www.scipopt.org/doc/html/RELEASENOTES.shtml
https://www.scipopt.org/doc/html/CHANGELOG.shtml

412 Release Notes

SNOPT

• New library 7.2-12 (maintenance release)

• Completely revamped linking code

– The GAMS/SNOPT link is now thread-safe, allowing it to be used in multi-threaded applications
built with the high-level GAMS APIs mentioned above.

– Updated memory allocation scheme to increase the amount of memory that can be allocated
and used for problem solution, and to improve reporting when limits are reached.

– Miscellaneous bug fixes and usability improvements.

SoPlex

• New library 1.7.1

– Performance improvements in pricing algorithms

– Many bugfixes and improvements in numerical stability and infeasibility detection

– Complete release notes [here] (http://soplex.zib.de/notes-170.txt).

Sulum

• GAMS 24.0 introduces the new LP/MIP Solver Sulum from Sulum Optimization ApS.

• While Sulum currently does not compete with the high-end LP/MIP solvers, Sulum offers a good
cost-benefit ratio for LP and MIP solution technology.

• GAMS 24.0.1 features Sulum LP only, but as soon as Sulum Optimization releases their library
including the MIP optimizer, a maintenance release will feature the full LP/MIP capabilities of
Sulum.

Xpress

• New library Xpress Optimizer 23.01.06 (maintenance release).

3.35.1.5 Model Libraries

GAMS Data Library

GAMS EMP Library

• simplevi4 (93): Equilbrium model consisting of two VIs, one of which has a non-trivial constraint
set

• transsp (94): A Stochastic Transportation Problem

• oa (95): Outer Approximation for Convex Minimization Problem with Binary Variables

http://soplex.zib.de/notes-170.txt

3.35 24.0 Distribution 413

GAMS Model Library

• powerset (381): PowerSetLeft and PowerSetRight examples

• linearne (382): Linearization techniques for extremal-Nash equilibria

• saras (383): South African Regionalized Farm-level Resource Use & Output Supply Response
(SARAS) model

• epscmmip (384): Improved version of eps-Constraint Method for Multiobjective Optimization

• bidpwl (385): Bid Evaluation with Piecewise Linear Functions

• trnspwlx (386): A Transportation Problem with Piecewise Linear Functions

GAMS Test Library

• testexeq (562): Test external equations

• ex1 (563): External Function - Example 1

• ex1x (564): External Function - Example 1x

• ex2 (565): External Function - Example 2

• ex3 (566): External Function - Example 3

• ex4 (567): External Function - Example 4

• ex4x (568): External Function - Example 4x

• ex5 (569): External Function - Example 5

• er1 (570): External Function - Error Example 1

• er2 (571): External Function - Error Example 2

• er3 (572): External Function - Error Example 3

• exmcp1 (573): External Function - Example MCP 1

• exmcp2 (574): External Function - Example MCP 2

• exmcp3 (575): External Function - Example MCP 3

• exmcp4 (576): Hansen/Koopmans: External Function - Example MCP 4

• exmcp5 (577): Intermixed External Rows: External Function - Example MCP 5

• complink (578): Compile and link external equation libraries

• lindgl02 (579): Check that Lindo(Global) works with SOS variables

• qcp10 (580): Test for QCP correctness

• empdisj6 (581): Test disjunctions with negated equality equations

• gdx9 (582): Test unloading and loading a GDX file with variable attributes

• empdisj7 (583): Test disjunctions with negated variables

• traceuc (584): Test if we can get the user and computer name in a trace file

• asynntrp (585): Start GAMS job asynchronously and send interrupt signal to it

414 Release Notes

3.35.1.6 Tools

SCENRED2

• fixed visualization output to work with recent versions of gnuplot

3.35.1.7 Solver/Platform Availability Matrix

3.35.2 24.0.2 Maintenance release (February 14, 2013)

3.35.2.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Arne Drud, Michael Ferris, Erwin Kalvelagen, Aida Khajavirad,
Ignacio Perez, Nick Sahinidis, and Dimitri Tomanos.

3.35.2.2 Platforms

• removed dependency on GLIBC 2.7 in Linux systems

3.35.2.3 GAMS System

APIs

Object Oriented APIs

• introduced new function CopySymbol (see individual languages for precise name)

• label and symbol lookup is now case insensitve

• fixed handling of infinite bounds for GAMSModifiers

.NET

• added new function GAMSSymbol.CopySymbol

• added new examples in Visual C++ and VB.NET

Java

• added new function GAMSSymbol.copySymbol

Python

• added new function GamsSymbol.copy symbol

• on Windows and Linux, compiled libraries for both Python 2.6 and Python 2.7 are distributed
while the Python 2.7 version can be found in <GAMSDir>\apifiles\Python\api as before, the
Python 2.6 version is in <GAMSDir>\apifiles\Python\api 26

3.35 24.0 Distribution 415

GDX

• fixed a casing problems with the function gdxSymbolGet/SetDomainX for client languages C++,
C#, Fortran, Java, Python, VBA, VB.NET

GMO

• increased API version number to 11 (was forgotten in 24.0.1)

GAMS

• the reason for ignoring an option in the GAMS options file reader is now printed

• fix a bug when reading scalars from a compressed GDX file

GAMS IDE

• changed the interface for the Text Differ to look like the GDXDiff interface

• moved menu for Text Diff under Utilities menu

Utilities

GDXXRW

• gdxxrw works now with Excel Binary Workbook files (file extension .xlsb)

3.35.2.4 Solvers

BARON

• new library 11.9.1

• fixed handling of workspace and workfactor options

BONMIN, CBC, Couenne, GloMIQO, SCIP

• fixed too small value in 'seconds' column in solvetrace file

• improved resolution of solvetrace file for Cbc and SCIP

CONOPT

• new library 3.15I

• major update of the CONOPT solver manual (pdf file only)

• revised definition of workspace and workfactor options: workfactor is now ignored if workspace is
defined

• minimum memory allocation adjusted for some smaller machines

• removed no longer used options GCFORM, GCPTB1, GCPTB2

416 Release Notes

GloMIQO

• fixed bug in reporting of dual bound when optca tolerance is larger in magnitude than optcr

GUROBI

• new library 5.1

• new options

– ImproveStartNodes: A new option for transitioning from tree exploration to solution improve-
ment in MIP

– Seed: Modifies the random number seed. This acts as a minor perturbation to the solver,
which typically leads to a different solution path. This can be useful for experimentation (e.g.,
for testing the robustness of a particular set of parameter changes)

• Gurobi dropped support for Linux 32bit, so GAMS/Gurobi uses Gurobi library 5.0.2 on Linux 32bit

MOSEK

• write clearer text error message to log and listing file

MPSGE

• fixed memory issues when both workspace and workfactor are set and when estimates are too high

MSNLP / OQNLP

• fixed problems with LSGRG on instances with more than 10000 variables or more than 10000
equations

SCIP

• new SCIP library 3.0 #0134f8c

• fixed bug where the reported objective value did not equal the level value of the objective variable

• improved cleanup of SCIP solutions that are not feasible in the original problem; the model status
is now adjusted accordingly

XPRESS

• fixed reporting of resused and iterused attributes for infeasible and unsolved models

3.36 23.9 Distribution 417

3.35.2.5 Tools

ConvertD

• in LocalSolver output, long linear parts of equations are now printed by using the sum() operator

• added solution output option and functionality for LocalSolver (lspsol)

• fixed bug when using objvar option in conversion to GAMS format

• fixed bug with variable indices when writing nonlinear expressions

EXAMINER

• fixed check of complementarity slackness for discrete variables in MIQCPs

• added a consistency check on model attributes (currently only objval)

JAMS

• fixed many problems with objective functions in equilibrium followers, especially those arising when
variables were skipped or when the objective var was reformulated out

• fixed problems with VI models and vars getting squeezed out that should not have been

3.36 23.9 Distribution

3.36.1 23.9.1 Major release (July 04, 2012)

3.36.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Steve Gabriel, Oyvind Hoveid and Renger van Nieuwkoop.

3.36.1.2 Platforms

• We added some instructions on how to install the GAMS Windows version (including the IDE) on
the Mac using Wine.

• The Unix installer has already been changed with 23.8. When running the installer, a subdirectory is
created (e.g. gams23.9 linux x86 32 sfx for the Linux 32bit installer). Previous versions unpacked
the GAMS distribution into the current directory.

418 Release Notes

3.36.1.3 GAMS System

APIs

.NET

This release contains a beta version of the object-oriented GAMS .NET that can be used to control GAMS
from within C# and other programming languages of the .NET framework 4. It allows the seamless
integration of GAMS into the .NET environment by providing appropriate classes for the interaction
with GAMS. The GAMSDatabase class for in-memory representation of data can be used for convenient
exchange of input data and model results. Models written in GAMS can be run with the GAMSJob class
and by using the GAMSModelInstance class a sequence of closely related model instances can be solved in
the most efficient way.

To use this one has to reference GAMS.net.dll which can be found in the GAMS system directory.
Documentation about this can be found in <GAMSDir>\apifiles\GAMS.net4.chm.

C#

• Gamsx, gdx and opt implement IDisposable interface

• New example example2.cs using APIs to gamsx, gdx and opt

• Several new examples using the new .NET

GDX

• Added functions to get and set relaxed domain information

• Added function to get memory usage of a gdx object

GAMS

On/OffOrder

• Lag and lead operations require the reference set to be ordered and constant. In some special cases
one would want to use lags and leads on dynamic and/or unordered sets. A dollar control option
on/offOrder has been added to locally relax the default requirements. The use of this option comes
at a price: the system will not be able to diagnose odd and incorrect formulations and data sets. A
small example in Test Library lagd1 illustrates the use of on/offOrder.

gamsbatch

• The script to run GAMS in the background (gamsbatch) has been removed from Unix distributions.
This script was a source of confusion when multiple GAMS systems were installed. A GAMS job
can be run in the background easily without this script.

3.36 23.9 Distribution 419

Minor enhancements

• GAMS solvers that provide a bound on the optimal solution (e.g. Branch-and-Cut based solvers)
can return this bound to the calling GAMS model through the model attribute objest. In previous
versions of GAMS this model attribute was not set if no solution was found. This has been fixed
with this release.

• When GAMS/Base writes a GDX file containing a subset of all symbols present, it will now also
write relaxed domain information to the GDX.

Function libraries

• The new extrinsic function library lsadclib was added to the system. It allows to use sampling
routines from Lindo inside GAMS. A license for GAMS/Lindo is required to use this library.
Without a license only a demo version is available which is restricted to the Normal and the Uniform
distribution with not more than 10 sample points. Further information can be found in the GAMS
User's Guide, Appendix J.

Utilities

GAMSIDE

• The data viewer in the GAMSIDE shows the domain information

• New history combo box for alternate system directory

GDX2Access

• Use relaxed domain information to generate column names

GDXDUMP

• Added option to write CSV formatted file (Format=[normal, gamsbas, csv])

• Added option to use last dimension as a column header for CSV output (CDim=[Y, N])

• Added option to not filter default values (FilterDef=[Y, N])

• Option to show domain information (DomainInfo)

XLSDump

• Truncate long UELs

XLSTalk

• Allow for a relative path in the file specification

420 Release Notes

Other

3.36.1.4 Solvers

Baron

• BARON 11: This version comes with a wealth of new branching, relaxation, convexity exploitation,
local search, and range reduction techniques. You will see improvements in many problems, including
convex ones. In addition, BARON 11 offers systematic treatment of missing bounds through safe
LP relaxations. Users will see far fewer messages about missing bounds from BARON from now on,
while many more problems will be guaranteed global.

Coin-OR

• new libraries Bonmin 1.6 and OS 2.5

• bugfixes in Cbc and Couenne

Conopt

• New libraries 3.15F

Cplex

• new libraries 12.4 fix pack 1

GloMIQO

• New library GloMIQO 2.0

• GloMIQO 2.0 alternatively uses Conopt or Snopt for finding feasible solutions (default Conopt).

• GloMIQO 2.0 fully integrates integer variables, discrete/discrete products, and discrete/continuous
products

• GloMIQO 2.0 implements a branch-and-cut framework with cutting planes derived from edge-concave
aggregations, alphaBB cuts, and convex terms. Cuts are based on both individual equations and
the collection of quadratic and bilinear terms in MIQCQP.

• GloMIQO 2.0 automatically adds bilinear terms to the model formulation to create Reformulation-
Linearization Technique (RLT-1) equations.

• The Boost Interval Arithmetic Library improves the reliability of the GloMIQO 2.0 bound tightening
schemes.

3.36 23.9 Distribution 421

Gurobi

• New library Gurobi 5.0.1

• Quadratic constraint support: You can now add Second-Order Cone constraints, rotated Second-
Order Cone constraints, and general Quadratic Constraints to an optimization model. Continuous
models containing these constraints are solved using a new barrier SOCP solver. Mixed-integer
models are solved using a branch-and-cut algorithm, employing either QCP node relaxations or an
outer-approximation algorithm.

– The new options are:

∗ BarQCPConvTol: Convergence tolerance for the barrier algorithm when solving a QCP.

∗ PreQLinearize: Controls linearization of Q matrices in the quadratic constraints or a
quadratic objective.

∗ QCPDual: Determines whether dual variable values are computed for QCP models. Gurobi
has this off by default. In GAMS/Gurobi this is on by default.

∗ MIQCPMethod: Determines whether outer approximation is used to solve an MIQCP model.

• Feasibility relaxation: Gurobi now provides a feasibility relaxation model for an infeasible model.
This related model will find a solution that minimizes the violation of the original constraints. Check
option FeasOpt for details.

• Simplex warm-starting from a solution: You can now warm-start the simplex method using a primal
and dual solution vector. In previous versions, warm-starting was only possible if you had a simplex
basis. Check option UseBasis for details.

• Barrier homogeneous algorithm: Gurobi now provides a homogeneous algorithm in the barrier solver.
This version should be used when you are likely to ask the barrier solver to solve infeasible or
unbounded models. Use the new BarHomogeneous option to select this.

• Gurobi now provides both exact and approximate condition number estimates for the optimal
simplex basis. Use Kappa if you want a quick estimate, or KappaExact if you want to spend the
sometimes substantial time required to compute the exact condition number.

GUSS

• Introduce option NoHotStart to suppress hot starts with hot start capable solver.

• Temporary scenario files are located now in the scratch directory, so multiple GUSS runs can take
place in the same directory without interference.

MOSEK

• New libraries Mosek 6 rev 137

PATH

• Bug fix in preprocessor

SCIP

• New library SCIP 2.1.2

422 Release Notes

Xpress

• New libraries: Xpress Optimizer 23.0.05

– Improved Barrier performance, especially on modern Intel CPUs. The Barrier solver will now
take advantage of Intel's Advanced Vector Extensions (AVX) when available.

– New symmetry detection and orbital branching for MIPs.

– Improved in-tree cutting strategy.

– Added some quick heuristics that will be run before the initial root LP is solved.

• New platform supported: Mac OSX 64-bit

• Minor updates to link

– bugs fixed: handling of QCP models with equality constraints, interrupted solves

– pass the objective constant on to Xpress Optimizer

– add new options to control XPRESS symmetry detection

3.36.1.5 Documentation

• Updated Expanded GAMS Guide (McCarl) to reflect release 23.9

• The solver Manual has been split into two parts: I The Commercial Solvers and II The Free Solvers.
Printed versions of the manual will only contain part I. The on-line/ version has both parts available.

3.36.1.6 Model Libraries

GAMS Data Library

• TrnsxcllStarter (83): Excel Spreadsheet in Charge of GAMS

GAMS EMP Library

GAMS Model Library

• Updated:

– qp7 (271) and emfl (273): Both models use second order cone constraints. The constraints
are written with the =c= syntax if MOSEK is the selected solver and as general quadratic
constraints if CplexD or Gurobi are the selected solvers

– feasopt1 (314): This model has been modified so it can be used by Cplex and Gurobi. Both
solvers support the FeasOpt option to find minimal relaxations for infeasible models

• New:

– ps5 s mn (377): Parts Supply Problem w/ 5 Types w/ Random p(i)

– iobalance (378): Updating and Projecting Coefficients: The RAS Approach

– fdesign (379): Linear Phase Lowpass Filter Design

– pmeanvar (380): Mean-Variance models with variable upper and lower bounds

3.36 23.9 Distribution 423

GAMS Test Library

• Updated:

– circlen (551): Added an SOCP formulation to the smallest circle problem

• New:

– mpsge12 (558): MPSGE test - inter-mixed MPSGE and MCP rows in model

– gdxcomp2 (559): GDX - compressed and MT operation

– lagd1 (560): Lag and Lead operations on Dynamic Sets

– miqcp02 (561): Test of correctness of solvestat

3.36.1.7 Solver/Platform Availability Matrix

3.36.2 23.9.2 Maintenance release (August 29, 2012)

3.36.2.1 GAMS System

APIs

.NET

• GAMSModelInstance.Instantiate is now thread-safe

• Additional flag createOutDB for method GAMSJob.Solve which allows to switch off automatic outDB
creation

• New class GAMSModelInstanceOpt to customize method GAMSModelInstance.Solve

• Delete some temporary files, add GAMSWorkspace.ScratchFilePrefix (default: gams net) for
temporary files

• GAMSJob no longer implements IDisposable; examples have changed because the using statement
no longer works with GAMSJob

Java

• Now methods that returned long in Java but void in C also return void in Java

GAMS

MaxProcDir

Changed default for GAMS parameter MaxProcDir from 26 to 700 which allow to have up to 700 scratch
directories (225a, 225b, ...) in the project/current directory

Utilities

GAMSIDE

Double-click to open a file in the IDE works again (also fixes a single click in the McCarl guide)

424 Release Notes

3.36.2.2 Solvers

AlphaECP

• Fixed objective estimate modelname.ObjEst

Baron

• New BARON 11.3.0 library (bugfixes)

Coin-OR

• New Couenne library (bugfixes)

• New Bonmin library (bugfix for B-OA as algorithm choice)

ConvertD

• New option DictMap in ConvertD

Cplex

• CplexD: fixed bug when registering an advanced basis

GloMIQO

• New GloMIQO library (bugfixes)

Gurobi

• New Gurobi 5.0.1 library for AIX

• OsiGurobi: fixed mipstart option (now only values for discrete variables are passed to Gurobi)

Jams

• New option DisjBinRelax in JAMS to allow continuous (but implicit binary) variables

Knitro

• Work around problems with knapsack cuts for MINLPs

3.36 23.9 Distribution 425

Lindo

• New Lindo 7.0.1.487 library (bugfixes)

SCIP

• Fixed wrong sign of objective when maximizing a nonlinear objective

3.36.3 23.9.3 Maintenance release (September 26, 2012)

3.36.3.1 GAMS System

APIs

.NET

• Constructor of GAMSWorkspace now appends conditionally the GAMS system directory to the
PATH environment variable. This fixes a problem with applications that create and dispose many
GAMSWorkspace instances.

GAMS

• Spaces in Project/Current Directory: With 23.9.2 some solvers (e.g. BARON) do not work if the
project/current directory name contains a space. This has been fixed.

Utilities

• GDXMRW: Some bugfixes for the GAMS/MATLAB connector.

3.36.3.2 Solvers

Coin-OR

• New Couenne library (bugfixes)

3.36.4 23.9.4 Maintenance release (October 20, 2012)

3.36.4.1 GAMS System

GAMS

• GAMS did not pass models with quadratic constraints containing the objective variable prop-
erly to some solvers (CplexD, Gurobi, Mosek and Xpress). Thanks goes to [Erwin Kalvelagen] (
http://yetanothermathprogrammingconsultant.blogspot.com/2012/10/gamsgurobi-qcp-problems.html)
bringing this to our attention. This has been fixed.

• The GAMSIDE remembers the scope setting for text searches even after the IDE closes.

http://yetanothermathprogrammingconsultant.blogspot.com/2012/10/gamsgurobi-qcp-problems.html
http://yetanothermathprogrammingconsultant.blogspot.com/2012/10/gamsgurobi-qcp-problems.html

426 Release Notes

3.36.4.2 Solvers

Baron

• New libs 11.5.0

• Fixed a bug when using the external NLP solver on models without constraints

• New speed ups in Baron's parser/reformulator for large scale problems

• Improvements in local search that result in higher quality solutions identified earlier in the search

– New dive-and-round heuristic for MINLPs. The number of rounds is selected dynamically and
the search is activated and applied based on problem characteristics

– For continuous problems, Baron introduces the ability to automatically select and switch back
and forth between NLP solvers. Again, this is done in a dynamic strategy that exploits problem
characteristics and solver performance for the problem at hand

– The nlpsol option can now take the value of -1 in addition to the previously allowed values. -1,
which is the default value, triggers the automatic NLP solver selection and switching strategy.
If the user sets nlpsol to a solver that is not licensed, Baron sets it automatically to -1

– The dolocal option can now take only two values (0: no local search; 1: BARON's
automatic strategy). Default is 1 and will determine when/how to apply local search

– Baron uses the most recent Snopt library (7.2-4)

– Improvement for links to NLP solvers Minos, Snopt, and IpOpt.

Conopt

• New 3.15G library with bug fixes

GloMIQO

• A problem with parsing integer options has been fixed

Minos

• Improved memory estimation calculations and logging

3.36.5 23.9.5 Maintenance release (November 09, 2012)

3.36.5.1 GAMS System

GDX

• When importing a scalar variable or equation from a GDX file, the .scale attribute was set
incorrectly. This has been fixed. Thanks go to Étienne Ayotte-Sauvé unearthing this problem.

• Under some circumstances GAMS ended up with an inconsistent database when importing unsorted
data. This has been fixed. Thanks go to Wolfgang Britz unearthing this problem.

3.37 23.8 Distribution 427

3.36.5.2 Solvers

Baron

• New libs 11.5.2

• Fixed a reporting problem when no duals are available.

CplexD

• GAMS/CplexD produced in some cases incorrect quadratically constraint and SOCP problems for
the Cplex engine. This has been fixed.

LindoGlobal

• Lindo's global solver cannot deal with SOS variables. If a model has SOS variables, the link
automatically switches to the local solver.

LogMIP

• Fixed bugs in bigm and indic reformulation of negated equality equations. The convex hull
reformulation still has problems and has therefore been disabled for this case for now. Thanks go to
Silvia Tomasi for reporting this problem.

3.37 23.8 Distribution

3.37.1 23.8.1 Major release (March 17, 2012)

3.37.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Alessandro Brozzi, Jan Philipp Dietrich, Michael Ferris, Christophe
Gouel, Josef Kallrath, Cheng Khor, Brage Knudsen, Jeff Larson, Yanchao Liu, Alexander Mitos, Renger
van Nieuwkoop, Stefan Vigerske.

3.37.1.2 Platforms

• Beta GAMS/Wine system (32bit). Comments are highly appreciated (support@gams.com).

• Improved Windows Installer

– the default location has changed to C:\GAMS\(win32|win64)\23.8 to avoid problems produced
by the permission settings of the Program Files location

– Two different setup modes. A simple default mode and an advanced mode with additional
options like automatic PATH manipulation

– Support for detecting and installing a license from the clipboard

mailto:support@gams.com

428 Release Notes

3.37.1.3 GAMS System

APIs

• C#

– Major improvements, lost compatibility to previous versions!

– Mixed casing of function names

∗ old: gdxdatawritestr

∗ new: gdxDataWriteStr

– Object handle (pointer) no longer needed

∗ old: int gdxdatawritestr(IntPtr pgdx,string[] keystr,double[] values)

∗ new: int gdxDataWriteStr(string[] KeyStr,double[] Values)

– Create calls replaced by different constructors

∗ old: gdx = new gdxcs(); gdx.gdxCreateD(ref PGX, Sysdir, ref Msg);

∗ new: gdx = new gdxcs(Sysdir, ref Msg);

– See examples in <GAMS Dir>\apifiles\CSharp for reference

• Python

– Add source code to build C extensions (no need to run SWIG anymore)

– Add compiled C extension on Linux and Windows (both 32 and 64 Bit)

• VBA

– Support for 64 Bit version (VBA 7)

GAMS

New model definition features

• Flexible model list
Model definitions containing complementary equ.var pairs can now be used with all model types. The
matching information is only used with the appropriate model types (e.g. MCP, MPEC, RMPEC).

• Model list edits
In addition to the ',' which enforces uniqueness of equation entries, two additional model list element
separators have been introduced. The '+' separator allows replacement of existing entries. The '-'
separator deletes model list entries. All three of these operations can be used with single equation
names, equ.var pairs and previously defined model names.

• Example

$eolcom !

equation e1,e2,e3,e4,e5; variable x1,x2;

e5.. x1 =l= 0;

e4.. x1 =l= 0;

model m1 / e1,e2 /

m2 / e3,e4 /

m3 / m2,m1,e5 / ! e3,e4,e1,e2,e5

m4 / all-m1+e1+e1 / ! e3,e4,e5,e1

m5 / all + e5.x1 + e4.x2 -e1/ ! e2,e3,e5.x1,e4.x2

m6 / m5 -e5, e5.x2 / ! e2,e3,e4.x2,e5.x2

m7 / m5 + e5.x2 / ! same as m6

Note that the equation list is ordered left to right. If we have a '+' separator adding an equation already
in the list, the equation (possibly modified) will move to the end of the list.

3.37 23.8 Distribution 429

Permutations via the option statement

• Using the '>' sign one can create complete permutations of one- and multi-dimensional sets and
parameters:

Option PermAllI > I;

Examples of this new feature can be found in the models perm1, ptsp, flowshop, and pmelody.

Minor enhancements

• Functions can have up to 10 arguments. This effects the intrinsic functions edist and poly and
extrinsic function libraries.

Stochastic Programming

In this release we made a first cut at supporting stochastic programming in GAMS. With a few changes
uncertainty can be added to an existing deterministic model. For this, the EMP framework is used to
replace parameters in the model by random variables. This way (stagewise-independent) multi-stage
recourse problems and chance constraint models can be formulated. Three solvers can be selected to solve
those problems: DE, DECIS and LINDO.

Further information can be found in the document Stochastic Programming (SP) with EMP.

In addition, you can check examples of type SP from the GAMS EMP Library.

Utilities

• mps2gms MPS input file allows LI (lower integer) bound types and treats tabs as spaces.

Other

• By default GAMS does not call an exit script anymore. If this is required, the GAMS parameter
ScriptExit has to be set explicitly to the script that should be called after GAMS terminates.
An empty template of an exit script can be found in the GAMS system directory (gmsxitnt.cmd
(Windows) or gmsxitus.run (Unix)).

3.37.1.4 Solvers

AlphaECP

• New libraries 2.09.01

• Support of =N= rows

430 Release Notes

Baron

• New libraries Baron 10.1

• Main developments

– Minos and Snopt are no longer available as LP subsolvers

– Clp can be used as the LP subsolver (lpsol = 8)

– Ipopt with Mumps and Metis can be used as the NLP subsolver (nlpsol = 9)

– BARON automatically selects Clp and Ipopt if the selected/default subsolver is not licensed

– Improved interface to Xpress-LP

– Introduced cutting planes for convexity exploitation for a variety of functions, including products
and ratios, perspectives, norms (including absolute functions) and seminorms, and quadratic
functions that are automatically recognized and exploited

– Polyhedral convexification routines have been rewritten and are now more efficient and nu-
merically robust, as well as performing a number of simplifying transformations that reduce
relaxation gaps

– Introduced relaxations based on inferred bilinear relationships (certain types of first-order RLT)

Bench

• calls solvers to benchmark in parallel using GAMS' grid functionality

Coin-OR

• OSIXpress supported on Solaris/Intel

• Dropped support of GLPK (alias OsiGlpk, alias CoinGlpk)

• New libraries:

– Bonmin 1.5

– Cbc 2.7

∗ improvements in heuristics and cut generation

– Clp 1.14

– Couenne 0.4 (for details see the [Couenne release notes] (http://list.coin-or.org/pipermail/couenne/2011-August/000234.html))

∗ feasibility pump heuristic for MINLP (can use SCIP as MIP solver)

∗ fixed point bound tightening and two-implied bound tightening

∗ introduction of semi-auxiliaries for smaller LP relaxations

– Ipopt 3.10

– OS 2.4

∗ now supports semicontinuous and semiinteger variables

– Osi 0.105

• Cbc, Bonmin, and Couenne support miptrace

Convert

• Convert supports writing [Optimization Services instance Language (OSiL)] (http://www.coin-or.org/OS/OSiL.html)

http://list.coin-or.org/pipermail/couenne/2011-August/000234.html
http://www.coin-or.org/OS/OSiL.html

3.37 23.8 Distribution 431

Conopt

• New libraries 3.15C

Cplex

• new libraries 12.4

• dettilim: option to limit 'ticks'

DE

• GAMS/DE accepts EMP models that have been annotated with information about uncertainty. The
DE 'solver' reformulates the stochastic model into the extensive form equivalent with implicit
non-anticipativity constraints. The reformulated model is solved with any of the regular GAMS
solvers. All optimization model types (LP, MIP, QCP, MIQCP, NLP, DNLP, and MINLP) are
accepted.

DECIS

• GAMS/DECIS accepts 2 stage EMP stochastic models. The stochastic information is processed
and is passed to the well known GAMS/DECISC or GAMS/DECISM solver. The need to provide the
stochastic information based on the matrix elements is now unnecessary. DECIS, as GAMS/DECISC

and GAMS/DECISM, accepts linear recourse models only (although the stochastic effects might be
more complex).

DICOPT

• If the model given to DICOPT is linear, DICOPT just passes this model to the MIP solver.
Previously, the MIP solver used parameters OptCR, OptCA, and ResLim as specified by GAMS
options even if DICOPT used an option file. Now OptCR, OptCA, and ResLim from a DICOPT
option file will overwrite the GAMS parameters.

GloMIQO

The new Global Mixed-Integer Quadratic Optimizer, GloMIQO (GLO-me-ko), solves Quadratically
Constrained Programs (QCP) and Mixed-Integer Quadratically Constrained Programs (MIQCP) to
epsilon-global optimality.

• GloMIQO has been developed by Prof. C. Floudas and R. Misener from Princeton University

• The GloMIQO solver is available for the 32-bit and 64-bit versions of Windows and Linux

• GloMIQO requires the presence of a GAMS/CPLEX and GAMS/SNOPT license

432 Release Notes

Gurobi

• New library Gurobi 4.6.1

• New sifting option for linear programs: LP models can now be solved with a sifting algorithm.
Gurobi will choose sifting automatically when using the dual simplex algorithm for models that are
likely to benefit (those with many more columns than rows). If you want to invoke sifting manually,
choose dual simplex and set the new Sifting parameter to a value greater than 0.

• Branch priorities: You can now specify priorities for branching variables, allowing greater user
control of the MIP search process. Priorities can be specified through the .prior variable attribute
and the .prioropt model attribute.

• New Zero Objective heuristic: Gurobi 4.6 contains a new Zero Objective heuristic that can be
useful for finding solutions to MIP models where other strategies fail to find feasible solutions in a
reasonable amount of time. Use the new ZeroObjNodes parameter to control this new heuristic.

• New presolve sparsify option: A new presolve sparsify algorithm is available for MIP models. This
method attempts to reduce the number of non-zero coefficients in the constraint matrix. Reductions
of 3X or more have been observed on some models, often leading to significant performance
improvements. Use the new PreSparsify parameter to enable this algorithm.

Guss

• Added option NoMatchLimit (default 0) that controls the maximum number of accepted unmatched
scenario records before terminating the solve.

Ipopt

• The Serial Graph Partitioning and Fill-reducing Matrix Ordering software METIS can now be used
by some of Ipopt's linear solvers.

• Starting with 23.8 GAMS offers a commercially supported version of GAMS/IPOPT. This version
of GAMS/IPOPT includes the commercial strength linear solvers MA27, MA57, and MA86 from
the Harwell Subroutine Library.

Jams

• Support Xpress and SCIP when reformulating disjunctions with indicators

Knitro

• New libraries Knitro 8.0

• Introduction of a presolver to simplify and reduce the size of the model

• Introduction of parallel (multi-threaded) execution

– Multi-start

– Multi-algorithm

• Multi-algorithm method

– New mode to run multiple algorithms, serially or in parallel

– Uses the first or (optionally) the best solution found

• New feasibility-only mode: improves robustness and efficiency of detecting infeasible models

• Knitro 8.0 discontinues support for 32-bit Darwin systems - only 64-bit systems are supported on
the Mac.

3.37 23.8 Distribution 433

Lindo

• New solver Lindo, similar to LindoGlobal, but

– Without size limitations

– No requirement for additional Conopt license

– GAMS/LINDO accepts stochastic EMP models and solves either the extensive form equivalent
or uses Benders' decomposition to solve the stochastic model. In addition to discrete random
variables, Lindo features also continuous distribution functions and various sampling techniques.
All optimization model types (LP, MIP, QCP, MIQCP, NLP, DNLP, and MINLP) are accepted.

LindoGlobal

• New libraries Lindo 7.0

• MIP

– Significant improvements in root node heuristics for quickly finding good integer feasible
solutions

– Improved identification of special structures, as in multi-period models, and the ability to
exploit these structures to achieve significant reductions in solve times

• Global Solver

– Improved heuristics for finding a good feasible solution quickly

– Improved ability to identify constraints that can reformulated as second order cone (SOC)
constraints and thus be solved by the fast SOC solver

– Improved ability for efficiently handling polynomial terms

– Improved bounds for non-convex quadratic terms, using SDP and eigenvalue reformulations

– Improved control over multi-start algorithm

MOSEK

• New libraries Mosek 6 rev 135

SCIP

• New libraries SCIP 2.1.1 (for details see the [SCIP release notes] (https://www.scipopt.org/doc-2.1.1/html/RELEASENOTES.html))

• Beta-version of supporting (mixed-integer) nonlinear programs (also nonconvex)

• Supports miptrace

• Supports indicators for linear constraints through option gams/indicatorfile

• Added option gams/dumpsolutions to write all solutions found into gdx solution pool

Snopt

• bug fix for log of LP models

https://www.scipopt.org/doc-2.1.1/html/RELEASENOTES.html

434 Release Notes

SoPlex

• New libraries SoPlex 1.6.0 (for details see the [SoPlex release notes] (http://soplex.zib.de/notes-160.txt))

XA

• New libraries XA 17 on Windows

• Introduction of native 64-bit Windows support

Xpress

• New libraries 22.01.15 (maintenance release)

• MIP solution pool capability - allows a number of feasible solutions to be stored for later processing.
By default the global search is not altered, but there is an option to enumerate all or selected
integer feasible solutions. The enumeration can be tailored via the option file to execute a number
of different strategies, e.g.:

– all integer feasible solutions

– N-best solutions

– as-good-as-X solutions (all solutions with objective at least as good as X)

– N-first solutions (first N solutions found)

• Solution pool examples are available in testlib: xpress03 (default global search), xpress04
(enumeration of all solutions), xpress05 (various enumeration strategies).

• Support for continuous models with quadratic constraints (previously only quadratic objectives were
supported) and for all mixed-integer quadratic (MIQCP) models

• Support for indicator constraints

• New option isGoodEnough=X implemented in the link. If set, the global search will stop once an
integer feasible point is found with an objective at least this good. Surprisingly, none of the MIP
solver vendors implement such an option directly in their libraries.

3.37.1.5 Documentation

Amongst others, the following topics were revised in both, the GAMS Users Guide and the Bruce
McCarl's Expanded GAMS Guide

• Command Line Parameters

• Dollar Control Options

• Model Attributes

• GAMS Intrinsic and Extrinsic Functions

3.37.1.6 Model Libraries

GAMS Data Library

• GDXMRWPlotting01 (81): Placeholder for the GDXMRW examples that deal with
plotting in Matlab

• makeql (82): Create Querry Library routines for extrinsic functions

http://soplex.zib.de/notes-160.txt

3.37 23.8 Distribution 435

GAMS EMP Library

• two3emp (68): EMP Formulation of Simple 2 x 2 x 2 General Equilibrium Model

• airsp3 (69): Aircraft allocation - stochastic optimization

• apl1psp (70): Stochastic Electric Power Expansion Planning Problem

• apl1pcasp (71): Stochastic Electric Power Expansion Planning Problem

• clearlaksp (72): Scenario Reduction: ClearLake exercise

• farmsp (73): The Farmer's Problem - Stochastic

• kilosafarm (74): Kilosa farm problem

• landssp (75): Optimal Investment

• nbContIndep (76): Newsboy problem, continuous and independent distribution

• nbContJoint (77): Newsboy problem, continuous and joint distribution

• nbDiscIndep (78): Newsboy problem, discrete and independent distribution

• nbDiscJoint (79): Newsboy problem, discrete and joint distribution

• portfolio (80): Stochastic portfolio model

• prodsp3 (81): Stochastic Programming Example

• simpleChance (82): Simple chance constraint model

• sp3x2 (83): Simple stochastic model

• tr20 (84): Extended transport model with stochastic demand and costs

• nbsimple (85): Simple newsboy problem, discrete

• airlift (86): Airlift operations schedule

• stocfor3 (87): Long Range Forest Planning

• circlesp (88): Circle Enclosing Points - Stochastic Example

• batchsp (89): Design of batch chemical plants with stochastic demand and price

• cargonet (90): Cargo network scheduling with stochastic transportation demand

• gen2s (91): Two stage stochastic program in the generic form

• sku1sp (92): Multi-product assemble model with discrete and Poisson demand distribution

GAMS Model Library

• cubesoln (371): Three-dimensional Noughts and Crosses Multiple Solutions

• sipres (372): Global optimization of semi-infinite programs via restriction of the right-hand side

• cclinpts (373): Finding Optimal Breakpoints when linearizing a power utility function

• ptsp (374): Traveling Salesman Problem Instance solved with explicit Permutation Enumeration

• pmelody (375): Choose notes for melodic lines and chords with permutations

• flowshop (376): Flow shop scheduling

436 Release Notes

GAMS Test Library

• nlcode6 (534): Test for NL code bug from Dist 23.6

• scensol3 (535): NoMatchLimit GUSS Test

• gzip01 (536): Test gzipped input files

• sl4qcp01 (537): Test of correctness for levels & marginals of QCP, with solvelink=1,2,4,5

• sl4qcp02 (538): Test modsolstat & solution correctness - multiple QCons, with solvelink=1,2,4,5

• sl4qcp03 (539): Test case for cancellation in quadratic terms, with solvelink=1,2,4,5

• miqcp01 (540): Test of correctness for levels & marginals of MIQCP

• indic01 (541): Test of =g= indicator constraints

• indic02 (542): Test of =e= indicator constraints

• kestrel1 (543): Kestrel test for lp solvers

• kestrel2 (544): Kestrel test for mcp solvers

• kestrel3 (545): Kestrel test for nlp solvers

• kestrel4 (546): Kestrel test for minlp solvers

• indic03 (547): Test of =e= indicator constraints

• xpress03 (548): XPRESS test suite - solution pool example

• mip05 (549): Maximum queens chess problem

• xpress04 (550): XPRESS test suite - solution enumerator example

• circlen (551): Circle Enclosing Points n dimensional

• trilib04 (552): Demonstrates problems with a stateful function library

• mip06 (553): Cuts and solution enumeration

• xpress05 (554): XPRESS test suite - solution enumerator example

• qcp09 (555): Simplest test for QCP correctness

• perm1 (556): Test for various permutations

• ctrlcmip (557): Test interrupt handling [not available anymore]

3.37.1.7 Solver/Platform Availability Matrix

3.37.2 23.8.2 Maintenance release (April 05, 2012)

• Bugfix for models with =X= rows and MCP (i.e. MPSGE)

• GloMIQO resets OptCR=0 properly to 1e-9 and accepts now Ctrl-C on Windows

• Knitro handles MINLP failures better

• XPRESS handles =E= quadratic constraints better now

• Changed position of Library Form in GAMSIDE (avoid hang in corner to corner screen setup)

• Model Trnsxcll added to GAMS Data Library

• Model ps5 s mn added to GAMS Model Library

3.38 23.7 Distribution 437

3.38 23.7 Distribution

3.38.1 23.7.1 Major release (July 14, 2011)

3.38.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz, Michael Ferris, Josef Kallrath, Andreas Lundell,
Renger van Nieuwkoop, Sabine Ritter, Stefan Vigerske, and Kent Zhao.

3.38.1.2 Platforms

• The 32bit and 64bit Linux systems are now built using the [GNU Compiler Collection (GCC)] (
http://gcc.gnu.org/) toolset.

• Dropped support of Windows 95, 98, ME, and 2000.

3.38.1.3 GAMS System

GAMS

Asynchronous Execution

For a long time GAMS supports calling executables via the $call and Execute in a synchronous way.
The new release also supports asynchronous job handling. This means you can start a job without waiting
for the result. You can continue in your model and collect the return code of the job later. There are
three ways to start a job asynchronously:

• $Call.ASync ... (compile time)

• Execute.ASync '...'; (execution time)

• put utility fx 'Exec.ASync' / '...'; / put utility fx 'Shell.ASync' / '...'; (execu-
tion time)

After each of those the function JobHandle can be used to get the Process ID (pid) of the last job started.
With JobStatus(pid) one could check for the status of a job. Possible return values are:

• 0: error (input is not a valid PID or access is denied)

• 1: process is still running

• 2: process is finished with return code which could be accessed by errorlevel

• 3: process not running anymore or was never running, no return code available

• With JobTerminate(pid) a interrupt signal can be sent to a running job. If this was successful the
return value is one, otherwise it is zero.

• With JobKill(pid) a kill signal can be sent to a running job. If this was successful the return value
is one, otherwise it is zero.

• The model asynexec from the GAMS Test Library demonstrates the use of this new feature.

http://gcc.gnu.org/
http://gcc.gnu.org/

438 Release Notes

Function Libraries

The new GAMS Function Library Facility allows users to import functions from an external library into
a GAMS model. Apart from the import syntax, the imported functions can be used in the same way
as intrinsic functions. In particular, they can be used in equation definitions. Some function libraries
are included with the standard GAMS software distribution but GAMS users can also create their own
libraries using an open programming interface. Simple examples in the programming languages C, Delphi
and Fortran come with every GAMS system.

Function libraries are made available to a model using the compiler directive:

$FuncLibIn <InternalLibName> <ExternalLibName>

Similar to sets, parameters, variables, and equations, functions must be declared before they can be used:

Function <InternalFuncName> /<InternalLibName>.<FuncName>/;

There are a few libraries which come ready to use with the GAMS system:

• fitfclib: packages FITPACK from P. Dierckx in a way that it works with this facility

• pwpcclib: evaluates piecewise polynomial functions

• stodclib: provides random deviates, probability density functions, cumulative density functions and
inverse cumulative density functions for certain distributions

• tricclib, tridclib, trifclib: these simple examples can be found compiled and as source code written
in C, Delphi and Fortran respectively

Detailed information can be found in the GAMS User's Guide in chapter 6.3.

In addition, the following examples from the GAMS Test Library can be referred to:

• stolib01: Uses the stochastic library which comes with the GAMS system

• trilib01: Uses trigonometric function from a library written in C, comes with C source code

• trilib02: Uses trigonometric function from a library written in Delphi, comes with Delphi source
code

• trilib03: Uses trigonometric function from a library written in Fortran, comes with Fortran source
code

• pwplib01: Uses a library for piecewise polynomial functions which comes with the GAMS system

• fitlib01: Uses FITPACK from P. Dierckx which was packaged in a way that it works with this
facility and comes with the GAMS system

If you need detailed instructions for connecting your library to GAMS please contact support@gams.com.

Other

• Dropped support for EBCDIC. Functions ordebcdic and ordascii are no longer available. oldascii
should be replaced by ord.

mailto:support@gams.com

3.38 23.7 Distribution 439

Bug Fix

• We found and corrected a bug related to the internal organization of non-linear code. This bug was
introduced with version 23.6 but fortunately only occurs in rare cases.

Utilities

GAMSIDE

• Version 23.6 made it more difficult to find the directory where GAMS is installed. In this release we
reintroduce the EXECUTABLE entry in the GAMSINI file to make this easier.

• The PageWidth option was limited to 255

• Increased the maximum number of jobs that can be run at he same time from 5 to 20.

GAMSINST

• The gamsinst program allows to set the default solvers and to install contributed software packages
(e.g. Tom Rutherford's [GAMS Programming Tools] (http://www.mpsge.org/inclib/tools.htm)).
Previous versions of gamsinst supported the installation of contributed solver packages. The new
version of gamsinst does not support these types of solver packages anymore. If you need to install
a contributed solver, please contact support@gams.com.

GDXXRW

• Fixed a memory leak that could make it difficult to read large spreadsheets.

• Worked around a limitation to read large spreadsheets by reading the data in multiple slices.

• The option NAin allows a string to be specified to recognize the value for NA when reading a
spreadsheet; this is in addition to recognizing the string 'NA'.

• Undf is now recognized as a value without generating an error when reading from a spreadsheet so
the entry can be processed in the GAMS model using the $ONUNDF dollar option in GAMS.

• Strings that are not recognized as a special value are no longer read as NA but as Undf instead; use
the $ONUNDF in GAMS to read these values.

3.38.1.4 Solvers

AlphaECP

• Update to version 2.04.01

• New options

– CUTdelcrit Improved heuristic to reselect cuts.

– CUTnrcuts Option that the algorithm decides was added.

– ECPdumpsol Write encountered solutions in GDX files.

– MIPsolstrat Strategy for multiple MIP solutions

– NLPcall Option that the algorithm decides was added.

– solvelink Determines the way the NLP and MIP solvers are called. By default AlphaEXP
now calls the NLP and MIP solver in memory.

• Deprecated options

– CUTautogrowth, CUTcheckgrowth, CUTgrowth, CUTgrowtheq, CUTgrowthnr, CUTmincuts

– ECPcheckviol

– NLPepsilon, NLPlimepsilon

http://www.mpsge.org/inclib/tools.htm
mailto:support@gams.com

440 Release Notes

Baron

• New libraries 9.3

• Compared to previous versions, BARON 9.3 comes with improved multilinear relaxations and
improved branching

• Support for the LP solvers XA and OSL has been dropped

Conopt

• New libraries 3.14Y

Coin-OR

• Updated Bonmin and Couenne libraries (bugfixes).

• On Linux and Windows, Ipopt now uses a multithreaded linear algebra library. The number of
threads can be set via the GAMS option THREADS.

• Added Bonmin option ”print funceval statistics” to enable statistics on number of function evalua-
tions during a Bonmin run.

• Added Ipopt, Bonmin, and Couenne option ”print eval error” to enable printing of information
about function evaluation errors into the listing file.

• OsiCplex, OsiGurobi, and OsiXpress now support using the variable level values as initial solution
for a MIP solve. This is enabled by setting the GAMS option INTEGER4 to 1.

Cplex

• New libraries 12.3

• Cplex 12.3 solves a greater variety of nonconvex quadratic programming models; that is, QP models
with a quadratic term in the objective function. These models are also known as indefinite QPs (in
contrast to positive or negative semi-definite QPs). In fact, Cplex 12.3 can find solutions that satisfy
Karush-Kuhn-Tucker (KKT) conditions for certain indefinite QPs. A new parameter, solution target
type (SolutionTarget), lets you specify to Cplex whether you will accept a solution that satisfies
first-order optimality conditions (in contrast to accepting only globally optimal solutions), and Cplex
computes and searches accordingly.

• Log files improved. You may observe slight differences from previous versions in the format of logs
produced by Cplex 12.3. For example, the name of the column formerly titled ”best node” in logs of
MIP optimizations is now titled ”best bound” to reflect more accurately the data recorded there.

• Supports in-core communication (solvelink=5)

DEA

• The solver DEA was dropped from our distribution.

• Data Envelopment Analysis (DEA) models can now be solved in GAMS via the Gather-Update-Solve-Scatter (GUSS),
for more information see GAMS/DEA modeling

3.38 23.7 Distribution 441

Dicopt

• New option

– solvelink Determines the way the NLP and MIP solvers are called. By default Dicopt now
calls the NLP and MIP solver in memory.

Gurobi

• New libraries 4.5.1

• Now available on AIX

• New default Method for continuous models: The new version uses a new Automatic setting as the
default for solving continuous models. In previous releases, continuous models were solved with
the dual simplex method by default. While the exact strategy used by the new Automatic setting
may change in future releases, in this release the new approach uses the concurrent optimizer for
continuous models with a linear objective (LPs), the barrier optimizer for continuous models with a
quadratic objective (QPs), and the dual simplex optimizer for the root node of a MIP model. You
should change the Method parameter if you would like to choose a different method.

• New Minimum Relaxation heuristic: The new version contains a new Minimum Relaxation heuristic
that can be useful for finding solutions to MIP models where other strategies fail to find feasible
solutions in a reasonable amount of time. Use the new MinRelNodes parameter to control this new
heuristic.

• New branch direction control: The new version allows more control over how the branch-and-cut
tree is explored. Specifically, when a node in the MIP search is completed and two child nodes,
corresponding to the down branch and the up branch are created, the new BranchDir parameter
allows you to determine whether the MIP solver will explore the down branch first, the up branch
first, or whether it will choose the next node based on a heuristic determination of which sub-tree
appears more promising.

• Cut pass limit: The new version allows you to limit the of cut passes performed during root cut
generation in MIP. Use the new CutPasses parameter.

Gather-Update-Solve-Scatter (GUSS)

• The purpose of this new Gather-Update-Solve-Scatter manager or short GUSS is to provide syntax at
the GAMS modeling level that makes an instance of a problem and allows the modeler limited access
to treat that instance as an object, and to update portions of it iteratively. Detailed documentation
of this facility is part of the Solver Manual (chapter GUSS).

• Solving MCP and CNS models with GUSS is an experimental feature. GAMS checks the consistency
of MCP and CNS model, these checks are currently disabled when models of these types are solved
in the GUSS framework.

Jams

• Supports logic equations

– Logic equations can contain

∗ binary variables

∗ expressions that evaluate to constants

∗ Boolean operators (AND,OR,XOR,NOT,IMP(→),EQV(⇔))

442 Release Notes

– Logic equations can be used in conjunction with disjunctions

– A version of the food model demonstrates the use of this new feature foodemp (59)

• Supports coupling and indicators through EMP's disjunction syntax

– Indicator disjunction b e says that constraint e has to hold if b is true

– Coupling disjunction b e else not e says that constraint e can only hold if and only if b
is true

– Indicators and Couplings can be reformulated using BigM, Convex Hull or CPLEX indicator
constraints

LindoGlobal

• New libraries Lindo 6.1.1.588

• New Option checkrange: Calculates the feasible range for every variable in each equation while all
other variables are fixed to their level. If set, the value of this option defines the name of the GDX
file where the results are written to.

LogMIP

• The former LogMIP solvers lmbigm and lmchull are combined in the new solver solver logmip.

• LogMIP now uses the EMP syntax and modeltype.

• The LogMIP examples in the GAMS Model Library were revised.

Minos

• Supports in-core communication (solvelink=5)

Mosek

• New libraries 6.0 Rev 114

Msnlp/Oqnlp

• New option

– solvelink determines the way the NLP and MIP solvers are called

Oslse

• The solver Oslse was dropped. Oslse is now an alias to osl.

Path

• Supports in-core communication (solvelink=5)

3.38 23.7 Distribution 443

SBB

• New option

– solvelink determines the way the NLP solver is called. By default SBB now calls the NLP
solver in memory.

Scip/Soplex

• Dropped support for LPs/RMIPs in Gams/SCIP interface.

• Added new solver OsiSoplex for solving LPs with SoPlex (via COIN-OR/OSI interface).

Snopt

• Supports in-core communication (solvelink=5)

Xpress

• New libraries 22.01

• Improved performance through dynamic synchronization in the deterministic concurrent solver

• The stability and performance of the barrier code has been improved

• The default performance of the simplex algorithm has been improved on some models

• Improved zero-half cuts and aggregated cuts for MIPs.

• Tuned some of the automatic strategies for cutting and branching in MIP solves.

• Threads during a MIP solve will now busy-wait by default instead of going to sleep when waiting
for work. This is to overcome a performance issue with modern speed-stepping CPUs, which might
step down to a lower clock frequency when the load is less than 100%. This feature can be toggled
using the SLEEPONTHREADWAIT control.

3.38.1.5 Model Libraries

GAMS Data Library

• datatest (80): Driver for datalib tests of all sorts

GAMS EMP Library

• foodemp (59): Food Manufacturing Problem - Blending of oils

• simenlp (60): Simple example of ENLP

• nlp2mcp (61): nlp2mcp: Form the KKT conditions of an NLP as an MCP

• simplevi3 (62): Another simple VI example

• simpequil2 (63): Simple Equilibrium with external constraint

• hark-monop (64): SPE model from Harker - monopolist and competetive versions

• hark-oligop (65): SPE model from Harker - oligopoly version

• hark-oligop-ind (66): SPE model from Harker - oligopoly version

• hark-stack (67): SPE model from Harker - Stackelberg version

444 Release Notes

GAMS Model Library

• kqkpsdp (355): SDP Convexifications of the Cardinality Constraint Quadratic Knapsack Problem

• prodplan (356): A Production Planning Example

• sddp (357): Multi-stage Stochastic Water Reservoir Model solved with SDDP

• ps2 f s (358): Parts Supply Problem w/ 2 Types w/o & w/ Asymmetric Information

• ps2 f (359): Parts Supply Problem w/ 2 Types w/o Asymmetric Information

• ps2 f eff (360): Parts Supply Problem w/ Efficient Type w/o Asymmetric Information

• ps2 f inf (361): Parts Supply Problem w/ Inefficient Type w/o Asymmetric Information

• ps2 s (362): Parts Supply Problem w/ 2 Types w/ Asymmetric Information

• ps3 f (363): Parts Supply Problem w/ 3 Types w/o Asymmetric Information

• ps3 s (364): Parts Supply Problem w/ 3 Types w/ Asymmetric Information

• ps3 s gic (365): Parts Supply Problem w/ 3 Types w/ Global Incentive Comp. Const.

• ps3 s mn (366): Parts Supply Problem w/ 3 Types w/ Monotonicity Constraint

• ps3 s scp (367): Parts Supply Problem w/ 3 Types w/o & w/ SCP

• ps10 s (368): Parts Supply Problem w/ 10 Types & w/ Asymmetric Information

• ps10 s mn (369): Parts Supply Problem w/ 10 Types w/ Random p(i)

• ccoil (370): Oil Pipeline Design Problem using concurrent MIP solves

GAMS Test Library

• interval (506): Test for interval evaluation

• empdisj3 (507): Test Disjunctions using not (equivalence)

• emplog1 (508): Test disjunctions and logical conditions

• maxima (509): Test several maxima of Cmex

• emplog2 (510): Test simple logical conditions

• qcp07 (511): Test correctness for QCP with poly function

• qcp08 (512): Test correctness for QCP with power(∗,2) function

• empdisj4 (513): Test disjunctions with negative bounds on variables

• funcback (514): Test function backward compatibility

• asynexec (515): Test asynchronous execution at compile and execution time

• scen01 (516): Compile time test for the scenario facility

• empdisj5 (517): Test disjunctions using not on binary variable and constraint

• scen02 (518): Execution time test for the scenario facility

• scen03 (519): Multi-dimensional scenario solver test

• stolib01 (520): Test extrinsic functions in stodclib

• trilib01 (521): Test extrinsic functions in tricclib

3.38 23.7 Distribution 445

• trilib02 (522): Test extrinsic functions in tridclib

• trilib03 (523): Test extrinsic functions in trifclib

• lindorg2 (524): Test for LindoGlobals CheckRange Option

• mip04 (525): Exercise new XPRESS return code for unbounded MIP

• load5 (526): Tests UNDF with $load

• pwplib01 (527): Test piecewise polynomials in pwpcclib

• fitlib01 (528): Test the use of FITPACK inside GAMS

• load6 (529): Tests dynamic error messages during $loaddc

• fnspowx (530): Test correctness of signpower intrinsic

• fnspown (531): Test correctness of signpower intrinsic

• nlcode5 (532): Test for NL code bug from Dist 23.6

• scensol2 (533): Test handling of unsorted scenario UELs in GUSS

3.38.1.6 Solver/Platform Availability Matrix

3.38.2 23.7.2 Maintenance release (July 22, 2011)

• Alphaecp: Alphaecp v2.04.02

• Conopt3: Fixed a system error 2003

• Dicopt: Fixed a bug for accidentally determined crossovers

• Inclib: put reorderit.gms update from Bruce McCarl

• Cbc: Disabled preprocessing in case of semicont/semiint variables, it seems buggy

• Cplex: Does no longer require finite bounds on semicont variables

• Gamsinst: Fix problem with blanks in sysdir and IDE error when not having a license

3.38.3 23.7.3 Maintenance release (August 23, 2011)

• alphaecp: fix problem with accumulating solving times of subsolvers which might lead to an earlier
stop

• apifiles:

– get rid of warnings in cc interface,

– fix problem with compilation of fat binaries on Darwin in cc interface

– fix error in gdxSymbolGetDomain in Python interface

– fix errors with constant definitions in C# interface

– add constant definitions and additional constructor (which gets a handle) in Java interfaces

• conopt3: Version 3.15A maintenance release

• cplex:

– fix for interrupt (Ctrl-C) when running with solvelink=5

– fix memory leak

446 Release Notes

• dicopt:

– fix reporting of objest in case of a crossover

– fix problem with accumulating solving times of subsolvers which might lead to an earlier stop

• gamscmex: fix bug related to the internal organization of non-linear code, affects two-argument
functions in rare cases

• gamside:

– close chart files too when changing system directory

– GAMS project file name independent of casing

• gdxdump: suppress on/off empty when writing single symbol

• gdxmrw: was missing on 64bit Linux

• grid: fix potential problem with scaling

• kestrel: added Xpress support

• minos fix: for interrupt (Ctrl-C)

• sbb: fix problem with accumulating solving times of subsolvers which might lead to an earlier stop

• snopt fix: for interrupt (Ctrl-C)

• xpress: update global search to use callbacks called during root node processing and improve scheme
to stop XPRESS when gap is achieved or on user interrupt

3.39 23.6 Distribution

3.39.1 23.6.2 Major release (December 13, 2010)

3.39.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz, Nico Keyaerts, Leon Lasdon, Xiang Li, Timo
Lohmann, Sebastian Ritter, Yannick Rombauts, Tom Rutherford, Uwe Schneider, Stefan Vigerske, Achim
Wechsung, and Gyeongbeom Yi.

3.39.1.2 GAMS System

GAMS

• Added the function RandBinomial(n,p) which generates random numbers from the Binomial
distribution where n is the number of trials and p the probability of success for each trial.

• Added the gams date and release functions to $eval and [..] constant evaluations: jdate, jtime, gyear,
gmonth, gday, gdow, gleap, ghour, gminute, gsecond, gmillisec, jstart, jnow, gamsversion,
gamsrelease.

• Modified operator precedence binding of IMP (->), EQV (<->), OR and XOR. These operator used to
have the same precedence binding, so with the usual left to right evaluation an expression like a

-> b OR c used to be equivalent to (a -> b) OR c. IMP and EQV have now a lower precedence
binding, so the expression a -> b OR c is now equivalent to a -> (b OR c).

3.39 23.6 Distribution 447

• There is no longer a practical limit for the number of non-linear instructions for a single equation.

• New interpretation of value default for command line parameters gdx and rf: default is interpreted
as the input file name, this means for example, that gams trnsport gdx=default will write the
file trnsport.gdx. Along the same lines, gams trnsport rf=default will write the reference file
trnsport.ref.

• New command line parameter Threads: Controls the number of threads to be used by a solver. It
can also be set as GAMS option or model attribute. The model attribute has the highest priority,
the command line parameter the lowest. Non-positive values are interpreted as the number of cores
to leave free so setting threads to 0 uses all available cores while setting threads to -1 leaves one
core free for other tasks.

APIs

• Determine platform dependent library name automatically, no requirement for compiler flags anymore

• Delphi files also support Delphi 2010

• Python files comprehensively improved

• More Fortran examples

Utilities

Chk4Upd

• The new tool chk4upd checks if there is a newer version of GAMS available than the one you are
running. It checks for the most recent version available as well as for the newest version you can run
with your license in case your maintenance and support is expired. By default it reads gamslice.txt
located next to it. Alternatively, you can specify another license on the command line. In addition
to the command line tool you will find an integration in the GAMS IDE at Help -> Check for
GAMS Update.

GamsIDE

• Integration of 'Check for GAMS Update' in the Help Menu

• The 'Find in Files' option now allows for one or more sub-directories to be excluded from the search

• The selection to use a different GAMS system has been changed. We no longer specify the gams.exe
executable but define the alternate GAMS system directory instead.

GDXDiff

• The function to test if two values are different when Eps/RelEps has been specified was changed.
The documentation describes the new implementation.

GDXMRW

• GDXMRW is a collection of utilities that make it easier and more reliable to share data between
GAMS and Matlab and that allow the Matlab user to call GAMS using something similar to a
subroutine interface. Formerly contributed software, these utilities were integrated into GAMS
Distribution 23.4 and have been updated and improved since then.

448 Release Notes

XLSDump

• This new program will write all worksheets of an Excel workbook to a gdx file. Unlike GDXXRW,
the program does not require that Excel is installed. Windows platforms only.

3.39.1.3 Solvers

Baron

• Option ExtNLPsolver allows to specify an option file for the GAMS NLP solver chosen (e.g.
ExtNLPSolver conopt.1)

Coin-OR

• New libraries

– BONMIN 1.4

– CSDP 6.1.1

– CSDP now also available on Solaris x64 on Intel

• The old names COINCPLEX, COINGUROBI, COINMOSEK, and COINXPRESS are not available
anymore. Please use the new names OSICPLEX, OSIGUROBI, OSIMOSEK, and OSIXPRESS
introduced with distribution 23.4.

Conopt

• Supports in-core communication (solvelink=5)

• Dropped support of Conopt 2 (old version of Conopt)

Cplex

• New libraries 12.2.0.1

EMP

• The emp information file now supports block-wise definition

– A flip operator (-) was introduced, see model flipper (50)

3.39 23.6 Distribution 449

Gurobi

• New libraries 4.0

• Quadratic programming: The Gurobi Optimizer now supports models with quadratic objective
functions. The new version includes primal simplex, dual simplex, and parallel barrier optimizers
for continuous QP models, and a parallel branch-and-cut solver for Mixed Integer Quadratic
Programming (MIQP) models.

• Concurrent optimizer: The Gurobi Optimizer now allows you to run multiple algorithms simulta-
neously when solving a linear continuous model on a multi-core machine. The optimizer returns
when the first algorithm solves the model. We include both a standard concurrent optimizer and a
deterministic concurrent optimizer. The latter returns the exact same solution every time you run
it, while the former can sometimes return different optimal solutions from one run to the next. The
former can sometimes be significantly faster.

• MIP performance: The MIP solver is faster in release 4.0. These improvements do not require any
parameter changes.

• LP performance: The simplex and barrier solvers are slightly faster in release 4.0. We have also
improved the numerical stability of the primal simplex solver and the barrier crossover algorithm.

• Delayed MIP strategy change: The Gurobi Optimizer now gives you the option to change a few
MIP parameters in the middle of the optimization in order to dynamically shift the search strategy.
Specifically, two new parameters, ImproveStartGap and ImproveStartTime, allow you to specify
when the algorithm should modify the values of a few parameters that control the intensity of the
MIP heuristics. By setting one or both of these parameters to non-default values, you can cause the
MIP solver to switch from its standard parameter settings, where it tries to strike a balance between
finding better solutions and proving that the current solution is optimal, to a set of parameter values
that focus entirely on finding better solutions.

• New approach to choosing the LP algorithm: The functions previously controlled by parameters
LPMethod and RootMethod are now controlled by parameters Method and NodeMethod. Use
Method to choose the algorithm for solving a continuous model, or for solving the root relaxation
in a MIP model. Use NodeMethod to choose the algorithm for solving node relaxations in a MIP
model.

• Deprecated options: LPMethod and RootMethod

• New options

– Method: Controls the algorithm used to solve continuous linear and quadratic models. This
parameter also selects the algorithm used to solve the root node of a MIP model.

– NodeMethod: Chooses the algorithm used to solve node relaxations in a MIP model.

– ModKCuts: Controls the generation of mod-k cuts.

– ImproveStartGap: Allows you to specify the optimality gap at which the MIP solver resets a
few MIP heuristics parameters in order to shift the attention of the MIP solver to finding the
best possible feasible solution.

– ImproveStartTime: Allows you to specify the elapsed time at which the MIP solver resets a
few MIP heuristics parameters in order to shift the attention of the MIP solver to finding the
best possible feasible solution.

– PreMIQPMethod: Chooses the presolve transformation performed on MIQP models.

– PSDTol: Sets a limit on the amount of diagonal perturbation that the optimizer is allowed to
do on the Q matrix for a quadratic model. If a larger perturbation is required, the optimizer
will terminate with a message that Q is not positive semi-definite.

450 Release Notes

Knitro

• New libraries 7.0.0

• Supports the MultiStart feature in Knitro

• Supports in-core communication (solvelink=5)

• Supported on 64bit Mac and 64bit Solaris on Intel

• Dropped support on Solaris Sparc and Sparc64

Lgo

• supports in-core communication (solvelink=5)

• support of external equations

Mosek

• New libraries 6.0.96

• Supports in-core communication (solvelink=5)

• Dropped support on Solaris Sparc and Sparc64

Scip

• New libraries 2.0 ([more details] (https://www.scipopt.org/download/files/SCIP-release-notes-2.0))

• The GAMS/SCIP interface now also supports semicontinuous and semiinteger variables

• GAMS/SCIP now uses SoPlex 1.5.0 as LP solver

Xa

• Dropped support on Solaris Sparc and Sparc64

Xpress

• Supports in-core communication (solvelink=5)

• New libraries 21.01

3.39.1.4 Model Libraries

GAMS Data Library

• GDXXRWExample15 (76): Write spreadsheet using a filter

• GDXXRWExample16 (77): Write spreadsheet using text and hyperlinks

• tompivot (78): Little GAMS Program from Tom Rutherford that Illustrates Report Generation
with Excel

• readdata (79): Read Data from .inc, .xls, .mdb and .csv file

https://www.scipopt.org/download/files/SCIP-release-notes-2.0

3.39 23.6 Distribution 451

GAMS EMP Library

• flipper (50): Test of flipping equations

• scarfemp-dem (51): Scarf's Activity Analysis Example

• scarfemp-altdem (52): Scarf's Activity Analysis Example - non-closed form demand function

• scarfemp-primal (53): Scarf's Activity Analysis Example

• scarfemp-dual (54): Scarf's Activity Analysis Example

• scarfexpend (55): Scarf's Activity Analysis Example

• pies (56): PIES Energy Equilibrium

• exc2x2emp (57): pure exchange model (ie no production)

• exc2x2emp-dem (58): pure exchange model (ie no production)

GAMS Model Library

• relief (353): Relief Mission

• spatequ (354): Spatial Equilibrium

GAMS Test Library

• emp09 (492): Test initial levels for equilibrium EMP models

• xerr1 (493): External Function Errors: RHS wrong

• xerr2 (494): External Function Errors: Aij wrong

• cerr1 (495): Cone Equation Errors

• merr1 (496): Matrix Errors

• mip02 (497): Check on MIP solution value

• mip03 (498): Test for zero gap when optcr and optca set to zero

• emp10 (499): Test of EMP equilibrium models and flip operator

• emp11 (500): Test EMP formulations of scarfmcp

• empdisj2 (501): Test disjunctions involving the objective

• gdxxrw6 (502): Test for dset reading problem

• qcp06 (503): Nonlinear model cannot be solved as QCP

• gdxdump1 (504): Use GdxDump NoData on Transportation Problem

• lindorng (505): Test for LindoGlobal's CheckRange Option

452 Release Notes

3.39.1.5 Solver/Platform Availability Matrix

3.39.2 23.6.3 Maintenance release (February 15, 2011)

• Cmex: Fix for variable level projection

• Bonmin: Several fixes for outer-approximation based algorithms

• Cplex: New version 12.2.0.2

• Gurobi: New version 4.0.1

• Knitro: Documentation update

• Scip: New version 2.0.1

• Xpress: Fix for crash on 64 bit Solaris

• McCarl Guide: Updates for 23.6

• Gdxxrw: Includes system error message when we cannot start Excel

• Gdxmrw: Minor bugfixes

3.39.3 23.6.4 Maintenance release (April 01, 2011)

• CMEX: Maximal nested includes were raised to 40

• Mosek: New Version6 Rev 105

• Lindoglobal: New Version 6.1.1.553

• Conopt: New Version 3.14W

• Xpress: Memory leak fix

• Coin: Solver fixes

• JAMS: Updates for disjunctions

• GDXXRW: Fixes

• GDXMRW: Updates

• McCarl and GDXUtils: Documentation updates

• Model Libraries: Updates

3.39.4 23.6.5 Maintenance release (April 08, 2011)

• CMEX: Bug fix related to situations with very large number of labels in connection with a restart
with continued compilation

3.40 23.5 Distribution

3.40.1 23.5.1 Major release (July 05, 2010)

3.40.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Farhad Farnam and Alexander Gocht.

3.40 23.5 Distribution 453

3.40.1.2 GAMS System

APIs

• new VB.net example using GDX, Option and GAMS DLL: apifiles\examples\example2.vb

• combine Java api files in package com.gams.api, existing applications need to be adjusted when
using the new Java api files, see e.g. apifiles\examples\example1.java:

package com.gams.example1;

import com.gams.api.*;

public class example1 {

...

3.40.1.3 Solvers

BARON

• New libraries 9.0.6

CONOPT

• New libraries 3.14U

CPLEX

• New libraries 12.2

• MIP kappa describes a new feature extending the computation of kappa to mixed integer programming
(MIP). (In linear programming, kappa is also known as the condition number of a solution.) See
GAMS/Cplex parameter mipkappastats for details.

• Intel processors prior to Pentium 4 are no longer supported.

• The MIP node log interval (GAMS/Cplex parameter MIPInterval) now accepts either a positive or
negative integer value, making it easier for you to adjust the amount of information logged for your
problem.

• The default value of the GAMS/Cplex ClockType parameter has changed from 0=automatic (let
Cplex choose) to 2 (wallclock time).

• The concurrent optimizer launches distinct optimizers on multiple threads. Cplex now offers
concurrent, deterministic optimization of linear programming models (LPs) when more than one
thread is given to Cplex (GAMS/Cplex parameter Threads). Running concurrent optimizers
simultaneously on multiple threads may consume more memory. If the memory reduction parameter
(MemoryEmphasis) is turned on, then you have instructed CPLEX to conserve memory. In that case,
Cplex does not run concurrent, deterministic optimization unless parameter LPMethod is explicitly
set to 6.

• New parameter AuxRootThreads: Partitions the number of threads for Cplex to use for auxiliary
tasks while it solves the root node of a problem. On a system that offers N processors or N global
threads, if you set this parameter to n, where N > n > 0 then Cplex uses at most n threads for
auxiliary tasks and at most N-n threads to solve the root node.

454 Release Notes

GUROBI

• New libraries 3.0.1

• Now also available on Mac X Intel 64bit

LINDOGLOBAL

• New libraries Lindo 6.1.1 for all platforms except for Solaris Sparc 32 bit and 64 bit

• Now also available on Mac X Intel 64bit

3.40.1.4 Model Libraries

GAMS Test Library

• gen r1 (483): Generate GDX file for test of GDXMRW

• gen r2 (484): Generate GDX file for test of GDXMRW

• gen rbig (485): Generate GDX file for test of GDXMRW

• gdxmrw03 (486): test the Matlab utility rgdx

• gdxmrw04 (487): test the Matlab utility wgdx

• testinst (488): test the Matlab mex-file gams

• gversion (489): test the Matlab mex-file gams

• gdxmrw05 (490): test the Matlab mex-file gams

• onmulti7 (491): Test merge with $onmulti and empty data statement

3.40.1.5 Solver/Platform Availability Matrix

3.40.2 23.5.2 Maintenance release (August 18, 2010)

• AlphaECP: Fix for crash running under IDE

• API: Updated Python and Java APIs and examples

• Baron: Fixed issue with output formatting under Linux

• Baron: Memory leak when using BARON with external NLP solver

• Gdxmerge: Do not use path when checking for merged.gdx

• Gurobi: Fixed typo for option displayinterval

• McCarl Guide: Updates for 23.5

• Mosek 6 rev 85 libraries

• MPS2GMS: Removed mps2gms debug message

• Snopt: Fix for wrong return code (local,global)

• Xlsdump utility added

3.41 23.4 Distribution 455

3.41 23.4 Distribution

3.41.1 23.4.1 Major release (May 21, 2010)

3.41.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Phil Bishop, Stefan Boeters, Pavel Borisovski, Wolfgang Britz, Michael
Ferris, David Grace, Sascha Herrmann, Alexander Mitsos, Sebastian Ritter, and Tom Rutherford. We
also thank Marcel Roelofs for helpful and insightful comments and discussions on Hessian computations.

3.41.1.2 Platforms

AIX

• Now built on AIX 5.3

• 64 bit

• New AIX system no longer supports the following products BARON, CONOPT2, DECIS, OSL3,
OSLSE, SCENRED, SCENRED2, and XA

Mac PowerPC

• Dropped support of the Macintosh PowerPC GAMS System. Version 23.3 and older are still available
for download

3.41.1.3 GAMS System

GAMS

GridScript

• The GAMS parameter gridscript allows to point to a customized grid submission script.

TryLinear

• GAMS checks a model for non-linearities at compile time and requires the user to specify using nlp

in the solve statement. At run time these non-linearities might disappear (cancelation, multiplication
of non-linear terms with 0, ...), but the using nlp prevented the use of a pure LP solver. The new
model attribute <model>.TryLinear = 1 checks at run time whether a nonlinear model has
any non-linearities and then calls the default/chosen solver for the resulting model type.

• Depending on the original model type the resulting model type is:

– QCP/DNLP/NLP -> LP

– MIQCP/MINLP -> MIP

– RMIQCP/RMINLP -> RMIP

• An example was added to the Test Library: trylin01 (482)

456 Release Notes

Compile Time String Comparison

• A compile time equivalent of the predefined symbol sameas was added. E.g.

$eval a sameas(xyz,xYz)

$eval b sameas (’xyz’ , "xyz")

$eval c sameas (12-3,12-3)

$eval d sameas (12-3,13-4)

$log %a% %b% %c% %d%

will yield:

1 1 1 0

Compile Time Constants

For various GAMS options compile time constants were added in order to ease the reading code if used.

• solPrint:
0 %solPrint.summary%

1 %solPrint.report%

2 %solPrint.quiet%

• handleStatus:
0 %handleStatus.unknown%

1 %handleStatus.running%

2 %handleStatus.ready%

3 %handleStatus.failure%

• solveLink:
0 %solveLink.chainScript%

1 %solveLink.callScript%

2 %solveLink.callModule%

3 %solveLink.asyncGrid%

4 %solveLink.asyncSimulate%

5 %solveLink.loadLibrary%

• solveStat:
1 %solveStat.normalCompletion%

2 %solveStat.iterationInterrupt%

3 %solveStat.resourceInterrupt%

4 %solveStat.terminatedBySolver%

5 %solveStat.evaluationInterrupt%

6 %solveStat.capabilityProblems%

7 %solveStat.licensingProblems%

8 %solveStat.userInterrupt%

9 %solveStat.setupFailure%

10 %solveStat.solverFailure%

11 %solveStat.internalSolverFailure%

12 %solveStat.solveProcessingSkipped%

13 %solveStat.systemFailure%

• modelStat:
1 %modelStat.optimal%

2 %modelStat.locallyOptimal%

3 %modelStat.unbounded%

4 %modelStat.infeasible%

3.41 23.4 Distribution 457

5 %modelStat.locallyInfeasible%

6 %modelStat.intermediateInfeasible%

7 %modelStat.intermediateNonoptimal%

8 %modelStat.integerSolution%

9 %modelStat.intermediateNonInteger%

10 %modelStat.integerInfeasible%

11 %modelStat.licensingProblem%

12 %modelStat.errorUnknown%

13 %modelStat.errorNoSolution%

14 %modelStat.noSolutionReturned%

15 %modelStat.solvedUnique%

16 %modelStat.solved%

17 %modelStat.solvedSingular%

18 %modelStat.unboundedNoSolution%

19 %modelStat.infeasibleNoSolution%

• E.g. the statments following are the same
modelname.solveLink=3; modelname.solPrint=0;

modelname.solveLink=%solveLink.asyncGrid%; modelname.solPrint=%solPrint.summary%;

• The GAMS model libraries were adjusted and now make use of these constants.

APIs

• new C# example using GDX API: apifiles\examples\example1.cs

• added C++, C# and VB.net project files to make it easier to compile the examples in Visual Studio

• added Delphi Option and Project Configuration Files to make it easier to compile the examples in
the Delphi IDE and on the command line

• added Java Native Interface libraries

• apifiles\common: dropped file gamsglobals.h, use gclgms.h instead

GDXDCLIB API

• New entry points:

• gdxOpenAppend To add symbols to an existing GDX container

• gdxDataReadRawFast To read data in raw mode using a callback function

Data Utilities

GDX2ACCESS

• gdx2access now supports saving the text associated with set entries in the database.

• Added parameter to indicate which version of the database should be created (.mdb or .accdb)

458 Release Notes

GDXXRW

• gdxxrw now supports writing an Excel file with filters. Filtering can be switched on/off for the
symbols that follow the filter option:

execute ’gdxxrw.exe test.gdx par=A rdim=3 cdim=0 rng=sheet1!a1 filter=1 par=B rdim=3 cdim=0 rng=sheet2!a1’;

• Added options to write texts and hyperlinks to a spreadsheet.

MDB2GMS

• mdb2gms now supports writing of the text associated with set entries.

SQL2GMS

• sql2gms now supports writing of the text associated with set entries.

EMP

• A new model type EMP was added in order to provide the flexibility required for the extended
mathematical programming framework.

• The former solver EMP was renamed to JAMS to avoid confusion. JAMS is the default solver for
EMP models.

• EMP bilevel programming now supports Variational Inequality (VI) followers in addition to maxi-
mization/minimization followers. Example: multmpec (25)

• EMP now supports equilibrium models. In contrast to bilevel programs these agent-based systems
don't require a leader. Example: transeql (45)

• Lots of EMP models were added to the GAMS EMP Library.

IDE

• Fixed bug with writing a symbol with many elements to a spreadsheet

• Opening many .lst files is faster

Libinclude

• McCarl's put toexcel and put tohtml were added to inclib subdirectory of the GAMS system
directory and therefore can be used using $libinclude. These tools allow greater control when
writing multi dimensional symbols to Excel or files. More information can be found here

http://www.gams.com/mccarl/newsletter/news28.pdf

3.41 23.4 Distribution 459

3.41.1.4 Solvers

BARON

• New Libraries 9.0.5

• Native 64bit Baron libraries in 64bit windows and linux system

• New option ExtNLPsolver allows to call any GAMS NLP Solver available

• Dropped support of Baron on platform AIX

Coin-OR

• Renaming

– of solver links as follows

∗ COINBONMIN -> BONMIN

∗ COINCBC -> CBC

∗ COINCOUENNE -> COUENNE

∗ COINGLPK -> GLPK

∗ COINIPOPT -> IPOPT

∗ COINOS -> OS

∗ COINSCIP -> SCIP

– of bare bone solver links as follows

∗ COINCPLEX -> OSICPLEX

∗ COINGUROBI -> OSIGUROBI

∗ COINMOSEK -> OSIMOSEK

∗ COINXPRESS -> OSIXPRESS

– For convenience of our users we keep the old names as aliases to the new names for the next
distribution.

– Note: The temporary names COINBONMIND, COINCBCD, and COINIPOPTD are not
available anymore

• New libraries

– CBC 2.4

– Bonmin 1.3

– Couenne 0.3

– Ipopt 3.8

– GLPK 4.43

– Mumps 4.9 (used by Ipopt and Bonmin)

– OS 2.1

• The new BONMIN version brings various new MINLP heuristics (Feasibility pump, diving based
heuristics, RINS, local branching).

• BONMIN can now use CPLEX as solver for sub-MIPs, see option milp solver

• SCIP now supports convex and nonconvex quadratic constraints (model types QCP, RMIQCP,
MIQCP).

• BCH has temporarily been disabled for CBC, BONMIN, and SCIP.

• The OS link now supports only remote solvers via an Optimization Services Server.

• Native CSDP executables were added to the 64bit Windows and Linux system.

460 Release Notes

CPLEX

• Updated threads option allows specification of cores left free for non-CPLEX work

GUROBI

• New libraries GUROBI 3.0

• New parallel barrier solver

• New MIP features include symmetry handling, improved and additional cutting planes, and additional
heuristics.

• Alternate MIP solutions: retrieve all of the feasible solutions found during the branch-and-cut search

• New parameters

– AggFill: provides finer-grain control of presolve aggregation.

– BarConvTol: barrier convergence tolerance.

– BarCorrectors: controls central corrections in barrier.

– BarIterLimit: limits the number of barrier iterations.

– BarOrder: controls the fill-reducing ordering in barrier.

– PreDepRow: controls the presolve dependent row reduction.

– Crossover: controls barrier crossover.

– CrossoverBasis: controls the generation of the initial crossover basis.

– MIPFocus: allows you to modify the MIP solution strategy to better suit the needs of different
model types.

– MIPGapAbs: absolute MIP termination tolerance (GAMS OptCA)

– NetworkCuts: controls the generation of network cutting planes.

– PreDual: determines whether presolve should form the dual of the input model.

– PrePasses: controls the number of passes performed by presolve.

– PumpPasses: controls the feasibility pump heuristic.

– RINS: controls the RINS heuristic.

– Symmetry: controls the new MIP symmetry handling.

– SubMIPCuts: controls the generation of sub-MIP cutting planes.

– Threads: allows specification of how many cores to use.

LINDOGLOBAL

• New libraries Lindo 6.0.1.406

• Now also available on Solaris on x64

• Significant improved performance with some models when Mosek is licensed as well

MOSEK

• New libraries MOSEK 6 rev 71

3.41 23.4 Distribution 461

XPRESS

• New libraries XPRESS 20.00

In-core communication solver links

• All Coin-OR solvers are now supported as in-core communication solvers.

3.41.1.5 Model Libraries

GAMS Data Library

• tsvngdx (75): Support GDX Files with TortoiseSVN diff

GAMS EMP Library

• jointc1 (22): Educational bilevel model

• jointc2 (23): Educational bilevel model

• ferris43 (24): Educational embedded complementarity system model

• multmpec (25): Educational bilevel model with VI followers

• transbp (26): Transportation model with variable demand function using bilevel programming

• flds911 (27): Princeton Bilevel Optimization Example 9.1.1

• flds912 (28): Princeton Bilevel Optimization Example 9.1.2

• flds913 (29): Princeton Bilevel Optimization Example 9.1.3

• flds914 (30): Princeton Bilevel Optimization Example 9.1.4

• flds915 (31): Princeton Bilevel Optimization Example 9.1.5

• flds916 (32): Princeton Bilevel Optimization Example 9.1.6

• flds917 (33): Princeton Bilevel Optimization Example 9.1.7

• flds918 (34): Princeton Bilevel Optimization Example 9.1.8

• flds919 (35): Princeton Bilevel Optimization Example 9.1.9

• flds921 (36): Princeton Bilevel Optimization Example 9.2.1

• flds922 (37): Princeton Bilevel Optimization Example 9.2.2

• flds923 (38): Princeton Bilevel Optimization Example 9.2.3

• flds924 (39): Princeton Bilevel Optimization Example 9.2.4

• flds925 (40): Princeton Bilevel Optimization Example 9.2.5

• flds926 (41): Princeton Bilevel Optimization Example 9.2.6

• flds927 (42): Princeton Bilevel Optimization Example 9.2.7

• flds928 (43): Princeton Bilevel Optimization Example 9.2.8

• flds929 (44): Princeton Bilevel Optimization Example 9.2.9

• transeql (45): Transportation model as equilibrium problem

• simplevi (46): Simple Variational Inequality

• simplevi2 (47): Simple Nonlinear Variational Inequality

• affinevi (48): Affine Variational Inequality

• simpequil (49): Simple Equilibrium

http://tortoisesvn.net/

462 Release Notes

GAMS Model Library

• trnspwl (351): A Transportation Problem with discretized economies of scale

• food (352): Food Manufacturing Problem - Blending of oils

GAMS Test Library

• examin04 (464): EXAMINER test suite - test returnGamsPoint option and QCP

• empbp04 (465): Bilevel model with and without explicitly defined objective equation

• empbp05 (466): Bilevel model with MIN follower vs. VI follower

• eval05 (467): constant expression test for ceil,floor,trunc,frac

• eval06 (468): matching operators in a column

• emp06 (469): Test of EMP based on trnsport model

• emp07 (470): Test of EMP based on trnsport model

• emp08 (471): Test of EMP based on trnsport model

• pgams01 (472): Test procdir deletion in pgams

• pgams02 (473): Test procdir deletion in pgams

• tabsubst (474): Tab and string substitution for long line

• eval07 (475): Test evaluation of real constants - string2Double conversion

• dumpsol (476): Gurobi Alternate Solutions for a Simple Facility Location Problem

• ifthen5 (477): $ifthen false without sameline

• ifthen6 (478): $ifthen/elseif false without sameline

• utils02 (479): test MPS2GMS - it had range problems

• utils03 (480): test MPS2GMS for reading the second range entry on a line

• mpsge11 (481): MPSGE test - multiple fixed income levels

• trylin01 (482): Test model attribute tryLinear

3.41.1.6 Solver/Platform Availability Matrix

3.41.2 23.4.3 Maintenance release (May 24, 2010)

3.42 23.3 Distribution

3.42.1 23.3.1 Major release (November 01, 2009)

3.42.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz, Wietse Dol, Daniel T. Fokum, Nuri Gokhan, Iiro
Harjunkoski, Josef Kallrath, Lloyd R. Kelly, Kristina Konold, and Uwe Schneider.

3.42 23.3 Distribution 463

3.42.1.2 GAMS System

GAMS

• Assigning members to a set using the asterisk is now possible in decreasing order as well. For
example, the following are valid set statements in GAMS.

Set years /bc2000*bc1,0*2009/;

Set years /"-20"*"-1"/;

• The GAMS parameters ProcDir and MaxProcDir can be used to control the generation of process
directories. ProcDir=abc will use abc instead of the 225. The user is responsible to create and
remove the directories. gams.procdir% will now be defined and give you the actual process directory
in use. MaxProcDir=100 will extend the usual 225a to 225z, 225aa, 225ab, etc. The defaults will be
26 for MaxProcDir and 225? for ProcDir to make everything work as before.

• The GAMS parameter RunDir was removed.

• The Dollar Control Options $hiddencall does the same as $call but makes sure that the statement
is neither shown on the log nor the listing file. This is also true in case $ondollar or dp=2 is used.
$hiddencall is especially useful in case of an encrypted model that e.g. reads/writes from an
password-protected Excel file using gdxxrw password option.

GDXXRW

• Support of the Excel 2007 file extension xlsm

• The option password allows to pass down a password to a protect Excel file

3.42.1.3 Solvers

Baron

• New libraries: version 9.0

• Conopt can be used to solve nonlinear subproblems, but on 32bit platforms only (NLPSol=6)

• More control over common linear subexpressions

Coin-OR

• CoinScip version 1.2

– The multi-commodity-flow network cut separator is now used by default

– Improvements in heuristics, presolving, and branching

• CoinGlpk version 4.39

• CoinCouenne version 0.2

– A separator for disjunctive cuts has been added

• CoinCplex, CoinGurobi, CoinMosek, CoinXpress

– These new bare bone solver links come free of charge with the GAMS Base system. General
GAMS options (reslim, optcr, nodlim, iterlim) are supported. In addition an option file in the
format required by the solver can be provided.

• CoinOS 2.0

– The new experimental link to the Optimization Services project allows you to convert instances
of GAMS models into the OS instance language (OSiL) format and to let an Optimization
Services Server solve your instances remotely.

464 Release Notes

GUROBI

• New libraries: version 2.0

• Simplex performance: The simplex optimizers are much faster in the release. The improvements are
most pronounced in the dual simplex method.

• MIP performance: The MIP solver is significantly faster as well. Part of this is a consequence of the
increased speed of the dual simplex optimizer, and part is due to algorithmic improvements in the
MIP itself.

• MIP : You can now compute an Irreducible Inconsistent Subsystem () for an infeasible MIP model.
The previous release could only compute IISs for continuous models.

• MIP node files: You can now store search tree nodes on disk. This allows you to solve much larger
and more difficult MIP models. Use the new NodefileStart parameter to indicate how much memory
you would like to devote to nodes before they are written to disk. The performance impact of
putting nodes out to disk is typically quite small.

MINOS

• MINOS5 (old version of MINOS) was dropped. MINOS5 now is an alias to MINOS (Version 5.51)
in order to protect users that hard-coded the use of MINOS5.

MOSEK

• New libraries: version 6.0

• Improvement of speed and stability of the interior-point optimizer for linear and conic problems

• More effective presolve for simplex optimizer with hot starts

XPRESS

• New libraries: version 20.00

• Updated licensing: multi-threaded runs and 64-bit versions now included in base license

• Updated threads option allows specification of cores left free for non-XPRESS work.

In-core communication solver links

• Lindoglobal supports in-core communication

3.42.1.4 Model Libraries

GAMS Data Library

• transxls (74): Solve classical transportation problem in Excel, using vba API (gamsx, opt and
gdx)

3.42 23.3 Distribution 465

GAMS EMP Library

• negishi (21): Pure exchange model solved with EMP, SJM, and CGE

GAMS Model Library

• bchtsp (348): Traveling Salesman Problem Instance with BCH

• bchstock (349): Cutting Stock - A Column Generation Approach with BCH

• tanksize (350): Tank Size Design Problem

GAMS Test Library

• set10 (449): first entry in set/param data has wrong dimension

• set11 (450): test for order when using set.id or set#id or #id

• gdxcopy5 (451): Test GDX environment variables with trailing blanks

• ifthen2 (452): Test nested $ifthen and $endif

• ifthen3 (453): Test $ifthen $elseif/else $endif

• ifthen4 (454): Tests $ifthen from old release notes

• eval01 (455): constant evaluation with non-stop arithmetic

• eval02 (456): $eval/ife/... sameas function

• forceerr (457): ForceError and ForceErrorCnt Example

• gdxxrw5 (458): Test for password handling of gdxxrw and $hiddencall

• lolp (459): LP Test for logoption

• lonlp (460): NLP Test for logoption

• lomcp (461): MCP Test for logoption

• eval03 (462): test constant compile time evaluation functions

• eval04 (463): test constant compile time evaluation operators

3.42.1.5 Solver/Platform Availability Matrix

3.42.2 23.3.2 Maintenance release (November 18, 2009)

• Gurobi 2.0.1 library with bug fixes

• MOSEK 6 rev 53 library with bug fixes

• Updated CoinOS library with bug fixes

• Solver optfile bug fix in GAMSCHK

• Synchronized tolproj (1e-8) option for solvelink=3

466 Release Notes

3.42.3 23.3.3 Maintenance release (December 17, 2009)

• MOSEK 6 rev 55 library with bug fixes

• 32bit HAR utilities available in 64bit Windows System

• Slow solution reporting in GAMS/Gurobi and other solvers fixed

3.43 23.2 Distribution

3.43.1 23.2.1 Minor release (August 14, 2009)

3.43.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Shiro Takeda.

3.43.1.2 Solvers

Cplex

• New libraries 12.1

• Now also available on 64-Bit Intel Mac

LindoGlobal

• New libraries 6.0.1.299

3.43.1.3 Solver/Platform Availability Matrix

3.44 23.1 Distribution

3.44.1 23.1.1 Major release (July 13, 2009)

3.44.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Anibal Blanco, Wietse Dol, Arne Drud, Josef Kallrath, Erwin
Kalvelagen, Niclas Mattsson, Bruce McCarl, Dominique van der Mensbrugghe, Renger van Nieuwkoop,
Stefan Vigerske, and Tongxin Zheng.

3.44.1.2 New Platform

• (64-Bit) Intel Mac

3.44 23.1 Distribution 467

3.44.1.3 GAMS System

GAMS

Default Upper Bound on Integer Variables

• The default upper bound on integer variables has changed from 100 to +INF. Since some solve
steps in a GAMS applications may inadvertently depend on the previous default value of 100, a the
compatibility option, the GAMS parameter PF4=n, has been introduced to control what values will
be passed to the solver. If the GAMS parameter PF4 is not used (a value of PF4=1 is assumed) the
solve steps will work as in previous releases.

– Pf4=0: The new default upper bound of +INF will be passed to the solver.

– Pf4=1: The value of 100 instead of +INF will be passed to the solver. The solvers will operate
as with older GAMS versions. In addition messages will be written to the log and listing to
report on the number of integer or semi-integer variables which had the new default bound of
+INF reset to 100.

– PF4=2: The new default values of +INF will be used as with PF4=0. When a solution is
returned to GAMS and the level value of an integer variable exceeds the old bound value of
100, a message will be written to the log and listing.

– PF4=3: The same as PF4=2 with an additional execution error issued if the solution reports a
level value greater than 100 for any integer variable with a default bound of +INF.

Setting PF4 values to 2 and 3 is a convenient way to test if the application relies on the previous
default bounds of 100. Future releases may use PF4=0 as the default.

An historic note: when GAMS was first introduced, some MIP solvers could only handle binary
variable and GAMS applied transformations to simulate integers by using a power expansions. In
addition, MIP solvers with integer variables imposed different restrictions on the largest upper bound
value. Finally, solvers like DICOPT introduced integer cuts during the solution process, needing
some finite upper bound on integer variables. What was once a good choice, turned over time into a
source of confusion or resulted in unexpected model behavior.

Default Iteration Limit

• The default iteration limit (IterLim) has been increased from 10000 to 2e9. Setting IterLim to
INF will not work since it is treated as an integer by GAMS and many solvers. Some solver, e.g.
GAMS/Gurobi, recognize 2e9 and set the solver iteration limit to infinity.

Enhanced Profiling Options

• In addition to PROFILE=n and PROFILETOL=r, a new GAMS parameter PROFILEFILE=file has been
introduced to write profiling information to a text file with some fixed format which can easily be
imported into a spreadsheet for further analysis.

1 -1 0.000 ExecInit

139 15 0.000 Assignment cnf

139 13 0.000 Assignment cnf

. . . .

. . . .

. . . .

3549 432 0.000 Equation nbal

3621 39489 0.032 Solve Fini wsisn

3621 -1 0.062 GAMS Fini

1 -1 0.000 ExecInit

3621 -1 0.047 Solve Read wsisn

3621 -1 0.000 GAMS Fini

468 Release Notes

A summary report of the ten slowest execution steps will be written to the log and listing.

--- Profile Summary (184 records processed)

0.062 3621 GAMS Fini

0.047 3621 Solve Read wsisn

0.046 3529 Equation divcnlsea (86)

0.032 3621 Solve Fini wsisn (39489)

0.016 3274 Assignment wnr (2502)

0.016 3447 Equation cost (15)

0.016 3475 Equation laborc (180)

0.016 3519 Equation waterbaln (180)

0.016 3546 Equation subirrc (84)

0.015 3030 Assignment gwtsa (273)

The timing on slow data definitions and gdx loads during compilation will be profiled as well.

Macros

• Added a line continuation character (\) for macro definitions. See test model macro02.

Other

• Faster reading of data statements that are not sorted

• Reduced memory usage for projections

• GDX handles IEEE special values

GAMS Data Utilities

GDXDIFF

• Added FldOnly and DiffOnly parameters to write different formats

• Protection against overwriting an input file

GDXVIEWER

• Fixed problem with cubed view

GDXXRW

• Added RWAIT parameter to specify a delay to open Excel to avoid not ready problems

• Added CheckDate option to regenerate output only if input is more recent than output file

SCENRED2

• A libinclude file runscenred2 has been added to make the communication with Scenred2 simpler.
See example srpchase.

3.44 23.1 Distribution 469

GAMS IDE

• Changed the interface for dealing with tabs

• Tabs expanded to spaces will mark the file as modified

• Added command to select text from current position to a text marker

• Added checks to see if IDE is visible on the monitor

• Move and Size are available on TaskBar icon

Documentation

• Updated McCarl GAMS User's Guide

3.44.1.4 Solvers

AlphaECP

• New libraries 1.75.03

Coin-OR

• New solver CoinCouenne

– CoinCouenne is a global optimization solver for non-convex mixed integer non-linear programs,
similar to the commercial solvers BARON and LindoGlobal. The solver is still in an experimental
phase and is hidden in the GAMS system.

• New libraries

– Cbc 2.3

– Glpk 4.37

– Ipopt 3.6

– Scip now uses Clp 1.10

EMP

• Disjunctive programs can be solved via the following alternative automated reformulations without
changes to the model

– Convex Hull

– BigM

– CPLEX indicators

– Examples

∗ EMP Library sequence (20): Sequencing on a single machine

∗ Model Library bilinear (346): Convexification of bilinear term binary times x

470 Release Notes

GUROBI

• New libraries 1.1

KNITRO

• New libraries 6.0

– Introduces MINLP capability: binary and integer variables are supported. Two algorithms
are available, a non-linear branch and bound method and an implementation of the hybrid
Quesada-Grossman method for convex MINLP. The Knitro MINLP code is designed for convex
mixed integer programming and is a heuristic for nonconvex problems.

– General performance improvements for both the active-set and interior-point/barrier solvers

– Reorganized options into groups: general, barrier and MINLP.

MOSEK

• New libraries 5.0 rev 127

In-core communication solver links

• Support of COINBONMIND, COINCBCD, COINIPOPTD and LGOD as in-core communication
solvers.

Where a traditional link already exists, the newer in-core link version has a ”D” appended to the
name (D for DLL). These in-core links are very similar to their traditional predecessors. They may
lack some functionality but offer in-core communication between GAMS and the solver, making
potentially large model scratch files unnecessary. This can save time if you solve many models in
your GAMS program.

3.44.1.5 Model Libraries

GAMS Data Library

• Portfolio (68): Determines an efficient frontier in Excel, using the GDX DLL (vba API) and the
GAMS executable

• Sudoku (69): Solve a Sudoku in Excel, using the GDX DLL (vba API) and the GAMS executable

• Samurai (70): Solve a Samurai Sudoku in Excel, using the GDX DLL (vba API) and the GAMS
executable

• Samurai2 (71): Solve a Samurai Sudoku in Excel, using the GDX and GAMSX DLL (vba API) [not
available anymore]

• CHP (72): Optimize combined heat and power generation in Excel, using vba API (gamsx and
opt) and GDXXRW

• CHP2 (73): Optimize combined heat and power generation in Excel, using vba API (gamsx, opt
and gdx)

3.44 23.1 Distribution 471

GAMS EMP Library

• zerofunc (18): Match unmatched vars with zero functions in VI

• traffic2 (19): Traffic Assignment Model

• sequence (20): Sequencing on a single machine

GAMS Model Library

• secure (343): Secure Work Files - Example 2

• srpchase (344): Scenario Tree Construction Example

• tsp5 (345): Traveling Salesman Problem - Five

• bilinear (346): Convexification of bilinear term binary times x

• solveopt (347): option solveopt explained

GAMS Test Library

• minos01 (433): MINOS test suite - anti-cycling via expand frequency

• scnred02 (434): Scenred2 test - tree reduction and zero values

• empvi05 (435): Test for EMP's treatment of an odd variable

• nlcode3 (436): Wrong NL code generation for odd case

• set8 (437): Test the set.id set#id #id data macros

• nlcode4 (438): More NL testing when code is deleted

• compile7 (439): Test and document some system.XXX macros

• mcp09 (440): Test inequalities with infinite bounds

• empadj01 (441): Test for EMPs AdjustEqu/NYslp option

• emp05 (442): Test for handling of constant equations

• examin03 (443): EXAMINER test suite - test returnInitPoint option

• compile8 (444): Test for a mapping error

• sl4mip01 (445): Test for known XPRESS bug, with solvelink=1,2,4,5

• macro02 (446): Multi-line macro test

• put10 (447): $on/offput inserted outside the loop

• set9 (448): fast shifting of set elements

3.44.1.6 Solver/Platform Availability Matrix

3.44.2 23.1.2 Maintenance release (July 23, 2009)

• MPSGE: MPSGE ignored the m.workspace and m.workfactor settings

• GAMSCHK: Fixed a problem with the layout of the reports in some models

472 Release Notes

3.45 23.0 Distribution

3.45.1 23.0.2 Major release (February 14, 2009)

3.45.1.1 Acknowledgments

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Surendu Korgaokar, Tom Rutherford, Stefan Vigerske and Rich
Roberts.

3.45.1.2 GAMS System

GAMS Data Utilities

GDXXRW

• Fix to not limit the size of the block read to 65536 lines

Documentation

• Updated McCarl GAMS User's Guide

Other

As announced earlier we dropped the following systems as of this GAMS Distribution.

• GAMSBAS: The newer savepoint/loadpoint facility is easier to use and more robust.

• MPSWRITE: The newer CONVERT utility includes this capability

3.45.1.3 Model Libraries

GAMS Model Library

• poutil (342): Portfolio Optimization for Electric Utilities

3.45 23.0 Distribution 473

GAMS Test Library

• privat01 (432): Test private workfile behavior

• emp04 (431): Compare results of EMP runs using different options for nlp problem

• local01 (430): Test .local in different context $on/offlocal

• empdisj1 (429): Test EMP Disjunction - Minimize the makespan

• empecs02 (428): Test for EMP-Embedded Complemenarity System

• empecs01 (427): Test for EMP-Embedded Complemenarity System

• empvi04 (426): Test for EMP Variational Inequalities

• empvi03 (425): Compares alternative EMP-VI models

• empvi02 (424): Compares manual and EMP-VI models

• empvi01 (423): Simple test for variational inequalities through EMP

• empbp03 (422): Simple bilevel model, both inner and outer problems have constraints

• empbp02 (421): Simple bilevel model, outer problem consist of objective only

• empbp01 (420): Simple bilevel model, inner problem consist of objective only

• convert7 (419): CONVERT test suite - test hessian info correctness

• lp14 (418): Simple test on one equation AFTER reformulation

• card01 (417): Test extended card and ord functions

• suffix01 (416): Test suffix options on controlling sets

• nlp01 (415): Test of correctness for levels & marginals of NLP

3.45.1.4 Solvers

As announced in the 22.9 release notes we dropped the following solvers as of this GAMS Distribution.

• CONOPT1 (old version of CONOPT). The default CONOPT version, CONOPT 3, will not be
dropped.

• MILESOLD (old version of MILES). The default MILES version will not be dropped.

• OSL1 and OSL2 (old versions of OSL). The default OSL version will not be dropped.

• PATHOLD (old version of PATH). The default PATH version will not be dropped. Due to user
requests, and despite our earlier announcement, we did not drop the following components:

• CONOPT 2 (old version of CONOPT).

• DEA

CPLEX

• New libraries 11.2.1

474 Release Notes

GUROBI

• The new Gurobi solver provides state-of-the-art simplex-based linear programming (LP) and mixed-
integer programming (MIP) capability.

• The Gurobi MIP solver includes shared memory parallelism, capable of simultaneously exploiting
any number of processors and cores per processor. The implementation will be deterministic: two
separate runs on the same model will produce identical solution paths.

• The Gurobi solver is available for the 32-bit and 64-bit versions of Windows and Linux. Please
contact us for an evaluation license.

KNITRO

• New libraries 5.2.0

LINDOGLOBAL

• New libraries 5.0.1.345

MOSEK

• New libraries 5.0 rev 112

XPRESS

• New libraries 19.00.04

• The primal algorithm has been improved and is now 40% faster on XPRESS' LP benchmark test
set and 20% faster on XPRESS' large LP benchmark test set.

• The dual algorithm has been improved and is now 22% faster on XPRESS' LP benchmark test set
and 45% faster on XPRESS' large LP benchmark test set.

• The MIP performance has been improved and is now 40% faster on XPRESS' MIP benchmark test
set

• Improvements to the Quadratic Primal algorithm to avoid cycling problems

In-core communication solver links

• Support of GUROBI as an in-core communication solvers.

• Experimental in-core link MINOSD

• Enhancements and bug fixes for the in-core communication solver links BDMLPD, CONOPTD, and
CPLEXD Where a traditional link already exists, the newer in-core link version has a ”D” appended
to the name (D for DLL). These in-core links are very similar to their traditional predecessors. They
may lack some functionality but offer in-core communication between GAMS and the solver, making
potentially large model scratch files unecessary. This can save time if you solve many models in
your GAMS program.

3.46 22.9 Distribution 475

Solver/Platform Availability Matrix

3.46 22.9 Distribution

3.46.1 22.9.2 Major release (December 01, 2008)

3.46.1.1 Acknowledgements

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Stefan Boeters, Wolfgang Britz, Alexander Gocht, Josef Kallrath,
Erwin Kalvelagen, Todd Munson, Yiqi Zhu.

3.46.1.2 Future Deprecation

We are planning to drop the following systems from our next GAMS Distribution 23.0. If you object
please submit an email to support@gams.com!

• CONOPT1 and CONOPT 2 (old versions of CONOPT)

• DEA (capability will be offered by a more general scenario framework)

• GAMSBAS

• MPSWRITE

• MILESOLD (old version of MILES)

• MINOS5 (old version of MINOS)

• OSL1 and OSL2 (old versions of OSL)

• PATHOLD (old version of PATH)

3.46.1.3 GAMS System

GAMS

• GAMS scratch file extension. Starting with distribution 22.9 the default file extension of
intermediate files located in the 225? directories is .dat. The scratch extension is a parameter that
can be changed with the GAMS option ScrExt, e.g gams trnsport scrext=tmp. Within GAMS
code you get the scratch extension using %gams.scrext%.

• GAMS Parameter ETlim (Elapsed Time limit). A GAMS job will terminate if the elapsed time in
seconds exceeds the value of ETlim. The job elapsed time is checked before the execution of a $call,
execute or solve statement. The system will terminate with a compilation or execution error if the
limit (default INF) is reached.

• GAMS Parameter AppendExpand (short form AE). Allows to control the file opening of the
expand file. A value of 0 will open with rewrite, a value of 1, the default, will open with append.

• New solveopt=clear option. A third option has been added to option solveopt=xxx. The related
model attribute <model>.solveopt=n has been adjusted to match the new option values. If the
model attribute is set to NA (default), the setting of the corresponding option statement will be used
to determine the way solutions values are loaded back into the GAMS data space. The possible
values are (the numeric value for the model attribute are given in parenthesis):

mailto:support@gams.com

476 Release Notes

– replace (0) all equations appearing in the model list will be completely replaced by the new
model results. Variables are only replaced if they appear in the final model.

– merge (1) the new model results are merged into the existing structures. This is the default.

– clear (2) similar to the replace option; in addition, variables appearing in the symbolic
equations but squeezed out in the final model, are removed.

• New solPrint=silent option. A third option has been added to option solPrint=xxx. The related
model attribute <model>.solPrint=n and the GAMS parameter solPrint=n have been adjusted
to match the new option values. If the model attribute is set to NA (default), the setting of the
corresponding option statement will be used to control the printing of model generation and solution
information. Note that the GAMS parameter initializes the corresponding option statement values.
The possible values are (the numeric value for the model attribute are given in parenthesis):

– off (0) detailed solution output is suppressed.

– on (1) the most detailed solution output. This is the default.

– silent (2) all solve related output is suppressed.

• New model attributes returning elapsed time information of the solution process:

– ETsolve total elapsed time to execute a solve statement

– ETsolver elapsed time that can be attributed to the solver only

– ETalg elapsed time that can be attributed to the core algorithm

• New suffix for abort.noerror. When using the suffix .noerror with the $abort statement, the
error count will NOT be increased. When a save file is written, all remaining unexecuted code will
be flushed. This allows effective reuse of the save file.

• Added a test and error message to see if a restart file has not been closed yet when we try to use
the file.

The GAMS Macro Facility

The GAMS macro facility has been inspired by the GAMS-F preprocessor for function definition
developed by Ferris, Rutherford and Starkweather, 1998, 2005. The GAMS macro facility incorporates
the major features of the GAMS-F preprocessor into the standard GAMS release. The GAMS macros
acts like a standard macro when defined, however, its recognition for expansion is GAMS syntax driven.

Macros are widely used in computer science to define and automate structured text replacements. The
GAMS macro processors functions similar to the popular C/C++ macro preprocessor. The definition
takes the form

$macro name macro body

$macro name(arg1,arg3,arg2,..) macro body with tokens arg1,..

The name of the macro has to be unique, similar to other GAMS data types like sets and parameters. A (
following immediately the macro name starts the list of replacement arguments. The macro body is not
further analyzed after removing leading and trailing spaces.

The recognition and following expansion is directed by GAMS syntax. The tokens in the macro body to be
replaced by the actual macro arguments follow the standard GAMS identifier conventions. For example:

$macro diff(y) system.cosh(y) - cosh(y)

$macro cosh(x) (exp(x) + exp(-x))/2

scalar z; z = diff(2/3); display z;

http://www.mpsge.org/inclib/gams-f.htm
http://en.wikipedia.org/wiki/C_preprocessor

3.46 22.9 Distribution 477

will expand into:

scalar z; z = system.cosh(2/3) - (exp(2/3) + exp(-2/3))/2; display z;

This expansion takes place in two steps, first GAMS recognizes diff as a macro and changes the input text
to:

scalar z; z = system.cosh(2/3) - cosh(2/3); display z;

Gams will continue to process the modified input text. The first occurrence of cosh is not recognized by
gams as a macro, only the second reference to cosh(2/3) will result in a second and final expansion.

The recognition of macros and expansion of arguments can further be controlled by the use of ampersands
(&) in the macro body. A single ampersand (&) is used as a concatenation or separation symbol to
recognize tokens to be replaced. Two ampersands (&&) immediately preceding a token will drop the most
outer matching single or double quotes of the replacement argument. For example:

$macro f(i) sum(j, x(i,j))

$macro equ(q) equation equ_&q; equ_&q.. q =e= 0;

equ(f(i))

will expand into:

equation equ_f(i); equ_f(i).. sum(j, x(i,j)) =e= 0;

The first step of the above expansion is shown below. GAMS will then only recognize the third occurrence
of f(i) as a macro which will be expanded to give the above result.:

equation equ_f(i); equ_f(i).. f(i) =e= 0;

The actual calling arguments of macros can contain complex expressions and other macro calls. Multiple
arguments are separated by commas. Pairs of parenthesis and quotes can be used freely to protect the
separating comma.

$macro many(a,b) scalar x; x=a/&&b); display x;

many((3/5),’(mod(3,2)’)

Note that the second argument has unbalanced parenthesis and therefor needs to be enclosed in quotes to
give the result below.

scalar x; x=(3/5)/(mod(3,2)); display x;

Some macro use can result in an expansion of infinite length. For example:

$macro a b,a

display a;

will expand into:

478 Release Notes

display b,b,b,b,b,b,b,b,b,b,b,b,b,b,b,b,b,...

GAMS will eventually refuse to do more substitutions and issue a compilation error.

The use of deeply nested macros may require the use of aliased sets in indexed operations like sum and
prod. A minor syntax extension allows the implicit use of aliases. The suffix .local on a controlling set
will use an implicit alias within the scope of the indexed operation. For example:

$macro qq(i) sum(i.local, b(i))

c(q) = qq(q);

will expand into:

c(q) = sum(q.local, b(q));

The use of the .local modifier is not limited to macros and can be used in any context.

Another feature motivated by the use of macros is the implicit use of the .l suffix in data manipulation
statements. This allows using the same algebra in model definitions and assignment statements. The
following code snippet illustrates this feature:

$macro D(s,h) INCOME(h)*alpha[s,h]*sum{s.local, alpha[s,h]*P[s]*

. . .

cmkt(s).. Y(s) =g= sum(h, D(s,h));

. . .

$onDotL

dl(s,h) = d(s,h); display dl;

where INCOME is another macro which calls a number of other nested macros. D(s,h) is now used to
define the equation cmky and is also used in an assignment after the model has been solved. The $ondotl
enables the implicit .l suffix for variables. This feature was introduced to make macros more useful and
is not limited to be used in macro bodies. Since this a new feature it has to be enabled. The matching
$offdotl will disable this feature.

Three more switches are relevant to macros. The $show will list any GAMS macros defined. The
$onmacro/$offmacro will enable or disable the expansion of macros; the default is $onmacro. Finally,
the $on/offexpand will change the processing of macros appearing in the arguments of a macro call.
The default operation is not to expand macros in the arguments. The switch $onexpand enables the
recognition and expansion of macros in the macro argument list. $offexpand will restore the default
behavior.

Macro definitions are preserved in a save/restart file and are available again when performing a continued
compilation.

Comparison of GAMS-F with GAMS macros

The GAMS-F preprocessor combines aspects of traditional macros with that of functions and objects.
The example 7 from the GAMS-F documentation using macros can be found in the GAMS model library
under the name two3mac. Some of the main differences between GAMS macros and the GAMS-F
preprocessor are:

• A macro is a new GAMS data type and shares the name space of GAMS symbols, like sets,
parameters, variables,etc.

3.46 22.9 Distribution 479

• Instead of using <id> == <body>; to recognize a macro, we use $macro <id> <body> with
the $ in position 1.

• Surrounding parenthesis are not automatically added to the macro body when the macro is expanded.

• A macro is recognized and expanded anywhere a proper GAMS identifier can be used. This can be
suppressed by $onmacro/offmacro.

• No automatic definition of new aliased sets and their use in controlled index positions. The .local

feature has been added to ensure local use and eliminates the need for new alias definitions.

• No automatic equation definitions for MCP models.

• The body of the macro is only used during expansion. Hence, the macro definitions are not order
dependent.

• Variables in macro bodies will have an implicit .L when using in assignment statements. This is not a
macro expansion feature, but a new GAMS feature that needs to be activated by $onDotL/$offDotL

GAMSIDE

• The model library open file no longer converts the file name to lowercase

• The ViewClose command for IDECmds now allows closing for any file

• Added option to execute command scripts (.cmd files) from the IDE

• Pressing F3 (search again) after a search/replace will restart the replace dialog

• Output of the put utility 'title' option will be shown in the process window

GAMS Data Utilities

• CHOLESKY

– Compute the Cholesky factors of a symmetric positive-definite matrix

• EIGENVALUE

– Compute the eigenvalues of a symmetric matrix

• EIGENVECTOR

– Compute the eigenvalues and eigenvectors of a symmetric matrix

• GDXCOPY

– When we convert a gdx file using the -Replace option, and the file is open in the IDE, the
IDE will be signaled to close the file and reopen the file after the conversion is complete.

• GDXDUMP

– Updated documentation.

• GDXVIEWER

– Allow resizing of the column width

• GDXDCLIB

– Reading an aliased set could return too many elements

• GDXMERGE

– Fixed a problem when we specify a list of identifiers

480 Release Notes

SCENRED2

Scenred2 is an updated and expanded version of the scenred utility for scenario reduction. Scenred2 is
intended to be a replacement for the existing scenred, but we have made the newer version available as
scenred2 due to some differences in the options used to control scenred's behavior. Having both available
also facilitates comparisons between the two.

New features in scenred2 include:

• Tree construction. Scenred could only reduce existing scenario trees, while scenred2 can create trees
from collections of independent scenarios (i.e. from scenario ”fans”).

• Visualization. Scenred2 contains new options to create input files for GNUPLOT.

• Improved metrics. Tree reduction can now be carried out w.r.t. the Fortet-Mourier metric, instead
of the upper bounds given by the Monge-Kantorovich metric.

3.46.1.4 Documentation

• Updated McCarl GAMS User's Guide

3.46.1.5 Other

• Semidefinite Programming Solver CSDP available for Windows, Linux and Macintosh on Intel
distributions. Some examples are included in the GAMS Model Library:

– trnssdp (340)

– gqapsdp (339)

– maxcut (338)

• Additional Lahey Fortan version of all API files does not depend on a C compiler

3.46.1.6 Model Libraries

GAMS Model Library

• two3mac (341): Simple 2 x 2 x 2 General Equilibrium Model Using Macros

• trnssdp (340): Solving the Transportation LP Problem using SDP

• gqapsdp (339): SDP Convexifications of the Generalized Quadratic Assignment Problem

• maxcut (338): Goemans/Williamson Randomized Approximation Algorithm for MaxCut

https://github.com/coin-or/Csdp/

3.46 22.9 Distribution 481

GAMS Test Library

• load4 (414): Tests various file opening options for GDX files

• eigvec02 (413): Test Eigenvector/Eigenvalue utilities

• choles02 (412): Test 2 Cholesky utility

• choles01 (411): Test 1 Cholesky utility

• eigvec01 (410): Test Eigenvector utility

• eigval01 (409): Test Eigenvalue utility

• scnred01 (408): Basic Scenred2 test - tree construction

• scensol1 (407): Basic Scenario Solver Test

• gdxmerg2 (406): Bad acronym merge in gdxmerge

• gdx8 (405): Bad acronym mapping

• gdx7 (404): Bad acronym loading

• macro01 (403): Several macro tests

• assign2 (402): Test for bad assignment with .fx

• mcp08 (401): Test MCP that turfs up PATH preprocessing error

• convert6 (400): CONVERT test suite - hessian.gdx

3.46.1.7 Solvers

Coin-OR

• New libraries

– Bonmin 0.100

– Cbc 2.2

– Glpk 4.32

– Ipopt 3.5

• Scip 1.1

• Mumps 4.8.3 (used by Ipopt and Bonmin)

• CoinCbc can now use multiple threads (see new option ”threads”). This option is available for all
platforms other than Windows.

• Scip supports special ordered set of type 1 and 2 (SOS1 and SOS2). Further, a new heuristic and a
new cutting plane separator has been added, the preprocessing has been improved, the Clp interface
revised, and bugs were fixed.

482 Release Notes

Cplex

• New libraries 11.2

CPLEX 11.2 offers finer control for solution polishing. In previous versions, the only stopping
criterion for solution polishing was set by the parameter PolishTime to limit time spent polishing
a solution. General stopping criteria, such as the time limit, absolute MIP gap, relative MIP gap,
MIP node limit or MIP integer solution limit did not apply to solution polishing.

Now, however, CPLEX 11.2 allows the user to control more finely when solution polishing terminates.
In other words, the usual tolerances (EpAGap and EpGapinitialized with GAMS parameters OptCA
and OptCr) and limits (IntSolLim, NodeLim and TiLim initialized with GAMS paramter NodLim

and ResLim) now apply to solution polishing.

In addition to those existing parameters that now control the termination of solution polishing,
there are also new parameters specific to the starting conditions for solution polishing.

With these new parameters, a user can tell CPLEX when to switch from branch & cut to solution
polishing. CPLEX is able to switch after it has found a feasible solution and put into place the MIP
structures needed for solution polishing. When these two conditions are met (feasible solution and
structures in place), CPLEX stops branch & cut and switches to solution polishing whenever the
first of these starting conditions is met:

– when CPLEX achieves a specified absolute MIP gap (PolishAfterEpAGap)

– when CPLEX achieves a specified relative MIP gap (PolishAfterEpGap)

– when CPLEX finds a specified number of integer solutions (PolishAfterIntSol)

– when CPLEX processes a specified number of nodes (PolishAfterNode)

– when CPLEX reaches a specified time limit on time spent in optimization (PolishAfterTime)

The new parameters are incompatible with the deprecated option PolishTime. If you use them
together in an option file you will see an error like this:

Reading parameter(s) from "C:\tmp\cplex.opt"

>> polishtime 5

Warning line 1: deprecated option "polishtime"; Use option polishafter... for finer solution polishing control.

>> polishafterintsol 1

Finished reading from "cplex.opt"

CPLEX Error 1807: Incompatible parameters.

polishafterintsol: current = 2100000000, default = 2100000000, minimum = 1, maximum = 2100000000

A few examples with the corresponding GAMS/CPLEX option file:

– As an example of how to manage time spent polishing a feasible solution, suppose the user
wants to solve a problem by spending 100 seconds in branch & cut and an additional 200
seconds in polishing:

TiLim 300

PolishAfterTime 100

– Switch to polishing after first feasible solution:

PolishAfterIntSol 1

– For example, the following procedure applies branch & cut until it reaches a 10% gap. Then it
starts solution polishing until it narrows the gap to 2%.

PolishAfterEpGap 0.1

EpGap 0.02

Lindoglobal

• New libraries 5.0.1.292 now also for Sun Sparc Solaris

3.47 22.8 Distribution 483

PATH

• New libraries 4.7.01 fix preprocessing bug for both MCP and NLP front ends

BDMLPD, CPLEXD and CONOPTD

• Enhancements and bug fixes for the three experimental in-core communication solver links BDMLPD,
CPLEXD and CONOPTD.

3.46.1.8 Solver/Platform Availability Matrix

3.47 22.8 Distribution

3.47.1 22.8.1 Major release (August 01, 2008)

3.47.1.1 Acknowledgements

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz, Andrea Consiglio, Anton Eremeev, Mustafa Esen,Josef
Kallrath, Erwin Kalvelagen, Todd Munson, Rich Roberts, and Andres Ramos.

3.47.1.2 GAMS System

GAMS

• GAMS scratch file extension: Starting with distribution 22.9 the default file extension of intermediate
files located in the 225? directories will change from .scr to .dat. For distribution 22.8 it is
still .scr. The scratch extension now is a parameter that can be changed with the GAMS option
ScrExt, e.g gams trnsport scrext=tmp. Within GAMS code you get the scratch extension using
%gams.scrext%.

• Increased the maximum input line length to 40,000 characters and the maximum number of columns
in a table to 10,000.

• Checking for an interrupt is now also done inside a GAMS looping constructs.

• The $LOAD directive can read the universe from a gdx file by specifying $LOAD id=∗.

• Certain gdx file read operations are now faster and use less memory.

• GAMS parameters gdxcompress and gdxconvert

– Allow new gdx files to be written in an older format of the gdx file.

– Usage through an environment variables (valid for all gdx related operations): gdxconvert =

<value> and gdxcompress = <value> or via GAMS command line parameters: gdxconvert
= <value> and gdxcompress = <value>.

– Possible values for gdxcompress

∗ 0 (or empty): no compression

∗ 1: compression turned on

– Possible values for gdxconvert:

∗ V7: version 7

484 Release Notes

∗ V6: version 6

∗ V5: version 5

– E. g. to get a compressed v6 gdx file enter: gams <model name> gdxconvert=v6

gdxcompress=1 gdx=<gdx file>.

– Note:

∗ With GAMS 22.8 the default format for gdx files is V7 uncompressed.

∗ Only V6 and V7 support compression.

∗ V7 formatted files were introduced with version 22.6 of GAMS; V6 formatted files were
introduced with version 22.3 of GAMS. GAMS platforms that were introduced after
22.3/22.6 (e.g. Mac Intel or SunSparc64) do not support V5/V6.

∗ The command line options have a higher precedence as the environment variables with the
same name.

Utilities

• New

– gdx2xls: Converts an entire gdx data container to a Microsoft Excel spread sheet.

– invert: Calculates the inverse of a matrix provided as a gdx file (for more information see
gdxutils documentation).

– msappavail: Checks which Microsoft Office programs are installed.

– xlstalk: Allows some interaction with Excel to open/close/save Excel files.

• Extended/Updated

– gdxcopy: New option to replace existing gdx files.

– gdxdiff: New id option to compare specified ids only.

– gdxmerge: New optional output parameter to specify the name of the output file.

– gdxviewer: Fixed problem with cube view.

GAMSIDE

• Fixed problem when moving a column to the plane in the gdx data viewer.

3.47.1.3 Model Libraries

GAMS Test Library

• New models, including tests for

– invert utility

– ls solver

– poly function

– gdxconvert and gdxcompress parameters

GAMS Data Utilities

• GAMS introduces the new model library 'GAMS Data Utilities' containing models that demonstrate
the various utilities to interface GAMS with other applications.

3.47 22.8 Distribution 485

PRACTICAL FINANCIAL OPTIMIZATION Models

• The models of the forthcoming book PRACTICAL FINANCIAL OPTIMIZATION - A Library of
GAMS Models by Andrea Coniglio, Soren Nielsen, and Stavros A. Zenios have been included in the
GAMS distribution. It is a companion volume to the book Practical Financial Optimization

by Stavros A. Zenios.

3.47.1.4 Solvers

BARON

• New libraries 8.1.5 for Windows, Linux, and AIX

BDMLPD

• GAMS 22.8 introduces a third experimental solver BDMLPD besides CONOPTD and CPLEXD.
They are very similar compared to their professional brothers BDMLP, CONOPT and CPLEX. They
lack some functionality (e.g. CPLEXD does not solve QCP models) but offer in-core communication
between GAMS and the solver. No large model scratch files need to be written to disk which can
save time if you solve many models in your GAMS program. This in-core execution is activated by
setting <modelname>.solvelink=5; before the solve statement.

Coin-OR

• CoinBonmin

– New libraries 0.99

– Support of user-defined cut generators and heuristics via BCH (Branch and Cut Heuristic)

• CoinCbc new libraries 2.1

• CoinScip supports user-defined cut generators, heuristics, and incumbent report callbacks via BCH

Convert

• New option hessian to dump the Hessian matrix into a GDX file. Similar to the option jacobian.

Cplex

• New libraries 11.1.1

Lindoglobal

• New libraries 5.0.1.292. Sun Sparc Solaris 5.0.1.274.

LS

• Linear Least Squares Solver

https://www.amazon.com/Practical-Financial-Optimization-Decision-Engineers/dp/1405132000/ref=pd_bbs_sr_1?ie=UTF8&s=books&qid=1233229052&sr=8-1

486 Release Notes

Mosek

• New libraries 5 Rev 90

XA

• New libraries for Windows

3.47.1.5 Solver/Platform Availability Matrix

3.48 22.7 Distribution

3.48.1 22.7.1 Major release (May 01, 2008)

3.48.1.1 Acknowledgements

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Jens Baudach, Michael Ferris, Josef Kallrath, Aldo Vecchietti and
Stefan Vigerske.

3.48.1.2 GAMS System

GAMS

• Enhanced Data Statements

The data statements have been enhanced to allow initial values for equations and variables in
addition to set and parameter data. Those new data statements follow the syntax for list and
table data statement for parameters by adding an additional dimension to specify the specific data
attribute. The variable and equation suffixes can be used in this additional dimension. For example,
the solution values for the transport example could be written as:

variable x(i,j) / (seattle.(new-york 50, chicago 300)

san-diego.(new-york,topeka) 275).l

seattle.topeka.m 0.36

san-diego.chicago.m 0.009 /;

variable z / l 153.6750 /;

equation demand(j) / (new-york 0.2250

chicago 0.1530

topeka 0.1260).m /;

Only the non default values need to be specified. The following attributes can be used according to
the variable type:

.l level

.m marginal

.lo lower bound

.up upper bound

.scale scale value

.prior priority for discrete variables

.fx shorthand for setting .l,.lo and .up to the same value

3.48 22.7 Distribution 487

With table style input all index positions have to appear in the row definition. For example we
could write the above list oriented statement in table form as:

variable table x(i,j) initial values

l m

seattle. new-york 50

seattle. chicago 300

seattle. topeka 0.36

san-diego.new-york 275

san-diego.topeka 275

san-diego.chicago 0.009

As with other data statements, $onmulti, $ondelim and $onempty can be used as well.

• The Matching Operator

Mappings between n-tuples can be clumsy to enter via data statements and are often difficult to
compute. Similar to the product operator (.) we introduced a match operator (:). For example, the
two set data statements give the same result:

Set I / t1*t6:s3*s5 /

Set j / t1.s3,t2.s4,t3.s5 /

In another example we may want to count ”tuples” in some fashion:

sets h /h1*h24/, d /d1*d365/, dh(d,h) /#d.#h/

sets t /t1*t8760/, tdh(t,d,h) /#t:#dh/

The resulting set tdh will then have the values:

t1.d1.h1, t2.d1.h2, t3.d1.h3 ..

Currently there is no general matching operator for assignment statement. To facilitate some
otherwise very clumsy and expensive calculations, one can use the following option statement:

Set ijk(I,j,k), x(I,j,k,l) ..

Option ijk(i:j,k), x(ijk:l);

This statement will first clear the set ijk, then apply the matching operators to i and j and finally
apply a product operation to the matched (i,j) with k which results in:

i1.j1.k1, i1.j1.k2, ..

i2.j2.k1, i2.j2.k2, ..

And x will match ijk with the set l resulting in:

i1.j1.k1.l1, i1.j1.k2.l2, ..

• Limit on Memory Use - HeapLimit

In some applications it may be desirable to limit the amount of memory a GAMS job can use.
HeapLimit (MB) is a new GAMS parameter and function/property that limits memory used to
store dynamic data. If the dynamic data storage exceeds this limit, the job will be terminate with
return code 10, out of memory. These features are especially useful in a server environment.

– The GAMS parameter HeapLimit sets the limit of memory use at compile and execution time
for a GAMS job

– The function/property HeapLimit can be used to interrogate the current limit and allows it to
be rest

– The NLP solver CONOPT also has a HeapLimit option which ensures that the solver will not
use more dynamic memory

488 Release Notes

• Other enhancements

– A symbol can have up to 20 dimensions and identifiers and labels can have up to 63 characters

– The GAMS executable understands the ‘Keep’ and ‘CurDir’ parameters

– New derived variable/equation attribute .range is defined as x.range=x.up-x.lo. This
provides a convenient way to see if a variable is fixed

– Additional references in compile time constant expression in $eval and $ife statement can
now reference scalar parameters and the function card(id)

– Added the tuple text if we display with the format x:0:0:1 which puts single items on one line

– In table statements under $ondelim, we can drop the dummy element in the column definition

– As in execution time GDX loads, we can extract the domain information with a load statement
like $load setid=parameterid

Gams Data Exchange (GDX)

• A symbol in a GDX file can have up to 20 dimensions and identifiers and labels can have up to 63
characters

• A GDX file can store domain information for a symbol

• A GDX file can save an aliased set

GDX Utilities

• GDXDUMP writes now data for variables and equations (no longer surrounded by $ontext /
$offtext)

• MDB2GMS allows writing of an empty symbol

• GDXXRW

– No longer interprets a text field as a numeric value (because of international notation issues);
the value returned for such a cell is NA

– Fixed a problem with the default value for a field for a VAR and EQU

• GDXMERGE did not merge an aliased set correctly

• GDXVIEWER can export all symbols to Excel in command-line mode by specifying ID=∗

GAMSIDE

• Supports an optional file, ‘idecfg.ini’, to display additional items like:

– Option to open a html document

– Multiple model libraries

– Display of an image in the process window

• Fixed a problem matching parenthesis on an empty line

• Fixed a problem deleting a 225 directory (when this was the last directory used for opening a file)

GAMS Model Library

• GAMS Model Library contains six examples from LogMIP User’s Manual

3.48 22.7 Distribution 489

GAMS Test Library

• 30 new models, including

– Tests for proper handling of domains larger than 10 and UEL names longer than 31 characters

– Testing of gdxmerge with aliased sets

– New tests for DECISC and DECISM

– Several models testing EMP

Documentation

• Updated McCarl GAMS User's Guide

3.48.1.3 Solvers

BARON

• New libraries (version 8.1.4)

CPLEX

• New libraries (version 11.0.1)

COIN-OR

• New MIP solver SCIP from Zuse Institute Berlin

– use as option mip=coinscip;

– uses COIN-OR LP solver CLP

– free for academic users.

• Support of Windows 64-bit platform

• CoinCbc supports user-defined cut generators and heuristics via BCH (Branch and Cut Heuristic)

• CoinIpopt and CoinBonmin support dynamic load of linear solvers MA27, MA57 (HSL), and Pardiso.

• Minor updates in the libraries and interfaces of CoinCbc, CoinGlpk, CoinIpopt, and CoinBonmin.

CONOPT

• new option Heaplimit (see also gams option)

490 Release Notes

EMP - Extended Mathematical Programming

• (Experimental) Framework for automated mathematical programming reformulations as

– Bilevel Programs

– Disjunctive Programs

– Extended Nonlinear Programs

– Embedded Optimization Complementarity Programs

Thereby new upcoming model types are reformulated into established math programming classes in
order to use mature solver technology. EMP comes free of charge with any licensed GAMS system
but needs a subsolver to solve the generated models.

LOGMIP

• LogMIP 1.0 is a program for solving linear and nonlinear disjunctive programming problems involving
binary variables and disjunction definitions for modeling discrete choices. While the modeling and
solution of these disjunctive optimization problems has not yet reached the stage of maturity and
reliability as LP, MIP and NLP modeling, these problems have a rich area of applications. LogMIP
1.0 has been developed by A. Vecchietti, J.J. Gil and L. Catania at INGAR (Santa Fe-Argentina)
and Ignacio E. Grossmann at Carnegie Mellon University (Pittsburgh-USA) and is composed of:

– a language compiler for the declaration and definition of disjunctions and logic constraints

– solvers for linear and non-linear disjunctive models (lmbigm, lmchull, lmlboa)

LogMIP comes free of charge with any licensed Windows GAMS system but needs a subsolver to
solve the generated MIP/MINLP models. For more information see

– LogMIP Website

MOSEK

• New libraries (version 5.0.0.79)

CPLEXD and CONOPTD

• GAMS 22.7 introduces two experimental solvers: CPLEXD and CONOPTD. They are very similar
compared to their professional brothers CPLEX and CONOPT. They lack some functionality
(e.g. CPLEXD does not solve QCP models) but offer in-core communication between GAMS
and the solver. No large model scratch files need to be written to disk which can save time if
you solve many models in your GAMS program. This in-core execution is activated by setting
modelname.solvelink=5; before the solve statement.

http://www.logmip.ceride.gov.ar/

3.49 22.6 Major release (December 24, 2007) 491

3.48.1.4 Solver/Platform Availability Matrix

3.48.2 22.7.2 Maintenance release (May 13, 2008)

• DICOPT/ALPHAECP/LOGMIPLBOA: Fixed Cplex scaling bug

• GAMS/CPLEX: Small cosmetic Cplex bug fix. We got ”CPLEX Error 3003: Not a mixed-integer
problem.” In case we cannot solve the fixed problem. This was due to some query calls about nodes
and iteration.

• GAMSIDE: Fixed a bug that could cause an out of memory error when moving a row or column to
the plane index in the gdx data viewer

• GAMS/DEA: Avoid writing zeros to GDX files

• GAMS/LGOLIB: Fixed a memory leak

• Minor documentation updates

• Note: AIX and Mac OS X PPC were not updated.

3.49 22.6 Major release (December 24, 2007)

3.49.1 Acknowledgements

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Anton Eremeev, Michael Ferris, Christian Gilow, Uwe Schneider,
Monique Guignard-Spielberg and Stefan Vigerske.

3.49.2 New Platforms

• Solaris on Sparc64 (64-bit)

• Mac on Intel (32-bit)

3.49.3 GAMS System

3.49.3.1 GAMS

• Complete detailed GAMS Release Notes

• Dollar Control Options

– $ife

– $ifthen, $elseif, $else and $endif

– $eval, $evallocal and $evalglobal

– Syntax for Constant Evaluation

• Additional Licensing Information

– At Compile Time: LicenseStatus and LicenseStatusText

– At Run Time: LicenseLevel and LicenseStatus

RN_cmex226.html
RN_cmex226.html#ife_statement_with_expression_evaluation
RN_cmex226.html#ifthen_elseif_else_endif_statement
RN_cmex226.html#eval_evallocal_evalglobal
RN_cmex226.html#syntax_for_constant_evaluation
RN_cmex226.html#at_compile_time
RN_cmex226.html#at_run_time

492 Release Notes

• Put Writing Facility

– .tn attribute

• Enhanced Functions on controlling Sets

– .len, .off, .ord, .pos, .uel, .val

• Other Enhancements

– Unlimited input string length for $call, execute and put utility exec/shell.

– The listing file can be redirected to the standard error stream by using the gams parameter
ao=3

– The model attribute .numvarproj was added to count bound projections during model generation.
Some minor additions to MODEL STATISTICS and an enhanced column listing help identify
potential problems (the variable attribute .infeas could also be used to display potential bound
projections)

3.49.3.2 GAMS IDE

• GDXviewer supports Excel 2007 format xlsx

• GDXviewer has an integrated symbol search

3.49.3.3 GAMS Model Library

• New models

– Asynchronous Jacobi Methods (jacobi)

– Dantzig Wolfe Decomposition and Grid Computing (danwolfe)

– Portfolio Modeling with Parallel Solutions (qmeanvag)

– Cplex Solution Pool for a Simple Facility Location Problem (solnpool)

– Mission Planning for Synthetic Aperture Radar Surveillance (swath)

– TSP tour plotting with LaTeX xy-pic environment (tsp2ltx)

– Min Cost Flow with an Instance generated by NETGEN (netgen)

3.49.3.4 GDXXRW

• Supports Excel 2007 format xlsx

3.49.3.5 GDX2HAR/HAR2GDX

• GAMS distributes and supports utilities for converting HAR (header array) files used by GEMPACK:
gdx2har and har2gdx. Details about these utilities can be found at Tom Rutherford's page here.

3.49.4 Solvers

3.49.4.1 AlphaECP

• New libraries (version 1.63). AlphaECP can call an NLP solver during the optimization to improve
convergence properties for continuous variables.

RN_cmex226.html#the_name_.tn_attribute_on_put_arguments
RN_cmex226.html#enhanced_functions_on_controlling_sets
http://www.mpsge.org/gdxhar/index.html

3.50 22.5 Major release (June 01, 2007) 493

3.49.4.2 BARON

• New libraries (version 8.1.1). XPRESS is available as a subsolver for LPs (option ”lpsol=7”).
Identification of common linear subexpressions in nonlinear functions that speeds up BARON's
parsing time considerably for certain problems.

3.49.4.3 COIN-OR Solvers

• New solver libraries of CBC/CLP (2.0), GLPK (4.22), IPOPT (3.3), BONMIN (0.9). The
GAMS/CoinCBC link has been completely rewritten so that it offers the performance of the
CBC standalone version. Many new options have been added. The GAMS/CoinGLPK link uses
now the advanced B&B solver of GLPK. Support of Solaris 64bit Intel platform and Mac OS on
Intel chips.

3.49.4.4 CPLEX

• New libraries (11.0). There are quite a few changes in Cplex 11 and the GAMS/CPLEX interface.
Please check the detailed GAMS/CPLEX 11 release notes. The major enhancements are:

– Improved Mixed Integer Programming (MIP) Performance

– Enhanced Parallel MIP

– Multiple MIP Solutions

– Performance Tuning tool

3.49.4.5 LINDOGLOBAL

• New libraries (version 5.0.1.183). Support of Solaris Sparc64 platform (SOX) and Intel Mac (DII).

3.49.4.6 MOSEK

• New libraries (version 5.0.0.62). Support of Solaris Sparc64 platform (SOX) and Mac OS on Intel
chips (DII).

3.49.4.7 XPRESS

• New libraries (version 18.00)

3.49.4.8 Solver/Platform Availability Matrix

3.50 22.5 Major release (June 01, 2007)

3.50.1 Acknowledgements

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Christian Gilow and Josef Kallrath.

RN_cplex11.html

494 Release Notes

3.50.2 GAMS System

3.50.2.1 New functions and features

• Added functions system.gamsrelease and gamsrelease

• Added function poly(x,a0,a1,a2,a3..) = sum(i=0 to n, ai∗x∧i)

• Appendout (ao)=2 will redirect the listing file to stdout. This feature is not available when running
under the IDE.

3.50.2.2 GAMS IDE

• Open in new window creates now a single new window when multiple files have been selected

• Spelling menu entry added to Edit menu

• Gdxviewer can write a single symbol and all symbols to an Excel file

3.50.2.3 GAMS Model Library

• New models

– eps-Constraint Method for Multiobjective Optimization (epscm)

– Kissing Number Problem using Variable Neighborhood Search (knp)

– Termination routine to ensure solvers stay with resource limit (schulz)

– How to test for a GAMS version (version1)

3.50.3 Solvers

3.50.3.1 AlphaECP

• A new solver called GAMS/AlphaECP for mixed integer non-linear problems has been added
to the GAMS solver portfolio. AlphaECP is an implementation of the Extended Cutting Plane
method by Tapio Westerlund and Toni Lastusilta from Abo Akademi University, Finland. The
GAMS/AlphaECP solver requires the presence of a licensed MIP solver only.

3.50.3.2 BARON

• New libraries (version 7.8) with improved local search routines.

3.50.3.3 COIN-OR Solvers

• New libraries for CoinCbc, CoinGlpk, and CoinIpOpt. The experimental MINLP solver CoinBonmin
has been introduced for the GAMS Windows and Linux systems. Bonmin (Basic Open-source
Nonlinear Mixed INteger programming) provides an implementation of an NLP-based branch-and-
bound algorithm, an outer-approximation decomposition algorithm, an implementation of Quesada
and Grossmann's branch-and-cut algorithm, and a hybrid outer-approximation based branch-and-cut
algorithm.

3.51 22.4 Major release (February 12, 2007) 495

3.50.3.4 CONOPT

• New libraries (version 3.14r).

3.50.3.5 CONVERT

• Added option 'NLP2MCP' that reformulates a non-integer program as a mixed complementarity
problem (MCP)

• Added option 'AmplNLC' that converts a model into C code for evaluating objectives, constraints,
and their derivatives.

• Added option 'Jacobian' that creates a GDX file containing the basic model data (matrix, initial
point, evaluation of constraints at initial point and bounds)

• Added option 'LindoMPI' that creates an MPI file which is readable by Lindo.

3.50.3.6 CPLEX

• New libraries (version 10.20).

3.50.3.7 LINDOGLOBAL

• The Global Optimization Solver (GAMS solver name is LINDOGLOBAL) from Lindo Systems, Inc.
has been added to the GAMS solver portfolio. LINDOGLOBAL finds proven optimal solutions to
non-convex mixed integer non-linear problems. The LINDOGLOBAL solver requires a license for
GAMS/CONOPT. The size of a model solved by LINDOGLOBAL is limited to 2,000 equations and
3,000 variables.

3.50.3.8 MOSEK

• New libraries (version 4.0.0.60)

3.50.3.9 XPRESS

• New libraries (version 17.10.12)

3.50.3.10 Solver/Platform Availability Matrix

3.51 22.4 Major release (February 12, 2007)

3.51.1 Acknowledgements

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Michael Ferris, Gary Goldstein, and Randy Wigle.

496 Release Notes

3.51.2 GAMS System

3.51.2.1 GAMS

• Compressed and Encrypted Input Files: Facilities to create and use encrypted and compressed input
files have been added. The three new commands: $compress, $decompress and $encrypt are the
respective utilities. For more details consult the User's Guide.

• NonNegative Variable: This new keyword is a synonym for Positive Variable.

3.51.2.2 GAMS IDE

• Added spelling checker

• Added search options for gdxviewer

3.51.2.3 Model Library

• new models (cefiles, encrypt) demonstrate the new GAMS feature of compressing and encrypting
GAMS input files.

3.51.2.4 Testlib Library

• new models to test new features

3.51.3 Solvers

3.51.3.1 COIN

• new libraries and solver from the GAMSlinks project hosted at COIN-OR.

– CoinGlpk: New COIN-OR and Glpk 4.9 libraries.

– CoinCbc: New COIN-OR and Cbc 1.1.0 libraries.

– CoinIpopt: A new interior point NLP solver from COIN-OR.

– The GAMSlinks project (announced January 3 by Stefan Vigerske) was created to develop
links between GAMS and the COIN-OR solvers.

3.51.3.2 CPLEX

• New libraries (version 10.1.1).

3.51.3.3 KNITRO

• New libraries (version 5.1).

https://github.com/coin-or/GAMSlinks

3.52 22.3 Major release (November 27, 2006) 497

3.51.3.4 MOSEK

• New libraries (version 4.0.0.59)

3.51.3.5 XPRESS

• New libraries (version 17.10.08)

3.52 22.3 Major release (November 27, 2006)

3.52.1 Acknowledgements

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz, Michael Ferris, Josef Kallrath, Antti Lehtila, Scott
Malcolm, and Renger van Nieuwkoop.

3.52.2 GAMS System

3.52.2.1 GAMS

• GAMS Grid Facility: The GAMS language has been extended to take advantage of systems with
multiple CPUs and High Performance Computing Grids. New language features facilitate the
management of asynchronous submission and collection of model solution tasks in a platform
independent fashion. A simple architecture, relying on existing operating system functionality allows
for rapid introduction of new environments and provides for an open research architecture. For
details please consult our documentation.

• $LoadDC: Enhanced $load with domain checking. Any domain violations will be reported and flagged
as compilation errors. In contrast, $Load ignores all domain violations and loads only data that
meets the domain restrictions.

• A new GAMS parameter, WorkSpace allows initializing all modelname.workspace attributes.

• New functions:

– arccos, arcsin, tan

– arctan2(y,x): 4-quadrant arctan function, like the atan2(y,x) in the C math library or Matlab,
or Mathematica's ArcTan[x,y]

– binomial(x,y): generalized binomial function, like Mathematica's Binomial[x,y]

– GamsVersion: returns the current gams version, for example 146 for this release

– HeapFree: free GAMS heap space in Mbytes

– HandleStatus, HandleDelete, HandleSubmit, HandleCollect: Grid facility functions, see the
grid facility document for details

– Sleep(sec): suspends GAMS execution for sec seconds, where sec has millisecond resolution.

• GAMS solvers and other processes now inherit their priority from GAMS/Base or GAMSIDE: this
is useful on heavily loaded machines where you want GAMS to run with below-normal priority.

498 Release Notes

3.52.2.2 GAMS IDE

• Removed size limit for the capacity of the clipboard for .lst viewer

• Added a shape graph type (rectangle and ellipse) and multi-line parametric graph type

• Added more context menus

• Option to open .lst file in editor

• Switching tabs or switching application will check for files that changed

• When gamside.ini is not found in the 'My Documents\gamsdir' directory, new directories and an
initial project will be created. The IDE will start maximized, and the edit window and process
window position and size are initialized.

• Added a GUI editor for solver option files. The editor also provides access to the solver specific help
file.

• When searching for text in files (Find in Files) the search window remains open to make switching
between editor and search results faster.

3.52.2.3 File Compression

• Every program creating a GDX file (e.g. gdxxrw or gams) will look at the environment variable
GDXCOMPRESS; if value is not zero, data will be written compressed.

• Compressed workfiles can be created with parameter xsave.

• Decompression of GDX or workfiles is handled automatically.

• GDX and workfiles can exceed 2GB in size.

• The new utility gdxcopy allows conversion between different formats. For example, a compressed
GDX file can be converted so it is understood by older GAMS systems. Of course, all file formats
(GDX and workfile) can be read by a current GAMS system.

3.52.2.4 GDXMERGE

• Added ability to process named identifiers only (id=id1, id=id2)

• Added ability to process very large symbols separately by specifying a memory threshold to avoid
memory issues.

3.52.2.5 GDXXRW

• String explanatory text for sets is now quoted. (Text starting with '=' created problems.)

3.52.2.6 Testlib Library

• 66 new models, including

– New solver-specific models/suites: 24 models, 21 suites

– Tests for new intrinsic functions and utilities

3.52 22.3 Major release (November 27, 2006) 499

3.52.3 Solvers

• The processing of solver option files has been centralized/standardized. This allows for a uniform
way of documenting and working with solver and options. The GAMS IDE provides a utility for
visual processing of options.

3.52.3.1 BARON

• New libraries (version 7.7) with improved range reduction for monomial functions.

3.52.3.2 CONOPT

• New libraries (version 3.14q) with some minor bug fixes and performance improvements.

3.52.3.3 CPLEX

• New libraries (version 10.1) with increased performance when solving models with indicator con-
straints.

3.52.3.4 KNITRO

• New libraries (version 5.0) with improved efficiency and robustness, especially in the active-set
algorithm.

3.52.3.5 MOSEK

• New libraries (version 4.0)

– There is a parallel extension (option MSK IPAR INTPNT NUM THREADS) for the interior
solver. Moreover, it is possible to solve a problem concurrently with several of MOSEK's
algorithms. The parallel extension comes free of charge.

– Warm start capability for the mixed integer optimizer (option MSK IPAR MIO CONSTRUCT SOL)
has been added.

– A dual simplex optimizer has been added and the overall performance of the Simplex optimizers
has been significantly improved. Moreover, an automatic (and transparent) dualizer has been
added to the simplex optimizers.

– The presolve has been improved especially for large stochastic optimization problems.

3.52.3.6 PATH

• New libraries (version 4.6.07) with some minor bug fixes and performance improvements.

3.52.3.7 SNOPT

• New libraries (version 7.2-4) with some minor bug fixes and performance improvements.

500 Release Notes

3.52.3.8 XA

• New libraries (version 15.07) with improved presolve and new MIP heuristics.

3.52.3.9 XPRESS

• New libraries (version 17.10)

– GAMS/XPRESS now supports multiple threads for MIP and Barrier runs.

– New option (loadmipsol) supports passing an integer feasible point to the MIP solver.

– Improved factorization speed - yields faster primal and dual algorithms.

– Improved MIP performance (via presolve and heuristics, e.g.)

3.52.3.10 Solver/Platform Availability Matrix

3.53 22.2 Minor release (April 21, 2006)

3.53.1 Acknowledgements

We would like to thank all of our users who have reported problems and made suggestions for improving
this release. In particular, we thank Wolfgang Britz (Bonn University), Paritosh Desai (DemandTec),
Michael Ferris (UW-Madison), Edgar Ramirez (at hotmail.com), and Rich Roberts (SRS Technologies).

3.53.2 GAMS System

3.53.2.1 GAMS

• The limit on nonlinear instructions in a single block has been raised from 16 million to 64 million
instructions.

• Performance improvements for very large and complicated loop structures.

• International characters in file and path names are now handled correctly.

3.53.2.2 GAMS IDE

• GDX data browser is faster and can sort indices by name vs. entry order

• A symbol shown in the GDX data browser can be written to an Excel file

3.53.3 Solvers

3.53.3.1 CONOPT

• New libraries are included which address minor fixes

3.54 22.1 Major release (March 15, 2006) 501

3.53.3.2 CPLEX

• New libraries (version 10.0.1, a maintenance release)

3.53.3.3 LGO

• New libraries

– The built-in stochastic searches have been improved.

– Some internal limits were increased to allow larger models to be solved.

3.54 22.1 Major release (March 15, 2006)

3.54.1 GAMS System

3.54.1.1 Relaxation of discrete variables (.prior=Inf)

• The priority attribute of a discrete variable can be used to relax a specific variable instance. The
priority attribute .prior establishes in what order variables are to be fixed to integral values while
searching for a solution. Variables with a specific .prior value will remain relaxed until all variables
with a lower .prior values have been fixed. Setting the .prior value to +inf will relax this variable
permanently. This relaxation is done independent of the model attribute .prioropt.

This feature is useful in solving difficult discrete models. The Model Library model ”Linear Recursive
Sequence Optimization Model” (lrs.gms) illustrates the use of this feature that specifies that only the
first n variables of k are binary, whereas the remaining ones are fractional. This is simply expressed
as follows:

SET t time horizon /1*350/, f(t) first N steps /1*48/;

Binary Variable k(t);

...

k.prior(t) = inf; k.prior(f) = 1;

3.54.1.2 Derived Variable and Equation Attributes (.slacklo,.slackup,.slack,.infeas)

• Calculations involving slacks and infeasibilities have been simplified with four new derived attributes.
These attributes are defined on equations and variables as follows:

x.slacklo = max(x.l-x.lo,0);

x.slackup = max(x.up-x.l,0);

x.slack = min(x.slacklo,x.slackup);

x.infeas = - min(x.l-x.lo,x.lu-x.l,0);

Note that the slacks or infeasibilities will always be zero or positive.

3.54.1.3 Enhanced Model List

• The entries of a model list can now contain previously defined models. For example:

Model one / e1,e2,e3 /

two / one, e4 /

three / two, e5 /;

The model two will now contain equations e1,e2,e3,e4. The model three will contain all of model
two plus equation e5.

502 Release Notes

3.54.1.4 New model type

• RMPEC: The model type MPEC now allows discrete variables. The Relaxed Mathematical Program
with Equilibrium Constraints (RMPEC) model relaxes the discrete variables as with RMIP and
MIP models.

3.54.1.5 Enhanced $IF/IFI statement:

• A check for the existence of a directory has been added to the $if statement.

$IF DEXIST directory command

$IFI DEXIST directory command

3.54.1.6 GDX Utilities

GDXDIFF

• When a key value pair exists in one file and not in the other we use Eps to determine if the difference
should be reported.

GDXDUMP

• All unique elements in the output are now quoted to avoid problems with reserved words etc.

GDXMERGE

• New options introduced to merge only specified identifiers, to merge very large data sets, and to
read parameters from a file (@filename).

GDXXRW

• Fixed problem with merging when only the top-left corner of the range was specified.

3.54.1.7 GAMS IDE

• Added a viewer for lst files. In contrast to the editor, this viewer does not load the complete file in
memory.

• Added a navigation tree for the lst file.

• Added the option to generate charts using a gdx file.

• All viewers, except the process window, are now organized as tabbed windows.

• The gdxviewer remembers that last symbol viewed for a gdx file and will select the symbol when
opening the file.

• Expanded format for library file to use other entries in the library.

3.54 22.1 Major release (March 15, 2006) 503

3.54.1.8 GAMS Model Library

• new models

– IDE charting facility (chartdat)

– Cplex option feasopt (feasopt1)

3.54.1.9 Testlib Library

• new models

– Tests for new GAMS intrinsic functions NCPVu∗∗∗

– Tests for GDXdiff utility

3.54.1.10 McCarl GAMS User's Guide

• Extensive internal changes to allow better distribution formats

• Now distributed as a single .chm file and a single .pdf file with fully linked topics

3.54.2 Solvers

3.54.2.1 BARON

• XA can now be used as an LP solver inside BARON.

• For the LP solvers Cplex and XA the user can specify the LP algorithm (primal/dual simplex,
barrier) using the BARON option lpalg.

• The user can control BARON's node selection scheme with the option nodesel. Available strategies
include best bounds, DFS, minimum infeasibilities, and BARON's own mix.

3.54.2.2 CONOPT

• New libraries (version 3.140)

– The scaling method has been improved to work better with models with small levels and large
derivatives (e.g. sqrt(x) for x close to 0).

– Minor problems with previous versions corrected.

504 Release Notes

3.54.2.3 CPLEX

• New libraries (version 10.0)

– Dropped Platforms: ILOG dropped support for CPLEX 10.0 on the SGI platforms. Also
support for Linux with glibc2.2 was dropped but will hopefully be available when GAMS 22.1
will be released. GAMS 22.1 for dropped platforms ships older versions of CPLEX.

– Solution Polishing: Solution Polishing is appropriate for finding the best solutions to complex
and difficult MIP models within a specified time. Solution Polishing is used to improve the
best solution at the end of the branch-and-cut process if optimality has not been proven.

– MIP Starts: The advanced restart capabilities of CPLEX have been improved to utilize initial
solutions, partial solutions and partially correct solutions. If the user specifies values for only
a portion of the discrete variables, CPLEX 10.0 will attempt to fill in the missing values or
correct the wrong values in a way that leads to an integer-feasible solution, potentially reducing
the time to solve the problem.

– Infeasibility analysis tool: CPLEX provides an automatic approach to find the best feasible
alternative to an infeasible model. This approach is turned on by an option called FeasOpt

(for feasible optimization). With the FeasOpt option CPLEX accepts an infeasible model and
selectively relaxes the bounds and constraints in a way that minimizes a weighted penalty
function. In essence, the feasible relaxation tries to suggest the least change that would achieve
feasibility. It returns an infeasible solution to GAMS and marks the relaxations of bounds and
constraints with the INFES marker in the solution section.

– For details check the GAMS/CPLEX 10 Release Notes.

3.54.2.4 DICOPT

• New option infeasder: It allows for linearization of infeasible NLP subproblems.

3.54.2.5 Examiner

• Default behavior changed: if no action is chosen, Examiner prints a warning message and defaults
to ”examineInitPoint yes”

• Adjusted to handle new RMPEC model type. Currently MPEC models are not allowed.

• Report format for examination of points changed:

– better labeling of the point being examined - consistent with the naming scheme and options
used to choose the examination

– use GAMS notation (e.g. x.l(seattle,topeka), f.m(supply)) to specify rows/columns

– add option 'showSlacks' to print slacks/differences explicitly when the difference is small
compared to the values themselves

3.54.2.6 XPRESS

• New libraries (version 16.10.03)

– The dual pricing algorithm has been improved. For some difficult LP problems this has resulted
in an order of magnitude speed improvement.

– The speed and stability of the simplex factorization has been improved.

– The barrier algorithm now requires less memory.

– The cut generation has been improved.

RN_cplex10.html

3.55 22.0 Major release (August 01, 2005) 505

3.55 22.0 Major release (August 01, 2005)

3.55.1 New platforms supported

• 64 bit Windows (aka Windows 64-Extended, Windows EM64T) version introduced. Windows
licensing includes both 32 and 64 bit systems at a single platform cost. Some solvers exist only in
32 bit mode and are included as such on the 64 bit version. See the solver platform matrix.

3.55.2 Updated build for the Linux platform

• Previous 32-bit Linux GAMS Distributions (e.g. 21.X) were built using only an older Linux machine
with version 2.2 of the GNU C Library. This distribution is compatible with both older and newer
Linux systems. The installer for this software is located in the systems/lnx/lnx2.2 directory of the
CD. The build code for this software is LXI (displayed on the solver audit lines, etc). This build is
included in the current CD as it was before.

• This distribution includes a new 32-bit Linux build (build code LX3) that parallels the previously-
existing LXI build. The LX3 system is built on a newer Linux machine with version 2.3 of the GNU
C Library, and is not compatible with older systems using GNU LIBC 2.2. The installer for this
software is located in the systems/lnx/lnx2.3 directory of the CD.

• Consider the following when choosing which Linux build to install:

– Most Linux users will be using a system with GNU LIBC 2.3 and should use the newer build.
You can check your LIBC version by running it. On my machine, I do ”/lib/libc.so.6” but be
aware your version number may vary.

– These are builds of the same source, using different compilers. The ”older” build uses older
compilers, not older source. In cases where different vendor libraries are required, the same
comment applies.

– The different builds use a common GAMS license file.

– While there is no scheduled end-of-life for the older build we expect that our algorithm vendors
will stop supporting it at some point. When this happens, we can only ship updated versions
of the new build.

– If you wish to install both versions, install them in separate directories.

3.55.3 GAMS System

3.55.3.1 GDX Utilities

GDXDIFF

• Modified the comparison routine that determines if two numbers are equal wrt. an absolute or
relative tolerance.

506 Release Notes

3.55.3.2 GAMS IDE

• Added option to save a file in Unix format.

• Added option to save and email the current file.

• Added option to launch Windows Explorer showing directory of the current file with the current file
selected.

• gamsdir is now a sub-directory of 'My documents'. gamside.ini file now stored in the gamsdir
directory.

• Reload file now also works for GDX files and RefFiles (in addition to regular source files).

• When starting the IDE or opening a project, a scan is made for GAMS temporary directories which
can be deleted. This option was also added under the Utilities menu.

• Pressing F1 for help was broken.

• $ONECHO/$OFFECHO work now like $OFFTEXT/$ONTEXT for syntax coloring.

3.55.4 Solvers

3.55.4.1 CPLEX

• New libraries (version 9.1)

– Option mipstart: It is no longer necessary to provide a compete integer solution as the starting
point.

– Option fraccuts: Settings of 1 or 2 will cause Gomory cuts to be generated for MIQCP models.

– New Option lbheur: When set to 1 (default is 0), CPLEX will use a local branching heuristic
to try to improve new incumbents.

3.55.4.2 KNITRO

• New libraries are included which address minor fixes.

3.55.4.3 XA

• New libraries are included which address minor fixes.

3.55.4.4 XPRESS

• New libraries are included which address minor fixes.

3.56 21.7 Major release (April 01, 2005)

3.56.1 Acknowledgements

We would like to thank all of the users who have reported bugs or made suggestions in improving this
release.

3.56 21.7 Major release (April 01, 2005) 507

3.56.2 New platforms supported

• 64 bit x86 64 (Linux) version introduced. Linux licensing includes both 32 and 64 bit at a single
platform cost. Some solvers exist only in 32 bit mode and are included as 32 bit on the 64 bit
version. See the solver platform matrix below.

• Macintosh PowerPC (Darwin) version introduced.

See our sales page for available solvers by platform.

3.56.3 GAMS System

3.56.3.1 Model Library

• Several new models have been added. See the GAMS Model Library for details.

3.56.3.2 New Workfile Format

• now a single file (G00 file extension). Files can be read that were created on different platforms. File
is packed and only approx 50% of previous file size. Read and write is also substantially quicker.

3.56.3.3 Testlib Library:

• Updates to quality model

– take advantage of solver updates & fixes

– added --QUICK=1 option to skip slow tests

– test all solvers, using system.solverNames and filter list

– allow skips of models in solver-specific test suites

• New models

– convert solver test suite

– new cmex & MIP tests, test new workfile format save/restart

See the testlib library for details.

3.56.4 Solvers

3.56.4.1 BARON

• New libraries (version 7.2.5) which address minor bug fixes and enhancements

3.56.4.2 BENCH

• promoted from beta solver.

508 Release Notes

3.56.4.3 GAMS/AMPL Link

• a GAMS/AMPL link has been introduced.

3.56.4.4 GAMS/LINGO Link

• a GAMS/LINGO link has been introduced.

3.56.4.5 MOSEK

• New libraries (version 3.2) which address minor bug fixes and enhancements.

3.56.4.6 NLPEC

• Relaxed the test for complementarity of the solution proposed by the reformulated model to work
better for poorly-scaled models

3.56.4.7 XA

• update to documentation (nodelimit, log output)

• numerous library updates to fix outstanding issues

• improved handling of solver status 4=TERMINATED BY SOLVER

3.56.4.8 XPRESS

• deal with ”recoverable errors” on return from barrier method

• minor improvements and workarounds for library quirks in link

3.56.4.9 Solver/Platform Availability Matrix

3.57 21.6 Minor release (January 26, 2005)

3.57.1 Acknowledgements

We would like to thank all of the users, particularly Josef Kallrath, who have reported bugs or made
suggestions in improving this release.

3.57.2 Solvers

3.57.2.1 BARON

• New libraries are included. Several new features which are documented in the BARON solver
manual.

3.57 21.6 Minor release (January 26, 2005) 509

3.57.2.2 CONVERT

• New model instance format CoinFML, Coin style XML model file.

• LINGO format updated to include Version 9 features

3.57.2.3 COIN

• CoinGlpk: New COIN and GlpK 4.7 libraries.

• CoinSbb: This is now called CoinCbc (Coin Branch & Cut). The name CoinSbb will remain for this
and the next distribution.

• Three new cuts classes: Clique, Flow Cover, Mixed Integer Rounding and all new libraries.

3.57.2.4 KNITRO

• New libraries are included which address minor fixes.

3.57.2.5 XPRESS

• New libraries are included which address minor fixes.

3.57.3 GAMS System

3.57.3.1 Model Library

• licememo: Generate your own license memorandum and solver matrix with this model.

• deploy: Generate a minimal deployment GAMS system with necessary components only.

3.57.3.2 Testlib

• 26 new quality assurance tests have been added to the suite.

3.57.3.3 Minor enhancements

• $onecho and $onput have new variants to specify verbatim or substitutions. The new names are:
$onechoV, $onechoS, $onputV, $onputS.

• Manipulation of system environment variables and prefixing of the search path:

$SetEnv name value

$DropEnv name

$PrefixPath value

%SysEnv.name%

$if SetEnv name

510 Release Notes

3.57.3.4 fml2gms

• converts a CoinFML style XML file into GAMS (courtesy of Leo Lopes, University of Arizona). An
example showing how to convert from GAMS to CoinFML format and back to GAMS is shown
below:

> gamslib trnsport

> echo coinfml > convert.opt

> gams trnsport optfile=1 lp=convert

> fml2gms coinfml.xml

> gams fml2gms.gms

3.57.4 Documentation

3.57.4.1 Bruce McCarl User's Guide

• accessing the guide through the GAMS/IDE, will now launch the PDF file directly instead of through
a web browser. This is due to possible incompatibility issues with Windows XP Service Pack 2
(securtiy settings). To launch via the web, users can go to File > Options and check the box ”Launch
docs using Explorer.”

3.58 21.5 Minor release (November 11, 2004)

Distribution 21.5 includes newly available solver libraries and minor enhancements in the GAMS system,
as well as introduces the interior-point NLP solver KNITRO from Ziena Optimization.

3.58.1 Acknowledgements

We would like to thank all of the users who have reported bugs or made suggestions in improving this
release, especially Richard Roberts for catching an IDE bug.

3.58.2 Solvers

3.58.2.1 CONOPT

• New libraries (14e) are included which address minor fixes.

3.58.2.2 CPLEX

• New libraries (9.0.2) are included which address minor fixes.

3.58.2.3 KNITRO

• New interior-point nonlinear programming solver added to the GAMS NLP solver portfolio.

http://www.ziena.com/

3.58 21.5 Minor release (November 11, 2004) 511

3.58.2.4 MOSEK

• New libraries (3.1) are included which address minor fixes.

3.58.2.5 XA

• New libraries are included which address minor fixes.

3.58.2.6 XPRESS

• New libraries are included which address minor fixes.

3.58.3 GAMS System

3.58.3.1 Model Library

• A model showing a successive recalibration algorithm for solving general equilibrium models has
been added (decomphh.gms).

• A model illustrating numerical integration using trapezoidal approximations for Herves (transposable
element) activity calculations is included (herves.gms).

3.58.3.2 Testlib

• 27 new quality check models have been added. See the Testlib page for details.

3.58.3.3 New functions

• sinh, cosh, tanh

3.58.3.4 $ Dollar control options

• $on/offVerbatim

– The $on/offVerbatim commands are used in conjunction with the GAMS parameter DUMPOPT
to suppress the input preprocessing for input lines that are copied to the dmp file. This feature
is mainly used to maintain different versions of related models in a central environment.
The $on/offVerbatim commands are only recognized for DUMPOPT >= 10 and apply only to
lines in the file the commands appeared.
The use of $goto and $on/offVerbatim are incompatible and may produce unexpected results.

• $on/offPut

– This option simplifies the writing of put statements that copy text. Previously, to copy text
into a put file one may have to write many lines similar to the ones below:

put ’text A with a double quote "’ "text A with a single quote ’" /

put ’text B with a double quote "’ "text B with a single quote ’" /

put ’text C with a double quote "’ "text C with a single quote ’" /

512 Release Notes

This may be cumbersome. The use of $on/offPut will result in the same text written to the
put file without having to specify the 'put' explicitly for each line and allows you to specify
mixed quotes in a single statement. Consider the following example:

file fx;

put fx ’text with " and ’ "’ required a split of the text" /

$onput

With the new on/off put we can freely

mix and match ’ and " characters.

$offput

;

It also works outside of the put statement:

$onput

It even works outisde the put statement,

as long as a put file is assigned.

$offput

• $setDDlist

– This statement catches misspelled 'double dash' GAMS parameters. For example, in the
program below (ein.gms), the only 'double dash' options are 'one', 'two', 'three' and 'four' (note
the use of the string macro for %two% automatically makes it part of the allowed list of double
dash parameters):

$if NOT set one $set one default value

display ’%two%’;

$setddlist three four

The following GAMS invocation will cause an error since --five is not a valid 'double dash'
option.

> gams ein.gms --two=twovalue --five=20

1 Display ’twovalue’

**** --five=20

3 $setddlist three four $620

3.58.3.5 Other new features

• alias(∗,u1,u2,..)

– The universe is assumed to be ordered and ordered operators like lag, leads and ORD can be
applied.

• Faster execution of GAMS statements using set(s) containing a single element.

• SortedUels(∗,∗)

– A new predefined tuple to report sets in sorted order. For example, to write in sorted order:

alias(*,u);

loop(SortedUels(u,i),

put / i.tl i.te(i));

3.59 21.4 Major release (September 06, 2004)

3.59.1 Acknowledgements

We would like to thank all of the users who have reported bugs or made suggestions in improving this
release.

3.59 21.4 Major release (September 06, 2004) 513

3.59.2 GAMS System

3.59.2.1 Model Library

• The model library keeps on growing! A model that implements a column generation scheme for the
cutting stock problem (cutstock) has been added. There are two examples that demonstrate the
multiple solution feature in BARON (mhw4dxx and bchfcnet).

• The model library also has the new category ”GAMS Tools”. Models in this category show how to
use tools designed to help modelers in their daily work. Three models (awkqap, seders, and awktsp)
demonstrate the routine process to take a raw file from a web site and manipulate the text file into
a format suitable to be read by GAMS using Unix-style tools SED & AWK.

• Five new models (mingamma, quantum, procmean, mlbeta, and mlgamma) have been added to
demonstrate the new statistical functions (discussed below).

3.59.2.2 Testlib

• 33 new models were added to the test library.

• Addition of solver-specific test suites. The models in a test suite are run not for all solvers but for
the set of solvers associated with that particular suite.

• Most of the new models test features in GAMS/Base.

• A series of new models tests MCP syntax and matching rules.

3.59.2.3 Windows Setup.exe

• A new Windows setup.exe installation program for GAMS is used adding new functionality and a
more user friendly interface.

• The McCarl GAMS User Guide is now part of the Windows installation (for UNIX platforms this
must still be installed manually).

3.59.2.4 GDX Utilities

• GDXrank, a standalone sorting utility for GDX files, is now part of the distribution (all platforms)

• A wrapper for GDXrank, called rank.gms, written by Tom Rutherford, is included with the
distribution and can be called using the $LIBINCLUDE directive.

3.59.2.5 GAMS IDE

• The IDE recognizes https as www string

• The menu Help | About shows current license file

• If there is a GAMS license file on the ClipBoard, selecting Help | About will prompt to write the
ClipBoard to a license file.

• Library files can now have multiple files with a numeric extension; previously,it was the first file only.

• A library file can have have an extension of '.ignore' which will be removed so we can protect '.zip'
files.

• After running gdxdiff, an empty difference file will not be shown.

514 Release Notes

3.59.2.6 Additional functions

• gMilliSec(DayTime): milli seconds of a DayTime number

• MaxExecError: a read/write access to the ExecError values

• TimeElapsed: elapsed time in seconds since the start of a GAMS run

• Gamma(a): Gamma function (DNLP)

• LogGamma(a): Log Gamma function

• GammaReg(x,a): Regularized gamma function

• Beta(a,b): Beta function (DNLP)

• LogBeta(a,b): Log Beta function

• BetaReg(x,a,b): Regularized Beta function
The definitions and notation for incomplete and regularized gamma and beta functions are not
consistent, For example, note the differences with the definitions used in Mathematica:

GAMS Mathematica

Gamma(a) Gamma[a]

LogGamma(a) LogGamma[a]

GammaReg(x,a) GammaRegularized[a,0,x]

Beta(a,b) Beta[a,b]

LogBeta(a,b) Log[Beta[a,b]]

BetaReg(x,a,b) BetaRegularized[x,a,b]

3.59.2.7 Speed-up for expressions containing constant indices or indices that are not in the
natural order

• Speed-up for expressions containing constant indices or indices that are not in the natural order

– The option sys11 controls this new feature. When we use option sys11=1, GAMS will execute
without speedup features as in previous versions; using option sys11=0 will cause GAMS to
use procedures that execute some statements faster at the cost of increased memory use (This
is now the default value). The following GAMS code illustrates some of the speedups.

Sets i / i1*i700 /

j / j1*j700 /

k / k1*k500 /

ik(i,k);

Parameters aij(i,j) bji(j,i), cjk(j,k), dij(i,j);

ik(i,k)$(uniform(0,1) < 0.01) = yes;

aij(i,j) = uniform(0,1);

bji(j,i) = aij(i,j);

cjk(j,k) = sum(ik(i,k), aij(i,j));

dij(i,j) $(aij(i,’j700’) > 0.5) = bji(j, ’i700’)

A comparison of the execution times in seconds:

Assignment sys11=1 sys11=0

Bji 2.7 0.36

Cjk 25.0 2.38

Dij 4.7 0.39

http://mathworld.wolfram.com/GammaFunction.html

3.59 21.4 Major release (September 06, 2004) 515

– Faster execution of lag / lead operators. This improvement is visible for large sets only as
illustrated in the following GAMS code:

Set i /i1*i2000/,

j /j1*j20000/;

Parameter Ai(i),Bj(j);

Ai(i - 1) = Ord(i);

Bj(j - 1) = Ord(j);

A comparison of execution times in seconds:

Assignment previous current

Ai 0.02 0.0

Bj 3.2 0.0

3.59.2.8 Embedded set text and parameter values

• The $on/offembedded option enables the use of embedded values in parameter and set data
statements. For sets, the final text is concatenated with blank separators. For example, the element
texts for the set and j will be identical:

Set i(k,l) / a.a ’aaaa cccc dddd’, b.a ’bbbb cccc dddd’ /;

$onembedded

Set j(k,l) / (a aaaa, b bbbb).(a cccc) dddd /;

For parameters, the final value will be the product of the embedded values. If no value is specified,
a value of 1 is assumed. For example, the values for x and y will be the same:

Parameter x(k,l) / a.a 24, b.a 12, c.a 4, c.b 4, d.a 6, d.b 6 /;

$onembedded

Parameter y(k,l) / (a 2, b).(a 3) 4, (c 2,d 3).((a,b) 2) /;

3.59.2.9 New suffixes for functions

• New suffixes Grad and Hess have been introduced to get exact point derivatives from any function.
These function suffixes are mainly intended for future testing of functions and cannot be used in
equations.

• The first argument gives the position of the element of the Hessian or gradient element desired in
the form i or i:j, where i is the row element and j the column element.

• The symbol ':' is used to separate the element position specification from the function argument list.

• For example, the following will return the second derivative for the second and fourth argument,
where 1,2,3,4,5 are the normal function arguments:

h = EDist.hess(2:4:1,2,3,4,5);

If the needed element position index is one, we can drop the argument as shown below:

g = exp.grad(1:5) or g = exp.grad(5);

h = log.hess(1:1:3) or h = log.hess(3);

hess(i,j) = betareg.hess(ord(i):ord(j):expr1,expr2,expr3);

516 Release Notes

3.59.2.10 Some new minor and exotic features

• New %system.xxx% and system.xxx for put statements

– system.date1: different date format: Feb 04, 2004

– system.tab: inserst a tab character

• New File attribute

– file.silent: will suppress the logging of put files

• New $IF option allows testing for existing solver at compile time

• $IF SOLVER command

• $if NOT solver baron $goto nobaron

• Underflow Control

• Release 21.0 introduced new math routines that work over a much wider numerical range than the
older systems. The pre 21.0 systems rounded small function return values (less than 1e-30) to zero.

• Some older models may use this rounding to zero feature and will now give slightly different results.

• The new GAMS parameter ZeroRes=real allows you to change the threshold value for internal
rounding in the GAMS calculation and the GAMS parameter ZeroResRep=1 will cause GAMS to
issue warnings whenever such a rounding occurs.

3.59.3 Pricing

3.59.3.1 Global Packages

• Similar to the NLP Packages (NLP-1 and NLP-2), GAMS now offers Global Packages: If you buy at
least two of the Global solvers BARON, LGO, and MSNLP, the prices are reduced by 25%. Please
check our pricelist or contact sales@gams.com.

3.59.4 Solvers

3.59.4.1 BARON

• New libraries (version 7.2)

• Branch-and-cut implementation (available only when using CPLEX as the LP solver)

• Automatic exploitation of convexity

• Modeling construct permits user to supply convexity information to the solver

• Modeling construct permits user to have relaxation-only constraints

• Improved local search implementation for large-scale models

• GDX dumps can be used to provide output for the K best solutions

• Several algorithmic fixes and improvements

mailto:sales@gams.com

3.59 21.4 Major release (September 06, 2004) 517

3.59.4.2 COIN

• GAMS has added a link to the Computational Infrastructure Operations Research (COIN-OR). The
COIN-OR project is an initiative to spur the development of open-source software for the operations
research community.

• The GAMS/COIN-OR link allows GAMS users to connect their customized solution approaches
using the COIN-OR Open Solver Interface (OSI) in a seamless manner.

• The GAMS/COIN-OR Link for LP and MIP problems is available in source and free of charge to
any licensed GAMS system.

• Potentially all solvers connected to the COIN-OR/OSI can be made available through the
GAMS/COIN-OR link. Currently,

– CoinGlpk: Gnu Linear Programming Kit

– CoinSbb: simple branch and bound, a branch and cut code

• are included in the latest Windows and Linux distributions. Please visit the GAMS/COIN-OR web
page at https://github.com/coin-or/GAMSlinks for details.

3.59.4.3 CONOPT

• New libraries are included which address minor fixes and improvements.

3.59.4.4 MINOS

• New libraries (MINOS 5.51 June 2004)

• Fixed issues with scaled/unscaled infeasibilities/nonoptimal

3.59.4.5 MSNLP

• MSNLP (Multi-Start NLP) is another stochastic search algorithm from Optimal Methods, Inc for
global optimization problems. Like it's bigger brother OQNLP, MSNLP uses a point generator to
create candidate starting points for a local NLP solver. Algorithm performance depends strongly
on the starting point generator. MSNLP implements a generator creating uniformly distributed
points and the Smart Random Generator. This generator uses an initial coarse search to define a
promising region within which random starting points are concentrated. Two variants of Smart
Random are currently implemented, one using univariate normal distributions, the other using
triangular distributions. MSNLP also comes with the local NLP solver LSGRG. MSNLP is available
in the Global Packages.

3.59.4.6 NLPEC

• NLPEC has been promoted from beta solver status and has a write up in the solver documents.

• The NLPEC solver for MPECs automates the process of model reformulation. NLPEC reformulates
the original MPEC as an NLP (using one of 23 different reformulation strategies), solves the resulting
NLP, and translates the results back for return as an MPEC solution.

https://github.com/coin-or/GAMSlinks

518 Release Notes

3.59.4.7 PATHNLP

• PATHNLP has been promoted from beta solver status. The PATHNLP solver suitable is for NLP
programs. PATHNLP solves an NLP by internally constructing the Karush-Kuhn-Tucker (KKT)
system of first-order optimality conditions associated with the NLP and solving this system using
the PATH solver for complementarity problems.

• Some improvements from the beta version include:

– In some cases where PATHNLP fails to find a solution, it can now return a feasible point where
before it would return no solution information whatsoever.

– Information about the Hessian and it's inverse is now available.

3.59.4.8 OQNLP

• OQNLP's merit and distance filters, which are respondible for starting the NLP solver at a small
fraction of the candidate starting points, while still finding the global solution to most problems,
have been improved. The dynamic merit filter logic and the basin overlap fix provide mechanisms
for decreasing the radii of some attraction basins, focusing on those which reject points most often
and those which overlap. These dynamic filters lead to a substantial improvement in OQNLP's
ability to obtain a global optimum, with some increase in the number of solver calls. The OptQuest
point generator has been supplemented by two new point generators (see MSNLP).

3.59.4.9 XPRESS

• Updated to use XPRESS 2004 libraries - highlights include:

– MIP heuristics

– Lift-and-project cuts to give improved bound information

– Strong branching

– Extensive benchmarking & resultant performance improvements

3.60 21.3 Major release (January 19, 2004)

3.60.1 GAMS System

3.60.1.1 Model Library

• Models from the ”Handbook of Computible General Equilibrium Modeling”, University of Tokyo
Press, Tokyo (to appear) have been added to the model library.

• Several QCP models have been added

• A series of models that illustrate the BCH (Branch-and-Cut-and-Heuristic) Facility have been added

3.60 21.3 Major release (January 19, 2004) 519

3.60.1.2 TESTLIB

• New library of models developed for testing and quality control:

– Solver correctness

– Base module features

– Performance

• Designed for use by GAMS staff and our solver providers

• Allows any user to reproduce our tests

• To retrieve models from testlib: > testlib

3.60.1.3 GAMS IDE

• The tabs showing the file names in the editor are maintainded in sorted order using the full path
name.

• Support for regular expressions in search, search and replace and search in files

• When searching text using Ctrl-F, the word under the cursor will be used as the text to search for.

• Added a viewer for reference files. A reference file is created using the rf option in the gams call.
The IDE assumes that the file extension for the reference file is '.ref'

• An option was added to emulate a subset of the Epsilon keyboard mapping.

3.60.1.4 GDX Utilities

• GDXMerge added; a utility to combine multiple gdx files into a single gdx file.

• GDX2Veda added; a utility to export GAMS data into the [VErsatile Data Analyst (VEDA)] (
http://www.kanors-emr.org/software).

3.60.1.5 GAMS Branch-and-Cut-and-Heuristic (BCH) facility

• The GAMS Branch-and-Cut-and-Heuristic (BCH) facility allows GAMS users to interact with a
running MIP/MINLP solver by supplying specialized GAMS programs to generate cutting planes
and good integer feasible solutions. This allows GAMS users to apply complex solution stragies
without having to have intimate knowledge about the inner workings of a specific MIP system. BCH
strategies can now be implemented rapidly and reliably within a matter of days rather than weeks.
Details and examples can be found here.

3.60.1.6 Quadratically Constrained Program Types QCP, MIQCP and RMIQCP

• New model types for quadratically constrained problems are:

– QCP: Quadratically Constrained Programs

– MIQCP: Mixed Integer Quadratically Constrained Programs

– RMIQCP: Relaxed Mixed Integer Quadratically Constrained Programs

• These model types are like NLP, MINLP and RMINLP with nonlinearities restricted to be quadratic
forms. QCP problems can be solved with existing nonlinear solvers and large-scale LP solvers that
offer quadratic extensions. For examples, look at the models qalan, qcp1, qdemo7, and qsambal in
the model library.

http://www.kanors-emr.org/software
http://www.kanors-emr.org/software
UG_SolverUsage.html#ADVANCED_USAGE_BCHFacility

520 Release Notes

3.60.1.7 Solver Link Options SOLVELINK

• This new option allows you to control the way solver's or subsystems are invoked. This may be
helpful when solving a large number of models that are relatively small compared to the size of the
overall database.

• The new options values are:

– 0: Make an automatic save/restart for each solve (default - old behavior)

– 1: Calls the subsystem using the shell method

– 2: Call the subsystem using the spawn method

• This option can be specified as a gams parameter (> gams ... solvelink=n), as part of an option
statement (option solvelink=n;) or specified as a model attribute (mymodel.solvelink=n;) Some
demo limits removed

• The demo version size restriction on the number of symbols and number of unique set elements has
been removed. Previously, the demo/student versions were limited to 2000 symbols.

3.60.1.8 Save Point Options SAVEPOINT

• This new option directs GAMS to write solutions to GDX files for later use in the same or other
programs. This may be helpful in cases when we want to provide good starting points or process
large number of solutions at a later stage. The new option values are:

– 0: Do not write point files (default)

– 1: Write the solution the GDX file <workdir><modelname> p.gdx

– 2: Write the solution the GDX file <workdir><modelname> p<solvenumber>.gdx

• This option can be specified as a gams parameter (> gams ... savepoint=n), as part of an option
statement (option savepoint=n;) or specified as a model attribute (mymodel.savepoint=n;). The
execute loadpoint allows you to merge solution points into any GAMS database.

3.60.1.9 Relaxed MCP and MPEC syntax

• A variable can now appear in more than one equ.var pair in the model list, however, in the final
instance of the model, all mappings have to be unique.

3.60.1.10 Enhancements to EXECUTE LOAD and EXECUTE UNLOAD

• execute load

– gamspar = gdxvar.xx: xx can be l m ...

– gamsvar.xx = gdxvar.xx

• execute unload:

– no arguments means dump all

– allow multiple occurrence of the same symbol x.l x.up x a a

– x.l=a: a is the complete x variable

3.60 21.3 Major release (January 19, 2004) 521

3.60.1.11 New EXECUTE LOADPOINT

• This new command execute loadpoint is similar to EXECUTE LOAD, however, the new values are
merged with the old values. If no arguments besides the name of the GDX file are given, all variables
and equations that match variables and equations of the calling GAMS programs will be merged
with the GDX level and marginal values. Bounds, scales and priorities will remain unchanged. This
can be very useful in connection with the SAVEPOINT facility.

3.60.1.12 Nested GAMS parameter PF=xxx

• The command line include parameter can now handle nested includes

3.60.1.13 New Functions

A number of new functions have been added.

• TimeStart: Accumulated restart time

• TimeComp: Compilation time in seconds

• TimeExec: Execution time in seconds

• TimeClose: accumulated save time

• Frac: frac(x) is the fractional part of x

• ErrorLevel: Returns code of the most recently called external program

• HeapSize: Current Heap size in Mbytes

• Fact: Factorial

• UniformInt: Uniform integer random number between UniformInt(low,high)

• PI: The famous constant 3.14....

• NcpF: NcpF(x,y,c) = sqrt(sqr(x) + sqr(y) + 2∗c) - x - y Fisher

• NcpCM: NcpCM(x,y,c) = x - c∗ln(1+exp((x-y)/c) Chen-Mangasarian

• Entropy: entropy(x) = -x∗log(x)

• Sigmoid: sigmoid(x) = 1/(1+exp(-x))

• Log2: logarithm base 2

• IfThen: ifthen(condition,true expression,false expression)

• Edist: Edist(x,y,..) = sqrt(sqr(x)+sqr(y)+..)

• CEntropy: centropy(x,c) = x∗ln(x/c) Cross Entropy

3.60.1.14 Set Table

• Allows to enter set data in tabular form similar to parameter data. The data entries can be numbers
and special values including yes/no. To allow data tables to be interpreted as Parameters or sets,
the special values of NO and YES will be interpreted as 0 and 1 respectively.

522 Release Notes

3.60.1.15 Some new minor and exotic features

• Dynamic reinterpretation of real powers. When using automatic translation it may be helpful to
treat a real power as an integer power if the exponent is constant and within e-12 of an integer
value. This can be enabled by setting Option sys10=1; and disabled by setting option sys10=0;

(default).

• File Name Casing. File names as passed to the operating system maintain the original casing. This
can be changed with the GAMS parameter FILECASE=n, where

– n=0 means to retain original casing (default)

– n=1 uppercase the filename, and

– n=2 will lowercase the filename.

• $CLEARERROR clear all compilation errors

• $TERMINATE terminates compilation and skips executions

• $SETNAMES filename filepath filename fileextension separates the string filename into its
three components and stores then as GAMS environment variables. For example, $setname
d:\gams\xxx.txt fp fn fe creates/updates three string variables fp, fn, fe which will combine
into the original filename string by %fp%%fn%%fe%.

• $SETCOMPS s1.s2.s3.. first second third separates the string s1.s2... into its components
and stores them in the environment variables first, second,..

• $IF WARNINGS command

• $REMARK comment with string substitution

• $ON/OFFUNDF allows the use of the special value UNDF in data statements and expression.

• System.xxx and %system.xxx% have been enhanced and unified. The complete list is:

DATE, TIME, TITLE, PAGE, SFILE, RTIME, RDATE, RFILE, IFILE, OFILE

,VERSION PLATFORM, LP, NLP, ...all model types, LICE1, LICE2, GSTRING,

SSTRING, PFILE ILINE, OPAGE, VERID, ELAPSED, MEMORY, TSTART, TCLOSE,

TCOMP, TEXEC, INCPARENT INCPARENTL, INCNAME, INCLINE, LINE, LISTLINE,

FILESYS, PRLINE, PRPAGE, FE, FN FP, REDIRLOG, ERRORLEVEL

The system.xxx form is used in PUT statements, the %system.xxx% form is used for string substitu-
tions during compilation.

• Fast Projections and Aggregations The GAMS executions engine performs poorly on certain large
data structures. This can be overcome with telling GAMS to 'pipeline' certain operations via an
OPTION statement.

Option left < right, left <= right,..;

Where left and right are GAMS identifiers with conforming domain declarations. The dimensionality
of the left symbol has to be equal or less than the dimensionality of the right side. If the left
dimensionality is less than the right one, the operation performed is an aggregation or projection
depending on the data type of the left side. In all cases, indices are permuted according to the
domain definitions. If a symbol has identical domain definitions they are permuted right to left (<)
or left to right (<=). For example, assume we have

Set i, fromto(i,i), tofrom(i,i);

alias(i,ii);

parameter in(i), out(i);

option tofrom < fromto, in < fromto, out <= fromto;

3.60 21.3 Major release (January 19, 2004) 523

is equivalent to

tofrom(i,ii) = fromto(ii,i);

in(i) = sum(fromto(ii,i),1);

out(i) = sum(fromto(i,ii), 1);

3.60.2 Solvers

3.60.2.1 BARON 6.0

• Improved memory management

• Default bounds are new +/- infinity

• CONOPT run not required to get marginals

• Several algorithmic improvements

3.60.2.2 CPLEX 9.0

• GAMS/Cplex is now based on Cplex 9.0. In addition to performance improvements and enhancements
of existing features, support is provided for the new GAMS model types QCP and MIQCP. Because
of some compatibility issues, we still ship CPLEX 8.1 for Digital Unix. Details can be found here.

3.60.2.3 Large scale QCP Solvers

• MOSEK handles QCP and MIQCP models

• CPLEX handles QCP and MIQCP models.

• XPRESS handles QCP with quadratic term in the objective only.

• SBB handles MIQCP models.

• PATHNLP takes advantage of quadratic forms for QCP models.

3.60.2.4 NLP solvers capable of solving QCPs

• All NLP solvers (CONOPT, MINOS, SNOPT, ...) handle QCP and RMIQCP models.

3.60.2.5 AMPL and Lingo Wrappers are now part of the GAMS distribution

3.60.2.6 MOSEK 3.0

3.60.2.7 MPSGE

• Improved reporting of formulation errors

• There are new rules for choosing proper labels and identifiers in MPSGE models. The MPSGE
engine was initially designed around the old 10-character limit for labels and identifiers imposed by
GAMS/Base. When GAMS/Base relaxed these limits to 31 characters, a flag was added to check
for compatibility with the old rules to avoid breaking MPSGE. We've now removed the check in
GAMS/Base - the MPSGE engine makes its own check now. This means we can use long labels and
identifiers under the new rules.

• The testlib models mpsge01 ∗ mpsge10 document and test the rules for identifiers in MPSGE
models. E.g. do

testlib mpsge01

gams mpsge01

RN_cplex9.html

524 Release Notes

3.61 21.2 Maintenance release (September 03, 2003)

3.62 21.1 Maintenance release (June 02, 2003)

3.63 21.0 Major release (May 15, 2003)

3.63.1 GAMS System

3.63.1.1 GAMS Model Library

• We added quite a few global optimization models to the GAMS model library that demonstrate the
power of the new suite of Global Optimizers available in GAMS: BARON, LGO, and OQNLP. In
addition, we added a model that calculates the US holiday schedule (HOLIDAY) and a model for
the Five Leaper Tour problem (FIVELEAP). The model NASH gives an example of a Mathematical
Program with Equilibrium Constraints (MPEC) which can be solved by the beta solver NLPEC.

3.63.1.2 IDE

• GDX data viewer: Symbols can be sorted by various attributes, and the display uses two grids to
display the data. The top grid shows the plane index, the bottom grid the current data. The indices
can be arranged using drag and drop. The arrangement is preserved in the project file. The data
viewer can write a single symbol or all symbols to an html file.

• Removed Setup button from the print dialog screen. Printer setup is now available from the window
that follows this dialog. This allows more printer options to be selected, such as duplex printing.

• Added option to update the GAMS system using a ZIP file in the GAMS system directory. (File |
Options | Execute | Update)

• Added entries on the help menu for easy access to some documentation files.

• Revised the on-line help and added a number of screen shots.

• Added file:/// as a recognized hyperlink.

3.63.1.3 GDX Utilities

• New documentation includes GDX facilities in GAMS.

• GDXXRW (Excel interface)

– Added 'usage' output

– Removed SSET as a type, and added Values option for a set.

• GDXDIFF

– Added option to specify a single field for comparison (for variables and equations)

– Added option to ignore comparison of associated text

– Added RelEps option for relative comparisons

• GDXDUMP

– Added UelTable option

3.63 21.0 Major release (May 15, 2003) 525

3.63.2 Solvers

3.63.2.1 New Global Solvers

• NLP and MINLP problems frequently have multiple local optima. The three new solvers, BARON,
LGO and OQNLP aim at finding the best possible local optima, the global optimum solution. The
solvers differ in the methods they use, in whether they find globally optimal solution with proven
optimality, in the size of models they can handle, and in the functional forms they accept.

3.63.2.2 BARON

• BARON is from The Optimization Firm, LLC and the University of Illinois at Urbana-Champaign.
The Branch And Reduce Optimization Navigator derives its name from its combining interval
analysis and duality in its reduce arsenal with enhanced branch and bound concepts as it winds its
way through the hills and valleys of complex optimization problems in search of global solutions.

3.63.2.3 LGO

• LGO is from Pinter Consulting Services, Inc. This algorithm combines rigorous statistical methods
with traditional mathematical programming methods to find solutions within well defined bounds.
LGO stand for Lipschitz Global Optimization.

3.63.2.4 OQNLP

• OQNLP from Optimal Methods, Inc and OptTek Systems, Inc. is a solver for global optimization of
non-linear problems with discrete and continuous variables. This multi start solver combines robust
nonlinear optimization technologies with state-of-the-art meta heuristics like scatter search. In this
official release of OQNLP, nonlinear subproblems with different starting points can be solved by any
GAMS NLP solver as well as the build-in LSGRG solver.

3.63.2.5 CONOPT

• The CONOPT family of NLP solvers now have three members, CONOPT1, CONOPT2, and
CONOPT3. The alias CONOPT which used to point to CONOPT2 will now call CONOPT3. In
case you need to run an older version of CONOPT you must specify CONOPT1 or CONOPT2.
CONOPT3 is an enhancement of CONOPT2. An additional solver component based on sequential
quadratic programming (SQP) principles has been added and it uses the new 2nd order facilities in
GAMS. In addition, an improved automatic scaling routines is now used as default.

• CONOPT3 is a true multi-method solver that combines its many solver components (SQP, SLP or
sequential linear programming, Quasi-Newton, and Steepest Descend) with dynamic selection of the
best component based on performance statistics.

• CONOPT2 is, apart from minor bug fixes, identical to CONOPT2 from the previous release.
CONOPT1 has not been changed and it will not be updated any more. We encourage all CONOPT1
user to move on to CONOPT3 or CONOPT2.

3.63.2.6 CPLEX 8.0

• Find detailed release notes here

RN_cplex8.html

526 Release Notes

3.63.2.7 MINOS

• The new GAMS/MINOS, which is based on MINOS 5.51 uses a new LU factorization with Threshold
Rook Pivoting. It also has better memory estimation and improved reporting of infeasibilities.

3.63.2.8 MOSEK

• MOSEK from MOSEK ApS, Copenhagen Denmark is a large scale system for solving linear, mixed-
integer linear, and convex nonlinear mathematical optimization problems. MOSEK is particularly
well suited for solving sparse large-scale problems using an extremely efficient interior point algorithm.
This official release of MOSEK using library version 2.5 also solves second order conic programs.

3.63.2.9 OSL

• The OSL optimizer family is now represented by its newest member, OSL3. You can still run OSL2
and OSL1 (where available) by specifying them explicitly, but the default OSL is OSL3.

• Improvements to OSL3 over past OSL versions include:

– Better performance for the simplex, barrier, and MIP codes

– Better memory management

– More robustness, especially in the barrier code

3.63.2.10 PATH

• The PATH presolve has been extended and strengthened.

3.63.2.11 SNOPT

• The new GAMS/SNOPT, which is based on SNOPT 6.2-1 uses a new LU factorization with
Threshold Rook Pivoting. Memory estimation, the reporting of infeasibilities, and the handling of
LP's has been improved.

3.63.2.12 XPRESS

• GAMS/XPRESS now links to XPRESS 2003, the latest optimizer from DASH. Optimizer improve-
ments include:

– Completely redesigned and rewritten branch and bound framework

– New code for the Newton Barrier optimizer

– Enhanced branching technology, cut strategies and heuristics

– Better memory management

3.64 20.7 Maintenance release (June 14, 2002) 527

3.63.3 Documentation

3.63.3.1 McCarl's GAMS User Guide

• The new McCarl's GAMS User Guide will be installed automatically with CD installation. If you
download the GAMS system from our web site, you have to install it separately, see [not available
anymore].

3.63.3.2 Solver Manuals

• There is a revised version for most of the solver manuals, all of them are in a uniform format. A
composite manual, The Solver Manuals, is also available for printing.

3.64 20.7 Maintenance release (June 14, 2002)

3.65 20.6 Major release (May 25, 2002)

3.65.1 GAMS System

3.65.1.1 MODLIB

• We have two new models (clearlak and srkandw) that demonstrate the use of scenred, an interesting
MIP model for scheduling TV commercials, and an example that shows the use of some GDX
utilities.

3.65.1.2 MPS2GMS

• This utility converts MPS files into a GAMS program making use of the GAMS GDX facility. This
replaces the contributed utility mps2gams.

3.65.1.3 POSIX UTILITIES

• Starting with this distribution the GAMS system for Windows includes a collection of Posix utilities
which are usually available for the different Unix systems and therefore help to write platform
independent scripts. More information here.

3.65.1.4 SCENRED

• ScenRed (a new addition to the GAMS system) allows GAMS users easy access to the scenario reduc-
tion algorithms found in [ScenRed] (http://www.mathematik.hu-berlin.de/%7Eromisch/projects/GAMS/scenred.html).
Given the event tree for a stochastic program, ScenRed determines a subset of scenarios and the
optimal redistribution of probabilities for the preserved scenarios. This is useful when the stochastic
program that results from using the original (complete) event tree is too large to solve. Making use
of the new execution-time GAMS data interface (execute load/execute unload), GAMS/ScenRed
takes the original tree from the modeler, along with parameters controlling the reduction, and
returns a reduced tree for use in subsequent solves or data manipulation.

http://www.mathematik.hu-berlin.de/%7Eromisch/projects/GAMS/scenred.html

528 Release Notes

3.65.2 Solvers

3.65.2.1 SBB

• There are two new options (dfsstay and acceptnonopt) in SBB that can help to find good solutions
more quickly as well as handle almost optimal subproblems which are ignored by default.

3.65.2.2 XA

• The GAMS/XA link has been modified to work with the new generation (Version 13) of XA libraries.
All XA-supported architectures are now using this new version, and so will include a Newton-barrier
capability.

3.65.3 Beta Solvers

3.65.3.1 BARON

• Complete primal and dual solutions values are now reported by using CONOPT as a post processor.
The preprocessing has been enhanced to allow free (=N=) equations.

3.65.3.2 MOSEK

• MOSEK from MOSEK ApS is a large scale system for solving problems of the following classes:

– Linear optimization

– Mixed integer linear optimization

– Convex quadratic optimization

– Conic quadratic optimization

• The released version of MOSEK will also solve

– Quadratically constrained convex optimization

– Convex optimization

• More information about MOSEK can be found at [www.mosek.com] (http://www.mosek.com).

3.65.3.3 OQNLP

• OQNLP from Optimal Methods, Inc is a solver for global optimization of smooth constrained
problems with either all continuous variables or a mixture of discrete and continuous variables. This
multi start method combines mathematical programming approaches with meta heuristics like tabu
search.

3.65.3.4 NLPEC

• NLPEC is a solver for MPEC models that works by reformulating the MPEC model as an NLP,
solving the NLP using one of the GAMS NLP solvers, and then extracting the MPEC solution from
the NLP solution. All of this happens automatically, although it is possible to access the intermediate
NLP model. Like the CONVERT solver, the reformulated models NLPEC produces are in scalar
form. Many different reformulations (currently around 20) are supported by the NLPEC solver.
MPEC models are notorious for their difficultly, but the combination of different reformulations and
NLP solvers give users a good chance to solve them.

http://www.mosek.com

3.66 20.5 Maintenance release (January 28, 2002) 529

3.65.3.5 PATHNLP

• PATHNLP is now set up to allow the PATHLIB presolver to perform additional model reductions.

• PATHNLP now uses the same libraries as PATH. Previous versions used an experimental version of
PATHLIB (ver 5.X). Since the supported PATHLIB is now 4.6, it looks like PATHNLP now uses an
older PATHLIB; this is not the case.

3.66 20.5 Maintenance release (January 28, 2002)

3.67 20.4 Maintenance release (January 21, 2002)

3.68 20.3 Major release (December 24, 2001)

3.68.1 GAMS System

3.68.1.1 GAMS

• Restrictions of number of symbols, set elements and execution code size have been completely
removed.

• Performance enhancements for very large models with millions of rows and columns.

• Minor language enhancements: $on/offecho copies a block of lines to a file. The text is subject to
string macro processing as well as inline and eol comment removal. For example:

$onecho > myfile

...

$offecho

• To append to a file use ”>>”.

3.68.1.2 IDE

• Contributed solver installation files (e.g. QPWRAP, DEA, ... see [User Contributed Software and
Tools] (https://forum.gamsworld.org/viewforum.php?f=16&sid=60f52f2a7983d94c0202a0834f780778))
can now be installed using the IDE. Place the installation file (file extension ∗.zip or ∗.pck) in the
GAMS system directory and click on the ”Update” button in File->Options->Execute

3.68.2 Solvers

3.68.2.1 Uniform Solver Naming Conventions

• Since solvers are distributed with past, production, and beta versions (e.g. OSL, CONOPT, ...) a
consistent naming convention has been adoped.

• The following simple rules apply:

1. The base name of the solver does not change (e.g. CPLEX, OSL, CONOPT, ...) and refers to
the current production version.

2. Past and beta versions have names derived from the base name. For example, in this release
we distribute CONOPT1 (past), CONOPT2 (production), and CONOPT3 (future). The base
name CONOPT refers to CONOPT2.

• If you select the base name of a solver from now on you will get the most recent production version
of the solver. For the following solvers the naming convention has changed:

https://forum.gamsworld.org/viewforum.php?f=16&sid=60f52f2a7983d94c0202a0834f780778

530 Release Notes

New Name (20.3-) Old Name (-20.2)

CONOPT or CONOPT2 CONOPT2

CONOPT3 CONOPT3

CONOPT1 CONOPT

OSL or OSL2 OSL2

OSL3 OSL3

OSL1 OSL

MINOS or MINOS55 MINOS

MINOS5 MINOS5

PATH or PATHC PATHC

PATHOLD PATH

MILES or MILESE MILESE

MILESOLD MILES

3.68.2.2 CONOPT

• The future version CONOPT3 is also available on Linux.

3.68.2.3 CONVERT

• For BARON and AMPL output GAMS/CONVERT eleminates the objective variable and uses a
”true” objective function.

3.68.2.4 SBB

• NLP solvers sometimes have difficulties solving particular nodes and using up all the resources in
this node. SBB provides options (see subres, subiter) to overcome these instances, but options have
to be set in advance. Now, SBB keeps track of how much time is spend in the nodes, builds an
average over time, and automatically controls the time spend in each node. The option avgresmult
allows the user to customize this new feature.

3.68.2.5 XPRESS

The XPRESS licensing for Windows, Linux, and Solaris is now much simplified; there is no XPRESS-
specific licensing procedure for the user to follow. The GAMS/XPRESS solver takes care of licensing the
XPRESS DLL, and does this automatically. Of course, as with other solvers, the GAMS/XPRESS must
be licensed with your GAMS system.

3.69 20.2 Maintenance release (November 22, 2001)

3.69.1 Solvers

3.69.1.1 CPLEX 7.5

• Find detailed release notes here

RN_cplex7_5.html

3.70 20.1 Major release (October 31, 2001) 531

3.69.1.2 XPRESS 13.01

• The GAMS/XPRESS link has been updated to use the new 13.01 solver libraries from XPRESS.

3.70 20.1 Major release (October 31, 2001)

3.70.1 GAMS System

3.70.1.1 GAMS

• A new licensed Privacy and Security feature which allows to purge, hide or protect model data and
model components from unauthorized use. Models and data that are saved with the privacy feature
enabled are locked to a specific license and protected. For more details consult the corresponding
appendix of the GAMS Users Guide.

• A new GAMS parameter EXECMODE can be used to reconfigure certain features when operating
in an application service environment. $call/execute, $echo/put and $includes can be disabled or
restricted to operate only on certain sub trees of the file system.

• Model options can be initialized from the command line or the GAMS parameter window in the
IDE (bratio, iterlim, domlim, reslim, optcr, optca, sysout, solprint, optfile and all solvers for model
types). For example:

gams myfile LP=BDMLP RESLIM=10

will override the default solver to be BDMLP and force an interrupted after 10 seconds.

• Other minor language enhancements are:

– Factorial function FACT

– Implication operator (-> or imp)

– Equivalence operator (<=> or eqv)

– $ECHON and echo without EOL

– $IFi which makes case insensitive string comparisons

• A number of restrictions have been relaxed:

– NLP model can have up to 8 million constants.

– A GAMS program can have up to 1 million GAMS symbols or unique elements.

– The internal code space has been increased to 32 million instructions.

– The model size is limited by hardware addressing space only.

• GAMS environment variables can now be initialized or reset from the command line or parameter
window. The prefix -- signals an environment variable. For example:

gams myfile --mypath="d:a b"

is equivalent to inserting $set mypath d:a b in the GAMS input file. The GAMS param-
eter SETTYPE (ST) values of 0 (default), 1 and 2 change the implied $set command to
$set/setlocal/setglobal respectively. The evaluation of nonlinear expressions inside solvers of the
form <expression>∗∗<integer constant=""> are now interpreted more restrictive for the values
of -1,0,1 and 2. The solver will issue domain violations when the value of an expression becomes
negative. For example, x∗∗0 will now require that x is always greater or equal to zero. The function
power(expression,integer constant) should be used if this is not intended.

• Derivatives for 0∗∗0 are not defined and may cause problems during the solution process. Warnings
are issued when this case arises.

532 Release Notes

IDE

• Alternate license dialog was disabled

• Selecting 'GAMS model library' will no longer add this entry to the recently used list of libraries.

• Find/Replace dialogs no longer default to 'Selected Text' when text was selected in the editor.

3.70.1.2 GAMS Model Library

• The references for existing models have been updated which allows an indexing by author.

• We added a couple of MINLP models:

– CSCHED Cyclic Scheduling of Continuous Parallel Units

– GASNET Optimal Design of a Gas Transmission Network

– WINDFAC Winding Factor of Electrical Machines

– STOCKCC Minimizing Total Average Cycle Stock

– NSHARPX Synthesis of General Distillation Sequences

– MINLPHIX Heat Integrated Distillation Sequences

• The new model CESAM illustrates a cross entropy technique for estimating the cells of a consistent
Social Accounting Matrix (SAM) assuming that the initial data are inconsistent and measured with
error.

• The COPS models have been added:

– POLYGON Largest small polygon COPS 2.0 #1

– ELEC Distribution of electrons on a sphere COPS 2.0 #2

– CHAIN Hanging Chain COPS 2.0 #3

– CAMSHAPE Shape optimization of a cam COPS 2.0 #4

– PINENE Isometrization of alpha-pinene COPS 2.0 #5

– POPDYNM Marine population dynamics COPS 2.0 #6

– FLOWCHAN Flow in a channel COPS 2.0 #7. Uses new function fact

– ROBOT Robot arm COPS 2.0 #8

– LNTS Particle steering COPS 2.0 #9

– ROCKET Goddard rocket COPS 2.0 #10

– GLIDER Hang glider COPS 2.0 #11

– GASOIL Catalytic cracking of gas oil COPS 2.0 #12

– METHANOL Methanol to hydrocarbons COPS 2.0 #13

– CATMIX Catalyst Mixing COPS 2.0 #14

– TORSION Elastic-plastic torsion COPS 2.0 #15

– JBEARING Journal bearing COPS 2.0 #16

– MINSURF Minimal surface with obstacle COPS 2.0 #17

3.70 20.1 Major release (October 31, 2001) 533

3.70.2 Solvers

3.70.2.1 CONVERT

• This solver converts a GAMS model instance into a format used by other modeling and solutions
systems. The transformed models have only scalar equations and variables with all original naming
removed. This 'scalar' format hides the original model and data development and allows one to
exchange confidential models for solver tuning and research. Currently, CONVERT can translate
GAMS models into the following formats:

– AMPL

– BARON

– CplexLP

– CplexMPS

– GAMS

– LGO

– LINGO

– MINOPT

• This solver is also available as an e-mail based service from the GAMS World.

3.70.2.2 CPLEX 7.1

• Find detailed release notes here

3.70.2.3 MPSGE/MCP Solver

• There has been a reorganization of the MCP/MPSGE solvers. Central to this is the introduction of
a new core library for MPSGE models. There are two MCP solvers compatible with this new scheme:
PATHC and MILESE. Both of these solvers implement the same algorithms as their predecessors
PATH and MILES: only their internal interface is changed. The old solvers, using the old interface,
are still available for the time being. However, the new solvers offer certain advantages; for example,
PATHC contains optional preprocessing of the MCP model that was not possible because of the
structure of the old interface. The new interface also relies on the GAMS Base module to perform
many more consistency checks on the MCP formulation and gives more immediate and extensive
diagnostic information when modeling errors occur. Finally, the new interface will allow one to
”plug in” an alternate version of the MPSGE core library to experiment with different MPSGE
functional forms.

• It's important to note that backward compatibility is maintained, and that all four solvers (PATH,
PATHC, MILES ,and MILESE) will accept the same GAMS files as input. The interface changes
referred to above are all internal in nature.

3.70.2.4 OSL3

• The GAMS/OSL link has been updated to use the new OSL3 libraries from IBM.

RN_cplex7_1.html

534 Release Notes

3.70.2.5 PATHNLP

• PATHNLP is the latest NLP solver at GAMS. Essentially, it implements an SQP algorithm by
automatically reformulating an NLP problem as a complementarity problem and solving this using
the proven, reliable PATH solver. This allows second order information to be used in the solution
of the model, which often results in greater solution efficiency. In addition, the marginal values
are sometimes more exact than those provided by first-order methods. The advantages of this
approach are most apparent on very large, sparse models with many nonlinear variables and degrees
of freedom. In these cases, the superbasics limit of other NLP codes limits their effectiveness but is
no barrier when using PATHNLP. The new PATHNLP solver allows the solution of certain previously
unsolvable models (e.g. maximum entropy models).

3.70.2.6 SBB

• SBB derives an implicit absolute termination tolerance if the model has a discrete objective row.
This may speed up the overall time if the user has tight termination tolerances (optca, optcr).

• SBB passes indicies of rows with domain violations back to the LST file. All domain violation
from the root node as well as all sub nodes are reported and the user might take advantage of this
information to overcome these violations.

3.70.2.7 XPRESS

• The GAMS/XPRESS link has been updated to use the new 12.50 solver libraries from XPRESS.
Benefits include an improved pricing algorithm in dual simplex, improved sparse/dense data
handling in all simplex codes, and a general 30% reduction in simplex solve time. The barrier solver
incorporates row-wise Cholesky factorization, which gives improved performance on many problems,
and has more efficient memory usage. The presolve has more efficient memory management, and the
eliminator phase has been improved. The branch and bound algorithm has improved cut selection
and faster clique cut generation.

• Improvements to the link itself allow for better detection and reporting of unbounded or infeasible
models.

3.70.3 Solvers in Beta Version

3.70.3.1 BARON

• BARON is a computational system for solving non convex optimization problems to global optimality.
Purely continuous, purely integer, and mixed-integer nonlinear problems can be solved with the
software. The Branch And Reduce Optimization Navigator derives its name from its combining
interval analysis and duality in its reduce arsenal with enhanced branch and bound concepts as it
winds its way through the hills and valleys of complex optimization problems in search of global
solutions.

• The demo size for this solver is reduced to 10 variables and 10 equations. The beta version of
BARON is available on Windows, Linux and AIX.

3.70.3.2 CONOPT3

A new version of CONOPT is available for beta testing, find release notes here. It is available on
Windows only.

Chapter 4

User's Guide

This documentation guides GAMS users through several topics in the GAMS system.

4.1 Installation and Licensing

This part leads step by step through the installation process on three main platforms and describes the
GAMS licensing system:

• Supported Platforms

• Installation Notes for macOS

• Installation Notes for Unix

• Installation Notes for Windows

• Standard Locations

• Licensing

4.2 Tutorials and Examples

This part describes step by step through several selected tutorials and a small number of examples.

• A GAMS Tutorial by Richard E. Rosenthal

• Quick Start Tutorial

• Good Coding Practices

• Fixing Compilation Errors

• Finding and Fixing Execution Errors and Performance Problems

• Comparative Analyses with GAMS

• Good NLP Formulations

• Data Exchange with Other Applications

536 User's Guide

– Data Exchange with Text Files

– Data Exchange with Microsoft Excel

– Data Exchange with Databases

• Executing GAMS from other Environments

• Using GAMS Studio

There are also tutorials and examples of the Application Programming Interfaces

• .NET Tutorial and Examples

• C++ Tutorial and Examples

• Java Tutorial and Examples

• Python Tutorial and Examples

4.3 GAMS Language and Environment

This part introduces the components of the GAMS language in an ordered way, interspersed with detailed
examples that are often drawn from the model library.

• Introduction - an introduction to the GAMS User's Guide.

• GAMS Programs - The structure of the GAMS language and its components

• Set Definition - The declaration and initialization of sets, subsets, and domain checking.

• Dynamic Sets - The membership assignment, the usage of dollar controls, and set operations.

• Sets as Sequences: Ordered Sets - Special features used to deal with a set as if it were a sequence.

• Data Manipulations with Parameters - The declaration and assignment of GAMS parameters.

• Data Entry: Parameters, Scalars and Tables - Three basic forms of GAMS data types : Parameters,
Scalars and Tables.

• Variables - The declaration and attributes of GAMS variables.

• Equations - The definition and declaration of GAMS equations.

• Model and Solve Statements Model - The specificiation of a GAMS model and how to solve it.

• Conditional Expressions, Assignments and Equations - The conditional assignments, expressions
and equations in GAMS.

• The Display Statement - The syntax, control, and label order in display.

• Programming Flow Control Features - The GAMS programing flow control features : loop, if-elseif,
while, and for statements.

• The Option Statement - The list and detailed description of options.

• System Attributes - The system attributes

• The Grid and Multi-Threading Solve Facility - The basic concepts and Grid Features.

• Special Features for Mathematical Programs - Special features in GAMS that do not translate across
solvers, or are specific to certain model types.

apis/examples_dotnet/annotated.html
apis/examples_cpp/files.html
apis/examples_java/annotated.html
apis/examples_python/files.html

4.4 Glossary 537

The following discusses the execution of GAMS, the use of special features, and other miscellaneous topics.

• GAMS Output - The control of GAMS compilation output, execution output, output produced by
a solve statement, and error reporting.

• GAMS Log

• The GAMS Call and Command Line Parameters - The list and detailed description of GAMS com-
mand line parameters.

• Dollar Control Options - The list and detailed description of dollar control options.

• The Put Writing Facility - The put writing facility of the GAMS language.

• Solver Usage - Controlling solvers.

• The Save and Restart Feature - The GAMS save and restart feature and the work file.

• Embedded Code Facility - The Embedded Code Facility (e.g. how to embed Python code into
GAMS).

• GAMS Connect - The GAMS Connect Framework.

• Extrinsic Functions - The extrinsic function library and comparison with external equations.

• External Equations - A facility for connecting code written in different programming languages to
equations and variables in a GAMS model.

• GAMS Return Codes - The structure of error codes, the return codes of the GAMS compiler and
execution system, and the driver return codes.

• GAMS Data eXchange (GDX) - GAMS Data eXchange (GDX) facilities and utilities for Binary
Data Exchange.

• Extended Mathematical Programming (EMP) - Extended Mathematical Programming (EMP).

• Accessing Model Libraries - Introduction of GAMS Model Library.

• Mathematical Programming System for General Equilibrium analysis (MPSGE) - A mathematical
programming system for general equilibrium analysis which operates as a subsystem within GAMS.

– Introduction to MPSGE

– MPSGE Models in GAMS

– Demand Theory and General Equilibrium: An Intermediate Level Introduction to MPSGE

– Constant Elasticity of Substitution Functions: Some Hints and Useful Formulae

– A Library of Small Examples for Self-Study

– Linking Implan Social Accounts to MPSGE

– The MPSGE guide is also available as PDF

4.4 Glossary

An alphabetical list of GAMS terms is available in the Glossary.

4.5 Supported Platforms

GAMS supports the following platforms:

http://www.mpsge.org/markusen/markusen.htm
http://www.mpsge.org/implan98.htm

538 User's Guide

Platform Description

x86 64 bit Linux AMD- or Intel-based 64-bit (x86 64) Linux systems with glibc 2.17 or
higher.

arm 64 bit macOS Apple Silicon (arm64) Macintosh system with macOS 13 (Ventura) or
macOS 14 (Sonoma).

x86 64 bit macOS Intel-based 64-bit (x86 64) Macintosh system with macOS 12 (Monterey),
macOS 13 (Ventura), or macOS 14 (Sonoma).

x86 64 bit MS Windows Windows 10 or newer on AMD- or Intel-based (x86 64) architectures.

Note

Compared to most of the GAMS system, GAMS Studio has some additional system requirements
which are detailed here.

While the GAMS execution system itself is available on all supported platforms, for certain solvers, tools,
and APIs, different availabilities can apply. For details, see

• Supported Platforms for Solvers

• Supported Platforms for Tools

• Supported Platforms for High-level APIs

• Supported Platforms for Low-level APIs

4.6 Installation Notes for macOS

To install GAMS, please follow the steps below as closely as possible. We advise you to read this entire
document before beginning the installation procedure. Furthermore, we recommend to use the PKG
installer for macOS because it includes the GAMS Studio and it integrates GAMS into macOS, e.g. it is
possible to open the GAMS Studio via the Launchpad.

Two installation procedures are available for GAMS on macOS:

• Installation using the PKG installer (GAMS46.2.0.pkg)

• Installation using the self-extracting archive (osx x64 64 sfx.exe or osx arm64 sfx.exe)

4.6.1 Installation using the PKG installer (GAMS46.2.0.pkg)

1. Obtain the GAMS PKG file for your CPU architecture (x86 64 or arm64), which is available from
http://www.gams.com/download.

2. Double click the package and follow the instructions. By clicking on Customise in the tab
Installation Type you can decide to add GAMS to the PATH as well as to reject the in-
stallation of GAMS Studio. Note that adding GAMS to the PATH is done by modifying your
shell profile file (∼/.zprofile, ∼/.bash profile etc.). A backup of your old profile is saved
(∼/.zprofile.gamsbackup, ∼/.bash profile.gamsbackup etc.).

3. In order to test the GAMS installation with GAMS Studio open the Launchpad and click the GAMS

Studio 46 icon to open the application. Alternatively, go to Applications and open the GAMS

Studio 46 application.

http://www.gams.com/download
http://www.gams.com/download

4.6 Installation Notes for macOS 539

4. Install your license via the corresponding GAMS Studio dialog. The license file is nowa-
days sent via email, with instructions. You can also request a demo license from
http://www.gams.com/download.

Optionally, you can create the license file 'gamslice.txt' in a directory that GAMS searches to find a
license. GAMS searches a couple of system wide and user specific standard locations for a license
file.

5. Open the Model Library Explorer and open the TRNSPORT model (sequence number 001). Run
the model and check the contents of the process log, which should be similar to the Terminal output
listed in the next bullet point.

6. In order to test the GAMS installation without using GAMS Studio open a Terminal window. Execute
the following commands to see if everything works as expected:

gamslib trnsport

gams trnsport

The output should be similar to this:

--- Job trnsport Start 06/26/14 11:24:56 24.3.1 r46409 DEX-DEG Mac x86_64/Darwin

GAMS 24.3.1 Copyright (C) 1987-2014 GAMS Development. All rights reserved

Licensee: ...

--- Starting compilation

--- trnsport.gms(69) 3 Mb

--- Starting execution: elapsed 0:00:00.024

--- trnsport.gms(45) 4 Mb

--- Generating LP model transport

--- trnsport.gms(66) 4 Mb

--- 6 rows 7 columns 19 non-zeroes

--- Executing CPLEX: elapsed 0:00:00.114

IBM ILOG CPLEX 24.3.1 ... DEG Mac x86_64/Darwin

Cplex 12.6.0.0

Reading data...

Starting Cplex...

Space for names approximately 0.00 Mb

Use option ’names no’ to turn use of names off

Tried aggregator 1 time.

LP Presolve eliminated 1 rows and 1 columns.

Reduced LP has 5 rows, 6 columns, and 12 nonzeros.

Presolve time = 0.02 sec. (0.00 ticks)

Iteration Dual Objective In Variable Out Variable

1 73.125000 x(seattle.new-york) demand(new-york) slack

2 119.025000 x(seattle.chicago) demand(chicago) slack

3 153.675000 x(san-diego.topeka) demand(topeka) slack

4 153.675000 x(san-diego.new-york) supply(seattle) slack

LP status(1): optimal

Cplex Time: 0.03sec (det. 0.01 ticks)

Optimal solution found.

Objective : 153.675000

--- Restarting execution

--- trnsport.gms(66) 2 Mb

--- Reading solution for model transport

--- trnsport.gms(68) 3 Mb

*** Status: Normal completion

--- Job trnsport.gms Stop 06/26/14 11:24:57 elapsed 0:00:00.487

http://www.gams.com/download
http://www.gams.com/download

540 User's Guide

4.6.2 Uninstall PKG installation

To uninstall a GAMS installation that was installed using the PKG installer, run the following command
from the terminal: sudo bash /Library/Frameworks/GAMS.framework/Versions/46/Resources/uninstall.sh.
Additionally, you can remove GAMS from the PATH in your shell profile file (∼/.zprofile,
∼/.bash profile) if GAMS was added to the PATH during installation.

4.6.3 Installation using the self-extracting archive (osx x64 64 sfx.exe or
osx arm64 sfx.exe)

The following instructions are for the macOS system on Intel/AMD CPUs (x86 64). For a macOS system
on ARM64 CPUs, the same instructions apply, but with x64 64 replaced by arm64 in all file names.

1. Obtain the GAMS distribution file, which is available from http://www.gams.com/download, in
one large self-extracting zip archive with a sfx.exe file extension, e.g., osx x64 64 sfx.exe. Check
that it has the execute permission set. If you are not sure how to do this, just type in the command
chmod 755 osx x64 64 sfx.exe .

Attention

The common way to install GAMS on a Mac is the PKG installer. When one tries to run the
sfx installer (e.g. for unattended installation) under macOS 10.15 (Catalina) or newer, the
installer and several related files will be tagged with the com.apple.quarantine flag. There
are different solutions to this problem:

• The flag can be removed by the following command:

xattr -rd com.apple.quarantine osx_x64_64_sfx.exe

• Instead of downloading the sfx installer through the browser, use a command line tool such
as curl (note that by downloading the software, you agree to the License Agreement).
The download link may need to be adjusted, depending on the distribution that should be
downloaded.

curl https://d37drm4t2jghv5.cloudfront.net/distributions/29.1.0/macosx/osx_x64_64_sfx.exe -o osx_x64_64_sfx.exe

2. Choose a location where you want to create the GAMS system directory (the GAMS system
directory is the directory where the GAMS system files should reside). At this location the GAMS
installer will create a subdirectory with a name that indicates the distribution of GAMS you are
installing. For example, if you are installing the 24.3 distribution in /Applications/GAMS, the
installer will create the GAMS system directory /Applications/GAMS/gams24.3 osx x64 64 sfx.
If the directory where you want to install GAMS is not below your home directory, you may need to
have root privileges on the machine.

3. Create the directory that should contain the GAMS system directory, for instance
/Applications/GAMS. Change to this directory (cd /Applications/GAMS). Make sure pwd re-
turns the name of this directory correctly.

4. Run the distribution file, either from its current location or after transfering it to the directory
that should contain the GAMS system directory. By executing the distribution file, the GAMS
distribution should be extracted. For example, if you downloaded the distribution file into your
home directory, you might execute the following commands:

mkdir /Applications/GAMS

cd /Applications/GAMS

~/osx_x64_64_sfx.exe

5. Create the license file gamslice.txt in a directory GAMS searches to find a license. The license
file is nowadays sent via email, with instructions. You can also request a demo license from
http://www.gams.com/download.

http://www.gams.com/download
https://www.gams.com/GAMS_EULA.pdf
http://www.gams.com/download
http://www.gams.com/download

4.6 Installation Notes for macOS 541

Attention

Do not store the gamslice.txt in the GAMS system directory. This invalidates the code
signature and cause Gatekeeper to reject the bundle!

GAMS searches a couple of system wide and user specific locations for a license file. For macOS these
locations include /Library/Application Support/GAMS and /Users/username/Library/Application

Support/GAMS. The locations can vary due to different system configuration. One can get an ordered
list of data directories GAMS searches for gamslice.txt by running the program ./gamsinst

-listdirs from the GAMS system directory. Even though this list might contain locations in the
system directory, e.g. /Applications/GAMS31.1 we strongly discourage to place gamslice.txt

here.

6. Change to the GAMS system directory and run the program ./gamsinst. It will prompt you for
default solvers to be used for each class of models. If possible, choose solvers you have licensed since
unlicensed solvers will only run in demonstration mode. These solver defaults can be changed or
overridden by:

a. rerunning ./gamsinst and resetting the default values

b. setting a command line default, e.g., gams trnsport lp=soplex

c. an option statement in the GAMS model, e.g: option lp=soplex;

7. Add the GAMS system directory to your path (see below).

8. To test the installation, log in as a normal user and run a few models from your home directory, but
not the GAMS system directory:

LP: trnsport (objective value: 153.675)

NLP: chenery (objective value: 1058.9)

MIP: bid (optimal solution: 15210109.512)

MINLP: procsel (optimal solution: 1.9231)

MCP: scarfmcp (no objective function)

MPSGE: scarfmge (no objective function)

9. If you move the GAMS system to another directory, remember to rerun ./gamsinst. It is also
good practice to rerun ./gamsinst when you change your license file if this has changed the set of
licensed solvers.

4.6.3.1 Access to GAMS

To run GAMS you must be able to execute the GAMS programs located in the GAMS system directory.
There are several ways to do this. Remember that the GAMS system directory in the examples below
may not correspond to the directory where you have installed your GAMS system.

1. If you are using the C shell (csh) and its variants you can modify your .cshrc file by adding the
second of the two lines given below:

set path = (/your/previous/path/setting)

set path = ($path /Applications/GAMS/gams24.3_osx_x64_64_sfx) # new

2. Those of you using the Bourne (sh) or Korn (ksh) shells and their variants can modify their .profile
file by adding the second of the three lines below:

PATH=/your/previous/path/setting

PATH=$PATH:/Applications/GAMS/gams24.3_osx_x64_64_sfx # new

export PATH

If the .profile file does not exist yet, it needs to be created. You should log out and log in again
after you have made any changes to your path.

542 User's Guide

3. You may prefer to use an alias for the names of the programs instead of modifying the path as
described above. C shell users can use the following commands on the command line or in their
.cshrc file:

alias gams /Applications/GAMS/gams24.3_osx_x64_64_sfx/gams

alias gamslib /Applications/GAMS/gams24.3_osx_x64_64_sfx/gamslib

The correct Bourne or Korn shell syntax (either command line or .profile) is:

alias gams=/Applications/GAMS/gams24.3_osx_x64_64_sfx/gams

alias gamslib=/Applications/GAMS/gams24.3_osx_x64_64_sfx/gamslib

Again, you should log out and log in in order to put the alias settings in .cshrc or .profile into
effect.

4. Casual users can always type the absolute path names of the GAMS programs, e.g.:

/Applications/GAMS/gams24.3_osx_x64_64_sfx/gams trnsport

4.6.3.2 Example

The following shows the log of a session, where a user downloads a GAMS 24.3.1 system and installs it
under Applications/GAMS/gams24.3 osx x64 64 sfx. It is assumed that a GAMS license file has been
stored as /Users/doe/gamslice.txt.

doe@mac:/Users/doe$ curl -L -k -O \

http://d37drm4t2jghv5.cloudfront.net/distributions/24.3.1/macosx/osx_x64_64_sfx.exe

% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed

100 148M 100 148M 0 0 4374k 0 0:00:34 0:00:34 --:--:-- 5906k

doe@mac:/Users/doe$ chmod 755 osx_x64_64_sfx.exe

doe@mac:/Users/doe$cd /Applications/GAMS

doe@mac:/Applications/GAMS$ ~/osx_x64_64_sfx.exe

UnZipSFX 5.52 of 28 February 2005, by Info-ZIP (http://www.info-zip.org).

creating: gams24.3_osx_x64_64_sfx/

inflating: gams24.3_osx_x64_64_sfx/sp2full.m

inflating: gams24.3_osx_x64_64_sfx/optpathnlp.def

inflating: gams24.3_osx_x64_64_sfx/MessageReceiverWindow.exe

inflating: gams24.3_osx_x64_64_sfx/datalib

inflating: gams24.3_osx_x64_64_sfx/empsyntax.txt

inflating: gams24.3_osx_x64_64_sfx/optlindoglobal.html

...

inflating: gams24.3_osx_x64_64_sfx/apifiles/CSharp/DomainChecking/DomainChecking.cs

inflating: gams24.3_osx_x64_64_sfx/apifiles/CSharp/DomainChecking/DomainChecking.csproj

inflating: gams24.3_osx_x64_64_sfx/apifiles/CSharp/xp_example2.cs

inflating: gams24.3_osx_x64_64_sfx/optdicopt.html

doe@mac:/Applications/GAMS$cd gams24.3_osx_x64_64_sfx

doe@mac:/Applications/GAMS/gams24.3_osx_x64_64_sfx$./gamsinst -license ~/gamslice.txt

4.6 Installation Notes for macOS 543

gamsinst run on Wed Jun 25 19:25:29 2014

GAMS sysdir is "/Applications/GAMS/gams24.3_osx_x64_64_sfx"

LP (Linear Programming) models can be solved by:

1. CBC (demo or student license)

2. CONOPT (demo or student license)

3. CPLEX (demo or student license)

4. GUROBI (demo or student license)

5. IPOPT (demo or student license)

6. IPOPTH (demo or student license)

...

Installed defaults:

LP: CPLEX

MIP: CPLEX

RMIP: CPLEX

NLP: CONOPT

MCP: PATH

MPEC: NLPEC

RMPEC: NLPEC

CNS: CONOPT

DNLP: CONOPT

RMINLP: CONOPT

MINLP: DICOPT

QCP: CONOPT

MIQCP: SBB

RMIQCP: CONOPT

EMP: JAMS

We are now prepared to set read and execute permissions on the

GAMS system files. If you are not sure which option to choose,

we recommend option 3.

You can set read (and execute) permission for:

1. user only.

2. user and group.

3. user, group, and world.

Enter your choice now

3

The files "gams", "gamslib", etc., are now executable.

You can run these commands in a number of ways:

1. Call them using an absolute path (i.e. /Applications/GAMS/gams24.3_osx_x64_64_sfx/gams).

2. Create your own aliases for them.

3. Add the GAMS system directory "/Applications/GAMS/gams24.3_osx_x64_64_sfx" to your path.

Method 3. is recommended.

doe@mac:/Applications/GAMS/gams24.3_osx_x64_64_sfx$cd

doe@mac:/Users/doe$/Applications/GAMS/gams24.3_osx_x64_64_sfx/gamslib trnsport

Copy ASCII: trnsport.gms

544 User's Guide

doe@mac:/Users/doe$/Applications/GAMS/gams24.3_osx_x64_64_sfx/gams trnsport.gms license ~/gamslice.txt

--- Job trnsport Start 06/26/14 11:24:56 24.3.1 r46409 DEX-DEG Mac x86_64/Darwin

GAMS 24.3.1 Copyright (C) 1987-2014 GAMS Development. All rights reserved

Licensee: ...

--- Starting compilation

--- trnsport.gms(69) 3 Mb

--- Starting execution: elapsed 0:00:00.024

--- trnsport.gms(45) 4 Mb

--- Generating LP model transport

--- trnsport.gms(66) 4 Mb

--- 6 rows 7 columns 19 non-zeroes

--- Executing CPLEX: elapsed 0:00:00.114

IBM ILOG CPLEX 24.3.1 ... DEG Mac x86_64/Darwin

Cplex 12.6.0.0

Reading data...

Starting Cplex...

Space for names approximately 0.00 Mb

Use option ’names no’ to turn use of names off

Tried aggregator 1 time.

LP Presolve eliminated 1 rows and 1 columns.

Reduced LP has 5 rows, 6 columns, and 12 nonzeros.

Presolve time = 0.02 sec. (0.00 ticks)

Iteration Dual Objective In Variable Out Variable

1 73.125000 x(seattle.new-york) demand(new-york) slack

2 119.025000 x(seattle.chicago) demand(chicago) slack

3 153.675000 x(san-diego.topeka) demand(topeka) slack

4 153.675000 x(san-diego.new-york) supply(seattle) slack

LP status(1): optimal

Cplex Time: 0.03sec (det. 0.01 ticks)

Optimal solution found.

Objective : 153.675000

--- Restarting execution

--- trnsport.gms(66) 2 Mb

--- Reading solution for model transport

--- trnsport.gms(68) 3 Mb

*** Status: Normal completion

--- Job trnsport.gms Stop 06/26/14 11:24:57 elapsed 0:00:00.487

4.7 Installation Notes for Unix

4.7.1 Installation

To install GAMS, please follow the steps below as closely as possible. We advise you to read this entire
document before beginning the installation procedure. Additionally, a video on how to install GAMS on
Linux is available at https://www.youtube.com/watch?v=Mx tYI3wyP4.

1. Obtain the GAMS distribution file, which is available from http://www.gams.com/latest, in one
large self-extracting zip archive with a sfx.exe file extension, e.g., linux x64 64 sfx.exe on a
Linux 64bit system. Check that it has the execute permission set. If you are not sure how to do
this, just type in the command, e.g., chmod 755 linux x64 64 sfx.exe.

https://www.youtube.com/watch?v=Mx_tYI3wyP4
http://www.gams.com/latest

4.7 Installation Notes for Unix 545

2. Choose a location where you want to create the GAMS system directory (the GAMS system directory
is the directory where the GAMS system files should reside). At this location the GAMS installer
will create a subdirectory with a name that indicates the distribution of GAMS you are installing.
For example, if you are installing the 24.3 distribution in /opt/gams, the installer will create the
GAMS system directory /opt/gams/gams24.3 linux x64 64 sfx. If the directory where you want
to install GAMS is not below your home directory, you may need to have root privileges on the
machine.

3. Create the directory that should contain the GAMS system directory, for instance /opt/gams.
Change to this directory (cd /opt/gams). Make sure pwd returns the name of this directory
correctly.

4. Run the distribution file, either from its current location or after transferring it to the directory
that should contain the GAMS system directory. By executing the distribution file, the GAMS
distribution should be extracted. For example, if you downloaded the distribution file into your
home directory, you might execute the following commands:

mkdir /opt/gams

cd /opt/gams

~/linux_x64_64_sfx.exe

5. Create the license file gamslice.txt in a directory GAMS searches to find a license or use the
corresponding GAMS Studio dialog. The license file is nowadays sent via email, with instructions.
You can also request a demo license from http://www.gams.com/download.

GAMS searches a couple of system wide and user specific standard locations for a license file.

6. Change to the GAMS system directory and run the program ./gamsinst. It will prompt you for
default solvers to be used for each class of models. If possible, choose solvers you have licensed since
unlicensed solvers will only run in demonstration mode. These solver defaults can be changed or
overridden by:

a. rerunning ./gamsinst and resetting the default values

b. setting a command line default, e.g., gams trnsport lp=soplex

c. an option statement in the GAMS model, e.g: option lp=soplex;

7. Add the GAMS system directory to your path (see below).

8. To test the installation, log in as a normal user and run a few models from your home directory, but
not the GAMS system directory:

LP: trnsport (objective value: 153.675)

NLP: chenery (objective value: 1058.9)

MIP: bid (optimal solution: 15210109.512)

MINLP: procsel (optimal solution: 1.9231)

MCP: scarfmcp (no objective function)

MPSGE: scarfmge (no objective function)

9. If you move the GAMS system to another directory, remember to rerun ./gamsinst. It is also
good practice to rerun ./gamsinst when you change your license file if this has changed the set of
licensed solvers.

4.7.2 Access to GAMS

To run GAMS you must be able to execute the GAMS programs located in the GAMS system directory.
There are several ways to do this. Remember that the GAMS system directory in the examples below
may not correspond to the directory where you have installed your GAMS system.

1. If you are using the C shell (csh) and its variants you can modify your .cshrc file by adding the line

http://www.gams.com/download

546 User's Guide

set path = ($path /opt/gams/gams24.3_linux_x64_64_sfx)

2. Those of you using the Bourne (sh) or Korn (ksh) shells and their variants can modify their .profile
or .bashrc file by adding the line

PATH=$PATH:/opt/gams/gams24.3_linux_x64_64_sfx

If neither .profile nor .bashrc exist yet, .profile needs to be created. You should log out and
log in again after you have made any changes to your path.

3. You may prefer to use an alias for the names of the programs instead of modifying the path as
described above. C shell users can use the following commands on the command line or in their
.cshrc file:

alias gams /opt/gams/gams24.3_linux_x64_64_sfx/gams

alias gamslib /opt/gams/gams24.3_linux_x64_64_sfx/gamslib

The correct Bourne or Korn shell syntax (either command line or .profile) is:

alias gams=/opt/gams/gams24.3_linux_x64_64_sfx/gams

alias gamslib=/opt/gams/gams24.3_linux_x64_64_sfx/gamslib

Again, you should log out and log in in order to put the alias settings in .cshrc or .profile into
effect.

4. Casual users can always type the absolute path names of the GAMS programs, e.g.:

/opt/gams/gams24.3_linux_x64_64_sfx/gams trnsport

4.8 Installation Notes for Windows

4.8.1 Installation

1. Run windows x64 64.exe (Windows 64bit): This file is available from https://www.gams.com/latest.
Please note that the installation may require administrative privileges on your machine.

You have two options to run the installer: In default or advanced mode. In the default mode,
the installer will prompt you for the name of the directory in which to install GAMS. We call
this directory the GAMS directory. You may accept the default choice or pick another directory.
Please remember: if you want to install two different versions of GAMS, they must be in separate
directories.

If you choose to use the advanced mode, the installer will also ask you for a name of a start menu
folder, if GAMS should be installed for all users, if the GAMS directory should be added to the
PATH environment variable and which desktop icons should be created.

The GAMS License page allows to select a GAMS license. The installer tries to find GAMS licenses
in different locations and automatically selects a license to be used with the following precedence:

• Clipboard

• C:\Users\username\Documents\GAMS

• Previous GAMS installation found from the registry (User)

• Previous GAMS installation found from the registry (System)

https://www.gams.com/latest

4.8 Installation Notes for Windows 547

In addition it is possible to browse for a license file (gamslice.txt) or to skip all license related
actions (No License) and install one after the installation process. Note that the use of GAMS
requires a license. A free demo license can be requested at https://www.gams.com/download. A
license file is written to C:\Users\username\Documents\GAMS when installing for Current User

(default). Installing for All Users or checking Write License to System Directory will write
the license to the GAMS system directory instead.

For automating the installation of GAMS, it is possible to provide the command line parameters
/SP- /SILENT. This will install GAMS in a non-interactive manner using default settings. Note that
depending on the security settings, the User Account Control asking for permission might still be
active. The following command line parameters are available to further customize the non-interactive
installation:

• /installAllUsers=yes|no (default:no): Can be used in order to install for All Users instead
of Current User.

• /noLicense=yes|no (default:no): Can be used in order to prevent any GAMS license from
being written.

• /noIcons can be used in order to check the Don't create a Start Menu folder checkbox
on the Select Start Menu Folder page.

• /desktopIcons=yes|no (default:undef) can be used in order to turn on/off the creation of
Desktop icons. The default (undef) is to create a desktop icon for GAMS Studio but not for
GAMS IDE.

• /allUsers: Perform installation in administrative install mode.

• /currentUser: Perform installation in non administrative install mode. If specified,
/installAllUsers=yes has no effect.

Attention

Under Windows 10 the Windows Installer package may not update system environment
variables (see Microsoft Forum). To work around this issue, log off of Windows after the
installation, and then log on again.

Note

The installer can be run unattended with the switches /SILENT or /VERYSILENT and might
require some post installation task (like copying the license file to an appropriate location).
This unattended mode also skips execution of some code in the installer that can cause failures
on exotically configured systems.

2. During the installation of GAMS, the setup process helps in setting up the license to be used
with GAMS. In case no license has been selected during this process it is required to set this up
manually. The license file is nowadays sent via email, with instructions. You can also request a
demo license from https://www.gams.com/download. If you don't have a license file yet, choose
No license when asked for the GAMS license options. You can install a license later by either
manually creating the license file gamslice.txt in a directory GAMS searches to find a license or
use the corresponding GAMS Studio dialog.

GAMS searches a couple of system wide and user specific standard locations for a license file.

3. Choose the default solvers: Run GAMS Studio by double clicking studio.exe from the GAMS sys-
tem subdirectory Studio. To view or edit the default solvers, open the GAMS Configuration Editor
in Studio. You can also skip this and thus accept the existing defaults if you wish, but most users
want to select new default solvers for each model type.

4. Run a few models to test the GAMS system: The Model Library Explorer allows you to pick some
models from the GAMS model library easily. After selecting one, press F9 to run it, and view the
solution. To test your installation, run the following models from the GAMS model library:

LP: trnsport (objective value: 153.675)

NLP: chenery (objective value: 1058.9)

https://www.gams.com/download
https://social.technet.microsoft.com/Forums/windows/en-US/4db362ce-ce9c-49c8-991c-c38f5b740cb7/msi-bug-in-windows-10-path-env-var-not-updated-by-msi-after-sw-install-finishes-until-user-log
https://www.gams.com/download

548 User's Guide

MIP: bid (optimal solution: 15210109.512)

MINLP: procsel (optimal solution: 1.9231)

MCP: scarfmcp (no objective function)

MPSGE: scarfmge (no objective function)

4.8.2 Visual C++ Redistributable Dependency

• Some solvers in the system as well as GAMS Studio have dependencies on certain Visual C++
libraries. These are present on most Windows systems but are missing on some. If you get a
complaint about missing libraries on startup of GAMS Studio or when solving a model, please run
the installer vcredist x64.exe for these libraries, which can be found in the GAMS installation
folder in directory [GAMS system]\studio.

4.8.3 Command Line Use of GAMS

Users wishing to use GAMS from the command line (aka the console mode) may want to perform the
following steps. These steps are not necessary to run GAMS via Studio.

1. We recommend to add the GAMS directory to your environment path in order to avoid having to
type in an absolute path name each time you run GAMS. Run the installer in advanced mode and
mark the check-box Add GAMS directory to PATH environment variable.

2. Run the program gamsinst: gamsinst is a command line program used to configure GAMS. It
prompts the user for default solvers to be used for each model type. If possible, choose solvers you
have licensed, since unlicensed solvers will only run in demonstration mode. The solver defaults can
be changed by:

a. rerunning gamsinst and resetting the default values

b. setting a command line default, e.g. gams trnsport lp=soplex

c. by an option statement in the GAMS model, e.g: option lp=soplex;

The system wide solver defaults are shared by the command line and GAMS Studio, so you can also
choose to set these defaults using GAMS Studio.

4.8.4 Warning from Microsoft SmartScreen Filter

The SmartScreen is a feature that is used in several Microsoft products, including the Internet Explorer,
Microsoft Edge, as well as in Windows 8 and newer versions of Windows. It is supposed to help to protect
your computer against unwanted software. It uses a reputation-based system to rate files downloaded
from the internet. That means that a file gets a better reputation when it gets download more often. As
a result you might get a warning like this, especially for GAMS distributions that were recently released:

clicking on “More info” will display an option to continue the installation process.

4.9 Standard Locations 549

Figure 4.1 SmartScreen Filter Warning

4.9 Standard Locations

GAMS looks for specific files in some system-wide and user-specific locations which are independent of
the GAMS installation. This allows the user to store these files in one place without the need to adjust
anything when moving from one GAMS version to another. These folders are referred to as standard
locations and are split into two groups: configuration directories and data directories. Here are some
examples of files, which will be found in the data directories (or subfolders of these):

• The GAMS license file

• LibInclude files

• External Equation libraries

• Extrinsic Function libraries

The GAMS configuration file is expected in one of the configuration directories.

The exact location depends on the operating system used and user specific settings. Running gamsinst

-listdirs on the command line shows the folders searched explicitly.

4.9.1 Standard Locations on macOS

4.9.1.1 Configuration Directories

These folders get searched on macOS (in the listed order):

• The GAMS system directory

• The subfolder GAMS in $HOME/Library/Preferences ($HOME usually contains the user's home
directory)

Here is an example output of gamsinst -listdirs:
Config directories (searched for e.g. gamsconfig.yaml):

/Users/JaneDoe/GAMS32
/Users/JaneDoe/Library/Preferences/GAMS

550 User's Guide

4.9.1.2 Data Directories

These folders get searched on macOS (in the listed order):

• The subfolder GAMS in $HOME/Library/Application Support ($HOME usually contains the user's
home directory)

• The subfolder GAMS in /Library/Application Support

• The subfolder Resources next to the GAMS system directory

• The GAMS system directory

Here is an example output of gamsinst -listdirs:
Data directories (searched for e.g. gamslice.txt):

/Users/JaneDoe/Library/Application Support/GAMS
/Library/Application Support/GAMS
/Users/JaneDoe/Resources
/Users/JaneDoe/GAMS32

4.9.2 Standard Locations on Unix

4.9.2.1 Configuration Directories

On Unix the environment variables XDG CONFIG HOME and XDG CONFIG DIRS (see XDG Base Directory

Specification) influence the search directories. These folders get searched on Unix (in the listed order):

• The GAMS system directory

• The subfolder GAMS of folders from $XDG CONFIG DIRS or the subfolder GAMS in /etc/xdg

• The folder $XDG CONFIG HOME or the subfolder GAMS in $HOME/.config ($HOME usually contains the
user's home directory)

Here is an example output of gamsinst -listdirs:
Config directories (searched for e.g. gamsconfig.yaml):

/home/JohnDoe/GAMS32
/etc/xdg/GAMS
/home/JohnDoe/.config/GAMS

4.9.2.2 Data Directories

On Unix the environment variables XDG DATA HOME and XDG DATA DIRS (see XDG Base Directory

Specification) influences the search directories. These folders get searched on Unix (in the listed
order):

• The folder $XDG DATA HOME or the subfolder GAMS in $HOME/.local/share ($HOME usually contains
the user's home directory)

• The subfolder GAMS of folders from $XDG DATA DIRS or the subfolder GAMS in /usr/local/share

and the subfolder GAMS in /usr/share

• The GAMS system directory

Here is an example output of gamsinst -listdirs:
Data directories (searched for e.g. gamslice.txt):

/home/JohnDoe/.local/share/GAMS
/usr/local/share/GAMS
/usr/share/GAMS
/home/JohnDoe/GAMS32

https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html

4.9 Standard Locations 551

4.9.3 Standard Locations on Windows

4.9.3.1 Configuration Directories

These folders get searched on Windows (in the listed order):

• The GAMS system directory

• The subfolder GAMS in C:\ProgramData

• The subfolder GAMS in AppData\Local in the User's directory

• The subfolder GAMS in Documents in the User's directory

Here is an example output of gamsinst -listdirs:
Config directories (searched for e.g. gamsconfig.yaml):

C:\GAMS\32
C:\ProgramData\GAMS
C:\Users\JohnDoe\AppData\Local\GAMS
C:\Users\JohnDoe\Documents\GAMS

4.9.3.2 Data Directories

These folders get searched on Windows (in the listed order):

• The subfolder GAMS in Documents in the User's directory

• The subfolder GAMS in AppData\Roaming in the User's directory

• The subfolder GAMS in C:\ProgramData

• The subfolder data in the GAMS system directory

• The subfolder data\GAMS in the GAMS system directory

• The GAMS system directory

Here is an example output of gamsinst -listdirs:
Data directories (searched for e.g. gamslice.txt):

C:\Users\JohnDoe\Documents\GAMS
C:\Users\JohnDoe\AppData\Roaming\GAMS
C:\ProgramData\GAMS
C:\GAMS\32\data
C:\GAMS\32\data\GAMS
C:\GAMS\32

Note: When running as a service, the ”User's directory” mentioned above is not C:\Users\UserName but
resolves to something like C:\Windows\system32\config\systemprofile. So the above output could
look like this:
Data directories (searched for e.g. gamslice.txt):

C:\Windows\system32\config\systemprofile\Documents\GAMS
C:\Windows\system32\config\systemprofile\AppData\Roaming\GAMS
C:\ProgramData\GAMS
C:\GAMS\32\data
C:\GAMS\32\data\GAMS
C:\GAMS\32

552 User's Guide

4.10 Licensing

4.10.1 General Information

The GAMS system and all connected solvers can be downloaded from the GAMS website at
https://www.gams.com/download. The use of the software is governed by the GAMS End User Li-
cense Agreement, which is available on our website and can also be found in the GAMS System directory
(eula.pdf). Without a valid GAMS license the system will not run and produces the following output:

*** No license specified and no gamslice.txt found in standard locations.

A free demo license time-limited for 5 months is included with the GAMS distribution. The demo license lets
you generate and solve small models, see also Additional Limits for the Demo and Community License.
On expiration you need to update your GAMS system (that comes with a new demo license) or request a
demo license time-limited for 12 months at https://www.gams.com/download. Please note, a valid free
demo license requires a recent GAMS version (not older than 18 months). The demo license of MIRO
connector allows up to 10 indexed input and output symbols.

GAMS will terminate with an error message, if it hits one of the limits above:

*** Status: Terminated due to a licensing error

*** Inspect listing file for more information

When the time-limited demo license expires you need to update your GAMS system or request a new
demo license at https://www.gams.com/download. Moreover, a valid free demo license requires a recent
GAMS version (not older than 18 months).

4.10.2 GAMS Community License

Users can request a free community license from community@gams.com. The community license lets
you generate and solve linear models (LP, MIP, and RMIP) that do not exceed 5000 variables and
5000 constraints. For all other model types the model cannot be larger than 2500 variables and 2500
constraints. Restrictions you experience with the demo license, i.e. additional limits enforced by some
solvers, time-limitation of 12 months, and a recent GAMS system also apply to the community license.
The free demo and community license cannot be combined with a professional license. These free demo
and community licenses are for demonstration and evaluation but not for commercial and production
work.

4.10.3 GAMS Licenses

GAMS licenses beyond the free demo and community license require a license for the GAMS Base Module
and for most of the GAMS/Solvers and the GAMS/Solver-Links:

• The GAMS Base Module includes the GAMS Language Compiler, GAMS-APIs, many utilities,
some solvers without size restrictions, and most solvers in ”demo” mode with a model size limitation.
See details below.

• A GAMS/Solver connects the GAMS Base module to a particular solver and includes a license
for this solver to be used through GAMS. It is not necessary to install additional software. A
GAMS/Solver-Link connects the GAMS Base Module to a particular solver, but does not include
a license for the solver. It may be necessary to install additional software before the solver can be
used.

https://www.gams.com/download
https://www.gams.com/download
https://www.gams.com/GAMS_EULA.pdf
https://www.gams.com/download
https://www.gams.com/download
mailto:community@gams.com

4.10 Licensing 553

We distinguish between academic and commercial licenses. Academic licenses can only be used for
teaching and research at degree granting institutions. Moreover, we distinguish between time-limited and
perpetual licenses. For perpetual licenses the first year of maintenance, support and updates is included
in the initial purchase of the software. Maintained licenses qualify for free updates, adding components,
platform-switching without additional charge, and multi-copy discounts on the same platform. After the
first year maintenance can be extended by paying a fee. Licenses are typically limited to a single computer
platform type (e.g. Windows or Linux), but there are also licenses available, which will work on all major
platform supported by GAMS. Free academic licenses are available for certain solvers. Please visit the
GAMS website for further information about the pricing of an appropriate license.

4.10.4 Installing or updating a license file

A GAMS license file is an ASCII file of six lines, which was sent to you via e-mail. Please copy all six
lines into a file gamslice.txt and place this into a location searched by GAMS. Details can be found in the
installation notes of the specific operating system:

• GAMS Installation Notes for Windows

• GAMS Installation Notes for macOS

• GAMS Installation Notes for Unix

Before installing a new GAMS version, please check whether it will work with your current GAMS license.
The ”Check for Update” functionality of GAMS Studio can be used to see if a newer GAMS version is
available and what the newest version is that can be used with a given license.

Below is a sample output for a license, which is still under maintenance:

*** Processing GAMS system directory C:\gams\win64\24.8

*** Reading license file C:\ProgramData\GAMS\gamslice.txt

*** Your system is up to date

If your license is no longer under maintenance, you will receive a message like the one below:

*** Processing GAMS system directory C:\GAMS\win64\23.9

*** Reading license file C:\ProgramData\GAMS\gamslice.txt

*** Your license is 1276 days too old to run with the most recent system

*** The version of your GAMS system is 23.9.5

*** The last GAMS version you can use is 24.1.3

*** Please request the download of an older version from sales@gams.com

*** For ordering an update to use the most recent version (24.8.5)

*** please contact your distributor

4.10.5 License Problems

Errors or warnings triggered by a problem with the GAMS license file (gamslice.txt) are reported both in
the log file and in the lst file. Below are some typical error and warning messages and instructions how to
overcome them.

https://www.gams.com/buy_gams/
https://www.gams.com/buy_gams/

554 User's Guide

4.10.5.1 No License File present

Without a license file GAMS will not work. If you have received a license file (gamslice.txt), follow the
instruction from the previous section. Do not try to rename it or to modify the contents of the license file.
Without a license GAMS will give you an error message like the one below:

*** No license specified and no gamslice.txt found in standard locations.

4.10.5.2 License File Invalid or Corrupted

Running GAMS with an invalid license will give you an error message like the one below:

*** License File validation failed

Do not try to modify your license file, any change will break it. If the original license file is no longer
available, please contact sales@gams.com and ask for a copy of your license file. Please attach the license
file you are currently using. This error also pops up, if you are using a license file, which was issued for a
different platform.

4.10.5.3 License File expired

If are trying to run an old license file with a newer GAMS distribution, you may get an error message
stating:

*** License file too old for this version of GAMS.

*** Maintenance expired 2840 days ago.

*** More than 60 days since expiration, sorry...

*** Run an older GAMS system or renew the license

Replace that GAMS system with the one you got together with your license file (use the ”Check for
Update” utility mentioned above to find out the latest version you can use with the current license; old
systems are available on request from sales@gams.com) or update your license to the current version.

4.10.5.4 No License (for a particular Solver) found

If one of the solvers you are trying to use (or is selected as the default solver) is not included in your
license file and the size of the model exceed the limits of the free demo or community version, you will get
an error stating:

*** No license found

*** To update your license, please contact your distributor.

Check whether the default solvers for a particular problem class are included in the license. Please note
that some of the solvers call other solvers as a sub-solver, e.g.:

• GAMS/DICOPT requires an NLP and a MIP solver

• GAMS/SBB requires an NLP solver

• MPSGE: If GAMS/PATH is not included in your license, please select GAMS/MILES, which is
included in the base system as the default solver for MCP problems.

mailto:sales@gams.com
mailto:sales@gams.com

4.10 Licensing 555

4.10.6 Warnings

4.10.6.1 License file too old for this version of GAMS

The complete message is:

*** License file too old for this version of GAMS.

*** Maintenance expired xx days ago.

If GAMS continues working, you can ignore this warning. However, any forthcoming GAMS distribution
will most likely not work, but downgrade to the limits of the free demo system.

4.10.6.2 License File has expired xx days ago

This warning (without further error messages) indicates that the time limited license (e.g. an evaluation
license) will stop working soon.

4.10.7 The GAMS/BASE Module

The GAMS/BASE module includes:

• Language Compiler and Execution System

• GAMS IDE(Integrated Development Environment) (Windows only)

– Project Management

– Editor, Syntax coloring, Spell checking

– Launching and monitoring of (multiple) GAMS processes

– Listing file / Tree view / Syntax-error navigation

– Solver selection / option selection

– GDX Viewer: Data cube and export (e.g. to MS Excel), charting facilities

• GAMS Studio (platform independent, Beta version)

– Editor, Syntax coloring

– Launching and monitoring of (multiple) GAMS processes

– Listing file / Tree view / Syntax-error navigation

– GDX Viewer

• GAMS Free Solvers and Links

– Open Source (COIN-OR): CBC, Ipopt, SHOT

– CONVERT, JAMS and LOGMIP, NLPEC

– MILES

– EXAMINER, GAMSCHK

– Academic licenses only: ODHeuristic (requires a GAMS/CPLEX or GAMS/CPLEX-Link
license), SCIP, Soplex

– GAMS/KESTREL for using the NEOS Server with a local GAMS system

gamside/contents.htm
http://www.neos-server.org/neos/

556 User's Guide

• Most other solvers in limited versions for demonstration and evaluation, but no
commercial use: 2000 constraints and variables for linear models, and 1000 constraints and
variables for other model types. For licensed academic users the size limits are increased: 5000
constraints and variables for linear models, and 2500 constraints and variables for other model types.
The solvers might enforce additional limits.

• EMP (Extended Mathematical Programming Framework)

• Posix Utilities

• Academic licenses only: MIRO Connector for using external input and output symbols.

• GDX (GAMSData eXchange) and related GDX Utilities

– Binary data exchange between application, GAMS, and the solver (fast, saves disk space,
tailored for large sparse matrices, platform independent, direct GDX interfaces, API support
for high-level programming languages)

– GDX Utilities: GDX Viewer, GDXMERGE, GDXDUMP, GDXCOPY, GDXDIFF,
MDB2GMS, GDXMRW, GDXRRW, GDXXRW, GDX2XLS, XLSDump

• Various other tools

• GAMS APIs

– Expert-Level GAMS APIs

∗ GAMS

∗ GDX

∗ Option

∗ Supported Languages: C, C++, C#, Delphi, Fortran, Java, Python, VBA, VB.Net

– Object-Oriented GAMS APIs

∗ Supported Languages: C++, C#, Java, Python, VB.Net

• Documentation

• Model Libraries

4.10.8 Additional Limits for the Demo and Community License

The model size limits enforced by GAMS are:

• 2000 variables and 2000 constraints for linear (LP, RMIP, and MIP) models with a demo license

• 1000 variables and 1000 constraints for all other model types with a demo license

• 5000 variables and 5000 constraints for linear (LP, RMIP, and MIP) models with a community
license

• 2500 variables and 2500 constraints for all other model types with a community license

In addition to the GAMS model size limits, the solvers might impose stricter limits when running with a
demo or community license. We use m for the number constraints, n for the number variables, nd for the
number of discrete variables, nz for the number nonzeros, and nlnz for the number nonlinear nonzeros:

• Antigone, Baron, and LindoGlobal require m≤50, n≤50, and nlnz≤50 with a demo license.

• Antigone, Baron, and LindoGlobal require m≤300, n≤300, and nlnz≤100 with a community license.

• Cplex and ODHCPLEX require m≤2000 and n≤2000 with a pro-bono community license.

• Decis and Knitro require m≤300, n≤300, nd≤50, nz≤2000, and nlnz≤1000 with a demo and
community license.

• Xpress requires m+n≤5000 with a community license.

• In addition Gurobi requires a license file from the vendor to operate.

4.11 A GAMS Tutorial by Richard E. Rosenthal 557

4.11 A GAMS Tutorial by Richard E. Rosenthal

4.11.1 Introduction

Richard E. Rosenthal of the Naval Postgraduate School in Monterey, California wrote a detailed example
of the use of GAMS for formulating, solving, and analyzing a small and simple optimization problem.
The example is a quick overview of GAMS and its main features. Many references are made to other
parts of the documentation, but they are only to tell you where to look for more details; the material here
can be read profitably without reference to the rest of the documentation.

The example is an instance of the transportation problem of linear programming, which has historically
served as a 'laboratory animal' in the development of optimization technology. [See, for example, Dantzig
(1963) 1.] It is a good choice for illustrating the power of algebraic modeling languages like GAMS because
the transportation problem, no matter how large the instance at hand, possesses a simple, exploitable
algebraic structure. You will see that almost all of the statements in the GAMS input file we are about to
present would remain unchanged if a much larger transportation problem were considered.

In the familiar transportation problem, we are given the supplies at several plants and the demands at
several markets for a single commodity, and we are given the unit costs of shipping the commodity from
plants to markets. The economic question is: how much shipment should there be between each plant and
each market so as to minimize total transport cost?

The algebraic representation of this problem is usually presented in a format similar to the following.

Indices:

i = plants
j = markets

Given Data:

ai = supply of commodity of plant i (in cases)
bj = demand for commodity at market j
cij = cost per unit shipment between plant i and market j

Decision Variables:

xij = amount of commodity to ship from plant i to market j
where xij ≥ 0, for all i, j

Constraints:

Observe supply limit at plant i:
∑
j xij ≤ ai for all i (cases)

Satisfy demand at market j:
∑
i xij ≥ bj for all j (cases)

Objective Function: Minimize
∑
i

∑
j cijxij ($K)

1Dantzig, George B. (1963). Linear Programming and Extensions, Princeton University Press, Princeton N.J.

558 User's Guide

Note that this simple example reveals some modeling practices that we regard as good habits in general
and that are consistent with the design of GAMS. First, all the entities of the model are identified (and
grouped) by type. Second, the ordering of entities is chosen so that no symbol is referred to before it
is defined. Third, the units of all entities are specified, and, fourth, the units are chosen to a scale such
that the numerical values to be encountered by the optimizer have relatively small absolute orders of
magnitude. (The symbol $K here means thousands of dollars.)

The names of the types of entities may differ among modelers. For example, economists use the terms
exogenous variable and endogenous variable for given data and decision variable, respectively. In GAMS,
the terminology adopted is as follows: indices are called sets, given data are called parameters, decision
variables are called variables, and constraints and the objective function are called equations.

The GAMS representation of the transportation problem closely resembles the algebraic representation
above. The most important difference, however, is that the GAMS version can be read and processed by
a computer.

Table 1: Data for the transportation problem (adapted from Dantzig, 1963) illustrates Shipping Distances
from Plants to Markets (1000 miles) as well as Market Demands and Plant Supplies.

Plants ↓ New York Chicago Topeka ←Markets

Seattle 2.5 1.7 1.8 350

San Diego 2.5 1.8 1.4 600

Demands → 325 300 275 Supplies ↑

As an instance of the transportation problem, suppose there are two canning plants and three markets,
with the data given in table Table 1. Shipping distances are in thousands of miles, and shipping costs are
assumed to be $90.00 per case per thousand miles. The GAMS representation of this problem is as follows:

$title a transportation model

Sets

i canning plants / seattle, san-diego /

j markets / new-york, chicago, topeka / ;

Parameters

a(i) capacity of plant i in cases

/ seattle 350

san-diego 600 /

b(j) demand at market j in cases

/ new-york 325

chicago 300

topeka 275 / ;

Table d(i,j) distance in thousands of miles

new-york chicago topeka

seattle 2.5 1.7 1.8

san-diego 2.5 1.8 1.4 ;

Scalar f freight in dollars per case per thousand miles /90/ ;

Parameter c(i,j) transport cost in thousands of dollars per case ;

c(i,j) = f * d(i,j) / 1000 ;

Variables

4.11 A GAMS Tutorial by Richard E. Rosenthal 559

x(i,j) shipment quantities in cases

z total transportation costs in thousands of dollars ;

Positive Variable x ;

Equations

cost define objective function

supply(i) observe supply limit at plant i

demand(j) satisfy demand at market j ;

cost .. z =e= sum((i,j), c(i,j)*x(i,j)) ;

supply(i) .. sum(j, x(i,j)) =l= a(i) ;

demand(j) .. sum(i, x(i,j)) =g= b(j) ;

Model transport /all/ ;

Solve transport using lp minimizing z ;

Display x.l, x.m ;

If you submit a file containing the statements above as input to GAMS , the transportation model will be
formulated and solved. Details vary on how to invoke GAMS on different of computers, but the simplest
('no frills') way to call GAMS is to enter the word GAMS followed by the input file's name. You will
see a number of terse lines describing the progress GAMS is making, including the name of the file onto
which the output is being written. When GAMS has finished, examine this file, and if all has gone well
the optimal shipments will be displayed at the bottom as follows.

new-york chicago topeka

seattle 50.000 300.000

san-diego 275.000 275.000

You will also receive the marginal costs (simplex multipliers) below.

chicago topeka

seattle 0.036

san-diego 0.009

These results indicate, for example, that it is optimal to send nothing from Seattle to Topeka, but if you
insist on sending one case it will add .036 $K (or $36.00) to the optimal cost.

4.11.2 Structure of a GAMS Model

For the remainder of the tutorial, we will discuss the basic components of a GAMS model, with reference
to the example above. The basic components are listed in table Table 2.

Table 2: The basic components of a GAMS model

560 User's Guide

Type Component

Inputs Sets
Declaration
Assignment of members

Data (Parameters, Tables, Scalars)
Declaration
Assignment of values

Variables
Declaration
Assignment of type

Assignment of Variable Bounds and/or Initial Values (optional)

Equations
Declaration
Definition

Model and Solve Statements

Display Statements (optional)

Outputs Echo Prints

Reference Maps

Equation Listings

Status Reports

Solution Reports

There are optional input components, such as edit checks for bad data and requests for customized reports
of results. Other optional advanced features include saving and restoring old models, and creating multiple
models in a single run, but this tutorial will discuss only the basic components.

Before treating the individual components, we give a few general remarks.

1. A GAMS model is a collection of statements in the GAMS Language. The only rule governing the
ordering of statements is that an entity of the model cannot be referenced before it is declared to
exist.

2. GAMS statements may be laid out typographically in almost any style that is appealing to the user.
Multiple lines per statement, embedded blank lines, and multiple statements per line are allowed.
You will get a good idea of what is allowed from the examples in this tutorial, but precise rules of
the road are given in the next Chapter.

3. When you are a beginning GAMS user, you should terminate every statement with a semicolon, as
in our examples. The GAMS compiler does not distinguish between upper-and lowercase letters, so
you are free to use either.

4. Documentation is crucial to the usefulness of mathematical models. It is more useful (and most
likely to be accurate) if it is embedded within the model itself rather than written up separately.
There are at least two ways to insert documentation within a GAMS model. First, any line that
starts with an asterisk in column 1 is disregarded as a comment line by the GAMS compiler. Second,
perhaps more important, documentary text can be inserted within specific GAMS statements.

5. As you can see from the list of input components above, the creation of GAMS entities involves two
steps: a declaration and an assignment or definition. Declaration means declaring the existence of
something and giving it a name. Assignment or definition means giving something a specific value
or form. In the case of equations, you must make the declaration and definition in separate GAMS
statements. For all other GAMS entities, however, you have the option of making declarations and
assignments in the same statement or separately.

6. The names given to the entities of the model must start with a letter and can be followed by up to
62 more letters or digits.

4.11 A GAMS Tutorial by Richard E. Rosenthal 561

4.11.3 Sets

Sets are the basic building blocks of a GAMS model, corresponding exactly to the indices in the algebraic
representations of models. The Transportation example above contains just one Set statement:

Sets

i canning plants / seattle, san-diego /

j markets / new-york, chicago, topeka / ;

The effect of this statement is probably self-evident. We declared two sets and gave them the names i

and j. We also assigned members to the sets as follows:

i = {Seattle, San Diego}
j = {New York, Chicago, Topeka}.

You should note the typographical differences between the GAMS format and the usual mathematical
format for listing the elements of a set. GAMS uses slashes '/' rather than curly braces '{}' to delineate
the set. Note also that multiword names like 'New York' have to be quoted ((e.g. 'New York' or ”New
York”) or you must use hyphens instead of blanks (e.g. New-York').

The words after the set names in the sets statement above are called text. Text is optional. It is there
only for internal documentation, serving no formal purpose in the model. The GAMS compiler makes no
attempt to interpret the text, but it saves the text and 'parrots' it back to you at various times for your
convenience.

It was not necessary to combine the creation of sets i and j in one statement. We could have put them
into separate statements as follows:

Set i canning plants / seattle, san-diego / ;

Set j markets / new-york, chicago, topeka / ;

The placement of blank spaces and lines (as well as the choice of upper- or lowercase) is up to you. Each
GAMS user tends to develop individual stylistic conventions. (The use of the singular set is also up to
you. Using set in a statement that makes a single declaration and sets in one that makes several is good
English, but GAMS treats the singular and plural synonymously.)

A convenient feature to use when you are assigning members to a set is the asterisk. It applies to cases
when the elements follow a sequence. For example, the following are valid set statements in GAMS.

Set t time periods /1991*2000/;

Set m machines /mach1*mach24/;

Here the effect is to assign

t = {1991,1992,1993,, 2000}
m = {mach 1, mach 2,......, mach 24 }.

Note that set elements are stored as character strings, so the elements of t are not numbers.

Another convenient feature is the alias statement, which is used to give another name to a previously
declared set. In the following example:

Alias (t,tp);

the name tp is like a t' in mathematical notation. It is useful in models that are concerned with the
interactions of elements within the same set.

The sets i, j, t, and m in the statements above are examples of static sets, i.e., they are assigned their
members directly by the user and do not change. GAMS has several capabilities for creating dynamic
sets, which acquire their members through the execution of set-theoretic and logical operations. Dynamic
sets are discussed in chapter Dynamic Sets. Another valuable advanced feature is multidimensional sets,
which are discussed in section Multi-Dimensional Sets.

562 User's Guide

4.11.4 Data

The GAMS model of the transportation problem demonstrates three of the different formats that are
allowable for entering data. The three formats are:

• Lists

• Tables

• Direct assignments

The next three subsections will discuss each of these formats in turn.

4.11.4.1 Data Entry by Lists

The first format is illustrated by the first Parameters statement of the example, which is repeated below.

Parameters

a(i) capacity of plant i in cases

/ seattle 350

san-diego 600 /

b(j) demand at market j in cases

/ new-york 325

chicago 300

topeka 275 / ;

This statement has several effects. Again, they may be self-evident, but it is worthwhile to analyze
them in detail. The statement declares the existence of two parameters, gives them the names a and
b, and declares their domains to be i and j, respectively. (A domain is the set, or tuple of sets, over
which a parameter, variable, or equation is defined.) The statement also gives documentary text for each
parameter and assigns values of a(i) and b(j) for each element of i and j. It is perfectly acceptable to
break this one statement into two, if you prefer, as follows.

Parameters a(i) capacity of plant i in cases

/ seattle 350

san-diego 600 / ;

Parameters b(j) demand at market j in cases

/ new-york 325

chicago 300

topeka 275 / ;

Here are some points to remember when using the list format.

1. The list of domain elements and their respective parameter values can be laid out in almost any way
you like. The only rules are that the entire list must be enclosed in slashes and that the element-value
pairs must be separated by commas or entered on separate lines.

4.11 A GAMS Tutorial by Richard E. Rosenthal 563

2. There is no semicolon separating the element-value list from the name, domain, and text that
precede it. This is because the same statement is being used for declaration and assignment when
you use the list format. (An element-value list by itself is not interpretable by GAMS and will result
in an error message.)

3. The GAMS compiler has an unusual feature called domain checking, which verifies that each domain
element in the list is in fact a member of the appropriate set. For example, if you were to spell
'Seattle' correctly in the statement declaring Set i but misspell it as 'Seatle' in a subsequent
element-value list, the GAMS compiler would give you an error message that the element 'Seatle'
does not belong to the set i.

4. Zero is the default value for all parameters. Therefore, you only need to include the nonzero entries
in the element-value list, and these can be entered in any order.

5. A scalar is regarded as a parameter that has no domain. It can be declared and assigned with a
Scalar statement containing a degenerate list of only one value, as in the following statement from
the transportation model.

Scalar f freight in dollars per case per thousand miles /90/;

If the domain of a parameter has two or more dimensions, it can still have its values entered by the list
format. This is very useful for entering arrays that are sparse (having few non-zeros) and super-sparse
(having few distinct non-zeros).

4.11.4.2 Data Entry by Tables

Optimization practitioners have noticed for some time that many of the input data for a large model are
derived from relatively small tables of numbers. Thus, it is very useful to have the table format for data
entry. An example of a two-dimensional table (or matrix) is provided in the transportation model:

Table d(i,j) distance in thousands of miles

new-york chicago topeka

seattle 2.5 1.7 1.8

san-diego 2.5 1.8 1.4 ;

The effect of this statement is to declare the parameter d and to specify its domain as the set of ordered
pairs in the Cartesian product of i and j. The values of d are also given in this statement under the
appropriate heading. If there are blank entries in the table, they are interpreted as zeroes.

As in the list format, GAMS will perform domain checking to make sure that the row and column names
of the table are members of the appropriate sets. Formats for entering tables with more columns than
you can fit on one line and for entering tables with more than two dimensions are given in Chapter
Data Entry: Parameters, Scalars and Tables.

4.11.4.3 Data Entry by Direct Assignment

The direct assignment method of data entry differs from the list and table methods in that it divides the
tasks of parameter declaration and parameter assignment between separate statements. The transportation
model contains the following example of this method.

Parameter c(i,j) transport cost in thousands of dollars per case ;

c(i,j) = f * d(i,j) / 1000 ;

564 User's Guide

It is important to emphasize the presence of the semicolon at the end of the first line. Without it, the
GAMS compiler would attempt to interpret both lines as parts of the same statement. (GAMS would fail
to discern a valid interpretation, so it would send you an error message.)

The effects of the first statement above are to declare the parameter c, to specify the domain (i,j), and
to provide some documentary text. The second statement assigns to c(i,j) the product of the values of
the parameters f and d(i,j). Naturally, this is legal in GAMS only if you have already assigned values
to f and d(i,j) in previous statements.

The direct assignment above applies to all (i,j) pairs in the domain of c. If you wish to make assignments
for specific elements in the domain, you enclose the element names in quotes. For example,

c(’Seattle’,’New-York’) = 0.40;

is a valid GAMS assignment statement.

The same parameter can be assigned a value more than once. Each assignment statement takes effect
immediately and overrides any previous values. (In contrast, the same parameter may not be declared
more than once. This is a GAMS error check to keep you from accidentally using the same name for two
different things.)

The right-hand side of an assignment statement can contain a great variety of mathematical expressions
and built-in functions. If you are familiar with a scientific programming language such as C, you will
have no trouble in becoming comfortable writing assignment statements in GAMS. (Notice, however, that
GAMS has some efficiencies not shared by C. For example, we were able to assign c(i,j) values for all
(i,j) pairs without constructing 'loops'.)

The GAMS standard operations and supplied functions are given later. Here are some examples of
valid assignments. In all cases, assume the left-hand-side parameter has already been declared and the
right-hand-side parameters have already been assigned values in previous statements.

csquared = sqr(c);

e = m*csquared;

w = l/lamda;

eoq(i) = sqrt(2*demand(i)*ordcost(i)/holdcost(i));

t(i) = min(p(i), q(i)/r(i), log(s(i)));

euclidean(i,j) = qrt(sqr(xi(i) - xi(j) + sqr(x2(i) - x2(j)));

present(j) = future(j)*exp(-interest*time(j));

The summation and product operators to be introduced later can also be used in direct assignments.

4.11.5 Variables

The decision variables (or endogenous variables) of a GAMS-expressed model must be declared with a
Variables statement. Each variable is given a name, a domain if appropriate, and (optionally) text. The
transportation model contains the following example of a Variables statement.

Variables

x(i,j) shipment quantities in cases

z total transportation costs in thousands of dollars ;

This statement results in the declaration of a shipment variable for each (i,j) pair. (You will see in
chapter Equations, how GAMS can handle the typical real-world situation in which only a subset of the
(i,j) pairs is allowable for shipment.)

The z variable is declared without a domain because it is a scalar quantity. Every GAMS optimization
model must contain one such variable to serve as the quantity to be minimized or maximized.

Once declared, every variable must be assigned a type. A selection of permissible types are given in table
Table 3. For a full list, see section Variable Types.

Table 3 : Permissible variable types

4.11 A GAMS Tutorial by Richard E. Rosenthal 565

Variable Type Allowed Range of Variable

free(default) −∞ to +∞
positive 0 to +∞
negative −∞ to 0

binary 0 or 1

integer 0, 1, . . . , 100 (default)

The variable that serves as the quantity to be optimized must be a scalar and must be of the free type.
In our transportation example, z is kept free by default, but x(i,j) is constrained to non-negativity by
the following statement.

Positive variable x ;

Note that the domain of x should not be repeated in the type assignment. All entries in the domain
automatically have the same variable type.

Section The .lo, .l, .up, .m Database describes how to assign lower bounds, upper bounds, and initial
values to variables

4.11.6 Equations

The power of algebraic modeling languages like GAMS is most apparent in the creation of the equations
and inequalities that comprise the model under construction. This is because whenever a group of
equations or inequalities has the same algebraic structure, all the members of the group are created
simultaneously, not individually.

4.11.6.1 Equation Declaration

Equations must be declared and defined in separate statements. The format of the declaration is the
same as for other GAMS entities. First comes the keyword, Equations in this case, followed by the name,
domain and text of one or more groups of equations or inequalities being declared. Our transportation
model contains the following equation declaration:

Equations

cost define objective function

supply(i) observe supply limit at plant i

demand(j) satisfy demand at market j ;

Keep in mind that the word Equation has a broad meaning in GAMS. It encompasses both equality and
inequality relationships, and a GAMS equation with a single name can refer to one or several of these
relationships. For example, cost has no domain so it is a single equation, but supply refers to a set of
inequalities defined over the domain i.

566 User's Guide

4.11.6.2 GAMS Summation (and Product) Notation

Before going into equation definition we describe the summation notation in GAMS. Remember that
GAMS is designed for standard keyboards and line-by-line input readers, so it is not possible (nor would
it be convenient for the user) to employ the standard mathematical notation for summations.

The summation notation in GAMS can be used for simple and complex expressions. The format is
based on the idea of always thinking of a summation as an operator with two arguments: Sum(index

of summation, summand) A comma separates the two arguments, and if the first argument requires a
comma then it should be in parentheses. The second argument can be any mathematical expression
including another summation.

As a simple example, the transportation problem contains the expression

Sum(j, x(i,j))

that is equivalent to
∑
j xij .

A slightly more complex summation is used in the following example:

Sum((i,j), c(i,j)*x(i,j))

that is equivalent to
∑
i

∑
j cijxij .

The last expression could also have been written as a nested summation as follows:

Sum(i, Sum(j, c(i,j)*x(i,j)))

In section Conditional Indexed Operations, we describe how to use the dollar operator to impose restric-
tions on the summation operator so that only the elements of i and j that satisfy specified conditions are
included in the summation.

Products are defined in GAMS using exactly the same format as summations, replacing Sum by Prod. For
example,

prod(j, x(i, j))

is equivalent to: Πjxij .

Summation and product operators may be used in direct assignment statements for parameters. For
example,

scalar totsupply total supply over all plants;

totsupply = sum(i, a(i));

4.11 A GAMS Tutorial by Richard E. Rosenthal 567

4.11.6.3 Equation Definition

Equation definitions are the most complex statements in GAMS in terms of their variety. The components
of an equation definition are, in order:

1. The name of the equation being defined

2. The domain

3. Domain restriction condition (optional)

4. The symbol '..'

5. Left-hand side expression

6. Relational operator: =l=, =e=, =g= or others. For a complete list, see Table Equation Types.

7. Right-hand side expression

The transportation example contains three of these statements.

cost .. z =e= sum((i,j), c(i,j)*x(i,j)) ;

supply(i) .. sum(j, x(i,j)) =l= a(i) ;

demand(j) .. sum(i, x(i,j)) =g= b(j) ;

Here are some points to remember.

• The power to create multiple equations with a single GAMS statement is controlled by the domain.
For example, the definition for the demand constraint will result in the creation of one constraint for
each element of the domain j, as shown in the following excerpt from the GAMS output.

demand(new-york)..x(seattle,new-york) + x(san-diego,new-york)=g=325 ;

demand(chicago).. x(seattle,chicago) + x(san-diego,chicago) =g=300 ;

demand(topeka).. x(seattle,topeka) + x(san-diego,topeka) =g=275 ;

• The key idea here is that the definition of the demand constraints is exactly the same whether we
are solving the toy-sized example above or a 20,000-node real-world problem. In either case, the
user enters just one generic equation algebraically, and GAMS creates the specific equations that are
appropriate for the model instance at hand. (Using some other optimization packages, something
like the extract above would be part of the input, not the output.)

• In many real-world problems, some of the members of an equation domain need to be omitted or
differentiated from the pattern of the others because of an exception of some kind. GAMS can
readily accommodate this loss of structure using a powerful feature known as the dollar or 'such-that'
operator, which is not illustrated here. The domain restriction feature can be absolutely essential
for keeping the size of a real-world model within the range of solvability.

• The relational operators have the following meanings:

=l= less than or equal to
=g= greater than or equal to
=e= equal to

• It is important to understand the difference between the symbols '=' and '=e='. The '=' symbol is
used only in direct assignments, and the '=e=' symbol is used only in equation definitions. These
two contexts are very different. A direct assignment gives a desired value to a parameter before
the solver is called. An equation definition also describes a desired relationship, but it cannot be
satisfied until after the solver is called. It follows that equation definitions must contain variables
and direct assignments must not.

568 User's Guide

• Variables can appear on the left or right-hand side of an equation or both. The same variable can
appear in an equation more than once. The GAMS processor will automatically convert the equation
to its equivalent standard form (variables on the left, no duplicate appearances) before calling the
solver.

• An equation definition may appear anywhere in the GAMS input, provided the equation and all
variables and parameters to which it refers were previously declared. (Note that it is permissible
for a parameter appearing in the equation to be assigned or reassigned a value after the definition.
This is useful when doing multiple model runs with one GAMS input.) The equations need not be
defined in the same order in which they were declared.

4.11.7 Objective Function

This is just a reminder that GAMS has no explicit entity called the objective function. To specify the
function to be optimized, you must create a variable, which is free (unconstrained in sign) and scalar-valued
(has no domain) and which appears in an equation definition that equates it to the objective function.

4.11.8 Model and Solve Statements

The word model has a very precise meaning in GAMS. It is simply a collection of equations. Like other
GAMS entities, it must be given a name in a declaration. The format of the declaration is the keyword
model followed by the name of the model, followed by a list of equation names enclosed in slashes. If all
previously defined equations are to be included, you can enter /all/ in place of the explicit list. In our
example, there is one model statement:

model transport /all/ ;

This statement may seem superfluous, but it is useful to advanced users who may create several models in
one GAMS run. If we were to use the explicit list rather than the shortcut /all/, the statement would be
written as

model transport / cost, supply, demand / ;

The domains are omitted from the list since they are not part of the equation name. The list option
is used when only a subset of the existing equations comprises a specific model (or sub-model) being
generated.

Once a model has been declared and assigned equations, we are ready to call the solver. This is done with
a solve statement, which in our example is written as

solve transport using lp minimizing z ;

The format of the solve statement is as follows:

1. The key word solve

2. The name of the model to be solved

3. The key word using

4. An available solution procedure. A complete list is given below. For further details, see section
Classification of Models.

4.11 A GAMS Tutorial by Richard E. Rosenthal 569

Solution Description

lp for linear programming

qcp for quadratic constraint programming

nlp for nonlinear programming

dnlp for nonlinear programming with discontinuous derivatives

mip for mixed integer programming

rmip for relaxed mixed integer programming

miqcp for mixed integer quadratic constraint programming

rmiqcp for relaxed mixed integer quadratic constraint programming

minlp for mixed integer nonlinear programming

rminlp for relaxed mixed integer nonlinear programming

mcp for mixed complementarity problems

mpec for mathematical programs with equilibrium constraints

rmpec for relaxed mathematical program with equilibrium constraints

cns for constrained nonlinear systems

emp for extended mathematical programming

5. The keyword 'minimizing' or 'maximizing'

6. The name of the variable to be optimized

4.11.9 Display Statements

The solve statement will cause several things to happen when executed. The specific instance of interest
of the model will be generated, the appropriate data structures for inputting this problem to the solver
will be created, the solver will be invoked, and the output from the solver will be printed to a file. To get
the optimal values of the primal and/or dual variables, we can look at the solver output, or, if we wish,
we can request a display of these results from GAMS. Our example contains the following statement:

display x.l, x.m ;

that calls for a printout of the final levels, x.l, and marginal (or reduced costs), x.m, of the shipment
variables, x(i,j). GAMS will automatically format this printout in to dimensional tables with appropriate
headings.

4.11.10 The .lo, .l, .up, .m Database

GAMS was designed with a small database system in which records are maintained for the variables and
equations. The most important fields in each record are:

.lo lower bound

.l level or primal value

.up upper bound

.m marginal or dual value

The format for referencing these quantities is the variable or equation's name followed by the field's name,
followed (if necessary) by the domain (or an element of the domain).

GAMS allows the user complete read-and write-access to the database. This may not seem remarkable to
you now, but it can become a greatly appreciated feature in advanced use. Some examples of use of the
database follow.

570 User's Guide

4.11.10.1 Assignment of Variable Bounds and/or Initial Values

The lower and upper bounds of a variable are set automatically according to the variable's type (free,
positive, negative, binary, or integer), but these bounds can be overwritten by the GAMS user.
Some examples follow.

x.up(i,j) = capacity(i,j) ;

x.lo(i,j) = 10.0 ;

x.up(’seattle’,’new-york’) = 1.2*capacity(’seattle’,’new-york’) ;

It is assumed in the first and third examples that capacity(i,j) is a parameter that was previously
declared and assigned values. These statements must appear after the variable declaration and before the
Solve statement. All the mathematical expressions available for direct assignments are usable on the
right-hand side.

In nonlinear programming it is very important for the modeler to help the solver by specifying as narrow a
range as possible between lower and upper bound. It is also very helpful to specify an initial solution from
which the solver can start searching for the optimum. For example, in a constrained inventory model, the
variables are quantity(i), and it is known that the optimal solution to the unconstrained version of the
problem is a parameter called eoq(i). As a guess for the optimum of the constrained problem we enter

quantity.l(i) = 0.5*eoq(i) ;

(The default initial level is zero unless zero is not within the bounded range, in which case it is the bound
closest to zero.)

It is important to understand that the .lo and .up fields are entirely under the control of the GAMS user.
The .l and .m fields, in contrast, can be initialized by the user but are then controlled by the solver.

4.11.10.2 Transformation and Display of Optimal Values

(This section may be skipped on first reading if desired.)

After the optimizer is called via the solve statement, the values it computes for the primal and dual
variables are placed in the database in the .l and .m fields. We can then read these results and transform
and display them with GAMS statements.

For example, in the transportation problem, suppose we wish to know the percentage of each market's
demand that is filled by each plant. After the solve statement, we would enter

parameter pctx(i,j) perc of market j’s demand filled by plant i;

pctx(i,j) = 100.0*x.l(i,j)/b(j) ;

display pctx ;

Appending these commands to the original transportation problem input results in the following output:

pctx percent of market j’s demand filled by plant I

new-york chicago topeka

seattle 15.385 100.000

san-diego 84.615 100.000

4.11 A GAMS Tutorial by Richard E. Rosenthal 571

For an example involving marginal, we briefly consider the ratio constraints that commonly appear in
blending and refining problems. These linear programming models are concerned with determining the
optimal amount of each of several available raw materials to put into each of several desired finished
products. Let y(i,j) be the variable for the number of tons of raw material i put into finished product j.
Suppose the ratio constraint is that no product can consist of more than 25 percent of one ingredient,
that is,

y(i,j)/q(j) =l= .25 ;

for all i, j. To keep the model linear, the constraint is written as

ratio(i,j).. y(i,j) - .25*q(j) =l= 0.0 ;

rather than explicitly as a ratio.

The problem here is that ratio.m(i,j), the marginal value associated with the linear form of the constraint,
has no intrinsic meaning. At optimality, it tells us by at most how much we can benefit from relaxing the
linear constraint to

y(i,j) - .25*q(j) =l= 1.0 ;

Unfortunately, this relaxed constraint has no realistic significance. The constraint we are interested in
relaxing (or tightening) is the nonlinear form of the ration constraint. For example, we would like to know
the marginal benefit arising from changing the ratio constraint to

y(i,j)/q(j) =l= .26 ;

We can in fact obtain the desired marginals by entering the following transformation on the undesired
marginals:

parameter amr(i,j) appropriate marginal for ratio constraint ;

amr(i,j) = ratio.m(i,j)*0.01*q.l(j) ;

display amr ;

Notice that the assignment statement for amr accesses both .m and .l records from the database. The
idea behind the transformation is to notice that

y(i,j)/q(j) =l= .26 ;

is equivalent to

y(i,j) - .25*q(j) =l= 0.01*q(j) ;

572 User's Guide

4.11.11 GAMS Output

The default output of a GAMS run is extensive and informative. For a complete discussion, see chapter
GAMS Output. This tutorial discusses output partially as follows:

• Echo Print

• Reference Maps

• Status Reports

• Error Messages

• Model Statistics

• Solution Reports

A great deal of unnecessary anxiety has been caused by textbooks and users' manuals that give the reader
the false impression that flawless use of advanced software should be easy for anyone with a positive pulse
rate. GAMS is designed with the understanding that even the most experienced users will make errors.
GAMS attempts to catch the errors as soon as possible and to minimize their consequences.

4.11.11.1 Echo Prints

Whether or not errors prevent your optimization problem from being solved, the first section of output
from a GAMS run is an echo, or copy, of your input file. For the sake of future reference, GAMS puts line
numbers on the left-hand side of the echo. For our transportation example, which luckily contained no
errors, the echo print is as follows:

2 Sets

3 i canning plants / seattle, san-diego /

4 j markets / new-york, chicago, topeka / ;

5

6 Parameters

7

8 a(i) capacity of plant i in cases

9 / seattle 350

10 san-diego 600 /

11

12 b(j) demand at market j in cases

13 / new-york 325

14 chicago 300

15 topeka 275 / ;

16

17 Table d(i,j) distance in thousands of miles

18 new-york chicago topeka

19 seattle 2.5 1.7 1.8

20 san-diego 2.5 1.8 1.4 ;

21

22 Scalar f freight in dollars per case per thousand miles /90/ ;

23

24 Parameter c(i,j) transport cost in thousands of dollars per case ;

25

26 c(i,j) = f * d(i,j) / 1000 ;

27

28 Variables

4.11 A GAMS Tutorial by Richard E. Rosenthal 573

29 x(i,j) shipment quantities in cases

30 z total transportation costs in thousands of dollars ;

31

32 Positive Variable x ;

33

34 Equations

35 cost define objective function

36 supply(i) observe supply limit at plant i

37 demand(j) satisfy demand at market j ;

38

39 cost .. z =e= sum((i,j), c(i,j)*x(i,j)) ;

40

41 supply(i) .. sum(j, x(i,j)) =l= a(i) ;

42

43 demand(j) .. sum(i, x(i,j)) =g= b(j) ;

44

45 Model transport /all/ ;

46

47 Solve transport using lp minimizing z ;

48

49 Display x.l, x.m ;

50

The reason this echo print starts with line number 2 rather than line number 1 is because the input file
contains a dollar-print-control statement. This type of instruction controls the output printing, but since
it has nothing to do with defining the optimization model, it is omitted from the echo. The dollar print
controls must start in column 1.

$title a transportation model

The $title statement causes the subsequent text to be printed at the top of each page of output. Other
available instructions are given in chapter Dollar Control Options.

4.11.11.2 Error Messages

When the GAMS compiler encounters an error in the input file, it inserts a coded error message inside the
echo print on the line immediately following the scene of the offense. These messages always start with
∗∗∗∗ and contain a '$' directly below the point at which the compiler thinks the error occurred. The $ is
followed by a numerical error code, which is explained after the echo print. Several examples follow.

Example 1 : Entering the statement

set q quarterly time periods / spring, sos1, fall, wtr / ;

results in the echo

1 set q quarterly time periods / spring, sos1, fall, wtr / ;

**** $160

In this case, the GAMS compiler indicates that something is wrong with the set element sum.
At the bottom of the echo print, we see the interpretation of error code 160:

Error Message

160 Unique element expected....

574 User's Guide

The problem is that sos1 is a reserved word, which can not be used as identifiers in general.
The complete list of reserved words is shown in this chapter. Thus our set element must have
a unique name like 'summer'. This is a common beginner's error.

Example 2 : Another common error is the omission of a semicolon preceding a direct assignment or
equation definition. In our transportation example, suppose we omit the semicolon prior to the assignment
of c(i,j), as follows.

Parameter c(i,j) transport cost in 1000s of dollars per case

c(i,j) = f * d(i,j) / 1000 ;

Here is the resulting output.

16 Parameter c(i,j) transport cost in 1000s of dollars per case

17 c(i,j) = f * d(i,j)/1000

**** $97 $195,96,409

Error Message

96 Blank needed between identifier and text

(-or- illegal character in identifier)

(-or- check for missing ’;’ on previous line)

97 Explanatory text can not start with ’$’, ’=’, or ’..’

(-or- check for missing ’;’ on previous line)

195 Symbol redefined with a different type

409 Unrecognizable item - skip to find a new statement

looking for a ’;’ or a key word to get started again

It is not uncommon for one little offense like our missing semicolon to generate five intimidating
error messages. The lesson here is: concentrate on fixing the first error and ignore the other!
The first error detected (in line 17), code 97, indicate that GAMS thinks the symbols in
line 17 are a continuation of the documentary text at the end of line 16 rather than a direct
assignment as we intended. The error message also appropriately advises us to check the
preceding line for a missing semicolon.

Unfortunately, you cannot always expect error messages to be so accurate in their advice.
The compiler cannot read your mind. It will at times fail to comprehend your intentions, so
learn to detect the causes of errors by picking up the clues that abound in the GAMS output.
For example, the missing semicolon could have been detected by looking up the c entry in
the cross-reference list (to be explained in the next section) and noticing that it was never
assigned.

SYMBOL TYPE REFERENCES

c PARAM declared 15 ref 17

Example 3 : Many errors are caused merely by spelling mistakes and are caught before they can be
damaging. For example, with 'Seattle' spelled in the table differently from the way it was introduced in
the set declaration, we get the following error message.

4 sets

5 i canning plants /seattle, san-diego /

6 j markets /new-york, chicago, topeka / ;

7

8 table d(i,j) distance in thousand of miles

9 new-york chicago topeka

10 seatle 2.5 1.7 1.8

**** $170

11 san-diego 2.5 1.8 1.4 ;

Error Message

170 Domain violation for element

4.11 A GAMS Tutorial by Richard E. Rosenthal 575

Example 4 : Similarly, if we mistakenly enter dem(j) instead of b(j) as the right-hand side of the
demand constraint, the result is

45 demand(j) .. sum(i, x(i,j)) =g= dem(j) ;

**** $140

Error Message

140 Unknown symbol

Example 5 : The next example is a mathematical error, which is sometimes committed by novice
modelers and which GAMS is adept at catching. The following is mathematically inconsistent and, hence,
is not an interpretable statement.

For all i,
∑
i

xij = 100

There are two errors in this equation, both having to do with the co ntrol of indices. Index i
is over-controlled and index j is under-controlled.

You should see that index i is getting conflicting orders. By appearing in the quantifier 'for
all i', it is supposed to remain fixed for each instance of the equation. Yet, by appearing as an
index of summation, it is supposed to vary. It can't do both. On the other hand, index j is
not controlled in any way, so we have no way of knowing which of its possible values to use.

If we enter this meaningless equation into GAMS, both errors are correctly diagnosed.

meaninglss(i) .. sum(i, x(i,j)) =e= 100 ;

**** $125 $149

Error Messages

125 Set is under control already [This refers to set i.]

149 Uncontrolled set entered as constant [This refers to set j.]

More information about error reporting is given in section Error Reporting. Comprehensive error detection
and well-designed error messages are a big help in getting models implemented quickly and correctly.

4.11.11.3 Reference Maps

The next section of output, which is the last if errors have been detected, is a pair of reference maps that
contain summaries and analyses of the input file for the purposes of debugging and documentation.

The first reference map is a cross-reference map such as one finds in most modern compilers. It is an
alphabetical, cross-referenced list of all the entities (sets, parameters, variables, and equations) of the
model. The list shows the type of each entity and a coded reference for each appearance of the entity in
the input. The cross-reference map for our transportation example is as follows (we do not display all
tables). To turn the cross-reference map on, please add the line

$onSymXRef

at the beginning of your model right after the $title statement.

576 User's Guide

SYMBOL TYPE REFERENCES

a PARAM declared 9 defined 10 ref 42

b PARAM declared 13 defined 14 ref 44

c PARAM declared 25 assigned 27 ref 40

cost EQU declared 36 defined 40 impl-asn 48 ref 46

d PARAM declared 18 defined 18 ref 27

demand EQU declared 38 defined 44 impl-asn 48 ref 46

f PARAM declared 23 defined 23 ref 27

i SET declared 4 defined 4 ref 9 18 25 27 30 37 2*40 2*42 44 control 27 40 42 44

j SET declared 5 defined 5 ref 13 18 25 27 30 38 2*40 42 2*44 control 27 40 42 44

supply EQU declared 37 defined 42 impl-asn 48 ref 46

transport MODEL declared 46 defined 46 impl-asn 48 ref 48

x VAR declared 30 impl-asn 48 ref 33 40 42 44 2*50

z VAR declared 31 impl-asn 48 ref 40 48

For example, the cross-reference list tells us that the symbol a is a parameter that was declared in line
9, defined (assigned value) in line 10, and referenced in line 42. The symbol i has a more complicated
entry in the cross-reference list. It is shown to be a set that was declared and defined in line 4. It is
referenced once in lines 9, 18, 25, 27, 30, 37, 44 and referenced twice in lines 40 and 44. Set i is also used
as a controlling index in a summation, equation definition or direct parameter assignment in lines 27, 40,
42 and 44.

For the GAMS novice, the detailed analysis of the cross-reference list may not be important. Perhaps the
most likely benefit he or she will get from the reference maps will be the discovery of an unwanted entity
that mistakenly entered the model owing to a punctuation or syntax error.

The second part of the reference map is a list of model entities grouped by type and listed with their
associated documentary text. For example, this list is as follows.

SETS

i canning plants

j markets

PARAMETERS

a capacity of plant i in cases

b demand at market j in cases

c transport cost in thousands of dollars per case

d distance in thousands of miles

f freight in dollars per case per thousand miles

VARIABLES

x shipment quantities in cases

z total transportation costs in thousands of dollars

EQUATIONS

cost define objective function

demand satisfy demand at market j

supply observe supply limit at plant i

MODELS

transport

4.11 A GAMS Tutorial by Richard E. Rosenthal 577

4.11.11.4 Equation Listings

Once you succeed in building an input file devoid of compilation errors, GAMS is able to generate a model.
The question remains, and only you can answer it, does GAMS generate the model you intended?

The equation listing is probably the best device for studying this extremely important question. A product
of the solve command, the equation listing shows the specific instance of the model that is created when
the current values of the sets and parameters are plugged into the general algebraic form of the model.
For example, the generic demand constraint given in the input file for the transportation model is

demand(j) .. sum(i, x(i,j)) =g= b(j) ;

while the equation listing of specific constraints is

--------demand =g= satisfy demand at market j

demand(new-york).. x(seattle, new-york) +x(san-diego, new-york) =g= 325 ;

demand(chicago).. x(seattle, chicago) +x(san-diego, chicago) =g= 300 ;

demand(topeka).. x(seattle, topeka) +x(san-diego, topeka) =g= 275 ;

The default output is a maximum of three specific equations for each generic equation. To change the
default, insert an input statement prior to the solve statement:

option limrow = r ;

where r is the desired number.

The default output also contains a section called the column listing, analogous to the equation listing,
which shows the coefficients of three specific variables for each generic variable. This listing would be
particularly useful for verifying a GAMS model that was previously implemented in MPS format. To
change the default number of specific column printouts per generic variable, the above command can be
extended:

option limrow = r, limcol = c ;

where c is the desired number of columns. (Setting limrow and limcol to 0 is a good way to reduce the
size of your lst file after your model has been debugged.) In nonlinear models, the GAMS equation listing
shows first-order Taylor approximations of the nonlinear equations. The approximations are taken at the
starting values of the variables.

4.11.11.5 Model Statistics

The last section of output that GAMS produces before invoking the solver is a group of statistics about
the model's size, as shown below for the transportation example.

MODEL STATISTICS

BLOCKS OF EQUATIONS 3 SINGLE EQUATIONS 6

BLOCKS OF VARIABLES 2 SINGLE VARIABLES 7

NON ZERO ELEMENTS 19

The BLOCK counts refer to the number of generic equations and variables. The SINGLE counts refer to
individual rows and columns in the specific model instance being generated. For nonlinear models, some
other statistics are given to describe the degree of non-linearity in the problem.

578 User's Guide

4.11.11.6 Status Reports

After the solver executes, GAMS prints out a brief Solve Summary whose two most important entries are
SOLVER STATUS and the MODEL STATUS. For our transportation problem the solve summary is as follows:

S O L V E S U M M A R Y

MODEL TRANSPORT OBJECTIVE z

TYPE LP DIRECTION MINIMIZE

SOLVER CPLEX FROM LINE 49

**** SOLVER STATUS 1 Normal Completion

**** MODEL STATUS 1 Optimal

**** OBJECTIVE VALUE 153.6750

RESOURCE USAGE, LIMIT 0.031 1000.000

ITERATION COUNT, LIMIT 4 2000000000

The status reports are preceded by the same ∗∗∗∗ string as an error message, so you should probably
develop the habit of searching for all occurrences of this string whenever you look at an output file
for the first time. The desired solver status is 1 NORMAL COMPLETION, but there are other possibilities,
documented in section The Solve Summary, which relate to various types of errors and mishaps.

There are eleven possible model statuses, including the usual linear programming termination states
(1 Optimal, 3 Unbounded, 4 Infeasible), and others relating to nonlinear and integer programming.
In nonlinear programming, the status to look for is 2 Locally Optimal. The most the software can
guarantee for nonlinear programming is a local optimum. The user is responsible for analyzing the
convexity of the problem to determine whether local optimality is sufficient for global optimality. In
integer programming, the status to look for is 8 Integer Solution. This means that a feasible integer
solution has been found. More detail follows as to whether the solution meets the relative and absolute
optimality tolerances that the user specifies.

4.11.11.7 Solution Reports

If the solver status and model status are acceptable, then you will be interested in examining the results
of the optimization. The results are first presented in as standard mathematical programming output
format, with the added feature that rows and columns are grouped and labeled according to names that
are appropriate for the specific model just solved. In this format, there is a line of printout for each
row and column giving the lower limit, level, upper limit, and marginal. Generic equation block and the
column output group the row output by generic variable block. Set element names are embedded in the
output for easy reading. In the transportation example, the solver outputs for supply(i), demand(j),
and x(i,j) are as follows:

---- EQU supply observe supply limit at plant i

LOWER LEVEL UPPER MARGINAL

seattle -INF 350.000 350.000 EPS

san-diego -INF 550.000 600.000 .

---- EQU demand satisfy demand at market j

LOWER LEVEL UPPER MARGINAL

4.11 A GAMS Tutorial by Richard E. Rosenthal 579

new-york 325.000 325.000 +INF 0.225

chicago 300.000 300.000 +INF 0.153

topeka 275.000 275.000 +INF 0.126

---- VAR x shipment quantities in cases

LOWER LEVEL UPPER MARGINAL

seattle .new-york . 50.000 +INF .

seattle .chicago . 300.000 +INF .

seattle .topeka . . +INF 0.036

san-diego.new-york . 275.000 +INF .

san-diego.chicago . . +INF 0.009

san-diego.topeka . 275.000 +INF .

The single dots '.' in the output represent zeroes. The entry EPS, which stands for epsilon, mean very
small but nonzero. In this case, EPS indicates degeneracy. (The slack variable for the Seattle supply
constraint is in the basis at zero level. The marginal is marked with EPS rather than zero to facilitate
restarting the optimizer from the old basis.)

If the solvers results contain either infeasibilities or marginal costs of the wrong sign, then the offending
entries are marked with INFES or NOPT, respectively. If the problem terminates unbounded, then the rows
and columns corresponding to extreme rays are marked UNBND.

At the end of the solvers solution report is a very important report summary, which gives a tally of the
total number of non-optimal, infeasible, and unbounded rows and columns. For our example, the report
summary shows all zero tallies as desired.

**** REPORT SUMMARY : 0 NONOPT

0 INFEASIBLE

0 UNBOUNDED

After the solver's report is written, control is returned from the solver back to GAMS. All the levels and
marginals obtained by the solver are entered into the GAMS database in the .l and .m fields. These
values can then be transformed and displayed in any desired report. As noted earlier, the user merely lists
the quantities to be displayed, and GAMS automatically formats and labels an appropriate array. For
example, the input statement.

display x.l, x.m ;

results in the following output.

---- 50 VARIABLE x.L shipment quantities in cases

new-york chicago topeka

seattle 50.000 300.000

san-diego 275.000 275.000

---- 50 VARIABLE x.M shipment quantities in cases

chicago topeka

seattle 0.036

san-diego 0.009

As seen in reference maps, equation listings, solution reports, and optional displays, GAMS saves the
documentary text and 'parrots' it back throughout the output to help keep the model well documented.

580 User's Guide

4.11.12 Summary

This tutorial has demonstrated several of the design features of GAMS that enable you to build practical
optimization models quickly and effectively. The following discussion summarizes the advantages of using
an algebraic modeling language such as GAMS versus a matrix generator or conversational solver.

• By using an algebra-based notation, you can describe an optimization model to a computer nearly
as easily as you can describe it to another mathematically trained person.

• Because an algebraic description of a problem has generality, most of the statements in a GAMS
model are reusable when new instances of the same or related problems arise. This is especially
important in environments where models are constantly changing.

• You save time and reduce generation errors by creating whole sets of closely related constraints in
one statement.

• You can save time and reduce input errors by providing formulae for calculating the data rather
than entering them explicitly.

• The model is self-documenting. Since the tasks of model development and model documentation
can be done simultaneously, the modeler is much more likely to be conscientious about keeping the
documentation accurate and up to date.

• The output of GAMS is easy to read and use. The solution report from the solver is automatically
reformatted so that related equations and variables are grouped together and appropriately labeled.
Also, the display command allows you to modify and tabulate results very easily.

• If you are teaching or learning modeling, you can benefit from the insistence of the GAMS compiler
that every equation be mathematically consistent. Even if you are an experienced modeler, the
hundreds of ways in which errors are detected should greatly reduce development time.

• By using the dollar operator and other advanced features not covered in this tutorial, one can
efficiently implement large-scale models. Specific applications of the dollar operator include:

1. It can enforce logical restrictions on the allowable combinations of indices for the variables
and equations to be included in the model. You can thereby screen out unnecessary rows and
columns and keep the size of the problem within the range of solvability.

2. It can be used to build complex summations and products, which can then be used in equations
or customized reports.

3. It can be used for issuing warning messages or for terminating prematurely conditioned upon
context-specific data edits.

4.12 Quick Start Tutorial

GAMS (the General Algebraic Modeling System) is a high-level modeling system for mathematical
programming problems. This tutorial is aimed at modelers who are new to GAMS and are looking for a
quick introduction to the core features of GAMS. Note that the text contains many links to the GAMS
User's Guide for further exploration. Observe that this tutorial is adapted from the Quick Start Tutorial
from Bruce McCarl. Another introductory text is the tutorial A GAMS Tutorial by Richard E. Rosenthal.

4.12 Quick Start Tutorial 581

4.12.1 Three Basic Models

Most modelers who are interested in GAMS have one (or more) of the following backgrounds:

• They wish to solve constrained optimization problems with objective functions.

• They are looking for a system to solve general equilibrium problems that are arise in various areas
of economics.

• They wish to solve nonlinear systems of equations that arise in engineering.

GAMS is well equipped to model and solve all three types of problems. We will start by introducing
examples for all three areas and the discussions that will follow will refer to these three basic examples.

4.12.1.1 First Example: Solving a Linear Programming Problem (LP)

The simplest constrained optimization problem is an LP. Assume we wish to solve the following LP that
represents a simple farm model where profit is maximized:

max 109Xcorn + 90Xwheat + 115Xcotton

s.t. Xcorn + Xwheat + Xcotton ≤ 100 (land)
6Xcorn + 4Xwheat + 8Xcotton ≤ 500 (labor)

Xcorn ≥ 0 (nonnegativity)
Xwheat ≥ 0 (nonnegativity)
Xcotton ≥ 0 (nonnegativity)

Note that there are three decision variables: Xcorn denotes the land assigned to growing corn, Xwheat

is the land assigned to growing wheat and Xcotton represents the land where cotton is grown. In the
first line the total profit is expressed as a function of the land allotted to the three crops, the multipliers
represent the expected profit per acre depending of the type of crop. The first inequality imposes a limit
on the available land, the second inequality imposes a limit on the available labor and the final three lines
restrict the decision variables to nonnegative values.

This problem may be expressed in GAMS as follows:

Positive Variables Xcorn, Xwheat, Xcotton;

Variables Z;

Equations obj, land, labor;

obj.. Z =e= 109 * Xcorn + 90 * Xwheat + 115 * Xcotton;

land.. Xcorn + Xwheat + Xcotton =l= 100;

labor.. 6 * Xcorn + 4 * Xwheat + 8 * Xcotton =l= 500;

Model farmproblem / obj, land, labor /;

solve farmproblem using LP maximizing Z;

We will analyze this formulation and discuss every part of it after introducing the other two basic examples.

582 User's Guide

4.12.1.2 Second Example: Solving for an Economic Equilibrium

The simplest general equilibrium model is the single good, single market problem. Assume we wish to
solve the following equilibrium problem:

Demand Price: P ≥ Pd = 6− 0.3Qd
Supply Price: P ≤ Ps = 1 + 0.2Qs
Quantity Equilibrium: Qs ≥ Qd
Nonnegativity: P ≥ 0

Qs ≥ 0
Qd ≥ 0

Here P is the market clearing price, Pd is the demand curve, Qd denotes the quantity demanded, Ps the
supply curve and Qs the quantity supplied. Note that this is a problem in 3 equations and 3 variables.
The variables are P , Qd, and Qs. Note that Pd and Ps are not variables, since they can be computed
from the equality relations.

Usually all equality constraints are used for such a set up. However, we will use a more general setup,
because it relaxes some assumptions and more accurately depicts a model ready to be implemented in
GAMS. In particular, we permit the case where the supply curve price intercept may be above the demand
curve price intercept and thus the market may clear with a nonzero price but a zero quantity. In addition,
we allow the market price to be above the demand curve price and below the supply curve price. We also
impose some additional conditions based on Walras' Law to ensure a proper solution in such cases.

Qd(P − Pd) = 0 or Qd(Pd − (6− 0.3Qd)) = 0
Qs(P − Ps) = 0 or Qs(Ps − (1 + 0.2Qs)) = 0
P (Qs −Qd) = 0

Here the quantity demanded is nonzero only if the market clearing price equals the demand curve price,
the quantity supplied is nonzero only if the market clearing price equals the supply curve price and the
market clearing price is only nonzero if Qs = Qd.

The simplest GAMS formulation is given below. Note that we needed to rearrange the equation Psupply

in order to achieve a greater than inequality, thus we accomodated the requirements of the solver PATH.

Positive Variables P, Qd , Qs;

Equations Pdemand, Psupply, Equilibrium;

Pdemand.. P =g= 6 - 0.3*Qd;

Psupply.. (1 + 0.2*Qs) =g= P;

Equilibrium.. Qs =g= Qd;

Model problem / Pdemand.Qd, Psupply.Qs, Equilibrium.P /;

solve problem using MCP;

We will analyze this formulation and discuss every component of it after introducing the third example.

4.12 Quick Start Tutorial 583

4.12.1.3 Third Example: Solving a Nonlinear Equation System

Engineers often wish to solve a nonlinear system of equations. Examples include chemical equilibria or
problems in the context of oil refining. Many other such problems of this type exist. The problem that
follows is adapted from the paper Wall, T W, Greening, D, and Woolsey , R E D, ”Solving Complex
Chemical Equilibria Using a Geometric-Programming Based Technique” Operations Research 34, 3 (1987).

ba * so4 = 1

baoh / ba / oh = 4.8

hso4 / so4 / h = 0 .98

h * oh = 1

ba + 1e-7*baoh = so4 + 1e-5*hso4

2 * ba + 1e-7*baoh + 1e-2*h = 2 * so4 + 1e-5*hso4 + 1e-2*oh

Note that this is a nonlinear system of equations with the variables ba, so4, baoh, oh, hso4 and h. The
following formulation in GAMS is from the model [WALL] in the GAMS model library.

Variables ba, so4, baoh, oh, hso4, h ;

Equations r1, r2, r3, r4, b1, b2 ;

r1.. ba * so4 =e= 1 ;

r2.. baoh / ba / oh =e= 4.8 ;

r3.. hso4 / so4 / h =e= .98 ;

r4.. h * oh =e= 1 ;

b1.. ba + 1e-7*baoh =e= so4 + 1e-5*hso4 ;

b2.. 2 * ba + 1e-7*baoh + 1e-2*h =e= 2 * so4 + 1e-5*hso4 + 1e-2*oh ;

Model wall / all / ;

ba.l=1; so4.l=1; baoh.l=1; oh.l=1; hso4.l=1; h.l=1;

solve wall using nlp minimizing ba;

4.12.2 Components of the Example Models

Now that we have our three basic models in place, we will analyze them and identify and discuss their
components, including variables, equations, model definitions, solve statements and starting points.

4.12.2.1 Variables in the Example Models

Variables in GAMS have to be declared as variables with a variable statement. The variable statements
in the examples above are repeated below:

• First example:

584 User's Guide

Positive Variables Xcorn, Xwheat, Xcotton;

Variables Z;

• Second example:

Positive Variables P, Qd , Qs;

• Third example:

Variables ba, so4, baoh, oh, hso4, h ;

Note that variable(s) is a keyword in GAMS. Positive is another keyword, it serves as a modifier
to the keyword variable and has the effect that the variables that follow may take only nonnegative
values. Variables that are declared with the keyword variable without a modifier are unresticted in
sign. For more details on variable declarations and variable types, see sections Variable Declarations and
Variable Types respectively.

Observe that GAMS is not case sensitive and allows a line feed to be used instead of a comma. Thus, the
following three variable declarations are all valid and have the same effect:

POSITIVE VARIABLES Xcorn, Xwheat, Xcotton;

Positive Variables xcorn,

xwheat,

xcotton;

positive variables Xcorn

Xwheat , Xcotton;

In the GAMS formulation of the first example, we have introduced the variable Z in addition to the three
variables that featured in the mathematical formulation. Note that GAMS requires the optimization
model

Maximize cx

to have the following form:

Maximize z

z = cx

Here z is a variable, also called objective variable. Observe that it is the objective variable that is
maximized, not the function cx. The name of the objective variable may be chosen freely by the user, like
any other variable name. The objective variable is a free variable, which means that it has no bounds.
Hence, it each optimization problem there must always be at least one free variable.

Given the requirement of an objective variable in an optimization problem, we need to declare a new
free variable and introduce an equation for it. In our first example we declared Z as a free variable, then
we declared and specified the equation obj setting Z equal to the objective function expression and we
instructed the solver to maximize Z. The relevant lines of code from the first example follow:

Variables Z;

Equation obj, land , labor;

obj.. Z =e= 109 * Xcorn + 90 * Xwheat + 115 * Xcotton;

solve farmproblem using LP maximizing Z;

Note

In some optimization problems users do not need to introduce a new variable to serve as an objective
variable, but a free variable that already features in the model may be used. For example, in the
second example above, ba is a free variable that is used as objective variable, since the model type
NLP requires an objective variable. We will discuss this further below.

4.12 Quick Start Tutorial 585

4.12.2.2 Equations in the Example Models

Each equation in a model must first be declared with a equation declaration statement and then defined
with a equation definition statement. We repeat the respective statement from the three examples below:

• First example:

Equations obj, land, labor;

obj.. Z =e= 109 * Xcorn + 90 * Xwheat + 115 * Xcotton;

land.. Xcorn + Xwheat + Xcotton =l= 100;

labor.. 6 * Xcorn + 4 * Xwheat + 8 * Xcotton =l= 500;

• Second example:

Equations Pdemand, Psupply, Equilibrium;

Pdemand.. P =g= 6 - 0.3*Qd;

Psupply.. (1 + 0.2*Qs) =g= P;

Equilibrium.. Qs =g= Qd;

• Third example:

Equations r1, r2, r3, r4, b1, b2 ;

r1.. ba * so4 =e= 1 ;

r2.. baoh / ba / oh =e= 4.8 ;

r3.. hso4 / so4 / h =e= .98 ;

r4.. h * oh =e= 1 ;

b1.. ba + 1e-7*baoh =e= so4 + 1e-5*hso4 ;

b2.. 2 * ba + 1e-7*baoh + 1e-2*h =e= 2 * so4 + 1e-5*hso4 + 1e-2*oh ;

Note that the equation declaration statement begins with the keyword Equation(s). Its main purpose is
to name the equation(s). For further details on equation declarations, see section Declaring Equations.

The algebraic structure of the equation is specified in the equation definition statement, where the name
of the equation is followed by two dots .. and the algebra. The relation between the left-hand side and
right-hand side is specified by special symbols indicating the equation type. The most common symbols
are =e= for equality, =l= for a less than or equal to relation and =g= for a greater than or equal to relation.
An overview of all GAMS equation types is given in Table Equation Types. For more information on
equation definitions, see sections Defining Equations and Conditional Equations.

4.12.2.3 Model Definitions in the Example Models

Once all structural elements of a model have been defined and specified, a model statement is used to
define the model that will be solved. The model statement form the three examples follow.

• First example:

Model farmproblem / obj, land, labor /;

• Second example:

Model problem / Pdemand.Qd, Psupply.Qs, Equilibrium.P /;

586 User's Guide

• Third example:

Model wall / all / ;

Note that a model statement always starts with the keyword model. It is follwed by the name of the
model which users may choose freely and a list of the equations that are part of the model. Observe that
the list of equations in the first example contains all equations that were declared and defined. However,
this need not be the case. It is possible to declare and define an equation and then not use it in a model.
For example, users could define several models that contain different subsets of equations. If all equations
that were previously declared and defined enter the model, the keyword all may be used as a shortcut,
like in the third example.

Attention

Only equations that have been declared may be listed in a model statement. All equations in a
model must have been defined before the model can be solved.

Note that equilibrium problems like the second example are solved as Mixed Complementarity Problems (MCPs).
MCPs require a special variant of the model statement where not only the equations are listed , but
also their complementarity relationships. The complementarity relationship between an equation and
its associated variable is marked with a dot ”.”. Hence, in the second example, the equation Pdemand is
perpendicular to the the variableQd, the equation Psupply is perpendicular to the variable Qs and the
equation Equilibrium is perpendicular to the variable P.

In the three model statements above the name of the model was immediately followed by the list of the
equations included in the model. Observe that an optional explanatory text may be inserted after the
name of the model.

4.12.2.4 Solve Statements in the Example Models

After the model has been defined it remains to be solved, i.e. to find a solution for the variables. The
solve statement directs GAMS to use a solver to optimize the model or solve the system of equations.
The solve statements of the three examples follow:

• First example:

solve farmproblem using LP maximizing Z;

• Second example:

solve problem using MCP;

• Third example:

solve wall using nlp minimizing ba;

Note that a solve statement always begins with the keyword solve follwed by the name of the model, as
previously specified with a model statement, the keyword using and the type of the model. We have an
LP (linear programming problem) in the first example, an MCP (mixed compementarity problem) in the
second example and an NLP (nonlinear programming program) in the third example. A complete list of
GAMS model types is given in section Classification of Models. After the model type the direction of the
optimization is given: either maximizing as in the first example orminimizing as in the third example.
In the final position is the name of the objective variablethat is to be optimized.

4.12 Quick Start Tutorial 587

Note

MCPs and systems of equations of the model type Constrained Nonlinear System (CNS) do not
have objective variables. Therefore their solve statements end with the model type.

Observe that the system of nonlinear equations in the second example was expressed as an NLP that
requires an objective function and a related objective variable. Actually this is an older practice in GAMS
as the GAMS model type CNS was added after this example was initially formulated. Hence, we could
alternatively use the following solve statement:

solve wall using cns;

However, note that the model type CNS can only be solved by select solvers and cannot incorporate
integer variables. A formulation as an optimization problem relaxes these restrictions, thus allowing the
use of the model type MINLP and all NLP solvers. If the model type NLP or one of its variants is chosen,
one of the variables must be selected as objective variable to be optimzed. Observe that which variable is
chosen may not really have any effect since a feasible solution requires all of the simultaneous equations
to be solved. Thus, while in the third example the variable ba is maximized, there is no inherent interest
in attaining its maximum - it is just convenient.

4.12.2.5 Starting Points

In the third example we have the following line before the solve statement:

ba.l=1; so4.l=1; baoh.l=1; oh.l=1; hso4.l=1; h.l=1;

Note that this line provides starting points for the variables in the model. The suffix .l appended to a
variable name denotes the level value of that variable. If a level value of a variable is specified before the
solve statement, this value will act as a starting point for the search algorithms. The level value of a variable
is one example of a variable attribute. Other examples include lower and upper bounds which may be set
with the suffixes .lo and .up. For more information on variable attributes, see section Variable Attributes.
For guidance on how to choose good starting points, see the tutorial Good NLP Formulations. Specifying
starting points may be important for avoiding numerical problems in the model solution. For more on
this topic, see the tutorial Finding and Fixing Execution Errors and Performance Problems.

Observe that the statetements above are the first examples of assignment statements in this tutorial. Assign-
ment statements play a crucial role in GAMS, they are introduced in section The Assignment Statement.

4.12.3 Running a GAMS Job

The model formulation of a GAMS model is saved in a text file with the extension .gms, say myfile.gms.
Then the file is submitted to GAMS. GAMS will execute the instructions in the .gms file, with the result
that calculations are done, solvers are used and an output file with the solution results is created. The
output file is also called the listing file. By default, the name listing file of the input file myfile.gms will
be myfile.lst.

There are two ways to submit a job to GAMS: via the command line and via the IDE GAMS Studio.

588 User's Guide

4.12.3.1 Running GAMS on the Command Line

The myfile.gms file may be run with GAMS using the following call:

> gams myfile

Note the extension .gms may be omitted. This basic GAMS call may be extended with arguments that
are called command line parameters. The following example serves as illustration:

> gams trnsport pw=80 ps=9999 s=mysave

Note that there are three command line parameters: the first will set the page width to 80, the second
will set the page length to 9999 and the third will have the effect that a work file named mysave is saved.
GAMS offers many command line parameters, they are introduced and discussed in detail in chapter
The GAMS Call and Command Line Parameters.

4.12.3.2 Running GAMS with GAMS Studio

GAMS Studio is an integrated development environment for Windows, macOS, and Linux that facilitates
editing, development, debugging GAMS models and running GAMS jobs.

4.12.4 Examining The Output

The output of a GAMS run is saved in the output or listing file. The listing file may contain many parts.
Some parts may be suppressed by the modeler, other parts are suppressed by default and need to be
activated. For an introduction and detailed discussion, see chapter GAMS Output.

In this section we will review the output that is generated by running the three example models.

4.12.4.1 The Echo Print

The listing file always begins with the echo print. The echo print is a copy of the input file with added
line numbers. For example, the echo print of the first example is given below:

1 Positive Variables Xcorn, Xwheat, Xcotton;

2 Variables Z;

3

4 Equations obj, land, labor;

5

6 obj.. Z =e= 109 * Xcorn + 90 * Xwheat + 115 * Xcotton;

7 land.. Xcorn + Xwheat + Xcotton =l= 100;

8 labor.. 6 * Xcorn + 4 * Xwheat + 8 * Xcotton =l= 500;

9

10 Model farmproblem / obj, land, labor /;

11

12 solve farmproblem using LP maximizing Z;

Note that the echo print of the other two examples follows the same principles. Note further, that the
echo print serves as an important reference guide since GAMS reports the line numbers of any errors that
were detected and of solve and display statements.

Observe that usually the code of even experienced GAMS modelers will contain compilation errors. They
are marked in the echo print. For more information on compilation error and how to resolve them, see
section Compilation Errors and the tutorial Fixing Compilation Errors.

4.12 Quick Start Tutorial 589

4.12.4.2 Model Generation Output

Once GAMS has successfully compiled the input file and any numerical computations in assignments have
been performed, the solve statements will be executed. The first step is generating a computer readable
version of the equations in the problem that will be passed on to an appropriate solver system. During
the model generation phase GAMS creates the following output:

• A listing of the equations of the model.

• A listing of the variables of the model.

• A summary of the model structure.

• If errors were detected during model generation they will be reported as well.

The Equation Listing

The equation listing is the first part of the output generated by a solve statement. By default, the first
three equations in every block are listed. The equation listing of the first two equations of each of the
three examples are given below:

• First example:

Equation Listing SOLVE farmproblem Using LP From line 12

---- obj =E=

obj.. - 109*Xcorn - 90*Xwheat - 115*Xcotton + Z =E= 0 ; (LHS = 0)

---- land =L=

land.. Xcorn + Xwheat + Xcotton =L= 100 ; (LHS = 0)

• Second example:

Equation Listing SOLVE problem Using MCP From line 10

---- Pdemand =G=

Pdemand.. P + 0.3*Qd =G= 6 ; (LHS = 0, INFES = 6 ****)

---- Psupply =G=

Psupply.. - P + 0.2*Qs =G= -1 ; (LHS = 0)

• Third example:

590 User's Guide

Equation Listing SOLVE wall Using NLP From line 16

---- r1 =E=

r1.. (1)*ba + (1)*so4 =E= 1 ; (LHS = 1)

---- r2 =E=

r2.. - (1)*ba + (1)*baoh - (1)*oh =E= 4.8 ; (LHS = 1, INFES = 3.8 ****)

Note that the equation listing is a representation of the algebraic structure of the linear terms in the
equation and a local representation containing the first derivatives of the nonlinear terms. The nonlinear
terms are automatically placed in parentheses to indicate a local approximation. For further details, see
section The Equation Listing in chapter GAMS Output.

The Column Listing

The column or variable listing contains a list of the individual coefficients sorted by column rather than
by row (like in the equation listing). By default, the first three entries for each variable are shown, along
with their lower bound .lo, upper bound .up and current level values .l. The column listing of the first
two variables for each of the three examples are given below.

• First example:

Column Listing SOLVE farmproblem Using LP From line 12

---- Xcorn

Xcorn

(.LO, .L, .UP, .M = 0, 0, +INF, 0)

-109 obj

1 land

6 labor

---- Xwheat

Xwheat

(.LO, .L, .UP, .M = 0, 0, +INF, 0)

-90 obj

1 land

4 labor

• Second example:

Column Listing SOLVE problem Using MCP From line 10

---- P

P

(.LO, .L, .UP, .M = 0, 0, +INF, 0)

4.12 Quick Start Tutorial 591

1 Pdemand

-1 Psupply

---- Qd

Qd

(.LO, .L, .UP, .M = 0, 0, +INF, 0)

0.3 Pdemand

-1 Equilibrium

• Third example:

Column Listing SOLVE wall Using NLP From line 16

---- ba

ba

(.LO, .L, .UP, .M = -INF, 1, +INF, 0)

(1) r1

(-1) r2

1 b1

2 b2

---- so4

so4

(.LO, .L, .UP, .M = -INF, 1, +INF, 0)

(1) r1

(-1) r3

-1 b1

-2 b2

Model Statistics

The final information generated while a model is being prepared for solution, is the statistics block. Its
most obvious use is to provide details on the size and nonlinearity of the model. The model statistics of
the third example follow.

MODEL STATISTICS

BLOCKS OF EQUATIONS 6 SINGLE EQUATIONS 6

BLOCKS OF VARIABLES 6 SINGLE VARIABLES 6

NON ZERO ELEMENTS 20 NON LINEAR N-Z 10

DERIVATIVE POOL 20 CONSTANT POOL 16

CODE LENGTH 22

For more information on model statistics, see section The Model Statistics in chapter GAMS Output.

4.12.4.3 The Solution Report

The final major component of the listing file is the solution output. It consists of a summary, some
solver-specific output and a report of the solutions for equations and variables.

592 User's Guide

The Solve Summary

The solve summary is very important since it contains an overview of key information of the solution.
The solve summary of the third example is given below.

S O L V E S U M M A R Y

MODEL wall OBJECTIVE ba

TYPE NLP DIRECTION MINIMIZE

SOLVER CONOPT FROM LINE 16

**** SOLVER STATUS 1 Normal Completion

**** MODEL STATUS 2 Locally Optimal

**** OBJECTIVE VALUE 1.0000

RESOURCE USAGE, LIMIT 0.034 1000.000

ITERATION COUNT, LIMIT 7 2000000000

EVALUATION ERRORS 0 0

For details on the solve summary including possible values for SOLVER STATUS and MODEL STATUS, see
section The Solve Summary in chapter GAMS Output.

The Solver Report

The next part of the listing file is the solver report. It contains solver specific output. The respective
output of the third example follows:

CONOPT 3 24.7.3 r58181 Released Jul 11, 2016 DEG x86 64bit/MacOS X

C O N O P T 3 version 3.17A

Copyright (C) ARKI Consulting and Development A/S

Bagsvaerdvej 246 A

DK-2880 Bagsvaerd, Denmark

Pre-triangular equations: 0

Post-triangular equations: 0

** Optimal solution. There are no superbasic variables.

For more on solver reports, see section Solver Report in chapter GAMS Output.

The Solution Listing

The solution listing is a row-by-row then column-by-column listing of the solutions returned to GAMS by
the solver program. Each individual equation and variable is listed including their level and marginal
values and their lower and upper bounds. The solution listing of the first example follows:

4.12 Quick Start Tutorial 593

LOWER LEVEL UPPER MARGINAL

---- EQU obj . . . 1.0000

---- EQU land -INF 100.0000 100.0000 52.0000

---- EQU labor -INF 500.0000 500.0000 9.5000

LOWER LEVEL UPPER MARGINAL

---- VAR Xcorn . 50.0000 +INF .

---- VAR Xwheat . 50.0000 +INF .

---- VAR Xcotton . . +INF -13.0000

---- VAR Z -INF 9950.0000 +INF .

Note that single dots '.' represent zeros. The extended range arithmetic symbols -INF and +INF denote
minus and plus infinity respectively. EPS is another extended range arithmetic symbol that often appears
in solution listings. In this context, it is used to indicate basis status in the degenerate case. For example,
a basic variable is indicated by a zero (single dot) marginal, while a non-basic variable whose marginal is
(nearly) zero is indicated by a marginal of EPS. For further details, see section The Solution Listing in
chapter GAMS Output.

4.12.5 Exploiting the Algebraic Structure

GAMS was deliberately designed to make it easy to express algebraic relationships. Thus it provides
notation for indexed operations like sums. Assume that z is defined as the sum over xi where i = {1, 2, 3}:

z =

3∑
i=1

xi = x1 + x2 + x3

This can be expressed in GAMS in the following way:

z = sum(i, x(i));

Here i is a set with three elements, z is a scalar or variable and x(i) is a parameter or variable defined
over the set i. Note that the keyword sum automatically cycles through all elements of the set i.

Indexed operations like sum may be used in the algebraic specification of equations or in the context of
assignments where the value of identifiers are computed. In the following two sections we will introduce
revised versions of the first two examples, where we illustrate how using sum simplifies the code and
enables more general formulations.

4.12.5.1 Revised First Example

Recall that the first example is the following LP:

max 109Xcorn + 90Xwheat + 115Xcorn

s.t. Xcorn + Xwheat + Xcotton ≤ 100 (land)
6Xcorn + 4Xwheat + 8Xcotton ≤ 500 (labor)

Xcorn ≥ 0 (nonnegativity)
Xwheat ≥ 0 (nonnegativity)
Xcotton ≥ 0 (nonnegativity)

594 User's Guide

Note that this is a special case of the general resource allocation problem that can be written as follows:

max
∑
j cjXj

s.t.
∑
j aijXj ≤ bi for all i

Xj ≥ 0 for all j,

where

• j = {corn, wheat, cotton}

• i = {land, labor}

• Xj = {Xcorn, Xwheat, Xcotton}

• cj = {109, 90, 115}

• aij =

(
1 1 1
6 4 8

)
• bi = {100, 500}.

This model may be formulated in GAMS in the following way:

Set j / corn, wheat, cotton /

i / land, labor /;

Parameter c(j) / corn 109, wheat 90, cotton 115 /

b(i) / land 100 , labor 500 /;

Table a(i,j)

corn wheat cotton

land 1 1 1

labor 6 4 8 ;

Positive Variables x(j);

Variables profit;

Equations objective

constraint(i) ;

objective.. profit =e= sum(j, (c(j))*x(j));

constraint(i).. sum(j, a(i,j) *x(j)) =l= b(i);

Model resalloc /all/;

solve resalloc using LP maximizing profit;

We will discuss the components of this model in section Components of the Revised Example Models
below.

4.12 Quick Start Tutorial 595

4.12.5.2 Revised Second Example

Recall that the second example is an economic equilibrium model with a single commodity:

Demand Price: P ≥ Pd = 6− 0.3Qd
Supply Price: P ≤ Ps = 1 + 0.2Qs
Quantity Equilibrium: Qs ≥ Qd
Nonnegativity: P ≥ 0

Qs ≥ 0
Qd ≥ 0

A more general formulation of this model accomodates multiple commodities. Consider the following
formulation where c denotes the commodities:

Demand Price for c: Pc ≥ Pdc = Idc −
∑
cc Sdc,ccQdcc for all c

Supply Price for c: P ≤ Psc = Isc +
∑
cc Ssc,ccQscc for all c

Quantity Equil. for c: Qsc ≥ Qdc for all c
Nonnegativity: Pc ≥ 0 for all c

Qsc ≥ 0 for all c
Qdc ≥ 0 for all c,

where

• Pc is the price of commodity c,

• Qdc is the quantity demanded of commodity c,

• Pdc is the price from the inverse demand curve for commodity c,

• Qsc is the quantity supplied of commodity c,

• Psc is the price from the inverse supply curve for commodity c,

• cc is an alternative notation for the commodities and is equivalent to c,

• Idc is the inverse demand curve intercept for c,

• Sdc,cc is the slope of the inverse demand curve. It is used to model the effect of buying one unit of
commodity cc on the demand price of commodity c. When c = cc it is an own commodity effect and
when c 6= cc it is a cross commodity effect.

• Isc is the inverse supply curve intercept for c,

• Ssc, cc is theslope of the inverse supply curve. It is used to model the effect of supplying one unit of
commodity cc on the supply price of commodity c. When c = cc it is an own commodity effect and
when c 6= cc it is a cross commodity effect.

This model may be formulated in GAMS in the following way:

Set commodities / corn, wheat /;

Set curvetype / supply, demand/;

Table intercepts(curvetype,commodities)

corn wheat

demand 4 8

supply 1 2;

596 User's Guide

Table slopes(curvetype,commodities,commodities)

corn wheat

demand.corn -.3 -.1

demand.wheat -.07 -.4

supply.corn .5 .1

supply.wheat .1 .3 ;

Positive Variables P(commodities)

Qd(commodities)

Qs(commodities);

Equations PDemand(commodities)

PSupply(commodities)

Equilibrium(commodities);

Alias (cc,commodities);

Pdemand(commodities)..

P(commodities) =g= intercepts("demand",commodities)

+ sum(cc,slopes("demand",commodities,cc)*Qd(cc));

Psupply(commodities)..

intercepts("supply",commodities)

+ sum(cc,slopes("supply",commodities,cc)* Qs(cc)) =g= P(commodities);

Equilibrium(commodities)..

Qs(commodities) =g= Qd(commodities);

Model problem / Pdemand.Qd, Psupply.Qs,Equilibrium.P /;

solve problem using MCP;

4.12.6 Components of the Revised Example Models

The revised example models have several new features including sets, specific data entry, and variables
and equations that are defined over sets. In addition, if the models are run, modelers will notice some
differences in the output. In this section we will discuss these new language features and the differences in
the output they entail.

4.12.6.1 Sets in the Revised Examples

In the revised examples we used the subscripts i, j, commodities and cc. In GAMS, subscripts are
sets. They have to be defined before they may be used as subscripts. Sets are defind with set statements.
Consider the set statement from the first revised example:

Set j / corn, wheat, cotton /

i / land, labor /;

Note that the statement begins with the keyword set followed by the name of the set and a list of the
elements of the set. Note further, that more than one set may be defined with one set statement. In
addition, an optional explanatory text may be inserted after the name of the set and also after each set
element. For more details on set definitions, see chapter Set Definition.

Observe that the following line appears in the revised second example:

4.12 Quick Start Tutorial 597

Alias (cc,commodities);

This is an alias statement that introduces a new alternative name for a set that was defined earlier. In our
example, the set commodities was defined in the first line of the code and cc is the alias, the alternative
name for the set commodities. Note that more than one alias may be defined in an alias statement. For
further information on aliases, see section The Alias Statement: Multiple Names for a Set.

Note that in our example the alias facilitates to consider both the effects of own and cross commodity
quantity on the demand and supply price for an item.

4.12.6.2 Data Entry in the Revised Examples

GAMS provides three formats for data entry: scalars, parameters and tables. Usually scalars are defined
with a scalar statement, data vectors are defined with a parameter statement and matrices are defined
with a table statement.

Note that we used parameter and table statements in the revised examples. In this section we will discuss
parameter and table statements. For details on scalar statements, see section Scalars.

Parameters

The parameter format is used to enter items defined over sets. Generally, the parameter format is used
for data items that are one-dimensional (vectors), but multi-dimensional data may be entered with a
parameter statement as well. Consider the parameter statement from the first revised example:

Parameter c(j) / corn 109, wheat 90, cotton 115 /

b(i) / land 100, labor 500 /;

Note that the statement begins with the keyword parameter followed by the name of the parameter and
the set over which the parameter is defined, the index or domain. Then a list follows where a numerical
value is assigned to each member of the index set. Note that the referenced elements must have been
defined to be members of the respective set. By default, elements of the domain that are not listed in the
parameter statement are assigned the value of zero. Note that more than one parameter may be defined
with one parameter statement. For further details on parameter statements, see section Parameters.

Tables

The table format is used to enter data that are dependent on two or more sets. Consider the following
two table statements from the revised examples:

Table a(i,j) crop data

corn wheat cotton

land 1 1 1

labor 6 4 8 ;

Table intercepts(curvetype,commodities)

corn wheat

demand 4 8

supply 1 2;

Note that the statement begins with the keyword table followed by the name of the table and the sets
over which the table is defined. The next line serves as header for the columns of the table, the elements
of the set in the second index position are listed here. The elements of the set in the first index position
are the headers of the rows. Thus the elements of the two index positions span a grid where numerical
values may be entered. Like in the parameter format, the referenced set elements must have been defined
to be members of the respective set.

598 User's Guide

Note

Alignment is crucial in table statements. The numerical entries must be placed in one and only one
column of the table.

By default, elements of the domain that are not listed in the table statement are assigned the value
of zero. Note that only one table may be defined with a table statement. For further details on table
statements, see section Tables. Observe that data may also be entered with assignment statements. For
more information, see section Data Entry by Assignment.

4.12.6.3 Indexed Variables and Equations in the Revised Examples

When the algebraic structure of a problem is exploited in modeling, variables and equations are often
defined over one or more sets, they are indexed. For example, in the first revised example we have the
following lines:

Positive Variable x(j);

Equations constraint(i);

Note that here the variable x is defined over the set j and the equation constraint is indexed over the
set i. Similarly, in the second revised example we have the following variable and equation statements:

Positive Variables P(commodities)

Qd(commodities)

Qs(commodities) ;

Equations PDemand(commodities)

PSupply(commodities)

Equilibrium(commodities) ;

Observe that here all positive variables and all equations are indexed over the set commodities. Such
definitions indicate that the variables and equations are potentially defined for every element of the
defining set. Thus, for example, a variable P could exist for each and every element of the set commodities.
However, how many of these potential cases are activated is determined by the respective equation definion
statement(s) where the variable P is used. For further details on indexed variables and equations,see
chapter Variables and section Indexed Equations respectively.

Next, we will discuss the equation definition statements. The respectives lines from the first revised
example follow:

objective.. profit =e= sum(j, (c(j))*x(j));

constraint(i).. sum(j, a(i,j) *x(j)) =l= b(i);

Note that the equation constraint is indexed over the set i and there are no restrictions specified in the
equation definition statement. Thus, GAMS will generate a separate equation for every element of the set
i in the model generation phase.

The same logic applies to the indexed equations of the second revised example whose definition statements
are repeated below:

Pdemand(commodities)..

P(commodities) =g= intercepts("demand",commodities)

+ sum(cc,slopes("demand",commodities,cc)*Qd(cc));

Psupply(commodities)..

intercepts("supply",commodities) + sum(cc,slopes("supply",commodities,cc)* Qs(cc))

=g= P(commodities);

Equilibrium(commodities)..

Qs(commodities) =g= Qd(commodities);

Observe that equations may be defined over only a part of their domain. This restriction is usually
achieved with dollar conditions. For details see section Conditional Equations.

4.12 Quick Start Tutorial 599

4.12.6.4 Differences in the Output

If variables and equations are defined over sets, some parts of the listing file will look different. In
particular, there are some changes in the equation listing, the variable listing and the solution listing.

Revised Models: The Equation Listing

Note that indexed variables are given with their indices in the equation listing. In addition, the specific
equations generated for each element of the domain are listed under the name of an indexed equation. To
illustrate, we present the equation listing of the first revised example below:

---- objective =E=

objective.. - 109*x(corn) - 90*x(wheat) - 115*x(cotton) + profit =E= 0 ; (LHS = 0)

---- constraint =L=

constraint(land).. x(corn) + x(wheat) + x(cotton) =L= 100 ; (LHS = 0)

constraint(labor).. 6*x(corn) + 4*x(wheat) + 8*x(cotton) =L= 500 ; (LHS = 0)

Revised Models: The Column Listing

Similar to indexed equations in the equation listing, each instance of a variable is listed under the name of
an indexed variable in the variable listing. The respective output of the first revised model follows.

---- x

x(corn)

(.LO, .L, .UP, .M = 0, 0, +INF, 0)

-109 objective

1 constraint(land)

6 constraint(labor)

x(wheat)

(.LO, .L, .UP, .M = 0, 0, +INF, 0)

-90 objective

1 constraint(land)

4 constraint(labor)

x(cotton)

(.LO, .L, .UP, .M = 0, 0, +INF, 0)

-115 objective

1 constraint(land)

8 constraint(labor)

Revised Models: The Solution Listing

In the solution listing of the revised models there is a separate line for each element of the index set. The
respective output of the first revised model is given below:

600 User's Guide

---- EQU constraint

LOWER LEVEL UPPER MARGINAL

land -INF 100.0000 100.0000 52.0000

labor -INF 500.0000 500.0000 9.5000

---- VAR x

LOWER LEVEL UPPER MARGINAL

corn . 50.0000 +INF .

wheat . 50.0000 +INF .

cotton . . +INF -13.0000

4.12.7 Documenting the GAMS Code

We have now covered the essential GAMS features. However, any good code includes documentation,
otherwise it might be useless if it is revisited after a longer time. GAMS offers three ways to document
the code: comments, explanatory texts and naming.

Comments

There are several ways to add comments in GAMS. The most common are single line comments and
block comments. Single line comments may be inserted on any line by placing an asterisk ∗ in the first
column position. The text that follows the asterisk will be completely ignored by the GAMS compiler and
may contain any content including GAMS keywords. Note that several successive lines may be single line
comments. Block comments are marked with the dollar control option $ontext at the beginning of the
comment block and the dollar control option $offtext at the end of the comment. Block comments usually
span several lines, but they may also contain just one line on the one hand and whole sections of the code
on the other hand.

In addition, users may freely enter blank lines to set off certain sections of the code and generally enhance
readability. For further details on comments, see section Comments.

Explanatory Text

Declarations of sets, parameters, variables and equations may include an optional descriptive text that
follows the name of the identifier. In addition, the elements of sets may be accompanied by a text. This
text is more than a comment: it is retained by GAMS and is displayed whenever results are written for
the respective identifier in the output file. Note that the explanatory textmay be quoted or unquoted
and single or double quotes may be used, but they must match. An example is given below. For further
details, see section Text.

Naming

Apart from avoiding reserved words, names for identifiers in GAMS may be freely chosen. Some modelers,
particularly if they have a background in mathematics, prefer short names like x(i). Other modelers
strongly prefer longer descriptive names that makes it easier for them to recall what quantities are
denoted. In this case naming is regarded as part of the documentation. GAMS accomodates both styles
and modelers may choose which style works best for them. If short names are used, we recommend to
generously use descriptive texts and comments for documentation.

To illustrate the virtues of comments, blank lines, explanatory text and long names we will repeat the
code of the revised LP from above and then offer an alternative, documented formulation.

4.12 Quick Start Tutorial 601

Set j / corn, wheat, cotton /

i / land , labor /;

Parameter c(j) / corn 109, wheat 90, cotton 115 /

b(i) / land 100 , labor 500 /;

Table a(i,j)

corn wheat cotton

land 1 1 1

labor 6 4 8 ;

Positive Variables x(j);

Variables profit;

Equations objective

constraint(i) ;

objective.. profit =e= sum(j, (c(j))*x(j));

constraint(i).. sum(j, a(i,j) *x(j)) =l= b(i);

Model resalloc /all/;

solve resalloc using LP maximizing profit;

The documented version with longer names follows:

$ontext

well formatted algebraic version of the first example model

$offtext

Set products ’Items produced by farm’

/ corn ’in acres’

wheat ’in acres’

cotton ’in acres’ /

resources ’Resources limiting farm production’

/ land ’in acres’

labor ’in hours’ /;

Parameter netreturns(products) ’Net returns per unit produced’

/ corn 109 , wheat 90, cotton 115 /

endowments(resources) ’Amount of each resource available’

/ land 100, labor 500 /;

Table resourceusage(resources,products) ’Resource usage per unit produced’

corn wheat cotton

land 1 1 1

labor 6 4 8 ;

Positive Variables production(products) ’Number of units produced’;

Variables profit ’Total sum of net returns’;

Equations profitAcct ’Profit accounting equation’

available(resources) ’Resource availability limit’;

$ontext

Specify definition of profit

$offtext

profitAcct..

602 User's Guide

profit

=e= sum(products, netreturns(products)*production(products));

$ontext

Limit available resources

Fix at exogenous levels

$offtext

available(resources)..

sum(products,

resourceusage(resources,products) *production(products))

=l= endowments(resources);

Model resalloc /all/;

solve resalloc using LP maximizing profit;

4.12.8 Guidelines on Ordering GAMS Statements and Formatting GAMS
Programs

A GAMS program is a collection of GAMS statements. In this section we will offer some general guidelines
on ordering GAMS statements and formatting GAMS programs.

• GAMS is case insensitive. This applies to GAMS keywords as well as to user-defined names. For
example, the keyword VARIABLE is identical to Variable and variable and the user-defined name
mincost is identical to minCost and minCOST. However, note that the spelling in the output file is
determined by the spelling in the first occurence of an identifier or label.

• Individual GAMS statements may be formatted in almost any style. Multiple lines may be used for
a statement, blank lines may be embedded and any number of spaces or tabs may be inserted. In
addition, several statements may be placed on one line. Note that they have to be separated by
semicolons ;.

• We recommend that every GAMS statement is terminated with a semicolon ;. However, note that
semicolons are not manadatory if the next word is a GAMS keyword.

• Identifiers like sets, parameters, scalars, tables, acronyms, variables, equations, models and files
must first be declared and defined before they may be used in the code. An identifier is named in a
declaration statement and specific values are assigned to it when it is defined. Often identifiers are
defined at the same time they are declared. Note that for equations the declaration and definition
statements are always distinct.

• The names for identifiers and labels and the explanatory text must follow certain rules. See chapter
GAMS Programs and the tutorial Good Coding Practices for more information.

• Statements must be ordered such that identifiers are declared before they are used. If identifiers are
used on the right-hand side of an assignment statement, they must also have been defined. If they
are used in an equation and the equation is included in a model, then they must be assigned data
before a solve statement for the respective model. Note that compilation errors will be triggered if
this order is not followed.

4.12.9 Adding Complexity

There are several GAMS features that are widely used and serve to add subtlety and compexity to
models. They include exception handling through conditionals, displaying data in the output file and
report writing where the information from the optimal solution is used to create reports that meet the
needs of modelers and their clients.

4.12 Quick Start Tutorial 603

4.12.9.1 Conditionals

Assignments are often valid only for certain cases and sometimes equations should reasonably be restricted
to a subset of the domain over which they were defined. It is easy to model such assignments and equations
in GAMS with conditionals. Conditional expressions in GAMS are introduced and discussed in detail in
chapter Conditional Expressions, Assignments and Equations. In this section we will only give a quick
overview to demonstrate the capabilities of conditionals in GAMS.

Note that the dollar condition is at the heart of conditionals in GAMS. The general form of a conditional
expression is as follows:

term $ logical_condition

This translates to: ”Do something with 'term' only if the logical condition is true.” Observe that term may
be a number, a set, a parameter, a variable or an equation. The dollar operator $ is a GAMS speciality
and one of the most powerful features of GAMS. The logical condition may take many different forms, see
section Logical Conditions for details.

The following examples illustrate how conditionals in GAMS may be used.

Conditional Assignments

Consider the following example:

x $ (y > 0) = 10;

Note that x is assigned the value of ten only if the the scalar y is greater than zero, otherwise no assignment
is made and x keeps its previous value. For more information, see section Conditional Assignments.

Conditional Indexed Operations

Consider the following example:

z = sum[i $ (y(i) <> 0), x(i)];

Note that the term x(i) will only be included in the sum if y(i) is nonzero. For further information, see
section Conditional Indexed Operations.

Conditionals in the Domain of Definition of Equations

Consider the following equation definition statements:

Eq1 $ (qq > 0).. xvar =e= 3;

Eq2 $ (sum(i, q(i)) > 0).. yvar =l= 4;

Eq3(i) $ (a(i) > 0).. ivar(i) =g= -a(i);

Note that in each equation the domain of definition is restricted to those cases where the logical condition
evaluates to TRUE. For further details, see section Dollar Control over the Domain of Definition.

Conditionals in the Algebraic Formulation of Equations

Our last example illustrates how a dollar condition may be used in the body of an equation:

Eq4 . . xvar + yvar $ (qq > 0) =e= 3;

Note that the term yvar is included in the equation only if qq is greater than zero, otherwise yvar is treated
as if it were zero. For more information, see section Dollar Operators within the Algebra of Equations.

604 User's Guide

4.12.9.2 Displaying Data

In GAMS, the display statement is a quick way to write data into the output file. For example, assume
we add the following statement after the solve statement in the revised and documented version of the
farm linear programming model above:

display profit.l, production.l;

Recall that profit and production are variables. The suffix .l indicates that we wish to display the
variable attribute level. The following output will be generated in the listing file:

---- 47 VARIABLE profit.L = 9950.000 Total sum of net returns

---- 47 VARIABLE production.L Number of units produced

corn 50.000, wheat 50.000

Observe that the name of the variable, the explanatory text and the respective numerical values are given.
In addition to data like parameters, sets, variable attributes, equation attributes and model attributes,
quoted text may be displayed. Note that numerical entries that equal zero will not be displayed. For a
more detailed introduction, see chapter The Display Statement.

4.12.9.3 Report Writing

In many cases modelers wish to summarize the most important results of the solution in a table for a
quick overview. GAMS allows post-solution computations where information form the solution may be
used to assign values to new parameters that are then displayed. The information from the solution most
often used for report writing includes the level values of variables and equations and the marginal values
of equations (also called dual values or shadow prices). Note that variable and equation attributes are
accessed as follows:

var_name.sfx

eqn_name.sfx

Here var name and eqn name is the name of the variable and equation in GAMS respectively. The attribute
is denoted by .sfx, where sfx may be l for level and m for marginal. Note that the suffix sfx may take
other values as well. For details see sections Variable Attributes and Equation Attributes.

Observe that the numerical values of the levels and marginals of variables and equations are generally
undefined until a solve statement is executed. After GAMS has retrieved the solution from the solver, the
respective values from the solution are assigned to the attributes. These values remain unchanged until
the next solve, where they are replaced with the values from the most recent solution.

In the remainder of this section we will present two examples to illustrate report writing. Assume we add
the following report writing sequence after the solve statement to the revised and documented version of
the farm linear programming model above:

4.12 Quick Start Tutorial 605

Set item / Total, "Use by", Marginal /;

Set qitem / Available, Corn, Wheat, Cotton, Value /;

Parameter Thisreport(resources,item,qitem) ’Report on resources’;

Thisreport(resources,"Total","Available") = endowments(resources);

Thisreport(resources,"Use by",qitem) =

sum(products$sameas(products,qitem),

resourceusage(resources,products) * production.l(products));

Thisreport(resources,"Marginal","Value") =

available.m(resources);

option thisreport:2:1:2;

display thisreport;

Note that both, equation marginals (available.m(resources)) and variable levels (production.l(products))
are included in the calculations. The predefined symbol sameas in the logical condition above returns the
value TRUE if the element of the set products is equivalent to the element of the set qitem and FALSE

otherwise. Thus this condition ensures that the third index of the parameter Thisreport is identical to
the element of the set products in the sum. Observe that with the option statement in the penultimate
line the appearance of the display is customized. For details see section Local Display Control. The
following report will be generated by the display statement:

---- 61 PARAMETER Thisreport Report on resources

Total Use by Use by Marginal

Available corn wheat Value

land 100.00 50.00 50.00 52.00

labor 500.00 300.00 200.00 9.50

Similarly, we could add the following report writing sequence to the revised version of the equilibrium
model above:

Set qitem / Demand, Supply, "Market Clearing" /;

Set item / Quantity, Price /;

Parameter myreport(qitem,item,commodities);

myreport("Demand","Quantity",commodities) = Qd.l(commodities);

myreport("Supply","Quantity",commodities) = Qs.l(commodities);

myreport("Market Clearing","Price",commodities) = P.l(commodities);

display myreport;

Note that in the new parameter the level values for supply and demand as well as the market clearing
price are saved. The resulting report follows:

---- 39 PARAMETER myreport

Corn Wheat

Supply .Quantity 1.711 8.156

Demand .Quantity 1.711 8.156

Market Clearing.Price 2.671 4.618

For more on report writing, see chapters The Display Statement and The Put Writing Facility.

606 User's Guide

4.12.10 Advantages of Algebraic Modeling in General

We will conclude this tutorial with a discussion of the advantages of using algebraic modeling in general.

Algebraic modeling languages like GAMS facilitate model formulations in general algebaric terms, that
are very concise and readable. Language elements that are essential include sets that may serve as indices,
algebraic expressions, indexed operations, powerful sparse index and data handling variables and constraints
with user-defined names. Model formulations are largely independent of the data and exact application
contexts. Such formulations may be easily transferred to different contexts, data may be added without
the need to reformulate the model and the model may be extended to reflect additional complexity.

However, GAMS algebraic requirements and the summation notation are difficult for some users. Some
modelers will always prefer the exact problem context, not an abstract general formulation. This may
lead to a strategy most modelers use: Start with a small concrete formulations that capture the essence of
the problem and support the development of more general GAMS models.

4.12.10.1 One Model - Different Contexts

In the linear programming problem above we modeled profit maximizing in a farm. This model may easily
be transferred to another context as follows:

Set products ’Items produced’

/ Chairs, Tables, Dressers /

resources ’Resources limiting production’

/ RawWood, Labor, WarehouseSpace /;

Parameter Netreturns(products) ’Net returns per unit produced’

/ Chairs 19, Tables 50, Dressers 75 /

Endowments(resources) ’Amount of each resource available’

/ RawWood 700, Labor 1000, WarehouseSpace 240 /;

Table Resourceusage(resources,products) ’Resource usage per unit produced’

Chairs Tables Dressers

RawWood 8 20 32

Labor 12 32 45

WarehouseSpace 4 12 10 ;

Positive Variables Production(products) ’Number of units produced’;

Variables Profit ’Total sum of net returns’ ;

Equations ProfitAcct ’Profit accounting equation ’

Available(resources) ’Resource availability limit’;

ProfitAcct..

Profit

=e= sum(products, netreturns(products) * production(products)) ;

Available(resources)..

sum(products,

resourceusage(resources,products) * production(products))

=l= endowments(resources);

Model resalloc /all/;

solve reasalloc using LP maximizing Profit;

4.12 Quick Start Tutorial 607

Note that in this model we have chairs, tables and dressers instead of corn, wheat and cotton and raw
wood, labor and warehouse space instead of land and labor, but the algebraic structure of the model is the
same. Thus we still have sets for products and resources, parameters for net returns per unit produced
and available resources, a table for resource usage per unit produced and exactly the same variables and
equations, the same model and solve statement. Hence, if the algebraic structure for a type of problem is
built, it may be used in another context of the same problem type with just minor modifications in the
data.

4.12.10.2 Adding More Data

It is easy to add more data to a model. For example, we could add two new products and two new
resources to the carpenter model above in the following way:

Set products ’Items produced’

/ Chairs, Tables, Dressers, HeadBoards, Cabinets /

resources ’Resources limiting production’

/ RawWood, Labor, WarehouseSpace, Hardware, ShopTime /;

Parameter Netreturns(products) ’Net returns per unit produced’

/ Chairs 19, Tables 50, Dressers 75, HeadBoards 28, Cabinets 25 /

Endowments(resources) ’Amount of each resource available’

/ RawWood 700, Labor 1000, WarehouseSpace 240, Hardware 100, Shoptime 600 /;

Table Resourceusage(resources,products) ’Resource usage per unit produced’

Chairs Tables Dressers HeadBoards Cabinets

RawWood 8 20 32 22 15

Labor 12 32 45 12 18

WarehouseSpace 4 12 10 3 7

Hardware 1 1 3 0 2

Shoptime 6 8 30 5 12;

Positive Variables Production(products) ’Number of units produced’;

Variables Profit ’Total sum of net returns’ ;

Equations ProfitAcct ’Profit accounting equation’

Available(resources) ’Resource availability limit’;

ProfitAcct..

Pofit

=e= sum(products, netreturns(products) * production(products)) ;

Available(resources)..

sum(products,

resourceusage(resources,products) * production(products))

=l= endowments(resources);

Model resalloc /all/;

solve reasalloc using LP maximizing Profit;

Observe that the elements HeadBoards and Cabinets were added to the set Products and the elements
Hardware and ShopTime were added to the set Resources. In addition, the data in the two parameters
and the table was updated to reflect these new labels. However, the model structure remained unchanged.
Thus, GAMS models may easily be extended from smaller to larger data sets. Note that this feature may be
exploited for model development. Users may develop a model with a small data set and test and debug it.
Afterwards, they may move to the full problem data set without having to alter the algebraic structure of the
model.For more details on this strategy, see section Small to Large: Aid in Development and Debugging.

608 User's Guide

4.12.10.3 Extending the Model

Assume we wish to make a model more complex by adding new features. For example, we could extend
the carpenter model above to reflect the possibility of renting or hiring additional resources subject to a
maximum limit. Consider the following code:

Set products ’Items produced’

/ Chairs, Tables, Dressers /

resources ’Resources limiting production’

/ RawWood, Labor, WarehouseSpace/

hireterms ’Resource hiring terms’

/ Cost, Maxavailable /;

Parameter Netreturns(products) ’Net returns per unit produced’

/ Chairs 19, Tables 50, Dressers 75 /

Endowments(resources) ’Amount of each resource available’

/ RawWood 700, Labor 1000, WarehouseSpace 240 /;

Table Resourceusage(resources,products) ’Resource usage per unit produced’

Chairs Tables Dressers

RawWood 8 20 32

Labor 12 32 45

WarehouseSpace 4 12 10 ;

Table Hiredata(resources,hireterms) ’Resource hiring data’

Cost Maxavailable

RawWood 3 200

Labor 12 120

WarehouseSpace 4 112;

Positive Variables Production(products) ’Number of units produced’

HireResource(resources) ’Resources hired’;

Variables Profit ’Total sum of net returns’ ;

Equations ProfitAcct ’Profit accounting equation’

Available(resources) ’Resource availability limit’

Hirelimit(resources) ’Resource hiring limit’;

ProfitAcct..

Profit

=e= sum(products, Netreturns(products) * Production(products))

- sum(resources, Hiredata(resources,"cost") * HireResource(resources)) ;

Available(resources)..

sum(products,

Resourceusage(resources,products) * Production(products))

=l= Endowments(resources) + HireResource(resources);

Hirelimit(resources)..

HireResource(resources) =l= Hiredata(resources,"Maxavailable");

Model resalloc /all/;

solve reasalloc using LP maximizing Profit;

Observe that we introduced the set hireterms, the table Hiredata, the positive variable HireResource

and the equation Hirelimit. In addition, we included new terms in the equations Profit and Available

4.13 Good Coding Practices 609

to reflect that through hiring the resources are increased, but hiring comes with a cost diminishing the
profit. Thus the algebraic structure of the earlier model could be used as the core for this model that has
additional features.

Note that this method may also be exploited for model development. Users may adapt models from other
studies customizing them for the problem at hand and thus speeding up the development process. In
addition to adapting models from related earlier studies that were done by the modeler or his group,
model development may be jumpstarted by adapting models from the extensive GAMS Model Library.

4.13 Good Coding Practices

The GAMS language is quite flexible regarding the syntax and format of the code it accepts, offering users
considerable latitude in how they organize and format their GAMS code. Most modelers develop their
own style as they gain experience with the GAMS system. This tutorial reflects the coding preferences of
Bruce A. McCarl (currently professor of Agricultural Economics at Texas A&M University). Note that
Bruce has extensive experience with GAMS, both as a modeler and an educator, and many GAMS users
know, use, and benefit from his work. The goal of this tutorial is not to present a rigid set of rules to
follow arbitrarily, but rather to help users develop their own coding preferences and style. The larger goal
is to build self-documenting models that are easy to read and understand, to edit, and to debug: both for
the developer working in the present, and for a larger group of colleagues and consultants working with
the model over a span of months or years.

We will cover the following topics:

• Using Longer Names and Descriptive Text

• Including Comments

• Choosing Raw Data Instead Of Computed Data

• Avoiding the Universal Set in the Context of Data Input

• Defining Sets and Subsets Wisely

• Structuring and Formatting Files to Improve Readability

• Other Suggestions

4.13.1 Using Longer Names and Descriptive Text

The readability of GAMS code may be significantly improved by using longer self-explanatory names for
identifiers (e.g. names of sets, parameters, variables, etc). Consider the following lines of code from the
production and inventory model [ROBERT]:

Sets p ’products’ / low, medium, high /

r ’raw materials’ / scrap, new /

tt ’long horizon’ / 1*4 /

t(tt) ’short horizon’ / 1*3 /;

Table a(r,p) input ’coefficients’

low medium high

scrap 5 3 1

new 1 2 3;

610 User's Guide

Table c(p,t) ’expected profits’

1 2 3

low 25 20 10

medium 50 50 50

high 75 80 100;

Variables x(p,tt) ’production and sales’

s(r,tt) ’opening stocks’

profit;

Positive variables x, s;

Equations cc(t) ’capacity constraint’

sb(r,tt) ’stock balance’

pd ’profit definition’ ;

cc(t).. sum(p, x(p,t)) =l= m;

sb(r,tt+1).. s(r,tt+1) =e= s(r,tt) - sum(p, a(r,p)*x(p,tt));

pd.. profit =e= sum(t, sum(p, c(p,t)*x(p,t))

- sum(r, misc("storage-c",r)*s(r,t)))

+ sum(r, misc("res-value",r)*s(r,"4"));

s.up(r,"1") = misc("max-stock",r);

These lines may be reformatted in the following way (see (good.gms)):

Sets process ’available production process’

/ low ’uses a low amount of new materials’,

medium ’uses a medium amount of new materials’,

high ’uses a high amount of new materials’ /

rawmateral ’source of raw materials’ / scrap, new /

Quarters ’long horizon’ / spring, summer, fall, winter /

quarter(Quarters) ’short horizon’ / spring, summer, fall /

Table usage(rawmateral,process) ’input coefficients’

low medium high

scrap 5 3 1

new 1 2 3

Table expectprof(process,quarters) ’expected profits’

spring summer fall

low 25 20 10

medium 50 50 50

high 75 80 100;

Variables production(process,Quarters) ’production and sales’

openstock(rawmateral,Quarters) ’opening stocks’

profit ;

Positive variables production, openstock;

Equations capacity(quarter) ’capacity constarint’

stockbalan(rawmateral,Quarters) ’stock balance’

profitacct ’profit definition’ ;

good.gms

4.13 Good Coding Practices 611

capacity(quarter)..

sum(process, production(process,quarter)) =l= mxcapacity;

stockbalan(rawmateral,Quarters+1)..

openstock(rawmateral,Quarters+1) =e=

openstock(rawmateral,Quarters)

- sum(process, usage(rawmateral,process)

*production(process,Quarters));

profitacct.. profit =e=

sum(quarter,

sum(process, expectprof(process,quarter)

*production(process,quarter))

- sum(rawmateral, miscdata("store-cost",rawmateral)*

openstock(rawmateral,quarter)))

+ sum(rawmateral, miscdata("endinv-value",rawmateral)

*openstock(rawmateral,"winter"));

openstock.up(rawmateral,"spring") = miscdata("max-stock",rawmateral);

Note that the two formulations are equivalent in their effect, but in the second formulation longer, more
descriptive names were used for the sets, tables, variables and equations. In addition, longer names
were used for the set elements and in the definition of the set process the set elements have additional
explanatory text. Observe that the second formulation is easier to understand. This will be particularly
useful if and when the code is revisited in 5 years' time.

Note

• Recall that GAMS allows long names for identifiers and labels (set elements). Users may exploit
this feature to introduce long descriptive names. However, note that names for labels that are
longer than 10 characters do not work well in multi-column displays. See the paragraph on
customizing display width for details.

• Use explanatory text for identifiers to indicate units, sources, descriptions, etc. It's not that
hard to do and it pays dividends later.

• Similarly, use explanatory text for set elements as appropriate.

For example, the descriptive text in the in the second line in the following code snippet is much more
informative than the text in the first line:

Parameter vehsales(r) ’regional vehicle sales’;

Parameter vehsales(r) ’regional vehicle sales ($ millions/yr)’;

Note that the descriptive text will be displayed whenever the respective identifier is displayed. Hence,
including units in the text will save time if results will have to be interpreted later.

4.13.2 Including Comments on Procedures and the Nature and Sources of
Data

We recommend that the documentation of the code offers answers to the following questions:

• What are the units of the variables and parameters?

612 User's Guide

• Where did the data come from?

• What are the characteristics of the data such as units and year of applicability?

• Why was a constraint set up in the way it is implemented?

In addition, it is often helpful to add comments that describe assumptions, the intent of equation terms,
data sources, including document name, page number, table number, year of applicability, units, URL etc.

Consider the following example where various forms of comments are illustrated:

* this is a one line comment that could describe data

$ontext

My data could be described in this multi-line comment

This is the second line

$offtext

* The following dollar control option activates end-of-line comments

* and redefines the symbol for end-of-line comments

$eolCom #

x = sum(i, z(i)) ; # this is an end-of-line comment

* The following dollar control option activates in-line comments

* and redefines the symbols for in-line comments

$inLineCom (* *)

x = sum(i, z(i)) ; (* this is an in-line comment *) r = sum(i, z(i)) ;

For more information on comments in GAMS, see section Comments.

4.13.3 Choosing Raw Data Instead Of Computed Data

Modelers often have a choice how they enter data: they could either use raw data and transform it to the
extent needed inside GAMS or process data externally and enter the final results into GAMS.

The second choice may be attractive if the raw data is available in a spreadsheet where it can be manipulated
before it is introduced to GAMS. However, over time spreadsheets and other data manipulation programs
change or get lost and often these programs are not documented well. Therefore, we recommend to enter
data into GAMS in a form that is as close as possible to the actual collected data and then manipulate
the data with GAMS to obtain the desired form. This will make it much easier to update models later or
to work out implicit assumptions.

4.13.4 Avoiding the Universal Set in the Context of Data Input

While GAMS permits using the universal set ∗ as an index in a parameter or table statement, in most
cases it is not advisable to do so. Consider the following example from the production and inventory
model [ROBERT]:

4.13 Good Coding Practices 613

Sets r ’raw materials’ / scrap, new / ;

Table misc(*,r) ’other data’

scrap new

max-stock 400 275

storage-c .5 2

res-value 15 25 ;

...

pd.. profit =e= sum(t, sum(p, c(p,t)*x(p,t))

- sum(r, misc("storage-c",r)*s(r,t)))

+ sum(r, misc("res-value",r)*s(r,"4"));

Note that the definition of the table misc indicates that any entry in the first index position is allowed.
There is no domain checking. Consequently, if the label res-value is misspelled as res-val in the
equation pd, GAMS will compile and execute the program without signaling an error, but instead of
the expected values (i.e. misc(r,"res-value")), the values of misc(r,"res-val") will be used in the
equation. These zero values will lead to faulty results, and the modeler will not be alerted to this fact.
To ensure that the results of a GAMS run are reliable and trustworthy, we strongly recommend to use
domain checking by introducing a new set for the labels in the first index position of the table misc:

Sets r ’raw materials’

/ scrap, new /

miscitem ’misc input items’

/ max-stock, storage-c, res-value /;

Table misc(miscitem,r) ’other data’

scrap new

max-stock 400 275

storage-c .5 2

res-value 15 25 ;

Observe that the new set miscitem contains exactly the labels that appear in the rows of the table misc.
Hence the set miscitem may be used in the first index position of the definition of misc without loss of
generality, but with the benefit of domain checking.

4.13.5 Defining Sets and Subsets Wisely

Generally, the elements of a set have a feature in common or they are similar in some way. In this section
we will give some guidance on how to partition the labels in the data into sets. In addition, we will discuss
in which contexts it is useful to introduce subsets. For an introduction to sets in GAMS, see chapter
Set Definition.

For example, suppose we have three grades of oil and three processes to crack it. The question arises whether
we should introduce one set with nine elements or two sets with three elements and a two-dimensional set.
We recommend the second alternative.

In another example, we consider a budget for farm spending: we have annual (i.e. cumulative yearly)
spending for fertilizer and for seed and also monthly spending for labor and for water. There are 26
decisions or items in the budget. We could introduce a set with 26 elements or we could use the following
formulation:

614 User's Guide

Sets resources / fertilizer, seed, labor, water /

periods / jan, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec, annual /

use(resources,periods)

/ (fertilizer,seed).annual

(labor,water) .(jan,feb,mar,apr,may,jun,jul,aug,sep,oct,nov,dec) /;

We recommend the formulation above and to err on the side of being more extensive or exact with set
definitions.

Occasionally it is necessary to group some labels into one set for a certain purpose and then single out
some of them for another purpose. Subsets facilitate modeling such a case. For example, a set of all cities
in a model may be needed to enter distances and compute related transportation costs. In addition, a
subset can be used to specify the cities that are hubs for some activity, since some equations should be
restricted to these hubs.

4.13.6 Structuring and Formatting Files to Improve Readability

In this section we will offer some guidlines on structuring and formatting the GAMS code to make it easy
to read.

There are several ways to structure the GAMS code. Two styles are outlined in section
Organization of GAMS Programs. The following recommendation to enter the sections of the code in a
fixed order is an extended version of the first style:

1. Set definitions for sets that are data related

2. Parameter, scalar and table definitions, possibly intermixed with calculations

3. Variable definitions

4. Equation declarations

5. Equation definitions (algebraic specification of equations)

6. Model and solve statement(s)

7. Definitions of sets and parameters for report writing

8. Calculations for report writing

9. Display statement(s) for reports

Note that the code will be easiest to navigate if each section of the code contains only one type of
statements. For example, interspersing set definitions with parameter definitions will make the code
unnecessarily difficult to read.

In addition to following a fixed structure, it is also essential to properly format the code. Of course,
formatting is in many respects a matter of taste. The following list offers some ideas:

• Align the names of identifiers and descriptive text, as demonstrarted in the examples in this tutorial
and in the GAMS User's Guide in general.

• Use spacing and indents.

• Use blank lines to highlight something and to mark sections of the code.

• Ensure that variables and all their index positions are on one line in equation definitions.

4.13 Good Coding Practices 615

• Indent in indexed operations like sums and programming flow control structures like loops and
if statements to delineate terms. The structure of a long and complex statement may be revealed
through careful indentation and thoughtful placement of closing parentheses.

We will demonstrate the effect of proper formatting with the following two examples. The first example
contains valid GAMS code, but is deliberately poorly formatted:

Sets products ’available production process’ / low ’uses low new materials’

medium ’uses medium new materials’, high ’uses high new materials’/

rawmateral ’source of raw materials’ / scrap, new /

Quarters ’long horizon’ / spring, summer, fall ,winter /

quarter(Quarters) ’short horizon’ / spring, summer, fall / ;

Variables production(products,Quarters) ’production and sales’ ;

openstock(rawmateral,Quarters) ’opening stocks’, profit ;

Positive variables production, openstock;

Equations capacity(quarter) ’capacity constraint’,

stockbalan(rawmateral,Quarters) ’stock balance’,

profitacct profit definition ;

profitacct.. profit =e= sum(quarter, sum(products, expectprof(

products,quarter) *production(products,quarter))-sum(

rawmateral,miscdata("store-cost",rawmateral)*openstock(rawmateral

,quarter)))+ sum(rawmateral, miscdata("endinv-value",rawmateral) *openstock(rawmateral,"winter"));

The second example contains the same code as the first example, but is carefully formatted:

Sets products ’available production process’

/ low ’uses a low amount of new materials’,

medium ’uses a medium amount of new materials’,

high ’uses a high amount of new materials’ /

rawmateral ’source of raw materials’ / scrap, new /

Quarters ’long horizon’ / spring, summer, fall, winter /

quarter(Quarters) ’short horizon’ / spring, summer, fall / ;

Variables production(products,Quarters) ’production and sales’

openstock(rawmateral,Quarters) ’opening stocks’

profit ;

Positive Variables production, openstock ;

Equations capacity(quarter) ’capacity constraint’

stockbalan(rawmateral,Quarters) ’stock balance’

profitacct ’profit definition’ ;

profitacct..

profit =e=

sum(quarter,

sum(products, expectprof(products,quarter)

*production(products,quarter)

)

- sum(rawmateral, miscdata("store-cost",rawmateral)*

openstock(rawmateral,quarter)

)

)

+ sum(rawmateral, miscdata("endinv-value",rawmateral)

*openstock(rawmateral,"winter")

)

;

616 User's Guide

Observe that inserting blank lines, aligning the names of identifiers and descriptive text, and indenting
and formatting closing parentheses in the sums makes the code much easier to read and understand (both
now and in the future) and is well worth adopting as standard practice when writing GAMS code.

4.13.7 Other Suggestions

We will complete this tutorial by offering some other useful suggestions that may help modelers develop
their own conventions.

Even though GAMS is case insensitive, it is advisable to establish some convention on the use of upper
and lower case letters. For example, Paul N. Leiby (currently at Oak Ridge National Laboratory) uses
lower case for texts and comments, and upper case for GAMS reserved words and variable and parameter
names. The casing used when an identifier or label is first encountered in a GAMS program is the casing
stored by GAMS and used in subsequent outputs like the listing file or a GDX file. Any casing can be
used (so noWhere is equivalent to nowHere) but the casing stored is determined by first use.

A similar situation holds for label quoting: the type of quotes stored (if any) are determined by first use.

Note that the dollar control option $onSymList will cause a list of all identifier names to be displayed in
the compilation output of the output file. This list may be used to review the spelling and casing of the
identifiers as they will appear in output files. Similarly, the dollar control option $onUELList will cause
an ordered list of all labels to be displayed in the compilation output of the output file. This is useful for
checking both the case and order of the labels used in the GAMS program. For more on issues related to
label ordering, see section Ordered and Unordered Sets.

To keep track of the data types of identifier names, some modelers always start set names with s , names
of parameters with d (for ”data”), variables names with v and equation names with e .

Some experienced GAMS users always surround explanatory text with quotes: this makes the text stand
out, prevents it from being interpreted as a label or identifier, and allows special characters like $, - and
& to be used.

If a file is used by several modelers and is updated occasionally, a file modification log at the top of the
file will be in order. It should contain the following information: the modification date, version number,
modification(s) made and who made the modification. For example, a set called version may be used to
keep track of the dates the input files were modified:

Set version(*,*,*,*);

. . .

version("my_file","May","19","2016") = yes;

version("my_include_file","Sep","30","2016") = yes;

. . .

display version;

Note that the display statement will generate a display of all elements of the set version, each indicating
on which day a component of the model was modified.

4.14 Fixing Compilation Errors

As detailed in chapter GAMS Output, the execution of a GAMS program passes through several stages,
where the compilation is the first stage. Often when a program is run for the first time, it cannot be
solved successfully because of compilation errors. This can be very frustrating, especially for new users. In
this tutorial we will explain the causes of the most common compilation errors and offer some advice on
how to fix them. For an introduction to compilation errors, see section Compilation Errors. In addition,
the tutorial A GAMS Tutorial by Richard E. Rosenthal offers some detailed material on this topic.

Note

Frequently, many compilation errors in the latter part of the code are actually consequential errors
that will disappear as soon as the compilation errors in the beginning have been resolved. Therefore
we recommend to start with fixing the first few errors and to run the program again. More often
than not, many subsequent compilation errors will have vanished.

4.14 Fixing Compilation Errors 617

4.14.1 Preliminary Remarks

Before we will turn to an overview of the most common errors, examples that illustrate them and advice
how to resolve them, we will provide some basic information on compilation errors and error messages.

4.14.1.1 Finding Compilation Errors

Compilation errors are marked with four asterisks (∗∗∗∗) in the compilation output of the GAMS listing
file (also called output file or lst file, since it has the extension .lst), hence it is easy to detect lines where
compilation errors occured by inspection.

Note

Compilation error messages also appear in the LOG file. And, if GAMS Studio is used, a click at an
error message in the LOG will navigate directly to the problematic code in the source file.

Consider the following simple example:

Set c "crops" / barley, wheat, soy, wheat, rice /;

If this set statement appears in a program, the resulting compilation output will contain the following
lines:

1 Set c "crops" / barley, wheat, soy, wheat, rice /;

**** $172

...

Error Messages

172 Element is redefined

Note that in the echo print of the input file a line starting with ∗∗∗∗ is inserted and the dollar sign $
followed by a number appears on this line. This indicates that a compilation error - in this case error 172
- was discovered in the line above. In addition, a list of all errors with explanatory error messages is given
at the end of the echo print.

In our example, the error refers to wheat and the error message addresses the cause of the error: the
respective element is redefined. Thus we check the other elements of the set and quickly realize that wheat
appears a second time. If we delete the second instance of wheat and run the code again, this line will not
cause any errors anymore. Note that many compilation errors are as easy to fix as demonstrated here.

618 User's Guide

4.14.1.2 Repositioning Compilation Error Messages

By default, the error messages are shown directly beneath the line where the respective error is marked.
GAMS allows to customize this position with the command line parameter ErrMsg: the value of 0 for
ErrMsg will list all error messages at the end of the echo print and the value of 2 will suppress the error
messages in the lst file completely. Note that the default is 1.

Consider the following simple example.

Set a / a1 * a7 /;

Set b(a) / a7 * a9 /;

Parameter p(k) / i3 47 /;

The resulting compilation output will contain the following lines:

1 Set a / a1 * a7 /;

2 Set b(a) / a7 * a9 /;

**** $170

**** 170 Domain violation for element

3 Parameter p(k) / i3 47 /;

**** $120

**** 120 Unknown identifier entered as set

Observe that the error messages are placed on the line after the error is marked. This can be especially
useful if the program contains many lines of code. Next, we run the same code with the following call:

> gams test ErrMsg=0

The resulting compilaton output follows.

1 Set a / a1 * a7 /;

2 Set b(a) / a7 * a9 /;

**** $170

3 Parameter p(k) / i3 47 /;

**** $120

...

Error Messages

120 Unknown identifier entered as set

170 Domain violation for element

Now the error messages are displayed at the end of the compiler listing.

4.14 Fixing Compilation Errors 619

Note

Default values for command line parameters and environment variables can be specified using a
configuration file gamsconfig.yaml. The GAMS Configuration Editor can be used to view and edit
the GAMS configuration file but any other text editor can be used as well. Alternatively, users
may change the system level defaults by entering the line ErrMsg=0 in the file gmsprmnt.txt on
Windows, or gmsprmun.txt on Unix machines as in the following example:

* GAMS 2.50 Default Parameterfile for Windows NT *

* Gams Development Corp. *

* Date : 20 Mar, 1998 *

* entries required by CMEX, put in by gams.exe:

* SYSDIR

* SCRDIR

* SCRIPTNEXT

* INPUT

errmsg=0

4.14.2 Resolving Common Compilation Errors

There are hundreds of compilation errors in GAMS, but some of them are particularly frequent. In the
table below we present these common errors, with a brief description of the possible cause and a link to a
subsection below where examples and more details are given. We recommend that users also read the
error messages, since they often contain additional hints.

GAMS Error Common Cause of Error Subsections with Examples and
More Details

8 Closing parentheses, square brackets or
braces are missing.

H

36 The two dots .. are missing in the equa-
tion definition.

I

37 The equation type (eg. =L=) is missing
in the body of the equation.

I

51-60 There are prohibited nonlinear expres-
sions.

J

66 A data item which has not been given
numerical values appears in an equation.

K

71 The equation has been declared, but not
defined.

I

96, 97 A statement followed by another state-
ment is not terminated with ;.

B

120 GAMS cannot find a set with this name.
Check for typos in the set name and
set elements that are referenced without
quotes.

C, L

125 The set is controlled more than once, e.g.,
by an indexed operation like sum and by
an equation definition.

F

140 GAMS is looking for a keyword or de-
clared item and cannot find it. Check
spelling and declarations.

A, C, K, M

620 User's Guide

GAMS Error Common Cause of Error Subsections with Examples and
More Details

141 The parameter without data is used or
problems with solve and therefore at-
tributes .l and .m are empty.

K

148 The identifier is referenced with more or
less indexed sets than in the declaration.

E

149 The set is not controlled, neither by an
indexed operation like sum, nor by an
equation definition, nor by a loop or sim-
ilar.

G, L

170 The referenced set element cannot be
found in the set defined for this index
position. Check for typos, omissions in
the set declaration, missing quotes and
references to the wrong set.

C, D

171 A domain error. The wrong set is refer-
enced for the respective index position.

E, L

195 The name used here was already used for
another identifier.

N

198 Using the operation ord or a lag/lead
operation with a set that is not ordered.

O

256 Something is wrong with the model spec-
ification. This is often a consequential
error of another error. Look for other er-
ror messages immediately after the solve
statement.

I, J

257 The solver is not checked. This may be a
consequential error of any GAMS error.

340 Probably the quotes in a set element ref-
erence are missing.

L

408 Surplus closing parentheses, square
brackets or braces.

H

4.14.2.1 Error A: Misplaced Semicolons

Maybe the most common error for new users is related to semicolons. Consider the following example
adapted from the well-known transportation model [TRNSPORT]:

Sets i "canning plants" / Seattle, San-Diego / ;

j "markets" / New-York, Chicago, Topeka / ;

The resulting compilation output will contain the following lines:

20 Sets i canning plants / Seattle, San-Diego / ;

21 j markets / New-York, Chicago, Topeka / ;

**** $140 $36

...

Error Messages

36 ’=’ or ’..’ or ’:=’ or ’$=’ operator expected

rest of statement ignored

140 Unknown symbol

4.14 Fixing Compilation Errors 621

What went wrong? GAMS statements like the set statement in our example have to terminate with a
semicolon, unless the next line of code begins with a reserved word. Now, set statements may extend over
several lines and define several sets. In our example, the set statement extends over two lines and two sets
are declared. However, there is a semicolon at the end of the first line, therefore GAMS assumes that the
set statement ends there. The symbol j at the beginning of the next line has not been declared yet and
it is not a GAMS keyword, thus it is marked as Unknown symbol. Note that error 36 is a consequential
error that will disappear as soon as the first error has been resolved.

How do we fix this? There are two ways: either we could drop the semicolon at the end of the first line
and thus indicate that the set statement continues to the second line or we could insert the keyword
Set at the start of the second line and thus introduce a new set statement. These two alternatives are
illustrated below:

Sets i "canning plants" / Seattle, San-Diego /

j "markets" / New-York, Chicago, Topeka / ;

or

Sets i "canning plants" / Seattle, San-Diego / ;

Set j "markets" / New-York, Chicago, Topeka / ;

Note

• In general, GAMS statements have to be terminated with a semicolon. The semicolon may be
omitted if the next line starts with a GAMS keyword.

• Even if it is not required, it is good practice to always end a statement with a semicolon.

4.14.2.2 Error B: Missing Semicolons

Consider the following example adapted from the well-known transportation model [TRNSPORT]:

Equations

cost "define objective function"

supply(i) "observe supply limit at plant i"

demand(j) "satisfy demand at market j"

cost .. z =e= sum((i,j), c(i,j)*x(i,j)) ;

The resulting compilation output will contain the following lines:

52 Equations

53 cost define objective function

54 supply(i) observe supply limit at plant i

55 demand(j) satisfy demand at market j

56

57 cost .. z =e= sum((i,j), c(i,j)*x(i,j)) ;

**** $97 $195,96,195,96 $195,96

...

Error Messages

96 Blank needed between identifier and text

(-or- illegal character in identifier)

(-or- check for missing ’;’ on previous line)

97 Explanatory text can not start with ’$’, ’=’, or ’..’

(-or- check for missing ’;’ on previous line)

622 User's Guide

What went wrong? GAMS statements like the equation declaration in our example have to terminate
with a semicolon, unless the next line of code begins with a GAMS keyword. In our example, we omitted
the semicolon at the end of the equation declaration statement and started a new statement after a blank
line.

How do we fix this? We simply add a semicolon after the last explanatory text at the end of the equation
declaration statement.

Note

A missing semicolon is often associated with error 96 or 97.

4.14.2.3 Error C: Spelling Mistakes

This error occurs if sets, set elements, parameters, etc. are referenced with a different name than the
name they were declared with. Note that differences in capitalization are not considered spelling mistakes
since GAMS is case insensitive.

Consider the following example adapted from the well-known transportation model [TRNSPORT]:

Sets i "canning plants" / Seattle, San-Diego /

j "markets" / New-York, Chicago, Topeka / ;

Parameters a(i) "capacity of plant i in cases"

/ Seatle 350

san-diego 600 / ;

...

Equations

cost "define objective function"

supply(i) "observe supply limit at plant i"

demand(j) "satisfy demand at market j" ;

cst .. z =e= sum((i,j), c(i,j)*x(i,j)) ;

The resulting compilation output will contain the following lines:

20 Sets i canning plants / Seattle, San-Diego /

21 j markets / New-York, Chicago, Topeka / ;

22

23 Parameters a(i) capacity of plant i in cases

24 / Seatle 350

**** $170

25 san-diego 600 / ;

...

49 Equations

50 cost define objective function

51 supply(i) observe supply limit at plant i

52 demand(j) satisfy demand at market j ;

53

54 cst .. z =e= sum((i,j), c(i,j)*x(i,j)) ;

**** $140

...

Error Messages

140 Unknown symbol

...

170 Domain violation for element

4.14 Fixing Compilation Errors 623

What went wrong? Note that in line 24 the set element Seattle was referenced as Seatle. GAMS
does not recognize this symbol as an element of the set i and thus marks this with error 170: Domain

violation. GAMS catches this error since it automatically performs domain checking. The typo in line
54, where the equation cost is referenced as cst, is marked with error 140 (Unknown symbol), since cst

was not declared before.

Note

Set name misspellings are associated with error 120, set element misspellings with 170 and other
misspellings with 140.

Fixing errors like these is as easy as fixing typos.

4.14.2.4 Error D: Missing Set Elements

Sometimes users forget to include an element in a set statement, but reference it later. Consider the
following simple example:

Set c "crops" / barley, wheat, soy /;

Parameter d(c) "demand in metric tons" / rice 3, barley 1, wheat 4, soy 2 /;

The resulting compilation output will contain the following lines:

1 Set c "crops" / barley, wheat, soy /;

2 Parameter d(c) "demand in metric tons" / rice 3, barley 1, wheat 4, soy 2 /;

**** $170

...

Error Messages

170 Domain violation for element

What went wrong? Note that the symbol rice was not defined as an element of the set c, thus GAMS
does not recognize it and marks it with error 170: Domain violation. GAMS catches this error since it
automatically performs domain checking.

Note

If symbols are not defined as set elements, but are referenced as if they belong to the set later, error
170 will occur.

This is easy to fix: we just add the missing element(s) to the elements of the respective set.

624 User's Guide

4.14.2.5 Error E: Problems with Indices

Recall that variables, sets, parameters and equation may be defined over one or more indices. If the
identifiers are referenced later in the program, the indices must appear exactly in the order that was
specified in the respective definition statement. Consider the following example adapted from the
well-known transportation model [TRNSPORT]:

Sets i "canning plants" / seattle, san-diego /

j "markets" / new-york, chicago, topeka / ;

Table d(i,j) "distance in thousands of miles"

new-york chicago topeka

seattle 2.5 1.7 1.8

san-diego 2.5 1.8 1.4 ;

Scalar f "freight in dollars per case per thousand miles" /90/ ;

Parameter c(i,j) "transport cost in thousands of dollars per case" ;

c(i,j,j) = f * d(j,i) / 1000 ;

The resulting compilation output will contain the following lines:

40 Parameter c(i,j) transport cost in thousands of dollars per case ;

41 c(i,j,j) = f * d(j,i) / 1000 ;

**** $148 $171,171

...

Error Messages

148 Dimension different - The symbol is referenced with more/less

indices as declared

171 Domain violation for set

What went wrong? Note that the parameter c was declared over two indices, but in the assignment
statement in line 41 it is referenced with three indices. Such a mistake is marked with error 148. Note
further, that the indices of d are referenced in the wrong order, which is marked with error 171.

Note

If an identifier is referenced with more or less indices as declared, then the error 148 will be triggered.
If the indices are in the wrong order, the error 171 will be triggered.

This is easy to fix: we just check the declaration or definition statement(s) and adjust the reference.

Observe that the domain error 171 is also triggered if an identifier is referenced with index say i, but was
defined over say j. However, there will be no domain error if i is a subset of j or i and j reference the
same set since they are aliases.

4.14 Fixing Compilation Errors 625

4.14.2.6 Error F: Summing over Sets that are Already Indexed

Consider the following equation definition that is adapted from the well-known transportation model
[TRNSPORT]:

supply(i) .. sum((i,j), x(i,j)) =l= a(i) ;

The resulting compilation output will contain the following lines:

59 supply(i) .. sum((i,j), x(i,j)) =l= a(i) ;

**** $125

...

Error Messages

125 Set is under control already

What went wrong? Note that the equation is indexed over the set i, therefore the indexed operation sum

in the body of the equation may not be controlled by the index i again.

Note

Summing over sets that are already indexed will trigger error 125.

How do we fix this? We need to carefully check the indexed operation and drop the surplus index. In
other cases the controlling index may have to be dropped from the equation name. Note that an error like
this is often indicative of a lack of clarity in thinking.

4.14.2.7 Error G: Uncontrolled Sets

Consider the following equation definition that is adapted from the well-known transportation model
[TRNSPORT]:

demand .. sum(i, x(i,j)) =g= b(j) ;

The resulting compilation output will contain the following lines:

61 demand .. sum(i, x(i,j)) =g= b(j) ;

**** $149 $149

...

Error Messages

149 Uncontrolled set entered as constant

What went wrong? Note that the variable x is indexed over the sets i and j, but, while i is the index of
the indexed operation sum, j is ”free”: it does neither appear as index of the equation nor as controlling
index in sum. Therefore it was entered as if it were a constant. Note further, that j is also used as an
index on the right-hand side of the equation without being controlled.

Note

Error 149 marks instances when an index is not controlled in the context of an equation or an
indexed operation like sum or prod.

How do we fix this? We have to think what we actually want to model. In this case we need to enter j as
a controlling index for the equation. But it would also be possible to add it as a controlling index for
sum (but not both!). In the latter case there would still be the error on the right-hand side which needed
to be taken care of with another indexed operation, e.g., sum again. Both approaches would remove the
compilation error, but one has to think about what actually should be modeled to decide which is the
right fix here.

626 User's Guide

4.14.2.8 Error H: Mismatched Parentheses

Consider the following two equations adapted from the model [CHENERY]:

mb(i).. x(i) =g= y(i) + sum(j, aio(i,j)*x(j)) + (e(i) - m(i)))$t(i) ;

...

dvv(i)$(sig(i) <> 0).. vv(i) =e= (pi*(1-del(i))/del(i))**(-rho(i)/(1+rho(i)) ;

The resulting compilation output will contain the following lines:

137 mb(i).. x(i) =g= y(i) + sum(j, aio(i,j)*x(j)) + (e(i) - m(i)))$t(i) ;

**** $408,409

...

155 dvv(i)$(sig(i) <> 0).. vv(i) =e= (pi*(1-del(i))/del(i))**(-rho(i)/(1+rho(i)) ;

**** $8

...

Error Messages

8 ’)’ expected

...

408 Too many),] or }

409 Unrecognizable item - skip to find a new statement

looking for a ’;’ or a key word to get started again

What went wrong? Note that in the first equation we have one surplus closing parenthesis, this is marked
with error 408. The error marked with 409 is a consequential error, it will disappear once the first error
has been fixed. In the second equation, one closing parenthesis is missing resulting in error 8.

Attention

Opening and closing parentheses (), square brackets [] and braces (curly brackets) { } must
match.

Note

Surplus closing parentheses, bracketes and braces are marked with error 408 and missing closing
parenthesis, brackets and braces are marked with error 8. Missing opening parentheses, brackets
and braces may result in GAMS marking surplus closing parentheses, brackets and braces; surplus
opening parentheses, brackets and braces may result in GAMS marking missing closing parentheses,
brackets and braces.

While fixing errors like these entails carefully counting opening and closing parentheses, there are strategies
that help to prevent mismatching parentheses errors. Many text editors (like GAMS Studio) offer a feature
that identifies matching parentheses and will issue a warning if there is a mismatch. We recommend to
use this feature. Further, we recommend to also use the alternatives to parentheses: square brackets and
braces. They are especially useful if there are several opening parentheses since it is easier to determine
by inspection if each has a matching closing symbol.

4.14 Fixing Compilation Errors 627

4.14.2.9 Error I: Mistakes Relating to Equations

Recall that each declared equation must be defined if it is to be used in a model statement. If the equation
definition is missing, GAMS will mark an error beneath the solve statement that refers to a model which
references the respective undefined equation. Consider the following example adapted from the well-known
transportation model [TRNSPORT]:

Equations

cost "define objective function"

supply(i) "observe supply limit at plant i"

demand(j) "satisfy demand at market j" ;

cost .. z =e= sum((i,j), c(i,j)*x(i,j)) ;

supply(i) .. sum(j, x(i,j)) =l= a(i) ;

Model transport /all/ ;

solve transport using lp minimizing z ;

The resulting compilation output will contain the following lines:

60 Model transport /all/ ;

61 solve transport using lp minimizing z ;

**** $71,256

**** The following LP errors were detected in model transport:

**** 71 demand is an undefined equation

...

Error Messages

71 The symbol shown has been declared as an equation, but no

Symbolic equation (..) was found. hint - look for commas in the

Documentation text for the equations. use quotes around the

Text or eliminate the commas.

256 Error(s) in analyzing solve statement. More detail appears

Below the solve statement above

What went wrong? Note that the equation demand was declared and included in the model transport,
but it was not defined. GAMS detects that the equation definition is missing when it compiles the solve
statement that relates to the model transport. Therefore the error 71 appears only there. The error 256
is a consequential error, it will disappear once the missing equation definition has been added (before the
solve statement).

Note

Error 71 marks a missing equation definition. The message associated with this error is a nice
example of an error message that is very descriptive and offers advice on how to fix the error.

Apart from forgetting to define a declared equation and forgetting to terminate the equation definition
statement with a semicolon (see above), two other mistakes relating to equations are frequent: omitting
the syntax element .. after the name of the equation and not properly defining the equation type in the
equation definition statement. The following simple example adapted from the portfolio analysis model
[ALAN] illustrates these mistakes:

fsum sum(i, x(i)) =e= 1.0;

dmean.. sum(i, mean(i)*x(i)) = target;

628 User's Guide

The resulting compilation output will contain the following lines:

45 fsum sum(i, x(i)) =e= 1.0;

**** $36

46 dmean.. sum(i, mean(i)*x(i)) = target;

**** $37

...

Error Messages

36 ’=’ or ’..’ or ’:=’ or ’$=’ operator expected

rest of statement ignored

37 ’=l=’ or ’=e=’ or ’=g=’ operator expected

What went wrong? Note that in the first equation the two dots .. are missing, which is marked with
error 36, and in the second equation the equation type is not properly specified, which leads to error 37.

4.14.2.10 Error J: Issues with Nonlinear Expressions

The compilation error messages 51 to 60 refer to issues with nonlinear expressions involving variables
in equations. For example, nonlinear expressions in an LP model will cause errors of this sort. So will
discontinuous functions with endogenous arguments in an NLP model. For information on endogenous
arguments in functions, see section Functions in Equation Definitions. For an overview of GAMS model
types, see section Classification of Models.

Consider the following simple artificial example:

Variables x, y, z ;

Equations eq1, eq2 ;

eq1.. x**2 - y =e= z ;

eq2.. min(x,y) =l= 20 ;

Model silly / all / ;

solve silly using lp maximizing z ;

The resulting compilation output will contain the following lines:

7 Model silly / all / ;

8 solve silly using lp maximizing z ;

**** $54,51,256

**** The following LP errors were detected in model silly:

**** 54 equation eq1.. VAR operands for **

**** 51 equation eq2.. the function MIN is called with non-constant arguments

Error Messages

51 Endogenous function argument(s) not allowed in linear models

54 Endogenous operands for ** not allowed in linear models

256 Error(s) in analyzing solve statement. More detail appears

Below the solve statement above

Note that error 54 marks the nonlinear expression x2 in a linear model and error 51 refers to the
discontinuous function min that may be used with variables only in models of the type DNLP. The error
256 is a consequence of the two previous errors.

4.14 Fixing Compilation Errors 629

4.14.2.11 Error K: Using Undefined Data

Referencing data items that were not declared with a scalar, parameter or table statement will cause error
140: GAMS will indicate that the respective symbol is unknown. More often data items are declared, but
not defined, i.e. they are not initialized with values.

Consider the following example adapted from the well-known transportation model [TRNSPORT].
Assume that the scalar f is declared, but has no numerical value. The resulting compilation output will
contain the following lines:

40 Scalar f freight in dollars per case per thousand miles ;

41

42 Parameter c(i,j) transport cost in thousands of dollars per case ;

43

44 c(i,j) = f * d(i,j) / 1000 ;

**** $141

...

61 Model transport /all/ ;

62 solve transport using lp minimizing z ;

**** $257

63

64 display x.l, x.m ;

**** $141

...

Error Messages

141 Symbol declared but no values have been assigned. Check for missing

data definition, assignment, data loading or implicit assignment

via a solve statement.

A wild shot: You may have spurious commas in the explanatory

text of a declaration. Check symbol reference list.

257 Solve statement not checked because of previous errors

What went wrong? Note that the scalar f was declared, but there was no value assigned to it. Thus,
when it is referenced in the calculation in line 44, the ”empty” scalar causes error 141. Error 257 is
a consequential error and leads to the second error 141. This error occurs in the context of variable
attributes in the display statement. Recall that variable attributes are data associated with variables. As
the solve statement could not be checked, the level and marginal values of the variable x are not defined
and hence error 141 follows.

Note

Error 141 marks places where data items, that have not been defined, are referenced in computations
in the context of assignment statements. It also marks places where undefined variable (or equation)
attributes are referenced.

In addition, undefined data items may be referenced in the context of equation definitions. Suppose we
declare the parameter c in model [TRNSPORT], but forget the corresponding assignment statement.
Then the compilation output will contain the following lines:

57 cost .. z =e= sum((i,j), c(i,j)* x(i,j)) ;

...

62 solve transport using lp minimizing z ;

**** $66,256

**** The following LP errors were detected in model transport:

630 User's Guide

**** 66 equation cost.. symbol "c" has no values assigned

...

Error Messages

66 The symbol shown has not been defined or assigned

A wild shot: You may have spurious commas in the explanatory

text of a declaration. Check symbol reference list.

256 Error(s) in analyzing solve statement. More detail appears

Below the solve statement above

Note that the missing data in the body of the equation cost is marked with error 66 and the following
error is a consequential error which will disappear once 66 has been fixed.

Note

Referencing undefined data items in the body of an equation causes error 66.

4.14.2.12 Error L: Referencing Set Elements Without Quotes

Recall that if set elements are referenced, they need to appear in single or double quotes. Omitting the
quotes may cause different errors depending on the context. The following example is adapted from the
well-known transportation model [TRNSPORT]. Suppose we start by defining the two sets and the
two parameters and then add the following statements:

Scalar s;

s = a(seattle);

The resulting compilation output will contain the following lines:

37 Scalar s;

38 s = a(seattle);

**** $120,340,149,171

...

Error Messages

120 Unknown identifier entered as set

149 Uncontrolled set entered as constant

171 Domain violation for set

340 A label/element with the same name exist. You may have forgotten

to quote a label/element reference. For example,

set i / a,b,c /; parameter x(i); x(’a’) = 10;

What went wrong? On the right-hand side of the assignment statement we have a reference with missing
quotes. Note that this creates four (!) errors:

• 120 - GAMS expects a controlling set and Seattle is not recognized and therefore considered an
unknown identifier.

• 340 - Then GAMS realizes that actually there is a label called Seattle in the program and helpfully
offers a hint: You may have forgotten to quote a label/element reference.

• 149 - See section Error G: Uncontrolled Sets above.

• 171 - See section Error E: Problems with Indices above.

This is a nice example for one mistake triggering several errors that may look daunting. However, fixing
them is as easy as adding single or double quotes.

4.14 Fixing Compilation Errors 631

4.14.2.13 Error M: Missing Declaration Statements

Recall that sets, parameters, variables and equations have to be declared before they may be used in
definition or assignment statements. Suppose the equation demand in the well-known transportation model
[TRNSPORT] was defined but not declared. Then the compilation output would contain the following
lines:

59 demand(j) .. sum(i, x(i,j)) =g= b(j) ;

**** $140

...

Error Messages

140 Unknown symbol

Note that as demand was not declared, GAMS does not recognize it and therefore marks it with error 140:
Unknown symbol.

Note

If error 140 is reported, the respective declaration statement is probably missing. However, the
underlying cause may also be a simple typo.

4.14.2.14 Error N: Using the Same Name for Different Identifiers

Recall that each GAMS identifier must have a unique name. If the same name is used more than once, an
error will be triggered. Consider the following modification of the transportation model [TRNSPORT]:

Parameters capacity(i) "capacity of plant i in cases"

/ Seattle 350, San-Diego 600 /

demand(j) "demand at market j in cases"

/ New-York 325, Chicago 300, Topeka 275 /;

...

Equations

cost "define objective function"

supply(i) "observe supply limit at plant i"

demand(j) "satisfy demand at market j" ;

The resulting compilation output will contain the following lines:

47 Equations

48 cost define objective function

49 supply(i) observe supply limit at plant i

50 demand(j) satisfy demand at market j ;

**** $195

...

Error Messages

195 Symbol redefined with a different type

What went wrong? Note that demand was first declared as a parameter and later as an equation. GAMS
will mark this repeated use of the same name with error 195.

632 User's Guide

4.14.2.15 Error O: Using ORD with an Unordered Set

Recall that the operation ord is only defined for ordered sets. If ord is used with an unordered set, error
198 will be triggered.

Consider the following example:

Set a "a couple of the elements" / r2, r3 /;

Set b "more elements" / r1*r4 /;

Scalar c "counter" / 0 /;

loop(b $ (ord(b) > 3),

c = c + 1);

display c;

The resulting compilation output will contain the following lines:

5 loop(b $ (ord(b) > 3),

**** $198

6 c = c + 1);

...

Error Messages

198 Set used in ’ord’ or lag is not ordered.

Hint: Some of the elements of the set were used before this

was initialized and the order was different from the order used

in this set. Try to initialize the set earlier.

$offOrder allows lag operations on dynamic sets, reset with

$onOrder

What went wrong? Two elements of the set b featured already in set a that was defind before set b.
Therefore the order of the elements in set b is as follows:

r2 r3 r1 r4

Obviously, this set is not orderd and hence GAMS marks error 198 when the operator ord is applied to it.

How do we fix this? In this case it is easy: we just define the set b before set a and b will be an ordered
set.

Consider one last example:

Set a "all elements" / r1*r10 /;

Set b "elements in different order" / r3, r1, r4, r7 /;

Scalar c "counter" / 0 /;

loop(b $ (ord(b) > 3),

c = c +1);

display c;

The resulting compilation output will contain the following lines:

5 loop(b $ (ord(b) > 3),

**** $198

6 c = c +1);

What went wrong? Note that even though all elements in set b are also elements of set a, they
are not specified in the same order. Therefore the set b is unordered. For more details, see section
Ordered and Unordered Sets.

4.15 Finding and Fixing Execution Errors and Performance Problems 633

4.15 Finding and Fixing Execution Errors and Performance
Problems

This tutorial is structured in four main parts: we will discuss how to find and resolve
errors that are detected during execution of a GAMS model, we will give some guidance for
model development and debugging and we will present techniques to increase efficiency by reducing
GAMS execution time and memory use.

4.15.1 Resolving Execution Errors

Recall that GAMS passes through a program file several times in the process of generating and solving a
model. Errors may occur in each phase. In this section we will give some guidance on how to resolve
errors that occur during execution, so after compilation. For advice on resolving compilation errors, see
the tutorial Fixing Compilation Errors. For more information on the process of generating and solving a
model in GAMS, see the introduction to chapter GAMS Output.

At execution, several things could go wrong and cause an error. We will look at these potential error
sources separately in this section. First we look at arithmetic errors and exceeded internal limits during
data manipulation, we will continue with problems during model generation and model solution. At the
end, we will briefly discuss how execution errors may be managed with the function execError.

4.15.1.1 Arithmetic Errors

GAMS execution errors may be caused by illegal arithmetic operations like a negative argument for log,
division by zero and exponentiation where the base is a negative number. The following simple example
serves as illustration:

Set s / s1*s5 / ;

Parameter p(s) "data to be exponentiated"

d(s) "divisors"

r(s) "result";

p(s) = 1;

p("s2") = -1;

d(s) = 1;

d("s3") = 0;

r(s) = p(s)**2.1 / d(s)

display r;

The first sign that something in the execution went wrong is the following flag in the log output:

*** Status: Execution error(s)

The resulting execution output will contain the following lines:

E x e c u t i o n

**** Exec Error at line 10: rPower: FUNC DOMAIN: x**y, x < 0

**** Exec Error at line 10: division by zero (0)

---- 11 PARAMETER r result

s1 1.000, s2 UNDF, s3 UNDF, s4 1.000, s5 1.000

634 User's Guide

Observe that the execution output begins with two error messages that can be easily found since they are
marked with four asterisks ∗∗∗∗. The error messages are very informative: they indicate the line where
the errors occurred and provide details about the nature of the errors. Further, the output generated
by the display statement shows that the errors occurred when the values for r("s2") and r("s3") were
computed. Inspecting the assignment statement for these two values, we realize that in the first instance
the base for the exponentiation is -1, which obviously is a negative number and hence is not allowed in
this operation. In the second instance, the problem is that we divide by d("s3") which equals zero.

In this example, the errors are easily resolved with data revisions. In general, we recommend to use
conditional assignments to prevent errors like these.

Note that in the example above the error messages indicated exactly where the problem was and it was
easy to find the cause of the error. However, this is not always the case. In particular, if the problem is
within a multi-dimensional item the user will need more patience. Usually it helps to display the results
of the problematic operation and look for faulty entries. In addition, displaying the input data to the
respective operation will help to investigate the numerical properties of the data that was entered in
the computation. Often more displays will be needed to trace faulty input data through the program.
Eventually this will lead the user to understand why the data has taken on the specific numerical values it
has.

4.15.1.2 Exceeding GAMS Limits

By default, GAMS stops the solve of a model after 1e10 seconds (wall clock time) or 2e9 iterations.
These limits may be adjusted with the options reslim and iterlim respectively. Note that both options
are also available as command line parameters and model attributes. In addition, the workspace may be
limited with the command line parameters WorkFactor and WorkSpace. Note that these options are also
available as model attributes. If any of these limits are exceeded, the execution of the solve statement
will be interrupted.

For example, we could add the following option statement somewhere before the solve statement in the
production model [CHENERY]:

option iterlim = 20;

Note that this statement reduces the iteration limit to just 20. The log output will contain the following
lines:

** Feasible solution. Value of objective = 1033.34069261

** The iteration limit has been reached.

--- Restarting execution

--- chenery.gms(228) 2 Mb

--- Reading solution for model chenrad

*** Status: Normal completion

--- Job chenery.gms Stop 11/21/16 16:52:43 elapsed 0:00:00.106

Also the solve summary in the listing file notes the interrupt:

4.15 Finding and Fixing Execution Errors and Performance Problems 635

S O L V E S U M M A R Y

MODEL chenrad OBJECTIVE td

TYPE NLP DIRECTION MAXIMIZE

SOLVER CONOPT FROM LINE 228

**** SOLVER STATUS 2 Iteration Interrupt

**** MODEL STATUS 7 Feasible Solution

**** OBJECTIVE VALUE 1058.9199

RESOURCE USAGE, LIMIT 0.078 1000.000

ITERATION COUNT, LIMIT 20 20

EVALUATION ERRORS 0 0

Observe that the solver status Iteration Interrupt indicates that the execution terminated because
the iteration limit has been reached resulting in a feasible solution, but not the optimal solution. The line
ITERATION COUNT, LIMIT ... reports that 20 iterations were performed and that 20 was also the limit
for the number of iterations. Setting iterlim to a larger value will resolve this issue.

Similarly, allocating too little work space will cause the solver to terminate with no solution. For example,
restricting the work space for the nonlinear test model [MHW4D] to just 0.1 MB and running it with
the solver MINOS will produce the following lines in the log output:

Work space requested by solver -- 0.77 Mb

Work space requested by user -- 0.10 Mb

Work space allocated -- 0.10 Mb

Reading Rows...

Reading Columns...

Reading Instructions...

EXIT - Not enough storage to solve the model.

Request at least 0.19 Mbytes.

The solve summary in the listing file will contain the following information:

S O L V E S U M M A R Y

MODEL wright OBJECTIVE m

TYPE NLP DIRECTION MINIMIZE

SOLVER MINOS FROM LINE 32

**** SOLVER STATUS 9 Setup Failure

**** MODEL STATUS 13 Error No Solution

Note that increasing the work space to at least the minimum amount requested by the solver will resolve
this issue.

When dealing with large nonlinear expressions defined over a very large domain, one can face the following
error.

*** Status: Terminated due to limits in NLCodeAdd

*** Cannot handle more than 2147483647 instruction in NL code

*** Inspect listing file for more information

The first thing to check in this case is correctness of the model i.e., if you are not generating anything
more than necessary. If this is not the case and the model is indeed large, a generic advise is to introduce
intermediate variables to get a smaller code size per block of equations. One can also consider partitioning
the domains so that one can have more number of smaller blocks.

636 User's Guide

4.15.1.3 Resolving Model Generation Errors

Further execution errors may be detected when GAMS is generating the model before passing it to the
solver. These errors may be arithmetic errors in the body of equations or errors in the structure of the
model that cause the model to be inherently infeasible.

Consider the following simple example with arithmetic errors in the body of the equations. They are
similar to the errors in the assignment in the example in section Arithmetic Errors above.

Set s / s1*s5 / ;

Parameter p(s) "data to be exponentiated"

d(s) "divisors"

m(s) "multipliers";

p(s) = 1;

p("s2") = -1;

d(s) = 1;

d("s3") = 0;

m(s) = 1;

m("s4") = 0;

Positive variable x(s);

Variable z;

Equations obj "objective function"

xlim;

obj.. z =e= sum(s,p(s)**2.2*x(s));

xlim(s).. m(s) / d(s)*x(s) =e= 1;

Model mymodel / all /;

solve mymodel using lp maximizing z;

If we run this model, the log output will contain the followng lines:

*** SOLVE aborted

--- Executing CPLEX: elapsed 0:00:00.006

--- test.gms(23) 4 Mb 3 Errors

*** Status: Execution error(s)

--- Job test.gms Stop 11/21/16 19:10:12 elapsed 0:00:00.006

Observe that the solve was aborted since there are 3 execution errors. The equation listing in the listing
file will contain further details about these execution errors:

Equation Listing SOLVE mymodel Using LP From line 23

**** Exec Error at line 19: rPower: FUNC DOMAIN: x**y, x < 0

---- obj =E= objective function

obj.. - x(s1) + UNDF*x(s2) - x(s3) - x(s4) - x(s5) + z =E= UNDF ; (LHS = UNDF)

**** Exec Error at line 20: division by zero (0)

**** Exec Error at line 20: Equation infeasible due to rhs value

4.15 Finding and Fixing Execution Errors and Performance Problems 637

**** INFEASIBLE EQUATIONS ...

---- xlim =E=

xlim(s4).. 0 =E= 1 ; (LHS = 0, INFES = 1 ****)

REMAINING 4 ENTRIES SKIPPED

Note that there is an arithmetic error relating to exponentiation in the first equation and an arithmetic
error and an infeasibility in the second equation.

In our example, it was easy to detect the execution errors and their cause. However, an error in a
multi-dimensional equation block may be much more difficult to find. Note that by default, only the first
three entries in each equation block are shown in the equation listing. We recommend to use the option
limrow to get a full listing, as this is the easiest way to inspect execution errors in the body of equations.

4.15.1.4 Resolving Solve Errors

In the solution phase, an external solver program processes the model and creates output with details
about the solution process. Solve errors may be either function evaluation errors or presolve errors.

Resolving Function Evaluation Errors

Some solve statements require the evaluation of nonlinear functions and the computation of derivatives.
Since these calculations are not carried out by GAMS but by other subsystems not under the direct
control of GAMS, errors associated with these calculations are reported in the solution report.

Function evaluation errors are numerical errors like those discussed in section Arithmetic Errors above.
Other examples include square roots of negative variables and squaring a negative term, say x, using the
syntax x∗∗2.

Attention

Squaring a negative term, say x, using the syntax x∗∗2 will cause an error. However, the alternatives
sqr(x) and x∗x will work (see here for an explanation).

Note that by default the solver subsystems will interrupt the solution process if arithmetic errors are
encountered. Users may wish to permit a certain number of arithmetic errors and have reported error
warnings instead. The option domlim facilitates this modification. Note that the default value for domlim
is zero.

The best way to avoid evaluating functions outside their domain of definition is to specify reasonable
variable bounds. However, there are cases when bounds are not enough. Consider the following simple
example:

Set i / i1*i5 /;

Variables x(i), z;

Equations r1, r2(i);

r1.. z =e= log(sum(i, x(i)));

r2(i).. x(i) =l= 10;

x.lo(i) = 0;

x.l(i) = 5;

Model takelog / all /;

solve takelog using nlp minimizing z;

638 User's Guide

If we try to solve this little program with the solver MINOS, the log output will contain the following line:

EXIT - Function evaluation error limit exceeded.

The solution report in the listing file will have more detailed information:

S O L V E S U M M A R Y

MODEL takelog OBJECTIVE z

TYPE NLP DIRECTION MINIMIZE

SOLVER MINOS FROM LINE 12

**** SOLVER STATUS 5 Evaluation Interrupt

**** MODEL STATUS 7 Feasible Solution

**** OBJECTIVE VALUE 0.0000

RESOURCE USAGE, LIMIT 0.183 1000.000

ITERATION COUNT, LIMIT 0 2000000000

EVALUATION ERRORS 2 0

...

EXIT - Function evaluation error limit exceeded.

**** ERRORS/WARNINGS IN EQUATION r1

2 error(s): log: FUNC DOMAIN: x < 0 (RETURNED 0)

...

**** REPORT SUMMARY : 1 NONOPT (NOPT)

0 INFEASIBLE

0 UNBOUNDED

1 ERRORS (****)

Note that the solver status has a value of 5 (Evaluation Interrupt), which means that the solver has
been interrupted as more evaluation errors have been encountered than specified with the option domlim.
In our case domlim equals its default value zero, thus one error is enough to cause the interruption. The
equation in which the evaluation error occurred and the type of error is reported a few lines later. In our
example, the equation r1 is problematic, since we take the logarithm of the expression sum(i, x(i)), an
expression which may become zero.

Note that in models such as this each individual variable x(i) should be allowed to become zero, but the
sum should not. This may be achieved by introducing an intermediate variable, say xsum, adding a lower
bound greater than zero for it and using this variable as the argument for the function log:

Variable xsum;

xsum.lo = 0.0001;

Equations defxsum, r1;

defxsum .. xsum =e= sum(i, x(i));

r1.. z =e= log(xsum);

4.15 Finding and Fixing Execution Errors and Performance Problems 639

For more information on intermediate variables, see section Avoiding Expressions in Nonlinear Functions
in the tutorial Good NLP Formulations.

Observe that solvers report the type of arithmetic problem encountered and the problematic equation, but
do not identify the particular offending variable or the labels in the index of an equation that cause the
error. If the cause is not obvious, users will have to investigate the numerical properties of the variables,
labels and parameters in the body of the respective equation. This may involve the following:

• Displaying the input data items to the nonlinear terms in the respective equation.

• Searching the solution for equations that are infeasible (INFES) and variables that are nonoptimal
(NOPT) in order to see where problems are present and which variables were being manipulated at
the end of the run.

• Investigating variables and equations whose level values are zero, negative or very large at the end
of the run.

• Deactivating part of the code to narrow down the problem as discussed in section
Isolating Terms in Slow Statements below.

Resolving function evaluation errors will usually entail the following techniques:

• Adding lower bounds to variables to keep them above zero.

• Adding upper bounds to variables to prevent them from getting too large.

• Reformulating the model, for example, introducing intermediate variables.

• Providing better starting points that direct the solver search to a more relevant region. See section
Specifying Initial Values in tutorial Good NLP Formulations for details.

• Fixing faulty input data.

Presolve Errors

Some solvers use a pre-processing step where the program is presolved to make the main solution process
faster. During this step model errors could already be discovered, as in the following example:

Variables z;

Integer Variables y1,y2;

Equations r1,r2,r3,r4;

r1.. z=e=y1+y2;

r2.. y1=g=0.10;

r3.. y2=g=0.10;

r4.. y1+y2=l=1;

Model badpresol /all/;

solve badpresol using mip maximizing z;

For this problem, Cplex detects in the presolve already, that there is no feasible integer solution. This is
reported in the log:

640 User's Guide

Row ’r4’ infeasible, all entries at implied bounds.

Presolve time = 0.00 sec. (0.00 ticks)

...

CPLEX Error 1217: No solution exists.

Problem is integer infeasible.

Here, Cplex makes it clear, where we have a problem: Row r4 is infeasible, because all entries are at their
”implied bounds”. Lets look at r2 and r3 to see what this means: These equations set a lower bound
of 0.1 for y1 and y2. Since both variables are defined as Integer Variables, they get an implicit lower
bound of 1. Given that, equation r4 must be infeasible.

Solver Specific Limits

Many solvers have internal limits that may be exceeded and may cause the listing file to report an
execution error. These errors may be resolved by using either GAMS options or solver specific options
to increase the respective limits. Usually, the listing file will contain information about which options
to use. Note that the solver manuals distributed with GAMS list the options that may be specified for
each solver. For example, to relax the MINOS major iteration limit, the user may create a file named
minos.opt with the following line:

Major iterations 1000

More about solver option files can be found in section The Solver Options File.

4.15.1.5 Managing Execution Errors with the Function execError

The function execError facilitates implementing procedures that manage execution errors. Consider the
following example, which is an extension of the example in section Arithmetic Errors above.

Set s / s1*s5 / ;

Parameter p(s) "data to be exponentiated"

d(s) "divisors"

r(s) "result";

p(s) = 1;

p("s2") = -1;

d(s) = 1;

d("s3") = 0;

r(s) = p(s)**2.1 / d(s)

display r;

*cause z to be undefined

Scalar z;

z = 1/0;

if(execError > 0,

r(s)$(r(s) = z) = 0;);

display r;

4.15 Finding and Fixing Execution Errors and Performance Problems 641

Observe that we introduced a new scalar z that is deliberately undefined. In the if statement that follows, we
use the function execError in the logical condition and the undefined scalar in the conditional assignment.
The if statement has the effect that undefined entries are removed from the array of the parameter r, as
illustrated in the following lines of the execution output:

E x e c u t i o n

**** Exec Error at line 10: rPower: FUNC DOMAIN: x**y, x < 0

**** Exec Error at line 10: division by zero (0)

---- 11 PARAMETER r result

s1 1.000, s2 UNDF, s3 UNDF, s4 1.000, s5 1.000

**** Exec Error at line 16: division by zero (0)

---- 20 PARAMETER r result

s1 1.000, s4 1.000, s5 1.000

In addition, the function execError may be used to reset the count of the number of execution errors.
Typically, it is reset to zero so that GAMS will terminate with the status message Normal completion.
For example, we could add the following line at the end of the code in the example above:

execError = 0;

Note

Setting execError = 0; will not only result in a normal completion in the example above. A
solve statement will not be executed if there were execution errors before by default. Setting
execError = 0; before the solve statement, will allow to execute it again.

Setting execError = 0; results also in a notification in the log:

*** Errors have been cleared ***

*** Status: Normal completion

4.15.2 Small to Large: Aid in Development and Debugging

Many GAMS users are overly impressed with how easily GAMS handles large models. Modelers often feel
such a facility means they should always work on the full model. The result is often a large, sometimes
extremely large, model in the early stages of model development. Debugging such large formulations is
not easy.

The algebraic modeling style employed in GAMS is inherently expandable. This offers interesting
possibilities in terms of the strategy that may be employed for model development and debugging which
are discussed herein.

642 User's Guide

4.15.2.1 An Illustrative Example

The set based algebraic modeling style implemented in GAMS is by its very nature easy to expand. It is
easy to use the same model formulation on differently sized data sets. We will illustrate this based on the
transportation model [TRNSPORT]. Note that we included some post-solution calculations at the end.

* Data section

Sets i "canning plants" / Seattle, San-Diego /

j "markets" / New-York, Chicago, Topeka / ;

Parameters a(i) "capacity of plant i in cases"

/ Seattle 350, San-Diego 600/

b(j) "demand at market j in cases"

/ New-York 325, Chicago 300, Topeka 275 /;

Table d(i,j) "distance in thousands of miles"

New-York Chicago Topeka

Seattle 2.5 1.7 1.8

San-Diego 2.5 1.8 1.4 ;

Scalar f "freight in dollars per case per thousand miles" /90/ ;

Parameter c(i,j) "transport cost in thousands of dollars per case" ;

c(i,j) = f * d(i,j) / 1000 ;

* Model Section

Positive Variable x(i,j) "shipment quantities in cases";

Variable z "total transportation costs in thousands of dollars";

Equations cost "define objective function"

supply(i) "observe supply limit at plant i"

demand(j) "satisfy demand at market j";

cost .. z =e= sum((i,j), c(i,j) * x(i,j)) ;

supply(i) .. sum(j, x(i,j)) =l= a(i) ;

demand(j) .. sum(i, x(i,j)) =g= b(j) ;

Model transport /all/ ;

solve transport using lp minimizing z ;

Parameter m(*,*) "commodity movement";

m(i,j) = x.l(i,j);

m("total",j) = sum(i, x.l(i,j));

m(i,"total") = sum(j, x.l(i,j));

m("total","total") = sum(j, m("total",j));

option decimals = 0;

display m;

This model may be easily extended by adding more data:

* Data section

Sets i "canning plants" / Seattle, San-Diego, Baltimore, Dallas /

j "markets" / New-York, Chicago, Topeka, Boston, Miami /;

4.15 Finding and Fixing Execution Errors and Performance Problems 643

Parameters a(i) "capacity of plant i in cases"

/ Seattle 350, San-Diego 600, Baltimore 450, Dallas 750 /

b(j) "demand at market j in cases"

/ New-York 325, Chicago 300, Topeka 275, Boston 330, Miami 290 /;

Table d(i,j) "distance in thousands of miles"

New-York Chicago Topeka Boston Miami

Seattle 2.5 1.7 1.8 3.1 3.3

San-Diego 2.5 1.8 1.4 3.0 2.7

Baltimore 0.2 0.7 1.8 0.4 1.1

Dallas 1.5 0.9 0.5 1.8 1.3 ;

Scalar f "freight in dollars per case per thousand miles" /90/ ;

Parameter c(i,j) "transport cost in thousands of dollars per case" ;

c(i,j) = f * d(i,j) / 1000 ;

* Model Section

Positive Variable x(i,j) "shipment quantities in cases";

Variable z "total transportation costs in thousands of dollars";

Equations cost "define objective function"

supply(i) "observe supply limit at plant i"

demand(j) "satisfy demand at market j";

cost .. z =e= sum((i,j), c(i,j) * x(i,j)) ;

supply(i) .. sum(j, x(i,j)) =l= a(i) ;

demand(j) .. sum(i, x(i,j)) =g= b(j) ;

Model transport /all/ ;

solve transport using lp minimizing z ;

Parameter m(*,*) "commodity movement";

m(i,j) = x.l(i,j);

m("total",j) = sum(i, x.l(i,j));

m(i,"total") = sum(j, x.l(i,j));

m("total","total")=sum(j, m("total",j));

option decimals = 0;

display m;

Observe that the two sets (i and j) were enlarged, the capacity (a) and demand (b) data were expanded
to cover the new plant and market entries and the distance table (d) was adjusted accordingly. However,
the data calculation, equations, model definition, model solution and report writing sections are identical
in the two models.

4.15.2.2 Motivation and Step by Step Guide

As we have demonstrated in the example above, GAMS allows the model structure, calculations and
report writing to be developed and implemented using a small data set, that may be easily expanded to
larger data sets. Thus, we strongly recommend to start with a representative purposefully small data set
and enlarge it to its full size once the work of model development, testing and debugging has been done.
In short: work from small to large.

The larger the model the longer it takes to compile it, generate the model, execute and solve it. Generally,
time expands exponentially. Working with a large model from the start will often lead to frustration even
when the user is trying to find some relatively small data problems.

644 User's Guide

If a model that has already been completed needs some modification, it will be tempting to use the large
data set instead of developing the modifications on a small data set. We strongly advise to use a small
data set in this case, as experience shows that this way a considerable amount of time may be saved.

We recommend to follow these steps in model development:

1. Set up a small data set representing the full model with all structural features, set names, parameters
etc.

2. Implement all data calculations, model features and report writing calculations.

3. Test the results of step 2 thoroughly.

4. Save the small model. Then implement a larger version with the full data set. Create separate
files for data, calculation, model definition and report writing to maintain size independence. Use
include files or the save and restart feature.

5. Test the larger model. Use the modeling techniques discussed below to facilitate your work.

6. Keep the small model current. As additional structural features are added to the large model, use
it to test them. See section Introducing Strategical Subsets below for an easy way to maintain a
small model.

4.15.2.3 Modeling Techniques

If users follow the steps for model development outlined in section Motivation and Step by Step Guide
above, they will notice that it will not always be possible to model every needed feature with the small
model. It is important to carefully choose the small data set so that it has all features of the larger data
set. However, occasionally the peculiarities and interrelationships of the full data set cannot be reproduced
in the small data set. In this section we will introduce some modeling techniques for finding problems
that arise only when the full data set is used. They include saving and restarting to isolate the problem
area, strategically introducing subsets and data reduction.

Isolating Problem Areas through Saving and Restarting

Suppose we have a model with a large data set that takes several hours to run and we wish to add
some lines of code in a relatively small segment. The best way to do this is by isolating the relevant
part. Isolating the part we wish to modify makes it possible to do tests and repairs without having
to input data, do initial calculations and solve the whole model with each run. We recommend to use
save and restart files.

For example, in chapter The Save and Restart Feature we demonstrate how to split the transportation
model [TRNSPORT] in three parts: the file tranmodel.gms contains the data and the model, the file
transolve.gms contains the solve statement and the file tranreport.gms contains a display statement.
To run the whole model we use the following sequence, saving and restarting from the saved file:

> gams tranmodel s=s1

> gams transolve r=s1 s=s2

> gams tranreport r=s2

Assume we want a more elaborate report than just the display of some level values. As the file
tranreport.gms contains the code relevant for reporting, we will modify only this file. Then we will
test the result by running only this file, restarting from s2, without having to solve the whole model
repeatedly.

4.15 Finding and Fixing Execution Errors and Performance Problems 645

Introducing Strategical Subsets

When full data sets are used in debugging or development, it is often helpful to narrow the focus on a
few items in a set by introducing subsets. The following example is a modified version of the extended
transportation model from section An Illustrative Example above.

* Data section

Sets i "canning plants" / Seattle, San-Diego, Baltimore, Dallas /

j "markets" / New-York, Chicago, Topeka, Boston, Miami / ;

Sets plants(i) "a reduced set of canning plants"

/ Seattle, San-Diego /

markets(j) "a reduced set of demand markets"

/ New-York, Chicago, Topeka / ;

*plants(i) = yes; markets(j) = yes;

Parameters a(i) "capacity of plant i in cases"

/ Seattle 350, San-Diego 600, Baltimore 450, Dallas 750 /

b(j) "demand at market j in cases"

/ New-York 325, Chicago 300, Topeka 275, Boston 330, Miami 290 /;

Table d(i,j) "distance in thousands of miles"

New-York Chicago Topeka Boston Miami

Seattle 2.5 1.7 1.8 3.1 3.3

San-Diego 2.5 1.8 1.4 3.0 2.7

Baltimore 0.2 0.7 1.8 0.4 1.1

Dallas 1.5 0.9 0.5 1.8 1.3;

Scalar f "freight in dollars per case per thousand miles" /90/ ;

Parameter c(i,j) "transport cost in thousands of dollars per case" ;

c(plants,markets) = f * d(plants,markets) / 1000 ;

* Model section

Positive Variable x(i,j) "shipment quantities in cases";

Variable z "total transportation costs in thousands of dollars";

Equations cost "define objective function"

supply(i) "observe supply limit at plant i"

demand(j) "satisfy demand at market j";

cost .. z =e= sum((plants,markets), c(plants,markets) * x(plants,markets)) ;

supply(plants) .. sum(markets, x(plants,markets)) =l= a(plants) ;

demand(markets) .. sum(plants, x(plants,markets)) =g= b(markets) ;

Model transport /all/ ;

solve transport using lp minimizing z ;

Observe that we introduced the subsets plants and markets that contain only some of the elements of
their supersets i and j. Note that all tables, parameters and variables are defined with the supersets, the
equations are declared over the supersets, but defined over the subsets and the calculation of the parameter
c is also restricted to the subsets. Hence the model is restricted to the elements of the subsets. However,
it is easy to change the restricted model back to the full model by removing the asterisks indicating a
comment line:

646 User's Guide

plants(i) = yes; markets(j) = yes;

Observe that the sets plants and markets are now dynamic sets. Note that this assignment could be
inserted anywhere in the code. Thus, introducing strategic subsets may be combined with isolating
problem areas, as detailed in section Isolating Problem Areas through Saving and Restarting above.

Introducing strategic subsets has proven to be an effective way of maintaining a small data set with little
effort. Users only have to choose elements that are representative for model development and debugging
from the full sets.

Reducing Data

Recall that GAMS skips cases where data items equal zero. Thus a large model may be reduced by
temporarily removing data from data sets by simply setting items to zero. Consider the following example:

Sets o ’origin’ / o1*o100 /

d ’destination’ / d1*d100 /;

Parameter dist(o,d) ’distance’;

dist(o,d) = 120 + 50*ord(d) - 0.5*ord(o);

Sets so(o) ’small set of origins for testing’ / o4, o47, o91 /

sd(d) ’small set of destinations’ / d3, d44, d99 /;

dist(o,d) $ (not (so(o) and sd(d))) = 0;

Parameter cost(o,d) ’transportation cost’;

cost(o,d) $ dist(o,d) = 3 + 2*dist(o,d);

display cost, dist;

Note that we introduced strategic subsets and used them in the logical condition of a conditional assignment
to set almost all entries of the parameter dist to zero. Note further, that the assignment for the parameter
cost is conditioned on nonzero entries for the distance. Now, if the model were conditioned on nonzero
transportation costs, the size of the whole model would be greatly reduced.

4.15.3 Increasing Efficiency: Reducing GAMS Execution Time

GAMS can take a long time for computations and model generation. There are some signs which indicate
that it may be possible to reduce the execution time, e.g., an execution time that is unexpectedly long in
general or a long execution of a single line, which could be seen, if the log shows the same line number for
a long time.

In this section we will discuss how to find the causes for slow program execution and how to
eliminate the main causes for slow execution.

4.15.3.1 Finding the Causes for Slow Program Execution

The best strategy for discovering the causes for slow execution is a combination of the techniques discussed
in section Small to Large: Aid in Development and Debugging above and the techniques that we will
introduce in this section, including generating an execution profile and isolating terms in slow statements.
We will also touch briefly on observing the log file and we will point out why this is not the first choice.

4.15 Finding and Fixing Execution Errors and Performance Problems 647

Generating an Execution Profile

The quickest way to find GAMS statements that take particularly long to execute, is generating an
execution profile in the output file. The execution profile contains the individual and cumulative time
required to execute the sections of the GAMS model as well as information on memory use. An execution
profile is generated when the option profile is assigned a value larger than zero (zero is the default). This
can be done either by setting a command line parameter or by using the option statement. We will show
an example of an execution profile below. For more information on execution profiles, further examples
and details on the values the option profile may take, see the detailed description here.

Consider the following example:

option profile = 1;

option limrow = 0; option limcol = 0;

option solprint = off;

Sets a / 1*22 /, b / 1*22 /, c / 1*20 /,

d / 1*20 /, e / 1*22 /;

Parameters x(e,d,c,b,a), y, z(a,b,c,d,e);

x(e,d,c,b,a) = 10;

z(a,b,c,d,e) = x(e,d,c,b,a);

y = sum((a,b,c,d,e), z(a,b,c,d,e)*x(e,d,c,b,a));

Variable obj;

Positive Variable var(e,b,a);

Equations objeq, r(b,c,d), q(a,b,c);

objeq.. obj =e= sum((a,b,c,d,e), z(a,b,c,d,e)*x(e,d,c,b,a) * var(e,b,a));

r(b,c,d).. sum((a,e), var(e,b,a)) =l= sum((a,e), x(e,d,c,b,a)*z(a,b,c,d,e));

q(a,b,c).. sum((d,e), var(e,b,a)/x(e,d,c,b,a)*z(a,b,c,d,e)) =l= 20;

Model slow /all/;

solve slow maximizing obj using lp;

Parameter sumofvar;

sumofvar = sum((a,b,c,d,e), z(a,b,c,d,e)*x(e,d,c,b,a)*var.l(e,b,a));

display sumofvar;

The listing file will contain an execution profile like this (spread over the file):

---- 9 Assignment x 0.374 0.374 SECS 109 MB 4259200

---- 10 Assignment z 2.231 2.605 SECS 286 MB 4259200

---- 11 Assignment y 2.324 4.929 SECS 286 MB 0

---- 23 Solve Init slow 0.000 4.961 SECS 286 MB

---- 18 Equation objeq 3.510 8.471 SECS 287 MB 1

---- 19 Equation r 3.088 11.559 SECS 464 MB 8800

---- 20 Equation q 5.741 17.300 SECS 470 MB 9680

---- 23 Solve Fini slow 0.780 18.080 SECS 470 MB 4482809

---- 23 GAMS Fini 0.359 0.359 SECS 470 MB

---- 1 InitE 0.032 0.032 SECS 213 MB

---- 1 ExecInit 0.000 0.032 SECS 213 MB

---- 23 Solve Alg slow 0.000 0.032 SECS 213 MB

---- 23 Solve Read slow 0.000 0.032 SECS 215 MB

---- 26 Assignment sumofvar 2.620 2.652 SECS 287 MB 0

---- 27 Display 0.032 2.684 SECS 287 MB

---- 27 GAMS Fini 0.000 0.000 SECS 287 MB

648 User's Guide

The first column shows the line number in the input file of the GAMS statement that is executed. The
second column reports the type of statement. For an overview of all GAMS statements, see section
Classification of GAMS Statements. The next two columns give the individual time needed to execute
the respective statement and the cumulative time spent so far. The memory use follows and finally, the
number of assignments generated in the respective line is shown.

In addition, there is a Profile Summary at the end of the lst file showing the most expensive statements:

---- Profile Summary (19 records processed)

5.741 0.470GB 20 Equation q (9680)

3.510 0.287GB 18 Equation objeq (1)

3.088 0.464GB 19 Equation r (8800)

2.620 0.287GB 26 Assignment sumofvar (0)

2.324 0.286GB 11 Assignment y (0)

2.231 0.286GB 10 Assignment z (4259200)

0.780 0.470GB 23 Solve Fini slow (4482809)

0.374 0.109GB 9 Assignment x (4259200)

0.359 0.470GB 23 GAMS Fini

0.032 0.213GB 1 InitE

This shows that the execution of the statements in line numbers 20, 18, 19, 26, 11 and 10 are the most
expensive ones (in this order). One reason is an inconsistent order when sets are referenced; we will discuss
this topic in section Ordering Indices Consistently below.

Note that the execution profile may contain many lines that are not informative since the execution times
reported are negligible. These lines may be suppressed by using the the option profileTol to specify the
minimum execution time (in seconds) that is to be included. Observe that the option profileTol is
available as command line parameter and option statement.

Note further, that the command line parameter profileFile facilitates writing the profiling information to
a separate file (instead of the listing file).

Isolating Terms in Slow Statements

In some cases the execution profile shows that the cause for a long execution time is connected with a
very long statement. For example, the objective function in some models and some report calculations
may take hundreds of lines of code and can contain many terms that are added. If such a long statement
is problematic in terms of execution time, it will be necessary to deactivate parts of the code and run the
program repeatedly to find the precise lines that are at the root of the problem. This can be done by
using comments.

Observing the Log File

Some modelers choose to examine the log file or watch the screen during execution to find the causes for
slow program execution. However, we advise against this approach for the following reasons:

• Statements that are executed slowly are easily missed and often statements are misidentified. In
addition, screen watchers may be distracted and will have to repeat the process.

• GAMS line reporting can be misleading if flow control statements like if statements and
loop statements are executed. For example, individual calculations in a loop are not reported to
the screen. A user watching the screen would notice that the loop takes a lot of time, but there is
no indication which statement within the loop is problematic. This applies to all GAMS control
structures.

Therefore we recommend to use the option profile as the main tool for finding the causes for slow
program execution. For details, see section Generating an Execution Profile above. In addition, see the
techniques outlined in section Advice for Repairing Puzzling Nonworking Code below.

4.15 Finding and Fixing Execution Errors and Performance Problems 649

4.15.3.2 Eliminating the Main Causes for Slow Program Execution

The main reasons for a slow program execution include an inconsistent index order when sets are referenced
and taking irrelevant cases into consideration. In this section we will give some guidance on how to
eliminate these causes, and also point to problems due to the scaling of a model which could cause a
unnecessarily long execution time for the solver.

Ordering Indices Consistently

GAMS employs a sparse matrix data storage scheme. For example, consider the parameter p(a,b,c).
Assume that the set a has k elements, the set b has n elements and c has m elements. Then the entries
for p are stored in the following order:

a1 b1 c1

a1 b1 c2

...

a1 b1 cm

a1 b2 c1

...

a1 b2 cm

...

a1 bn cm

a2 b1 c1

...

ak bn cm

Note that it is a systematic order where the last entry varies the fastest and the first the slowest. Observe
that GAMS will withdraw entries from memory fastest if they are referenced in an order consistent with
the storage order. Thus, in the following example, the first assignment statement will be processed faster
than the second assignment statement.

x(a,b,c) = p(a,b,c);

y(b,c,a) = p(a,b,c);

Note

GAMS will execute a program fastest if the sets are always referenced in the same order in definitions,
assignments and equations.

The example that follows illustrates this principle. First we will solve a program where the indices appear
in an arbitrary order and we will record the output generated by setting the option profile to 1. Then we
will reformulate the program so that the indices will always appear in an alphabetical order and solve it
again, recording the profile output. In the final step, we will compare the execution times of the two
runs. We will use the example introduced above.

Note that the indices in the parameters and equations appear in a random order. Here is the profile from
the six most expensive statements again:

---- 10 Assignment z 2.231 2.605 SECS 286 MB 4259200

---- 11 Assignment y 2.324 4.929 SECS 286 MB 0

---- 18 Equation objeq 3.510 8.471 SECS 287 MB 1

---- 19 Equation r 3.088 11.559 SECS 464 MB 8800

---- 20 Equation q 5.741 17.300 SECS 470 MB 9680

---- 26 Assignment sumofvar 2.620 2.652 SECS 287 MB 0

650 User's Guide

In the next step we reformulate the program such that the indices always appear in the same order. For
example, we define the parameter x as x(a,b,c,d,e) instead of x(e,d,c,b,a). Here is the complete
rewritten model:

option profile = 1;

option limrow = 0; option limcol = 0;

option solprint = off;

Sets a / 1*22 /, b / 1*22 /, c / 1*20 /,

d / 1*20 /, e / 1*22 /;

Parameters x(a,b,c,d,e), y, z(a,b,c,d,e);

x(a,b,c,d,e) = 10;

z(a,b,c,d,e) = x(a,b,c,d,e);

y = sum((a,b,c,d,e), z(a,b,c,d,e)*x(a,b,c,d,e));

Variable obj;

Positive Variable var(a,b,e);

Equations objeq, r(b,c,d), q(a,b,c);

objeq.. obj =e= sum((a,b,c,d,e), z(a,b,c,d,e)*x(a,b,c,d,e) * var(a,b,e));

r(b,c,d).. sum((a,e), var(a,b,e)) =l= sum((a,e), x(a,b,c,d,e)*z(a,b,c,d,e));

q(a,b,c).. sum((d,e), var(a,b,e)/x(a,b,c,d,e)*z(a,b,c,d,e)) =l= 20;

Model slow /all/;

solve slow maximizing obj using lp;

Parameter sumofvar;

sumofvar = sum((a,b,c,d,e), z(a,b,c,d,e)*x(a,b,c,d,e)*var.l(a,b,e));

display sumofvar;

After running the modified program, the profile for expensive statements looks like this:

---- 10 Assignment z 0.593 0.983 SECS 215 MB 4259200

---- 11 Assignment y 0.671 1.654 SECS 215 MB 0

---- 18 Equation objeq 1.778 3.432 SECS 215 MB 1

---- 19 Equation r 2.215 5.647 SECS 392 MB 8800

---- 20 Equation q 1.763 7.410 SECS 398 MB 9680

---- 26 Assignment sumofvar 0.952 0.983 SECS 216 MB 0

Observe that executing for example the assignment to z took just 0.593 seconds compared to 2.231
seconds in the first run. Substantial percentage reductions were achieved in all time consuming cases by
consistently referencing the sets in the same order.

Replace loops with assignments

The following statement assigns a constant value to a parameter.

loop((i,j,k),p(i,j,k)=2;)

The following assignment is preferred instead.

p(i,j,k)=2;

4.15 Finding and Fixing Execution Errors and Performance Problems 651

Restricting Assignments and Equations to Relevant Cases

Assignments

Assume that we have a set of cities with different production capacities and demands for various products.
We want to know the maximum transportation cost (which depends on the distance, the amount shipped
and a fixed factor) from each city to all others. This cost can be calculated in the following way:

Sets c "cities" / c1*c800 /

p "products" / p1*p10 /;

Alias (c,cc);

Parameter capacity(c,p) "Production capacity for product p in city c"

demand(c,p) "Demand for product p in city c"

distance(c,cc) "Distance between two cities";

*Generate some sparse, random data

capacity(c,p)$(uniform(0,1)<0.05) = uniformInt(150,250);

demand(c,p)$(uniform(0,1)<0.025) = uniformInt(50,150);

distance(c,cc)$(not sameas(c,cc)) = uniformInt(10,800);

Parameter maxCost(c,cc) "Maximum transportation costs between two cities";

maxCost(c,cc) = sum(p, min(capacity(c,p), demand(cc,p))*distance(c,cc)*90);

The performance profile will tell us something like this:

---- 16 Assignment maxCost 0.265 0.436 SECS 19 MB 8756

Since we know, that the parameter maxCost will be zero for a pair of cities if there is no product with
production capacity in the first city and demand in the second one, we could reduce the execution time
for the last assignment:

Sets c "cities" / c1*c800 /

p "products" / p1*p10 / ;

Alias (c,cc);

Parameter capacity(c,p) "Production capacity for product p in city c"

demand(c,p) "Demand for product p in city c"

distance(c,cc) "Distance between two cities";

*Generate some sparse, random data

capacity(c,p)$(uniform(0,1)<0.05) = uniformInt(50,150);

demand(c,p)$(uniform(0,1)<0.025) = uniformInt(50,150);

distance(c,cc)$(not sameas(c,cc)) = uniformInt(10,800);

Parameter maxCost(c,cc) "Maximum transportation costs between two cities";

maxCost(c,cc)$sum(p, capacity(c,p)*demand(cc,p))

= sum(p, min(capacity(c,p), demand(cc,p))*distance(c,cc)*90);

So we did not do the calculation of maxCost if we knew before, that it must be zero anyway. This results
in a reduced runtime:

---- 17 Assignment maxCost 0.031 0.187 SECS 19 MB 8756

652 User's Guide

Note

To restrict computations in assignment to the relevant cases, we recommend using dollar conditions
and filtering sets. These concepts are introduced and discussed in detail in chapter
Conditional Expressions, Assignments and Equations.

For more examples, see sections Conditional Assignments and Conditional Indexed Operations.

Variables and Equations

Like assignments, variables and equations need to be restricted to relevant cases to avoid unnecessary
inefficiencies. Dollar conditions and filtering sets may be used over the domain of definition as well as in
the body of an equation.

Lets extend the assignment example from the previous paragraph and use the generated data in a
transportation model:

Sets c "cities" / c1*c800 /

p "products" / p1*p10 / ;

Alias (c,cc);

Parameter capacity(c,p) "Production capacity for product p in city c"

demand(c,p) "Demand for product p in city c"

distance(c,cc) "Distance between two cities";

*Generate some sparse, random data

capacity(c,p)$(uniform(0,1)<0.05) = uniformInt(150,250);

demand(c,p)$(uniform(0,1)<0.025) = uniformInt(50,150);

distance(c,cc)$(not sameas(c,cc)) = uniformInt(10,800);

Parameter shipCost(c,cc) "Transportatin costs between two cities per case"

maxCost(c,cc) "Maximum transportatin costs between two cities";

shipCost(c,cc) = distance(c,cc)*90;

maxCost(c,cc)$sum(p, capacity(c,p)*demand(cc,p))

= sum(p, min(capacity(c,p), demand(cc,p))*shipCost(c,cc));

Variables

x(c,cc,p) "shipment quantities in cases"

z "total transportation costs in thousands of dollars" ;

Positive Variable x ;

Equations

cost "define objective function"

supply(c,p) "observe supply limit at plant i"

dem(cc,p) "satisfy demand at market j" ;

cost.. z =e= sum((c,cc,p), shipCost(c,cc)*x(c,cc,p)) ;

supply(c,p).. sum(cc, x(c,cc,p)) =l= capacity(c,p) ;

dem(cc,p).. sum(c, x(c,cc,p)) =g= demand(cc,p) ;

Model transport /all/ ;

Solve transport using lp minimizing z ;

4.15 Finding and Fixing Execution Errors and Performance Problems 653

The Profile Summary tells us, that the equations are rather expensive to generate and also the reading
of the solution takes some time because of the size of the model:

---- Profile Summary (18 records processed)

98.780 1.070GB 34 Equation dem (8000)

26.864 0.515GB 38 Solve Read transport

25.303 0.454GB 32 Equation cost (1)

6.599 0.813GB 33 Equation supply (8000)

However, as in the previous example, we know, that a product p won't be shipped from city c to city cc

if there is either no production capacity in the first city or no demand in the second one. So we could
reduce the size of our model by not generating variables and equations from which we know, that they are
irrelevant for the solution. Here is a improved formulations of the equations:

cost.. z =e= sum((c,cc,p)$(capacity(c,p)*demand(cc,p)), shipCost(c,cc)*x(c,cc,p)) ;

supply(c,p)$capacity(c,p).. sum(cc$demand(cc,p), x(c,cc,p)) =l= capacity(c,p) ;

dem(cc,p)$demand(cc,p).. sum(c$capacity(c,p), x(c,cc,p)) =g= demand(cc,p) ;

This decreases the size of the model and thus the execution time to generate the model and load the
solution significantly:

---- Profile Summary (18 records processed)

0.031 0.035GB 33 Equation cost (1)

0.031 0.034GB 39 Solve Read transport

0.016 0.035GB 34 Equation supply (380)

Note that the equation dem does not even show up in the summary anymore since its generation was done
to quickly.

For more details on conditions in equations, see section Conditional Equations.

Keep the model well scaled

Model solutions within GAMS frequently require manipulation of large matrices and many computations.
The heart of most solvers includes many numerical procedures such as a sparse matrix inverter and sets of
convergence and infeasibility tolerances. Numerical problems often arise within such procedures. Poorly
scaled models can cause excessive time to be taken in solving or can cause the solver to fail. GAMS
can assist the user to formulate a well scaled model. Details about this can be found in the sections
Model Scaling - The Scale Option and Scaling Variables and Equations.

4.15.3.3 Other Approaches

In addition to the techniques discussed in section Eliminating the Main Causes for Slow Program Execution
above, the following approaches may help to reduce the time needed for program execution:

• Trying another appropriate solver.

• Reformulating the model. This may yield particularly good results, if the model is reformulated
in such a way that another model type is used, that is easier to solve or for which more advanced
solver technology is available.

654 User's Guide

• Using starting points for NLP models, as discussed in section Specifying Initial Values.

• Trading memory for time.

We conclude the discussion of this topic with an example that demonstrates how memory may be traded
for time. If an extensive calculation is repeated many times in a model, it may be possible to restructure
the code so that the calculation is performed only once, then the result is saved and accessed later.
Consider the following equation:

obj.. z =e= sum[(i,j,k,l), a(i,j,k,l)*sum(m, u(m,i))];

The execution time may be substantially reduced by defining a new parameter, say p, for the second sum
and using this parameter in the equation:

Parameter p(i);

p(i) = sum(m, u(m,i));

...

obj.. z =e= sum[(i,j,k,l), a(i,j,k,l)*p(i)];

There is only one caveat: Users need to carefully consider whether the input data, here u(m,i), is modified
between the assignment for the new parameter p and the equation where p is used. If u is updated, then
the assignment statement needs to be repeated, otherwise the data that enters the equation will not be
current.

4.15.4 Increasing Efficiency: Reducing Memory Use

Besides slow program execution, excessive memory use may be of concern for modelers. In this section
we will present some approaches on how to find the causes for extraordinary memory use and give some
advice on eliminating the main causes for it.

4.15.4.1 Finding the Causes for Excessive Memory Use

The main techniques for finding the causes for excessive memory use are the same as those
for finding the causes for slow program execution. We discussed these techniques in section
Finding the Causes for Slow Program Execution above.

In addition, the option dmpUserSym is useful in this context. GAMS will report the number of records
stored for each symbol at the point in the program where the option dmpUserSym is inserted together with
some rough memory estimate.

Consider the following example:

Sets i /1*5 /, j /1*5 /, k /1*5 /, l /1*5 /,

m /1*5 /, n /1*5 /, o /1*5 /;

Parameters y(i,j,k,l,m,n,o)

q(i,j,k);

Variables x(i,j,k,l,m,n,o)

f(i,j,k)

obj;

y(i,j,k,l,m,n,o) = 10;

q(i,j,k) = 10;

4.15 Finding and Fixing Execution Errors and Performance Problems 655

x.up(i,j,k,l,m,n,o) = 10;

x.scale(i,j,k,l,m,n,o) = 1000;

Equations z(i,j,k,l,m,n,o)

res(i,j,k)

ob;

ob.. obj =e= sum((i,j,k,l,m,n,o), x(i,j,k,l,m,n,o));

z(i,j,k,l,m,n,o).. x(i,j,k,l,m,n,o) =l= 8;

res(i,j,k).. f(i,j,k) =l= 7;

Model memory /all/;

option dmpUserSym;

solve memory maximizing obj using lp;

Note that an option statement with dmpUserSym was added before the solve statement. It generates the
following memory dump that is included in the execution output of the listing file:

SYMBOL TABLE DUMP (USER SYMBOLS ONLY), NR ENTRIES = 16

ENTRY ID TYPE DIM LENGTH MEMORYEST DEFINED ASSIGNED DATAKNOWN

135 i SET 1 5 0 MB TRUE FALSE TRUE

136 j SET 1 5 0 MB TRUE FALSE TRUE

137 k SET 1 5 0 MB TRUE FALSE TRUE

138 l SET 1 5 0 MB TRUE FALSE TRUE

139 m SET 1 5 0 MB TRUE FALSE TRUE

140 n SET 1 5 0 MB TRUE FALSE TRUE

141 o SET 1 5 0 MB TRUE FALSE TRUE

142 y PARAM 7 78125 3 MB FALSE TRUE FALSE

143 q PARAM 3 125 0 MB FALSE TRUE FALSE

144 x VAR 7 78125 5 MB FALSE TRUE FALSE

145 f VAR 3 0 0 MB FALSE TRUE FALSE

146 obj VAR 0 0 0 MB FALSE TRUE FALSE

147 z EQU 7 0 0 MB FALSE TRUE FALSE

148 res EQU 3 0 0 MB FALSE TRUE FALSE

149 ob EQU 0 0 0 MB FALSE TRUE FALSE

150 memory MODEL 0 3 TRUE TRUE TRUE

END OF SYMBOL TABLE DUMP

The column ID contains the names of the symbols, the column TYPE gives the data type of the respective
entry, the column DIM reports the number of indices and the column LENGTH gives the number of records
that is related to memory use, which is estimated in the column MEMORYEST. Note that the other columns
are not relevant for this discussion.

Observe that the rows with high counts in column LENGTH indicate symbols within the GAMS program
which have large numbers of internal records that must be stored. This is associated with corresponding
memory requirements. Note also that not all length counts are of equal significance. In particular, variables
and equations use more memory per element than parameters, since they have bounds, levels, marginals
and scales that are associated with them. Parameters use more memory per element than sets, since sets
may need just one indicator for yes or no. However, the explanatory text for set elements might increase
the memory requirements for set elements.

Nevertheless, users may use this report to identify items with many records and verify that all of them are
actually needed. For more details, see section Eliminating the Main Causes for Excessive Memory Use
below.

656 User's Guide

4.15.4.2 Eliminating the Main Causes for Excessive Memory Use

As detailed in section Eliminating the Main Causes for Slow Program Execution above, the main causes
for a slow program execution include an inconsistent index order when sets are referenced and
taking irrelevant cases into consideration. These programming habits also tend to cause excessive
memory use. In this section we will give some advice on avoiding memory traps and show how the
memory may be cleared of data that is no longer needed.

Avoiding Memory Traps

Users may inadvertently use a lot of memory if they import data from a database with long explanatory
text for sets or set elements. In addition, setting variable attributes for scaling or bounds may be
problematic. Consider the following example:

x.scale(i,j,k,l,m) = 100;

x.lo(i,j,k,l,m) = 10;

x.up(i,j,k,l,m) = 77;

These assignments will probably set many more values than are relevant for a particular problem. Therefore
we recommend to carefully consider which label combinations are actually necessary and to restrict the
assignments to these cases by the use of dollar conditions or filtering sets. For more information, see
section Conditional Assignments.

Clearing Memory of Unneeded Data

Sometimes a lot of memory space is used for data that is needed at some point, but not later. Consider
the following simple example:

set i /1*1000/

j /1*1000/;

parameter distance(i,j)

cost(i,j);

distance(i,j) = 100+ord(i)+ord(j);

cost(i,j) = 4+8*dist(i,j);

Assume that the parameter distance is used only here, but nowhere else in the program. Therefore users
may wish to free the memory space occupied by the data connected with distance. The option clear
may be used to achieve this:

option clear = distance;

This will reset all entries in the matrix associated with distance to zero.

Alternatively, an identifier that is no longer needed could be reset to its default value(s) with an assignment
statement. In the example above, we could write:

distance(i,j) = 0;

4.16 Comparative Analyses with GAMS 657

This statement will have the same effect as the option statement. The advantage of the option statements
is that they offer a more compact alternative that is particularly useful if equations or variables are to be
cleared and multiple equation attributes or variable attributes are affected.

Note that the dollar control options $clear and $kill may also be used to free memory. These are compile
time directives, which have a similar effect on the memory consumption but have different side effects:
while $clear will reset the values to their defaults, $kill will completely remove the identifier from the
program. Hence an identifier that was ”killed” may be used later in another declaration and definition
statement. For example, the following code snippet is legal:

Set i /1, 2 ,3/;

$kill i

Set i /a, b, c/;

With $clear instead of $kill this would cause a compilation error.

4.15.4.3 Setting Memory Limits with HEAPLIMIT

In a server environment and in other cases (e.g. to avoid the use of virtual memory) the amount of
memory a GAMS run is allowed to use may have to be limited. The command line parameter heapLimit
serves this purpose: the amount of memory for GAMS compilation and execution is limited to a specified
number (in MB). If the data storage exceeds this limit, the job will be terminated with return code 10,
out of memory. In addition, the function heapLimit may be used to interrogate the current limit and to
reset it.

Note that limiting memory use for solver execution is not possible from within the GAMS program.
However, some solvers like the NLP solver CONOPT have their own heapLimit option which ensures that
the solver will not use more dynamic memory than specified.

4.15.4.4 Advice for Repairing Puzzling Nonworking Code

Assume a GAMS run was terminated and we cannot get a profile output (e.g. because GAMS ran out of
memory and crashes). A memory overrun error causes the operating system buffer handling procedures to
generally lose the last few lines of profile information when the job malfunctioned. How do we find the
problem in this case?

We recommend to use the techniques outlined in section Modeling Techniques above. In addition,
successively deactivating code in search for the last GAMS statement that worked will help in most cases.
This can be done by using comments. If at some point the run terminates properly, the user will slowly
activate parts of the last statements that were deactivated until the code performance will get worse
again. By iteratively activating and deactivating terms, the precise problematic terms may be found.
The save and restart feature could also be used to save the results until a certain statement and then to
execute only the statements that are suspected to be problematic.

4.16 Comparative Analyses with GAMS

Once a model is completed, it is almost always used to investigate alternative scenarios where the analyst
compares the results of various scenario assumptions. In this tutorial we will show how such comaparative
analyses (also called sensitivity analyses) are done with GAMS. We will first demonstrate an easy approach,
where we will manually change input parameters, use repeated solves and generate reports. In a second
step, we will introduce another approach, where a loop structure will be used to automatically cycle
through the scenarios. We recommend to read the sections on the manual approach first, since the sections
on the automated approach build on code blocks developed in the early sections.

658 User's Guide

4.16.1 Manual Approach

Suppose we wish to do a comparative analysis by altering some input data in a model. We will use as an
example the farm profit-maximizing model farmcomp.gms. The following vector of prices for primary
commodities is a part of the input data:

Parameter price(primary) ’prices for products in USD’

/ corn 2.20, soybeans 5.00, beef 0.50 /;

We will use these data as a base case and compare it with two alternative scenarios: in the first scenario
we will change the price of beef to $0.70 and in the second scenario we will change the price of corn to
$2.70.

The GAMS file farmrep.gms is related to our example model. It contains only calculations for report
writing and may be included with the dollar control option $include. It will generate a report based on
the solution of the last solve that was executed in the GAMS program farmcomp.gms. The report consists
of several tables. We will focus on the table Farm Summary that is associated with the parameter summary.
The relevant code is given below:

Set alli ’allitems’

/ corn, soybeans, beef, cattle,

water, cropland, pastureland,

fertilizer, seed, othercost, veterinary, supplement,

"April labor", "May labor", "summer labor", "Sept labor", "Oct labor",

cattlefeed, total / ;

Set measures ’output measures’

/ "Net Income", "Land Use", "Dry Cropping", "Irr Cropping",

"Livestock", "Resource Value", "Product Value" /

Parameter summary(alli,measures) ’Farm Summary’;

Note that the table for the parameter summary will contain rows for the commodities which are elements
of the set alli and columns for all elements of the set measures.

We will use a third GAMS file, mancomp.gms,for our comparative analysis. The code of this third GAMS
file follows:

$include farmcomp.gms

display price;

$include farmrep.gms

price("beef") = 0.70;

solve farm using LP maximizing netincome;

display price;

$include farmrep.gms

price("corn") = 2.70;

solve farm using LP maximizing netincome;

display price;

$include farmrep.gms

farmcomp.gms
farmrep.gms
mancomp.gms

4.16 Comparative Analyses with GAMS 659

Note that this code first solves the original model that also contains the set definitions for the report,
displays the initial prices and generates a report. In a second step the price for beef is changed to $0.70,
the modified model is solved, the prices for the first alternative scenario are displayed and a report is
generated. In a third step the price for corn is changed to $2.70, the model is solved again, the prices for
the second alternative scenario are displayed and a third report is generated. Note that in the second
alternative scenario (the third solve) the beef price is $0.70, since it was not reset to base levels after the
second run.

There will be three tables associated with the parameter summary in the listing file, one for each solve.
The first table reports the results associated with the base case:

---- 279 PARAMETER summary Farm Summary

Net Income Land use Dry Cropp~ Irr Cropp~ Livestock Resource ~ Product V~

Corn 20.00 200.00 2.20

Soybeans 480.00 5.00

Beef 0.50

cattle 615.79

Water 16.83

Cropland 700.00 128.49

Pastureland 130.00 84.26

April Labor 32.34

May Labor 27.01

Oct Labor 11.50

Cattlefeed 4.71

Total 162685.05 500.00 200.00

The second table reports the results from the first alternative scenario where the price for beef was changed
to $0.70:

---- 351 PARAMETER summary Farm Summary

Net Income Land use Dry Cropp~ Irr Cropp~ Livestock Resource ~ Product V~

Corn 22.84 160.85 2.34

Soybeans 489.86 5.00

Beef 0.70

cattle 866.67

Cropland 673.55

Pastureland 130.00 1456.90

April Labor 82.29

May Labor 80.53

Sept Labor 53.57

Oct Labor 46.21

Cattlefeed 4.89

Total 373686.10 512.70 160.85

And the third table reports the results from the second alternative scenario where the price for corn was
changed to $2.70 and the price for beef stayed at $0.70:

---- 423 PARAMETER summary Farm Summary

Net Income Land use Dry Cropp~ Irr Cropp~ Livestock Resource ~ Product V~

660 User's Guide

Corn 31.98 200.00 2.70

Soybeans 410.24 5.00

Beef 0.70

cattle 866.67

Water 15.99

Cropland 642.22

Pastureland 130.00 1316.09

April Labor 61.39

May Labor 61.72

Sept Labor 84.92

Oct Labor 87.21

Cattlefeed 5.36

Total 375839.30 442.22 200.00

This quick way to do a comparative analysis has the following drawbacks:

• The relevant output is spread over more than 140 lines.

• There is no cross-scenario report.

• The price of beef in the second alternative scenario is problematic, since it was not automatically
reset to the original base price.

• The handling of solves and report writing is repetitive.

The first two issues will be addressed in section Writing Cross-Scenario Reports,a solution for the third
issue will be given in section Resetting Data to Base Levels and an alternative approach that will resolve
the last issue is presented in section An Automated Approach - Avoiding Repeated Work.

4.16.1.1 Writing Cross-Scenario Reports

We will generate a cross-scenario report by introducing two new sets and a new parameter in a revised
version of the third GAMS file, mancompb.gms:

Set scenarios / base, beefp, beefcorn /;

Set ordr / "Scenario Setup", "Scenario Results"/;

Parameter savsumm(ordr,*,alli,scenarios) ’Comparative Farm Summary’;

savsumm("Scenario Setup","price",primary,"base") = price(primary);

savsumm("Scenario Results",measures,alli,"base") = summary(alli,measures);

Note that the set scenarios contains the base case and the two alternative scenarios and the set ordr

introduces places to save the assumptions and results of the different runs. The new parameter savsumm
is similar to the parameter summary introduced above, but it has two additional dimensions. Observe that
the first assignment copies the current setup of the price vector and the second assignment copies the
results that are stored in the parameter summary.

The full code follows:

mancompb.gms

4.16 Comparative Analyses with GAMS 661

$include farmcomp.gms

$include farmrep.gms

Set ordr / "Scenario Setup", "Scenario Results" /;

Set scenarios / base, beefp, beefcorn /;

Parameter savsumm(ordr,*,alli,scenarios) ’Comparative Farm Summary’;

savsumm("Scenario Setup","price",primary,"base") = price(primary);

savsumm("Scenario Results",measures,alli,"base") = summary(alli,measures);

price("beef") = 0.70;

solve farm using LP maximizing netincome;

display price ;

$include farmrep.gms

savsumm("Scenario Setup","price",primary,"beefp") = price(primary);

savsumm("Scenario Results",measures,alli,"beefp") = summary(alli,measures);

price("corn") = 2.70;

display price ;

solve farm using LP maximizing netincome;

$include Farmrep.gms

savsumm("Scenario setup","price",primary,"beefcorn") = price(primary);

savsumm("Scenario Results",measures,alli,"beefcorn") = summary(alli,measures);

option savsumm:2:3:1;

display savsumm;

Observe that the last index in the assignments for savsumm is "base" after the first solve, "beefp" after
the second solve and "beefcorn" after the third solve. Note that option statement in the penultimate
line of the code customizes the output generated by the display statement that follows. For details see
section Local Display Control. The listing file will contain the following output:

---- 436 PARAMETER savsumm Comparative Farm Summary

base beefp beefcorn

Scenario Setup .price .Corn 2.20 2.20 2.70

Scenario Setup .price .Soybeans 5.00 5.00 5.00

Scenario Setup .price .Beef 0.50 0.70 0.70

Scenario Results.Net Income .Total 162685.05 373686.10 375839.30

Scenario Results.Land use .Cropland 700.00 673.55 642.22

Scenario Results.Land use .Pastureland 130.00 130.00 130.00

Scenario Results.Dry Cropping .Corn 20.00 22.84 31.98

Scenario Results.Dry Cropping .Soybeans 480.00 489.86 410.24

Scenario Results.Dry Cropping .Total 500.00 512.70 442.22

Scenario Results.Irr Cropping .Corn 200.00 160.85 200.00

Scenario Results.Irr Cropping .Total 200.00 160.85 200.00

Scenario Results.Livestock .cattle 615.79 866.67 866.67

Scenario Results.Resource Value.Water 16.83 15.99

Scenario Results.Resource Value.Cropland 128.49

Scenario Results.Resource Value.Pastureland 84.26 1456.90 1316.09

Scenario Results.Resource Value.April Labor 32.34 82.29 61.39

Scenario Results.Resource Value.May Labor 27.01 80.53 61.72

Scenario Results.Resource Value.Sept Labor 53.57 84.92

Scenario Results.Resource Value.Oct Labor 11.50 46.21 87.21

Scenario Results.Product Value .Corn 2.20 2.34 2.70

Scenario Results.Product Value .Soybeans 5.00 5.00 5.00

Scenario Results.Product Value .Beef 0.50 0.70 0.70

Scenario Results.Product Value .Cattlefeed 4.71 4.89 5.36

662 User's Guide

In this cross-scenario report all output is in one table and it is easy to compare the base case with the two
alternative scenarios.

We could also add percentage change calculations by introducing a further parameter, savsummp:

Parameter savsummp(ordr,*,alli,scenarios) ’Comparative Farm Summary (percent chg)’;

savsummp(ordr,measures,alli,scenarios)$savsumm(ordr,measures,alli,"base") =

round{ [savsumm(ordr,measures,alli,scenarios) - savsumm(ordr,measures,alli,"base")]*100

/ savsumm(ordr,measures,alli,"base"),1 };

savsummp(ordr,measures,alli,scenarios)

$[(savsumm(ordr,measures,alli,"base") = 0) and (savsumm(ordr,measures,alli,scenarios) <> 0)]

= na;

option savsummp:1:3:1;

display savsummp;

Note that both assignment statements are conditional assignments. The first assignment computes
percentage changes rounded to one decimal place and the second assignment sets the percentage change
to NA if the value in the base case is zero. The output generated by the display statement follows:

---- 450 PARAMETER savsummp Comparative Farm Summary (percent chg)

beefp beefcorn

Scenario Results.Irr Cropping .Corn -19.6

Scenario Results.Irr Cropping .Total -19.6

Scenario Results.Livestock .cattle 40.7 40.7

Scenario Results.Resource Value.Water -100.0 -5.0

Scenario Results.Resource Value.Cropland -100.0 -100.0

Scenario Results.Resource Value.Pastureland 1629.0 1461.9

Scenario Results.Resource Value.April Labor 154.4 89.8

Scenario Results.Resource Value.May Labor 198.1 128.5

Scenario Results.Resource Value.Sept Labor NA NA

Scenario Results.Resource Value.Oct Labor 301.8 658.4

Scenario Results.Product Value .Corn 6.4 22.7

Scenario Results.Product Value .Beef 40.0 40.0

Scenario Results.Product Value .Cattlefeed 3.9 13.8

4.16.1.2 Resetting Data to Base Levels

In the example above the price for beef was changed to $0.70 for the first alternative scenario and it stayed
at $0.70 in the second alternative scenario, since we did not reset it manually to the base level. However,
in most cases users find it preferable to reset all data to base levels before a new scenario is run. This may
be done by saving the base level data in a new parameter, say saveprice, and then resetting the data to
base levels before each scenario. In the following final version of the third GAMS file, mancompc.gms,
the levels of the commodity prices are reset before each new run:

$include farmcomp.gms

$include farmrep.gms

Parameter saveprice(alli) ’saved prices’;

saveprice(alli) = price(alli);

mancompc.gms

4.16 Comparative Analyses with GAMS 663

Set scenarios / base, beefp, beefcorn /;

Parameter savsumm(ordr,*,alli,scenarios) ’Comparative Farm Summary’;

savsumm("Scenario Setup","price",primary,"base") = price(primary);

savsumm("Scenario Results",measures,alli,"base") = summary(alli,measures);

price(alli) = saveprice(alli);

price("beef") = 0.70;

solve farm using LP maximizing netincome;

display price ;

$include farmrep.gms

savsumm("Scenario setup","price",primary,"beefp") = price(primary);

savsumm("Scenario Results",measures,alli,"beefp") = summary(alli,measures);

price(alli) = saveprice(alli);

price("corn") = 2.70;

display price ;

solve farm using LP maximizing netincome;

$include farmrep.gms

savsumm("Scenario setup","price",primary,"beefcorn") = price(primary);

savsumm("Scenario Results",measures,alli,"beefcorn") = summary(alli,measures);

option savsumm:2:3:1;

display savsumm;

In this section we demonstrated how to do a comparitive analysis manually, including a cross-scenario
report and resetting the data before each new scenario is run. However, there is still a lot of repetition in
how the solves and reports are handled. This issue will be addressed in the next section.

4.16.2 An Automated Approach - Avoiding Repeated Work

The basic structure of a comparative analysis that avoids repetitive instructions for solves and report
writing is outlined in the Figure below. Note that the first three boxes represent preparatory steps that
are the usual parts of a GAMS program: the initial data is set up, the model is defined and solved. The
comparative model analysis begins with the box labeled ”Step 1”. In Step 1 names for the scenarios are
introduced and the scenario data is defined. In Step 2 the base data that will be changed during the
scenario runs are saved in a new parameter. We will use this parameter later to restore the data to their
base levels before each new scenario run. Starting with Step 3 we enter a loop, where the looping set
is the set of scenarios introduced in Step 1. As usual, the statements in the loop are executed for each
scenario to be analyzed. The first statement restores the data to their base levels (Step 3). Thus we will
always start with the same data. In Step 4 the data and the model is updated for the current scenario
and in Step 5 the model solved. In Step 6 a report for the individual scenarios is generated. In Step 7
parameters for cross-scenario comparative reports are saved. In Step 8 we check if more scenarios are to
be solved and if this is the case, we return to repeat Steps 3-8 until all scenarios are completed. Finally,
we display a comparative report that presents the information saved across scenarios.

664 User's Guide

This flow chart is implemented in the file compare.gms that is given below. Note that it is based on the
farm profit-maximizing example discussed in section Manual Approach above. All sets and parameters
were introduced in the sections above, only the table scenprice in the implementationof Step 1 is new.

*Step 1 - Setup scenarios

Set ordr / "Scenario Setup", "Scenario Results" /;

Set scenarios / base, beefp, beefcorn /;

Parameter savsumm(ordr,*,alli,scenarios) ’Comparative Farm Summary’;

Table scenprice(primary,scenarios) ’price changes by scenario’

base beefp beefcorn

corn 2.70

soybeans

beef 0.70 ;

*Step 2 - Save data

Parameter savprice(primary) ’save primary commodity prices’;

savprice(primary) = price(primary);

compare.gms

4.16 Comparative Analyses with GAMS 665

*Step 3 - Reset data to base level

loop(scenarios,

price(primary) = savprice(primary);

*Step 4 - Change data to levels needed in scenario

price(primary)$scenprice(primary,scenarios) = scenprice(primary,scenarios);

display price;

*Step 5 - Solve model

solve farm using LP maximizing netincome;

*Step 6 - Single scenario report writing

$include farmrep.gms

*Step 7 - Cross-scenario report writing

savsumm("Scenario Setup","price",primary,scenarios) = price(primary);

savsumm("Scenario Results",measures,alli,scenarios) = summary(alli,measures);

*Step 8 - End of loop

);

*Step 9 - Compute and display final results

option savsumm:2:3:1;

display savsumm;

Note that the main feature that facilitates this automatic approach is a loop statement. Loop statements
are introduced and discussed in section The Loop Statement. Note further, that in Step 4 we used a
conditional assignment to restrict the change of data to those primary commodities that have nonzero
entries for the respective scenario in parameter scenprice. For details on conditional assignments, see
section Conditional Assignments.

4.16.2.1 Adding A Scenario

Given the implementation of an automated comparative analysis above, it is easy to add a new scenario.
Only two small modifications are needed: a name for the new scenario has to be added to the set
scenarios and the respective data has to be added to the table scenprice. Both changes are in Step 1.
The lines of the respective code are given below:

Set scenarios / base, beefp, beefcorn, new/;

Table scenprice(primary,scenarios) ’price alterations by scenario’

base beefp beefcorn new

corn 2.70

soybeans 4.32

beef 0.70 ;

Note that we added a third alternative scenario called new, where the price of soybeans is changed to
$4.32.Note further, that the remainder of the code is not changed. Once the new scenario is added to
the set scenarios and the respective data is specified in the table, it will enter the loop and thus all the
statements in the loop will be executed for the new scenario.

Observe that the new scenario above was similar to the other scenarios: the price for a primary commodity
was modified. However, in some cases new scenarios require that other data, like resources, are changed.
For example, assume that in a new scenario the landtype "cropland" is increased by 30%. Note that
the available resources were defined in the parameter available(alli), where available("cropland")

equals 700. To accomodate this new scenario we will add the following lines of code to Steps 1 to 4:

666 User's Guide

*Step 1 - Setup scenarios

Set scenarios / base, beefp, beefcorn, new /;

Table scenavailable(alli,scenarios) ’resource alterations by scenario’

base beefp beefcorn new

cropland 1.3;

*Step 2 - Save data

Parameter saveavailable (alli) ’save available resources’;

saveavailable (alli) = available (alli);

*Step 3 - Reset data to base level

loop(scenarios,

available (alli) = saveavailable (alli);

*Step 4 - Change data to levels needed in scenario

available(alli)$scenavailable(alli,scenarios) =

available(alli)*scenavailable(alli,scenarios);

display price, available;

Note that in Step 1 we added a new table, scenavailable, to specify the resource alternations by scenario.
Observe that the values of scenavailable will be used as multipliers in Step 4. In Step 2 we introduced
the parameter saveavailable, that will play a similar role for the available resources like the parameter
savprice does for the prices of the primary commodities: the base levels are saved in this parameter and
we will use it to restore the values of available to their base levels before each new scenario run. This is
implemented with the new assignment in Step 3. In Step 4 the data levels of the parameter available

are modified as required for the current scenario using a conditional assignment. Note the similarities to
the assignment for updating the values of price in Step 4 above. Steps 5 to 9 remain unchanged. Thus
we achieved an automated comparative analysis with an additional scenario where another parameter is
modified by adding just a few lines of code. The full code is given in the GAMS file compareother.gms.

4.16.2.2 Changing the Structure of a Model

Many studies require modifications of the structure of a model. In GAMS, context-sensitive model
structures may be implemented with dollar conditions. Dollar conditions may be used to control equations
as well as specific terms.

To illustrate, we will extend the profi-maximizing farm model from the previous sections to include a
conditional constraint that limits the number of cattle. This constraint will be only active if a scalar that
varies with the scenarios is nonzero. Consider the lines of code that follow. Note that the set animals is
a subset of the set alli, the elements of the set livemanage denote various ways of managing crops and
animals, and liveprod is a positive variable for livestock production.

$include farmcomp.gms

$include farmrep.gms

Scalar cowlim ’activates cowlimit constraint’ /1/;

Equation cowlimit ’conditional equation on cow limits;

cowlimit$cowlim.. sum((animals,livemanage), liveprod(animals,livemanage)) =l= 100;

Model farmcowlim /all/;

Set ordr / "Scenario setup", "Scenario Results" /;

Set scenarios / base, cowlim /;

Parameter savprice(primary) ’save primary commodity prices’;

savprice(primary) = price(primary);

Parameter cowlims(scenarios) ’cowlimit by scenario’

compareother.gms

4.17 Good NLP Formulations 667

/ base 0, cowlim 1/;

loop(scenarios,

cowlim = cowlims(scenarios);

solve farmcowlim using LP maximizing netincome;

);

Note that in the loop the value of the scalar cowlim is updated before each scenario is run. Note further,
that this value determines whether the new equation cowlimit will be active or not. The complete code
is given in the GAMS file comparemod.gms.

4.16.3 Ranging analysis

Some users are interested in getting ranging output in the form of LP cost and right hand side ranging
results. Unfortunately, the base version of GAMS does not yield such information. The user wishing such
information has two alternatives. First, one may cause the model to be repeatedly solved under a set
of values for the key parameter using the procedures discussed above, but this is cumbersome if a lot of
parameters are involved. Second, one can use solver dependent features of GAMS that can be retrieved
into a GAMS parameter. Please refer to the solver manuals (e.g. for GAMS/CPLEX: Sensitivity Analysis)
for further information how to use them.

4.17 Good NLP Formulations

In this tutorial we offer some advice and guidance on how to set up or formulate an NLP model so that a
solver will be able compute a good solution and do so quickly, reliably, and predictably. Much of this
applies to other model classes allowing nonlinear functions, but for ease and simplicity of exposition we
focus on the NLP case here.

A good formulation for an NLP model typically involves several things, including specifying sensible initial values,
setting variable bounds, and scaling variables and equations. Other factors to consider are techniques
for blocking degenerate cycling and the potential benefits of avoiding expressions in nonlinear functions.
Finally we look at reformulations and approximations for discontinuous functions like abs, max and min

in section Reformulating DNLP Models.

4.17.1 Specifying Initial Values

The variable levels and equation marginals in GAMS are typically passed to a solver to be used as the
initial point. The initial values specified are especially important for NLP models for several reasons:

• Non-convex models may have multiple local solutions. Local NLP solvers search for a local solution
and return it when it is found. An initial point in the neighborhood of a desired solution is more
likely to return that solution.

• Initial values that (almost) satisfy many of the constraints reduce the work involved in finding a
first feasible solution.

• Initial values that are close to a local optimum reduce the work required to find that local optimum,
therefore reducing solution time.

• The progress of the optimization algorithm is based on good directional information, i.e on good
derivatives. The derivatives in a nonlinear model depend on the current point, so an improved initial
point can improve solver performance.

comparemod.gms

668 User's Guide

Variable levels and equation marginals are specified by setting the variable attribute .L and the
equation attribute .m before solution. This is often done with assignments that occur before the solve
statement, e.g.:

domPrice.L(i,region,t) = domPrice0(i,region,t);

flowLim.m(arcs) = 1;

Note

The default value for the variable levels and equation marginals is 0.

The variable bounds also play a role in determining the initial point passed to the NLP solver. When a
solve occurs, the levels for all variables in the model are first projected onto the set defined by the variable
bounds. Thus, setting a variable's lower bound to a positive value ensures that the initial value of this
variable will never be zero. This is very useful, since in many cases zero is an unsuitable initial value
for nonlinear variables. For example, based on the product term x · y, an initial value of zero for x will
lead to an initial derivative value of zero wrt y, so it will appear as if the function does not depend on y.
Variables at zero can also cause numerical difficulties with logarithms, real powers, or divisions. These
difficulties occur not just at zero but also for very small values (i.e. values very close to zero) as well.

We recommend to specify as many sensible initial values for the nonlinear variables as possible. It may
be desirable to initialize all variables to 1 or to the scale factor if the GAMS scaling option is used. A
better alternative is to first select reasonable values for some variables that are known from context or
experience to be important and then to use some of the equations of the model to compute the values for
other variables. For example, consider the following equation, where pm, pwm and er are variables and tm

is a parameter:

pmDef(i).. pm(i) =e= pwm(i)*er*(1+tm(i));

The following assignment statements use the equation to derive consistent initial values for the variable
pm from sensible initial values for the variables pwm and er:

pwm.L(i) = 1;

er.L = 1;

pm.L(i) = pwm.L(i)*er.L*(1+tm(i));

It would be a mistake to assign only to pwm and er and assume that the solver will choose to adjust
the variable pm to make the equation feasible: it could choose to adjust pwm or er instead. With all the
assignments above made, we can be assured that the equation pmDef will be satisfied at the initial point.

Setting the initial point by loading a prior solution that has been saved via the savepoint mechanism is
also an effective strategy that is very easy to implement.

4.17 Good NLP Formulations 669

4.17.2 Setting Variable Bounds

Lower and upper bounds on variables are set by assigning values to the variable attributes .lo and .up

in the following way:

price.lo(i,region,t) = 1e-4;

flow.up(arcs) = arcCap(arcs);

Lower and upper bounds on variables in nonlinear models serve multiple purposes. Some bounds represent
constraints based on the reality that is being modeled. For example, a certain production level must
be non-negative or an arc in a network has a flow capacity of at most ten. These bounds are called
model bounds. Other bounds help the algorithm by preventing it from moving far away from any optimal
solution and/or into regions with singularities in the nonlinear functions or unreasonably large function or
derivative values. These bounds are called algorithmic bounds. Solver performance can be improved and
execution errors (see domLim and domUsd) avoided when algorithmic bounds on variables are introduced.

Model bounds are determined by the reality being modeled and do not cause any problems. However,
algorithmic bounds must be carefully chosen by the modeler. We recommend to pay particular attention
if a variable is the argument in log(x), log10(x) or exp(x) and if a variable occurs in the denominator of a
division. If log(x) or log10(x) appears in a model, where x is a variable, we recommend a lower bound
of 1.e-3 for x since log(x) gets very small as x approaches zero and is undefined for negative values of
x. In addition, the first derivative gets very large as x approaches zero. If exp(x) features in a model,
where x is a variable, we recommend an upper bound between 20 and 25 for x. If a variable x appears
in the denominator, we recommend a lower bound of 1.e-2 for x, since 1/x is extremenly nonlinear for
small arguments. Small values for variables used with negative exponents are also not desirable. Solver
performance can be improved and execution errors avoided when one introduces algorithmic bounds on
variables.

Note that lower and upper bounds facilitate finding a feasible solution as most solvers will honor bounds
at all times, but inequalities are not necessarily satisfied at intermediate points. A further advantage of
variable bounds compared to inequalities is improved presolve performance: NLP solver preprocessors will
typically incur little or no computational overhead due to variable bounds.

4.17.3 Avoiding Expressions in Nonlinear Functions

It is often useful to avoid nonlinear functions of expressions (e.g. a division by the sum of many variables).
Instead, an intermediate variable can be used for the expression. This applies in particular if the expressions
depend on many variables. Consider the following example:

variable x(i), y;

equation ydef;

ydef.. y =e= 1 / sum(i, x(i));

This example could be reformulated via the intermediate variable xsum and its defining equation xsumdef

in the following way:

variable x(i), y, xsum;

equation xsumdef, ydef;

xsumdef.. xsum =e= sum(i, x(i));

ydef .. y =e= 1/xsum;

xsum.lo = 1.e-2;

In the equation ydef, the intermediate variable xsum appears in the denominator instead of the original
summation. This allows us to impose a lower bound on the variable xsum to avoid dividing by zero. Of
course, the model will contain more rows and columns if intermediate variables are introduced, but this
increase in size is offset by a decrease in complexity and, in many cases, by an increase in sparsity as well.

670 User's Guide

4.17.4 Scaling Variables and Equations

Recall that nonlinear programming algorithms use the derivatives of the objective function and the
constraints to find good search directions and they use function values to determine if constraints are
satisfied or not. The relative size of the derivatives and the function values is influenced by the units of
measurement that are used for the variables and constraints, and will have an effect on the performance
of the solver and the result computed. Therefore, a proper, consistent scaling of the model is important
to the success of the solution algorithm and the quality of the answer returned.

For example, assume that two goods are equally costly: both cost $1 per kg. However, the first is specified
in grams and the second in metric tons, so that their coefficients in the cost function will be vastly different:
$1000 per gram and $0.001 per ton respectively. If cost is measured in $1000 units, then the coefficients
will be 1 and 1.e-6 respectively. This discrepency in size may cause the algorithm to ignore the variable
with the smaller coefficient, since the coefficient is comparable to some of the zero tolerances. To avoid
such problems, the units of measurements need to be carefully chosen, that is, variables and constraints
need to be properly scaled.

We recommend scaling with the following goals in mind:

• Solution level values of variables should fall into a range around 1, e.g. from 0.01 to 100.

• The magnitude of the nonzero constraint marginals at solution should fall into a range around 1,
e.g. from 0.01 to 100.

• The magnitude of the derivatives of the nonlinear terms (i.e. the Jacobian elements) should fall into
a range around 1, e.g. from 0.01 to 100, both at the initial point and at the solution.

• The constants in the equations should have absolute values around 1, e.g. from 0.01 to 100.

Well-scaled variables are measured in appropriate units. In most cases users should select the unit of
measurement for the variables such that their expected value is around unity. Of course, there will always
be some variation. For example, if x(i) is the production at location i, one could select the same unit of
measurement for all components of x, say, a value around the average capacity.

In well-scaled equations the individual terms are measured in appropriate units. After choosing units for
the variables users should choose the unit of measurement for the equations such that the expected values
of the individual terms are around 1. For example, if these rules are followed, material balance equations
will usually have coefficients of 1 and -1.

Usually well-scaled variables and equations result in well-scaled derivatives. To check whether the
derivatives are well-scaled, we recommend running the model with a positive value for the option limrow
and inspecting the coefficients in the equation listing of the GAMS list file.

For more about scaling in GAMS, see section Model Scaling - The Scale Option. Note that while many
solvers have internal scaling procedures, a better result can generally be achieved by a judicious choice of
units by the model developer.

4.17.5 Blocking Degenerate Cycling

Most commercial linear programming solvers use a perturbation technique to avoid degenerate cycling
during the solution process: they temporarily add small numbers to the right-hand sides of equations. In
general, NLP solvers do not have such an internal feature. Sometimes the success and performance of an
NLP solver can be enhanced by a manual perturbation formulation.

In particular, if users observe that the NLP solution process has a large number of iterations where the
solver does not make significant progress in altering the objective function value, we recommend to modify

4.17 Good NLP Formulations 671

the equations in the model by replacing the value of zero on the right-hand side with a small number.
This may accelerate the solution process. Assume that we have the following equation:

f(x) ≤ 0

This could be reformulated as:

f(x) ≤ δ ∗ 0.001

Here we set δ to 1 if we wish to keep the addition and to zero otherwise. The value of 0.001 is just an
example and needs to be adjusted based on the model context. The number should be chosen such that it
does not introduce significant distortions into the problem solution. Such an addition quite frequently
reduces solution time by helping the solver avoid degenerate cycling. If it is done correctly, the resulting
model solution is not qualitatively different from the original model solution. Users may also first solve
the model with δ = 1 and subsequently with δ = 0 to get rid of the effects of the small numbers.

We recommend that user avoid using the same number but instead use some systematically varying
number or a random number. The technique of adding a small number on the right-hand side may also
be used in problems where many equations have the same nonzero value on the right-hand side.

4.17.6 Reformulating DNLP Models

Nonlinear models in GAMS belong to one of the following two classes: smooth and discontinuous. Typically,
all functions with endogenous arguments contained in the model are smooth functions (i.e. functions
with continuous derivatives) like sin, exp and log. These models can be solved using NLP. If any of the
endogenous functions in the model are not smooth (i.e. are discontinuous), the model cannot be solved as
an NLP: the DNLP model type must be used instead. Examples of non-smooth functions include ceil

and sign, where the function itself is not continuous, and max, min, and abs, where the derivatives are
not continuous. Typically, NLP solvers are designed to work with continuous derivatives, and much of
the convergence theory behind them assumes this continuity. Discontinuous functions or derivatives may
cause numerical problems, poor performance, spurious (i.e. wrong) solutions, and other issues, so they
should be used with special care and only if necessary.

N.B.: to avoid a proliferation of model types, nonlinear programming is the only model type split into
smooth (NLP) and nonsmooth (DNLP) variants. All other model types allowing nonlinear functions (e.g.
MINLP, MCP, CNS) include both smooth and nonsmooth functions. This is not because nonsmooth
functions are less problematic in these contexts. It simply became too unwieldy to maintain this distinction
across all types of nonlinear models.

A powerful and effective way to model discontinuous functions is with binary variables, which results
in a model of type MINLP. The model [ABSMIP] demonstrates this formulation technique for the
functions abs, min, max and sign. Alternatively, reformulations or approximations may be used to model
discontinuous functions such that the resulting model is of type NLP. Here we offer some guidance on how
to reformulate or approximate the discontinuous functions abs, max and min using only smooth functions
and continuous variables and thus transform a DNLP model into an NLP. This transformation is generally
more reliable than solving the original as a DNLP.

Note that some of the reformulations suggested below enlarge the feasible space. They rely on the objective
function to choose a solution that is contained in the original feasible space, i.e. where the relationship
defined by the nonsmooth function holds. If the objective cannot be relied on to do this, it is also possible
to use one of the smooth approximations for the nonsmooth functions defined below.

672 User's Guide

4.17.6.1 Reformulating and Approximating the Function ABS

The function abs(x) returns the absolute value of the argument x. If we are minimizing an absolute value,
then we can split this value into its positive and negative parts (both represented by positive variables)
and minimize the sum of these variables. This formulation enlarges the feasible region but the optimal
solution will be the one where the sum of the positive and negative parts is equal to the absolute value.

variables x, y, z;

equations

obj ’1-norm’

f ;

obj.. abs(x) + abs(y) =E= z;

f .. sqr(x-3) + sqr(y+5) =L= 1;

model nonsmooth / obj, f /;

solve nonsmooth using dnlp min z;

positive variables xPlus, xMinus, yPlus, yMinus;

equations

obj2 ’smooth version of 1-norm’

xDef

yDef

;

obj2.. xPlus + xMinus + yPlus + yMinus =E= z;

xDef.. x =E= xPlus - xMinus;

yDef.. y =E= yPlus - yMinus;

model smooth / obj2, xDef, yDef, f /;

solve smooth using nlp min z;

Note that the discontinuity in the derivative of the function abs has been converted into lower bounds
on the new variables xPlus, xMinus, etc: these bounds are handled routinely by any NLP solver. Note
too that the feasible space is larger than before. For example, many pairs xPlus and xMinus satisfy our
equation x =E= xPlus - xMinus;. However, our objective ensures that one of xPlus and xMinus will be
zero at the solution so that the sum of xPlus and xMinus wil be the absolute value of x.

In case the objective function does not contain a term that tries to minimize the absolute value, a smooth
approximation can be used instead of the reformulation described above. This approximation should be
close to the absolute value and also have smooth derivatives. Such an approximation for abs(f(x)) is:

sqrt(sqr(f(x)) + sqr(delta))

Here delta is a small scalar. The value of delta controls the accuracy of the approximation and the
curvature around f(x)=0. The approximation error is largest when f(x)=0 and decreases as f(x) gets
farther from zero. A value for delta ranging between 1.e-3 and 1.e-4 should be appropriate in most cases.
Users could also use a larger value in an initial optimization, reduce it and solve the model again. If delta
is reduced below 1.e-4, then large second order terms might lead to slow convergence or even prevent
convergence. An example of this approximation used for the previous example is below:

$macro MYABS(t,d) [sqrt(sqr(t)+sqr(d))]

equation obj3;

obj3.. MYABS(x,1e-4) + MYABS(y,1e-4) =E= z;

model approx / obj3, f /;

solve approx using nlp min z;

4.17 Good NLP Formulations 673

Note the use of the macro facility to encapsulate the smooth reformulation. As mentioned above, this
approximation has its largest error where f(x)=0. If it is important to get accurate values at this point,
then we recommend the following alternative approximation:

sqrt(sqr(f(x)) + sqr(delta)) - delta

Note that the only difference is the subtraction of the constant term delta. In this case, the error will
equal zero at f(x)=0 and it will increase to -delta as f(x) moves away from zero.

4.17.6.2 Reformulating and Approximating the Function MAX

The function max(x1,x2,x3,...) returns the maximum value of the arguments, where the number of
the arguments may vary. Typically, the equation

t >= max(f(x),g(y))

is replaced by two inequalities:

t >= f(x)

t >= g(y)

Here x, y and t are variables and f(x) and g(y) are some functions depending x and y respectively.
Provided the objective function has some term that tries to minimize t, one of the constraints will become
binding at solution and t will equal the maximum of the two terms. The extension to more than two
arguments in the function max should be obvious. A simple example follows:

variables

x / LO 0, L 0.2, UP [pi/2] /

mx ’max[sin(x),cos(x)]’

z ’objective var’

;

equation oDef;

oDef.. x / 100 + max[sin(x),cos(x)] =E= z;

model nonsmooth / oDef /;

solve nonsmooth using dnlp min z;

equations oDef2, sinBnd, cosBnd;

oDef2.. x / 100 + mx =E= z;

sinBnd.. mx =G= sin(x);

cosBnd.. mx =G= cos(x);

model smooth / oDef2, sinBnd, cosBnd /;

solve smooth using nlp min z;

In case the objective function does not force the max-term to be minimized, a smooth approximation for
max(f(x),g(y)) can be used, as in the following example code:

[f(x) + g(y) + sqrt(sqr(f(x)-g(y)) + sqr(delta))] /2

674 User's Guide

$macro MYMAX(t1,t2,d) [0.5 * [t1 + t2 + sqrt(sqr(t1-t2) + sqr(d))]]

equation oDef3;

oDef3.. x / 100 + MYMAX(sin(x),cos(x),1e-4) =E= z;

model approx / oDef3 /;

solve approx using nlp min z;

Here delta is a small scalar, preferably ranging from 1.e-2 to 1.e-4. The approximation error takes its
maximum of delta/2 when f(x)=g(y) and decreases as one moves away from this point. To shift the
error away from the point of discontinuity, the following approximation can be used:

[f(x) + g(y) + sqrt(sqr(f(x)-g(y)) + sqr(delta)) - delta] /2

4.17.6.3 Reformulating and Approximating the Function MIN

The reformulation of and approximation to the min function is similar to the max case above and will not
be repeated in full here. Briefly,

t =e= min(f(x),g(y))

is replaced by:

t =l= f(x)

t =l= g(y)

and is effective as long as the objective maximizes t. If not, this smooth approximation for min(f(x),g(y))
can be used:

[f(x) + g(y) - sqrt(sqr(f(x)-g(y)) + sqr(delta))] /2

4.18 Data Exchange with Other Applications

• Data Exchange with Text Files

• Data Exchange with Microsoft Excel

• Data Exchange with Databases

– Data Exchange with DB2

– Data Exchange with MS Access

– Data Exchange with Oracle

– Data Exchange with MySQL

– Data Exchange with SQL Server

– Data Exchange with SQLite

– Data Exchange with Sybase

4.18 Data Exchange with Other Applications 675

4.18.1 Data Exchange with Text Files

This tutorial describes some ways on how to exchange data between GAMS and text files (usually in
ASCII format).

4.18.1.1 Reading Text Files During Compilation

GAMS can read arbitrary text files during compile time by inserting them into the compiler input stream.
The file content is then assumed to be GAMS code. Thus, including a text file within a data statement
(see also Data Entry: Parameters, Scalars and Tables) allows for an easy way to include data from a text
file, as long as the syntax in the text file can be understood by the GAMS compiler. This way, model
specification and data input can be separated into different files.

The $include compile-time command is used to instruct the GAMS compiler to include the context of a
different file at the current position of the input stream. As a result, the GAMS code behaves as if the
$include statement has been replaced by the content of the file to be included. This can be very handy
when including data from a separate text file. For instance, when data for a table is actually coming from
another environment, one could replace the TABLE statement by an include statement. A GAMS table is
in fact very well suited for a human being to be read or written, but it is rather awkward for programs to
generate (e.g., the numbers have to be approximately below the corresponding headers). Therefore, often
parameters are used and long series of assignment statements are generated. For instance, consider the
following fragment from model [TRNSPORT]:

Table d(i,j) ’distance in thousands of miles’

new-york chicago topeka

seattle 2.5 1.7 1.8

san-diego 2.5 1.8 1.4 ;

When the data for this table is coming from a program it is more convenient to say in the main program:

Parameter d(i,j) ’distance in thousands of miles’;

$include data.inc

display d;

and to have the include file data.inc contain the machine generated statements:

d("seattle","new-york") = 2.5;

d("san-diego","new-york") = 2.5;

d("seattle","chicago") = 1.7;

d("san-diego","chicago") = 1.8;

d("seattle","topeka") = 1.8;

d("san-diego","topeka") = 1.4;

In fact, GAMS can deal quite comfortably with a large number of such assignment statements.

Note, that since the included file is considered as part of the GAMS input stream, it is also
echoed in the listing file. When including large text files with data statements, echoing these files in
the listing file can be undesired. To suppress echoing to the listing file, the $include statement can be
surrounded by $offlisting and $onlisting instructions:

http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/ASCII

676 User's Guide

parameter d(i,j) ’distance in thousands of miles’;

$offlisting

$include data.inc

$onlisting

display d;

In the listing file, line numbers are skipped where the $offlisting is in effect.

In some cases it may be more convenient to use the initialization syntax of parameters. That is, the main
GAMS file could contain the fragment:

parameter d(i,j) ’distance in thousands of miles’ /

$include data2.inc

/;

display d;

and the data file contains the following records:

seattle .new-york 2.5

san-diego.new-york 2.5

seattle .chicago 1.7

san-diego.chicago 1.8

seattle .topeka 1.8

san-diego.topeka 1.4

This approach is preferable for large data sets as it is more efficient for GAMS.

Note

Tables and parameters are handled exactly the same way by GAMS internally. The only difference
is in the specification of data.

When using a table statement, data can also be specified in CSV (Comma-separated values) format if the
$ondelim command has been issued. This format can, for instance, be generated by spreadsheet programs.

As example, consider again the following fragment from model [TRNSPORT]:

Table d(i,j) ’distance in thousands of miles’

new-york chicago topeka

seattle 2.5 1.7 1.8

san-diego 2.5 1.8 1.4 ;

A file data.csv that specifies the data of this table in CSV format would have the content

,new-york,chicago,topeka

seattle,2.5,1.7,1.8

san-diego,2.5,1.8,1.4

Notice the empty first element in the first line, which corresponds to the top-left blank in the above table.

This file can now be included directly into GAMS by using the $ondelim and $offdelim commands:

Table d(i,j) ’distance in thousands of miles’

$ondelim

$include data.csv

$offdelim

;

http://en.wikipedia.org/wiki/Comma-separated_values

4.18 Data Exchange with Other Applications 677

Attention

The $ondelim command only enables the use of commas as a separation symbol. The use of a
different separation character is not supported by GAMS. This can become an issue if, for example,
a CSV file has been generated with a language setting where commas are used as decimal point and
semicolons are used for separating entries in the CSV file. In such a situation, data.csv would have
the content

,new-york;chicago;topeka

seattle;2,5;1,7;1,8

san-diego;2,5;1,8;1,4

Therefore, such text files need to be preprocessed before read into GAMS. The following code uses
the POSIX tool tr to (simultaneously) replace commas by dots and semicolons by commas:

$call "tr ,; ., < data.csv > data2.csv"

Table d(i,j) ’distance in thousands of miles’ ;

$ondelim

$include data2.csv

$offdelim

CSV files can also be used to input higher dimensional data into GAMS. For instance, consider the 3
dimensional table yieldtl from model [TURKEY]:

Table yieldtl(l,cl,ty) ’livestock yield time series (kg per head)’

1974 1975 1976 1977 1978 1979

sheep.meat 10.60 11.42 10.60 9.38 8.97 6.93

sheep.milk 23.7 24.1 24.2 24.2 24.0 23.9

sheep.wool 1.3 1.3 1.3 1.3 1.3 1.3

sheep.hide 0.5 0.6 0.6 0.5 0.6 0.4

goat.meat 6.39 7.31 8.68 7.31 6.39 6.85

goat.milk 37.7 38.1 38.2 38.2 38.3 37.8

goat.wool 0.6 0.6 0.6 0.6 0.6 0.6

goat.hide 0.2 0.3 0.3 0.3 0.2 0.3

angora.meat 1.77 1.77 2.66 2.21 1.77 1.77

angora.milk 14.9 15.2 14.8 15.2 14.8 15.0

angora.wool 1.6 1.6 1.6 1.6 1.6 1.4

angora.hide 0.1 0.1 0.1 0.1 0.1 0.1

cattle.meat 24.59 25.12 21.42 23.00 18.25 25.12

cattle.milk 210.0 208.1 219.8 213.8 214.8 217.5

cattle.hide 3.3 3.4 2.9 3.0 2.6 3.3

buffalo.meat 43.73 45.42 40.61 37.21 32.20 32.68

buffalo.milk 267.1 269.2 263.8 219.6 275.5 285.1

buffalo.hide 4.1 3.4 3.0 2.4 2.5 2.6

poultry.meat 2.24 2.24 2.24 2.24 2.24 2.24

poultry.egg 62.4 62.2 64.2 78.3 76.4 73.3

;

When the data for this parameter is prepared by another application (such as a relational database), it
may be more convenient to write it out in a comma-separated value form, e.g., a file data.csv could have
the content

"sheep","meat","1974",10.60

"sheep","meat","1975",11.42

"sheep","meat","1976",10.60

678 User's Guide

"sheep","meat","1977",9.38

"sheep","meat","1978",8.97

"sheep","meat","1979",6.93

"sheep","milk","1974",23.70

"sheep","milk","1975",24.10

"sheep","milk","1976",24.20

"sheep","milk","1977",24.20

...

Including such formatted data into a GAMS model is possible by using $ondelim for Parameter Data for Higher Dimensions.
Thus, the GAMS code would be

Parameter yieldtl(l,cl,ty) ’livestock yield time series (kg per head)’

/

$ondelim

$include data.csv

$offdelim

/;

4.18.1.2 Writing Text During Compilation

The commands $echo, $onecho, and $offecho send text to named files during compilation. $echo sends
one line and is invoked using the syntax:

$echo ’text to be sent’ > externalfile

or

$echo ’text to be sent’ >> externalfile

The use of ''>'' generates a new file, while ''>>'' appends to an existing file.

For multi-line messages, the commands $onecho and $offecho can be used, e.g.,

$onecho > externalfile

line 1 of text to be sent

line 2 of text to be sent

...

last line of text to be sent

$offecho

A typical example for the usage of these commands is the generation of a solver options file.

Additionally, the $log command can be used to send messages to the log file during compilation.

4.18 Data Exchange with Other Applications 679

4.18.1.3 Writing Text Files During Execution

The put writing facility allows customized text output. This is a fairly complex but powerful and flexible
report writing facility.

Assume that the following GAMS code is added to the end of model [TRNSPORT]. It instructs GAMS
to write the model and the solve status together with levels of the decision variables to a file results.txt:

File results / results.txt /;

put results;

put "Model status", transport.modelstat /;

put "Solver status", transport.solvestat /;

put "Objective", z.l /;

put "Shipments" /;

loop((i,j),

put i.tl, j.tl, x.l(i,j) /

);

putclose;

First, a file object results is declared by using the File statement. The data of the file statement specifies
the name of the file (results.txt). Next, line put results; instructs GAMS that for the following put
statements, the file results should be used. In the following, the model status and the solve status are
written, together with some descriptive text. These model attributes are set by a solve statement. The
character '/' instructs GAMS to add a linebreak (newline character) to the results file. The next thing
to write out are some variable values. Here, first the level value of variable z is written, followed by a
loop that writes for each element of sets i and j the name of the elements (accessed via the .tl attribute)
and the level value of x(i,j). Finally, the putclose; statement instructs GAMS to close the current file.
This will ensure that possibly cached data is flushed to the file.

The output will look like:

Model status 1.00

Solver status 1.00

Objective 153.67

Shipments

seattle new-york 50.00

seattle chicago 300.00

seattle topeka 0.00

san-diego new-york 275.00

san-diego chicago 0.00

san-diego topeka 275.00

This form can be hard to read by other applications, e.g., because some space characters are to be
considered as separators, while others are really part of a string (e.g. ”Model status”). However, by using
the print control option .pc of the put writing facility, comma-separated value files can be written. That
is, by adding the line results.pc = 5;, i.e.,

File results / results.txt /;

results.pc = 5;

put results;

put "Model status", transport.modelstat /;

put "Solver status", transport.solvestat /;

put "Objective", z.l /;

put "Shipments" /;

loop((i,j),

put i.tl, j.tl, x.l(i,j) /

);

putclose;

680 User's Guide

one obtains the following output:

"Model status",1.00

"Solver status",1.00

"Objective",153.67

"Shipments"

"seattle","new-york",50.00

"seattle","chicago",300.00

"seattle","topeka",0.00

"san-diego","new-york",275.00

"san-diego","chicago",0.00

"san-diego","topeka",275.00

If several parameters of the same dimension should be written to a file in a customized format, the put
statements can become rather repetitive. For example, the level and marginal values of variable x and the
parameters c and d from model [TRNSPORT] should be written. This can be coded easily as:

file results / results.txt /;

results.pc = 5;

put results;

loop((i,j), put "distance", i.tl, j.tl, d(i,j) /);

loop((i,j), put "cost", i.tl, j.tl, c(i,j) /);

loop((i,j), put "levels", i.tl, j.tl, x.l(i,j) /);

loop((i,j), put "marginals", i.tl, j.tl, x.m(i,j) /);

putclose;

A separation of the code that writes the data (loop and put statements) from the data that is written
(descriptive text, set names, etc.) can be achieved by using $batinclude. This command works similar to
the $include statement (see also Section Reading Text Files During Compilation above), but allows for
additional arguments (separated by blanks). While including the file, markers %1, %2, etc., are replaced
by the value of the 1st, 2nd, etc., argument.

By using $batinclude, the above example could be simplified to

file results / results.txt /;

results.pc = 5;

put results;

$batinclude put.inc distance i j d

$batinclude put.inc cost i j c

$batinclude put.inc level i j x.l

$batinclude put.inc marginal i j x.m

putclose;

where the file put.inc contain the actual loop and put statements:

loop((%2,%3), put "%1", %2.tl, %3.tl, %4(%2,%3) /);

Finally, the The Put Utility Statement is referred, which is loosely connected to the put statement and
allows the dynamic generation of file names, etc.

4.18 Data Exchange with Other Applications 681

4.18.2 Data Exchange with Microsoft Excel

This tutorial gives an overview on how to exchange data between GAMS and Microsoft Excel.

GAMS can communicate with Microsoft Excel via GDX (GAMS Data Exchange) files. In order to write
data from GAMS and to Excel, selected GAMS data can be written into a GDX file and then to an Excel
file: GAMS -> GDX -> Excel. Similarly selected Excel data can be written to a GDX file and then read
into GAMS: Excel -> GDX -> GAMS.

Some of GAMS/Excel data exchange tools that provide functionality to exchange data between GAMS
and Excel are also discussed in the section Data Exchange Tools. The data exchange between GAMS and
a CSV (Comma-separated values) file format and GAMS is covered in Data Exchange with Text Files.

4.18.2.1 From GAMS to Excel

Consider the following modication of the [TRNSPORT] model from the gams model library.

Sets

i ’canning plants’ / seattle, san-diego /

j ’markets’ / new-york, chicago, topeka / ;

Parameters

a(i) ’capacity of plant i in cases’

/ seattle 350

san-diego 600 /

b(j) ’demand at market j in cases’

/ new-york 325

chicago 300

topeka 275 / ;

Table d(i,j) ’distance in thousands of miles’

new-york chicago topeka

seattle 2.5 1.7 1.8

san-diego 2.5 1.8 1.4 ;

Scalar f ’freight in dollars per case per thousand miles’ /90/ ;

Parameter c(i,j) ’transport cost in thousands of dollars per case’ ;

c(i,j) = f * d(i,j) / 1000 ;

Variables

x(i,j) ’shipment quantities in cases’

z ’total transportation costs in thousands of dollars’ ;

Positive Variable x ;

Equations

cost ’define objective function’

supply(i) ’observe supply limit at plant i’

demand(j) ’satisfy demand at market j’ ;

cost .. z =e= sum((i,j), c(i,j)*x(i,j)) ;

682 User's Guide

supply(i) .. sum(j, x(i,j)) =l= a(i) ;

demand(j) .. sum(i, x(i,j)) =g= b(j) ;

Model transport /all/ ;

Solve transport using lp minimizing z ;

Display x.l, x.m ;

*=== Export to Excel using GDX utilities

*=== First unload to GDX file (occurs during execution phase)

execute_unload "results.gdx" x.L x.M

*=== Now write to variable levels to Excel file from GDX

*=== Since we do not specify a sheet, data is placed in first sheet

execute ’gdxxrw.exe results.gdx o=results.xlsx var=x.L’

*=== Write marginals to a different sheet with a specific range

execute ’gdxxrw.exe results.gdx o=results.xlsx var=x.M rng=NewSheet!f1:i4’

After the solve statement, the data (x.L and x.M) from variable x can be written into a GDX file during
the execution time using the command execute unload:

execute_unload "results.gdx" x.L x.M

The execute unload command above is executed during the actual execution phase to create a GDX file
called results.gdx. The solution x and the marginals of x in the GDX file can be written to the Excel
file results.xlsx using GDXXRW tool:

execute ’gdxxrw.exe results.gdx var=x.L’

execute ’gdxxrw.exe results.gdx var=x.M rng=NewSheet!f1:i4’

For the first call for x.L, there is no range specified and the data is written in cell A1 and beyond in the
first available sheet. For the second call for marginals x.M, data will be written to cells F1:I4 in the sheet
named NewSheet.

Note that GAMS can also write data into a GDX file during compile time. It is also possible to convert
data stored in a GDX file into an Excel file spreadsheets using GDX2XLS tool and to write GAMS data
to standard output formatted as a GAMS program with data statements using GDXDUMP tool.

4.18.2.2 From Excel to GAMS

Consider the following modifciation of the [TRNSPORT] model from the gams model library and the
file results.xlsx file created from the previous example.

Sets

i ’canning plants’ / seattle, san-diego /

j ’markets’ / new-york, chicago, topeka / ;

Parameters

4.18 Data Exchange with Other Applications 683

a(i) ’capacity of plant i in cases’

/ seattle 350

san-diego 600 /

b(j) ’demand at market j in cases’

/ new-york 325

chicago 300

topeka 275 / ;

Table d(i,j) ’distance in thousands of miles’

new-york chicago topeka

seattle 2.5 1.7 1.8

san-diego 2.5 1.8 1.4 ;

Scalar f ’freight in dollars per case per thousand miles’ /90/ ;

Parameter c(i,j) ’transport cost in thousands of dollars per case’ ;

c(i,j) = f * d(i,j) / 1000 ;

Variables

x(i,j) ’shipment quantities in cases’

z ’total transportation costs in thousands of dollars’ ;

Positive Variable x ;

Equations

cost ’define objective function’

supply(i) ’observe supply limit at plant i’

demand(j) ’satisfy demand at market j’ ;

cost .. z =e= sum((i,j), c(i,j)*x(i,j)) ;

supply(i) .. sum(j, x(i,j)) =l= a(i) ;

demand(j) .. sum(i, x(i,j)) =g= b(j) ;

Model transport /all/ ;

*=== Import from Excel using GDX utilities

*=== First unload to GDX file (occurs during compilation phase)

$call gdxxrw.exe results.xlsx par=Level rng=sheet1!A1:D3

*=== Now import data from GDX

Parameter Level(i,j);

$gdxin results.gdx

$load Level

$gdxin

*=== Fix variables to values from Excel file

x.FX(i,j) = Level(i,j);

display Level, x.L;

Solve transport using lp minimizing z ;

684 User's Guide

Display x.l, x.m ;

The data in the Excel file can be loaded into a GDX file using the $call command and GDXXRW tool:

$call gdxxrw.exe results.xlsx par=Level rng=A1:D3

The command $call above executes a program called GDXXRW during compile time. The GDXXRW
reads data from the range A1:D3 in results.xlsx into a GAMS parameter called Level in the GDX
file results.gdx. As an output GDX file is not specified when calling GDXXRW, the output file will
be derived from the input file by changing the file extension of the input file and removing any path
information.

To import data from a GDX file into a parameter, the parameter must be defined over appropriate sets
before read. The data from a GDX file can be read during the compile time using the commands $gdxin
and $load:

Parameter Level(i,j);

$gdxin results.gdx

$load Level

$gdxin

The first command $gdxin specifies the name of the GDX file results.gdx to be read. The command
$load reads parameter Level from the GDX file. The second command $gdxin closed the GDX file.

GAMS can read from a GDX file either during compile time or during execution time. See
Example 4 - Reading a GDX File when reading data with domain information and Example 5 - Reading a GDX File
when reading from a GDX file during execution time.

Note that it is also possible to write all worksheets of an Excel workbook into a GDX file using XLSDUMP
tool.

4.18.2.3 Data Exchange Tools

There are a number of tools that provide functionality to exchange data between GAMS and an Excel file.
This section discusses some of the data exchange tools with some examples. The complete list of the tools
can be found at GAMS/Excel Data Exchange tools.

GDXXRW

GDXXRW is a tool to read and write Excel spreadsheet data. GDXXRW can read multiple ranges in a
spreadsheet and write the data to a 'GDX' file, or read from a 'GDX' file, and write the data to different
ranges in a spreadsheet.

How to use GDXXRW to exchange data between GAMS and Excel is covered in the section
From GAMS to Excel and the section From Excel to GAMS. More details on usage and examples of
GDXXRW tool is covered in GDXXRW.

4.18 Data Exchange with Other Applications 685

XLS2GMS

XLS2GMS is a simple utility that allows you to extract data from an Excel spreadsheet and convert it
into a GAMS include file. XLS2GMS can be run interactively or in batch mode.

Consider the Excel data from the following spreadsheet:

The data can be imported from the Excel file into a GAMS include file by calling XLS2GMS tool and
inserted an include file as parameter data elements using the command $include:

set ssi /

’new york’, ’washington dc’, ’los angeles’, ’san francisco’

/;

parameter ssdata(ssi) /

$call =d:\util\xls2gms I="c:\my documents\test2.xlsx" B O=d:\tmp\x.inc

$include d:\tmp\x.inc

/;

display ssdata;

Notice the B parameter, which is needed as there are embedded blanks in the labels.

Sometimes a translation between the labels used in the model and the ones used in the is needed. One
way to do this is to use a mapping set in GAMS. Suppose the rest of the model is defined in terms of the
set I which is defined as:

set i / ny, dc, la, sf/;

To map a parameter data defined over this set, the following simple GAMS fragment can be used:

686 User's Guide

set map(i,ssi) mapping set /

ny.’new york’

dc.’washington dc’

la.’los angeles’

sf.’san francisco’

/;

display map;

parameter data(i);

data(i) = sum(map(i,ssi), ssdata(ssi));

display data;

SQL2GMS

In some cases it is convenient to consider tabular data in an Excel spreadsheet as a database table and to
import it via GDX file using the SQL2GMS tool.

Consider the following spreadsheet:

This table can be read using an SQL query:

SELECT year,loc,prod,’sales’,sales FROM [profitdata$] \

UNION SELECT year,loc,prod,’profit’,profit FROM [profitdata$]

4.18 Data Exchange with Other Applications 687

The table name is equal to the sheet name(profitdata). We can pass the query to the Excel ODBC driver
using the tool SQL2GMS tool as follows:

set y ’years’ /1997,1998/;

set c ’city’ /la,nyc,sfo,was/;

set p ’product’ /hardware,software/;

set k ’key’ /sales,profit/;

$onecho > excelcmd.txt

c=DRIVER=Microsoft Excel Driver (*.xls, *.xlsx, *.xlsm, *.xlsb);dbq=%system.fp%profit.xlsx;

q=SELECT year,loc,prod,’sales’,sales FROM [profitdata$] \

UNION SELECT year,loc,prod,’profit’,profit FROM [profitdata$]

x=fromexcel.gdx

$offecho

$call =sql2gms @excelcmd.txt

parameter d(y,c,p,k) ;

$gdxin excel.gdx

$load d=p

display d;

and the DISPLAY results will be:

--- 21 PARAMETER d FROM SQL2GMS

INDEX 1 = 1997

sales profit

la .hardware 80.000 5.000

la .software 60.000 10.000

nyc.hardware 100.000 15.000

nyc.software 130.000 25.000

sfo.hardware 50.000 9.000

sfo.software 60.000 6.000

was.hardware 80.000 7.000

was.software 90.000 8.000

INDEX 1 = 1998

sales profit

la .hardware 88.000 5.250

la .software 66.000 10.500

nyc.hardware 110.000 15.750

nyc.software 143.000 26.250

sfo.hardware 55.000 9.450

sfo.software 66.000 6.300

was.hardware 88.000 7.350

was.software 99.000 8.400

GDXVIEWER

GDXVIEWER is a tool to view and convert data contained in GDX files. It can also export to csv, xlsx,
xml-files and pivot tables. The usage and examples are covered in GDXVIEWER.

688 User's Guide

GDX2XLS

GDX2XLS tool to convert the contents of a GDX file into an Excel file or an xml-file. The usage and
examples are covered in GDX2XLS.

4.18.3 Data Exchange with Databases

This tutorial provides a guidance on how to exchange data between GAMS and various Database
Management System.

4.18.3.1 Data Exchange with DB2

DB2 is one of IBM's relational database management systems.

Import from DB2

DB2 has an EXPORT command that can be used to generate comma delimited files. An example of a DB2
session illustrating this is shown below:

------------------------------------- Command Entered -------------------------------------

describe table db2admin.dist

;

Column Type Type

name schema name Length Scale Nulls

------------------------------ --------- ------------------ -------- ----- -----

LOCA SYSIBM VARCHAR 10 0 No

LOCB SYSIBM VARCHAR 10 0 No

DISTANCE SYSIBM DOUBLE 8 0 Yes

3 record(s) selected.

------------------------------------- Command Entered -------------------------------------

select * from dist ;

LOCA LOCB DISTANCE

---------- ---------- ------------------------

seattle new-york +2.50000000000000E+000

seattle chicago +1.70000000000000E+000

seattle topeka +1.80000000000000E+000

san-diego new-york +2.50000000000000E+000

san-diego chicago +1.80000000000000E+000

san-diego topeka +1.40000000000000E+000

6 record(s) selected.

http://en.wikipedia.org/wiki/IBM_DB2

4.18 Data Exchange with Other Applications 689

------------------------------------- Command Entered -------------------------------------

export to c:\tmp\export.txt of del select * from dist ;

SQL3104N The Export utility is beginning to export data to file

"c:\tmp\export.txt".

SQL3105N The Export utility has finished exporting "6" rows.

Number of rows exported: 6

The resulting data file export.txt will look like:

"seattle","new-york",+2.50000000000000E+000

"seattle","chicago",+1.70000000000000E+000

"seattle","topeka",+1.80000000000000E+000

"san-diego","new-york",+2.50000000000000E+000

"san-diego","chicago",+1.80000000000000E+000

"san-diego","topeka",+1.40000000000000E+000

This file can be read into GAMS using $include :

parameter d(i,j) ’distance in thousands of miles’ /

$ondelim

$include export.txt

$offdelim

/;

display d;

Export to DB2

DB2 has an IMPORT command that can read delimited files. As an example consider the file generated by
GAMS PUT statements:

"seattle","new-york",50.00

"seattle","chicago",300.00

"seattle","topeka",0.00

"san-diego","new-york",275.00

"san-diego","chicago",0.00

"san-diego","topeka",275.00

A transcript of a DB2 session to read this file, is given below:

------------------------------------- Command Entered -------------------------------------

create table results(loca varchar(10) not null,

locb varchar(10) not null,

shipment double not null) ;

DB20000I The SQL command completed successfully.

------------------------------------- Command Entered -------------------------------------

import from c:\tmp\import.txt of del insert into results ;

690 User's Guide

SQL3109N The utility is beginning to load data from file "c:\tmp\import.txt".

SQL3110N The utility has completed processing. "6" rows were read from the

input file.

SQL3221W ...Begin COMMIT WORK. Input Record Count = "6".

SQL3222W ...COMMIT of any database changes was successful.

SQL3149N "6" rows were processed from the input file. "6" rows were

successfully inserted into the table. "0" rows were rejected.

Number of rows read = 6

Number of rows skipped = 0

Number of rows inserted = 6

Number of rows updated = 0

Number of rows rejected = 0

Number of rows committed = 6

For very large data sets it is advised to use the LOAD command:

------------------------------------- Command Entered -------------------------------------

load from c:\tmp\import.txt of del insert into results ;

SQL3501W The table space(s) in which the table resides will not be placed in

backup pending state since forward recovery is disabled for the database.

SQL3109N The utility is beginning to load data from file "c:\tmp\import.txt".

SQL3500W The utility is beginning the "LOAD" phase at time "03-20-2000

18:11:50.213782".

SQL3519W Begin Load Consistency Point. Input record count = "0".

SQL3520W Load Consistency Point was successful.

SQL3110N The utility has completed processing. "6" rows were read from the

input file.

SQL3519W Begin Load Consistency Point. Input record count = "6".

SQL3520W Load Consistency Point was successful.

SQL3515W The utility has finished the "LOAD" phase at time "03-20-2000

18:11:50.337092".

Number of rows read = 6

Number of rows skipped = 0

Number of rows loaded = 6

Number of rows rejected = 0

Number of rows deleted = 0

Number of rows committed = 6

For smaller data sets one can also generate a series of INSERT statements using the PUT facility.

4.18 Data Exchange with Other Applications 691

4.18.3.2 Data Exchange with MS Access

Microsoft Office Access, previously known as Microsoft Access, is a relational database management
system from Microsoft. It is a member of the Microsoft Office system.

Import from MS Access

MDB2GMS

MDB2GMS is a tool to convert data from an Microsoft Access database into GAMS readable format.
The source is an MS Access database file (∗.mdb or ∗.accdb) and the target is a GAMS Include File or a
GAMS GDX File. MDB2GMS is part of the GAMS Data eXchange Tools, see documentation for more
information.

SQL2GMS

SQL2GMS is a tool to convert data from an SQL database into GAMS readable format. The source
is any data source accessible through Microsoft's Data Access components including ADO, ODBC
and OLEDB. The target is a GAMS Include File or a GAMS GDX File. SQL2GMS is part of the
GAMS Data eXchange Tools, see documentation for more information.

CSV Files

Microsoft Access can export tables into comma delimited text files using its Save As/Export menu.
Suppose we have the following table:

After choosing Save As/Export and selecting Text Files we get the following window:

http://en.wikipedia.org/wiki/MS_Access

692 User's Guide

Just using the default settings, we get the following file:

"seattle","new-york",2.50

"seattle","chicago",1.70

"seattle","topeka",1.80

"san-diego","new-york",2.50

"san-diego","chicago",1.80

"san-diego","topeka",1.40

which can be handled in GAMS by $ondelim/$offdelim and $include:

parameter d(i,j) ’distance in thousands of miles’ /

$ondelim

$include dist.txt

$offdelim

/;

display d;

Import Dates from Access

GAMS dates are one day off when importing from MS Access. Suppose we have an MS Access table with
one single date column:

4.18 Data Exchange with Other Applications 693

datefield

3/12/2007

3/13/2007 10:00:00 AM

3/14/2007 8:30:00 PM

The date data above can be imported into GAMS using $call and MDB2GMS tool as follows:

$call =mdb2gms I="%system.fp%Sample.accdb" Q="select datefield,Cdbl(datefield) from datetable" O=x.inc

parameter p(*) /

$include x.inc

/;

display p;

alias(*,i);

parameter q(*,*);

loop(i$p(i),

q(i,’year’) = gyear(p(i));

q(i,’month’) = gmonth(p(i));

q(i,’day’) = gday(p(i));

q(i,’hour’) = ghour(p(i));

q(i,’minute’) = gminute(p(i));

);

display q;

Note that the Cdbl() function converts the date to a floating point number (double precision). The
generated include file looks like:

* ---

* MDB2GMS Version 2.8, January 2007

* Erwin Kalvelagen, GAMS Development Corp

* ---

* DAO version: 3.6

* Jet version: 4.0

* Database: D:\mdb2gms\examples\Sample.accdb

* Query: select datefield,Cdbl(datefield) from datetable

* ---

’3/12/2007’ 39153

’3/13/2007 10:00:00 AM’ 39154.4166666667

’3/14/2007 8:30:00 PM’ 39155.8541666667

* ---

which looks o.k. However, when we look at the GAMS results in the listing file we see:

---- 28 PARAMETER p

3/12/2007 39153.000, 3/13/2007 10:00:00 AM 39154.417, 3/14/2007 8:30:00 PM 39155.854

---- 39 PARAMETER q

year month day hour minute

3/12/2007 2007.000 3.000 13.000

3/13/2007 10:00:00 AM 2007.000 3.000 14.000 10.000

3/14/2007 8:30:00 PM 2007.000 3.000 15.000 20.000 30.000

Clearly the dates are off by one day: see the column day. We can fix this problem in different places, e.g.
in the query or in the GAMS model by subtracting 1.0 from an imported date. This problem occurs not
only in MS Access but also with other software packages.

694 User's Guide

Export to MS Access

GDX2ACCESS

GDX2ACCESS is a tool to dump the whole contents of a GDX file to a new MS Access file (.mdb
or .accdb file). GDX2ACCESS is part of the GAMS Data eXchange Tools, see documentation for more
information.

GDXVIEWER

Access tables in MS Access files can be directly generated by the GDXVIEWER tool. The GDXVIEWER
tool uses OLE automation to export data to an MS Access database. This means that MS Access needs to be
installed for the Access Export facility to work. GDXVIEWER is part of the GAMS Data eXchange Tools,
see documentation for more information.

VBScript

VBScript is a scripting tool that can be used to talk to COM objects. In this case we use it to tell
Access to import a CSV file.

$ontext

Import a table into MS Access using VBscript

$offtext

$if exist new.accdb $call del new.accdb

set i /i1*i10/;

alias (i,j);

parameter p(i,j);

p(i,j) = uniform(-100,100);

display p;

file f /data.csv/;

f.pc=5;

put f,’i’,’j’,’p’/;

loop((i,j),

put i.tl, j.tl, p(i,j):12:8/

);

putclose;

execute "=cscript access.vbs";

$onecho > access.vbs

’this is a VBscript script

WScript.Echo "Running script: access.vbs"

dbLangGeneral = ";LANGID=0x0409;CP=1252;COUNTRY=0"

strSQL = "SELECT * INTO mytable FROM [Text;HDR=Yes;Database=%system.fp%;FMT=Delimited].[data#csv]"

Wscript.Echo "Query : " & strSQL

Set oJet = CreateObject("DAO.DBEngine.36")

Wscript.Echo "Jet version : " & oJet.version

Set oDB = oJet.createDatabase("new.accdb",dbLangGeneral)

Wscript.Echo "Created : " & oDB.name

oDB.Execute strSQL

Set TableDef = oDB.TableDefs("mytable")

Wscript.Echo "Rows inserted in mytable : " & TableDef.RecordCount

oDB.Close

Wscript.Echo "Done"

$offecho

http://en.wikipedia.org/wiki/Vbscript

4.18 Data Exchange with Other Applications 695

The CSV file contains a header row with the names of the fields:

"i","j","p"

"i1","i1",-65.65057360

"i1","i2",68.65334160

"i1","i3",10.07507120

"i1","i4",-39.77241920

"i1","i5",-41.55757660

....

The text driver specification HDR=Yes makes sure the first row in the CSV file is treated specially. The log
will look like:

U:\temp>gams vbaccess.gms

--- Job vbaccess.gms Start 01/28/08 16:57:37

GAMS Rev 149 Copyright (C) 1987-2007 GAMS Development. All rights reserved

...

--- Starting compilation

--- vbaccess.gms(4) 2 Mb

--- call del new.accdb

--- vbaccess.gms(38) 3 Mb

--- Starting execution: elapsed 0:00:00.109

--- vbaccess.gms(18) 4 Mb

Microsoft (R) Windows Script Host Version 5.6

Copyright (C) Microsoft Corporation 1996-2001. All rights reserved.

Running script: access.vbs

Query : SELECT * INTO mytable FROM [Text;HDR=Yes;Database=U:\temp\;FMT=Delimited

].[data#csv]

Jet version : 3.6

Created : U:\temp\new.accdb

Rows inserted in mytable : 100

Done

--- Putfile f U:\temp\data.csv

*** Status: Normal completion

--- Job vbaccess.gms Stop 01/28/08 16:57:38 elapsed 0:00:00.609

U:\temp>

Please note that although the $onecho/$offecho is at the bottom of the GAMS file, the file access.vbs is
created at compile time. I.e. before the executable statements like PUT, EXECUTE are executed.

JScript

The same script using JScript is similar to the one with VScript. We only price the script itself.

$ontext

Import a table into MS Access using JScript

$offtext

$if exist new.accdb $call del new.accdb

set i /i1*i10/;

alias (i,j);

parameter p(i,j);

http://en.wikipedia.org/wiki/Jscript

696 User's Guide

p(i,j) = uniform(-100,100);

display p;

file f /data.csv/;

f.pc=5;

put f,’i’,’j’,’p’/;

loop((i,j),

put i.tl, j.tl, p(i,j):12:8/

);

putclose;

execute "=cscript access.js";

$onecho > access.js

// this is a JScript script

WScript.Echo("Running script: access.js");

dbLangGeneral = ";LANGID=0x0409;CP=1252;COUNTRY=0";

strSQL = "SELECT * INTO mytable FROM [Text;HDR=Yes;Database=.;FMT=Delimited].[data#csv]";

WScript.Echo("Query : ",strSQL);

oJet = new ActiveXObject("DAO.DBEngine.36");

WScript.Echo("Jet version : ",oJet.version);

oDB = oJet.createDatabase("new.accdb",dbLangGeneral);

WScript.Echo("Created : ",oDB.name);

oDB.Execute(strSQL);

TableDef = oDB.TableDefs("mytable");

WScript.Echo("Rows inserted in mytable : ",TableDef.RecordCount);

oDB.Close();

WScript.Echo("Done");

$offecho

Combining GDX2ACCESS and VBscript

Data in a GDX file do not contain domain information. I.e. a parameter c(i,j) is really stored as c(∗,∗).
As a result GDX2ACCESS will invent field names like dim1, dim2, Value. In some cases this may not
be convenient, e.g. when more descriptive field names are required. We will show how a small script in
VBscript can handle this task. The script will rename the fields dim1, dim2, Value in table c to i, j, and
transportcost.

$call "gamslib 1"

$include trnsport.gms

*

* export to gdx file.

* The domains i,j are lost: gdx only stores c(*,*)

execute_unload "c.gdx",c;

*

* move to access database

* column names are dim1,dim2

*

execute "=gdx2access c.gdx";

*

4.18 Data Exchange with Other Applications 697

* rename columns

*

execute "=cscript access.vbs";

$onecho > access.vbs

’this is a VBscript script

WScript.Echo "Running script: access.vbs"

’ Office 2000 DAO version

’ Change to local situation.

Set oDAO = CreateObject("DAO.DBEngine.36")

script.Echo "DAO version : " & oDAO.version

Set oDB = oDAO.openDatabase("%system.fp%c.accdb")

Wscript.Echo "Opened : " & oDB.name

Set oTable = oDB.TableDefs.Item("c")

Wscript.Echo "Table : " & oTable.name

’ rename fields

oTable.Fields.Item("dim1").name = "i"

oTable.Fields.Item("dim2").name = "j"

oTable.Fields.Item("Value").name = "transportcost"

Wscript.Echo "Renamed fields"

oDB.Close

Wscript.Echo "Done"

$offecho

The above VBscript fragment needs to be adapted according to the DAO Data Access Objects version
available on the client machine. This can be implemented in a more robust fashion by letting MS Access
find the DAO engine:

’this is a VBscript script

WScript.Echo "Running script: access.vbs"

set oa = CreateObject("Access.Application")

set oDAO = oa.DBEngine

Wscript.Echo "DAO Version: " & oDAO.version

Set oDB = oDAO.openDatabase("%system.fp%c.accdb")

Wscript.Echo "Opened : " & oDB.name

Set oTable = oDB.TableDefs.Item("c")

Wscript.Echo "Table : " & oTable.name

’ rename fields

oTable.Fields.Item("dim1").name = "i"

oTable.Fields.Item("dim2").name = "j"

oTable.Fields.Item("Value").name = "transportcost"

Wscript.Echo "Renamed fields"

oDB.Close

Wscript.Echo "Done"

Please note that the macro %system.fp% is replaced by GAMS by the working directory (this is the
project directory when running GAMS from the IDE).

http://en.wikipedia.org/wiki/Data_Access_Objects

698 User's Guide

4.18.3.3 Data Exchange with MySQL

MySQL is a multi-threaded, multi-user SQL database management system.

Import from MySQL

MySQL can write the results of a SELECT statement to a file as follows:

mysql> select * from dist;

+-----------+----------+----------+

| loca | locb | distance |

+-----------+----------+----------+

| seattle | new-york | 50 |

| seattle | chicago | 300 |

| seattle | topeka | 0 |

| san-diego | new-york | 275 |

| san-diego | chicago | 0 |

| san-diego | topeka | 275 |

+-----------+----------+----------+

6 rows in set (0.01 sec)

mysql> select * from dist into outfile ’/tmp/data.csv’

-> fields terminated by ’,’

-> optionally enclosed by ’"’

-> lines terminated by ’\n’;

Query OK, 6 rows affected (0.00 sec)

The resulting CSV file looks like:

"seattle","new-york",50

"seattle","chicago",300

"seattle","topeka",0

"san-diego","new-york",275

"san-diego","chicago",0

"san-diego","topeka",275

which can be read by GAMS directly. This approach can be automated as follows:

[erwin@localhost erwin]$ cat myscript

use test

select * from dist into outfile ’/tmp/data.csv’

fields terminated by ’,’

optionally enclosed by ’"’

lines terminated by ’\n’;

[erwin@localhost erwin]$ cat x.gms

set i /seattle, san-diego/;

set j /new-york, chicago, topeka/;

$call ’mysql -u root < myscript’

parameter dist(i,j) /

$ondelim

$include /tmp/data.csv

$offdelim

http://en.wikipedia.org/wiki/Mysql

4.18 Data Exchange with Other Applications 699

/;

display dist;

[erwin@localhost erwin]$ gams x

GAMS Rev 132 Copyright (C) 1987-2002 GAMS Development. All rights reserved

Licensee: GAMS Development Corporation, Washington, DC G871201:0000XX-XXX

Free Demo, 202-342-0180, sales@gams.com, www.gams.com DC9999

--- Starting compilation

--- x.gms(5) 1 Mb

--- call mysql -u root < myscript

--- .data.csv(6) 1 Mb

--- x.gms(15) 1 Mb

--- Starting execution

--- x.gms(18) 1 Mb

*** Status: Normal completion

[erwin@localhost erwin]$

The listing file shows that the table is read correctly:

1

2 set i /seattle, san-diego/;

3 set j /new-york, chicago, topeka/;

4

6 parameter dist(i,j) /

INCLUDE /tmp/data.csv

9 "seattle","new-york",50

10 "seattle","chicago",300

11 "seattle","topeka",0

12 "san-diego","new-york",275

13 "san-diego","chicago",0

14 "san-diego","topeka",275

16 /;

17

18 display dist;

19

20

21

SEQ GLOBAL TYPE PARENT LOCAL FILENAME

1 1 INPUT 0 0 /home/erwin/x.gms

2 5 CALL 1 5 mysql -u root < myscript

3 8 INCLUDE 1 8 ./tmp/data.csv

---- 18 PARAMETER dist

new-york chicago topeka

seattle 50.000 300.000

san-diego 275.000 275.000

Instead of maintaining the MySQL script in a separate file, it can also be written by GAMS using
$onecho/$offecho and a statement like:

$onecho > myscript

700 User's Guide

use test

select * from dist into outfile ’/tmp/data.csv’

fields terminated by ’,’

optionally enclosed by ’"’

lines terminated by ’\n’;

$offecho

This will write the script at compile time.

Export to MySQL

GAMS can export data to MySQL by creating a script containing a series of SQL INSERT statements, as
shown in section Oracle CSV Import .

It is noted that MySQL does have a REPLACE statement which is a useful blend of an INSERT and
UPDATE statement: update a row if it already exists, otherwise insert it. This is not standard SQL however,
so it can cause problems when moving to another database.

For larger result sets it may be better to use the LOAD DATA INFILE command. This command can read
directly ASCII text files such as comma delimited CSV files.

Consider again the data file created by the PUT statement:

"seattle","new-york",50.00

"seattle","chicago",300.00

"seattle","topeka",0.00

"san-diego","new-york",275.00

"san-diego","chicago",0.00

"san-diego","topeka",275.00

The following transcript shows how to import this into MySQL:

myql> create table dist(loca varchar(10), locb varchar(10), distance double precision);

Query OK, 0 rows affected (0.00 sec)

mysql> show tables;

+----------------+

| Tables_in_test |

+----------------+

| dist |

+----------------+

1 row in set (0.00 sec)

mysql> describe dist;

+----------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+----------+-------------+------+-----+---------+-------+

| loca | varchar(10) | YES | | NULL | |

| locb | varchar(10) | YES | | NULL | |

| distance | double | YES | | NULL | |

+----------+-------------+------+-----+---------+-------+

3 rows in set (0.00 sec)

mysql> load data infile ’/tmp/data.txt’ into table dist

-> fields terminated by ’,’

4.18 Data Exchange with Other Applications 701

-> optionally enclosed by ’"’

-> lines terminated by ’\n’;

Query OK, 6 rows affected (0.00 sec)

Records: 6 Deleted: 0 Skipped: 0 Warnings: 0

mysql> select * from dist;

+-----------+----------+----------+

| loca | locb | distance |

+-----------+----------+----------+

| seattle | new-york | 50 |

| seattle | chicago | 300 |

| seattle | topeka | 0 |

| san-diego | new-york | 275 |

| san-diego | chicago | 0 |

| san-diego | topeka | 275 |

+-----------+----------+----------+

6 rows in set (0.00 sec)

Note that we used no keys in our table definition. In practice it is of course highly recommended to define
proper keys.

4.18.3.4 Data Exchange with Oracle

The Oracle Database (commonly referred to as Oracle RDBMS or simply as Oracle) is a relational
database management system (RDBMS) software product released by Oracle Corporation.

Import from Oracle

SQL∗Plus

To export an Oracle table a simple solution is to write an SQL∗Plus script. E.g. if our table looks like:

SQL> describe dist;

Name Null? Type

----------------------------------- -------- ------------------------

LOCA NOT NULL VARCHAR2(10)

LOCB NOT NULL VARCHAR2(10)

DISTANCE NUMBER

SQL> select * from dist;

LOCA LOCB DISTANCE

---------- ---------- ---------

seattle new-york 2.5

seattle chicago 1.7

seattle topeka 1.8

san-diego new-york 2.5

san-diego chicago 1.8

san-diego topeka 1.4

6 rows selected.

SQL>

http://en.wikipedia.org/wiki/Oracle_Database

702 User's Guide

then the following script will export this table:

set pagesize 0

set pause off

set heading off

spool data

select loca||’,’||locb||’,’||distance from dist;

spool off

The resulting data file ''data.lst'' will look like:

seattle,new-york,2.5

seattle,chicago,1.7

seattle,topeka,1.8

san-diego,new-york,2.5

san-diego,chicago,1.8

san-diego,topeka,1.4

This almost looks like our data initialization syntax for parameters:

SEATTLE.NEW-YORK 2.5

SAN-DIEGO.NEW-YORK 2.5

SEATTLE.CHICAGO 1.7

SAN-DIEGO.CHICAGO 1.8

SEATTLE.TOPEKA 1.8

SAN-DIEGO.TOPEKA 1.4

The only differences are in the delimiters that are being used. These differences are easily digested by
GAMS once it is in ondelim mode. I.e. the following syntax can be used to read the data.lst file:

parameter d(i,j) ’distance in thousands of miles’ /

$ondelim

$include data.lst

$offdelim

/;

display d;

SQL2GMS

An alternative way to import data from Oracle is to use the tool SQL2GMS which can talk to any database
with an ADO or ODBC interface.

4.18 Data Exchange with Other Applications 703

Import dates from Oracle databases and converting them to GAMS dates

For most softwares it is easy to generate dates that GAMS can import and understand. The most common
issue is that GAMS is one day off compared to Excel, Delphi, Access, ODBC etc. Oracle is somewhat
more involved. First it is useful to have the date/time exported as a Julian date. This can be done with
the following stored procedure:

-- julian representation of a date/time

-- Erwin Kalvelagen, feb 2007

create or replace function to_julian(d IN TIMESTAMP)

return number

is

begin

return to_number(to_char(d,’J’)) + to_number(to_char(d,’SSSSS’))/86400;

end;

This function can be used to export dates as simple floating point numbers. In GAMS we need just a
simple adjustment by adding a constant ''datediff'' defined by:

scalar

refdategams "march 16, 2006, 00:00"

refdateoracle "march 16, 2006, 00:00" /2453811/

datediff "difference between GAMS and Oracle date"

;

refdategams = jdate(2006,3,16);

datediff = refdategams-refdateoracle;

This trick has been applied in a complex scheduling application where dates are important data types
that must be exchanged between the application logic and database tier and the optimization engine.

Export to Oracle

Oracle CSV Import

A familiar way of moving data into Oracle is to generate standard SQL INSERT statements. The
PUT facility is flexible enough to handle this. For instance the following code:

file results /results.sql/;

results.lw=0;

results.nw=0;

put results;

loop((i,j),

put "insert into result (loca, locb, shipment) ";

put "values (’",i.tl,"’,’",j.tl,"’,",x.l(i,j),");"/

);

putclose;

will generate these SQL statements:

704 User's Guide

insert into result (loca, locb, shipment) values (’seattle’,’new-york’,50.00);

insert into result (loca, locb, shipment) values (’seattle’,’chicago’,300.00);

insert into result (loca, locb, shipment) values (’seattle’,’topeka’,0.00);

insert into result (loca, locb, shipment) values (’san-diego’,’new-york’,275.00);

insert into result (loca, locb, shipment) values (’san-diego’,’chicago’,0.00);

insert into result (loca, locb, shipment) values (’san-diego’,’topeka’,275.00);

The .lw and .nw attributes for the put file indicate that no extra spaces around the labels and the numeric
values are needed. These field width attributes have a default value of 12 which would cause the values to
look like:

’seattle ’,’new-york ’, 50.00

If the amount of data is large the utility SQL∗Loader can be used to import comma delimited input. I.e.
the GAMS code:

file results /results.txt/;

results.pc=5;

put results;

loop((i,j),

put i.tl, j.tl, x.l(i,j)/

);

putclose;

produces a file results.txt:

"seattle","new-york",50.00

"seattle","chicago",300.00

"seattle","topeka",0.00

"san-diego","new-york",275.00

"san-diego","chicago",0.00

"san-diego","topeka",275.00

The following SQL∗Loader control file will read this file:

LOAD DATA

INFILE results.txt

INTO TABLE result

FIELDS TERMINATED BY ’,’ OPTIONALLY ENCLOSED BY ’"’

(loca,locb,shipment)

GDX to Oracle

Database tables in an SQL RDBMS can be directly generated by the GDXVIEWER tool. The
GDXVIEWER can use three methods to export to Oracle and other RDBMS:

1. The direct ADO/ODBC link can create a new table and populate it.

2. The SQL INSERT script generator can create a script with a number of INSERT statements.

3. The SQL UPDATE script generator can create a script with a number of UPDATE statements.

4.18 Data Exchange with Other Applications 705

4.18.3.5 Data Exchange with SQL Server

Import from SQL Server

Microsoft SQL Server is Microsoft's flagship database. It comes in different flavors, including SQL
Server, MSDE and SQL Server Express.

Using SQL2GMS

A good way to import SQL server data into GAMS is using the SQL2GMS tool. Below is an example of
its use:

$set commandfile commands.txt

$onecho > %commandfile%

C=provider=sqloledb;data source=athlon\SQLExpress;Initial catalog=test;user id=sa;password=password

O=C:\WINNT\gamsdir\xx.inc

Q=SELECT * FROM x

$offecho

$call =sql2gms @%commandfile%

parameter p(i,j) /

$include "C:\WINNT\gamsdir\xx.inc"

/;

display p;

Using the BCP utilty and CSV files

To export SQL Server data to CSV files we can use the BCP utility.

C:\Program Files\Microsoft SQL Server\90\Tools\binn>bcp test..results out x.csv \

-S athlon\sqlexpress -c -U sa -P password -t,

Starting copy...

6 rows copied.

Network packet size (bytes): 4096

Clock Time (ms.) Total : 10 Average : (600.00 rows per sec.)

C:\Program Files\Microsoft SQL Server\90\Tools\binn>type x.csv

seattle,new-york,50.0

seattle,chicago,300.0

seattle,topeka,0.0

san-diego,new-york,275.0

san-diego,chicago,0.0

san-diego,topeka,275.0

It is somewhat more difficult to create a proper CSV file. A format specification file can help here. For an
example see the next section on Data Exchange with Sybase . Other tools to export files include DTS
(Data Transformation Services) and linked ODBC data sources.

http://en.wikipedia.org/wiki/Microsoft_SQL_Server

706 User's Guide

A direct interface between SQL server tables and GAMS GDX files

Finally we can program directly an interface between SQL server tables and GAMS GDX files. A small
example in C# can look like:
gdxio = new csharpclient();
//
// read a set
//
gdxio.gdxdatawritestrstart(ap, "location", "from db", 1, csharpclient.dt set, 0);
String q = "select distinct(location) from exporttable";
SqlCommand cmd = new SqlCommand(q, conn);
SqlDataReader myReader = cmd.ExecuteReader();
String[] astrelements = new String[10];
for (int i = 0; i < 10; ++i)

astrelements[i] = "";
double[] avals = new double[5];
while (myReader.Read())
{

astrelements[0] = myReader.GetString(0);
avals[0] = 0.0;
Boolean ok = gdxio.gdxdatawritestr(ap,astrelements,avals);

}
gdxio.gdxdatawritedone(ap);
myReader.Close();
//
// read a data table
//
gdxio.gdxdatawritestrstart(ap, "data", "from db", 2, csharpclient.dt par, 0);
q = "select location, capacity, cost exporttable";
cmd = new SqlCommand(q, conn);
myReader = cmd.ExecuteReader();
while (myReader.Read())
{

astrelements[0] = myReader.GetString(0);
astrelements[1] = "capacity";
avals[0] = myReader.GetInt32(1);
Boolean ok = gdxio.gdxdatawritestr(ap, astrelements, avals);
if (!myReader.IsDBNull(2)) {

astrelements[1] = "cost";
avals[0] = myReader.GetDouble(2);
ok = gdxio.gdxdatawritestr(ap, astrelements, avals);

}
}
gdxio.gdxdatawritedone(ap);
myReader.Close();
gdxio.gdxclose(ref ap);

Export to SQL Server

SQL Server has two basic facilities to import CSV files: the BCP tool and the BULK INSERT statement.
Advanced SQL Server users may also be able to use DTS (Data Transformation Services) or linked ODBC
data sources. Of course for small data sets we can create standard SQL INSERT statements. In addition
the tool GDXVIEWER can be used to get GAMS data into SQL Server.

Export using the BCP tool

A transcript showing the use of BCP is shown below:

C:\Program Files\Microsoft SQL Server\90\Tools\binn>sqlcmd -S athlon\SQLExpress

1> use test;

2> create table x(loca varchar(10), locb varchar(10), shipment float);

3> go

Changed database context to ’test’.

1> quit

C:\Program Files\Microsoft SQL Server\90\Tools\binn>type c:\winnt\gamsdir\results.csv

seattle,new-york,50.00

seattle,chicago,300.00

4.18 Data Exchange with Other Applications 707

seattle,topeka,0.00

san-diego,new-york,275.00

san-diego,chicago,0.00

san-diego,topeka,275.00

C:\Program Files\Microsoft SQL Server\90\Tools\binn>bcp test..x in c:\winnt\gamsdir\results.csv \

-S athlon\sqlexpress -c -U sa -P password -t,

Starting copy...

6 rows copied.

Network packet size (bytes): 4096

Clock Time (ms.) Total : 10 Average : (600.00 rows per sec.)

C:\Program Files\Microsoft SQL Server\90\Tools\binn>sqlcmd -S athlon\SQLExpress

1> use test

2> select * from x;

3> go

Changed database context to ’test’.

loca locb shipment

---------- ---------- ------------------------

seattle new-york 50

seattle chicago 300

seattle topeka 0

san-diego new-york 275

san-diego chicago 0

san-diego topeka 275

(6 rows affected)

1> quit

Unfortunately, dealing with quoted strings is not straightforward with this tool (an example using a
format file is shown in the next section on Data Exchange with Sybase). The same thing holds for BULK
INSERT, which can read:

C:\Program Files\Microsoft SQL Server\90\Tools\binn>type c:\winnt\gamsdir\results.csv

seattle,new-york,50.00

seattle,chicago,300.00

seattle,topeka,0.00

san-diego,new-york,275.00

san-diego,chicago,0.00

san-diego,topeka,275.00

C:\Program Files\Microsoft SQL Server\90\Tools\binn>sqlcmd -S athlon\SQLExpress

1> use test

2> create table x(loca varchar(10), locb varchar(10), shipment float)

3> go

Changed database context to ’test’.

1> bulk insert x from ’c:\winnt\gamsdir\results.csv’ with (fieldterminator=’,’)

2> go

(6 rows affected)

1> select * from x

2> go

loca locb shipment

---------- ---------- ------------------------

seattle new-york 50

708 User's Guide

seattle chicago 300

seattle topeka 0

san-diego new-york 275

san-diego chicago 0

san-diego topeka 275

(6 rows affected)

1> quit

C:\Program Files\Microsoft SQL Server\90\Tools\binn>

Export using the ODBC Text Driver

A slower but flexible way to load CSV files is to use a linked server through the ODBC Text Driver.
First create an ODBC DSN using the Text Driver. This can be done through the ODBC Data Source
Administrator Data Sources (ODBC) Then we can use the system procedure SP AddLinkedServer.

C:\Program Files\Microsoft SQL Server\90\Tools\binn>type c:\winnt\gamsdir\results.csv

"seattle","new-york",50.00

"seattle","chicago",300.00

"seattle","topeka",0.00

"san-diego","new-york",275.00

"san-diego","chicago",0.00

"san-diego","topeka",275.00

C:\Program Files\Microsoft SQL Server\90\Tools\binn>type trnsport.sql

--

-- test database

--

use test

--

-- create table in SQL server

--

create table results(loca varchar(10), locb varchar(10), ship float)

GO

--

-- Create a linked server

--

EXEC sp_addlinkedserver txtsrv,’Jet 4.0’,’Microsoft.Jet.OLEDB.4.0’,’c:\winnt\gamsdir’,NULL,’Text’

GO

--

-- copy data from text file c:\winnt\gamsdir\results.csv

--

insert into results(loca,locb,ship)

select * from txtsrv...results#csv

go

--

-- check if all arrived

--

select * from results

go

4.18 Data Exchange with Other Applications 709

--

-- release linked server

--

EXEC sp_dropserver txtsrv

GO

--

-- clean up

--

drop table results

go

C:\Program Files\Microsoft SQL Server\90\Tools\binn>sqlcmd -S athlon\sqlexpress

1> :r trnsport.sql

Changed database context to ’test’.

(6 rows affected)

loca locb ship

---------- ---------- ------------------------

seattle new-york 50

seattle chicago 300

seattle topeka 0

san-diego new-york 275

san-diego chicago 0

san-diego topeka 275

(6 rows affected)

1> quit

C:\Program Files\Microsoft SQL Server\90\Tools\binn>

A slightly different approach is the following:

C:\Program Files\Microsoft SQL Server\90\Tools\binn>sqlcmd -S athlon\sqlexpress

1> create table t(loca varchar(10), locb varchar(10), ship float)

2> go

1> insert into t

2> select * from

3> OpenRowSet(’Microsoft.Jet.OLEDB.4.0’,

4> ’Text;Database=c:\winnt\gamsdir\;HDR=NO’,

5> ’select * from results.csv’)

6> go

(6 rows affected)

1> select * from t

2> go

loca locb ship

---------- ---------- ------------------------

seattle new-york 50

seattle chicago 300

seattle topeka 0

san-diego new-york 275

san-diego chicago 0

san-diego topeka 275

(6 rows affected)

1> drop table t

710 User's Guide

2> go

1> quit

C:\Program Files\Microsoft SQL Server\90\Tools\binn>

This can be automated from GAMS as follows:

file results /results.csv/;

results.pc=5;

put results;

loop((i,j),

put i.tl, j.tl, x.l(i,j)/

);

putclose;

file sqlinsert /insert.sql/;

put sqlinsert;

put "use test"/;

put "insert into t select * from OpenRowSet(’Microsoft.Jet.OLEDB.4.0’,"

"’Text;Database=c:\winnt\gamsdir\;HDR=NO’,’select * from results.csv’)"/;

putclose;

execute ’="C:\Progra~1\Microsoft SQL Server\90\Tools\binn\sqlcmd" -S athlon\SQLExpress -i insert.sql’;

Export using the GDXVIEWER

When using GDXVIEWER to export data to MS SQL server it is noted that MSSQL Server does not
accept the default SQL type double for double precision numbers. You will need to set this setting to
float or double precision.

When we export variable x from the trnsport model, we see:

C:\Program Files\Microsoft SQL Server\90\Tools\binn>sqlcmd -S athlon\SQLExpress

1> use test

2> go

Changed database context to ’test’.

1> select * from x

2> go

dim1 dim2 level

------------------------------- ------------------------------- ------------------------

seattle new-york 50

seattle chicago 300

seattle topeka 0

san-diego new-york 275

san-diego chicago 0

san-diego topeka 275

(6 rows affected)

1> quit

C:\Program Files\Microsoft SQL Server\90\Tools\binn>

4.18.3.6 Data Exchange with SQLite

See GDX2SQLITE for more information.

4.18 Data Exchange with Other Applications 711

4.18.3.7 Data Exchange with Sybase

Import from Sybase

Import using the bcp utility

Sybase is largely the same as SQL Server. For exporting ASCII files from a Sybase table, the utility
(Using the BCP utilty and CSV files) can be used.

An example of use of this utility is shown below:

[erwin@fedora sybase]$ isql -U sa -S LOCALHOST -D testdb -P sybase -J iso_1

1> select * from results

2> go

loca locb shipment

---------- ---------- --------------------

seattle new-york 50.000000

seattle chicago 300.000000

seattle topeka 0.000000

san-diego new-york 275.000000

san-diego chicago 0.000000

san-diego topeka 275.000000

(6 rows affected)

1> quit

[erwin@fedora sybase]$ cat bcp.fmt

10.0

4

1 SYBCHAR 0 0 "\"" 1 loca

2 SYBCHAR 0 10 "\",\"" 1 loca

3 SYBCHAR 0 10 "\"," 2 locb

4 SYBCHAR 0 17 "\n" 3 shipment

[erwin@fedora sybase]$ bcp testdb..results out res.txt -S LOCALHOST -U sa -P sybase \

-J iso_1 -f bcp.fmt

Starting copy...

6 rows copied.

Clock Time (ms.): total = 1 Avg = 0 (6000.00 rows per sec.)

[erwin@fedora sybase]$ cat res.txt

"seattle","new-york",50.0

"seattle","chicago",300.0

"seattle","topeka",0.0

"san-diego","new-york",275.0

"san-diego","chicago",0.0

"san-diego","topeka",275.0

[erwin@fedora sybase]$

Note: the first column in the format file is a dummy (it has length 0). This is in order to write the leading
quote, as bcp only allows for termination symbols.

This can be automated using the following GAMS code:

712 User's Guide

sets

i ’canning plants’ / seattle, san-diego /

j ’markets’ / new-york, chicago, topeka / ;

$onecho > bcp.fmt

10.0

4

1 SYBCHAR 0 0 "\"" 1 loca

2 SYBCHAR 0 10 "\",\"" 1 loca

3 SYBCHAR 0 10 "\"," 2 locb

4 SYBCHAR 0 17 "\n" 3 shipment

$offecho

$call "bcp testdb..results out res.txt -S LOCALHOST -U sa -P sybase -J iso_1 -f bcp.fmt"

parameter d(i,j) ’distance in thousands of miles’

/

$ondelim

$include res.txt

$offdelim

/;

display d;

Import using the SQL2GMS utility

The SQL2GMS tool uses ADO or ActiveX Data Objects to extract data from relational databases. It can
connect to almost any database from any vendor as it supports standards like ODBC. See documentation
for more information.

Import using a 'SQL2GMS' VBS script

The following GAMS code will generate and execute a script written in VBScript. It mimics the behavior
of SQL2GMS.EXE and can be used for debugging or the script can be passed on to the IT support people
in case there are problems with accessing the database.

$ontext

This script mimics SQL2GMS.

Erwin Kalvelagen

November 2006

$offtext

$onecho > sql2gms.vbs

’

’ parameters

’

t1 = 3 ’ connection timeout

t2 = 0 ’ command timeout

c = "Provider=MSDASQL;Driver={SQL Server};Server=DUOLAP\SQLEXPRESS;Database=testdata;

Uid=gams;Pwd=gams;" ’ connection string

q = "select * from data" ’ query

o = "output.inc" ’ the output file to be generated

b = false ’ whether to quote indices (e.g. because of embedded blanks)

’

’ create ADO connection object

4.18 Data Exchange with Other Applications 713

’

set ADOConnection = CreateObject("ADODB.Connection")

ADOVersion = ADOConnection.Version

WScript.Echo "ADO Version:",ADOVersion

’

’ make db connection

’

ADOConnection.ConnectionTimeout = t1

ADOConnection.ConnectionString = c

ADOConnection.Open

’

’ Open file

’

set fso = CreateObject("Scripting.FileSystemObject")

set outputfile = fso.CreateTextFile(o,True)

outputfile.writeLine "*--"

outputfile.writeLine "* SQL2GMS/Vbscript 1.0"

outputfile.writeLine "* Connection:"&c

outputfile.writeLine "* Query:"&q

outputfile.writeLine "*--"

’

’ setup query

’

starttime = time

ADOConnection.CommandTimeout = t2

const adCmdText = 1

set RecordSet = ADOConnection.Execute(q,,adCmdText)

’

’ get results

’

NumberOfFields = RecordSet.Fields.Count

eof = RecordSet.EOF

if eof then

WScript.Echo "No records"

Wscript.quit

end if

’

’ loop through records

’

NumberOfRows = 0

do until eof

NumberOfRows = NumberOfRows + 1

Row = RecordSet.GetRows(1)

if NumberOfFields > 1 then

s = Row(0,0)

if b then

s = quotestring(s)

end if

Outputfile.Write s

end if

for i=2 to NumberOfFields-1

s = Row(i-1,0)

714 User's Guide

if b then

s = quotestring(s)

end if

Outputfile.Write "."

Outputfile.Write s

next

s = Row(NumberOfFields-1,0)

OutputFile.Write " "

OutputFile.Writeline s

eof = RecordSet.EOF

loop

OutputFile.Close

Wscript.echo "Records read:"&NumberOfRows

Wscript.echo "Elapsed time:"&DateDiff("s",starttime,time)&" seconds."

function quotestring(s)

has_single_quotes = false

has_double_quotes = false

needs_quoting = false

’

’ check input string for special characters

’

for j=1 to len(s)

ch = Mid(s,j,1)

select case ch

case "’"

has_single_quotes = true

case """"

has_double_quotes = true

case " ","/",";",","

needs_quoting = true

case else

k = asc(ch)

if (k<=31) or (k>=127) then

needs_quoting = true

end if

end select

next

’

’ check if we have if gams keyword

’

kw = array("ABORT","ACRONYM","ACRONYMS","ALIAS","BINARY","DISPLAY","ELSE", _

"EQUATION","EQUATIONS","EXECUTE","FILE","FILES","FOR","FREE", _

"IF","INTEGER","LOOP","MODEL","MODELS","NEGATIVE","OPTION", _

"OPTIONS","PARAMETER","PARAMETERS","POSITIVE","PROCEDURE", _

"PROCEDURES","PUT","PUTCLEAR","PUTCLOSE","PUTHD","PUTPAGE", _

"PUTTL","SCALAR","SCALARS","SEMICONT","SET","SETS","SOS1", _

"SOS2","TABLE","VARIABLE","VARIABLES","WHILE")

if not needs_quoting then

for j = 0 to Ubound(kw)

4.19 Executing GAMS from other Environments 715

if strcomp(s,kw(j),1)=0 then

needs_quoting = true

exit for

end if

next

end if

’

’ already quoted?

’

ch = left(s,1)

select case ch

case "’", """"

quotestring = s

exit function

end select

’ check for special case

if has_single_quotes and has_double_quotes then

quotestring = """" & replace(s, """", "’") & """"

elseif has_single_quotes then

quotestring = """" & s & """"

elseif has_double_quotes then

quotestring = "’" & s & "’"

elseif needs_quoting then

quotestring = "’" & s & "’"

else

quotestring = s

end if

end function

$offecho

execute ’=cscript sql2gms.vbs’;

4.19 Executing GAMS from other Environments

4.19.1 Some General Comments

Nowadays the objected-oriented APIs are the most efficient and elegant way to interact with the GAMS
system. They allow the effective communication of data, and do parameterized runs of GAMS. This
whole chapter describes a much more basic interaction of GAMS through calling the GAMS executable
from different environments. This still can be useful, e.g. if no object-oriented API is available for the
particular target language (e.g. VBA).

While the principle of calling the GAMS executable holds for all operating systems, this chapter often
focuses on the Windows platform.

One of the interesting problems one faces when spawning GAMS.EXE in a Windows environment is
multi-threading. If one does not take precautions, a call to Shell (VB function) or CreateProcess (Win32
API function) causes GAMS to run asynchronously: the function will return while GAMS is still running.
In order to read the results one would need to wait until the GAMS job has finished. The machinery
for this requires some Windows trickery, and for Visual Basic version 6 and Delphi version 4 we have
implemented some small examples that illustrate how this can be done.

716 User's Guide

Another issue that needs to be addressed is that GAMS needs a place to put its scratch files. By default
this is the current directory, a concept that is not always clear in a windowing environment. A good way
of dealing with his is to set both the current drive and the current directory before running the GAMS job.
It should be noted that GAMS needs write permission there. In the examples we use the Windows TEMP
directory for this, but in a real application you may want to use a designated directory. The Windows
TEMP directory is found by calling the API function GetTempPath.

4.19.1.1 The GAMS architecture

GAMS itself is a console mode application. In fact it is not a single program, but a driver program
(GAMS.EXE on Windows, otherwise GAMS) that executes in turn the GAMS language compiler (GAM-
SCMEX) or one of the solvers. For a model with a single solve statement, GAMS.EXE will first call
GAMSCMEX to compile the GAMS model. Then GAMSCMEX will start executing the internal code
that was generated by the compiler. As soon as it hits the instructions belonging to a SOLVE statement it
will generate model instance, and GAMSCMEX will exit. Then GAMS.EXE will spawn a solver capable
of solving the model. As soon as the solver is finished, GAMS.EXE will execute GAMSCMEX again so it
can read the solution and can continue with executing instructions.

4.19.2 Spawning GAMS from VBA

Visual Basic for Applications (VBA) is a programming language that is built into most Microsoft Office
applications, e.g. Excel and Access. A VBA program may include modules, which can be imported from
files, i.e. in the VBA editor you can choose menu “File”→“Import File”. The GAMS distribution includes
some VBA modules, which can be found from:

<GAMS System Directory>\apifiles\VBA\api, e.g. "C:\GAMS\win64\24.5\apifiles\VBA\api"

Attention

• In order to avoid issues, it's recommended to use the latest version of the modules , i.e. the
modules found in the latest GAMS release.

For example, the following modules can be found:

• gamsglobals.bas: Global constants that are used in other modules

• gdxvba.bas: GAMS Data Exchange Object

• idxvba.bas: GAMS IDX Object

• optvba.bas: GAMS Option Object

For more information, see Expert-Level APIs. VBA programs that use the API can be found from:

<GAMS System Directory>\apifiles\VBA, e.g. "C:\GAMS\win64\24.5\apifiles\VBA"

The models can also be retrieved via GAMS Studio -> GAMS --> Model Library Explorer ->
GAMS Data Utilities Models.

4.19 Executing GAMS from other Environments 717

4.19.2.1 Spawning GAMS from Excel

Calling GAMS out of Excel requires some more work than just Data Exchange with Microsoft Excel. The
application calling GAMS out of Excel has to:

1. Locate the GAMS system directory and adjust the system path accordingly.

2. Copy the GAMS model into a temporary directory (by default the temporary directory of Windows)

3. Extract the model data from the spreadsheet into a GAMS readable format (gdx)

4. Execute GAMS (solve the model, write the slution back to gdx file)

5. Import the model results back from the gdx files into the spread sheet

6. Update the spreadsheet (graphics, tables)

Using VisualBasic for Applications (VBA) this can be implemented with a few lines of code:
Sub solve()

Dim WorkDir As String
WorkDir = TempDir()
Call ClearSolution
If (Not AddGAMSPath()) Then ’ needed to find gdxcclib64.dll and gams.exe

Exit Sub
End If
Call ExportGDXFile(WorkDir)
Call WriteGAMSModel(WorkDir & "portfolio.gms")
Call RunGAMS(WorkDir & "portfolio.gms", WorkDir)
Call ReadListing(WorkDir & "portfolio.lst")
Call ImportGDXFile(WorkDir)

End Sub

For further details, please inspecte the VBA part of the examples below.

4.19.2.2 A Simple Example

This very simple example shows how GAMS can be invoked from an Excel spreadsheet. The ”example
spreadsheet” has a button, which will cause GAMS to run the trnsport.gms model stored in c:/tmp. There
is no data exchange.

A more complete application will write an include file for a GAMS model, and will import a comma
delimited file with results when the run is finished. An example of such a complete application is described
in http://www.gams.com/mccarl/excelgams.pdf.

4.19.2.3 Sudoku Example

This spreadsheet is a complete example that uses GDX files to exchange information solves a 25x25
Sudoku problem using CPLEX. It comes with the GAMS distribution in apifiles/VBA/sudoku.xlsm. You
will need a GAMS/CPLEX license to be able to run the spreadsheet. The MIP model solves very easily:
the solution is found in the presolve phase.

Note: This spreadsheet requires distribution 22.6 or younger to work properly.

Problem

Solution

4.19.2.4 Efficient frontier example

This example solves a series of NLPs to create an efficient frontier of a portfolio optimization problem. It
comes with the GAMS distribution in apifiles/VBA/portfolio.xlsm.

Note: This spreadsheet requires distribution 22.6 or younger to work properly.

http://en.wikipedia.org/wiki/Visual_Basic_for_Applications
http://www.gams.com/mccarl/excelgams.pdf

718 User's Guide

4.19.3 Spawning GAMS from C

The example below shows an absolute minimal version of calling GAMS from a C program:
#include <stdio.h>

int main(int argc, char** argv)
{

system("gams trnsport lo=2");
return 0;

}

As can be seen the GAMS executable gams.exe is called via a simple invocation of system(). The extra
command line parameter lo=2 indicates that the log file is not written to the screen (this is the default)
but to a file model.log.

If we want to generate some data from the application program (e.g. parameter DEMAND), we can use an
include file which is written by the application. Of the way back results can be read from a PUT file. The
GAMS file can now look like:

Sets

i canning plants / seattle, san-diego /

j markets / new-york, chicago, topeka / ;

Parameters

a(i) capacity of plant i in cases

/ seattle 350

san-diego 600 /

b(j) demand at market j in cases

/

$include demand.inc

/ ;

Table d(i,j) distance in thousands of miles

new-york chicago topeka

seattle 2.5 1.7 1.8

san-diego 2.5 1.8 1.4 ;

Scalar f freight in dollars per case per thousand miles /90/ ;

Parameter c(i,j) transport cost in thousands of dollars per case ;

c(i,j) = f * d(i,j) / 1000 ;

Variables

x(i,j) shipment quantities in cases

z total transportation costs in thousands of dollars ;

Positive Variable x ;

Equations

cost define objective function

supply(i) observe supply limit at plant i

demand(j) satisfy demand at market j ;

cost .. z =e= sum((i,j), c(i,j)*x(i,j)) ;

supply(i) .. sum(j, x(i,j)) =l= a(i) ;

4.19 Executing GAMS from other Environments 719

demand(j) .. sum(i, x(i,j)) =g= b(j) ;

Model transport /all/ ;

Solve transport using lp minimizing z ;

Display x.l, x.m ;

file fout /results.txt/;

put fout;

loop((i,j),

put x.l(i,j):17:5/;

);

putclose;

The corresponding C program could look like:
//
// example of running a GAMS model
//
#include <stdio.h>
// number of supply and demand locations
#define M 2
#define N 3
char* dist[M] = {"seattle", "san-diego" };
char* city[N] = {"new-york","chicago", "topeka" };
double demand[N] = { 325.0, 300.0, 275.0 };
double ship[M][N];
int main(int argc, char** argv)
{

FILE *f;
int i,j;
//
// write include file
//
f = fopen("demand.inc","wt");
if (f == NULL) {

perror("fopen");
exit(1);

}
for (i=0; i<N; ++i)

fprintf(f,"%s %g\n",city[i],demand[i]);
fclose(f);
//
// call GAMS
//
system("gams trnsport lo=2");
//
// read solution
//
f = fopen("results.txt","rt");
if (f == NULL) {

perror("fopen");
exit(1);

}
for (i=0; i<M; ++i)

for (j=0; j<N; ++j)
fscanf(f,"%lg",&(ship[i][j]));

fclose(f);
//
// display results
//
for (i=0; i<M; ++i)

for (j=0; j<N; ++j)
printf("%s->%s %g\n",dist[i],city[j],ship[i][j]);

return 0;
}

4.19.4 Spawning GAMS from Visual Basic

This example shows how GAMS can be invoked from a VB program.

When executed a simple window appears where a GAMS model can be specified and possible other
command line options. The [GAMS] button will execute the model.

When the Normal display is used, a console window will be opened. This console window will be closed
automatically at the end of the run if the Close process window on completion check box is checked.

720 User's Guide

Minimized does not show a window, but in the taskbar an icon will appear. If the job takes a long time,
the user can click on this icon to make the console window visible. The Hidden option prevents any
GAMS associated window or icon to appear.

Note: it is required for this program to work, that the GAMS system directory is in the path. If this is
not the case, an error code of -1 is returned.

The main program is attached below.
Attribute VB Name = "vbGAMS"
Option Explicit
’ ------------------------------
’ Module Name: VBGams
’ File: gams.bas
’ Version: 1.1
’
’
’ Functions:
’ VB Gams32 - sets up process directory, parameter file, and console, and manages
’ looping of gams compiler and solver.
’
’ --------
’ Function VB Gams32
’ Sets up process directory, parameter file, and console, and manages
’ looping of gams compiler and solver.
’
’ Parameters
’ sParams String Command line arguments
’ nDisplayMode Integer GAMS NORMAL, GAMS MIN, or GAMS HIDDEN
’ bCloseWin Boolean Close the console on completion of gams job
’
’ Returns
’ 1000 missing input string
’ 2000 16 bit spawn failed
’ -or-
’ nCmexRC + 100 * nVB GamsRC
’
’ nCmexRC : return code from last run of GAMS compile/execute module
’ (for DOS/Win XX)
’ 0 : normal return
’ 1 : solve is next (should not happen)
’ 2 : compilation error
’ 3 : execution error
’ 4 : system limits
’ 5 : file error
’ 6 : parameter error
’ 7 : licensing error
’ 8 : GAMS system error
’ 9 : GAMS could not be started
’
’ nVB GamsRC: vbGams specific error codes
’ 0 : normal return
’ 1 : could not create process dir
’ 2 : could not run gamsparm script
’ 3 : could not append user input to parameter scratch file
’ 4 : could not spawn gamscmex.exe
’ 5 : could not shell off "gamsnext" script
’ 6 : could not delete process directory
’
Public Function VB Gams32(sParams As String, nDisplayMode As Integer,

bCloseWin As Boolean) As Long
Dim lAlloc As Long, lRetAPI As Long
Dim nSpawn As Long

If nDisplayMode = GAMS NORMAL Then ’ allocate a console
lAlloc = AllocConsole()
Dim sConTitle As String, hWnd As Long, nTop As Long, nLeft As Long
sConTitle = "VB GAMS "
lAlloc = SetConsoleTitle(sConTitle) ’ so I can find it
’ if the console window is to stay open, then, need to reposition console window.
If Not bCloseWin Then

Call Sleep(100) ’ necessary so console can come up
hWnd = FindWindow(vbNullString, sConTitle)
If hWnd <> 0 Then

nTop = 20
nLeft = 20
lAlloc = SetWindowPos(hWnd, HWND BOTTOM, nTop, nLeft, 0, 0, SWP NOZORDER + SWP NOSIZE)
Call CloseHandle(hWnd)

End If
End If

End If
nSpawn = Spawn("gams.exe " & sParams, nDisplayMode)

If nDisplayMode = GAMS NORMAL Then
If Not bCloseWin Then

Beep

4.19 Executing GAMS from other Environments 721

MsgBox "Click here to close console.", vbOKOnly + vbInformation, "VB GAMS"
End If
lAlloc = FreeConsole()

End If
VB Gams32 = nSpawn
ShowWait False

End Function

4.19.5 Spawning GAMS from Delphi

This is a Delphi 4 application that has similar features as the Visual Basic application described in the
previous paragraph.

Note: it is required for this program to work, that the GAMS system directory is in the path. If this is
not the case, an error code of -1 is returned. The main code is attached below.
unit main;
interface
uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls;

type
TMainForm = class(TForm)

FileEdit: TEdit;
FileOpenDialog: TOpenDialog;
filelabel: TLabel;
BrowseButton: TButton;
CmdLineOptionsEdit: TEdit;
CmdLineLabel: TLabel;
RunButton: TButton;
ReturnLabel: TLabel;
ConsoleComboBox: TComboBox;
ConsoleLabel: TLabel;
CloseConsoleButton: TButton;
procedure BrowseButtonClick(Sender: TObject);
procedure RunButtonClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure CloseConsoleButtonClick(Sender: TObject);

private
{ Private declarations }
function GSExec(const ProgName,ProgParams: string;

const wShowWindow : word;
var rc: integer): integer;

function ExecuteGAMS(
const ProgName,ProgParams: string;
wShowWindow : word; { SW NORMAL, SW HIDE or SW SHOWMINIMIZED }
AutoClose : boolean; { close console at end }
var rc: integer): integer;

public
{ Public declarations }

end;
var

MainForm: TMainForm;
implementation
{$R *.DFM}
function TMainForm.GSExec(const ProgName,ProgParams: string;

const wShowWindow : word;
var rc: integer): integer;

{execute program:
Result: error code for starting the program
rc : error code returned by the program}

var
Command : String;
ProcessInformation : TProcessInformation;
StartupInfo : TStartupInfo;
exitcode : dword;

begin
// Initialise the startup information to be the same as that of the
// calling application. This is easier than initialising the many
// individual startup information fields and should be fine in most
// cases.
GetStartupInfo(StartupInfo);
// StartupInfo.wShowWindow determines whether the called application
// will be initially displayed normal, maximises, minimised or some
// other subtle variations
StartupInfo.wShowWindow := wShowWindow;
StartupInfo.dwFlags := StartUpInfo.dwFlags or STARTF USESHOWWINDOW;
Command := ProgName + ’ ’ + ProgParams;
if not CreateProcess(

Nil, {ApplicationName}
PChar(Command), {lpCommandLine }
Nil, {lpProcessAttributes}

722 User's Guide

Nil, {lpThreadAttribute}
false, {bInheritedHandles}
NORMAL PRIORITY CLASS, {dwCreationFlags}
Nil, {lpEnvironment}
Nil, {lpCurrentDirectory}
StartupInfo, {lpStartupInfo}
ProcessInformation {lpProcessInformation}
)

then
begin
rc := 0;
Result := GetLastError {failed to execute}
end

else
begin
with ProcessInformation
do begin

WaitForSingleObject(hProcess,INFINITE);
GetExitCodeProcess(hProcess,exitcode);
CloseHandle(hThread);
CloseHandle(hProcess);
end;

Rc := exitcode;
Result := 0;
end;

end;
function TMainform.ExecuteGAMS(

const ProgName,ProgParams: string;
wShowWindow : word; { SW NORMAL, SW HIDE or SW SHOWMINIMIZED }
AutoClose : boolean; { close console at end }
var rc: integer): integer;

var ok : BOOL;
begin

if AutoClose then begin
{ this is the easy one }
result := GSExec(ProgName, ProgParams, wShowWindow, rc);
exit;

end;
{ in the case we want to let the user close the window,

we need to allocate the console ourselves }
ok := AllocConsole();
result := GSExec(ProgName, ProgParams, wShowWindow, rc);
{ if our console was used, show button to get rid of it }
if (ok) then

CloseConsoleButton.Enabled := true;
end;
procedure CdTemp;
{ cd to windows temp directory }
const maxpath=260;
var path : string;
begin

setlength(path,maxpath);
GetTempPath(maxpath,Pchar(path));
path := ExpandFileName(path); { just to be sure }
ChDir(path); { will also change drive }

end;
procedure TMainForm.BrowseButtonClick(Sender: TObject);
begin
{ popup file open dialog }
if FileOpenDialog.Execute then

FileEdit.text := FileOpenDialog.Filename;
end;
procedure TMainForm.RunButtonClick(Sender: TObject);
var

rc : integer; { return code from GAMS.EXE }
result : integer; { return code from GsExe }
params : string; { command line params for GAMS.EXE }
s : string; { for assembly of error messages }
wShowWindow: word;
AutoClose : boolean;

begin
{ set current directory }
CdTemp;
{ extract command line parameters from edit controls }
{ there may be blanks in the filenames, so add quotes }
params := ’"’ + FileEdit.Text + ’" ’ + CmdLineOptionsEdit.Text;
{ get wShowWindow information }
case ConsoleComboBox.ItemIndex of

0, 1 : wShowWindow := SW NORMAL;
2 : wShowWindow := SW SHOWMINIMIZED;
3 : wShowWindow := SW HIDE;

end;
AutoClose := not (ConsoleComboBox.ItemIndex = 1);
{ inform user GAMS is running }
ReturnLabel.Caption := ’Running GAMS...’;
ReturnLabel.Font.Color := ClGreen;
Refresh;

4.19 Executing GAMS from other Environments 723

{ run GAMS.EXE }
result := ExecuteGAMS(’gams.exe’, params, wShowWindow, autoClose, rc);
{ check for results }
if (result <> 0) then begin

str(result,s);
ReturnLabel.Caption := ’Exec failed: result = ’+s;
ReturnLabel.Font.Color := ClRed;

end else if (rc <> 0) then begin
str(rc,s);
ReturnLabel.Caption := ’GAMS failed: rc = ’+s;
ReturnLabel.Font.Color := ClRed;

end else begin
ReturnLabel.Caption := ’OK’;
ReturnLabel.Font.Color := ClBlack;

end;
end;
procedure TMainForm.FormCreate(Sender: TObject);
begin

ConsoleComboBox.ItemIndex := 0;
end;
procedure TMainForm.CloseConsoleButtonClick(Sender: TObject);
begin

FreeConsole();
CloseConsoleButton.Enabled := false;

end;
end.

4.19.6 Spawning GAMS from Visual C++

In ”this example” we call GAMS from a simple Visual C++ application.

The additional concern is here that we want to intercept the GAMS screen output so it can be writ-
ten to a multi-line edit control. For more information about the used technique see the Microsoft
publication: [HOWTO: Spawn Console Processes with Redirected Standard Handles (Q190351)] (
https://support.microsoft.com/en-us/kb/190351) in the Microsoft Knowledge Base.

4.19.7 Spawning GAMS from C#

Below is a simple example:
using System.Diagnostics;
void RunGamsModel()
{

Process p = new Process();
p.StartInfo.FileName = gamsexe;
p.StartInfo.WorkingDirectory = tempdir;
p.StartInfo.Arguments = "\"" + modelname + "\" LO=0 --runid="+runid;
p.Start();
p.WaitForExit();

}

The command line formed here is gams modelname LO=0 --runid=xxx. The option LO (logoption) will
disable writing a log, and the option --runid passes a parameter to the GAMS model (inside the model
you can access this through %runid%).

4.19.8 Spawning GAMS from Java

Java has a class Runtime that implements spawning of processes using the Exec() method. This is quite
trivial to use in applications, but in applets the default security settings don't allow this operation (in
general). The problem can be solved by loading the applet from a local drive or by using a signed applet.
Similarly if the Java classes are loaded from inside a database, this operation may require additional
privileges. For an example see the previous section, where GAMS is called from Oracle using a Java
Stored Procedure. The relevant code may look like:
import java.io.File;
class RunGAMS {

public static void main(String[] args) {
System.out.println("Start");

https://support.microsoft.com/en-us/kb/190351
https://support.microsoft.com/en-us/kb/190351

724 User's Guide

String[] cmdArray = new String[5];
cmdArray[0] = "<PATH/TO/GAMS>" + File.separator + "gams";
cmdArray[1] = "<PATH>" + File.separator + "trnsport.gms";
cmdArray[2] = "WDIR=<PATH>" + File.separator + "TMP";
cmdArray[3] = "SCRDIR=<PATH>" + File.separator + "TMP";
cmdArray[4] = "LO=2";
try {

Process p = Runtime.getRuntime().exec(cmdArray);
p.waitFor();

}
catch (java.io.IOException e)
{

System.err.println(">>>>" + e.getMessage());
e.printStackTrace();

}
catch (InterruptedException e)
{

System.err.println(">>>>" + e.getMessage());
e.printStackTrace();

}
System.out.println("Done");

}
}

Below another example, which avoids problems, if the model has a long screen log (the buffer gets filled
and locks the execution), which could happen if GAMS does not write the log to the file like above. This
example is based on suggestion made by Edson Valle.
import java.io.File;
import java.io.BufferedReader;
import java.io.InputStreamReader;
class RunGAMS {

public static void main(String[] args) {
System.out.println("Start");
String[] cmdArray = new String[5];
cmdArray[0] = "<PATH/TO/GAMS>" + File.separator + "gams.exe";
cmdArray[1] = "<PATH>" + File.separator + "trnsport.gms";
cmdArray[2] = "<PATH>" + File.separator + "tmp";
cmdArray[3] = "LO=3";
try {

Process p = Runtime.getRuntime().exec(cmdArray);
BufferedReader stdInput = new BufferedReader(new InputStreamReader(p.getInputStream()));
String s = null;
while((s=stdInput.readLine()) !=null){

System.out.println(s);
}
p.waitFor();

}
catch (java.io.IOException e)
{

System.err.println(">>>>" + e.getMessage());
e.printStackTrace();

}
catch (InterruptedException e)
{

System.err.println(">>>>" + e.getMessage());
e.printStackTrace();

}
System.out.println("Done");

}
}

For an example of GAMS usage from a Java based server environment see Alexander Sokolov, Information

environment and architecture of decision support system for nutrient reduction in the

Baltic Sea, Department of Systems Ecology, Stockholm University.

4.19.9 Spawning GAMS from a Web Server

Running GAMS remotely using a Web based thin-client architecture requires that GAMS is executed
directly or indirectly from the Web server or HTTP server. A simple way of doing this is via a CGI
process. Common Gateway Interface (CGI) programs can be written in many languages such as C,
Perl or Delphi. CGI is relatively slow, as for each interaction, even the most simple one, a process needs
to be started. Alternatives exist in the form of CGI extensions such as FastCGI or using DLLs or shared
libraries. A basic algorithm for a CGI script could be:

• Create a unique directory, and CD to that directory.

mailto:edsoncv@gmail.com
http://apps.nest.su.se/nest/docs/architecture.pdf
http://apps.nest.su.se/nest/docs/architecture.pdf
http://apps.nest.su.se/nest/docs/architecture.pdf
http://en.wikipedia.org/wiki/Common_Gateway_Interface
http://en.wikipedia.org/wiki/Fastcgi

4.19 Executing GAMS from other Environments 725

• Get information from user forms and save it as GAMS readable files.

• Run GAMS making sure it does not write the log to the screen (i.e. use the option LO=2 (log to a
file) or LO=3 (log to stdout)).

• Let the model write solution info to text files using the PUT statement.

• Read solution, and create formatted HTML to send back to the user.

• Remove temp files and directory.

Complications arise when there is a need to show graphics (files need to be stored somewhere and discarded
after a while), when jobs take a long time to finish (you will need to add a facility where the user can
pick up results at a later moment) or when the server resources can be exhausted (e.g. because of a large
number of simultaneous users or because of large models).

An important complicating issue in the above list are jobs that take more time to finish: web servers like
to respond to the user within a short time, and time out errors will occur if a job takes a long time. The
solution is to use a queue based approach. An actual implementation available is the NEOS Server -
there is also a GAMS interface to NEOS: KESTREL - Remote Solver Execution on NEOS Servers.

4.19.10 Spawning GAMS from PHP

A minimal example

index.html
<html>

<body>
<form action="calling gams.php" method="post">

Solve transport with f = <select name="f">
<option>70</option>
<option>80</option>
<option>90</option>
<option>100</option>

</select>
<input type="submit" value="call GAMS"/>

</form>
</body>

</html>

calling gams.php
<?php
$f = $ POST[’f’];
//some model data
$modelfile = ’trnsport php.gms’;
$city = array(’new-york’,’chicago’, ’topeka’);
$demand = array(325.0, 300.0, 275.0);
//write demand.inc
$fh = fopen(’./demand.inc’, ’w+’);
for($i=0; $i<count($city); $i++){

fwrite($fh, $city[$i]." ".$demand[$i]."\n");
}
fclose($fh);
//write f.inc
$fh = fopen(’./f.inc’, ’w+’);
fwrite($fh, $f);
fclose($fh);
//call gams
system(’</path/to/gams>/gams ’.$modelfile.’ lo=2’);
//read solutions
$fh = fopen(’./results.txt’, ’r’);
echo ’<p>result of ’.$modelfile.’ (f=’.$f.’) :</p>’;
while (!feof($fh)){

$line = fgets($fh);
echo ’<p>’.$line.’</p>’;

}
fclose($fh);
?>

trnsport php.gms

http://www.neos-server.org

726 User's Guide

Sets

i canning plants / seattle, san-diego /

j markets / new-york, chicago, topeka / ;

Parameters

a(i) capacity of plant i in cases

/ seattle 350

san-diego 600 /

b(j) demand at market j in cases

/

$include demand.inc

/ ;

Table d(i,j) distance in thousands of miles

new-york chicago topeka

seattle 2.5 1.7 1.8

san-diego 2.5 1.8 1.4 ;

Scalar f freight in dollars per case per thousand miles /

$include f.inc

/ ;

Parameter c(i,j) transport cost in thousands of dollars per case ;

c(i,j) = f * d(i,j) / 1000 ;

Variables

x(i,j) shipment quantities in cases

z total transportation costs in thousands of dollars ;

Positive Variable x ;

Equations

cost define objective function

supply(i) observe supply limit at plant i

demand(j) satisfy demand at market j ;

cost .. z =e= sum((i,j), c(i,j)*x(i,j)) ;

supply(i) .. sum(j, x(i,j)) =l= a(i) ;

demand(j) .. sum(i, x(i,j)) =g= b(j) ;

Model transport /all/ ;

Solve transport using lp minimizing z ;

Display x.l, x.m ;

file fout /results.txt/;

put fout;

loop((i,j),

put i.tl:0 ’->’ j.tl:0 ’: ’ x.l(i,j)/;

);

put ’cost: ’z.l/;

4.20 Using GAMS Studio 727

putclose;

4.20 Using GAMS Studio

This tutorial on using GAMS Studio was written initially by and is distributed by courtesy of Bruce A.
McCarl 2 . Bruce has extensive experience with GAMS, both as a modeler and an educator, and many
GAMS users know, use, and benefit from his work. This tutorial presents a guided tour to the usage of
GAMS Studio and on some items it reflects Bruce's personal view and preferences.

4.20.1 What Is It?

A multi platform (not only PCs with Windows) graphical interface to run GAMS

GAMS uses two phases.

1. Text edit

First, one uses a text editor and creates a file which contains GAMS instructions.

2. File submission

Second, one submits that file to GAMS which executes those instructions causing calculations to
be done, solvers to be used and a solution file of the execution results to be created.

Approaches to use GAMS.

1. More batch oriented traditional method use a text editor set up the model then use DOS (or
UNIX) command line instructions to find errors in and run the model.

2. GAMS STUDIO or GAMS IDE alternatives. Graphical interfaces to create, debug, text edit and
run GAMS files.

2Specialist in Applied Optimization, Distinguished Professor of Agricultural Economics, Texas A&M University, Princi-
pal, McCarl and Associates, mccarl[at]tamu.edu, brucemccarl[at]gmail.com, http://agecon2.tamu.edu/people/faculty/
mccarl-bruce/

http://agecon2.tamu.edu/people/faculty/mccarl-bruce/
http://agecon2.tamu.edu/people/faculty/mccarl-bruce/

728 User's Guide

Summary of steps to using

1. Install GAMS and STUDIO on your computer

2. Open STUDIO through the icon

3. Open or create a file by going to the file selection in the upper left corner.

4. Prepare the file so you think it is ready for execution

5. Run the file with GAMS by clicking the run button or pressing F9

6. Open and navigate around the output

4.20.2 Installation

Install GAMS and STUDIO

GAMS STUDIO is automatically installed when GAMS is installed and you get the choice of whether
to use STUDIO or the IDE as primary editor. To install do the following steps

1. Download the GAMS installation file from www.gams.com under Resources and Download

2. Start the installation

Installer should place an icon on the desktop yielding

https://www.gams.com/
https://www.gams.com/download/

4.20 Using GAMS Studio 729

4.20.3 Using STUDIO after Installation

During the install you will find

Which allows you to choose which graphical interface to use as the default. For now choose STUDIO.

Open STUDIO through the icon

Open the File menu choice. Select a file.

730 User's Guide

Note, the file location determines where all generated files are placed (to place files elsewhere use the save
as dialogue) and where GAMS looks for files when executing. I recommend that you make sure your file
is in a place where you want it also making sure that place contains all associated files ie this is the file
storage directory for this endeavor.

Fix defaults and suppress cursor driven object highlighting. When first opening Studio go to settings
and I would make sure check marks are as follows especially the checked ones in the red boxes and the
unchecked green one

4.20 Using GAMS Studio 731

Here selecting the Process Log and possibly the Explorer are of interest.

732 User's Guide

The Explorer will open automatically when a file is opened and the Process Log will open when a solve
is done. I usually hide the Explorer and sometimes want to get rid of the Process window.

4.20.3.1 Getting Started

Create or open an existing GMS file

Several cases are possible

1. Create a new file (covered later)

2. Open an existing file – at first this will be in

then you see something like

4.20 Using GAMS Studio 733

3. Open the GAMS model library explorer under the GAMS tab or press F6 (this is the simplest for
first time users and the one we will use)

Select a model like trnsport.gms

734 User's Guide

It will be automatically saved in the last directory you used or in the STUDIO default Workspace directory.

Prepare file for execution

When using model library trnsport.gms should now appear as part of your STUDIO screen.

The STUDIO contains a full-featured editor. Go through the file and change what you want.

You can also customize the appearance somewhat through the settings choice under the File menu.

4.20 Using GAMS Studio 735

There you can change font size (under editor), tabs, default file location (called workspace) and some
other features on how GAMS runs. For now leave it alone.

Make sure right file is executed

Unlike a lot of other programs, STUDIO does not necessarily execute the file you have been working on
rather executing what it calls the ”main” file.

In particular, if you activate the explorer view then the main file is the one marked with a green triangle
as below. If the triangle is not marking the file to be run you need to right click on that file and then
choose Set as main file. In turn the triangle will move.

736 User's Guide

Run GAMS by clicking the run button

The Process Log window (green) will then appear which logs the steps executed in running the model.
The LST file (red) and the navigation window (magenta) also appear. Note to save space I would close
the Explorer window and drag the Process Log window (green) to the bottom or the right hand side.
The process window on the bottom is illustrated here and it is on the right side on the following picture.

4.20 Using GAMS Studio 737

Here it is after reconfiguring by dragging the Process Log up and to the right then resizing and repositioning.

Now use the process window (green) to navigate the LST file or open created files. By double clicking on
lines in that window you access the LST file at particular locations or open created files. What and where
you access is determined by the color of the line you click on.

738 User's Guide

Color of Line Function and Destination When Double Clicked

Blue line Opens LST file and jumps to corresponding place.

Non-bolded black line Control click on this takes you to LST file. Double click on error message
takes you to spot in LST file.

Red line Marks errors encountered. Cursor is positioned at first red line. When clicked
on cursor jumps to Source (GMS) file location of error. Control click takes
you to error location in LST file. Error description text is in execution process
log and in LST file. You can use a little red icon in source to jump to error
message in LST file or a green arrow in the LST to go to error location in
source.

Green line Causes studio to open a file that was created during the run like a GDX, PUT
or REF file

Navigate with process window

After double-clicking on any non-red line, or if we used the automatically open list file option our main
editing window is augmented by the LST file (green) (see the magenta tabs)

4.20 Using GAMS Studio 739

We can navigate as we would with an editor or word processor, as we are automatically in STUDIO text
editor.

Sometimes I want to get the process window and explorer out of the way. I can do this through the view
window and also through the icons (red) on the right side of the top bar

Clicking on these opens and closes the explorer and the process window.

Navigate with LXI window

Navig. Line Function and Destination When Clicked.

Compilation Jumps to top of echo print in LST file

Error Mess. Jumps to list of error messages when errors present

740 User's Guide

Navig. Line Function and Destination When Clicked.

Equat. listing Jumps to list of equation contents

Equation Expandable allowing jump list of equation contents

Variab. listing Jumps to list of variable

Variable Expandable allowing jump to list of variable contents

Model stat. Jumps to model statistics part of LST file

Solut.Report Jumps to model summary solution report

SolEQU Expandable allowing jump solution for each equation

SolVAR Expandable allowing jump to solution for variable

Execution Jumps to beginning of post solve execution

Display Jump to displays of specific parameters and other items

4.20.3.2 Working with your own files

Now you are ready to work with your own files. You may already have a file or you may need to create
one.

Creating a new file - Two principal ways

1. Open an existing file through the library or from a location on your hard disk. Then use the save
as dialogue from the file menu to change its name. Now modify contents to what you want. You
may cut and paste as in other Windows programs.

2. Open the file menu and use the new option. You will then be prompted for a name (I called it
mine) with the extension .gms and then have a blank screen (green) into which you may type GAMS
instructions

Save that file wherever you want and reopen it that will become the new default directory (this
only occurs upon an open not a save as) and any subsequent non library opens, simple includes
or saves will go there. Imports from the library go to the default workspace.

4.20 Using GAMS Studio 741

4.20.4 The Welcome and Explorer Windows

As you have worked with STUDIO you will find it shows a Welcome (magenta) window (unless you told
it not to in settings), that remembers previous files plus gives access to documentation.

There as of now you get links to files recently used, and links to some documentation.

Also on the left hand side is an Explorer (green) window that shows recent files and allows you to open
by double clicking. This remains whether you are in the welcome page or editing files unless it is not
checked in the View dialogue.

4.20.5 Fixing Compilation Errors

No one is perfect, errors always occur. The STUDIO can help you in finding and fixing those errors.

Let's look at an example with a small typo to illustrate (note: source vs. sorce). A run yields the
windows below where the right part is the process window (green) positioned to show the first error
and the center is the lst file (magenta) positioned to show the first error.

742 User's Guide

The red lines in the process window mark errors with error messages just below. To see where the errors
occurred click on the very first red line which opens the source file or look at the LST file where the
marking $ appears

A click on the red line takes you to the place in the source where the error was made. The tip
here is always start at the top of the process file when doing this.

A double click on a black line takes you to the error location in the LST file.

Also in the source file window note the small red circle that appears on the line with the error

Clicking on that transfers you to the LST file where the error message appears.

And there a small gray circle with an arrow in it that when clicked on will transfer you back to the source
file

4.20 Using GAMS Studio 743

4.20.6 Ways to find and/or replace text strings

For finding you can use the search menu under the Edit tab or control F

Subsequently you get

744 User's Guide

Which allows both search and replace. As of now this opens with the last option you used and may start
with initially with an all files setting.

After the search you find

Where all occurrences of the search term in the current file are highlighted in yellow and to the right there
is a list of all files that contain that search term (green) in all of the directories corresponding
to files opened in the explorer.

The search dialogue is straight forward with arrow keys to jump to next (F3 also works for forward and
shift F3 for backward) and the all files can be manipulated as shown (in yellow).

4.20.7 Matching Parentheses

The STUDIO provides you with a way of checking on how the parentheses match up in your GAMS
code. This involves positioning your cursor just before an open parentheses or just after a close (Just
after also works if there are not multiple parentheses). In either case the corresponding close or open
is highlighted in green. Additionally positioning the cursor right before the beginning parentheses and
tapping Ctrl + b will lead you to the matching ending parentheses whether it be 1, 100, or 1000+ lines
away and vice versa.

4.20 Using GAMS Studio 745

When the expression in parentheses carries on the several lines the marking is in multiple lines and Ctrl

+ b will transfer position back and forth

This feature will also match up { } or [] with a red marking if the types don’t match.

4.20.8 Moving Blocks

The STUDIO allows one to move text blocks through standard Cut and Paste Operations in two fashions.

1. One can identify a continuous block of text with the mouse or the keyboard (the latter involves
putting the cursor at a beginning point then hold the shift key down and use the arrow keys).

2. One can identify a column block of text (blue) with the mouse or the keyboard (these involve
holding alt and shift down then moving the mouse or the cursor with the arrow keys.

In turn copy, cut, and paste can be done with the Edit menu or with control c, x and v respectively as in
normal windows. Control insert also pastes.

Also if one types with a column block highlighted than the character goes in all rows of the block and
replaces what was there before

746 User's Guide

with an ∗ typed becomes

4.20.9 Syntax Coloring

A feature in the STUDIO is syntax coloring. The STUDIO recognizes a subset of the GAMS syntax and
reflects this in the display colors. Note in the display below that commands, explanatory text and set
elements are differentially colored.

For now unlike in the IDE one cannot alter these syntax colors.

4.20 Using GAMS Studio 747

4.20.10 Showing where a symbol appears

Studio has a feature that identifies where a symbol is used. Taking the library file agreste.gms and
positioning the cursor over a symbol like c (blue) then double clicking places a (gray) highlight over all
visible instances of that symbol

4.20.11 Accessing Documentation Via the Help

To access GAMS documentation choose help or F1

748 User's Guide

And if you choose documentation you get access through a window in lower right corner as shown. Therein
you can navigate, search, and look at the index.

If your cursor is on a reserved word in the source file and you press F1 an index opens to all treatments of
that word although in some strange places.

There is a document that explains features in the STUDIO and a YouTube video that can be accessed
through the welcome page or in the general GAMS documentation under Tools.

https://www.youtube.com/watch?v=p1D86dpyFfY

4.20 Using GAMS Studio 749

4.20.12 Making GDX files

STUDIO can create and show GDX files. To create in STUDIO use the GAMS tab and choose a GDX
creating choice. Alternatively use one of the other ways in the language as we will discuss elsewhere.

To browse a GDX file open it with the file open dialogue or click on green lines for ones created during a
run in the process window and then for the transport example

Here in the left-hand panel one gets an alphabetical listing of the items in the GDX file and their
characteristics. Then clicking on a left-hand panel item leads to the item contents being revealed in the
right hand panel. As of now you can reorder columns and filter values then in table mode can move things
in rows into columns and vice versa.

750 User's Guide

4.20.13 Examining GDX files

When you have opened a GDX file and selected an item then you get a window like that on the previous
page

If in the right-hand panel you dragged i to the right of value (brown below) you get

Also by clicking on the header you cause the array to be sorted with a ∧ marking the sort
order and by clicking on

4.20 Using GAMS Studio 751

you can establish a filter (green above and brown below) and choose what elements to display
(blue below).

752 User's Guide

4.20.14 A difficulty you will have

When using and teaching both the IDE and STUDIO, I find that file locations sometimes gives me fits. I
have a rule of thumb to avoid problems, but you will most likely inadvertently not follow it.

When working with a model with multiple files make sure they are located in the same
directory location.

You do not have to follow this rule but deviations are the same as asking for trouble. When you are
actively working on a file that you have opened from a directory then STUDIO will look for files in the
directory where active file is located.

Also when you run a file which contains includes GAMS will look in the directory where the active
file is located.

4.20.15 Command Line Parameters

Experienced DOS or UNIX based GAMS users are used to having command line parameters associated
with their GAMS execution commands. In STUDIO a command line parameter entry box (magenta)
is available just to the right of the execute button. The parameters are associated with a file and STUDIO
will remember these whenever the file is opened.

4.20 Using GAMS Studio 753

This is particularly useful for save, restart, limrow, limcol, pw and rf parameters as once they are defined
they are associated with every subsequent use of the file.

As of now there is no way to provide command line parameters for use in every run (like a wide page
width) as there was in the IDE.

GAMS provides assistance with command line parameters through the command line parameter editor.
To activate it check the

symbol at the far right (red) up top. Then part of the screen becomes as below. In the left hand
part existing command line parameters (purple) in use (magenta) are listed along with their
values. On the right all possible command line parameters are listed with definitions (green) and
a search dialogue is provided (blue).

754 User's Guide

The search dialogue looks for text in any of the fields, thus typing in wid brings up page width as does
pw and maxi brings up those with maximum in the description.

Note pressing F1 while the cursor is on a command line entry opens help to a place with a detailed
description of that parameter.

4.20.16 Solver Option Files

STUDIO allows you to edit or create a solver option file. When using the solver Conopt you create
conopt.opt or with Cplex use cplex.opt (or .op1 or .o10 or .111) and more generally solvername.opt.
Specifying such a file allows you to manipulate the way the solver works on the model. For example, you
can alter scaling, tolerances, iteration limits, solver algorithm, and branch and bound strategy along with
many other things.

Now in Studio the option file editor is accessed by either

• Right clicking on the group name (red) for a group where you want an option file then choosing
add new solver option file (blue) and picking the appropriate solver name (magenta)

• Creating a file like baron.opt then when you bring that up in the editor the option file editor
appears. In the editor you see options in use (blue), possibilities and definitions (red)

4.20.17 Using Libraries

STUDIO allows one to access libraries under the GAMS menu item and choosing the Model Library
Explorer (purple).

4.20 Using GAMS Studio 755

In turn this opens a screen which identifies names of the libraries in tabs with a count of included files
and, for the tab selected, the library contents. Furthermore across the top are tabs that when clicked
on cause sorts. The picture below came after I clicked on the tab name with the model library active

Users can define their own libraries. They have to define what's called a GLB file and the formatting creation
of this is discussed in my newsletter in the second issue: https://www.gams.com/mccarl/newsletter/news2.htm.

4.20.18 Using reference files - Listing and Unraveling Data items

GAMS has a command line parameter to create reference files (aka. .ref files) called reference (short: rf).
These files give information on where things are defined and used.

Why? GAMS Modelers sometimes have to deal with complex implementations that

• Use include statements to incorporate numerous files.

• Have been developed by others.

• Have a complex structure with definitions and uses of items widely spread in a file or files.

• Contain items that are defined but never used.

• Were developed some time ago but are not extensively documented.

https://www.gams.com/mccarl/newsletter/news2.htm

756 User's Guide

When faced with such cases one often asks

• Are there items defined in the program that are not used and if so what are they and where are
they?

• In what files is an item defined, declared and used?

To resolve these questions some years ago I wrote a Fortran program called GAMSMAP but never made
it widely available. Subsequently it was included into the GAMSIDE and then STUDIO.

When a .ref file is opened it creates a window as follows

The column on the left (red) gives tags that can be clicked on and the key ones are

Column Description

All Symbols a list of items that are declared and a count of them

Set a list of the sets that exist in the program and a count

Variable a list of the variables in the program and a count

Parameter a list of the parameters (items defined in scalar, parameter or table statements) and a
count.

Equation a list of the equations in the program and the names of files in which they appear

Model a list of the models that exist in the program and the names of files in which they appear

Unused a list of items that are declared or that are not used anywhere in the model

File used a list of the files included into the model

4.20.18.1 All Symbols Tab

The all symbols tab causes the output to appear as follows:

4.20 Using GAMS Studio 757

This shows all symbols used. The columns give

• the symbol name (Name),

• it’s type(Type),

• its dimension (Dim),

• the sets over which it is dimensioned (Domain)

• the explanatory text used in it’s declaration (Text).

Things can be sorted by clicking on the column headings.

One can search for symbols using the box at the bottom

4.20.18.2 Sets, Parameters etc. Tabs

The display contains 5 lines that when activated give information for sets, parameters etc. The resultant
display lists all items falling in a class (for all things that are sets or parameters etc.) and information on
their characteristics and use. Specifically one gets output as follows (for the sets in this case)

758 User's Guide

In this output once clicked on the entries tell the names of the files in which certain things happen relative
to the identified items. The categories of things include the file name, line and column where items are
declared, defined and used as discussed below.

Clicking on a line takes you to the file and place where the item appears.

Clicking on a column name causes it to be sorted.

After clicking on an item one gets

Entries in location columns identify files where items are

Column Description

Declared places where the named item is declared in a Set, Parameter, Table, Scalar,
Variable, Equation, Acronym, File or Model command. This will be the first
appearance.

Defined places set elements or data are explicitly entered. For equations this tells where
the .. specification begins.

Assigned places where items appear on left hand side of an assignment statement

Implicitly-Assigned places where an equation or variable has data put into it by the results of a solve
statement.

Controlled places where set is used in controlling a sum or defining an equation

Ref places where item is on left hand side of assignment statement or in a model
equation

4.20 Using GAMS Studio 759

Clicking on lines here opens the subject file in the specific place

4.20.18.3 File used Tab

The file used tab causes the output to appear as follows:

This gives the names of the files included in the program with their full path references.

4.20.18.4 Unused Tab

The unused tab identifies items that are declared (in set parameter etc. statements) but are never used
on the right hand side of an assignment (=) statement or in a model equation:

which shows the same information as in the All Symbols tab except when an item is clicked on one gets
information on the files where it is declared.

760 User's Guide

4.20.18.5 Steps to use the Reference File Viewer

The Reference File Viewer will only work after a particular “reference file” has been created by a GAMS
run. The file is generated by adding the rf option to the command line call entering a command in the
command line box of Studio as follows (a=c cause compilation only)

Once the file has been run with the rf option the logfile is augmented with the (green) line identifying
the .ref file name as below

Double clicking on this opens the Reference File Viewer window.

The run of GAMS with the rf option places the name of the .ref file in green in the GAMS log file and
double clicking on that line causes the Reference File Viewer to be opened.

Several notes about the run

• The rf= command specifies the name of the file the Reference File Viewer will use. Generally, the
Reference File Viewer expects it to have the extension .ref.

• The .ref file only covers the program components in a run and does not include any information
from restart files. In general it is best to explicitly use all the files in one program without use of
save and restart.

• It is often useful to just generate the reference file without any execution on behalf of the GAMS
program. This is done by including the a=c option on the command line or in the command
parameter IDE box.

4.20 Using GAMS Studio 761

4.20.19 Editing Solver Option Files

Sometimes it is desirable to change solver specific options. This includes modifying things like branch and
bound strategy, degree of scaling, barrier versus simplex solution approach, solution tolerances etc. The
specific options allowed are described in the solver manuals. In addition Studio contains a solver option
file editor that presents a solver specific menu of all possible options, default values and ones that have
been altered. This is activated by either

• Opening or saving a file with solvername.opt (Like MINOS.opt)

• Right clicking on a group file name (red) in the Studio Explorer then selecting add new solver
option file (blue) and subsequently selecting one of the many available solver names (magenta
and only a few shown). This will create a file you then need to save.

Once it opens the general format of the solve option editor is as follows. Note the specific content depends
on the solver chosen and in this case I use GAMSCHK.

762 User's Guide

Here in the right part we see a list of all possible options (magenta) for this solver with boxes checked
for those that are in the option file. A brief description of default values (blue), entry type (red), if
relevant allowable settings (yellow) and a one sentence description of the option (green). In the
left part we see the current entries (purple) in the option file and their settings (purple).

Subsequently when this file is opened or its tab activated then this solver option editor appears.

Note, pressing F1 while on an option opens help to a place with a detailed description of that option.

4.20.20 When is it Not Worth Using?

There are costs and benefits of these approaches.

The STUDIO is much easier for simple models and can run across platforms.

The DOS/command line approach is generally better for models in customized environments.

A development strategy for more complex implementations

1. Use the STUDIO to get it right

2. Debug components of large models using save and restart

3. Then use script files or DOS/UNIX with batch files such as

• GAMS mymodel -lo 0 -s ./t/save1

• call myprogram.exe

• GAMS moremod -lo 0 -r ./t/save1

4.20.21 What does it not do?

A number of IDE features are currently missing. Just to inventory (note the last three are pretty
unimportant to me.)

• Ability to save output from the reference files

• Ability to change the file associations when clicking on them in Windows Explorer (you get more
than I like at the moment and sometimes I want more)

• Project files (mixed blessing)

• Text file differencing (can use other programs)

• Spell checking

4.20.22 What does it not do so well?

Here are also some difficulties with it as of today

• Washed out colors – on my machine the syntax and error coloring is not very prominent.

• Excessive library choices and no way to put the ones you have no interest in somewhere out of the
way. Plus any user defined libraries are at the end and there is no way to reorder.

4.21 Introduction 763

4.21 Introduction

4.21.1 Summary

Today, algebraic modeling languages are widely accepted as the best way to represent and solve mathe-
matical programming problems. Their main distinguishing features are the use of relational algebra and
the ability to provide partial derivatives on multidimensional, very large and sparse structures. In this
chapter we will briefly describe some of the origins of GAMS and provide background information that
shaped early design decisions.

4.21.2 The Origins of GAMS

The initial Research and Development of GAMS was funded by the International Bank for Reconstruction
and Development, usually referred to as The World Bank. Since 1987, further Research and Development
has been funded by GAMS Development Corporation. GAMS was developed in close cooperation of
mathematical economists who were and still are an important group of GAMS users. The synergy
between economics, computer science and operations research was the most important success factor in
the development of the system. Mathematical Programming and economics theory are closely intertwined.
The Nobel Prize in Economics awarded to Leonid Kantorovich and Tjalling Koopmans in 1975 for
their “contribution to the theory of optimal allocation of resources” was really a prize in mathematical
programming. Other Nobel laureates like Kenneth Arrow in 1972, Wassily Leontief in 1973, and Harry
Markowitz in 1990 are well known names in math programming. Another early example of this synergy is
the use of LP in refining operations, which was started by Alan Manne, an economist, with his book on
Scheduling of Petroleum Refinery Operations in 1956.

The origins of linear programming algorithms all go back to George Dantzig’s early work in the 1940s and
1950s. Computing technology and algorithmic theory had developed at a rapid pace. Thirty years later,
we could solve problems of practical size and complexity that allowed us to test of the economic theory on
real life problems. The research agenda at the World Bank in the 1970s and 1980s created the perfect
environment to bring different disciplines together to apply mathematical programming to research and
operational questions in Economic Development.

4.21.3 Background and Motivation

From the very beginning, the driving force behind the development of the General Algebraic Modeling
System (GAMS) has been the users of mathematical programming who believed in optimization as a the
powerful and elegant framework for solving real life problems in the sciences and engineering. At the
same time, these users were frustrated with the high cost, skill requirements, and overall low reliability
of applying optimization tools. Most of our initiatives and support for new development came from the
worlds of economics, finance, and chemical engineering. These disciplines find it natural to view and
understand the world and its behavior as a mathematical program.

GAMS’s impetus for development arose out of the frustrating experiences of a large economic modeling
group at the World Bank. In hindsight, one may call it a historical accident that in the 1970s mathematical
economists and statisticians were assembled to address problems of development. They used the best
techniques available at the time to solve multisectoral economy-wide models and large simulation and
optimization models in agriculture, steel, fertilizer, power, water use, and other sectors. Although
the group produced impressive research, initial successes were difficult to reproduce outside their well
functioning research environment. The existing techniques to construct, manipulate, and solve such models
required several manual, time-consuming, and error-prone translations into the different, problem-specific
representations required by each solution method. During seminar presentations, modelers had to defend
the existing versions of their models, sometimes quite irrationally, because the time and money needed to
make proposed changes were prohibitive. Their models just could not be moved to other environments,

764 User's Guide

because special programming knowledge was needed, and data formats and solution methods were not
portable.

The idea of an algebraic approach to represent, manipulate, and solve largescale mathematical models
fused old and new paradigms into a consistent and computationally tractable system. Using matrix
generators (see appendix GAMS versus Fortran Matrix Generators) for linear programs taught us the
importance of naming rows and columns in a consistent manner. The connection to the emerging relational
data model became evident. Painful experience using traditional programming languages to manage
those name spaces naturally lead one to think in terms of sets and tuples, and this led to the relational
data model. Combining multidimensional algebraic notation with the relational data model was the
obvious answer. Compiler writing techniques were by now widespread, and languages like GAMS could be
implemented relatively quickly. However, translating this rigorous mathematical representation into the
algorithm specific format required the computation of partial derivatives on very large systems. In the
1970s, TRW developed a system called PROSE that took the ideas of chemical engineers to compute point
derivatives that were exact derivatives at a given point, and to embed them in a consistent, Fortran-style
calculus modeling language. The resulting system allowed the user to use automatically generated exact
first and second order derivatives. This was a pioneering system and an important demonstration of a
concept. However, in our opinion PROSE had a number of shortcomings: it could not handle large systems,
problem representation was tied to an array-type data structure that required address calculations, and
the system did not provide access to state-of-the-art solution methods. From linear programming, we
learned that exploitation of sparsity was the key to solve large problems. Thus, the final piece of the
puzzle was the use of sparse data structures.

With all pieces in place, all we had to do was adopt the techniques to fit into one consistent framework
and make it work for large problems

4.21.4 Design Goals and Changing Focus

The original and still valid goal is to improve the model builder’s productivity, reduce costs, and improve
reliability and overall credibility of the modeling process. To achieve this, we established the following key
principles to guide the GAMS development:

• The problem representation is independent of the solution method.

• The data representation follows the relational data model.

• The problem and data representations are independent of computing platforms.

• The problem and data representations are independent of user interfaces.

• Optimization methods will fail, and systems have to be designed to be fail-safe.

Another way to express these principles is to think in terms of layers of representations and capabilities
that have clearly defined interfaces and functions. The oldest and most basic layer is the solver layer or
implementation of a specific algorithm. Above the solver is the model layer, expressed in an algebraic
modeling language. The modeling layer translates the mathematical representation into a computational
structure required by a specific solution method and provides various services such as function and
derivative evaluations and error recovery. Above the modeling layer is the application or domain layer,
which is highly context sensitive and has knowledge about the problem to be solved and the kind of user
interacting with the system.

The representation of the model in GAMS is in a form that can be easily read by humans and by machines.
This means that the GAMS program itself is the documentation of the model, and that the separate
description required in the past (which was a burden to maintain, and which was seldom up-to-date) is no
longer needed. Moreover, the design of GAMS incorporates the following features that specifically address
the user's documentation needs:

4.22 GAMS Programs 765

• A GAMS model representation is concise, and makes full use of the elegance of the mathematical
representation.

• All data transformations are specified concisely and algebraically. This means that all data can be
entered in their most elemental form and that all transformations made in constructing the model
and in reporting are available for inspection.

• Explanatory text can be made part of the definition of all symbols and is reproduced whenever
associated values are displayed.

• All information needed to understand the model is in one document.

Of course some discipline is needed to take full advantage of these design features, but the aim is to make
models more accessible, more understandable, more verifiable, and hence more credible.

It is instructive to put the development of modeling systems into some historic perspective and see how
the focus and technical constraints have changed in the last 30 years. We can observe three major phases
that shift the emphasis from computational issues to modeling issues and finally the application or the real
problems. Each phase defined one of the main system layers discussed above. The dominant constraints
in the first phase were the computational limits of our algorithms. Problem representation had to abide
by algorithmic convenience, centralized expert groups managed large, expensive and long lasting projects
and end users were effectively left out. The second phase has the model in focus. Applications are limited
by modeling skill, project groups are much smaller and decentralized, the computational cost are low and
the users are involved in the design of the application. Applications are designed to be independent of
computing platforms and frequently operate in a client-server environment.

We believe that we are entering a third phase which has the application as its focus and the optimization
model is just one of many analytic tools that help making better decisions. The users are often completely
unaware of any optimization model or use a mental model that is different from the actual model to
solved by optimization techniques. User interfaces are build with off-the-shelf components and frequently
change to adjust to evolving environments and new computing technologies. As with databases, modeling
components have a much longer life than user interfaces. We have observed cases where the model has
remained basically unchanged over many years, whereas the computing environments and user interfaces
have changed several times. The solvers used to solve the models have changed, the computing platforms
have changed, the user interfaces have changed and the overall performance of the model has changed
without any change in the model representation.

4.22 GAMS Programs

4.22.1 Introduction

This chapter provides a look at the structure of the GAMS language and its components. It should be
emphasized again that GAMS is a programming language, and that programs must be written in the
language to use it. A GAMS program is contained in a disk file, which is usually constructed with a text
editor of choice (e.g. GAMS Studio). When GAMS is 'run', the file containing the program (the input file)
is submitted to be processed. After this processing has finished, the results, which are in the output file(s),
can be inspected. By default the GAMS log appears on the screen while GAMS runs, keeping the user
informed about progress and error detection. It is the responsibility of the user to inspect the output
file(s) carefully to see the results and to diagnose any errors.

766 User's Guide

4.22.2 The Structure of GAMS Programs

GAMS programs consist of one or more statements (sentences) that define data structures, initial values,
data modifications, and symbolic relationships (equations). While there is no fixed order in which
statements have to be arranged, the order in which data modifications are carried out is important.
Symbols must be declared as to type before they are used, and must have values assigned before they
can be referenced in assignment statements. Each statement is followed by a semicolon except the last
statement, where a semicolon is optional.

Note

The semicolon at the end of a statement can be omitted if a new GAMS keyword follows. However,
to improve readability of the code, it is recommended to use the semicolon at the end of a statement
anyway.

4.22.2.1 Format of GAMS Input

GAMS input is free format. A statement may be placed anywhere on a line, multiple statements may
appear on a line, or a statement may be continued over any number of lines as follows:

statement;

statement;

statement; statement; statement;

the words that you are now reading is an example of a very

long statement which is stretched over two lines;

Blanks and end-of-lines may generally be used freely between individual symbols or words. GAMS is
not case sensitive. This means that lower and upper case letters may be mixed freely but are treated
identically. Up to 80,000 characters may be placed on a line and completely blank lines may be inserted
for easier reading.

Not all lines are a part of the GAMS language. Two special symbols, the asterisk '∗' and the dollar
symbol '$' may be used in the first position on a line to indicate a non-language input line. An asterisk in
column one means that the line will not be processed, but treated as a comment. For more on comments,
see section Comments. A dollar symbol in the first position indicates that compiler options or directives
are contained in the rest of the line (see chapter Dollar Control Options for more information).

For example, multiple files may be used as input through the use of the $include facility. In short, the
statement

$include file1

inserts the contents of the specified file (file1 in this case) at the location of the call. A more complex
versions of this is the option $batinclude. Both options are introduced and discussed in details in chapter
Dollar Control Options.

4.22 GAMS Programs 767

4.22.2.2 Classification of GAMS Statements

Each statement in GAMS is classified into one of two groups:

1. Declaration and definition statements.

2. Execution statements.

A declaration statement describes the class of a symbol. Often initial values are provided in a declaration,
then it may be called a definition. The specification of symbolic relationships for an equation is a definition.
The declaration and definition statements are:

• acronym

• alias

• equation declaration

• equation definition

• file

• function

• model

• parameter

• scalar

• set

• table

• variable

Execution statements are instructions to carry out actions such as data transformation, model solution,
and report generation. The execution statements are:

• abort

• assignment

• break

• continue

• display

• execute

• for

• if

• loop

• option

• put

• put utility

768 User's Guide

• putclear

• putclose

• puthd

• putpage

• puttl

• repeat

• solve

• while

Note

While an assignment is an execution statement, it also defines the symbol on the left hand side of
the assignment.

Although there is great freedom about the order in which statements may be placed in a GAMS program,
certain arrangements are commonly used. The two most common are discussed next.

4.22.2.3 Organization of GAMS Programs

One common style of organizing GAMS statements places the data first, followed by the model and the
solution statements.

Style 1:

Data:

Set declarations and definitions

Parameter declarations and definitions

Assignments

Displays

Model:

Variable declarations

Equation declarations

Equation definitions

Model definition(s)

Solution:

Solve(s)

Displays

4.22 GAMS Programs 769

In this style of organization, the sets are placed first. Then the data is specified with parameter, scalar,
and table statements. Next, the model is defined with the variable declarations, equation declarations,
equation definitions and one or more model statements. Finally, the model is / models are solved and the
results are displayed. One can refer to the model trnsport as an example for this style.

A second style emphasizes the model by placing it before the data. This is a particularly useful order
when the model is to be solved repeatedly with different data sets.

Style 2:

Model:

Set declarations

Parameter declarations

Variable declarations

Equation declaration

Equation definition

Model definition

Data:

Set definitions

Parameter definitions

Assignments

Displays

Solution:

Solve

Displays

Here, there is a separation between declaration and definition. For example, sets and parameters may be
declared first with the following statements:

Set c "crops" ;

Parameter yield(c) "crop yield" ;

Later they may be defined with the statements:

Set c / wheat, clover, beans / ;

Parameter yield(c) / wheat 1.5

clover 6.5

beans 1.0 / ;

The first statement declares that the identifier c is a set and the later statement defines the elements in this
set. Similarly, in the second statement yield is declared to be a parameter and later the corresponding
data is given.

Note

Sets and parameters that are used in equations must be declared before the equations are specified.
However, they may be defined after the equation specifications but before the specific equation is
used in a solve statement. This gives GAMS programs substantial organizational flexibility.

770 User's Guide

4.22.3 Data Types and Definitions

Each symbol or identifier has exactly one of the following basic GAMS data types:

• acronyms

• equations

• files

• functions

• models

• parameters

• sets

• variables

Note

• Scalars and tables are not separate data types but convenient input formats for the data
type parameter. For details see the overview Parameters, Scalars and Tables.

• GAMS uses shorthand symbols for each data type in the output. For details see the overview
GAMS Data Types and their Shorthand Symbols.

Declarations have common characteristics. The following example has a typical structure:

Parameter a(i,j) "input-output matrix" ;

The structure is:

Keyword for data type - identifier (with index list) - explanatory text ;.

Note that the index list (or domain list) and the explanatory text are always optional characteristics.
However, we recommend to specify the index list if the data type is defined over a domain; the advantages
of this practice are outlined in section Domain Checking.

Note

Variables, sets, parameters and equations may be declared and defined over one or more indices or
dimensions. Currently the maximum number of dimensions for all these data types is 20.

It is also recommend to add an explanatory text for reasons of clarity. For more on explanatory texts, see
section Text below. Other examples for declarations follow:

Set time "time periods" ;

Model turkey "turkish fertilizer model" ;

Variables x,y,z ;

Observe that in the last example a number of identifiers (separated by commas) is declared in one
statement.

4.22 GAMS Programs 771

4.22.4 Language Items

Before proceeding with more language details, a few basic symbols need to be defined and the rules for
recognizing and writing them in GAMS established. These basic symbols are often called lexical elements
and form the building blocks of the language. They are:

• characters

• comments

• delimiters

• identifiers (idents)

• labels

• numbers

• reserved words and tokens

• text

Each of these items is discussed in detail in the following subsections.

Attention

As noted previously, GAMS is not case sensitive, so we may use any mix of lower and upper case.

4.22.4.1 Characters

A few characters are not allowed in a GAMS program, because they are illegal or ambiguous on some
machines. Generally, all unprintable and control characters are illegal. The only place where any
character is legal, is in an $ontext-$offtext block as illustrated in section Block Comments below. For
completeness, the full set of legal characters are listed in Table 1. Note that most of the uncommon
punctuation characters are not part of the language, but they may be used freely in the context of
explanatory texts, comments, and labels (if quoted). Similarly, special language specific characters (e.g. ä,
ß, à, é, ç, t, , s,) may also be used freely in explanatory texts, comments, and labels (if quoted).

Table 1: Legal Characters

Legal Characters Description

A to Z alphabet

a to z alphabet

0 to 9 numerals

+ plus

- minus

= equals

< less than

> greater than

() parenthesis

[] square brackets

{ } braces

' single quote

" double quote

772 User's Guide

Legal Characters Description

\ back slash

/ slash
, comma

: colon

; semicolon

. dot

? question mark

! exclamation mark
space

underscore

& ampersand
∧ circumflex

pound sign

∗ asterisk

% percent

@ at

$ dollar

Note

Not every character listed above is allowed to be used in every place (for example, identifiers have
certain limitations).

4.22.4.2 Reserved Words

GAMS, like other programming languages such as C and Java, uses reserved words (often also called
keywords) that have predefined meanings. Users are in general not permitted to use these for their own
definitions, neither as identifiers nor labels. The complete list of reserved words is given below. In addition,
a small number of symbols constructed from non-alphanumeric characters have a meaning in GAMS.

Note

While it is not allowed to use reserved words as identifiers and labels in general, it is still possible
(put not recommended) in certain cases which are explained in more detail further below.

• abort

• acronym[s]

• alias

• all

• and

• binary

• break

• card

• continue

• diag

4.22 GAMS Programs 773

• display

• do∗

• else

• elseif

• endfor∗

• endif∗

• endloop∗

• endwhile∗

• eps

• equation[s]

• execute

• execute load

• execute loaddc

• execute loadhandle

• execute loadpoint

• execute unload

• execute unloaddi

• execute unloadidx

• file[s]

• for

• free

• function[s]

• gdxLoad

• if

• inf

• integer

• logic

• loop

• model[s]

• na

• negative

• nonnegative

• no

• not

• option[s]

• or

774 User's Guide

• ord

• parameter[s]

• positive

• procedure[s] (deprecated)

• prod

• put

• put utility/put utilities

• putclear

• putclose

• putfmcl

• puthd

• putheader

• putpage

• puttitle

• puttl

• repeat

• sameas

• sand

• scalar[s]

• semicont

• semiint

• set[s]

• singleton

• smax

• smin

• solve

• sor

• sos1

• sos2

• sum

• system

• table[s]

• then∗

• undf

• until

• variable[s]

4.22 GAMS Programs 775

• while

• xor

• yes

Attention

Some of the keywords above can actually be used as an identifier (e.g. sameas). But if they get used
as identifier, their built-in meaning as part of the GAMS language can not be accessed anymore.

Note

The words marked with ∗ in the list above are no reserved words by default. However, they get a
special meaning if the dollar control option $onEnd is set.

The following list shows words which have a special meaning in GAMS (e.g. they are part of the solve
statement), but can be used as identifiers anyway:

• eq

• eqv

• ge

• gt

• imp

• le

• lt

• maximizing

• minimizing

• ne

• scenario

• using

The reserved non-alphanumeric symbols are:

• ..

• =l=

• =g=

• =e=

• =n=

• =x=

• =c=

• =b=

• --

• ++

• ∗∗

• ->

• <=>

776 User's Guide

4.22.4.3 Identifiers

Identifiers are the names given to sets, parameters, variables, models, etc. GAMS requires an identifier to
start with a letter followed by more letters or digits. The length of an identifier is currently limited to 63
characters. Identifiers may only contain alphanumeric characters (letters or numbers) or underscores ().
Examples of legal identifiers are:

a a15 revenue x0051

Note that the following identifiers are incorrect:

15 $casg milk&meat

Attention

A name used for one data type cannot be reused for another.

4.22.4.4 Labels

Labels are set elements. They may be up to 63 characters long and may be used in quoted or unquoted
form.

The unquoted form is simpler to use but places restrictions on characters allowed, in that any unquoted
label must start with a letter or digit and can only be followed by letters, digits, underscores () or the
sign characters + and -. Examples of valid unquoted labels are:

Phos-Acid 1986 1952-53 A

September H2S04 Line-1

Quotes can be used to delimit labels. Quoted labels may begin with and include any legal character.
Either single or double quotes may be used but the closing quote has to match the opening quote. A label
quoted with double quotes may contain a single quote (and vice versa). Most experienced users avoid
quoted labels because they can be tedious to enter and confusing to read. There are a couple of special
circumstances though. If we want to make a label stand out, we could put asterisks in it and indent it. A
more subtle example is that GAMS keywords may be used as labels if they are quoted. So labels like
parameter, put or while may be used if they are quoted. Some examples of quoted labels follow:

’ *TOTAL*’ "MATCH" ’10%-INCR’ ’12" / FOOT’ "line 1"

Note

• Labels do not have any numerical value. The label '1986' does not have the numerical value
1986 and the label '01' is different from the label '1'. One can access the numerical value of a
label with the Set Attributes .val attribute.

• Leading blanks in a label are significant and preserved while trailing blanks are trimmed. So '
label1' is different from 'label1', but 'label2 ' is identical to 'label2'.

• Labels are, like the rest of the GAMS language, case insensitive. Note, however, that case
insensitivity for labels applies only to ASCII characters. Labels with non-ASCII characters are
case sensitive:

* This defines two different labels

Set i / "Ä", "ä" /;

display i;

* This gives a compilation error

Set j / "A", "a" /;

To summarize, set names are identifiers and set elements are labels. An overview of the rules for
constructing identifiers and labels is given in the following table.

4.22 GAMS Programs 777

Identifiers Unquoted Labels Quoted Labels

Number of characters 63 63 63

Must begin with A letter A letter or a number Any character

Permitted special charac-
ters

Underscore () Underscore () and the
characters + and –

Any but the starting quote

Table 2: Rules for constructing identifiers and labels

4.22.4.5 Text

Identifiers and set elements may also be associated with a line of descriptive text. This text is more than
a comment: it is retained by GAMS and is displayed whenever results are written for the identifier.

Text may be quoted or unquoted. Quoted text may contain any character except the quote character
used. Single or double quotes may be used but they must match. Text has to fit on one line and cannot
exceed 255 characters in length. Text used in unquoted form must follow a number of mild restrictions.
Unquoted text cannot start with a reserved word, '..' or '=' and must not include semicolons ';',
commas ',', or slashes '/'. End of lines terminate a text. These restrictions are a direct consequence of
the GAMS syntax and are usually followed naturally by the user. Some examples are:

this is text

final product shipment (tpy)

"quoted text containing otherwise illegal characters ; /,"

’use single quotes to put a "double" quote in text’

4.22.4.6 Numbers

Numeric values are entered in a style similar to that used in other computer languages

Attention

• Blanks cannot be used in a number: GAMS treats a blank as a separator.

• The common distinction between real and integer data types does not exist in GAMS. If a
number is used without a decimal point it is still stored as a real number.

In addition, GAMS uses an extended range arithmetic that contains special symbols for infinity (INF),
negative infinity (-INF), undefined (UNDF), epsilon (EPS), and not available (NA). The user cannot enter
UNDF; it is only produced by an operation that does not have a proper result, such as division by zero. All
the other special symbols may be entered and used as if they were ordinary numbers. For more details,
see section Extended Range Arithmetic.

The following example shows various legal ways of entering numbers:

0 156.70 -135 .095 1.

2e10 2e+10 15.e+10 .314e5 +1.7

0.0 .0 0. INF -INF

EPS NA

The letter e denotes the well-known scientific notation allowing convenient representation of very large or
small numbers. For example,

1e-5 = 1 * 10^{-5} = 0.00001;

3.56e6 = 3.56 * 10^6 = 3,560,000;

778 User's Guide

Note

• GAMS uses a smaller range of numbers than many computers are able to handle. This has
been done to ensure that GAMS programs will behave in the same way on a wide variety
of machines, including personal computers. GAMS will create an error if a number with an
absolute value greater or equal to 1.0e+300 is used.

• A number may be entered with up to 16 significant digits. The dollar control option $offDigit
can be used to control the behavior if this number is exceeded.

4.22.4.7 Delimiters

As mentioned before, statements are separated by a semicolon ';'. However, if the next statement begins
with a reserved word (often called keyword in succeeding chapters), then GAMS does not require that the
semicolon is used.

The characters comma ',' and slash '/' are used as delimiters in data lists, to be introduced later. The
comma terminates a data element (as does an end-of-line) and the slash terminates a data list.

4.22.4.8 Comments

A comment is an explanatory text that is not processed or retained by the computer. There are several
ways to include comments in a GAMS program.

Blank Lines

The user may freely enter blank lines to set off certain sections and enhance readability. For example, in
trnsport there are blank lines between the different parameters:

Sets

i "canning plants" / seattle, san-diego /

j "markets" / new-york, chicago, topeka / ;

Parameters

a(i) "capacity of plant i in cases"

/ seattle 350

san-diego 600 /

b(j) "demand at market j in cases"

/ new-york 325

chicago 300

topeka 275 / ;

4.22 GAMS Programs 779

Single Line Comments

Users may insert a single line comment on any line by placing an asterisk ∗ in column 1. The text that
follows the asterisk is the comment and may contain GAMS reserved words, messages or any other content.
It is completely ignored by the GAMS compiler. Note that several successive lines may be single line
comments as in the example below.

The default asterisk ∗ may be replaced by other symbols. GAMS provides the dollar control op-
tion $comment to customize the comment character (for more on dollar control options, see chapter
Dollar Control Options). The new comment character cannot be used in column 1 as before, since now it
has a special meaning. The change of comment character should be used with great care. An example
can be seen here:

*normal comment

*next line is a deactivated GAMS statement

* x=sum(I,z(i));

$comment !

!comment with new character

$comment *

*now we are back to how it should be

In the fourth line, the new comment character ! replaces the GAMS default ∗ as the comment delimiter.
Note that single line comments appear in the echo print of the GAMS output as numbered lines. For
details see section The Echo Print of the Input File.

Block Comments

For longer comments special 'block' delimiters may be used that cause GAMS to ignore an entire section
of the program. The dollar control option $ontext marks the beginning of the comment block and the
option $offtext marks the end. Note that the $ symbol must be in the first character position. The
example below illustrates the use of the block comment and also contains some useful information. For
more on dollar control options, see chapter Dollar Control Options.

$ontext

Following a $ontext directive in column 1 all lines are

ignored by GAMS but printed on the output file until the matching $offtext is encountered, also

in column 1. This facility is often used to logically remove parts of programs

that are not used every time, such as statements producing voluminous reports.

Every $ontext must have a matching $offtext in the same file

$offtext

Note that block comments appear in the echo print without line numbers. For details see section
The Echo Print of the Input File.

780 User's Guide

End-of-Line Comments

Comments may also be placed at the end of a line that contains GAMS code. The dollar control option
$onEolCom activates end-of-line comments. The default symbol to indicate that the comment begins
is a double exclamation mark !!. This symbol may be reset with the option $eolCom followed by the
desired symbol which may be one character or a two-character sequence. The following example serves as
illustration. For more on dollar control options, see chapter Dollar Control Options.

Scalar x /0/;

$onEolCom

x=x+1; !! eol comment

x = x !! eol comment in line of GAMS statement, where the GAMS statement continues to the next line

+1;

$eolCom &&

x=x+1; && eol comment with new symbol

Note that the option to add end-of-line comments may be deactivated with the dollar control option
$offEolCom. End-of-line comments appear in the echo print on the appropriate lines. For details see
section The Echo Print of the Input File.

In-Line Comments

Comments may also appear in a line of GAMS code. The dollar control option $onInline activates in-line
comments. By default, the in-line comment symbols are set to the two character pairs ' /∗' and ' ∗/',
where ' /∗' indicates that the in-line comment begins and ' ∗/' indicates that the in-line comment ends.
The comment may span lines till the end-of-comment characters are encountered. The in-line comment
symbols may be reset with the option $inLineCom followed by the desired pair of characters. The following
example serves as illustration. For more on dollar control options, see chapter Dollar Control Options.

Scalar x /0/;

$onInLine

x=x /* in-line comment*/ +1;

x=x /* in-line comment in line

that continues to next line */

+1;

$inLineCom /& &/

x=x /& in-line comment with new character &/ +1;

Note that the option to add in-line comments may be deactivated with the dollar control option
$offInline. In-line comments appear in the echo print on the appropriate lines. For details see sec-
tion The Echo Print of the Input File. Note that in-line comments may be allowed to be nested using the
dollar control option $onNestCom.

Outside Margin Comments

GAMS provides the facility to define margins. The active code is within the margins, everything outside
the set margins is ignored by the compiler and treated as comment. The dollar control option $onMargin
activates margin marking and $offMargin deactivates it. The option $minCol is used to specify the first
column, where GAMS code that is to be compiled may appear. Similarly, the option $maxCol is used to
specify the last column for GAMS code. The following example shows how this works. For more on dollar
control options, see chapter Dollar Control Options.

4.23 Set Definition 781

$ontext

1 2 3 4 5 6

123456789012345678901234567890123456789012345678901234567890

$offtext

$onMargin minCol 20 maxCol 45

Now I have Set i plant /US, UK/ This defines i

turned on the Scalar x / 3.145 / A scalar example.

margin marking. Parameter a, b; Define some

parameters.

$offMargin

The text before column 20 and after column 45 is treated as a comment. Note that the full content of
the lines is copied to the echo print, including everything outside the margins. For details see section
The Echo Print of the Input File.

Hidden Comments

Finally, GAMS also allows hidden comments, that are not copied to the echo print of the GAMS output
file. These comments contain information that is only relevant for the person manipulating the file. They
are single line comments starting with the dollar control option $hidden. An example follows. For more
on dollar control options, see chapter Dollar Control Options.

$hidden a comment I do not want in LST file

set a /a1,a2/;

set b /a2,c2/;

set c /a3,d3/;

4.22.5 Summary

This completes the discussion of the components of the GAMS language. Many unfamiliar terms used in
this chapter are further explained in the Glossary.

4.23 Set Definition

4.23.1 Introduction

Sets are fundamental building blocks in any GAMS model. They allow the model to be succinctly
stated and easily read. In this chapter we will introduce how sets are declared and initialized. More
advanced set concepts, such as assignments to sets, and lag and lead operations are covered in the chapters
Dynamic Sets and Sets as Sequences. The topics discussed in this chapter will be enough to provide a
good start on most models. We will introduce simple sets, subsets, multi-dimensional sets, singleton sets
and the universal set. The chapter will be concluded by a topic on domain checking, a very important
feature of GAMS, and a section about Domain Defining Symbol Declarations.

782 User's Guide

4.23.2 Simple Sets

Using common mathematical notation, a set S that contains the elements a, b and c is written as:

S = {a, b, c}

Using GAMS notation, the same set is defined in the following way:

Set S / a, b, c /;

The set statement begins with the keyword set, S is the name of the set, and its members are a, b, and c.
They are labels, but are often referred to as elements or members.

4.23.2.1 Defining a Simple Set: The Syntax

In general, the syntax for simple sets in GAMS is as follows:

set[s] set_name ["text"] [/element [text] {,element [text]} /]

{,set_name ["text"] [/element [text] {,element [text]} /] } ;

Set[s] is the keyword that indicates that this is a set statement. Set name is the internal name of the set
in GAMS, it is an identifier. The optional explanatory text may be used to describe the set or a specific
set element for future reference and to ease readability. The list of set elements is delimited by forward
slashes. Element is the name of the set element(s). Note that each element in a set must be separated
from other elements by a comma or by an end-of-line, and each element is separated from any associated
text by a blank.

Consider the following example from the Egyptian fertilizer model [FERTS], where the set of fertilizer
nutrients could be written as

Set cq "nutrients" / N, P2O5 /;

or as

Set cq "nutrients" / N

P2O5 /;

The order in which the set members are listed is usually not important. However, if the members represent,
for example, time periods, then it may be useful to refer to the next or previous member. There are special
operations to do this, and they are discussed in chapter Sets as Sequences: Ordered Sets. For now, it is
enough to remember that the order in which set elements are specified is not relevant, unless and until
some operation implying order is used. At that time, the rules change, and the set becomes what we will
later call an ordered set.

Note

• The data statement, i.e. specification of set elements in forward slashes can be omitted. In
such cases a set is declared without being defined.

• More than one set may be declared and defined in one set statement. Examples are given in
subsection Declaring Multiple Sets below.

4.23 Set Definition 783

4.23.2.2 Illustrative Examples

Consider the following example based on the model [SHALE]:

Set cf "final products" / syncrude "refined crude (mil bbls)"

lpg "liquefied petroleum gas (million bbls)"

ammonia "ammonia (mil tons)"

coke "coke (mil tons)"

sulfur "sulfur (mil tons)" /;

The set statement is introduced with the keyword set, the name of the set is cf and the explanatory
text "final products" describes the set. The set has five elements with explanatory texts that contain
details of the units of measurement.

Usually sets are declared and defined once and then referenced in the model. There are two exceptions: the
dollar control option onMulti allows adding more elements later, and dynamic sets. For details on dynamic
sets, see chapter Dynamic Sets. The following code sightly varies the previous example to demonstrate
the option $onMulti:

Set cf "final products" / syncrude "refined crude (mil bbls)"

lpg "liquefied petroleum gas (million bbls)"

ammonia "ammonia (mil tons)" /;

$onmulti

Set cf "more final products" / coke "coke (mil tons)"

sulfur "sulfur (mil tons)" /;

After $onmulti additional elements are added to the set cf. Note that without the dollar control option
$onMulti that would generate an error as per default a symbol can have at most one data statement.

4.23.2.3 Sequences as Set Elements

The asterisk '∗' plays a special role in set definitions. It is used to relieve the tedium of typing a sequence
of elements for a set, and to make intent clearer. For example, in a simulation model there might be
ten annual time periods from 1991 to 2000. Instead of typing ten years, the elements of this set can be
written as:

Set t "time" / 1991 * 2000 /;

This means that the set includes the ten elements 1991, 1992, ..., 2000. GAMS builds up these label lists
by looking at the differences between the two labels. If the only characters that differ are digits, with the
number L formed by these digits in the left and R in the right, then a label is constructed for every integer
in the sequence L to R. Any non-numeric differences or other inconsistencies cause errors.

The following example illustrates the most general form of the 'asterisked' definition:

Set g1 / a1bc * a20bc /;

Note that this is not the same as:

Set g2 / a01bc * a20bc /;

Both sets have 20 members, but they have only 11 members in common.

Lists in decreasing order are also possible:

Set y "years in decreasing order" / 2000 * 1991 /;

As a last example, the following set definitions are both illegal because they are not consistent with the
rule given above for making lists:

Set illegal1 / a1x1 * a9x9 /

illegal2 / a1 * b9 /;

784 User's Guide

4.23.2.4 Declaring Multiple Sets

The keyword set does not need to be used for each set, rather only at the beginning of a group of sets. It
is often convenient to put a group of set declarations (and definitions) together at the beginning of the
program. When this is done the set keyword needs only be used once. Those who prefer to intermingle
set declarations with other statements, have to use a new set statement for each additional group of sets.
Note that the keywords set and sets are equivalent. The following example below shows how two sets
can be declared together. Note that the semicolon is used only after the last set is declared.

Sets s "Sectors" / manuf, agri, services, government /

r "Regions" / north, eastcoast, midwest, sunbelt / ;

4.23.2.5 Using Previously Defined Sets in Set Definitions

The following notation allows previously defined sets to be used in a new set definition:

Set i / i1 * i4 /

j / j6 * j9 /

k / #i, set.j /;

The set k contains all elements of the sets i and j. Note that the hash sign '#' followed by a set name is
a shorthand for referring to all the elements in a set. The notation set.set name works identically and is
just a different way to refer to all elements in a previously defined set.

4.23.3 The Alias Statement: Multiple Names for a Set

Sometimes it is necessary to have more than one name for the same set. In input-output models for
example, each commodity may be used in the production of all other commodities and it is necessary
to have two names for the set of commodities to specify the problem without ambiguity. In the general
equilibrium model [ORANI], the set of commodities c is written as

Set c "Commodities" / food, clothing /;

A second name for the set c is established with either of the following statements:

Alias (c, cp) ;

Alias (cp, c) ;

Here cp is the new set name that can be used instead of the original set name c.

Note

The newly introduced set name may be used as an alternative name for the original set; the associated
set will always contain the same elements as the original set.

With the alias statement more than one new name may be introduced for the original set:

Alias (c,cp, cpp, cppp);

Here cp, cpp, cppp are all new names for the original set c.

4.23 Set Definition 785

Note

The order of the set names in the alias statement does not matter. The only restriction is that
exactly one of the sets in the statement must be defined earlier. All the other sets are introduced by
the alias statement.

Typical examples for the usage of aliases are problems where transportation costs between members of
one set have to be modeled. The following code snippet is adapted from the Andean fertilizer model
[ANDEAN]:

Set i "plant locations" / palmasola, pto-suarez, potosi, baranquill, cartagena /;

Alias(i,ip);

Table tran(i,i) "transport cost for interplant shipments (us$ per ton)"

palmasola pto-suarez potosi baranquill

pto-suarez 87.22

potosi 31.25 55.97

baranquill 89.80 114.56 70.68

cartagena 89.80 114.56 70.68 5.00

;

Parameter mui(i,ip) "transport cost: interplant shipments (us$ per ton)";

mui(i,ip) = (tran(i,ip) + tran(ip,i));

The alias statement introduces ip as another name for the set i. The table tran is two-dimensional
and both indices are the set i. The data for the transport cost between the plants is given in this table;
note that the transport costs are given only for one direction here, i.e. the costs from pto-suarez to
palmasola are explicitly specified in the table while the costs in the opposite direction are not given at
all. The parameter mui is also two-dimensional and both indices refer to the set i, but this time the alias
ip is used in the second position. The parameter mui is defined with the assignment statement in the
next line: mui contains the transport costs from one plant location to the other, in both directions. Note
that if mui were defined without the alias, then all its entries would have been zero. For other examples
where aliases are used, see sections The Universal Set and Finding Sets from Data below.

4.23.4 Subsets

It is often necessary to define sets whose members must all be members of some larger set. The syntax is:

set set_ident1(set_ident2) ;

Here set is the keyword indicating that this is a set statement, and set ident1 is a subset of the larger
set set ident2. The larger set is also called superset.

For instance, we may wish to define the sectors in an economic model following the style in [CHENERY].

Set i "all sectors" / light-ind, food+agr, heavy-ind, services /

t(i) "traded sectors" / light-ind, food+agr, heavy-ind /

nt "non-traded sectors" / services /;

Some types of economic activity, for example exporting and importing, may be logically restricted to
a subset of all sectors. In order to model the trade balance we need to know which sectors are traded,
and one obvious way is to list them explicitly, as in the definition of the set t above. The specification
t(i) means that each member of the set t must also be a member of the set i. GAMS will enforce
this relationship, which is called domain checking. Obviously, the order of declaration and definition is
important: the membership of i must be known before t is defined, otherwise checking cannot be done.

786 User's Guide

Note

All elements of the subset must also be elements of the superset.

It is legal but unwise to define a subset without reference to the larger set, as is done above for the set
nt. In this case domain checking cannot be performed: if services were misspelled no error would be
marked, but the model may give incorrect results. Hence, it is recommended to use domain checking
whenever possible. It catches errors and allows to write models that are conceptually cleaner because
logical relationships are made explicit.

An alternative way to define elements of a subset is with assignments:

Set i "all sectors" / light-ind, food+agr, heavy-ind, services /

t(i) "traded sectors" / light-ind, heavy-ind /;

t(’food+agr’) = yes;

In the last line the element food+agr of the set i is assigned to the subset t. Assignments may also be
used to remove an element from a subset:

t(’light-ind’) = no;

Note that yes and no are reserved words in GAMS. Note further that if a subset is assigned
to, it then becomes a dynamic set. For more on assignments in GAMS in general, see section
The Assignment Statement.

Attention

A subset can be used as a domain in the declaration of other sets, variables, parameters and in
equations as long as it is no dynamic set.

This completes the discussion of sets in which the elements are simple. This is sufficient for many GAMS
applications. However, there are a variety of problems for which it is useful to have sets that are defined
in terms of two or more other sets.

4.23.5 Multi-Dimensional Sets

It is often necessary to provide mappings between elements of different sets. For this purpose, GAMS
allows the use of multi-dimensional sets. For the current maximum number of permitted dimensions, see
Dimensions. The next two subsections explain how to express one-to-one and many-to-many mappings
between sets.

4.23.5.1 One-to-one Mapping

Consider a set whose elements are pairs: A = {(b, d), (a, c), (c, e)}. In this set there are three elements
and each element consists of a pair of letters. This kind of set is useful in many types of modeling. For
example, in the world aluminum model [ALUM] a port has to be associated with a nearby mining region

Set i "mining regions" / china, ghana, ee+ussr, s-leone /

n "ports" / accra, freetown, leningrad, shanghai /

in(i,n) "mines to ports map" / china .shanghai

ghana .accra

ee+ussr.leningrad

s-leone.freetown /;

Here i is the set of mining regions, n is the set of ports and in is a two dimensional set that associates
each port with a mining region. The dot between china and shanghai is used to create one such pair.
Blanks may be used freely around the dot for readability. The set in has four elements, and each element
consists of a region-port pair. The notation (i,n) after the set name in indicates that the first member
of each pair must be a member of the set i of mining regions, and that the second must be in the set n of
ports. GAMS will domain check the set elements to ensure that all members belong to the appropriate
sets.

4.23 Set Definition 787

4.23.5.2 Many-to-Many Mapping

A many-to-many mapping is needed in certain cases. Consider the following sets:

Set i / a, b /

j / c, d, e /

ij1(i,j) / a.c, a.d /

ij2(i,j) / a.c, b.c /

ij3(i,j) / a.c, b.c, a.d, b.d /;

Here the set ij1 presents a one-to-many mapping where one element of the set i maps onto many elements
of the set j. The set ij2 represents a many-to-one mapping where many elements of the set i map onto
one element of the set j. The set ij3 is the most general case: a many-to-many mapping where many
elements of the set i map to many elements of the set j.

These sets may be written compactly as:

Set i / a, b /

j / c, d, e /

ij1(i,j) / a.(c,d) /

ij2(i,j) / (a,b).c /

ij3(I,j) / (a,b).(c,d) /;

The parenthesis provides a list of elements that is expanded when creating pairs. Note that the dot '.', if
used like above, acts as product operator and supports building the Cartesian product of sets.

Attention

When complex sets like this are created, it is important to check that the desired set has been
obtained. The checking can for example be done be done by using a display statement.

GAMS provides more notation to define multi-dimensional sets in a succinct way. As introduced above
the hash sign '#' followed by a set name is a shorthand for referring to all the elements in a set. The
matching operator ':' may be used to map ordered sets. This operator is similar to the product operator
'.'. However, in this case elements are matched pairwise by mapping elements with the same order
number. The examples below demonstrate these concepts.

Set

i / a, b /

j / c, d, e /

ij4a(i,j) / a.#j /

ij4b(i,j) / a.c, a.d, a.e /

ij5a(i,j) / #i.#j /

ij5b(i,j) / a.c, a.d, a.e, b.c, b.d, b.e /

ij6a(i,j) / #i:#j /

ij6b(i,j) / a.c, b.d /;

Note that set names that differ only by the last letter denote identical sets. For example, set ij4a is
identical to set ij4b. Observe that set i has two elements and set j has three elements, where e is the
element with the highest order. Set ij6a is an ordered mapping of all elements of set i to all elements of
set j. However, since there is a mismatch in the number of elements, element e is not mapped to.

These concepts may be generalized to sets with higher dimensions. Mathematically, these are called
3-tuples, 4-tuples, or more generally, n-tuples. Some examples for the compact representation of sets of
n-tuples using combinations of dots, parentheses, and commas are shown in Table 1.

788 User's Guide

Compact Notation Result

(a,b).c.d a.c.d, b.c.d

(a,b).(c,d) .e a.c.e, b.c.e, a.d.e, b.d.e

(a.1∗3).c (a.1, a.2, a.3).c or a.1.c, a.2.c, a.3.c

1∗3. 1∗3. 1∗3 1.1.1, 1.1.2, 1.1.3, ..., 3.3.3

Table 1: Examples for compact representation of multi-dimensional sets

Note that the asterisk may also be used in conjunction with the dot. Recall that the elements of the list
1∗4 are {1, 2, 3, 4}.

A powerful and very compact way to define multi-dimensional sets is with a special option that takes an
identifier as value and carries out identifier operations like index matching using the matching operator
':'. The following example illustrates the method.

Set i / i1*i4 /

j / j1*j5 /

k / k1,k2 /

h / h1*h3 /;

Set b(i,j,k), c(i,j,k,h);

Option b(i:j,k), c(b:h);

display b, c;

The set b is a three-dimensional set, the option statement specifies which permutations of the elements of
i, j, and k are elements of b. The matching operator ':' is between i and j, so we must first match the
elements of the sets i and j. That gives us the the first two positions. For the third position we cycle
through all elements of the set k. This results in the following elements for the set b:

i1.j1.k1, i1.j1,k2, i2.j2.k1, ... , i4.j4.k2

The set c is a four-dimensional set. Note that the first three dimensions are identical to the domain of the
set b. The option statement specifies that in the first three positions we will have elements of the set b

and and these are matched with the elements of the set h which are in the fourth position. Now, the set h
has only three elements, so only the first three elements of the set b are matched with the members of the
set h. This results in the following set:

i1.j1.k1.h1, i1.j1.k2.h2, i2.j2.k1.h3

As recommended above, it is important to always check whether the multi-dimensional sets generated
with compact statement like these are indeed the sets that were intended.

For more sophisticated examples of how to use the matching operator within an option statement please
see section Index Matching .

4.23 Set Definition 789

4.23.5.3 The Table Format for Multi-Dimensional Sets

An alternative way to declare multi-dimensional sets is with tables. We show by example how tables may
be used in the context of set definitions:

Set origins / Berlin, Paris /

destinations / London, Chicago, Budapest /

linked_1(origins,destinations) "cities linked by railways"

/ Berlin.London, Berlin.Budapest,

Paris .London, Paris .Budapest /;

Set Table linked_2(origins,destinations)

London Chicago Budapest

Berlin yes no yes

Paris yes yes ;

The set linked 1 is a two-dimensional set that is defined with the dot notation introduced above. The set
linked 2 is the same set defined using the table notation: the keyword set is followed by the keyword
table and the name of the set with its domain. The table itself consists of the elements of the first index
in the first column, the elements of the second index in the first row, and the data in the grid positions.
Note that the keyword yes indicates that a label combination is part of the two-dimensional set and the
keyword no or a blank indicates that the label combination is not contained in the new set. Please see
section Tables for detailed requirements for inputting data in the table format.

Alternatively, the multi-dimensional set may be declared first without any elements, and the elements are
added later in a separate table statement:

Set origins / Berlin, Paris /

destinations / London, Chicago, Budapest /

linked_2(origins,destinations) "cities linked by railways";

Table linked_2(origins,destinations)

London Chicago Budapest

Berlin yes no yes

Paris yes yes;

Instead of the keywords yes and no users may also use numbers to specify membership in the two-
dimensional set: nonzero numeric entries mean that a label combination is part of the set and zero or a
blank indicates that the label combination is not contained in the set.

4.23.5.4 Projection and Aggregation of Sets

In GAMS, projection and aggregation operations on sets can be performed in two different
ways: with an option statement and with an assignment. For a detailed discussion, see section
Projection and Aggregation of Sets and Parameters.

790 User's Guide

4.23.6 Singleton Sets

A singleton set in GAMS is a special set that has at most one element (zero elements are allowed as well).
Like other sets, singleton sets may have a domain with several dimensions. For the current maximum
number of permitted dimensions, see Dimensions. Singleton sets are declared and defined with the keyword
singleton that acts as a modifier to the keyword set:

Set i / a, b, c /;

Singleton Set j / d /

k(i) / b /

l(i,i) / b.c /;

The sets j, k and l are declared as singleton sets, each of them has just one element. The set k is a subset
of the set i and the set l is a two-dimensional set.

Note that a data statement for a singleton set with more than one element will create a compilation error:

1 Singleton Set s / s1*s3 /;

**** $844

2 display s;

Error Messages

844 Singleton with more than one entry (see $onStrictSingleton)

It also possible to assign an element to a singleton set. In this case the singleton set is automatically
cleared of the previous element first. For example, adding the following line to the code above will result
in set k containing only element a after execution:

k(’a’) = yes;

The dollar control option offStrictSingleton may be used to allow sets that are declared as singleton sets to
have more than one element in compile time definitions. However, in this case only the first listed element
is a valid element of the set. Note that the value of zero for the command line parameter strictSingleton
has the same effect for execution time definitions of singleton sets via assignment statements.

For more on dollar control options, see chapter Dollar Control Options. For more on GAMS command
line parameters,see chapter The GAMS Call and Command Line Parameters. For more on compilation
errors, see section Compilation Errors.

Singleton sets can be especially useful in assignment statements since they do not need to be controlled
by a controlling index or an indexed operator like other sets. Consider the following examples:

Set i / a, b, c /;

Singleton Set k(i) / b /

h(i) / a /;

Parameter n(i) / a 2, b 3, c 5 /;

Scalar z1, z2;

z1 = n(k);

z2 = n(k) + 100*n(h);

The singleton sets k and h are both subsets of the set i. The parameter n is defined over the set i. The
scalar z1 is assigned a value of the parameter n without naming the respective label explicitly in the
assignment. It is already specified in the definition of the singleton set k. The assignment statement for
the scalar z2 contains an expression where the singleton sets k and h are referenced without a controlling
index or an indexed operation.

Note

Singleton sets cannot be used as domains.

4.23 Set Definition 791

4.23.7 The Universal Set: ∗ as Set Identifier

GAMS provides the universal set denoted by '∗' for cases where the user wishes not to specify an index
but have only a placeholder for it. The following examples show two ways how the universal set is
introduced in a model. We will discuss the advantages and disadvantages of using the universal set later.
The first example is from the production and inventory model [ROBERT]:

Sets r "raw materials" / scrap, new /;

Table misc(*,r) "other data"

scrap new

max-stock 400 275

storage-c .5 2

res-value 15 25;

A table is an input format for the data type parameter and has at least two dimensions. For details
see section Tables. In our example, the first index is the universal set '∗' and the second index is the
previously defined set r. Since the first index is the universal set any entry whatsoever is allowed in this
position. In the second position elements of the set r must appear, they are domain checked, as usual.

The second example illustrates how the universal set is introduced in a model with an alias statement.

Alias (new_universe,*);

Set k(new_universe) / Chicago / ;

The alias statement links the universal set with the set name new universe. Set k is a subset of the
universal set and Chicago is declared to be an element of k. Any item may be added freely to k.

The universal set is particularly useful for generating reports, since it allows the use of any labels without
having to define special sets for them. For an example, see section Set Attributes below. For more on
report writing, see chapter The Put Writing Facility.

Attention

It is recommended to not use the universal set for data input, since there is no domain checking and
thus typos will not be detected and data that the user intends to be in the model might actually not
be part of it.

Observe that in GAMS a simple set is always regarded as a subset of the universal set. Thus the set
definition

Set i / i1*i10 /;

is the same as

Set i(*) / i1*i10 /;

GAMS follows the concept of a domain tree for domains in GAMS. It is assumed that a set and its subset
are connected by an arc where the two sets are nodes. Now consider the following one dimensional subsets:

Set i, ii(i), j(i), jj(j), jjj(jj);

These subsets are connected with arcs to the set i and thus form a domain tree that is rooted in the
universe node '∗'. This particular domain tree may be represented as follows:

* - i - ii

|

- j - jj - jjj

Note that with the construct i(jjj) we may access ii iterating through the members of jjj. For an
example, see domain tree in the loop statement.

Observe that the universal set is assumed to be ordered and operators for ordered sets such ord, lag and
lead may be applied to any sets aliased with the universal set.

792 User's Guide

4.23.8 Set and Set Element Referencing

Sets or set elements are referenced in many contexts, including assignments, calculations, equation
definitions and loops. Usually GAMS statements refer to the whole set or a single set element. In addition,
GAMS provides several ways to refer to more than one, but not all elements of a set. In the following
subsections we will show by example how this is done. GAMS also has set functions that specifically
reference sets and are introduced in the chapter about logical conditions.

4.23.8.1 Referencing the Whole Set

Most commonly whole sets are referenced as in the following examples:

Set i / i1*i100 /;

Parameter k(i);

k(i) = 4;

Scalar z;

z = sum(i, k(i));

The parameter k is declared over the set i, in the assignment statement in the next line all elements of
the set i are assigned the value 4. The scalar z is defined to be the sum of all values of the parameter
k(i).

4.23.8.2 Referencing a Single Element

Sometimes it is necessary to refer to specific set elements. This is done by using single or double quotes
around the label(s). We may add the following line to the example above:

k(’i77’) = 15;

This statement changes the value of k('i77') to 15, all the other values of k remain 4.

4.23.8.3 Referencing a Part of a Set

There are multiple ways to restrict the domain to more than one element, e.g. subsets, conditionals and
tuples. Suppose we want the parameter k from the example above to be assigned the value 10 for the first
8 elements of the set i. The following two lines of code illustrate how easily this may be accomplished
with a subset:

Set j(i) / i1*i8 /;

k(j) = 10;

First we define the set j to be a subset of the set i with exactly the elements we are interested in. Then
we assign the new value to the elements of this subset. The other values of the parameter k remain
unchanged. For examples using conditionals and tuples, see sections Restricting the Domain: Conditionals
and Restricting the Domain: Tuples respectively.

4.23.9 Set Attributes

A GAMS set element has several numbers attached to it. These values are called attributes; they may be
recovered during execution. The attributes are listed in Table 3.

4.23 Set Definition 793

Set Attribute Symbol Description

Position .pos Element position in the current set (set does not have to be ordered),
starting with 1.

Ord
.ord

Same as .pos but for ordered sets only.

Offset
.off

Element position in the current set minus 1. So .off = .pos - 1 (set
does not have to be ordered).

Reverse .rev Reverse element position in the current set, so the value for the last
element is 0, the value for the penultimate is 1, etc. (set does not have
to be ordered)

Unique Element
.uel

Element position in the unique element list. For details see section
Ordered and Unordered Sets

Length
.len

Length of the set element name (a count of the number of characters).

Text Length
.tlen

Length of the set element text (a count of the number of characters).

Value
.val

If a set element is a number, this attribute gives the value of the number.
For extended range arithmetic symbols, the symbols are reproduced.
If a set element is a string that is not a number, then this attribute is
not defined and trying to use it results in an error.

Text Value
.tval

If a set element text is a number, this attribute gives the value of
the number. For extended range arithmetic symbols, the symbols are
reproduced. If a set element text is a string that is not a number, then
this attribute is not defined and trying to use it results in an error.

First set element
.first

Returns 1 for the first set element, otherwise 0.

Last set element
.last

Returns 1 for the last set element, otherwise 0.

Table 3: Set Attributes

The attributes may be accessed with an assignment statement:

data(set_name) = set_name.attribute ;

Here data is a parameter, set name is the name of the set and .attribute is one of the attributes listed
above. The following example serves as illustration:

Set id "example set" / Madison ’Wisconsin’, tea-time ’5’, ’-inf’, ’-7’, ’13.14’/;

Parameter report(id,*) "set attribute values";

report(id,’position’) = id.pos ;

report(id,’reverse’) = id.rev ;

report(id,’offset’) = id.off ;

report(id,’length’) = id.len ;

report(id,’textLength’) = id.tlen ;

report(id,’first’) = id.first;

report(id,’last’) = id.last ;

display report;

The parameter report is declared to have two dimensions with the set id in the first position and the
universal set in the second position. In the following seven statements the values of report are defined
for seven entries of the universal set. Note how the flexibility of the universal set is used here to make
reporting easy. The display statement generates the output that follows.

794 User's Guide

---- 11 PARAMETER report set attribute values

position reverse offset length textLength first last

Madison 1.000 4.000 7.000 9.000 1.000

tea-time 2.000 3.000 1.000 8.000 1.000

-inf 3.000 2.000 2.000 4.000

-7 4.000 1.000 3.000 2.000

13.14 5.000 4.000 5.000 1.000

4.23.10 Finding Sets from Data

Sometimes it is desirable to find a set from the available data in order to use it later in the model. We
will show by example how this may be accomplished using the alias statement, the universal set and
conditionals. Suppose we have only the data related to the transportation model [TRNSPORT] and
we want to identify the sets. We can tell from the data that there are two sets that we are interested in.
First, we define these two sets as aliases of the universal set, which means that no elements are specified:

Alias(sources, places, *);

Then we enter the data that contain an indicator of which set elements are valid entries in the sets to be
computed. We use the table format.

Table trandata (sources,places) "data from spreadsheet"

Newyork Chicago totalsupply

Seattle 2.5 1.7 350

Sandiego 2.5 1.8 300

totalneed 325 75 ;

Next we define subsets that we will need in the calculations that follow:

Set source(sources) "sources in spreadsheet data"

destination(places) "destination in spreadsheet data";

Now we have everything that we need to do the calculation using the data on hand. In our case, a label
qualifies as an element of the set source if it has an entry for totalsupply in the table above, and a
label is an element of the set destination if it has an entry for totalneed in the table trandata:

source(sources)$(trandata(sources,"totalsupply")) = yes;

destination(places)$(trandata("totalneed", places)) = yes;

These conditional assignments define the elements of the sets source and destination. From this point
on these sets may be used in the model. However, note that the resulting sets are dynamic sets. Hence they
cannot be used as domains in declaration statements of other sets, parameters, variables and equations.
But they may be referenced and used in equation definitions.

Such computations may for example be useful if the user gets a data table from elsewhere and needs
to specify the sets. Alternatively, if the data is available in gdx format, the dollar control option load
provides functionality to project sets from data contained in a GDX file.

See also section Implicit Set Definition (or: Domain Defining Symbol Declarations).

4.23 Set Definition 795

4.23.11 Domain Checking

The GAMS compiler performs a check to ensure that each label quoted as a member of a set is indeed an
element of the respective set, and each element defined in a subset is in fact a member of the superset.
This screening for consistency is called domain checking. It is done whenever a domain is referenced, be
it in set, variable, parameter or equation declarations and definitions, or in assignments. The following
examples serve as illustration.

Set i "all cities" / Lima, Toronto, Wuhan, Shanghai /

as(i) "Asian cities" / Wuhan, Shanhai, Calcutta /

am "American cities" / Lima, Toront /;

The set as is declared to be a subset of the set i, therefore domain checking will test every label for
inconsistencies. It will catch two errors: there is a typo in Shanhai and Calcutta is not a member of the
set i, so it cannot legally be a member of a subset.

1 Set i "all cities" / Lima, Toronto, Wuhan, Shanghai /

2 as(i) "Asian cities" / Wuhan, Shanhai, Calcutta /

**** $170 $170

**** 170 Domain violation for element

3 am "American cities" / Lima, Toront /;

The user can rectify the spelling error, and either delete Calcutta from the subset as or add it to the
superset i. The following line will pass domain checking:

Set as(i) "Asian cities" / Wuhan, Shanghai /;

Note that am is not declared as a subset of the set i even though it apparently should contain cities
contained in i. Hence, am cannot be domain checked and the typo in Toront will go undetected. This has
consequences for the next line:

Parameter pam(am) "population in millions" / Lima 8.9, Toronto 5.6 /;

In this parameter definition the domain of the parameter pam is the set am. GAMS will report an error
here, since domain checking does not recognize the label Toronto. Toront, as specified in the definition
of the set am above would be accepted.

A further example for domain checking concerns multi-dimensional domains where the user accidentally
switches the positions of the indices:

Parameter h(as,am) / Wuhan.Lima 10, Wuhan.Toronto 12, Shanghai.Lima 7/;

Parameter d(as,am);

d(as,am) = 5*h(am,as) + 78;

Observe that we assume that the typo in the label Toronto has been rectified. The parameter h is defined
over the domain (as,am). However, in the assignment statement in the last line above, it is referenced
with the domain (am,as). This mistake is caught by domain checking and an error is reported.

As we have seen in the definition of the set am above, domain checking is not compulsory. If the following
statement is entered, GAMS makes no assumptions about rho until further information is provided.

796 User's Guide

set t years / 1988 * 1995 /;

Parameter rho discount rate ;

The modeler may later choose to domain check rho by continuing the definition with the following line:

Parameter rho(t) / 1988 0.07, 1989*1994 0.10, 1995 0.09 /;

Alternatively, the modeler may choose not to domain check the paramter rho, as is shown in the deliberately
nonsensical (but legal) statement that follows:

Parameter rho / 1988.January 0.07, strategy-1.cost 44, cat.capacity 99 /;

If a parameter is not domain-checked, the only restriction is that the dimensionality must be constant.
Once the number of labels per data item has been established it is frozen; to refer to the parameter
differently is an error.

Note

Domain checking is automatic; it is only suppressed in two cases:

1. The index is the universal set or a set aliased to the universal set, see the examples above.

2. The dollar control option $onWarning is used. It has the effect that warnings rather than errors
are reported for domain violations.

We urge modelers to use domain checking whenever possible. It catches errors and allows users to write
models that are conceptually cleaner because logical relationships are made explicit.

Note that the dollar control option $load is available in several variations to enable domain checking
when loading data from a GDX file. For details, see $loadDC, $loadDCM and $loadDCR and chapter
GAMS Data eXchange (GDX).

4.23.12 Implicit Set Definition (or: Domain Defining Symbol Declarations)

As seen above, sets can be defined through data statements in the declaration. Alternatively, sets can
be defined implicitly through data statements of other symbols which use these sets as domains. This is
illustrated in the following example, which is derived from the [TRNSPORT] model:

Set

i ’canning plants’

j ’markets’;

Table d(i<,j<) ’distance in thousands of miles’

new-york chicago topeka

seattle 2.5 1.7 1.8

san-diego 2.5 1.8 1.4;

Display i,j;

Note the < signs in the domain list of the declaration of d (d(i<,j<)). These signal, that the set i

will contain all elements which define the first dimension of symbol d and that the set j will contain
all elements which define the second dimension of symbol d, respectively. So, this is the output of the
Display statement at the end:

4.23 Set Definition 797

---- 10 SET i canning plants

seattle , san-diego

---- 10 SET j markets

new-york, chicago , topeka

This syntax is not limited to the table statement, but can be used with any symbol declaration. Also,
one domain set can be defined through multiple symbols using the same domain, when using the dollar
control option onMulti:

Set

food

fruits(food<) / apple, orange /

$onMulti

vegetable(food<) / carrot, cauliflower /

meat(food<) / beef, pork /;

Display food;

This is the output of the Display statement:

---- 8 SET food

apple , orange , carrot , cauliflower, beef , pork

Note

If the < sign is used to mark a declaration as ”domain defining”, this attribute is not limited to the
data statement following this declaration, but also influences other ways to define data at compile
time like the dollar control option load, as shown in the following example:

Set

i ’canning plants’

j ’markets’;

Parameter d(i<,j<) ’distance in thousands of miles’;

$gdxIn data.gdx

$load d

Attention

Only non-zero elements in a symbol will add elements to an implicitly defined set. This is illustrated
in the following two examples.

Set

i ’canning plants’

j ’markets’;

Table d(i<,j<) ’distance in thousands of miles’

new-york chicago topeka

seattle 2.5 1.8

san-diego 2.5 1.4;

Display i,j;

798 User's Guide

Note the empty column for chicago. Since there is no data, chicago will not end up in the set j, which
can be seen in the output of the Display statement:

---- 10 SET j markets

new-york, topeka

Also, an explicit 0 in a data statement does not add elements to an an implicitly defined set (in contrast
to an eps). This is shown in the following GAMS code and output:

Set

j ’markets’;

Parameter

b(j<) ’demand at market j in cases’

/ new-york 325

chicago 0

topeka eps /;

Display j;

---- 10 SET j markets

new-york, topeka

See also section Finding Sets from Data.

4.23.13 Summary

In GAMS, a simple set consists of a set name and the elements of the set. Both the name and the elements
may have associated text that explains the name or the elements in more detail. More complex sets have
elements that are pairs or even n-tuples. These sets with pairs and n-tuples are ideal for establishing
relationships between the elements in different sets. GAMS also uses a domain checking capability to help
catch labeling inconsistencies and typographical errors made during the definition of related sets.

The discussion here has been limited to sets whose members are all specified as the set is being declared.
For many models this is all the user needs to know about sets. Later we will discuss more complicated
concepts, such as sets whose membership changes in different parts of the model (assignment to sets) and
other set operations such as unions, complements and intersections.

4.24 Dynamic Sets

4.24.1 Introduction

Sets in general are covered in chapter Set Definition. In this chapter we introduce a special type of sets:
dynamic sets. The sets that we discuss in detail in chapter Set Definition have their elements stated at
compile time (e.g. enclosed in slashes at the set declaration or when loading a set from gdx via $load)
and during execution time the membership is never changed. Therefore they are called static sets. In
contrast, the elements of dynamic sets are not fixed, but may be added and removed during execution
of the program. Dynamic sets are most often used as controlling indices in assignments or equation
definitions and as the conditional set in a dollar-controlled indexed operation. We will first show how
assignments are used to change set membership in dynamic sets. Then we will introduce set operations
and the last part of this chapter covers dynamic sets in the context of dollar conditions.

4.24 Dynamic Sets 799

4.24.2 Assigning Membership to Dynamic Sets

Dynamic Sets may be assigned to in a similar way as other data types. There are only two possible values:
yes and no. Note that arithmetic operations cannot be performed on sets in the same way as on value
typed identifiers (parameters, variables and equations subtypes). However, there are special set operations.

4.24.2.1 The Syntax

Like any other set, a dynamic set has to be declared before it may be used in the model. Often, a dynamic
set is declared as subset of a static set. Dynamic sets in GAMS may also be multi-dimensional like static sets.
The maximum number of permitted dimensions follows the rules of the basic Data Types and Definitions.
For multi-dimensional dynamic sets the index sets can also be specified explicitly at declaration. That way
dynamic sets are domain checked. Of course it is also possible to use dynamic sets that are not domain
checked. This provides additional power and flexibility but also a lack of intelligibility and danger. Any
label is legal as long as such a set's dimension, once established, is preserved.

In general, the syntax for assigning membership to dynamic sets in GAMS is:

set_name(index_list | label) = yes | no ;

Set name is the internal name of the set in GAMS, index list refers to the domain of the dynamic set
and label is one specific element of the domain. An assignment statement may assign membership to the
dynamic set either to the whole domain or to a subset of the domain or to one specific element. Note
that, as usual, a label must appear in double or single quotes. Yes and no are keywords in GAMS. They
are used to add members to or remove them from the dynamic set. Examples are given in the following
subsections.

4.24.2.2 Illustrative Example

Throughout this chapter we will use examples adapted from the database model [ZLOOF] to illustrate
the introduced concepts. Here we start with assignments of membership to dynamic sets.

Set item "all items" / dish, ink, lipstick, pen, pencil, perfume /

subitem1(item) "first subset of item" / pen, pencil /

subitem2(item) "second subset of item";

subitem1(’ink’) = yes ;

subitem1(’lipstick’) = yes ;

subitem2(item) = yes ;

subitem2(’perfume’) = no ;

display subitem1, subitem2;

Note that the sets subitem1 and subitem2 are declared like any other set. The two sets become dynamic
as soon as they are assigned to a few lines later. They are also domain checked: the only members they
will ever be able to have must also be members of the set item. The first assignment not only makes the
set subitem1 dynamic, it also has the effect that its superset item becomes a static set and from then
on its membership is frozen. The first two assignments each add one new element to subitem1. Note
that both are also elements of item, as required. The third assignment is an example of the familiar
indexed assignment: subitem2 is assigned all the members of item. The last assignment removes the label
'perfume' from the dynamic set subitem2. The output generated by the display statement is shown
below:

800 User's Guide

---- 9 SET subitem1 first subset of item

ink , lipstick, pen , pencil

---- 9 SET subitem2 second subset of item

dish , ink , lipstick, pen , pencil

Note that even though the labels 'pen' and 'pencil' were declared to be members of the set subitem1
before the assignment statements that added the labels 'ink' and 'lipstick' to the set, they appear in
the listing above at the end. The reason is that elements are displayed in the internal order, which in this
case is the order specified in the declaration of the set item.

Alternatively, the elements of the set subitem2 could be assigned in the following way:

subitem2(item) = no;

subitem2(subitem1) = yes;

subitem2(’dish’) = yes;

The first statement removes all elements from the set subitem2. The second statement adds all elements
of the set subitem1. Note that this assignment is permitted since the set subitem1 is a proper subset of
the set item (which is the domain of subitem2). The third statement adds one additional element.

4.24.2.3 Dynamic Sets with Multiple Indices

As mentioned earlier, dynamic sets may be multi-dimensional. The following lines continue the example
above and illustrate assignments for multi-dimensional sets.

Sets sold(item) "items sold" / pencil, pen /

sup "suppliers" / bic, parker, waterman /

supply(sold,sup) ;

supply(’pencil’,’bic’) = yes ;

supply(’pen’,sup) = yes ;

Note that supply is a two-dimensional dynamic set. It links sold items with their re-
spective suppliers. Other examples with multi-dimensional dynamic sets are in subsections
Dynamic Sets in Conditional Assignments and Conditional Indexed Operations with Dynamic Sets be-
low.

All the mechanisms using asterisks and parenthesized lists that were introduced in section
Multi-Dimensional Sets in chapter Set Definition are available for dynamic sets as well.

4.24 Dynamic Sets 801

4.24.2.4 Equations Defined over the Domain of Dynamic Sets

Generally, dynamic sets are not permitted as domains in declarations of sets, variables, parameters and
equations. However, they may be referenced and sometimes it is necessary to define an equation over a
dynamic set.

Note

The trick is to declare the equation over the entire domain but define it over the dynamic set.

For example, defining an equation over a dynamic set can be necessary in models that will be solved for
arbitrary groupings of regions simultaneously. We assume there are no explicit links between regions, but
that we have a number of independent models with a common data definition and common logic. We
illustrate with an artificial example, leaving out lots of details.

Set allr "all regions" / N, S, W, E, N-E, S-W /

r(allr) "region subset for particular solution"

type "set for various types of data" ;

Scalar price /10/ ;

Parameter revenue(allr);

Table data(allr,type) "all other data ..." ;

Variables activity1(allr) "first activity"

activity2(allr) "second activity"

revenue(allr) "revenue" ;

Equations resource1(allr) "first resource constraint ..."

prodbal1(allr) "first production balance ..." ;

resource1(r).. activity1(r) =l= data(r,’resource-1’);

prodbal1(r).. activity2(r)*price =e= revenue(r) ;

To repeat the important point: the equation is declared over the set allr, but defined over r, a subset.
Note that the variables and data are declared over allr but referenced over r. Then the set r may be
assigned arbitrary combinations of elements of the set allr, and the model may be solved any number of
times for the chosen groupings of regions.

4.24.2.5 Assigning Membership to Singleton Sets

Singleton sets have only one element. Hence any assignment to a singleton set first clears or empties the
set, no explicit action to clear the set is necessary. This is illustrated with the following example:

Set i "Static Set" / a, b, c /

ii(i) "Dynamic Set" / b /;

Singleton Set si(i) "Dynamic Singleton Set" / b /;

ii(’c’) = yes;

si(’c’) = yes;

display ii, si;

Note that both ii and si are subsets of the set i, but only si is declared as a singleton set. The
assignment statements assign to both sets the element 'c'. While 'c' is added to the set ii, it replaces
the original element in the singleton set si. The output from the display statement confirms this:

802 User's Guide

---- 8 SET ii Dynamic Set

b, c

---- 8 SET si Dynamic Singleton Set

c

For more information on singleton sets in GAMS, see section Singleton Sets.

Attention

That an assignment to a singleton set first clears the set always, means that it is even cleared if
there would be no change at all for a regular set:

Singleton Set s / 1 /;

s(s)$0 = yes;

display s;

Here is the output from the display statement in the listing file:

---- 3 SET s

(EMPTY)

The assignment behavior can be changed with the option and command line parameter strictSingleton
which affects the behavior of a membership assignment to a Singleton Set. With strictSingleton=0

GAMS does not complain about an assignment with more than one element on the right hand side but
takes the first one. With strictSingleton=1 (default), such an assignment raises an error. Consider the
following example:

Set i "Static Set" / a, b, c /

Singleton Set si(i) "Dynamic Singleton Set";

si(i) = ord(i) > 1;

display si;

By default, the above code will trigger an error as an assignment to a singleton set with more than one
element on the right hand side is forbidden:

*** Error at line 3: Multiple assignment to Singleton Set not allowed (see option strictSingleton)

However, with option (or command line parameter) strictSingleton=0 GAMS does not complain about
such an assignment with more than one element on the right hand side but takes the first one:

Set i "Static Set" / a, b, c /

Singleton Set si(i) "Dynamic Singleton Set";

option strictSingleton = 0;

si(i) = ord(i) > 1;

display si;

The output from the display statement confirms this:

---- 5 SET si Dynamic Singleton Set

b

4.24.3 Set Operations

GAMS provides symbols for arithmetic set operations that may be used with dynamic sets. An overview of
the set operations in GAMS is given in Table 1. Examples and alternative formulations for each operation
follow. Note that in the table below the set i is the static superset and the sets j and k are dynamic sets.

4.24 Dynamic Sets 803

Set Operation Operator Description

Set Union
j(i) + k(i) Returns a subset of i that contains all the elements of the sets j

and k.

Set Intersection
j(i) ∗ k(i) Returns a subset of i that contains the elements of the set j that

are also elements of the set k.

Set Complement
not j(i) Returns a subset of i that contains all the elements of the set i

that are not elements of the set j.

Set Difference
j(i) - k(i) Returns a subset of i that contains all the elements of the set j

that are not elements of the set k.

Table 1: Set Operations with Dynamic Sets

The following examples draw on the database model [ZLOOF] that we introduced above. Recall that
the set item is the superset of the dynamic sets subitem1 and subitem2. We add new dynamic sets
for the results of the respective set operations. The following example illustrates that the dynamic set
operations are equivalent to the following alternative ways of representation.

Sets union1(item), intersection1(item), complement1(item), difference1(item)

union2(item), intersection2(item), complement2(item), difference2(item);

union1(item) = subitem1(item) + subitem2(item); display union1;

union2(subitem1) = yes; union2(subitem2) = yes; display union2;

intersection1(item) = subitem1(item) * subitem2(item); display intersection1;

intersection2(item) = yes$(subitem1(item) and subitem2(item)); display intersection2;

complement1(item) = not subitem1(item); display complement1;

complement2(item) = yes; complement2(subitem1) = no; display complement2;

difference1(item) = subitem2(item) - subitem1(item); display difference1;

difference2(item) = yes$(subitem2(item)); difference2(subitem1) = no; display difference2;

The display statements will show that the above assignment statements for each operation result in
the same dynamic set like using the set operator. Observe that the alternative formulations for the set
intersection and set difference involve conditional assignments. Conditional assignments in the context of
dynamic sets are discussed in depth in the next section.

Note

The indexed operation sum may be used for set unions. Similarly, the indexed operation prod may be
used for set intersections. For examples see section Conditional Indexed Operations with Dynamic Sets
below.

4.24.4 Using Dollar Controls with Dynamic Sets

The remainder of this chapter assumes familiarity with the dollar condition that is introduced in chapter
Conditional Expressions, Assignments and Equations. All the dollar control machinery is available for
use with dynamic sets. In fact, the full power of dynamic sets can be exploited using these dollar controls.

Recall that set membership of subsets and dynamic sets may be used as a logical condition; see subsec-
tion Logical Conditions: Set Membership and Set Functions for details. Set membership may also be a
building block in complex logical conditions that are constructed using the logical operators not, and,
or, xor, imp and eqv. Moreover, the set operations introduced in the previous section may also be used
in logical conditions. Like other dollar conditions, dollar conditions with dynamic sets are used in the
context of assignments, indexed operations and equations. We will discuss in detail each of these in the
following subsections.

Apart from being part of logical conditions, dynamic sets may be assigned members with conditional
assignments. Examples are given in the next subsection.

804 User's Guide

4.24.4.1 Dynamic Sets in Conditional Assignments

Dynamic sets may be used in two ways in conditional assignments: they may be the item on the left-hand
side that is assigned to and they may be part of the logical condition. Below we present examples for
both. The examples are again based on the database model [ZLOOF] that we introduced above.

Set item "all items" / dish, ink, lipstick, pen, pencil, perfume /

subitem1(item) "first subset of item" / ink, lipstick, pen, pencil /

subitem2(item) "second subset of item";

subitem2(item)$subitem1(item) = yes;

display subitem2;

The conditional assignment adds the members of dynamic set subitem1 to the dynamic set subitem2.
Thus subitem2 will have the following elements:

---- 6 SET subitem2 second subset of item

ink , lipstick, pen , pencil

Note that instead of using subitem1 in a dollar condition we could also write:

subitem2(subitem1) = yes;

In the next example of a conditional assignment, a dynamic set features in the logical condition on the
right-hand side. The first statement clears the set subitem2 of any previously assigned members and the
second statement assigns all members of subitem1 to subitem2. The following conditional assignment
will have the same result:

subitem2(item) = no;

subitem2(item) = yes$subitem1(item);

The logical condition in this assignment is subitem1(item). It is satisfied for all members of the set
subitem1. Hence the statement assigns all elements of the domain item that are members of the set
subitem1 to the dynamic set subitem2. Note that in this assignment the dollar operator is on the right.
In the section Dollar on the Right we show that conditional assignments with the dollar operator on the
right-hand side imply an if-then-else structure where the else case is automatically zero. Unlike
parameters, dynamic sets cannot be assigned the value of zero, they are assigned the value no instead.
Therefore a more explicit formulation of the conditional assignment above would be:

subitem2(item) = no;

subitem2(item) = yes$subitem1(item) + no$(not subitem1(item));

For more on sets in logical conditions, see section Logical Conditions: Set Membership and Set Functions.
For more on conditional assignments, see section Conditional Assignments.

4.24 Dynamic Sets 805

4.24.4.2 Conditional Indexed Operations with Dynamic Sets

Indexed operations in GAMS are introduced in section Indexed Operations. They may be controlled
by dollar conditions as discussed in section Conditional Indexed Operations. The domain of conditional
indexed operations is often restricted by a set, called the conditional set. Dynamic sets may be used as
conditional sets or they may be assigned to with a statement that features a conditional indexed operation
on the right-hand side. We will illustrate both cases with examples.

Suppose we have a set of origins, a set of destinations and a table specifying the flight distance between
them:

Set i "origins" / Chicago, Philadelphia /

j "destinations" / Vancouver, Bogota, Dublin, Rio, Marrakech / ;

Table d(i,j) "distance (miles)"

Vancouver Bogota Dublin Rio Marrakech

Chicago 1777 2691 3709 5202 4352

Philadelphia 2438 2419 3306 4695 3757 ;

We wish to find the longest distance that we can travel given that we have a limit of 3500 miles.

Set can_do(i,j) "connections with less than 3500 miles";

can_do(i,j)$(d(i,j) < 3500) = yes;

display can_do;

Scalar maxd "longest distance possible"

maxd = smax((i,j)$can_do(i,j), d(i,j));

display maxd;

The dynamic set can do contains all connections that are less than 3500 miles. The scalar maxd is defined
by a conditional assignment where the indexed operation smax scans all entries of the parameter d whose
label combinations are members of the set can do and chooses the largest value. The output generated by
the display statements is shown below:

---- 11 SET can_do connections with less than 3500 miles

Vancouver Bogota Dublin

Chicago YES YES

Philadelphia YES YES YES

---- 15 PARAMETER maxd = 3306.000 longest distance possible

There is a shorter alternative formulation for this assignment; see subsection Filtering through Dynamic Sets
below for details.

Finally, we also wish to know which flight connection is linked to the longest possible distance. Consider
the following two lines:

Singleton set maxc(i,j) "maximum distance connection";

maxc(i,j) = yes$can_do(i,j) and (d(i,j) = maxd);

806 User's Guide

The dynamic singleton set is assigned the member of the dynamic set can do whose distance equals the
maximum distance.

The full power of indexed operators becomes apparent with multi-dimensional dynamic sets. As earlier in
this chapter, we illustrate with fragments of code adapted from the relational database model [ZLOOF].

Set dep "departments" / cosmetics, hardware, houshold, stationary, toy /

sup "suppliers" / bic, dupont, parker, revlon /

item "items sold" / dish, ink, lipstick, pen, pencil, perfume /

sales(dep,item) "departments and items sold" /

cosmetics. (lipstick,perfume)

hardware. ink

houshold. (dish,pen)

stationary. (dish,ink,pen,pencil)

toy. (ink,pen,pencil) /

supply(item,sup) "items and suppliers" /

dish.(bic,dupont) , ink.(bic,parker) , lipstick.revlon

pen.(parker,revlon) , pencil.(bic,parker) , perfume.revlon /

Set g03(dep) "departments selling items supplied by Parker";

g03(dep) = sum(item$supply(item,’parker’), sales(dep,item));

display g03;

The assignment above is used to create the set of departments that sell items supplied by 'parker'. Note
that the set g03 is a subset of the set dep. Its members are specified by assignment, hence it is a dynamic
set. Note that the assignment is made to a set, therefore the indexed operator sum refers to a set union
(and not to an addition as would be the case if the assignment were made to a parameter). The indexed
operation is controlled by the two-dimensional set supply with the label 'parker' in the second index
position. This logical condition is TRUE for all members of the set supply where the second index is
'parker'. Hence the summation is over all items sold, provided that the supplier is 'parker'. Given the
declaration of the set supply, this means 'ink', 'pen' and 'pencil'. The associated departments are
thus all departments except for 'cosmetics':

---- 19 SET g03 departments selling items supplied by Parker

hardware , houshold , stationary, toy

Now suppose we are interested in the departments that are selling only items supplied by 'parker'. We
introduce a new dynamic set g11 and the following assignment adds the desired departments:

Set g11(dep) "departments only selling items supplied by parker";

g11(dep) = prod(sales(dep,item), supply(item,"parker"));

display g11;

Note that the indexed operation prod refers to set intersections in the context of assignments to dynamic
sets. From all departments linked with items only those are included where all items sold are supplied by
'parker'. This means that departments that additionally sell items that are not supplied by 'parker'
are excluded. Hence, only 'hardware' and 'toy' are added to g11.

4.24 Dynamic Sets 807

4.24.4.3 Conditional Equations with Dynamic Sets

Recall that dollar conditions in the context of equations may restrict the domain of the equation and
they may also feature in the algebraic formulation of the equation; see section Conditional Equations for
more information. In both instances dynamic sets may be used as part of the logical condition. Dollar
conditions with dynamic sets in the algebra of equations are similar to conditional assignments with
dynamic sets; see section Dynamic Sets in Conditional Assignments above. The example that follows
illustrates the use of a dynamic set to restrict the domain of definition of an equation. In section
Equations Defined over the Domain of Dynamic Sets above we had the following equation definition:

prodbal1(r).. activity2(r)*price =e= revenue(r) ;

Recall that r is a dynamic set and a subset of the set allr. Hence this equation may be rewritten in the
following way:

prodbal1(allr)$r(allr).. activity2(allr)*price =e= revenue(allr) ;

Note that both formulations achieve the same result: restricting the domain of definition to those elements
that belong to the dynamic set r. While in the second formulation the condition is specified explicitly,
in the first formulation the domain is filtered through the dynamic set r. This is the topic of the next
subsection.

4.24.4.4 Filtering through Dynamic Sets

The filtering process is introduced and explained in section Filtering Sets in chapter Conditional Expressions, Assignments and Equations.
In certain circumstances it is an alternative to the dollar condition to restrict the domain of equations,
sets, variables, parameters and indexed operations. We already saw an example for restricting the
domain of definition of an equation in the previous subsection. The next example refers to restricting the
domain in an indexed operation. In section Conditional Indexed Operations with Dynamic Sets we had
the following assignment:

maxd = smax((i,j)$can_do(i,j), d(i,j));

Recall that maxd is a scalar, i and j are sets, can do is a dynamic set and d is a two-dimensional parameter.
Note that the conditional set is the dynamic set can do. The assignment may be rewritten in the following
way:

maxd = smax(can_do(i,j), d(i,j));

Here the indexed operation is filtered through the dynamic set can do, a dollar condition is not necessary.

808 User's Guide

4.25 Sets as Sequences: Ordered Sets

4.25.1 Introduction

Sets are introduced in chapter Set Definition. There we state that in general, sets in GAMS are regarded
as an unordered collection of labels. However, in some contexts, say, multi-period planning models, some
sets need to be treated as if they were sequences. In this chapter we will establish the notion of ordered
sets and we will cover their special features and the associated operations.

Examples where ordered sets are needed include economic models that explicitly represent conditions in
different time periods that are linked, location problems where the formulation may require a representation
of contiguous areas, as in a grid representation of a city, scheduling problems and programs that model
stocks of capital with equations of the form 'stocks at the end of period n are equal to stocks at the end of
period n− 1 plus net gains during period n'.

Note

Models involving sequences of time periods are often called dynamic models, because they describe
how conditions change over time. This use of the word dynamic unfortunately has a different
meaning from that used in connection with dynamic sets, but this is unavoidable.

4.25.2 Ordered and Unordered Sets

Certain one-dimensional sets may be treated as if they were a sequence. Those sets need to be ordered
and static. A one-dimensional set is ordered if the definition or initialization of the elements in the set
corresponds to the order of the labels in the GAMS Entry order.

Note

• The GAMS entry order is the order in which the individual labels first appear in the GAMS
program, either explicitly or as a result of using the shorthand asterisk notation.

• For the sake of simplicity, sets that are static and ordered are often just referred to as ordered
sets.

GAMS maintains a unique element list where all labels that are used as elements in one or more sets are
listed. The order of the elements in any one set is the same as the order of those elements in the unique
element list. This means that the order of a set may not be what it appears to be if some of the labels
were used in an earlier definition. The internal GAMS order of the labels can be made visible with the
dollar control option $onUELlist. This directive generates a map that is shown in the compilation output
of the listing file. For details on the listing file and GAMS output in general, see chapter GAMS Output.
A good rule of thumb is that if the user wants a set to be ordered and the labels in the set have not been
used already, then they will be ordered.

In the example below we show ordered and unordered sets and the map showing the order. The input is:

$onUELlist

Set t1 / 1987, 1988, 1989, 1990, 1991 /

t2 / 1983, 1984, 1985, 1986, 1987 /

t3 / 1987, 1989, 1991, 1983, 1985 / ;

4.25 Sets as Sequences: Ordered Sets 809

Note that the label "1987" is the first label seen by GAMS. It appears again as the last label in the
initialization list for the set t2. This means that the set t2 is not ordered and any attempt to use t2 in a
context implying order, such as the operations introduced later in this chapter, will cause error messages.
Observe that the set t3 is ordered, as all the members of t3 have appeared in the GAMS program before,
and in the same order that they are listed in the definition of t3.

The unique element listing below shows the entry order (the important one) and the sorted order, obtained
by sorting the labels into dictionary order. The single digits on the left are the sequence numbers of the
first label on that line.

G e n e r a l A l g e b r a i c M o d e l i n g S y s t e m

Unique Element Listing

Unique Elements in Entry Order

1 1987 1988 1989 1990 1991 1983

7 1984 1985 1986

Unique Elements in Sorted Order

1 1983 1984 1985 1986 1987 1988

7 1989 1990 1991

A set can always be made ordered by moving its declaration closer to the beginning of the program. With
these restrictions in mind, we will continue in the next section with the operations that may be used with
ordered sets.

4.25.3 Sorting a Set

Note that besides the entry order of unique elements there is also a sorted (alphabetical) order. To obtain the
sorted order (of an ordered or unordered set) the special predefined two-dimensional set SortedUELs(∗,∗)
can be used. Consider the following example where set j is reported in an alphabetically sorted format:

set j / c, a, b, 1, 2, 11 /;

display j;

alias(*,u);

file ordered /ordered.txt/;

loop(SortedUels(u,j), put ordered j.tl:0 ’ ’);

putclose ordered;

The output generated by the display statement follows:

---- 2 SET j

c , a , b , 1 , 2 , 11

Note that, as expected, the display statement shows the elements of set j in the entry order not in
alphabetical order. However, the elements are listed in alphabetical order in the file ordered.txt. Note
furthermore, that alphabetical sorting leads to an order where e.g. 11 precedes 2.

1 11 2 a b c

In the example above u is aliased with the Universal Set. For an introduction to writing external files
with put, see chapter The Put Writing Facility.

810 User's Guide

4.25.4 Ord and Card Operators

As stated in section Labels in chapter GAMS Programs, labels in GAMS do not have a numerical value.
The examples used were that the label '1986' does not have a numerical value of 1986 and the label '01'
is different from the label '1'. This section introduces two operators - ord and card - that return integer
values when applied to sets. While the integer values returned do not represent the numerical value of the
label, they can be used for the same purpose.

Note

GAMS provides some string manipulation capability by extending the card and ord operators to
also work on strings.

4.25.4.1 The Ord Operator

The operator ord returns the relative position of a member in a set.

Attention

By default the operator ord may be used only with one-dimensional sets that are static and ordered.

Some examples show the usage.

Set t "time periods" / 1985*1995 / ;

Parameter val(t) ;

val(t) = ord(t);

Note that as a result of the statements above, the value of val('1985') will be 1, val('1986') will be 2
and so on.

A common use of ord is in setting up vectors that represent quantities growing in some analytically
specified way. For example, suppose a country has 56 million people in the base period and the population
is growing at the rate of 1.5 percent per year. Then the population in succeeding years can be calculated
as follows:

population(t) = 56*(1.015**(ord(t) - 1)) ;

It is often useful to simulate general matrix operations in GAMS. The first index of a two dimensional
parameter can conveniently represent the rows, the second the columns and order is necessary. The
example below shows how to set the upper triangle of a matrix equal to the row index plus the column
index, and the diagonal and lower triangle to zero.

Set i "row and column labels" / x1*x10 /;

alias (i,j);

Parameter a(i,j) "a general square matrix";

a(i,j) $ (ord(i) < ord(j)) = ord(i) + ord(j);

4.25 Sets as Sequences: Ordered Sets 811

Note that in the assignment statement the logical condition (ord(i) < ord(j)) restricts the assignment
to the entries of the upper triangle. For more information on logical conditions and conditional assignments
in GAMS, see sections Logical Conditions and Conditional Assignments respectively.

Note that the strict requirement that the set needs to be ordered for the operator ord to be used may
be relaxed with a dollar control option called offOrder. Consider the following lines where we revisit the
example from the previous section.

$offOrder

Set t1 / 1987, 1988, 1989, 1990, 1991 /

t2 / 1983, 1984, 1985, 1986, 1987 /;

Parameter p(t2);

p(t2) = ord(t2);

display p;

Note that, as we explained above, the set t2 is not ordered. Therefore using ord(t2) somewhere in the
model will usually cause the program to be terminated with an error message. However, with the dollar
control option offOrder active, the set t2 is treated as if it were ordered and the display statement will
generate the following output:

---- 6 PARAMETER p

1987 1.000, 1983 2.000, 1984 3.000, 1985 4.000, 1986 5.000

While this may be useful in some circumstances, the option comes with a price, since the system will not
be able to diagnose odd and incorrect formulations and data sets. The strict requirement that the set
needs to be ordered for the ord operator can be turned on again via onOrder.

4.25.4.2 The Card Operator

The operator card returns the number of elements in a set.

Note

The operator card may be used with any set: static and dynamic sets, ordered and unordered sets.

The following example illustrates its use:

Set t "time periods" / 1985*1995 /;

Scalar s;

s = card(t);

Display s;

Note that s will be assigned the value 11 since the set t has 11 elements.

A common use of card is to specify some condition only for the final period, for example to fix a variable.
Consider the following artificial example:

c.fx(t)$(ord(t) = card(t)) = demand(t);

Note that the logical condition (ord(t) = card(t)) restricts the assignment to the last element of the
set t: no assignment is made for other members of t. The advantage of this way of fixing the variable
c is that the membership of t can be changed safely and this statement will always fix c for the last
element. For more information on logical conditions and conditional assignments in GAMS, see sections
Logical Conditions and Conditional Assignments respectively.

4.25.5 Lag and Lead Operators

Lag and lead operators are used to relate the current member of an ordered set to the previous or next
member of the set. GAMS provides two forms of lag and lead operators (linear and circular), they are
summarized in Table 1. Note that in the table below t is a member of an ordered set and n is a positive
integer.

812 User's Guide

Operation Symbol Description

Linear Lag t - n Refers to the element of the ordered set whose relative position in the set
is ord(t)-n.

Linear Lead t + n Refers to the element of the ordered set whose relative position in the set
is ord(t)+n.

Circular Lag t -- n Same as t - n, only here the first element of the set is assumed to be
preceded by the last element of the set, thus forming a circle of elements.

Circular Lead t ++ n Same as t + n, only here the last element of the set is assumed to be
followed by the first element of the set, thus forming a circle of elements.

Table 1: Linear and Circular Lag and Lead Operators

Note that the only difference between linear and circular lag and lead operators is how endpoints are
treated. Linear operators assume that there are no members preceding the first and following the last
member of the ordered set. This assumption may result in elements of the set being referenced that
actually do not exist. Therefore the user must think carefully about the treatment of endpoints: models
with linear lag and lead operators will need special exception handling logic to deal with them. The next
two sections will describe how this issue is handled in GAMS in the context in which these operators are
typically used: assignments and equations. Linear lag and lead operators are useful for modeling time
periods that do not repeat, like a set of years (say 1990 to 1997).

Circular lag and lead operators assume that the first and last members of the set are adjacent, so as to
form a circular sequence of members. This means that 'first--1' is a reference to 'last' and 'last++2'
is the same as 'first++1'. All references and assignments are defined. The assumption of circularity is
useful for modeling time periods that repeat, such as months of the year or hours in the day. It is quite
natural to think of January as the month following December. Agricultural farm budget models and
workforce scheduling models are examples of applications where circular leads occur naturally.

Note

• GAMS is able to distinguish the linear lag and lead operators '-' and '+' from
arithmetic operators by context. To avoid ambiguity, GAMS does not allow to mix lag
and lead operators with arithmetic operators. For example, i+1+1 is not allowed, but writing
i+(1+1) would work.

• Observe that the lag (or lead) value n does not have to be an explicit constant: it can be an
arbitrary expression, provided that it evaluates to an integer. If it does not, error messages will
be produced. A negative result causes a switch in sense (from lag to lead, for example).

Note that if lag and lead operators are used with an unordered set, the program will terminate with an
error message. The strict requirement that the set be ordered may be relaxed with the dollar control
option offOrder. If the directive $offOrder is added, in the lines that follow unordered sets are treated as
if they were ordered and therefore lag and lead operators may be used with them. While this may be
advantageous in some circumstances, the option comes with a price, since the system will not be able to
diagnose odd and incorrect formulations and data sets. The strict requirement that the set needs to be
ordered for the use of lag and lead operators can be turned on again via onOrder.

The next two subsections will give some illustrative examples on the use of lag and lead operators in
assignment statements and in equations respectively.

4.25 Sets as Sequences: Ordered Sets 813

4.25.5.1 Lags and Leads in Assignments

Lag and lead operators may be used in assignment statements. The use of a lag or lead operator on the
right-hand side of an assignment is called a reference, while their use on the left-hand side is called an
assignment and involves the definition of a domain of the assignment. The concepts behind reference and
assignment are equally valid for the linear and circular forms of the lag and lead operators. However, the
importance of the distinction between reference and assignment is not pronounced for circular lag and
lead operators, because non-existent elements are not referred to in this case.

Note

A reference to a non-existent element causes the default value zero to be used, whereas an attempt
to assign to a non-existent element results in no assignment being made.

We will first illustrate linear lag and lead operators for reference and assignment. Then we will turn to
the circular form of the operators.

Linear Lag and Lead Operators in Assignments - Reference

Consider the following example, where the lag operator is used on the right-hand side of an assignment
statement:

Set t "time sequence" / y-1987*y-1991 /;

Parameter a(t), b(t);

a(t) = 1986 + ord(t);

b(t) = -1;

b(t) = a(t-1);

option decimals = 0;

display a, b;

Note that the option statement suppresses the decimal places from the display statement.

---- 7 PARAMETER a

y-1987 1987, y-1988 1988, y-1989 1989, y-1990 1990, y-1991 1991

---- 7 PARAMETER b

y-1988 1987, y-1989 1988, y-1990 1989, y-1991 1990

Note that, as expected, the values for the parameter a are 1987, 1988 up to 1991 corresponding to the
labels "y-1987", "y-1988" and so on. Observe that the parameter b is initialized to −1 so that the result
of the next assignment can be seen clearly. Note that in the last assignment the lag operator '-' is used
on the right-hand side, resulting in the values for b to equal the values for a from the previous period. If
there is no previous period, as with the first element, "y-1987", the value zero is assigned, replacing the
previous value of −1 (values of zero for parameters are not displayed).

814 User's Guide

Linear Lag and Lead Operators in Assignments - Assignment

Consider the following variation of the previous example. Here the lead operator is used on the left-hand
side of an assignment statement:

Set t "time sequence" / y-1987*y-1991 / ;

Parameter a(t), c(t) ;

a(t) = 1986 + ord(t) ;

c(t) = -1;

c(t+2) = a(t) ;

option decimals = 0;

display a, c ;

Note that, as before, the option statement suppresses the decimal places from the display statement.

---- 7 PARAMETER a

y-1987 1987, y-1988 1988, y-1989 1989, y-1990 1990, y-1991 1991

---- 7 PARAMETER c

y-1987 -1, y-1988 -1, y-1989 1987, y-1990 1988, y-1991 1989

The assignment to a is explained in the previous subsection. Note that the parameter c is initialized to
−1. The assignment to c involving the lead operator on the left-hand side needs special attention. It
is best to spell out step by step how this assignment is made. For each member of t in sequence, find
the member of c associated with t+2. If it exists, replace its value with the value of a(t). If not (as
with labels "y-1990" and "y-1991") make no assignment. The first member of the set t is "y-1987",
therefore the first assignment is made to c("y-1989") which takes the value of a("y-1987"), that is
1987. No assignments at all are made to c("y-1987") and c("y-1988"): these two retain their previous
values of −1.

Circular Lag and Lead Operators in Assignments

The following example illustrates the use of circular lag and lead operators in assignment statements.

Set s "seasons" / spring, summer, autumn, winter /;

Parameter val(s) / spring 10, summer 15, autumn 12, winter 8 /

lagval(s)

leadval(s);

lagval(s) = -1 ;

lagval(s) = val(s--2) ;

leadval(s) = -1 ;

leadval(s++1) = val(s) ;

option decimals = 0;

display val, lagval, leadval;

Note that, as before, the option statement suppresses the decimal places from the display statement. The
results are shown below.

4.25 Sets as Sequences: Ordered Sets 815

----- 10 PARAMETER val

spring 10, summer 15, autumn 12, winter 8

---- 10 PARAMETER lagval

spring 12, summer 8, autumn 10, winter 15

---- 10 PARAMETER leadval

spring 8, summer 10, autumn 15, winter 12

In the example parameter lagval is used for reference while leadval is used for assignment. Notice that
the case of circular lag and lead operators does not refer to any non-existent elements. The difference
between reference and assignment is therefore not important. Note that the following two statements
from the example above,

lagval(s) = val(s--2) ;

leadval(s++1) = val(s) ;

are equivalent to

lagval(s++2) = val(s) ;

leadval(s) = val(s--1) ;

The use of reference and assignment have been reversed with no difference in effect.

4.25.5.2 Lags and Leads in Equations

The principles established in the previous section follow quite naturally into equation definitions. A lag
or lead to the left of the '..' symbol is a modification of the domain of definition of the equation. The
linear form may cause one or more individual equations to be suppressed. A lag or lead operation in the
body of an equation (to the right of the '..' symbol) is a reference. If the associated label is not defined,
the term vanishes.

Note

All lag and lead operands must be exogenous. For more information, see section
Functions in Equation Definitions.

In the next two subsections we will provide examples illustrating the use of the linear form of the lag and
lead operators in equations to modify the domain of definition and for reference respectively. In the last
subsection we will turn to circular lag and lead operators in equations.

816 User's Guide

Linear Lag and Lead Operators in Equations - Domain Control

Consider the following simple artificial multi-period example. We specify a complete model and encourage
users to solve it and further explore it.

Sets t / t1*t5 /

tfirst(t);

Parameter i(t) / #t 1 /;

Scalar k0 / 3.00 /;

tfirst(t) = yes$(ord(t) = 1);

Variables k(t), z;

k.fx(tfirst) = k0;

Equations kk(t), dummy;

dummy.. z =e= 0;

kk(t+1).. k(t+1) =e= k(t) + i(t);

model m /all/;

option limrow = 10;

solve m using lp min z;

Note that the equation kk is declared over the set t, but it is defined over the domain (t+1). Therefore
the first equation that will be generated is the following:

k(’t2’) =e= k(’t1’) + i(’t1’);

Note that the value of the variable k('t1') is fixed at the value of scalar k0. Observe that for the last
element of t, the term k(t+1) is not defined and therefore the equation will not be generated. If lag or
lead operators are used in the domain of definition of an equation, the equation listing can be a useful
tool to verify whether the equations that have been generated are those that were intended:

kk(t2).. - k(t1) + k(t2) =E= 1 ; (LHS = 0, INFES = 1 ****)

kk(t3).. - k(t2) + k(t3) =E= 1 ; (LHS = 0, INFES = 1 ****)

kk(t4).. - k(t3) + k(t4) =E= 1 ; (LHS = 0, INFES = 1 ****)

kk(t5).. - k(t4) + k(t5) =E= 1 ; (LHS = 0, INFES = 1 ****)

To summarize, the lead operator in the domain of definition has restricted the number of constraints
generated so that there are no references to non-existent variables.

For a more realistic model that illustrates the usage of linear lag operators in equations, see for example
the optimal economic growth model [RAMSEY].

4.25 Sets as Sequences: Ordered Sets 817

Linear Lag and Lead Operators in Equations - Reference

In the previous subsection we showed how to write the equation kk using the lead operator for domain
control in combination with fixing the variable k(tfirst) to k0. An alternative formulation could neglect
the fixing of k(tfirst) and use a lag operator and a dollar condition in the body of the equation while
the domain of definition is unrestricted:

kk(t).. k(t) =e= k(t-1) + i(t-1) + k0$tfirst(t);

Note that for the first element of the set t the terms k(t-1) and i(t-1) are not defined and therefore
vanish. Without the conditional term, the resulting equation would be:

k(’t1’) =e= 0;

However, this would lead to different results as k('t1') would not be set to the value of k0 anymore.
Therefore the conditional expression k0$tfirst(t) is added. Observe that in this formulation equations
are generated for all time periods, no equation is suppressed.

In general, the choice between using lag and lead operators as reference like in the last example or in
domain control is often a matter of taste.

Circular Lag and Lead Operators in Equations

In the case of circular lag and lead operators, the difference between their use in domain control and as
reference is not important because it does not lead to any equations or terms being suppressed. Consider
the following artificial example.

Set s "seasons" / spring, summer, autumn, winter /;

Variable produ(s) "amount of goods produced in each season"

avail(s) "amount of goods available in each season"

sold(s) "amount of goods sold in each season";

Equation matbal(s);

matbal(s).. avail(s++1) =e= avail(s) + produ(s) - sold(s);

In this example four individual equations are generated. They are listed below.

avail(’summer’) =e= avail(’spring’) + produ(’spring’) - sold(’spring’);

avail(’autumn’) =e= avail(’summer’) + produ(’summer’) - sold(’summer’);

avail(’winter’) =e= avail(’autumn’) + produ(’autumn’) - sold(’autumn’);

avail(’spring’) =e= avail(’winter’) + produ(’winter’) - sold(’winter’);

Note that for the last element of the set s the term avail(s++1) is evaluated to avail('spring'). This
term is well defined and therefore it does not vanish. Similarly, using the circular lead operator in the
domain of definition like in the following line will result in the same four equations being generated as
above and no equation being suppressed.

matbal(s++1).. avail(s++1) =e= avail(s) + produ(s) - sold(s);

818 User's Guide

4.25.6 Summary

This chapter introduced the concept of ordered sets. All the features in GAMS that deal with this issue
including the ord and card operators, as well as the linear and circular forms of the lag and lead operators
were described in detail.

4.26 Data Manipulations with Parameters

4.26.1 Introduction

In this chapter we explicitly cover only parameter manipulation, including all aspects of data han-
dling. Much of this material is relevant elsewhere (e.g. to sets), but for specifics related to as-
signment to sets, to conditions, and to assignments within flow control constructs such as the
loop statement, see chapters Dynamic Sets, Conditional Expressions, Assignments and Equations and
Programming Flow Control Features respectively.

Once initialized, data often requires manipulation in order to bring it into a form most suitable for use in
a model or an application. The assignment statement is the way to do this. All the possible components
of the assignment statement except conditions are introduced and discussed in this chapter.

4.26.2 The Assignment Statement

The assignment statement is the fundamental data manipulation statement in GAMS. It may be used to
define or alter values associated with sets, parameters, variables or equations.

A simple assignment is written in the style associated with many other computer languages. GAMS uses
the traditional symbols for addition (+), subtraction (-), multiplication (∗) and division (/). We will
use them in the examples that follow, and give more details in section Expressions.

4.26.2.1 Scalar Assignments

Consider the following artificial sequence:

scalar x / 1.5 /;

x = 1.2;

x = x + 2;

The scalar x is initialized to be 1.5. The second statement changes the value to 1.2, and the third changes
it to 3.2. The second and third statements are assignments: each replaces the current value of x with a
new one.

Note that the same symbol can be used on the left and right of the = sign. The new value is not available
until the calculation is complete, and the operation gives the expected result.

Note

An assignment cannot start with a reserved word. A semicolon is therefore required as a delimiter
before all assignments.

Note that extended range identifiers (e.g. INF) and acronyms may also be used in assignment statements.
For specific details, see sections Extended Range Arithmetic and Acronym Usage respectively.

4.26 Data Manipulations with Parameters 819

4.26.2.2 Indexed Assignments

The GAMS syntax for performing indexed assignments is extremely powerful. This operation offers what
may be thought of as simultaneous or parallel assignments and provides a concise way of specifying large
amounts of data. Consider the mathematical statement DJd = 2.75 ·DAd for all elements of d. This
means that for every member of the set d, a value is assigned to DJ . This can be written in GAMS as
follows:

dj(d) = 2.75*da(d) ;

This assignment is known technically as an indexed assignment and set d as the controlling index or
controlling set.

Attention

The index set(s) on the left hand side of an indexed assignment are referred to synonymously as the
controlling indices, controlling sets, or controlling domain of the assignment.

The extension to two or more controlling indices should be obvious. There will be an assignment made for
each label combination that can be constructed using the indices inside the parentheses. Consider the
following example of an assignment to all 100 data elements of the parameter a.

sets row / r-1*r-10 /

col / c-1*c-10 /

sro(row) / r-7*r-10 / ;

parameters r(row) /r-1*r-7 4, r-8*r-10 5/

c(col) /c-1*c-5 3, c-6*c-10 2/;

parameters a(row,col);

a(row,col) = 13.2 + r(row)*c(col) ;

The calculation in the last statement is carried out for each of the 100 unique two-label combinations that
can be formed from the elements of row and col. An explicit formulation of the first of these assignments
follows:

a(’r-1’,’c-1’) = 13.2 + r(’r-1’)*c(’c-1’);

Note that for indexed assignments a copy of the symbols on the right hand side is installed before the
assignment is carried out. That means it does not work ”in-place” or recursively. Consider the following
example where we compute the first ten Fibonacci numbers and store them in parameter f using a loop.
The example also illustrates how such a recursive calculation does not work with a parallel assignment
statement for parameter g.

set i / i1*i10 /

parameter

f(i) / i1 1 /

g(i) / i1 1 /;

loop(i$(ord(i)>=2),

f(i) = f(i-2) + f(i-1);

);

g(i)$(ord(i)>=2) = g(i-2) + g(i-1)

display f,g;

820 User's Guide

The display statement results in the following output.

---- 9 PARAMETER f

i1 1.000, i2 1.000, i3 2.000, i4 3.000, i5 5.000

i6 8.000, i7 13.000, i8 21.000, i9 34.000, i10 55.000

---- 9 PARAMETER g

i1 1.000, i2 1.000, i3 1.000

4.26.2.3 Restricting the Domain in Assignments

Sometimes it is necessary to make assignments over selected elements of a set instead of over the entire
domain. There are several ways to accomplish this: using explicit labels, subsets, conditionals and tuples.

Restricting the Domain: Explicit Labels

The strongest restriction of the domain is assigning a value to just one element. Labels may be used
explicitly in the context of assignments to accomplish this. The following example illustrates:

a(’r-7’,’c-4’) = -2.36 ;

This statement assigns a constant value to just one element of the parameter a. All other elements of a
remain unchanged. Labels must be quoted when used in this way.

Restricting the Domain: Subsets

In general, wherever a set name may occur in an indexed assignment, a subset may be used instead.

Consider the following example:

a(sro,’col-10’) = 2.44 -33*r(sro) ;

Since the set sro was declared as a subset of the set row, we can use sro as a controlling index in the
assignment above to make the assignment only for the elements of sro.

Restricting the Domain: Conditionals

Conditional assignments are discussed in detail in section Conditional Assignments in chapter
Conditional Expressions, Assignments and Equations. For details on the types of logical conditions,
see section Logical Conditions. Here we present a simple example to illustrate:

a(row,col)$[a(row,col) >= 100] = INF ;

This assignment has the following effect: all elements of the parameter a whose value was at least 100 are
assigned the value INF, while all other elements of a remain unchanged.

4.26 Data Manipulations with Parameters 821

Restricting the Domain: Tuples

Tuples or multi-dimensional sets are introduced in section Many-to-Many Mapping. In this simple example
we show how they may be used to restrict the domain. The example builds on the first example in this
section. We repeat the whole code here for clarity.

sets row / r-1*r-10 /

col / c-1*c-10 /

sro(row) / r-7*r-10 / ;

set tuple(row,col) /r-1.c-1, r-1.c-10, r-10.c-1, r-10.c-10/;

parameters r(row) /r-1*r-7 4, r-8*r-10 5/

c(col) /c-1*c-5 3, c-6*c-10 2/;

parameters a(row,col), b(row,row);

a(row,col) = 13.2 + r(row)*c(col) ;

a(tuple(row,col)) = 7 + r(row)*c(col) ;

a(tuple) = 0.25 * a(tuple) ;

Note that we have introduced the new set tuple. It is two-dimensional and contains just four elements.
As before, the parameter a is first assigned values for all its 100 elements. We then change some of these
values using the set tuple as domain. The values of the elements of the parameter a that are not elements
of the set tuple remain unchanged.

For a more elaborate example involving tuples, see section Filtering Sets in Assignments.

4.26.2.4 Issues with Controlling Indices

Attention

The number of controlling indices on the left of the = sign should be at least as large as the number
of indices on the right. There should be no index on the right-hand side of the assignment that
is not present on the left unless it is operated on by an indexed operator. For more on indexed
operators, see section Indexed Operations.

Consider the following statement:

a(row,’col-2’) = 22 - c(col) ;

GAMS will flag this statement as an error since col is an index on the right-hand side of the equation
but not on the left.

Note that there would be no error here if col were a singleton set. Since there is only one element in a
singleton set, the intent and behavior is well-defined even when col is not under control.

822 User's Guide

Attention

Each set is counted only once to determine the number of controlling indices. If the intent is
for a set to appear independently more than once within the controlling domain, the second
and subsequent occurrences of the set should be aliases of the original set, so that the num-
ber of controlling indices is equal to the number of indices. For details on aliases, see section
The Alias Statement: Multiple Names for a Set.

Consider the following statement as an illustration:

b(row,row) = 7.7 - r(row) ;

This statement has only one controlling index, namely row. One element (on the diagonal of b) is assigned
for each element of row, for a total of 10 assigned values. None of the off-diagonal elements of b will be
changed!

If the intent is to assign values to each element of b, this can be done by introducing an alias rowp for row
and using this alias in the second index position. There will then be two controlling indices and GAMS
will make assignments over all 100 values of the full Cartesian product. The following example illustrates
this method:

alias(row,rowp) ;

b(row,rowp) = 7.7 - (r(row) + r(rowp))/2 ;

4.26.3 Expressions

An expression is an arbitrarily complicated specification for a calculation, with parentheses nested as
needed for clarity and intent. In this section the discussion of parameter assignments will continue by
showing in more detail the expressions that may be used on the right of the = sign. We will cover standard
arithmetic operations and indexed operations here, and functions and extended range arithmetic in the
next two sections.

4.26.3.1 Standard Arithmetic Operations

The standard arithmetic symbols and operations and their order of precedence are given in Table 1. Note
that 1 denotes the highest order of precedence and 3 denotes the lowest order of precedence. Parentheses
can be used to override the default precedence order in the usual way. Operators (including exponentiation)
on the same level are evaluated from left to right.

Operation Symbol Order of Precedence

Exponentiation
∗∗ 1

Multiplication ∗ 2

Division / 2

Addition + 3

Subtraction - 3

Table 1: Standard Arithmetic Operations

Note that the full GAMS operator precedence hierarchy also includes logical operators; it is given in section
Mixed Logical Conditions. Note further that the symbols for addition, subtraction and multiplication

4.26 Data Manipulations with Parameters 823

have a different meaning if they are used in the context of sets. For details see sections Set Operations
and Lag and Lead Operators.

Attention

The operation x∗∗y is equivalent to the function rPower(x,y) and is calculated internally as ey×log(x).
This operation is not defined if x is negative; an error will result in this case. If the possibility
of negative values for x is to be admitted and the exponent is known to be an integer, then the
function power(x,n) may be used.

Like many GAMS intrinsic functions, the operation x∗∗y is not defined for all possible input values.
When evaluating nonlinear functions and operators GAMS guards against evaluating at or very near
singular points and in such cases signals an error or returns an appropriate function value.

Note

As usual, operations within parentheses or brackets are evaluated before other numerical calculations,
where the innermost parentheses are resolved first. Any of the pairs (), [] and {} are allowed.

Consider for example:

x = 5 + 4*3**2;

For clarity, this could have been written as follows:

x = 5 + (4*[3**2]) ;

In both cases the result is 41.

Note

It is often better to use parentheses than to rely on the order of precedence of operators, since this
prevents errors and clarifies intentions.

Note that expressions may be freely continued over many lines: an end of line is permissible at any point
where a blank may be used. Blanks may be used for readability around identifiers, parentheses and
operation symbols. Blanks are not allowed within identifiers or numbers, and are significant inside the
quotes used to delimit labels.

4.26.3.2 Indexed Operations

In addition to the simple operations in Table 1, GAMS also provides the following six indexed operations.

Operation Keyword

Summation
sum

Product
prod

Minimum value
smin

Maximum value
smax

Conjunction
sand

Disjunction
sor

824 User's Guide

Table 2: Indexed Operations

These six operations are performed over one or more controlling indices. The syntax in GAMS for these
operations is:

indexed_op((index_list), expression);

Indexed op is one of the four keywords for indexed operations, index list is the list of the controlling
indices and expression is the expression to be evaluated. If there is only one controlling index, the
parentheses around it may be removed. Consider the following simple example adapted from [ANDEAN]:

sets i plants / cartagena, callao, moron /

m product / nitr-acid, sulf-acid, amm-sulf /;

parameter capacity(i,m) capacity in tons per day

totcap(m) total capacity by process ;

totcap(m) = sum(i, capacity(i,m));

The index over which the summation is done, i, is separated from the reserved word sum by a left
parenthesis and from the data term capacity(i,m) by a comma. The set i is called the controlling
index for this operation. The scope of the control is the pair of parentheses () that start immediately
after the sum. Note that using normal mathematical representation the last line could be written as:
totCm =

∑
i Cim.

It is also possible to sum simultaneously over the domain of two or more sets as in the first assignment
that follows. The second assignment demonstrates the use of a less trivial expression than an identifier
within the indexed operation.

count = sum((i,j), a(i,j)) ;

emp = sum(t, l(t)*m(t)) ;

The equivalent mathematical forms are:

count =
∑
i

∑
j

Aij and emp =
∑
t

LtMt.

Note that the following alternative notation may be used for the first assignment above:

count = sum(i, sum(j, a(i,j)));

In the context of sets the sum operator may be used to compute the number of elements in a set and for
projections. For details see section Projection and Aggregation of Sets.

The smin and smax operations are used to find the largest and smallest values over the domain of the
index set or sets. The index for the smin and smax operators is specified in the same manner as in the
index for the sum operator. In the following example we want to find the largest capacity:

lrgunit = smax((i,m),capacity(i,m));

4.26 Data Manipulations with Parameters 825

Attention

The indexed operations smin and smax may be used in equation definitions only if the corresponding
model is of type DNLP. For more on GAMS model types, see GAMS Model Types.

Note

• In the context of assignment statements, the attributes of variables and equations (e.g.
x.up(i,j)) may be used in indexed operations just as scalars and parameters are used. For more
on variable and equations attributes, see sections Variable Attributes and Equation Attributes
respectively.

• In the context of equation definitions, scalars, parameters and variables may appear freely in
indexed operations. For more on equation definitions, see section Defining Equations.

Sometimes it is necessary to restrict the domain of indexed operations. This may be done with the
same techniques as in indexed assignments, see section Restricting the Domain in Assignments for details.
See also section Conditional Indexed Operations for more details on conditions in the context of indexed
operations.

We now turn to two additional capabilities that are available in GAMS to add power and flexibility to
expression calculations: functions and extended range arithmetic.

4.26.4 Functions

Functions play an important role in the GAMS language, especially for nonlinear models. Like other
programming languages, GAMS provides a number of built-in or intrinsic functions. GAMS is used in
an extremely diverse set of application areas and this creates frequent requests for the addition of new
and quite sophisticated or specialized functions. There is a trade-off between satisfying these requests
and avoiding a complexity not needed by most users. The GAMS Function Library Facility provides the
means for managing this trade-off, see subsection Extrinsic Functions below.

4.26.4.1 Intrinsic Functions

GAMS provides many functions, ranging from commonly used standard functions like exponen-
tiation, logarithms, and trigonometric functions to utility functions for controlling and query-
ing the running GAMS job or process. The complete list of available functions is given in
the following tables: Mathematical Functions, String Manipulation Functions, Logical Functions,
Time and Calendar Functions, and GAMS Utility and Performance Functions. For details specific
to using these functions in equations, see the section on Expressions in Equation Definitions.

Some of the tables that follow contain an endogenous classification column ”End. Classif.” that specifies
in which models the function may legally appear. In order of least to most restrictive, the choices are
DNLP, NLP, any, none. See section Classification of Models for details on model types in GAMS. Note
well: functions classified as any are only permitted with exogenous (constant) arguments.

Functions are typically used in assignment statements and equations. In these cases, they are only
evaluated at execution time. Some functions can also be used at compile time, e.g. to compute the
factorial or square root of a scalar. Some of the tables below contain a column ”Compile Time” indicating
which functions can be used at compile time.

A word on the notation in the tables below: for function arguments, lower case indicates that an endogenous
variable is allowed. For details on endogenous variables, see section Functions in Equation Definitions.
Upper case function arguments indicate that a constant is required. Arguments in square brackets may
be omitted: the default values used in such cases are specified in the function description provided.

826 User's Guide

Mathematical Functions

Mathematical functions may be used as expressions in assignment statements and in equation definitions.
We start with some simple examples to illustrate. A list with all mathematical functions available in
GAMS is given in Table 3.

Exp(x)

a = exp(t);

b = exp(t+2);

The GAMS function exp(x) returns the exponential ex of its argument. The assignments above set a = et

and b = et+2 respectively.

Log(x)

z(j) = log(y(j));

The GAMS function log(x) returns the natural logarithm of its argument. The assignment above
evaluates the logarithm once for each element of the controlling domain j.

Max(x1,x2,x3,...)

x = max(y+2, t, t*t);

The function max returns the maximum of a set of expressions or terms. In the assignment above, x will
be assigned the maximum of y + 2, t, and t · t.

Round(x[,DECPL])

The function round rounds its argument x to the specified number DECPL of places, where positive values
of DECPL indicating rounding to the right of the decimal point. If the argument DECPL is not specified, it
defaults to zero, and the function rounds its argument to the nearest integer value. For example,

x = round(q);

y = round(q,d);

z = round(12.432,2);

h = round(515.5,-1);

In the first assignment q is rounded to the nearest integer value, while in the second q is rounded to the
number of decimals specified by d. The result of the third assignment is 12.43, while the final assignment
results in a value of 520.

Table 3: Mathematical Functions

Function Description End. Classif. Compile Time

abs(x)
Absolute value of the argu-
ment x.

DNLP yes

4.26 Data Manipulations with Parameters 827

Function Description End. Classif. Compile Time

arccos(x)
Inverse cosine of the argu-
ment x, where x is a real
number between -1 and 1 and
the output is in radians, see
MathWorld

NLP no

arcsin(x)
Inverse sine of the argument
x, where x is a real number be-
tween -1 and 1 and the output
is in radians, see MathWorld

NLP no

arctan(x)
Inverse tangent of the argu-
ment x, where x is a real num-
ber and the output is in radi-
ans, see MathWorld

NLP no

arctan2(y,x)
Four-quadrant arctan func-
tion yielding arctan(yx) which
is the angle the vector (x, y)
makes with (1,0) in radians.

NLP no

beta(x,y)
Beta function: B(x, y) =
Γ(x)Γ(y)
Γ(x+y) , see MathWorld

DNLP no

betaReg(x,y,z)
Regularized beta function,
see MathWorld

NLP no

binomial(n,k)
(Generalized) Binomial coef-
ficient for n > −1, −1 < k <
n+ 1.

NLP no

ceil(x)
Ceiling: returns the smallest
integer greater than or equal
to x.

DNLP yes

centropy(x,y[,Z])
Cross-entropy:{
x · ln(x+Z

y+Z), if x > 0,

0, if x = 0,

where y > 0, Z ≥ 0. Default
Z = 10−20.

NLP no

cos(x)
Cosine of the argument x,
where x must be in radians,
see MathWorld

NLP yes

cosh(x)
Hyperbolic Cosine of x,
where x must be in radians,
see MathWorld

NLP no

cvPower(X,y)
Real power:{
Xy, if X > 0,

0, if X = 0 (also for y ≤ 0!).

NLP no

div(dividend,divisor)
Returns dividend

divisor , but unde-
fined for divisor = 0.

NLP no

div0(dividend,divisor)
Returns dividend

divisor , but 10299 for
divisor = 0.

NLP no

eDist(x1[,x2,x3,...])
Euclidean or L-2 Norm:√
x2

1 + x2
2 +

NLP no

entropy(x)
Entropy:{
−x · ln(x), if x > 0,

0, if x = 0.

NLP no

http://mathworld.wolfram.com/InverseCosine.html
http://mathworld.wolfram.com/InverseCosine.html
http://mathworld.wolfram.com/InverseSine.html
http://mathworld.wolfram.com/InverseTangent.html
http://mathworld.wolfram.com/BetaFunction.html
http://mathworld.wolfram.com/RegularizedBetaFunction.html
http://mathworld.wolfram.com/Cosine.html
http://mathworld.wolfram.com/HyperbolicCosine.html

828 User's Guide

Function Description End. Classif. Compile Time

errorf(x)
Integral of the stan-
dard normal distribution
from negative infinity to x:

1√
2π

x∫
−∞

e
−t2
2 dt.

NLP no

execSeed
Reads or resets the seed for
the random number generator
(RNG). Note that the state of
the RNG cannot typically be
captured in one seed value; in
such cases ”reading” the seed
involves harvesting a seed from
the RNG, resetting the RNG
with this seed, and returning
the seed.

none no

exp(x)
Exponential of x: ex, see
MathWorld

NLP yes

fact(N)
Factorial of N , where N ≥ 0
is an integer. 0! = 1.

any yes

floor(x)
Floor: greatest integer less
than or equal to x.

DNLP yes

frac(x)
Returns the fractional part
of x, s.t. x = trunc(x) +

frac(x)

DNLP yes

gamma(x)
Gamma function : Γ(x) =
∞∫
0

tx−1e−tdt, see MathWorld

NLP no

gammaReg(x,a)
Lower Incomplete Regular-
ized Gamma function, see
GammaRegularized[a,0,x]

in MathWorld

NLP no

log(x)
Natural logarithm: loga-
rithm base e, see MathWorld

NLP yes

logBeta(x,y)
Log Beta function:
log(B(x, y)).

NLP no

logGamma(x)
Log Gamma function as dis-
cussed in MathWorld

NLP no

logit(x)
Logit Transformation:
log(x/(1−x)), see MathWorld

NLP yes

log10(x)
Common logarithm: loga-
rithm base 10, see MathWorld

NLP yes

log2(x)
Binary logarithm: loga-
rithm base 2, see MathWorld

NLP yes

lseMax(x1[,x2,x3,...])
Smoothed Max via
the Logarithm of the
Sum of Exponentials:
ln (ex1 + ex2 + ...), see
Wikipedia

NLP no

lseMaxSc(t,x1[,x2,x3,...])
Scaled smoothed Max via
the Logarithm of the Sum of
Exponentials: lseMaxSc(t,x)
= lseMax(tx)/t, see
Wikipedia

NLP no

http://mathworld.wolfram.com/ExponentialFunction.html
http://mathworld.wolfram.com/ExponentialFunction.html
http://mathworld.wolfram.com/GammaFunction.html
http://mathworld.wolfram.com/RegularizedGammaFunction.html
http://mathworld.wolfram.com/NaturalLogarithm.html
http://mathworld.wolfram.com/LogGammaFunction.html
https://mathworld.wolfram.com/LogitTransformation.html
http://mathworld.wolfram.com/CommonLogarithm.html
http://mathworld.wolfram.com/BinaryLogarithm.html
https://en.wikipedia.org/wiki/LogSumExp
https://en.wikipedia.org/wiki/LogSumExp
https://en.wikipedia.org/wiki/LogSumExp
https://en.wikipedia.org/wiki/LogSumExp

4.26 Data Manipulations with Parameters 829

Function Description End. Classif. Compile Time

lseMin(x1[,x2,x3,...])
Smoothed Min via
the Logarithm of the
Sum of Exponentials:
− ln (e−x1 + e−x2 + ...), see
Wikipedia

NLP no

lseMinSc(t,x1[,x2,x3,...])
Scaled smoothed Min via
the Logarithm of the Sum of
Exponentials: lseMinSc(t,x)
= lseMin(tx)/t, see
Wikipedia

NLP no

max(x1,x2,x3,...)
Maximum value of the argu-
ments, where the number of
arguments may vary.

DNLP yes

min(x1,x2,x3,...)
Minimum value of the argu-
ments, where the number of
arguments may vary.

DNLP yes

mod(x,y)
Remainder of x divided by y. DNLP yes

ncpCM(x,y,Z)
Chen-Mangasarian
smoothing: x − Z · ln(1 +

e
x−y
Z).

NLP no

ncpF(x,y[,Z])
Fisher-Burmeister smooth-
ing:

√
(x2 + y2 + 2 · Z)− x−

y, Z ≥ 0. Default Z = 0.

NLP no

ncpVUpow(r,s[,µ])
NCP Veelken-Ulbrich
(smoothed min(r,s)):{

1
2 (r + s− |r − s|), if |r − s| ≥ µ ≥ 0,
1
2 (r + s− µ

8 · (−(r−sµ)4 + 6(r−sµ)2 + 3)), otherwise.

Default µ = 0.

NLP no

ncpVUsin(r,s[,µ])
NCP Veelken-Ulbrich
(smoothed min(r,s)):{

1
2 (r + s− |r − s|), if |r − s| ≥ µ ≥ 0,
1
2 (r + s− (2µ

π sin(π2µ + 3π
2) + µ)), otherwise.

Default µ = 0.

NLP no

normal(MEAN,STDDEV)
Generate a random number
from the normal distribu-
tion with mean MEAN and stan-
dard deviation STDDEV, see
MathWorld

none no

pi
Value of π = 3.141593.... any yes

poly(x,A0,A1,A2[,A3,...])
Returns p(x), where the poly-
nomial p(x) = A0 + A1x +
A2x

2 +A3x
3 + ...+A20x

20. By
default A3, ..., A20 = 0.

NLP no

power(x,Y)
Returns xY , where Y must
be an integer. 0Y =

0, if Y > 0,

1, if Y = 0,

undefined, if Y < 0.

NLP no

https://en.wikipedia.org/wiki/LogSumExp
https://en.wikipedia.org/wiki/LogSumExp
https://en.wikipedia.org/wiki/LogSumExp
https://en.wikipedia.org/wiki/LogSumExp
http://mathworld.wolfram.com/NormalDistribution.html
http://mathworld.wolfram.com/NormalDistribution.html

830 User's Guide

Function Description End. Classif. Compile Time

randBinomial(N,P)
Generate a random number
from the binomial distribu-
tion, where N is the number
of trials and P the probability
of success for each trial, see
MathWorld

none no

randLinear(LOW,SLOPE,HIGH)
Generate a random num-
ber between LOW and HIGH

with linear distribution,
SLOPE must be greater than

2
HIGH−LOW

none no

randTriangle(LOW,MID,HIGH)
Generate a random number
between LOW and HIGH with
triangular distribution, MID
is the most probable number,
see MathWorld

none no

round(x[,DECPL])
Round x to DECPL decimal
places. Default DECPL=0

DNLP yes

rPower(x,y)
Returns
xy, if x > 0,

0, if x = 0, y > 0,

1, if x = y = 0.

This

function is equivalent to
the operation x∗∗y, see
Standard Arithmetic Operations.

NLP no

sigmoid(x)
Sigmoid: 1

1+e−x , see
MathWorld

NLP no

sign(x)
Sign of x:

1, if x > 0,

0, if x = 0,

−1, if x < 0.

DNLP yes

signPower(x,Y)
Signed power: sign(x)|x|Y
for Y > 0.

NLP no

sin(x)
Sine of the argument x, where
x must be in radians, see
MathWorld

NLP yes

sinh(x)
Hyperbolic sine of x, where
x must be in radians, see
MathWorld

NLP no

slexp(x[,S])
Smooth (lin-
ear) exponential:{
ex, if x ≤ S,
ex · (1 + (x− S)), otherwise,

where S ≤ 150. Default
S = 150.

NLP no

sllog10(x[,S])
Smooth (linear) log-
arithm base 10:{

log10(x), if x ≥ S,
1

ln(10) · (lnS + x−S
S), otherwise,

where S ≥ 10−150. Default
S = 10−150.

NLP no

http://mathworld.wolfram.com/BinomialDistribution.html
http://mathworld.wolfram.com/BinomialDistribution.html
http://mathworld.wolfram.com/TriangularDistribution.html
http://mathworld.wolfram.com/SigmoidFunction.html
http://mathworld.wolfram.com/SigmoidFunction.html
http://mathworld.wolfram.com/Sine.html
http://mathworld.wolfram.com/Sine.html
http://mathworld.wolfram.com/HyperbolicSine.html
http://mathworld.wolfram.com/HyperbolicSine.html

4.26 Data Manipulations with Parameters 831

Function Description End. Classif. Compile Time

slrec(x[,S])
Smooth (linear) recipro-

cal:

{
1
x , if x ≥ S,
1
S −

x−S
S2 , otherwise,

where S ≥ 10−10. Default
S = 10−10.

NLP no

sqexp(x[,S])
Smooth (quadratic)
exponential:{
ex, if x ≤ S,
ex · (1 + (x− S) + (x−S)2

2), otherwise,
where S ≤ 150. Default
S = 150.

NLP no

sqlog10(x[,S])
Smooth (quadratic)
logarithm base 10:{

log10(x), if x ≥ S,
1

ln(10) · (lnS + x−S
S − (x−S)2

2S2), otherwise,

where S ≥ 10−150. Default
S = 10−150.

NLP no

sqrec(x[,S])
Smooth (quadratic)
reciprocal:{

1
x , if x ≥ S,
1
S −

x−S
S2 + (x−S)2

S3 , otherwise,

where S ≥ 10−10. Default
S = 10−10.

NLP no

sqr(x)
Square of argument x. NLP yes

sqrt(x)
Square root of x, see
MathWorld

NLP yes

tan(x)
Tangent of the argument x,
where x must be in radians,
see MathWorld

NLP yes

tanh(x)
Hyperbolic tangent of x,
where x must be in radians,
see MathWorld

NLP no

trunc(x)
Truncation: returns the in-
teger part of x, truncating to-
wards zero.

DNLP yes

uniform(LOW,HIGH)
Generates a random number
from the uniform distribu-
tion between LOW and HIGH,
see MathWorld

none no

uniformInt(LOW,HIGH)
Generates an integer ran-
dom number from the dis-
crete uniform distribution
whose outcomes are the inte-
gers between LOW and HIGH, in-
clusive, see MathWorld

none no

vcPower(x,Y)
Returns xY for x ≥ 0. 00 = 1. NLP no

String Manipulation Functions

GAMS provides some string manipulation capability by extending the card and ord operators to work on
strings as well as sets. In Table 4 the extended behavior is described. In this context, the functions take

http://mathworld.wolfram.com/SquareRoot.html
http://mathworld.wolfram.com/SquareRoot.html
http://mathworld.wolfram.com/Tangent.html
http://mathworld.wolfram.com/HyperbolicTangent.html
http://mathworld.wolfram.com/UniformDistribution.html
http://mathworld.wolfram.com/DiscreteUniformDistribution.html

832 User's Guide

strings and places as arguments, and the numeric places argument must be a constant. This behavior only
applies to execution-time usage of these functions.

Table 4: String Manipulation Functions

Function Description

card(STRING)
Returns the number of characters in the string.

ord(STRING[,PLACE])
Returns the ASCII code number of a character in a position in a string.
The optional place entry defaults to 1 if omitted and identifies the character
position within the string to be examined (1 for the first, 2 for the second,
etc.)

There are four types or sources of strings in this context. A string may be a string literal, i.e. a
concatenation of letters and blanks as in "drink it" in the example that follows. It may be the symbol
text (aka the explanatory text) associated with any symbol. Or it may be the labels or text associated
with the elements of a set. The following table gives an overview:

Table 5: String Types

Notation Description Comments

characters A concatenation of characters and
blanks: all legal GAMS characters are
allowed, see section Characters for de-
tails.

The characters must be surrounded by
double or single quotes.

symbol name.ts
The string is the explanatory text asso-
ciated with a symbol name.

If the explanatory text is missing, the
value of card is 0.

set name.tl
The string is the label for a set element. This string type may be used only when

set name is part of the controlling do-
main.

set name.te
The string is the explanatory text asso-
ciated with a set element.

This string type may be used only when
set name is part of the controlling do-
main. If the explanatory text is missing,
the value of card is 0.

The string types are illustrated in the following example. Note that the directive in the first line activates
the end-of-line comment option, see eolCom.

$oneolcom

variable z ’any symbol can have explanatory text’;

set teas "teas available to order" / black "English Breakfast", green, peppermint /;

scalar p;

p = card("drink it"); !! result: p=8

p = card(z.ts); !! result: p=36

p = card(teas.ts); !! result: p=23

loop{teas,

p = card(teas.tl) !! length of set element label from the set "teas": "teas" is the controlling set

display "length of set element label", p;

p = card(teas.te) !! length of set element explanatory text: "teas" is the controlling set

display "length of set element explanatory text", p;

};

Note that the strings teas.tl and teas.te are used in the context of a loop statement (see section
The Loop Statement). This is a typical usage pattern.

4.26 Data Manipulations with Parameters 833

Logical Functions

Logical functions may be used as expressions in assignment statements as in the following example.

x = ifthen(tt=2, 3, 4+y);

Here x = 3 if tt = 2, otherwise x = 4 + y.

The logical functions available in GAMS are given in Table 6. Note that logical functions may also be
used in conditions and logic equations, see sections Logical Conditions and Logic Equations respectively.
Most of the logical functions can also be indicated using the familiar operator notation, e.g. (x and
y), (x >= y), etc. In such cases, the operator notation is allowed at compile time. The last column in
Table 6 indicates if a logical function can be used at compile time (yes) or if only its alternative notation
is available (alt). Further, note that the inputs and outputs of these functions are often logical/Boolean
values, so GAMS does implicit conversions as necessary. As expected, false becomes 0 and true becomes 1
when converting logical values to numeric, and 0 becomes false and nonzero becomes true when numeric
values are converted to logicals. For details on behavior when the inputs are special values, see sections
Extended Range Arithmetic and Acronym Usage, but note that EPS, +INF, -INF, and acronyms become
true when converted to logicals.

Table 6: Logical Functions

Function Alterna-
tive Nota-
tion 1

Alterna-
tive Nota-
tion 2

Descrip-
tion

Return
Values

End.
Classif.

Compile
Time

bool and(x,y)
x and y Boolean

AND

Returns
true iff both
x and y are
true

DNLP alt

bool eqv(x,y)
x eqv y x <=> y Boolean

equiva-
lence

Returns
false iff
exactly one
argument is
false

DNLP alt

bool imp(x,y)
x imp y x -> y Boolean

implica-
tion

Returns
true iff x is
false or y is
true

DNLP alt

bool not(x)
not x Boolean

NOT

Returns
true iff x is
false

DNLP alt

bool or(x,y)
x or y Boolean

OR

Returns
true iff x is
true or y is
true

DNLP alt

bool xor(x,y)
x xor y Boolean

XOR

Returns
true iff
exactly one
argument is
false

DNLP alt

834 User's Guide

Function Alterna-
tive Nota-
tion 1

Alterna-
tive Nota-
tion 2

Descrip-
tion

Return
Values

End.
Classif.

Compile
Time

ifThen(cond,iftrue,else)
Condition If the logical

condition
(first argu-
ment) is
true, the
function
returns
iftrue, else
it returns
else. See
example
above.

DNLP yes

rel eq(x,y)
x eq y x = y Numeric

Relation:
Equal

Returns
true iff
x = y

DNLP alt

rel ge(x,y)
x ge y x >= y Numeric

Relation:
Greater
Equal

Returns
true iff
x ≥ y

DNLP alt

rel gt(x,y)
x gt y x > y Numeric

Relation:
Greater
Than

Returns
true iff
x > y

DNLP alt

rel le(x,y)
x le y x <= y Numeric

Relation:
Less Equal

Returns
true iff
x ≤ y

DNLP alt

rel lt(x,y)
x lt y x < y Numeric

Relation:
Less Than

Returns
true iff
x < y

DNLP alt

rel ne(x,y)
x ne y x <> y Numeric

Relation:
Not Equal

Returns
true iff
x 6= y

DNLP alt

Time and Calendar Functions

GAMS offers several functions that relate to time and dates. The fundamental measurement of time in
GAMS is the serial day number beginning with January 1, 1900. This serial day number is a real number
whose integer part contains a unique number for each day and whose fractional part contains information
about hours, minutes, and seconds. We can think of the serial day number as being a date.time pair.
The day information extracted from serial day numbers is based on the Gregorian calendar.

Note

In all functions given in Table 7, serial day 1 is January 1, 1900.

All of the functions in Table 7 can be used at compile time.

Table 7: Time and Calendar Functions

4.26 Data Manipulations with Parameters 835

Function Description End. Classif.

gday(SDAY)
Returns Gregorian day from a serial day number
date.time.

any

gdow(SDAY)
Returns Gregorian day of week from a serial day
number date.time.

any

ghour(SDAY)
Returns Gregorian hour of day from a serial day
number date.time.

any

gleap(SDAY)
Returns 1 if the year that corresponds to a serial day
number date.time, is a leap year, else returns 0.

any

gmillisec(SDAY)
Returns Gregorian milli second from a serial day
number date.time.

any

gminute(SDAY)
Returns Gregorian minute of hour from a serial day
number date.time.

any

gmonth(SDAY)
Returns Gregorian month from a serial day number
date.time.

any

gsecond(SDAY)
Returns Gregorian second of minute from a serial day
number date.time.

any

gyear(SDAY)
Returns Gregorian year from a serial day number
date.time.

any

jdate(YEAR,MONTH,DAY)
Returns a serial day number. any

jnow
Returns the current time as a serial day number. none

jstart
Returns the time of the start of the GAMS job as
a serial day number.

none

jtime(HOUR,MIN,SEC)
Returns fraction of a day that corresponds to hour,
minute and second.

any

GAMS Utility and Performance Functions

GAMS provides several functions that may be used to get (and in some cases set) GAMS system
information, for example:

scalar o;

o = heapLimit;

heapLimit = 1024;

Table 8: GAMS Utility and Performance Functions

Function Description End. Classif. Compile Time

embeddedHandle
Returns the handle for
the last embedded code
section executed, see sec-
tion Syntax in chapter
Embedded Code Facility for
details.

none no

errorLevel
Return code of the most re-
cently used command.

none yes

execError
Get or set the number of ex-
ecution errors.

none no

gamsRelease
Returns the release number
of the running GAMS system,
for example 24.7.

none yes

836 User's Guide

Function Description End. Classif. Compile Time

gamsVersion
Returns the version number
of the running GAMS system,
for example 247.

none yes

handleCollect(HANDLE)
Tests if the solve of the model
instance identified by the call-
ing argument HANDLE is done:
if so, it loads the solution into
GAMS. For details, see Table 1
in section Grid Computing.

none no

handleDelete(HANDLE)
Deletes the model instance
identified by HANDLE. For de-
tails, see Table 1 in section
Grid Computing.

none no

handleStatus(HANDLE)
Tests if the solve of the model
instance identified by HANDLE

is done: if so, it loads the so-
lution into a GDX file. For
details, see Table 1 in section
Grid Computing.

none no

handleSubmit(HANDLE)
Resubmits the model instance
identified by HANDLE for solu-
tion. For details, see Table 1
in section Grid Computing.

none no

heapFree
Get the amount of free mem-
ory in the heap in MB, i.e.
memory allocated to the pro-
cess and available for future
use by GAMS.

none no

heapLimit
Get or set the current heap
limit (maximum allowable dy-
namic memory usage) in Mb.

none no

heapSize
Get the current heap size in
Mb.

none no

jobHandle
Returns the process ID (PID)
of the last job started.

none yes

jobKill(PID)
Sends a kill signal to the job
with process ID PID. The re-
turn value is 1 if this was suc-
cessful, 0 otherwise.

none yes

jobStatus(PID)
Get the status of the job with
process ID PID. Possible return
values are:
0: error (input is not a valid
PID or access is denied)
1: process is still running
2: process is finished with re-
turn code which could be ac-
cessed by errorlevel
3: process not running any-
more or was never running, no
return code available

none yes

jobTerminate(PID)
Sends an interrupt signal to
the job with process ID PID.
The return value is 1 if this
was successful, 0 otherwise.

none yes

4.26 Data Manipulations with Parameters 837

Function Description End. Classif. Compile Time

licenseLevel
Get an indicator for the type
of license:
0: demo license, limited to
small models
1: full unlimited developer li-
cense
2: run time license, no new
variables or equations can be
introduced besides those inher-
ited from a work file
3: application license, only
works with a specific work file
which is locked to the license
file
5: community license, limited
to somewhat bigger models
compared to demo license.

any no

licenseStatus
Returns non-zero if a license
error has occurred.

any no

mapVal(x)
Returns an integer value that
indicates what special value (if
any) is stored in the input x.
Possible results:
0: x is not a special value
4: x is UNDF (undefined)
5: x is NA (not available)
6: x is INF (∞)
7: x is -INF (−∞)
8: x is EPS

>8: x is an acronym

any no

maxExecError
Get or set the maximum
number of execution er-
rors. See also maxExecError.

none no

numCores
Get the number of logical CPU
cores in the system

any yes

platformCode
Returns an integer indicating
the current platform. Possible
return values can be seen here.

any yes

readyCollect(HANDLES[,MAXWAIT])
Waits until a model solution
is ready to be collected. For
details, see Table 1 in section
Grid Computing.

none no

sleep(SEC)
Pause or sleep execution for
SEC seconds.

none yes

timeClose
Returns the accumulated
closedown time, i.e. the time
GAMS uses to save its state to
disk prior to a solve.

none no

timeComp
Returns the compilation
time in seconds.

none no

timeElapsed
Returns the elapsed time
since the start of a GAMS run
in seconds.

none no

timeExec
Returns the execution time
in seconds.

none no

838 User's Guide

Function Description End. Classif. Compile Time

timeStart
Returns the accumulated
startup time, i.e. the time
GAMS uses to restore its state
from disk after a solve.

none no

4.26.4.2 Extrinsic Functions

Using the GAMS Function Library Facility, functions may be imported from an external library into
a GAMS model. Apart from the import syntax, the imported functions may be used in the same way
as intrinsic functions. In particular, they may be used in equation definitions. Some function libraries
are included with the standard GAMS software distribution, but GAMS users can also create their
own libraries using an open programming interface. The GAMS Test Library instances [TRILIB01],
[TRILIB02], [TRILIB03], and [CPPLIB00] are simple examples (in the programming languages C,
Delphi, Fortran and C++, respectively) that come with every GAMS system.

For details on using and creating extrinsic function libraries, and on the extrinsic function libraries that
are provided with GAMS, see the chapter on Extrinsic Functions.

4.26.4.3 Function Suffixes

Up to this point, this section has described and discussed functions without mentioning their derivatives.
These derivatives are very important, though: most of the nonlinear solvers integrated with GAMS will
require first derivatives to solve models, and many will also use or require second derivatives as well. It is
sometimes useful (e.g. when testing an extrinsic function) to evaluate the derivatives of GAMS functions
instead of the functions themselves. This can be done via function suffixes.

Function suffixes can specify the evaluation of a gradient (i.e. first derivative), a Hessian (i.e. second
derivative), a minimum or maximum value of the function over a given range, or the minimum or maximum
value of the gradient over a given range. A full list of function suffixes is given in Table 9. For functions
whose arguments are constant, the derivatives are zero, so typically func is a mathematical function
listed in Table 3 above. Note that function suffixes are not defined for functions without arguments (for
example, pi), so specifying something like pi.grad results in a compilation error.

Table 9: Function Suffixes

Function Suffix Description

func.value(x)
Value of the function func at x, equals func(x).

func.grad(x)
Value of the gradient of the function func at x.

func.gradn(x)
Value of the gradient of the function func at x, computed numerically.

func.hess(x)
Value of the Hessian of the function func at x.

func.hessn(x)
Value of the Hessian of the function func at x, computed numerically.

func.low(x1:x2)
Lower bound of the function func(x) on the interval [x1,x2].

func.high(x1:x2)
Upper bound of the function func(x) on the interval [x1,x2].

func.gradL(x1:x2)
Lower bound of the gradient of the function func(x) on the interval [x1,x2].

func.gradH(x1:x2)
Upper bound of the gradient of the function func(x) on the interval [x1,x2].

4.26 Data Manipulations with Parameters 839

Consider the following simple example:

scalars g, l, h, gl, gh;

g = sin.grad(0);

l = sin.low(pi/3:pi/2);

h = sin.high(pi/3:pi/2);

gl = sin.gradL(pi/3:pi/2);

gh = sin.gradH(pi/3:pi/2);

display g, l, h, gl, gh;

For univariate functions like sine or cosine, there is no need to specify a variable index when evaluating
derivatives. For multivariate functions, the default is to take partial derivatives w.r.t. the first variable.
To specify other variables, the colon syntax in the example below is used.

scalars

x / 1 /

ylo / -1 /

yup / 2 /

e0, e1, elo, ehi

e_1, e_2

e_11, e_22, e_21

;

e0 = edist(x,ylo);

e1 = edist(x,yup);

elo = edist.low (x,ylo:x,yup);

ehi = edist.high(x,ylo:x,yup);

e_1 = edist.grad(x,yup);

* e_1 = edist.grad(1:x,yup); same as above

e_2 = edist.grad(2:x,yup);

e_11 = edist.hess(x,yup);

* e_11 = edist.hess(1:1:x,yup); same as above

e_22 = edist.hess(2:2:x,yup);

e_21 = edist.hess(2:1:x,yup);

display x, ylo, yup, e0, e1, elo, ehi, e_1, e_2, e_11, e_22, e_21;

For more examples, see model [FUNCS4] in the GAMS Test Library.

Note

• The function suffixes value, grad, gradn, hess and hessn are also defined for
extrinsic functions. When implementing an extrinsic function, be aware that missing
derivatives will be computed numerically: see model [TRILIB01] for an example.

To compute derivatives numerically, GAMS uses finite difference approximations. This computation can
be controlled with two options: the FDOpt option controls which variant of the finite difference method
is used, while the FDDelta option controls the step size.

4.26.5 Extended Range Arithmetic and Error Handling

GAMS uses an extended range arithmetic to handle missing data, the results of undefined operations,
infinite values, and zeros that are stored explicitly. The special values used in this arithmetic are listed
and described in Table 10 below, along with the value of the mapVal function that corresponds to these
values. We can think of special values as any value for which mapVal does not return 0.

840 User's Guide

Special value Description mapVal

INF
Plus infinity. Similar to IEEE plus infinity. Behaves in the expected way
in computations, so that e.g. min(x,INF) = x unless x is also special.

6

-INF
Minus infinity. Similar to IEEE minus infinity. Behaves in the expected
way in computations, so that e.g. max(x,INF) = x unless x is also special.

7

NA
Not available - used to indicate missing data. It is a sticky value: e.g.
max(x,NA) = NA even for x = INF

5

UNDF
Undefined - indicates the result of an undefined or illegal operation.
Similar to IEEE NaN. A user cannot directly set a value to UNDF unless
the dollar control option onUNDF is active. For details, see the chapter
on Dollar Control Options.

4

EPS
A stored zero value. If the dollar control option onEPS is active, zeros in
a parameter or table statement are treated as EPS. For details on dollar
control options, see chapter Dollar Control Options.

8

Table 10: Special Values for Extended Range Arithmetic

Attention

Avoid creating or using numbers with very large (1.0e299 or above) or very small (1.0e-299 or
below) magnitudes. Large numbers may be treated by GAMS as undefined (UNDF) or other special
values, leading to unpredictable and unusable results. Always use INF (or -INF) explicitly for
arbitrarily large (or small) numbers.

GAMS has defined the results of all arithmetic operations and all function evaluations that use these
special values. The behavior is designed to both maximize utility and minimize surprise, and is illustrated
in the library model [CRAZY]. For example: 1+INF evaluates to INF, 1-EPS to 1, NA ∗ 2 to NA, and
EPS∗INF to UNDF.

The following table shows a selection of results for exponentiation and division for a variety of input
parameters including NA and INF.

a b a∗∗b power(a,b) a/b

2 2 4 4 1

-2 2 UNDF 4 -1

2 2.1 4.28 UNDF .952

NA 2.5 NA NA NA

3 0 1 1 UNDF

INF 2 INF INF INF

2 INF UNDF UNDF 0

Table 11: Extended Range Arithmetic in Exponentiation and Division

Note that most extended range identifiers may be used in assignment statements, as illustrated below.

a(row,’col-3’) = NA;

a(row,’col-4’) = INF;

a(row,’col-5’) = -INF;

The values most often used in assignments are NA in incomplete tables and INF for variable bounds.

4.26 Data Manipulations with Parameters 841

The special value EPS is numerically equal to zero, so when used in the context of numerical com-
parisons, it behaves as zero. For example, the logical expressions x > 0 and x > EPS have the
same result. However, EPS is a stored zero, so setting a parameter to zero (e.g. a(row,col)=0)
results in no values being stored for a, while setting a parameter to EPS (e.g. a(row,col)=EPS)
results in the value EPS being stored for every (row,col) tuple. This is sometimes useful, espe-
cially if a is used later in loops (see Programming Flow Control Features) or dollar conditions (see
Conditional Expressions, Assignments and Equations). For example, consider the statement

a(row,col)$[a(row,col)] = INF ;

In the case where a was originally assigned to be zero, the dollar-condition is always false so no infinities
are assigned. If a was originally assigned the value EPS, the dollar-condition is always true and every
tuple in a will be set to infinity.

When an attempted arithmetic operation is illegal or has undefined results because of the value of
arguments (division by zero is the normal example), an error is reported and the result is set to undefined
(UNDF). The error is marked on the output file with a row of four asterisks '∗∗∗∗' making this sequence
a good search target in the editor. GAMS will also report the line number of the offending statement
and give as much detail as possible about the cause. From there on, the resulting UNDF is treated as a
proper data value and does not trigger additional error messages. For more on error messages, see chapter
GAMS Output.

Note

GAMS will not solve a model if an error has been detected, and it will terminate with an error
condition.

It is therefore wise to anticipate and avoid operations like division by zero that will cause errors. This is
most easily done with the dollar control, and is discussed in section The Dollar Condition.

4.26.6 Predefined Symbols

GAMS offers several predefined symbols including: sameAs, diag, sortedUels, solvers, licenseCodes, and
solverCapabilities. With the exception of sameAs, diag, and sortedUels these predefined symbols
are for very special (and mostly internal) purposes, but the way they work is identical.

These symbols can be used in a GAMS program without being declared but work in an idiosyncratic way.
For example, the complete program

display solvers, sameAs;

compiles and executes without error and produces the following result in the listing file:

---- 1 SET Solvers Available Solvers

(EMPTY)

---- 1 SET SameAs Set Element Comparison Without Checking

(EMPTY)

However, if labels have been declared (in any set) that corresponds to a solver name, then set solvers

will contain this label. Consider the following example:

842 User's Guide

Set titles / Lord, Baron, Duke /;

Set greeks / Euclid, Pythagoras, Antigone /;

display solvers, sameAs;

Note that Antigone and Baron are the names of solvers in GAMS and therefore they will be displayed as
a member of the set solvers. Also note that the set sameAs contains the diagonal elements for both sets:

---- 3 SET Solvers Available Solvers

Baron , Antigone

---- 3 SET SameAs Set Element Comparison Without Checking

Lord Baron Duke Euclid Pythagoras Antigone

Lord YES

Baron YES

Duke YES

Euclid YES

Pythagoras YES

Antigone YES

User defined symbols can have the same name as a predefined symbol. In this case the user symbol hides
the predefined symbols as demonstrated in the following example:

Set diag / 1*3 /;

$if setType diag $log diag is a set

$if preType diag $log diag is a predefined type

The log will only contain the line diag is a set. The test $if preType diag fails.

The list of all predefined symbols can be retrieved by declaring and displaying a set using some system data
set pre /system.predefinedSymbols/; display pre; which results in

---- 1 SET pre

SameAs , Diag , Solvers

LicenseCodes , SolverCapabilities , SortedUels

4.26.7 Summary

GAMS provides powerful facilities for data manipulation with parallel assignment statements, built-in
functions and extended range arithmetic.

4.27 Data Entry: Parameters, Scalars and Tables

4.27.1 Introduction

Data handling is of crucial importance in all modeling applications. The quality of the numbers and
the intelligence with which they are used is likely to be at least as important as the logic of the model
in determining if an application is successful or not. GAMS has been designed to have a complete set
of facilities for entering information, manipulating it and reporting on the results. In this chapter we
will concentrate on data entry. Chapter Data Manipulations with Parameters introduces and discusses
data manipulations. For details on reporting, see chapters GAMS Output, The Display Statement,
The Put Writing Facility, and GAMS Data eXchange (GDX).

One very important principle will motivate all our discussions on data:

4.27 Data Entry: Parameters, Scalars and Tables 843

Note

Data should be entered in its most basic form and each data item should be entered only once.

There are two reasons for adopting this principle. Numbers are almost certain to change, and when they
do we want to be able to make the process of changing them as easy and safe as possible. We also want to
make our model easy for others to read and understand. Keeping the amount of data as small as possible
will certainly help. All the data transformations are shown explicitly in the GAMS representation, which
makes it possible to reproduce the results of a study and shows the reader all the assumptions made
during data manipulation. Another advantage is that everything needed to run or change the model is
included in one program that can easily be moved from place to place or from one machine to another.

This chapter deals with the data type parameter. For other data types, see section Data Types and Definitions.
Data for parameters can be entered in three basic formats: scalar, list oriented, or tables of two or more
dimensions. For each of these formats, GAMS offers a separate keyword:

Keyword Description

Scalar Single (scalar) data entry.

Parameter List oriented data, defined over one or more sets.

Table Table oriented data, must involve two or more dimensions.

Table 1: Parameters, Scalars and Tables

Note that the term parameter is used in two ways: as data type and as keyword, so one could also see
scalars and tables as special formats of parameters. Each of the data input formats will be introduced
and discussed in the following sections. At the end of the chapter the special data type acronym is
introduced.

Note

• By default, parameters in all input formats may only be initialized once, thereafter data must
be modified with assignment statements. This can be changed using the dollar control option
$onMulti.

• This chapters explains the complete syntax to declare parameters which includes the optional
initialization. So, while it is possible to initialize the data at declaration, often the data is read
from other sources like databases or spreadsheets. More information about this can be found
in the chapter Data Exchange with Other Applications.

4.27.2 Scalars

The scalar statement is used to declare and (optionally) initialize a GAMS parameter of dimensionality
zero. This means that there are no associated sets, so there is exactly one number associated with the
parameter.

4.27.2.1 The Syntax

In general, the syntax for a scalar declaration in GAMS is as follows:

scalar[s] scalar_name [text] [/numerical_value/]

{ scalar_name [text] [/numerical_value/]} ;

844 User's Guide

The keyword scalar[s] indicates that this is a scalar statement and scalar name is the internal name
of the scalar in GAMS, it is an identifier. The optional explanatory text is used to describe the scalar
and the optional numerical value is assigned to be the value of scalar name. Numerical value can be
given as fixed number or as constant evaluation. Alternatively, the special data type acronym may be
used as value. For details on acronyms, see section Acronyms.

Note that more than one scalar may be declared in one scalar statement. The entries have to be separated
by commas or by end of line. For advice on explanatory text and how to choose a scalar name, see the
tutorial Good Coding Practices.

Note that scalars may be declared but not initialized in the scalar statement. A value can also be assigned
later as illustrated in the example that follows.

4.27.2.2 An Illustrative Example

An example of a scalar definition in GAMS is shown below.

Scalar

rho "discount rate" / .15 /

irr "internal rate of return"

life "financial lifetime of productive units" / 20 /;

The statement above initializes rho and life, but not irr. Later on another scalar statement can be
used to initialize irr or an assignment statement could be used to provide the value:

irr = 0.07;

For more on scalar assignments and parameter assignments in general, see section Data Entry by Assignment.

4.27.3 Parameters

The parameter format is used to enter list oriented data which can be indexed over one or several sets.

4.27.3.1 The Syntax

In general, the syntax for a parameter declaration in GAMS is as follows:

parameter[s] param_name[(index_list)] [text] [/ element [=] numerical_value

{,element [=] numerical_value} /]

{,param_name[(index_list)] [text] [/ element [=] numerical_value

{,element [=] numerical_value} /]} ;

The keyword parameter[s] indicates that this is a parameter statement and param name is the internal
name of the parameter in GAMS, it is an identifier. A parameter may be defined over one or more sets
that may be specified in the index list. Note that the specification of the index list in the declaration is
optional. However, mostly it is advisable to specify it for reasons of clarity and to enable domain checking.
For more on domain checking, see section Domain Checking. The optional explanatory text is used to
describe the parameter.

Parameter initialization requires a list of data elements, each consisting of a label or label-tuple and a
value. Element is an element of the defining set or - if there is more than one defining set - a combination
of the elements of the defining sets. The referenced set elements must belong to the set that the parameter
is indexed over. Finally, numerical value is the value assigned to the record defined by the set element
or element tuple. It can be given as fixed number or as constant evaluation. Alternatively, the special
data type acronym may be entered as value. For details on acronyms, see section Acronyms.

4.27 Data Entry: Parameters, Scalars and Tables 845

Note

The default value of a parameter is 0.

Slashes must be used at the beginning and end of the list, and commas must be used if several data
elements are listed in one line. An equals sign or a blank separates the label tuple from its associated
value. A parameter can be defined in a similar syntax to that used for a set. For advice on explanatory
text and how to choose a parameter name, see the tutorial Good Coding Practices.

Note

Several parameters may be declared in one parameter statement.

4.27.3.2 Illustrative Examples

The following example illustrates the parameter statement. It is adapted from [MEXSS]. We also
show the set definitions because they make the example clearer. For more on sets definitions, see chapter
Set Definition.

Set i "steel plants" / hylsa monterrey

hylsap puebla /

j "markets" / mexico-df, monterrey, guadalaja /;

Parameter

dd(j) "distribution of demand"

/ mexico-df 55,

guadalaja 15 /;

The index specification for the parameter dd means that there will be a vector of data associated with
it, one number corresponding to every member of the set j. The numbers are specified along with the
declaration in a format very reminiscent of the way we specify sets: in this simple case a label followed by
a blank separator and then a value. Any of the legal number entry formats are allowable for the value.
For details on number formats in GAMS, see subsection Numbers. The default data value is zero. Since
monterrey has been left out of the data list, the value associated with dd('monterrey') is zero. As with
sets, commas are optional at end of line.

We may also list several data elements on a line, separated by commas as in the following example:

Parameter

a(i) / seattle = 350, san-diego = 600 /

b(i) / seattle 2000, san-diego 4500 /;

If a parameter is defined over a set and all elements of the set are assigned the same value, then the
following notation may be used as a shortcut:

parameter param_name[(set_name)] [text] /(#|set.)set_name numerical_value/;

Here set is a reserved word and set name is the name of the set as it has been declared in a previous set
declaration statement. Instead of set. one could also use the # sign. The following artificial example
illustrates this notation:

Set j /j1, j2/;

Parameter hh(j) /set.j 10/

gg /#j 10/;

This resolves in hh('j1') = hh('j2') = gg('j1') = gg('j2') = 10.

846 User's Guide

Note

By default it is not possible to define an empty parameter at declaration. This may be changed
using the dollar control option $onEmpty, as shown in the following example:

Set i / seattle, san-diego /;

$onEmpty

Parameter

a(i) / /;

That initializes a('seattle') and a('san-diego') to 0. So it is not the same as this:

Set i / seattle, san-diego /;

Parameter

a(i);

Here, a is declared, but not initialized (so, it is not defined yet) and one would get an error when trying
to read it.

4.27.3.3 Parameter Data for Higher Dimensions

A parameter may have several dimensions. For the current maximum number of permitted dimensions, see
Dimensions. The list oriented data initialization through the parameter statement can be easily extended
to data of higher dimensionality. The label that appears on each line in the one-dimensional case is
replaced by a label tuple for higher dimensions. The elements in the n-tuple are separated by dots (.)
just like in the case of multi-dimensional sets.

The following example illustrates the use of parameter data for higher dimensions:

Parameter

salaries(employee,manager,department)

/ anderson .murphy .toy = 6000

hendry .smith .toy = 9000

hoffman .morgan .cosmetics = 8000 /;

All the mechanisms using asterisks and parenthesized lists that we introduced in our discussion of sets are
available here as well. For details see section Multi-Dimensional Sets. Below is an artificial example, in
which a very small fraction of the total data points are initialized. GAMS will mark an error if the same
label combination (or label-tuple) appears more than once in a data list.

Set row / row1*row10 /

col / col1*col10 /;

Parameter

a(row, col)

/ (row1,row4) . col2*col7 12

row10 . col10 17

row1*row7 . col10 33 /;

In this example the twelve elements row1.col2 to row1.col7 and row4.col2 to row4.col7 are all
initialized at 12, the single element row10.col10 at 17, and the seven elements rows1.col10 to row7.col10
at 33. The other 80 elements (out of a total of 100) remain at their default value, which is 0. This example
shows the ability of GAMS to provide a concise initialization or definition for a sparse data structure.

4.27 Data Entry: Parameters, Scalars and Tables 847

4.27.4 Tables

Tabular data can be declared and initialized in GAMS using a table statement. For two and higher-
dimensional parameters this provides an easier and more concise method of data entry than the list based
approach, since - at least in smaller tables - each label appears only once.

4.27.4.1 The Syntax

In general, the syntax for a table declaration in GAMS is as follows:

table table_name[(index_list)] [text] [EOL

element { element } EOL

element numerical_value { numerical_value} EOL

{element numerical_value { numerical_value} EOL}] ;

The keyword table indicates that this is a table declaration and table name is the internal name of the
table in GAMS, it is an identifier. The name of the parameter can be followed by the index list. In the
index list the sets are specified over which the table is defined. Note that the specification of the index
list in the declaration is optional. However, mostly it is advisable to specify it for reasons of clarity and
to enable domain checking. For more on domain checking, see section Domain Checking. The optional
explanatory text is used to describe the table, followed by EOL which means ”end of line”, a line break.
Element is an element of one of the driving sets. More details follow below. Numerical value is the value
of the entry associated with the corresponding element combination. It can be given as fixed number or
as constant evaluation. Alternatively, the special data type acronym may be used as value. For details on
acronyms, see section Acronyms. For advice on explanatory text and how to choose a table name, see
the tutorial Good Coding Practices.

Attention

By default, the table statement is the only statement in the GAMS language that is not free format.
This may be changed using the dollar control option $onDelim.

The following rules apply:

• The relative positions of all entries in a table are significant. This is the only statement where end
of line (EOL) has meaning. The character positions of the numeric table entries must overlap the
character positions of the column headings.

• The column section has to fit on one line.

• The sequence of values forming a row must be on the same line.

• The element definition of a row can span more than one line.

• A specific column can appear only once in the entire table.

The rules for building simple tables are straightforward. The components of the header line are

keyword - identifier - index_list - text

Note that the index list and the text are optional. Labels are used on the top and the left to map
out a rectangular grid that contains the data values. The order of labels is unimportant, but if domain
checking has been specified (i.e. the index list has been given in the first line of the table declaration)
each label must match one in the associated set. Labels must not be repeated, but can be left out if the
corresponding numbers are all zero or not needed. At least one blank must separate all labels and data
entries. Blank entries imply that the default value (zero) will be associated with that label combination.

848 User's Guide

Note

• Tables must have at least two dimensions. For the current maximum number of permitted
dimensions, see Dimensions.

• The table statement can also be terminated with a ; in the first line, so without entering data.
In this case the parameter table name would be declared but not initialized.

• In contrast to the set, scalar, and parameter statements, only one identifier may be initialized
in a table statement, though multiple ones could be declared.

4.27.4.2 An Illustrative Example

In the following example a simple table is presented. It is adapted from [KORPET], the relevant set
definitions are also given.

Set i "plants"

/ inchon, ulsan, yosu /

m "productive units"

/ atmos-dist "atmospheric distillation unit"

steam-cr "steam cracker"

aromatics "aromatics unit"

hydrodeal "hydrodealkylator" /;

Table ka(m,i) "initial cap. of productive units (100 tons per yr)"

inchon ulsan yosu

atmos-dist 3702 12910 9875

steam-cr 517 1207

aromatics 181 148

hydrodeal 180

;

In this example the row labels are drawn from the set m and those on the column from the set i. Note
that the data for each row is aligned under the corresponding column headings. Entries that are not
specified are assigned the default value zero.

Note

If there is any uncertainty about which column a number belongs to, GAMS will protest with an
error message and mark the ambiguous entry.

Attention

Special care has to be taken, if tabs are used. The GAMS command line option TabIn controls the
tab spacing. Note that this spacing might be different form the spacing that the editor is showing,
hence the visible alignment might be different from the alignment that GAMS is actually using.

4.27 Data Entry: Parameters, Scalars and Tables 849

4.27.4.3 Continued Tables

If a table has too many columns to fit nicely on a single line, then the columns that don't fit may be
continued on additional lines. We use the same example to illustrate:

Table ka(m,i) "initial cap. of productive units (100 tons per yr)"

inchon ulsan

atmos-dist 3702 12910

steam-cr 517

aromatics 181

hydrodeal 180

+ yosu

atmos-dist 9875

steam-cr 1207

aromatics 148

;

The crucial item is the plus '+' sign above the row labels and to the left of the column labels in the
continued part of the table. The row labels have been duplicated, except that hydroreal has been left
out, since it does not have any associated data. Tables may be continued as many times as necessary.

4.27.4.4 Tables with more than Two Dimensions

Tables may have more than two dimensions. For the current maximum number of permitted dimensions,
see Dimensions. As usual, dots are used to separate adjacent labels and may be used in the row or column
position. The label on the left of the row corresponds to the first set in the index list, and that on the
right of each column header to the last. Obviously, there must be the same number of labels associated
with each number in the table, as there are sets in the index list.

The best layout depends on the size of the defining sets and the amount of data. It should provide the
most intuitively satisfactory way of organizing and inspecting the data. For most people it is easier to
look down a column of numbers than across a row. However, putting extra labels on the row has the
advantage of greater density of information.

The following example, adapted from [MARCO], illustrates the use of tables with more than two
dimensions.

Set ci "commodities : intermediate"

/ naphtha "naphtha"

dist "distillate"

gas-oil "gas-oil" /

cr "commodities : crude oils"

/ mid-c "mid-continent"

w-tex "west-texas" /

q "attributes of intermediate products"

/ density, sulfur /;

Table attrib(ci, cr, q) "blending attributes"

density sulfur

naphtha. mid-c 272 .283

naphtha. w-tex 272 1.48

dist . mid-c 292 .526

dist . w-tex 297 2.83

gas-oil. mid-c 295 .98

gas-oil. w-tex 303 5.05

;

850 User's Guide

The table attrib could also be laid out as shown below:

Table attrib (ci,cr,q) "blending attributes"

w-tex.density mid-c.density w-tex.sulfur mid-c.sulfur

naphtha 272 272 1.48 .283

dist 297 292 2.83 .526

gas-oil 303 295 5.05 .98

;

4.27.4.5 Condensing Tables

All the mechanisms using asterisks and parenthesized lists that were introduced in the discussion of sets
are available here as well. For details on these mechanisms, see section Multi-Dimensional Sets. The
following example shows how repeated columns or rows can be condensed with asterisks and lists in
parentheses. The set membership is not shown, but can easily be inferred.

Table upgrade(strat,size,tech)

small.tech1 small.tech2 medium.tech1 medium.tech2

strategy-1 .05 .05 .05 .05

strategy-2 .2 .2 .2 .2

strategy-3 .2 .2 .2 .2

strategy-4 .2 .2

Table upgradex(strat,size,tech) "alternative way of writing table"

tech1*tech2

strategy-1.(small,medium) .05

strategy-2*strategy-3.(small,medium) .2

strategy-4.medium .2;

4.27.4.6 Handling Long Row Labels

It is possible to continue the row labels in a table on a second, or even third line in order to accommodate
a reasonable number of columns. The break must come after a dot, and the rest of each line containing
an incomplete row label-tuple must be blank.

The following example, adapted from [INDUS], is used to illustrate. This table actually has nine
columns and many rows, here we have reproduced just a small part to show continued row label-tuples.

Table yield (c,t,s,w,z) "crop yield (metric tons per acre)"

nwfp pmw

wheat.(bullock, semi-mech).la-plant.

(heavy, january) .385 .338

wheat.(bullock, semi-mech).la-plant. light .506 .446

wheat.(bullock, semi-mech).la-plant. standard .592 .524

wheat.(bullock, semi-mech).(qk-harv, standard).

(heavy, january) .439 .387

4.27 Data Entry: Parameters, Scalars and Tables 851

4.27.5 Constant Evaluation

Instead of fixed numerical values, one can also use constant expressions to assign values to parameters in
a data statement. The syntax of constant expressions used in data statements follows the GAMS syntax
as described in Data Manipulations with Parameters, but is restricted to scalar values and a subset of
the GAMS intrinsic functions, as summarized below:

• Real numbers only

• Evaluation left to right

• Operator precedence:

– ∧ ∗∗
– ∗ /

– + - binary and unary

– < <= = <> >= > LE LE EQ NE GE GT

– NOT

– AND

– OR XOR EQV IMP

• See Functions for list of supported functions

When used in a data statement, the constant expressions have to be enclosed in a pair of square brackets
[] or curly brackets { }. Spaces can be used freely inside those brackets. Here is a little example:

Scalars x "PI half" / [pi/2] /

e "famous number" / [exp(1)] /;

Parameter y "demo" / USA.(high,low) [1/3]

USA.medium {1/4} /;

4.27.6 Data Entry by Assignment

Data may also be entered using assignment statements. Assignments are introduced and discussed in detail
in section The Assignment Statement. This section here is a short outlook and shows how parameters
that have already been declared may be assigned values. The general assignment statement has the
following form:

parameter_name[(index_list)] = expression;

Here parameter name is the name of a parameter that has been declared previously in a scalar, parameter
or table statement, index list indicates the controlling indices and may either contain a set or sets, a
label or label tuple or a combination of those, and expression may be a number, a numerical expression
or an acronym. For details on numerical expressions, see section Expressions.

The following examples illustrate how assignments may be used for data entry.

852 User's Guide

Set j /j1, j2, j3/;

Scalar a1;

Scalars a2 /11/;

Parameter cc(j),

bc(j) /j2 22/;

a1 = 10;

a2 = 5;

cc(j) = bc(j)+10;

cc("j1") = 1;

The scalar a1 is declared but not initialized in the first scalar statement. It is assigned the value of 10 in
the first assignment. The scalar a2 is initialized in the second scalar statement and this value is changed
to 5 in the second assignment. Note that the original data is not retained. In the parameter statement the
parameter cc(j) is declared but not initialized and the parameter bc(j) is only initialized for j2. This
means that bc('j2') = 22 and bc('j1') = bc('j3') = 0, the default value. Now, the third assignment
sets the parameter cc(j) and assigns to all elements of the set j the value of the parameter bc(j) plus 10.
So we have cc('j2') = 32 and cc('j1') = cc('j2') = 10. Note that in this example the set j has
only three elements so only 3 assignments are made simultaneously. However, suppose that the number
of set elements is large, say 100,000, then to each element a value is assigned with just one assignment
statement. Finally, the value of cc('j1') is changed to 1.

Observe that in the examples above assignments either refer to one specific set element or to the whole set.
It is also possible to make assignments to only a part of the set. The mechanisms for partial set references
are discussed in section Restricting the Domain in Assignments. Set elements that are not assigned new
values in an assignment with a partial set reference retain their previous values. Recall that these may
be the default value, values from the parameter or table statement, or values resulting from previous
calculations.

4.27.7 Acronyms

An acronym is a special data type that allows the use of strings as values. Note that acronyms have no
numeric values and are treated as character strings only.

4.27.7.1 The Syntax

The declaration for an acronym is similar to a set or parameter declaration. The basic format is as follows:

Acronym[s] acronym_name [text] {, acronym_name [text]};

The keyword acronym[s] indicates that this is an acronym statement and acronym name is the internal
name of the acronym in GAMS, it is an identifier. The optional explanatory text is used to describe
the acronym. For advice on explanatory text and how to choose an acronym name, see the tutorial
Good Coding Practices.

Note that more than one acronym may be declared in one acronym statement. The entries have to be
separated by commas or by end of line. A simple example illustrates this:

Acronym Monday, Tuesday, Wednesday, Thursday, Friday;

4.27 Data Entry: Parameters, Scalars and Tables 853

4.27.7.2 Acronym Usage

Acronyms may be used as data in scalar, parameter and table statements. An example for acronyms in a
parameter statement follows.

Set machines / m-1*m-5 / ;

Acronym

Monday, Tuesday, Wednesday, Thursday, Friday;

Parameter

shutdown(machines)

/ m-1 Tuesday

m-2 Wednesday

m-3 Friday

m-4 Monday

m-5 Thursday /;

Acronyms may also be used in assignments as in the example below. For more on assignments, see section
The Assignment Statement.

Acronym Monday, Tuesday, Wednesday, Thursday, Friday;

Scalar dayOfWeek;

dayOfWeek = Wednesday;

Note that numerical operations like addition or subtraction are not allowed with acronyms. Such operations
would be meaningless since acronyms do not have numeric values.

Another context where acronyms may be used is in logical conditions. For more on logical conditions, see
chapter Conditional Expressions, Assignments and Equations. This is shown in the following example:

Acronym Monday, Tuesday, Wednesday, Thursday, Friday;

Scalar dayOfWeek

workHours /6/;

dayOfWeek = Wednesday;

workHours$(dayOfWeek <> Friday) = 8;

Note that only the equality and inequality operators may be used with acronyms. Other operations like
addition and division are meaningless since acronyms do not have numeric values.

Acronyms are specific to GAMS and hence difficult to deal with when exchanging data with other systems.
Users often replace parameters that contain acronyms with dynamic sets that have an additional index
whose values correspond to the acronyms found in the original parameter. The machine shutdown data
from above can be represented via a two-dimensional set as follows:

Set machines / m-1*m-5 /

weekdays / Monday, Tuesday, Wednesday, Thursday, Friday /

shutdown(machines,weekdays)

/ m-1.Tuesday

m-2.Wednesday

m-3.Friday

m-4.Monday

m-5.Thursday /;

854 User's Guide

4.27.8 Summary

In this chapter, the declaration and initialization of parameters with the Scalar, Parameter, and Table
statement have been discussed. Chapter Data Manipulations with Parameters will describe how this data
can be changed with assignment statements.

4.28 Variables

4.28.1 Introduction

This chapter covers the declaration and manipulation of GAMS variables. Many of the concepts covered
in the previous chapters are directly applicable here.

A variable is the GAMS name for what are called endogenous variables by economists, columns or activities
by linear programming experts, and decision variables by industrial Operations Research practitioners.
They are the entities whose values are generally unknown until after a model has been solved. A crucial
difference between GAMS variables and columns in traditional mathematical programming terminology is
that one GAMS variable is likely to be associated with many columns in the traditional formulation.

4.28.2 Variable Declarations

A GAMS variable, like all other identifiers, must be declared before it may be referenced.

4.28.2.1 The Syntax

The declaration of a variable is similar to a set or parameter declaration, in that domain lists and
explanatory text are allowed and recommended, and several variables may be declared in one statement.
The syntax is given below.

[var_type] variable[s] var_name [(index_list)] [text] [/var_data/] {, var_name [(index_list)] [text] [/var_data/]}

The keyword var type denotes the optional variable type that is explained in detail in the next subsection.
Variable[s] is the keyword that indicates that this is a variable statement. Var name is the internal name
of the variable in GAMS, it is an identifier. In the optional index list the set or sets may be specified
over which an indexed variable is declared. The optional explanatory text may be used to describe the
variable for future reference and to ease readability. Specifying variable data is another optional element
in the variable statement. Variable data allows to initialize variable attributes at compile time. For an
example and details on variable attributes, see section Variable Attributes.

A typical variable statement adapted from the model [RAMSEY] is shown below for illustration:

Variables

k(t) capital stock (trillion rupees)

c(t) consumption (trillion rupees per year)

i(t) investment (trillion rupees per year)

utility utility measure;

4.28 Variables 855

The declaration of k above implies, as usual, that references to k are restricted to the domain of the set t.
A model that includes k will probably have several corresponding variables in the associated mathematical
programming problem: most likely one for each member of t. In this way, very large models can be
constructed using a small number of variables. (It is quite unusual for a model to have as many as 50
distinct variables.) It is still unclear from the declaration whether utility is not domain checked or
whether it is a scalar variable, i.e., one without associated sets. Later references will be used to settle the
issue. For more details on domain checking, see section Domain Checking.

As the syntax indicates, the explanatory text is optional. However, it is important that variable declarations
include explanatory text and that this be as descriptive as possible, since the text is used to annotate the
solution output. Note the use of 'per' instead of '/' in the text above: slashes are illegal in all unquoted
text.

Note

• Variable names, the contained set element names plus the explanatory text must obey the
general rules for language items.

• Variables can be defined over from 0 up to 20 sets

• The sets over which variables are declared indicate that these variables are potentially defined
for every element of the defining sets. However the actual definition of variables does not occur
until variables appear in an equation definition where the equation needs to be part of a model
that in turn occurs in a solve statement.

4.28.2.2 Variable Types

There are nine basic types of variables that may be used in variable statements. These are shown in table
Table 1.

Keyword Description Default Lower
Bound

Default Upper
Bound

free (default)
No bounds on variable.
Both bounds may be
changed from the de-
fault values by the user.

-inf +inf

positive or
nonnegative

No negative values are
allowed for variable.
The user may change
both bounds from the
default value.

0 +inf

negative
No positive values are
allowed for variables.
The user may change
both bounds from the
default value.

-inf 0

binary
Discrete variable
that can only take
values of 0 or 1.
For details see section
Types of Discrete Variables.
In relaxed Model types
the integrality require-
ment is relaxed.

0 1

856 User's Guide

Keyword Description Default Lower
Bound

Default Upper
Bound

integer
Discrete variable that
can only take integer
values between the
bounds. The user may
change both bounds
from the default value.
The default upper
bound inside GAMS
is +inf but when the
variable is passed on to
the solver, the option or
command line param-
eter IntVarUp decides
what upper bound
(by default +inf) is
passed on to the solver
in case GAMS has
upper bound +inf. In
relaxed Model types
the integrality require-
ment is relaxed.

0 +inf

sos1
A set of variables, such
that at most one vari-
able within a group may
have a non-zero value.
For details see section
Types of Discrete Variables.

0 +inf

sos2
A set of variables, such
that at most two vari-
ables within a group
may have non-zero
values and the two non-
zero values are adjacent.
For details see section
Types of Discrete Variables.

0 +inf

semicont
Semi-continuous, must
be zero or above a
given minimum level.
For details see section
Types of Discrete Variables.

1 +inf

4.28 Variables 857

Keyword Description Default Lower
Bound

Default Upper
Bound

semiint
Semi-integer, must
be zero or above
a given minimum
level and integer.
For details see section
Types of Discrete Variables.
The default upper
bound inside GAMS
is +inf but when the
variable is passed on to
the solver, the option or
command line param-
eter IntVarUp decides
what upper bound
(by default +inf) is
passed on to the solver
in case GAMS has
upper bound +inf. In
relaxed Model types
the integrality require-
ment is relaxed.

1 +inf

Table 1: Variable types and default bounds

The default type is free, which means that if the type of the variable is not specified, it will not be
bounded at all. The most frequently used types are free and positive. The type positive variables

is used for variables for which negative values are meaningless, such as capacities, quantities or prices.
Note that bounds may be changed using variable attributes and assignment statements, see section
Variable Attributes.

Note

• Every optimization model must contain at least one unrestricted named variable (i.e. one
declared with the keywords Variable or Free Variable). This variable is the objective
variable. Even an objective variable can have lower and upper bounds assigned via the .lo

and .up variable attribute.

• If a model is unbounded, a frequent cause for the unboundedness is that the modeler forgot to
make a variable positive.

4.28.2.3 Styles for Variable Declaration

Two styles are commonly used to declare variable types. The first is to list all variables with domain
specifications and explanatory text as a group, and later to group them separately as to type. The example
shown below is adapted from [MEXSS]. The default type is free, so phi and phipsi will be free

variables in the example below. Note the use of variable names derived from the original mathematical
representation.

Variables

u(c,i) "purchase of domestic materials (mill units per yr)"

v(c,j) "imports (mill tpy)"

e(c,i) "exports (mill tpy)"

phi "total cost (mill us$)"

phipsi "raw material cost (mill us$)";

Positive Variables u, v, e;

The commas in the list of positive variables are required separators.

858 User's Guide

Attention

It is possible to declare an identifier more than once. However, the second and any subsequent
declarations should only add new information that does not contradict what has already been
entered.

The second popular way of declaring variables is to list them in groups by type. We rewrite the example
above using this second method:

Free Variables

phi "total cost (mill us$)"

phipsi "raw material cost (mill us$)"

Positive Variables

u(c,i) "purchase of domestic materials (mill units per yr)"

v(c,j) "imports (mill typ)"

e(c,i) "exports (mill typ)";

The choice between the two approaches is best based on clarity.

4.28.3 Variable Attributes

While a GAMS parameter has one number associated with each unique label combination, a variable has
several. They represent:

Variable Attribute Symbol Description

Lower bound
.lo

Lower bound for the variable. Set by the user either explicitly or
through default values associated with the variable type.

Upper bound .up Upper bound for the variable. Set by the user either explicitly or
through default values associated with the variable type.

Fixed value
.fx

A fixed value for the variable. If set it results in the upper and
lower bounds of the variable to be set to the value of the .fx

attribute.

Activity level
.l

Activity level for the variable, also the current value or starting
point. This attribute is reset to a new value when a model
containing the variable is solved. The activity level is used to
construct a basis for the model.

Marginal .m The marginal value (or reduced cost) for the variable. This
attribute is reset to a new value when a model containing the
variable is solved. The activity level is used to construct a basis
for the model.

Scale factor
.scale

Numerical scaling factor for all coefficients associated with the
variable if the model attribute scaleopt is set to 1. For more
on scaling, see section Model Scaling - The Scale Option. Only
applicable for continuous variables.

Branching priority
.prior

Branching priority value used in mixed integer programming
models if the model attribute prioropt is set to 1. For details see
section Setting Priorities for Branching. It can also be used to
relax discrete restrictions by setting .prior = +inf regardless
of the prioropt setting. Only applicable for discrete variables.

Stage
.stage

This attribute allows to assign variables to stages in a stochastic
program or other block structured model. Thus, among other
places, it is used for 2-stage stochastic programs solved with
DECIS or the Benders partition in Cplex.

4.28 Variables 859

Table 2: Variable Attributes

Users distinguish between these values when necessary by appending the suffix to the variable name.
Examples are given below.

It is possible to specify initial values for these variable attributes at compile time. This can be done within
the variable declaration statement as illustrated in the following example or during execution time as
explained in section Assigning Values to Variable Attributes.

Variable x1(j) my first / j1.up 10 , j1.lo 5, j1.l 7, j1.m 0, j1.scale 20 /;

The upper bound of the variable x1("j1") is set to 10, the lower bound is set to 5, the starting value for
the activity level is set to 7 and the starting value for the marginal is set to 0. The variable is also scaled
by the factor 20, which means it is multiplied by 20.

Note that it is also possible to use a table structure to assign values to variable attributes. The following
example is adapted from model [TRNSPORT].

Variable Table x(i,j) initial values

l m

seattle. new-york 50

seattle. chicago 300

san-diego.new-york 275

san-diego.chicago 0.009;

Note

• .fx and attributes .lo and .up on the same variable cannot be in a data statement. .fx

sets both .lo and .up and hence we would have a double definition of the same attribute.
Since attribute .scale is applicable for continuous variables and attribute .prior for discrete
variables, they share the same internal space in a GAMS variable. Some solvers can make use
of priorities even for continuous variables (e.g. BARON). Such priorities need to be supplied
via a solver option file.

• The attribute .stage uses the same internal space as .scale and .prior. So a model cannot
specify scale factor and branching priorities together with stages.

• Fixing a semi-continuous or semi-integer variable to a non-zero value like x.fx = 4 does not
result in a truly fixed variable. The domain of the variable remains {0,4}. To really fix a
semi-continuous or semi-integer variable, the discrete restriction could be relaxed by setting
the branching priority to infinity (x.prior=inf).

• For variables in discrete models (such as MIP, MINLP), the .m attribute provides the marginals
obtained by fixing all the discrete variables and solving the resulting continuous problem (such
as LP, NLP). Many solvers allow to enable/disable solving such a fixed problem. When disabled,
no marginals will be provided for discrete models.

In addition to the variable attributes introduced above, there are a number of variable attributes that
cannot be assigned or exported via execute unload∗ but may be used in computations. They are given in
Table 3.

Variable Attribute Symbol Description

Range .range The difference between the lower and upper bounds for a variable.
It becomes zero if the lower equals the upper bound, e.g. if the
fx attribute is set.

860 User's Guide

Variable Attribute Symbol Description

Slack upper bound
.slackup

Slack from variable upper bound. This is defined as the greater
of two values: zero or the difference between the upper bound
and the level value of a variable.

Slack lower bound
.slacklo

Slack from variable lower bound. This is defined as the greater
of two values: zero or the difference between the level value and
the lower bound of a variable.

Slack
.slack

Minimum slack from variable bound. This is defined as the
minimum of two values: the slack from the variable lower bound
and the slack from the variable upper bound.

Infeasibility
.infeas

Amount by which a variable is infeasible falling below its lower
bound or above its upper bound. This is defined as the smallest
of three values: zero, the difference between the lower bound and
the level value, the difference between the level value and the
upper bound of a variable, i.e. max(0, lower-level, level-upper).

Table 3: Additional Variable Attributes that Cannot Be Assigned but May Be Used in Computations.

4.28.3.1 Bounds on Variables

All default bounds set at declaration time may be changed using assignment statements.

Attention

For discrete variable types, the consequences of the type declaration cannot be completely undone
(e.g. the scale attribute is not available) but their value domain can be changed to continuous by
setting attribute prior to infinity.

Bounds on variables are the responsibility of the user. After variables have been declared, default bounds
have already been assigned: for many purposes, especially in linear models, the default bounds are
sufficient. In nonlinear models, however, bounds play a far more important role. It may be necessary to
provide bounds to prevent undefined operations, such as division by zero. In nonlinear programming it is
often necessary to define a 'reasonable' solution space that will assist in efficiently finding a solution.

Attention

The lower bound cannot be greater than the upper bound: if you happen to impose such a condition,
GAMS will generate an execution error, namely "∗∗∗∗ Matrix error - lower bound > upper

bound" when executing a solve statement.

Note that the upper bound on integer and semi-integer variables needs special consideration. The default
upper bound is +inf and the option or command line parameter IntVarUp controls what upper bound is
sent to the solver. With the current default value (0) of IntVarUp, an upper bound of +inf is sent to the
solver. Setting IntVarUp to one will pass 100 as the default upper bound to the solver. The other available
values for IntVarUp work like zero, but enable special reports/execution errors in case the solution reports
a level value greater than 100 for any integer variable with a default bound of +inf.

4.28.3.2 Fixing Variables

GAMS allows the user to fix variables through the .fx variable suffix. This is almost equivalent to setting
the lower bound and upper bound equal to the fixed value. The attribute .fx also resets the activity level
.l to the fixed value. When setting .lo and .up the activity level remains unchanged. A solve statement
will project the activity level within the active bounds. Fixed variables can subsequently be freed by
changing the lower and upper bounds.

4.28 Variables 861

4.28.3.3 Activity Levels of Variables

GAMS allows the user to set the activity levels of variables through the .l variable suffix. These activity
levels of the variables prior to the solve statement serve as initial value for the solver. This is particularly
important for nonlinear programming problems. For discrete models in many cases the solver needs an
additional indicator to interpret the activity levels as a feasible integer solution via a solver option (e.g.
Cplex' mipstart).

Attention

• GAMS only stores variables with non-default values (similar to storing only non-zero values of
parameters). Non-default variables can be accidentally created by using harmlessly looking
assignments like

x.up(i,j,k,l) = 0;

Even if the equations only reference such variables over a small subset of (i,j,k,l) this
statement creates card(i)∗card(j)∗card(k)∗card(l) variable records in the GAMS database.
Such fixings of x(i,j,k,l) to 0 can be avoided by using dynamic sets or dollar conditions in
the equation algebra to only reference tuples of (i,j,k,l) for which x(i,j,k,l) can possible
have a non-zero value.

• In order to filter only necessary tuples for an equation the filtering conditions needs to be
provided only once when defining the equation (equ(i,j,k)). This is different for variables
because they appear in many equations and the filtering condition needs to be potentially
repeated many time. Therefore it is good practice and reduces GAMS model generation time if
the filtering of the variables is governed by a dynamic set:

sum((i,j)$(ord(i)>ord(j) and cap(i,j)>0), x(i,j))

versus

set net(i,j); net(i,j) = ord(i)>ord(j) and cap(i,j)>0;

sum(net(i,j), x(i,j))

4.28.4 Variables in Display and Assignment Statements

GAMS allows the modeler to use the values associated with the various attributes of each variable in
assignment and display statements. The next two subsections explain the use of variables on the left
and right-hand sides of assignment statements respectively. Then we will explain the use of variables in
display statements.

4.28.4.1 Assigning Values to Variable Attributes

Assignment statements operate on one variable attribute at a time, and require the suffix to specify which
attribute is being used. Any index list comes after the suffix.

The following code snippets are from models [MEXSS] and [RAMSEY]. The first example illustrates
the use of assignment statements to set upper and lower bounds on variables.

x.up(c,i,j) = 1000 ; phi.lo = inf ;

A very common use is to bound one particular entry individually:

p.up(’pellets’, ’ahmsa’, ’mexico-df’) = 200 ;

862 User's Guide

Or to put small lower bounds on a variable identifier used as a divisor in a nonlinear program:

c.lo(t) = 0.01 ;

Or to provide initial values for a nonlinear problem:

c.l(t) = 4*cinit(t) ;

Remember that the order is important in assignments, and notice that the two pairs of statements below
produce very different results. In the first case, the lower bound for c('1985') will be 0.01, but in the
second, the lower bound is 1.

c.fx(’1985’) = 1; c.lo(t) = 0.01 ;

c.lo(t) = 0.01 ; c.fx (’1985’) = 1 ;

Everything works as described in the previous chapter, including the various mechanisms described there of
indexed operations, dollar operations, subset assignments and so on. An example from model LOCATION

follows.

ship_sm.lo(sl,m)$(ord(sl) = 1 and ord(m) = 1) = 1;

The lower bound of the variable ship sm(sl,m) is set to 1 and this assignment is only valid for
ship sm('s1','d1'), the realization of the variable where both indices are the first members of their
respective sets.

4.28.4.2 Variable Attributes in Assignments

Using variable attributes on the right-hand side of assignment statements is important for a variety of
reasons. Two common uses are for generating reports and for generating initial values for some variables
based on the values of other variables. For more on variable attributes in report writing, see section
Displaying Variable Attributes below and especially chapter The Put Writing Facility.

The following examples adapted from model [CHENERY] illustrate the use of variable attributes on
the right-hand side of assignment statements:

* initial values for variables

y.l(i) = 250 ; x.l(i) = 200 ;

e.l(t) = 0 ; m.l(t) = 0 ;

g.l(t) = mew(t) + xsi(t)*m.l(t) ;

h.l(t) = gam(t) - alp(t)*e.l(t) ;

[...]

* generating report after solve

Scalar

cva "total value added at current prices"

rva "real value added"

cli "cost of living index" ;

cva = sum (i, v.l(i)*x.l(i)) ;

cli = sum(i, p.l(i)*ynot(i))/sum(i, ynot(i)) ;

rva = cva/cli ;

Display cli, cva, rva ;

./location.gms

4.28 Variables 863

As with parameters, a variable must have some non-default data values associated with it before it can be
used in a display statement or on the right-hand side of an assignment statement. After a solve statement
has been processed or if non-default values have been set with an assignment statement, this condition is
satisfied. Solve statements are introduced and discussed in chapter Model and Solve Statements.

Attention

The .fx suffix is mostly just a shorthand for .lo and .up and can therefore only be used only on
the left-hand side of an assignment statement.

Note

In general, the variable level needs to be specified via the attribute .l for assignment statements.
However, the dollar control option $on/offDotL allows the implicit use of the attribute .l in
assignment statements, thus it facilitates using the same algebra in model definitions and assignment
statements. This is especially useful in the context of macros.

4.28.4.3 Displaying Variable Attributes

The display statement is introduced and discussed in detail in chapter The Display Statement. Here we
demonstrate how variable attributes are used in display statements.

Since several values are associated with each variable, the user must specify which attribute should be
displayed when using variables in display statements. As before, appending the appropriate suffix to
the variable name does this and no domain specification may appear. As an example, we show how to
display the level of phi and the level and the marginal values of v from [MEXSS]:

display phi.l, v.l, v.m;

The output looks similar, except that (of course) the listing shows which of the values is being displayed.
Because zeroes, and especially all zero rows or columns, are suppressed, the patterns seen in the level and
marginal displays will be quite different, since non-zero marginal values are often associated with activity
levels of zero.

Mexico Steel - Small Static (MEXSS,SEQ=15)

E x e c u t i o n

---- 203 VARIABLE PHI.L = 538.811 total cost

(mill us$)

---- 203 VARIABLE V.L imports

(mill tpy)

(ALL 0.000)

---- 203 VARIABLE V.M imports

(mill tpy)

mexico-df monterrey guadalaja

steel 7.018 18.822 6.606

We should mention here a clarification of our previous discussion of displays. It is actually the default
values that are suppressed on display output. For parameters and variable levels and marginals, the
default is zero, and so zero entries are not shown. For bounds, however, the defaults can be non-zero. The
default value for the upper bound of a positive variable is +INF, and if we would also display v.up above,
for example, we would see:

864 User's Guide

---- 203 VARIABLE V.UP imports

(mill tpy)

(ALL +INF)

If any of the bounds have been changed from the default value, then only the entries for the changed
elements will be shown. This may sound confusing, but since few users display bounds it has not proved
troublesome in practice.

Note

The attribute .range may be used in display statements. It provides a convenient way to check
whether a variable is fixed as it lists the 0 values explicate because the default for range (which
won't be displayed) is +inf.

4.28.5 Summary

Remember that wherever a parameter may appear in a display or an assignment statement, a variable
may also appear - provided that it is qualified with one of the suffixes. The only places where a variable
name may appear without a suffix is in a variable declaration, as has been shown in this chapter, in an
equation definition, which is discussed in chapter Equations, or in a $on/offDotL block.

4.29 Equations

4.29.1 Introduction

The keyword equation defines GAMS names that may be used in the model statement. A GAMS equation
name is associated with the symbolic algebraic relationships that will be used to generate the constraints
in a model. The algebraic relationships are defined by using constants, mathematical operators, functions,
sets, parameters and variables. As with variables, one GAMS equation may be defined over a group of
sets and in turn map into several individual constraints associated with the elements of those sets. Most
of the example code in this chapter is from the model location.

This chapter is organized as follows. First, we introduce how equations are declared and defined, then we
discuss expressions in equation definitions, followed by a section on equation attributes. A summary and
quick reference conclude the chapter.

4.29.2 Declaring Equations

An equation must be declared before it can be defined and used in a model.

./location.gms

4.29 Equations 865

4.29.2.1 The Syntax

The declaration of an equation is similar to a set or parameter declaration. The syntax is given below.

Equation[s] eqn_name [(index_list)] [explanatory text] [/eqn_data/] {, eqn_name [(index_list)] [explanatory text] [/eqn_data/]} ;

Equation[s] is the reserved word that indicates that one or more blocks of equations are about to be
declared. A block of equations may initiate one or more individual constraints. Eqn name is the internal
name of the equation, an identifier in GAMS. In the optional index list the set or sets are specified
over which an indexed equation is declared. The optional explanatory text may be used to describe the
equation for future reference and to ease readability. Specifying equation data is another optional element
in the equation declaration. Equation data allows to initialize equation attributes at compile time. For an
example see the next section. For more on equation attributes see section Equation Attributes.

One or more equations may be declared in one equation statement. The equation names have to be
separated by commas or by a line break as in the example that follows. The end of the declaration
statement is indicated by a semicolon.

Note

It is good practice to end the equation declaration with a semicolon, even though it is not mandatory
if the next statement starts with a GAMS keyword.

For advice on choosing equation names and phrasing the explanatory text see chapter Good Modeling Practices.

4.29.2.2 An Illustrative Example

The following example is from the model location. In addition to the equation declarations the relevant
set definitions are given.

Sets

sl ’supply locations’ /s1, s2/

wh ’warehouse locations’ /a, b, c/;

Equations

tcost_eq ’total cost accounting equation’

supply_eq(sl) ’limit on supply available at supply location’

capacity_eq(wh) ’warehouse capacity’ /a.scale 50, a.l 10, b.m 20/;

The keyword Equations marks the beginning of the equation declaration. Each equation name is optionally
followed by its domain (associated set or sets) unless it is a scalar equation. It is possible but not good
practice to declare indexed equations without their domains. The name of the first equation is tcost eq

and it is followed by the explanatory text 'total cost accounting equation'. The name of the equation
tcost eq is not followed by any associated sets. Since we follow good practice here we assume that
tcost eq is a scalar equation. Scalar equations do not have any associated sets and will generally produce
one equation in the model. For more on scalar equations see subsection Scalar Equations.

The other two equations are indexed equations, they are declared over a set. The equation supply eq is
declared over the set sl and the equation capacity eq is declared over the set wh. In typical circumstances
an indexed equation declaration implies that a block of constraints will be generated. For example, equation
supply eq(sl) implies that two constraints will be generated, one for each element of the set sl. For
more on indexed equations see subsection Indexed Equations.

The declaration of the equation capacity eq specifies some equation attributes. The first entry in-
dicates that the equation capacity eq('a') is scaled by a factor of 50, which means division of
all entries in that equation by 50 upon model passage to the solver. For more on scaling see
section Model Scaling - The Scale Option. The second entry sets the initial value of the equation
capacity eq('a') to 10 and b.m means that the initial marginal value of the equation capacity eq('b')
is set to 20. Alternatively, a table structure may be used to specify the values of equation attributes. The
following table may replace the notation above.

./location.gms

866 User's Guide

Equation Table capacity_eq(wh) ’warehouse capacity’

scale l m

a 50 10

b 20 ;

For more on equation attributes see section Equation Attributes.

Note

An equation may be declared over more than one set.

4.29.3 Defining Equations

After declaring equations they have to be defined. The definition of an equation specifies the algebraic
structure of the equation in GAMS. The syntax is given first, an illustrative example follows and in the
remainder of this section some of the key components of equation definitions are discussed.

4.29.3.1 The Syntax

The syntax for defining an equation is as follows:

eqn_name(index_list)[$logical_condition(s)].. expression eqn_type expression ;

Eqn name is the name of the equation as introduced in the equation declaration, that may be followed
by an index list for indexed equations. In the index list the set or sets are specified over which an
indexed equation is defined. These sets are also called domain of definition of the equation. One or more
logical conditions are optional. For an example see Indexed Equations. For more on logical conditions in
equation definitions see Dollar Control over the Domain of Definition. The two dots '..' are mandatory
and indicate the start of the algebra. It is good practice to end the definition of an equation with a
semicolon, even though it is not mandatory if the next statement starts with a GAMS keyword.

Attention

An equation must be declared before it is defined.

Expression refers to an algebraic expression which may include variables, parameters, functions, and
constants among other items. For details on expressions in GAMS, see section Expressions.

Attention

Only variables that appear at least once with a nonzero coefficient in an equation definition will
appear in a model.

Eqn type refers to the equation type denoted by the symbol between the right-hand side and left-hand
side expressions that form the equation. The symbols that are allowed are given in Table 1.

Type Description

=e= Equality: right-hand side must equal left-hand side.

=g= Greater than: left-hand side must be greater than or equal to right-hand side.

=l=
Less than: left-hand side must be less than or equal to right-hand side.

=n= No relationship implied between left-hand side and right-hand side. This equation type is
ideally suited for use in MCP models and in variational inequalities.

=x= Equation is defined by external programs. See External Equations.

=c= Conic constraint. See Conic Programming in GAMS.

=b=
Boolean equations. See Logic Equations.

4.29 Equations 867

Table 1: Equation Types

Equation definitions may be carried over as many lines of input as needed. Blanks may be inserted to
improve readability, and expressions may be arbitrarily complicated.

Note that an equation can only be defined once. By using logical conditions it is possible to control which
constraints are generated. In addition, the components of an equation may be modified by changing the
data it uses. However, if the logic of the equation needs to be changed then a new equation with a new
name has to be declared and defined.

4.29.3.2 An Illustrative Example

Consider the following example adapted from the model [mexss]. The associated variable and equation
declarations are also included.

Variables phi, phipsi, philam, phipi, phieps ;

Equations obj ;

obj.. phi =e= phipsi + philam + phipi - phieps ;

The name of the equation being defined is obj and the symbol =e= indicates that this is an equality. Any
of the following forms of the equation are mathematically equivalent.

obj.. phipsi + philam + phipi - phieps =e= phi ;

obj.. phieps - phipsi =e= philam - phi + phipi ;

obj.. phi + phieps - phipsi - philam - phipi =e= 0 ;

obj.. 0 =e= phi + phieps - phipsi - philam - phipi ;

Note

The arrangement of the terms in the equation is a matter of choice, but often a particular one is
chosen because it makes the model easier to understand.

4.29.3.3 Scalar Equations

A scalar equation will produce one equation in the associated optimization problem. The equation obj

defined above is an example of a scalar equation which contains only scalar variables. Note that scalar
equations may contain indexed variables. However, they must occur with an indexed operator such as sum
or prod, unless the indexed variables refer to a singleton set (a set with only one element). Consider the
following example from the model location. Note that the set wh has three elements.

configure_eq.. sum(wh,build(wh)) =l= 1;

The variable build is defined over the set wh, it is an indexed variable. It may be used in the scalar
equation configure eq since it occurs in conjunction with the indexed operator sum.

./location.gms

868 User's Guide

4.29.3.4 Indexed Equations

All the set references in scalar equations are within the scope of indexed operators or they refer to singleton
sets; thus many variable, set and parameter references can be included in one equation. In addition,
GAMS also allows for equations to be defined over a domain, thereby developing a compact representation
for constraints. The index sets to the left of '..' are called the domain of definition of the equation.

Note

• Domain checking ensures that the domain over which an equation is defined is the set (or the
sets) or a subset of the set (or the sets) over which the equation was declared.

• As a corollary, domain checking also catches the error of the indices being listed in an inconsistent
order. For example, declaring an equation as myequation(s,t) and then naming it in the
definition as myequation(t,s) causes an error (unless s and t are aliases of the same set). For
more information, see section Domain Checking.

The following indexed equation with a single index generates a separate constraint for each member of the
driving (or controlling) set. It is taken from the model [chenery]. In this example, t is a set with three
members, mew and xsi are parameters and m and g are variables.

dg(t).. g(t) =e= mew(t) + xsi(t)*m(t) ;

As the set t has three members, three constraints will be generated, one for each member of t specifying
the dependence of g on m. The data associated with the parameters mew and xsi are used to build the
individual constraints. This data does not have to be known when the equation is defined, but it has to
be populated before a model containing the equation is solved.

The extension to two or more indices on the left of '..' is obvious. There will be one constraint generated
for each combination of set elements that can be constructed using the indices inside the parenthesis.
Here are two examples from the model [aircraft], a scheduling model.

bd(j,h).. b(j,h) =e= dd(j,h) - y(j,h) ;

yd(j,h).. y(j,h) =l= sum(i, p(i,j)*x(i,j)) ;

The domain of definition of both equations is the Cartesian product of j and h: constraints will be
generated for every set element pair that can be constructed from the members of these two sets.

The next example illustrates the use of the optional logical conditions in the definition of equations. It is
taken from the production and distribution model [ferts].

CC(m,i)$mpos(m,i).. sum(p$ppos(p,i), b(m,p)*z(p,i)) =l= util*k(m,i) ;

CC is a capacity constraint defined for elements of the sets m and i. However, in this case not all cases
of m exist at each location i, and the mapping set mpos(m,i) tells the cases where m exists at i and
thus is used to restrict the domain cases for which the constraints are actually generated. The control of
the summation over p with ppos(p,i) is an additional logical condition, and is required because not all
processes p are possible at all locations i.

The equation may alternatively written in the following way:

CC(mpos(m,i)).. sum(ppos(p,i), b(m,p)*z(p,i)) =l= util*k(m,i) ;

Instead of defining the equation over the indices (m,i) the equation is defined over the set mpos that is
itself defined over the indices (m,i). A similar logic applies to restricting the summation.

Conditional expressions are introduced and discussed in the section Conditional Expressions, Assignments and Equations.
See specifically Dollar Control over the Domain of Definition for logical conditions in equation definitions.

4.29 Equations 869

4.29.3.5 Using Labels Explicitly in Equations

Sometimes it can be necessary to refer to specific set elements in equations. This can be done as with
parameters - by using quotes or double quotes around the label. Consider the following example from the
model location:

sum(m, ship_wm(wh,m)) =l= build(wh)*data(wh,"capacity") ;

4.29.3.6 Logic Equations

Logic equations use Boolean algebra and have to evaluate to TRUE (or 1) to be feasible. The Boolean
functions available in GAMS and the default order of precedence of the operators are given in Table 2.
Note that 1 denotes the highest order of precedence or the most binding operator and 3 denotes the lowest
order of precedence or the least binding operators. As usual, the default order of precedence holds only in
the absence of parentheses and operators on the same level are evaluated from left to right.

Function Operator Alternative No-
tation

Return Values Order of
precedence

Negation not x bool not(x) returns 1 if x = 0,
else returns 0

1

Logical conjunc-
tion

x and y bool and(x,y) returns 1 if x 6= 0
and y 6= 0, else re-
turns 0

2

Logical disjunc-
tion

x or y bool or(x,y) returns 0 if x =
y = 0, else returns
1

3

Exclusive disjunc-
tion

x xor y bool xor(x,y) returns 1 if exactly
one argument is 6=
0, else returns 0

3

Material implica-
tion

x imp y or x ->
y

bool imp(x,y) returns 0 if x 6= 0
and y = 0, else re-
turns 1

3

Material equiva-
lence

x eqv y or x

<=> y

bool eqv(x,y) returns 0 if exactly
one argument is 0,
else returns 1

3

Table 2: Boolean Functions and Operator Precedence

There are three ways to declare and define logic equations:

1. The logic equation is declared using the keyword Logic Equation and the definition contains only
Boolean algebra symbols.

2. The logic equation is declared like any other equation using the keyword Equation and in the
definition the symbol =b= appears indicating that it is a logic equation.

3. This is a combination of the first two options: the equation is declared with the keyword Logic

Equation and defined using the symbol =b=.

The following example demonstrates the first way to declare and define a logic equation. It is adapted
from the food manufacturing problem [foodemp]. In this problem the blending of oils is modeled.

./location.gms

870 User's Guide

Sets

m "planning period (month)" / m1*m6 /

p "raw oils" / v1*v2, o1*o3 / ;

Variables

induse(m,p) "indicator for usage of raw oil per month" ;

Binary variable induse;

Logic Equation

deflogic(m) "if some vegetable raw oil is used we also need to use the non-vegetable oil o3" ;

deflogic(m).. induse(m,’v1’) or induse(m,’v2’) -> induse(m,’o3’);

The variable induse is a binary variable, it can only take the values 0 and 1. The equation ensures
that in an optimal solution if either vegetable oil v1 or vegetable oil v2 is blended in a product, then
non-vegetable oil o3 is also blended in that product.

An alternative formulation of the equation deflogic using the =b= notation is given below.

deflogic(m).. induse(m,’v1’) or induse(m,’v2’) -> induse(m,’o3’) =b= 1;

Note that the value of 1 on the right-hand side means that the logic expression on the left-hand side must
evaluate to TRUE in a feasible solution. To illustrate further, we could negate the left-hand side expression
using the logic operator not and then the right-hand side would have to evaluate to zero or FALSE to yield
the same result as above. The respective equation definition follows.

deflogic(m).. not (induse(m,’v1’) or induse(m,’v2’) -> induse(m,’o3’)) =b= 0;

Logic equations with binary variables and boolean functions/operators are reformulated into linear
constraints by the LOGMip solver using GAMS model type EMP. Solver CONVERT writes scalar models
with logic equations, but no other solver currently can utilize logic equations. In principle (but currently
not implemented), logic constraints can be used to express complex algebra, like indicator constraints:

defindic(m).. induse(m,’v1’) = 1 -> sum(p, use(m,p)) >= minuse(m);

4.29.4 Expressions in Equation Definitions

The arithmetic operators and some of the functions that are described in section Expressions may be used
in equation definitions.

Consider the following example adapted from the model [chenery] demonstrating the use of parentheses
and exponentiation.

dem(i) .. y(i) =e= ynot(i)*(pd*p(i))**thet(i) ;

A list of arithmetic operators is given in subsections Standard Arithmetic Operations and
Indexed Operations.

4.29 Equations 871

4.29.4.1 Functions in Equation Definitions

All available GAMS functions are listed in the section Functions. Some functions are not allowed at all in
equation definitions. They include random distribution functions and are marked with none in the third
column of the tables listing all functions.

Attention

Some functions like uniform and normal are not allowed in equation definitions.

The use of the other functions is determined by the type of arguments in the model. There are two types
of arguments:

1. Exogenous arguments: The arguments are known. Parameters and variable attributes (for example,
.l and .m attributes) are used as arguments. The expression is evaluated once when the model is
being set up and most mathematical functions as well as time and calendar functions are allowed.

2. Endogenous arguments: The arguments are variables and therefore unknown at the time of model
setup. The function will be evaluated many times at intermediate points while the model is being
solved. Note that the occurrence of any function with endogenous arguments implies that the model
is not linear.

Functions that are allowed only with exogenous arguments are marked with any in the tables listing all
functions.

There are two types of functions allowing endogenous arguments: smooth functions and discontinuous
functions. Smooth functions are continuous functions with continuous derivatives (like sin, exp, log).
Discontinuous functions include continuous functions with discontinuous derivatives (like max, min, abs)
and discontinuous functions (like ceil, sign). Smooth functions may be used routinely in nonlinear
models. However, discontinuous functions may cause numerical problems and should be used only if
unavoidable, and only in a special model type called DNLP. For more details on model types see section
Classification of Models.

Attention

The best way to model discontinuous functions is with binary variables. The result is a model of the
type MINLP. The model [ABSMIP] demonstrates this formulation technique for the functions abs,
min, max and sign. See also section Reformulating DNLP Models. We strongly discourage the use
of the DNLP model type.

In Table 3 the use of functions in equation definitions is summarized.

Functions are allowed ... Description of Functions

not at all Functions that are marked none in the third column of the tables
listing all functions in section Functions.

only with exogenous arguments Functions that are marked any in the third column of the tables
listing all functions in section Functions.

with endogenous arguments Smooth functions. They are marked NLP in the third column of the
tables listing all functions in section Functions.

with endogenous arguments Discontinuous functions. They are marked DNLP in the third column
of the tables listing all functions in section Functions.

872 User's Guide

Table 3: Functions in Equation Definitions

4.29.4.2 Preventing Undefined Operations in Equations

Some operations are not defined at particular values of the arguments. Two examples are division by 0 and
the log- of 0. While this can easily be identified at model setup for exogenous functions and expressions,
it is a lot more difficult when the terms involve variables. The expression may be evaluated many times
when the problem is being solved and the undefined result may arise only under certain cases. One way
to avoid an expression becoming undefined is adding bounds to the respective variables. Consider the
following example from the model [ramsey]:

c.lo(t) = 0.01 ;

util .. utility =e= sum(t, beta(t)*log(c(t))) ;

Specifying a lower bound for c(t) that is slightly larger than 0 prevents the log-function from becoming
undefined.

4.29.5 Equation Attributes

Equation attributes may be specified in a similar way as variable attributes. Five values are associated
with each unique label combination of every equation. They are denoted by the suffixes .l, .m, .lo, .up
and .scale. A list of the attributes and their description is given in Table 4.

Equation Attribute Symbol Description

Lower bound
.lo

Negative infinity for =l= equations. Right hand side value for
=g=, =e=, and =b= equations. Zero for =c= equations.

Upper bound .up Positive infinity for =g= and =c= equations. Right hand side
value for =l=, =e=, and =b= equations.

Equation level
.l

Level of the equation in the current solution, equal to the level
of all terms involving variables.

Marginal .m Marginal value for equation. This attribute is reset to a new
value when a model containing the equation is solved. The
marginal value for an equation is also known as the shadow price
for the equation and in general not defined before solution but
if present it can help to provide a basis for the model

Scale factor
.scale

Numerical scaling factor that scales all coefficients in the
equation. This is only used when the model attribute
scaleopt is set to 1. For more on scaling, see section
Model Scaling - The Scale Option.

Stage
.stage

This attribute allows to assign equations to stages in a stochastic
program or other block structured model. Its current use is
limited to 2-stage stochastic programs solved with DECIS.

Table 4: Equation Attributes

Note that all attributes except for .scale and .stage contain the attribute values of equations after a
solution of the model has been obtained. For some solvers it can be useful to specify marginal values .m

and level values .l on input to provide starting information. Also note that the marginal value is also
known as the dual or shadow price. Roughly speaking, the marginal value .m of an equation is the amount
by which the value of the objective variable would change if the equation level were moved one unit.

4.29 Equations 873

Equation attributes may be referenced in expressions and can be used to specify starting values (see
section Declaring Equations). In addition, they serve for scaling purposes and for reporting after a model
was solved. For example, they may be displayed using the display statement. The following example is
from the model location.

Model warehouse ’warehouse location model’ /all/;

solve warehouse using mip min tcost;

display supply_eq.l;

The display statement generates the following output at the end of the listing file:

---- 108 EQUATION supply_eq.L limit on supply available at supply location

s1 50.000, s2 75.000

The level values of the equation supply eq are displayed. As expected, there are two level values, one for
each member of the set sl over which the equation supply eq was defined.

Note

By default, all equation attributes introduced above except for .scale are echoed to the solution
report that is part of the listing file.

In addition to the equation attributes introduced above, there are a number of equation attributes that
cannot be assigned or exported via execute unload∗ but may be used in computations. They are given in
Table 5.

Equation Attribute Symbol Description

Range .range The difference between the lower and upper bounds of an equa-
tion.

Slack lower bound
.slacklo

Slack from equation lower bound. This is defined as the greater
of two values: zero or the difference between the level value and
the lower bound of an equation.

Slack upper bound
.slackup

Slack from equation upper bound. This is defined as the greater
of two values: zero or the difference between the upper bound
and the level value of an equation.

Slack
.slack

Minimum slack from equation bound. This is defined as the
minimum of two values: the slack from equation lower bound
and the slack from equation upper bound.

Infeasibility
.infeas

Amount by which an equation is infeasible falling below its lower
bound or above its upper bound. This is defined as max(0, lower
bound - level, level - upper bound).

Table 5: Additional Equation Attributes that Cannot Be Assigned but May Be Used in Computations.

4.29.6 Summary and Quick Reference

In this chapter we have covered the declaration and definition of equations in GAMS, arithmetic
operations and functions that may be used in equations and equation attributes. A list summarizing the
main points to keep in mind follows.

./location.gms

874 User's Guide

• Equations must be declared before they may be defined. [1]

• It is good practice to add an explanatory text to the declaration. [2]

• More than one equation may be declared at once. The equation names have to be separated by
commas or by a line break. [3]

• Equations may be declared and defined over sets which are called the domain of definition of the
equation. [4]

• One indexed equation may generate many constraints depending on the size of the set(s) over which
it is defined. [5]

• Equations may be defined over subsets. The dollar condition may be used to filter the members of a
set so that only a subset of the members are considered. [6]

• The set(s) over which an equation is defined must be consistent with the set(s) over which the
equation was declared, being the set(s) themselves or a subset of the set(s). [7]

• The arrangement of terms in an equation is up to the other. Variables can appear on both sides of
an equation. [8]

• Labels of specific set elements may be used explicitly in equations. [9]

• All arithmetic operations that may be used to evaluate expressions are also allowed in equations.
[10]

• Many functions that are defined in GAMS may be used in equations. [11]

• It is good practice to set bounds for variables to avoid undefined operations if equations contain
operations that are undefined at certain values. [12]

• Equations have attributes similar to variables (.l, .m, .lo, .up and .scale). [13]

4.30 Model and Solve Statements

4.30.1 Introduction

This chapter brings together all the concepts discussed in previous chapters by explaining how to specify
a model and solve it.

4.30.2 The Model Statement

The model statement is used to collect equations into groups and to label them so that they can be solved.
The simplest form of the model statement uses the keyword all: the model consists of all equations
declared before the model statement is entered. For most simple applications this is all the user needs to
know about the model statement.

4.30 Model and Solve Statements 875

4.30.2.1 The Syntax

In general, the syntax for a model declaration in GAMS is as follows:

model[s] model_name [text] [/ (all | eqn_name {, eqn_name}) {, var_name(set_name)} /]

{,model_name [text] [/ (all | eqn_name {, eqn_name}) {, var_name(set_name)} /]} ;

The keyword model[s] indicates that this is a model statement and model name is the internal name of
the model in GAMS, it is an identifier. The optional explanatory text is used to describe the model, all
is a keyword as introduced above and eqn name is the name of an equation that has been declared prior to
the model statement. Var name(set name) is a couple of previous declared variable and and set to limit
the domain of variables in the model. More details about this are described in the following subsection.
For advice on explanatory text and how to choose a model name, see the tutorial Good Coding Practices.

Note

Model statements for Mixed Complementarity Problem (MCP) and Mathematical Program with Equi-
librium Constraints (MPEC) models require a slightly different notation, since complementarity rela-
tionships need to be included. For details see subsections Mixed Complementarity Problem (MCP)
and Mathematical Program with Equilibrium Constraints (MPEC).

An example of a model definition in GAMS is shown below.

Model transport "a transportation model" / all /;

The model is called transport and the keyword all is a shorthand for all known (declared) equations.

Several models may be declared (and defined) in one model statement. This is useful when experimenting
with different ways of writing a model, or if one has different models that draw on the same data. Consider
the following example, adapted from [PROLOG], in which different groups of the equations are used in
alternative versions of the problem. Three versions are solved: the linear, nonlinear, and 'expenditure'
versions. The model statement to define all three is:

Model nortonl "linear version" / cb,rc,dfl,bc,obj /

nortonn "nonlinear version" / cb,rc,dfn,bc,obj /

nortone "expenditure version" / cb,rc,dfe,bc,obj / ;

Here cb, rc, etc. are the names of the equations. We will describe below how to obtain the solution to
each of the three models.

Note

If several models are declared and defined with one model statement, the models have to be separated
by commas or linefeeds and a semicolon terminates the entire statement.

If several models are declared then it is possible to use one previously declared model in the declaration of
another. The following examples illustrate this:

Model one "first model" / tcost_eq, supply_eq, demand_eq /

two "second model that nests first" / one, balance_eq /

three "third model that nests first and second" / two, capacity_eq, configure_eq /;

876 User's Guide

Model one is declared and defined using the general syntax, model two contains all the equations of
model one and the equation balance eq, and model three contains all of model two and the equations
capacity eq and configure eq.

In addition to nesting models as illustrated above, it is also possible to use the symbols + and - to
augment or remove items relative to models that were previously defined. The following examples serve
as illustration:

Model four "fourth model: model three minus model one" / three-one /

five "fifth model: model three without eqn configure_eq" / three-configure_eq /

six "sixth model: model four plus model two" / four+two /;

Model four contains the equations from model three except for those that belong to model one. Model
five contains all equations from model three except for equation configure eq. Model six contains
the union of the equations in model four and two. Note that both model names and equation names may
be used in association with the symbols + and -.

Limited domain for variables

As mentioned above, it is possible to limit the domain of variables used in a model in the model statement.
This allows to restrict the generation of blocks of variables in a single place instead of using, e.g.,
dollar conditions at every place where this variable block is used in equations (which might be required
for an efficient model generation).

The following examples is based on the basic transportation model [TRNSPORT]. To limit the
transportation network in that model to certain links (e.g. because some are blocked because of some
reason) one could introduce a subset of the free links and use that with dollar conditions in the equations
like this:

* Initialize whole network as free

Set freeLinks(i,j) Useable links in the network / #i.#j /;

cost.. z =e= sum((i,j), c(i,j)*x(i,j)$freeLinks(i,j));

supply(i).. sum(j, x(i,j)$freeLinks(i,j)) =l= a(i);

demand(j).. sum(i, x(i,j)$freeLinks(i,j)) =g= b(j);

* Block a particular link

freeLinks(’san-diego’,’topeka’) = no;

Model transport / all /;

solve transport using lp minimizing z;

Now, instead of adding the dollar condition to each appearance of x in the model, one could simply add a
domain restriction for that variable to the model statement directly by specifying a variable and the set
that limits its domain. Using this approach, the previous example looks like this:

* Initialize whole network as free

Set freeLinks(i,j) Useable links in the network / #i.#j /;

cost.. z =e= sum((i,j), c(i,j)*x(i,j));

4.30 Model and Solve Statements 877

supply(i).. sum(j, x(i,j)) =l= a(i);

demand(j).. sum(i, x(i,j)) =g= b(j);

* Block a particular link

freeLinks(’san-diego’,’topeka’) = no;

Model transport / all, x(freeLinks) /;

solve transport using lp minimizing z;

Note

If one adds the domain restriction to the model statement, internally GAMS inserts
a dollar condition to every appearance of the restricted variables in equations of the
model. When doing this, the indices are copied as they appear with the variable.
So, in the example above, x(i,j) becomes x(i,j)$freeLinks(i,j). In the same way
x(i-1,j+1) becomes x(i-1,j+1)$freeLinks(i-1,j+1) and x('seattle','chicago') becomes
x('seattle','chicago')$freeLinks('seattle','chicago').

Attention

As a consequence of above's note one could see some unexpected results, like ”division by zero
errors”, if it is not done carefully. For example, the following dummy model, will trigger such an
error, since we sum over all i, but some x were excluded leaving a 0 as divisor:

Set i / i1*i3 /

sub(i) / i2 /;

Positive Variable x(i);

Variable z;

Equation obj;

obj.. z =e= sum(i, 1/x(i));

x.lo(i) = 1;

Model m / obj, x(sub) /;

solve m min z use nlp;

4.30.2.2 Classification of Models

Various types of problems can be solved with GAMS. Note that the type of the model must be known
before it may be solved. The model types are briefly discussed in this section. GAMS checks that the
model is in fact the type the user thinks it is, and issues explanatory error messages if it discovers a
mismatch - for instance, that a supposedly linear model contains nonlinear terms. Some problems may
be solved in more than one way, and the user has to choose which way to use. For instance, if there are
binary or integer variables in the model, it can be solved either as a MIP or as a RMIP.

The model types and their identifiers, which are needed in the a solve statement, are given in Table 1.
For details on the solve statement, see section The Solve Statement.

GAMS Model Type Model Type Description Requirements and Comments

LP
Linear Program Model with no nonlinear terms or dis-

crete (i.e. binary, integer, etc) vari-
ables.

878 User's Guide

GAMS Model Type Model Type Description Requirements and Comments

NLP
Nonlinear Program Model with general nonlinear terms

involving only smooth functions, but
no discrete variables. For a classifi-
cation of functions as to smoothness,
see section Functions.

QCP
Quadratically Constrained Program Model with linear and quadratic

terms, but no general nonlinear
terms or discrete variables.

DNLP
Discontinuous Nonlinear Program Model with non-smooth nonlinear

terms with discontinuous derivatives,
but no discrete variables. This is
the same as NLP, except that non-
smooth functions may appear as well.
These models are more difficult to
solve than normal NLP models and
we strongly advise not to use this
model type.

MIP
Mixed Integer Program Model with binary, integer, SOS

and/or semi variables, but no nonlin-
ear terms.

RMIP Relaxed Mixed Integer Program Like MIP, except that the discrete
variable requirement is relaxed. See
the note below on relaxed model
types.

MINLP
Mixed Integer Nonlinear Program Model with both nonlinear terms and

discrete variables.

RMINLP Relaxed Mixed Integer Nonlinear
Program

Like MINLP except that the discrete
variable requirement is relaxed. See
the note below on relaxed model
types.

MIQCP
Mixed Integer Quadratically Con-
strained Program

Model with both quadratic terms
and discrete variables, but no gen-
eral nonlinear term.

RMIQCP Relaxed Mixed Integer Quadratically
Constrained Program

Like MIQCP except that the discrete
variable requirement is relaxed. See
the note below on relaxed model
types.

MCP
Mixed Complementarity Problem A square, possibly nonlinear, model

that generalizes a system of equa-
tions. Rows and columns are
matched in one-to-one complemen-
tary relationships.

CNS
Constrained Nonlinear System Model solving a square, possibly non-

linear system of equations, with an
equal number of variables and con-
straints.

MPEC
Mathematical Programs with Equi-
librium Constraints

A difficult model type for which
solvers and reformulations are cur-
rently being developed.

RMPEC Relaxed Mathematical Program with
Equilibrium Constraints

A difficult model type for which
solvers and reformulations are cur-
rently being developed. See the note
below on relaxed model types.

EMP
Extended Mathematical Program A family of mathematical program-

ming extensions.

4.30 Model and Solve Statements 879

GAMS Model Type Model Type Description Requirements and Comments

MPSGE General Equilibrium Not actually a model type but
mentioned for completeness, see
MPSGE.

Table 1: GAMS Model Types

Note

• The relaxed model types RMIP, RMINLP, RMIQCP, and RMPEC solve the problem as the
corresponding model type (e.g. MIP for RMIP) but relax the discrete requirement of the
discrete variables. This means that integer and binary variables may assume any values between
their bounds. SemiInteger and SemiCont variables may assume any values between 0 and their
upper bound. For SOS1 and SOS2 variables the restriction of the number of non-zero values is
removed.

• Many ”LP” solvers like Cplex offer the functionality of solving convex quadratic models. So
the Q matrices in the model need to be positive semidefinite. An extension to to this are the
second-order cone programs (SOCP) with either symmetric or rotated cones. See the solver
manuals (e.g. on MOSEK) for details.

• Unlike other checks on the model algebra (e.g. existence of discrete variables or general
non-linear terms), the GAMS compiler does not enforce a quadratic model to only consist of
quadratic and linear terms. This requirement is enforced at runtime for a particular model
instance.

Linear Programming (LP)

Mathematically, the Linear Programming (LP) problem looks like:

Minimize or maximize cx
subject to Ax α b

L ≤ x ≤ U,

where x is a vector of variables that are continuous real numbers, cx is the objective function, and Axα b
represents the set of constraints. Here, α is an equation operator. For details on the equation types
allowed in GAMS, see Equation Types. L and U are vectors of lower and upper bounds on the variables.

GAMS supports free (unrestricted) variables, positive variables, and negative variables. Note that users
may customize lower and upper bounds, for details see section Bounds on Variables.

For information on LP solvers that can be used through GAMS see the Solver/Model type Matrix.

Nonlinear Programming (NLP)

Mathematically, the Nonlinear Programming (NLP) problem looks like:

Minimize or Maximize f(x)
subject to g(x) α 0

L ≤ x ≤ U,

where x is a vector of variables that are continuous real numbers, f(x) is the objective function, and g(x)α 0
represents the set of constraints. For details on the equation types allowed in GAMS, see Equation Types.
Note that the functions f(x) and g(x) have to be differentiable. L and U are vectors of lower and upper
bounds on the variables.

For information on NLP solvers that can be used through GAMS see the Solver/Model type Matrix. See
also the tutorial Good NLP Formulations.

Note

NLP models may have the nonlinear terms inactive. In this case setting the model attribute
TryLinear to 1 causes GAMS to check the model and use the default LP solver if possible. For
details on model attributes, see subsection Model Attributes.

880 User's Guide

Quadratically Constrained Programs (QCP)

Mathematically, the Quadratically Constrained Programming (QCP) problem looks like:

Maximize or Minimize cx+ x'Qx
subject to Aix+ x'Rix α bi for all i

L ≤ x ≤ U,

where x denotes a vector of variables that are continuous real numbers, cx is the linear part of the objective
function, x'Qx is the quadratic part of the objective function, Aix represents the linear part of the ith
constraint, x'Rix its quadratic part and bi its right-hand side. For details on the equation types allowed
in GAMS, see Equation Types. Further, L and U are vectors of lower and upper bounds on the variables.

Note that a QCP is a special case of the NLP in which all the nonlinearities are required to be quadratic.
As such, any QCP model can also be solved as an NLP. However, most ”LP” vendors provide routines to
solve LP models with a quadratic objective. Some allow quadratic constraints as well. Solving a model
using the QCP model type allows these ”LP” solvers to be used to solve quadratic models as well as
linear ones. Some NLP solvers may also take advantage of the special (quadratic) form when solving QCP
models.

Attention

In case a model with quadratic constraints is passed to a QCP solver that only allows a quadratic
objective, a capability error will be returned (solver status 6 CAPABILITY PROBLEMS). Some
solvers will fail when asked to solve a non-convex quadratic problems as described above.

Note

Using the model attribute TryLinear causes GAMS to see if the problem can be solved as an LP
problem. For details on model attributes, see subsection Model Attributes.

For information on QCP solvers that can be used through GAMS see the Solver/Model type Matrix.

Nonlinear Programming with Discontinuous Derivatives (DNLP)

Mathematically, the Nonlinear Programming with Discontinuous Derivatives (DNLP) problem looks like:

Maximize or Minimize f(x)
subject to g(x) α 0

L ≤ x ≤ U,

where x is a vector of variables that are continuous real numbers, f(x) is the objective function, g(x)α 0
represents the set of constraints, and L and U are vectors of lower and upper bounds on the variables.
For details on the equation types allowed in GAMS, see Equation Types. Note that this is the same as
NLP, except that non-smooth functions, like abs, min, max may appear in f(x) and g(x).

For information on DNLP solvers that can be used through GAMS see the Solver/Model type Matrix.

Attention

• We strongly advise against using the model type DNLP. The best way to model discontinuous
functions is with binary variables, which results in a model of the type MINLP. The model
[ABSMIP] demonstrates this formulation technique for the functions abs, min, max and sign.
See also section Reformulating DNLP Models.

• Solvers may have difficulties when dealing with the discontinuities, since they are really NLP
solvers and the optimality conditions and the reliance on derivatives may be problematic. Using
a global solver may alleviate this problem.

4.30 Model and Solve Statements 881

Mixed Integer Programming (MIP)

Mathematically, the Mixed Integer Linear Programming (MIP) problem looks like:

Maximize or Minimize c1t+ c2u+ c3v + c4w + c5x+ c6y + c7z
subject to A1t+A2u+A3v +A4w +A5x+A6y +A7z α b

t ∈ R
u ≥ 0 and u ≤ L2 and u ∈ Z
v ∈ (0, 1)
w ∈ SOS1
x ∈ SOS2
y = 0 or L6 ≤ y
z = 0 or L7 ≤ z and z ∈ Z,

where

• c1t+ c2u+ c3v + c4w + c5x+ c6y + c7z is the objective function,

• A1t+A2u+A3v +A4w +A5x+A6y +A7z α b represents the set of constraints of various equality
and inequality forms,

• t is a vector of variables that are continuous real numbers,

• u is a vector of variables that can only take integer values smaller than L2,

• v is a vector of binary variables,

• w is a vector of variables that belong to SOS1 sets; this means that at most one variable in the set is
nonzero,

• x is a vector of variables that belong to SOS2 sets; this means that at most two adjacent variables in
the set are nonzero,

• y is a vector of variables that are semi-continuous; they are either zero or larger than L6,

• z is a vector of variables that are semi-integer; they are integer and either zero or larger than L7.

For details on the equation types allowed in GAMS, see Equation Types. For more details on MIPs in
GAMS, especially the use of SOS and semi variables, see section Special Mixed Integer Programming (MIP) Features.

For information on MIP solvers that can be used through GAMS, see the Solver/Model type Matrix.

Attention

Not all MIP solvers cover all the cases associated with SOS and semi variables. Please consult the
solver manuals for details on capabilities.

882 User's Guide

Mixed Integer Nonlinear Programming (MINLP)

Mathematically, the Mixed Integer Nonlinear Programming (MINLP) problem looks like:

Maximize or Minimize f(x) +Dy
subject to g(x) +Hy α 0

L ≤ x ≤ U
y = {0, 1, 2, · · · },

where x is a vector of variables that are continuous real numbers, y denotes a vector of variables that can
only take integer values, f(x)+Dy is the objective function, g(x)+Hy α 0 represents the set of constraints,
and L and U are vectors of lower and upper bounds on the variables. For details on the equation types
allowed in GAMS, see Equation Types. Further, y = {0, 1, 2, · · · } is the integrality restriction on y.

For information on MINLP solvers that can be used through GAMS see the Solver/Model type Matrix.

Note

• SOS and semi variables can also be accommodated by some solvers. Please consult the solver
manuals for details on capabilities.

• The model attribute TryLinear causes GAMS to examine whether the problem may be solved
as a MIP problem. For details on model attributes, see subsection Model Attributes.

Mixed Integer Quadratically Constrained Programs (MIQCP)

A Mixed Integer Quadratically Constrained Program (MIQCP) is a special case of the MINLP in which
all the nonlinearities are required to be quadratic. For details see the description of the QCP, a special
case of the NLP.

For information on MIQCP solvers that can be used through GAMS, see the Solver/Model type Matrix.

Note

The model attribute TryLinear causes GAMS to examine whether the problem may be solved as a
MIP problem. For details on model attributes, see subsection Model Attributes.

Mixed Complementarity Problem (MCP)

Unlike the other model types we have introduced so far, the Mixed Complementarity Problem (MCP) does
not have an objective function. An MCP is specified by three pieces of data: a function F (z) : Rn 7→ Rn,
lower bounds l ∈ {R ∪ {−∞}}n and upper bounds u ∈ {R ∪ {∞}}n. A solution is a vector z ∈ Rn such
that for each i ∈ {1, . . . , n}, one of the following three conditions hold:

Fi(z) = 0 and `i ≤ zi ≤ ui or
Fi(z) > 0 and zi = `i or
Fi(z) < 0 and zi = ui.

This problem can be written compactly as

F (z) ⊥ L ≤ z ≤ U,

where the symbol ⊥ (which means ”perpendicular to”, shortened to ”perp to”) indicates pair-wise
complementarity between the function F and the variable z and its bounds.

4.30 Model and Solve Statements 883

The following special case is an important and illustrative example:

F (z) ⊥ z ≥ 0.

In this example, the unstated but implied upper bound u is infinity. Since z is finite, we cannot have zi = ui
and the third condition above cannot hold: this implies F (z) >= 0. The remaining two conditions imply
pair-wise complementarity between z >= 0 and F (z) >= 0. This is exactly the Nonlinear Complementarity
Problem, often written as

F (z) ≥ 0, z ≥ 0, 〈F (z), z〉 = 0.

None of this rules out the degenerate case (i.e. Fi(z) and zi both zero). In practice, these can be difficult
models to solve.

Another special case arises when the bounds L and U are infinite. In this case, the second and third
conditions above cannot hold, so we are left with F (z) = 0, a square system of nonlinear equations. And
finally, we should mention a special case that occurs frequently in practice: if `i = ui (i.e. zi is fixed) then
we have a complementary pair: one of the three conditions will hold as long as Fi(z) is defined. Essentially,
fixing a variable removes or obviates the matching equation. This is often useful when modeling with
MCP.

The definition above describes the canonical MCP model as it exists when GAMS passes it to an MCP
solver. Some models have exactly this form even in the GAMS code, but usually some processing is done
by the GAMS system to arrive at a model in this form. Here we'll describe the steps of this process and
illustrate with an example from the model library.

1. The process starts with the list of rows (aka single equations) and columns (aka single variables)
that make up the MCP model, and potentially some matching information.

• The usual rules apply: rows are part of the model because their associated equations are
included in the model statement, but columns only become part of the model by use: a column
enters the model only if it is used in some row of the model. Therefore including a variable
symbol as part of a match in the model statement will not influence the set of columns belonging
to the model.

• Matches (where they exist) are pointers from rows to columns.

• Technically, the MCP is defined via a function F while a model contains constraints. Given a
constraint, we define an associated function as LHS - RHS, so e.g. Fi ≥ 0 is consistent with a
=G= constraint.

2. The explicit matches are processed: each match creates a complementary pair. What remains after
the explicit matches are consumed are the unmatched rows and unmatched columns.

• It is an error for any column to be matched to multiple rows, so the row-column matching is
one-to-one.

• For each match some consistency checks between the column bounds and the row type are
made. For details, see Table 2.

• For example, matching an =N= row with any column is good, matching an =E= row with
a free column is good, matching an =E= row with a lower-bounded column is allowed, and
matching a =G= row with an upper-bounded column results in an error.

3. Any fixed columns remaining are ignored: these columns can be treated like exogenous variables or
parameters.

4. If what remains is a set of =E= rows and an equal number of unbounded columns, these can be
matched up in any order and we have a well-defined MCP. If this is not what remains, an error is
triggered.

To illustrate how this works, consider the spatial equilibrium model [SPATEQU] with the following
model statement:

884 User's Guide

Model P2R3_MCP / dem, sup, in_out.p, dom_trad.x /;

1. The model P2R3 MCP includes the rows from equations dem, sup, in out and dom trad and exactly
the columns used by these rows. Checking the listing file, we see columns for Qd, Qs, x, and p. In
addition, the model statement specifies two matches: in out.p and dom trad.x. These matches
always take the form of an equation.variable pair, with no indices or domains included.

2. In this example, the rows corresponding to the equation in out match up perfectly with the columns
from the variable p: there are no holes in the set of rows or columns because of some dollar conditions
in the equation definition. We have a one-to-one match so all the rows of in out and columns of p
are consumed by the match in the model statement. The same holds for the dom trad.x pair, so
what is left are the rows of dem and sup and the columns of Qd and Qs, all of which are unmatched.

3. There are no fixed variables to remove.

4. Since dem and sup are =E= constraints and Qd and Qs are free variables, we can match them in any
order without changing the solution set for this model. The counts of these unmatched equality
rows and unmatched free variables are equal, so we get a well-defined MCP.

When rows are matched explicitly to columns, some care must be taken to match them consistently. For
example, consider a row-column match g.y. The row g can be of several types: =N=, =E=, =G=, or =L=. An
=N= row can be matched to any sort of variable: the =N= doesn't imply any sort of relationship, which
works perfectly with our definition of ⊥ above: the allowed sign or direction of g is determined completely
by the bounds on the complementary variable y. If g is an =E= row, this is consistent with a free variable
y, but what if y has an active lower bound? By definition we allow g to be positive at solution, but this
violates the declaration as an =E= row. Such cases can be handled by marking the row with a redef. The
total number of redefs for a given model is available via the NumRedef model attribute and is shown in
the report summary. Note that the set of rows marked depends on the solution: in the example above,
if g is zero at solution it will not be marked as a redef, regardless of what the bounds are on y. Finally,
some combinations are simply not allowed: they will result in a model generation error. The table below
lists the outcome for all possible combinations.

Table 2: MCP Matching

Column Bounds =N= =E= =G= =L=

lower OK redef OK ERROR

upper OK redef ERROR OK

free OK OK OK OK

double OK redef redef redef

fixed OK redef redef redef

The definition, process, and rules above have several implications for valid MCP models:

• It is always acceptable to use the =N= notation when defining the equations in an MCP model,
provided these equations are matched explicitly. In this case the bounds on F(z) are implied by the
bounds on the matching columns, and redefs will never occur.

• Variables that are known to be lower-bounded (no upper bound) will match consistently with =G=

equations.

• Variables that are known to be upper-bounded (no lower bound) will match consistently with =L=

equations.

• Variables that are known to be unbounded will match consistently with =E= equations.

• Where the bound structure is not known in advance, or both upper and lower bounds exist, a match
with an =N= equation will always be consistent. Other equation types will result in errors or redefs.

4.30 Model and Solve Statements 885

• The model may initially have fewer rows than columns, as long as the ”extra” columns are unmatched
fixed columns that ultimately get removed from the MCP passed to the solver.

• Any bounded-but-not-fixed column must be matched explicitly to a row.

• The only rows that may be unmatched are =E= rows.

• It is customary to re-use the constraints of an LP or NLP model when formulating the MCP
corresponding to the Karush-Kuhn-Tucker (KKT) conditions. If the original model is a minimization,
the LP/NLP marginals .m and the variables for these marginals in the MCP will use the same
sign convention, and the orientation for the constraints will be consistent between the two models,
making re-use easier.

As mentioned above, it is typical to use the same equations in both NLP and MCP models. Sometimes, it
is not the original equation that is wanted for the MCP, but rather the reoriented (aka negated or flipped)
equation. For example, the flipped version of x∗∗1.5 =L= y is y =G= x∗∗1.5, while sqr(u) - sqr(v)

=E= 5 becomes - sqr(u) + sqr(v) =E= -5. Instead of re-implementing the equation in flipped form,
the same result can be achieved by prefixing the equation name with a - in the model statement. See the
[mcp10] model for an example of such usage. When equations are used in flipped form, they are marked
with a redir in the listing file's solution listing.

An example of complementarity that should be familiar to many is the relationship between a constraint
and its associated dual multiplier: if the constraint is non-binding, its dual multiplier must be zero (i.e. at
bound) while if a dual multiplier is nonzero the associated constraint must be binding. In fact, the KKT
or first-order optimality conditions for LP and NLP models can be expressed and solved as an MCP.

These complementarity relationships found in optimization problems are useful in understanding the
marginal values assigned to rows and columns in the GAMS solution for MCP. With no objective function,
the usual definition for marginal values and their interpretation isn't useful. Instead, the GAMS MCP
convention for the marginal values of columns is to return the slack of the associated row (i.e. its
value when interpreted and evaluated as a function). For the marginal values of rows, the level value
(not the slack) of the associated column is returned. When we apply this convention to the NCP (
F (z) ≥ 0, z ≥ 0, 〈F (z), z〉 = 0) we see pairwise complementarity between the levels and marginals returned
for each of the rows and columns in the model. This is also the case if we take the KKT conditions of an
LP in a suitable standard form: minimization, x ≥ 0, Ax ≥ b.

MCPs arise in many application areas including applied economics, game theory, structural
engineering and chemical engineering. For further details on this class of problems, see
http://www.neos-guide.org/content/complementarity-problems.

For information on MCP solvers that can be used through GAMS, see Solver/Model type Matrix.

Constrained Nonlinear System (CNS)

The Constrained Nonlinear System (CNS) is the second GAMS model type that does not have an objective
function. Mathematically, a CNS model looks like:

Find x
subject to F (x) = 0

L ≤ x ≤ U
G(x) α b,

(4.1)

where x is a set of continuous variables and F is a set of nonlinear equations of the same dimension as x.
This is a key property of this model type: the number of equations equals the number of variables, so we
have a square system. The (possibly empty) constraints L ≤ x ≤ U are not intended to be binding at
the solution, but instead are included to constrain the solution to a particular domain, to avoid regions
where F (x) is undefined, or perhaps just to give the solver a push in the right direction. The (possibly

http://www.neos-guide.org/content/complementarity-problems
http://www.neos-guide.org/content/complementarity-problems

886 User's Guide

empty) constraints G(x) α b are intended to serve the same purpose as the variable bounds and are silently
converted to equations with bounded slacks.

Note that since there is no objective in a CNS model, there are no marginal values for variables and
equations. Any marginal values already stored in the GAMS database will remain untouched. CNS models
also make use of some model status values that allow a solver to indicate if the solution is unique (e.g. for
a non-singular linear system) or if the linearization is singular at the solution. For singular models (solved
or otherwise), the solver can mark one or more dependent rows with a depnd. The total number of rows
so marked for a given model is available via the NumDepnd model attribute and is shown in the report
summary.

The CNS model is a generalization of a square system of equations F (x) = 0. Such a system could also be
modeled as an NLP with a dummy objective. However, there are a number of advantages to using the
CNS model type, including:

• A check by GAMS that the model is really square,

• solution/model diagnostics by the solver (e.g. singular at solution, (locally) unique solution),

• CNS-specific warnings if the side constraints L ≤ x ≤ U or G(x) α b are active at a solution,

• and potential improvement in solution times, by taking better advantage of the model properties.

For information on CNS solvers that can be used through GAMS, see the Solver/Model type Matrix.

Mathematical Program with Equilibrium Constraints (MPEC)

Mathematically, the Mathematical Program with Equilibrium Constraints (MPEC) problem looks like:

Maximize or Minimize f(x, y)
subject to g(x, y) α 0

Lx ≤ x ≤ Ux
F (x, y) ⊥ Ly ≤ y ≤ Uy,

where x and y are vectors of continuous real variables. The variables x are often called the control or
upper-level variables, while the variables y are called the state or lower-level variables. f(x, y) is the
objective function. g(x, y)α 0 represents the set of traditional (i.e. NLP-type) constraints; some solvers
may require that these constraints only involve the control variables x. The function F (x, y) and the
bounds Ly and Uy define the equilibrium constraints. If x is fixed, then F (x, y) and the bounds Ly and Uy
define an MCP; the discussion of the ”perp to” symbol ⊥ in that section applies here as well. From this
definition, we see that the MPEC model type contains NLP and MCP models as special cases of MPEC.

A simple example of an entire MPEC model is given below.

variable z, x1, x2, y1, y2;

positive variable y1;

y2.lo = -1;

y2.up = 1;

equations cost, g, h1, h2;

cost.. z =E= x1 + x2;

g.. sqr(x1) + sqr(x2) =L= 1;

h1.. x1 =G= y1 - y2 + 1;

h2.. x2 + y2 =N= 0;

model example / cost, g, h1.y1, h2.y2 /;

solve example using mpec min z;

4.30 Model and Solve Statements 887

Note that as in the MCP, the complementarity relationships in an MPEC are specified in the model
statement via equation-variable pairs: the h1.y1 specifies that the equation h1 is perpendicular to the
variable y1 and the h2.y2 specifies that the equation h2 is perpendicular to the variable y2. For details
on the solve statement, see section The Solve Statement.

While the MPEC model formulation is very general, it also results in problems that can be very difficult
to solve. The state-of-the-art for MPEC solvers is not nearly as advanced as that for other model types.
As a result, you should expect the MPEC solvers to be more limited by problem size and/or robustness
issues than solvers for other model types.

For information on MPEC solvers that can be used through GAMS, see the Solver/Model type Matrix. For
more details on MPECs and solver development, see https://neos-guide.org/guide/types/mpec/.

Extended Mathematical Programs (EMP)

Extended Mathematical Programming (EMP) is an (experimental) framework for automated mathematical
programming reformulations. Using EMP, model formulations that GAMS cannot currently handle directly
or for which no robust and mature solver technology exists can be automatically and reliably reformulated
or transformed into models for which robust and mature solver technology does exist within the GAMS
system. For more details, see the chapter on EMP. Currently EMP supports:

• Equilibrium problems including variational inequalities, Nash games, and Multiple Optimization
Problems with Equilibrium Constraints (MOPECs).

• Hierarchical optimization problems such as bilevel programs.

• Disjunctive programs for modeling discrete choices with binary variables.

• Stochastic programs including two-stage and multi-stage stochastic programs, chance constraints
and risk measures such as Variance at Risk (VaR) and Conditional Variance at Risk (CVaR).

Apart from the disjunctive and stochastic programming models mentioned above, EMP models are typically
processed (aka solved) via the JAMS solver: this solver does the work of reformulation/transformation,
calling GAMS to solve this reformulation, and post-processing the solution that results to bring it back in
terms of the original EMP model.

Examples demonstrating how to use the EMP framework and the JAMS and DE solvers are available in
the GAMS EMP Library. These solvers require no license of their own to run but can and do call
subsolvers that do require a license.

4.30.2.3 Model Attributes

Models have attributes that hold a variety of information, including

• information about the results of a solve performed, a solve statement, the solution of a model,

• information about certain features to be used by GAMS or the solver,

• information passed to GAMS or the solver specifying various settings that are also subject to option
statements.

Model attributes are accessed in the following way:

model_name.attribute

https://neos-guide.org/guide/types/mpec/

888 User's Guide

Here model name is the name of the model in GAMS and .attribute is the specific attribute that is to
be accessed. Model attributes may be used on the left-hand side and the right-hand side of assignments.
Consider the following example:

transport.resLim = 600;

x = transport.modelStat;

In the first line the attribute .resLim of the model transport is specified to be 600 (seconds). In the
second line the value of the attribute .modelStat of the model transport is assigned to the scalar x.
Note that model attributes may also be used in display statements.

Some of the attributes are mainly used before the solve statement to provide information to GAMS or the
solver link. Others are set by GAMS or the solver link and hence are mainly used after a solve statement.

Moreover, some of the attributes used before the solve may also be set via an option statement or the
command line. Consider the following example:

option ResLim=10;

This line is an option statement and applies to all models. One can set the model attribute .ResLim to over-
write the global ResLim option. In order to revert the individual .ResLim to the global ResLim option, one
needs to set the model attribute to NA. For more on option statements, see chapter The Option Statement.

gams mymodel ResLim=10

This sets the global ResLim option when invoking the gams run (e.g. from the command line). For more
on command line parameters, see chapter The GAMS Call and Command Line Parameters.

Note that a model-specific option takes precedence over the global setting specified with an option
statement and that a setting via an option statement takes precedence over a setting via the command
line parameter.

The complete list of model attributes is given below. Observe that each entry is linked to a detailed
description of the respective attribute, including information of whether the attribute is also available as
command line parameter or option statement. Note that detailed descriptions of all GAMS command line
parameters, options and model attributes are given in section Detailed Descriptions of All Options.

Model Attributes Mainly Used Before Solve

Attribute Description

bRatio Basis detection threshold

cheat Cheat value, i.e. minimum solution improvement threshold

cutOff Cutoff value for branch and bound

defPoint Indicator for passing on default point

dictFile Force writing of a dictionary file if dictfile > 0

domLim Domain violation limit solver default

fdDelta Step size for finite differences

fdOpt Options for finite differences

holdFixed Treat fixed variables as constants

integer1..5 Integer communication cells

iterLim Iteration limit of solver

4.30 Model and Solve Statements 889

Attribute Description

limCol Maximum number of columns listed in one variable block

limRow Maximum number of rows listed in one equation block

MCPRHoldFx Print list of rows that are perpendicular to variables removed due to the holdfixed
setting

nodLim Node limit in branch and bound tree

optCA Absolute Optimality criterion solver default

optCR Relative Optimality criterion solver default

optFile Default option file

priorOpt Priority option for variable attribute .prior

real1..5 Real communication cells

reform Reformulation level

resLim Wall-clock time limit for solver

savePoint Save solver point in GDX file

scaleOpt Employ user specified variable and equation scaling factors

solPrint Solution report print option

solveLink Solver link option

solveOpt Multiple solve management

sysOut Solver Status file reporting option

threads Number of processors to be used by a solver

tolInfeas Infeasibility tolerance for an empty row of the form a.. 0∗x =e= 0.0001;

tolInfRep This attribute sets the tolerance for marking infeasible in the equation listing

tolProj Tolerance for setting solution values to a nearby bound when reading a solution

tryInt Whether solver should make use of a partial integer-feasible solution

tryLinear Examine empirical NLP model to see if there are any NLP terms active. If there are
none the default LP solver will be used

workFactor Memory Estimate multiplier for some solvers

workSpace Work space for some solvers in MB

Model Attributes Mainly Used After Solve

Attribute Description

domUsd Number of domain violations

etAlg Solver dependent timing information

etSolve Elapsed time it took to execute a solve statement in total

etSolver Elapsed time taken by the solver only

handle Unique handle number of SOLVE statement

iterUsd Number of iterations used

line Line number of last solve of the corresponding model

linkUsed Integer number that indicates the value of SolveLink used for the last solve

marginals Indicator for marginals present

maxInfes Maximum of infeasibilities

meanInfes Mean of infeasibilities

modelStat Integer number that indicates the model status

nodUsd Number of nodes used by the MIP solver

number Model instance serial number

numDepnd Number of dependencies in a CNS model

numDVar Number of discrete variables

numEqu Number of equations

890 User's Guide

Attribute Description

numInfes Number of infeasibilities

numNLIns Number of nonlinear instructions

numNLNZ Number of nonlinear nonzeros

numNOpt Number of nonoptimalities

numNZ Number of nonzero entries in the model coefficient matrix

numRedef Number of MCP redefinitions

numVar Number of variables

numVarProj Number of bound projections during model generation

objEst Estimate of the best possible solution for a mixed-integer model

objVal Objective function value

procUsed Integer number that indicates the used model type

resCalc Time spent in function and derivative calculations (deprecated)

resDeriv Time spent in derivative calculations (deprecated)

resGen Time GAMS took to generate the model in wall-clock seconds

resIn Time to import model (deprecated)

resOut Time to export solution (deprecated)

resUsd Time the solver used to solve the model in seconds

rngBndMax Maximum absolute non-zero value of bounds passed to the solver (excluding infinity)

rngBndMin Minimum absolute non-zero value of bounds passed to the solver

rngMatMax Maximum absolute non-zero value of coefficients in the model matrix passed to the
solver (excluding infinity)

rngMatMin Minimum absolute non-zero value of coefficients in the model matrix passed to the
solver

rngRhsMax Maximum absolute non-zero value of right hand sides passed to the solver (excluding
infinity)

rngRhsMin Minimum absolute non-zero value of right hand sides passed to the solver

rObj Objective function value from the relaxed solve of a mixed-integer model when the
integer solver did not finish

solveStat Indicates the solver termination condition

sumInfes Sum of infeasibilities

sysIdent Solver identification number

sysVer Solver version

4.30.3 The Solve Statement

Once a model has been defined using the model statement, the solve statement prompts GAMS to call
one of the available solvers for the particular model type. This section introduces and discusses the solve
statement in detail. For a list of GAMS model types, see Table 1. For information on how to specify
desired solvers, see section Choosing a Solver.

Note

It is important to remember that GAMS does not solve the problem, but passes the problem
definition to one of a number of separate solver programs that are integrated with the GAMS system.

4.30.3.1 The Syntax of the Solve Statement

In general, the syntax for a solve statement is as follows. Note that there are two alternatives that are
equally valid:

4.30 Model and Solve Statements 891

solve model_name using model_type maximizing|minimizing var_name;

solve model_name maximizing|minimizing var_name using model_type ;

The keyword solve indicates that this is a solve statement. Model name is the name of the model as
defined by a model statement. Note that the model statement must be placed before the solve statement
in the program. The keyword using is followed by model type, which is one of the GAMS model types
described above, see Table 1. The keywords maximizing or minimizing indicate the direction of the
optimization. Var name is the name of the objective variable that is being optimized. An example of a
solve statement in GAMS is shown below.

Solve transport using lp minimizing cost ;

Solve and using are reserved words, transport is the name of the model, lp is the model type,
minimizing is the direction of optimization, and cost is the objective variable. Note that an objective
variable is used instead of an objective row or function.

Attention

The objective variable must be scalar and of type free, and must appear in at least one of the
equations in the model.

Recall that some model types (e.g. the Constrained Nonlinear System (CNS) or the Mixed Complementarity
Problem (MCP)) do not have an objective variable. So their solve statement syntax is slightly different:

solve model_name using model_type;

As before, solve and using are keywords, model name is the name of the model as defined by a model

statement and model type is the GAMS model type CNS or MCP. There is no objective variable and
consequently no direction of optimization. An example from the spatial equilibrium model [SPATEQU]
illustrates this solve statement:

Solve P2R3_MCP using mcp;

P2R3 MCP is the model name, the model type is MCP and as expected, there is no objective variable.

The EMP model type serves many purposes including some experimental ones. The solve statement with
model type EMP can be with or without the objective variable and optimization direction. For more
information, see chapter Extended Mathematical Programming (EMP).

4.30.3.2 Actions Triggered by the Solve Statement

When GAMS encounters a solve statement during compilation (the syntactic check of the input file) or
execution (actual execution of the program), it initiates a number of special actions. The purpose is to
prevent waste that would be caused by solving a model that has apparently been incorrectly specified.
During compilation the following are verified:

1. All symbolic equations have been defined and the objective variable is used in at least one of the
equations.

2. The objective variable is scalar and of type free (even though lower and upper bounds may have
been specified)

3. MCP models are checked for appropriate complementarity and squareness.

4. Each equation fits into the specified problem class (linearity for LP, continuous derivatives for NLP,
as outlined above).

5. All sets and parameters in the equations have values assigned.

892 User's Guide

Note

GAMS issues explanatory error messages if it discovers that the model is not according to type; for
example, the presence of nonlinear terms in a supposedly LP model. For details on error messages,
see chapter GAMS Output.

At execution time the solve statement triggers the following sequence of steps:

1. The model is translated into the representation required by the solution system to be used.

2. Debugging and comprehension aids that the user wishes to see are produced and written to the
output file (EQUATION LISTING, etc). For customizing options (e.g. LimRow and LimCol), see
chapter The Option Statement.

3. GAMS verifies that there are no inconsistent bounds or unacceptable values (for example, NA or
UNDF) in the problem.

4. Any errors detected at this stage cause termination with as much explanation as possible, using the
GAMS names for the identifiers causing the trouble.

5. GAMS designs a solution strategy based on the possible availability of level values or basis information
from a previous solution: all available information is used to provide efficiency and robustness of
operation. Any specifications provided by the user (Iteration limits etc.) are incorporated. A solver
is chosen which is either the default solver for that problem type, the solver specified on the command
line or the solver chosen by an option statement. For details see section Choosing a Solver.

6. GAMS passes control to the solution subsystem and waits while the problem is being solved.

7. GAMS reports on the status of the solution process and loads solution values back into the GAMS
database. This causes new values to be assigned to the .l and .m fields for all individual equations
and variables in the model. In addition, the post solution model attributes are assigned. The
procedure for loading back the data associated with level and marginal values may be customized
using the SolveOpt model attribute and option. A row by row and column by column listing of the
solution is provided by default. It may be suppressed by the SolPrint model attribute or option.
Any apparent difficulty with the solution process will cause explanatory messages to be displayed.
Errors caused by forbidden nonlinear operations are reported at this stage.

Note

When the solver does not provide a dual solution (.m), then GAMS does not print the marginal
column in the solution listing and set the marginal field in variables and equations to NA.

The outputs from these steps, including any possible error messages, are discussed in detail in chapter
GAMS Output.

4.30.4 Programs with Several Solve Statements

Several solve statements can be processed in the same program. The next few subsections discuss various
instances where several solve statements may be needed in the same file. If sequences of expensive or
difficult models are to be solved, it might be useful to interrupt program execution and continue later.
For details on this topic, see chapter The Save and Restart Feature.

4.30 Model and Solve Statements 893

4.30.4.1 Several Models

If there are different models then the solves may be sequential, as below. Each of the models in [PROLOG]

consists of a different set of equations, but the data are identical, so the three solves appear in sequence
with no intervening assignments:

Solve nortonl using nlp maximizing z;

Solve nortonn using nlp maximizing z;

Solve nortone using nlp maximizing z;

When there is more than one solve statement in the program, GAMS uses as much information as
possible from the previous solution to provide a starting point or basis in the search for the next solution.

4.30.4.2 Loop: One Model, Different Data

Multiple solves may also occur as a result of a solve statement within a loop statement. Loop statements
are introduced and discussed in detail in chapter Programming Flow Control Features; here we show that
they may contain a solve statement and thus lead to multiple solves within one model. The example from
[MEANVAR] computes the efficient frontier for return and variance for a portfolio selection problem at
equidistance points.

loop(p(pp),

v.fx = vmin + (vmax-vmin)/(card(pp)+1)*ord(pp) ;

Solve var1 maximizing m using nlp ;

xres(i,p) = x.l(i);

xres(’mean’,p) = m.l;

xres(’var’,p) = v.l;

);

The set p is a set of point between the minimum and maximum variance, it is the driving set of the loop.
A variance variable v is fixed at a equidistance points. With each iteration through the loop another
variance level is used, the NLP model var1 is solved for each iteration and the outputs are stored in the
parameter xres(∗,pp), to be used later for reporting. As often for reporting purposes, the universal set
∗ is used.

This example demonstrates how to solve the same model (in terms of variables and equations) multiple
times with slightly different data. For such situations the Gather-Update-Solve-Scatter (GUSS) facility
improves on the loop implementation by saving generation time and minimizing the communication with
the solver. GUSS is activated by the additional keyword scenario in the solve statement followed by a
set name that provides mapping information between parameters in the model and the scenario containers.
A GUSS implementation of the loop would look as follows:

parameter vfx(p), px(p,i), pm(p);

set dict / p .scenario.’’

v .fixed .vfx

x .level .px

m .level .pm /;

vfx(p(pp)) = vmin + (vmax-vmin)/(card(pp)+1)*ord(pp);

Solve var1 maximizing m using nlp scenario dict;

xres(i,p) = px(p,i);

xres(’mean’,p) = pm(p);

xres(’var’,p) = vfx(p);

894 User's Guide

4.30.4.3 Customizing Solution Management: SolveOpt

It is important to consider how GAMS manages solutions if multiple models are solved. By default,
GAMS merges subsequent solutions with prior solutions. This is not an issue if all models operate over
the same set of variables. However, recursive procedures, different equation inclusions or logical conditions
may cause only part of the variables or different variables to appear in the models to be solved. In such a
case it might be useful to modify the solution management procedure using the model attribute or option
SolveOpt.

4.30.4.4 Sensitivity or Scenario Analysis

Multiple solve statements can be used not only to solve different models, but also to conduct sensitivity
tests, or to perform case (or scenario) analyses of models by changing data or bounds and then solving
the same model again. While some commercial LP systems allow access to ”sensitivity analysis” through
GAMS it is possible to be far more general and not restrict the analysis to either solver or model type.
This facility is even more useful for studying many scenarios since no commercial solver will provide this
information.

An example of sensitivity testing is in the simple oil-refining model [MARCO]. Because of pollution
control, one of the key parameters in oil refinery models is an upper bound on the sulfur content of the
fuel oil produced by the refinery. In this example, the upper bound on the sulfur content of fuel oil was
set to 3.5 percent in the original data for the problem. First, the model is solved with this value. Next, a
slightly lower value of 3.4 percent is used and the model is solved again. Finally, the considerably higher
value of 5 percent is used and the model is solved for the last time. Key solution values are saved for later
reporting after each solve. This is necessary because a following solve replaces any existing values. The
key solution values are the activity levels of the process level z, a variable that is defined over a set of
processes p and a set of crude oils cr. The complete sequence is:

parameter report(*,*,*) "process level report";

qs(’upper’,’fuel-oil’,’sulfur’) = 3.5 ;

Solve oil using lp maximizing phi;

report(cr,p,’base’) = z.l(cr,p) ;

report(’sulfur’,’limit’,’base’) = qs(’upper’,’fuel-oil’,’sulfur’);

qs (’upper’,’fuel-oil’,’sulfur’) = 3.4 ;

Solve oil using lp maximizing phi ;

report(cr,p,’one’) = z.l(cr,p) ;

report(’sulfur’,’limit’,’one’) = qs (’upper’,’fuel-oil’,’sulfur’);

qs(’upper’,’fuel-oil’,’sulfur’) = 5.0 ;

Solve oil using lp maximizing phi ;

report(cr,p,’two’) = z.l(cr,p) ;

report(’sulfur’,’limit’,’two’) = qs(’upper’,’fuel-oil’,’sulfur’);

Display report ;

Note that the parameter report is defined over the universal set or short universe. In general, the universe
is useful when generating reports, otherwise it would be necessary to provide special sets containing
the labels used in the report. Any mistakes made in spelling labels used only in the report should
be immediately apparent, and their effects should be limited to the report. The parameter qs is used
to set the upper bound on the sulfur content in the fuel-oil, and the value is retrieved for the
report. Note that the display statement in the final line is introduced and discussed in detail in chapter
The Display Statement. This example shows not only how simply sensitivity analysis can be done, but
also how the associated multi-case reporting can be handled.

The output from the display statement is shown below. Observe that there is no production at all if
the permissible sulfur content is lowered. The case attributes have been listed in the row SULFUR.LIMIT.
Section Global Display Controls contains more details on how to arrange reports in a variety of ways.

4.30 Model and Solve Statements 895

---- 225 PARAMETER report process level report

base one two

mid-c .a-dist 89.718 35.139

mid-c .n-reform 20.000 6.772

mid-c .cc-dist 7.805 3.057

w-tex .cc-gas-oil 5.902

w-tex .a-dist 64.861

w-tex .n-reform 12.713

w-tex .cc-dist 4.735

w-tex .hydro 28.733

sulfur.limit 3.500 3.400 5.000

Note

For other ways to do comparative analyses with GAMS, see the tutorial Comparative Analyses with GAMS.

4.30.4.5 Iterative Implementation of Non-Standard Algorithms

Another use of multiple solve statements is to permit iterative solution of different blocks of equations,
most often using solution values from the first solve as data for the next solve. These decomposition
methods are useful for certain classes of problems because the subproblems being solved are smaller, and
therefore more tractable. One of the most common examples of such a method is the Dantzig-Wolfe

decomposition.

An example of a problem that is solved in this way is a multi-commodity network flow problem in
[DANWOLFE].

4.30.5 Choosing a Solver

After a model has been checked and prepared as described above, GAMS passes the model to a solver.
When the GAMS system is installed default solvers for all model types are specified and these solvers are
used if the user doesn't specify anything else. It is easy to switch to other appropriate solvers provided
the user has the corresponding license. There are multiple ways to switch solvers:

1. Using a command line parameter of the following form:

gams mymodel model_type=solver name

For example,

gams mymodel lp=cbc

2. With an option command of the following form that is placed before the solve statement:

Option model_type=solver_name;

Here option is a keyword, model type is the same model type that is used in the solve statement
and solver name is the name of one of the available solvers. For example,

Option LP=cbc, NLP=conopt, MIP=cbc, MINLP=default;

The MINLP=default switches back to the default solver for the MINLP model type.

https://en.wikipedia.org/wiki/Dantzig%E2%80%93Wolfe_decomposition
https://en.wikipedia.org/wiki/Dantzig%E2%80%93Wolfe_decomposition

896 User's Guide

3. Instead of providing a particular solver for a model type, the option Solver can be used to use a
given solver for all model types this solver can handle.

Option Solver=cbc;

4. (Re)running gamsinst at any time and altering the choice of default solver as described in the
installation notes.

Note

A list of all solvers and current default solvers may be generated in the listing file with Option

SubSystems;.

4.30.6 Making New Solvers Available with GAMS

This short section is to encourage those of you who have a favorite solver not available through GAMS.
Linking a solver program with GAMS requires some programming skills and the use of libraries provided
by GAMS. There is a collection of open source solver links to GAMS at the COIN-OR project GAMSLinks.
The benefits of a link with GAMS to the developer of a solver are several. They include:

• Immediate access to a wide variety of test problems.

• An easy way of making performance comparisons between solvers.

• The guarantee that a user has not somehow provided an illegal input specification.

• Elaborate documentation, particularly of input formats, is not needed.

• Access to the existing community of GAMS users, for marketing or testing.

This completes the discussion of the model and solve statements.

4.31 Conditional Expressions, Assignments and Equations

4.31.1 Introduction

This chapter deals with the way in which conditional assignments, expressions and equations are made
in GAMS. The index operations already described are very powerful, but it is necessary to allow for
exceptions of one sort or another. For example, heavy trucks may not be able to use a particular route
because of a weak bridge, or some sectors in an economy may not produce exportable products. Exceptions
such as these may easily be modeled with a logical condition combined with the dollar operator '$', a
very powerful feature of GAMS introduced in this chapter.

This chapter is organized as follows: We will introduce the general form of the dollar condition first and
then we will focus on the various types of logical conditions. Next, we will discuss how dollar conditions
are used to build conditional assignments, conditional indexed operations and conditional equations. We
will conclude the chapter by showing that in certain cases conditions may be modeled using filtering sets
instead of the dollar operator. Programming flow control features such as the if statement, the loop, the
while statement, and the for statement are not covered in this chapter. These can be found in the chapter
Programming Flow Control Features.

https://www.coin-or.org/
https://github.com/coin-or/GAMSlinks

4.31 Conditional Expressions, Assignments and Equations 897

4.31.2 The Dollar Condition

The dollar operator is one of the most powerful features in GAMS. The general syntax for a conditional
expression is:

term $ logical_condition

Here, term can be a number, a (indexed) symbol, and also a complex expression. The dollar operator may
be read as under the condition that the following logical condition evaluates to TRUE (or is unequal 0).

Consider the following simple condition, where a and b are scalars.

if (b > 1.5), then a = 2

This can be written in GAMS using the dollar operator as follows.

a $ (b > 1.5) = 2 ;

Note that the term is the scalar a and the logical condition is the expression (b > 1.5). If the condition
is not satisfied, no assignment is made. To make it clear, this conditional assignment may be read as:
'given that b is greater than 1.5, a equals 2'.

Logical conditions may take various forms, they are introduced in the next section. Conditional expressions
may be used in the context of assignments, indexed operations and equations. These topics are covered in
later sections of this chapter.

Note

Logical conditions used with the dollar operator cannot contain variables. However,
variable attributes are allowed.

4.31.3 Logical Conditions

Logical conditions are special expressions that evaluate to a value of either TRUE or FALSE. Logical
conditions may be numerical expressions and numerical relations, they may refer to set membership and
they may also contain acronyms. In the following subsections this is shown in the context of simple
conditional assignments with the dollar operator on the left-hand side (compare section Dollar on the Left).

In this section we use many examples to illustrate the concepts that are being introduced. In all these
examples a and b are scalars, s, t, u and v are parameters, and i and j are sets.

898 User's Guide

4.31.3.1 Logical Conditions: Numerical Expressions

Numerical expressions may serve as logical conditions: a result of zero is treated as the logical value FALSE

and a non-zero result is treated as the logical value TRUE. The following example illustrates this point.

b $ (2*a - 4) = 7;

Here the numerical expression (2 ∗ a− 4) is the logical condition. The numerical expression is zero if a
equals 2, and non-zero otherwise. Hence the logical value of the expression is FALSE for a = 2 and TRUE

for all other values of a. The assignment is only made if the numerical expression evaluates to TRUE,
otherwise no assignment is made.

Attention

Values of the extended range arithmetic such as inf are also allowed in logical conditions. If the
result of a numerical expression used as a logical condition takes any of these values, the logical
value is TRUE, even for e.g. eps, which is numerically 0.

Observe that functions are also allowed in logical conditions. If they evaluate to zero, the logical condition
is FALSE, otherwise it is TRUE. Consider the following example:

b $ cos(a) = 7;

Note that the assignment is only made if the cosine of a does not equal zero.

4.31.3.2 Logical Conditions: Numerical Relational Operators

Numerical relational operators compare two numerical expressions and return a logical value. For
completeness, all numerical relational operators are listed in Table 1.

Relation Operator Alternative Notation Return Values

Strictly less than
x < y x lt y Returns TRUE if x < y, else re-

turns FALSE.

Less than or equal to
x <= y x le y Returns TRUE if x ≤ y, else re-

turns FALSE.

Equal to
x = y x eq y Returns TRUE if x = y, else re-

turns FALSE.

Not equal to
x <> y x ne y Returns TRUE if x 6= y, else re-

turns FALSE.

Greater than or equal to
x >= y x ge y Returns TRUE if x ≥ y, else re-

turns FALSE.

Strictly greater than
x > y x gt y Returns TRUE if x > y, else re-

turns FALSE.

Table 1: Numerical Relational Operators

Consider the following examples.

b $ (a < 0) = 10;

4.31 Conditional Expressions, Assignments and Equations 899

b $ (sqr(a) > a) = 12;

a $ (sum(i, s(i)) > 0) = 7;

t(i) $ (a <> 0) = t(i) + 1;

In the first line the logical condition is the relational expression (a < 0). The assignment is only made
if this expression is TRUE, that is, if the scalar a is negative. The logical condition in the second line is
a bit more complex. It evaluates to FALSE if 0 ≤ a ≤ 1. For all other values of a, it evaluates to TRUE.
So the assignment is made for all values of a, except for those values of a that are in the closed interval
[0, 1]. Note that if a = −3, then the logical condition in the first line will be TRUE, so b will become 10. In
addition, the logical condition in the second line will be TRUE, so b will change to 12. The logical condition
in the third line evaluates to TRUE if the sum of all values of the parameter s is strictly positive. Then a

is assigned the value of 7. The assignment in the last line depends on whether a is non-zero. If a is zero
no assignment is made, otherwise all entries of the parameter t are updated.

Note that acronyms may also be used with relational operators to build logical conditions. However, only
the equality operator = and inequality operator <> are allowed in the context of acronyms, since they
have no numerical values and the other operators would be meaningless. For an example, see section
Acronym Usage.

4.31.3.3 Logical Conditions: Logical Operators

GAMS offers standard logical operators that may combine two or more logical conditions to build complex
logical expressions. For example, if several expressions are required to be TRUE simultaneously, they
may be connected with the operator and. The logical operators available in GAMS are listed in Table 2
and Table 3. Another way to construct complex logical conditions is by nesting them. For details, see
subsection Nested Dollar Conditions below.

Operation Operator Alternative Notation Description

Negation
not x The logical condition x has to be

FALSE, in order for the expression
to be TRUE.

Logical conjunction
x and y Two logical conditions are TRUE si-

multaneously.

Logical disjunction
x or y At least one of two logical conditions

applies.

Exclusive disjunction
x xor y Exactly one of two logical conditions

applies.

Logical implication
x imp y x -> y If the logical condition x is TRUE but

at the same time the logical condi-
tion y is FALSE, then the whole ex-
pression is FALSE, in all other cases
the expression evaluates to TRUE.

Logical equivalence
x eqv y x <=> y Both logical conditions are either

TRUE simultaneously or FALSE simul-
taneously for the whole expression
to be TRUE.

Table 2: Logical Operators

The logical values of these operators are summarized in the following truth table.

x y not x x and y x or y x xor y x imp y x eqv y

FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE

900 User's Guide

x y not x x and y x or y x xor y x imp y x eqv y

FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE

TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE

TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE

Table 3: Truth Table of Logical Operators

The following somewhat artificial examples serve as illustration.

Set i / i1*i5 /;

Parameter s(i) / i1 3, i2 5, i4 8 /

t(i) / i1*i4 13 /

u(i) / i2 1 /

v(i) / i1 7, i3 2 /;

u(i) $ (not s(i)) = v(i);

u(i) $ (s(i) and u(i) and t(i)) = s(i);

u(i) $ (s(i) or v(i) or t(i)) = 4;

Note that there are three conditional assignments for the parameter u. In the first assignment the logical
condition is (not s(i)). This condition holds for all entries of s that are not specified and therefore
zero by default: s('i3') and s('i5'). Hence u('i3') and u('i5') are assigned the values of v('i3')
and v('i5') respectively. The value of v('i3') is 2 and the value of v('i5') is zero by default. After
the first assignment we have u('i2')=1 and u('i3')=2, all other values of u are zero. Note that the
logical condition failed for u('i2') and therefore its value remained unchanged. The logical condition in
the second assignment is TRUE for those labels of the set i that have non-zero entries in the parameters
s, u and t simultaneously. This condition holds only for i2. Therefore u('i2')=s('i2')=5 and all
other values of u remain unchanged, resulting in non-zero values only for u('i2') and u('i3'). The
logical condition in the last assignment evaluates to TRUE for all labels of the set i that have at least one
non-zero entry in the parameters s, v and t. This holds for all labels except for i5. Therefore u('i5')
stays zero and all other values of u are changed to 4. These examples demonstrate the power of the
dollar operator combined with logical operators. Even more complex logical conditions are possible; see
subsection Mixed Logical Conditions below for details.

4.31.3.4 Logical Conditions: Set Membership and Set Functions

Apart from numerical and relational expressions, set membership and functions referencing set elements
may be used as a logical condition. Consider the following example as illustration for set membership as
logical condition.

Set i / i1*i5 /

j(i) / i1*i3 / ;

Parameter s(i) / i1 3, i2 5, i3 11, i4 8, i5 1 /

t(i);

t(i) $ j(i) = s(i) + 3;

Note that the set j is a subset of the set i and that the parameter t is declared but not defined. The
conditional expression t(i)$j(i) in the last line restricts the assignment to the members of the subset j
since only they satisfy the condition j(i). The values for t('i4') and t('i5') remain unchanged. In
this case this means that they are zero (by default). Note that there is an alternative formulation for this
type of conditional assignment; for details see subsection Filtering Sets in Assignments below.

4.31 Conditional Expressions, Assignments and Equations 901

Note

Only the membership of subsets and dynamic sets may be used as logical conditions.

The use of set membership as a logical condition is an extremely powerful feature of GAMS, see section
Conditional Equations below for more examples.

Logical conditions may contain predefined symbols or operators that return particular values depending
on the position of elements in sets, the size of sets or the comparison of set elements to each other or text
strings:

Predefined Symbol / Operator Description and Comments

sameAs(element1,element2) or
sameAs("text",element2) or
sameAs(element1,"text")

Predefined symbol that returns TRUE if element1
is identical to element2 or element1 is identical
to text, and FALSE otherwise.

diag(element1,element2) or
diag("text",element2) or
diag(element1,"text")

Like sameAs, but returns numerical value 1 for
TRUE and 0 for FALSE.

card(set name)
Returns the number of elements in a set. Note
that this can also be called with a quoted text
and returns the number of characters of that
text in that case. For more details, see section
The Card Operator.

ord(set name)
Returns the relative position of an element in a
set. Note that ord may be used only with one-
dimensional, static, ordered sets. For more details,
see section The Ord Operator.

Table 4: Predefined Symbols / Operators Referencing Sets

In the following example we have two sets of cities and we want to know how many of them feature in
both sets.

Set i / Beijing, Calcutta, Mumbai, Sydney, Johannesburg, Cairo /;

Set j / Rome, Paris, Boston, Cairo, Munich, Calcutta, Barcelona /;

Scalar b;

b = sum((i,j)$sameAs(i,j),1);

Note that in the assignment statement we sum over both sets and we use the predefined symbol sameAs
to restrict the domain of the indexed operation to those label combinations (i,j) where sameAs evaluates
to TRUE. Thus only identical elements are counted.

Note that in this example the predefined symbol diag could have been used with the same result.

The operators ord and card are frequently used to single out the first or last element of an ordered set.
For example, we may want to fix a variable for the first and last elements of a set:

x.fx(i) $ (ord(i) = 1) = 3;

x.fx(i) $ (ord(i) = card(i)) = 7;

In the first assignment the variable x is fixed for the first element of the set i and in the second assignment
x is fixed for the final element of i.

902 User's Guide

Note

As an alternative to the formulation above, one could also use the set attributes first and last to
get the same result:

x.fx(i) $ (i.first) = 3;

x.fx(i) $ (i.last) = 7;

4.31.3.5 Numerical Values of Logical Conditions

We have seen that logical conditions may take the form of numerical expressions, expressions with relational
operators, complex expressions using logical operators, set membership and set functions. However, GAMS
does not have a Boolean data type.

Attention

GAMS follows the convention that the result of a relational operation is zero if the assertion is
FALSE, and 1 if it is TRUE.

Consider the following example as illustration.

x = (1 < 2) + (2 < 3);

The expression to the right of the assignment evaluates to 2 since both logical conditions within parentheses
are TRUE and therefore assume a value of 1. Note that this is different from the assignment below:

x = (1 < 2) or (2 < 3)

This assignment evaluates to 1, since both statements to the left and right of or are TRUE and therefore
the whole expression is TRUE.

4.31.3.6 Mixed Logical Conditions

The building blocks introduced in the subsections above may be combined to generate more complex
logical conditions. These may contain standard arithmetic operations, numerical relational operations
and logical operations. All operations, their symbols and their order of precedence are given in Table 5.
Note that 1 denotes the highest order of precedence and 7 denotes the lowest order of precedence. As
usual, the default order of precedence holds only in the absence of parentheses and operators (symbols)
on the same level are evaluated from left to right.

Type of Operation Operation Operator Order of
precedence

Standard arithmetic op-
eration

Exponentiation ∗∗ 1

Standard arithmetic op-
eration

Multiplication, Division ∗, / 2

Standard arithmetic op-
eration

Unary operators: Plus,
Minus

+, - 3

Standard arithmetic op-
eration

Binary operators: Addi-
tion, Subtraction

+, - 3

Numerical Relational
operation

All <, <=, =, <>, >=,
>

4

Logical operation Negation not 5

Logical operation Logical Conjunction and 6

Logical operation All other logical opera-
tions

or, xor, imp, eqv 7

4.31 Conditional Expressions, Assignments and Equations 903

Table 5: Complete Hierarchy for Operator Precedence in GAMS

Note

We recommend to use parentheses rather than relying on the order of precedence of operators.
Parentheses prevent errors and make the intention clear.

Consider the following example:

x - 5*y and z - 5

(x - (5*y)) and (z-5)

These two complex logical conditions are equivalent. However, the parentheses make the second expression
easier to understand.

Some simple examples of complex logical conditions, their numerical values and their logical values are
given in Table 6.

Logical Condition Numerical Value Logical Value

(1 < 2) + (3 < 4) 2 TRUE

(2 < 1) and (3 < 4) 0 FALSE

(4∗5 - 3) + (10/8) 18.25 TRUE

(4∗5 - 3) or (10 - 8) 1 TRUE

(4 and 5) + (2∗3 <= 6) 2 TRUE

(4 and 0) + (2∗3 < 6) 0 FALSE

Table 6: Examples of Complex Logical Conditions

4.31.3.7 Nested Dollar Conditions

An alternative way to model complex logical conditions is by nesting them. The syntax is:

term $ (logical_condition1$(logical_condition2$(...)))

Note that in nested dollar conditions all succeeding expressions after the dollar operator must be enclosed
in parentheses. The nested expression is equivalent to the following conditional expression that uses the
logical operator and instead of the nesting:

term $ (logical_condition1 and logical_condition2 and ...)

Consider the following example. Note that i, j(i) and k(i) are sets, and u(i) and v(i) are parameters.

u(i) $ (j(i)$k(i)) = v(i) ;

The assignment will be made only for those members of the set i that are members of both sets j and
k. Note the position of the parentheses in the dollar condition. The assignment statement above can be
rewritten in the following way.

u(i) $ (j(i) and k(i)) = v(i) ;

Note

We recommend to use the logical and operator instead of nesting dollar operators, because this
formulation is easier to read.

904 User's Guide

4.31.4 Conditional Assignments

A conditional assignment is an assignment statement with a dollar condition on the left-hand side or on
the right-hand side. Most examples until now were conditional assignments with the dollar operator on
the left.

Attention

The effect of the dollar condition is significantly different depending on which side of the assignment
it is located.

The next two subsections describe the use of the dollar condition on each side of the assignment. Note
that in many cases it may be possible to use either of the two forms of the dollar condition to describe an
assignment. We recommend to choose the clearer formulation.

Note that if the logical condition in an assignment statement refers to set membership, then under certain
conditions the restriction may be expressed without the use of the dollar operator. For details, see section
Filtering Sets in Assignments below.

4.31.4.1 Dollar on the Left

If the dollar condition is on the left-hand side of an assignment, an assignment is made only in case the
logical condition is satisfied. If the logical condition is not satisfied then no assignment is made and
the previous content of the parameter on the left will remain unchanged. In case the parameter on the
left-hand side of the assignment has not previously been initialized or assigned any values, zeros will be
used for any label for which the assignment was suppressed.

Consider the following example adapted from [CHENERY]. Note that the parameter sig has been
previously defined in the model.

rho(i) $ (sig(i) <> 0) = (1./sig(i)) - 1. ;

In this assignment rho(i) is calculated and the dollar condition on the left protects against dividing by
zero. If any of the values associated with the parameter sig turns out to be zero, no assignment is made
and the previous values of rho(i) remain. As it happens, rho(i) was not previously initialized, and
therefore all the labels for which sig(i) is zero will result in a value of zero.

Now recall the convention that non-zero implies TRUE and zero implies FALSE. The assignment above could
therefore be written as:

rho(i) $ sig(i) = (1./sig(i)) - 1. ;

In the following examples i is a set and s and t are parameters.

s(i) $ t(i) = t(i);

s(i) $ ((t(i)-1) > 0) = t(i)**0.5;

Note that the first assignment is suppressed if the value of the parameter t equals zero. The second
assignment is suppressed for values of the parameter t that are smaller or equal to 1.

Note

The first of the last two examples is special in the way that the logical condition used with the dollar
on the left and the expression on the right hand side of the assignment are actually the same. This
allows to use a shorter notation using the combined $= assignment. That assignment is equivalent
to the following one (which called sparse assignment):

s(i) $= t(i);

4.31 Conditional Expressions, Assignments and Equations 905

4.31.4.2 Sparse Assignments

Sparse assignments will assign a value to the left-hand side of the = sign only if the right-hand side is
nonzero. This behavior is triggered using the $= notation as in the following example.

Set i /a,b,c/

Parameter d1(i) "Initial data" /a 1, b 1, c 1/

d2(i) "Data to be used to overwrite d1" /a 0, b -2 /

d3(i) "Empty data parameter";

* Initialize d3 to d1

d3(i) = d1(i);

* Use dollar on the left to overwrite d3 with non-zero values from d2

d3(i)$d2(i) = d2(i);

* Result: d3(’a’)=1; d3(’b’)=-2; d3(’c’)=1;

* Re-Initialize d3 to d1

d3(i) = d1(i);

* Use sparse assignment to overwrite d3 with non-zero values from d2

d3(i) $= d2(i);

* Result: d3(’a’)=1; d3(’b’)=-2; d3(’c’)=1;

Note that in the final assignments above, the values of the parameter d3(i) are replaced with values
from parameter d2(i) only if the entry in d2(i) is non-zero, the other values are left untouched. Both
assignments are equivalent.

4.31.4.3 Dollar on the Right

If the dollar condition is on the right-hand side of an assignment statement, an assignment will always be
made. In case the logical condition is not satisfied the value of zero is assigned.

Above we had the following simple conditional assignment:

a $ (b > 1.5) = 2;

Now we move the dollar condition to the right-hand side:

a = 2 $ (b > 1.5) ;

This is equivalent to:

if (b > 1.5) then (a = 2), else (a = 0)

Note that an if-then-else type of construct is implied, but the else operation is predefined and never
made explicit. The else could be made explicit with the following formulation:

a = 2 $ (b > 1.5) + 0 $ (b <= 1.5) ;

906 User's Guide

The use of this feature is more apparent in instances when an else condition needs to be made explicit.
Consider the next example adapted from the fertilizer model [FERTD] . The set i is the set of plants,
and we are calculating mur(i), the cost of transporting imported raw materials. In some cases a barge
trip must be followed by a road trip because the plant is not alongside the river and we must combine the
separate costs. The assignment is:

mur(i) = (1.0 +. 0030*ied(i,’barge’)) $ ied(i,’barge’)

+ (0.5 + .0144*ied(i,’road’)) $ ied(i,’road’);

This means that if the entry in the distance table ied is not zero, then the cost of shipping using that link
is added to the total cost. If there is no distance entry, there is no contribution to the cost, presumably
because that mode is not used.

Consider another example for a conditional assignment with the dollar operator on the right:

b = sum(i,t(i)) $ (a > 0) + 4;

Here a and b are scalars, i is a set and t is a parameter. If the scalar a is positive, the scalar b is assigned
the sum of all values of the parameter t plus 4. If a is zero or negative, b becomes just 4. Note that the
sum is only computed if the condition holds, this potentially makes the program faster.

4.31.5 Conditional Indexed Operations

We have seen how exceptions in assignments are modeled with dollar conditions. Dollar conditions are
also used in indexed operations, where they control the domain of operation. This is conceptually similar
to the conditional assignment with the dollar on the left.

Consider the following example adapted from [GTM], a gas trade model for interrelated gas markets.
Here the set i contains supply regions and the parameter supc models supply capacities. The scalar
tsupc is computed with the following statement:

tsupc = sum(i $ (supc(i) <> inf), supc(i)) ;

This assignment restricts the sum to the finite values of the parameter supc.

In indexed operations the logical condition is often a set. This set is called the conditional set and
assignments are made only for labels that are elements of the conditional set. This concept plays an
important role in dynamic sets.

Multi-dimensional sets are introduced in section Multi-Dimensional Sets. In the example used there a
two-dimensional set is used to define the mapping between countries and ports. Another typical example
for a multi-dimensional set is a set-to-set mapping that defines the relationship between states and regions.
This is useful for aggregating data from the state to the regional level. Consider the following example:

Sets r "regions" / north, south /

s "states" / florida, texas, vermont, maine /

corr(r,s) / north.(vermont,maine)

south.(florida,texas) /;

Parameter y(r) "income for each region"

income(s) "income of each state"

/ florida 4.5, vermont 4.2

texas 6.4, maine 4.1 / ;

4.31 Conditional Expressions, Assignments and Equations 907

The set corr links the states to their respective regions, the parameter income is the income of each state.
The parameter y is computed with the following assignment statement:

y(r) = sum(s $ corr(r,s), income(s)) ;

The conditional set corr(r,s) restricts the domain of the summation: for each region r the summation
over the set s is restricted to the label combinations (r,s) that are elements of the set corr(r,s).
Conceptually, this is analogous to the Boolean value TRUE or the arithmetic value non-zero. The effect is
that only the contributions of vermont and maine are included in the total for north, and south is the
sum of the incomes from only texas and florida.

Note that the summation above can also be written as:

y(r) = sum(s,income(s) $ corr(r,s));

In this formulation the parameter income is controlled by the conditional set corr instead of the index s.
Note that both formulations yield the same result, but the second alternative is more difficult to read.

In the next example the logical condition on the right-hand side appears in the context of an indexed
operation, but it does not refer to the index. Thus it is treated similarly to a dollar on the right logical
condition. Note that a and b are scalars, i is a set and s is a parameter.

b = sum(i $ a, s(i));

Here the scalar b is assigned the sum of the values of the parameter s only if a does not equal zero.
Otherwise b will be assigned the value zero. Observe that the following alternative formulation will
generally be faster than the assignment above:

b = sum(i, s(i)) $ a;

Note that if the logical condition in the context of indexed operations refers to set membership, then
under certain conditions the restriction may be expressed without the use of the dollar operator. For
details, see section Filtering Controlling Indices in Indexed Operations below.

4.31.6 Conditional Equations

The dollar operator is also used for exception handling in equations. The next two subsections discuss the
two main uses of dollar operators in the context of equations: in the body of an equation and over the
domain of definition.

908 User's Guide

4.31.6.1 Dollar Operators within the Algebra of Equations

A dollar operator in the algebraic formulation of an equation is analogous to the dollar control on the
right of assignments, as presented in section Dollar on the Right. Assuming that ”the right” means the
right of the '..' then the analogy is even closer. As in the context of assignments, an if-else operation
is implied. It is used to exclude parts of the definition from some of the generated constraints.

Consider the following example adapted from the production model [CHENERY].

Set i "sectors" / light-ind, food+agr, heavy-ind, services /

t(i) "tradables" / light-ind, food+agr, heavy-ind /;

Variables x(i) "quantity of output"

y(i) "final consumption"

e(i) "quantity of exports"

m(i) "quantity of imports";

Equations mb(i) "material balance";

mb(i).. x(i) =g= y(i) + (e(i) - m(i)) $ t(i) ;

Note that in the equation definition in the last line, the term (e(i) - m(i)) on the right-hand side of
the equation is added only for those elements of the set i that also belong to the subset t(i), so that the
element services is excluded.

Further, conditional indexed operations may also feature in expressions in equation definitions. The supply
balance equation from the gas trade model [GTM] is an example. Note that the set i contains the
supply regions, the set j contains the demand regions, and the two-dimensional set ij is the set of feasible
links; the variable x denotes the shipment of natural gas and the variable s denotes the regional supply.

sb(i).. sum(j $ ij(i,j), x(i,j)) =l= s(i) ;

Similar to the assignment example seen before, the conditional set ij(i,j) restricts the domain of the
summation: for each supply region i the summation over the demand regions j is restricted to the label
combinations (i,j) that are elements of the set of feasible links ij(i,j).

4.31.6.2 Dollar Control over the Domain of Definition

In case constraints should only be included in the model if particular conditions are met, a dollar condition
in the domain of definition of an equation may be used to model this restriction. Such a dollar condition
is analogous to the dollar control on the left of assignments. Assuming that ”the left” means the left of
the symbols '..' then the analogy is even closer.

Note

The dollar control over the domain of definition of equations restricts the number of constraints
generated to less than the number implied by the domain of the defining sets.

Consider the following example adapted from the Andean fertilizer model [ANDEAN] :

gple(w,wp,te) $ ple(w,wp).. yw(w,te) - yw(wp,te) =l= dpack;

4.31 Conditional Expressions, Assignments and Equations 909

Here w, wp and te are sets, ple is a two-dimensional parameter, yw is a variable and dpack is a scalar.
Note that the dollar condition restricts the first two indices of the domain of the equation to those label
combinations that have non-zero entries in the two-dimensional parameter ple.

Sometimes the desired restriction of an equation may be achieved either way: through a condition in the
algebra or a condition in the domain of definition. Compare the following two lines, where eq1 and eq2

are equations, i and j are sets, b is a scalar, s is a parameter and x is a two-dimensional variable.

eq1(i) $ b.. sum(j, x(i,j)) =g= -s(i);

eq2(i).. sum(j, x(i,j)) $ b =g= -s(i) $ b;

In the first line the dollar condition is in the domain of definition, in the second line the dollar conditions
are in the algebraic formulation of the equation. If b is non-zero, the generated equations eq1 and eq2

will be identical. However, if b is 0, no equation eq1 will be generated, but for each i we will see a trivial
equation eq2 of the form 0 =g= 0;.

Note that if the logical condition in the domain of definition of an equation refers to set membership,
then under certain conditions the restriction may be expressed without the use of the dollar operator. For
details, see section Filtering the Domain of Definition below.

4.31.7 Filtering Sets

If the logical condition refers to set membership, the restriction modeled with a dollar condition may
sometimes be achieved without the dollar operator. Consider the following statement, where i and j(i)

are sets, and u and s are parameters:

u(i) $ j(i) = s(i) ;

Note that the assignment is made only for those elements of the set i that are also elements of the subset
j. This conditional assignment may be rewritten in a shorter way:

u(j) = s(j) ;

In this statement the assignment has been filtered through the condition without the dollar operator by
using the subset j as the domain for the parameters u and s. This formulation is cleaner and easier to
understand. It is particularly useful in the context of multi-dimensional sets (tuples), and it may be used
in assignments, indexed operations and the domain of definition of equations.

4.31.7.1 Filtering Sets in Assignments

Suppose we want to compute the transportation cost between local collection sites and regional transporta-
tion hubs for a fictional parcel delivery service. We define sets for the collection sites and transportation
hubs and a two-dimensional set where the collection sites are matched with their respective hubs:

910 User's Guide

Set i "local collection sites" / miami, boston, chicago, houston, phoenix /

j "regional transportation hubs" / newyork, detroit, losangeles, atlanta / ;

Set r(i,j) "regional transportation hub for each local collection site" /

boston .newyork

miami .atlanta

houston .atlanta

chicago .detroit

phoenix .losangeles / ;

Table distance(i,j) "distance in miles"

newyork detroit losangeles atlanta

miami 1327 1387 2737 665

boston 216 699 3052 1068

chicago 843 275 2095 695

houston 1636 1337 1553 814

phoenix 2459 1977 398 1810;

Parameter factor "cost estimate per unit mile"

shipcost(i,j) "cost of transporting parcels from a local collection site to a regional hub per unit" ;

factor = 0.009 ;

shipcost(i,j) $ r(i,j) = factor*distance(i,j) ;

The distance between collection sites and transportation hubs is given in the table. The last line is a
conditional assignment for the parameter shipcost. This assignment is only made if the label combination
(i,j) is an element of the set r. Note that in each instance the indices i and j appear together. Thus
the assignment may be simply written as:

shipcost(r) = factor*distance(r) ;

Note that the assignment is explicitly restricted to the members of the set r; the dollar operator is not
necessary. Observe that if the indices i or j appear separately in any assignment, the above simplification
cannot be made. For example, consider the case where the shipping cost depends not only on the parameter
factor and the distance between collection sites and regional hubs, but also on the congestion at the
regional hub. We introduce a new parameter congestfac that models the congestion at each regional
hub and is indexed only over the set j:

Parameter congestfac(j) "congestion factor" /

newyork 1.5

detroit 0.7

losangeles 1.2

atlanta 0.9/ ;

The new cost of shipment is computed as follows:

shipcost(i,j) $ r(i,j) = factor*congestfac(j)*distance(i,j) ;

Note that this conditional assignment cannot be reformulated as:

shipcost(r) = factor*congestfac(j)*distance(r) ;

In the representation above the index j appears on the right-hand side, but not on the left-hand side.
GAMS will flag this assignment as an error. However, the following representation will work:

shipcost(r(i,j)) = factor*congestfac(j)*distance(r) ;

In this formulation the set r is explicitly denoted as a tuple of the sets i and j. The set j may then
appear on the right-hand side.

4.31 Conditional Expressions, Assignments and Equations 911

4.31.7.2 Filtering Controlling Indices in Indexed Operations

Similarly, the controlling indices in indexed operations may be filtered through the conditional set without
the use of the dollar operator. We continue with the shipping cost example from the last subsection.
The total cost of shipment is obtained through the equation that follows. We also include the variable
definitions for clarity.

Variable shipped(i,j), totcost ;

Equation costequ ;

costequ.. totcost =e= sum((i,j) $ r(i,j), shipcost(i,j)*shipped(i,j));

Here the variable shipped is the number of parcels shipped from the local collection site i to the regional
transportation hub j, and the variable totcost is the total cost of all shipments. Note that she summation
in the equation is restricted to the label combinations that are elements of the set r. Alternatively, the
equation above may be written as:

costequ.. totcost =e= sum(r, shipcost(r)*shipped(r));

In this formulation the summation is performed explicitly only over the elements of the set r, no dollar
condition is necessary. However, if the expression in the equation included a term dependent only on
index j, then we would have to reformulate differently. Suppose the equation included also the congestion
factor congestfac that is indexed only over j:

cost.. totcost =e= sum((i,j) $ r(i,j), factor*congestfac(j)*distance(i,j)*shipped(i,j));

In this case the equation needs to be simplified in the following way:

cost.. totcost =e= sum(r(i,j), factor*congestfac(j)*distance(r)*shipped(r));

Like before, the domain of the indexed operation sum is the set r. But this time the domain of r has to
be named explicitly, so that the parameter congestfac which is indexed only over the set j is permitted
in the scope of the indexed operation. Note that this reasoning is analogous to the reasoning for filtering
sets in assignments in the subsection above.

4.31.7.3 Filtering the Domain of Definition

The rules for filtering sets that we have introduced in subsections Filtering Sets in Assignments and
Filtering Controlling Indices in Indexed Operations also apply in the context of equation domains. We
continue with the parcel transport example introduced above and add a binary variable bin, the parameter
bigM and the equation connect to the model. Recall that shipped(i,j) is a variable and r(i,j) is a set.

Parameter bigM(i,j) ;

Binary variable bin(i,j) ;

Equation connect(i,j) ;

connect(i,j) $ r(i,j).. shipped(i,j) =l= bigM(i,j)*bin(i,j) ;

912 User's Guide

The dollar condition restricts the domain of definition of the equation connect to those label combinations
of the sets i and j that are elements of the set r. The equation relates the continuous variable shipped(i,j)
to the binary variable bin(i,j). Note that each domain in the equation is the index pair (i,j). So the
equation may be simplified as follows:

connect(r).. shipped(r) =l= bigM(r)*bin(r) ;

In this formulation the domain of the equation is explicitly restricted to the members of the set r, without
the use of a dollar condition. Note that if the right-hand side of the equation contained any term that was
indexed over i or j separately, then the domain of definition of the equation would have to be simplified
as:

connect(r(i,j))

The reasoning is the same as in the case of assignments and indexed operations.

4.32 The Display Statement

4.32.1 Introduction

The display statement in GAMS is a quick way to write data into the listing file. It does not provide a
publication quality reporting function, but is instead aimed at functionality that is easy to use and provides
graceful defaults. These defaults may be modified by the user to control the layout and appearance of
the output. Both defaults and customization options are presented in this chapter. For information
on the listing file, see chapter GAMS Output. In addition to the display statement, GAMS offers
the put writing facility, a more sophisticated way to generate reports, where the user has much more
flexibility and control over the output of individual items.

4.32.2 The Syntax

In general, the syntax for the display statement in GAMS is as follows:

display ident | quoted text {, ident | quoted text};

The keyword display indicates that this is a display statement. It is followed by an identifier. If
the identifier is a set or a parameter, only the name of the set or parameter itself is specified. If the
identifier is a variable, an equation or a model, it must be followed by a suffix, i.e. a variable attribute,
equation attribute or model attribute respectively. As usual, quoted text must be surrounded by single
or double quotes. The identifiers and the text may be mixed and matched in any order, and the whole
statement may be continued over several lines. For conditional displays a dollar condition may follow the
keyword display.

The output produced by a display statement consists of labels and data. For multi-dimensional sets the
keyword yes (indicating membership) is used instead of values.

4.32 The Display Statement 913

Note

Only the non-default values are displayed for all data types.

The default value is generally zero. Exceptions are some upper and lower bounds of variables and
equations (the attributes .lo and .up). Their default values are listed in sections Variable Attributes and
Equation Attributes respectively.

The syntax of the display statement is illustrated by the following example:

Sets s / s1*s4 /

t / t5*t7 /

st(s,t) / s1.t5, s1.t7, s2.t6, s3.t7, s4.t5 / ;

Parameters p(s) / s1 0.33, s3 0.67 /

q(t) / t5 0.33, t7 0.67 / ;

Variable v(s,t) ;

v.l(s,t) = p(s)*q(t);

display ’first a simple set’, s, ’then a two-dimensional set’, st, ’then a parameter’, p,

’then the activity level of a variable’, v.l;

The display statement will generate the following lines in the listing file:

---- 8 first a simple set

---- 8 SET s

s1, s2, s3, s4

---- 8 then a two-dimensional set

---- 8 SET st

t5 t6 t7

s1 YES YES

s2 YES

s3 YES

s4 YES

---- 8 then a parameter

---- 8 PARAMETER p

s1 0.330, s3 0.670

---- 8 then the activity level of a variable

---- 8 VARIABLE v.L

t5 t7

s1 0.109 0.221

s3 0.221 0.449

914 User's Guide

In the case of multi-dimensional identifiers like the set st and the level values of the variable v, the data
is by default reported in a tabular form that is easy to read. Note that only the non-default values are
displayed. To display zero values, the special value EPS can be used. In the example above, all values of
the parameter p can be displayed by adding the following lines.

display ’display all values’;

p(s)$(not p(s)) = EPS;

display p;

The following lines will be displayed in the listing file.

---- 11 display all values

---- 13 PARAMETER p

s1 0.330, s2 EPS, s3 0.670, s4 EPS

An alternative to displaying EPS is to use acronym but computations cannot be done with the resulting
parameters.

4.32.3 Displaying Multi-Dimensional Identifiers: Label Order

We have seen that two-dimensional identifiers are displayed in table format. The default layout for
displaying multi-dimensional identifiers is summarized in Table 1. Note that the default format may be
modified with the local display control. The figures in the table refer to the index position in the domain
list of the identifier. For example, if we display x, where x has been declared as x(i,j,k,l), then the i

labels (the first index) will by default be associated with the individual subtables, the j and k with the
row labels and the l (the fourth and last index) with the column headings.

Number of Indices Subtable Index Position(s) on the Row Column

1 list format

2 - 1 2

3 - 1,2 3

4 1 2,3 4

5 1,2 3,4 5

6 1,2,3 4,5 6

Table 1: Default Layout for Displaying Multi-Dimensional Identifiers

For 7 to the maximum number of indices the natural progression is followed. For the current maximum
number of indices, see Dimensions. The labels vary slowest for the first index position and quickest for
the highest. Within each index position the order of the label is the GAMS entry order of the labels.
Some users may need to manipulate the order of the labels.

Note

The only way to change the order in which the labels for each index position appear in the display
output is to change the order of appearance of the labels in the GAMS program.

4.32 The Display Statement 915

This is most easily done by declaring a set whose only purpose is to list all the labels in the order that is
needed. Make this set the very first declaration in the GAMS program.

Note that the order of the indices in an identifier is always as the order in the declaration statement. One
can declare them in the order that is found appealing, or make an assignment to a new identifier with a
different order, as illustrated in the example below.

4.32.3.1 Example for Multi-Dimensional Displays

Consider the following example. The parameter x has four dimensions or index positions. It is initialized
using parameter format and then displayed as shown below.

Set i first index / first, second /

j second index / one, two, three /

k third index / a, b /

l fourth index / i, ii / ;

Parameter

x(i,j,k,l) a four dimensional structure /

second.one.a.i 0.00013, first .three.b.i -6.3161

first .one.b.i 5.63559, second.two .b.i 20000.00

second.one.b.ii -17.29948, first .two .b.ii 10.3457

first .two.a.ii 0.02873, second.one .a.ii 1.0037

second.two.a.ii +inf, first .two .a.i -2.9393

first .one.a.ii 0.00000 /

y(k,l,i,j) a four dimensional structure with changed index order;

y(k,l,i,j) = x(i,j,k,l);

display x, y;

For variable x the code fragment produces the following output:

---- 16 PARAMETER x a four dimensional structure

INDEX 1 = first

i ii

one .b 5.636

two .a -2.939 0.029

two .b 10.346

three.b -6.316

INDEX 1 = second

i ii

one.a 1.300000E-4 1.004

one.b -17.299

two.a +INF

two.b 20000.000

916 User's Guide

Notice that there are two subtables, one for each label in the first index position. Note further that the
order of the labels is not the same as in the input data list of the parameter x, but is according to the
label order in the driving sets. Observe that the numbers closer in magnitude to one are displayed in
fixed format, rounded to three digits (the default). This default may be modified with display controls,
the topic of the next section. In contrast, the especially small value appears in E-format: it would display
as all zeros in fixed format. Note also that the zero in the list for x('first','one','a','ii') has
vanished, since default values are not shown. Similarly, rows and columns containing only zero values are
suppressed in each subtable separately.

Notice furthermore how parameter y can be used to display the same data with a different index order.

4.32.4 Display Controls

GAMS allows the user to modify the number of row and column labels in the display listing as well as
the accuracy of the data being displayed. There are global and local display controls. Global display
controls allow the user to affect more than one display statement. The local display control may be used
to override the global controls if specific data need to be listed in a particular format. Both controls are
expressed with option statements.

4.32.4.1 Global Display Controls

The first option for global display controls specifies the number of digits shown after the decimal point. It
affects the numbers appearing in all display output following the option statement, unless it is changed
for a specific identifier as shown below. The general form of this option statement is:

option decimals = value;

The keyword option indicates that this is an option statement, decimals is the specific option and value

is an integer between 0 and 8. The value 0 supresses decimals as well as the decimal point. Note that the
default is decimals=3, and that setting this option does not change the field width, just the number of
decimals. Increasing decimals results in more digits being displayed; this may in turn cause numbers to
appear in E-format if the longer fixed-format result would exceed the field width.

A word about rounding for display purposes is in order. In the event of ties, the display routines use the
round-to-even tie-breaking rule. So for example, with decimals=0, both 1.5 and 2.5 will display as 2.
Similarly, with decimals=1, 2.25 displays as 2.2 while 2.75 displays as 2.8.

Consider the following extension to the example discussed in the previous section.

option decimals = 1; display x;

GAMS will display numbers using E-format where necessary to avoid exceeding the display width or
showing all zeros. The output is as follows:

---- 14 PARAMETER x a four dimensional structure

INDEX 1 = first

i ii

one .b 5.6

4.32 The Display Statement 917

two .a -2.9 2.873000E-2

two .b 10.3

three.b -6.3

INDEX 1 = second

i ii

one.a 1.300000E-4 1.0

one.b -17.3

two.a +INF

two.b 20000.0

Note that GAMS overrode the decimal choice for x('first','two','a','ii') to ensure that small
numbers are not displayed as zeroes.

Another option for global display control modifies the width of the display. This is particularly important
for longer label names. Label names that are headers of columns are cut off after 9 characters when data
is displayed in table format. The following option may be used to display longer names in full:

option dispwidth = value;

The name of the option is dispwidth and value is a positive integer smaller or equal to 31. An illustrative
example follows.

Set i ’South African cities’ / Johannesburg, Cape_Town /

j ’other African cities’ / Maputo, Dar_es_Salaam /

f(i,j) ’direct flight connections’ / Johannesburg.Maputo, Johannesburg.Dar_es_Salaam, Cape_Town.Maputo /;

display f ;

The display statement generates the following output:

---- 4 SET f direct flight connections

Maputo Dar_es_Sa~

Johannesburg YES YES

Cape_Town YES

Note that only the label 'Dar es Salaam' is cut off since it is heading a column. The label 'Johannesburg'
is not cut off as it is the label for a row. Now we add the following line to change the width of the display
statement:

option dispwidth = 15; display f;

As expected, the output changes and the label 'Dar es Salaam' is no longer cut off:

---- 5 SET f direct flight connections

Maputo Dar_es_Salaam

Johannesburg YES YES

Cape_Town YES

918 User's Guide

4.32.4.2 Local Display Control

It is often useful to control the number of decimals for specific identifiers separately. The following option
statement accomplishes this:

option ident:d-value;

Ident denotes the name of the identifier and d-value is an integer in the range 0 to 8. The number of
decimal places shown on all displays of ident that follow will be d-value.

This option statement can be extended to control the layout of the data in addition to the decimal places.
The general form is as follows:

option ident:d-value:r-value:c-value ;

Here r-value denotes the number of index positions that are combined to form the row label and c-value

means the number of indices on the column headers.

The example discussed in the previous section is further extended in order to illustrate the local display
control.

option x:5:3:1; display x;

These two statements generate the following output:

---- 17 PARAMETER x a four dimensional structure

i ii

first .one .b 5.63559

first .two .a -2.93930 0.02873

first .two .b 10.34570

first .three.b -6.31610

second.one .a 0.00013 1.00370

second.one .b -17.29948

second.two .a +INF

second.two .b 20000.00000

Note that five decimal places are shown, three labels are used to mark the rows and one label acts as
head of the column. Since this is a four-dimensional structure, all indices are accounted for.

The next example places two indices on each of the row and and column labels and retains five decimal
places:

option x:5:2:2; display x;

The output is:

4.32 The Display Statement 919

---- 18 PARAMETER x a four dimensional structure

a.i a.ii b.i b.ii

first .one 5.63559

first .two -2.93930 0.02873 10.34570

first .three -6.31610

second.one 0.00013 1.00370 -17.29948

second.two +INF 20000.00000

If in the option statement less dimensions are specified than the number of indices in the domain, then
subtables will be generated for the labels of the beginning indices. Observe how the display layout will
change if we use the following statement:

option x:0:1:1; display x;

The output follows.

---- 19 PARAMETER x a four dimensional structure

INDEX 1 = first INDEX 2 = one

i

b 6

INDEX 1 = first INDEX 2 = two

i ii

a -3 2.873000E-2

b 10

INDEX 1 = first INDEX 2 = three

i

b -6

INDEX 1 = second INDEX 2 = one

i ii

a 1.300000E-4 1

b -17

INDEX 1 = second INDEX 2 = two

i ii

a +INF

b 20000

The option statement is checked for consistency against the dimensionality of the identifier and error
messages will be issued if the number of the dimensions specified in the option statement is larger than
the number of indices in the domain of the identifier.

920 User's Guide

4.32.4.3 Display Statement to Generate Data in List Format

The option statement for local display controls may be used to generate data in list format by setting the
r-value to zero:

option ident:d-value:0:c-value;

In this case the c-value specifies the maximum number of items displayed on a line. The actual number
will depend on the page width and the number and length of the labels.

Using the same example as in the previous sections, we change the r-value to zero in the option statement:

option x:5:0:1; display x;

option x:5:0:2; display x;

Note that we specified one and two columns to illustrate the impact of different c-value settings. These
statements will generate the following output:

---- 20 PARAMETER x a four dimensional structure

first .one .b.i 5.63559

first .two .a.i -2.93930

first .two .a.ii 0.02873

first .two .b.ii 10.34570

first .three.b.i -6.31610

second.one .a.i 0.00013

second.one .a.ii 1.00370

second.one .b.ii -17.29948

second.two .a.ii +INF

second.two .b.i 20000.00000

---- 21 PARAMETER x a four dimensional structure

first .one .b.i 5.63559, first .two .a.i -2.93930

first .two .a.ii 0.02873, first .two .b.ii 10.34570

first .three.b.i -6.31610, second.one .a.i 0.00013

second.one .a.ii 1.00370, second.one .b.ii -17.29948

second.two .a.ii +INF, second.two .b.i 20000.00000

This output nicely illustrates the label order used. The first index varies the slowest, the last the fastest,
and each one runs from beginning to end before the next one to the left advances. This ordering scheme
is also used in equation and column lists and in the solution report which are all generated by the solve
statement.

4.33 Programming Flow Control Features 921

4.32.5 Conditional Displays

This section assumes familiarity with the if statement and the dollar condition.

The display statement may be controlled by conditional expressions. Conditionals have the effect that
the items are displayed only if a logical condition is satisfied. There are two ways to express conditional
displays in GAMS: with dollar conditions and using if statements. The syntax using a dollar condition is
as follows:

display$logical_condition ident | quoted text {, ident | quoted text};

Note that the dollar condition is inserted after the keyword display. For details on the various forms
of conditional expressions in GAMS, see sections Logical Conditions and Filtering Sets. Consider the
following simple example:

Scalars x, y;

x = 7;

y = 3;

display$(x-y < 0) "display if x minus y is less than 0", x, y;

The logical condition (x-y < 0) controls the display statement. In this case it is not satisfied, hence
there will be no display output. If the value of y is changed to, say 10, then the logical condition will be
satisfied and the display statement will generate the following output:

---- 4 display if x minus y is less than 0

PARAMETER x = 7.000

PARAMETER y = 10.000

The syntax for conditional displays using an if statement is as follows:

if(logical_condition, display statement);

The simple example above may be reformulated as follows:

Scalars x, y;

x = 7;

y = 3;

if(x-y < 0,

display "display if x minus y is less than 0", x, y;

);

4.33 Programming Flow Control Features

4.33.1 Introduction

In this chapter we will describe the programming flow control features available in GAMS. The if statement
facilitates expressing complex conditional statements (see also chapter Conditional Expressions, Assignments and Equations).
In addition, GAMS offers four loop constructs to handle looping requirements: the loop statement, the
while statement, the for statement and the repeat statement. At the end of this chapter we will introduce
the break, and continue statements, which give additional control over the execution of loop structures,
and the abort statement, a statement that may be used to terminate the execution of a program.

Note that this chapter deals with programming flow control features at execution time. In addition,
GAMS provides a dollar control option that allows for conditional processing of input files at compile time.
For more information, see the detailed description of the option $if. For details on dollar control options
in general, see chapter Dollar Control Options.

922 User's Guide

4.33.2 The If Statement

The if statement is useful to branch conditionally around a group of statements. In some cases this
can also be written as a set of dollar conditions, but the if statement may make the GAMS code more
readable. An optional else and/or elseif part allows the user to formulate traditional if-then-else
constructs.

4.33.2.1 The If Statement: Syntax

The syntax for an if statement in GAMS is as follows:

if (logical_condition,

statement; {statement;}

{ elseif logical_condition,

statement; {statement;} }

[else

statement; {statement;}]

);

The keyword if indicates that this is an if statement. The logical condition is followed by one or more
statements that are executed if the logical condition is satisfied. For details on the various forms of logical
conditions in GAMS, see sections Logical Conditions and Filtering Sets. The if statement may end at
this point, without any specifications for cases when the logical condition is FALSE and no action is taken in
these cases. However, GAMS also allows further specifications: optional alternative if tests and optional
statements for cases when all previous if tests have failed. The keyword elseif introduces an alternative
if test with a logical condition and one or more statements. Note that the elseif case is optional and
may be repeated multiple times. Note further that the elseif case implies that the logical condition of
the if case has not been satisfied. The keyword else introduces the final part of the construct. It is
optional and allows specification for cases when the logical condition of the if case (and possibly the
elseif case(es)) has not been satisfied.

Attention

Only execution statements are permitted in programming flow control statements. Consequently
declaration statements and equation definitions are not allowed inside an if statement.

Examples are given in the next subsection. Note that there is an alternative syntax that is more in
line with the syntax of some popular programming languages. For more information, see the detailed
description of the dollar control option onEnd.

4.33.2.2 The If Statement: Examples

Consider the following set of conditional assignment statements that use dollar conditions:

p(i)$(f <= 0) = -1 ;

p(i)$((f > 0) and (f < 1)) = p(i)**2 ;

p(i)$(f >= 1) = p(i)**3 ;

q(j)$(f <= 0) = -1 ;

q(j)$((f > 0) and (f < 1)) = q(j)**2 ;

q(j)$(f >= 1) = q(j)**3 ;

4.33 Programming Flow Control Features 923

They may be expressed using an if-elseif-else statement:

if (f <= 0,

p(i) = -1 ;

q(j) = -1 ;

elseif ((f > 0) and (f < 1)),

p(i) = p(i)**2 ;

q(j) = q(j)**2 ;

else

p(i) = p(i)**3 ;

q(j) = q(j)**3 ;

) ;

Note that the body of the if statement may contain solve statements. For instance, consider the bit of
GAMS code that follows. Note that ml is a GAMS model, z is a free variable, j is a set and x is a variable.

solve ml using lp minimizing z;

if (ml.modelstat = 4,

display "model ml was infeasible, relax bounds on x and solve again";

x.up(j) = 2*x.up(j) ;

solve ml using lp minimizing z ;

else

if (ml.modelstat <> 1,

abort "error solving model ml" ;

);

);

First the model ml is solved. For details on solve statements in GAMS, see section The Solve Statement.
Then a post solution analysis is done with the if statement. If the model is infeasible, the upper bound
on the variable x is relaxed and the model is solved again. If the original model is not infeasible and it is
not optimal either, then the compilation is aborted and the error message above is reported. For more
information on GAMS output, see chapter GAMS Output, particularly subsection Model Status for a list
of all GAMS model statuses. The display statement is introduced in chapter The Display Statement.
For details on the abort command, see abort.

The following GAMS code is illegal since it is not permitted to define equations inside an if statement.

if (s > 0,

eq.. sum(i,x(i)) =g= 2 ;

);

The following GAMS code is also illegal since declarations inside an if statement are not allowed.

if (s > 0,

scalar y ; y = 5 ;

);

4.33.3 The Loop Statement

The loop statement facilitates executing a group of statements for each member of a set. Loop statements
are particularly useful for cases when parallel assignments are not sufficient. This is the case most often
when there is no analytic relationship between the values to be assigned to a parameter. It is, of course,
also useful to have a looping statement for general programming.

924 User's Guide

4.33.3.1 The Loop Statement: Syntax

The syntax for the loop statement in GAMS is as follows:

loop(index_list[$(logical_condition)],

statement; {statement;}

) ;

The keyword loop indicates that this is a loop statement. The index list is the controlling domain of
the loop. Note that loops may be controlled by more than one set. In this case parentheses are required
around the index list, which is also called the loop set(s). Observe that dynamic sets are allowed as loop
sets. The loop set(s) may be restricted by a logical condition. For details on the various forms of logical
conditions in GAMS, see sections Logical Conditions and Filtering Sets. For an introduction to dollar
conditions in general, see chapter Conditional Expressions, Assignments and Equations. The index list
is followed by one or more statements. Except for the final statement, each statement must end with a
semicolon ';'. The loop statements are executed for each member of the controlling domain in turn.
The order of evaluation is the entry order of the labels. A loop is thus another, more general, type of
indexed operation.

Attention

• Only execution statements are permitted in programming flow control statements. Consequently
declaration statements and equation definitions are not allowed inside a loop statement.

• It is illegal to modify any controlling set inside the body of the loop.

Loop statements in GAMS are often used for iterative calculations, generating reports with put statements
and doing scenario based studies with solve statements. Examples are given in the next subsection. Note
that there is an alternative syntax that is more in line with the syntax of some popular programming
languages. For more information, see the detailed description of the dollar control option onEnd.

4.33.3.2 The Loop Statement: Examples

Consider a hypothetical case when a growth rate is empirical:

Set t / 1985*1990 /;

Parameter pop(t) / 1985 3456 /

growth(t) / 1985 25.3, 1986 27.3, 1987 26.2

1988 27.1, 1989 26.6, 1990 26.6 /;

The loop statement is then used to calculate the cumulative sums iteratively:

loop(t, pop(t+1) = pop(t) + growth(t)) ;

In this example the driving set is t and we have just one statement in the scope of the loop.

The following small artificial examples illustrate the effects of a dollar condition in a loop statement.

4.33 Programming Flow Control Features 925

Sets i / i1*i3 /

j / j1*j5 /

k(i,j) / i1.j1, i1.j3, i3.j3, i3.j5 /;

Parameter c(i) / i1 3, i2 1 /

q(i,j) / i1.j1 1, i1.j2 3, i1.j4 2 / ;

Scalars x, y, z;

x = 1; y = 3; z = 1;

loop ((i,j) $ (q(i,j) > 0), x = x + q(i,j));

loop (i $ (c(i) + c(i)**2), z = z + 1);

loop (i $ sum(j, abs(q(i,j))), z = z + 1);

loop (j $ (ord(j) > 1 and ord(j) < card(j)), z = z + 1);

loop ((i,j) $ k(i,j), y = y + ord(i) + 2*ord(j));

In the first loop statement the controlling domain is the set pair (i,j). It is restricted to those label
combinations whose values associated with the parameter q are greater than zero. The logical condition
in the second loop statement is c(i) + c(i)2. This is shorthand for c(i) + c(i)2 6= 0. The domain in the
third loop statement is restricted to those elements of the set i where the sum over j of the absolute
values of the parameter q does not equal zero. Note that this condition is satisfied only for the label "i1".
Observe that i and j are both ordered sets. In the fourth loop statement the first and the last element
of the set j are excluded. For more on the set operators ord and card, see sections The Ord Operator
and The Card Operator respectively. The dollar control in the last loop statement excludes all label
combinations that are not members of the set k. For further details on dollar conditions, see chapter
Conditional Expressions, Assignments and Equations.

Note

The dollar condition may be replaced by an if statement; see the example below.

The next example shows how a model can be solved for each element of a set i with different data using a
loop statement. Note that problemdata is a scalar, g(i) and d(i) are parameters, mymodel is a GAMS
model and profit is a free variable.

loop (i,

problemdata = g(i);

solve mymodel using lp maximizing profit;

d(i) = profit.l;

);

In the first statement some data in the model is updated in accordance with the ith element of the
parameter g. In the second statement the model is solved. For details on the solve statement, see section
The Solve Statement. The objective value for each iteration is saved in the parameter d in the third
statement.

A loop is often used to perform iterative calculations. Consider the following example, which finds square
roots by Newton's method. This example is purely for illustration - in practice, the function sqrt should
be used. Newton's method is based on the assertion that if x is an approximation to the square root of v,
then (x+ v/x)/2 is a better approximation.

Set i "set to drive iterations" / i-1*i-100 /;

Parameter value(i) "used to hold successive approximations";

Scalars target "number whose square root is needed" / 23.456 /

sqrtval "final approximation to sqrt(target)"

curacc "accuracy of current approximation"

reltol "required relative accuracy" / 1.0e-06 /;

926 User's Guide

abort$(target <= 0) "argument to newton must be positive";

value("i-1") = target/2 ;

curacc = 1 ;

loop(i$(curacc > reltol),

value(i+1) = 0.5*(value(i) + target/value(i));

sqrtval = value(i+1);

curacc = abs (value(i+1)-value(i))/(1+abs(value(i+1)))

) ;

abort$(curacc > reltol) "square root not found"

option decimals=8;

display "square root found within tolerance", sqrtval, value;

Note that in this example the dollar condition in the loop does not restrict the driving set i, but it is used
to terminate the loop procedure. The scalar curacc is updated in every iteration. As soon as it becomes
equal to or smaller than the required relative accuracy reltol the loop stops. As the output below shows,
this is the case after seven iterations. The body of the loop statement consists of three statements. The
first statement calculates the current approximation and assigns it to the parameter value. The second
statement updates the scalar sqrtval, and the third statements computes the accuracy of the current
approximation in each iteration. Note that before and after the loop statement we added lines to account
for special cases. For details on the abort statement, see section The Abort Statement at the end of this
chapter. The output generated by the display statement is given below.

---- 19 square root found within tolerance

---- 19 PARAMETER SQRTVAL = 4.84313948 final approximation

to sqrt(target)

---- 19 PARAMETER VALUE used to hold successive approximations

i-1 11.72800000, i-2 6.86400000, i-3 5.14062471, i-4 4.85174713

i-5 4.84314711, i-6 4.84313948, i-7 4.84313948

Note that a statement within the body of a loop may be an if statement (or any other programming flow
control statement). Moreover, the logical condition in a loop statement may be expressed with an if

statement instead of a dollar condition. The following example serves as illustration. Observe that k is a
set and s, t, u and a are parameters.

loop (k,

if((s(k) < 0 and t(k)),

u(k) = a(k);

);

);

Note that if the logical condition is not satisfied the assignment is not made and the parameter u remains
unchanged.

Recall that subsets are connected with their supersets by arcs thus building a domain tree where the root
node is the universal set. The following example demonstrates how the domain tree may be used in a
loop statement.

4.33 Programming Flow Control Features 927

Set i / i1*i10 /

ii(i)

j(i) / i1*i9 /

jj(j) / i1*i8 /

jjj(jj) / i1*i7 /;

loop(i(jjj), ii(i) = yes;);

display ii;

Observe that the looping set is i(jjj). This means that we loop over those elements of i that are also
elements of the set jjj. This construct is permitted since i is in the domain tree on the path from jjj to
the universe or universal set. It is allowed to go up the domain tree on one path and go down on another
path. Therefore all the elements of jjj are assigned to ii. The outcome of the display statement confirms
this:

---- 8 SET ii

i1, i2, i3, i4, i5, i6, i7

4.33.4 The While Statement

The while statement facilitates the repeated execution of one or more statements as long as a logical
condition is satisfied.

4.33.4.1 The While Statement: Syntax

The syntax for the while statement in GAMS is as follows:

while(logical_condition,

statement; {statement;}

);

The keyword while indicates that this is a while statement. Inside the while statement a logical condition
is followed by one or more statements. For details on the various forms of logical conditions in GAMS,
see sections Logical Conditions and Filtering Sets. The statements are executed as long as the logical
condition is TRUE.

Attention

Only execution statements are permitted in programming flow control statements. Consequently
declaration statements and equation definitions are not allowed inside a while statement.

Examples are given in the next subsection. Note that there is an alternative syntax that is more in
line with the syntax of some popular programming languages. For more information, see the detailed
description of the dollar control option onEnd.

928 User's Guide

4.33.4.2 The While Statement: Examples

Consider the following simple example:

Scalar x; x = 1;

while (round(x,2) < 10,

x = x + 0.01;

);

display x;

Note that the scalar x is increased in each iteration until it equals 10. Note further, that to ensure an
exact result, in numerical comparisons we need a stable check like we have above (round(x,2) < 10),
otherwise rounding errors may occur. As soon as x reaches 10, the logical condition is no longer satisfied
and therefore there will be no further passes. Hence the final value of x equals 10.

Note that the number of passes in a while statement may be restricted using the command line
parameter or option forlim. For details on command line parameters and options, see section
Specifying Options Through the Command Line and chapter The Option Statement respectively.

While statements may be used to control the solve statement. For instance, consider the following
implementation of a random multi-start method for non-convex optimization.

scalar count / 1 /;

scalar globmin / inf /;

option bratio = 1 ;

while(count <= 1000,

x.l(j) = uniform(x.lo(j),x.up(j)) ;

solve ml using nlp minimizing obj ;

if (obj.l < globmin,

globmin = obj.l ;

bestsol(j) = x.l(j) ;

) ;

count = count+1 ;

) ;

Note that we start from a random starting point by setting the initial level values randomly between
the upper and lower bounds. This assumes that the bounds have been previously specified and are not
infinity. When the method improves, that is, if the logical condition (obj.l < globmin) is satisfied, the
best known solution is stored in the scalar globmin. The level values associated with the best known
solution so far are then saved in the parameter bestsol. This procedure is repeated 1000 times. The
model [PRIME] is another example where the use of the while statement is illustrated. In this model
the set of all prime numbers smaller than 200 is generated.

The following GAMS code is illegal since equation definitions inside a while statement are not permitted.

while(s > 0,

eq.. sum(i,x(i)) =g= 2 ;

);

The following GAMS code is also illegal since declarations inside a while statement are not allowed.

while(s > 0,

scalar y ; y = 5 ;

);

4.33 Programming Flow Control Features 929

4.33.5 The For Statement

The for statement provides a compact way to iterate over a range of values and execute one or more
statements each time.

4.33.5.1 The For Statement: Syntax

The syntax for the for statement in GAMS is as follows:

for (a = start_value to|downto end_value [by incr],

statement; {statement;}

);

The keyword for indicates that this is a for statement. The scalar a begins with the real number
start value and is changed after each pass of the loop by the increment incr until it reaches the real
number end value. Note that the specification of an increment is optional, the default is 1. If the
increment is given, it has to be a positive real number. Note further that to indicates that the scalar a is
increased and downto indicates that it is decreased. In each iteration one or more statements are executed.

Attention

Only execution statements are permitted in programming flow control statements. Consequently
declaration statements and equation definitions are not allowed inside a for statement.

Examples are given in the next subsection. Note that there is an alternative syntax that is more in
line with the syntax of some popular programming languages. For more information, see the detailed
description of the dollar control option onEnd.

4.33.5.2 The For Statement: Examples

Consider the following simple example:

Scalar s;

for (s = -3.8 to -0.1 by 1.4,

display s ;

);

Note that negative real numbers are possible for the start and end values. The resulting listing file will
contain the following lines:

---- 3 PARAMETER s = -3.800

---- 3 PARAMETER s = -2.400

---- 3 PARAMETER s = -1.000

Observe that the value of s was increased by 1.4 with each pass of the loop as long as it did not exceed
-0.1. In the next example the value of s is decreased:

930 User's Guide

Scalar s;

for (s = 3 downto -0.1 by 1.4,

display s ;

);

Note that the number of passes in a for statement may be restricted using the command line
parameter or option forlim. For details on command line parameters and options, see section
Specifying Options Through the Command Line and chapter The Option Statement respectively.

Like while statements, for statements may be used to control the solve statement. The following example
illustrates the use of the for statement by replicating the random search for a global optimum of a non-convex model
that we discussed above.

scalar i ;

scalar globmin / inf / ;

option bratio = 1 ;

for (i = 1 to 1000,

x.l(j) = uniform(x.lo(j),x.up(j)) ;

solve ml using nlp minimizing obj ;

if (obj.l < globmin,

globmin = obj.l ;

bestsol(j) = x.l(j) ;

);

);

Note that the logical condition in the while loop (count <= 1000) is replaced by the specification of
the range of values for the scalar i. The body of the for loop is identical to the body of the while loop,
except for the statement to update the scalar count that we needed in the while loop. This demonstrates
the similarities and differences between the two loops.

The following GAMS code is illegal since it is not allowed to define equations inside a for statement.

for (s = 1 to 5,

eq.. sum(i,x(i)) =g= 2 ;

);

The following GAMS code is also illegal since declarations inside a for statement are not permitted.

for (s = 1 to 5,

scalar y ; y = 5 ;

);

4.33.6 The Repeat Statement

The repeat statement facilitates the repeated execution of one or more statements. This is done
unconditionally at least once and stopped when a logical condition is satisfied.

4.33 Programming Flow Control Features 931

4.33.6.1 The Repeat Statement: Syntax

The syntax for the repeat statement in GAMS is as follows:

repeat (

statement; {statement;}

until logical_condition);

The keyword repeat indicates that this is a repeat statement. One or more statements are executed
in each iteration. The keyword until introduces the termination criterion: if the logical condition is
satisfied, the repeat loop is terminated. For details on the various forms of logical conditions in GAMS,
see sections Logical Conditions and Filtering Sets.

Note that the repeat statement is similar to the while statement, but a repeat loop is guaranteed to be
executed at least one time since the logical condition is stated after the statements.

Attention

Only execution statements are permitted in programming flow control statements. Consequently
declaration statements and equation definitions are not allowed inside a repeat statement.

Examples are given in the next subsection.

4.33.6.2 The Repeat Statement: Examples

Consider the following simple example:

Scalar a / 1 /;

repeat (

a = a + 1;

display a;

until a = 5);

The scalar a is increased in each iteration by 1. If a equals 5, the termination criterion is satisfied and the
loop stops. Note that this example works nicely since both, the scalar and the increment, are integer. In
case the entity on the right-hand side of the termination condition is not an integer or the increment is
not an integer, we recommend a formulation of the check that is more stable to avoid rounding errors. An
example for a stable termination condition follows.

Scalar a / 1 /;

repeat (

a = a + 0.1;

display a;

until abs(a-5) < 1e-6);

Observe that in the next example the termination condition is TRUE from the start. In this case the
statement in the body of the repeat statement is executed once and then the loop is terminated. Hence
the final value of a will be 5.

932 User's Guide

Scalar a / 4 /;

repeat (

a = a + 1;

display a;

until a >= 3);

Note that the number of passes in a while statement may be restricted using the command line
parameter or option forlim. For details on command line parameters and options, see section
Specifying Options Through the Command Line and chapter The Option Statement respectively.

Here is a little more complex example. A repeat statement is used to narrow the interval where a
quadratic function passes through zero. Note that, as is often the case, one of the statements in the
repeat loop is another programming flow control statement, in this case an if statement.

Scalar max "current upper boundary of interval" /10/

min "current lower boundary of interval" /-10/

root "value where function equals zero"

function_value1 "function value at min"

function_value2 "function value at max"

tolerance "tolerance for root" /0.00000001/

signswitch "indicates that sign switch was found" /0/

inc "increment to try to find sign switch" ;

function_value1 = 6 - 5*min + sqr(min);

inc = (max - min)/37;

root = min;

repeat (

root = root + inc;

function_value2 = 6 - 5*root + sqr(root);

if((sign(function_value1) <> sign(function_value2)

and abs(function_value1) > 0

and abs(function_value2) > tolerance),

max = root;

signswitch = 1;

else

if(abs(function_value2) > tolerance,

function_value1 = function_value2;

min = root;

);

);

until (signswitch > 0) or (root > max));

display min, max, function_value1, function_value2;

The result of the display statement shows that the value of min is 1.892 and the value of max is
2.432, the interval was narrowed to 0.54, which is just a little less than the value of inc. As expected,
function value1 and function value2 differ in sign, confirming that the root of the quadratic function
is indeed in the interval.

4.33.7 The Break Statement

The break statement gives additional control over the execution of loop structures, namely the
loop statement, the while statement, the for statement and the repeat statement. It allows to break
the execution of a loop structure prematurely.

4.33 Programming Flow Control Features 933

4.33.7.1 The Break Statement: Syntax

The syntax for the break statement is as follows:

break [n];

The keyword break indicates that this is a break statement. It terminates the n inner most control
structures. n is optional and if it is omitted, it is set to 1.

Most often break statements are used in the context of if statements or with dollar conditions. For details
on the various forms of logical conditions in GAMS, see sections Logical Conditions and Filtering Sets.

4.33.7.2 The Break Statement: Examples

This is a simple, artificial example using the break statement to exit a loop statement:

Set i / i1*i10 /;

Scalar cnt / 0 /;

loop(i,

break$sameas(’i6’,i);

cnt = cnt+1;

);

display cnt;

The break statement in combination with the dollar condition terminates the execution of the loop body
in the 6th iteration. This can be seen looking at the value of cnt after the loop, which will be 5.

Here is a little more complex example which uses the optional argument n to terminate more than one
loop structure at once:

Set i / i1*i10 /;

Scalar x, y,

cnt / 0 /;

for(x = 1 to 10,

y = 0;

while(y < 10,

y = y+1;

loop(i,

break$sameas(’i6’,i) 2;

cnt = cnt+1;

);

);

);

display cnt;

In this example, cnt will be 50 at the end. As in the previous example, it is increased 5 times in the inner
most loop, before the break statement is executed. This time break is called with the argument 2, which
causes the two inner most control structures (namely the loop and the while) to be terminated. The
outer most control structure (the for) is not influenced, so that its body gets executed 10 times, which
results in a total of 50 increments for the scalar cnt.

Note, if break would be called with the argument 3 instead of 2, also the for loop would be terminated,
so that cnt would be 5 at the end. If break would be called with 1 (or without additional argument)
instead of 2, only the inner most loop would be terminated so that cnt would be 500 at the end.

934 User's Guide

4.33.8 The Continue Statement

The continue statement gives additional control over the execution of loop structures, namely the
loop statement, the while statement, the for statement and the repeat statement. It allows to jump to
the end of the inner most loop structure without executing the remaining statements in the body.

4.33.8.1 The Continue Statement: Syntax

The syntax for the continue statement is as follows:

continue;

The keyword continue indicates that this is a continue statement. It jumps to the end of the inner most
control structure.

Most often continue statements are used in the context of if statements or with dollar conditions.
For details on the various forms of logical conditions in GAMS, see sections Logical Conditions and
Filtering Sets.

4.33.8.2 The Continue Statement: Examples

This is a simple, artificial example using the continue statement to skip parts of a loop body:

Set i / i1*i10 /;

Scalar cnt / 0 /;

loop(i,

continue$(mod(ord(i),2)=0);

cnt=cnt+1

);

display cnt;

In that example, every 2nd iteration of the loop statement is skipped. Therefore, cnt will be 5 at the end
of the loop.

4.33.9 The Abort Statement

The abort statement is used to terminate the execution of a program. Most often the abort statement is
used in the context of conditionals. Examples are given below. Also it may be used to display a text or
an identifier in the listing file similar to the display statement but mostly to present the reason for the
termination of the execution.

Note that the abort statement is to be distinguished from the dollar control option $abort which may be
used to terminate the compilation of a program.

4.33 Programming Flow Control Features 935

4.33.9.1 The Abort Statement: Syntax

The syntax for the abort statement is as follows:

abort ident | quoted text {, ident | quoted text};

The keyword abort indicates that this is an abort statement. Ident denotes an identifier. If the identifier
is a set or a parameter, only the name of the set or parameter itself is specified, without any domains. If
the identifier is a variable, an equation or a model, it must be followed by a suffix, since only attributes of
variables, equations and models can be displayed. For more on variable and equation attributes including
full lists, see sections Variable Attributes and Equation Attributes respectively. For details on model
attributes, see section Model Attributes. Recall that sets also have attributes, they may also be displayed
using the suffix notation. For details on set attributes, see section Set Attributes. As usual, quoted text

must be surrounded by single or double quotes. The identifiers and the text may be mixed and matched
in any order, and the whole statement may be continued over several lines.

An abort statement causes the termination of the execution with an execution error and the information
in the statement will be displayed.

There is also a variant with the extension .noError that terminates the execution and displays the
information, but does not cause an execution error. The syntax is as follows:

abort.noError ident | quoted text {, ident | quoted text};

Most often abort statements are used in the context of if statements or with dollar conditions. The
syntax is as follows:

if (logical_condition, abort ident | quoted text {, ident | quoted text};);

or

abort$logical_condition ident | quoted text {, ident | quoted text};

For details on the various forms of logical conditions in GAMS, see sections Logical Conditions and
Filtering Sets.

4.33.9.2 The Abort Statement: Examples

Consider the following artificial example:

Set i / i1*i5 /;

Parameter p(i) / i1 1, i2 2, i3 3, i4 5, i5 8 /;

loop(i,

if (p(i) > 3, abort "Parameter larger than 3", p);

p(i) = p(i) + 2;

);

Note that the abort statement is part of an if statement which is part of a loop statement. The execution
of this program will be terminated with the following display and error message:

936 User's Guide

---- 4 Parameter larger than 3

---- 4 PARAMETER p

i1 3.000, i2 4.000, i3 5.000, i4 5.000, i5 8.000

**** Exec Error at line 4: Execution halted: abort ’Parameter larger than 3’

Observe that the values of p('1'), p('2') and p('3') were updated, but the values of p('4') and
p('5') are equal to the initialization values since the program was terminated before they could be
updated.

If the extension .noError is used in the example above, the following lines will appear in the listing file:

---- 4 Parameter larger than 3

---- 4 PARAMETER p

i1 3.000, i2 4.000, i3 5.000, i4 5.000, i5 8.000

**** Execution halted from line 4: abort.noError ’Parameter larger than 3’

Note that the execution of the program is aborted as before, but there is no execution error in this case.

Instead of an if statement we may use a dollar condition in the loop:

Set i / i1*i5 /;

Parameter p(i) / i1 1, i2 2, i3 3, i4 5, i5 8 /;

loop(i,

abort$(p(i) > 3) "Parameter larger than 3", p;

p(i) = p(i) + 2;

);

Observe that this alternative formulation has the same outcome as above.

4.34 The Option Statement

4.34.1 Introduction

The option statement is used to set various global system parameters to control among other things
output detail, the solution process and the layout of displays. GAMS provides default values for global
system parameters that are adequate for the most purposes. However, there are always cases when the user
would like to maintain control of some aspects of the run. In addition, the option statement provides an
efficient and compact syntax to perform powerful operations on identifiers. Observe that option statements
are processed at execution time unlike dollar control options that are processed at compile time.

This chapter is organized as follows. We will first introduce the general syntax of the option statement,
then we will continue with a list of all available options that may be used with option statements
and provide links to their detailed explanations in the GAMS Call chapter. Finally we turn to the
special options that involve identifiers.

4.34 The Option Statement 937

4.34.1.1 The Syntax of the Option Statement

The general form of an option statement is as follows:

option(s) key1 [= value1] { ,|EOL key2 [= value2] } ;

The keyword option or options indicates that this is an option statement. It is followed by key1, which
is one of the options that are listed in this chapter. Consider the following simple example:

option reslim=800;

Here the keyword option is followed by the key reslim. The option reslim specifies the maximum time in
seconds that a solver may run before it terminates. Thus, in this example we give the solver 800 seconds
to come up with a solution.

Note

• Option names are not reserved words and therefore they do not conflict with other uses of their
names.

• Option statements do not allow expressions. It is therefore not possible to assign parameter
values to an option.
The following doesn't work:

scalar p /3/;

option reslim=p;

However, if the desired option is available as model attribute, one can assign parameter values
there:

scalar p /3/;

transport.reslim = p;

Observe that it depends on the respective option whether a value is expected and if so, what type of value.
There are six different cases. An overview is given in Table 1.

Key Value Type of Value Examples

yes no - dmpOpt, eject, memoryStat

yes yes integer number decimals, limcol, seed

yes yes real number FDDelta, optCR, resLim

yes yes text string LP, solPrint, sysout

yes yes identifier See identifier options.

no no - See identifier operations.

Table 1: Types of Options

Note that the last type is special: it does not involve a named option or key, but the keyword option is
followed by identifiers and identifier operators. These special option statements are discussed in detail in
section Special Options: Identifier Operations.

Observe that the value of an option may be reset as often as necessary, the new value will replace the
previous value each time. Further, more than one option may be specified with one option statement and
commas or end-of-line characters are both legal separators between options.

938 User's Guide

We will demonstrate with the following example how several options may be used. The code snippet may
be added to the model [DICE].

option measure, limcol = 100

optcr = 0.00, mip = xpress ;

solve xdice using mip max wnx;

option clear = comp;

Note that in the first option statement four options are specified: option measure has no associated value,
option limcol expects an integer value, option optcr expects a real value and option MIP expects a text
string as value. The second option statement specifies just one identifier option: clear, which has the
variable comp as value.

Attention

Option statements are executed in sequence with other instructions. Therefore, if an option statement
is located between two solve statements, the new values will be assigned between the solves and
thus they will apply only to the second solve statement.

4.34.2 List of Options

The options available through the option statement are grouped into the following functional categories:

• Options that affect output details

• Solver specific parameters

• Options that control choice of solver

• Options that affect input program control

• Other options

• Special options that involve identifiers

In the following subsections we will offer brief descriptions of the options in the first five categories.
Note that each entry is linked to a detailed description of the respective option. Observe that detailed
descriptions of all GAMS command line parameters, options and model attributes are given in section
Detailed Descriptions of All Options. The options that belong to the last category are special, they are
introduced and discussed in section Special Options that Involve Identifiers below.

4.34.2.1 Options that Control Output Details

Option Description

asyncSolLst Print solution listing when asynchronous solve (Grid or Threads) is used

decimals Decimal places for display statements

dispWidth Number of characters to be printed in the column labels of all subsequent display
statements

eject Inject a page break into the LST file

epsToZero Treat eps as zero when unloading to GDX

limCol Maximum number of columns listed in one variable block

limRow Maximum number of rows listed in one equation block

4.34 The Option Statement 939

Option Description

maxGenericFiles Maximum number of generic file names tried at execution time file creation

MCPRHoldFx Print list of rows that are perpendicular to variables removed due to the holdfixed
setting

profile Execution profiling

profileTol Minimum time a statement must use to appear in profile generated output

solPrint Solution report print option

solSlack Causes the equation output in the listing file to contain slack variable values instead
of level values

sysOut Solver Status file reporting option

4.34.2.2 Options that Control Solver-Specific Parameters

Option Description

bRatio Basis detection threshold

domLim Domain violation limit solver default

holdFixedAsync Allow HoldFixed for models solved asynchronously as well

intVarUp Set mode for default upper bounds on integer variables

iterLim Iteration limit of solver

optCA Absolute Optimality criterion solver default

optCR Relative Optimality criterion solver default

reform Reformulation level

resLim Wall-clock time limit for solver

savePoint Save solver point in GDX file

solveLink Solver link option

sys12 Pass model with generation errors to solver

threads Number of processors to be used by a solver

4.34.2.3 Options that Control the Choice of Solver

Option Description

CNS Constrained Nonlinear Systems - default solver

DNLP Non-Linear Programming with Discontinuous Derivatives - default solver

EMP Extended Mathematical Programs - default solver

LP Linear Programming - default solver

MCP Mixed Complementarity Problems - default solver

MINLP Mixed-Integer Non-Linear Programming - default solver

MIP Mixed-Integer Programming - default solver

MIQCP Mixed Integer Quadratically Constrained Programs - default solver

MPEC Mathematical Programs with Equilibrium Constraints - default solver

NLP Non-Linear Programming - default solver

QCP Quadratically Constrained Programs - default solver

RMINLP Relaxed Mixed-Integer Non-Linear Programming - default solver

RMIP Relaxed Mixed-Integer Programming - default solver

RMIQCP Relaxed Mixed Integer Quadratically Constrained Programs - default solver

RMPEC Relaxed Mathematical Programs with Equilibrium Constraints - default solver

solver Default solver for all model types that the solver is capable to process

940 User's Guide

4.34.2.4 Options that Affect Input Program Control

Option Description

ECImplicitLoad Allow implicit loading of symbols from embedded code or not

fdDelta Step size for finite differences

fdOpt Options for finite differences

gdxUels Unload labels or UELs to GDX either squeezed or full

seed Random number seed

solveOpt Multiple solve management

strictSingleton Error if assignment to singleton set has multiple elements

sys18 Use backward compatible (i.e. pre-GAMS 31) scheme for reading floating-point
numbers

zeroToEps Treat zero as eps

4.34.2.5 Other Options

Option Description

checkErrorLevel Check errorLevel automatically after executing external program

dmpOpt Debugging option: causes GAMS to echo the runtime option settings

dmpSym Debugging option: causes GAMS to echo the symbol table to the listing file

dmpUserSym Debugging option: causes GAMS to echo the symbol table to the listing file for user
defined symbols only

dualCheck Output on the reduced cost condition

forLim GAMS looping limit

integer1..5 Integer communication cells

measure Output of time and memory use since the last measure statement or the program
beginning

memoryStat Show memory statistics in the LST file

real1..5 Real communication cells

subSystems Lists all solvers available as well as the current default and active solvers in the LST
file

sys10 Changes rpower to ipower when the exponent is constant and within 1e-12 of an
integer

sys11 Dynamic resorting if indices in assignment/data statements are not in natural order

sys15 Automatic switching of data structures used in search records

sys16 Disable search record memory (aka execute this as pre-GAMS 24.5)

sys17 Disable sparsity trees growing with permutation (aka execute this as pre-GAMS
24.5)

sys19 Disable permutation on Column Generation (aka execute this as pre-GAMS 36)

threadsAsync Limit on number of threads to be used for asynchronous solves (solveLink=6)

4.34.2.6 Special Options that Involve Identifiers

Several options involve identifiers: they either take identifiers as values or have no key and value, but
perform an operation on an identifier. In the following two subsections we will introduce and discuss these
special options.

4.34 The Option Statement 941

Special Options: Identifier Options

The value of identifier options is not a string or a number, but an identifier. In this subsection we will
describe these options in detail.

clear

This option resets an identifier to its default value to free memory. The syntax is as follows:

option clear = identifier;

The following identifier types may be reset: sets, parameters, equations and variables. The option will
free up memory to the GAMS heap manager, thus the memory may be used by GAMS but not by the
operating system. To force the memory to be freed up to the operating system, the GAMS process needs
to be terminated. One way to do this is to restart the execution system by solving a dummy model with
the option solveLink set to zero.

kill

This option is a synonym to option clear. Observe that the dollar control option $kill is not a synonym to
$clear.

shuffle

This option rearranges the values of a parameter in a random order. The syntax is as follows:

option shuffle = itemname;

Here itemname is a one-dimensional parameter. One-dimensional parameters may be declared (and
defined) in four different ways, depending on the domain and the data. The following table gives an
overview of the effect of the option shuffle in the four cases.

No Data Has Data

Universal set as domain Use the universal set to initialize the
data (case 1 in the example below).

Use the universal set to add zero val-
ues before shuffling the data (case 3
in the example below).

Specific set as domain Use the domain to initialize the data
(case 2 in the example below).

Use the domain to add zero values
before shuffling the data (case 4 in
the example below).

If the parameter was declared without data (the second column in the table above), the domain or the
universal set will be used to assign the numbers 1 to N, where N is the number of elements in the domain
or the universal set. If the parameter was declared with data (the third column in the table above), the
domain or the universal set will be used to add zeroes for possibly missing entries. These zero values will
participate in the random shuffle, but they will not be stored in the parameter. The following example
serves as illustration:

Set i / i1*i5 /

j / j1*j5 /;

option decimals = 0;

942 User's Guide

*Case 1: universal set as domain and no data

Parameter A(*) "The universe is used to fill the parameter";

option shuffle = A;

display A;

*Case 2: set j as domain and no data

Parameter B(j) "The set j is used to fill the parameter";

option shuffle = B;

display B;

*Case 3: universal set as domain and has data

Parameter C(*) "The universe is used to add zeroes" / j2 2, j4 4 /;

option shuffle = C;

display C;

*Case 4: set i as domain and has data

Parameter D(i) "The set i is used to add zeroes" / i1 10, i3 30, i5 50 /;

option shuffle = D;

display D;

The code above will generate the output that follows. Observe that in this example, the universal set
is the union of the sets i and j, which means that all elements of the sets i and j are members of the
universal set. Note that we use random numbers, therefore the outcomes from a different run may vary.

---- 9 PARAMETER A The universe is used to fill the parameter

i1 4, i2 1, i3 7, i4 9, i5 6, j1 10, j2 3, j3 5

j4 8, j5 2

---- 14 PARAMETER B The set j is used to fill the parameter

j1 1, j2 5, j3 2, j4 4, j5 3

---- 19 PARAMETER C The universe is used to add zeroes

j1 2, j2 4

---- 24 PARAMETER D The set i is used to add zeroes

i2 30, i4 50, i5 10

In the next example we will demonstrate how to generate a random mapping of a set:

Set i / i1*i6 /,

rmi(i,i) "random mapping";

Parameter A(i);

option shuffle = A;

rmi(i, i + (- Ord(i) + A(i))) = yes;

display rmi;

A display of the set rmi follows. Note that there is exactly one element in each row and each column:

4.34 The Option Statement 943

---- 7 SET rmi random mapping

i1 i2 i3 i4 i5 i6

i1 YES

i2 YES

i3 YES

i4 YES

i5 YES

i6 YES

Observe that each use of the option shuffle will generate a new random data rearrangement.

Special Options: Identifier Operations

In some cases the keyword option in an option statement is followed by an identifier and
one or more operators to perform identifier operations like display control, index matching,
projection and aggregation of sets and parameters and permutation of sets and parameters.

Display Control

The display statement is introduced and discussed in chapter The Display Statement. While GAMS
provides defaults for the displayed identifiers that suffice in most cases, the print format may be customized
with the following option statement:

option ident:d;

option ident:d:r:c;

The keyword option is followed by the name of an identifier ident, a colon and an integer value d. Note
that d may be between 0 and 8 and specifies the number of decimal places that will be displayed for the
respective identifier. The specifications r and c are optional. They denote the number of index positions
printed as row labels and the number of index positions printed as column labels respectively. Note that if
r is zero, a list format will be used. For more information and examples, see sections Local Display Control
and Display Statement to Generate Data in List Format.

Index Matching

Index matching is a very compact way to define multi-dimensional sets. The general syntax is as follows:

option set_name(index1:index2[:index3:...]);

The keyword option is followed by the name of the set, set name, and two (or more) indices in parentheses
that are linked with the matching operator ':'. Note that the set must have been declared earlier in
the program. If the set has also been defined earlier in the program, it will be cleared first and then the
matching operation will be processed. Note furthermore that the list of identifiers may be expanded to
more than two and that besides the matching operator ':' also ',' may be used and will be interpreted
as product operator. Consider the following example which also makes use of display control:

944 User's Guide

Set i / i1,i2/

j / j1,j2,j3 /

k / k1*k5 /

ij(i,j), ijk(i,j,k), kij(k,i,j);

* index matching

Option ij(i:j), ijk(i,j:k), kij(k:i,j);

* display control

Option ij:0:0:1, ijk:0:0:1, kij:0:0:1;

Display ij, ijk, kij;

In its simplest form the matching operator is used to create the two dimensional set ij.

---- 9 SET ij

i1.j1

i2.j2

Note that each member of the index i has been matched with a member of the index j until one of the
indices ran out of members.

The index matching operations to define the three-dimensional sets ijk and kij illustrate a more
sophisticated usage of the index operator. The sets ijk and kij are built with the indices from left to
right using the product operator when a ',' is encountered or the matching operator when a ':' is
found.

For ijk the first operator is the ',' which is interpreted as product operator for the sets i and j and
hence builds the Cartesian product of the two sets which has six 2-tuples as elements (i1.j1, i1.j2,

i1.j3, i2.j1, i2.j2, i2.j3). The matching operator ':' is then applied to match those 2-tuples
with the five set elements in k. The resulting sets are:

---- 9 SET ijk

i1.j1.k1

i1.j2.k2

i1.j3.k3

i2.j1.k4

i2.j2.k5

---- 9 SET kij

k1.i1.j1

k1.i1.j2

k1.i1.j3

k2.i2.j1

k2.i2.j2

k2.i2.j3

The previous example can be extended to define sets of even higher dimension in the following way:

set h / h1*h4 /

hijk_1(h,i,j,k)

hijk_2(h,i,j,k);

* index matching

Option hijk_1(h:ijk);

Option hijk_2(h:i,j:k);

* display control

Option hijk_1:0:0:1, hijk_2:0:0:1;

Display hijk_1, hijk_2;

4.34 The Option Statement 945

Note that sets hijk 1 and hijk 2 will be different even though hijk 1 uses set ijk and hijk 2 uses the
same matching and product operation used at definition of ijk but spelled out. As already mentioned
above, the matching operator builds up the sets with the indices from left to right. Hence, as set ijk is
build first and then used on the right of the matching operator the two sets are built up differently.

---- 19 SET hijk_1

h1.i1.j1.k1

h2.i1.j2.k2

h3.i1.j3.k3

h4.i2.j1.k4

---- 19 SET hijk_2

h1.i1.j1.k1

h1.i1.j2.k2

h1.i1.j3.k3

h2.i2.j1.k4

h2.i2.j2.k5

Projection and Aggregation of Sets and Parameters

In GAMS, projection and aggregation operations on sets may be performed in two different ways: with an
assignment and the sum operator, and with an option statement.

Using an assignment and the sum operator is the slower but more intuitive way. Assignments and the
sum operator are introduced and discussed in detail in chapter Data Manipulations with Parameters and
section Indexed Operations respectively. Here we only show how they may be used in the context of sets
to perform projections and aggregations. The following example serves as illustration.

Sets i / i1*i3 /

j / j1*j2 /

k / k1*k4 /

ijk(i,j,k) / #i.#j.#k /

ij1a(i,j)

ij1b(i,j);

Scalars Count_1a, Count_1b, Count_2a, Count_2b;

* Method 1: Using an assignment and the sum operator for a projection

ij1a(i,j) = sum(k,ijk(i,j,k));

* Method 1: Using an assignment and the sum operator for aggregations

Count_2a = sum(ijk(i,j,k),1);

Count_1a = sum(ij1a(i,j),1);

Note that the set ijk is a three-dimensional set, its elements are 3-tuples and all permutations of the
elements of the three sets i, j and k are in its domain. Thus the number of elements of the set ijk is 3 x
2 x 4 = 24. The sets ij1a and ij1b are two-dimensional sets that are declared in the set statement, but
not defined. The first assignment statement defines the members of the set ij1a. This is a projection from
the set ijk to the set ij1a where the three-tuples of the first set are mapped onto the pairs of the second
set, such that the dimension k is eliminated. This means that the four elements "i1.j1.k1", "i1.j1.k2",
"i1.j1.k3" and "i1.j1.k4" of the set ijk are all mapped to the element "i1.j1" of the set ij1a. Note

946 User's Guide

that in this context, the result of the sum operation is not a number but a set. The second and third
assignments are aggregations, where the number of elements of the two sets are computed. As already
mentioned, the result of the first aggregation is 24 and the result of the second aggregation is 6 = 24 / 4.

The second way to perform projections and aggregations is faster and more compact, it uses an option
statement. The general syntax of this option statement is as follows.

option ident1 < ident2 ;

option ident1 <= ident2 ;

The keyword option is followed by the identifiers ident1 and ident2 which are linked by the symbol
'<' or '<='. Observe that in most cases the two symbols have the same effect. The exception is the
special case when both identifiers are defined over domains that use at least one shared index set more
than once, see the example below. Note that in general the dimension of the item on the left has to be
equal or less than the dimension of the item on the right. Further, the index space of the two identifiers
must be matchable. If the dimensions of the two identifiers are equal, then the same indices must appear
in both, albeit the order may differ. If the dimension of the left item is less than the dimension of the
right item, then the indices on the left must also appear on the right.

Observe that if both identifiers are sets, the operation will be a projection. However, if the identifier on
the left-hand side is a scalar or a parameter and the identifier on the right-hand side is a set it will be
an aggregation. The example that follows shows how the projection and the two aggregations above are
accomplished with the option statement.

* Method 2: Option statement performs a projection

Option ij1b < ijk;

* Method 2: Option statements performs aggregations (counting of elements)

Option Count_2b < ijk;

Option Count_1b < ij1b;

display ijk, ij1a, ij1b, Count_1a, Count_1b, Count_2a, Count_2b;

In the example above, the set on the left-hand side, ij1b, has fewer indices than the set on the right-hand
side, ijk. Observe that if the two sets differ only in the order of the indices then a projection will have
the effect of a permutation of the tuple.

Note

The option statement for projection and aggregation operations may also be applied to parameters.

Until now the indices in the domain of the sets were unique. A special case arises when sets are defined
over a domain with the same indices, for example the set s(i,i,i). In this case, a projection always has
the effect of a permutation. Users may choose whether they wish to perform the permutation from left to
right or from right to left. The option statement

Option item1 < item2 ;

means a right-to-left permutation, while the option statement

Option item1 <= item2 ;

4.34 The Option Statement 947

entails a left-to-right permutation. The following example clarifies the difference:

Set i / i1*i3 /

s(i,i,i) "Set members" / i1.i2.i3, i3.i3.i1/

pR1(i,i) "projection right to left with assignment"

pR2(i,i) "projection right to left with option statement"

pL1(i,i) "projection left to right with assignment"

pL2(i,i) "projection left to right with option statement" ;

Alias (i,ii,iii);

* Right-to-left permutation, two ways

pR1(i,ii) = sum(s(iii,ii,i),1);

option pR2 < s;

* Left-to-right permutation, two ways

pL1(i,ii) = sum(s(i,ii,iii),1);

option pL2 <= s;

option s:0:0:1, pR1:0:0:1, pR2:0:0:1, pL1:0:0:1, pL2:0:0:1;

display s, pR1, pR2, pL1, pL2 ;

Note that in the right-to-left permutation, the element "i1.i2.i3" is projected to "i3.i2" and the
element "i3.i3.i1" is projected to "i1.i3". In the left-to-right permutation however, the the element
"i1.i2.i3" is projected to "i1.i2" and the element "i3.i3.i1" is projected to "i3.i3". Hence, the
left-to-right permutation (<=) might be more intuitive.

Our examples so far involved only sets. As mentioned above, projections and aggregations may also be
performed with parameters. However, there are some subtle differences. The first difference refers to
the terminology: we aggregate sets, but we count parameters. The second difference is the result of the
operation if the domain of the left symbol is just a permuted version of the domain of the right symbol.
Consider the following example:

Set i / i1*i3 /

j / j1*j2 /;

Table p(i,j)

j1 j2

i1 1 2

i2 3 4

i3 5 6;

parameter pperm(j,i);

option pperm < p;

option decimals = 0;

display p, pperm;

The output generated by the display statement follows:

---- 13 PARAMETER p

j1 j2

i1 1 2

i2 3 4

i3 5 6

948 User's Guide

---- 13 PARAMETER pperm

i1 i2 i3

j1 1 3 5

j2 2 4 6

Permutation of Sets and Parameters

In GAMS, the > sign can be used to create complete permutations of one- and multi-dimensional sets
and parameters. Consider the following example based on the test library model [PERM1]:

First, a set i for which all permutations should be computed is declared and defined. A permutation of a
one-dimensional set i can be represented by a two-dimensional set like perm(i,i) where the i index is
duplicated. In the example, set perm(i,i) represents permutation (1 2)(3) in cycle notation. For a set
with three elements, there are 3∗2∗1=6 permutations. The statement option pall > i; results in all
permutations of i being computed and stored in three-dimensional set pall(p,i,i) where the first index
p serves as a counter to enumerate all permutations.

set i ’set to permute’ / i1*i3 /

perm(i,i) ’exemplary permutation’ / i1.i2, i2.i1, i3.i3 /

$eval pmax fact(card(i))

p ’permutation index’ / p1*p%pmax% /

pall(p,i,i) ’permutation set’;

option pall > i;

option pall:0:0:1;

display pall;

Note that we use display control such that the display statement results in:

---- 8 SET pall permutation set

p1.i1.i1

p1.i2.i2

p1.i3.i3

p2.i1.i1

p2.i2.i3

p2.i3.i2

p3.i1.i2

p3.i2.i1

p3.i3.i3

p4.i1.i2

p4.i2.i3

p4.i3.i1

p5.i1.i3

p5.i2.i1

p5.i3.i2

p6.i1.i3

p6.i2.i2

p6.i3.i1

4.34 The Option Statement 949

For multi-dimensional sets, the permutation operator follows the same logic. Consider the following
example:

Sets j, k and a two-dimensional set jk(j,k) are defined. In order to find all permutations of jk(j,k),
the indices are again duplicated and a permutation index is introduced:

set j / j1*j2 /, k / k1*k5 /

jk(j,k) / j1.k3, j1.k5, j2.k1 /

$eval pmax fact(card(jk))

p / p1*p%pmax% /

pall(p,j,k,j,k);

option pall > jk;

option pall:0:0:1;

display pall;

The display statement results in:

---- 8 SET pall

p1.j1.k3.j1.k3

p1.j1.k5.j1.k5

p1.j2.k1.j2.k1

p2.j1.k3.j1.k3

p2.j1.k5.j2.k1

p2.j2.k1.j1.k5

p3.j1.k3.j1.k5

p3.j1.k5.j1.k3

p3.j2.k1.j2.k1

p4.j1.k3.j1.k5

p4.j1.k5.j2.k1

p4.j2.k1.j1.k3

p5.j1.k3.j2.k1

p5.j1.k5.j1.k3

p5.j2.k1.j1.k5

p6.j1.k3.j2.k1

p6.j1.k5.j1.k5

p6.j2.k1.j1.k3

In addition to set elements, it is also possible to permute numerical data in a GAMS parameter. Consider
the following example where all permutations of the numerical values stored in the one-dimensional
parameter a(i) are computed:

set i / i1*i3 /

$eval pmax fact(card(i))

p / p1*p%pmax% /;

Parameter a(i) /i1 1, i2 2, i3 3/

pall_a(p,i);

option pall_a > a;

option pall_a:0:1:1;

display pall_a;

The display statement results in:

950 User's Guide

---- 8 PARAMETER pall_a

i1 i2 i3

p1 1 2 3

p2 1 3 2

p3 2 1 3

p4 2 3 1

p5 3 1 2

p6 3 2 1

The permutation can also be extended to multi-dimensional parameters. Consider the following example
where all permutations of the numerical values stored in the two-dimensional parameter b(j,k) are
computed:

set j / j1*j2 /, k / k1*k5 /;

Parameter b(j,k) /j1.k3 1, j1.k5 2, j2.k1 3/;

$eval pmax fact(card(b))

set p / p1*p%pmax% /;

parameter pall_b(p,j,k);

option pall_b > b;

option pall_b:0:1:2;

display pall_b;

The display statement results in:

---- 8 PARAMETER pall_b

j1.k3 j1.k5 j2.k1

p1 1 2 3

p2 1 3 2

p3 2 1 3

p4 2 3 1

p5 3 1 2

p6 3 2 1

4.35 System Attributes

4.35.1 Introduction

System attributes give access to string constants in the GAMS system environment. We will refer to these
string constants as system suffixes. Moreover, there are attributes that can be used as data elements for
user symbols. This way one can get access e.g. to the solvers (as set elements) in the system. We will
refer to these data elements as system data. Two special system data attributes, namely powerSetLeft

and powerSetRight, for a three dimensional set setName(n,s,b) create data which can be interpreted as
a numbering system with base b and s digits. Finally, a system attribute can provide access to a system
function that was hidden by the compiler because of a name conflict with a user symbol.

4.35 System Attributes 951

4.35.2 System Suffixes

System suffixes contain information about the GAMS system environment during a run. There are two
ways to reference them: system.suffix and %system.suffix%. Here system is a keyword and .suffix

is the name of the system suffix. A full list is given in section List of all System Suffixes below. Note
that system.suffix references the execution-time version of the system suffix and %system.suffix%

references the compile-time version resulting in a textual replacement. The execution-time system suffix
can only be used in the context of put files. Consider the following example where both versions are used:

file fx;

put fx ’lp:’ system.LP;

option lp=gurobi;

put / ’lp:’ system.LP

put / ’lp:%system.LP%’;

Observe that the compile-time string %system.LP% is evaluated at compile time and does not change.
However, the execution-time system suffix system.LP is evaluated at execution time and it does change.
It is first CPLEX, since CPLEX is the default LP solver. Then it changes to GUROBI as a result of the
execution-time command option LP=gurobi;. The resulting put file fx.put follows:

lp:CPLEX

lp:GUROBI

lp:CPLEX

In the following two subsection we will discuss execution-time suffix in more detail.

4.35.2.1 Execution-Time System Suffixes

Execution-time system suffixes are only used in the context of the put writing facility with commands
like put , putclose and put utility. Consider the following simple example. We have the files x.gms and
dummy.gms, where x.gms contains just the following line:

file fx; put fx system.version;

The file dummy.gms contains the following:

$exit;

We run these files with the following calls:

> c:\gams\win64\24.7\gams x.gms action=c s=putVersion

Note that the value c for the command-line parameter action causes the first input file to be compiled
only. The result is saved in the work file putVersion. Then we restart and execute dummy.gms. Now,
depending on the GAMS release version, the put file fx will have a different content:

c:\gams\win64\24.7\gams dummy.gms r=putVersion // this produces a put file with content "GAMS Rev 247"

c:\gams\win64\24.8\gams dummy.gms r=putVersion // this produces a put file with content "GAMS Rev 248"

In contrast, the value of the compile-time system suffix %system.version% is determined at compile time.
Suppose we change the file x.gms to contain the following line:

file fx; put fx "%system.version%";

The file dummy.gms is not changed and we use the same calls as above. Note that the put file will have
the same content for both versions of GAMS:

c:\gams\win64\24.7\gams dummy.gms r=putVersion // this produces a put file with content "GAMS Rev 247"

c:\gams\win64\24.8\gams dummy.gms r=putVersion // this produces a put file with content "GAMS Rev 247"

952 User's Guide

4.35.2.2 Compile-Time System Suffixes

Compile-time system suffixes may be placed anywhere a compile-time variables makes sense, including
code for conditional compilation. The quoting of these compile-time system suffixes depends on their use
in the code. Consider the following example:

$set systemDATE %system.date%

display "system.date", "%system.date%";

$ifi %system.LP% == Xpress $log "LP solver is Xpress."

The resulting output generated by the display statement follows:

---- 3 system.DATE

11/07/16

4.35.2.3 List of all System Suffixes

In the following table all system suffixes are listed.

System Suffix Description

BuildCode System build code

CNS CNS solver that is active for CNS model type

ComputerName Operating system computer name

Date Job date

Date1 Job date format

DirSep File or directory separator in file names

DNLP DNLP solver that is active for DNLP model type

Elapsed Elasped time in seconds since start of job

EMP EMP solver that is active for EMP model type

Error Used to indicate unknown suffix

ErrorLevel System Errorlevel

FE File extension

FileSys
Name of the operating system (MSNT for Windows, UNIX for Linux and macOS)

FN File name

FP File path

GamsRelease GAMS Release number

GamsReleaseMaint GAMS Release number with maintenance number suffix

GamsVersion GAMS version number

GdxFileNameIn GDX file name for input, set by put utility command gdxin

GdxFileNameOut GDX file name for output, set by put utility command gdxout

GString GAMS system audit string (exact GAMS version being used)

HostPlatform Host platform

IFile Input file

ILine Current source line number beeing executed

IncLine Include file line

IncName Include file name

IncParent Include file parent

IncParentL Include file parent line number

4.35 System Attributes 953

System Suffix Description

IsAlphaBeta Indicates an Alpha or Beta bulid

JobHandle Job handle of last async call

LicenseFileName The file name of the license file currently used

LicenseLevel GAMS license level

Line Line number in source code

ListLine Line number on listing file

LP LP solver that is active for LP model type

MACAddress MAC address of the first network adapter

MaxInput Max input line length that can be processed

MCP MCP solver that is active for MCP model type

Memory Memory (in Mb) in use

MINLP MINLP solver that is active for MINLP model type

MIP MIP solver that is active for MIP model type

MIQCP MIQCP solver that is active for MIQCP model type

MPEC MPEC solver that is active for MPEC model type

NLP NLP solver that is active for NLP model type

NullFile The null filename

OFile Output (Listing) file

OPage Current page number in output (listing) file

Page Current page number

PFile Current put file

Platform Job platform (DAX for macOS on ARM64, DEX for macOS on x86 64, LEX for
Linux, WEX for Windows)

PrLine Line on listing page

Procname Model types LP MIP etc

PrPage Listing page number

PutFileName The filename of the currently active PUT file

QCP QCP solver that is active for QCP model type

RDate Restart file date

ReDirLog Append redirection string into the logfile

RFile Restart file name

RMINLP RMINLP solver that is active for RMINLP model type

RMIP RMIP solver that is active for RMIP model type

RMIQCP RMIQCP solver that is active for RMIQCP model type

RMPEC RMPEC solver that is active for RMPEC model type

RTime Restart file time

SFile Save file name

SString Subsystem (Solver) audit (last solver used)

Tab Tab character

TClose Time to save GAMS

TComp Time to compile

TExec Time to execute

Time Job time

Title Current listing title

TStart Time to restart GAMS

UserConfigDir User writable directory that is searched for gamsconfig.yaml

UserDataDir User writable directory that is searched for gamslice.txt and others

UserName Operating system user name

954 User's Guide

System Suffix Description

VerID GAMS version ID

Version GAMS compiler version

A model that prints all system suffixes with its current values to a put file can be found in model
[SSUFFIX].

4.35.3 System Data

Some of the system relevant information does not fit into a single string. Such system data can be stored
in GAMS symbols. The system data for this symbol can be accessed in the data statement of the symbol,
e.g. set allSolvers / system.solverNames /;. Now you can work with the solver names as you can
work with any set. The system data can be viewed as an internal set, so it can be used to create more
complex GAMS symbols with this information. For example:

set seq / 1*1000 /;

set solvermap(seq,*) / set.seq:system.solverNames /;

parameter solverpar(*) / system.solverNames 1 /;

Here is the list and dimensionality of the system data:

System Data Dimension Description

dollarOptions 1 Dollar control options

empty 1 Empty label

gamsFunctions 1 Intrinsic functions

gamsParameters 1 Command line parameters

gamsParameterSynonymMap 2 Map between command line parameters and their syn-
onyms

gamsParameterSynonyms 1 Synonyms for command line parameters

GUSSModelAttributes 1 Model attributes stored for GUSS scenarios

modelTypes 1 Model types, e.g. LP, MIP, ...

platforms 1 Platform code

powerSetLeft 3 Numbering system with base b and s digits

powerSetRight 3 Numbering system with base b and s digits

predefinedSymbols 1 Predefined symbols, e.g. SameAs, Diag, ...

setConstants 1 System data names (this list)

solverNames 1 Names of solvers and tools

solverPlatformMap 2 Map between solvers and platforms

solverTypePlatformMap 3 Map between solvers, model types and platforms

systemSuffixes 1 System suffixes

4.35.3.1 Power Set

The very special system attribute powerSetLeft and powerSetRight do not provide access to static data
relevant to the system but produce data based on existing sets b and s. This system data produced can
be interpreted as a numbering system with base b and s digits. The total number of tuples created is

4.35 System Attributes 955

power(card(b),card(s)). The first index of the resulting set has to have at least this size. The following
small example demonstrates the functionality of powerSetRight:

$set digits 3

set s / s1*s%digits% /, b / 0,1 /;

$eval nMax power(card(b),card(s))

set n / n1*n%nMax% /

x(n,s,b) / system.powerSetRight /;

option x:0:0:%digits%; display x;

With 3 digits the display results in the following output:

---- 6 SET x

n1.s1.0, n1.s2.0, n1.s3.0

n2.s1.0, n2.s2.0, n2.s3.1

n3.s1.0, n3.s2.1, n3.s3.0

n4.s1.0, n4.s2.1, n4.s3.1

n5.s1.1, n5.s2.0, n5.s3.0

n6.s1.1, n6.s2.0, n6.s3.1

n7.s1.1, n7.s2.1, n7.s3.0

n8.s1.1, n8.s2.1, n8.s3.1

Changing powerSetRight to powerSetLeft reassigns the order of the digits. So the lowest digit is on the
left:

---- 6 SET x

n1.s1.0, n1.s2.0, n1.s3.0

n2.s1.1, n2.s2.0, n2.s3.0

n3.s1.0, n3.s2.1, n3.s3.0

n4.s1.1, n4.s2.1, n4.s3.0

n5.s1.0, n5.s2.0, n5.s3.1

n6.s1.1, n6.s2.0, n6.s3.1

n7.s1.0, n7.s2.1, n7.s3.1

n8.s1.1, n8.s2.1, n8.s3.1

4.35.4 Access to Hidden Functions

Intrinsic functions are not keywords but they are stored in a list of predefined names. If a user program
uses such a predefined name of a function for a user symbol, GAMS will hide the original function. For
example,

set uniform ’School Uniform’ / skirt, blouse, blazer, socks, shoes /;

scalar randomNumber;

randomNumber = uniform(0,1);

will result in a compilation error in the second line because GAMS expects uniform to be a set. The
function uniform is hidden for this GAMS program. Renaming the user symbol that hides a function
is often the best solution for this, but there are a few cases (including GAMS code already compiled
and stored in a restart file) where renaming is not an option. A hidden function can be accessed via the
system attribute system.functionName. So the following will successfully compile and execute:

set uniform ’School Uniform’ / skirt, blouse, blazer, socks, shoes /;

scalar randomNumber;

randomNumber = system.uniform(0,1);

956 User's Guide

4.36 The Grid and Multi-Threading Solve Facility

4.36.1 Introduction

The GAMS Grid facility allows to take advantage of High Performance Computing Grids and systems
with multiple CPUs. This language feature facilitates the management of asynchronous submission and
collection of model solution tasks in a platform independent fashion. A simple architecture, relying on
existing operating system functionality allows for rapid introduction of new environments and provides for
an open research architecture.

A typical application uses a coarse grain approach involving hundreds or thousands of model solutions
tasks which can be carried out in parallel. Examples include but are not limited to scenario analysis, Monte
Carlo simulations, Lagrangian relaxation, decomposition algorithms and advanced solution approaches.

The grid features work on all GAMS platforms and have been tailored to many different environments,
like the Condor Resource Manager, a system for high throughput computing from the University of
Wisconsin-Madison. Researchers using Condor reported a delivery of 5000 CPU hours in 20 hours wall
clock time.

Similarly, the GAMS Multi-Threading Solve Facility allows the asynchronous submission and collection of
model solution tasks on a single, multi-threaded machine while using efficient in-memory communication
between GAMS and the solver.

Disclaimer: The use of the term grid computing may be offensive to some purists in the computer science
world. We use it very loosely to refer to a collection of computing components that allow us to provide
high throughput to certain applications. One may also think of it as a resurrection of the commercial
service bureau concept of some 30 years ago.

Caution: Although these features have been tested on all platforms and are part of our standard release
we may change the approach and introduce alternative mechanisms in the future.

Acknowledgments: Prof. Monique Guignard-Spielberg and Antoine Sauré at that time at Wharton School
at the University of Pennsylvania introduced us to parallel Lagrangian relaxation on the SUN Grid
Environment. Prof. Michael Ferris from the University of Wisconsin-Madison adopted our original GAMS
grid approach to the high throughput system Condor and helped to make this approach a practical
proposition.

4.36.2 The Grid Facility: Basic Concepts

The Grid facility separates the solution process into several steps which then can be controlled separately.
First we will review the steps taken during synchronous solution and then we will introduce the asynchronous
or parallel solution steps.

When GAMS encounters a solve statement during execution it proceeds in three basic steps:

1. Generation: The symbolic equations of the model are used to instantiate the model using the
current state of the GAMS data base. This instance contains all information and services needed
by a solution method to attempt a solution. This representation is independent of the solver and
computing platform.

2. Solution: The model instance is handed over to a solver and GAMS will wait until it terminates.

3. Update: The detailed solution and statistics are passed to GAMS from the solver to update the
GAMS data base.

http://research.cs.wisc.edu/htcondor/

4.36 The Grid and Multi-Threading Solve Facility 957

In most cases, the time taken to generate the model and update the data base with the solution will be
much smaller than the actual time spent in a specific solver. The model generation will take a few seconds,
whereas the time to obtain an optimal solution may take a few minutes to several hours or even longer. If
sequential model solutions do not depend on each other, we can solve in parallel and update the data base
in a random order. All we need is a facility to generate models, submit them for solution and continue.
At a convenient point in our GAMS program we will then look for the completed solutions and update
the data base accordingly. To summarize, solving in parallel entails two steps:

1. Submission Loop: In this phase we will generate and submit models for solutions that can be
solved independently.

2. Collection Loop: The solutions of the previously submitted models are collected as soon as a
solution is available. It may be necessary to wait for some solutions to complete by pausing the
execution for some time.

Note that we have assumed that there will be no errors in any of these steps. Of course, this will not
always be the case and elaborate mechanisms are in place to make the operation fail-safe.

Note

For scenario analysis the solver GUSS might be of particular interest. The model [GUSSGRID]
demonstrates how GUSS is used together with the Grid facility.

4.36.3 The Grid Facility: A First Example

In this section we will illustrate the use of the basic grid facility with the model [QMEANVAR]. This
model traces an efficiency frontier for restructuring an investment portfolio. Each point on the frontier
requires the solution of independent quadratic mixed integer models. The original solution loop is shown
below:

loop(p(pp),

ret.fx = rmin + (rmax-rmin)/(card(pp)+1)*ord(pp) ;

solve minvar min var using miqcp ;

xres(i,p) = x.l(i);

report(p,i,’inc’) = xi.l(i);

report(p,i,’dec’) = xd.l(i);

);

This loop will save the solutions of the model minvar for different returns ret. As the solutions do not
depend on the order in which they are carried out, we can rewrite this loop to operate in parallel.

4.36.3.1 The Submission Loop

The first step for solving in parallel using the Grid facility is to write the submission loop:

Parameter h(pp) ’model handles’;

minvar.solveLink = 3;

loop(p(pp),

ret.fx = rmin + (rmax-rmin)/(card(pp)+1)*ord(pp) ;

solve minvar min var using miqcp;

h(pp) = minvar.handle;

);

958 User's Guide

The model attribute solveLink controls the behavior of the solve statement. The value of 3 (which is
equivalent to the compile-time constant %solveLink.asyncGrid%) directs GAMS to generate the model
and submit it for solution and then continue without waiting for the completion of the solution step. Thus
with setting minvar.solveLink to 3 we activate grid computing.

A handle in the grid environment identifies the particular model and data instances available. The model
attribute handle contains a unique identification of each submitted solution request and is typically stored
in a parameter defined over a set that covers all model instances. The specific numerical values of handles
are assigned by GAMS and may be used to recover solutions and manage models that are solved on the
grid. In our example, the handle parameter is h and the set of all model instances is pp. The handle
values that are stored in h are later used to collect the solutions once the solution processes are completed.

4.36.3.2 The Collection Loop

We collect the solutions with the following collection loop:

loop(pp$handleCollect(h(pp)),

xres(i,pp) = x.l(i);

report(pp,i,’inc’) = xi.l(i);

report(pp,i,’dec’) = xd.l(i);

);

Note that the dollar condition restricts the looping set pp to those elements which return a nonzero value
to the function handleCollect(h(pp)). The function handleCollect tests the solution status for each
element of the set pp. And if the solution is available, it is read into the GAMS data base. In this case the
function returns a value of 1. If the solution is not ready to be retrieved, the value zero will be returned.

Observe that the collection loop above has one big flaw. If a solution has not been ready (that is if
handleCollect equaled zero), it will not be retrieved. We need to call this loop several times until all
solutions have been retrieved or we get tired of it and quit. We will use a repeat until construct and the
handle parameter h to control the loop to look only for the solutions that have not been loaded yet. The
code follows:

repeat

loop(pp$handleCollect(h(pp)),

xres(i,pp) = x.l(i);

report(pp,i,’inc’) = xi.l(i);

report(pp,i,’dec’) = xd.l(i);

display$handleDelete(h(pp)) ’trouble deleting handles’ ;

h(pp) = 0;

) ;

display$readyCollect(h, 100) ’Problem waiting for next instance to complete’;

until card(h) = 0 or timeelapsed > 100;

xres(i,pp)$h(pp) = na;

Once we have extracted a solution we will set the handle parameter h to zero. In addition, we want to
remove the instance from the system by calling the function handleDelete which returns zero if successful.
No harm is done if it fails but we want to be notified via the conditional display statement. Before running
the collection loop again, we may want to wait a while to give the system time to complete more solution
steps. This is done with the function readyCollect which waits until another model instance with a handle
in h is ready to be collected (or the optionally defined number of seconds has passed). The final wrinkle is
to terminate if all model instances have been deleted from the system since their solutions were retrieved
or after 100 seconds have elapsed, even if we did not get all solutions. This is accomplished with the
function timeElapsed and is important, because if one of the solution steps fails our program would never

4.36 The Grid and Multi-Threading Solve Facility 959

terminate. Recall that the handle parameter h equals zero for all elements of the set pp whose related
models have been solved and their solutions have been extracted. The last statement in the code above
sets the results of the missed solves to na to signal the failed solve. The parameter h will now contain the
handles of the failed solves for later analysis.

Alternatively, we could use the function handleStatus and collect the solutions that are stored in a
GDX file. For example, we could write:

loop(pp$(handleStatus(h(pp)) = 2),

minvar.handle = h(pp);

execute_loadhandle minvar;

xres(i,pp) = x.l(i);

report(pp,i,’inc’) = xi.l(i);

report(pp,i,’dec’) = xd.l(i);

);

The function handleStatus tests the solution process and returns the value 2 if the solution process has
been completed and the results can be retrieved. The solution is stored in a GDX file which can be loaded
in a way similar to other GDX solution points. First, we need to specify which solution to retrieve by
setting the the model attribute minvar.handle to the appropriate value. Then we can use the statement
execute loadhandle minvar; to load the solution for the model minvar back into the GAMS data base.

Note

Except for the requirement of a model with a previously specified handle, the command
execute loadhandle operates like the procedure execute loadpoint.

Using the function handleStatus and the command execute loadhandle instead of the simpler
handleCollect, adds one more layer of control to the final collection loop. Now we need one addi-
tional if statement inside the collection loop above:

repeat

loop(pp$h(pp),

if(handleStatus(h(pp)) = 2,

minvar.handle = h(pp);

execute_loadhandle minvar;

xres(i,pp) = x.l(i);

report(pp,i,’inc’) = xi.l(i);

report(pp,i,’dec’) = xd.l(i);

display$handleDelete(h(pp)) ’trouble deleting handles’ ;

h(pp) = 0;

);

) ;

display$readyCollect(h, 100) ’Problem waiting for next instance to complete’;

until card(h) = 0 or timeelapsed > 100;

xres(i,pp)$h(pp) = na;

Finally, we are ready to run the modified model.

960 User's Guide

4.36.3.3 The Execution Log

The execution log will contain some new information that may be useful for more advanced applications:

--- LOOPS pp = p1

--- 46 rows 37 columns 119 non-zeroes

--- 311 nl-code 7 nl-non-zeroes

--- 14 discrete-columns

--- Submitting model minvar with handle grid137000002

--- Executing after solve

...

--- GDXin=C:\answerv5\gams_srcdev\225j\grid137000003\gmsgrid.gdx

--- Removing handle grid137000003

Note that the log contains some additional information about the submission, retrieval and removal of the
solution instance. In the following sections we will make use of this additional information.

The execution log does not cotain any solver log. Though, if a logOption value is set, that triggers
writing to a file (i.e. 2 or 4), the solver log of each job will be written to the corresponding folder in the
Grid Directory. So, if the solver log should be inspected when the job is done, one needs to make sure,
that these folders do not get cleaned automatically, e.g. by setting the gridDir command line parameter.

For a complete example for grid computing, see the grid enabled transport model [TRNSGRID].

Observe that we have made no assumptions about what kind of solvers and what kind of computing
environment we will operate. The example above is completely platform and solver independent and it
runs on a Windows laptop or on a massive grid network like the Condor system without any changes in
the GAMS source code.

4.36.4 Advanced Use of Grid Features

In this section we will describe a few special application requirements and show how this can be handled
with the current system. Some of those applications may involve thousands of model instances with solution
times of many hours each. Some may fail and require resubmission. More complex examples require
communication and the use of GAMS facilities like the Branch-and-Cut-and-Heuristic Facility (BCH),
which submit other models from within a running solver.

Imagine a situation with thousands of model instances each taking between minutes and many hours
to solve. We will break the master program into a submitting program, an inquire program and a final
collection program. We will again use the model [QMEANVAR] to demonstrate the principle. We will
split the code of the modified [QMEANVAR] GAMS code into three components: qsubmit, qcheck
and qreport.

4.36.4.1 Very Long Job Durations: The Submitting Program

The file qsubmit.gms will include everything up to and including the new submission loop. To save the
instances we will need a unique grid directory gdir and to restart the problem we will have to create a save

file. For details on the save and restart facility in GAMS, see chapter The Save and Restart Feature.
When running the first job, we will use the command line parameter save or its synonym s to create the
required save file:

> gams qsubmit s=submit gdir=c:\test\grid

4.36 The Grid and Multi-Threading Solve Facility 961

4.36.4.2 Very Long Job Durations: The Inquire Program

The solution of all the model instances may take hours. From time to time we may run a quick inquiry
job to learn about the status. The following program qcheck.gms will list the current status:

Parameter status(pp,*);

Scalar handle;

Acronym BadHandle, Waiting, Ready;

loop(pp,

handle = handleStatus(h(pp));

if(handle=0,

handle = BadHandle;

elseif handle=2,

handle = Ready;

minvar.handle = h(pp);

execute_loadhandle minvar;

status(pp,’solvestat’) = minvar.solvestat;

status(pp,’modelstat’) = minvar.modelstat;

status(pp,’seconds’) = minvar.resusd;

else

handle = Waiting;

);

status(pp,’status’) = handle;

);

display status;

For details on the model attributes referenced in the code above, see handle, solveStat, modelStat and
resUsd. To run the program above, we will restart from the previous save file by using the command
line parameter restart or its synonym r.

> gams qcheck r=submit gdir=c:\test\grid

The output generated by the display statement may look like the following:

---- 173 PARAMETER status

solvestat modelstat seconds status

p1 1.000 1.000 0.328 Ready

p2 1.000 1.000 0.171 Ready

p3 Waiting

p4 Waiting

p5 1.000 1.000 0.046 Ready

We may want to do some more detailed analysis on one of the solved model instances. The respective
program, called qanalyze.gms, may inlcude the following lines of code:

$if not set instance $abort --instance is missing

if(not handleStatus(h(’%instance%’)),

abort$yes ’model instance %instance% not ready’);

minvar.handle = h(’%instance%’);

execute_loadhandle minvar;

display x.l,xi.l,xd.l;

...

For information on dollar control options, see chapter Dollar Control Options, especially the detailed
descriptions of the options $if and $abort. Note that instance is a compile-time variable. The program
may be called using a double dash paramter, which defines and sets a GAMS compile-time variable:

> gams qanalyze r=submit gdir=c:\test\grid --instance=p4

962 User's Guide

4.36.4.3 Very Long Job Durations: The Collection Program

Once all jobs are completed we are ready for the collection loop. For simplicity, we will not include the
repeat loop, because we would not run the final collection program unless we were satisfied that we got
most of the solutions that we wanted. The file qreport.gms could look like the following:

loop(pp$handleStatus(h(pp)),

minvar.handle = h(pp);

execute_loadhandle minvar;

xres(i,pp) = x.l(i);

report(pp,i,’inc’) = xi.l(i);

report(pp,i,’dec’) = xd.l(i);

display$handleDelete(h(pp)) ’trouble deleting handles’ ;

h(pp) = 0;

);

xres(i,pp)$h(pp) = na;

...

We will restart the program above from the save file that was created earlier:

> gams qreport r=submit gdir=c:\test\grid

Note that it is not necessary to run the job from the same directory that we have used for the initial
submission; it is even possible to use a different operating system.

4.36.5 Summary of Grid Features

We introduced several GAMS features to facilitate the asynchronous or parallel execution of the
solve statement. These GAMS features are summarized in the following subsections.

In addition to the features described below, the option or command line parameter ThreadsAsync
was introduced. ThreadsAsync controls the number of threads or CPU cores that are used in
multi-threading computing.

4.36.5.1 Grid Handle Functions

The grid handle functions are listed in Table 1. For details on functions in GAMS in general and complete
lists of all GAMS functions, see section Functions. Note that the desired return values - the return values
that indicate that no error has occurred - are marked with bold letters.

4.36 The Grid and Multi-Threading Solve Facility 963

Function Description Return Values

handleCollect(HANDLE)
Tests if the solve of the model
instance identified by HANDLE is
done: if so, it loads the solution
into the GAMS data base. If the
option asyncSolLst is active the
solution listing is printed to the
listing file.
Note that handleCollect ig-
nores the setting of the option
SolveOpt and always uses the de-
fault value merge.

0: The model instance was not
ready or could not be loaded.
>0: The model instance
solution has been loaded.
(When using the Grid facility,
this is always 1; when using the
multi-threading option, this re-
turns the thread ID used.)

handleStatus(HANDLE)
Tests if the solve of the model
instance identified by HANDLE is
done.
Note that there are
compile-time constants that
are related to this function.

0: The model instance is not
known to the system.
1: The model instance exists but
the solution process is incom-
plete.
2: The solution process has
terminated and the solution
is ready for retrieval.
3: The solution process signaled
completion but the solution can-
not be retrieved.

handleDelete(HANDLE)
Deletes the model instance iden-
tified by HANDLE and returns a
numerical indicator of the status
of the deletion. If the HANDLE

given is not valid, an execution
error is triggered.

0: The model instance has
been removed.
1: The argument HANDLE is not
a legal handle.
2: The model instance is not
known to the system.
3: The deletion of the model in-
stance encountered errors.

handleSubmit(HANDLE)
Resubmits the model instance
identified by HANDLE for solution.
In case of a nonzero return an
execution error is triggered.

0: The model instance has
been resubmitted for solu-
tion.
1: The argument HANDLE is not
a legal handle.
2: The model instance is not
known to the system.
3: The completion signal could
not be removed.
4: The resubmit procedure could
not be found.
5: The resubmit process could
not be started.

964 User's Guide

Function Description Return Values

readyCollect(HANDLES[,maxWait])
Waits until a model solution is
ready to be collected. HANDLES

must be either a scalar or pa-
rameter containing one or more
model handles or a model with
its handle attribute. MaxWait

specifies the maximum time to
wait in seconds, the default value
is +inf.

0: One or more of the re-
quested jobs is/are ready.
1: There is neither an active job
to wait for nor a job ready to be
collected.
2: The handle symbol is empty.
3: The argument is not a legal
handle.
4: User specified time-out (using
a solveLink = 6 handle).
5: User specified time-out (using
a solveLink = 3 handle).
8: Unknown error (should not
happen).

Table 1: Grid Handle Functions

Note that GAMS might issue execution errors which could give additional information that may help
to identify the source of problems. The function execError may be used to get and set the number of
execution errors.

4.36.5.2 Grid Model Attributes

Model attributes are introduced in section Model Attributes. The following three model attributes are
particularly relevant for grid computing:

Function Description

solveLink Specifies the solver linking conventions. The following values direct the solve statement
to use grid computing or multi-thread computing: 3, 4, 6 and 7.
Note that the default for this model attribute can be set as command line parameter
and option statement.
For more information, see the detailed description.

handle Specifies the current instance handle. This is used to identify a specific model instance
and to provide additional information needed for the process signal management (compare
subsections The Submission Loop and The Collection Loop above).

number Specifies the current instance number. Any time a solve is attempted for a model, the
instance number is incremented by one and the handle is update accordingly. The
instance number can be reset by the user which then resynchronizes the handle.

Table 2: Grid Handle Attributes

4.36.5.3 Grid Solution Retrieval

As an alternative to the function handleCollect a solution may be retrieved with the following statement:

execute_loadhandle mymodel;

This statement will update the GAMS data base with the status and solution for the current instance of
mymodel. Note that the underlying mechanism is a GDX file. Except for the requirement of a model with
a previously specified handle, this command operates like the procedure execute loadpoint. If the option
asyncSolLst is active the solution listing is printed to the listing file.

4.36 The Grid and Multi-Threading Solve Facility 965

4.36.5.4 The Grid Directory

The instantiated (generated) models and their corresponding solutions are kept in unique directories that
may be reached from the submitting system. Each GAMS job may have only one grid directory. By
default, the grid directory is assumed to be the scratch directory. This may be overwritten by using the
GAMS command line parameter GridDir, or short GDir. An example follows.

> gams myprogram ... GDir=gridpath

If gridpath is not a fully qualified name, the name will be completed using the current directory. If the
grid path does not exist, an error will be issued and the GAMS job will be terminated. A related GAMS
parameter is ScrDir or short SD.

Recall the following default mechanism: When a GAMS job is started a unique process directory is created
in the current directory. These directories are named 225a to 225zz. When a GAMS job terminates, the
system will remove the process directory at the completion of a GAMS job. Any file that has not been
created by the GAMS core system will be flagged. If the call gamskeep instead of gams is used, another
exit script will be activated that results in the process directory to be kept.

Note that if we do not specify a scratch directory, the scratch directory will be the same as the process
directory. If we do not specify a grid directory, the grid directory will be the same as the scratch directory.

Observe that if we assume that some of the model instances may fail or we want to break the GAMS
program into several pieces to run as separate jobs, we need to be careful not to remove the model instance
we have not completely processed. In such cases we have to use the parameter GridDir, so that we may
access previously created model instances.

4.36.6 The Grid Facility: Architecture and Customization

The current Grid facility relies on very basic operating system features and does not attempt to offer
real and direct job or process control. The file system is used to signal the completion of a submitted
task and GAMS has currently no other way to interact with the submitted process directly, like forcing
termination or change the priority of a submitted task. This approach has its obvious advantages and
disadvantages. There are a number of attempts to use grid computing to provide value added commercial
remote computing services.

When GAMS executes a solve with the option solveLink set to 3 it will perform the following steps:

1. Create a subdirectory in the GridDir with the name gridnnn. Here nnn stands for the numeric value
of the handle. The handle value is the internal symbol ID number x 1e6 + the model instance number.
For example, in the [QMEANVAR] example the first grid subdirectory was grid137000002.

2. Remove the completion signal in case the file already exists. Currently the signal is a file called
finished. For example, grid137000002/finished.

3. Create or replace a GDX file called gmsgrid.gdx which will contain a dummy solution with failed
model and solver status. This file will be overwritten by the final step of the solution process and
will be read when calling execute loadhandle.

4. Place all standard GAMS solver interface files into the above instance directory.

5. Execute the submission wrapper called gmsgrid.cmd under Windows or gmsgrid.run under Unix.
These submission scripts are usually located in the GAMS system directory, they may be located
via the current path if they are not found in the GAMS system directory.

966 User's Guide

The grid submission script gmsgrid.cmd or gmsgrid.run is called with four arguments that are needed
to make a standard GAMS solver call: the solver executable file name, the solver control file name, the
solver scratch directory, and the solver name. The submission script then does the final submission to the
operating system. This final script will perform the following steps:

1. call the solver,

2. call a utility that will create the final GDX file gmsgrid.gdx,

3. set the completion signal finished.

If we want to use the function handleSubmit we will also have to create the script gmsrerun.cmd or
gmsrerun.run. This script could later be used to resubmit the job.

For example, the default submission script for Windows is shown below:

@echo off

: gams grid submission script

:

: arg1 solver executable

: 2 control file

: 3 scratch directory

: 4 solver name

:

: gmscr_nx.exe processes the solution and produces ’gmsgrid.gdx’

:

: note: %3 will be the short name, this is neeeded because

: the START command cannot handle spaces or "...’

: before we use %~3 will strip surrounding "..."

: makes the name short

:

: gmsrerun.cmd will resubmit runit.cmd

echo @echo off > %3runit.cmd

echo %1 %2 %4 >> %3runit.cmd

echo gmscr_nx.exe %2 >> %3runit.cmd

echo echo OK ^> %3finished ^& exit >> %3runit.cmd

echo @start /b /belownormal %3runit.cmd ^> nul > %3gmsrerun.cmd

start /b /belownormal %3runit.cmd > nul

exit

4.36.6.1 Grid Submission Testing

The grid submission process can be tested on any GAMS program without having to change the source
text. The option solveLink=4 instructs the solve statement to use the grid submission process and then
wait until the results are available. Note that the option solveLink may be set via a GAMS command
line parameter, a GAMS option statement or via assignment to the model attribute. Once the model
instance has been submitted for solution, GAMS will check if the job has been completed. It will keep
checking twice the reslim seconds allocated for this optimization job and report a failure if this limit has
been exceeded. After successful or failed retrieval of the solution, GAMS will remove the grid directory,
unless we have used the call gamskeep or have set the GAMS command line parameter keep.

4.36 The Grid and Multi-Threading Solve Facility 967

4.36.7 Multi-Threading

As we have described in this chapter, each solve is handled in its own process space with the Grid facility.
Recall that the Grid facility is activated by setting the option or model attribute solveLink to 3 or 4.
If solveLink is set to 6 (or the compile-time constant %solveLink.asyncThreads%) instead, a separate
thread is used. This allows efficient in-memory communication between GAMS and the solver, like it is
done if the option solveLink is set to 5 (or the compile-time constant %solveLink.loadLibrary%).

Apart from this, the multi-threading facility works in the same way as the Grid facility. The solve
statement generates the model and passes it to the solver in a separate thread, then a handle of the model
instance may be stored using the model attribute handle and the grid handle functions may be used to
collect the solution and deal with the model instance, namely handleCollect, handleDelete, handleStatus
and readyCollect.

Note that the option or command line parameter ThreadsAsync sets the maximum number of threads
that should be used for the asynchronous solves.

The following matrix shows which solvers may be used with solveLink = 6 on which platform:

Solver x86 64bit
MS Windows

x86 64bit
Linux

x86 64bit
macOS

arm 64bit
macOS

CONOPT3 × × × ×
CONOPT4 × × × ×
CONVERT × × × ×
COPT × × × ×
CPLEX × × × ×
GUROBI × × × ×
HIGHS × × ×
IPOPT × × × ×
MOSEK × × × ×
ODHCPLEX × ×
SCIP × × × ×
SHOT × × × ×
SNOPT ×
Soplex × × × ×
XPRESS × × ×

If a solver is selected for which solveLink = 6 is not supported on the corresponding platform, solveLink
= 3 will be used instead and it will be noted in the log.

4.36.7.1 Multi-threading Submission Testing

The multi-threading submission process may be tested on any GAMS program without having to
change the source text. The option solveLink = 7 (or, equivalently, the compile-time constant
%solveLink.threadsSimulate%) instructs the solve statement to use the multi-threading submission
process, wait until the results are available and then load the solution into the GAMS data base. Once the
model instance has been submitted for solution, GAMS will check if the job has been completed. It will
keep checking twice the reslim seconds allocated for this optimization job and report a failure if this limit
has been exceed. After successful or failed retrieval of the solution GAMS will remove the thread handle.

968 User's Guide

4.37 Special Features for Mathematical Programs

4.37.1 Introduction

In this chapter we will introduce special GAMS features that are useful for specific model types. The
features include model scaling, conic programming and features that facilitate mixed integer as well as
indicator constraints, a feature that does not translate across solvers.

4.37.2 Special Mixed Integer Programming (MIP) Features

Some special features have been added to GAMS to help simplifying the modeling of Mixed Integer Programming (MIP)
problems. In GAMS MIP is the model type for mixed integer linear programs, this section used MIP
more generally, we consider model with discrete variables, including non-linear expressions and pure
discrete problem. We will first present details on discrete variables in GAMS, then we will discuss how to
customize priorities for the branching process. Next, we will cover the model attributes that are important
for MIPs and we will conclude with some hints that will make mixed integer programming with GAMS
easier.

4.37.2.1 Types of Discrete Variables

Variables and variable types are introduced in chapter Variables. GAMS provides six discrete variable
types: binary, integer, sos1, sos2, semicont and semiint. In the following subsections we will present
details and examples for each of these discrete variable types. Note that if any discrete variables feature
in a model, it has to be a mixed integer model or one of the related model types, like MINLP or MIQCP.
See section Classification of Models for a full listing of all GAMS model types.

Binary Variables

Binary variables can take values of 0 (zero) and 1 (one) only. They are declared as follows:

Binary Variable var_name [(index_list)] [text];

The keyword binary indicates that this is a binary variable and then the usual conventions for
variable declarations are followed. Alternatively, the variable may be declared first and specified as
binary later. Consider the following code snippets from the orthogonal Latin Square model [LATIN]:

Sets k "rows" / row1*row4 /

l "columns" / col1*col4 /

v "values" / val1*val4 /;

alias (i,j,v);

Variables x(i,j,k,l) "pairs (i,j) allocated to cell(k,l)"

z "some objective";

Binary Variable x;

Equations c1(i,j) "for each cell pick only one item pair";

c1(i,j).. sum((k,l), x(i,j,k,l)) =e= 1;

4.37 Special Features for Mathematical Programs 969

Note that the binary variable x is used in equation c1 to model the restriction that in each cell only one
item pair is allowed. Binary variables are often used to model logical conditions such as imposing mutual
exclusivity or complementarity.

Note that the default lower bound is 0 (zero) and the default upper bound is 1 (one). If the relaxed
versions of the discrete models is solved, binary variables are treated like positive variables with the upper
bound of 1. In addition, an infinite priority may be used to override binary specifications, see section
Setting Priorities for Branching below for more information.

Even though the only possible values are 0 and 1, a solver might return a value for binary variable that is
only close to 0 or 1. Every solver works with tolerances and also uses a tolerance to determine if a value
is close enough to an integer values. So it is unwise to use code as a(i)$(b.l(i)=1) = yes; because
one will potentially miss some elements. A safe way to write such code is: a(i)$(b.l(i)>0.5) = yes;.
Rounding the level of a binary variable after the solve is also possible, but it is not done by the solver or
the solver link because even small rounding can lead to infeasibilities.

A binary variable can also have a truely fractional value after a solver if the model status does not indicate
a feasible integer solution (model status 1 or 8).

Integer Variables

Integer variables are discrete variables that can take only values between their bounds. The user may
change both bounds from the default value. The default lower bound is 0 (zero) and the default upper
bound inside GAMS is +inf, and the same upper bound is passed on to the solver.

Note that in relaxed model types the integrality requirement is relaxed. In addition, an infinite priority
may be used to override integer specifications, see section Setting Priorities for Branching below for more
information. Integer variables are declared as follows:

Integer Variable var_name [(index_list)] [text];

The keyword integer indicates that this is an integer variable and then the usual conventions for
variable declarations are followed. Alternatively, the variable may be declared first and specified as
integer later. Consider the following code snippets from the power scheduling model [MAGIC]:

Sets t "demand blocks" / 12pm-6am, 6am-9am, 9am-3pm, 3pm-6pm, 6pm-12pm /

g "generators" / type-1, type-2, type-3 /;

Variables x(g,t) "generator output (1000mw)"

n(g,t) "number of generators in use"

cost "total operating cost (l)";

Integer Variable n;

The integer variable n models the number of generators of various types that are in use at any of the time
blocks.

970 User's Guide

Special Order Sets of Type 1 (SOS1)

SOS1 variables are a set of variables, such that at most one variable within the group may have a nonzero
value. This variable may take any positive value. Special ordered sets of type 1 are defined as follows:

SOS1 Variable var_name (index_list) [text];

The keyword SOS1 indicates that this is a SOS1 variable and then the usual conventions for
variable declarations are followed. Alternatively, the variable may be declared first and specified
as SOS1 later. Consider the following example:

SOS1 Variable s1(i), t1(k,j), w1(i,j,k) ;

Note that the members of the innermost (the right-most) index belong to the same SOS set. For example
in the sets defined above, s1 represents one special ordered set of type 1 with i elements, t1 defines k sets
with j elements each and w1 defines (i,j) sets with k elements each.

The default bounds for SOS1 variables are zero and +inf. As with any other variable, the user may change
these bounds. Further, the user may explicitly provide whatever convexity row that the problem may
need through an equation that requires the members of the SOS1 set to be less than a certain value. Any
such convexity row will implicitly define bounds on each of the variables.

Consider the following example:

SOS1 Variable s1(i); Equation defsoss1;

defsoss1.. sum(i,s1(i)) =l= 3.5 ;

The equation defsoss1 implicitly defines the nonzero value that one of the elements of the SOS1 variable
s1 may take as equal to or smaller than 3.5. Note that it is also possible that all variables s1 equal zero.

A special case arises when one of the elements of the set has to be nonzero and equal to a number, say 3.5.
In this case equation defsoss1 will be:

defsoss1.. sum(i,s1(i)) =e= 3.5 ;

Frequently the nonzero value equals 1. As a result, the SOS1 variable is effectively a binary variable. It
is only treated differently by the solver at the level of the branch and bound algorithm. For example,
consider the following example where we want to model that one out of n options has to be selected. This
is expressed as:

SOS1 Variable x(i); Equation defx;

defx.. sum(i, x(i)) =e= 1 ;

The variable x can be made binary without any change in meaning and the solution provided by the solver
will be indistinguishable from the SOS1 case.

The use of special ordered sets may not always improve the performance of the branch and bound
algorithm. If there is no natural order the use of binary variables may be a better choice. A good example
of this is the classical assignment problem (see [H.P. Williams (2013) Model Building in Mathematical

Programming], Wiley, Section 9.3.

Note that any model with SOS1 variables requires a MIP solver, because the solution process needs to
impose the restrictions of at most one nonzero level values may be present.

For an example where SOS1 variables are used, see the production scheduling model [PRODSCHX].

https://books.google.de/books?id=YJRh0tOes7UC&lpg=PP1&dq=Model%20Building%20in%20Mathematical%20Programming&pg=PP1#v=onepage&q=Model%20Building%20in%20Mathematical%20Programming&f=false
https://books.google.de/books?id=YJRh0tOes7UC&lpg=PP1&dq=Model%20Building%20in%20Mathematical%20Programming&pg=PP1#v=onepage&q=Model%20Building%20in%20Mathematical%20Programming&f=false

4.37 Special Features for Mathematical Programs 971

Special Order Sets of Type 2 (SOS2)

SOS2 variables are a set of variables, such that at most two variables within the set may have nonzero
values and these variables have to be adjacent. This requirement implies that the set is ordered, see chapter
Sets as Sequences: Ordered Sets for details on ordered sets in GAMS. Note that the nonzero variables
may take any positive value. Special ordered sets of type 2 are defined as follows:

SOS2 Variable var_name [(index_list)] [text];

The keyword SOS2 indicates that this is a SOS2 variable and then the usual conventions for
variable declarations are followed. Alternatively, the variable may be declared first and specified
as SOS2 later. Consider the following example:

Set i / i1*i5 /;

SOS2 Variable s2(i), t2(k,j), w2(i,j,k);

The members of the innermost (the right-most) index belong to the same set. For example, in the sets
defined above, s2 represents one special ordered set of type 2 with elements for each member of the set i.
At most two variables s2 may be nonzero and they must reference adjacent elements of the set i. Note
that the variables s2('i1') and s2('i2') are adjacent, but the variables s2('i1') and s2('i3') are
not. Further, t2 defines k sets of SOS2 variables with j elements each and the adjacency requirement
refers to the set j which must be ordered. Similarly, w2 defines (i,j) sets with k elements each and the
adjacency requirement refers to the set k which must be ordered.

The default bounds for SOS2 variables are zero and +inf. As with any other variable, the user may change
these bounds. SOS2 variables are most often used to model piece-wise linear approximations to nonlinear
functions. The production scheduling model [PRODSCHX] shows SOS type formulations with binary,
SOS1 and SOS2 sets.

Note that any model with SOS2 variables requires a MIP solver, because the solution process needs to
impose the restrictions of adjacency and that no more than two nonzero level values may be present.

Semi-Continuous Variables

Semi-continuous variables are either zero or above a given minimum level. This can be expressed
algebraically as: either x = 0 or L ≤ x ≤ U . By default, the lower bound L is 1 and the upper bound U is
+inf. As usual, these bounds may be changed with the variable attributes .lo and .up. Semi-continuous
variables are defined as follows:

SemiCont Variable var_name [(index_list)] [text];

The keyword semicont indicates that this is a semi-continuous variable and then the usual conventions
for variable declarations are followed. Alternatively, the variable may be declared first and specified as
semicont later. Consider the following example:

SemiCont Variable x;

x.lo = 1.5; x.up = 23.1;

The slice of code above declares the variable x to be a semi-continuous variable that may either be zero or
behave as a continuous variable between 1.5 and 23.1.

Note that any model with semi-continuous variables requires a MIP solver, because the solution process
needs to impose the discontinuous jump between zero and the threshold value.

972 User's Guide

Note

• Not all MIP solvers allow semi-continuous variables. We recommend users to verify how the
solver they are interested in handles semi-continuous variables by checking the relevant section
of the respective solver manual.

• The lower bound has to be less than the upper bound, and both bounds have to be greater
than zero, otherwise GAMS will report an error.

• The variable solution listing might show the level outside the lower and upper bound which for
other variables indicates an infeasible variable, but not so for semi-continuous variables.

• Semi-continuous variables are especially helpful if the upper bound is +inf and no implicit
bound can be easily derived. If a finite upper bound is available it can be computational more
efficient to replace the semi-continuous variable sc with lower bound scLow by a continuous
variable x and binary variable b and the following equations:

Equation xForceLowerBnd "Force x to be greater than scLow if b is 1"

xForceZero "Force x to be zero if b is zero";

xForceLowerBnd.. x =g= scLow*b;

xForceZero.. x =l= x.up*b;

Semi-Integer Variables

Semi-integer variables are either zero or integer and above a given minimum value. This can be expressed
algebraically as: either x = 0 or x ∈ {L, . . . , U}. By default, the lower bound L is 1 and the upper bound
U inside GAMS is +inf and the same values are passed on to the solver. As usual, these default bounds
may be changed with the variable attributes .lo and .up. Note that in relaxed model types the integrality
requirement is relaxed. In addition, an infinite priority may be used to override integer specifications, see
section Setting Priorities for Branching below for more information.

Semi-integer variables are defined as follows:

SemiInt Variable var_name [(index_list)] [text];

The keyword semiint indicates that this is a semi-integer variable and then the usual conventions for
variable declarations are followed. Alternatively, the variable may be declared first and specified as
semiint later. Consider the following example:

SemiInt Variable x;

x.lo = 2; x.up = 25;

The slice of code above declares the variable x to be a semi-integer variable that may either be zero or
take any integer value between 2 and 25. Note that the bounds for semiint variables have to take integer
values, otherwise GAMS will flag an error during model generation. Note further, that any model with
semi-integer variables requires a MIP solver.

Note

• Not all MIP solvers allow semi-integer variables. We recommend users to verify how the solver
they are interested in handles semi-integer variables by checking the relevant section of the
respective solver manual.

• The lower bound has to be less than the upper bound, and both bounds have to be greater
than zero, otherwise GAMS will report an error.

• The variable solution listing might show the level outside the lower and upper bound which for
other variables indicates an infeasible variable, but not so for semi-integer variables.

4.37 Special Features for Mathematical Programs 973

• Semi-integer variables are especially helpful if the upper bound is +inf and no implicit bound
can be easily derived (together with the appropriate IntVarUp setting). If a finite upper bound
is available, it can be computationally more efficient to replace the semi-integer variable si,
with lower bound siLow, by an integer variable i and a binary variable b and the following
equations:

Equation iForceLowerBnd "Force i to be greater than siLow if b is 1"

iForceZero "Force i to be zero if b is zero";

iForceLowerBnd.. i =g= siLow*b;

iForceZero.. i =l= i.up*b;

4.37.2.2 Setting Priorities for Branching

By setting priorities users may specify an order for choosing variables to branch on during a branch and
bound search for MIP models. Without priorities the MIP algorithm will internally determine which
variable is the most suitable to branch on. Priorities for individual variables may be used only if the
model attribute .prioropt is set to 1; the respective GAMS statement is:

mymodel.prioropt = 1;

Here mymodel is the name of the model specified in the model statement. The default value is NA.

If the model attribute .prioropt is set to 1, the variable attribute .prior may be used to set the priorities
of individual discrete variables. Note that there is one .prior value for each individual component of a
multidimensional variable. Priorities may be set to any real value; the default value is 1. As a general
rule, the most important variables should be given the highest priority. The highest priority is denoted by
the lowest nonzero value in the .prior attribute. Functionally, the attribute .prior establishes in what
order variables are to be branched on in the branch-and-bound algorithm while searching for a solution.
Variables with a specific .prior value will branched on earlier until all fractional variables with higher
.prior values have been branched on.

Note

The variable attribute .prior of a discrete variable may be used to relax the discrete restriction on
that variable: setting the .prior value to +inf will relax a variable permanently (or until .prior
gets a finite value assigned). This relaxation is done independently of the model attribute .prioropt.

Consider the following example:

z.prior(i,’small’) = 3;

z.prior(i,’medium’) = 2;

z.prior(i,’large’) = 1;

In this example the variables z(i,'large') are branched on before the variables z(i,'medium'), which
in turn are branched on before the variables z(i,'small').

Note that knowledge about the problem may help to determine which variables should be considered first.
For example, consider a problem with a binary variable u representing a yes/no decision whether to build
a factory and other binary variables representing equipment selections within that factory. We would
naturally want to explore whether or not the factory should be built before considering what specific
equipment to be purchased within the factory. Therefore we would set the priority values lower for u. By
assigning a higher priority - a lower value of the attribute .prior - to the build/nobuild decision variable
u, we can force this logic into the tree search and thus speed up computation time since uninteresting
portions of the tree are left unexplored.

974 User's Guide

Note

• The lower the value given to the .prior suffix, the higher the priority for branching.

• All members of any SOS1 or SOS2 set should be given the same priority value since it is the set
itself which is branched upon rather than the individual members of the set.

• While any value is accepted for .prior many solvers scale all giving priorities in the integer
range of 0, ..., 1000.

• Branching priorities were a very important feature in the early days of mixed integer program-
ming. Nowadays, it is not easy to find branching priorities that improve on the solvers default
selection.

• Global non-linear optimization solvers branch on continuous variables too (see, for example
BARON). In GAMS one cannot set the branching priority of a continuous variable. Such
branching priorities need to be communicated via a solver option file.

4.37.2.3 Miscellaneous Hints

We will conclude the discussion of mixed integer models in GAMS with this section where we offer a
variety of hints that are meant to make special facilities of mixed integer programming solvers more
accessible.

Model Attributes for Mixed Integer Programming in GAMS

GAMS offers several model attributes that may be used to influence MIP solver performance or report
on results of MIPs. These model attributes include Cheat, CutOff, NodLim, ObjEst, OptCA, OptCR,
PriorOpt and TryInt.

The Branch and Cut and Heuristic Facility

Hard MIP problems can be solved faster with the help of user supplied routines that generate cutting planes
and good integer feasible solutions. The GAMS Branch-and-Cut-and-Heuristic (BCH) automates all major
steps necessary to define, execute and control the use of user defined routines within the framework of
general purpose branch-and-cut codes. It is documented in Branch-and-Cut-and-Heuristic Facility (BCH).

Branch and Bound Output

While the log output for each solver differs, some key figures are usually displayed for branch-and-bound
based solvers. For example, solving a linear mixed integer model with CPLEX will yield output like the
following:

Nodes Cuts/

Node Left Objective IInf Best Integer Best Bound ItCnt Gap

* 0+ 0 0.0000 5.05646e+08 ---

Found incumbent of value 0.000000 after 0.01 sec. (0.73 ticks)

0 0 2.23031e+07 12 0.0000 2.23031e+07 17 ---

0 0 2.23031e+07 7 0.0000 Cuts: 8 23 ---

* 0+ 0 2.23031e+07 2.23031e+07 0.00%

Found incumbent of value 2.2303094e+07 after 0.02 sec. (1.08 ticks)

...

Fixing integer variables, and solving final LP...

4.37 Special Features for Mathematical Programs 975

...

Solution satisfies tolerances.

MIP Solution: 22303093.628684 (23 iterations, 0 nodes)

Final Solve: 22303093.628684 (0 iterations)

Best possible: 22303113.950091

Absolute gap: 20.321407

Relative gap: 0.000001

A brief explanation of the columns follows:

• Node is the number of branch and bound nodes so far.

• Nodes Left is the number of problems created during the branching process that are yet to be
examined.

• Objective gives the current objective function value of the relaxes node problem.

• IInf gives the number of discrete variables with fractional solution levels.

• Best Integer gives the incumbent solution. Note the last solution in that column is not necessarily
the global best solution.

• Cuts/Best Bound gives the current lower bound on the solution.

• ItCnt gives the accumulated LP iteration count

• Gap gives the maximum percentage difference from the theoretical optimum.

Note that it is common that solves of mixed integer models end with a gap between the solution found
and the best possible solution. This may be controlled by limits (e.g. time), solver options and model
attributes like .OptCR and .OptCA.

Nonlinear MIPs

Modelers may wish to impose integer restrictions on nonlinear formulations combining two hard model
types: MIP and NLP. Such MINLP models can be solved with a selection of solvers. Many solvers, e.g.
DICOPT and SBB, provide a local optimum where others, e.g. ANTIGONE and BARON provide a
global optimum. In most cases both types of MINLP solver make use of MIP and NLP solvers to calculate
a solution. Such subsolvers need to be licensed for the solver to succeed.

Model Termination Conditions and Recommended Actions

Recall that the termination condition of the model after the solution process has been completed is stored
in the model attribute .modelStat. A list of all possible model statuses is given in section Model Status.
We can easily check for the existence of a feasible solution (status 1 and 8). Linear models and MINLP
problems solved with global solvers can achieve the ”OPTIMAL” status, given sufficient resources (time)
and a setting of OptCR and OptCA to 0. All other cases do not yield a feasible integer solution. If a
problem is reported as infeasible (status 4,5,10, and 19), it might be a good idea to see if the relaxed
version of the model is already infeasible. Debugging models that are relaxed feasible but integer infeasible
is very difficult.

976 User's Guide

Frequent Problems

There are some problems users frequently encounter either due to GAMS settings or problem characteristics:

Default bounds

One needs to be aware that while the GAMS upper bound for integer and semi-integer variables is +inf, the
bound that is passed to the solver can be different, namely 100 (see the discussion about integer variables).
This can lead to unexpected results (e.g. infeasibilities or suboptimal solutions declared as optimal).

Ending with a gap – large default for optCR (10%)

MIP solves often end with a gap between the solution found and the best possible solution. This is
controlled by OptCR or OptCA or by non-convergence. Note that the default value of 0.1 for optCR is
relatively large. Users may want to reduce this to a smaller value. We will discuss the other cause of a
gap next.

The nonending quest

Integer programming is a quite desirable formulation technique. However, integer problems are theoretically
hard and the solution process (in the worst case) of exponential complexity. There are many ways that
focus on improving the solution time of the solver. As with all models scaling is important (especially when
using bigM formulations). For particular problems many different formulations exist and the literature
about a particular problem together with the ability of GAMS to rapidly prototype and experiment is
the best constellation to get the best results for the problem at hand. For fine tuning, some MIP solvers
provide automated tuning tools (see e.g. Cplex tuning) that tweak the solver options to get the best
performance.

4.37.3 Model Scaling - The Scale Option

The rules for good scaling are exclusively based on algorithmic needs. GAMS has been developed to
increase the efficiency of modelers, and one of the best ways seems to be to encourage modelers to write
their models using a notation that is as natural as possible. The units of measurement are one part of this
natural notation. However, there is a potential conflict between what the modeler thinks is a good unit
and what constitutes a well-scaled model.

4.37.3.1 The Scale Option

To facilitate the translation between a natural model and a well scaled model, GAMS has introduced the
concept of a scale factor, both for variables and equations. The notations and definitions are quite simple.
Scaling is turned off by default. Setting the model attribute .scaleopt to 1 turns on the scaling feature.
For example,

model mymodel /all/ ;

mymodel.scaleopt = 1 ;

solve mymodel using nlp maximizing dollars ;

The statement should be inserted somewhere after the model statement and before the solve statement.
To turn scaling off again, mymodel.scaleopt has to be set to zero before the next solve.

In most respects GAMS scaling is hidden from the user. The solution values reported back from a solution
algorithm are always reported in the notation of the user. The algorithm's internal representation of
the equations and variables are only reflected in the derivatives in the equation and column listings in
the GAMS output if the values of the options limrow and limcol are positive. In addition, the internal
representations will appear in the debugging output from the solution algorithm if the option sysout is set
to on.

4.37 Special Features for Mathematical Programs 977

4.37.3.2 Scaling Variables

The scale factor of a variable is defined using the variable attribute .scale in the following way:

myvar.scale(i,j) = c;

The scale factor c is a number or a numerical expression that evaluates to a number. Note that the default
scale factor is 1.

Note that there is one scale value for each individual component of a multidimensional variable.

Assume that c is the scale factor of a variable Vu. Assume further, that the variable seen by the algorithm
is Va. Then we have: Va = Vu/c. This means that each variable as seen by the user is divided by the
scale factor.

For example, consider the following code snippet:

Positive Variables x1, x2;

Equation eq;

eq.. 200*x1 + 0.5*x2 =l= 5;

x1.up = 0.01;

x2.up = 10;

x1.scale = 0.01;

x2.scale = 10;

By setting x1.scale to 0.01 and x2.scale to 10, the model seen by the solver is:

Positive Variables xPrime1, xPrime2;

Equation eq;

eq.. 2*xPrime1 + 5*xPrime2 =l= 5;

xPrime1.up = 1;

xPrime2.up = 1;

Note that the solver does not see the variables x1 or x2, but rather the scaled (and better-behaved)
variables xPrime1 and xPrime2. Note further, that upper and lower bounds on variables are automatically
scaled in the same way as the variable itself.

Attention

• Discrete variables cannot be scaled.

• Expert Note. Internally, GAMS stores with each variable and equation one additional
attribute or field (besides fields for level, marginal and lower and upper bound). Depending on
the type of variable and sometimes even model type or solver, this field has different names
in the GAMS language. For continuous variables, the field is called scale, while for discrete
variable it is called prior. For stochastic 2-stage linear program models solved with DECIS,
this field is called stage. The field .stage can lead to confusing results. Consider the following
example:

Variable x;

x.scale = 0.1;

display x.stage;

The output is:

---- 3 VARIABLE x.scale = 0.100

The field .scale has to be in a certain range (>1e-20 and no special value), but this
is only checked at model generation time. The field .prior can be any number and
even +inf (but no other special values). For further information on .prior, see section
Setting Priorities for Branching. For an introduction to variable and equation fields, see sec-
tions Variable Attributes and Equation Attributes respectively.

978 User's Guide

4.37.3.3 Scaling Equations

The scale factor of an equation is defined using the equation attribute .scale in the following way:

mzeqn.scale(i,j) = d;

The scale factor d is a number or a numerical expression that evaluates to a number. Note that the default
scale factor is 1.

Assume that d is the scale factor of an equation Gu. Assume further, that the equation seen by the
algorithm is Ga. Then we have: Ga = Gu/d. This means that each equation as seen by the user is
divided by the scale factor.

For example, consider the following equations:

Positive Variables y1, y2;

Equations eq1, eq2;

eq1.. 200*y1 + 100*y2 =l= 500;

eq2.. 3*y1 - 4*y2 =g= 6;

By setting eq1.scale to 100, the model seen by the solver is:

Positive Variables y1, y2;

Equations eqPrime1, eq2;

eqprime1.. 2*y1 + 1*y2 =l= 5;

eq2.. 3*y1 - 4*y2 =g= 6;

Note

The user may have to perform a combination of equation and variable scaling to obtain a well-scaled
model.

Consider the following example:

Positive variables x1, x2;

Equations eq1, eq2;

eq1.. 100*x1 + 5*x2 =g= 20;

eq2.. 50*x1 - 10*x2 =l= 5;

x1.up = 0.2;

x2.up = 1.5;

Setting the following scale values:

x1.scale = 0.1;

eq1.scale = 5;

eq2.scale = 5;

will result in the solver seeing the following well-scaled model:

Positive Variables xPrime1, x2;

Equations eqPrime1, eqPrime2;

eqPrime1.. 2*xPrime1 + x2 =g= 4;

eqPrime2.. xPrime1 - 2*x2 =l= 1;

xPrime1.up = 2;

x2.up = 1.5;

4.37 Special Features for Mathematical Programs 979

4.37.3.4 Scaling Derivatives

In nonlinear models the derivatives also need to be well-scaled. Assume that the derivatives in the model
of the user are denoted by d(Gu)/d(Vu). Assume further, that the derivatives in the scaled model seen by
the algorithm are denoted by d(Ga)/d(Va). Then we have: d(Ga)/d(Va) = d(Gu)/d(Vu) · c/d, where c
is the scale factor for the variable and d is the scale factor for the equation.

The user may affect the scaling of derivatives by scaling both the equation and variable involved.

4.37.3.5 Scaling Data

Scaling input data is independent of the model attribute .scaleopt and may contribute considerably
towards achieving a well-scaled model. We recommend users to try to define the units of the input data
such that the largest values expected for decision variables and their marginals is under a million, if
possible.

For example, in US agriculture about 325 million acres are cropped and the corn crop is 9-10 billion
bushels per year. When defining production data, we could enter land in 1000's of acres and all other
resources in 1000's of units. We could also define the corn crop in millions of bushels. The data will be
simultaneously scaled, hence if resource endowments are quoted in 1000's, corn yields are divided by 1000.
This scaling results in a corn production variable in the units of millions. Consumption statistics would
need to be scaled accordingly. Money units could also be in millions or billions of dollars. Such data
scaling generally greatly reduces the disparity of coefficients in the model.

4.37.4 Conic Programming in GAMS

Conic programming models minimize a linear function over the intersection of an affine set and the product
of nonlinear cones. The problem class involving second order (quadratic) cones is known as Second Order
Cone Programs (SOCP). These are nonlinear convex problems that include linear and (convex) quadratic
programs as special cases.

Conic programs allow the formulation of a wide variety of application models, including problems in
engineering and financial management. Examples are portfolio optimization, Truss topology design in
structural engineering, Finite Impulse Response (FIR) filter design and signal processing, antenna array
weight design, grasping force optimization, quadratic programming, robust linear programming and norm
minimization problems.

For more information, see References and Links at the end of this section.

4.37.4.1 Introduction to Conic Programming

Conic programs can be thought of as generalized linear programs with the additional nonlinear constraint
x ∈ C, where C is required to be a convex cone. The resulting class of problems is known as conic
optimization and has the following form:

minimize cTx
subject to Ax ≤ rc,

x ∈ [lx, ux]
x ∈ C

where A ∈ Rm×n is the constraint matrix, x ∈ Rn the decision variable and c ∈ Rn the objective function
cost coefficients. The vector rc ∈ Rm represents the right-hand side and the vectors lx, ux ∈ Rn are lower
and upper bounds on the decision variable x.

980 User's Guide

Now partition the set of decision variables x into sets St, t = 1, ..., k, such that each decision variables x is
a member of at most one set St. For example, we could have

S1 = (x1, x4, x7) and S2 = (x6, x5, x3, x2).

Let xSt denote the variables x belonging to set St. Then define

C := {x ∈ Rn : xSt ∈ Ct, t = 1, ..., k} ,

where Ct must have one of the following forms:

• Quadratic cone (also referred to as Lorentz or ice cream cone):

Ct =

x ∈ Rn
t

: x1 ≥

√√√√ nt∑
j=2

x2
j

 .

• Rotated quadratic cone (also referred to as hyperbolic constraints):

Ct =

x ∈ Rn
t

: 2x1x2 ≥
nt∑
j=3

x2
j , x1, x2 ≥ 0

 .

These two types of cones allow the formulation of quadratic, quadratically constrained and many other
classes of nonlinear convex optimization problems.

4.37.4.2 Implementation of Conic Constraints in GAMS

The recommended way to write conic constraints is by using a quadratic formulation. Many solvers have
the capability to identify the conic constraints in a QCP model even if it is not in perfect form but can
be easily reformulated to fit in the described form. However, some solvers (namely MOSEK) expect the
conic constraints to be precisely in the form given above. In earlier versions this form was enforced by
a special type of equation, the =c= equation type. Moreover, such solvers have other requirements (e.g.
disjunctive cones) that can be easily fulfilled by simple reformulation steps. Much progress is expected on
the solver side in the coming years, so we don't go into much detail here.

Observe that we could formulate conic problems as regular NLPs using the following constraints:

• Quadratic cone:

x(’1’) =g= sqrt[sum(i$[not sameas(i,’1’)], sqr[x(i)])];

• Rotated quadratic cone:

2*x(’1’)*x(’2’) =g= sum(i$[not sameas(i,’1’) and not sameas(i,’2’)], sqr[x(i)]);

Here x('1') and x('2') are positive variables.

The following example illustrates the different formulations for conic programming problems. Note that a
conic optimizer usually outperforms a general NLP method for the reformulated (NLP) cone problems.

4.37 Special Features for Mathematical Programs 981

4.37.4.3 Example

Consider the following example, which illustrates the use of rotated conic constraints. We will give
reformulations of the original problem in regular NLP form and in conic form (with conic constraints).

The original problem is:

minimize

n∑
i=1

di
xi

(4.2)

subject to a x ≤ b (4.3)

xi ∈ [li, ui], i = 1, . . . , n (4.4)

where x ∈ Rn is the decision variable, d, a, l, u ∈ Rn are parameters with li > 0 and di ≥ 0 and b ∈ R is a
scalar parameter. The original model may be written in GAMS using the equations:

defobj.. sum(n, d(n)/x(n)) =e= obj;

e1.. sum(n, a(n)*x(n)) =l= b;

Model orig /defobj, e1/;

x.lo(n) = l(n);

x.up(n) = u(n);

We can write an equivalent QCP formulation by using the substitution ti = 1/xi in the objective function
and adding a constraint. As we are dealing with a minimization problem, di ≥ 0 and xi ≥ li > 0, we
can relax the equality tixi = 1 into an inequality tixi ≥ 1, which results in an equivalent problem with a
convex feasible set:

minimize

n∑
i=1

diti (4.5)

subject to a x ≤ b (4.6)

tixi ≥ 1, i = 1, . . . , n (4.7)

x ∈ [l, u], (4.8)

t ≥ 0, (4.9)

(4.10)

where t ∈ Rn is a new decision variable. The GAMS formulation of this QCP is:

defobjc.. sum(n, d(n)*t(n)) =e= obj;

e1.. sum(n, a(n)*x(n)) =l= b;

coneqcp(n).. t(n)*x(n) =g= 1;

Model cqcp /defobjc, e1, coneqcp/;

t.lo(n) = 0;

x.lo(n) = l(n);

x.up(n) = u(n);

Note that the constraints tixi ≥ 1 are almost in rotated conic form. If we introduce a variable z ∈ Rn
with zi =

√
2, then we can reformulate the problem using conic constraints as:

minimize

n∑
i=1

diti (4.11)

subject to a x ≤ b (4.12)

zi =
√

2, i = 1, . . . , n (4.13)

2tixi ≥ z2
i , i = 1, . . . , n (4.14)

x ∈ [l, u], (4.15)

t ≥ 0, (4.16)

(4.17)

982 User's Guide

The GAMS formulation using conic equations is:

defobjc.. sum(n, d(n)*t(n)) =e= obj;

e1.. sum(n, a(n)*x(n)) =l= b;

e2(n).. z(n) =e= sqrt(2);

coneperfect(n).. 2*x(n)*t(n) =g= sqr(z(n));

Model cperfect /defobjc, e1, e2, coneperfect/;

t.lo(n) = 0;

x.lo(n) = l(n);

x.up(n) = u(n);

The complete model is listed below:

Set n / n1*n10 /;

Parameter d(n), a(n), l(n), u(n);

Scalar b;

d(n) = uniform(1,2);

a(n) = uniform (10,50);

l(n) = uniform(0.1,10);

u(n) = l(n) + uniform(0,12-l(n));

Variables x(n);

x.l(n) = uniform(l(n), u(n));

b = sum(n, x.l(n)*a(n));

Variables t(n), z(n), obj;

Equations defobjc, defobj, e1, e2(n), coneqcp(n), coneperfect(n), conenlp(n);

defobjc.. sum(n, d(n)*t(n)) =e= obj;

defobj.. sum(n, d(n)/x(n)) =e= obj;

e1.. sum(n, a(n)*x(n)) =l= b;

coneqcp(n).. t(n)*x(n) =g= 1;

e2(n).. z(n) =e= sqrt(2);

coneperfect(n).. 2*x(n)*t(n) =g= sqr(z(n));

Model cqcp /defobjc, e1, coneqcp/;

Model cperfect /defobjc, e1, e2, coneperfect/;

Model orig /defobj, e1/;

t.lo(n) = 0;

x.lo(n) = l(n);

x.up(n) = u(n);

Option qcp=cplex;

Solve cqcp min obj using qcp;

Option qcp=mosek;

Solve cperfect min obj using qcp;

Solve orig min obj using nlp;

4.37.4.4 Sample Conic Models in GAMS

Conic models in the GAMS model library include:

4.37 Special Features for Mathematical Programs 983

• [EMFL]: A multiple facility location problem,

• [FDESIGN]: Linear Phase Lowpass Filter Design,

• [IMMUN]: Financial Optimization: Risk Management,

• [PMEANVAR]: Mean-Variance Models with variable upper and lower Bounds,

• [QP7]: A portfolio investment model using rotated quadratic cones (quadratic program using a
Markowitz model),

• [ROBUSTLP]: Robust linear programming as an SOCP,

• [SPRINGCHAIN]: Equilibrium of System with Piecewise Linear Spring,

• [TRUSSM]: Truss Toplogy Design with Multiple Loads

4.37.4.5 References and Links

• A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Algorithms,
and Engineering Applications, MPS/SIAM Series on Optimization, SIAM Press, 2001.

• M. Lobo, L. Vandenberghe, S. Boyd and H. Lebret, Applications of Second-Order Cone

Programming, Linear Algebra and its Applications, 284:193-228, November 1998, Special Issue
on Linear Algebra in Control, Signals and Image Processing.

• MOSEK ApS, MOSEK Modeling Cookbook, 2015.

• G. Pataki G and S. Schmieta, The DIMACS Library of Semidefinite-Quadratic-Linear Programs.
Tech. rep., Computational Optimization Research Center, Columbia University, 2002.

• Seventh Dimacs Implementation Challenge on Semidefinite and Related Optimization Problems.

4.37.5 Indicator Constraints

An indicator constraint is a way of expressing relationships between variables by specifying a binary
variable to control whether or not a constraint takes effect. For example, indicator constraints are useful
in problems where there are fixed charges to express only if a given variable comes into play.

So-called Big M formulations require to estimate an upper bound of an expression in a model. In most
cases the model data can be used to determine relatively small number for such coefficients. In some cases
it is not possible to find small Big M values and a resulting solution may exhibit trickle flow and have
other unwanted side-effects. The main purpose of indicator constraints is to overcome these limitations
of Big M formulations. Generally, the use of indicator constraints is not warranted when the unwanted
side-effects of Big M formulations are not present.

Consider the following example:

constr01.. x1 + x2 + x3 =l= 1e+9*y; // may cause problems

Here we use a Big M formulation, that relies on the x values to sum to less than one billion. Note that
this formulation may cause numeric instability or undesirable solutions in some situations. Alternatively,
we could use an indicator constraint:

constr01$(y=0).. x1 + x2 + x3 =l= 0; // alternative

http://stanford.edu/~boyd/papers/socp.html
http://stanford.edu/~boyd/papers/socp.html
https://docs.mosek.com/modeling-cookbook/index.html

984 User's Guide

Note that y is a binary variable; the logical condition makes sure that the constraint is only active if
y = 0. Unfortunately, the $() expressions do not allow endogenous variables and we need a different way
to specify such implications. Indicators are supported by CPLEX, GUROBI, SCIP, and XPRESS.

We should mention a formulation of indicators without the explicit indicator constraints. We can use a
SOS1 constraint to express that a constraint holds or not based on a binary variable by having a SOS1
set of a slack variable and the binary variable SOS1(slack,1-y):

Positive variable slack;

constr01.. x1 + x2 + x3 =l= slack; // alternative

Recall that only one of the variables in a SOS1 constraint can be non-zero, so if 1-y is non-zero (i.e. y=0)
then slack must be zero, i.e. the constraint holds. If 1-y=0 is non-zero, i.e. y=1 then slack can be used
to make the constraint feasible for any setting of x1, x2, and x3. Here two unrelated variable, slack and
y are part of an SOS1 constraint and some tricks are required to formulate this properly in GAMS:

Set oo / slack, yExpr /;

SOS1 variable indic(oo);

Equation iOn, iOff;

Positive variable slack;

constr01.. x1 + x2 + x3 =l= slack;

iOn.. indic(’slack’) =e= slack;

iOff.. indic(’yExpr’) =e= 1-y;

4.37.5.1 Indicator Constraints with GAMS

In the remainder of this section we will describe how to specify indicator constraints when using GAMS.
Please consult the corresponding solver manual for information on whether indicator constraints are
supported and possible differences in their specification.

The example from above will be implemented with a constraint in combination with additional information
in a solver option file, e.g. CPLEX: cplex.opt:

constr01.. x1 + x2 + x3 =l= 0;

and the following entry in the option file:

indic constr01$y 0

This has the following effect: equation constr01 will become an indicator constraint and becomes active
in a solution where the binary variable takes the value 0. If the value of y in a solution is 1, the constraint
is not active.

Note that this way of entering an indicator constraint is dangerous since the option files changes the
model (usually an option file has some effect on the performance of the algorithm). Therefore, the solver
will abort if there is a problem processing the indicator options in the solver option file.

4.37 Special Features for Mathematical Programs 985

Attention

If the model is given to a solver without the option file containing the indicator mapping (or to
a solver that does not understand the indic keyword, a very different model will be solved. The
current implementation of indicator constraints requires a significant amount of caution from the
user.

There are two ways of entering the equation/binary variable mapping in a solver option file: with an
indexed format and using labels.

The indexed format is a convenient shorthand notation which borrows its syntax from the GAMS syntax.
It requires that the indices for the binary variable are already present in the index set of the equation.

Consider the following example of an invalid GAMS syntax with an endogenous variable in the dollar
condition:

equ1(i,j,k)$(ord(i) < ord(j) and bin1(i,k)=1).. lhs =l= rhs;

This may be specified with the following equation in the GAMS file:

equ1(i,j,k)$(ord(i) < ord(j)).. lhs =l= rhs;

plus a solver option file with the following entry:

indic equ1(i,j,k)$bin1(i,k) 1

The label format is used in cases where the binary variable indices are not present in the equation indices
or the binary variable is adjusted with lags or leads. In these cases the mapping of all individual equations
and variables of the indicator constraints need to be specified. An example follows.

Set i /i1*i3/, j /j1*j2/;

Binary variable bin1(j);

Equation equ1(i,j);

equ1(i,j)$(bin1(j++1)=0).. lhs =e= 0;

Note that the example above is not valid GAMS code. Instead, we will combine a valid GAMS equation
and a solver option file using the label format as follows:

equ1(i,j).. lhs =e= 0;

and the solver option file

indic equ1(’i1’,’j1’)$bin1(’j2’) 0

indic equ1(’i1’,’j2’)$bin1(’j1’) 0

indic equ1(’i2’,’j1’)$bin1(’j2’) 0

indic equ1(’i2’,’j2’)$bin1(’j1’) 0

indic equ1(’i3’,’j1’)$bin1(’j2’) 0

indic equ1(’i3’,’j2’)$bin1(’j1’) 0

986 User's Guide

Note that the lines in such option files need not be entered manually. They may be easily generated using
the GAMS The Put Writing Facility. For example, the lines above may be generated as follows:

file fcpx / cplex.opt /;

fcpx.pc=8;

loop((i,j), put fcpx ’indic’ equ1(i,j) ’$’ bin1(j++1) ’0’/);

putclose fcpx;

There are situations where the indicator binary variable exist in the indicator constraint only and hence
will not be generated by GAMS to be passed on to the solver. In such cases the solver will issue the
following error message:

Error: Column is not of type Variable

There is an easy way to fix this problem: adding the binary indicator variable artificially to the model.
For example, it may be added with the coefficient eps to the objective:

defobj.. z =e= ... + eps*sum(j, bin1(j));

4.37.5.2 An Example for Indicator Constraints with GAMS

In this subsection we will comment on parts of the model [TRNSINDIC]. This model uses big M
formulations and indicator constraints to solve the same problem. In addition, a formulation that makes
it easy to switch between these two is presented. It is a fixed-charge network example based on the
well-known model [TRNSPORT].

Recall that i is the set of canning plants and j is the set of markets where cases of some product are to
be shipped. First, the basic model is reformulated to a MIP by introducing the binary variable use(i,j)

and two new equations:

Binary Variable use(i,j) is 1 if arc is used in solution;

Equations minship(i,j) ensure minimum shipping

maxship(i,j) ensure zero shipping if use variable is 0;

minship(i,j).. x(i,j) =g= minshipping*use(i,j);

maxship(i,j).. x(i,j) =l= bigM*use(i,j);

Note that minshipping is a scalar denoting the minimum amount of cases that may be shipped and bigM

is a sufficiently large number, as usual.

Next, the same problem is solved with indicator constraints: the two new equations are reformulated and
a CPLEX option file with information on indicator constraints is added:

Equations iminship(i,j) ensure minimum shipping using indicator constraints

imaxship(i,j) ensure zero shipping if use variable is 0 using indicator constraints;

iminship(i,j).. x(i,j) =g= minshipping;

imaxship(i,j).. x(i,j) =e= 0;

Model indicatorModel /cost, supply, demand, iminship, imaxship/ ;

file fcpx Cplex Option file / cplex.opt /;

putclose fcpx ’indic iminship(i,j)$use(i,j) 1’ / ’indic imaxship(i,j)$use(i,j) 0’;

indicatorModel.optfile = 1;

Solve indicatorModel using mip minimizing z ;

4.38 GAMS Output 987

Note that the option file contains an entry for each of the two equations. Note further, that the binary
variable use moved from the equations to the option file. However, it also features in the objective equation
of the model, therefore this is not problematic. Observe that the indexed format for the equation/binary
variable mapping was used in the option file. Alternatively, the label format may be used:

loop((i,j),

put fcpx ’indic ’ iminship.tn(i,j) ’$’ use.tn(i,j) yes

/ ’indic ’ imaxship.tn(i,j) ’$’ use.tn(i,j) no /);

putclose fcpx;

In a final step the model is reformulated again such that the same problem may be solved with and without
indicator constraints. This can be especially useful for debugging a model with indicator constraints. For
details, see [TRNSINDIC].

Another example of a model with indicator constraints is the model [BILINEAR] where various
formulations to represent bilinear product terms are demonstrated.

4.38 GAMS Output

4.38.1 Introduction

The output from GAMS contains many components in support for checking and comprehending a model.
This chapter discusses the components of the GAMS output file generated from a GAMS run as well
as ways to control the amount of diagnostic output produced. A GAMS run also generates a log which
serves as a useful first step in analysing a GAMS run. The details regarding the log can be found in the
GAMS log chapter.

The output file generated from a GAMS run is called listing file. The listing file has the file exten-
sion .lst and can be read using any text editor. By default the listing file has the same file name
as the input file, but this can be changed using the command line parameter Output. See chapter
The GAMS Call and Command Line Parameters for more information. The main components in the
listing file are:

1. Compilation. The compilation output contains an echo print of the input file, possibly error messages,
along with lists of GAMS objects and cross reference maps.

2. Execution. The execution output contains the results of display statements and possibly execution
error messages.

3. Model Generation. The output generated during model generation contains listings of equations
and variable listings as well as model statistics and possibly generation execution error messages.

4. Solution. The output generated when an external solver program processes the model is
the solution report including the solve summary, the solver report, the solution listing and the
report summary.

5. Post-Solution. The final components added to the listing file are the final execution summary and
the file summary.

A small nonlinear program [ALAN] will be used to illustrate every component of the listing file. The
possibilities for extension to large models with voluminous output (which is when the diagnostics are
really useful) should be apparent. After covering all the components of the listing file we will discuss
error reporting and conclude the chapter with a compiled list of how to customize the output file.

This chapter does not cover the output that can be generated by the user through display statements and put
statements. This output is covered in the chapters The Display Statement and The Put Writing Facility
respectively.

988 User's Guide

4.38.2 An Illustrative Model

[ALAN] is a portfolio selection model whose objective is to choose a portfolio of investments whose
expected return meets a target while minimizing the variance. We will discuss a simplified version of this
model. The input file is listed for reference.

$Title A Quadratic Programming Model for Portfolio Analysis (ALAN,SEQ=124a)

$onsymlist onsymxref onuellist onuelxref

$Ontext

This is a mini mean-variance portfolio selection problem described in

’GAMS/MINOS:Three examples’ by Alan S. Manne, Department of Operations

Research, Stanford University, May 1986.

$Offtext

* This model has been modified for use in the documentation

Set i securities /hardware, software, show-biz, t-bills/;

alias (i,j);

Scalar target target mean annual return on portfolio % /10/,

lowyield yield of lowest yielding security,

highrisk variance of highest security risk ;

Parameters mean(i) mean annual returns on individual securities (%)

/ hardware 8

software 9

show-biz 12

t-bills 7 /

Table v(i,j) variance-covariance array (%-squared annual return)

hardware software show-biz t-bills

hardware 4 3 -1 0

software 3 6 1 0

show-biz -1 1 10 0

t-bills 0 0 0 0 ;

lowyield = smin(i, mean(i)) ;

highrisk = smax(i, v(i,i)) ;

display lowyield, highrisk ;

Variables x(i) fraction of portfolio invested in asset i

variance variance of portfolio

Positive Variable x;

Equations fsum fractions must add to 1.0

dmean definition of mean return on portfolio

dvar definition of variance;

fsum.. sum(i, x(i)) =e= 1.0;

dmean.. sum(i, mean(i)*x(i)) =e= target;

dvar.. sum(i, x(i)*sum(j,v(i,j)*x(j))) =e= variance;

Model portfolio / fsum, dmean, dvar / ;

Solve portfolio using nlp minimizing variance;

display x.l, variance.l;

4.38 GAMS Output 989

4.38.3 Compilation Output

The compilation output is the output produced during the initial check of the program, often referred to
as compilation. It contains the following parts: the echo print of the input file, the symbol reference map,
the symbol listing map, the unique element listing map, and the include file summary.

By default only the echo print and the include file summary is shown, the other parts are suppressed and
may be turned on with dollar control options. See also section Customizing the Output File on how to
control the appearance and amount of detail in the output file produced by the GAMS compiler.

4.38.3.1 The Echo Print of the Input File

The echo print of the program is always the first part of the output file. It is a listing of the input
with added line numbers. It is possible to control the listing output using $offlisting to suppress the
echo print and $onlisting to turn the echo print on again. The first few lines of the echo print of the
Illustrative Model follow:

A Quadratic Programming Model for Portfolio Analysis (ALAN,SEQ=124a)

C o m p i l a t i o n

2

4

This is a mini mean-variance portfolio selection problem described in

’GAMS/MINOS:Three examples’ by Alan S. Manne, Department of Operations

Research, Stanford University, May 1986.

10

11 * This model has been modified for use in the documentation

The default header of the GAMS listing file is General Algebraic Modeling System. This may be
replaced using the $title at the start of a line. The text on that line will be the new header, as demonstrated
above. After the header the compilation output is announced with the title Compilation.

The first three line numbers refer to empty lines in the input and line 11 is a comment line. If the lines on
the input file are counted, it can be seen that this comment line appears after ten lines of dollar directives,
comments and empty lines.

The dollar control options that follow in the model are used to display more information in the output file
than the default and will be discussed in the subsections below.

Note

By default, dollar control option lines are not listed in the echo print. The $onDollar and $offDolar
controls the echoing of Dollar Control Options lines in the listing file. Dollar control option lines
are also listed if they contain errors.

The block comment enclosed by $ontext and $offtext is listed without line numbers, while
single line comments starting with asterisks (∗) are listed with the respective line numbers. Ob-
serve that line numbers always refer to the physical line number in the input file. The remainder of the
echo print follows:

990 User's Guide

12

13 Set i securities /hardware, software, show-biz, t-bills/;

14 alias (i,j);

15

16 Scalar target target mean annual return on portfolio % /10/,

17 lowyield yield of lowest yielding security,

18 highrisk variance of highest security risk ;

19

20 Parameters mean(i) mean annual returns on individual securities (%)

21 / hardware 8

22 software 9

23 show-biz 12

24 t-bills 7 / ;

25

26 Table v(i,j) variance-covariance array (%-squared annual return)

27 hardware software show-biz t-bills

28 hardware 4 3 -1 0

29 software 3 6 1 0

30 show-biz -1 1 10 0

31 t-bills 0 0 0 0 ;

32

33 lowyield = smin(i, mean(i)) ;

34 highrisk = smax(i, v(i,i)) ;

35 display lowyield, highrisk ;

36

37 Variables x(i) fraction of portfolio invested in asset i

38 variance variance of portfolio ;

39 Positive Variable x ;

40

41 Equations fsum fractions must add to 1.0

42 dmean definition of mean return on portfolio

43 dvar definition of variance;

44

45 fsum.. sum(i, x(i)) =e= 1.0;

46 dmean.. sum(i, mean(i)*x(i)) =e= target;

47 dvar.. sum(i, x(i)*sum(j,v(i,j)*x(j))) =e= variance;

48

49 Model portfolio / fsum, dmean, dvar / ;

50 Solve portfolio using nlp minimizing variance;

51 display x.l, variance.l;

Lines in the echo print can be set to double space using $double and then reset to single space with
$single. If errors were detected, the explanatory messages would be found at the end of the echo print.
All discussions of error messages have been grouped together in the section Error Reporting below.

4.38.3.2 The Symbol Reference Map

The other parts of the compilation outputs are maps. They are extremely useful for users looking at a
model written by someone else or trying to make changes in their own model after spending some time
away from it. By default all maps are suppressed and can be turned on with dollar control options that
are specified below.

The first map is the symbol cross reference. It can be turned on with the dollar control option $onSymXRef
at the beginning of the program. The symbol cross reference map lists all identifiers (symbols) from
the model in alphabetical order, identifies them as to data type, shows the line numbers where the
symbols appear and classifies each appearance. The map that was generated as part of the output of our
Illustrative Model is shown below:

4.38 GAMS Output 991

Symbol Listing

SYMBOL TYPE REFERENCES

dmean EQU declared 42 defined 46 impl-asn 50 ref 49

dvar EQU declared 43 defined 47 impl-asn 50 ref 49

fsum EQU declared 41 defined 45 impl-asn 50 ref 49

highrisk PARAM declared 18 assigned 34 ref 35

i SET declared 13 defined 13 ref 14 20 26 33 2*34

37 45 2*46 2*47 control 33 34 45 46 47

j SET declared 14 ref 26 2*47 control 47

lowyield PARAM declared 17 assigned 33 ref 35

mean PARAM declared 20 defined 21 ref 33 46

portfolio MODEL declared 49 defined 49 impl-asn 50 ref 50

target PARAM declared 16 defined 16 ref 46

v PARAM declared 26 defined 26 ref 34 47

variance VAR declared 38 impl-asn 50 ref 47 50 51

x VAR declared 37 impl-asn 50 ref 39 45 46 2*47 51

In the first two columns the name and type of each identifier are given. For example, the last symbol
listed is x which is defined to be of type VAR, a shorthand symbol for variable. The complete list of data
types and their shorthand symbols is given below:

Shorthand Symbol GAMS Data Type

ACRNM acronym

EQU equation

FILE put file

MODEL model

PARAM parameter

SET set

VAR variable

For further details on data types in GAMS, see section Data Types and Definitions.

The symbol highrisk was declared as a scalar, but is listed as a parameter in the map above. Recall
that parameters, scalars, and tables are three input formats for the data type parameter. For more
information, see the overview Parameters, Scalars and Tables.

After the name and type of the identifier, a list of references to the symbol is given. References are
grouped by reference type and identified by the line number in the output file. The actual reference can
be found by referring to the echo print of the program, which has line numbers on it. In the case of the
symbol x in the example above, the list of references as shown in the symbol reference map are as follows:

declared 37

impl-asn 50

ref 39 45 46 2*47 51

This means that x is declared on line 37, implicitly assigned through a solve statement on line 50 and
referenced on lines 39, 45, 46, 47, and 51. The entry 2∗47 means that there are two references to x on line
47 of the input file.

The complete list of reference types and their shorthand symbols in GAMS Output is given below:

992 User's Guide

Shorthand Symbol Reference Type Description

declared Declaration The identifier is declared as to type. This must be the
first appearance of the identifier.

defined Definition An initialization (for a table or a data list between
slashes) or symbolic definition (for an equation) starts
for the identifier.

assigned Assignment Values are replaced because the identifier appears on
the left-hand side of an assignment statement.

impl-asn Implicit Assignment An equation or variable will be updated as a result of
being referred to implicitly in a solve statement.

control Control A set is used as (part of) the driving index in an
assignment, equation, loop or indexed operation.

ref Reference The symbol has been referenced on the right-hand
side of an assignment or in a display, equation, model,
solve statement or put statetement.

index Index Like control, but used only for set labels. Appears
only in the cross reference map of unique elements. See
section The Unique Element Listing Map for details.

Note that the symbol reference map may be useful in model development, documentation preparation,
and to make sure that all declared items are actually used in the model (by checking that they all have
reference symbols in addition to declared and defined).

4.38.3.3 The Symbol Listing Map

The second optional map is the symbol listing. In the symbol listing map all identifiers are grouped
alphabetically by data type and listed with their explanatory texts. This is another very useful aid for
trying to understand a large model prepared by someone else. Note that expressive explanatory text is
particularly helpful here. The symbol listing map can be turned on by entering a line containing the
dollar control option $onSymList at the beginning of the program. The symbol listing map generated
from our Illustrative Model follows:

SETS

i securities

j Aliased with i

PARAMETERS

highrisk variance of highest security risk

lowyield yield of lowest yielding security

mean mean annual returns on individual securities (%)

target target mean annual return on portfolio %

v variance-covariance array (%-squared annual return)

VARIABLES

variance variance of portfolio

x fraction of portfolio invested in asset i

EQUATIONS

dmean definition of mean return on portfolio

4.38 GAMS Output 993

dvar definition of variance

fsum fractions must add to 1.0

MODELS

portfolio

4.38.3.4 The Unique Element Listing Map

The last optional map is the Unique Element (UEL) Listing. The unique element listing can be turned on
by entering a line containing the dollar control option $onUELList at the beginning of the program. All
unique elements are first grouped in entry order and then in sorted order with their explanatory texts:

Unique Element Listing

Unique Elements in Entry Order

1 hardware software show-biz t-bills

Unique Elements in Sorted Order

1 hardware show-biz software t-bills

In addition, a map with references for every label is given if the dollar control option $onUELXRef appears
at the beginning of the program.

ELEMENT REFERENCES

hardware declared 13 ref 21 27 28

show-biz declared 13 ref 23 27 30

software declared 13 ref 22 27 29

t-bills declared 13 ref 24 27 31

The unique element list is important in the context of ordered sets. For details see section
Ordered and Unordered Sets.

4.38.3.5 The Include File Summary

Often the GAMS program includes a text file specified by the dollar control option $include. Consider
the following example:

$include ’file1.inc’

Set i / i1*i10 /;

Scalar a; a = 7;

$include ’file2.inc’

The file file1.inc contains the following two lines:

994 User's Guide

Set j / j1*j5 /;

Parameter k(j);

The file file2.inc contains the following line:

a = a+3;

The echo print follows:

INCLUDE C:\models\file1.inc

2 Set j / j1*j5 /;

3 Parameter k(j);

4 Set i / i1*i10 /;

5 Scalar a; a = 7;

INCLUDE C:\models\file2.inc

7 a = a+3;

Note that the contents of the two include files are expanded in the echo print and the include file names
and their path is echoed in the lines with the dollar control option $include. If we insert the dollar control
option $offInclude in the first line of the code, the echo print will not include the lines with the names of
the include files any more, but the contents will still be echoed:

3 Set j / j1*j5 /;

4 Parameter k(j);

5 Set i / i1*i10 /;

6 Scalar a; a = 7;

8 a = a+3;

If the program contains include files, there will be an Include File Summary at the end of the compilation
output. The include file summary of the simple example above (without the line $offInclude) follows. If
$offInclude is active, it will be suppressed.

Include File Summary

SEQ GLOBAL TYPE PARENT LOCAL FILENAME

1 1 INPUT 0 0 C:\models\test.gms

2 1 INCLUDE 1 1 .C:\models\file1.inc

3 6 INCLUDE 1 4 .C:\models\file2.inc

In the first column the sequence number of the input files is given. Note that the parent file called by
the GAMS call is always listed first. The second column gives the global (expanded) line number which
contains the respective option include or one of its variants. The third column indicates the type of the
respective file. An overview of the file types is given below:

File Type Description

INPUT The GAMS input file that was called with the GAMS call.

EXIT Exit from compilation

INCLUDE A file that was inserted with the dollar command option $include.

BATINCLUDE A file that was inserted with the dollar command option $batinclude.

LIBINCLUDE A file that was inserted with the dollar command option $libinclude.

4.38 GAMS Output 995

File Type Description

SYSINCLUDE A file that was inserted with the dollar command option $sysinclude.

CALL A program that was called with the dollar command option $call

CALL.ASYNC A program that was called asynchronously with the dollar command option $call.Async

CALLTOOL A GAMS tool was called with the dollar command option $callTool

GDXIN A GDX file that was opened for input with the dollar command option $gdxIn

GDXOUT A GDX file that was opened for output with the dollar command option $gdxOut

IF EXIST Operator used to test whether a given file name exists

IF DEXIST Operator used to test whether a given directory name exists

FUNCLIBIN A file that was inserted with the dollar command option $funcLibIn

TERMINATE Terminate compilation and execution

STOP Stop compilation

The next column, named PARENT, provides the sequence number of the respective parent file. The column
with the header LOCAL gives the local line number in the parent file where the file was included. The last
column shows the path and the name of the respective file.

Note that compilation error messages in include files have additional information about the name of the
include file and the local line number. For information on compilation errors, see section Compilation Errors
below.

4.38.4 Execution Output

The execution output follows the compilation output in the GAMS listing file. It is introduced with
the title Execution. The execution output is the output generated while GAMS is performing data
manipulations and results from display statements. The output from the display statement on line 33 of
our Illustrative Model is shown below.

E x e c u t i o n

---- 33 PARAMETER lowyield = 7.000 yield of lowest yielding security

PARAMETER highrisk = 10.000 variance of highest security risk

If errors are detected because of illegal data operations, a brief message indicating the cause and the line
number of the offending statement will appear. For further information on execution errors, see section
Execution Errors below.

Note

In case there is no display statement before The Solve Statement in the model and there are no
execution errors, there will be no execution output in the GAMS listing file.

4.38.5 Model Generation Output

The model generation output, the solution report, and the post-solution Output are produced when a
solve statement is executed. The actions that are initiated by a solve statement are presented in section
Actions Triggered by the Solve Statement. All output generated as a result of a solve is labeled with a
subtitle identifying the model, its type and the line number of the solve statement.

The output generated during model generation includes equations listing, variable listing, and
model statistics.

996 User's Guide

4.38.5.1 The Equation Listing

The equation listing is the first part of the output generated by a solve statement. It is marked with the
subtitle Equation Listing. By default, the first three equations in every block are listed. This can be
modified with the option limrow. If there are three or fewer single equations in any equation block, then
all the single equations are listed.

Note that by studying the equation listing the user may determine whether the model generated by GAMS
is the the model that the user has intended - an extremely important question. This component of the
output shows the specific equations generated within the model when the current values of the sets and
parameters are plugged into the general algebraic form of the model.

The equation listing from our Illustrative Model is given below. In our case we have three equation blocks,
each producing one single equation.

A Quadratic Programming Model for Portfolio Analysis (ALAN,SEQ=124a)

Equation Listing SOLVE portfolio Using NLP From line 50

---- fsum =E= fractions must add to 1.0

fsum.. x(hardware) + x(software) + x(show-biz) + x(t-bills) =E= 1 ; (LHS = 0, INFES = 1 ****)

---- dmean =E= definition of mean return on portfolio

dmean.. 8*x(hardware) + 9*x(software) + 12*x(show-biz) + 7*x(t-bills) =E= 10 ; (LHS = 0, INFES = 10 ****)

---- dvar =E= definition of variance

dvar.. (0)*x(hardware) + (0)*x(software) + (0)*x(show-biz) - variance =E= 0 ; (LHS = 0)

Note

The equation listing is an extremely useful debugging aid. It shows the variables that appear in
each constraint. In addition, it shows what the individual coefficients and right-hand side values
evaluate to after the data manipulations have been done.

Each equation block is marked with four dashes which are useful for mechanical searching. The name,
type of equation and explanatory text is shown, followed by the individual equations.

Note

All the terms that depend on variables are collected on the left-hand side and all the constant terms
are combined into one number on the right-hand side, any necessary sign changes being made.

Four places of decimals are shown if necessary, but trailing zeroes following the decimal point are suppressed.
E-format is used to prevent small numbers to be displayed as zeros.

4.38 GAMS Output 997

Note

Nonlinear equations are treated differently. If the coefficient of a variable in the equation listing
is enclosed in parentheses, then the corresponding constraint is nonlinear, and the value of the
coefficient depends on the activity levels of one or more of the variables. The listing is not algebraic,
but shows the partial derivative of each variable evaluated at their current level values.

Note that in the equation listing from our example the equation dvar is nonlinear. A simpler example
will help to clarify the point. Consider the following equation and associated level values.

eq1.. 2*sqr(x)*power(y,3) + 5*x - 1.5/y =e= 2; x.l = 2; y.l = 3 ;

This equation will appear in the equation listing as:

eq1.. (221)*x + (216.1667)*y =E= 2 ; (LHS = 225.5 ***)

The coefficient of x is determined by first differentiating the equation above with respect to x. This results
in 2× (2× x.l)× (y.l)3 + 5, which evaluates to 221, given that x.l equals 2 and y.l equals 3. Similarly,
the coefficient of y is obtained by differentiating the equation above with respect to y, which results in
2 × (x.l)2 × 3 × (y.l)2 + 1.5

(y.l)2 , giving 216.1667. Observe that the coefficient of y could not have been

determined if its level had been left at zero. The attempted division by zero would have produced an
error and premature termination. For further information on modeling NLP problems with GAMS, see
the tutorial Good NLP Formulations.

The result of evaluating the left-hand side of the equation at the initial point is shown at the end of each
individual equation listing. In the example above it is 225.5, and the three asterisks(∗∗∗) are a warning
that the constraint is infeasible at the starting point.

Note

The order in which the equations are listed depends on how the model was defined. If it was defined
with a list of equation names, then the listing will be in the order of that list. If it was defined as
/all/, then the list will be in the order of declaration of the equations. The order of the entries for
the individual constraints is determined by the label entry order.

4.38.5.2 The Column Listing

The column listing or variable listing is the next part of the output. It is marked with the title Column

Listing and contains a list of the individual coefficients sorted by column rather than by row (like in the
equation listing). By default the first three entries for each variable are shown, along with their lower
bound .lo, upper bound .up and current level values .l. Note that the default number of entries shown
may be modified with the option limcol.

The format for the coefficients is exactly as in the equation listing, with the nonlinear coefficients enclosed
in parentheses and the trailing zeroes dropped. The column listing from our Illustrative Model follows.

998 User's Guide

A Quadratic Programming Model for Portfolio Analysis (ALAN,SEQ=124a)

Column Listing SOLVE portfolio Using NLP From line 50

---- x fraction of portfolio invested in asset i

x(hardware)

(.LO, .L, .UP, .M = 0, 0, +INF, 0)

1 fsum

8 dmean

(0) dvar

x(software)

(.LO, .L, .UP, .M = 0, 0, +INF, 0)

1 fsum

9 dmean

(0) dvar

x(show-biz)

(.LO, .L, .UP, .M = 0, 0, +INF, 0)

1 fsum

12 dmean

(0) dvar

REMAINING ENTRY SKIPPED

---- variance variance of portfolio

variance

(.LO, .L, .UP, .M = -INF, 0, +INF, 0)

-1 dvar

Note

The order in which the variables appear is the order in which they were declared.

4.38.5.3 The Range Statistics

This block shows a statistic about the range of values seen in the model. Namely, it prints the range of
absolute non-zero values for the bounds, right hand sides and matrix coefficients. Zero values are marked
explicitly. This is the example output when running the model [TRNSPORT]:

Range Statistics SOLVE transport Using LP From line 71

RANGE STATISTICS (ABSOLUTE NON-ZERO FINITE VALUES)

RHS [min, max] : [2.750E+02, 6.000E+02] - Zero values observed as well

Bound [min, max] : [NA, NA] - Zero values observed as well

Matrix [min, max] : [1.260E-01, 1.000E+00]

Note the NA range for the bounds: For this model, the bounds are either 0 or +INF. Both values are
excluded in this range calculation. Therefore we see the NA here.

4.38 GAMS Output 999

4.38.5.4 The Model Statistics

The final information generated while a model is being prepared for solution is the statistics block. It
is marked with the title Model Statistics. Its most obvious use is to provide details on the size and
nonlinearity of the model. The model statistics of our Illustrative Model follow:

A Quadratic Programming Model for Portfolio Analysis ALAN,SEQ=124a)

Model Statistics SOLVE portfolio Using NLP From line 50

MODEL STATISTICS

BLOCKS OF EQUATIONS 3 SINGLE EQUATIONS 3

BLOCKS OF VARIABLES 2 SINGLE VARIABLES 5

NON ZERO ELEMENTS 12 NON LINEAR N-Z 3

CODE LENGTH 25 CONSTANT POOL 17

GENERATION TIME = 0.004 SECONDS 4 MB

EXECUTION TIME = 0.005 SECONDS 4 MB

The BLOCK counts indicate the number of GAMS symbols (equations and variables, respectively)
appearing in the problem generated. The SINGLE counts indicate the number of individual rows and
columns in the problem generated. The NON ZERO ELEMENTS entry refers to the number of nonzero
coefficients in the problem matrix. To understand the remaining elements, some background will be useful.

For linear models, the model can be completely specified by the problem matrix and vectors for the RHS,
etc. More is needed for noninear models. GAMS passes the nonlinear expressions defining the model
algebra to the solvers in the form of NL code - opcode/address pairs in a simple stack-based language.
For example, the expression exp(x∗y-1.675) results in code similar to this:

PUSHV column-index-of-x

MULV column-index-of-y

SUBC index-of-1.675

FUNC1 index-of-exp-function

STOR index-of-row

In addition to containing indices refering to the rows and columns of the model, the NL code contains
indices of constants used to define the model algebra. These constants are not contained in the NL code
directly but rather in a separate pool or list of constants used for the model.

There are three entries that provide additional information about nonlinear models. The NON LINEAR

N-Z entry refers to the number of nonlinear matrix entries in the model. Nonlinear models may differ in
the complexity or size of the nonlinear expressions defining them. For example, x∗y is a simpler form of
nonlinearity than exp(x∗y) and will require a shorter list of instructions to define, even though both of
these terms result in two nonlinear entries in the matrix (one for x and one for y). The CODE LENGTH entry
indicates the length of the NL code (i.e. number of instuctions) required to define the model algebra, while
the CONSTANT POOL indicates the length of the constant pool that is used by the NL code. In general, the
more nonlinear a problem is, the more difficult it tends to be to solve.

The times that follow statistics are also useful. The GENERATION TIME is the time used since compilation
(syntax check) is finished. This includes the time spent in generating the model. The measurement units
are given and represent ordinary clock time on personal computers or central processor usage (CPU) time
on other machines. Memory use is given in megabytes.

1000 User's Guide

4.38.6 The Solution Report

The solution report is the next part of the output. It is marked with the title Solution Report and
includes the solve summary, the solver report, the solution listing, and the report summary.

4.38.6.1 The Solve Summary

The solve summary contains details about the solution process and is marked with the title SOLVE SUMMARY.
The first part of the solve summary is common to all solvers and is discussed in this subsection. The
second part of the solve summary is solver specific, it is covered in the subsection Solver Report below.
The first part of the solve summary for our Illustrative Model follows.

A Quadratic Programming Model for Portfolio Analysis ALAN,SEQ=124a)

Solution Report SOLVE portfolio Using NLP From line 50

S O L V E S U M M A R Y

MODEL portfolio OBJECTIVE variance

TYPE NLP DIRECTION MINIMIZE

SOLVER MINOS FROM LINE 50

**** SOLVER STATUS 1 Normal Completion

**** MODEL STATUS 2 Locally Optimal

**** OBJECTIVE VALUE 2.8990

RESOURCE USAGE, LIMIT 0.188 1000.000

ITERATION COUNT, LIMIT 5 2000000000

EVALUATION ERRORS 0 0

The entry MODEL contains the name of the model being solved, TYPE provides the model type of the model,
SOLVER shows the name of the solver used to solve the model, OBJECTIVE gives the name of the objective
variable being optimized, DIRECTION shows the direction of optimization being performed and the entry
FROM LINE provides the line number of the solve statement the solve summary refers to.

Note that the four asterisks make it easy to find the solve summary if it is searched for mechanically.

The entries SOLVER STATUS and MODEL STATUS contain the solver and model status for the problem
respectively. Their possible values are given in Model Status table and Solver Status tables below. The
entry OBJECTIVE VALUE provides the value of the objective function at the termination of the solve. This
value is the optimum value for the problem provided the solver and model have the right status.

The entry RESOURCE USAGE, LIMIT reports the amount of wall clock time (in seconds) taken by the solver
and the upper limit allowed for the solver. Note that the solver will stop as soon as the limit on time usage
has been reached. The default limit may be changed with the option reslim. Observe that the option
statement option reslim = x; - where x is the desired limit in wall clock seconds - must be entered in
the model before the solve statement.

The entry ITERATION COUNT, LIMIT provides the number of iterations used by the solver and the upper
limit allowed for the solver. The solver will stop as soon as this limit is reached. The default limit on
iterations used is practically infinity. This limit may be changed with the option iterlim. Observe that
the option statement option iterlim = n; - where n is the desired limit of the iterations used - must
be entered in the model before the solve statement.

Finally, the entry EVALUATION ERRORS reports the number of numerical errors encountered by the solver
and the upper limit allowed for the solver. These errors result from numerical problems like division by
zero. Note that this is suppressed for LP, RMIP and MIP models since evaluation errors are not applicable
for these model types. The default limit on evaluation errors used is zero. This limit may be changed with
the option domlim. Observe that the option statement option domlim = n; - where n is the desired
limit of the evaluation errors allowed - must be entered in the model before the solve statement.

4.38 GAMS Output 1001

Model Status

Value Message Description

1
OPTIMAL

The solution is optimal, that is, it is feasible (within toler-
ances) and it has been proven that no other feasible solution
with better objective value exists. Note that the latter cri-
terion is not influenced by the optcr and optca options.

2
LOCALLY OPTIMAL

A local optimum for an NLP has been found. That is, a
solution that is feasible (within tolerances) and it has been
proven that there exists a neighborhood of this solution in
which no other feasible solution with better objective value
exists.

3
UNBOUNDED

The solution is unbounded. This message is reliable if the
problem is linear, but occasionally it appears for difficult
nonlinear problems that are not truly unbounded, but that
lack some strategically placed bounds to limit the variables
to sensible values.

4
INFEASIBLE

The problem has been proven to be infeasible. If this was
not intended, something is probably misspecified in the
logic or the data.

5
LOCALLY INFEASIBLE

No feasible point could be found for the NLP problem from
the given starting point. It does not necessarily mean that
no feasible point exists.

6
INTERMEDIATE INFEASIBLE

The current solution is not feasible, but the solver stopped,
either because of a limit (for example, iteration or resource)
or because of some sort of difficulty. The solver status will
give more information.

7
FEASIBLE SOLUTION

A feasible solution to a problem without discrete variables
has been found.

8
INTEGER SOLUTION

A feasible solution to a problem with discrete variables has
been found. There is more detail following about whether
this solution satisfies the termination criteria (set by options
optcr and optca).

9
INTERMEDIATE NON-INTEGER

An incomplete solution to a problem with discrete vari-
ables. A feasible solution has not yet been found. See
section Model Termination Conditions for MIPs for more
information.

10
INTEGER INFEASIBLE

It has been proven that there is no feasible solution
to a problem with discrete variables. See section
Model Termination Conditions for MIPs for more informa-
tion.

11
LIC PROBLEM - NO SOLUTION

The solver cannot find the appropriate license key needed
to use a specific subsolver.

12
ERROR UNKNOWN

After a solver error the model status is unknown.

13
ERROR NO SOLUTION

An error occurred and no solution has been returned. No
solution will be returned to GAMS because of errors in the
solution process.

14
NO SOLUTION RETURNED

A solution is not expected for this solve. For example, the
CONVERT solver only reformats the model but does not
give a solution.

1002 User's Guide

Value Message Description

15
SOLVED UNIQUE

Indicates the solution returned is unique, i.e. no other
solution exists. Used for CNS models. Examples where this
status could be returned include non-singular linear models,
triangular models with constant non-zero elements on the
diagonal, and triangular models where the functions are
monotone in the variable on the diagonal.

16
SOLVED

Indicates the model has been solved: used for CNS models.
The solution might or might not be unique. If the solver
uses status 17 - SOLVED SINGULAR wherever possible then
this status implies that the Jacobian is non-singular, i.e.
that the solution is at least locally unique.

17
SOLVED SINGULAR

Indicates the CNS model has been solved, but the Jacobian
is singular at the solution. This can indicate that other
solutions exist, either along a line (for linear models) or a
curve (for nonlinear models) including the solution returned.

18
UNBOUNDED - NO SOLUTION

The model is unbounded and no solution can be provided.

19
INFEASIBLE - NO SOLUTION

The model is infeasible and no solution can be provided.

Note that the model status is stored in the model attribute modelStat. For details on model attributes, see
section Model Attributes. Observe that there are compile-time constants that are related to this model
attribute.

Solver Status

Value Message Description

1
NORMAL COMPLETION

The solver terminated in a normal way: it was not inter-
rupted by a limit (resource, iterations, nodes or other)
or by internal difficulties. The model status describes
the characteristics of the accompanying solution.

2
ITERATION INTERRUPT

The solver was interrupted because it used too many
iterations. The option iterlim may be used to increase
the iteration limit if everything seems normal.

3
RESOURCE INTERRUPT

The solver was interrupted because it used too much
time. The option reslim may be used to increase the
time limit if everything seems normal.

4
TERMINATED BY SOLVER

The solver encountered some difficulty and was unable
to continue. More details will appear following the
message.

5 EVALUATION INTERRUPT
Too many evaluations of nonlinear terms at undefined
values. We recommend to use variable bounds to
prevent forbidden operations, such as division by zero.
The rows in which the errors occur are listed just before
the solution.

6
CAPABILITY PROBLEMS

The solver does not have the capability required by
the model. For example, some solvers do not support
certain types of discrete variables or support a more
limited set of functions than other solvers.

7
LICENSING PROBLEMS

The solver cannot find the appropriate license key
needed to use a specific subsolver.

8
USER INTERRUPT

The user has sent a message to interrupt the solver via
the interrupt button in the IDE or sending a Control+C
from a command line.

4.38 GAMS Output 1003

Value Message Description

9
ERROR SETUP FAILURE

The solver encountered a fatal failure during problem
set-up time.

10
ERROR SOLVER FAILURE

The solver encountered a fatal error.

11
ERROR INTERNAL SOLVER FAILURE

The solver encountered an internal fatal error.

12
SOLVE PROCESSING SKIPPED

The entire solve step has been skipped. This happens
if execution errors were encountered and the GAMS
parameter ExecErr has been set to a nonzero value or
the property MaxExecError has a nonzero value.

13
ERROR SYSTEM FAILURE

This indicates a completely unknown or unexpected
error condition.

Note that the solver status is stored in the model attribute solveStat. For details on model attributes, see
section Model Attributes. Observe that there are compile-time constants that are related to this model
attribute.

4.38.6.2 Solver Report

The next section in the listing file is the part of the solve summary that is particular to the solver program
that has been used. This section normally begins with a message identifying the solver and its authors:
MINOS and QUADMINOS was used in the example here. There will also be diagnostic messages in
plain language if anything unusual was detected and specific performance details, some of them probably
technical. The solver manual of the respective solver will help explain these. In case of serious trouble,
the GAMS listing file will contain additional messages printed by the solver. This may help identify the
cause of the difficulty. If the solver messages do not help, a perusal of the solver documentation or help
from a more experienced user is recommended. The solver report from our Illustrative Model follows.

GAMS/MINOS

M I N O S 5.6 (Nov 2014)

GAMS/MINOS 5.6, Large Scale Nonlinear Solver

B. A. Murtagh, University of New South Wales

P. E. Gill, University of California at San Diego,

W. Murray, M. A. Saunders, and M. H. Wright,

Systems Optimization Laboratory, Stanford University

Work space allocated -- 0.77 Mb

EXIT - Optimal Solution found, objective: 2.899038

Note that the line Work space allocated -- 0.77 MB provides the amount of memory used by the
solver for the problem. The solver estimates the amount of memory it will need to solve the problem. If
this amount is not available on the machine used, GAMS will return a message saying that not enough
memory was allocated. In addition, GAMS will return the maximum amount of memory available on the
machine. The user may direct the solver to use less memory with the model attribute .workspace:

mymodel.workspace = x;

Here mymodel is the name of the model being solved as specified by the model statement and x is the
amount of memory in Megabytes. Note that the solver will attempt to solve the problem with x MB of
memory. However, it is not guaranteed to succeed since the problem may require more memory.

Note that more information for a successful run may be obtained using the option sysout. As usual, the
respective option statement should be placed before the solve statement.

1004 User's Guide

4.38.6.3 The Solution Listing

The solution listing is a row-by-row then column-by-column listing of the solutions returned to GAMS by
the solver program. Each individual equation and variable is listed with four pieces of information. The
solution listing may be suppressed with the option solPrint:

option solprint = off ;

This option statement should be placed before the solve statement. The solution listing generated from
our Illustrative Model is shown below.

LOWER LEVEL UPPER MARGINAL

---- EQU fsum 1.0000 1.0000 1.0000 -13.5288

---- EQU dmean 10.0000 10.0000 10.0000 1.9327

---- EQU dvar . . . -1.0000

fsum fractions must add to 1.0

dmean definition of mean return on portfolio

dvar definition of variance

---- VAR x fraction of portfolio invested in asset i

LOWER LEVEL UPPER MARGINAL

hardware . 0.3029 +INF .

software . 0.0865 +INF 6.217249E-15

show-biz . 0.5048 +INF .

t-bills . 0.1058 +INF EPS

LOWER LEVEL UPPER MARGINAL

---- VAR variance -INF 2.8990 +INF .

variance variance of portfolio

The order of the equations and variables is the same as in the symbol listing map.

The four columns associated with each entry correspond to the equation and variable attributes and have
the following meaning:

LOWER lower bound (.lo)

LEVEL level value (.l)

UPPER upper bound (.up)

MARGINAL marginal (.m)

For variables, the values in the LOWER and UPPER columns refer to the lower and upper bounds. For
equations, they are obtained from the (constant) right-hand side value and from the relational type
of the equation. For details see section Variable Attributes and Equation Attributes. Note that in-
stead of level values, slack values may be shown in equations. For more information, see section
Customizing the Output File below.

4.38 GAMS Output 1005

Note

The LEVEL and MARGINAL values have been determined by the solver and the values shown are used
to update the GAMS values. In the list they are shown with fixed precision, but the values are
returned to GAMS with full machine accuracy. The single dots '.' on the list represent zeros.

EPS is the GAMS extended value used for a stored zero. It is common to see a marginal value given as
EPS, since GAMS uses the convention that marginals are necessarily zero for basic variables and typically
non-zero for other variables.

Note

EPS is used to indicate non-basic variables whose marginal values are at or close to zero, and for
nonlinear problems to indicate superbasic variables whose marginals are at or close to zero. A
superbasic variable is one between its bounds at the final point but not in the basis.

Note that in the Glossary there are brief explanations of technical terms that were used in this section.

For models that are not solved to optimality or for models types without an objective, some constraints
may additionally be marked with certain flags. The list of these flags and their description is given in the
following table.

Shorthand Symbol Description

INFES The row or column is infeasible. This mark is made for any entry where the
level value is not between the upper and lower bounds.

NOPT The row or column is non-optimal. This mark is made for any non-basic
entries for which the marginal sign is incorrect, or superbasic ones for which
the marginal value is too large.

UNBND The row or column can increase without limit (e.g. in an unbounded ray) or
has an excessively large magnitude.

REDEF The equation type has been ignored or redefined for this solution point, e.g.
because this is an MCP

REDIR The equation has been flipped (i.e. negated or reoriented) in the model
statement: useful for MCP and EMP

DEPND The row or column is dependent on other rows or columns in the system: see
CNS

4.38.6.4 Report Summary

The final section of the solution report is the report summary, marked with four asterisks (as are all
important components of the output) followed by the title REPORT SUMMARY. It shows the count of rows or
columns that have been marked INFES, NOPT or UNBND in the solution listing. For model types like MCP
where REDEFs and REDIRs are possible, the counts for these markers may also be shown. The sum of
infeasibilities will be shown if the reported solution is infeasible. The domain error count is only shown if
the problem is nonlinear. If there are variables or equations where the levels were projected to one of the
bounds, the count of those is also shown here.

A Quadratic Programming Model for Portfolio Analysis ALAN,SEQ=124a)

Solution Report SOLVE portfolio Using NLP From line 50

**** REPORT SUMMARY : 0 NONOPT

1006 User's Guide

0 INFEASIBLE

0 UNBOUNDED

0 ERRORS

42 PROJECTED

4.38.7 Post-Solution Output

The final part of the listing file is the post-solution output. It contains Final Execution Summary and
the File Summary.

4.38.7.1 Final Execution Summary

The final execution summary is marked with the title Execution and contains the output from display
statements that were placed after the solve statement in the model, allowing simple reporting. In addition,
it shows the final exection time and memory use. The respective ouput from our Illustrive Model follows.

A Quadratic Programming Model for Portfolio Analysis ALAN,SEQ=124a)

E x e c u t i o n

---- 51 VARIABLE x.L fraction of portfolio invested in asset i

hardware 0.303, software 0.087, show-biz 0.505, t-bills 0.106

---- 51 VARIABLE variance.L = 2.899 variance of portfolio

EXECUTION TIME = 0.001 SECONDS 3 MB

For further information on this output and ways to customize it, see chapter The Display Statement.

4.38.7.2 File Summary

The file summary is the very last part of the output file. If output has been written to put files, there
will be a REPORT FILE SUMMARY that is marked with four asterisks. The report will list the put files with
their internal names and the full paths of their external names.

All listing files have a FILE SUMMARY that is marked with four asterisks and that reports the names of the
input and output (listing) files.

**** FILE SUMMARY

Input C:\PROGRAM FILES\\gamsIDE\ALAN.GMS

Output C:\PROGRAM FILES\\gamsIDE\ALAN.LST

If work files (save or restart) have been used, they will be listed in the file summary as well.

4.38 GAMS Output 1007

4.38.8 Error Reporting

All comments and descriptions about errors have been collected in this section for easy reference when
disaster strikes.

Effective error detection and recovery are important parts of any modeling system. GAMS is designed
around the assumption that the error state is the normal state of modeling. Experience shows that most
compilations during the early stages of development will produce errors. Not to worry! The computer is
much better at checking details than the human mind and should be able to provide positive feedback
and suggestions about how to correct errors or avoid ambiguities. Developing a model is like writing a
paper or an essay; many drafts and rewrites are required until the arguments are presented in the most
effective way and meet all the requirements of proper English. GAMS acts like a personal assistant with
knowledge of mathematical modeling and of the syntactic and semantic details of the language.

Errors are detected at various stages in the modeling process. Most of them are caught at the compilation
stage, which behaves like the proofreading stage of the modeling process. Once a problem has passed
through the rigorous test of this stage, the error rate drops to almost zero. Most of the execution runs,
which are much more expensive than compilation, proceed without difficulties because GAMS knows about
modeling and has anticipated problems. Many of the typical errors made with conventional programming
languages are associated with concepts that do not exist in GAMS. Those error sources – like address
calculations, storage assignment, subroutine linkages, input-output and flow control – create problems at
execution time, are difficult to locate, often lead to long and frustrating searches, and leave the computer
user intimidated. GAMS takes a radically different approach. Errors are spotted as early as possible, they
are reported in a way that is comprehensible to the user, including clear suggestions for how to correct
the problem and a presentation of the source of the error in terms of the problem of the user.

Note

All errors are marked with four asterisks '∗∗∗∗' at the beginning of a line in the output listing.

As soon as an error is detected, processing will be stopped at the next convenient opportunity. A model
will never be solved after an error has been detected. The only remedy is to fix the error and repeat the
run.

Errors are grouped into the three phases of GAMS modeling: compilation, execution and model generation
(which includes the solution that follows). In the following subsections we will discuss the errors that may
occur in each of these phases.

4.38.8.1 Compilation Errors

Compilation errors are discussed in some detail in the tutorial A GAMS Tutorial by Richard E. Rosenthal
and the tutorial Fixing Compilation Errors. Note that there is some overlap between the material in the
tutorials and this section. Several hundred different types of errors can be detected during compilation
and can often be traced back to just one specific symbol in the GAMS input. Most of the errors are
caused by simple mistakes: forgetting to declare an identifier, putting indices in the wrong order, leaving
out a necessary semicolon or misspelling a label. For errors that are not caused by such simple mistakes,
the explanatory error message text will help diagnose the problem and correct it.

Note

When a compilation error is discovered, a dollar symbol and error number are printed below the
offending symbol (usually to the right) on a separate line that begins with four asterisks.

If more than one error is encountered on a line (possibly because the first error caused a series of other
spurious errors) the dollar signs may be suppressed and error number squeezed. GAMS will not list more
than 10 errors on any one line.

1008 User's Guide

Note

A list of all error numbers encountered and a description of the probable cause of each error is
printed at the end of the echo print of the program. The error messages are self-explanatory. For
further information on compilation errors and advice on how to resolve them, see the tutorial
Fixing Compilation Errors.

It is worth noting that it is easy to produce a model that does not do what you want it to do, but does
not contain errors in the sense that the term is being used in this section. The best precaution is to check
your work carefully and build in as many automatic consistency checks as possible.

Note that if a GAMS reserved word is accidentally used for the name of a label or an identifier it
is impossible to provide helpful error messages for technical reasons. This may cause confusion. We
recommend users to familiarize themselves with the reserved words.

Attention

In some cases an error may not be detected until the statement following its occurrence, where it
may produce a number of error conditions whose explanations seem quite silly. We recommend to
always check carefully for the cause of the first error in such a group. If nothing obvious is wrong,
look at the previous statement and particularly watch out for missing semicolons.

The following example illustrates the general reporting format for compilation errors.

1 Set c crops / wheat, corn, wheat, longaname /

**** $172

2 Parameter price(c) / wheat 200, cotton 700 /

**** $170

3

Error Messages

170 Domain violation for element

172 Element is redefined

**** 2 ERROR(S) 0 WARNING(S)

..

**** USER ERROR(S) ENCOUNTERED

4.38.8.2 Compilation Time Errors

The reporting format for errors found while analyzing solve statements is more complicated than for
normal compilation errors, mainly because many things must be checked. All identifiers referenced must
be defined or assigned, the mathematics in the equations must match the model class, and so on. More
elaborate reporting is required to accurately describe any problems found. The solve statement is only
checked if the model has been found to be error free up to this point. This is not only because the check
is comparatively expensive, but also because many erroneous and confusing messages can be produced
while checking a solve in a program containing other errors.

4.38 GAMS Output 1009

Attention

Compiler error messages related to a solve statement are reported in two places and in two formats:

1. They are shown immediately after the solve statement with a short text including the name of
any offending identifier and the type of model involved. This will be sufficient in most cases.

2. A longer message with some hints appears with the other error messages at the end of the
compilation.

The example below illustrates the general reporting format for compiler errors associated with a solve
statement.

1 Variables x, y, z ;

2 Equations eq1 , eq2 ;

3

4 eq1.. x**2 - y =e= z ;

5 eq2.. min(x,y) =l= 20 ;

6

7 Model silly / all / ;

8 solve silly using lp maximizing z ;

**** $54,51,256

**** THE FOLLOWING LP ERRORS WERE DETECTED IN MODEL SILLY:

**** 54 IN EQUATION EQ1 .. ENDOG OPERANDS FOR **

**** 51 IN EQUATION EQ2 .. ENDOG ARGUMENT(S) IN FUNCTION

9

Error Messages

51 Endogenous function argument(s) not allowed in linear models

54 Endogenous operands for ** not allowed in linear models

256 Error(s) in analyzing solve statement. More detail appears

Below the solve statement above

**** 3 ERROR(S) 0 WARNING(S)

**** USER ERROR(S) ENCOUNTERED

4.38.8.3 Execution Errors

Execution time errors are usually caused by illegal arithmetic operations such as division by zero
or taking the log of a negative number. GAMS prints a message on the output file with the line
number of the offending statement and continues execution. A GAMS program should never abort
with an unintelligible message from the computer's operating system if an invalid operation is at-
tempted. GAMS has rigorously defined an extended algebra that contains all operations including illegal
ones. Note that the model [CRAZY] contains all non-standard operations and should be executed
to study for its exceptions. For advice on detecting and resolving execution errors, see the tutorial
Finding and Fixing Execution Errors and Performance Problems.

Recall that the GAMS arithmetic is defined over the closed interval [-INF,+INF] and contains the
extendedn range arithmetic values EPS (small but not zero), NA (not available) and UNDF (the result of
an illegal operation). The results of illegal operations are propagated through the entire system and can
be displayed with standard display statements. However, observe that, if errors have been previously
detected, a model cannot be solved and a work file cannot be saved.

1010 User's Guide

4.38.8.4 Solve Errors

The execution of a solve statement can trigger additional errors called matrix errors. They report on
problems encountered during transformation of the model into a format required by the solver. Problems
are most often caused by illegal or inconsistent bounds, or by an extended range value that is used as a
matrix coefficient. The example below shows the general format of these errors:

1 Variable x;

2 Equation eq1;

3

4 eq1.. x =l= 10 ;

5 x.lo = 10 ;

6 x.up = 5 ;

7 Model wrong /eq1/;

8 solve wrong using lp maximizing x ;

9

**** Matrix error - lower bound > upper bound

x (.LO, .L, .UP = 10, 0, 5)

...

**** SOLVE from line 8 ABORTED, EXECERROR = 1

...

**** USER ERROR(S) ENCOUNTERED

Some solve statements require the evaluation of nonlinear functions and the computation of derivatives.
Since these calculations are not carried out by GAMS but by other subsystems not under the direct
control of GAMS, errors associated with these calculations are reported in the solution report. Note that
by default the subsystems will interrupt the solution process if arithmetic exceptions are encountered.
This may be changed with the option domlim. They are then reported on the listing as shown in the
following example:

1 Variable x, y;

2 Equation one;

3

4 one.. y =e= sqrt(10/x);

5 x.l = 10;

6 x.lo = 0;

7

8 Model divide / all / ;

9 solve divide maximizing y using nlp;

S O L V E S U M M A R Y

MODEL divide OBJECTIVE y

TYPE NLP DIRECTION MAXIMIZE

SOLVER MINOS FROM LINE 9

**** SOLVER STATUS 5 Evaluation Interrupt

**** MODEL STATUS 7 Feasible Solution

**** OBJECTIVE VALUE 3.1622776602E+0149

RESOURCE USAGE, LIMIT 0.182 1000.000

ITERATION COUNT, LIMIT 0 2000000000

EVALUATION ERRORS 2 0

EXIT - Function evaluation error limit exceeded.

4.38 GAMS Output 1011

**** ERRORS/WARNINGS IN EQUATION one

2 error(s): div: FUNC SINGULAR: x/y, |y| <= 1e-150 (RETURNED 1E299)

**** REPORT SUMMARY : 1 NONOPT (NOPT)

0 INFEASIBLE

0 UNBOUNDED

1 ERRORS (****)

Note that the solver status returned with a value of 5, meaning that the solver has been interrupted
because more than domlim evaluation errors have been encountered. The type of evaluation error and the
equation causing the error are also reported.

In case the solver returns an intermediate feasible solution because of evaluation errors, the following solve
will still be attempted. The only fatal GAMS error that can be caused by a solver program, is the failure
to return any solution at all. If this happens all possible information is listed on the GAMS output file
and any solves that follow will not be attempted.

4.38.9 Customizing the Output File

This section reviews the most commonly used dollar control options, options, and command line parameters
to customize output in the listing file. Table 1 lists dollar control options, options, and
command line parameters that are used in the input file to control the amount of detail in the output
file produced by the GAMS compiler. Table 2 lists dollar control options and command line parameters
that can change the layout and appearance of the output. The first column of the two tables shows the
purpose of customizing the output that differs from the GAMS default behavior.

The output generated by display statements can also be customized. This topic is covered in section
Display Controls from chapter The Display Statement. See also the complete list of dollar control options
that affect the output format in section Dollar Control Options Affecting the Output Format.

Table 1: Customization of output to be included in the listing file

Customization Method Further Details

suppress the echo print $offlisting $onlisting restores the default behav-
ior. Any lines between $offlisting and
$onlisting will not appear in the echo
print.

suppress include files in the echo print $offinclude $oninclude restores the default behav-
ior.

activate the symbol reference map $onSymXRef Maps are most often turned on or off
at the beginning of the program and
left as initially set. $onSymXRef ac-
tivates the symbol reference map and
$offSymXRef restores the default be-
havior.

activate the symbol listing map $onSymList Maps are most often turned on or off at
the beginning of the program and left as
initially set. $onSymList activates the
symbol listing map and $offSymList re-
stores the default behavior.

activate the unique element listing $onUELList Maps are most often turned on or off at
the beginning of the program and left as
initially set. $onUELList activates the
unique element listing and $offUELList
restores the default behavior.

1012 User's Guide

Customization Method Further Details

activate the
unique element reference map

$onUELXRef Maps are most often turned on or off at
the beginning of the program and left
as initially set. $onUELXRef activates
the unique reference map $offUELXRef
restores the default behavior.

suppress or expand the equation listing
option limrow The statement option limrow = 0;

will suppress the equation listing; the
statement option limrow = n; will
expand it to n equations. The
statement must be placed before
The Solve Statement.

suppress or expand the column listing
option limcol The statement option limcol = 0;

will suppress the column listing; the
statement option limcol = n; will
expand it to n columns. The
statement must be placed before
The Solve Statement.

suppress the solution listing option solPrint The statement option solPrint =

off; will suppress the solution listing.
The statement must be placed before
The Solve Statement.

restrict output to just a few displays save restart feature With this strategy the listing file will
contain only the output generated
by the desired display statements.
This facilitates concentrating on a
narrow set of output while remaining
capable of generating a lot more
output. For details see section
Generating Concise Listing Files
in chapter
The Save and Restart Feature.

show slack variables in the
solution listing

option solslack The statement option solslack = 1;

causes the equation output in the so-
lution listing to show slack (.slack)
variable values instead of level (.l) val-
ues. The statement must be placed
before The Solve Statement.

Table 2: Customization that changes the output layout

Customization Method Further Details

change the default header
$title The directive $title causes every

page on the output to have the
header specified in text. The
header may be reset later by us-
ing another line starting with
$title . Currently, the text may
have up to 80 characters.

add a subheader $stitle The statement $stitle text

causes every page on the output
to have the subheader specified
in text. The header may be re-
set later by using another line
starting with $stitle. Currently,
the text may have up to 80 char-
acters.

4.39 GAMS Log 1013

Customization Method Further Details

start a new page in the
echo print

$eject

start a new page in LST file if
less than n lines are left

$lines The directive is $lines, where n

is the number of lines left on the
current page.

change width and length of a
page

command line parameters
PageWidth and PageSize

The general syntax is: gams

mymodel pw=n ps=m. Here n is
desired page width and the de-
sired page length is m. Note
that pw and ps are synonyms of
PageWidth and PageSize respec-
tively.

change the echo print to upper
case only

$onUpper The directive $offUpper re-
stores the default.

change lines in the echo print to
be double spaced

$double The directive $single restores the
default beahvior.

change the marker ∗∗∗∗ $stars

4.39 GAMS Log

4.39.1 Introduction

The GAMS log provides the log of a GAMS run including the GAMS job description, defined command
line parameters, license information, solver log, and GAMS compilation and execution output. Looking at
the log gives a brief idea about the success of a GAMS run and is usually a useful first step in debugging
a GAMS model. The detailed output from GAMS is displayed in the output file. Log output can be
obtained in the form of a text file (typically with .log extension) that is generated with each GAMS run
based on the command line parameters logOption and logFile. The GAMS log consists of three major
sections: header, compilation log, and execution log.

4.39.2 Header

The header of the GAMS log consists of information that is independent of the content of the executed
GAMS file. It contains the job description, parameter log, and license log.

4.39.2.1 Job Description

In this line, the name of the GAMS file being run along with a timestamp, the GAMS version and
operating system information is provided.

--- Job trnsport.gms Start 08/30/21 17:29:15 36.1.0 r2c0a44a WEX-WEI x86 64bit/MS Windows

1014 User's Guide

4.39.2.2 Parameter Log

The default parameters for the operating system and configuration are obtained via parameter file
(gmsprmNT.txt on Windows, gmsprmun.txt on Linux, gmsprmun.txt on macOS) and gamsconfig.yaml
files. The parameter log explicitly lists all additional parameters in the following lines. For example, input
displays the full path of the GAMS input file. In the example log provided below, the output file option
PageSize is set to 0. ScrDir is the full path to the scratch directory; SysDir is the full path to the systems
directory, logOption is defined that controls the location of the output log.

--- Applying:

C:\GAMS\36\gmsprmNT.txt

C:\Users\jsmith\Documents\GAMS\gamsconfig.yaml

--- GAMS Parameters defined

Input C:\test\trnsport.gms

PageSize 0

ScrDir C:\test\225a\

SysDir C:\GAMS\36\

LogOption 3

ErrMsg 1

ErrorLog 99

IDE 1

LstTitleLeftAligned 1

4.39.2.3 License Log

This section provides information about the license such as licensee, the organization, and the license
number is provided on the second line. The full path to the license file that is being read is provided on
the third line. The last line in the image shows the GAMS license type being used.

Licensee: John Smith G201001/0001CS-GEN

The ACME Corporation, USA DC0000

C:\Users\jsmith\Documents\GAMS\gamslice.txt

Other time limited license

4.39.2.4 Processor Information and GAMS version

This section provides information about the processor and GAMS version being used.

Processor information: 1 socket(s), 8 core(s), and 16 thread(s) available

GAMS 36.1.0 Copyright (C) 1987-2021 GAMS Development. All rights reserved

4.39.3 Compilation Log

A GAMS run consists of two phases: compilation and execution. The following lines provide details about
the compilation, memory usage, the time elapsed in compilation. The number in parentheses refers to the
line number in the echo print of the input file. In addition to the above-mentioned output, this part of
the log also contains information about the output such as as GDX files, the files included using $include,
and outputs of commands such as $call as shown in the following lines.

4.39 GAMS Log 1015

--- Starting compilation

--- clad.gms(27) 2 Mb

--- $echo File C:\test\includefilename.gms

--- clad.gms(30) 2 Mb

--- . includefilename.gms(1) 2 Mb

--- clad.gms(32) 2 Mb

--- call echo "hello!"

"hello!"

--- clad.gms(45) 3 Mb

--- GDXin=C:\test\claddat.gdx

--- GDX File ($gdxIn) C:\test\claddat.gdx

--- clad.gms(164) 3 Mb

4.39.4 Execution Output

The beginning of the execution phase of the GAMS run is clearly indicated in the GAMS log:

--- Starting execution: elapsed 0:00:00.010

In general, the execution log output indicates the progress of the GAMS job, including line numbers,
memory usage, elapsed time for the run, and time required for long-running statements. Several statements
also result in specific log output.

Output of GDX files generated using execute unload is shown in the log as follows.

--- GDX File (execute_unload) path\to\outputfile.gdx

The output for reference files generated is shown in the log as follows.

--- RefFile path\to\trnsport.ref

Similarly, the information about a file written using the Put writing facility is mentioned in the log as
follows.

--- Putfile results path\to\results.txt

The output of the program flow control features such as abort is shown as follows.

*** Error at line 61: Execution halted: abort$1 ’model not solved as expected’

If there are loops in the program, the log shows information about the current iteration as follows.

--- LOOPS scen = s1

Similar to the output of call command shown during compilation phase, the output for execute command
is shown in the execution phase. The following line of GAMS code

execute "echo output of execute command";

will result in the following output in the log.

--- trnsport.gms(67) 4 Mb

output of execute command

For each solve statement, there will also be a solver log embedded in the execution output (see below for
details regarding the solver log). After a solver log, the execution output continues. It ends with the
status of the GAMS Job (here ∗∗∗ Status: Normal completion), a timestamp and the total run time
of the GAMS job.

--- Executing after solve: elapsed 0:00:02.892

--- trnsport.gms(66) 4 Mb

*** Status: Normal completion

--- Job trnsport.gms Stop 08/30/21 17:29:18 elapsed 0:00:02.892

1016 User's Guide

4.39.4.1 Solver Log

One of the most important GAMS statements is the solve statement: a solve results in a substantial
amount of log output.

The first line in the execution output is about model generation. Model generation can take a long time
in which case the log also shows progress and equations that take long to generate.

--- Generating LP model transport

--- trnsport.gms(64) 4 Mb

--- 6 rows 7 columns 19 non-zeroes

This is followed by some statistics about the range of values seen in the model:

--- Range statistics (absolute non-zero finite values)

--- RHS [min, max] : [2.750E+02, 6.000E+02] - Zero values observed as well

--- Bound [min, max] : [NA, NA] - Zero values observed as well

--- Matrix [min, max] : [1.260E-01, 1.000E+00]

After model generation, the solver name and solveLink are displayed.

--- Executing CPLEX (Solvelink=2): elapsed 0:00:02.066

The log output following this line is specific to the solver and will usually display the objective function
value.

Optimal solution found

Objective: 153.675000

4.40 The GAMS Call and Command Line Parameters

There are multiple ways to trigger the run of a GAMS model: Running a model via F9 from GAMS Studio,
executing GAMSJob.Run method in the object oriented APIs or calling the gams executable from a command
line. In all cases the same GAMS engine runs the user's model. Several options are available to customize
the GAMS run. Depending on the particular way GAMS is triggered these options are supplied in different
ways. For example, in Studio via the parameter editor in the toolbar, in the object oriented API through
the GAMSOptions class, and from the command line via command line arguments. In order to avoid
confusion with the often used word option we refer to these entities as command line parameters and
demonstrate their use from the command line. Although details will vary with the type of computer and
operating system used, the general operating principles are the same on all machines.

In this chapter we will introduce how GAMS is called from the command line and how param-
eters may be specified on the command line or in other ways. In addition, we will discuss
user-defined command line parameters, compile-time variables and compile-time constants, which are
GAMS specialties, and environment variables in GAMS. Moreover, most of the chapter is dedicated
to the detailed description of all GAMS options (i.e. options available via command line parameters,
option statement, and model attribute.

In almost all cases such a run continues from start to end without any user interaction. A GAMS run
usually consists of two phases: the compilation and execution phase.

4.40 The GAMS Call and Command Line Parameters 1017

4.40.1 The Generic GAMS Call

The simplest way to start GAMS from a command shell is to enter the following command from the
system prompt:

> gams myfile

GAMS will compile and execute the GAMS statements in the file myfile. If a file with this name cannot
be found, GAMS will look for a file with the extended name myfile.gms. During the run GAMS will
print a log to the console and create a listing file that is written by default to the file myfile.lst. For
example, the following statements retrieves and runs the model [TRNSPORT] from the GAMS model
library with the responds from the GAMS system:

> gamslib trnsport

Copy ASCII : trnsport.gms

> gams trnsport

--- Job trnsport Start 06/21/17 06:23:45 24.8.4 r60966 WEX-WEI x86 64bit/MS Windows

GAMS 24.8.4 Copyright (C) 1987-2017 GAMS Development. All rights reserved

Licensee: GAMS Development Corporation, Washington, DC G871201/0000CA-ANY

Free Demo, 202-342-0180, sales@gams.com, www.gams.com DC0000

--- Starting compilation

--- trnsport.gms(69) 3 Mb

--- Starting execution: elapsed 0:00:00.010

--- trnsport.gms(45) 4 Mb

--- Generating LP model transport

--- trnsport.gms(66) 4 Mb

--- 6 rows 7 columns 19 non-zeroes

--- Executing CBC: elapsed 0:00:00.018

COIN-OR CBC 24.8.4 r60966 Released Apr 10, 2017 WEI x86 64bit/MS Windows

COIN-OR Branch and Cut (CBC Library 2.9)

written by J. Forrest

Calling CBC main solution routine...

0 Obj 0 Primal inf 900 (3)

4 Obj 153.675

Optimal - objective value 153.675

Optimal objective 153.675 - 4 iterations time 0.052

Solved to optimality.

--- Restarting execution

--- trnsport.gms(66) 2 Mb

--- Reading solution for model transport

--- trnsport.gms(68) 3 Mb

*** Status: Normal completion

--- Job trnsport.gms Stop 06/21/17 06:23:46 elapsed 0:00:01.249

Note

GAMS can also run source files that have been compressed with Posix utility gzip or have been
encrypted with tool ENDECRYPT, for example

> gamslib trnsport

> gzip trnsport.gms

> gams trnsport.gms.gz

1018 User's Guide

results in

• retrieval of the [TRNSPORT] model from the GAMS Model Library

• compression the source file trnsport.gms

• GAMS running the compressed file trnsport.gms.gz.

Observe that some GAMS options may be specified on the command line as part of the GAMS call. In
addition, command line parameters may be set by specifying a secondary customization parameter file
and by modifying the GAMS system parameter file. As command line parameters may be specified in
several different ways, there are rules of precedence in case of conflicting instructions. We will discuss
these topics in the next four subsections.

4.40.1.1 Specifying Options Through the Command Line

GAMS permits certain options to be passed through the command line. The syntax of the simple GAMS
call is extended as follows:

> gams myfile key1=value1 key2=value2 ...

Here key1 is the name of the option that is being set on the command line and value1 is the value to
which the option is set. Depending on the option, value1 could be a character string, an integer number
or a real number. Note that the options that may be set on the command line are called GAMS command
line parameters.

For example, consider the following commands to run the transportation model [TRNSPORT]:

> gams trnsport o myrun.lst logOption 2

> gams trnsport -o myrun.lst -logOption 2

> gams trnsport /o myrun.lst /logOption 2

> gams trnsport o=myrun.lst logOption=2

> gams trnsport -o=myrun.lst -logOption=2

> gams trnsport /o=myrun.lst /logOption=2

All six commands above are equivalent: each directs the output listing to the file myrun.lst. Note that o
is the synonym of the command line parameter output and it is set to the value myrun.lst. In addition,
the parameter LogOption is set to 2, which has the effect that the log output is redirected to the file
trnsport.log. Please also note that the option name can be specified without consideration of the
casing of the option. Hence logoption works as well as LogOption or any other casing. The way options
are specified can vary with each option. So a mixed alternative, e.g. gams trnsport -o=myrun.lst

/logoption 3 is valid too.

In addition to predefined command line parameters, GAMS also allows user-defined command
line parameters which work in tandem with compile-time variables. User-defined parame-
ters, also called double dash parameters, and compile-time variables are introduced in section
Double Dash Parameters, Compile-Time Variables and Environment Variables below.

4.40 The GAMS Call and Command Line Parameters 1019

Option Values with Spaces

One may want to set string valued options including double dash parameters to an empty string or a
string containing spaces, even trailing or leading spaces. All this requires the use of quotes. Quotes may be
handled differently, depending on the operating system. Users should be attentive when using such string
values. This is also important if GAMS is called from within a GAMS program with $call [=]gams ... and
execute [=]gams ... because platform independence might be violated.

A platform independent way to set a string value with spaces is to use the variant that separates the
option name and option value by a space, e.g. opt "". The variant without space, e.g. opt="" might
cause issues on some Unix shells. Consider the following example where spacy.gms contains only the
following line to write the content of the double dash parameter dd to the log:

$log value of dd: >%dd%<

Here is a sequence of GAMS runs with a variety of string values

> gams spacy --dd normal

> gams spacy --dd "normal"

> gams spacy --dd ""

> gams spacy --dd " leading"

> gams spacy --dd "trailing "

> gams spacy --dd " leading and trailing "

> gams spacy --dd " "

that result on all platforms in the following log output (only relevant part):

value of dd: >normal<

value of dd: >normal<

value of dd: ><

value of dd: > leading<

value of dd: >trailing <

value of dd: > leading and trailing <

value of dd: > <

An even better way to pass arguments to a GAMS run without the system shell interfering with
interpretation of some characters is described in the next section.

Attention

GAMS options specifying file names may also contain leading and trailing blanks. Please be
aware that while leading blanks in a file name are significant on all platforms, trailing blanks
are only significant on some platforms (e.g. Linux). Hence output "mymodel.lst " and output

"mymodel.lst" refer to the same file on Windows and to different files on Linux.

1020 User's Guide

4.40.1.2 Specifying Options Through a Secondary Parameter File

Command line parameters may also be set by specifying a secondary customization parameter file. For
example, we will create a file with the following two lines, call it moreOptions.txt and save it in the
current working directory.

limCol=0

limRow=0

Note that setting limcol and limrow to zero will suppress the column listing and equation listing respec-
tively. Moreover, note that we can specify the option in different way in this secondary parameter file,
even have multiple options on one line. In the next step we will use the following command to run the
transportation model [TRNSPORT]:

> gams trnsport parmFile=moreOptions.txt

Note that this call has the same effect as the following specification:

> gams trnsport limCol=0 limRow=0

Observe that command line parameter include files are particularly useful if modelers wish to use the
same set of command line parameters repeatedly.

If options are listed multiple times on the command line, the last specification sets the option. This is
important in particular in combination with a secondary parameter file. In the following example, GAMS
will operate with limRow=0:

> gams trnsport limRow=10 parmFile=moreOptions.txt

while with the order reversed, GAMS operates with limrow=10:

> gams trnsport parmFile=moreOptions.txt limRow=10

4.40.1.3 Specifying Options Through the GAMS System Parameter File

A third way to specify command line parameters is by modifying the GAMS system parameter file, which
is part of the GAMS system. It has different names depending on the operating system: gmsprmnt.txt
for Windows and gmsprmun.txt for UNIX/Linux and macOS. The parameter file may be modified in the
following way:

**

* GAMS 2.50 default Unix parameter file *

* Gams Development Corp. *

* Date : 4 May, 1998 *

**

* entries required by CMEX, put in by the gams script

* SYSDIR

* SCRDIR

* SCRIPTNEXT

* INPUT

PageWidth 95

ParmFile "c:\some\central\location\moreOptions.txt"

Note that the last two lines were added to the standard GAMS system parameter file. As a consequence,
each GAMS run will have a print width of 95 columns on the pages of the listing file. In addition, the
command line parameters specified in the file moreOptions.txt will now apply to each GAMS run.

4.40 The GAMS Call and Command Line Parameters 1021

4.40.1.4 The GAMS Configuration in YAML Format

The GAMS configuration file gamsconfig.yaml written in the YAML format is easy to process by
humans and computers. The GAMS Configuration Editor can be used to view and edit the GAMS
configuration file but any other text editor can be used as well. This file has three configuration
sections: command line parameters (commandLineParameters), operating system environment variables
(environmentVariables), and external solver configuration (solverConfig). The latter is only relevant
if you need to make a solver available to GAMS that is not shipped with the GAMS distribution. The
COIN-OR GAMSlinks project has solver (links), e.g. Couenne, that could be added this way.

The first two sections are most easily described by an example:

commandLineParameters:

- intVarUp:

value: 1

- eolCom:

value: ’//’

maxVersion: 31

- eolCom:

value: ’#’

minVersion: 32

environmentVariables:

- GDXCOMPRESS:

value: 1

maxVersion: 31

- GDXCOMPRESS:

value: 0

minVersion: 32

- PATH:

value: /my/path/to/R/bin:/my/path/to/R/site-bin

minVersion: 31.1.0

maxVersion: 31.1.0

pathVariable: True

In this example, the gamsconfig.yaml initializes some command line parameters and some environment
variables. It initializes intVarUp unconditionally to 1. It also sets eolCom to the character sequence // for
GAMS version 31 and earlier, while it uses the character # for GAMS version 32 and later. The keywords
minVersion and maxVersion allow to have different entries for the same command line parameter for
different versions. Also the file gamsconfig.yaml allows the repetition of entries. Hence, when GAMS
runs it will filter all entries with appropriate minVersion and maxVersion and applies the setting of
entries in sequence, so the last entry wins. Similarly, GAMS sets the environment variables GDXCOMPRESS
to 0 or 1 depending on the actual version of GAMS. The last entry to set the PATH environment variable
will be only applied for the GAMS version 31.1.0. Moreover, the indicator pathVariable set to True will
result in prefixing the environment variable PATH with /my/path/to/R/bin:/my/path/to/R/site-bin.

The YAML syntax for the gamsconfig.yaml file is straightforward. Each section starts with a fixed name
(commandLineParameters or environmentVariables) and is followed by a list of entries. Each entry
starts with - and the name of the command line parameter or the name of the environment variable followed
by a colon :. The next lines start with a keyword (value, minVersion, maxVersion and for environment
variables also pathVariable) followed by a colon : and a value. The syntax of YAML files is very simple
but it is crucial to use a consistent alignment. So all entries of a section must be perfectly aligned. Please
be careful when mixing spaces and the tab character. If GAMS complains during the processing of a
gamsconfig.yaml file with e.g. System problems in yaml parser parse: mapping values are not

allowed in this context most likely your alignment is off as in the following erroneous example:

https://en.wikipedia.org/wiki/YAML
https://github.com/coin-or/GAMSlinks
https://github.com/coin-or/GAMSlinks

1022 User's Guide

commandLineParameters:

- eolCom:

value: ’//’

maxVersion: 31

The lines with value and maxVersion need to start in the same column. There are plenty of online syntax
checkers for YAML files. Use your favorite search engine and search for yaml validator (check the
popular YAML validator) and copy and paste your problematic gamsconfig.yaml to get more insight
into the YAML syntax problem. Moreover, the gamsconfig.yaml file has some required fields and some
requirements for the value of some keys. In fact there is a schema file that validates that a syntactically
correct gamsconfig.yaml fulfills the GAMS schema for configuration files. The schema file is part of the
distribution and can be found in the system directory (gamsconfig schema.json). One can validate a
gamsconfig.yaml against this schema via a Python program (you might need to install additional Python
packages jsonschema and ruamel.yaml):

import jsonschema

from ruamel.yaml import YAML

import json

with open(’gamsconfig_schema.json’) as f:

schema = json.load(f)

yaml = YAML(typ="safe")

with open(’gamsconfig.yaml’) as f:

config = yaml.load(f)

print(jsonschema.validate(instance=config, schema=schema))

Besides the required fields like value the schema also imposes restrictions on some value types (e.g. True
and False for pathVariable and a proper release number for minVersion and maxVersion). The form
of the release number can be just the major release (e.g. 31), the major and minor release number (e.g.
31.1) or the full detailed release number, e.g. 31.1.0. So if maxVersion is set to e.g. 31 then all releases
of 31 fulfill this version requirement.

Some parts of the GAMS system react on environment variables, e.g. the environment variable
GMSPYTHONLIB decides about the Python library and installation used for embedded Python code. At
the start of a GAMS run environment variables are set to the values given in the gamsconfig.yaml file.
This is a convenient way to manage GAMS-related environment variables without utilizing OS-specific
ways to set environment variables.

GAMS will process a sequence of gamsconfig.yaml files. It starts with the file in the GAMS system
directory and then searches through some system-wide and user-specific standard locations.

Note

With GAMS 32 new defaults for several options were introduced. We have collected these options
and their old or legacy default values in the file gamsLegacyConfig.yaml located in the GAMS
system directory. Copy this file as gamsconfig.yaml to a location searched by GAMS to continue to
work with the legacy defaults. The minVersion keyword in this file indicates when the new default
became active.

https://jsonformatter.org/yaml-validator

4.40 The GAMS Call and Command Line Parameters 1023

Adding Solvers via gamsconfig.yaml

The third section in the GAMS configuration file gamsconfig.yaml allows to make a solver not shipped
with GAMS available to the GAMS system. For that, an interface between an instantiation of a GAMS
model and a solver needs to be implemented by use of libraries GMO and GEV. The COIN-OR GAMSlinks

project provides examples of such solver interfaces. For the remainder of this section assume that we
want to introduce a new version of the MINLP/MIQCP solver SHOT. GAMS knows about available solvers
from the sub-system configuration file gmscmpNT.txt (gmscmpun.txt for non-Windows platforms). Here
is a section from this file for the MINLP/MIQCP solver SHOT on Windows:
SHOT 1001 5 000102030405 1 0 2 MINLP MIQCP
gmsgennt.cmd
gmsgennx.exe
shtcclib64.dll sht 1 1

The gamsconfig.yaml file provides the same information in a more descriptive way:

solverConfig:

- SHOT2:

minVersion: 33

fileType: 1001

dictType: 5

licCodes: 000102030405

defName: optshot.def

scriptName: gmsgennt.cmd

executableName: gmsgennx.exe

library:

libName: D:\Users\janeDoe\Downloads\gamslink\GamsShot-20.dll

auditCode: sht

solverInterfaceType: 1

threadSafeIndic: True

modelTypes:

- MINLP

- MIQCP

The new solver will be called SHOT2 and has almost the identical information as the solver SHOT that
comes with GAMS. We could also use the name SHOT again. This would hide the original solver SHOT and
use the one described by gamsconfig.yaml. In addition to the solver information, this section allows the
keywords min/maxVersion that instructs whether to include the solver depending on the GAMS version.

The fileType (line 1 second item in the section of gmscmpNT.txt) determines the type of the scratch files
that contain the model instance. The one-digit determines binary (1) or text (0) format of the scratch
files. The ten-digit determines whether GAMS puts the initial marginal information into the scratch
files (1 for writing, 0 for not writing). The scratch file with the constraint matrix is stored column wise,
the hundred-digit instructs GAMS to write (if at 1) the row count per column, so the solver can layout
memory in advance for storing the constraint matrix. With GAMS' current libraries gmo and gev this
information is not used and hence the hundred-digit should be at 0. The thousand-digit is about scaling.
A non-zero value instructs GAMS to write the information stored in the .scale/.prior/.stage variable
and equation attributes into the scratch files. With a value of 1 this is only done if scaleOpt/priorOpt
are on. With a value of 2 this information is written independently of scaleOpt/priorOpt. With a value
of 3 for models with variable and matching information (e.g. MCP) the reported marginals will be scaled
by GAMS. The ten thousand-digit is always 0 and the hundred thousand-digit (if set to 1) instructs
GAMS to write the variable/equation matching information to the scratch files for models that need this
information (e.g. MCP). The leading zeros of the value for key fileType should be omitted.

The dictType (line 1 third item in the section of gmscmpNT.txt) decides about the type of the dictionary
scratch file that contains the mapping information between the GAMS names and the variable and
equation indexes seen by the solver. For example, this helps the solver to form good variable and equation
names for error messages. Four values are allowed:

apis/expert-level/gmoqdrep.html
apis/expert-level/gevqdrep.html
https://github.com/coin-or/GAMSlinks
https://github.com/coin-or/GAMSlinks

1024 User's Guide

• 0: no dictionary information

• 5: dictionary with all labels that are used in the model instance

• 15: dictionary with all labels that are used in GAMS program

• 25: dictionary with all labels that are used in GAMS model plus an extra GDX file with the entire
GAMS database (similar to execute unload "everything"; prior to the solve statement)

The licCode (line 1 fourth item in the section of gmscmpNT.txt) gives a guess about what license codes
are required to run the solver. This is not the actual license information but allows other programs like
e.g. ”GAMS Studio” to list the solvers available with a particular license. In most cases solvers that are
added this way should list the GAMS BASE license codes ”000102030405”.

The defName (line 2 second item in the section of gmscmpNT.txt) points to a file that contains all the
solver options for the solver. This key does not need to be provided (same in gmscmpNT.txt) if the
defName is opt + solvername + .def and the file resides in the GAMS system directory. Since we use the
name SHOT2 GAMS would expect the solver options to be in optshot2.def. If there were an optshot.def

in the GAMS system directory for the original SHOT, we could reuse that file and list optshot.def for the
defName key. The defName provided here is used by other programs like ”GAMS Studio” that can assist
with building solver options files.

The next three items on line 1 in the section of gmscmpNT.txt are for internal purposes and not discussed
here in detail. They can be set via gamsconfig.yaml via the keys defaultOkFlag and hiddenFlag with
values True or False.

GAMS has different ways of calling a solver controlled by the solveLink option. The scriptName (line 2 in
the section of gmscmpNT.txt) contains the name of the script that calls the solver (in case of solveLink=0
(chainScript) or 1 (callScript)). For solvers that are capable of solveLink=5 (loadLibrary) a generic
script gmsgennt.cmd (or gmsgenus.run) can be used. The executableName (line 3 in the section of
gmscmpNT.txt) provides the name of the solver executable. Again for solvers capable of solveLink=5
(loadLibrary) a generic executable gmsgennx.exe (or gmsgenux.out) can be used.

The section library is necessary only for solvers capable of solveLink=5 (loadLibrary). The libName

contains the name of the solver library file (line 3 first item in the section of gmscmpNT.txt). The
auditCode (line 3 second item in the section of gmscmpNT.txt) is the prefix of the functions in the
solver library (e.g. shtCallSolver). The solverInterfaceType (line 3 third item in the section of
gmscmpNT.txt) defines the API implemented by the solver library and loaded by GAMS. Currently,
there are only two types: 1 (xyzReadyApi and xyzCallSolver) and 2 (xyzCallSolver only). The
threadSafeIndic (line 3 third item in the section of gmscmpNT.txt) indicates whether the solver library
is thread-safe and can be used in combination with solveLink=6 (aSyncThreads).

The final section modelTypes is about the model types the solver can handle. This information can be
found in line 1 after item 7 in gmscmpNT.txt.

4.40.1.5 Order of Precedence for Options

The order of precedence for command line parameters including customization specifications in the GAMS
IDE is as follows:

1. Command line parameters that are specified on the command line or in the Studio/IDE command
line field.

2. Command line specifications in the IDE options window Execute (this is reached through
File|Options|Execute).

4.40 The GAMS Call and Command Line Parameters 1025

3. Command line specifications in the specific IDE dialogs, e.g. Output (this is reached through
File|Options|...).

4. Entries in the GAMS configuration files gamsconfig.yaml.

5. Entries in the GAMS system parameter file.

Many command line parameters initialize the default for a GAMS Option also accessible inside the
GAMS program. For example, the system default for option MIQCP is SBB. If the command line parameter
MIQCP has been set, e.g. to DICOPT, DICOPT will be new default MIQCP solver. Inside the GAMS program,
one can reset the MIQCP via option MIQCP=SHOT; but setting it back to the default will result in DICOPT

(not SBB) being the default solver: option MIQCP=default;.

4.40.2 Double Dash Parameters, Compile-Time Variables and Environment
Variables

In this section we will cover double-dash parameters that enable users to set values for specific variables
on the command line. These variables are substituted with their respective specified values at compile
time. We will also discuss how operating system specific environment variables may be accessed and
modified from a GAMS program.

4.40.2.1 Double Dash Parameters and Compile-Time Variables: A Simple Example

We will introduce double dash parameters and compile-time variables using as an example the well-known
transportation model [TRNSPORT]. Assume we wish to explore how the solution changes if the
demand assumes various values. To model this, we will introduce the compile-time variable DMULT, a
multiplier for the demand b:

$set DMULT 1

...

demand(j) .. sum(i, x(i,j)) =g= %DMULT% * b(j) ;

Note that DMULT is defined with the dollar control option $set and its value is set to 1, which corresponds
to the base line. Observe that the compile-time variable is referenced in the equation with the %...%

notation. %DMULT% will be replaced at compile time by its value, in this case 1. We are now in the
position to run the program multiple times by just changing the value of DMULT in the first line, which
will automatically change the multiplier in the equation to the respective value.

GAMS offers a more convenient way for setting a compile-time variable like DMULT to a variety of values:

$if not set DMULT $set DMULT 1

...

demand(j) .. sum(i, x(i,j)) =g= %DMULT% * b(j) ;

Note that we set a default value for DMULT using conditional compilation. We may change this default on
the command line when calling GAMS by specifying DMULT as a double dash parameter as follows:

> gams trnsport.gms --DMULT=0.9

Observe that with the specification --DMULT=0.9 the compile-time variable DMULT is set and therefore the
default does not apply. Thus the double dash parameter facilitates changing the value of a compile-time
variable directly on the command line as part of the GAMS call while the respective GAMS file remains
unchanged.

Assume that the model contains a second compile-time variable called METHOD that acts as a switch for
various methods of solving the model and it may take the values 1, 2 and 3. In this case both compile-time
variables may be set on the command line as follows:

> gams trnsport.gms --DMULT=1.12 --METHOD=3

In the next two subsections we will discuss double dash parameters and compile-time variables in more
detail.

1026 User's Guide

4.40.2.2 Double Dash Parameters

Double dash parameters are user-defined command line parameters that are used to define scoped
compile-time variables or to assign values to scoped compile-time variables. The general syntax is:

> gams myfile --NAME=value

Here NAME is the name of the double dash parameter and value is its assigned value that may be any
string. If the string contains spaces or other token terminating characters, the string value should be
quoted. Consider the following simple example:

> gams myfile --keycity=Boston --myvalue=7.6 --dothis="display x;"

Suppose that myfile.gms contains the following lines with the scoped compile-time variables keycity,
myvalue and dothis:

x("%keycity%")=%myvalue%;

%dothis%

Note that the compile-time variables are referenced using the notation %...%. The GAMS call above
has the effect that at compile time the compile-time variables are substituted with the values specified
through the double dash parameters resulting in the following:

x("Boston")=7.6;

display x;

GAMS offers three alternative syntax variants for defining double dash parameters:

> gams myfile //NAME=value

> gams myfile /-NAME=value

> gams myfile -/NAME=value

Note that the four syntax variants may be used interchangeably and have the same effect.

Double dash parameters are particularly useful for specifying granularity when modeling a discretization
of time and or space. For example, in the model [CHAIN] the problem is to find the chain with minimal
potential energy, assuming the chain has uniform density, is suspended between two points and has a
given length L. Consider the following code snippet:

$if not set nh $set nh 50

Set nh / i0*i%nh% /;

The first two lines use conditional compilation to set a default value for the compile-time variable nh.
Note that the value of nh determines the cardinality of the set nh, which is used for the discretization.
The value of nh may be easily set on the command line to any desired value using nh as a double dash
parameter:

> gams chain --nh=100

4.40 The GAMS Call and Command Line Parameters 1027

Note that the double dash functionality supersedes the command line parameters user1, ..., user5 which
are accessible in the source file via %gams.user1%, ..., %gams.user5%. The example above would work
with user1 in the following way:

$set nh 50

$if not "%gams.user1"=="" $set nh %gams.user1%

Set nh / i0*i%nh% /;

The modified code could be called with:

> gams chain user1=100

Note that the double dash parameters facilitate using meaningful names instead of the generic names
user1, ..., user5. This is especially useful if there are multiple parameters to pass on to the GAMS
program.

Observe that the dollar control option $setDDList may be used to ensure that a model can only be run
with the listed double dash parameters:

$setDDList nh

$if not errorFree $log *** Only allowed double dash options is: --nh=value

4.40.2.3 Compile-Time Variables

Compile-time variables are special variables that are substituted with their values at compile-time. They
are not declared and defined with regular declaration statements like standard symbols (sets, parameters,
...), but they are defined with the dollar control option $set and its variants. There are three kinds of
compile-time variables that differ in their scope level: local, scoped and global. An overview is given in
Table 1.

Scope Availability Defined with Removed from the system
with

Local Available only in the input file
where they are defined

$setLocal. $dropLocal

Scoped Available in the input file where
they are defined and in all include
files of the input file.

$set $drop

Global Available in the input file where
they are defined, in all parent files
and in all include files.

$setGlobal $dropGlobal

Table 1: Scope Levels for Compile-Time Variables in GAMS

Note that scoped compile-time variables may also be defined on the command line with
double dash parameters. For example, in the example above the compile-time variable DMULT may
be referenced in the equation demand without being defined with the dollar control option $set as long as
it is defined and set on the command line. Note further, that global compile-time variables are saved in
work files.

While the scope of a compile-time variable cannot be directly changed, but dropping and adding variables
in different scopes accomplishes the same. Consider the following example:

1028 User's Guide

$set MYVAR xxx

* From scoped to global

$ifThen set MYVAR

$ setGlobal MYVAR %MYVAR%

$ show

$ drop MYVAR

$ show

$endIf

* From global to local

$ifThen setGlobal MYVAR

$ setLocal MYVAR %MYVAR%

$ show

$ dropGlobal MYVAR

$ show

$endIf

Note that the compile-time variable MYVAR is first defined as a scoped variable with the value xxx. The
dollar control option ifThen tests whether MYVAR was defined with $set and since this is TRUE the next
four dollar control statements are processed: a new global compile-time variable called MYVAR is defined
and is set to the value of the scoped compile-time variable MYVAR, the resulting compile-time variables
are shown, the scoped compile-time variable is removed from the system with the option $drop and the
resulting compile-time variables are shown again. A similar procedure is followed to change the global
compile-time variable MYVAR to a local compile-time variable with the same name and value.

The output generated by the four dollar control options $show follows:

Level SetVal Type Text

0 MYVAR SCOPED xxx

0 MYVAR GLOBAL xxx

Level SetVal Type Text

0 MYVAR GLOBAL xxx

Level SetVal Type Text

0 MYVAR LOCAL xxx

0 MYVAR GLOBAL xxx

Level SetVal Type Text

0 MYVAR LOCAL xxx

Observe that this report is called Environment Report. This name is unfortunate, since the variables
reported are in fact compile-time variables. Environment variables in GAMS are discussed in section
Environment Variables in GAMS below.

Note that if a compile-time variable is referenced with %MYVAR%, it could reference a global, scoped or
local compile-time variable called MYVAR. GAMS will always access the compile-time variable MYVAR with
the most local scope. Thus if all three scopes are defined, the local compile-time variable is accessed first,
then the scoped and then the global, as demonstrated in the following example:

4.40 The GAMS Call and Command Line Parameters 1029

$set XXX scoped

$setLocal XXX local

$setGlobal XXX global

$log %XXX%

$dropLocal XXX

$log %XXX%

$drop XXX

$log %XXX%

$dropGlobal XXX

$log %XXX%

The resulting log output will be:

local

scoped

global

%XXX%

Note that how %XXX% will be handled if no compile-time variable XXX is defined, is determined by the
command line parameter stringChk.

For a full list of dollar control options that affect compile-time variables, see section Dollar Control Options for Compile-Time Variables and Environment Variables.

4.40.2.4 Environment Variables in GAMS

GAMS programs have access to operating system environment variables via %sysEnv.NAME%. Operating
system environment variables may be modified or new environment variables may be defined with the
dollar control option $setEnv. Consider the following artificial example:

$log %sysEnv.GEORGE%

$setEnv GEORGE Dantzig

$log %sysEnv.GEORGE%

$dropEnv GEORGE

$log %sysEnv.GEORGE%

Note that the dollar control option $dropEnv removes an environment variable. The log output follows:

%sysEnv.GEORGE%

Dantzig

%sysEnv.GEORGE%

There are two environment variables in GAMS that are specific to the GDX facility: GDXCONVERT and
GDXCOMPRESS. Since GDX is used by utilities and other programs some general customization can be
achieved via these environment variables. Their values determine the type of GDX files that are written.
These environment variables may be overwritten through the command line parameters gdxConvert and
gdxCompress or inside the GAMS file with the dollar control option $setEnv. Consider the following
example that uses the latter functionality:

1030 User's Guide

Scalar x /1/;

$log %sysEnv.GDXCONVERT%

$log %sysEnv.GDXCOMPRESS%

$gdxOut x.gdx

$unLoad x

$gdxOut

$call gdxdump x.gdx -v | grep "File format\|Compression"

$setEnv GDXCONVERT v6

$setEnv GDXCOMPRESS 1

$gdxOut x.gdx

$unLoad x

$gdxOut

$call gdxdump x.gdx -v | grep "File format\|Compression"

$setEnv GDXCONVERT v7

$setEnv GDXCOMPRESS 0

$gdxOut x.gdx

$unLoad x

$gdxOut

$call gdxdump x.gdx -v | grep "File format\|Compression"

Note that gdxdump is a GDX utility that writes the contents of a GDX file as a GAMS formatted text file.
The switch -v lets gdxdump print the file version information. With the grep utility we filter the lines
that contain either File format or Compression. This code is run with the following call that initializes
GDXCOMPRESS and GDXCONVERT:

> gams gdxenv.gms gdxCompress=0 gdxConvert=v6 lo=3

The output follows:

--- Starting compilation

v6

0

--- gdxenv.gms(7) 2 Mb

--- call gdxdump x.gdx -v | grep "File format\|Compression"

* File format : 6

* Compression : 0

--- gdxenv.gms(14) 2 Mb

--- call gdxdump x.gdx -v | grep "File format\|Compression"

* File format : 6

* Compression : 1

--- gdxenv.gms(21) 2 Mb

--- call gdxdump x.gdx -v | grep "File format\|Compression"

* File format : 7

* Compression : 0

--- gdxenv.gms(22) 2 Mb

--- Starting execution - empty program

4.40.3 Compile-Time Constants

Compile-time constants are constants that are related to some functions, model attributes or options.
They have a fixed value and are referenced as %prefix.constant%. Here prefix is the name of the
respective function, model attribute or option and constant is the name of the constant.

For example, the function handleStatus is used in the context of grid computing. Typically, a
collection loop may take the following form:

4.40 The GAMS Call and Command Line Parameters 1031

loop(pp$(handleStatus(h(pp)) = 2), ...);

Alternatively, the following formulation may be used:

loop(pp$(handleStatus(h(pp)=%handleStatus.ready%), ...);

Observe that the compile-time constant %handleStatus.ready% equals the value of 2. See the table below
for other compile-time constants that are related to the function handleStatus.

Note

Compile-time constants are replaced at compile time and cannot be manipulated or reassigned.

Though compile-time constants are most often used in the context of the function, model attribute or
option indicated with the prefix, they are in fact context free and may be used anywhere where an integer
is expected. Consider the following example:

Scalar x / %solPrint.on% /; display x;

A complete list of the compile-time constants is given in Table 2.

Table 2: Compile-Time Constants

Compile-Time Constant value

%handleStatus.unknown%
0

%handleStatus.running% 1

%handleStatus.ready% 2

%handleStatus.failure% 3

%modelStat.optimal%
1

%modelStat.locallyOptimal% 2

%modelStat.unbounded% 3

%modelStat.infeasible% 4

%modelStat.locallyInfeasible% 5

%modelStat.intermediateInfeasible% 6

%modelStat.feasibleSolution% 7

%modelStat.integerSolution% 8

%modelStat.intermediateNonInteger% 9

%modelStat.integerInfeasible% 10

%modelStat.licensingProblem% 11

%modelStat.errorUnknown% 12

%modelStat.errorNoSolution% 13

%modelStat.noSolutionReturned% 14

%modelStat.solvedUnique% 15

%modelStat.solved% 16

%modelStat.solvedSingular% 17

%modelStat.unboundedNoSolution% 18

%modelStat.infeasibleNoSolution% 19

1032 User's Guide

Compile-Time Constant value

%platformCode.unknown%
0

%platformCode.DEX% 1

%platformCode.LEX% 2

%platformCode.WEX% 3

%platformCode.DAX% 4

%solPrint.off%
0

%solPrint.on% 1

%solPrint.silent% 2

%solPrint.summary% (deprecated) 0

%solPrint.report% (deprecated) 1

%solPrint.quiet% (deprecated) 2

%solveLink.chainScript%
0

%solveLink.callScript% 1

%solveLink.callModule% 2

%solveLink.asyncGrid% 3

%solveLink.asyncSimulate% 4

%solveLink.loadLibrary% 5

%solveLink.aSyncThreads% 6

%solveLink.threadsSimulate% 7

%solveOpt.replace%
0

%solveOpt.merge% 1

%solveOpt.clear% 2

%solveStat.normalCompletion%
1

%solveStat.iterationInterrupt% 2

%solveStat.resourceInterrupt% 3

%solveStat.terminatedBySolver% 4

%solveStat.evaluationInterrupt% 5

%solveStat.capabilityProblems% 6

%solveStat.licensingProblems% 7

%solveStat.userInterrupt% 8

%solveStat.setupFailure% 9

%solveStat.solverFailure% 10

%solveStat.internalSolverFailure% 11

%solveStat.solveProcessingSkipped% 12

%solveStat.systemFailure% 13

4.40.3.1 Command Line Parameters as Compile-Time Constants

The value of a command line parameter that was passed to the model can be accessed at compile time
using the prefix 'gams' and the name of the command line parameter: %gams.parameter%. Example:

> gams trnsport gdx=output.gdx

Trnsport.gms:

4.40 The GAMS Call and Command Line Parameters 1033

$setNames "%gams.input%" filepath filename fileextension

$log The input file ’%filename%’ is located in the directory %filepath%

$log All results are written to %gams.gdx%

Which results in the following log output:

The input file ’trnsport’ is located in the directory C:\Users\robin\Documents\GAMS\Studio\workspace\

All results are written to C:\Users\robin\Documents\GAMS\Studio\workspace\output.gdx

In addition to compile time, the value of a command line parameter can also be accessed at execution time.

4.40.4 GAMS Compile Time and Execution Time Phase

The GAMS log indicates different phases of a job run in the log file:

...

--- Starting compilation

...

--- Starting execution: elapsed 0:00:00.056

...

During compilation GAMS converts the GAMS user program into lower-level instructions that are executed
during execution time. Before the user program is converted into lower-level instructions the compiler
processes the input: the compile time variables and macros are substituted and comments are removed.
Moreover, during compilation any dollar control option present in the user code is executed. Many of
these dollar control options impact the behavior of the compilation phase (e.g. $include instructs the
compiler to process a file before continuing processing the remaining part of the current file). The code
the compiler actually converts into lower-level instructions is echoed (by default) to the listing file. The
compiler also assembles the list of user symbols (sets, parameters, variables, ...) and the list of labels.
These lists become immutable after the compiler finishes. So during execution time, for example, no new
labels can be added. The only exception from this is during a continued compilation/execution using the
save and restart facility. The separation between compile time and execution time is confusing especially
for novice users and mistakes as the following are frequent:

file fInput / data.txt /;

scalar iCnt; for (iCnt=1 to 100, put fInput iCnt:0:0 /); putClose fInput;

set i /

$include data.txt

/;

The intention of the code, that does not work, is clear: The put facility is used to create the input file
data.txt that is included via the $include instruction. The problem with this code is that the $include
instruction is executed at compile time while the code using the put statement is executed at execution
time, i.e. after the compilation phase is over. Hence, the compiler tries to include this file before the
put instructions are executed. If the file data.txt is not present, the compiler will terminate with a
compilation error, but if a file with name data.txt is present this one will be processed by the $include
and a mistake like this might remain undiscovered for a long time.

Most of the time GAMS performs compilation and execution in one GAMS job which makes it even
harder to grasp the concept of compile and execution time. The command line parameter action can be
used to separate the compilation and execution phase into multiple jobs.

1034 User's Guide

4.40.5 List of Command Line Parameters

In the following two subsections we will present an overview of the command line parameters
with brief descriptions. Detailed descriptions of all command line parameters follow in section
Detailed Descriptions of All Options below.

Note

The value of a command line parameter that was passed to the model can be accessed at compile time
and at execution time.

4.40.5.1 General Options

Option Description

action GAMS processing request

appendExpand Expand file append option

appendLog Log file append option

appendOut Output file append option

asyncSolLst Print solution listing when asynchronous solve (Grid or Threads) is used

captureModelInstance Switch to capture all model instances within a run

case Output case option for LST file

cErr Compile time error limit

charSet Character set flag

checkErrorLevel Check errorLevel automatically after executing external program

connectIn Specify YAML Connect script file processed at start of GAMS

connectOut Specify YAML Connect script file processed at end of GAMS

curDir Current directory

decryptKey Key to decrypt a text file that was encrypted via $encrypt

dFormat Date format

digit Switch default for ”$on/offDigit”

docFile Filename stem for documentation files

dumpOpt Writes preprocessed input to the file input.dmp

dumpOptGDX Defines a GDX file name stem created when using DumpOpt

dumpParms GAMS parameter logging

dumpParmsLogPrefix Prefix of lines triggered by DumpParms>1

ECImplicitLoad Allow implicit loading of symbols from embedded code or not

empty Switch default for ”$on/offEmpty”

encryptKey Key to encrypt a text file using $encrypt

eolCom Switch default for ”$on/offEolCom” and ”$eolCom”

eolOnly Single key-value pairs (immediate switch)

epsToZero Treat eps as zero when unloading to GDX

errMsg Placing of compilation error messages

errNam Name of error message file

error Force a compilation error with message

errorLog Max error message lines written to the log for each error

etLim Elapsed time limit in seconds

execMode Limits on external programs that are allowed to be executed

expand Expanded (include) input file name

4.40 The GAMS Call and Command Line Parameters 1035

Option Description

fdDelta Step size for finite differences

fdOpt Options for finite differences

fErr Alternative error message file

fileCase Casing of file names and paths (put, gdx, ref, $include, etc.)

fileStem Sets the file stem for output files which use the input file name as stem by
default

fileStemApFromEnv Append a string read from an environment variable to the ”FileStem”

filtered Switch between filtered and domain-checked read from GDX

forceWork Force GAMS to process a save file created with a newer GAMS version or
with execution errors

forLim GAMS looping limit

G205 Use GAMS version 2.05 syntax

GDX GAMS data exchange file name

gdxCompress Compression of generated GDX file

gdxConvert Version of GDX files generated (for backward compatibility)

gdxSymbols Select symbols that get exported when command line parameter GDX is
set

gdxUels Unload labels or UELs to GDX either squeezed or full

gridDir Grid file directory

gridScript Grid submission script

heapLimit Maximum Heap size allowed in MB

IDCGDXInput GDX file name with data for implicit input

IDCGDXOutput GDX file name for data for implicit output

IDCGenerateGDX Specify GDX file name of input and output side of data contract

IDCGenerateGDXInput Specify GDX file name of input side of data contract

IDCGenerateGDXOutput Specify GDX file name of output side of data contract

IDCGenerateJSON Specify JSON file name of data contract

IDCJSON Specify JSON file name to verify data contract

IDCProtect Flag to control assignment protection of external input symbols

IDE Integrated Development Environment flag

implicitAssign Switch default for ”$on/offImplicitAssign”

inlineCom Switch default for ”$on/offInline” and ”$inlineCom”

input Input file

inputDir, inputDir1..40 Input file directories

interactiveSolver Allow solver to interact via command line input

jobTrace Job trace string to be written to the trace file at the end of a GAMS job

keep Controls keeping or deletion of process directory and scratch files

libIncDir LibInclude directory

license Use alternative license file

listing Switch default for ”$on/offListing”

logFile Log file name

logLine Amount of line tracing to the log file

logOption Log option

lstTitleLeftAligned Write title of LST file all left aligned

maxExecError Execution time error limit

maxGenericFiles Maximum number of generic file names tried at execution time file creation

maxProcDir Maximum number of 225∗ process directories

1036 User's Guide

Option Description

MCPRHoldFx Print list of rows that are perpendicular to variables removed due to the
holdfixed setting

MIIMode Model Instance Mode

multi Switch default for ”$on/offMulti[R]”

multiPass Multipass facility

noNewVarEqu Triggers a compilation error when new equations or variable symbols are
introduced

on115 Generate errors for unknown unique element in an equation

output Listing file name

pageContr Output file page control option

pageSize Output file page size (=0 no paging)

pageWidth Output file page width

parmFile Command Line Parameter include file

pLicense Privacy license file name

prefixLoadPath Prepend GAMS system directory to library load path

previousWork Indicator for writing workfile with previous workfile version

procDir Process Directory

procDirPath Directory to create process directory in

procTreeMemMonitor Monitor the memory used by the GAMS process tree

procTreeMemTicks Set wait interval between memory monitor checks: ticks = milliseconds

profile Execution profiling

profileFile Write profile information to this file

profileTol Minimum time a statement must use to appear in profile generated output

putDir Put file directory

putND Number of decimals for put files

putNR Numeric round format for put files

putPS Page size for put files

putPW Page width for put files

reference Symbol reference file

referenceLineNo Controls the line numbers written to a reference file

replace Switch between merge and replace when reading from GDX into non-empty
symbol

scrDir Scratch directory

scrExt Scratch file extension to be used with temporary files

scrNam Work file names stem

seed Random number seed

showOSMemory Show the memory usage reported by the Operating System instead of the
internal counting

stepSum Summary of computing resources used by job steps

strictSingleton Error if assignment to singleton set has multiple elements

stringChk String substitution options

suffixAlgebraVars Switch default for ”$on/offSuffixAlgebraVars”

suffixDLVars Switch default for ”$on/offSuffixDLVars”

suppress Compiler listing option

symbol Symbol table file

sys10 Changes rpower to ipower when the exponent is constant and within 1e-12
of an integer

4.40 The GAMS Call and Command Line Parameters 1037

Option Description

sys11 Dynamic resorting if indices in assignment/data statements are not in
natural order

sys12 Pass model with generation errors to solver

sys15 Automatic switching of data structures used in search records

sys16 Disable search record memory (aka execute this as pre-GAMS 24.5)

sys17 Disable sparsity trees growing with permutation (aka execute this as
pre-GAMS 24.5)

sys18 Use backward compatible (i.e. pre-GAMS 31) scheme for reading floating-
point numbers

sys19 Disable permutation on Column Generation (aka execute this as pre-GAMS
36)

sysDir GAMS system directory where GAMS executables reside

sysIncDir SysInclude directory

tabIn Tab spacing

tFormat Time format

threadsAsync Limit on number of threads to be used for asynchronous solves
(solveLink=6)

timer Instruction timer threshold in milli seconds

trace Trace file name

traceLevel Modelstat/Solvestat threshold used in conjunction with action=GT

traceOpt Trace file format option

user1..5 User strings

warnings Number of warnings permitted before a run terminates

workDir Working directory

writeOutput Switch to write output file

zeroRes The results of certain operations will be set to zero if abs(result) LE
ZeroRes

zeroResRep Report underflow as a warning when abs(results) LE ZeroRes and result
set to zero

4.40.5.2 Solver-Related Options

Option Description

bRatio Basis detection threshold

CNS Constrained Nonlinear Systems - default solver

DNLP Non-Linear Programming with Discontinuous Derivatives - default solver

domLim Domain violation limit solver default

EMP Extended Mathematical Programs - default solver

forceOptFile Overwrites other option file section mechanism

holdFixed Treat fixed variables as constants

holdFixedAsync Allow HoldFixed for models solved asynchronously as well

integer1..5 Integer communication cells

intVarUp Set mode for default upper bounds on integer variables

iterLim Iteration limit of solver

limCol Maximum number of columns listed in one variable block

limRow Maximum number of rows listed in one equation block

LP Linear Programming - default solver

MCP Mixed Complementarity Problems - default solver

1038 User's Guide

Option Description

MINLP Mixed-Integer Non-Linear Programming - default solver

MIP Mixed-Integer Programming - default solver

MIQCP Mixed Integer Quadratically Constrained Programs - default solver

MPEC Mathematical Programs with Equilibrium Constraints - default solver

NLP Non-Linear Programming - default solver

nodLim Node limit in branch and bound tree

optCA Absolute Optimality criterion solver default

optCR Relative Optimality criterion solver default

optDir Option file directory

optFile Default option file

QCP Quadratically Constrained Programs - default solver

resLim Wall-clock time limit for solver

RMINLP Relaxed Mixed-Integer Non-Linear Programming - default solver

RMIP Relaxed Mixed-Integer Programming - default solver

RMIQCP Relaxed Mixed Integer Quadratically Constrained Programs - default solver

RMPEC Relaxed Mathematical Programs with Equilibrium Constraints - default solver

savePoint Save solver point in GDX file

scriptExit Program or script to be executed at the end of a GAMS run

scriptFrst First line to be written to GAMSNEXT file.

solPrint Solution report print option

solveLink Solver link option

solver Default solver for all model types that the solver is capable to process

solverCntr Solver control file name

solverDict Solver dictionary file name

solverInst Solver instruction file name

solverMatr Solver matrix file name

solverSolu Solver solution file name

solverStat Solver status file name

subSys Name of subsystem configuration file

sysOut Solver Status file reporting option

threads Number of processors to be used by a solver

workFactor Memory Estimate multiplier for some solvers

workSpace Work space for some solvers in MB

4.40.5.3 Save and Restart Options

Option Description

fSave Creates a forced work file, i.e., the file is saved even if execution errors or other
errors occured

restart Name of a restart file, see The Save and Restart Feature

restartNamed Name of another matching restart file, see Obfuscated Work Files

save Creates a work file, see The Save and Restart Feature

saveObfuscate Creates an obfuscated work file, see Obfuscated Work Files

symPrefix Prefix all symbols encountered during compilation by the specified string in work file

xSave Creates a compressed work file

xSaveObfuscate Creates a compressed obfuscated work file

4.40 The GAMS Call and Command Line Parameters 1039

4.40.6 Detailed Descriptions of All Options

In this section we will give detailed descriptions of all options that may be used as command line
parameters, in option statements or as model attributes.

Note

• We indicate for each entry the context in which the option is available.

• The options are listed in alphabetical order for easy reference.

• Synonyms apply only to options set via the command line.

action (string): GAMS processing request

Synonym: A

Available: Command line

This option controls the way GAMS processes the input file. In particular GAMS currently
processes the input file in multiple phases and this allows one to restrict the phases used. The
two phases in order are:

• Compilation During this pass, the file is compiled, and syntax errors are checked for. Data
initialization statements like scalar, parameter, and table statements are also processed
during this stage.

• Execution During this stage, all execution time statements including assignments, loops,
and solves are executed.

The special action GT is related to the creation of trace reports. See also option traceLevel for
details.

Default: CE

Value Meaning

R Restart After Solve

C CompileOnly

E ExecuteOnly

CE Compile and Execute

GT Trace Report

appendExpand (boolean): Expand file append option

Synonym: AE

Available: Command line

This option controls the manner of file opening of the option expand.

Default: 1

Value Meaning

0 Reset expand file

1 Append to expand file

1040 User's Guide

appendLog (boolean): Log file append option

Synonym: AL

Available: Command line

This option is used in conjunction with the setting of logOption to 2 and 4, where the log
from the GAMS run is redirected to a file. Setting this option to 1 will ensure that the log file
is appended to and not overwritten (replaced).

Default: 0

Value Meaning

0 Reset log file

1 Append to logfile

appendOut (boolean): Output file append option

Synonym: AO

Available: Command line

Setting this option to 1 will ensure that the listing file is appended to and not overwritten
(replaced).

Default: 0

Value Meaning

0 Reset listing file

1 Append to listing file

asyncSolLst (boolean): Print solution listing when asynchronous solve (Grid or Threads) is used

Available: Command line, Option statement

This option determines whether the solution listing is printed in the listing file when an
asynchronous (grid or threads) solve is used and the function handleCollect or command
execute loadHandle successfully collect the results.

Default: 0

Value Meaning

0 Do not print solution listing into lst file for asynchronous solves

1 Print solution listing into lst file for asynchronous solves

bRatio (real): Basis detection threshold

Available: Command line, Option statement, Attribute statement (use before solve)

The bRatio value is used to detect whether the initial point (levels and marginals) passed to
the solver represents a basis suitable for use by the solver.

4.40 The GAMS Call and Command Line Parameters 1041

Certain (pivotal) solution procedures can restart from an advanced basis that is constructed
automatically using existing basis information, i.e. they do a warm start. This option is used
to influence whether a warm start is done or not. GAMS provides a hint to the solver to
suggest whether a basis can or might be extracted from the initial point. The hint is based on
the number of rows with nonzero marginals and is computed internally as:

hint := (0 == bRatio) or (rowsWithNonzeroMarg > nRows * bratio)

Note that setting bRatio to 1 causes the hint to be false, while setting bRatio to 0 causes
the hint to be true. Note also that this is only a hint to the solver: some solvers (e.g. barrier
methods) do not use this hint value.

Default: 0.25

captureModelInstance (boolean): Switch to capture all model instances within a run

Available: Command line

This option is a debugging option that helps to capture, if set to 1, the model instances that
are generated and solved during the execution of the solve commands in a GAMS run. This
is particularly important if one needs to make a model instance available to GAMS technical
support to investigate a solver failure or analyze poor solver performance. The model instances
are stored in separate files with names gamsNNN.gms where NNN is an increasing number.
So sorting the files by time or name will correspond to the order in which these instances have
been generated and solved. The format of the model instance is the GAMS scalar format and
the instance is captured before the instance is solved by the selected solver, hence it contains
the starting point but not the solution point.

Another way of capturing model instances becomes useful (and is triggered independent of
this option) in case the user model does modularization by calling other GAMS programs that
execute a solve statement via the GAMS executable. Since options are not automatically passed
on to the GAMS subprocesses one might miss capturing some model instances. Moreover,
due to constant folding and rounding in the scalar model format, the run of a scalar model
instance might not reproduce a particular problematic issue of the original solve. Hence GAMS
can capture the binary scratch files produced by the solve statement when executed under
solveLink=0 in a ZIP file. This is activated by setting a system environment variable named
ZIPSCRDIR PGAMS (e.g. set ZIPSCRDIR PGAMS=mymodel). The content of this environment
variable is used as a prefix for the ZIP file names, e.g. mymodelNNN.zip where NNN is an
increasing number. Such ZIP files can help GAMS support staff to execute the model and
have an increased chance to reproduce a problematic issue.

Note

CaptureModelInstance cannot be used with solveLink=6/7. If this was set, GAMS will
reset solveLink to 3/4 automatically.

Default: 0

Value Meaning

0 Do not capture model instances

1 Capture model instances

case (boolean): Output case option for LST file

Available: Command line

This option controls the case of the text in the listing file.

1042 User's Guide

Default: 0

4.40 The GAMS Call and Command Line Parameters 1043

Value Meaning

0 Write listing file in mixed case

1 Write listing file in upper case only

cErr (integer): Compile time error limit

Available: Command line

The compilation will be aborted after n errors have occurred. By default, there is no error
limit and GAMS compiles the entire input file and collects all the compilation errors that
occur. If the file is too long and the compilation process is time consuming, cerr could be
used to set to a low value while debugging the input file.

Default: 0

Value Meaning

0 No error limit (default)

n Stop after n errors

charSet (boolean): Character set flag

Available: Command line

This option specifies whether foreign language characters are permitted in comments and text
items. For a list of standard GAMS characters, see table Legal Characters.

Default: 1

Value Meaning

0 Use limited GAMS characters set

1 Accept any character in comments and text items (foreign language characters)

cheat (real): Cheat value, i.e. minimum solution improvement threshold

Available: Attribute statement (use before solve)

For a branch-and-bound based solver, each new feasible solution must be at least the value of
cheat better than the current best feasible solution. Note that this may speed up the search,
but may cause some solutions, including optimal ones, to be missed. If a model has been
solved with a nonzero cheat value, then the optimal solution will be within the cheat value or
less of the found solution. Observe that the option cheat is specified in absolute terms (like
the option optCA), therefore non-negative values are appropriate for both minimization and
maximization models. Note that using this option will invalidate any reporting of the dual
bound or optimality gaps. Further, certain solver options can override the cheat setting, e.g.,
the Cplex option objDif, and some solvers may ignore the cheat option.

Default: 0

checkErrorLevel (boolean): Check errorLevel automatically after executing external program

1044 User's Guide

Available: Command line, Option statement

If this option is set to 1, the errorLevel is checked implicitly after executing an external
program or via execute, put utility exec and put utility shell. The same holds for the execution
of a tool from the GAMS tools library via executeTool. An execution error is triggered
and the execution is aborted, if it is not 0. So, with checkErrorLevel = 1 the before
mentioned statement behave like execute.checkErrorLevel, put utility exec.checkErrorLevel,
put utility shell.checkErrorLevel, and executeTool.checkErrorLevel, respectively.

Also, if this option is set as a command line parameter it initializes the state of the dollar
control option $on/offCheckErrorLevel. So, with checkErrorLevel = 1, the errorLevel is
checked implicitly after $call and $hiddenCall. The same holds for calls to a tool from the
GAMS tools library via $callTool and $hiddenCallTool. A compilation error is triggered and
the compilation is aborted if that is not 0. So, the dollar control options mentioned before be-
have like $call.checkErrorLevel, $hiddenCall.checkErrorLevel, $callTool.checkErrorLevel, and
$hiddenCallTool.checkErrorLevel respectively.

Default: 0

Value Meaning

0 Do not check errorLevel automatically after execution of external program

1 Check errorLevel automatically after execution of external program

CNS (string): Constrained Nonlinear Systems - default solver

Available: Command line, Option statement

The default solver for models of the type Constrained Nonlinear Systems is set during instal-
lation. The user may change this default by setting this option to the desired solver.

Observe that if the solver was changed using an option statement, the default solver may be
reset later in the program with another option statement, where the value of the option is set
to default.

connectIn (string): Specify YAML Connect script file processed at start of GAMS

Available: Command line

The YAML file provided by this command line parameter is passed to and processed by
Connect. This allows Connect to prepare data for import at the beginning of a GAMS job.
The GAMS program itself does not need to know where the various data files (CSV, Excel,
etc) are located. The supply side of the data contract is encapsulated in the YAML script.

Here is an example. The content of the file p.yaml that is supplied via the option connectIn

could look like this:

- ExcelReader:

file: myworkbook.xlsx

symbols:

- name: p

range: Sheet1!A1

rowDimension: 1

columnDimension: 1

- GDXWriter:

file: input.gdx

symbols:

- name: p

4.40 The GAMS Call and Command Line Parameters 1045

The GDX file input.gdx can be loaded at the beginning of a GAMS job using gdxLoad:

Set i, j;

Parameter p(i<,j<);

$gdxLoad input.gdx p

display p;

Alternatively, this can be nicely combined with the IDCGDXInput to load external input
symbols. The GDX file input.gdx can be specified as value for IDCGDXInput (gams mymodel

connectIn=p.yaml IDCGDXInput=input.gdx):

Set i, j;

$onExternalInput

Parameter p(i<,j<) / i1.j1 1 /;

$offExternalInput

display p;

The YAML code in the connectIn file can also utilize the GAMSReader agent. Normally, there
are no symbols to read at the job's start, but in case the job restarts from an existing work file
(see command line option restart) the symbols available from the work file can be read into
the Connect database with the GAMSReader agent. The YAML code in the connectIn file can
utilize the GAMSWriter agent. It will update the symbols and data read from the restart file
at the beginning of the GAMS compilation phase.

connectOut (string): Specify YAML Connect script file processed at end of GAMS

Available: Command line

The YAML file provided by this command line parameter is passed to and processed by
Connect. This allows Connect to take the GAMS data at the end of the GAMS job and export
it to various formats (CSV, Excel, etc) according to the instructions in the YAML file.

Here is an example. The content of the file p.yaml that is supplied via the option connectOut

could look like this:

- GDXReader:

file: output.gdx

symbols:

- name: p

- ExcelWriter:

file: myworkbook.xlsx

symbols:

- name: p

range: Sheet!A1

columnDimension: 1

The GDX file output.gdx can be written at the end of a GAMS job using execute unload:

Set i /i1*i10/, j /j1*j10/;

Parameter p(i,j); p(i,j) = uniform(0,1);

execute_unload ’output.gdx’, p;

Alternatively, this can be nicely combined with the IDCGDXOutput to process external
output symbols. The GDX file output.gdx can be specified as value for IDCGDXOutput (gams
mymodel connectOut=p.yaml IDCGDXOutput=output.gdx):

Set i /i1*i10/, j /j1*j10/;

$onExternalOutput

Parameter p(i,j); p(i,j) = uniform(0,1);

$offExternalOutput

1046 User's Guide

The YAML code in the connectOut file can also utilize the GAMSReader agent. This reads
directly from GAMS memory (without the detour via GDX) and processes any symbol available
at the end of the GAMS run. The YAML code in the connectOut file cannot utilize the
GAMSWriter agent.

curDir (string): Current directory

Synonym: CDir

Available: Command line

This option sets the current working directory. It is useful when GAMS is called from an
external system like Visual Basic. If it is not specified, it will be set to the directory the GAMS
module is called from.

cutOff (real): Cutoff value for branch and bound

Available: Attribute statement (use before solve, reset by solve statement)

Within a branch-and-bound based solver, the parts of the tree with an objective value worse
than the cutoff value are ignored. Note that this may speed up the initial phase of the branch
and bound algorithm (before the first integer solution is found). However, the true optimum
may be beyond the cutoff value. In this case the true optimum will be missed and moreover,
no solution will be found.

Observe that this option is specified in absolute terms (like the option optCA).

Default: 0

decimals (integer): Decimal places for display statements

Available: Option statement

This option specifies the number of decimals that will be printed for numeric values that do
not have a specific print format attached. The range is [0,8].

Default: 3

decryptKey (string): Key to decrypt a text file that was encrypted via $encrypt

Available: Command line

This option provides a key to decrypt a GAMS input file that has been encrypted with a key
provided by encryptKey and $encrypt. For more information, see Encrypting Files.

defPoint (integer): Indicator for passing on default point

Available: Attribute statement (use before solve, reset by solve statement)

This option determines the point that is passed to the solver as a basis. By default, the levels
and marginals from the current basis are passed to the solver. In some circumstances (mostly
during debugging), it can be useful to pass a standard default input point, i.e. with all levels
set to 0 or lower bound.

Value Meaning

0 Pass user defined levels and marginals to solver

1 Pass default levels and marginals to solver

2 Pass default marginals to solver

4.40 The GAMS Call and Command Line Parameters 1047

dFormat (integer): Date format

Synonym: DF

Available: Command line

This option controls the date format in the listing file. The three date formats correspond to
various conventions used around the world. For example, the date December 2, 1996 will be
written as 12/02/96 with the default df value of 0, as 02.12.96 with df=1, and as 96-12-02
with df=2.

Default: 0

Value Meaning

0 Date as mm/dd/yy

1 Date as dd.mm.yy

2 Date as yy-mm-dy

dictFile (real): Force writing of a dictionary file if dictfile > 0

Available: Attribute statement (use before solve, reset by solve statement)

If this option is set to a value that is larger than zero, it will instruct GAMS to make the
GAMS names of variables and equations that have been generated by the solve statement
available to the solver. In many solver links these names are registered with the solver and
hence messages from the solver that involve variables and equations (e.g. an infeasible row or
duplicate columns) can be easily interpreted by the user. Consider the following example:

Row ’demand(new-york)’ infeasible, all entries at implied bounds.

Duplicate columns x(san-diego.new-york) and x(san-diego.chicago) make problem unbounded.

If we have modelname.dictfile=0 the same messages will read as follows:

Row ’c4’ infeasible, all entries at implied bounds.

Duplicate columns x4 and x5 make problem unbounded.

Sometimes a dictionary is required for a successful run. Some solver option use the original
GAMS names and need to be matched with the variables 1..n and equations 1..m in the
solver. The dictionary file with its API allows to calculate such a mapping. Note that this is
done automatically inside the solver links, so users do not need to be concerned with it.

For example, in the indicator constraints implementation a binary indicator variable is matched
to a constraint. In the model [INDIC01] from the GAMS test library, this matching is done
in the following GAMS/Cplex option file cplex.opt:

indic eq3(dice,f,fp)$comp(dice,f,fp) 1

Observe that if no dictionary is available, we will get an error:

**** Unable to read dictionary file required for indicator constraints

1048 User's Guide

However, the dictionary comes at a price. Generating the names and calculating and storing
the map takes time and space. In addition, GAMS names take up space in the solver. Thus, if
the user needs very fast generation and does not need names, setting dictFile to zero is a
good option.

Further, note that some solvers allow to suppress the loading of names (using the solver option
names=no). Suppressing the loading of names facilitates to use the name mapping features
required for models like INDIC01 above, but does not load the names into the solver name
space for better reporting (and hence saves some space).

digit (string): Switch default for ”$on/offDigit”

Available: Command line

For more info see $on/offDigit.

Default: off

Value Meaning

off Activate $offDigit

on Activate $onDigit

dispWidth (integer): Number of characters to be printed in the column labels of all subsequent display
statements

Available: Option statement

This option controls the number of characters that are shown for a label in a column in the
context of the display statement. Consider the following example:

Set i / thislabelhas24characters /;

Parameter p(i,i) / thislabelhas24characters.thislabelhas24characters 2/;

display p;

option dispWidth=24;

display p;

The two display statements in this code will generate the following output:

---- 3 PARAMETER p

thislabel~

thislabelhas24characters 2.000

---- 6 PARAMETER p

thislabelhas24characters

thislabelhas24characters 2.000

Observe that in the first display, the label in the column is cut off after 10 characters, while in
the second display it is shown in full.

Note that the default value is 10 and the range is [10,31].

Default: 10

4.40 The GAMS Call and Command Line Parameters 1049

dmpOpt (no value): Debugging option: causes GAMS to echo the runtime option settings

Available: Option statement

This debugging option has the effect that all available option statements and their current
values are listed in the listing file.

dmpSym (no value): Debugging option: causes GAMS to echo the symbol table to the listing file

Available: Option statement

This debugging option is especially useful for diagnosing memory problems. It has the effect
that GAMS will report the number of elements that are stored for each identifier at the
point in the program where this option is inserted together with a memory estimate. The
report that is generated in this way is called a memory dump. This is similar to the option
dmpUserSym, but prints GAMS internal symbols and information as well. For details, see
section Finding the Causes for Excessive Memory Use.

dmpUserSym (no value): Debugging option: causes GAMS to echo the symbol table to the listing file
for user defined symbols only

Available: Option statement

This debugging option is especially useful for diagnosing memory problems. It has the effect
that GAMS will report the number of elements that are stored for each identifier at the point
in the program where this option is inserted together with a memory estimate. The report that
is generated in this way is called a memory dump. This is similar to the option dmpSym, but
prints user defined symbols only and also leaves out some very technical information which are
mostly for internal use. For details, see section Finding the Causes for Excessive Memory Use.

DNLP (string): Non-Linear Programming with Discontinuous Derivatives - default solver

Available: Command line, Option statement

The default solver for models of the type Nonlinear Programs with Discontinuous Derivatives
is set during installation. The user may change this default by setting this option to the
desired solver.

Observe that if the solver was changed using an option statement, the default solver may be
reset later in the program with another option statement, where the value of the option is set
to default.

docFile (string): Filename stem for documentation files

Available: Command line

domLim (integer): Domain violation limit solver default

Available: Command line, Option statement, Attribute statement (use before solve)

This option controls the maximum number of domain errors (undefined operations like division
by zero) a nonlinear solver will perform, while calculating function and derivative values,
before it terminates the run and returns solver status 5 EVALUATION ERROR LIMIT. Nonlinear
solvers have difficulties recovering after attempting an undefined operation. Note that some
solvers operate in a mode where trial function evaluations are performed. These solvers will
not move to points at which evaluation errors occur, thus the evaluation errors at trial points
are not counted against the limit.

Default: ∞

1050 User's Guide

domUsd (integer): Number of domain violations

Available: Attribute statement (use after solve)

This model attribute returns the number of domain violations after a solve.

dualCheck (integer): Output on the reduced cost condition

Available: Option statement

If this option is set to 1, the reduced cost condition for each variable in the column listing will
be evaluated using the equation marginals. The default value is zero, which means that the
calculation will be omitted.

Default: 0

dumpOpt (integer): Writes preprocessed input to the file input.dmp

Available: Command line

This option with value larger than 9 creates a GAMS input file of that will reproduce results
encapsulating all include files into one GAMS file. If activated, a file will be written containing
GAMS source code for the entire problem. The file name is the input file name with the
extension dmp. For values smaller than 10, this option tries to encapsulate all the items from a
restart file that are needed to execute a solve.

For the values smaller than 10, consider the following example. We will split the transportation
model [TRNSPORT] into two files and run them with the save and restart feature. Then
we will illustrate the option dumpOpt. The first file called trans1.gms contains the first part
of the model up to and including the model statement:

Sets

i canning plants / seattle, san-diego /

j markets / new-york, chicago, topeka / ;

Parameters

a(i) capacity of plant i in cases

/ seattle 350

san-diego 600 /

b(j) demand at market j in cases

/ new-york 325

chicago 300

topeka 275 / ;

Table d(i,j) distance in thousands of miles

new-york chicago topeka

seattle 2.5 1.7 1.8

san-diego 2.5 1.8 1.4 ;

Scalar f freight in dollars per case per thousand miles /90/ ;

Parameter c(i,j) transport cost in thousands of dollars per case ;

c(i,j) = f * d(i,j) / 1000 ;

Variables

x(i,j) shipment quantities in cases

z total transportation costs in thousands of dollars ;

Positive Variable x ;

4.40 The GAMS Call and Command Line Parameters 1051

Equations

cost define objective function

supply(i) observe supply limit at plant i

demand(j) satisfy demand at market j ;

cost .. z =e= sum((i,j), c(i,j)*x(i,j)) ;

supply(i) .. sum(j, x(i,j)) =l= a(i) ;

demand(j) .. sum(i, x(i,j)) =g= b(j) ;

model transport /all/ ;

Note that we removed all comments for brevity. The second file called trans2.gms contains
the solve statement and the display statement:

solve transport using lp minimizing z ;

display x.l, x.m ;

We run the first file with the command line parameter save and thus generate a work file. For
details on work files, see chapter The Save and Restart Feature. Then we run trans2.gms

restarting from the saved work file. The result will be equivalent to running the original model
[TRNSPORT].

Note

The option dumpOpt can only be used effectively, if the first line in the second file,
trans2.gms, is the solve statement.

Now, we will illustrate the use of the option dumpopt, by running the second file with the
following command:

> gams trans2 r=trans dumpopt=1

Here trans is the name of the saved files generated from the file trans1.gms. As a result of
this call, a new file will be created. It is called trans2.dmp and has the following content:

* This file was written with DUMPOPT=1 at 11/25/21 15:15:17

*

* INPUT = C:\tmp\trans2.gms

* DUMP = C:\tmp\trans2.dmp

* RESTART = C:\tmp\0.g0?

*

* with time stamp of 11/16/21 17:18:53

*

* You may have to edit this file and the input file.

* There are 5 labels

Set WorkFileLabelOrder dummy set to establish the proper order /

seattle,san-diego,new-york,chicago,topeka /;

Model transport;

Variable z ’total transportation costs in thousands of dollars’;

Set i(*) ’canning plants’ /

seattle,san-diego /;

Set j(*) ’markets’ /

1052 User's Guide

new-york,chicago,topeka /;

Parameter c(i,j) ’transport cost in thousands of dollars per case’ /

seattle.new-york 0.225,seattle.chicago 0.153,seattle.topeka 0.162,san-diego.new-york 0.225,san-diego.chicago 0.162,san-diego.topeka 0.126 /;

Positive Variable x(i,j) ’shipment quantities in cases’;

Parameter a(i) ’capacity of plant i in cases’ /

seattle 350,san-diego 600 /;

Parameter b(j) ’demand at market j in cases’ /

new-york 325,chicago 300,topeka 275 /;

Equation demand(j) ’satisfy demand at market j’;

Equation supply(i) ’observe supply limit at plant i’;

Equation cost ’define objective function’;

* *** EDITS FOR INPUT FILE ***

*** END OF DUMP ***

Note that all the data that enters the model in the solve statement has been regenerated.
Observe that the parameter d has not been regenerated since it does not appear in the model.
Changing the value of the parameter dumpopt will have the effect that other names are used
for the identifiers in the regenerated file, see table below.

Note

If $onVerbatim is active, DumpOpt = 11 behaves like DumpOpt = 21 (comments are kept)

See also dumpOptGDX.

Default: 0

Value Meaning

0 No dumpfile

1 Extract referenced data from the restart file using original set element names

2 Extract referenced data from the restart file using new set element names

3 Extract referenced data from the restart file using new set element names and
drop symbol text

4 Extract referenced symbol declarations from the restart file

11 Write processed input file without comments

21 Write processed input file with all comments

22 Write processed input with all comments into a separate dump file for each block

dumpOptGDX (string): Defines a GDX file name stem created when using DumpOpt

Available: Command line

This parameter works together with the dumpOpt parameter. If that is set to 1, 11 or 21

while dumpOptGDX is set, GAMS will create a GDX file with the data used in the dump file
instead of data statements, and the dump file will load the data from that GDX file. So, with
the parameter dumpOptGDX=trns2 the example above would generate the following dump file:

4.40 The GAMS Call and Command Line Parameters 1053

* This file was written with DUMPOPT=1 at 11/25/21 15:14:11

*

* INPUT = C:\tmp\trans2.gms

* DUMP = C:\tmp\trans2.dmp

* RESTART = C:\tmp\0.g0?

* DUMPOPTGDX = trans2

*

* with time stamp of 11/16/21 17:18:53

$gdxIn trans2.gdx

*

* You may have to edit this file and the input file.

* There are 5 labels

Set WorkFileLabelOrder dummy set to establish the proper order;

$loadDCR WorkFileLabelOrder=*

Model transport;

Variable z ’total transportation costs in thousands of dollars’;

Set i(*) ’canning plants’;

$loadDCR i

Set j(*) ’markets’;

$loadDCR j

Parameter c(i,j) ’transport cost in thousands of dollars per case’;

$loadDCR c

Positive Variable x(i,j) ’shipment quantities in cases’;

Parameter a(i) ’capacity of plant i in cases’;

$loadDCR a

Parameter b(j) ’demand at market j in cases’;

$loadDCR b

Equation demand(j) ’satisfy demand at market j’;

Equation supply(i) ’observe supply limit at plant i’;

Equation cost ’define objective function’;

$gdxIn

* *** EDITS FOR INPUT FILE ***

*** END OF DUMP ***

Note that more than one GDX file could be created with a common file stem defined by this
parameter. This will be necessary if the source model has multiple data definitions for the
same symbol like in this simple example:

Set i / i1*i3/;

Parameter a(i) / i1 1, i2 2/;

$onMulti

1054 User's Guide

Parameter a(i) / i1 0, i3 3/;

Scalar b / 7 /;

Scalar b / 77 /;

Running this as

> gams dummy dumpOpt=11 dumpOptGDX=dummyIn

will generate this dump file:

* This file was written with DUMPOPT=11 at 11/25/21 15:26:02

*

* DUMP = C:\tmp\dummy.dmp

* INPUT = C:\tmp\dummy.gms

* RESTART =

* DUMPOPTGDX = dummyIn

*

$gdxIn dummyIn.gdx

Set i

$loadDCR i

;

Parameter a(i)

$loadDCR a

;

$onMulti

Parameter a(i)

$gdxIn dummyIn_m1.gdx

$loadDCR a

;

Scalar b

$loadDCR b

;

Scalar b

$gdxIn dummyIn_m2.gdx

$loadDCR b

;

* *** EXIT C:\Data\gspTest\dummy.gms

$gdxIn

*** END OF DUMP ***

And this is the data found in the GDX files:

dummyIn.gdx:

Set i(*) /

’i1’,

’i2’,

’i3’ /;

Parameter a(*) /

’i1’ 1,

’i2’ 2 /;

dummyIn m1.gdx:

4.40 The GAMS Call and Command Line Parameters 1055

Parameter a(*) /

’i2’ 2,

’i3’ 3 /;

Scalar b / 7 /;

dummyIn m2.gdx:

Scalar b / 77 /;

dumpParms (integer): GAMS parameter logging

Synonym: DP

Available: Command line

This option lists the settings of all command line parameters that were changed or set by the
user, GAMS or an IDE during the current run. Note that with dp=2 all file operations are
listed, including the full path of each file on which any operation is performed.

Default: 0

Value Meaning

0 No logging

1 Lists accepted/set parameters

2 Log of file operations plus list of accepted/set parameters

dumpParmsLogPrefix (string): Prefix of lines triggered by DumpParms>1

Synonym: DPLP

Available: Command line

This option prefixes in the log file the list of all command line parameters that were changed or
set by the user, GAMS or an IDE during the current run. Note that the option dumpParms
must be greater than 1 for dumpParmsLogPrefix to have an effect.

Default: ∗∗∗

ECImplicitLoad (string): Allow implicit loading of symbols from embedded code or not

Available: Command line, Option statement

The command line parameter ECImplicitLoad initializes both, the option ECImplicitLoad and
the dollar control option $on/offECImplicitLoad for the compile-time equivalent behavior.

Default: on

Value Meaning

off Do not allow implicit loading from embedded code

on Allow implicit loading from embedded code

eject (no value): Inject a page break into the LST file

1056 User's Guide

Available: Option statement

This option has the effect that a page break is inserted in the listing file.

EMP (string): Extended Mathematical Programs - default solver

Available: Command line, Option statement

The default solver for models of the type Extended Mathematical Programs is set during
installation. The user may change this default by setting this option to the desired solver.

Observe that if the solver was changed using an option statement, the default solver may be
reset later in the program with another option statement, where the value of the option is set
to default.

empty (string): Switch default for ”$on/offEmpty”

Available: Command line

For more info see $on/offEmpty.

Default: on

Value Meaning

off Activate $offEmpty

on Activate $onEmpty

encryptKey (string): Key to encrypt a text file using $encrypt

Available: Command line

This option provides a key to encrypt a text file via $encrypt. For more information, see
Encrypting Files.

eolCom (string): Switch default for ”$on/offEolCom” and ”$eolCom”

Available: Command line

If this is set to on on or off it sets the state of $on/offEOLCom. Other strings (with not
more than two characters) will set $EOLCom.

Default: off

Value Meaning

off Activate $offEolCom

on Activate $onEolCom using default EOL comment character

other Activate $onEolCom setting specific EOL comment character(s)

eolOnly (integer): Single key-value pairs (immediate switch)

Synonym: EY

Available: Command line

4.40 The GAMS Call and Command Line Parameters 1057

This option controls formatting of parameters on the command line and is useful in conjunction
with the option parmFile.

This option acts as an immediate switch that forces only one option-value pair to be read on
a line. Note that by default, any number of option-value pairs may be present on the same
line and termination characters and quoting is necessary to determine the end of key/value
pair. With this option active the remainder after the key is used as the value independent of
quoting or termination characters.

Default: 0

Value Meaning

0 Any number of keys or values

1 Only one key-value pair on a line

epsToZero (string): Treat eps as zero when unloading to GDX

Available: Command line, Option statement

When this is set to on, EPS values are written as zero when unloading parameters or variable
and equation levels to GDX at execution time. The command line parameter EpsToZero

initializes both, the option EpsToZero and the dollar control option $on/offEpsToZero for the
compile-time equivalent behavior.

Default: off

Value Meaning

off Treat Eps as Eps

on Treat Eps as Zero

errMsg (integer): Placing of compilation error messages

Available: Command line

This option controls the position of the compilation error messages in the listing file. To
illustrate the option, consider the following slice of GAMS code:

Set i / 1*10 / ;

Set j(i) / 10*11 /;

Parameter a(jj) / 12 25.0 / ;

After running this code, the listing file will contain the following lines:

1 Set i / 1*10 / ;

2 Set j(i) / 10*11 /;

**** $170

3 Parameter a(jj) / 12 25.0 / ;

**** $120

4

120 Unknown identifier entered as set

170 Domain violation for element

**** 2 ERROR(S) 0 WARNING(S)

1058 User's Guide

Note that numbers $170 and $120 flag the two errors as they occur, but the errors are
explained only at the end of the compilation output. However, if the code is run using the
option errmsg=1, the resulting listing file will contains the following:

1 Set i / 1*10 / ;

2 Set j(i) / 10*11 /;

**** $170

**** 170 Domain violation for element

3 Parameter a(jj) / 12 25.0 / ;

**** $120

**** 120 Unknown identifier entered as set

4

**** 2 ERROR(S) 0 WARNING(S)

Observe that the explanation for each error is provided immediately following the error marker.

Default: 1

Value Meaning

0 Place error messages at the end of compiler listing

1 Place error messages immediately following the line with the error

2 Suppress error messages

errNam (string): Name of error message file

Available: Command line

This option specifies the name of a file defining the internally used compiler error messages. It
is used to change the name from the default name gamserrs.txt.

error (string): Force a compilation error with message

Available: Command line

This option forces a parameter error with a specified message. It is useful in the context of
incorporating a GAMS file within another batch file where the user needs to have control over
the conditions when GAMS is called. See also section Conditional Compilation.

To illustrate, the default GAMS log file from running a model with the option error=Hallo

will look as follows:

gams: **** Error: Parameter error(s)

: Reading parameter(s) from "command line"

: *** Error Hallo

: Finished reading from "command line"

errorLog (integer): Max error message lines written to the log for each error

Synonym: ER

Available: Command line

This option controls the number of error message lines that are written to the log file.

Under GAMS Studio, the default is reset to 99.

Default: 2147483647

4.40 The GAMS Call and Command Line Parameters 1059

Value Meaning

0 No error messages to LOG file

n Number of lines for each error that will be written to LOG file

etAlg (real): Solver dependent timing information

Available: Attribute statement (use after solve)

Unlike etSolve and etSolver, this attribute is set by the individual solver links. If not set, it
defaults to NA. This attribute was intended to allow solvers to return the elapsed time used by
the solve algorithm without including any model generation, communication, or setup time.
However, solvers are free to adapt this convention and return time-related information (but
not necessarily elapsed time) for executing the solve algorithm. Please inspect your solver
manual for the actual meaning of the value returned in this attribute.

etLim (real): Elapsed time limit in seconds

Synonym: ETL

Available: Command line

This option controls the time limit for a GAMS job. The system will terminate with a
compilation or execution error if the limit is reached. A GAMS job will terminate if the
elapsed time in seconds exceeds the value of etLim. If a solve statement gets executed, and
the resLim for the model to be solved is greater than etLim - timeElapsed, resLim will be
reduced automatically.

Default: ∞

etSolve (real): Elapsed time it took to execute a solve statement in total

Available: Attribute statement (use after solve)

This model attribute returns the elapsed time it took to execute a solve statement in total.
This time includes the model generation time, the time to read and write files, the time to
create the solution report and the time taken by the actual solve. The time is expressed in
seconds of wall-clock time.

etSolver (real): Elapsed time taken by the solver only

Available: Attribute statement (use after solve)

This model attribute returns the elapsed time taken by the solver only. This does not include
the GAMS model generation time and the time taken to report and load the solution back
into the GAMS database. The time is expressed in seconds of wall-clock time.

execMode (integer): Limits on external programs that are allowed to be executed

Available: Command line

A higher value denotes a more restrictive alternative. If the restriction level n is chosen, then
the restriction levels less than n will also be active. For example, if restriction level 3 is chosen,
then restrictions 2 and 1 will apply too.

Default: 0

1060 User's Guide

Value Meaning

0 Everything allowed

1 Interactive shells in $call and execute commands are prohibited

2 Embedded Code and all $call and execute commands are prohibited

3 $echo or put commands can only write to directories in or below the working or
scratchdir

4 $echo and put commands are not allowed

expand (string): Expanded (include) input file name

Synonym: EF

Available: Command line

This option generates a file that contains information about all the input files processed during
a particular compilation. By default, the names of the input files are composed by completing
the name with the current directory.

Consider the following exmaple:

$call rm expfile.txt

$onecho > file1.inc

a = a*2; display a;

$include file2.inc

$offecho

$onecho > file2.inc

a = a+1; display a;

$include file3.inc

$offecho

$onecho > file3.inc

a = a**2; display a ;

$offecho

parameter a / 1 /;

$include file3.inc

$include file2.inc

$include file1.inc

If the model is run with the command line parameter ef=expfile.txt, a file called
expfile.txt will be generated. This file will contain the following lines:

1 INPUT 0 0 0 1 29 C:\GAMS\Examples\expand.gms

2 CALL 0 1 1 1 1 rm expfile.txt

3 INCLUDE 1 1 14 14 15 C:\GAMS\Examples\file3.inc

4 INCLUDE 1 1 15 16 19 C:\GAMS\Examples\file2.inc

5 INCLUDE 2 4 2 18 19 C:\GAMS\Examples\file3.inc

6 INCLUDE 1 1 16 20 25 C:\GAMS\Examples\file1.inc

7 INCLUDE 2 6 2 22 25 C:\GAMS\Examples\file2.inc

8 INCLUDE 3 7 2 24 25 C:\GAMS\Examples\file3.inc

9 EXIT 0 1 20 29 29 C:\GAMS\Examples\expand.gms

Note that the first row always refers to the parent file, in this case the file expand.gms. The
first column gives the sequence number of the input files that were encountered. The second
column refers to the type of file that is referenced. The following file types are possible:

4.40 The GAMS Call and Command Line Parameters 1061

0 INPUT

1 EXIT

2 INCLUDE

3 BATINCLUDE

4 LIBINCLUDE

5 SYSINCLUDE

6 CALL

7 CALL.ASYNC

7 CALLTOOL

8 GDXIN

9 GDXOUT

10 IF EXIST

11 IF DEXIST

12 FUNCLIBIN

13 TERMINATE

14 STOP

Observe that $call is also listed. The third column describes the depth for nested include
files. The fourth column provides the sequence number of the parent file for the file being
referenced. The fifth column gives the local line number in the parent file where the dollar
control option $include appeared. The sixth column gives the global (expanded) line number
which contained $include. The seventh column provides the total number of lines in the file
after it is processed. The last column provides the name of the file.

Note that the listing in the expand file is similar to the include file summary in the listing file
of the model. And like the include file summary, this file will not be written, if $offInclude is
set in the model.

fdDelta (real): Step size for finite differences

Available: Command line, Option statement, Attribute statement (use before solve)

This option allows users to control the step size while the numerical Hessian and numerical
derivatives are computed in the context of the function suffixes .hessn and .gradn. For
functions with one argument, GAMS evaluates the function at f(x-d) and f(x+d) for the
numerical gradient. If function values are used for the numerical Hessian, GAMS will evaluate
at f(x-2d), f(x) and f(x+2d). For functions with multiple arguments, the same calculations
are performed for the components of the input argument vector.

Default: 1.0E-05

fdOpt (integer): Options for finite differences

Available: Command line, Option statement, Attribute statement (use before solve)

This option allows users to control how numerical derivatives are computed. The values provide
choice regarding the scaling of steps, Hessian calculation method and the use of numerical first
derivatives.

Default: 0

Value Meaning

0 All derivatives analytically, for numerical Hessian use gradient values, scale delta

1 All derivatives analytically, for numerical Hessian use function values, scale delta

2 Gradient analytically, force Hessian numerically using gradient values, scale delta

3 Gradient analytically, force Hessian numerically using function values, scale delta

4 Force gradient and Hessian numerically, scale delta

10 Same as 0, but no scale of delta

11 Same as 1, but no scale of delta

12 Same as 2, but no scale of delta

13 Same as 3, but no scale of delta

14 Same as 4, but no scale of delta

1062 User's Guide

fErr (string): Alternative error message file

Available: Command line

This option redirects the compilation error messages to a file and names the file. By default,
the file name is composed by completing the name with the scratch directory and the scratch
extension. Note that under default settings such a file with compilation error messages is not
generated. This option can be used when GAMS is being integrated into other environments
like Visual Basic. The error messages that are reported in the listing file may be extracted
with this option and their display may be controlled from the environment that is calling
GAMS.

To illustrate, consider the slice of GAMS code that we used to explain the option errMsg. If we
call this code with the command line parameter ferr=myfile.err, a file called myfile.err

will be created in the scratch directory. This file will contain the following lines:

0 0 0 0 D:\GAMS\NEW.LST

1 1 170 31 D:\GAMS\NEW.GMS

2 2 120 14 D:\GAMS\NEW.GMS

Note that the first column refers to the global row number of the error in the listing file. The
second column refers to the row number of the error in the individual file where the problem
occured. This will be different from the first column only if the error occured in an include file.
In this case, the second column will contain the line number in the include file where the error
occurred, while the first number will contain the global line number (as reported in the listing
file) where the error occured. The number in the third column refers to the error number of
the compilation error. The fourth number refers to the column number of the error in the
source file. The last column contains the individual file in which the error occurred.

fileCase (integer): Casing of file names and paths (put, gdx, ref, $include, etc.)

Available: Command line

This option facilitates modifying the case of file names and paths. It applies to files created
by a GAMS Job such as for example put files, GDX files and reference files. Under Windows,
the casing of a created file will only be affected if the file does not yet exist, i.e. fileCase=2
won't create trnsport.ref if there is already a file TRNSPORT.ref. It should be noted that
fileCase also applies to existing files that are used but not created by a GAMS job such as
for example $include files or $batInclude files.

Note that many other file names and paths are affected by this option (e.g. the scratch
directory (scrDir) or the GAMS system directory (sysDir)) and that it is recommended to use
this option with caution.

Default: 0

Value Meaning

0 Causes GAMS to use default casing

1 Causes GAMS to upper case file names including path of the file

2 Causes GAMS to lower case file names including path of the file

3 Causes GAMS to upper case file names only (leave the path alone)

4 Causes GAMS to lower case file names only (leave the path alone)

fileStem (string): Sets the file stem for output files which use the input file name as stem by default

Available: Command line

4.40 The GAMS Call and Command Line Parameters 1063

By default, some output files use the input file name as base. If the names of these output
files were not set explicitly, then this option may be used to set another name than the input
file name as base for these output files. In particular, the names for the following files may be
set with fileStem: dump files (see option dumpOpt), GDX files (if the option GDX was set
to default), log files (see option logFile), lst files (see option output), reference files (if the
option reference was set to default) and trace summary files (see also option trace).

fileStemApFromEnv (string): Append a string read from an environment variable to the ”FileStem”

Available: Command line

This option for users that submit GAMS job via mpirun/mpiexec. Such commands will spawn
multiple instances of GAMS (the precise number is an argument to mpirun/mpiexec). Each
invokation of GAMS will run the identical job and only the contents of an environment variable
(PMI RANK) will differentiate the run. Since GAMS will normally write to modelname.log/lst

if we run the GAMS file modelname.gms we will have many jobs writing to the same file.
Therefore we use this option to append the content of a particular environment variable
(name given by this option) to the default file names (see fileStem). Hence GAMS will create
modelname0.log/lst, modelname1.log/lst, and so forth when started with mpirun/mpiexec
and fileStemApFromEnv is set to the environment variable that provides the MPI rank of the
invokation. We allow to specify the name of the environment variable because different MPI
implementations use different variable names (e.g. PMI RANK or OMPI COMM WORLD RANK).

filtered (string): Switch between filtered and domain-checked read from GDX

Available: Command line, Option statement

The command line parameter Filtered initializes both, the option Filtered to control the behvior
of gdxLoad and the dollar control option $on/offFiltered for the compile-time equivalent
behavior.

Default: on

Value Meaning

off Load domain checked

on Load filtered

forceOptFile (integer): Overwrites other option file section mechanism

Available: Command line

Default: 0

forceWork (boolean): Force GAMS to process a save file created with a newer GAMS version or with
execution errors

Synonym: FW

Available: Command line

Work files generated by GAMS using the command line parameter save are saved in binary
format. The information inside these files will change from one GAMS version to another
GAMS version. GAMS makes every attempt to be backward compatible and ensure that all
new GAMS systems are able to read save files generated by older GAMS systems. However,
this cannot be guaranteed the other way around. Thus, GAMS does not allow to process a
save file, that was generated by a newer version of GAMS in general. This can be changed by
setting forceWork to 1. Also, GAMS does not continue after processing a save while with an
execution error by default. This behavior can be changed as well by setting forceWork=1.

1064 User's Guide

Attention

Forcing GAMS to continue after reading a save file from a newer GAMS version or a
save file with execution errors may lead to unexpected behavior. If it is about the GAMS
version and you can recreate the save file you may write it using GAMS command line
parameter previousWork=1.

Default: 0

Value Meaning

0 No translation

1 Try translation

forLim (integer): GAMS looping limit

Available: Command line, Option statement

This option specifies the maximum number of permitted executions of control structures with
a for statement, a while statement or a repeat statement before GAMS signals an execution
error and terminates the control structure.

Default: ∞

fSave (boolean): Creates a forced work file, i.e., the file is saved even if execution errors or other errors
occured

Available: Command line

This option allows to save a file even in the face of execution or other errors. How it works
depends on the command line parameter save.

Note that the option value of 1 is mainly used by solvers that can be interrupted from the
terminal.

Default: 0

Value Meaning

0 Workfile only written to file specified by SAVE if no errors occur

1 Workfile always written to file specified by SAVE or if SAVE is not present to a
name made up by GAMS

G205 (integer): Use GAMS version 2.05 syntax

Available: Command line

This option sets the level of the GAMS syntax and is mainly used to ensure backward
compatibility. New keywords have been introduced in the GAMS language since Release 2.05.
Models developed earlier that use identifiers that have since become keywords will cause errors
when they are run with the latest version of GAMS. This option enables users to run such old
models.

For example, the word ”if” is a keyword in GAMS that was introduced with the first version of
Release 2.25. Setting the option g205=1 allows the word ”if” to be used as an identifier since it
was not a keyword in Release 2.05. As another example, the word ”for” is a keyword in GAMS
that was introduced with the later versions of Release 2.25. Setting the option g205=2 allows
”for” to be used as an identifier since it was not a keyword in the first version of Release 2.25.

4.40 The GAMS Call and Command Line Parameters 1065

Note

If the values 1 or 2 are specified for option g205, then it will not be permitted to use
enhancements of the GAMS language that were introduced in later versions.

Default: 0

Value Meaning

0 Use only latest syntax

1 Allow version 2.05 syntax only

2 Allow version 2.25 syntax only

GDX (string): GAMS data exchange file name

Available: Command line

This option specifies the name of the GAMS data exchange file and causes a GDX file to be
written hat contains all data in the model at the end of the job. Setting gdx to the string
'default' causes GAMS to create a GDX file with the gms file root name and a gdx extension.
Thus gams the call

> gams trnsport gdx=default

will cause GAMS to write the GDX file trnsport.gdx.

gdxCompress (boolean): Compression of generated GDX file

Available: Command line

This option specifies whether the GDX files are compressed or not.

Default: 0

Value Meaning

0 Do not compress GDX files

1 Compress GDX files

gdxConvert (string): Version of GDX files generated (for backward compatibility)

Available: Command line

This option specifies in which format the GDX files will be written.

Default: v7

Value Meaning

v5 Version 5 GDX file, does not support compression

v6 Version 6 GDX file

v7 Version 7 GDX file

gdxSymbols (string): Select symbols that get exported when command line parameter GDX is set

Available: Command line

1066 User's Guide

This option specifies which symbols get exported when command line parameter GDX is set.
By default, all symbols get written to the specified GDX file, but it can be limited to only the
ones that were created or updated during the model run, or even to just the ones changed
during execution time.

Default: all

Value Meaning

all Write all symbols

newOrChanged Write only symbols that are new or got modified during compile or
execution time

assigned Write only symbols that got modified during execution time

gdxUels (string): Unload labels or UELs to GDX either squeezed or full

Available: Command line, Option statement

This option specifies the UEL export mode. Note that gdxUels only works for execute unload∗
statements during execution time and not for the command line parameter GDX or dollar
control options $gdxOut/$unload/$gdxUnload.
The UEL table may be written to a GDX file in two different modes. In squeezed mode, only
the UELs that are required by the exported symbols are exported. In full mode, all UELs
are exported. The following code snippet illustrates the difference:

Set i / i1*i5 /;

Parameter p(i) / i3 3 /;

option gdxuels = squeezed;

execute_unload ’squeezed’ p;

execute ’gdxdump squeezed UelTable=i’;

option gdxuels = full;

execute_unload ’full’ p;

execute ’gdxdump full UelTable=i’;

The file squeezed.gdx will contain the following lines:

Set i /

’i3’ /;

Parameter p(*) /

’i3’ 3 /;

The file full.gdx on the other hand, will contain the following lines:

Set i /

’i1’ ,

’i2’ ,

’i3’ ,

’i4’ ,

’i5’ /;

Parameter p(*) /

’i3’ 3 /;

Default: squeezed

4.40 The GAMS Call and Command Line Parameters 1067

Value Meaning

Squeezed Write only the UELs to Universe, that are used by the exported symbols

Full Write all UELs to Universe

gridDir (string): Grid file directory

Synonym: GDir

Available: Command line

This option sets the grid file directory. Note that each GAMS job has only one grid file
directory.

gridScript (string): Grid submission script

Synonym: GScript

Available: Command line

This option provides the name of a script file that is used to submit grid computing jobs. If
only the file name is given the file is assumed to be located in the system directory. A fully
qualified name can be given as well. The script needs to be similar to the file gmsgrid.cmd

on Windows machines with arguments that give name and location of the solver executable,
the solver control file name and the name of the scratch directory. For an example of such
a script, see section The Grid Facility: Architecture and Customization. However, note that
advanced knowledge of how GAMS sets up and calls solvers is needed for successful use.

Default: gmsgrid

handle (real): Unique handle number of SOLVE statement

Available: Attribute statement (use after solve)

The model attribute handle contains a unique identification of each submitted solu-
tion request and is typically stored in a parameter defined over a set that covers all
model instances. The handle number may be used by the functions handleCollect,
handleStatus, handleDelete, handleSubmit and readyCollect. For details see chapter
The Grid and Multi-Threading Solve Facility.

heapLimit (real): Maximum Heap size allowed in MB

Synonym: HL

Available: Command line

This option allows to limit the amount of memory a GAMS job may use during compilation
and execution. If the needed data storage exceeds this limit, the job will be terminated.

Default: ∞

holdFixed (boolean): Treat fixed variables as constants

Available: Command line, Attribute statement (use before solve)

This option facilitates treating fixed variables as constants. Thus the problems size may be
reduced.

Default: 0

1068 User's Guide

Value Meaning

0 Fixed variables are not treated as constants

1 Fixed variables are treated as constants

holdFixedAsync (boolean): Allow HoldFixed for models solved asynchronously as well

Available: Command line, Option statement

By default, holdFixed is automatically deactivated if a model is solved asynchronously, since
this could lead to inconsistent solutions otherwise. To allow this anyway, this parameter can
be set to 1.

Default: 0

Value Meaning

0 Ignore HoldFixed setting for async solves

1 Allow HoldFixed for async solves

IDCGDXInput (string): GDX file name with data for implicit input

Available: Command line

Specify the name of a GDX file that is used for implicit loading of input data. Details about
this are described with $onExternalInput.

IDCGDXOutput (string): GDX file name for data for implicit output

Available: Command line

Specify the name of a GDX file that is used for implicit writing of output data. Details about
this are described with $onExternalOutput.

IDCGenerateGDX (string): Specify GDX file name of input and output side of data contract

Available: Command line

Specify the name of a GDX file that is used to store all symbols that are declared as
external input or external output at the end of a GAMS run.

IDCGenerateGDXInput (string): Specify GDX file name of input side of data contract

Available: Command line

Specify the name of a GDX file that is used to store all symbols that are declared as
external input at the end of a GAMS run.

IDCGenerateGDXOutput (string): Specify GDX file name of output side of data contract

Available: Command line

Specify the name of a GDX file that is used to store all symbols that are declared as
external output at the end of a GAMS run.

IDCGenerateJSON (string): Specify JSON file name of data contract

4.40 The GAMS Call and Command Line Parameters 1069

Available: Command line

Specify the name of a JSON file that is used to store the information (but not the data) about
all symbols that are declared as external input or external output at the end of a GAMS run.

IDCJSON (string): Specify JSON file name to verify data contract

Available: Command line

Specify the name of a JSON file that is read and used to verify that the implicit data contract
given by the GAMS model by declaring symbols as external input or external output matches
the expected symbol information given by this specified file. This is the expected schema of
that file:
{

"$schema":"http://json-schema.org/draft-07/schema#",
"title":"Input/Output configuration file schema",
"description":"Configuration file is automatically generated by GAMS and describes the data contract.",
"type":"object",
"definitions": {

"symbolHeader":{
"description":"Symbol header",
"type":"object",
"properties":{

"alias":{
"description":"Explanatory text of the header",
"type":"string",
"minLength":1
},
"type":{

"description":"GAMS input type",
"type":"string",
"enum":[

"string",
"numeric"

]
}
},
"required": ["alias", "type"]
},
"symbol":{

"description": "Symbol definition",
"type": "object",
"properties": {

"alias":{
"description": "Explanatory text of the symbol",
"type":"string",
"minLength":1
},
"symtype":{

"description": "Symbol type",
"type":"string",
"default":"en",
"enum":[

"set",
"parameter",
"variable",
"equation"

]
},
"headers":{

"description":"Symbol headers",
"type":"object",
"minProperties":1,
"additionalProperties":{

"$ref": "#/definitions/symbolHeader"
}
}
},
"required": ["alias", "symtype", "headers"]
},
"scalarSymbol": {

"description": "Scalar symbols that are grouped together in one table",
"type": "object",
"properties": {

"alias":{
"description": "Explanatory text of the symbol",
"type":"string",
"minLength":1
},
"symnames":{

"description": "Symbol names in scalar tables",

1070 User's Guide

"type":"array",
"minItems":1,
"uniqueItems":true,
"items":{

"type":"string",
"minLength":1
}
},
"symtypes":{

"description": "Symbol types in scalar tables",
"type":"array",
"minItems":1,
"items":{

"type":"string",
"enum":[

"set",
"parameter",
"variable",
"equation"

],
"minLength":1
}
},
"symtext":{

"description": "Symbol aliases (exp. text) in scalar tables",
"type":"array",
"minItems":1,
"items":{

"type":"string",
"minLength":1
}
},
"headers":{

"description":"Symbol headers",
"type":"object",
"minProperties":1,
"additionalProperties":{

"$ref": "#/definitions/symbolHeader"
}
}
},
"required": ["alias", "symnames", "symtypes", "symtext", "headers"]
}
},
"additionalProperties":false,
"properties":{

"modelTitle":{
"description":"Title of the model",
"type":"string",
"default":"Unnamed model"
},
"inputSymbols":{

"description":"Name of the symbols to receive data from MIRO. Identifiers are case insensitive (will
always be lower case).",

"type":"object",
"additionalProperties":{

"oneOf": [
{ "$ref": "#/definitions/scalarSymbol" },
{ "$ref": "#/definitions/symbol"}

]
}
},
"outputSymbols":{

"description":"Name of the symbols to export to MIRO once computation has finished. Identifiers are
case insensitive (will always be lower case).",

"type":"object",
"additionalProperties":{

"oneOf": [
{ "$ref": "#/definitions/scalarSymbol" },
{ "$ref": "#/definitions/symbol"}

]
}
}
},
"required":["modelTitle", "inputSymbols", "outputSymbols"]
}

IDCProtect (boolean): Flag to control assignment protection of external input symbols

Available: Command line, Option statement

By default, it is not allowed to change symbols which are declared as external input at execution
time. This parameter allows to ignore this restriction. It sets the initial state for the dollar
control options $on/offIDCProtect.

4.40 The GAMS Call and Command Line Parameters 1071

Default: 1

1072 User's Guide

Value Meaning

0 Allow to change external input symbols at execution time

1 Protect external input symbols from being changed at execution time

IDE (boolean): Integrated Development Environment flag

Available: Command line

This option instructs GAMS to write special instructions to the log file that are in turn read
by an IDE.

Default: 0

Value Meaning

0 Unknown environment

1 Runs under GAMS IDE

implicitAssign (string): Switch default for ”$on/offImplicitAssign”

Available: Command line

For more info see $on/offImplicitAssign.

Default: off

Value Meaning

off Activate $offImplicitAssign

on Activate $onImplicitAssign

inlineCom (string): Switch default for ”$on/offInline” and ”$inlineCom”

Available: Command line

If this is set to on on or off it sets the state of $on/offInline. Other strings (a pair with not
more than two characters each) will set $inlineCom.

Default: off

Value Meaning

off Activate $offInline

on Activate $onInline using default inline comment characters

other Activate $onInline setting specific inline comment characters

input (string): Input file

Synonym: I

Available: Command line

Completing the input file name with the current directory composes the final name. If such a
file does not exist and the extension was not specified, the standard input extension will be
attached and a second attempt will be made to open an input file.

4.40 The GAMS Call and Command Line Parameters 1073

inputDir, inputDir1..40 (string): Input file directories (searched at compile time)

Synonym: IDIR

Available: Command line

In general, GAMS searches for input and include files in the current working directory only.
This option allows the user to specify additional directories for GAMS to search for include
and batinclude files as well as GDX file via $gdxIn. A maximum of 40 separate directories
may be included. The directories are separated by Operating System specific symbols. For
example, on a PC the separator is a semicolon (;) character and under Unix it is the colon (:)
character. Note that libinclude and sysinclude files are handled differently. Their paths are
specified with the command line parameters libIncDir and sysIncDir respectively.

Consider the following illustration:

> gams myfile idir \mydir;\mydir2

Note that the search order for the file myfile.gms and all included files in PC systems will
be as follows: (1) the current directory, (2) the directories specified by inputdir in their
respective order (here the directories: \mydir and \mydir2). Under Unix, the corresponding
GAMS call will be:

> gams myfile idir \mydir:\mydir2

Note that the information in the option inputDir may be also transferred to GAMS by
entering the individual directories separately. A maximum of 40 directories may be passed on
in this manner. The number appended to InputDir is important since the earlier InputDir

directories will be searched first.

The example above may alternatively be formulated in the following way:

> gams myfile idir1 mydir1 idir2 mydir2

Note that in this case the search order will be as follows:

1. current directory

2. mydir1

3. mydir2

Observe that we could modify the command in the following way:

> gams myfile idir3 \mydir1 idir2 \mydir2

Note that in this case the search order will be as follows:

1. current directory

2. mydir2

3. mydir3

Thus it is not the order in which the directories are specified that matters, but the number of
the option inputDir that they have been assigned to.

integer1..5 (integer): Integer communication cell N

Available: Command line, Option statement, Attribute statement (use before solve)

This option specifies an integer communication cell that may contain any integer number.

interactiveSolver (boolean): Allow solver to interact via command line input

Available: Command line

Default: 0

1074 User's Guide

Value Meaning

0 Interaction with solvelink 0 is not supported

1 Interaction with solvelink 0 is supported

intVarUp (integer): Set mode for default upper bounds on integer variables

Available: Command line, Option statement

Default: 0

Value Meaning

0 Set default upper bound for integer variables to +INF

1 Pass a value of 100 instead of +INF to the solver as upper bound for integer
variables

2 Same as 0 but writes a message to the log if the level of an integer variable is
greater than 100

3 Same as 2 but issues an execution error if the level of an integer variable is greater
than 100

iterLim (integer): Iteration limit of solver

Available: Command line, Option statement, Attribute statement (use before solve)

This option specifies the maximum number of permitted solver iterations, before the solver
terminates the run. If this limit is reached, the solver will terminate and will return solver status
2 ITERATION INTERRUPT. Note that the definition of what constitutes an interation depends
on the solver. For LP solvers, iterlim often refers to the number of simplex iterations (i.e.,
pivots). For MIP solvers, iterlim often refers to the cumulative number of simplex iterations
over all solves of LP relaxations. Observe that iterlim does not apply to all iterations. For
example, it might not apply to barrier iterations and major iterations in nonlinear solvers.
For these iterations solver-specific options need to be set. Moreover, some solver links might
reinterpret the value of this option. For example, if left at default, the solver link might use
the default iteration limit of the solver.

Default: 2147483647

iterUsd (integer): Number of iterations used

Available: Attribute statement (use after solve)

This model attribute returns the number of iterations used after a solve.

jobTrace (string): Job trace string to be written to the trace file at the end of a GAMS job

Synonym: JT

Available: Command line

This option specifies a string that is written to the trace file at the end of a GAMS job.

keep (boolean): Controls keeping or deletion of process directory and scratch files

Available: Command line

This option controls whether to keep the process directory. In the process directory the
temporary/scratch files are located, unless the options scrDir or procDir were used.

Default: 0

4.40 The GAMS Call and Command Line Parameters 1075

Value Meaning

0 Delete process directory

1 Keep process directory

libIncDir (string): LibInclude directory

Synonym: LDIR

Available: Command line

This option specifies the name of the directory to be used by GAMS for $libInclude files that do
not have a full path specification. An absolute or relative path may be specified. If the option
libIncDir is not set, it will be set to the subdirectory inclib in the GAMS standard locations.
A relative path is relative to the GAMS system directory.

Note that if the option libIncDir parameter is set, the default library include directories will
only be searched, if the libInclude file cannot be found in the specified folder.

Attention

Only one directory may be set with the option libIncDir. Thus the string specified will
be treated as one directory. If additional directories are added, errors will be reported.

Consider the following example:

> gams myfile libIncDir mydir

Note that GAMS will search for any referenced libInclude file in the directory <GAMS System

Directory>/mydir first.

license (string): Use alternative license file

Available: Command line

This option specifies the name the file that contains the GAMS license. It may be used to
point to an explicit license file rather letting GAMS search for the default gamslice.txt

in various locations including the GAMS system directory. The locations (”Data directo-
ries”) can be printed by running gamsinst -listdirs, see installation notes for details. The
license option should only be used by advanced users attempting to override internal license
information.

limCol (integer): Maximum number of columns listed in one variable block

Available: Command line, Option statement, Attribute statement (use before solve)

This option controls the number of columns that are listed for each variable in the column listing
in the listing file. Note that the value of zero will suppress the column listing.

Default: 3

limRow (integer): Maximum number of rows listed in one equation block

Available: Command line, Option statement, Attribute statement (use before solve)

This option controls the number of rows that are listed for each equation in the equation listing
in the listing file. Note that the value of zero will suppress the equation listing.

Default: 3

1076 User's Guide

line (integer): Line number of last solve of the corresponding model

Available: Attribute statement (use after solve)

This model attribute returns the line number of the last solve of the respective model.

linkUsed (integer): Integer number that indicates the value of SolveLink used for the last solve

Available: Attribute statement (use after solve)

This model attribute returns an integer number that indicates the value of the option solveLink
that was used for the last solve.

listing (string): Switch default for ”$on/offListing”

Available: Command line

For more info see $on/offListing.

Default: on

Value Meaning

off Activate $offListing

on Activate $onListing

logFile (string): Log file name

Synonym: LF

Available: Command line

This option is used in conjunction with the option logOption or short LO. If lo is set to 2 or 4,
this option will specify the name of the log file name. The name provided by the option is
completed using the current directory. If no logfile is given, but the value of lo is 2 or 4, then
the file name will be the input file name with the extension .log.

Consider the following GAMS call:

> gams trnsport lo=2 lf=myfile.log

Note that the resulting log file will redirected to the file myfile.log. It will contain the
following lines:

--- Starting compilation

--- trnsport.gms(75) 3 Mb

--- Starting execution: elapsed 0:00:00.017

--- trnsport.gms(44) 4 Mb

--- Generating LP model transport

--- trnsport.gms(63) 4 Mb

--- 6 rows 7 columns 19 non-zeroes

--- Executing CPLEX: elapsed 0:00:00.072

IBM ILOG CPLEX 24.8.2 r59988 Released Jan 3, 2017 DEG x86 64bit/Mac OS X

Cplex 12.7.0.0

Reading data...

4.40 The GAMS Call and Command Line Parameters 1077

Starting Cplex...

Space for names approximately 0.00 Mb

Use option ’names no’ to turn use of names off

Tried aggregator 1 time.

LP Presolve eliminated 1 rows and 1 columns.

Reduced LP has 5 rows, 6 columns, and 12 nonzeros.

Presolve time = 0.01 sec. (0.00 ticks)

Iteration Dual Objective In Variable Out Variable

1 73.125000 x(Seattle.New-York) demand(New-York) slack

2 119.025000 x(Seattle.Chicago) demand(Chicago) slack

3 153.675000 x(San-Diego.Topeka) demand(Topeka) slack

4 153.675000 x(San-Diego.New-York) supply(Seattle) slack

LP status(1): optimal

Cplex Time: 0.03sec (det. 0.01 ticks)

Optimal solution found.

Objective : 153.675000

--- Restarting execution

--- trnsport.gms(63) 2 Mb

--- Reading solution for model transport

--- trnsport.gms(72) 3 Mb

instructions that will go to the log file

more instructions that will go to the log file

*** Status: Normal completion

--- Job trnsport.gms Stop 02/09/17 14:39:20 elapsed 0:00:00.280

logLine (integer): Amount of line tracing to the log file

Synonym: LL

Available: Command line

This option may be used to limit the number of line tracing sent out to the log file during the
compilation phase of a GAMS run. Note that setting this option to zero will cause the line
tracing to be suppressed for all phases of the GAMS processing.

The log file that results from running the model [TRNSPORT] with the option ll=0 is
shown below.

--- Starting compilation

--- Starting execution: elapsed 0:00:00.018

--- Generating LP model transport

--- 6 rows 7 columns 19 non-zeroes

--- Executing CPLEX: elapsed 0:00:00.060

IBM ILOG CPLEX 24.8.2 r59988 Released Jan 3, 2017 DEG x86 64bit/Mac OS X

Cplex 12.7.0.0

Reading data...

Starting Cplex...

Space for names approximately 0.00 Mb

Use option ’names no’ to turn use of names off

Tried aggregator 1 time.

LP Presolve eliminated 1 rows and 1 columns.

Reduced LP has 5 rows, 6 columns, and 12 nonzeros.

Presolve time = 0.01 sec. (0.00 ticks)

1078 User's Guide

Iteration Dual Objective In Variable Out Variable

1 73.125000 x(Seattle.New-York) demand(New-York) slack

2 119.025000 x(Seattle.Chicago) demand(Chicago) slack

3 153.675000 x(San-Diego.Topeka) demand(Topeka) slack

4 153.675000 x(San-Diego.New-York) supply(Seattle) slack

LP status(1): optimal

Cplex Time: 0.03sec (det. 0.01 ticks)

Optimal solution found.

Objective : 153.675000

--- Restarting execution

--- Reading solution for model transport

instructions that will go to the log file

more instructions that will go to the log file

*** Status: Normal completion

--- Job trnsport.gms Stop 02/09/17 15:43:43 elapsed 0:00:00.275

If we compare this output to the output shown in the example of option logFile, we will
observe that the line numbers are missing from this log file.

Default: 2

Value Meaning

0 No line tracing

1 Minimum line tracing

2 Automatic and visually pleasing

logOption (integer): Log option

Synonym: LO

Available: Command line

This option controls the location of the output log of a GAMS run. By default, GAMS directs
the log of the run to the standard output. If logOption is set to 2, the log will be redirected
to a file. Note that if no file name is provided for the log through the option logFile, the file
name will be the input file name with the extension .log. Observe that the settings zero and
2 may be used to permit jobs to run in the background.

To illustrate, consider the following call:

> gams trnsport lo=2

Note that the resulting log file, trnsport.log, will be identical to the file myfile.log that is
shown as part of the description of the option logFile.

Default: 3

Value Meaning

0 No log output

2 Log output to logfile

3 Log output to standard output

4 Log output to logfile and standard output

4.40 The GAMS Call and Command Line Parameters 1079

LP (string): Linear Programming - default solver

Available: Command line, Option statement

The default solver for models of the type Linear Programs is set during installation. The user
may change this default by setting this option to the desired solver.

Observe that if the solver was changed using an option statement, the default solver may be
reset later in the program with another option statement, where the value of the option is set
to default.

lstTitleLeftAligned (boolean): Write title of LST file all left aligned

Available: Command line

Default: 1

Value Meaning

0 Split LST title into left and right aligned part

1 Write LST title completely left aligned

marginals (integer): Indicator for marginals present

Available: Attribute statement (use after solve)

maxExecError (integer): Execution time error limit

Synonym: ExecErr

Available: Command line

This option puts an upper limit on the number of errors that may be found during execution or
preprocessing associated with a solve statement. If more than maxExecError errors have been
found GAMS will abort when hitting the next solve statement. If maxExecError is greater
than the number of pending execution errors, the solve will be skipped, but the execution
continues afterwards. This value can be overwritten with the function maxExecError.

Default: 0

Value Meaning

0 No errors allowed limit

n Max number allowed

maxGenericFiles (integer): Maximum number of generic file names tried at execution time file creation

Available: Command line, Option statement

In case of a failed writing of put files and GDX files via execute unload (e.g. because the given
path is invalid or the file is open by another program), GAMS tries to write to a generic file
name instead. The number of file names tried can be specified with this option. To avoid this
completely and throw an error right away, if the given name is invalid, set this to 0.

Default: 20

maxInfes (real): Maximum of infeasibilities

1080 User's Guide

Available: Attribute statement (use after solve)

This model attribute returns the maximum number of infeasibilities after a solve.

maxProcDir (integer): Maximum number of 225∗ process directories

Available: Command line

This option controls the maximum number of work file directories that may be generated by
GAMS. By default they are called 225a, 225b, ..., 225aa, 225ab ... Note that the label 225
may be changed with the option procDir.

Default: 700

MCP (string): Mixed Complementarity Problems - default solver

Available: Command line, Option statement

The default solver for models of the type Mixed Complementarity Problems is set during
installation. The user may change this default by setting this option to the desired solver.

Observe that if the solver was changed using an option statement, the default solver may be
reset later in the program with another option statement, where the value of the option is set
to default.

MCPRHoldFx (boolean): Print list of rows that are perpendicular to variables removed due to the
holdfixed setting

Available: Command line, Option statement, Attribute statement (use before solve)

If option holdfixed is true, fixed columns in row.column matches are removed from MCP
models but the matching rows remain. These rows are ignored by the solver. This option
causes a list of such rows to be included in the listing file prior to the solve summary.

Default: 0

meanInfes (real): Mean of infeasibilities

Available: Attribute statement (use after solve)

This model attribute returns the mean of the infeasibilities after a solve.

measure (no value): Output of time and memory use since the last measure statement or the program
beginning

Available: Option statement

This option has the effect that three measurements will be displayed: the memory and time
usage since the last option statement measure and the total time used. See also the related
option profile.

memoryStat (no value): Show memory statistics in the LST file

Available: Option statement

This option has the effect that memory statistics will be shown in the listing file.

MIIMode (string): Model Instance Mode

Available: Command line

This parameter is used in conjunction with the GAMS Model Instance Inspector (MII). The
MII needs to have access to the scratch directory and requires a dictionary for the model
instance to analyze. So, this parameter forces other parameters to be set:

• Keep is forced to 1.

• DictFile is forced to 1.

• SolveLink is forced to 2 with MIIMode=singleMI and to 4 with MIIMode=multiMI.

Default: off

4.40 The GAMS Call and Command Line Parameters 1081

Value Meaning

off Default behavior

singleMI Setup to inspect a single model instance

multiMI Setup to inspect multiple model instances from one model

MINLP (string): Mixed-Integer Non-Linear Programming - default solver

Available: Command line, Option statement

The default solver for models of the type Mixed Integer Nonlinear Programs is set during
installation. The user may change this default by setting this option to the desired solver.

Observe that if the solver was changed using an option statement, the default solver may be
reset later in the program with another option statement, where the value of the option is set
to default.

MIP (string): Mixed-Integer Programming - default solver

Available: Command line, Option statement

The default solver for models of the type Mixed Integer Programs is set during installation.
The user may change this default by setting this option to the desired solver.

Observe that if the solver was changed using an option statement, the default solver may be
reset later in the program with another option statement, where the value of the option is set
to default.

MIQCP (string): Mixed Integer Quadratically Constrained Programs - default solver

Available: Command line, Option statement

The default solver for models of the type Mixed Integer Quadratically Constrained Programs
is set during installation. The user may change this default by setting this option to the
desired solver.

Observe that if the solver was changed using an option statement, the default solver may be
reset later in the program with another option statement, where the value of the option is set
to default.

modelStat (integer): Integer number that indicates the model status

Available: Attribute statement (use after solve)

This model attribute returns the model status after a solve. Observe that there are
compile-time constants that are related to modelStat. Note that additional information
to the values given in the table below is provided in section Model Status.

Value Meaning

1 Optimal

2 Locally Optimal

3 Unbounded

4 Infeasible

5 Locally Infeasible

6 Intermediate Infeasible

7 Feasible Solution

1082 User's Guide

Value Meaning

8 Integer Solution

9 Intermediate Non-Integer

10 Integer Infeasible

11 Licensing Problem

12 Error Unknown

13 Error No Solution

14 No Solution Returned

15 Solved Unique

16 Solved

17 Solved Singular

18 Unbounded - No Solution

19 Infeasible - No Solution

MPEC (string): Mathematical Programs with Equilibrium Constraints - default solver

Available: Command line, Option statement

The default solver for models of the type Mathematical Program with Equilibrium Constraints
is set during installation. The user may change this default by setting this option to the
desired solver.

Observe that if the solver was changed using an option statement, the default solver may be
reset later in the program with another option statement, where the value of the option is set
to default.

multi (string): Switch default for ”$on/offMulti[R]”

Available: Command line

If this is set to on on or off it sets the state of $on/offMulti. The value onR activates
$onMultiR.

Default: off

Value Meaning

off Activate $offMulti

on Activate $onMulti

onR Activate $onMultiR

multiPass (boolean): Multipass facility

Synonym: MP

Available: Command line

This option may be used to instruct GAMS to use a quick syntax checking compilation facility
which does not require all items to be declared. This alternative is useful when a large model
is assembled from smaller pieces. It allows slices of GAMS code to be independently checked
for syntax errors.

Consider the following example:

4.40 The GAMS Call and Command Line Parameters 1083

a(i) = b(i)*5 ;

b(i) = c(j) ;

By default, running a file containing just these two statements will generate the following
listing file:

1 a(i) = b(i)*5 ;

**** $140,120,140

2 b(i) = c(j) ;

**** $140,120,149

120 Unknown identifier entered as set

140 Unknown symbol

149 Uncontrolled set entered as constant

**** 6 ERROR(S) 0 WARNING(S)

Note that both sets i and j have not been defined or initialized. In addition, the identifiers a,
b and c have not been defined either. Further, an assignment cannot be made without the
right-hand side of the assignment being known. However, in both assignments there is no data
available for the right-hand side. If we run the same two lines with the option mp=1, we will
get the following listing file:

1 a(i) = b(i)*5 ;

2 b(i) = c(j) ;

**** $149

149 Uncontrolled set entered as constant

**** 1 ERROR(S) 0 WARNING(S)

Observe that the statements have now been processed independently of their context. They
are now checked only for consistency. GAMS now assumes that the sets i and j, as well as
the identifiers a, b, and c have been defined and, if necessary, initialized elsewhere. The only
error that is reported is the inconsistency of indices in the second statement.

Default: 0

Value Meaning

0 Standard compilation

1 Check-out compilation

2 As 1, and skip $call and ignore missing file errors with $include and $gdxin as
well as unknown dimension errors with empty data statements

NLP (string): Non-Linear Programming - default solver

Available: Command line, Option statement

The default solver for models of the type Nonlinear Programs is set during installation. The
user may change this default by setting this option to the desired solver.

Observe that if the solver was changed using an option statement, the default solver may be
reset later in the program with another option statement, where the value of the option is set
to default.

nodLim (integer): Node limit in branch and bound tree

1084 User's Guide

Available: Command line, Attribute statement (use before solve)

This option specifies the maximum number of nodes that are to be processed in the branch and
bound tree search for a MIP problem. Note that setting nodLim can stop solutions that are
exhibiting ”excessive” iterations: if the limit is reached the algorithm will terminate, without
obtaining optimality. In this case the solver status will be 4 TERMINATED BY SOLVER. Observe
that a value of zero is interpreted as 'not set'.

Default: 0

nodUsd (integer): Number of nodes used by the MIP solver

Available: Attribute statement (use after solve)

This model attribute returns the number of nodes used by the MIP solver after a solve.

noNewVarEqu (integer): Triggers a compilation error when new equations or variable symbols are
introduced

Available: Command line

Default: 0

Value Meaning

0 AllowNewVarEqu

1 DoNotAllowNewVarEqu

number (real): Model instance serial number

Available: Attribute statement (use after solve)

This model attribute returns the model instance serial number. Note that the first model
solved is assigned number 1, the second number 2 etc. The user may also set a value n and
the next model solved will be assigned the number n+1.

numDepnd (integer): Number of dependencies in a CNS model

Available: Attribute statement (use after solve)

This model attribute returns the number of dependencies identified in a CNS model after a
solve.

numDVar (integer): Number of discrete variables

Available: Attribute statement (use after solve)

This model attribute returns the number of discrete variables after a solve.

numEqu (integer): Number of equations

Available: Attribute statement (use after solve)

This model attribute returns the number of equations after a solve.

numInfes (integer): Number of infeasibilities

4.40 The GAMS Call and Command Line Parameters 1085

Available: Attribute statement (use after solve)

This model attribute returns the number of infeasibilities after a solve.

numNLIns (integer): Number of nonlinear instructions

Available: Attribute statement (use after solve)

This model attribute returns the number of nonlinear instructions after a solve.

numNLNZ (integer): Number of nonlinear nonzeros

Available: Attribute statement (use after solve)

This model attribute returns the number of nonlinear nonzeros after a solve.

numNOpt (integer): Number of nonoptimalities

Available: Attribute statement (use after solve)

This model attribute returns the number of nonoptimalities after a solve.

numNZ (integer): Number of nonzero entries in the model coefficient matrix

Available: Attribute statement (use after solve)

This model attribute returns the number of nonzero entries in the model coefficient matrix
after a solve.

numRedef (integer): Number of MCP redefinitions

Available: Attribute statement (use after solve)

This model attribute returns the number of MCP equation-type redefinitions after a solve.

numVar (integer): Number of variables

Available: Attribute statement (use after solve)

This model attribute returns the number of variables after a solve.

numVarProj (integer): Number of bound projections during model generation

Available: Attribute statement (use after solve)

This model attribute returns the number of bound projections during model generation.

objEst (real): Estimate of the best possible solution for a mixed-integer model

Available: Attribute statement (use after solve)

This model attribute returns the estimate of the best possible solution for a MIP or other
models with discrete variables. The model attribute is mainly used after solve.

Some GAMS solvers implement algorithms (e.g. branch-and-bound) that generate a bound
on the objective function value for the best possible solution. Users may access this bound
by using the model attribute objEst. Note that this is mainly used for models with discrete
variables (e.g. MIP and MINLP), but some global solvers implement spatial branch-and-bound
algorithms that also provide such a bound for purely continuous problems. In case the solver
does not set the attribute, its value is na.

objVal (real): Objective function value

Available: Attribute statement (use after solve)

This model attribute returns the objective function value after a solve.

on115 (boolean): Generate errors for unknown unique element in an equation

Available: Command line

This option generates errors for unknown unique elements in an equation.

Default: 0

1086 User's Guide

Value Meaning

0 No error messages

1 Issue error messages

optCA (real): Absolute Optimality criterion solver default

Available: Command line, Option statement, Attribute statement (use before solve)

This option specifies an absolute termination tolerance for a global solver. General problems are
often extremely difficult to solve and proving that a solution that was found for a nonconvex
problem is indeed the best possible solution can use enormous amounts of resources. The
absolute gap is defined to be |PB-DB|. Here the primal bound PB is the objective function value
of the best feasible solution found thus far and the dual bound DB is the current bound on the
optimal value of the problem (i.e., lower bound in case of minimization and upper bound in
case of maximization).

If the absolute gap is not greater than optCA, the solver will terminate and return solver status
1 NORMAL COMPLETION and model status 8 INTEGER SOLUTION (for a problem with discrete
variables) or 2 LOCAL OPTIMAL or 7 FEASIBLE SOLUTION (for a problem without discrete
variables). Note that this is a termination test only; setting this option should not change the
global search.

Note

As this is an absolute criterion, setting the value to 100 means that the objective value
will be within the 100 units of the true objective value.

Observe that a nonzero value for optCA will reduce solution time. However, it may cause the
true integer optimum to be missed. This will be the case if at the time the solution algorithm
stops, the value of the true integer optimum is within the tolerance specified by optCA of the
best current solution. Therefore the reported solution could be the best, but it is guaranteed
only to be within the tolerance of the true optimal solution.

Default: 0

optCR (real): Relative Optimality criterion solver default

Available: Command line, Option statement, Attribute statement (use before solve)

This option specifies a relative termination tolerance for a global solver. General problems are
often extremely difficult to solve and proving that a solution that was found for a nonconvex
problem is indeed the best possible solution can use enormous amounts of resources. The
precise definition of optCR depends on the solver. GAMS and some solvers use the following
formula to compute the optimality gap:

|PB-DB| / max(|PB|,|DB|)

Here the primal bound PB is the objective function value of the best feasible solution found
thus far and the dual bound DB is the current bound on the optimal value of the problem (i.e.,
lower bound in case of minimization and upper bound in case of maximization). However, two
other formulas are also widely used, namely

|PB-DB| / |PB|

and

|PB-DB| / |DB|

Different adjustments when the denominator approaches zero or bounds are of different signs
will be applied. The solver will stop as soon as it has found a feasible solution proven to be
within optCR of optimal, that is, the optimality gap falls below optCR.

4.40 The GAMS Call and Command Line Parameters 1087

Note

As optCR is specified in proportional terms relative to the objective value, a value of 0.1
means that the objective value will be within 10% of the true objective value.

Observe that the solver will stop after finding a solution proven to be optimal within the
tolerance specified with optCR and thus the solution time may be reduced. However, setting
this option may cause the true integer optimum to be missed. This will be the case if at the
time the solution algorithm stops, the value of the true integer optimum is within the tolerance
specified by optCR of the best current solution. Therefore the reported solution could be the
best, but it is guaranteed only to be within the tolerance of the true optimal solution.

Default: 1.0E-04

optDir (string): Option file directory

Available: Command line

This option may be used to specify the name of the directory for solver option files. By default,
the directory will be set to the current working directory.

optFile (integer): Default option file

Available: Command line, Attribute statement (use before solve)

This option instructs the solver to read an option file. The value of optFile determines which
option file is used (see table below). Solver options allow users to manipulate the way solvers
work. This may affect various solver functions including the choice of the branch and bound
tree handling strategies. Please consult the solver manuals for options for each solver.

Note that this option is availabe as model attribute and command line parameter. Consider
the following GAMS call:

> gams myfile optfile=1

Observe that the value of 1 for optFile means that the option file with the name
solverName.opt will be used. Here solverName is the name of the respective solver. For
example, if the solver CONOPT is used, the name of the respective option file is conopt.opt.

Note

If optFile is set with the model attribute in the GAMS input file, the value of the model
attribute will override any optFile specifications on the command line.

Different values for optFile allow access to different option files for the same solver. Note
that the following rule is used: if we specify optfile = n, then solvername.opt will be used
for n=1, otherwise solvername.opX, solvername.oXX or solvername.XXX will be used, where
X's are the characters representing the value of n, for n > 1. Observe that no option file will
be used if the value of optFile is zero.

Default: 0

Value Meaning

0 No option file will be used

1 The option file solvername.opt will be used

2 The option file solvername.op2 will be used

3 The option file solvername.op3 will be used

15 The option file solvername.o15 will be used

222 The option file solvername.222 will be used

1234 The option file solvername.1234 will be used

1088 User's Guide

output (string): Listing file name

Synonym: OO

Available: Command line

By default, the name of the output file (or listing file) is automatically created by combining
the name of the input file with the current directory and applying the standard output file
extension .lst. This option may be used to specify an alternative name for the output file. If
the value is a file name without an absolute path, the current directory will compose the final
name. If the absolute path is included in the file name, then the name is used as specified.

Consider the following examples:

gams trnsport

gams trnsport o=trnsportOut

gams trnsport o=c:\test\trnsport.out

Note that the first call will create an output file called trnsport.lst (for PC and Unix
platforms) in the current directory. The second call will create a file called trnsportOut

(without extension) in the current directory. The last call will create the file as listed. If the
directory c:\test does not exist, GAMS will exit with a parameter error.

Creation of the output file can be suppressed by setting the command line parameter
writeOutput to 0.

pageContr (integer): Output file page control option

Synonym: PC

Available: Command line

This option affects the page control in the listing file.

Default: 2

Value Meaning

0 No page control, with padding

1 FORTRAN style line printer format

2 No page control, no padding

3 Formfeed character for new page

pageSize (integer): Output file page size (=0 no paging)

Synonym: PS

Available: Command line

This option specifies the number of lines that are used on a page for printing the listing file.
The lower bound is zero, which is interpreted as +inf. That means that everything is printed
to one page.

Default: 0

pageWidth (integer): Output file page width

4.40 The GAMS Call and Command Line Parameters 1089

Synonym: PW

Available: Command line

This option sets the print width on a page in the listing file with a possible range from 72 to
32767. If the value is outside the allowed range, the default value will be used.

Note that .pw is also a put file attribute. In the context of the put writing facility, it may be
used to set the page width of a put file. See page width for further details.

Default: 32767

parmFile (string): Command Line Parameter include file

Synonym: PF

Available: Command line

This option specifies the name of a secondary customization parameter file to use. It is
used to augment the command line adding more command line parameters from a file. It
is read from the current directory unless a path is specified. For an example, see section
Specifying Options Through a Secondary Parameter File.

pLicense (string): Privacy license file name

Available: Command line

This option gives the name of a privacy license file that contains file encryption codes. A full
path should be used. For more information, see Encrypting Files.

prefixLoadPath (boolean): Prepend GAMS system directory to library load path

Available: Command line

The OS environment variable to locate shared libraries used to be prefixed with the GAMS
system directory. The option controls if this done or not. For the Windows platform, setting
this option has no impact.

Default: 0

Value Meaning

0 Do not set GAMS system directory at beginning of library load path

1 Set GAMS system directory at beginning of library load path

previousWork (boolean): Indicator for writing workfile with previous workfile version

Available: Command line

When GAMS creates a workfile (e.g. using command line parameter restart) by default it
uses the most recent version of the workfile format. GAMS is backward compatible with
respect to workfile formats, i.e. newer GAMS versions can process workfiles generated by older
GAMS version. As long as the workfile format has not changed older GAMS versions can
even process workfiles generated by newer GAMS versions (using the forceWork=1 command
line parameter). This particular command line parameter allows to create a workfile using
the previous workfile format with the current GAMS version, so the previous GAMS version

1090 User's Guide

(and probably a few more versions back) will properly restart from this workfile even without
issueing a warning.

This option is mostly used in combination with submissions to the NEOS server. Setting
this option to 1 allows to submit NEOS jobs with a restart file even if the NEOS version is
somewhat older than the local GAMS version.

Default: 0

Value Meaning

0 Write workfile using the current version

1 Write workfile using the previous workfile version

priorOpt (real): Priority option for variable attribute .prior

Available: Attribute statement (use before solve)

Instructs the solver to use the priority branching information passed by GAMS through
variable suffix values variable.prior. If and how priorities are used is solver-dependent.

Default: 0

procDir (string): Process Directory

Available: Command line

This option specifies the name of the process directory. If specified, the directory must already
exist and it will not be deleted when GAMS cleans up. By default, the process directory name
is chosen automatically from the list 225a, 225b, ..., 225aa, 225ab ..., by skipping over existing
entries, and the directory will be deleted during cleanup if the option keep is not used. Very
little is written to the process directory, but the scratch directory is used more, and the option
scrDir takes its default from the process directory.

procDirPath (string): Directory to create process directory in

Available: Command line

This option specifies the directory where the process directory should be created. If specified,
the directory must already exist. While the process directory does not get cleaned automatically
if the option procDir is set, this is not the case if the option procDirPath is used instead.
Thus it allows to conveniently change the location of the process directory without changing
the GAMS cleanup behavior. Note that if the location of the process directory is changed, the
location of the default scratch directory will be changed accordingly (see option scrDir).

procTreeMemMonitor (boolean): Monitor the memory used by the GAMS process tree

Available: Command line

Setting this option to 1 will cause GAMS to record the high-memory mark for the GAMS
process tree (i.e. the gams or gams.exe process and all its children) and note this information
in the log just prior to finishing. This is done via a separate thread that runs periodically
(use option procTreeMemTicks to control how often) to construct the GAMS process tree and
compute the memory usage for each process in it. There is some overhead with this so it
is suggested to use this option only when needed and with a procTreeMemTicks value not
smaller than the default.

In addition to the memory high-water marks (measured using both the size of the resident set
and the virtual set used by each process in the tree) the report indicates the number of times
this measurement was taken and any failures during this computation. For details on how to
interpret the resident set and virtual set sizes, see showOSMemory.

Default: 0

4.40 The GAMS Call and Command Line Parameters 1091

Value Meaning

0 Do not monitor memory usage for the GAMS process tree

1 Start a thread to monitor memory usage for the GAMS process tree

procTreeMemTicks (integer): Set wait interval between memory monitor checks: ticks = milliseconds

Available: Command line

Sets the wait interval in milliseconds between checks of the GAMS process tree memory usage:
see procTreeMemMonitor for details.

Default: 2000

procUsed (integer): Integer number that indicates the used model type

Available: Attribute statement (use after solve)

Value Meaning

1 LP

2 MIP

3 RMIP

4 NLP

5 MCP

6 MPEC

7 RMPEC

8 CNS

9 DNLP

10 RMINLP

11 MINLP

12 QCP

13 MIQCP

14 RMIQCP

15 EMP

profile (integer): Execution profiling

Available: Command line, Option statement

The execution profile of a GAMS run contains the individual and cumulative time required to
execute the sections of the GAMS model, as well as information on memory use. The option
profile controls whether an execution profile will be generated in the listing file. Observe
that profile is available as command line parameter and option statement.

Note

The value for profile that is specified with an option statement in the GAMS input
file overrides the value of profile that is passed through the command line.

Observe that an execution profile will be generated if the option profile is assigned a value
larger than zero (zero is the default). Setting profile to 1 has the effect that execution times
for each statement and the number of set elements over which the particular statement is
executed will be reported. However, statements in programming flow control structures like
loops will be omitted. Information on the execution of these statements will be included in

1092 User's Guide

the profile if the value is n, with n > 1. Note that an overview of the values for profile is
given in the table at the end of this description.

Consider the following GAMS call:

> gams trnsport profile=1

This call causes the following additional lines to appear in the listing file:

---- 1 InitE 0.000 0.000 SECS 3 MB

---- 1 ExecInit 0.000 0.000 SECS 3 MB

---- 44 Assignment c 0.011 0.011 SECS 4 MB 6

---- 63 Assignment transport 0.000 0.011 SECS 4 MB 3

---- 65 Solve Init transport 0.000 0.012 SECS 4 MB

---- 57 Equation cost 0.001 0.013 SECS 4 MB 1

---- 58 Equation supply 0.000 0.013 SECS 4 MB 2

---- 59 Equation demand 0.000 0.013 SECS 4 MB 3

---- 65 Solve Fini transport 0.009 0.022 SECS 4 MB 19

---- 65 GAMS Fini 0.001 0.001 SECS 4 MB

---- 1 InitE 0.000 0.000 SECS 2 MB

---- 1 ExecInit 0.000 0.000 SECS 2 MB

---- 65 Solver transport 0.000 0.000 SECS 2 MB

---- 65 Solve Read transport 0.002 0.002 SECS 2 MB

---- 67 Display 0.000 0.002 SECS 3 MB

---- 69 Display 0.000 0.002 SECS 3 MB

---- 69 GAMS Fini 0.001 0.001 SECS 3 MB

Observe that the first column provides the line number in the input file of the statement that
is executed.

The second column reports the type of the respective statement. For an overview of all GAMS
statements, see section Classification of GAMS Statements. In addition, ExecInit denotes
the beginning of the execution phase of the GAMS input file and GAMS Fini denotes the end
of this phase. Note that as soon as a solve statement is processed, GAMS will pass control
to the solver system. Once the solver has completed its task, GAMS will restart. Thus we
have two ExecInit/ GAMS Fini pairs in our example. Note that only equations are listed, and
not variables. This reflects the fact that GAMS uses an equation based scheme to generate a
model.

The third and fourth columns show the individual time needed to execute the statement and
the cumulative time taken by the GAMS system so far.

The last column gives the number of assignments that were generated in the specified line.

In addition to the lines above, a profile summary is created at the end of the listing file. This
summary contains (up to) ten of the slowest execution steps. The profile summary from
trnsport.lst follows:

---- Profile Summary (17 records processed)

0.011 0.004GB 44 Assignment c (6)

0.009 0.004GB 65 Solve Fini transport (19)

0.002 0.002GB 65 Solve Read transport

0.001 0.004GB 65 GAMS Fini

0.001 0.004GB 57 Equation cost (1)

0.001 0.003GB 69 GAMS Fini

Note that execution profiles and profile summaries are particularly useful for de-
tecting the sources of performance problems. For further details, see section
Finding the Causes for Slow Program Execution.

Default: 0

4.40 The GAMS Call and Command Line Parameters 1093

Value Meaning

0 No profiling

1 Minimum profiling

n Profiling depth for nested control structures

profileFile (string): Write profile information to this file

Synonym: PFILE

Available: Command line

This option causes profiling information to be written to a file. Note that profiling information
is only created with the setting profile=1 or profile=2. For example such a file may have
the following conten:

1 -1 0.000 0.003 ExecInit

45 6 0.000 0.004 Assignment c

66 -1 0.000 0.004 Solve Init transport

58 1 0.000 0.004 Equation cost

60 2 0.000 0.004 Equation supply

62 3 0.000 0.004 Equation demand

66 19 0.015 0.004 Solve Fini transport

66 -1 0.000 0.004 GAMS Fini

1 -1 0.000 0.002 ExecInit

66 -1 0.000 0.002 Solve Read transport

68 -1 0.000 0.003 Display

68 -1 0.000 0.003 GAMS Fini

profileTol (real): Minimum time a statement must use to appear in profile generated output

Synonym: PTOL (only available on the command line)

Available: Command line, Option statement

This option sets the profile tolerance in seconds. All statements that take less time to execute
than this tolerance are not reported in the listing file. Note that this option is only effective if
the value of the option profile is larger than zero.

Default: 0

putDir (string): Put file directory

Synonym: PDir

Available: Command line

By default, put files are generated and saved in the current working directory. This option
may be used to specify an alternative directory. Note that this option does not work if an
absolute file name is provided through the file statement.

putND (integer): Number of decimals for put files

Available: Command line

This sets the default for the put file attribute .nd.

Default: 2

putNR (integer): Numeric round format for put files

Available: Command line

This sets the default for the put file attribute .nr.

Default: 1

1094 User's Guide

Value Meaning

0 Item is displayed in F or E format

1 Item is rounded to fit given width and decimals

2 Item is displayed in scientific notation

3 Item is rounded to fit given width

4 Item is displayed in F or E format ignoring given decimals

putPS (integer): Page size for put files

Available: Command line

This sets the default for the put file attribute .ps.

Default: 58

putPW (integer): Page width for put files

Available: Command line

This sets the default for the put file attribute .pw.

Default: 32767

QCP (string): Quadratically Constrained Programs - default solver

Available: Command line, Option statement

The default solver for models of the type Quadratically Constrained Programs is set during
installation. The user may change this default by setting this option to the desired solver.

Observe that if the solver was changed using an option statement, the default solver may be
reset later in the program with another option statement, where the value of the option is set
to default.

real1..5 (real): Real communication cell N

Available: Option statement, Attribute statement (use before solve)

This option specifies a real communication cell that may contain any real number.

reference (string): Symbol reference file

Synonym: RF

Available: Command line

If this option is specified, all symbol references will be written to the specified file. Setting rf

or Reference to the string 'default' will cause GAMS to create a reference file with the file
root name of the GAMS input file and the extension ref. Thus the call

> gams trnsport rf=default

4.40 The GAMS Call and Command Line Parameters 1095

will generate the reference file trnsport.ref.

The reference file consists of three sections: The information about the code compiled, the
information about the symbols in the GAMS program (also known as symbol table) and a
list of all files included.

The information about the code compiled consists of records with 11 fields. The meaning of
the fields is:

• record count

• symbol index

• symbol name

• symbol type

• reference type (available: declared, defined, impl-asn, assigned, ref, control)

• global listing line

• local line

• local column position (due to macros this many not be always 100% correct)

• include nesting level

• index in the file summary

• file name

The symbol table starts with the line that is indicated by a 0 in the record count/first field,
followed by the number of records in this symbol table and the text ”size of symboltable”.
The records for the symbol table consists of:

• internal symbol index

• symbol name

• symbol type (numerical)

• symbol type (string)

• dimension (0 for functions and models)

• cardinality (0 for functions, card(sym) for regular symbols, and number of equation
symbols for models)

• list of length dimension with the internal symbol index of the domain set (0 if universe)

• symbol text

The list of files included starts with the line that is indicated by a 0 in the record count/first
field, followed by the number of records in this file list and the text ”input files”. The records
for the following list has the same information as the Include File Summary.

With the reference file viewer, GAMS Studio offers a convenient tool for inspecting the reference
file.

referenceLineNo (string): Controls the line numbers written to a reference file

Synonym: RFLN

Available: Command line

Default: actual

1096 User's Guide

Value Meaning

actual Actual line number of symbol reference

start Line number where the statement with the reference starts

reform (integer): Reformulation level

Available: Option statement, Attribute statement (use before solve)

This option triggers an objective function reformulation. The interpretation depends on the
solver. The solvers MINOS and SNOPT support this option. Note that the default value is
zero and the range is [-2147483647,2147483647].

replace (string): Switch between merge and replace when reading from GDX into non-empty symbol

Available: Command line, Option statement

The command line parameter Replace initializes the option Replace to control the behvior of
gdxLoad.

Default: on

Value Meaning

off Merge into existing data when loading

on Replace existing data when loading

resCalc (real): Time spent in function and derivative calculations (deprecated)

Available: Attribute statement (use after solve)

resDeriv (real): Time spent in derivative calculations (deprecated)

Available: Attribute statement (use after solve)

resGen (real): Time GAMS took to generate the model in wall-clock seconds

Available: Attribute statement (use after solve)

This model attribute returns the time GAMS took to generate the model in wall-clock seconds.

resIn (real): Time to import model (deprecated)

Available: Attribute statement (use after solve)

resLim (real): Wall-clock time limit for solver

Available: Command line, Option statement, Attribute statement (use before solve)

This option specifies the time in seconds that the solver can run before it can terminate and
return the solver status 3 RESOURCE INTERRUPT. The solver should start the clock soon after
it starts, so the time required to read in the problem and do any reformulations, preprocessing
or presolving is included in the time limit. Where possible, the time limit applies to the
wall-clock time: this behavior translates well to multi-threaded solves. Moreover, some solver
links might reinterpret the value of this option. For example, if left at default (1e+10), the
solver link might use the default time limit of the solver.

4.40 The GAMS Call and Command Line Parameters 1097

Note

This value could be automatically reduced, if required because of etLim.

Default: 10000000000

resOut (real): Time to export solution (deprecated)

Available: Attribute statement (use after solve)

restart (string): Name of a restart file, see The Save and Restart Feature

Synonym: R

Available: Command line

This option specifies the name of a work file that was written with the option save that will
be used to restart the GAMS program. The work file is also called restart file. For more
information including examples, see chapter The Save and Restart Feature.

restartNamed (string): Name of another matching restart file, see Obfuscated Work Files

Synonym: RN

Available: Command line

resUsd (real): Time the solver used to solve the model in seconds

Available: Attribute statement (use after solve)

This model attribute returns the time in seconds used by the solver. Wherever possible, the
units used (wall-clock time vs. CPU time) will be the same as used by the reslim option.

RMINLP (string): Relaxed Mixed-Integer Non-Linear Programming - default solver

Available: Command line, Option statement

The default solver for models of the type Relaxed Mixed Integer Nonlinear Programs is set
during installation. The user may change this default by setting this option to the desired
solver.

Observe that if the solver was changed using an option statement, the default solver may be
reset later in the program with another option statement, where the value of the option is set
to default.

RMIP (string): Relaxed Mixed-Integer Programming - default solver

Available: Command line, Option statement

The default solver for models of the type Relaxed Mixed Integer Programs is set during
installation. The user may change this default by setting this option to the desired solver.

Observe that if the solver was changed using an option statement, the default solver may be
reset later in the program with another option statement, where the value of the option is set
to default.

RMIQCP (string): Relaxed Mixed Integer Quadratically Constrained Programs - default solver

1098 User's Guide

Available: Command line, Option statement

The default solver for models of the type Relaxed Mixed Integer Quadratically Constrained Programs
is set during installation. The user may change this default by setting this option to the
desired solver.

Observe that if the solver was changed using an option statement, the default solver may be
reset later in the program with another option statement, where the value of the option is set
to default.

RMPEC (string): Relaxed Mathematical Programs with Equilibrium Constraints - default solver

Available: Command line, Option statement

The default solver for models of the type Relaxed Mathematical Program with Equilibrium Constraints
is set during installation. The user may change this default by setting this option to the
desired solver.

Observe that if the solver was changed using an option statement, the default solver may be
reset later in the program with another option statement, where the value of the option is set
to default.

rngBndMax (real): Maximum absolute non-zero value of bounds passed to the solver (excluding infinity)

Available: Attribute statement (use after solve)

rngBndMin (real): Minimum absolute non-zero value of bounds passed to the solver

Available: Attribute statement (use after solve)

rngMatMax (real): Maximum absolute non-zero value of coefficients in the model matrix passed to the
solver (excluding infinity)

Available: Attribute statement (use after solve)

Note

For non-linear models, the value of the coefficients looked at depends on the activity
levels of one or more of the variables. More details are described here.

rngMatMin (real): Minimum absolute non-zero value of coefficients in the model matrix passed to the
solver

Available: Attribute statement (use after solve)

Note

For non-linear models, the value of the coefficients looked at depends on the activity
levels of one or more of the variables. More details are described here.

rngRhsMax (real): Maximum absolute non-zero value of right hand sides passed to the solver (excluding
infinity)

Available: Attribute statement (use after solve)

rngRhsMin (real): Minimum absolute non-zero value of right hand sides passed to the solver

Available: Attribute statement (use after solve)

4.40 The GAMS Call and Command Line Parameters 1099

rObj (real): Objective function value from the relaxed solve of a mixed-integer model when the integer
solver did not finish

Available: Attribute statement (use after solve)

This model attribute returns the objective function value from the relaxed solve of a MIP
when the integer solver did not finish.

save (string): Creates a work file, see The Save and Restart Feature

Synonym: S

Available: Command line

This option specifies the name of a work file to be written. The work file is intended to be
used later to restart the GAMS program and it is also frequently referred to as save file or
restart file. If no explicit file extension is provided, the default file extension .g00 is used. If
no specific file path is provided the work file is created in the current directory.

Note

• The character ”?” is not allowed in save file names - that use was intended for old
(pre-GAMS 21.7) save files only.

• Save files are platform-independent.

For further information including examples, see chapter The Save and Restart Feature.

saveObfuscate (string): Creates an obfuscated work file, see Obfuscated Work Files

Synonym: SO

Available: Command line

savePoint (integer): Save solver point in GDX file

Synonym: SP (only available on the command line)

Available: Command line, Option statement, Attribute statement (use before solve)

This option instructs GAMS to save a point format GDX file that contains the information on
the current solution point.

Default: 0

Value Meaning

0 No point GDX file is to be saved

1 A point GDX file from the last solve is to be saved

2 A point GDX file from every solve is to be saved

3 A point GDX file from the last solve is to be saved in the scratch directory

4 A point GDX file from every solve is to be saved in the scratch directory

scaleOpt (boolean): Employ user specified variable and equation scaling factors

Available: Attribute statement (use before solve)

1100 User's Guide

This option determines whether GAMS will employ user-specified variable and equation scaling
factors. It must be set to a nonzero value if scaling factors are to be used. For more details on
scaling, see section Model Scaling - The Scale Option.

Default: 0

scrDir (string): Scratch directory

Synonym: SD

Available: Command line

This option specifies the name of the scratch directory. The scratch directory is used by GAMS
for intermediate files that are generated during execution. The scratch directory and all its
contents are usually deleted at the end of the GAMS run. By default, the scratch directory
takes its value from the process directory that is specified with the option procDir. If neither
the scratch directory nor the process directory are specified, the scratch directory will be
set to a subdirectory of the current working directory with an internally generated name. If
the scratch directory is specified, the respective directory must already exist and neither the
content nor the directory itself will be deleted by GAMS at the end of the run.

Note that the option solveLink may be used to reduce or eliminate the need for intermediate
files.

scrExt (string): Scratch file extension to be used with temporary files

Synonym: SE

Available: Command line

This option specifies the name of the extension for the temporary files that GAMS is generating
during execution.

Default: dat

scriptExit (string): Program or script to be executed at the end of a GAMS run

Available: Command line

By default, GAMS does not call an exit script anymore. If this is required, the option
scriptExit has to be set explicitly to the script that should be called after GAMS terminates.
Note that an empty template of an exit script is in the GAMS system directory: it is called
gmsxitnt.cmd for Windows and gmsxitus.run for Unix.

scriptFrst (string): First line to be written to GAMSNEXT file.

Synonym: SF

Available: Command line

This option specifies the first line written to gamsnext. The default is an empty string and
the first line is not written.

scrNam (string): Work file names stem

4.40 The GAMS Call and Command Line Parameters 1101

Synonym: SN

Available: Command line

This option specifies the name stem that is used to complete the names of intermediate work
files. Note that the name stem must have at least one '?'. The name will be completed with
the scratch directory and the standard scratch name extension.

seed (integer): Random number seed

Available: Command line, Option statement

This option specifies the seed that is used for the pseudo random number generator.

Default: 3141

showOSMemory (integer): Show the memory usage reported by the Operating System instead of the
internal counting

Available: Command line

GAMS keeps track of how much dynamic memory it has allocated and shows this in the log
file at various points. With this option, memory usage statistics from the operating system
can be shown instead. This is useful if the dynamic memory allocation is known or suspected
to significantly underestimate the total memory usage of the GAMS process.

The resident set size (RSS) of a process is that part of the process address space actually
residing in main memory (RAM). It excludes things like memory allocated but never used,
memory that has been swapped out to disk, and parts of the executable that have never been
loaded.

The virtual set size (VSS) is a measure of the entire address space used by the process, whether
that space resides in physical memory or not. On Linux, it is essentially the RSS plus the items
excluded from the RSS, i.e. the parts of the process address space that are not currently in
physical memory. On macOS, the VSS seems to be a wild overestimate - we don't recommend
using VSS on this platform. On Windows, we take VSS from the PagefileUsage reported
by the OS. The PagefileUsage for each process does not include some major contributions
to the process address space, such as mapped files. For this reason, the process RSS may
be larger than its VSS on Windows, but VSS is still a good measure of dynamic memory
allocation done by a process.

Default: 0

Value Meaning

0 Show memory reported by internal accounting

1 Show resident set size reported by operating system

2 Show virtual set size reported by operating system

solPrint (integer or string): Solution report print option

Available: Command line, Option statement, Attribute statement (use before solve)

This option controls the printing of the solution listing to the listing file.

N.B: the command line accepts the string and numeric value, the option statement only the
string value, and the attribute statement accepts the numeric value and compile-time constant.

1102 User's Guide

The table below offers an overview of the different types of values and a description of the
associated meaning.

4.40 The GAMS Call and Command Line Parameters 1103

String Value Numeric Value Compile-Time Con-
stant

Meaning

off 0 solprint.Off Remove solution listings
following solves

on 1 solprint.On Include solution listings
following solves

silent 2 solprint.Silent Suppress all solution in-
formation

Default: On

solSlack (boolean): Causes the equation output in the listing file to contain slack variable values instead
of level values

Available: Option statement

If the value of this option is set to 1, the equation output in the listing file will contain slack
variable values instead of level values.

Default: 0

Value Meaning

0 includes equation levels in the solution part of the LST file following solves

1 includes equation slacks in the solution part of the LST file following solves

solveLink (integer): Solver link option

Synonym: SL (only available on the command line)

Available: Command line, Option statement, Attribute statement (use before solve)

This option specifies what solver linking conventions are used when GAMS executes a solve

statement. Note that values 3 and 6 are relevant for grid computing and multi-threaded
solves, respectively. Observe that there are compile-time constants that are associated with
this option. When the model instance is saved to the scratch directory (values 0, 1, 2, and
3), the solution produced by the solve is also written to the scratch directory and read in by
GAMS when the execution resumes.

Default: 2

Value Meaning

0 Model instance and entire GAMS state saved to scratch directory, GAMS exits
(and vacates memory), and the solver script is called. After the solver terminates,
GAMS restarts from the saved state and continues to executing

1 Model instance saved to scratch directory, the solver is called from a shell while
GAMS remains open

2 Model instance saved to scratch directory, the solver is called with a spawn (if
possible) or a shell (if spawn is not possible) while GAMS remains open - If this
is not supported by the selected solver, it gets reset to 1 automatically

3 Model instance saved to scratch directory, the solver starts the solution and
GAMS continues

4 Model instance saved to scratch directory, the solver starts the solution and
GAMS waits for the solver to come back but uses same submission process as 3
(test mode)

1104 User's Guide

Value Meaning

5 The model instance is passed to the solver in-memory - If this is not supported
by the selected solver, it gets reset to 2 automatically

6 The model instance is passed to the solver in-memory, the solver starts the
solution and GAMS continues

7 The model instance is passed to the solver in-memory, the solver starts the
solution and GAMS waits for the solver to come back but uses same submission
process as 6 (test mode)

solveOpt (integer or string): Multiple solve management

Available: Command line, Option statement, Attribute statement (use before solve)

This option will instruct GAMS how to manage the model solution if only part of the variables
and equations in the particular problem are solved.

Observe that this option is available as model attribute, option statement and command line
parameter. The values for model attributes are numeric, while the values for option statements
are text strings. The command line parameter accepts both, numeric and text values. In
addition, there are compile-time constants that are associated with this option. The first of
the two tables below offers an overview of how the different types of values are related and the
second table gives the values in numerical terms and a description of the associated meaning.

Numeric Value String Value Compile-Time Constant

0 replace solveOpt.Replace

1 merge solveOpt.Merge

2 clear solveOpt.Clear

Default: Merge

Value Meaning

0 The solution information for all equations appearing in the model is completely
replaced by the new model results; variables are only replaced if they appear in
the final model

1 The solution information for all equations and variables is merged into the existing
solution information

2 The solution information for all equations appearing in the model is completely
replaced; in addition, variables appearing in the symbolic equations but removed
by conditionals will be removed

solver (string): Default solver for all model types that the solver is capable to process

Available: Command line, Option statement

The command line parameter solver=abc initializes the default solver for the model types
the solver ”abc” is capable of to abc. This initialization is done before the default solvers of
individual model types are set via command line parameters. Consider the following example:

> gams trnsport lp=conopt solver=soplex

Note that this GAMS call will first set the solver SOPLEX as the solver for the model types
LP and RMIP, since these are the model types that SOPLEX can handle. Then Conopt will

4.40 The GAMS Call and Command Line Parameters 1105

be reset as the default solver for LPs. Observe that the order of these parameters on the
command line is irrelevant. If multiple occurrences of the option solver appear, the last entry
will set the value of the option.

In addition, the solver for multiple model types may be set in the GAMS model source code
via the following statement:

option solver = abc;

This statement sets the solver for the model types the solver abc can handle to abc. Note that
in such an option statement the order of other solver setting options is significant. Consider
the following example:

option lp=conopt, solver=soplex;

This statement will first set the solver for LPs to Conopt and in the next step to SOPLEX
because SOPLEX is capable of handling the model type LP. In some cases it makes sense to
set a solver twice. Consider the following example:

option solver=conopt, solver=cbc;

This option statement has the effect that models of the types CNS, DNLP, NLP, QCP,
RMIQCP or RMINLP will be solved with Conopt and models of the types LP, RMIP or MIP
will be solved with CBC.

Note that as usual, a specification of a solver through an option statement in the GAMS source
takes precedence over a specification on the command line.

solverCntr (string): Solver control file name

Synonym: SCNTR

Available: Command line

This option specifies the solver control file name. Note that the name is completed with the
scratch directory and the scratch extension.

solverDict (string): Solver dictionary file name

Synonym: SDICT

Available: Command line

This option specifies the solver dictionary file name. Note that the name completed with the
scratch directory and the scratch extension.

solverInst (string): Solver instruction file name

Synonym: SINST

Available: Command line

This option specifies the solver instruction file name. Note that the name is completed with
the scratch directory and the scratch extension.

solverMatr (string): Solver matrix file name

1106 User's Guide

Synonym: SMATR

Available: Command line

This option specifies the solver matrix file name. Note that the name is completed with the
scratch directory and the scratch extension.

solverSolu (string): Solver solution file name

Synonym: SSOLU

Available: Command line

This option specifies the solver solution file name. Note that the name is completed with the
scratch directory and the scratch extension.

solverStat (string): Solver status file name

Synonym: SSTAT

Available: Command line

This option specifies the solver status file name. Note that the name is completed with the
scratch directory and the scratch extension.

solveStat (integer): Indicates the solver termination condition

Available: Attribute statement (use after solve)

This model attribute indicates the solver termination condition. Observe that there are
compile-time constants that are related to solveStat. Note that additional information to
the values given in the table below is provided in section Solver Status.

Value Meaning

1 Normal Completion

2 Iteration Interrupt

3 Resource Interrupt

4 Terminated By Solver

5 Evaluation Interrupt

6 Capability Problems

7 Licensing Problems

8 User Interrupt

9 Setup Failure

10 Solver Failure

11 Internal Solver Failure

12 Solve Processing Skipped

13 System Failure

stepSum (boolean): Summary of computing resources used by job steps

Available: Command line

This option controls the generation of a step summary of the processing times taken by GAMS
during a given run.

4.40 The GAMS Call and Command Line Parameters 1107

For example, the call

> gams trnsport stepsum=1

will generate the following step summaries in the listing file:

STEP SUMMARY: 0.016 0.016 STARTUP

0.005 0.005 COMPILATION

0.065 0.065 EXECUTION

0.001 0.001 CLOSEDOWN

0.087 0.087 TOTAL SECONDS

0.089 0.089 ELAPSED SECONDS

3.942 3.942 MAX HEAP SIZE (MB)

Note that this step summary will be printed before the model is sent to the solver, thus it may
be found before the solve summary. The second step summary will be printed after solution,
it will appear at the very end of the listing file:

STEP SUMMARY: 0.004 0.020 STARTUP

0.000 0.005 COMPILATION

0.003 0.068 EXECUTION

0.000 0.001 CLOSEDOWN

0.007 0.094 TOTAL SECONDS

0.239 0.328 ELAPSED SECONDS

2.899 3.942 MAX HEAP SIZE (MB)

Observe that the first column reports the time for the individual section of the run, while the
second column reports accumulated times including previous sections.

Default: 0

Value Meaning

0 No step summary

1 Step summary printed

strictSingleton (boolean): Error if assignment to singleton set has multiple elements

Available: Command line, Option statement

This option affects the behavior of a membership assignment to a singleton set. If the value
is set to zero, GAMS will not complain about a singleton set with more than one element,
but will take only the first element. However, if the value is set to 1, a singleton set definition
with more than one element will cause an error. Also, if this option is set as a command line
parameter it initializes the state of the dollar control option $on/offStrictSingleton. So, it
influences the singleton set checking at both compile- and execution time.

Default: 1

Value Meaning

0 Take first record if assignment to singleton set has multiple elements

1 Error if assignment to singleton set has multiple elements

stringChk (integer): String substitution options

Available: Command line

1108 User's Guide

This option affects the result of the check for %xxx% symbols. Note that %xxx% symbols may
be environment variables (also at execution time) or compile-time variables.

Default: 0

Value Meaning

0 No substitution if symbol undefined and no error

1 Error if symbol undefined

2 Remove entire symbol reference if undefined and no error

subSys (string): Name of subsystem configuration file

Available: Command line

This option specifies the name of the configuration file that contains solver defaults and other
information. This option should be used only by advanced users who attempt to override
internal subsystem information. In case you want to add a solver to your GAMS system,
please inspect the section Adding Solvers via gamsconfig.yaml.

subSystems (no value): Lists all solvers available as well as the current default and active solvers in the
LST file

Available: Option statement

This option has the effect that all available subsystems will be displayed in the listing file.
Note that a solver is considered a subsystem.

suffixAlgebraVars (string): Switch default for ”$on/offSuffixAlgebraVars”

Available: Command line

For more info see $on/offSuffixAlgebraVars.

Default: on

Value Meaning

off Activate $offSuffixAlgebraVars

on Activate $onSuffixAlgebraVars

suffixDLVars (string): Switch default for ”$on/offSuffixDLVars”

Available: Command line

For more info see $on/offSuffixDLVars.

Default: off

Value Meaning

off Activate $offSuffixDLVars

on Activate $onSuffixDLVars

sumInfes (real): Sum of infeasibilities

4.40 The GAMS Call and Command Line Parameters 1109

Available: Attribute statement (use after solve)

This model attribute returns the sum of infeasibilities after a solve.

suppress (boolean): Compiler listing option

Available: Command line

If set to 1, this option will suppress the echoing of the contents of the input file(s) to the listing
file. Note that this option is similar in functionality to the dollar control option $offlisting.

Note

The dollar control options $on/offlisting will affect the echo print in the listing file only
if suppress is set to zero. If suppress is set to 1, the input file(s) will not be echoed to
the listing file and the dollar control options will not have any effect on the listing file.

Default: 0

Value Meaning

0 Standard compiler listing

1 Suppress compiler listing

symbol (string): Symbol table file

Available: Command line

This option specifies the name of a partial symbol table that may be written in conjunction
with reference files.

symPrefix (string): Prefix all symbols encountered during compilation by the specified string in work file

Available: Command line

sys10 (boolean): Changes rpower to ipower when the exponent is constant and within 1e-12 of an integer

Available: Command line, Option statement

Default: 0

Value Meaning

0 Disable conversion

1 Enable conversion

sys11 (integer): Dynamic resorting if indices in assignment/data statements are not in natural order

Available: Command line, Option statement

Speed-up for expressions containing constant indices or indices that are not in the natural
order at the cost of increased memory use.

Default: 0

1110 User's Guide

Value Meaning

0 Automatic optimization/restructuring of data

1 No optimization

2 Always optimize/restructure

sys12 (integer): Pass model with generation errors to solver

Synonym: noSolveSkip (only available on the command line)

Available: Command line, Option statement

Default: 0

sys15 (integer): Automatic switching of data structures used in search records

Available: Command line, Option statement

Default: 0

Value Meaning

0 Automatic switching to dense data structures

1 No switching

2 Always switch

1x Print additional information in lst file

sys16 (integer): Disable search record memory (aka execute this as pre-GAMS 24.5)

Available: Command line, Option statement

Default: 0

sys17 (integer): Disable sparsity trees growing with permutation (aka execute this as pre-GAMS 24.5)

Available: Command line, Option statement

Default: 0

sys18 (integer): Use backward compatible (i.e. pre-GAMS 31) scheme for reading floating-point numbers

Available: Command line, Option statement

By default GAMS accepts floating-point numbers with arbitrarily many digits and converts
them to correctly-rounded double-precision values. This option selects a backward compatible
(i.e. pre-GAMS 31) scheme for reading floating-point numbers (see also the offDigit dollar
control option).

Default: 0

Value Meaning

0 Use modern scheme for reading floating-point numbers

1 Use backward compatible (i.e. pre-GAMS 31) scheme for reading floating-point
numbers

4.40 The GAMS Call and Command Line Parameters 1111

sys19 (integer): Disable permutation on Column Generation (aka execute this as pre-GAMS 36)

Available: Command line, Option statement

Default: 0

sysDir (string): GAMS system directory where GAMS executables reside

Available: Command line

This option sets the GAMS system directory. It is useful if there are multiple systems installed
on the machine or when GAMS is called from an external system like Visual Basic.

sysIdent (real): Solver identification number

Available: Attribute statement (use after solve)

sysIncDir (string): SysInclude directory

Synonym: SDIR

Available: Command line

This option specifies the name of the directory to be used by GAMS for sysinclude files that
do not have a full path specification. An absolute or relative path may be specified. If this
option is not set, it will be set to the GAMS system directory.

Note that if this option is set, the default system include directory will not be searched.

Attention

Only one directory may be set with the option sDir. Thus the string specified will be
treated as one directory. If additional directories are added, errors will be reported.

Consider the following example:

> gams myfile sdir mydir

Note that GAMS will search for any referenced sysinclude file in the directory mydir.

sysOut (boolean or string): Solver Status file reporting option

Available: Command line, Option statement, Attribute statement (use before solve)

This option controls whether additional solver generated output (the solver status file) is
included in the listing file. Note that the contents of the solver status file are useful for
debugging or to get additional information about a solver run. Normally, only those messages
flagged by the solver as destined for the listing file will be listed. If the solver crashes or
encounters any unexpected difficulties, the contents of the solver status file will be automatically
sent to the listing file.

Note that the boolean values (off: 0 and off: 1) are deprecated, they are only relevant for
backward compatibility. The table below gives the boolean values and the associated meaning.

String Value Meaning

off Suppress additional solver generated output

on Include additional solver generated output

1112 User's Guide

Default: Off

sysVer (real): Solver version

Available: Attribute statement (use after solve)

tabIn (integer): Tab spacing

Available: Command line

This option sets the tab spacing. The default value is 8, which means that the tabs are at
columns 1, 9, 17, ... and the intermediate columns are replaced by blanks.

Default: 8

Value Meaning

0 Tabs are not allowed

1 Tabs are replaced by blanks

n Tabs are 1, n+1, 2n+1,.. (default: n=8)

tFormat (boolean): Time format

Synonym: TF

Available: Command line

This option controls the time format in the listing file. The three date formats correspond
to the various conventions used around the world. For example, the time 7:45∼PM will be
written as 19:45:00 with the default tf value of zero and as 19.45.00 with tf=1.

Default: 0

Value Meaning

0 Time as hh:mm:ss

1 Time as hh.mm.ss

threads (integer): Number of processors to be used by a solver

Available: Command line, Option statement, Attribute statement (use before solve)

This option controls the number of processors to be used by a solver, often by using several
threads for parallel computations. If the number is greater than the number of available
processors, it will be reduced to the number of processors available. A value of zero means
that the solver or solver-link will decide on the number of processors to use.

Default: 0

Value Meaning

0 Solver decides on number of processors to use

n Use n processors

minus n Number of processors to leave free for other tasks

threadsAsync (integer): Limit on number of threads to be used for asynchronous solves (solveLink=6)

4.40 The GAMS Call and Command Line Parameters 1113

Available: Command line, Option statement

Default: -1

Value Meaning

0 Use number of available processors

n Use n threads

minus n Number of processors to leave free for other tasks

timer (integer): Instruction timer threshold in milli seconds

Available: Command line

This option specifies an instruction timer threshold in milli seconds. That means that only
details about internal GAMS intructions that took more than n milli seconds are echoed to
the log.

Default: 0

Value Meaning

0 Interpreted as +inf, no details echoed

n Echo all details about internal GAMS instructions that took more than n milli
seconds to the log

tolInfeas (real): Infeasibility tolerance for an empty row of the form a.. 0∗x =e= 0.0001;

Available: Attribute statement (use before solve)

This option specifies the infeasibility tolerance for an empty row of the following form:

a.. 0*x =e= 0.0001;

If the option is not set, a tolerance of 10 times the machine precision will be used. Empty
rows that fail this infeasibility check will be flagged with the listing file message Equation

infeasible due to rhs value.

tolInfRep (real): This attribute sets the tolerance for marking infeasible in the equation listing

Available: Attribute statement (use before solve)

This option sets the tolerance for marking an equation infeasible in the equation listing.
Note that the default value is 1.0e-13.

Default: 1.0E-13

tolProj (real): Tolerance for setting solution values to a nearby bound when reading a solution

Available: Attribute statement (use before solve)

When a solution is returned from a solver, equation and variable level values that are very
close to their lower or upper bounds are projected or moved to that bound, and a count of
the projections/moves made is included in the solution report's REPORT SUMMARY. This option
controls the relative tolerance used in testing for closeness: project if abs(level-bound) <
tolproj∗(1+abs(level)). For MCP models, this projection is also applied to the variable
marginal values. In this case the projection count is not incremented and the test is an absolute
and not a relative test: project if abs(marginal) < tolproj.

Default: 0

1114 User's Guide

trace (string): Trace file name

Available: Command line

This option specifies the trace file name and causes a trace file to be written. Note that if a
previous trace file of the same name already exists, then all new data output will be appended.
Therefore, users should be careful to delete all old versions of the trace file if the a file name is
reused and they do wish the new data to be appended.

traceLevel (integer): Modelstat/Solvestat threshold used in conjunction with action=GT

Synonym: TL

Available: Command line

Default: 0

traceOpt (integer): Trace file format option

Available: Command line

This option specifies the format of the trace file. Note that several different types of trace files
may be created, depending on what output information is desired.

Default: 0

Value Meaning

0 Solver and GAMS step trace

1 Solver and GAMS exit trace

2 Solver trace only

3 Solver trace only in format used for GAMS performance world

5 Gams exit trace with all available trace fields

tryInt (real): Whether solver should make use of a partial integer-feasible solution

Available: Attribute statement (use before solve, reset by solve statement)

Signals the solver to make use of a partial or near-integer-feasible solution stored in current
variable values to get a quick integer-feasible point. The exact form of implementation depends
on the solver and may be partly controlled by solver settings or options. See the solver manuals
for details.

tryLinear (real): Examine empirical NLP model to see if there are any NLP terms active. If there are
none the default LP solver will be used

Available: Attribute statement (use before solve)

If this option is set to 1, empirical NLP models will be examined to determine if there are any
active NLP terms. If there are none, the default LP solver will be used. The procedure also
checks to see if QCP and DNLP models can be reduced to an LP; MIQCP and MINLP can be
solved as a MIP; RMIQCP and RMINLP can be solved as an RMIP. Note that the default
value is zero.

user1..5 (string): User string N

4.40 The GAMS Call and Command Line Parameters 1115

Synonym: U1

Available: Command line

This option permits users to enter a text for up to 5 user-defined options. The double dash
parameters supersede these parameters.

warnings (integer): Number of warnings permitted before a run terminates

Available: Command line

This option specifies the maximum number of allowable warnings, before the run terminates.

Default: ∞

workDir (string): Working directory

Synonym: WDir

Available: Command line

This option sets the working directory. This option is useful when GAMS is called from an
external system like Visual Basic. If it is not specified, the working directory will be set to the
directory curDir.

workFactor (real): Memory Estimate multiplier for some solvers

Available: Command line, Attribute statement (use before solve)

This option instructs the solver how much workspace to allocate for problem solution relative
to the solver-computed estimate. For example, setting the value to 2 will double the memory
estimate. In cases where a solver allocates memory dynamically as it is needed, this option
will have no effect. Note that in cases where both options workfactor and workSpace are
specified, the value for workSpace will take precedence.

Default: 1

workSpace (real): Work space for some solvers in MB

Available: Command line, Attribute statement (use before solve)

This option instructs the solver how much workspace in Megabytes to allocate. If it is not
speicified by the user, the solver will estimate the size. In cases where a solver allocates
memory dynamically as it is needed, this option will have no effect, or it may be used as a
memory limit.

writeOutput (boolean): Switch to write output file

Available: Command line

This option controls whether to write the output file.

Default: 1

Value Meaning

0 Suppress output file creation

1 Write output file

1116 User's Guide

xSave (string): Creates a compressed work file

Synonym: XS

Available: Command line

This option specifies the name of a save file written in ASCII format in older GAMS systems
(versions older than 21.7), in order for the save file to be platform independent and may be
moved to machines with different operating systems.

In GAMS systems from release 22.3 and newer this option has the effect that compressed save
files are written.

xSaveObfuscate (string): Creates a compressed obfuscated work file

Synonym: XSO

Available: Command line

zeroRes (real): The results of certain operations will be set to zero if abs(result) LE ZeroRes

Available: Command line

This option specifies the threshold value for internal rounding to zero in certain operations.

Default: 0

zeroResRep (boolean): Report underflow as a warning when abs(results) LE ZeroRes and result set to
zero

Available: Command line

This option causes GAMS to issue warnings whenever a rounding occurs because of the setting
of the option zeroRes.

Default: 0

Value Meaning

0 No warning when a rounding occurs because of ZeroRes

1 Issue warnings whenever a rounding occurs because of ZeroRes

zeroToEps (string): Treat zero as eps

Available: Option statement

When this is set to on, zero values are interpreted as EPS when loading non-scalar parameters
from GDX or embedded code at execution time. Also, when deriving a set from a parameter
in a GDX file at execution time, set records will be created for parameter records with value 0,
if zeroToEps is set to on, but not, if it is off.

See dollar control option $onEps for the compile-time equivalent.

Default: off

Value Meaning

off Treat Zero as Zero

on Treat Zero as Eps

4.40 The GAMS Call and Command Line Parameters 1117

4.40.7 Executing an External Program

External programs may be run during a GAMS job either using the $call, Execute or Put utility

syntax. The $call procedure is executed at the moment that is encountered during compilation. The
Execute and Put utility commands causes the external program to be run during GAMS program execution.
The contrast between these statements is important in two ways.

• Influence on results that can be included in a GAMS program – Anything run with $Call can
generate files that can be included in the subsequent compilation. On the other hand files generated
with Execute and Put utility cannot be included because $Include operates only at compile time
(unless you use Save and Restart).

• Influence on results that can be fed into the external program – Obviously when one is running an
external program there is the desire to pass it data depicting results of the GAMS execution. $Call
cannot do this as the data passed have to exist at compile time and cannot use the result of any
GAMS calculations and solves in the current program. Execute commands on the other hand can
use any data generated during a run which arise before the Execute and Put utility command's
position in the file through passage via put files or other mechanisms.

The big difference between the $call and execute is

• $call

– can generate results to be immediately incorporated back into GAMS

– cannot use GAMS results generated within this run because the $Call is executed at compile
time.

• execute and put utility

– can cause a program to be started using results generated by the GAMS program (note such
results do have to have been saved in an external file using a command like put)

– cannot generate results which can be immediately reincluded into the GAMS program because
new material can only be added compile time.

4.40.7.1 Execute

This command uses the syntax

execute[.async[NC]|.checkErrorLevel] "[=]command_to_execute"

to execute a program specified by command to execute. The execution occurs during the GAMS execution
phase.

• The = will call the program directly, while without the = GAMS calls a shell that executes the
program. When a program is executed in a shell, mechanisms like redirection (>) and pipe (|) will
work.

• The .async suffix makes GAMS go ahead without waiting.

• The .asyncNC option tells the operating system to start the run a new console rather than sharing
the console of the parent process allowing use of multiple processors. This is available under Windows
only.

• The .checkErrorLevel suffix checks the errorLevel implicitly, raises an execution error and aborts
the execution, if that is not 0.

• Since this occurs during execution one cannot use the compile time $Include to incorporate the
results of that external run into the GAMS code except through a GAMS from GAMS approach
as discussed below or through save and restart use (see the Save Restart chapter).

1118 User's Guide

4.40.7.2 Asynchronous Execution

The .async variant of $call and execute start a job without waiting for the result. One can continue
in the GAMS program and collect the return code of the job later. There are three ways to start a job
asynchronously:

• $call.async ... (compile phase)

• execute.async '...'; (execution phase)

• ‘put utility fx 'exec.async’ / '...'; / put utility fx 'shell.async' / '...';` (execution phase)

After each of those the function JobHandle can be used to get the Process ID (pid) of the last job started.
With jobStatus(pid) one could check for the status of a job. Possible return values are:

• 0: error (input is not a valid PID or access is denied)

• 1: process is still running

• 2: process is finished with return code which could be accessed by errorLevel

• 3: process not running anymore or was never running, no return code available

With jobTerminate(pid) a interrupt signal can be sent to a running job. If this was successful the return
value is one, otherwise it is zero.

With jobKill(pid) a kill signal can be sent to a running job. If this was successful the return value is
one, otherwise it is zero.

The model [ASYNCEXEC] from the GAMS Test Library demonstrates the use of this feature.

4.40.8 Executing a GAMS Tool

To call tools from the GAMS Tool Library, there are counterparts to the $call and Execute, namely
$callTool and ExecuteTool. The behavior is identical to the methods explained in the introduction of
Executing an External Program.

4.40.8.1 ExecuteTool

This command uses the syntax

executeTool[.checkErrorLevel] ’[toolCategory.]toolName tool_arguments’;

to execute a tool specified by [toolCategory.]toolName together with the arguments tool arguments.
The execution occurs during the GAMS execution phase.

• The .checkErrorLevel suffix checks the errorLevel implicitly, raises an execution error and aborts
the execution, if that is not 0.

• Since this occurs during execution one cannot use the compile time $Include to incorporate the
results of that external run into the GAMS code except through save and restart use (see the
Save Restart chapter).

For examples please refer to the GAMS Tools Library chapter.

4.41 Dollar Control Options 1119

4.41 Dollar Control Options

4.41.1 Introduction

Dollar control options are used to indicate compiler directives and options. Dollar control options are not
part of the GAMS language and must be entered on separate lines marked with the symbol $ in the first
column. A dollar control option line may be placed anywhere within a GAMS program and it is processed
during the compilation of the program. The symbol $ is followed by one or more options separated by
spaces. Since the dollar control options are not part of the GAMS language, they do not appear on the
compilation output in the listing file unless an error has been detected or the user has requested them to
be shown (with the option $onDollar).Note that dollar control option lines are not case sensitive and a
continued compilation uses the previous settings.

This chapter is organized as follows. First an overview of the dollar control options will be given in
section List of Dollar Control Options, where the options will be presented in groups reflecting their major
functional categories. Section Detailed Description of Dollar Control Options will contain a reference list
of all dollar control options in alphabetical order with detailed description for each.

We will conclude this chapter with separate sections for two important topics: Conditional Compilation,
Macros in GAMS, Compressing and Decompressing Files, and Encrypting Files.

4.41.1.1 Syntax

In general, the syntax in GAMS for dollar control statements is as follows:

$option_name argument_list {option_name argument_list}

The symbol $ in the first column indicates that this is a dollar control statement. It is followed by the
name of the dollar control option option name and the list of arguments argument list of the option.
Depending on the particular option, the number of arguments required can vary from 0 to many. More
than one dollar control option may be activated in one statement. Note that in this case the symbol $ is
not repeated. Observe that some dollar control options require that they be the first option on a line.

Note

• No blank space is permitted between the character $ and the first option that follows.

• The effect of the dollar control option is felt immediately after the option is processed.

• Dollar control options are not part of the GAMS language they instruct the compiler to perform
some task. Therefore, dollar control options are not terminated with a semicolon as real GAMS
language statements.

A simple example of a list of dollar control options is shown below:

$title Example to illustrate dollar control options

$onsymxref onsymlist

Note that there is no blank space between the character $ and the option that follows. The first dollar
control option $title sets the title of the pages in the listing file to the text that follows the option name. In
the second line of the example above, two options are set: $onSymXRef and $onSymList. These options
turn on the echoing of the symbol cross reference table and symbol listing in the compilation output in
the listing file.

Observe that it is also permitted to place a dollar control statement in a column other than column 1.
However, in this case the statement must begin with the symbols $$, like in this example

$$title Example showing that dollar control option can start in any column with an extra $ added

1120 User's Guide

4.41.2 List of Dollar Control Options

The dollar control options are grouped into nine major functional categories affecting

• the input comment format

• the input data format

• the output format

• reference maps

• program control

• GDX operations

• compile-time variables and environment variables

• macro definitions

• compressing and encrypting source files

The following subsections briefly describe the options in each of the categories.

4.41.2.1 Dollar Control Options Affecting the Input Comment Format

Option Description

comment Set the comment character

eolCom Set the end-of-line comment character(s)

inlineCom Set the in-line comment characters

maxCol Set the right-hand margin of the input file

minCol Set left-hand margin of the input file

offEolCom Turn end-of-line comments off

offInline Turn in-line comments off

offMargin Turn margin marking off

offNestCom Turn nested comments off

offText Turn text mode off

onEolCom Turn end-of-line comments on

onInline Turn in-line comments on

onMargin Turn margin marking on

onNestCom Turn nested comments on

onText Turn text on: the following lines are comment

Note that comments in GAMS are introduced in section Comments.

4.41.2.2 Dollar Control Options Affecting the Input Data Format

Option Description

dollar Set the 'dollar' character

offDelim Turn delimited data statement syntax off

offDigit Turn the number precision check off

4.41 Dollar Control Options 1121

Option Description

offEmbedded No embedded text or data allowed

offEmpty Disallow empty data initialization statements

offEnd Disallow alternate program control syntax

offEps Disallow interpretation of EPS as zero

offExternalInput End of external input section

offGlobal Disallow inheritance of parent file settings

offIDCProtect Allow to change external input symbols at execution time

offImplicitAssign Trigger compilation error 141 if symbol has not been assigned

offSuffixDLVars Do not allow domain limited variables with suffixes in model

offSuffixAlgebraVars Do not allow variables with suffixes in model algebra

offTroll Do not recognize Troll periodicity in set definitions using sequences

offUNDF Do not allow UNDF as input

offUni Do not allow domain violations in assignments

offWarning Do not convert domain errors into warnings

onDelim Turn delimited data statement syntax on

onDigit Turn number precision check on

onEmbedded Allow embedded text or data in set and parameter statements

onEmpty Allow empty data initialization statements

onEnd Allow alternate program control syntax

onEps Interpret zero as EPS

onExternalInput Start of external input section

onGlobal Force inheritance of parent file settings

onIDCProtect Protect external input symbols from being changed at execution time

onImplicitAssign Suppress compilation errors 141 and implicitly assign symbol if symbol has not
been assigned

onSuffixDLVars Allow domain limited variables with suffixes in model

onSuffixAlgebraVars Allow variables with suffixes in model algebra

onTroll Recognize Troll periodicity in set definitions using sequences

onUNDF Allow UNDF as input

onUni Allow domain violations in assignments

onWarning Convert certain domain errors into warnings

use205 Language syntax of release 2.05

use225 Language syntax of release 2.25 Version 1

use999 Latest language syntax

version Test GAMS compiler version number

4.41.2.3 Dollar Control Options Affecting the Output Format

Option Description

double Double-spaced listing follows

echo Echo text to a file

echoN Echo text to a file without ending the line

eject Advance to next page

hidden Ignore text and do not list

lines Next number of lines have to fit on the page

log Send message to the log

offDollar Turn the listing of dollar control option lines off

1122 User's Guide

Option Description

offEcho End of block echo

offExternalOutput End of external output section

offEpsToZero Do not interpret EPS as zero when writing to GDX

offInclude Turn the listing of include file names off

offListing Turn echoing input lines to listing file off

offLog Turn line logging off

offPut End of block put

offUpper Following print to listing file is mixed cased

offVerbatim Stop verbatim copy

onDollar Turn the listing of dollar control option lines on

onEcho Start of block echo with substitution

onEchoS Start of block echo with substitution

onEchoV Start of block echo without substitution

onEpsToZero Interpret EPS as zero when writing to GDX

onExternalOutput Start of external output section

onInclude Include file name echoed to listing file

onListing Input lines echoed to listing file

onLog Reset line logging

onPut Start of block put without substitution

onPutS Start of block put with substitution

onPutV Start of block put without substitution

onUpper Following print to listing file is all upper cased

onVerbatim Start verbatim copy if dumpopt ≥ 10

remark Comment line with suppressed line number

save[.keepCode] Create a save file during compilation with and without execution code compiled
so far

single Single-spaced listing follows

stars Set ”∗∗∗∗” characters in listing file

sTitle Set subtitle and reset page

title Set title and reset page

4.41.2.4 Dollar Control Options Affecting the Listing of Reference Maps

Option Description

offSymList Turn symbol list off

offSymXRef Turn symbol cross reference listing off

offUElList Turn unique element listing off

offUElXRef Turn unique element cross reference off

onSymList Turn symbol list on

onSymXRef Turn symbol cross reference listing on

onUElList Turn unique element listing on

onUElXRef Turn unique element cross reference on

4.41.2.5 Dollar Control Options Affecting Program Control

4.41 Dollar Control Options 1123

Option Description

abort[.noError] Issue an (error) message and abort compilation

batInclude Include file with substitution arguments

call Execute another program during compilation

call.Async[NC] Execute another program asynchronously during compilation

call.checkErrorLevel Execute another program during compilation and raise error in
case of problem

callTool Execute a GAMS tool during compilation

callTool.checkErrorLevel Execute a GAMS tool during compilation and raise error in case
of problem

clear Reset all data for an identifier to its default value

clearError[s] Clear compilation errors

else Else clause

elseIf ElseIf structure with case sensitive comparison

elseIfE ElseIf structure with expression evaluation

elseIfI ElseIf structure with case insensitive comparison

endif Close ifThen/ifThenE/ifThenI control structure

error Issue an error message

exit Exit from compilation

funcLibIn Load extrinsic function library

goto Go to line with given label name

hiddenCall Execute another program (hidden) during compilation

hiddenCall.Async[NC] Execute another program (hidden) asynchronously during compila-
tion

hiddenCall.checkErrorLevel Execute another program (hidden) during compilation and raise
error in case of problem

hiddenCallTool Execute a GAMS tool (hidden) during compilation

hiddenCallTool.checkErrorLevel Execute a GAMS tool (hidden) during compilation and raise error
in case of problem

if Conditional processing, case sensitive

ifE If statement with expression evaluation

ifI Conditional processing, case insensitive

ifThen IfThen-elseIf structure with case sensitive comparison

ifThenE IfThen-elseIf structure with expression evaluation

ifThenI IfThen-elseIf structure with case insensitive comparison

include Include file

kill Kill data connected with identifier

label Label name as entry point from $goto .

libInclude Include file from library directory

offCheckErrorLevel Do not check errorLevel automatically after $[hidden]call

offECImplicitLoad Do not allow implicit loading from embedded code

offEmbeddedCode Ends embedded code section

offFiltered Turn behavior of $[gdx]load∗ to domain checked read

offMulti Turn redefinition of data off

offOrder Allow lag and lead operations on dynamic or unordered sets

offRecurse Disable recursive include files

offStrictSingleton Take first label if data statement for singleton set has multiple
elements

onCheckErrorLevel Throw compilation error, if errorLevel is not 0 after $[hidden]call

1124 User's Guide

Option Description

onECImplicitLoad Allow implicit loading from embedded code

onEmbeddedCode Starts embedded code section with substitution

onEmbeddedCodeS Starts embedded code section with substitution

onEmbeddedCodeV Starts embedded code section without substitution

onFiltered Turn behavior of $[gdx]load∗ to filtered read

onMulti Turn redefinition of data on (merging into existing data)

onMultiR Turn redefinition of data on (replacing existing data)

onOrder lag and lead operations on constant and ordered sets only

onRecurse Enable recursive include files

onStrictSingleton Error if data statement for singleton set has multiple elements

maxGoTo Maximum number of jumps to the same label

phantom Define a phantom element

shift bat/lib/sysInclude argument shift operation

stop Stop compilation

sysInclude Include file from system directory

terminate Terminate compilation and execution

warning Issue compilation warning

Note that conditional compilation in GAMS is discussed in section Conditional Compilation below.

4.41.2.6 Dollar Control Options for GDX Operations

Option Description

declareAndLoad Declare and load all symbols from specified GDX file

gdxIn Open GDX file for input

gdxLoad Load specified symbols from specified GDX file

gdxLoadAll Load all symbols which are known to GAMS from specified GDX file

gdxOut Open GDX file for output

gdxUnload Unload symbols into specified GDX file.

load Load symbols from previously opened GDX file

loadDC Load symbols from previously opened GDX file - domain checked

loadDCM Load symbols from previously opened GDX file - domain checked - merge

loadDCR Load symbols from previously opened GDX file - domain checked - replace

loadFiltered Load symbols from previously opened GDX file - domain filtered

loadFilteredM Load symbols from previously opened GDX file - domain filtered - merge

loadFilteredR Load symbols from previously opened GDX file - domain filtered - replace

loadIdx Load symbols from previously opened GDX file which has been written using an
indexed write

loadM Load symbols from previously opened GDX file - merge

loadR Load symbols from previously opened GDX file - replace

offExternalInput End of external input section

offExternalOutput End of external output section

offFiltered Turn behavior of $[gdx]load∗ to domain checked read

onExternalInput Start of external input section

onExternalOutput Start of external output section

onFiltered Turn behavior of $[gdx]load∗ to filtered read

unLoad Unload symbols into previously opened GDX file.

4.41 Dollar Control Options 1125

Note that GDX facilities and utilities are introduced in chapter GAMS Data eXchange (GDX).

4.41.2.7 Dollar Control Options for Compile-Time Variables and Environment Variables

Option Description

drop Drop a scoped compile-time variable

dropGlobal Drop a global compile-time variable

dropLocal Drop a local compile-time variable

dropEnv Drop an OS environment variable

escape Define the % escape symbol

eval Evaluate and define a scoped compile-time variable

eval.Set Evaluate and define a scoped compile-time variable based on a GAMS set

evalGlobal Evaluate and define a global compile-time variable

evalGlobal.Set Evaluate and define a global compile-time variable based on a GAMS set

evalLocal Evaluate and define a local compile-time variable

evalLocal.Set Evaluate and define a local compile-time variable based on a GAMS set

prefixPath Prefix the environment variable PATH.

scratchFileName Set a name for a temporary file in the scratch directory using the scratch file
extension

setArgs Define local compile-time variables using argument list

setComps Unpack dotted names into compile-time variables

setDDList Check double dash GAMS parameters

setDDList.Cont Start list of identifiers to check double dash GAMS parameters

setEnv Define an OS environment variable

set Define a scoped compile-time variable

setGlobal Define a global compile-time variable

setLocal Define a local compile-time variable

setNames Unpack a filename into local compile-time variables

show Show current GAMS compile-time variables, macros, and active files

showFiles Show active input and include files

showMacros Show current macros

showVariables Show current GAMS compile-time variables

splitOption Unpack a key/value pair into scoped environment variables

See also sections Compile-Time Variables and Environment Variables in GAMS.

4.41.2.8 Dollar Control Options for Macro Definitions

Option Description

macro Preprocess macro definition

offDotL Do not assume .l for variables in assignments

offDotScale Assume .scale for variables and equations in assignments

offExpand Do not expand macros when processing macro arguments

offLocal Limit .local nesting to one

offMacro Do not recognize macros for expansion

onDotL Assume .l for variables in assignments and put statements

1126 User's Guide

Option Description

onDotScale Assume .scale for variables and equations in assignments and put statements

onExpand Expand macros when processing macro arguments

onLocal No limit on .local nesting

onMacro Recognize macros for expansion

Note that macros are introduced in section Macros in GAMS below.

4.41.2.9 Dollar Control Options for Compressing and Encrypting Source Files

Option Description

compress Create compressed GAMS system file

decompress Decompress a GAMS system file

encrypt Create an encrypted GAMS system file

expose Remove all access control restrictions

hide Hide objects from the user

protect Protect objects from being modifified by the user

purge Remove the objects and all associated data

4.41.3 Detailed Description of Dollar Control Options

In this section we will describe each dollar control option in detail. Note that the dollar control options
are listed in alphabetical order for easy reference. Note further, that in each entry the default value, if
applicable, is given in parentheses.

$abort[.noError]

Syntax:

$abort[.noError] [text]

If used as $abort, this option will issue a compilation error and abort the compilation. It may
be followed by a text.

Example:

$if not %system.fileSys% == UNIX

$abort We only do UNIX

This stops compilation if the operating system is not Unix. Running the example above on
Windows will result in the compilation being aborted and the following lines in the listing file:

2 $abort We only do UNIX

**** $343

Error Messages

343 Abort triggered by above statement

4.41 Dollar Control Options 1127

This option has a variant: $abort.noError. If the extension .noError is used the compilation
will be aborted as well, but there will be no error. If a save file is written, all remaining
unexecuted code will be flushed. This allows effective reuse of the save file.

Note that there is also an abort statement in GAMS, it is used to terminate the execution of
a program.

See also $exit, $error, $stop, and $terminate.

$batInclude

Syntax:

$batInclude external_file {arg}

The $batInclude facility performs the same task as the $include facility: it inserts the
contents of the specified file external file at the location of the call. However, in addition,
the option $batInclude also passes on arguments arg which may be used inside the include
file. External file is the name of the batch include file, it may be quoted or unquoted.
The arguments arg are passed on to the batch include file. These arguments are treated as
character strings that are substituted by numbers inside the included file. The arguments may
be single unbroken strings (quoted or unquoted) or quoted multi-part strings.

Note that the syntax has been modeled after the DOS batch facility. Inside the batch file,
a parameter substitution is indicated by using the character % followed immediately by an
integer value corresponding to the order of parameters on the list where %1 refers to the
first argument, %2 to the second argument, and so on. If an integer value is specified that
does not correspond to a passed parameter, then the parameter flag is substituted with a
null string. The parameter flag %0 is a special case that will substitute a fully expanded file
name specification of the current batch included file. The flag %$ is the current $ symbol (see
$dollar). Observe that parameters are substituted independent of context and the entire line
is processed before it is passed to the compiler. There is one exception: parameter flags that
appear in comments are not substituted.

Attention

• GAMS requires that processing the substitutions must result in a line of less than or
equal to the maximum input line length.

• The case of the passed parameters is preserved, thus it may be used in string
comparisons.

Example:

$batInclude "file1.inc" abcd "bbbb" "cccc dddd"

Note that file1.inc is included with abcd as the first parameter, bbbb as the second parameter
and cccc dddd as the third parameter.

Parameter a,b,c ;

a = 1 ; b = 0 ; c = 2 ;

$batInclude inc2.inc b a

display b ;

$batInclude inc2.inc b c

display b ;

$batInclude inc2.inc b "a+5"

display b ;

The external file inc2.inc contains the following line:

1128 User's Guide

%1 = sqr(%2) - %2 ;

The echo print in the corresponding listing file follows:

1 Parameter a,b,c ;

2 a = 1 ; b = 0 ; c = 2 ;

BATINCLUDE C:\tmp\inc2.inc

4 b = sqr(a) - a ;

5 display b ;

BATINCLUDE C:\tmp\inc2.inc

7 b = sqr(c) - c ;

8 display b ;

BATINCLUDE C:\tmp\inc2.inc

10 b = sqr(a+5) - a+5 ;

11 display b ;

Note that the option $batInclude appears three times with different arguments. GAMS is
interprets the contents of the batch include file in turn as:

b = sqr(a) - a ;

b = sqr(c) - c ;

b = sqr(a+5) - a+5 ;

Note that the third call is not interpreted as sqr(a+5)-(a+5), but instead as sqr(a+5)-a+5.
The results of the display statement are shown at the end of the listing file are given below:

---- 5 PARAMETER b = 0.000

---- 8 PARAMETER b = 2.000

---- 11 PARAMETER b = 40.000

Observe that the third call leads to b = sqr(6)-1+5, thus the final value of b is 40. Suppose
the statement in the batch include file is modified to read as follows:

%1 = sqr(%2) - (%2) ;

With this modification the output generated by the display statement will be as follows:

---- 5 PARAMETER b = 0.000

---- 8 PARAMETER b = 2.000

---- 11 PARAMETER b = 30.000

Note that the third call leads to b = sqr(6)-6 which results in b taking a value of 30.

Note

The option $batInclude without any arguments is equivalent to the option $include.

See also $include, $libInclude, $sysInclude.

$call

Syntax:

$call [=]command

This option passes a command to the current operating system command processor and
interrupts compilation until the command has been completed. If the command string is empty
or omitted, a new interactive command processor will be loaded.

Example:

4.41 Dollar Control Options 1129

$call dir

This command creates a directory listing on a PC.

Note that the command string may be passed to the system and executed directly without
using a command processor by prefixing the command with an '=' sign. Compilation errors will
be issued if the command or the command processor cannot be loaded and executed properly.

$call gams trnsport

$call =gams trnsport

The first call will run the model [TRNSPORT] in a new command shell. The DOS command
shell does not send any return codes from the run back to GAMS. Therefore any errors in
the run are not reported back. The second call, however, will send the command directly to
the system. The return codes from the system will be intercepted correctly and they will be
available to the GAMS system through the errorLevel function.

Attention

• Some commands (like copy on a PC and cd in Unix) are shell commands and cannot
be spawned off to the system. Using these in a system call will create a compilation
error.

$call ’copy myfile.txt mycopy.txt’

$call ’=copy myfile.txt mycopy.txt’

The first call will work on a PC, but the second will not. The copy command may
be used only from a command line shell. The system is not aware of this command
(Try this command after clicking Run under the Start menu in Windows. You will
find that it does not work).

• One has to take special care when the first argument of the command contains spaces
(for example an executable with absolute path), e.g.:

$call C:\path with spaces\gams.exe trnsport.gms

This would fail, since the command processor would try to call C:\path as the
executable. So, one might think that protecting the spaces using quotes will resolve
this problem:

$call "C:\path with spaces\gams.exe" trnsport.gms

However, the quotes delimit the entire $call command, so that trnsport.gms gets
interpreted as new dollar control option instead of an argument for the executable.
The solution is to use nested quotes: One pair to delimit the $call command and
another one to protect the spaces of the executable like this:

$call ’"C:\path with spaces\gams.exe" trnsport.gms’

It gets even more complicated if the argument contains spaces as well, e.g. if we
have my model.gms instead of trnsport.gms. Another pair of quotes solves this:

$call ’"C:\path with spaces\gams.exe" "my model.gms"’

See also $call.Async, $call.checkErrorLevel, $hiddenCall.

$call.Async[NC]

Syntax:

$call.Async[NC] command

$call.Async works like $call but allows asynchronous job handling. This means users may
start a job command without having to wait for the result, they may continue in their model
and collect the return code of the job later. The function jobHandle may be used to get the
process ID (pid) of the last job started. The status of the job may be checked using the
function jobStatus(pid). An interrupt signal to a running job may be sent with the function
jobTerminate(pid). With the function jobKill(pid) a kill signal may be sent to a running job.

The difference between $call.Async and $call.AsyncNC is, that the latter starts processes
in a new console, rather than sharing the console of the parent process.

1130 User's Guide

Note

On non-Windows platforms $call.AsyncNC and $call.Async are synonyms.

$call.checkErrorLevel

Syntax:

$call.checkErrorLevel [=]command

$call.checkErrorLevel works like $call but checks the errorLevel implicitly, raises a compi-
lation error and aborts compilation, if that is not 0.

Example:

$call.checkErrorLevel gams trnsport

This is doing the same as:

$call gams trnsport

$ifE errorLevel<>0 $abort ’Problem calling gams trnsport’

$callTool

Syntax:

$callTool command

This option calls a tool of the GAMS Tools Library at compile time.

Example:

$callTool [data.]ExcelDump excelFile [gdxOut=fileOut.gdx]

This tool writes all worksheets of an Excel workbook to GAMS symbols.

Note

• Similar to $call, $callTool returns a shell code that can be checked via errorLevel.
In case one expects the tools to perform without error, it is recommended to add
the suffix .checkErrorLevel. This will stop the entire execution of GAMS if an error
occurs while executing the tool.

• $callTool[.checkErrorLevel] [...] is ignored while $onExternalInput is active
and IDCGDXInput is set.

Attention

• $callTool is only available for calling tools from the GAMS Tools Library. For
general commands to the operating system $call must be used.

See also $callTool.checkErrorLevel, $hiddenCallTool.

$callTool.checkErrorLevel

Syntax:

$callTool.checkErrorLevel command

4.41 Dollar Control Options 1131

$callTool.checkErrorLevel works like $callTool but checks the errorLevel implicitly, raises
a compilation error and aborts compilation, if that is not 0.

Example:

$callTool.checkErrorLevel [data.]ExcelDump excelFile [gdxOut=fileOut.gdx]

This is doing the same as:

$callTool [data.]ExcelDump excelFile [gdxOut=fileOut.gdx]

$ifE errorLevel<>0 $abort ’Problem calling gams trnsport’

$clear

Syntax:

$clear ident {ident}

This option resets all data for the identifiers ident to their default values. Note that only the
following data types may be reset: sets, parameters, variables and equations. Note further,
that the clearing is carried out during compile time and not when the GAMS program executes.

Example:

Set i / 1*20 /;

Scalar a / 2 /;

$clear i a

display i, a;

The option $clear resets i and a to their default values: an empty set for i and zero for a.
The output generated by the display statement follows:

---- 4 SET i

(EMPTY)

---- 4 PARAMETER a = 0.000

Attention

The two-pass processing of a GAMS file may lead to seemingly unexpected results.
Both the dollar control options and the data initialization is done in the first pass,
and assignments in the second, irrespective of their relative locations. This is an issue
particularly with $clear since data can be both initialized and assigned.

Scalar a / 12 /;

a = 5;

$clear a

display a;

Note that the scalar data initialization statement is processed during compilation and the
assignment statement a = 5; during execution. In the order that it is processed, the example
above is read by GAMS as:

* compilation step

Scalar a /12/ ;

$clear a

* execution step

a = 5;

display a ;

1132 User's Guide

Therefore the result is that a takes the value of 5. The output from the display statement is
as follows:

---- 4 PARAMETER a = 5.000

Compare also $kill and the execution time option clear.

$clearError[s]

Syntax:

$clearError[s]

This option ($clearError and $clearErrors are synonyms) clears GAMS awareness of
compiler errors and turn them into warning messages instead.

Example:

Scalar z / 11 /;

$eval x sqrt(-1)

$clearError

$log %x%

Display z;

Note that without the use of $clearError the program above would not continue with the
execution after line 2.

$comment (∗)

Syntax:

$comment char

This option changes the symbol indicating a single line comment from the default ∗ to the
single character char. Note that after this option is used, the new comment character char

cannot be used in column 1 as before, since it got a special meaning. Note further, that the
case of the character does not matter if it is used as a comment character. This option should
be used with great care and we recommend to reset the symbol quickly to the default.

Attention

The case of the start-of-line comment character does not matter when being used.

Example:

$comment c

c now we use a FORTRAN style comment symbol

$comment *

* now we are back to the default

See also section Comments.

$compress

Syntax:

$compress source target

4.41 Dollar Control Options 1133

This option causes the file source to be compressed into the packed file target.

Example: Consider the following example where the well-known model [TRNSPORT] is
used:

$call gamslib trnsport

$compress trnsport.gms t2.gms

$include t2.gms

The first command retrieves the file trnsport.gms and the second command compresses it.
Note that a compressed GAMS file is treated like any other GAMS file, therefore it may be
included and executed as usual. Large data files that do not change often can be compressed
this way to save disk space.

The following example serves as a little utility to compress and decompress files:

$ifthen set decompress

$ if not set input $set input file_c.gms

$ if not exist %input% $abort No file input file %input% exist

$ if not set output $set output file.gms

$ log Decompressing %input% into %output%

$ decompress %input% %output%

$else

$ if not set input $set input file.gms

$ if not exist %input% $abort No file input file %input% exist

$ if not set output $set output file_c.gms

$ log Compressing %input% into %output%

$ compress %input% %output%

$endif

The program (saved to a file called compress.gms) can be used as follows:

> gams compress.gms --input myfile.gms --output myfile_c.gms

> gams compress.gms --decompress=1 --input myfile_c.gms --output myfile.gms

See also $decompress. Further details are given in chapter Compressing and Decompressing Files.

$declareAndLoad

Syntax:

$declareAndLoad GDXFileName

This option loads all symbols from a specified GDX file. It is similar to $gdxLoadAll, but does
not only load the symbols declared so far but also declares symbols found in the GDX file
on the fly if they were unknown. If a symbol already exists in GAMS the GDX declaration
better matches it's previous GAMS declaration exactly (same rules as if we would write the
second declaration in source, e.g. different symbol text is allowed or incremental declaration
first Variable x; and in GDX Positive Variable x;) otherwise we trigger an error.

Example:

If there is a GDX file trnsport created from the [TRNSPORT] model, the following code
will declare and load all symbols seen in the trnsport model before:

$declareAndLoad trnsport.gdx

option DmpUserSym;

1134 User's Guide

This can be seen in the .lst file afterwards:

SYMBOL TABLE DUMP (USER SYMBOLS ONLY), NR ENTRIES = 12

ENTRY ID TYPE DIM LENGTH MEMORYEST DEFINED ASSIGNED DATAKNOWN

138 i SET 1 2 0 MB TRUE FALSE TRUE

139 j SET 1 3 0 MB TRUE FALSE TRUE

140 a PARAM 1 2 0 MB TRUE FALSE TRUE

141 b PARAM 1 3 0 MB TRUE FALSE TRUE

142 d PARAM 2 6 0 MB TRUE FALSE TRUE

143 f PARAM 0 1 0 MB TRUE FALSE TRUE

144 c PARAM 2 6 0 MB TRUE FALSE TRUE

145 x VAR 2 6 0 MB TRUE FALSE TRUE

146 z VAR 0 1 0 MB TRUE FALSE TRUE

147 cost EQU 0 1 0 MB TRUE FALSE TRUE

148 supply EQU 1 2 0 MB TRUE FALSE TRUE

149 demand EQU 1 3 0 MB TRUE FALSE TRUE

END OF SYMBOL TABLE DUMP

See also $(on|off)Filtered, $(on|off)Multi, and $onMultiR.

$decompress

Syntax:

$decompress source target

This option causes the compressed file source to be decompressed into the unpacked file
target.

Example: Consider the following example where the well-known model [TRNSPORT] is
used:

$call gamslib trnsport

$compress trnsport.gms t2.gms

$decompress t2.gms t3.gms

$call diff t3.gms trnsport.gms

$if errorlevel 1 $abort t3.gms and trnsport.gms are not identical!

The first command retrieves the file trnsport.gms, the second command compresses it and
the third command decompresses the compressed file. Note that the resulting file, t3.gms, is
identical to the original file trnsport.gms which is tested via the diff program.

See also $compress. Further details are given in chapter Compressing and Decompressing Files.

$dollar ($)

Syntax:

$dollar char

This option changes the current 'dollar' symbol to the single character char.

4.41 Dollar Control Options 1135

Note

The special %$ substitution symbol can be used to get the current 'dollar' symbol.

Example:

$dollar #

#log now we can use ’%$’ as the ’$’ symbol

$double

Syntax:

$double

The lines following this option will be echoed double spaced to the echo print in the listing file.

Example:

Set i / 1*2 / ;

Scalar a / 1 / ;

$double

Set j / 10*15 / ;

Scalar b / 2 / ;

The resulting echo print in the listing file looks as follows:

1 Set i /1*2/ ;

2 Scalar a /1/ ;

4 Set j /10*15/ ;

5 Scalar b /2/ ;

Note that lines before the option $double are listed single spaced, while the lines after the
option are listed with double space.

See also $single.

$drop

Syntax:

$drop VARNAME

This option destroys (removes from the program) the scoped compile-time variable VARNAME

that was defined with the dollar control option $set.

Example:

$set NAME my name

$if set NAME $log Scoped compile-time variable NAME is set to "%NAME%"

$drop NAME

$if not set NAME $log Scoped compile-time variable NAME is not available anymore

See also $set, $dropGlobal, and $dropLocal.

$dropEnv

1136 User's Guide

Syntax:

$dropEnv VARNAME

This dollar control option destroys (removes from the program) the operating system environ-
ment variable VARNAME. For detailed information, see the dollar control option .

Example:

$if setEnv GDXCOMPRESS $dropEnv GDXCOMPRESS

See also $setEnv, and $if setEnv.

$dropGlobal

Syntax:

$dropGlobal VARNAME

This option destroys (removes from the program) the global compile-time variable VARNAME

that was defined with the dollar control option $setGlobal.

Example:

$setGlobal NAME my name

$if setGlobal NAME $log Global compile-time variable NAME is set to "%NAME%"

$dropGlobal NAME

$if not setGlobal NAME $log Global compile-time variable NAME is not available anymore

See also $setGlobal, and $drop.

$dropLocal

Syntax:

$dropLocal VARNAME

This option destroys (removes from the program) the local compile-time variable VARNAME that
was defined with the dollar control option $setLocal.

$setLocal NAME my name

$if setLocal NAME $log Local compile-time variable NAME is set to "%NAME%"

$dropLocal NAME

$if not setLocal NAME $log Local compile-time variable NAME is not available anymore

See also $setLocal, and $drop.

$echo

Syntax:

$echo text >[>] external_file

This option allows to write the text text to a file external file. The text and the file name
may both be quoted or unquoted. The file name is expanded using the working directory.
The option $echo tries to minimize file operations by keeping the file open in anticipation
of another $echo to be appended to the same file. The file will be closed at the end of the
compilation or when an option $call or any variant of the option $include is encountered.
The redirection symbols > and >> have the usual meaning of starting at the beginning or
appending to an existing file respectively.

Example:

4.41 Dollar Control Options 1137

$echo > echo.txt

$echo The message written goes from the first non blank >> echo.txt

$echo ’to the first > or >> symbol unless the text is’ >> echo.txt

$echo "is quoted. The input File is %gams.input%. The" >> echo.txt

$echo ’file name "echo.txt" will be completed with’ >> echo.txt

$echo %gams.workdir%. >> echo.txt

$echo >> echo.txt

The content of the resulting file echo.txt is the following:

The message written goes from the first non blank

to the first > or >> symbol unless the text is

is quoted. The input File is C:\tmp\echoTest.gms. The

file name "echo.txt" will be completed with

C:\tmp\.

See also $on/offEcho, and $echoN.

$echoN

Syntax:

$echoN text >[>] external_file

This option sends a text message text to an file external file like $echo but writes no end
of line marker so the line is repeatedly appended to by subsequent commands. The redirection
symbols > and >> have the usual meaning of starting at the beginning or appending to an
existing file respectively. Note that the text and the file name may be quoted or unquoted. By
default the file will be saved in the working directory.

Example:

$echoN ’Text to be sent’ > ’aaa.txt’

$echoN ’More text’ >> aaa.txt

$echoN And more and more and more >> aaa.txt

$echo This was entered with $echo >> ’aaa.txt’

$echo This too >> aaa.txt

The created file aaa.txt contains the following text:

Text to be sentMore textAnd more and more and moreThis was entered with $echo

This too

See also $on/offEcho, and $echo.

$eject

Syntax:

$eject

This option advances the echo print to the next page.

Example:

$eject

Set i,j ;

Parameter Data(i,j) ;

$eject

Scalar a;

a = 7;

1138 User's Guide

The statements following the first $eject will be listed on one page in the echo print of the
listing file and the statements following the second $eject will be listed on the next page.

$else

Syntax:

$ifThen[E|I] cond

...

{ $elseIf[E|I] cond

... }

[$else

...]

$endIf

This option always appears together with the option $ifThen[E/I]. It is followed by an
instruction which is executed if the conditional expression of the matching option $ifThen[E/I]
is not true. For an example, see section Conditional Compilation with $ifThen and $else.

See also $ifThen, $elseIf and section Conditional Compilation.

$elseIf

Syntax:

$ifThen[E|I] cond

...

{ $elseIf[E|I] cond

... }

[$else

...]

$endIf

This option always appears together with the option $ifThen[E/I]. It is followed by another con-
dition and instruction. For an example, see section Conditional Compilation with $ifThen and $else.

See also $ifThen, $else, $elseIfE, $elseIfI and section Conditional Compilation.

$elseIfE

Syntax:

$ifThen[E|I] cond

...

{ $elseIf[E|I] cond

... }

[$else

...]

$endIf

This option does the same as $elseIf but evaluates numerical values of the control variables.

See also $elseIf and section Conditional Compilation.

$elseIfI

Syntax:

4.41 Dollar Control Options 1139

$ifThen[E|I] cond

...

{ $elseIf[E|I] cond

... }

[$else

...]

$endIf

This option does the same as $elseIf but it is case insensitive.

See also $elseIf and section Conditional Compilation.

$encrypt

Syntax:

$encrypt source target

This option causes a file to be converted into an encrypted file. Here source is the name
of the source file to be encrypted and target is the name for the resulting encrypted file.
Note that encryption requires the secure option to be licensed and is available for commercial
licenses only. The command line parameter pLicense specifies the target license to be used for
encryption. The encrypted file can only run on a system licensed with the license file used
for encryption. No special action is required on the executing system since GAMS recognizes
whether a file is encrypted and will process it accordingly. There is no option to decrypt an
encrypted file, so better keep the original unencrypted file.

Further details and examples are given in chapter Encrypting Files.

$endIf

Syntax:

$ifThen[E|I] cond

...

{ $elseIf[E|I] cond

... }

[$else

...]

$endIf

This must option must be matched with one of the options $ifThen, $ifThenE or $ifThenI.
For an example, see section Conditional Compilation with $ifThen and $else.

See also $ifThen and section Conditional Compilation.

$eolCom (!!)

Syntax:

$eolCom char[char]

This option redefines and activates the end-of-line comment symbol, which may be one
character or a sequence of two characters. By default, this is initialized to !!, but is not
active. The option $onEolCom is used to activate the end-of-line comments. If $eolCom is
used, $onEolCom is set automatically.

Example:

$eolCom //

Set i /1*2/ ; // set declaration

Parameter a(i) ; // parameter declaration

Here the character sequence // serves as the end-of-line-comment indicator.

1140 User's Guide

Attention

It is not allowed to reset the end-of-line comment symbol to the current end-of-line
comment symbol. This would cause an compilation error as in the following example:

$eolCom //

$eolCom //

Some end of line character settings can cause confusion. The widely used end of line character
sequence // is also legal GAMS syntax in put statement to indicate two line breaks:

file fx; put fx;

put ’first line’ // ’second line’ //;

$eolCom //

put ’third line’ // ’fourth line’;

results in a put file with the following content:

first line

second line

third line

This can also confuse syntax highlighting in editors (or on thsi web page). Other
popular end of line characters like # and @ are also used as GAMS syntax, see
Controlling the Cursor On a Page.

The default for dealing with end-of-line comments can be set using the command line parameter
eolCom.

See also section Comments for more about comments in GAMS.

$error

Syntax:

$error [text]

This option will issue a compilation error and will continue with the next line.

Example:

$if not exist myfile

$error File myfile not found - will continue anyway

Note that the first line checks if the file myfile exists. If the file does not exist, it will generate
an error with the comment File myfile not found - will continue anyway and then the
compilation will continue with the next line.

See also $abort, $exit, $terminate, and $stop.

$escape

Syntax:

$escape character

4.41 Dollar Control Options 1141

This option allows users to work with text sequences containing % without substitution.

This causes all subsequent commands of the form %symbol% to not have parameter substitution
done for them. As a consequence, no parameter substitutions are performed in GAMS
statements (mostly useful in display and put statements) and the outcome of such statements
where %symbol% is used is just %symbol%.

Note that the effect of the option $escape may be reversed with the option $escape %.

Example:

$set tt DOIT

file it; put it;

display "first %tt%";

display "second %&tt%&";

put "display one ", "%system.date%" /;

put "display two " "%&system.date%&"/;

$escape &

display "third %tt%";

display "fourth %&tt%&";

put "display third ", "%system.date%" /;

put "display fourth " "%&system.date%&"/;

$escape %

display "fifth %tt%";

display "sixth %&tt%&";

put "display fifth ", "%system.date%" /;

put "display sixth " "%&system.date%&"/;

The output generated by the display statements follows:

---- 6 first DOIT

---- 7 second %&tt%&

---- 12 third DOIT

---- 13 fourth %tt%

---- 18 fifth DOIT

---- 19 sixth %&tt%&

The file it.put will contain the following lines:

display one 08/10/17

display two %&system.date%&

display third 08/10/17

display fourth %system.date%

display fifth 08/10/17

display sixth %&system.date%&

Note that this option was introduced to facilitate writing GAMS code (or com-
mand.com/cmd.exe batch scripts) from GAMS including unsubstituted compile-time
variables. Text can also be written at compile-time without parameter substitution via option
$on/offEchoV and at run-time via $on/offPutV.

1142 User's Guide

Note

In GAMS the escape character follows the character (%) that needs to be escaped. In
many other languages the escape character precedes the to be escaped character.

$eval

Syntax:

$eval VARNAME expression

This option evaluates a numerical expression at compile time and places it into a scoped
compile-time variable. In turn the option $ifE may be used to do numeric testing on the value
of this variable.

VARNAME is the name of a compile-time variable and expression is an expression that consists
of constants, functions, operators and other compile-time variables with numerical values.
Note that no whitespace is allowed in the expression which can be overcome by additional
parentheses.

Example:

$eval b1 ifthen(uniform(0,1)<0.5,0,1)

$eval b2 ifthen(uniform(0,1)<0.5,0,1)

$eval b3 (%b1%)xor(%b2%)

$log b1=%b1% b2=%b2% b1 xor b2=%b3%

The first two lines use the uniform function to generate a random number between 0 and 1
and assign 0 if this number is less than 0.5 otherwise 1 via the ifthen function to the scoped
compile-time variable b1 and b1. In the third line we apply the logical xor operator to b1

and b2 and store the result in b3. The parentheses are required because the more natural
expression %b1% xor %b2% contains spaces. In the forth line we print the values and result to
the log.

b1=1 b2=1 b1 xor b2=0

The expression are evaluated using IEEE nonstop arithmetic, so no evaluation errors are
triggered as demonstrated in the following example:

$eval OneDividedByZero 1/0

$log 1/0=%OneDividedByZero%

This produces the following log:

1/0=+INF

The $eval and related dollar control options give access to a reduced set of GAMS functions:
abs, card, ceil, cos, errorlevel, exp, fact, floor, frac, gamsrelease, gamsversion, gday, gdow,
ghour, gleap, gmillisec, gminute, gmonth, gsecond, gyear, ifthen, jdate, jnow, jobhandle, jobkill,
jobstatus, jobterminate, jstart, jtime, log, log10, log2, max, min, mod, numcores, pi, power,
round, sameas, sign, sin, sleep, sqr, sqrt, tan, trunc, and uniform. The available operators are:
+, -, ∗, /, ∗∗ and even ∧ (integer power) which is not available in regular GAMS expression
and requires the use of the function ipower. The comparison relations are <, >, <=, >=,
<>, and =. The logical operators are not, and, or, xor, imp, and eqv.

The expression also allows the use of dollar on the right. In the following example we replace
the ifthen function by a dollar one the right:

4.41 Dollar Control Options 1143

$eval b1 1$(uniform(0,1)>=0.5)

$eval b2 1$(uniform(0,1)>=0.5)

$eval b3 (%b1%)xor(%b2%)

$log b1=%b1% b2=%b2% b1 xor b2=%b3%

Moreover, the $eval has access to data available at compile time. The expression can access
the value of scalars and for other symbols we can use the card function to access the cardinality
(at this point) of the symbol. Here is an example:

Scalar ac ’Avogadro constant’ / 6.0221409e+23 /;

$eval log_ac round(log10(ac))

$log round(log10(ac))=%log_ac%

Set d / d0*d%log_ac% /;

$eval card_d card(d)

$log card(d)=%card_d%

Access to individual records of symbols is not possible. The embedded code facility allows
access to symbol records at compile time.

The user has the possibility to hide some of the GAMS functions by symbols with the same
name. In this case, the GAMS function can still be accessed, but needs to be prefixed with
system. as in the following example:

Scalar pi /3/;

$eval myPi pi

$eval GAMSPi system.pi

$log myPi = %myPi%

$log GAMSPi = %GAMSPi%

This is the resulting output in the log:

myPi = 3

GAMSPi = 3.14159265358979

See also $eval.Set, $evalGLobal, $evalLocal, $ifE, and $set.

$eval.Set

Syntax:

$eval.Set VARNAME SETID[.[First|Last]TE|[First|Last]TL|[First|Last]TN|TS]

This option evaluates an attribute of a GAMS set at compile time and places it into a scoped
compile-time variable. VARNAME is the name of a compile-time variable and SETID is the
identifier of a GAMS set. The following attributes are allowed in this context:

Attribute Description

[First OR Last]TE Explanatory text of the first or last element of the set SETID

[First OR Last]TL Label of the first or last element of the set SETID

[First OR Last]TN Set identifier with with element labels of the first or last element of
the set SETID

TS Explanatory text of the set SETID. This is also the default, if no
attribute is specified

1144 User's Guide

Note

• First?? and ?? are synonyms in the table above. It always accesses the first
element of the referenced set.

• Last?? always accesses the last element of the referenced set.

• For Singleton Sets First??, Last?? and ?? are synonyms.

Example:

Singleton Set h Greeting / Hello ’Welcome’ /;

Set p Person / Mr.President ’Male’

Mrs.Chancellor ’Female’ /;

$eval.Set X h.TE

$log %X%

$eval.Set X p.lastTL

$log %X%

$eval.Set X p.FirstTN

$log %X%

This will generate the following in the log:

Welcome

Mrs.Chancellor

p(’Mr’,’President’)

See also $eval, $evalGLobal.Set, $evalLocal.Set, and $set.

$evalGlobal

Syntax:

$evalGlobal VARNAME expression

This option evaluates a numerical expression at compile time and places it into a global
compile-time variable. The syntax and behavior otherwise is identical to $eval.

$evalGlobal.Set

Syntax:

$evalGlobal.Set VARNAME SETID[.[First|Last]TE|[First|Last]TL|[First|Last]TN|TS]

This option evaluates an attribute of a GAMS set at compile time and places it into a global
compile-time variable. The syntax and behavior otherwise is identical to $eval.Set.

$evalLocal

Syntax:

$evalLocal VARNAME expression

This option evaluates a numerical expression at compile time and places it into a local
compile-time variable. The syntax and behavior otherwise is identical to $eval.

$evalLocal.Set

Syntax:

4.41 Dollar Control Options 1145

$evalLocal.Set VARNAME SETID[.[First|Last]TE|[First|Last]TL|[First|Last]TN|TS]

This option evaluates an attribute of a GAMS set at compile time and places it into a local
compile-time variable. The syntax and behavior otherwise is identical to $eval.Set.

$exit

Syntax:

$exit

This option will cause the compiler to exit (stop reading) from the current file. This is
equivalent to having reached the end of file.

Example:

Scalar a ;

a = 5 ;

display a ;

$exit

a = a+5 ;

display a ;

Note that the lines following the option $exit will not be compiled.

Observe that there is a difference to the dollar control option $stop. If there is only one input
file, $stop and $exit will have the same effect. If the option $exit occurs within an include
file, it acts like an end-of-file on the include file. However, if the option $stop occurs within
an include file, GAMS will stop reading all input.

See also $abort, $error, $terminate, and $stop.

$expose

Syntax:

$expose all | ident1 ident2 ...

This option removes all privacy restrictions from identifiers.

With explicit identifiers the privacy restrictions are removed only for the listed identifiers and
with all the restrictions are removed for all identifiers. The privacy restrictions may be set
with the dollar control options $hide or $protect. Note that a special license file is needed
for this feature to work and that the expose only takes effect in subsequent restart files. For
further information, see chapter Secure Work Files.

$funcLibIn

Syntax:

$FuncLibIn InternalLibName ExternalLibName

This makes extrinsic function libraries available to a model. InternalLibName is the internal
name of the library in the GAMS code and ExternalLibName is the name of the shared library
in the file system. See Using Function Libraries for more information.

$gdxIn

Syntax:

1146 User's Guide

$gdxIn [GDXFileName]

This option is used in a sequence to load specified items from a GDX file. Here GDXFileName

denotes the name of the GDX file (with or without the extension .gdx) and the command
opens the specified GDX file for reading. The use of $gdxIn without a file name closes the
currently open GDX file. The command is used in conjunction with the option $load or one of
its variants.

Example:

set i,j; parameters a(i), b(j), d(i,j), f;

$gdxIn mydata.gdx

$load i j a b d f

$gdxIn

See also $load, and $gdxOut.

$gdxLoad

Syntax:

$gdxLoad GDXFileName [sym1[,] sym2=gdxSym2[,] sym3<[=]gdxSym3[.dimI][,] ...]

This option loads specified symbols from a specified GDX file. It basically combines $gdxIn
and $load in one call. This can be particularly useful for $[bat|lib]include files when you want
to be sure, to not interfere with potentially previously opened GDX files. For example, a $load
after a ”$gdxLoad” will still load the symbols from the GDX file opened before:

$gdxIn A.gdx

$load a b c

$gdxLoad B.gdx d

* The following $load gets the symbols e, f, and g from GDX file A.gdx

$load e f g

See also $(on|off)Filtered, $(on|off)Multi, and $onMultiR.

$gdxLoadAll

Syntax:

$gdxLoadAll GDXFileName

This option loads all symbols known from a specified GDX file. It is similar to $gdxLoad, but
does not need/allow a list of symbols to be loaded. Instead it compares the list of previous
declared symbols with the symbols in the specied GDX file and loads all symbols that match.
If we have incompatibilities between symbols in GDX and GAMS (the incompatibilities are
the same as if we would do an explicit $load sym) CMEX triggers an error. Symbols in GDX
that don't exist in GAMS are just ignored.

Example:

If there is a GDX file trnsport created from the [TRNSPORT] model, the following code
will load the symbols i, j and c. All other symbols are ignored:

Set i,j,k;

Parameter c(i,j);

$gdxLoadAll trnsport.gdx

See also $(on|off)Filtered, $(on|off)Multi, and $onMultiR.

4.41 Dollar Control Options 1147

$gdxOut

Syntax:

$gdxOut [GDXFileName]

This option is used in a sequence to unload specified items to a GDX file at compile time. Here
GDXFileName denotes the name of the GDX file (with or without the extension GDX) and the
command opens the specified GDX file for writing. The use of $gdxOut without a file name
closes the currently open output GDX file and initiates the actual writing of the sequence of
symbols. The command is used in conjunction with the dollar control option $unLoad.

Example:

set i /i1*i3/; parameters a(i) /i1 3, i2 87, i3 1/;

$gdxOut mydata.gdx

$unLoad i a

$gdxOut

See also $unLoad, and $gdxIn.

$gdxUnload

Syntax:

$gdxUnload GDXFileName [sym1[,] sym2=gdxSym2[,] ...]

This option unloads symbols from a specified GDX file. It basically combines $gdxOut and
$unload in one call. This can be particularly useful for $[bat|lib]include files when you want to
be sure, to not interfere with potentially previously opened GDX files. For example, a $unload
after a ”$gdxUnload” will still unload the symbols to the GDX file opened before:

$gdxOut A.gdx

$unload a b c

$gdxUnload B.gdx d

* The following $unload puts the symbols e, f, and g into GDX file A.gdx

$unload e f g

$goto

Syntax:

$goto id

$label id

This option will cause GAMS to search for a line starting with $label id and then continue
reading from there. This option can be used to skip over or repeat sections of the input files.
In $batinclude files the target labels or label arguments can be passed as parameters because
of the manner in which parameter substitution occurs in such files. In order to avoid infinite
loops, jumps to the same label are restricted to a maximum of 100 times by default. This
maximum may be changed with the option $maxGoto.

Example:

1148 User's Guide

Scalar a ;

a = 5;

display a ;

$goto next

a = a+5 ;

display a ;

$label next

a = a+10 ;

display a ;

Note that GAMS will continue from line $label next after reading line $goto next. Observe
that all lines in between are ignored. Therefore the final value of a in the example above will
be 15.

Attention

The lines $goto and $label have to be in the same file. If the target label is not found in
the current file an error will be issued.

See also $label, $maxGoto.

$hidden

Syntax:

$hidden text

A line starting with this option will be ignored and will not be echoed to the listing file. This
option is used to enter information only relevant to the person manipulating the file.

Example:

$hidden You need to edit the following lines if you want to:

$hidden

$hidden 1. Change form a to b

$hidden 2. Expand the set

The lines above serve as comments to the person who wrote the file. However, these comments
will not be visible in the listing file and are therefore hidden from view.

Note

This option is particularly useful when the input file is encrypted.

$hiddenCall

Syntax:

$hiddenCall [=]command

This option does the same as $call but the statement is neither shown on the log nor the
listing file.

$hiddenCall.Async[NC]

Syntax:

$hiddenCall.Async[NC] command

4.41 Dollar Control Options 1149

This option does the same as $call.Async[NC] but the statement is neither shown on the log
nor the listing file.

$hiddenCall.checkErrorLevel

Syntax:

$hiddenCall.checkErrorLevel [=]command

This option does the same as $call.checkErrorLevel but the statement is neither shown on the
log nor the listing file.

$hiddenCallTool

Syntax:

$hiddenCallTool command

This option does the same as $callTool but the statement is neither shown on the log nor the
listing file.

$hiddenCallTool.checkErrorLevel

Syntax:

$hiddenCallTool.checkErrorLevel command

This option does the same as $callTool.checkErrorLevel but the statement is neither shown
on the log nor the listing file.

$hide

Syntax:

$hide all | ident1 ident2 ...

This option hides identifiers so they cannot be displayed or computed, but they may still be
used in model calculations (i.e. commands when the solve statement is executed).

With explicit identifiers the listed identifiers are hidden and with all all identifiers are hidden.
These restrictions may be removed with the dollar control options expose or purge. Note that
a special license file is needed for this feature to work.

For further information, see chapter Secure Work Files.

$if

Syntax:

$if [not] conditional_expression new_input_line

This dollar control option provides the greatest amount of control over conditional processing
of the input file(s).

For more information on the conditional expressions allowed, details on the
new input line and examples, see section Conditional Compilation below.

See also $ifE, $ifI, $ifThen.

1150 User's Guide

$ifE

Syntax:

$ifE [not] conditional_expression new_input_line

This dollar control option does the same as the option $if but allows constant expression
evaluation. The conditional expression may take two different forms:

expr1 == expr2 TRUE if (expr1-expr2)/(1+abs(expr2)) < 1e-12

expr TRUE if expr1 <> 0

Example:

Scalar a;

$ifE (log2(16)^2)=16 a=0; display a;

$ifE log2(16)^2 == 16 a=1; display a;

$ifE NOT round(log2(16)^2-16) a=2; display a;

$ifE round(log2(16)^2-16) a=3; display a;

$ifE round(log2(16)^2-17) a=4; display a;

This will create the following output:

---- 3 PARAMETER a = 1.000

---- 4 PARAMETER a = 2.000

---- 6 PARAMETER a = 4.000

See also $if and section Conditional Compilation.

$ifI

Syntax:

$ifI [not] conditional_expression new_input_line

This option is working like the option $if. The only difference is that $if makes comparisons
involving text in a case sensitive fashion while $ifI is case insensitive.

See also $if and section Conditional Compilation.

$ifThen

Syntax:

$ifThen[E|I] cond

...

{ $elseIf[E|I] cond

... }

[$else

...]

$endIf

4.41 Dollar Control Options 1151

This option is a form of the option $if that controls whether a number of statements are
active. The syntax for the condition is generally the same as for the option $if. Like
$if, it is case sensitive. Often it is followed by one or more of the following dollar con-
trol options: $else, $elseIf, $elseIfI, $elseIfE. The option $ifThen must be matched with
the option $endIf that marks the end of the construct. An example is given in section
Conditional Compilation with $ifThen and $else.

Note that users may add a tag to the $ifThen and $endIf. For example, $ifThen.tagOne has
to match with $endif.tagOne.

Example:

$ifThen.one x == y

display "it1";

$elseIf.one a == a

display "it2";

$ifThen.two c == c

display "it3";

$endIf.two

$elseIf.one b == b

display "it4";

$endIf.one

The resulting listing file will contain the following lines:

---- 2 it2

---- 4 it3

Note that the first condition (x == y) is obviously not true and the fourth condition (b == b)
is not tested because the second condition (a == a) was already true.

Also note that the false clause is not interpreted by the compiler. So the following code would
compile without problems:

$ifThen x == y

$the

$compiler

doesn’t

complain

$endIf

See also $if, $ifThenE, $ifThenI, $else, $elseIF and section Conditional Compilation.

$ifThenE

Syntax:

$ifThen[E|I] cond

...

{ $elseIf[E|I] cond

... }

[$else

...]

$endIf

1152 User's Guide

This option does the same as the option $ifThen but evaluates numerical values of the control
variables.

See also $ifThen and section Conditional Compilation.

$ifThenI

Syntax:

$ifThen[E|I] cond

...

{ $elseIf[E|I] cond

... }

[$else

...]

$endIf

This option does the same as the option $ifThen but it is case insensitive.

See also $ifThen and section Conditional Compilation.

$include

Syntax:

$include external_file

This option inserts the contents of a specified text file at the location of the call. Note that
text files that have been compressed with Posix utility gzip or have been encrypted with tool
ENDECRYPT are also allowed. External file is the name of the file that is included. It
can be quoted or unquoted. Note that include files may be nested.

The include file names are processed in the same way like the input file. The names are
expanded using the working directory. If the file cannot be found and no extension is given,
the standard GAMS input extension is tried. However, if an incomplete path is given, the
file name is completed using the include directory. By default, the library include directory
is set to the working directory. The default directory search path may be extended with the
command line parameter InputDir.

Note that the start of the include file is marked and the include file is echoed to the echo
print in the listing file. This reference to the include file may be omitted by using the option
$offInclude.

Example:

$include myfile

$include "myfile"

Both statements above are equivalent and the search order for the include file is as follows:

1. myfile in current working directory

2. myfile.gms in current working directory

3. myfile and myfile.gms (in that order) in directories specified by the command line
parameter InputDir.

4.41 Dollar Control Options 1153

Attention

The current settings of the dollar control options are passed on to the lower level include
files. However, the dollar control options set in the lower level include file are passed on
to the parent file only if the option $onGlobal is set.

Note that details on the compilation output of include files are given in section
The Include File Summary.

See also $batInclude, $libInclude, $sysInclude.

$inlineCom (/ ∗ ∗ /)

Syntax:

$inlineCom char[char] char[char]

This option redefines and activates the in-line comment symbols. These symbols are placed at
the beginning and the end of the in-line comment and are one character or a two character
sequence at the beginning and the end. By default, the system is initialized to ' /∗' and ' ∗/',
but is not active. The option $onInline is used to activate the in-line comments. If $inlineCom
is used, $onInline is set automatically.

Example:

$inlineCom {{ }}

Set {{ this is an inline comment }} i / 1*2 / ;

Note that the character pairs {{ }} serve as the indicator for in-line comments.

Attention

It is not allowed to reset the option $inlineCom to the current symbol for in-line
comments. This would cause an compilation error as in the following example:

$inlinecom {{ }}

$inlinecom {{ }}

Note

The option $onNestCom enables the use of nested comments.

The default for dealing with inline comments can be set using the command line parameter
inlineCom.

See also section Comments.

$kill

Syntax:

$kill ident {ident}

This option removes all data for the identifiers ident, only the type and dimension are retained
(this means that these identifiers will be declared but not defined anymore). Note that only the
data of the following data types may be removed: sets, parameters, variables and equations.
Note further that the data removal is carried out during compile time and not when the GAMS
program executes.

Example:

1154 User's Guide

Set i / 1*20 /;

Scalar a /2/;

$kill i a

Note that the effect of the third line above is that all data from a and i is removed, so the set
i and the scalar a are declared, but not initialized or assigned to. Note that after i and a

have been killed, a display statement for them will trigger an error. However, new data may
be assigned to identifiers that were previously killed. Thus the following statements are valid
if appended to the code above:

Set i / i1 *i3 /;

a = 7;

Observe that this option needs to be distinguished from the dollar control option $clear, that
resets the data to the default values.

$label

Syntax:

$goto id

$label id

This option marks a line to be jumped to by a dollar control option $goto. Any number of
labels may be used in files and not all of them need to be referenced. Re-declaration of a label
identifier will not generate an error and only the first occurrence encountered by the GAMS
compiler will be used for future $goto references.

Example:

Scalar a ;

a = 5 ;

display a ;

$goto next

a = a+5 ;

display a ;

$label next

a = a+10 ;

display a ;

When GAMS reaches the line $goto next, it continues from the line $label next. All lines
in between are ignored. Therefore in the example above, the final value of a is 15.

Attention

If several dollar control options appear in one line and label is one of them, then label

must be listed first.

See also $goto, $maxGoto.

$libInclude

Syntax:

$libInclude external_file {arg}

4.41 Dollar Control Options 1155

This option is mostly equivalent to the option $batInclude. However, if an incomplete path is
given, the file name is completed using the library include directory. By default, the library
include directory is set to the directory inclib in the GAMS standard locations. Note that
the list of default directories searched may be prepended with the command line parameter
libIncDir.

Example:

$libInclude abc x y

This call will first look for the include file inclib/abc in the standard locations. If this file
does not exist there GAMS will look for the file inclib/abc.gms in the standard locations.
The arguments x and y are passed on to the include file and are interpreted as explained in
the detailed description of the option $batInclude.

See also $include, $batInclude, $sysInclude.

$lines

Syntax:

$lines n

This option starts a new page in the listing file if less than n lines are available on the current
page.

Example:

$hidden Never split the first few lines of the following table

$lines 5

Table io(i,j) Transaction matrix

...

;

This will ensure that if there are less than five lines available on the current page in the listing
file before the next statement (in this case, the table statement) is echoed to it, the contents
of this statement are echoed to a new page.

$load

Syntax:

$load [sym1[,] sym2=gdxSym2[,] sym3<[=]gdxSym3[.dimI][,] ...]

This option is preceded and succeeded by the option $gdxIn that open the GDX file for reading.
The option $load loads specified items from the GDX file. Note that more than one instance
of $load may occur. A listing of the GDX file contents will be created if the option $load is
not followed by arguments.

Examples

Consider the following example, where transsol is the GDX file of the transportation model
[TRNSPORT]

$gdxIn transsol

$load

Sets i, j; Parameters a(i), b(j), d(i,j), f;

$load i j a b d f

$gdxIn

1156 User's Guide

A comma between the symbols is optional. The follow example works identically:

$gdxIn transsol

$load

Sets i, j; Parameters a(i), b(j), d(i,j), f;

$load i, j, a, b, d, f

$gdxIn

The $load without any arguments produces a table of contents of the GDX container in the
listing file:

Content of GDX C:\Users\default\Documents\gamsdir\projdir\transsol.gdx

5 UELs

Number Type Dim Count Name

1 Set 1 2 i canning plants

2 Set 1 3 j markets

3 Parameter 1 2 a(i) capacity of plant i in cases

4 Parameter 1 3 b(j) demand at market j in cases

5 Parameter 2 6 d(i,j) distance in thousands of miles

6 Parameter 0 1 f freight in dollars per case per thousand miles

7 Parameter 2 6 c(i,j) transport cost in thousands of dollars per case

8 Variable 2 6 x(i,j) shipment quantities in cases

9 Variable 0 1 z total transportation costs in thousands of dollars

10 Equation 0 1 cost define objective function

11 Equation 1 2 supply(i) observe supply limit at plant i

12 Equation 1 3 demand(j) satisfy demand at market j

Symbols may be loaded with new names with the following syntax: $load i=gdx i j=j gdx.
The universal set may be loaded using $load uni=∗.

$gdxIn transsol

Sets i, jj, uni; Parameters a(i), bb(jj), d(i,jj), f;

$load i jj=j uni=* a bb=b d f

$gdxIn

display uni;

This results in a display of all used labels:

---- 5 SET uni

Seattle , San-Diego, New-York , Chicago , Topeka

The syntax sym<[=]GDXSym[.dimI] allows to load a one dimensional set from a symbol in the
GDX file that has even a higher dimensionality. GAMS tries to find the set sym as a domain
in the symbol GDXSym and uses the labels from this index position (with < the first domain
set from the right and with <= from the left). If no domain information is stored in the GDX
file or the domain information does not match the suffix .dimI allows to pick a fixed index
position.

In the following we work with a GDX file created by the following code:

set i / i1*i3 /, ii(i,i) / i1.i2, i2.i3 /;

execute_unloadDI ’ii’, i, ii;

Now use use this GDX file to load the first and second index from ii:

set i, i1;

$gdxIn ii

* Load first index from ii as i

$load i<=ii i1<ii.dim1

display i, i1;

4.41 Dollar Control Options 1157

the display lists all labels from the first index of ii:

---- 5 SET i Domain loaded from ii position 1

i1, i2

---- 5 SET i1 Domain loaded from ii position 1

i1, i2

Now we match from the right and get the second index of ii:

set i, i2;

$gdxIn ii

* Load second index from ii as i

$load i<ii i2<ii.dim2

display i, i2;

The resulting listing file will contain the following lines:

---- 5 SET i Domain loaded from ii position 2

i2, i3

---- 5 SET i2 Domain loaded from ii position 2

i2, i3

This type of projection loading can be useful to extract the domain sets from a single parameter
that is stored in a GDX file:

set i,j,k; parameter data(i,j,k);

$gdxIn data

$load i<data.dim1 j<data.dim2 k<data.dim3 data

Attention

Loading an item that was already initialized will cause a compilation error.

For example, the following code snippet will cause a compilation error:

Set j / 1*5 /;

$gdxIn transsol

$load j

$gdxIn

Note that GAMS offers variants of $load that do not cause a compilation error in such a case:
$loadM and $loadR.

Note

One can load the level values of a variable into a parameter of the same dimension using
the syntax parametername=var.l as follows

parameter storexlevel(i,j);

$gdxin trnsport

$load storexlevel=x.l

$gdxin

display storexlevel;

Loading the level values for a variable into the same variable (x=x.l) works but loads
everything including bounds, scales, marginals and levels.

1158 User's Guide

$loadDC

Syntax:

$loadDC [sym1[,] sym2=gdxSym2[,] sym3<[=]gdxSym3[.dimI][,] ...]

This option is an alternative form of $load. It performs domain checking when items are
loaded. Any domain violations will be reported and flagged as compilation errors. This is
basically the opposite of $loadFiltered. All other features are the same as discussed under
$load .

Example: Consider the following example where transsol is the GDX file of the transporta-
tion model [TRNSPORT].

Set i, j;

Parameter b(i), a(j);

$gdxIn transsol

$load i b

$loadDC j a

$gdxIn

Note that in contrast to the example above, the parameter a is indexed over the set i and
the parameter b is indexed over the set j in the file transsol. While $load i b does not
generate an error and b is just empty, the option $loadDC j a triggers a domain violation
error because in transsol a is indexed over i and produces a list of errors in the listing file:

--- LOAD a = 3:a

**** Unique domain errors for symbol a

Dim Elements

1 seattle, san-diego

5 $loadDC j a

**** $649

$loadDCM

Syntax:

$loadDCM [sym1[,] sym2=gdxSym2[,] sym3<[=]gdxSym3[.dimI][,] ...]

This option combines the functionality of merging as in $loadM and domain checking as in
$loadDC.

Example:

Consider the following example where transsol is the GDX file of the transportation model
[TRNSPORT].

Set i, uni ’all labels’;

Parameter abFail(i), ab(uni) ’capacity and demand’;

$gdxIn transsol

$load i abFail=a

$loadDCM abFail=b

$loadDCM uni=i uni=j ab=a ab=b

$gdxIn

display uni, ab;

4.41 Dollar Control Options 1159

Here we try to merge parameters a and b together into one parameter. The first attempt (to
merge it into parameter abFail) would fail because of line 5 and result into a domain violation
report as described with dollar control option $loadDC. In the second attempt we first merge
the sets i and j into set uni and then merge the parameters a and b into ab. If one comments
line 5 the resulting display looks as follows:

---- 8 SET uni all labels

seattle , san-diego, new-york , chicago , topeka

---- 8 PARAMETER ab capacity and demand

seattle 350.000, san-diego 600.000, new-york 325.000

chicago 300.000, topeka 275.000

$loadDCR

Syntax:

$loadDCR [sym1[,] sym2=gdxSym2[,] sym3<[=]gdxSym3[.dimI][,] ...]

This option combines the functionality of replacing data as in $loadR and domain checking as
in $loadDC.

Example:

Consider the following example where transsol is the GDX file of the transportation model
[TRNSPORT].

Set uni ’all labels’;

Parameter ab(uni) ’capacity and demand’;

$gdxIn transsol

$loadM uni=i uni=j ab=a

$loadDCR ab=b

$gdxIn

display uni, ab;

Here we try to read twice into the parameter ab. First GDX symbol a and b are read into ab.
GDX symbol b is read with replace and hence the parameter ab contains the elements of b
only.

$loadFiltered

Syntax:

$loadFiltered [sym1[,] sym2=gdxSym2[,] sym3<[=]gdxSym3[.dimI][,] ...]

This option is an alternative form of $load, in particular, it works like $load while $onFiltered
is set. That means, when items are loaded, domain violations are not flagged as compilation
errors, but items violating the domain definition are just filtered out. This is basically the
opposite of $loadDC. All other features are the same as discussed under $load .

Example: Consider the following example where transsol is the GDX file of the transporta-
tion model [TRNSPORT].

Set i / seattle /

j / new-york, chicago /;

Parameter a(i), b(j);

$gdxIn transsol

$loadFiltered a

$loadDC b

$gdxIn

1160 User's Guide

While $loadFiltered a does not generate an error, but just ignores the data that does not
match the defined domain, $loadDC b triggers a domain violation error.

See also $loadFilteredM and $loadFilteredR.

$loadFilteredM

Syntax:

$loadFilteredM [sym1[,] sym2=gdxSym2[,] sym3<[=]gdxSym3[.dimI][,] ...]

This option combines the functionality of merging as in $loadM and domain filtering as in
$loadFilterd.

Example:

Consider the following example where transsol is the GDX file of the transportation model
[TRNSPORT].

Set i, uni ’all labels’;

Parameter abFilter(i), ab(uni) ’capacity and demand’;

$gdxIn transsol

$load i abFilter=a

$loadFilteredM abFilter=b

$loadFilteredM uni=i uni=j ab=a ab=b

$gdxIn

Display uni, ab, abFilter;

Here we try to merge parameters a and b together into one parameter. The first attempt (to
merge it into parameter abFilter) does not add anything, since the elements in b do not
match the defined domain i (compare $loadFilterd). In the second attempt we first merge
the sets i and j into set uni and then merge the parameters a and b into ab. The Display

statement produces the following output:

---- 31 SET uni all labels

seattle , san-diego, new-york , chicago , topeka

---- 31 PARAMETER ab capacity and demand

seattle 350.000, san-diego 600.000, new-york 325.000, chicago 300.000, topeka 275.000

---- 31 PARAMETER abFilter capacity of plant i in cases

seattle 350.000, san-diego 600.000

$loadFilteredR

Syntax:

$loadFilteredR [sym1[,] sym2=gdxSym2[,] sym3<[=]gdxSym3[.dimI][,] ...]

This option combines the functionality of replacing data as in $loadR and domain filtering as
in $loadFilterd.

Example:

Consider the following example where transsol is the GDX file of the transportation model
[TRNSPORT].

4.41 Dollar Control Options 1161

Set uni ’all labels’;

Parameter ab(uni) ’capacity and demand’;

$gdxIn transsol

$loadFilteredM uni=i uni=j ab=a

$loadFilteredR ab=b

$gdxIn

Display uni, ab;

Here we try to read twice into the parameter ab. First GDX symbol a and b are read into ab.
GDX symbol b is read with replace and hence the parameter ab contains the elements of b
only:

---- 31 SET uni all labels

seattle , san-diego, new-york , chicago , topeka

---- 31 PARAMETER ab capacity and demand

new-york 325.000, chicago 300.000, topeka 275.000

$loadIdx

Syntax:

$loadIdx [sym1[,] sym2=gdxSym2[,] ...]

This option is an alternative form of $load. Each symbol in the GDX file to read must be a
parameter and should have been written using an indexed write; see also execute unloadidx.

See Example 3 - Reading a GDX File and [ldidx01] on how to use $loadidx.

$loadM

Syntax:

$loadM [sym1[,] sym2=gdxSym2[,] sym3<[=]gdxSym3[.dimI][,] ...]

This option is an alternative form of $load. Instead of replacing an item or causing a symbol
redefined error if the item was already initialized it merges the contents. Records that would
result in domain violations will be ignored.

Example:

Consider the following example where transsol is the GDX file of the transportation model
[TRNSPORT].

Set i, uni ’all labels’;

Parameter ab(uni) ’capacity and demand’;

$gdxIn transsol

$loadM uni=i uni=j ab=a ab=b

$gdxIn

display uni, ab;

Here we merge parameters a and b together into one parameter ab. We first merge the sets
i and j into set uni and then merge the parameters a and b into ab. The resulting display
looks as follows:

1162 User's Guide

---- 6 SET uni all labels

seattle , san-diego, new-york , chicago , topeka

---- 6 PARAMETER ab capacity and demand

seattle 350.000, san-diego 600.000, new-york 325.000

chicago 300.000, topeka 275.000

$loadR

Syntax:

$loadR [sym1[,] sym2=gdxSym2[,] sym3<[=]gdxSym3[.dimI][,] ...]

This option is a variant of the option $load. With $loadR we can have multiple loads into
the same symbols and the data stored in GAMS will be replaced with the one from the GDX
container.

Example:

Consider the following example, where transsol is the GDX file of the transportation model
[TRNSPORT]:

Sets i / 1*3 /

j / 1*2 /;

$gdxIn transsol

$loadR i j

$gdxIn

display i, j;

The resulting listing file will contain the following lines:

---- 6 SET i canning plants

Seattle , San-Diego

---- 6 SET j markets

New-York, Chicago , Topeka

$log

Syntax:

$log text

This option will send a message text to the log file. Recall that by default, the log file is the
console. The default log file may be reset with the command line parameters logOption and
logFile.

Attention

• Leading blanks are ignored when the text is written out to the log file as a result of
using the $log option.

• All special % symbols will be substituted before the text passed through the $log
option is sent to the log file.

Example:

4.41 Dollar Control Options 1163

$log

$log The following message will be written to the log file

$log with leading blanks ignored. All special % symbols will

$log be substituted before this text is sent to the log file.

$log This was line %system.incLine% of file %system.incName%

$log

The log file that results by running the lines above will contain the following lines:

The following message will be written to the log file

with leading blanks ignored. All special % symbols will

be substituted before this text is sent to the log file.

This was line 5 of file C:\tmp\logTest.gms

Note that %system.incLine% is replaced by 5 which is the line number where the string
replacement was requested. Note further that %system.incName% is substituted with the name
of the file completed with the absolute path. Observe that the leading blanks on the second
line of the example are ignored.

$macro

Syntax:

$macro name(arg1,arg2,arg3, ...) macro_body

This option defines a macro in GAMS. Here name is the name of the macro, arg1,arg2,arg3,...
are the arguments and macro body defines what the macro should do. The macro names follow
the rules for identifiers. The macro name cannot be used for other symbols. For further details
and examples, see section Macros in GAMS below.

$maxCol (80001)

Syntax:

$maxCol n

This option restricts the valid range of input columns at the right margin. Note that all input
after column n is treated as comment, therefore it is ignored.

Example:

$maxCol 30

Set i / vienna, rome /; set definition

Scalar a / 2.3 /; scalar definition

Observe that the text strings set definition and scalar definition are treated as com-
ments and are ignored since they begin on or after column 31.

Any changes in the margins via $maxCol or $minCol will be reported in the listing file with the
message that gives the valid range of input columns. For example, the dollar control option
$minCol 20 maxCol 110 will trigger the following message:

NEW MARGINS: 20-110

1164 User's Guide

Note

• GAMS requires that the right margin set by $maxCol is greater than 15.

• GAMS requires that the right margin set by $maxCol is greater than the left margin
set by $minCol.

See also $on/offMargin and section Comments.

$maxGoto 100

Syntax:

$maxGoTo n

This option sets the maximum number of jumps to the same label and is used in the context
of the options $goTo and $label. Once the maximum number is reached a compilation error is
triggered. Such a limit has been implemented to avoid infinite loops at compile time.

Example:

Scalar a / 1 /;

$maxGoTo 5

$label label1

a = a+10;

display a ;

$goTo label1

Note that a compilation error is triggered if $goTo label1 is called for the fifth time.

$minCol (1)

Syntax:

$minCol n

This option restricts the valid range of input columns at the left margin. Note that all input
before column n is treated as comment, therefore it is ignored.

Example:

$minCol 30

Set definition Set i / vienna, rome /;

Scalar definition Scalar a / 2.3 /;

Observe that the text strings set definition and scalar definition are treated as com-
ments and are ignored since they are placed before column 30.

Any changes in the margins via the option $maxCol or $minCol will be reported in the listing
file with the message that gives the valid range of input columns. For example, the dollar
control option $minCol 20 maxCol 110 will trigger the message:

NEW MARGINS: 20-110

4.41 Dollar Control Options 1165

Attention

GAMS requires that the left margin set by the option $minCol is smaller than the right
margin set by the option $maxCol.

See also $on/offMargin and section Comments.

$(on|off)CheckErrorLevel ($offCheckErrorLevel)

Syntax:

$onCheckErrorLevel

$offCheckErrorLevel

If the option $onCheckErrorLevel is active, the errorLevel is checked implicitly after $call,
$hiddenCall, $callTool and $hiddenCallTool. A compilation error is triggered and the compi-
lation is aborted if it is not 0. With $offCheckErrorLevel, this is not done, but one can do it
explicitly. So, with $onCheckErrorLevel $call behaves like $call.checkErrorLevel, $hiddenCall
behaves like $hiddenCall.checkErrorLevel, $callTool behaves like $callTool.checkErrorLevel
and $hiddenCallTool behaves like $hiddenCallTool.checkErrorLevel.

The default for dealing with error levels can be set using the command line parameter
checkErrorLevel.

$(on|off)Delim ($offDelim)

Syntax:

$onDelim

$offDelim

This option controls whether data in table statements may be entered in delimited format. As
delimiter one can use ".", ",", or "TAB".

Example:

Sets plant ’plant locations’ / NEWYORK, CHICAGO, LOSANGELES /

market ’demands’ / MIAMI, HOUSTON, PORTLAND /;

Table dist(plant,market)

$onDelim

,MIAMI,HOUSTON,PORTLAND

NEWYORK,1300,1800,1100

CHICAGO,2200,1300,700

LOSANGELES,3700,2400,2500

$offDelim

;

Display dist;

The resulting listing file will contain the following output:

---- 12 PARAMETER dist

MIAMI HOUSTON PORTLAND

NEWYORK 1300.000 1800.000 1100.000

CHICAGO 2200.000 1300.000 700.000

LOSANGELES 3700.000 2400.000 2500.000

1166 User's Guide

$(on|off)Digit ($onDigit)

Syntax:

$onDigit

$offDigit

Historically, GAMS has run on widely different platforms where even the floating-point
arithmetic varied. To ensure the precision specified in the GAMS input didn't exceed what
could be stored and computed with as GAMS ran, we limited the precision (i.e. the number of
significant digits used for numbers) that could be specified in the GAMS source. This limit
could be relaxed by using the $offDigit control.

Modern computers all support IEEE double-precision arithmetic, and GAMS uses this internally.
It's a well-accepted and familiar standard, and the current behavior - to convert the decimal
value in the GAMS source into the nearest double-precision value, regardless of the number of
digits in the GAMS source - is what is generally expected. There is a limit (currently 40) on
the number of digits treated as potentially significant: digits beyond this point are quietly
treated as zero.

The $offDigit control remains useful for changing how GAMS handles numbers with very
large or small magnitude. With $onDigit, GAMS throws compiler warnings/errors for these
values. With $offDigit, GAMS quietly converts them to UNDF or EPS, respectively.

Example:

scalar aboveTheLimit / 222e299 /;

scalar tiny / 1.0e-275 /;

scalar tinier / 1.0e-285 /;

$offdigit

scalar uberTheLimit / 222e299 /;

scalar klein / 1.0e-275 /;

scalar kleiner / 1.0e-285 /;

The resulting listing file will contain the following lines:

1 scalar aboveTheLimit / 222e299 /;

**** $106

2 scalar tiny / 1.0e-275 /;

**** $595

3 scalar tinier / 1.0e-285 /;

**** $594

5 scalar uberTheLimit / 222e299 /;

6 scalar klein / 1.0e-275 /;

7 scalar kleiner / 1.0e-285 /;

Error Messages

106 abs(number) out of range

abs(number) must be less than 1E300

$offdigit can be used to replace large numbers with UNDF

594 Exponent very very small - rejected

$offdigit can be used to replace with EPS

595 Exponent very small

$offdigit can be used to quietly accept very small values

The default for dealing with digits can be set using the command line parameter digit.

4.41 Dollar Control Options 1167

$(on|off)Dollar ($offDollar)

Syntax:

$onDollar

$offDollar

This option controls the echoing of dollar control option lines in the listing file.

Example:

$hidden This line will not be displayed

$onDollar

$hidden This line will be displayed

$offDollar

$hidden This line will not be displayed

The compilation output of the resulting listing file will contain the following lines:

2 $onDollar

3 $hidden This line will be displayed

Note that all lines between the option $onDollar and the option $offDollar are echoed in
the listing file. Note further that the effect of this option is immediate: the line $onDollar is
echoed in the listing file, while the line $offDollar is not.

$(on|off)DotL ($offDotL)

Syntax:

$onDotL

$offDotL

This option activates or deactivates the automatic addition of the attribute .L to variables on
the right-hand side of assignments and in put statement. It is most useful in the context of
macros. For further information, see section Macros in GAMS below.

Example:

Consider the following code snippet which can be added to the end if the [TRNSPORT]
model:

$onDotL

file fx; put fx;

loop((i,j),

put / x(i,j)

);

$offDotL

file fx; put fx;

loop((i,j),

put / x(i,j)

);

This is the generated output:

1168 User's Guide

50.00

300.00

0.00

275.00

0.00

275.00

x(’seattle’,’new-york’)

x(’seattle’,’chicago’)

x(’seattle’,’topeka’)

x(’san-diego’,’new-york’)

x(’san-diego’,’chicago’)

x(’san-diego’,’topeka’)

First, we see the level for each x record. After setting $offDotL we are back at the default
which means, that the .tn attribute is used implicitly.

$(on|off)DotScale ($offDotScale)

Syntax:

$onDotScale

$offDotScale

This option activates or deactivates the automatic addition of the attribute .Scale to variables
and equations on the right-hand side of assignments and in put statements. As with on|offDotL
It is most useful in the context of macros. For further information, see section Macros in GAMS
below.

$(on|off)Echo[S|V][.tag]

Syntax:

$onEcho[S|V][.tag] >[>] external_file

text

{text}

$offEcho[.tag]

This option is used to send one or more lines of text to an file external file. The text and
the file name may be quoted or unquoted. The external file is not closed until the end of the
compilation or when the option $call or any variant of the option $include is encountered. Note
that the redirection symbols > and >> have the usual meaning: > creates a new file and writes
to it or - in case there exists already a file with the respective name - overwrites the existing
file and >> appends to a file. Note further that parameter substitutions are permitted with
$onEcho. The option $onEcho has two more variants: $onEchoS and $onEchoV. $onEchoS
allows parameter substitutions like $onEcho, so it is just a synonym which makes it more
obvious that parameter substitution is allowed with the appended S. The option $onEchoV
does not allow parameter substitutions but writes the text verbatim.

Example:

4.41 Dollar Control Options 1169

$set it TEST

$onEchoS > externalfile1.txt

send %it% to external file

line 2 to send

$offEcho

$onEchoV > externalfile2.txt

send %it% to external file

line 2 to send

$offEcho

The externalfile1.txt will contain the following lines:

send TEST to external file

line 2 to send

The externalfile2.txt will contain these lines:

send %it% to external file

line 2 to send

Observe that in the first case %it% is substituted with TEST, but in the second case there is no
substitution.

Note that by default the external file will be placed in the current working directory if there is
no path specified.

One may add a tag to the $onEcho[S|V] and $offEcho. This allows to use nested echo blocks
like this:

$onEcho.outer > outerFile.gms

$onEcho.inner > innerFile.txt

Line 1 of text

Line 2 of text

$offEcho.inner

$offEcho.outer

The resulting file outerFile.gms looks like this:

$onEcho.inner > innerFile.txt

Line 1 of text

Line 2 of text

$offEcho.inner

See also options $echo, and $echoN.

$(on|off)ECImplicitLoad ($onECImplicitLoad)

Syntax:

$onECImplicitLoad

$offECImplicitLoad

This option enables or disables the implicit loading of symbols set in embedded code sections,
which are not loaded explicitly with $offEmbeddedCode.

Example:

1170 User's Guide

Set i(*);

$offECImplicitLoad

$onEmbeddedCode Python:

i = [’a’,’b’]

print(i)

gams.set("i", i)

$offEmbeddedCode

This will result in a compilation error, since i is set in the embedded code block (by
gams.set("i", i)), but not loaded with $offEmbeddedCode. If $onECImplicitLoad would
be active, $offEmbeddedCode would be treated like $offEmbeddedCode i here.

See also ECImplicitLoad.

$(on|off)Embedded ($offEmbedded)

Syntax:

$onEmbedded

$offEmbedded

This option enables or disables the use of embedded values in parameter and set data statements.
If enabled, the explanatory text for set elements is concatenated with blank separators. For
parameters, the embedded values get multiplied.

Example:

Set k / a,b /

l / a /;

Set i(k,l) / a.a ’aaaa cccc dddd’

b.a ’bbbb cccc dddd’ /;

Parameter m(k,l) / a.a 12

b.a 24 /;

$onEmbedded

Set j(k,l) / (a aaaa, b bbbb).(a cccc) dddd /;

Parameter n(k,l) / (a 1, b 2) .(a 3) 4 /;

Note that the explanatory text of the set elements in i and j as well as the values of the
parameters m and n are identical.

$(on|off)EmbeddedCode[S|V][.tag]

Syntax:

$onEmbeddedCode[S|V][.tag] Connect|Python: [arguments]

Embedded code

{Embedded code}

$offEmbeddedCode[.tag] {symbol[<[=]embSymbol[.dimX]]}

4.41 Dollar Control Options 1171

This option is used to execute one or more lines of embedded code (e.g. Python code) while
GAMS stays alive. The embedded code has access to GAMS symbols and can read and change
them.

Note that parameter substitutions are permitted with $onEmbeddedCode. The option
$onEmbeddedCode has two more variants: $onEmbeddedCodeS and $onEmbeddedCodeV.
$onEmbeddedCodeS allows parameter substitutions like $onEmbeddedCode, so it is just a syn-
onym which makes it more obvious that parameter substitution is allowed with the appended S.
The option $onEmbeddedCodeV does not allow parameter substitutions but passes the code ver-
batim to the embedded code engine. The optional arguments given to $onEmbeddedCode[S|V]
can be accessed in the Python code.

$offEmbeddedCode can be followed by a GAMS symbol or a list of GAMS symbols. If GAMS
symbols are specified they get updated in the GAMS database after the embedded code got
executed. The syntax symbol<[=]embSymbol[.dimX] allows to load a one dimensional set
from a symbol which was set in the embedded code that has even a higher dimensionality (here
we call <[=] the projection operator). GAMS tries to find the set symbol as a domain in
the symbol embSymbol and uses the labels from this index position (with < the first domain
set from the right and with <= from the left). If no domain information is stored in the GDX
file or the domain information does not match the suffix .dimX allows to pick a fixed index
position (X needs to be replaced by the desired index position).

One may add a tag to the $onEmbeddedCode[S|V] and $offEmbeddedCode. For example,
$onEmbeddedCode.tagOne would match with $offEmbeddedCode.tagOne.

Example:

Set cc / "France - Paris", "France - Lille", "France - Toulouse"

"Spain - Madrid", "Spain - Cordoba", "Spain - Seville", "Spain - Bilbao"

"USA - Washington DC", "USA - Houston", "USA - New York",

"Germany - Berlin", "Germany - Munich", "Germany - Bonn" /

country

city

mccCountry(cc,country<) Mapping between country and related elements in set cc

mccCity(cc,city<) Mapping between city and related elements in set cc;

$onEmbeddedCode Python:

mccCountry = []

mccCity = []

for cc in gams.get("cc"):

r = str.split(cc, " - ", 1)

mccCountry.append((cc,r[0]))

mccCity.append((cc,r[1]))

gams.set("mccCountry",mccCountry)

gams.set("mccCity",mccCity)

$offEmbeddedCode mccCountry mccCity

Option mccCountry:0:0:1, mccCity:0:0:1;

Display country, city, mccCountry, mccCity;

The data definition of the sets country and city happen while loading the set mccCountry

and mccCity implicitly because of the implicit set definition in declarations of mccCountry
and mccCity. Also note, that the list of output symbols does not need to be explicitly specified
(for most embedded code engines). Performing the actual write in the embedded code (here
via gams.set) is sufficient to signal GAMS to load the symbols. Providing an explicit list
of symbols can be required (for embedded code engines without implicit loading) and be
advantageous for code readability even for embedded code engines that support this. With
the dollar control option $offECImplicitLoad providing an explicit list of output symbols can
be enforced and setting symbols inside the embedded code not in the explicit list will lead to
compilation errors.

The program above will result in the following listing file:

1172 User's Guide

---- 25 SET country

Spain , USA , Germany, France

---- 25 SET city

Berlin , Bilbao , Cordoba , Madrid

New York , Washington DC, Paris , Houston

Munich , Lille , Seville , Bonn

Toulouse

---- 25 SET mccCountry

France - Paris .France

France - Lille .France

France - Toulouse .France

Spain - Madrid .Spain

Spain - Cordoba .Spain

Spain - Seville .Spain

Spain - Bilbao .Spain

USA - Washington DC.USA

USA - Houston .USA

USA - New York .USA

Germany - Berlin .Germany

Germany - Munich .Germany

Germany - Bonn .Germany

---- 25 SET mccCity

France - Paris .Paris

France - Lille .Lille

France - Toulouse .Toulouse

Spain - Madrid .Madrid

Spain - Cordoba .Cordoba

Spain - Seville .Seville

Spain - Bilbao .Bilbao

USA - Washington DC.Washington DC

USA - Houston .Houston

USA - New York .New York

Germany - Berlin .Berlin

Germany - Munich .Munich

Germany - Bonn .Bonn

Using the projection operator on the $offEmbeddedCode line the same task could be done
like this:

Set cc / "France - Paris", "France - Lille", "France - Toulouse"

"Spain - Madrid", "Spain - Cordoba", "Spain - Seville", "Spain - Bilbao"

"USA - Washington DC", "USA - Houston", "USA - New York",

"Germany - Berlin", "Germany - Munich", "Germany - Bonn" /

country

city

mccCountry(cc,country) Mapping between country and related elements in set cc

mccCity(cc,city) Mapping between city and related elements in set cc;

$onEmbeddedCode Python:

mccCountry = []

mccCity = []

for cc in gams.get("cc"):

r = str.split(cc, " - ", 1)

mccCountry.append((cc,r[0]))

mccCity.append((cc,r[1]))

gams.set("mccCountry",mccCountry)

4.41 Dollar Control Options 1173

gams.set("mccCity",mccCity)

$offEmbeddedCode country<mccCountry city<mccCity

Option mccCountry:0:0:1, mccCity:0:0:1;

Display country, city, mccCountry, mccCity;

Please note that due to implicit output symbol loading, see $offECImplicitLoad, the symbols
mccCountry and mccCity are not only used to define country and city but are also loaded
into GAMS because the embedded code uses gams.set to write to these symbols.

See also chapter Embedded Code Facility for more details.

$(on|off)Empty ($onEmpty)

Syntax:

$onEmpty

$offEmpty

$onEmpty allows empty data statements for list or table formats (default). When setting
$offEmpty, empty data statements will cause a compilation error.

Example:

Set i / 1,2,3 / ;

Set j(i) / / ;

Parameter x(i) "empty parameter" / / ;

Table y(i,i) "headers only"

1 2 3

;

$offEmpty

*offEmpty from here on

Set k(i) / / ;

Parameter xx(i) "empty parameter" / / ;

Table yy(i,i) "headers only"

1 2 3

;

The resulting listing file will contain the following lines:

1 Set i / 1,2,3 / ;

2 Set j(i) / / ;

3 Parameter x(i) "empty parameter" / / ;

4 Table y(i,i) "headers only"

5 1 2 3

6 ;

8 *offEmpty from here on

9 Set k(i) / / ;

**** $460

**** 460 Empty data statements not allowed. You may want to use $ON/OFFEMPTY

10 Parameter xx(i) "empty parameter" / / ;

**** $460

**** 460 Empty data statements not allowed. You may want to use $ON/OFFEMPTY

11 Table yy(i,i) "headers only"

12 1 2 3

13 ;

**** $462

**** 462 The row section in the previous table is missing

Empty data statements are most likely to occur when data is being entered into the GAMS
model by an external program.

1174 User's Guide

Note

The empty data statement may only be used with symbols which have a known dimension.
If the dimension is also derived from the data, the option $phantom should be used to
generate 'phantom' set elements.

The option $onEmpty in conjunction with the option $onMulti and the save and restart feature
may be used to set up a model and add data later.

The default for dealing with empty data statements can be set using the command line
parameter empty.

$(on|off)End ($offEnd)

Syntax:

$onEnd

$offEnd

This option offers an alternative syntax for flow control statements. The option $onEnd causes
the following words to be regarded as keywords: do, endLoop, endIf, endFor and endWhile.
They are used to close the language constructs loop, if, for and while respectively.

Example:

Note

The standard syntax is given as an end-of-line comment.

Set i / 1*3 /;

Scalar cond / 0 /;

Parameter a(i) / 1 1.23, 2 2.65, 3 1.34/;

$eolCom //

$onEnd

loop i do // loop (i,

display a; // display a;

endLoop; //);

if (cond) then // if (cond,

display a; // display a;

else // else

a(i) = a(i)/2; // a(i) = a(i)/2;

display a; // display a;

endIf; //);

for cond = 1 to 5 do // for (cond = 1 to 5,

a(i) = 2 * a(i); // a(i) = 2 * a(i);

endFor; //);

while cond > 3 do // while (cond > 3,

a(i) = a(i) / 2; // a(i) = a(i) / 2;

cond = cond-1; // cond = cond-1;

endWhile; //);

Observe that the alternative syntax is more in line with the syntax used in some of the popular
programming languages.

4.41 Dollar Control Options 1175

Attention

Setting the option $onEnd will make the alternative syntax valid, and at the same time
it will make the standard syntax invalid. Therefore the two forms of the syntax will
never be valid simultaneously.

$(on|off)EolCom ($offEolCom)

Syntax:

$onEolCom

$offEolCom

This option acts as a switch to control the use of end-of-line comments. Note that by default,
the end-of-line comment symbol is set to !! but the processing is disabled.

Example:

$onEolCom

Set i /1*2/ ; !! set declaration

Parameter a(i) ; !! parameter declaration

Observe that after the option $onEolCom has been specified, comments may be entered on the
same line as GAMS code.

Note

The option $eolCom automatically sets $onEolCom.

The default for dealing with end-of-line comments can be set using the command line parameter
eolCom.

See also section Comments.

$(on|off)Eps ($offEps)

Syntax:

$onEps

$offEps

This option is used to interpret zero values as EPS when non-scalar parameters, variable
attributes, or equation attributes are defined or loaded (e.g. from GDX or embedded code) at
compile time. This can for example be useful if the value of zero is overloaded with existence
interpolation.

See option zeroToEps for the execution-time equivalent.

Example 1:

Consider the following example where zero values are defined for a one dimensional parameter,
once under $onEps and $offEps.

1176 User's Guide

Set i / one, two, three, four /;

Parameter a(i) /

$onEps

one 0

$offEps

two 0

three EPS /;

Display a ;

The outcome generated by the display statement follows:

---- 8 PARAMETER a

one EPS, three EPS

Note that only those entries specifically entered as 0 are treated as EPS.

Example 2:

Consider the following example where zero values are loaded from a GDX file, once under
$offEps (default) and $onEps (derived from test library model [ZEROTOEPS1]).

Set s,t;

Parameter p(s<,t<)

pOnEps(s,t);

$gdxIn zeropar.gdx

$onText

P looks like this:

t1 t2 t3

s1 0 0.843267

s2 0.224053 0.349831 0

s3 0 5

$offText

$load p

$onEps

$load pOnEps=p

display p, pOnEps;

The outcome generated by the display statement follows:

---- 15 PARAMETER p

t1 t2 t3

s1 0.843

s2 0.224 0.350

s3 5.000

---- 15 PARAMETER pOnEps

t1 t2 t3

s1 EPS 0.843

s2 0.224 0.350 EPS

s3 EPS 5.000

4.41 Dollar Control Options 1177

Example 3:

Consider the following example where zero values are loaded from embedded Python code,
once under $offEps (default) and $onEps (derived from test library model [ZEROTOEPS1]
).

Set s / s1*s3 /;

Parameter pEC(s)

pECOnEps(s);

$onEmbeddedCode Python:

p = [(’s1’,1), (’s3’,0)]

gams.set(’pEC’,p)

$offEmbeddedCode pEC

$onEps

$onEmbeddedCode Python:

p = [(’s1’,1), (’s3’,0)]

gams.set(’pECOnEps’,p)

$offEmbeddedCode pECOnEps

display pEC, pECOnEps;

The outcome generated by the display statement follows:

---- 14 PARAMETER pEC

s1 1.000

---- 14 PARAMETER pECOnEps

s1 1.000, s3 EPS

$(on|off)EpsToZero ($offEpsToZero)

Syntax:

$onEpsToZero

$offEpsToZero

This option is used to write EPS values as zero when parameters, or variable and equation
levels get written to GDX at compile time.

See option EpsToZero for the execution-time equivalent.

Example:

Usually GAMS squeezes out 0 values when writing to GDX. To get them written anyway, one
can define them as EPS (e.g. by using $onEps) and set $onEpsToZero:

Set i / zero, one, two /;

$onEps

Parameter a(i) / zero 0

one 1

two 2 /;

$onEpsToZero

$gdxUnload ’zero.gdx’ a

1178 User's Guide

$(on|off)Expand ($offExpand)

Syntax:

$onExpand

$offExpand

This option changes the processing of macros that appear in the arguments of a macro call.
The default operation is not to expand macros in the arguments. The switch $onExpand
enables the recognition and expansion of macros in the macro argument list and $offExpand
will restore the default behavior.

Example:

variable x(*,*);

$macro f(i) sum(q, x(i,q))

$macro equ(x) equation equ_&x; equ_&x.. &x =e= 0;

equ(f(i))

The macro expansion of the code above will result in an equation definition that reads as
follows:

equation equ_f(I); equ_f(i).. f(i) =e= 0;

If we compile the code under $onExpand the argument f(i) is expanded before the macro
equ() gets expanding resulting in the following (incorrect) code:

equation equ_sum(q, x(i,q)); equ_sum(q, x(i,q)).. sum(q, x(i,q)) =e= 0;

For further information, see section Macros in GAMS below.

$(on|off)ExternalInput ($offExternalInput)

Syntax:

$onExternalInput

$offExternalInput

$onExternalInput and $offExternalInput mark the beginning and end of a well defined
section in which data is loaded implicitly from an external data source, namely from a GDX
file specified by the command line parameter IDCGDXInput.

Note

• If none of the command line parameters IDCGDXInput, IDCGenerateGDXInput,
IDCJSON, IDCGenerateJSON, or IDCGenerateGDX is set, nothing - but a
few checks for consistency - will happen by setting $onExternalInput and
$offExternalInput.

• If at least one of the before mentioned command line parameters is set, an additional
license check will be triggered: Without the MIRO Connector License not more
than 10 indexed symbols can be declared as external input or external output.

4.41 Dollar Control Options 1179

For symbols, which are declared, while $onExternalInput is active, data in data state-
ments of the declaration is ignored. Instead, the data is loaded from the GDX file spec-
ified by IDCGDXInput. Also for those symbols, if they are referenced with $load∗ or
$offEmbeddedCode while $onExternalInput is active, the data is loaded from the GDX
file specified by IDCGDXInput instead of the defined data source and symbol renaming as
well as the projection operator are ignored in this case.

In addition, the following dollar control options are ignored, while $onExternalInput is active
and IDCGDXInput is set:

• $batInclude

• $call

• $call.Async[NC]

• $call.checkErrorLevel

• $callTool

• $callTool.checkErrorLevel

• $gdxIn

• $hiddenCall

• $hiddenCall.Async[NC]

• $hiddenCall.checkErrorLevel

• $hiddenCallTool

• $hiddenCallTool.checkErrorLevel

• $include

• $libInclude

• $onEmbeddedCode[S|V] (including the following embedded code until $offEmbeddedCode
is hit)

• $sysInclude

Example:

Lets look at a modified version of the simple example presented here:

Set

i ’canning plants’

j ’markets’;

$onExternalInput

$call mdb2gms I=Sample.accdb Q="SELECT city1, city2, distance FROM distances" O=distances.inc

Parameter d(i<,j<) ’distance in thousands of miles’ /

$include distances.inc

/;

$offExternalInput

display d;

Without setting a command line parameter, this runs in the same way as described in the
other chapter, so by default, setting $onExternalInput and $offExternalInput does not
make much of a difference. Now, lets run it with IDCGDXInput being set to transsol, which
is a GDX file generated by running the transportation model [TRNSPORT]. There will be
some new messages in the log:

1180 User's Guide

--- GDXin=transsol.gdx

--- Distances1.gms(7) 2 Mb

--- Ignoring $call in externalInput section

--- Distances1.gms(9) 2 Mb

--- Ignoring $include in externalInput section

First, we notice, that the file transsol.gdx will be opened for input. This happens implicitly
with $onExternalInput. Then, both the $call as well as the $include lines were ignored,
since we do not want to query the data source explicitly defined in the model, but the GDX file
defined by IDCGDXInput. Note, that the data statement in the declaration of d is actually
empty when we ignore the $include statement. While $onExternalInput this does not lead
to an error, but behaves as if $onEmpty was set. Looking at the output of the display

statement in the lst file, one can see that the expected data was loaded:

---- 13 PARAMETER d distance in thousands of miles

new-york chicago topeka

seattle 2.500 1.700 1.800

san-diego 2.500 1.800 1.400

If any of the options IDCGDXInput, IDCGDXOutput, IDCJSON or their Generate versions,
e.g. IDCGenerateGDXInput, has been set, a MIRO connector license is required.

See also $(on|off)ExternalOutput.

$(on|off)ExternalOutput ($offExternalOutput)

Syntax:

$onExternalOutput

$offExternalOutput

$onExternalOutput and $offExternalOutput mark the beginning and end of a well defined
section in which data is written implicitly to an external data file, namely to a GDX file
specified by the command line parameter IDCGDXOutput or IDCGenerateGDXOutput.

Note

• If none of the command line parameters IDCGDXOutput, IDCGenerateGDXOutput,
IDCJSON, IDCGenerateJSON, or IDCGenerateGDX is set, nothing - but a
few checks for consistency - will happen by setting $onExternalOutput and
$offExternalOutput.

• If at least one of the before mentioned command line parameters is set, an additional
license check will be triggered: Without the MIRO Connector License not more
than 10 indexed symbols can be declared as external output or external input.

Example:

This is a slightly modified code snippet of the transportation model [TRNSPORT]:

...

$onExternalOutput

Parameter c(i,j) ’transport cost in thousands of dollars per case’;

c(i,j) = f*d(i,j)/1000;

Variable

x(i,j) ’shipment quantities in cases’

4.41 Dollar Control Options 1181

$offExternalOutput

z ’total transportation costs in thousands of dollars’;

Positive Variable x;

Equation

$onExternalOutput

cost ’define objective function’

$offExternalOutput

supply(i) ’observe supply limit at plant i’

demand(j) ’satisfy demand at market j’;

...

Without setting a command line parameter, this runs in the same way as the original model,
so by default, setting $onExternalOutput and $offExternalOutput does not make much of
a difference. Now, lets run it with IDCGDXOutput being set to transOut.gdx. This generate
the file transOut.gdx with the following content:

So, this implicit generation of the output file is basically equivalent to the following explicit
statement:

execute_unload ’transOut.gdx’, c, x, cost;

If any of the options IDCGDXInput, IDCGDXOutput, IDCJSON or their Generate versions,
e.g. IDCGenerateGDXInput, has been set, a MIRO connector license is required.

See also $(on|off)ExternalInput.

$(on|off)Filtered ($onFiltered)

Syntax:

$onFiltered

$offFiltered

This dollar control option controls how GAMS loads data from GDX with gdxLoad, $load,
$loadR, and $loadM. With $onFiltered the $load∗ calls behave like $loadFiltered∗ calls.
With $offFiltered the $load∗ calls behave like $loadDC∗ calls. This dollar control option
also controls how GAMS loads symbols on the $offEmbeddedCode line. With $onFiltered
data is read filtered while $offFiltered triggers a domain check of the data. The gams.set
Python function allows to overwrite the setting of this dollar control option with the argument
domCheck=DomainCheckType.CHECKED or domCheck=DomainCheckType.FILTERED.

The default of how GAMS loads data from GDX can be set with the command line parameter
filtered.

1182 User's Guide

$(on|off)Global ($offGlobal)

Syntax:

$onGlobal

$offGlobal

When an include file is inserted, it inherits the dollar control options from the higher level
file. However, the dollar control option settings specified in the include file do not affect the
higher level file. This convention is common among most scripting languages or command
processing shells. In some cases, it may be desirable to break this convention. This option
allows an include file to change the options of the parent file as well.

Example:

$include ’inc.inc’

$hidden after first call to include file

$onGlobal

$include ’inc.inc’

$hidden after second call to include file

The file inc.inc contains the following lines:

$onDollar

$hidden text inside include file

The the echo print of the resulting listing file follows:

INCLUDE D:\GAMS\INC.INC

2 $onDollar

3 $hidden text inside include file

INCLUDE D:\GAMS\INC.INC

7 $onDollar

8 $hidden text inside include file

9 $hidden after second call to include file

Note that the dollar control option $onDollar inside the include file does not affect the parent
file until $onGlobal is set. The text following the option $hidden is then echoed to the listing
file.

$(on|off)IDCProtect ($onIDCProtect)

Syntax:

$onIDCProtect

$offIDCProtect

This controls if symbols which are declared as external input can be changed at execu-
tion time. With $onIDCProtect external input symbols are protected from being changed;
$offIDCProtect allows it.

The initial state of this can be set with the command line parameter IDCProtect.

$(on|off)ImplicitAssign ($offImplicitAssign)

Syntax:

4.41 Dollar Control Options 1183

$onImplicitAssign

$offImplicitAssign

This controls if the compiler issues or ignores the 141 error in case an unassigned symbol
in the code is referenced (e.g. on the right hand side of an assignment statement). With
$onImplicitAssign the error is ignored.

The initial state of this can be set with the command line parameter ImplicitAssign.

$(on|off)Include ($onInclude)

Syntax:

$onInclude

$offInclude

This option controls the listing of the expanded include file name in the listing file.

Example:

$include ’inc.inc’

$offInclude

$include ’inc.inc’

We assume that the file inc.inc contains the following lines:

$onDollar

$hidden Text inside include file

The resulting listing file will contain the following lines:

INCLUDE C:\tmp\inc.inc

2 $onDollar

3 $hidden Text inside include file

6 $onDollar

7 $hidden Text inside include file

Note that the include file name is echoed the first time the include file is used. However, the
include file name is not echoed after $offInclude has been set. Also, the include file summary
and the creation of an Expanded Include File is suppressed if $offInclude is set.

$(on|off)Inline ($offInline)

Syntax:

$onInline

$offInline

This option acts as switch to control the use of in-line comments. Note that by default, the
in-line comment symbols are set to the two character pairs /∗ and ∗/ but the processing is
disabled. In-line comments may span several lines till the end-of-comment characters are
encountered.

Example:

$onInline

Set i /* The default comment symbols are now

active. These comments can continue

to additional lines till the closing

comments are found. */ / i1*i3 / ;

1184 User's Guide

Note

• The option $inlineCom automatically sets $onInline.

• Nested in-line comments are illegal unless the option $onNestCom is set.

The default for dealing with inline comments can be set using the command line parameter
inlineCom.

See also section Comments.

$(on|off)Listing ($onListing)

Syntax:

$onListing

$offListing

This option controls the echoing of input lines to the compilation output of the listing file.
Note that suppressed input lines do not generate entries in the symbol and reference sections
that appear at the end of the compilation output. Lines with errors will always be listed.

Example:

Set i /0234*0237/

j /a,b,c/ ;

Table x(i,j) "very long table"

a b c

0234 1 2 3

$offListing

0235 4 5 6

0236 5 6 7

$onListing

0237 1 1 1

;

The resulting listing file will contain the following lines:

1 Set i /0234*0237/

2 j /a,b,c/ ;

3 Table x(i,j) very long table

4 a b c

5 0234 1 2 3

10 0237 1 1 1

Note that the lines in the source file between the options $offListing and $onListing are
not echoed to the listing file.

Note

For some projects the listing file can become huge and can take significant time to be
written. This time can be saved by setting $offListing at the beginning of the input
file and $onListing just before the parts one is interested in, or not at all, if one does
not look at the listing file anyway.

The default for dealing with the compilation output of the listing file can be set using the
command line parameter listing.

4.41 Dollar Control Options 1185

$(on|off)Local ($onLocal)

Syntax:

$onLocal

$offLocal

The suffix .local attached to the name of a controlling set will use an implicit alias within
the scope of the indexed operation or on the left-hand side of an assignment statement. This
feature is particularly useful in the context of nested macros.

Example:

Set i /1*3/; alias(i,j);

Parameter xxx(i,j) / 1.1 1, 2.2 2, 3.3 3, 1.3 13, 3.1 31 /;

display xxx;

Parameter p(i);

p(i.local) = sum(j, xxx(i,j));

display p;

Note that in the assignment statement the set i on the right-hand side is controlled by i.local

on the left-hand side. Thus we have the following values for the two parameters:

---- 3 PARAMETER xxx

1 2 3

1 1.000 13.000

2 2.000

3 31.000 3.000

---- 7 PARAMETER p

1 14.000, 2 2.000, 3 34.000

In the example above, the suffix .local appeared one time on the left-hand side. The option
$onLocal allows the suffix .local to appear more that one time attached to the same symbol.
Consider the following example that extends the example above:

Parameter g(i,i);

g(i.local-1,i.local) = xxx(i,i);

display g;

Note that in the assignment statement of g the suffix .local attached to the set i appears
two times on the left-hand side. The question arises whether the reference to the set i on the
right-hand side refers to the first or the second instance of .local on the left-hand side. The
assignment statement may alternatively be written in the following way using an explicit alias
statement:

alias (i,i1,i2);

g(i1-1,i2) = xxx(i2,i2);

Thus is becomes clear that the symbol on the right-hand side refers to the controlling index
that enters last (here the second one). The output generated by the display statement follows:

---- 10 PARAMETER g

1 2 3

1 1.000 2.000 3.000

2 1.000 2.000 3.000

1186 User's Guide

Observe that the multiple use of the suffix .local on the same symbol is considered an error
with the option $offLocal.

Note that it is also allowed to combine the original index with an index suffixed with .local.
Consider the following alternative formulation:

g(i.local-1,i) = xxx(i,i);

Note that in this case the index suffixed with .local takes precedence and the reference of i
on the right-hand side refers to the index i.local even though i is entered last. Observe that
this statement even works with $offLocal as the suffix .local appears only once.

See also section Macros in GAMS below.

$(on|off)Log ($onLog)

Syntax:

$onLog

$offLog

This option acts as a switch that controls logging information about the line number and
memory consumption during compilation. This is scoped like the option $on/offListing applying
only to included files and any subsequent included files but reverting to the setting $onLog in
the parent files (if it was not changed there as well).

Example:

Set i /i1*i20000000/;

$include inc.inc

Set l /l1*l20000000/;

The file inc.inc looks like this:

Set j /j1*j20000000/;

$offLog

Set k /k1*k20000000/;

The generated log will contain the following lines:

--- test.gms(1) 1602 Mb 5 secs

--- test.gms(2) 1602 Mb

--- .inc.inc(1) 3122 Mb 6 secs

--- test.gms(3) 6161 Mb 14 secs

Note that the first line of both the parent and the include file got logged, but not the third
line of the include file, after $offLog was set. The last line of the parent file got logged again.

$(on|off)Macro ($onMacro)

Syntax:

$onMacro

$offMacro

4.41 Dollar Control Options 1187

Enables or disables the expansion of macros defined by $macro.

Example:

$macro oneoverit(y) 1/y

$offMacro

y = oneoverit(x1);

display y;

causes an error because the macro oneoverit in line 3 can not be expanded.

$(on|off)Margin ($offMargin)

Syntax:

$onMargin

$offMargin

This option controls margin marking, that means if margins set by the options $minCol and
$maxCol, should be marked in the lst file.

Example:

$onmargin mincol 20 maxcol 51

Now we have Set i "plant" / US, UK /; This defines I

turned on the Scalar x / 3.145 /; A scalar example.

margin marking. Parameter a, b; Define some

parameters.

$offmargin

The lst file will contain this:

2 Now we have |Set i "plant" / US, UK /; |This defines I

3 turned on the |Scalar x / 3.145 /; |A scalar example.

4 margin marking. |Parameter a, b; |Define some

5 | |parameters.

Note that any statements between columns 1 and 19 and any input beyond column 52 are
treated as comments. These margins are marked with | on the left and right.

See also section Comments.

$(on|off)Multi ($offMulti)

Syntax:

$onMulti

$offMulti

This option controls multiple data statements or tables. By default, GAMS does not allow
data statements to be redefined. If this option is activated the second or subsequent data
statements are merged with entries of the previous ones. Note that all multiple data statements
are performed before any other statement is executed.

1188 User's Guide

Note

• There is also $onMultiR, which behaves similarly, but replaces existing data instead
of merging into it. Compare the example here and there to see the difference.

• When $onMulti is active $load behaves like a $loadM.

• The initial state of this dollar control option can be set through the command line
parameter multi.

Example:

Consider the following slice of code. The list after the end of line comment describes the
complete content of the symbol x after the data statement has been processed:

$eolCom //

Set i / i1*i10 /;

Parameter x(i) / i1*i3 1 / // /i1 1,i2 1,i3 1/

$onMulti

Parameter x(i) / i7*i9 2 / // /i1 1,i2 1,i3 1,i7 2,i8 2,i9 2/

Parameter x(i) / i2*i6 3 / // /i1 1,i2 3,i3 3,i4 3,i5 3,i6 3,i7 2,i8 2,i9 2/

Parameter x(i) / i3*i5 0 / // /i1 1,i2 3,i6 3,i7 2,i8 2,i9 2/

$offMulti

display x;

Note that the repeated parameter statements would have resulted in a compilation error
without the presence of the option $onMulti. The result of the display statement in the listing
file follows:

---- 8 PARAMETER x

1 1.000, 2 3.000, 6 3.000, 7 2.000, 8 2.000, 9 2.000

Note that x("i1") is assigned the value of 1 with the first data and is not affected by any of
the subsequent data statements. x("i3") on the other hand is reset to 3 by the third data
statement and wiped out with 0 in the fourth data statement.

Attention

The two-pass processing of a GAMS file may lead to seemingly unexpected results. Dollar
control options and data initialization are both done in the first pass and assignments in
the second, irrespective of their relative locations. This is an issue particularly with the
option $onMulti since it allows data initializations to be performed more than once. See
section GAMS Compile Time and Execution Time Phase for details.

Consider the following example:

Scalar a /12/;

a=a+1;

$onMulti

Scalar a /20/;

display a;

Note that the two scalar data initialization statements and the option $onMulti are processed
before the assignment statement a=a+1. As a result, the final value of a will be 21. The output
of the display statement follows:

---- 5 PARAMETER a = 21.000

Observe that the option $onEmpty in conjunction with the option $onMulti and the
save and restart feature may be used to set up a model and add data later. See example in
section Advanced Separation of Model and Data for details.

4.41 Dollar Control Options 1189

$onMultiR|offMulti ($offMulti)

Syntax:

$onMultiR

$offMulti

This option controls multiple data statements or tables. By default, GAMS does not allow
data statements to be redefined. If this option is activated the second or subsequent data
statements replace the previous ones. Note that all multiple data statements are performed
before any other statement is executed.

Note

• There is also $onMulti, which behaves similarly, but merges into existing data instead
of replacing it. Compare the example here and there to see the difference.

• In contrast to $onMulti, $onMultiR also allows to redefine an equation and a macro.

• The initial state of this dollar control option can be set through the command line
parameter multi.

Example:

Consider the following slice of code. The list after the end of line comment describes the
complete content of the symbol x after the data statement has been processed:

$eolCom //

Set i / i1*i10 /;

Parameter x(i) / i1*i3 1 / // /i1 1,i2 1,i3 1/

$onMultiR

Parameter x(i) / i7*i9 2 / // /i7 2,i8 2,i9 2/

Parameter x(i) / i2*i6 3 / // /i2 3,i3 3,i4 3,i5 3,i6 3/

Parameter x(i) / i3*i5 0 / // (ALL 0.000)

$offMulti

display x;

Note that the repeated parameter statements would have resulted in a compilation error
without the presence of the option $onMultiR. The result of the display statement in the
listing file follows:

---- 9 PARAMETER x

(ALL 0.000)

Note

• When using a redefinition with $onMulitR to remove elements from a set, which was
used as domain of another symbol, also the dependent symbol gets reduced. This
can happen through data statements, but also with $clear and $load/$loadDC.

• When $onMultiR is active $load behaves like a $loadR with the exception of the
previous note. So, the only way to allow for a redefiniton of a domain set is to
activate $onMultiR. If that is not active $loadR for a domain set would trigger an
error.

Example:

1190 User's Guide

Set i / i1*i5 /;

Parameter p(i) / #i 3 /;

$onMultiR

Set i / i3*i6 /;

Display p;

Looking at the output from the Display statement one can see, that the entries for i1 and i2

were removed by the second definition of i:

---- 7 PARAMETER p

i3 3.000, i4 3.000, i5 3.000

Attention

The two-pass processing of a GAMS file may lead to seemingly unexpected results. Dollar
control options and data initialization are both done in the first pass and assignments in
the second, irrespective of their relative locations. This is an issue particularly with the
option $onMultiR since it allows data initializations to be performed more than once.
See section GAMS Compile Time and Execution Time Phase for details.

Consider the following example:

Scalar a /12/;

a=a+1;

$onMultiR

Scalar a /20/;

display a;

Note that the two scalar data initialization statements and the option $onMultiR are processed
before the assignment statement a=a+1. As a result, the final value of a will be 21. The output
of the display statement follows:

---- 5 PARAMETER a = 21.000

Observe that the option $onEmpty in conjunction with the option $onMultiR and the
save and restart feature may be used to set up a model and add data later. See example in
section Advanced Separation of Model and Data for details.

$(on|off)NestCom ($offNestCom)

Syntax:

$onNestCom

$offNestCom

This option controls nested in-line comments. It makes sure that the open-comment and
close-comment characters match.

Example:

$inlineCom { } onNestCom

{ nesting is now possible in comments { braces

have to match } }

See also $inlineCom, $onInline and section Comments.

4.41 Dollar Control Options 1191

$(on|off)Order ($onOrder)

Syntax:

$onOrder

$offOrder

Lag and lead operations and the ord operator require the referenced set to be ordered and
constant. In some special cases users might want to use those operations on dynamic and/or
unordered sets. The option $on/offOrder has been added to locally relax the default require-
ments. The use of this option comes with a price, the system will not be able to diagnose odd
and incorrect formulations and data sets.

Example:

Set t1 / 1987, 1988, 1989, 1990, 1991 /

t2 / 1983, 1984, 1985, 1986, 1987 /;

Parameter p(t2);

$offOrder

p(t2) = ord(t2);

display t2,p;

Without the $offOrder the compilation of the line p(t2) = ord(t2); would have triggered
a compilation error. The ordinal numbers assigned here are probably not what one expects.
The element 1987 gets ordinal number 1 although it seems to be last last in the set. The
ordinal numbers are assigned in the order the set is stored internally in GAMS. This order is
also used when displaying the set t2:

---- 6 SET t2

1987, 1983, 1984, 1985, 1986

---- 6 PARAMETER p

1987 1.000, 1983 2.000, 1984 3.000, 1985 4.000, 1986 5.000

$(on|off)Put[S|V][.tag]

Syntax:

File myputfile;

put myputfile;

$onPut[S|V][.tag]

text

{text}

$offPut[.tag]

The pair $onPut[S|V] - $offPut causes a block of text to be placed in a put file at run-time.
The is one of the few dollar control options that operate at run time. The $ in the first column
usually indicates action at compile time.

Note that parameter substitutions are not permitted with $onPut. The option $onPut has
two more variants: $onPutS and $onPutV. $onPutS allows parameter substitutions while the
option $onPutV does not allow parameter substitutions, like $onPut, so it is just a synonym
which makes it more obvious that the text is written verbatim with the appended V.

Example:

1192 User's Guide

$set it TEST

File myputfile;

put myputfile;

$onPutS

Line 1 of text "%it%"

Line 2 of text %it%

$offPut

This code generates the put file myputfile.put with the following content:

Line 1 of text "TEST"

Line 2 of text TEST

Note that the compile-time variable %it% was replaced by TEST. However, if the option $onPutV
is used instead, then %it% will not be substituted:

$set it TEST

File myputfile

put myputfile

$onPutV

Line 1 of text "%it%"

Line 2 of text %it%

$offPut

The resulting file myputfile.put will contain the following lines:

Line 1 of text "%it%"

Line 2 of text %it%

One may add a tag to the $onPut[S|V] and $offPut. This allows to use nested put blocks
like this:

File myputfile / outer.gms /;

put myputfile;

$onPut.outer

File myputfile;

put myputfile;

$onPut.inner

Line 1 of text

Line 2 of text

$offPut.inner

$offPut.outer

The resulting file outer.gms looks like this:

File myputfile;

put myputfile;

$onPut.inner

Line 1 of text

Line 2 of text

$offPut.inner

$(on|off)Upper ($offUpper)

Syntax:

$onUpper

$offUpper

GAMS code echoed to the listing file is written in upper case after $onUpper. The default of
mixed code echoing is restored with $offUpper.

4.41 Dollar Control Options 1193

Note

The default case of the echo print can be set using the command line option case.

Example:

Set

i ’Canning plants’ / seattle, san-diego /

j ’Markets’ / new-york, chicago, topeka /;

$onupper

Parameter

a(i) ’Capacity of plant i in cases’

/ seattle 350

san-diego 600 /

$offupper

b(j) ’Demand at market j in cases’

/ new-york 325

chicago 300

topeka 275 /;

The generated listing file looks like this:

1 Set

2 i ’Canning plants’ / seattle, san-diego /

3 j ’Markets’ / new-york, chicago, topeka /;

4

6 PARAMETER

7 A(I) ’CAPACITY OF PLANT I IN CASES’

8 / SEATTLE 350

9 SAN-DIEGO 600 /

10

12 b(j) ’Demand at market j in cases’

13 / new-york 325

14 chicago 300

15 topeka 275 /;

$(on|off)Recurse ($offRecurse)

Syntax:

$onRecurse

$offRecurse

This option controls whether it is permitted for a file to include itself.

Example:

The following GAMS program result in a recursive inclusion of the program itself:

$onRecurse

$include "%gams.input%"

Note that the maximum include nesting level is 40 and if it is exceeded an error is triggered.

In the following example that prints a string and then the reverse string the nesting level is
less that 40 and one get some kind of recursion at compile time:

1194 User's Guide

$onEchoV > reverse.gms

$ifthene %1=%3+1

put ’ ’

$ exit

$endif

loop(map(chars,code)$(code.val=ord("%2",%1)), put chars.tl:0);

$eval posPlus1 %1+1

$batInclude reverse %posPlus1% %2 %3

loop(map(chars,code)$(code.val=ord("%2",%1)), put chars.tl:0);

$offEcho

set chars / A*Z /, code / 65*90 /, map(chars,code) / #chars:#code /;

file fx /’’/; put fx;

$onRecurse

$batInclude reverse 1 RACECAR 7

put /;

$batInclude reverse 1 LAGER 5

The log will print the following lines:

--- Starting execution: elapsed 0:00:00.067

RACECAR RACECAR

LAGER REGAL

*** Status: Normal completion

$(on|off)StrictSingleton ($onStrictSingleton)

Syntax:

$onStrictSingleton

$offStrictSingleton

If the option $onStrictSingleton is active, a compilation error is triggered if a data
statement for a singleton set contains more than one element. After activating the option
$offStrictSingleton GAMS will take the first element of a singleton set that was declared
with multiple elements as the valid element, the other elements are disregarded and there is no
error. The option to change the initial state of $(on|off)StrictSingleton and/or to control
this behavior at runtime is strictSingleton.

Example:

The first element is not always the one that appears in the data statement first as the following
example shows:

set i /1,2/

$offStrictSingleton

singleton set ii(i) /2,1/;

display ii;

The set ii contains the element 1 because it is the first in the GAMS label order as the display
statements shows:

---- 4 SET ii

1

$(on|off)SuffixDLVars ($offSuffixDLVars)

4.41 Dollar Control Options 1195

Syntax:

$onSuffixDLVars

$offSuffixDLVars

This option controls if it is allowed to use suffixes on variables with limited domains in a model.
By default this is not allowed but this can be changed by setting $onSuffixDLVars.

Example:

Set n / n1*n100 /

t / t1*t10 /

sub(n,t) / #n:#t /;

Variable z, x(n,t);

Equation obj;

x.up(n,t) = uniformInt(7,13);

obj.. z =e= sum((n,t),x(n,t)/x.up(n,t));

Model m / all, x(sub) /;

Solve m min z use lp;

This causes the following error by default:

*** Problem in Model Generation: Variable "x" appears with suffix "Up".

*** Error at line 12: Cannot use domain limited variables with suffix in model - use $onSuffixDLVars to allow this

The purpose is to make the user aware of the fact, the she uses x.l, which would also be
affected by the domain restriction of x(sub) in the model statement. So, if the user made
sure, that this is all intended, setting $onSuffixDLVars before the solve statements overcomes
this error. Though, with the example given here, this would actually lead to a ”division by
zero” error, since some x.up were excluded leaving a 0 as divisor.

The default for dealing with suffixes on variables with limited domains can be set using the
command line parameter SuffixDLVars.

$(on|off)SuffixAlgebraVars ($onSuffixAlgebraVars)

Syntax:

$onSuffixAlgebraVars

$offSuffixAlgebraVars

This option controls if it is allowed to use suffixes in equations. By default this is allowed but it
can be changed by setting $offSuffixAlgebraVars. Activating $offSuffixAlgebraVars can
be useful to ensure, that no decision variable in a model was replaced by one of its attributes,
for example if one is dealing with a model written by someone else.

Example:

Variable x / l 0 /, z / l 0 /;

Equation e;

e.. z =e= sqr(1-x.l);

Model m /e/;

solve m min z use nlp;

1196 User's Guide

This runs, but might give a different solution than expected.

Activating $offSuffixAlgebraVars will point to a potential problem:

5 e.. z =e= sqr(1-x.l);

**** $917

**** 917 Cannot use variable with suffix in model algebra -

**** Use $onSuffixAlgebraVars to allow this

See also related command line parameter SuffixAlgebraVars.

$(on|off)SymList ($offSymList)

Syntax:

$onSymList

$offSymList

This option controls whether the symbol listing map appears in the compilation output of
the listing file. The symbol listing map contains the complete listing of all symbols that have
been defined and their explanatory text. The entries are in alphabetical order and grouped by
symbol type.

Example:

The symbol listing map generated by running [TRNSPORT] with $onSymList is as follows:

Symbol Listing

SETS

i canning plants

j markets

PARAMETERS

a capacity of plant i in cases

b demand at market j in cases

c transport cost in thousands of dollars per case

d distance in thousands of miles

f freight in dollars per case per thousand miles

VARIABLES

x shipment quantities in cases

z total transportation costs in thousands of dollars

EQUATIONS

cost define objective function

demand satisfy demand at market j

supply observe supply limit at plant i

MODELS

transport

4.41 Dollar Control Options 1197

This serves as a simple description of the symbols used in a model and may be used in reports
and other documentation. For further information, see section The Symbol Listing Map.

$(on|off)SymXRef ($offSymXRef)

Syntax:

$onSymXRef

$offSymXRef

This option controls the following:

• Collection of cross references for symbols like sets, parameters, variables, acronyms,
equations, models and put files.

• Symbol cross reference report of all collected symbols in the compilation output of the
listing file. For details, see section The Symbol Reference Map.

• Listing of all referenced symbols and their explanatory text by symbol type in listing file.
This listing may also be activated with the option $onSymList.

Example:

$onSymXRef

Set i / 1*6 /, k;

$offSymXRef

Set j(i) "will not show" / 1*3 /;

$onSymXRef

k(’1’) = yes;

The resulting listing file will contain the following symbol reference map and symbol listing
map:

SYMBOL TYPE REFERENCES

i SET declared 2 defined 2

k SET declared 2 assigned 6

SETS

i

k

Note that the set j does not appear in these listings because the listing was deactivated with
the option $offSymXRef in line 3 of the code above.

$(on|off)Text

Syntax:

$onText

$offText

The pair $onText - $offText encloses comment lines. Line numbers in the compiler listing
are suppressed to mark skipped lines.

Example:

1198 User's Guide

* Standard comment line

$onText

Everything here is a comment

until we encounter the closing $offText

like the one below

$offText

* Another standard comment line

The echo print of the resulting listing file will contain the following lines:

1 * Standard comment line

Everything here is a comment

until we encounter the closing $offText

like the one below

7 * Another standard comment line

Attention

GAMS requires that every $onText has a matching $offText and vice versa.

See also section Comments.

$(on|off)Troll ($offTroll)

Syntax:

$onTroll

$offTroll

This option controls whether to recognize Troll periodicity in set definitions using sequences
(id∗id). Leap years are taken into account. Supported formats are yyyyA (annual), yyyyQq
(quartely), yyyyMmm (monthly) and yyyyWww (weekly).

Example:

$onTroll

Set

trollw / 1990w49*1991w4 /

trollm / 1990m10*1991m5 /

trollq / 1990q1*1991q4 /

;

Display trollw, trollm, trollq;

The resulting listing file will contain the following output:

---- 25 SET trollw

1990W49, 1990W50, 1990W51, 1990W52, 1991W1 , 1991W2 , 1991W3 , 1991W4

---- 25 SET trollm

1990M10, 1990M11, 1990M12, 1991M1 , 1991M2 , 1991M3 , 1991M4 , 1991M5

---- 25 SET trollq

1990Q1, 1990Q2, 1990Q3, 1990Q4, 1991Q1, 1991Q2, 1991Q3, 1991Q4

4.41 Dollar Control Options 1199

$(on|off)UElList ($offUElList)

Syntax:

$onUElList

$offUElList

This option controls the complete listing of all set elements that have been entered in the
compilation output of the listing file. For details see section The Unique Element Listing Map.

Example:

The unique element listing in the listing file generated by running the model [TRNSPORT]
with $onUElList follows:

Unique Element Listing

Unique Elements in Entry Order

1 seattle san-diego new-york chicago topeka

Unique Elements in Sorted Order

1 chicago new-york san-diego seattle topeka

Note that the sorted order is not the same as the entry order. For more information, see
section Ordered and Unordered Sets.

$(on|off)UElXRef ($offUElXRef)

Syntax:

$onUElXRef

$offUElXRef

This option controls the collection and listing of cross references of set elements in the
compilation output. For more information, see section The Unique Element Listing Map.

Example:

Set i "set declaration" / one, two, three /, k(i);

$onUElXRef

k(’one’) = yes;

$offUElXRef

k(’two’) = yes;

$onUElXRef

k(’three’) = yes;

The resulting listing file will contain the following unique element reference report:

Unique Element Listing

ELEMENT REFERENCES

one index 3

three index 7

1200 User's Guide

Note that the element two does not appear in this listing because the listing was deactivated
with the option $offUElXRef in line 4 of the code above.

$(on|off)UNDF ($offUNDF)

Syntax:

$onUNDF

$offUNDF

This option controls the use of the special value UNDF which indicates a result is undefined.
For details see section Extended Range Arithmetic. By default, UNDF is not permitted to be
used in assignments. This may be changed with the option $onUNDF.

Example:

Scalar x;

$onUNDF

x = UNDF;

Display x;

The output of the display statement follows:

---- 4 PARAMETER x = UNDF

Note that an error would have been triggered without the use of $onUNDF. The option $offUNDF
will return the system to the default, where UNDF may not be used in assignments.

$(on|off)Uni ($offUni)

Syntax:

$onUni

$offUni

This controls whether the compiler checks the referential integrity (see section
Domain Checking) of the code. This is an essential part of good GAMS programming
and it is highly recommend to declare symbols with proper domains. With the universe as
a domain the compiler does not help the user with easy-to-make mistakes, like swapping
indexes, a(i,j) versus a(j,i). By default something like this would generate an error, if a
was declared as a(i,j). Such an error could be ignored, by setting $onUni, which can be
useful in few situations, when accessing a symbol with a set that is not the domain or a subset
of the domain. For example, we could read data of a union of sets that already exist. We
could use the universe as the domain for that symbol, but perhaps we need to protect the
referential integrity of this symbol too.

Example:

Set fruit / apple, pear /

veggie / carrot, pea /

produce / #fruit, #veggie /;

Parameter produceCalories(produce) "per 100g" / apple 52, pear 57, carrot 41, pea 81 /

fc(fruit) "calories per 100g"

vc(veggie) "calories per 100g";

$onUni

fc(fruit) = produceCalories(fruit);

vc(veggie) = produceCalories(veggie);

$offUni

display fc, vc;

So when assigning fc we only access produceCalories with fruit. We could reverse the order
of declaration of fruit, veggie and produce and use a proper subdomain, but sometimes
data flow and input don't allow that.

4.41 Dollar Control Options 1201

Attention

When the GAMS compiler operates under $onUni it treats all symbols as being declared
over the universe. So all domain checking is gone. We can set elements in a symbols
that normally can't be entered. This can also lead to strange effects:

set i / 1*2 /

j / a,b /;

parameter pi(i);

$onuni

pi(j) = 1;

$offuni

* We will see elements from j in pi

Display pi;

* The following should only clear the i-elements from pi, but it clears the

* entire symbol, because GAMS knows it’s doing this to the entire domain and

* takes a shortcut.

pi(i) = no;

Display pi;

$(on|off)Verbatim

Syntax:

$onVerbatim

$offVerbatim

These options are used in conjunction with the GAMS command line parameter DumpOpt to
suppress the input preprocessing for input lines that are copied to the dmp file. This feature
is mainly used to maintain different versions of related models in a central environment.

Note

• The options $on/offVerbatim are only recognized for DumpOpt ≥ 10 and apply only
to lines in the file between the two options

• If $onVerbatim is active, DumpOpt = 11 behaves like DumpOpt = 21 (comments are
kept)

Observe that the use of the options $goto and $on/offVerbatim are incompatible and may
produce unexpected results.

Example:

$set f 123

$log %f%

$onVerbatim

$log %f%

$offVerbatim

$log %f%

The corresponding dmp file will contain the following lines:

$log 123

$onVerbatim

$log %f%

$offVerbatim

$log 123

See also command line parameter DumpOpt.

1202 User's Guide

$(on|off)Warning ($offWarning)

Syntax:

$onWarning

$offWarning

This option acts as a switch for data domain checking. In some cases it may be useful to accept
domain errors in data statements that are imported from other systems and report warnings
instead of errors. Data will be accepted and stored, even though it is outside the domain.

Attention

• This switch effects three types of domain errors usually referred to as error numbers
116, 170 and 171, see example below.

• This may have serious side affects and we recommend to exercise great care when
using this feature.

Example:

Set i / one, two, three /

$onWarning

j(i) / four, five /

k / zero /;

Parameter x(i) "Messed up Data" / one 1.0, five 2.0 /;

x(’six’) = 6;

x(j) = 10;

x(’two’) = x(’seven’);

j(k) = yes;

$offWarning

display i,j,x;

Note that the set j, although specified as a subset of i, contains elements not belonging to
its domain. Similarly, the parameter x contains data elements outside the domain of i. The
skeleton listing file that results from running this code follows:

1 Set i / one, two, three /;

3 j(i) / four, five /

**** $170 $170

4 k / zero /;

5 Parameter x(i) "Messed up Data" / one 1.0, five 2.0 /;

**** $170

6 x(’six’) = 6; x(j) = 10; x(’two’) = x(’seven’);

**** $170 $116,170

7 j(k) = yes;

**** $171

9 display i,j,x;

Error Messages

116 Label is unknown

170 Domain violation for element

171 Domain violation for set

**** 0 ERROR(S) 7 WARNING(S)

E x e c u t i o n

4.41 Dollar Control Options 1203

---- 9 SET i

one , two , three

---- 9 SET j

four, five, zero

---- 9 PARAMETER x Messed up Data

one 1.000, four 10.000, five 10.000, six 6.000

Observe that the domain violations are marked like normal compilation errors but are only
treated as warnings and it is permitted to execute the code.

For an introduction to domain checking in GAMS, see section Domain Checking.

$phantom id

Syntax:

$phantom id

This option is used to designate id as a phantom set element. Syntactically, a phantom element
is handled like any other set element. Semantically, however, it is handled like it does not
exist. This is sometimes used to specify a data template that initializes the phantom records
to default values.

Example:

$phantom null

Set i / null /

j / a, b, null /;

display i,j;

The output generated by the display statement is shown below:

---- 4 SET i

(EMPTY)

---- 4 SET j

a, b

Note that null does not appear in the listing file.

Attention

Statements that assign values to phantom labels are ignored.

Consider the following extension to the previous example:

Parameter p(j) / a 1, null 23 /;

display p;

The output generated by the display statement is shown below:

---- 6 PARAMETER p

a 1.000

1204 User's Guide

The system attribute system.empty is an implicitly defined phantom element. The following
code works even without specifying $phantom:

Set i / system.empty /

j / a, b, system.empty /;

display i,j;

Another way to specify empty data statements makes use of on/offEmpty. The following
example produces the same data as the data statement with the phantom label. In contrast to
the example we $phantom we need to provide the dimensionality of the symbol i explicitly via
the (∗):

$onEmpty

Set i(*) / /

j / a, b /;

display i,j;

$prefixPath

Syntax:

$prefixPath directoryPath

This option augments the search path in PATH environment variable. The effect is that the
text directoryPath is added to the beginning of the search path.

Example:

$log %sysenv.PATH%

$prefixPath C:\somewhereelse\anotherpath

$log %sysenv.PATH%

The log contains the following two relevant lines:

C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0

C:\somewhereelse\anotherpath;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0

The option setEnv and %sysEnv.VARNAME% allow to modify system environment variables but
the length of the environment variable value is limited in GAMS to 255 characters. The
PATH environment variable is often much longer and therefore this special $prefixPath option
exists.

This works on all platforms but the path separator depends on the operating system (; for
Windows and : for Unix).

$protect

Syntax:

$protect all | ident1 ident2 ...

This option creates a privacy setting: it freezes all values of identifiers with the result that
modifications are no longer allowed but the parameters may still be used in model calculation
(for example, equation definitions). Here ident1 and ident2 are specific GAMS identifiers
previously defined in the program and the keyword all denotes all identifiers.

Note that this option is mainly used in the context of secure work files. The privacy restrictions
may be removed with the options $expose or $purge.

4.41 Dollar Control Options 1205

$purge

Syntax:

$purge all | ident1 ident2 ...

This option removes the identifiers and all associated data in a privacy setting. With explicit
identifiers the listed identifiers are removed, and with all all identifiers are removed.

Note that this option is used in the context of secure work files. A special license file is needed
for this feature to work, the removal only takes effect in the restart files.

$remark

Syntax:

$remark text

This option performs a parameter substitution and writes a comment text to the compilation
output of the listing file. Note that the line numbers of the comment are suppressed.

Example:

$set it TEST

$remark Write %it% to the listing file

The resulting listing file will contain the following line:

Write TEST to the listing file

$save[.keepCode]

Syntax:

$save[.keepCode] saveFileName

This option creates a work file with all of the GAMS components compiled up to this point.
Without the suffix keepCode no execution code is written, hence a restart from this work file
has nothing to execute.

Example:

set i /1*5/; parameter p(i) / #i 1 /;

p(i) = 2;

$save mywork

$onEcho > create_put.gms

file f / p.txt /; put f;

loop(i, put i.tl p(i) /);

$offEcho

$call.checkErrorLevel gams create_put.gms lo=2 restart=mywork

The resulting file p.txt will contain the following lines:

1 1.00

2 1.00

3 1.00

4 1.00

5 1.00

1206 User's Guide

Adding the suffix .keepCode in this example, i.e. $save.keepCode mywork will also write out unexecuted
execution code, so a restart from this work file will execute this code. This option with suffix cannot be
used inside a loop or if statement. This will trigger a compilation error. The example with the .keepCode

suffix will result in the p.txt file containing the following lines:

1 2.00

2 2.00

3 2.00

4 2.00

5 2.00

$scratchFileName

Syntax:

$scratchFileName VARNAME [fileStem]

This option establishes or redefines the content of a scoped compile-time variable that is
accessible in the code where the command appears and all code included therein. Here
VARNAME is any user chosen variable name; fileStem is optional and used to built the name for
a file in the scratch directory with a scratch extension (unless an extension is set explicitly).
If it is omitted, the system will make up a random file name.

So,

$scratchFileName fn abc

is equivalent to

$set fn %gams.scrDir%abc.%gams.scrExt%

Example:

* Set fileStem explicitly

$scratchFileName fn1 abc

$log %fn1%

* Omit fileStem

$scratchFileName fn2

$log %fn2%

The log will show:

C:\Data\t m p\225a\abc.dat

C:\Data\t m p\225a__sFN__-0_313342928588555.dat

See also $set and section Compile-Time Variables.

$set

Syntax:

$set VARNAME text

4.41 Dollar Control Options 1207

This option establishes or redefines contents of a scoped compile-time variable that is accessible
in the code where the command appears and all code included therein. Here VARNAME is
any user chosen variable name; text is optional and may contain any text. The text may
contain spaces. The text can not be longer than 255 characters otherwise a compilation error
is triggered. Observe that scoped compile-time variables may be destroyed (removed from the
program) with the option $drop.

Note that in contrast to the option $eval the option $set does not evaluate the expression at
compile time.

Note that GAMS allows scoped, local and global compile-time variables to be defined with the
same name and therefore in some cases needs to prioritize. When referencing a compile-time
variable via %VARNAME% a local variable hides scoped and global variables and a scoped variables
hides the global variable as the following example demonstrates.

Example:

$setLocal myvar this is a local variable

$set myvar this is a scoped variable

$setGlobal myvar this is a global variable

$log %myvar%

$droplocal myvar

$log %myvar%

$drop myvar

$log %myvar%

The log will look as follows:

this is a local variable

this is a scoped variable

this is a global variable

If one wants to set a compile-time variable in an include file that is visible to the program
after the $include one need to use $setglobal:

$onEchoV > setvar.gms

$setArgs varname varvalue

$setglobal %varname% %varvalue%

$offEcho

$batInclude setvar MYVAR one

$log %MYVAR%

The log will show

one

An inventory of all defined compile-time variables and their type (local, scoped, and global) is
available with the option $show.

See also $setGlobal, $setLocal, and section Compile-Time Variables.

$setArgs

Syntax:

$setArgs id1 id2 id3 ...

1208 User's Guide

With this option parameters that may be substituted are defined as GAMS compile-time
variables. Note that $setArgs may only be used in external files that are included with the
option $batInclude, $libInclude, and $sysInclude.

Example:

Scalar a /2/, b /4/, c /5/;

$batInclude test3 a b c

The file test3.gms contains the following lines:

Scalar x;

x = %1 + %2 * %3 ;

display x;

$setArgs aa bb cc

x = %aa% - %bb% * %cc% ;

display x;

x = %1 + %2 * %3 ;

display x;

The option $setArgs allows the batInclude file to use the more descriptive compile-time
variables %aa% instead of %1, %bb% instead of %2 and %cc% instead of %3. Note that the use of
%1, %2 etc. is still allowed. The program listing looks as follows:

1 Scalar a /2/, b /4/, c /5/;

BATINCLUDE C:\Users\default\Documents\gamside\projdir\test3.gms

3 Scalar x;

4 x = a + b * c ;

5 display x;

7 x = a - b * c ;

8 display x;

9 x = a + b * c ;

10 display x;

and the output generated by the display statements follows:

---- 5 PARAMETER x = 22.000

---- 8 PARAMETER x = -18.000

---- 10 PARAMETER x = 22.000

See also $set, $batInclude.

$setComps

Syntax:

$setComps perioddelimstring id1 id2 id3 ...

This option establishes or redefines compile-time variables so they contain the components of
a period delimited string.

Here perioddelimstring is any period delimited string like the set specification of a multi-
dimensional parameter, id1 is the name of a scoped compile-time variable that will contain
the name of the set element in the first position, id2 is the name of a scoped compile-time
variable that will contain the name of the set element in the second position and id3 is the
name of a scoped compile-time variable that will contain the name of the set element in the
third position. The items may be recombined back into the original filename string by using
%id1%.%id2%.%id3%.

Example:

4.41 Dollar Control Options 1209

$setComps period.delim.string id1 id2 id3

$log id1=%id1%

$log id2=%id2%

$log id3=%id3%

$set name %id1%.%id2%.%id3%

$log name=%name%

The resulting log file will contain the following lines:

id1=period

id2=delim

id3=string

name=period.delim.string"

See also $set.

$setDDList[.Cont]

Syntax:

$setDDList.Cont id1 id2 ...

$setDDList id3 id4 id5 ...

This option causes GAMS to look for misspelled or undefined double dash GAMS parameters.

Example: Consider the following example where three double dash GAMS parameters are
defined on the command line:

> gams mymodel.gms --one=11 --two=22 --three=33 --four=44

The corresponding GAMS file follows:

$log %one%

$log %two%

$setDDList three

$log %three%

$log %four%

Note that the option $setDDList three checks if all double dash parameters have been used
so far except for three. An error is triggered because four has not been used so far, the log
file will contain the following:

*** 1 double dash variables not referenced

--four=44

$setDDList.Cont can be used to define a list of parameters to be checked over multiple lines.
So, the following two examples do the same thing:

$setDDList one two three four

$setDDList.Cont one

$setDDList.Cont two three

$setDDList four

1210 User's Guide

Note

$setDDList.Cont does not do anything without a $setDDList statement.

See also section Double Dash Parameters.

$setEnv

Syntax:

$setEnv VARNAME value

This option defines an operating system environment variable. Here VARNAME is a user chosen
environment variable name and value may contain text or a number. Note that system
environment variables are destroyed (removed from the program) with the option $dropEnv
or when GAMS terminates.

Example:

$ondollar

$set env this is very silly

$log %env%

$setenv verysilly %env%

$log %sysenv.verysilly%

$if not "%env%"=="%sysenv.verysilly%" $error "$setEnv did not work"

$dropenv verysilly

$if setenv verysilly $error should not be true

The following output is echoed to the log file:

--- Starting compilation

this is very silly

this is very silly

See also $dropEnv and section Environment Variables in GAMS.

$setGlobal

Syntax:

$setGlobal VARNAME text

This option establishes or redefines contents of a global compile-time variable that is accessible
in the code where the command appears and all code included therein and all parent files.
Here VARNAME is any user chosen variable name; text is optional and may contain any text.
The text may contain spaces. The text can not be longer than 255 characters otherwise a
compilation error is triggered. Observe that global compile-time variables may be destroyed
(removed from the program) with the option $dropGlobal.

The difference between local, scoped, and global compile-time variable is explained with the
option $set.

See also $set, $setLocal, $dropGlobal and section Compile-Time Variables.

$setLocal

Syntax:

$setLocal VARNAME text

4.41 Dollar Control Options 1211

This option establishes or redefines contents of a local compile-time variable that is accessible
only in the code module (source file) where it is defined. Here VARNAME is any user chosen
variable name; text is optional and may contain any text. The text may contain spaces. The
text can not be longer than 255 characters otherwise a compilation error is triggered. Observe
that local compile-time variables may be destroyed (removed from the program) with the
option $dropLocal.

The difference between local, scoped, and global compile-time variable is explained with the
option $set.

See also $set, $setGlobal, $dropLocal and section Compile-Time Variables.

$setNames

Syntax:

$setNames file filepath filename fileextension

This option establishes or redefines three scoped compile-time variables so they contain the
drive subdirectory, filename and extension of a file named with full path. Here file is any
filename, filepath is the name of a scoped compile-time variable that will contain the name
of the subdirectory where the file is located, filename is the name of a scoped compile-time
variable that will contain the root name of the file and fileextension is the name of a scoped
compile-time variable that will contain the extension of the file.

Example:

$setNames "%gams.input%" filepath filename fileextension

$set name %filepath%%filename%%fileextension%

$log %name%

The log will show

C:\Users\default\Documents\gamside\projdir\

Untitled_1

.gms

C:\Users\default\Documents\gamside\projdir\\Untitled_1.gms

Note that file is separated into its three components placing C:\Users\default\Documents\gamside\projdir\
into filepath, Untitled 1 into filename and .gms into fileextension. The three items may
be recombined back into the original filename by using %filepath%%filename%%fileextension%
as shown in the example.

If the file is missing a path, name, or extension the corresponding variable is defined but
remains empty as demonstrated in the following example:

$onEchoV > showfileparts.gms

$setNames "%1" filepath filename fileextension

$log path=%filepath%

$log name=%filename%

$log ext=%fileextension%

$offEcho

$batInclude showfileparts "C:\tmp\"

$batInclude showfileparts "Untitled_1"

$batInclude showfileparts "Untitled_1.gms"

$batInclude showfileparts "Untitled_1.gms.txt"

The log shows:

1212 User's Guide

--- Untitled_1.gms(7) 2 Mb

path=C:\tmp

name=

ext=

--- .showfileparts.gms(4) 2 Mb

--- Untitled_1.gms(8) 2 Mb

path=

name=Untitled_1

ext=

--- .showfileparts.gms(4) 2 Mb

--- Untitled_1.gms(9) 2 Mb

path=

name=Untitled_1

ext=.gms

--- .showfileparts.gms(4) 2 Mb

--- Untitled_1.gms(10) 2 Mb

path=

name=Untitled_1.gms

ext=.txt

Note that if a file contains multiple . the last one will be assigned to the fileextension as
shown in the example with Untitled 1.gms.txt.

$shift

Syntax:

$shift

This option is similar to the command.com/cmd.exe shift operator (see [en.wikipedia.org/wiki/COMMAND.COM::Batch file commands]
(https://en.wikipedia.org/wiki/COMMAND.COM#Batch file commands). It shifts the or-
der of all parameters passed once to the left. This effectively drops the lowest numbered
parameter in the list.

Example:

Scalar a, b, c ; a = 1 ;

$batInclude inc.inc a b c

display a, b, c ;

The batch include file inc.inc follows:

%2 = %1 + 1 ;

$shift

%2 = %1 + 1 ;

The resulting listing file will contains the following echo print:

1 Scalar a, b, c ; a = 1 ;

BATINCLUDE C:\Users\default\Documents\gamsdir\projdir\inc.inc

3 b = a + 1 ;

5 c = b + 1 ;

6 display a, b, c ;

Note that in the first statement in the include file, %1 is the first argument in the $batInclude
call and in this case it is interpreted as a. %2 is the second argument in the $batInclude call
and is interpreted as b. This leads to the overall assignment being interpreted as b=a+1. The
dollar control option $shift shifts the arguments to the left. As a result, %1 is interpreted as
b, and %2 is interpreted as c. This leads to the second assignment being interpreted as c=b+1.

Therefore the outcome generated by the display statement in the input file is as follows:

https://en.wikipedia.org/wiki/COMMAND.COM#Batch_file_commands

4.41 Dollar Control Options 1213

---- 6 PARAMETER a = 1.000

PARAMETER b = 2.000

PARAMETER c = 3.000

See also $batInclude.

$show

Syntax:

$show

This option causes current values of the compile-time variables plus a list of the macros and
active input and include files to be shown in the compilation output, where ”active” means,
that $show was either directly in that file or that file is a parent that includes the file with
$show.

Example:

$set it 1

$setLocal yy

$setGlobal gg what

$include myinclude

$macro addx(x) x+x

$show

The file myinclude.gms follows:

$set inincs

$setLocal inincsl

$setGlobal inincsg

$macro multx(x) x*x

$show

The resulting listing file will contain the following environment reports in the compilation
output:

---- Begin of Active File List

Level Type Line Filename

1 INCLUDE 5 C:\Users\default\Documents\gamside\projdir\myinclude.gms

0 INPUT 4 C:\Users\default\Documents\gamside\projdir\Untitled_1.gms

---- End of Active File List

---- Begin of Compile-time Variable List

Level SetVal Type Text

1 inincsl LOCAL

1 inincs SCOPED

0 yy LOCAL

0 it SCOPED 1

0 gg GLOBAL what

0 inincsg GLOBAL

---- End of Compile-time Variable List

---- Begin of Macro List

$macro multx(x) x*x

---- End of Macro List

1214 User's Guide

and

---- Begin of Active File List

Level Type Line Filename

0 INPUT 6 C:\Users\default\Documents\gamside\projdir\Untitled_1.gms

---- End of Active File List

---- Begin of Compile-time Variable List

Level SetVal Type Text

0 yy LOCAL

0 it SCOPED 1

0 gg GLOBAL what

0 inincsg GLOBAL

---- End of Compile-time Variable List

---- Begin of Macro List

$macro multx(x) x*x

$macro addx(x) x+x

---- End of Macro List

Note that only the macros and the item defined with the option $setGlobal in the included
file carries over.

If one needs only parts of this report, the dollar control options $showFiles, $showMacros and
$showVariables can be used.

See also section Compile-Time Variables.

$showFiles

Syntax:

$showFiles

This option prints the active files to the lst file as described at $show.

$showMacros

Syntax:

$showMacros

This option prints a list of macros to the lst file as described at $show.

$showVariables

Syntax:

$showVariables

This option prints a list current values of the compile-time variables to the lst file as described
at $show.

$single

Syntax:

4.41 Dollar Control Options 1215

$single

The lines following this option will be echoed single spaced in the compilation output. Note
that this is the default. The option is only useful as a switch to deactivate the option $double.

Example:

Set i / 1*2 / ;

Scalar a / 1 / ;

$double

Set j / 10*15 / ;

Scalar b / 2 / ;

$single

Set k / 5*10 / ;

Scalar c / 3 / ;

The echo print in the resulting listing file will look as follows:

1 Set i / 1*2 / ;

2 Scalar a /1/ ;

4 Set j / 10*15 / ;

5 Scalar b /2/ ;

7 Set k / 5*10 / ;

8 Scalar c /3/ ;

Note that lines between the options $double and $single are listed double spaced, while the
lines after the option $single revert back to being listed single spaced.

See also $double.

$splitOption

Syntax:

$splitOption KEYVALPAIR optname optvalue

Establishes or redefines two scoped compile-time variables so they contain the name and value
of an option key/value pair specified in various formats. KEYVALPAIR is a string formatted
as -opt=val or -opt val (instead of - one can also use /). optname is the name of a scoped
compile-time variable that will contain the name of the option and optvalue is the name of
a scoped compile-time variable that will contain the value of the option. This is useful in
particular in combination with batInclude files.

Example:

$onechoV > myinclude.gms

* Default values for named arguments

$setGlobal a1 1

$setGlobal a2 2

$setGlobal a3 nothing

$setGlobal positionalArgs

$label ProcessNamedArguments

$ splitOption "%1" key val

$ if x%key%==x $goto FinishProcessNamedArguments

$ ifThenI.NamedArguments %key%==a1

$ setGlobal a1 %val%

$ elseIfI.NamedArguments %key%==a2

1216 User's Guide

$ setGlobal a2 %val%

$ elseIfI.NamedArguments %key%==a3

$ setGlobal a3 %val%

$ else.NamedArguments

$ error Unkown named argument "%key%"

$ endIf.NamedArguments

$ shift

$goTo ProcessNamedArguments

$label FinishProcessNamedArguments

$setGlobal positionalArgs %1 %2 %3

$offEcho

$batInclude myinclude "-a3=some things" -a2=3.14 i j k

$log Using named arguments a1:>%a1%< a2:>%a2%< a3:>%a3%< positionalArgs:>%positionalArgs%<

Now when calling this piece of code as a batInclude one can specify optionally some named
arguments (in any order) right after the name of the batInclude file and before the positional
arguments as demonstrated by the log output:

Using named arguments a1:>1< a2:>3.14< a3:>some things< positionalArgs:>i j k<

stars (∗∗∗∗)

Syntax:

$stars char[char][char][char]

This option is used to redefine the ∗∗∗∗ marker in the GAMS listing file. By default, important
lines like those that denote errors and the solver and model status are prefixed with ∗∗∗∗. A
new marker consists of one to four characters.

Example:

$stars *##*

garbage

The resulting listing file follows:

2 garbage

$140

$36,299 UNEXPECTED END OF FILE (1)

Error Messages

36 ’=’ or ’..’ or ’:=’ or ’$=’ operator expected

rest of statement ignored

140 Unknown symbol

299 Unexpected end of file

$sTitle

Syntax:

$sTitle text

This option sets the subtitle in the page header of the listing file to text. Note that the next
output line will appear on a new page in the listing file.

Example:

$sTitle Data tables for input/output

4.41 Dollar Control Options 1217

See also $title.

$stop

Syntax:

$stop [text]

This option stops program compilation without creating an error. Note there is a difference to
the option $exit. If there is only one input file, $stop and $exit will have the same effect. In
an include file the option $exit acts like an end-of file on the include file. However, the option
$stop in an include file will cause GAMS to stop reading all input but continue the execution
phase of the so far compiled program. The text followed by $stop is ignored.

Example:

$ifthen not set EXPORTEXCEL

$ stop No export to Excel

$else

$ call gdxxrw ...

$endif

See also $abort, $error, $exit, and $terminate.

$sysInclude

The syntax of this dollar control option is equivalent to the syntax of $batinclude:

Syntax:

$sysinclude external_file arg1 arg2 ...

However, if an incomplete path is given, the file name is completed using the system include
directory. By default, the system include directory is set to the GAMS system directory. Note
that the default directory may be reset with the command line parameter sysIncDir.

Example:

The only relevant include file in the GAMS system directory is mpsgeset for MPSGE models,
see for example [HARMGE]:

$sysInclude mpsgeset KAMIYA

Note that this call will first look for the include file [GAMS System Directory]/mpsgeset.
If this file does not exist, it will looks for [GAMS System Directory]/mpsgeset.gms. The
argument KAMIYA is passed on to the include file and are interpreted as explained for the dollar
control option $batInclude.

Consider the following example:

$sysInclude C:\Users\default\Documents\mpsgeset KAMIYA

This call will first look specifically for the include file C:\Users\default\Documents\mpsgeset
and next for C:\Users\default\Documents\mpsgeset.gms.

See also $batInclude.

$terminate

1218 User's Guide

Syntax:

$terminate [text]

This option terminates compilation and also does not execution to program compiled so far
without giving an error.

Example:

$if set JUSTTERMINATE $terminate

See also $abort, $error, $exit, and $stop.

$title

Syntax:

$title text

This option sets the title in the page header of the listing file to text. Note that the next
output line will appear on a new page in the listing file.

Example:

$title Production Planning Model

$sTitle Set Definitions

See also $sTitle.

$unLoad

Syntax:

$unLoad [sym1[,] sym2=gdxSym2[,] ...]

This option unloads specified items to a GDX file. Note that $unLoad must be used in
conjunction with the option $gdxOut: $gdxOut must precede `$unLoad`. More than one
option $unload may appear in between. Symbols can be renamed via the sym=GDXSym syntax.
A $unLoad without arguments unloads the entire GAMS database into the GDX file.

Example: Consider the following slice of code:

Sets i ’canning plants’ / seattle, san-diego /

j ’markets’ / new-york, chicago, topeka / ;

Parameters

a(i) ’capacity of plant i in cases’

/ seattle 350

san-diego 600 /

b(j) ’demand at market j in cases’

/ new-york 325

chicago 300

topeka 275 / ;

Table d(i,j) ’distance in thousands of miles’

new-york chicago topeka

seattle 2.5 1.7 1.8

san-diego 2.5 1.8 1.4 ;

$gdxOut tran

$unLoad i j=k

$unLoad b=dem a=sup

$unLoad d

$gdxout tranX

$unLoad

4.41 Dollar Control Options 1219

Note that the last lines will create a file named tran.gdx that contains i, j (now named k)
and d and the parameters a and b which are now named dem and sup. The $unLoad in the
very last line creates a GDX file tranX.gdx with all symbols (with their original names). The
table of content (via $gdxIn and $load without parameters) of these two files looks as follows:

Content of GDX C:\Users\default\Documents\gamsdir\projdir\tran.gdx

5 UELs

Number Type Dim Count Name

1 Set 1 2 i canning plants

2 Set 1 3 k markets

3 Parameter 1 3 dem(j) demand at market j in cases

4 Parameter 1 2 sup(i) capacity of plant i in cases

5 Parameter 2 6 d(i,j) distance in thousands of miles

Content of GDX C:\Users\default\Documents\gamsdir\projdir\tranX.gdx

5 UELs

Number Type Dim Count Name

1 Set 1 2 i canning plants

2 Set 1 3 j markets

3 Parameter 1 2 a(i) capacity of plant i in cases

4 Parameter 1 3 b(j) demand at market j in cases

5 Parameter 2 6 d(i,j) distance in thousands of miles

Both listings show domain information for the various symbols but only the file tranX.gdx

created with $unLoad without arguments has consistent or full domain information while
tran.gdx may have inconsistent or relaxed domain information. Domain matching when
loading with the $load sym<[=]symGDX, see $load for details, can be used in both cases but
can become subtle with the relaxed domain information from tran.gdx.

Starting with GAMS 34 the behavior of $gdxOut and $unload changed compare to previous
versions. In order to write consistent domain information and write aliases as such, the actual
writing of the symbols to GDX is delayed until the GDX files is about to be closed either
through an explicit $gdxOut (potentially with a another filename) or through the end of the
compilation phase. The advantage of the delayed writing is that the compiler can now better
analyze the symbols and e.g. write alias symbols as aliases with the aliased set is also written
to the GDX file (aliases were always written as sets before GAMS 34).

This new behavior can result in different GDX files. Here are two examples:

Set i /1,2,3/; Parameter p(i);

$gdxOut x.gdx

$unload

Parameter p(i) /1 1, 2 2, 3 3/;

In the GAMS versions before 34 the export GDX happened when the compiler processed the
$unload command. At this point the parameter p did not have any data yet, so the GDX
symbol p had no records. With the new behavior, the actual writing happens when the GDX
file will be closed. Since there is no explicit close via a $gdxOut the GDX file is closed at the
end of the compilation phase. By then the compiler has processed the statement Parameter
p(i) /1 1, 2 2, 3 3/; and has filled p with data that will show up in the GDX file. In
such a case an explicit $gdxOut after the $unload helps to get the old behavior back.

Set i /1,2,3/; Parameter p(i) / 1 1/;

$gdxOut x.gdx

$unload p=p1

$onmulti

Parameter p(i) / 2 2/;

$unload p=p2

1220 User's Guide

In the GAMS versions before 34 the GDX file x.gdx contains two parameters p1 with record
1 1 and p2 with record 1 1, 2 2. With the new behavior the symbols are written again at
the end of the compilation phase and by then the parameter p has the records 1 1, 2 2 and
will write to GDX the parameters p1 and p2 with the two records each. The only way to
accomplish the old behavior in this case is to write p1 and p2 to different GDX files:

Set i /1,2,3/; Parameter p(i) / 1 1/;

$gdxOut x1.gdx

$unload p=p1

$gdxOut x2.gdx

$onMulti

Parameter p(i) / 2 2/;

$unload p=p2

This delayed writing also influence other options like $onEpsToZero. The state of this becomes
relevant when the file is actually written, not when a symbol is added to the list of symbols to
be exported with $unload. This can be seen in the following example:

Set i / i1*i3 /;

Parameter p1(i) / i1 0, i2 EPS, i3 1 /

p2(i) / i1 0, i2 EPS, i3 1 /;

$gdxOut out.gdx

$onEpsToZero

$unload p1

$offEpsToZero

$unload p2

$gdxOut

$call.checkErrorLevel gdxdump out.gdx

Here is the output from gdxdump at the end:

Parameter p1(*) /

’i2’ Eps,

’i3’ 1 /;

Parameter p2(*) /

’i2’ Eps,

’i3’ 1 /;

$use205

Syntax:

$use205

This option sets the GAMS syntax to the syntax of Release 2.05. This is mainly used for
backward compatibility. New keywords have been introduced in the GAMS language since
Release 2.05. Models developed earlier that use identifiers that have since become keywords
will cause errors when run with the latest version of GAMS. This option will allow to run such
models.

Example:

$use205

Set if /1.2.3/;

Scalar x ;

4.41 Dollar Control Options 1221

The word ”if” is a keyword in GAMS that was introduced with the first version of Release
2.25. Setting option $use205 allows ”if” to be used as an identifier since it was not a keyword
in Release 2.05.

$use225

Syntax:

$use225

This option sets the GAMS syntax to the syntax of the first version of Release 2.25. This is
mainly used for backward compatibility. New keywords have been introduced in the GAMS
language since the first version of Release 2.25. Models developed earlier that use identifiers
that have since become keywords will cause errors when run with the latest version of GAMS.
This option will allow to run such models.

Example:

$use225

Set for /1.2.3/;

Scalar x ;

The word ”for” is a keyword in GAMS that was introduced with the later versions of Release
2.25. Setting option $use225 allows ”for” to be used as an identifier since it was not a keyword
in the first version of Release 2.25.

$use999

Syntax:

$use999

This option sets the GAMS syntax to the syntax of the latest version of the compiler. Note
that this setting is the default.

Example:

$use225

Set for /1.2.3/;

Scalar x ;

$use999

for (x=1 to 3, display x) ;

Note that the word ”for” is used as a set identifier after setting the option $use225 and later
the keyword for is used in a looping construct after having set the language syntax to that of
the latest version using the option $use999.

$version

Syntax:

$version n

This issues a compilation error if n is greater than the current GAMS version. This can
be useful to ensure that a model is run only with new versions of GAMS, because, e.g., a
particular feature which did not exist in older versions is needed.

Example:

1222 User's Guide

* With GAMS 24.8.1 the function numCores was added to the system.

* Make sure, that we use this GAMS version or newer.

$version 248

Scalar nc "Number of cores";

nc = numCores;

Display nc;

$warning

Syntax:

$warning text

This dollar control option issues a compilation warning to the log and listing but continues
compilation and execution.

Example

$ifthen not set INPUTFILE

$ set INPUTFILE default.txt

$ warning Using default INPUTFILE "default.txt". Use --INPUTFILE=myfile.txt to overwrite default.

$endif

The GAMS log file will issue a warning:

*** Error 332 in C:\Users\default\Documents\gamsdir\projdir\myinput.gms

$Warning encountered - see listing for details

with the details in the listing file:

3 $ warning Using default INPUTFILE "default.txt". Use --INPUTFILE=myfile.txt to overwrite default.

**** $332

4.41.4 Conditional Compilation

GAMS offers several dollar control options that facilitate conditional compilation. In this section we will
first introduce the general syntax, present an overview of all relevant options and list the conditional
expressions that may be used to perform tests. Then we will give several examples to illustrate how these
options are used and to demonstrate their power. This section is meant as an introduction to conditional
compilation in GAMS and complements the detailed descriptions of the dollar control options listed in
Table 1 below.

4.41.4.1 Conditional Compilation: General Syntax and Overviews

The dollar control option $if and its variants provide a great amount of control over conditional processing
of the input file(s). The syntax in GAMS is similar to the IF statement of the DOS Batch language:

$if [not] <conditional expression> new_input_line

The dollar control statement begins with $if. Note that $if may be replaced by one of its variants that
are listed in Table 1 below. The operator not is optional and makes it possible to negate the conditional

expression that follows. The conditional expression may take various forms, a complete list is given in
Table 2. The result of the conditional test is used to determine whether to process or not the remainder
of the line, new input line, which may be any valid GAMS input line.

4.41 Dollar Control Options 1223

Attention

The first non-blank character on the line following the conditional expression is considered to be the
first column position of the GAMS input line. Therefore, if the first character encountered is the
dollar control character, the line is treated as a dollar control line. Likewise, if the first character
encountered is a comment character (default: ∗) the remainder of the line is treated as a comment
line. If a multiplication is to be performed in the true clause instead of a comment, the $ifThen
condition needs to be used:

$setglobal mult on

Scalar P_test;

P_test = 10

$iftheni %mult%==on

* 5

$endif

;

Alternatively, the new input line may be placed in the next line. The corresponding syntax follows:

$if [not] <conditional expression>

new_input_line

Note that in this version the space after the conditional expression is left blank. If the conditional is found
to be false, either the remainder of the line (if any) will be skipped or the next line will not be processed.

The overviews in Table1 and Table 2 conclude this subsection. Examples are given in the next subsection.

Table 1: $if and Related Dollar Control Options

Dollar Control Option Description

$if This option is used to do case sensitive comparisons. Several examples
are given in the next subsection.

$ifE This variant does the same as $if but allows numerical constant expression
evaluation. For an example, see the detailed description of this option.

$ifI This variant is the same as $if, but it is case insensitive.

$ifThen This variant controls whether a block of statements will be processed or
not. It is used to do case sensitive comparisons. Most often it is followed
by one or more of the following dollar control options: $else, $elseIf,
$elseIfI, $elseIfE. The option $ifThen must be matched with the option
$endIf that marks the end of the block. An example is given below.

$ifThenE This is a variant of $ifThen and is used for numerical comparisons. Like
$ifThen, it is often followed by the option $else or one of its variants
and must be matched with the option $endIf that marks the end of the
construct.

$ifThenI This is a variant of $ifThen and is used to do case insensitive comparisons.
Like $ifThen, it is often followed by the option $else or one of its variants
and must be matched with the option $endIf that marks the end of the
construct.

$endIf This option must be matched with a preceding option $ifThen, $ifThenE
or $ifThenI and marks the end of the if - then construct. Note that
the option $endIf is not followed by a conditional expression, but it may
be follwowed by a new input line. This GAMS input is restricted to
other dollar control statements. An example is given below.

1224 User's Guide

Dollar Control Option Description

$else This option follows the option $ifThen, $ifThenE or $ifThenI. It is
followed by an instruction which is executed if the conditional expression
of the matchining $ifThen statement is not true. Note that therefore
this dollar control statement does not contain a conditional expression.
An example is given below.

$elseIf This option follows the option $ifThen, $ifThenE or $ifThenI. It is follwed
by another conditional expression and instruction. Note that this option
is case sensitive. An example is given below.

$elseIfE This is a variant of $elseIf that evaluates numerical values.

$elseIfI This is a variant of $elseIf that is case insensitive.

Table 2: Conditional Expressions in Conditional Compilation

Conditional Expression Description

acrType id True if id is an acronym.

decla OK True if a declaration statement is permitted in the current
line. Note that declaration statements are not permitted
within programming flow control structures like if statements or
loop statements. An example is given below.

declared id True if id was declared.

defined id True if id was defined. An example is given below.

dExist directoryname True if a directory with the name directoryname exists.

dimension n id True if id has n dimensions. Note that n may take values from 0 to
maximum number of possible indexes (see Dimensions).

equType id True if id is an equation.

errorFree True if compilation up to this point has been free of errors.

errorLevel n True if the return code of a program called via $call is equal to
or larger than n. For lists of GAMS return codes, see chapter
GAMS Return Codes. An example is given below.

exist filename True if a file with the name filename exists and is readable in the
working directory or an input file directory. If no extension is specified,
also filename.gms is checked. An example is given below.

filType id True if id is the name of a put file.

funType id True if id is a GAMS function.

gamsVersion n True if current GAMS version is greater than or equal to n. GAMS
versions are referenced with a single number. For example, if it should
be tested whether the current GAMS version is 24.7 or newer, n will
equal 247. Maintenance version numbers, e.g. 24.7.4 do not count.

gdxDimension n id True if id exists in a GDX file previously opened with $gdxIn and has
n dimensions. Note that n may take values from 0 to maximum number
of possible indexes (see Dimensions).

gdxEquType id True if id exists in a GDX file previously opened with $gdxIn and is an
equation.

gdxParType id True if id exists in a GDX file previously opened with $gdxIn and is a
parameter.

gdxSetType id True if id exists in a GDX file previously opened with $gdxIn and is a
set.

gdxSymExist id True if id exists in a GDX file previously opened with $gdxIn.

gdxVarType id True if id exists in a GDX file previously opened with $gdxIn and is a
variable.

macType id True if id is a macro.

4.41 Dollar Control Options 1225

Conditional Expression Description

modType id True if id is a model.

onState key True if the state of key is on (i.e. activated by $onKey). An example is
given below.

parType id True if id is a parameter.

preType id True if id is a one of the predefined symbols in GAMS. Details are given
below.

putOpen True if both a file statement and at least one put statement have been
compiled. Note that this does not guarantee that a file will be open at
runtime.

readable id True if id was correctly initialized, i.e. the symbol has a data statement
or appeared on the left-hand side of an assignment statement, and may
therefore be used on the right-hand side of an assignment statement.
An example is given below.

set varname True if the scoped compile-time variable varname was set with the dollar
control option $set, $setGlobal or $setLocal.

setEnv varname True if the environment variable varname was set in the systems envi-
ronment, e.g. with the dollar control option $setEnv.

setGlobal varname True if the control variable varname was set with the dollar control
option $setGlobal.

setLocal var name True if the control variable var name was set with the dollar control
option $setLocal.

setType id True if id is a set.

solver solver name True if a solver named solver name exists in the GAMS system. An
example is given below.

uelExist id True if unique element id exists in current GAMS database.

varType id True if id is a variable.

warnings True if the compilation until this point has been free of warnings.

xxxType id True if id is an unknown type. For more information, see below.

string1 == string2 True only if string1 matches string2 exactly. Note that the strings
may be quoted or unquoted. Null (empty) strings may be indicated by an
empty quote: "" or ''. The case of the strings provided either explicitly
or, more likely, through a parameter substitution, is preserved and
therefore will affect the string comparison. Quoted strings with leading
and trailing blanks are not trimmed and the blanks are considered part
of the string. Note that the string may have the form %VARNAME%, where
VARNAME refers to a compile-time variable including GAMS command line
parameters and system attribute. An example for a string comparison
with a command line parameter is given below. An example for a string
comparison with a system attribute is given below.

string True only if string is an empty string ("" or ''), otherwise False.

4.41.4.2 Conditional Compilation: Examples

File Operation Test

The operator exist may be used to test whether a given file name exists. Consider the following example:

$if exist myfile.dat $include myfile.dat

1226 User's Guide

Observe that the effect of this dollar control statement is that the file myfile.dat is included if it exists.
Note that the character $ at the beginning of the option $include is the first non-blank character after the
conditional expression exist myfile.dat and therefore it is treated as the first column position. The
statement above may also be written as follows:

$if exist myfile.dat

$include myfile.dat

Conditional Compilation and Batch Include Files

In the next example we will illustrate how the option $if is used inside a batch include file where
parameters are passed through the option $batInclude from the parent file:

$if not "%1a" == a $goto labelname

$if exist %1 file.ap=1;

Note that in the first line the $if condition uses the string comparison "%1a" == a to check if the
parameter is empty. This test may also be done in the following way: %1 == "". If the parameter is not
empty, the option $goto is processed.

Note

The option $label cannot be part of the conditional input line. However, if the option $label appears
on the next line, the condition decides once if the label is placed or not and subsequent instances of
$goto will find the label without reevaluating the condition.

The second line illustrates the use of standard GAMS statements if the conditional expression is valid. If
the file name passed as a parameter through the $batInclude call exists already, the GAMS will execute
the file.ap=1; statement which will append to the file.

The next example demonstrates how an unknown number of file specifications may be passed on to a
batch include file that will include each of them if they exist. The batch include file could look as follows:

* Batch Include File - inclproc.gms

* include and process an unknown number of input files

$label nextfile

* Quote everything because file name might have blanks

$if exist "%1" $include "%1"

$shift

$if not "%1a" == a $goto nextfile

The call to this file in the parent file could take the following form:

$batInclude inclproc "file 1.inc" file2.inc file3.inc file4.inc

4.41 Dollar Control Options 1227

Testing Whether an Item Has Been Defined

The next example shows how to test if a named item was declared and/or defined.

Set i;

$if defined i $log First: set i is defined

$if declared i $log First: set i is declared

Set i /seattle/;

$if defined i $log Second: set i is defined

$if declared i $log Second: set i is declared

Note that after the first declaration of i only declared i evaluates to true when after the second
declaration with a data statement both defined i and declared i are true.

Testing the state of a flag set by a dollar control option

The expression onState key tests whether the state of key is on. So the following example could be done
with any key available as a $(on|off)Key dollar control option:

$if onState listing $log Listing is active at checkpoint 1

$if onState listing $set reactivateListing

$offListing

* Do something which should not be seen in the listing

$if onState listing $log Listing is active at checkpoint 2

* Reactivate listing if it was active at the start only

$if set reactivateListing $onListing

$if onState listing $log Listing is active at checkpoint 3

Testing Whether an Item May Be Used in an Assignment

The expression readable id tests whether data were assigned to an item and therefore the item may be
used on the right-hand side of an assignment statement. Consider the following example:

Scalar f;

$if not readable f $log f cannot be used on the right

Scalar f /1/;

$if readable f $log f can be used on the right

$kill f

$if not readable f $log f cannot be used on the right after clear

f = 1;

$if readable f $log f can be used on the right after assignment

Note that in the first test the set f was declared, but there was no data statement, hence it is not
readable. After a declaration with a data statement the test readable f evaluates to TRUE. With $kill
we can revert f to a data less state and hence not readable f is TRUE after the ”$kill”. The assignment
statement f = 1; make the scalar f readable again.

1228 User's Guide

Testing Whether an Identifier May Be Declared

In programming flow control structures, like if statements or loop statements declaration statements are
not permitted. The test decla ok may be used to test whether the current environment allows declaration
statements. Consider the following example:

$if decla_ok $log declarations are possible

if(1,

$ if not decla_ok $log declarations are not allowed

);

Note that the conditional expression in the both $if tests will evaluate to TRUE. However, the
second test of decla ok itself will be FALSE because it is processed while compiling an if state-
ment, but with the not the entire expression evaluated to TRUE. For more information, see chapter
Programming Flow Control Features.

Comments in the Context of Conditional Compilation

In-line and end-of-line comments are stripped out of the input file before processing the new input line.
If either of these forms of comments appear, they will be treated as blanks. Consider the following
example:

Parameter a ;

a=10 ;

$eolCom // inlineCom /* */

$if exist myfile.dat /* in line comments */ // end of line comments

a = 4 ;

display a;

Note that the comments on line 3 are ignored and the fourth line with the assignment statement will be
processed if the conditional expression is true Hence the outcome generated by the display statement will
list a with a value of 4 if the file myfile.dat exists and a value of 10 if the file does not exist.

Error Level Test

Consider the following example:

$call gams mymodel.gms lo=2

$if errorlevel 1 $abort one or more errors encountered

Note that the errorlevel is retrieved from the previous system call via $call. The conditional statement
errorlevel 1 is true if the returned errorlevel is equal to or larger than 1. In case of calling GAMS this
means that something was not quite right with the execution of GAMS (either a compilation or execution
error or other more exotic errors, see GAMS return codes. If this is the case, this GAMS program will be
aborted immediately at compilation time.

Usually programs return 0 on success and non-zero on failure. The $if errorlevel 1 checks for strictly
positive return codes. There are rare cases with failures and negative return codes (e.g. on Windows
if some DLL dependencies of the program can't be resolved). In such a case $if errorlevel 1 will
evaluate to false and not continue with the $abort instruction. It might be better to access the program
return code via the errorLevel function in the following way:

$call gams mymodel.gms lo=2

$ifE errorLevel<>0 $abort one or more errors encountered

4.41 Dollar Control Options 1229

Solver Test

The following example illustrates how to check if a solver exists.

$if solver ZOOM

Note that the conditional expression is false since the solver named ZOOM does not exists in the GAMS
system (anymore).

Command Line Parameters in String Comparison Tests

Assume we include the following dollar control statements in a GAMS file called myfile.gms:

$if not ’%gams.ps%’==’’ $log Page size set to %gams.ps%

$if not ’%gams.pw%’==’’ $log Page width set to %gams.pw%

$if not ’%gams.mip%’==’’ $log MIP solver default is %gams.mip%

Then we run the program with the following call:

> gams myfile pageSize=60 pageWidth=85 mip=cbc

Note that we specified values for the command line parameters pageSize, pageWidth, and MIP. We can
either use the short or long name on the command line and in the compile-time variable. If we do not
specify the option on the command line we will get the default value for option page size and page width.
The MIP solver line will not show because %gams.mip% remains empty. The log with option setting on
the command line will include the following lines:

Page size set to 60

Page width set to 85

MIP solver default is cbc

Command line parameters are introduced in chapter The GAMS Call and Command Line Parameters.

System Attributes in String Comparison Tests

Compile-time system attributes may also be used in string comparison tests. The system attribute that is
most useful in this context is .fileSys. It identifies the name of the operating system being used. Consider
the following example:

$ifthen not %gams.logOption%==3

$ ifi %system.fileSys%==UNIX $set nullFile > /dev/null

$ ifi %system.fileSys%==MSNT $set nullFile > nul

$ if not set nullFile $abort %system.fileSys% not recognized

$else

$ set nullFile

$endif

$call gamslib trnsport %nullFile%

These dollar control statements allow the definition of a NULL file destination that is dependent on the
operating system that is being used. Note that the control variable nullFile contains an operating-
system-dependent name. This is useful when making an external program that writes to STDOUT
quiet in case the GAMS log does not go to STDOUT (logOption=3). This example could also have
used the system attribute %system.nullFile% which contains the operating-system-dependent NULL file
destination:

$set nullFile

$if not %gams.logOption%==3 $set nullfile > %system.nullFile%

$call gamslib trnsport %nullfile%

System attributes in general are introduced in chapter System Attributes.

1230 User's Guide

Conditional Compilation with $ifThen and $else

Consider the following example which illustrates the use of $ifThen, $elseIf, $else and $endif:

$set x a

$label test

$ifThen %x% == a $set x ’c’ $log $ifThen with x=%x%

$elseIf %x% == b $set x ’k’ $log $elseIf 1 with x=%x%

$elseIf %x% == c $set x ’b’ $log $elseIf 2 with x=%x%

$else $set x ’e’ $log $else with x=%x%

$endIf $if not %x% == e $goTo test

Note that the resulting log file will contain the following lines:

$ifthen with x=a

$elseif 2 with x=c

$elseif 1 with x=b

$else with x=k

Observe that the options $else and $endIf are not followed by conditional expressions and the
instruction following the option $endIf contains a dollar control statement. Moreover, note that the
‘$set x 'c’has the text to be set in quotes. GAMS needs to know where the text ends and

the next dollar control option (in this case$log`) starts.

Type of Identifiers

The type of a symbol can be retrieved via $if ...Type. Consider the following example:

Set diag / 1*3 /;

Parameter p(diag) / 1 1, 2 4, 3 8 /;

$if setType diag $log diag is a set

$if not varType diag $log diag is not a variable

$if preType diag $log diag is a predefined type

$if parType p $log p is a parameter

$if setType sameAs $log sameAs is a set

$if preType sameAs $log sameAs is a predefined type

Note that for predefined symbols more than one type applies (e.g. sameAs is of set and predefined type).
Please also note that diag is a set even though there is a predefined symbol named diag but that becomes
invisible with a user defined symbol with the same name.

Normally there is no way to get a symbol into the GAMS symbols table without a proper type. However,
if the dollar command line parameter multiPass is set to a value larger than zero, then the compiler will
just check for some integrity and will try to deduce the symbol type from the context. If it is not able to do
so, the symbol type will remain unknown. For example, compiling the following lines with multiPass=1

display x;

$if xxxType x $log x is of unknown type

result in the line x is of unknown type in the GAMS log.

4.41 Dollar Control Options 1231

4.41.5 Macros in GAMS

Macros are widely used in computer science to define and automate structured text replacements. The
GAMS macro processors function similarly to the popular C/C++ macro preprocessor. Note that the
GAMS macro facility has been inspired by the [GAMS-F] (http://www.mpsge.org/inclib/gams-f.htm)
preprocessor for function definition developed by Michael Ferris, Tom Rutherford and Collin Starkweather,
1998 and 2005. The GAMS macro facility incorporates the major features of the GAMS-F preprocessor
into the standard GAMS release as of version 22.9. GAMS macros act like a standard macro when defined.
However, their recognition for expansion is GAMS syntax driven.

4.41.5.1 Syntax and Simple Examples

The definition of a macro in GAMS takes the following form:

$macro name macro_body

$macro name(arg1,arg2,arg3,...) macro_body with tokens arg1, ...

The dollar symbol $ followed by macro indicate that this line is a macro definition. The name of the
macro has to be unique, similar to other GAMS identifiers like sets and parameters. The macro name
is immediately followed by a list of replacement arguments arg1,arg2,arg3,... that are enclosed in
parentheses. The macro body is not further analyzed after removing leading and trailing spaces.

The recognition and following expansion of macros is directed by GAMS syntax. The tokens in the macro
body to be replaced by the actual macro arguments follow the standard GAMS identifier conventions.
Consider the following simple example of a macro with one argument:

$macro reciprocal(y) 1/y

Here the name of the macro is reciprocal, y is the argument and the macro body is 1/y. This macro
may be called in GAMS statements as follows:

$macro reciprocal(y) 1/y

scalar z, x1 /2/, x2 /3/;

z = reciprocal(x1) + reciprocal(x2);

As GAMS recognizes reciprocal(x1) and reciprocal(x2) as macros, the assignment statement will
expand to:

z = 1/x1 + 1/x2;

Note that the macro use cannot be spread over multiple lines. Single line use with more complex arguments
as in

z = reciprocal(x1+x2);

is recognized and will expanded to:

z = 1/x1+x2;

http://www.mpsge.org/inclib/gams-f.htm

1232 User's Guide

Note that z will be equal to 3.5 in this example as division takes precedence over addition. But breaking
the argument of the macro over multiple lines as follows will trigger a macro expansion error:

z = reciprocal(x1

+x2);

The next example illustrates macros with multiple arguments:

$macro ratio(x,y) x/y

scalar z, x1 /2/, x2 /3/;

z = ratio(x1,x2);

The assignment above will expand to:

z= x1/x2;

Note that the macro definition may extend over several lines with the symbol '\' acting as a continuation
string. Consider the following example:

$macro myxor(a,b) (a or b) \

and (not a or not b)

scalar z;

z = myxor(1,0);

display z;

The z assignment expands to

z = (x1 or x2) and (not x1 or not x2);

Note that although the macro has been defined over two lines, the expansion happens by combining the
lines after stripping leading white spaces of the second line as demonstrated in the next example (because
and has a higher precedence than or we can omit the parenthesis):

$macro myxor(a,b) not a and b \

or a and not b

scalar z;

z = myxor(1,0);

display z;

The z assignment expands to this:

z = not 1 and 0 or 1 and not 0;

The &, explained in more detail in the next section can be used to preserve (some of the) leading white
spaces (but not the line breaks) if that is desired:

$macro myxor(a,b) not a and b \

& or a and not b

4.41 Dollar Control Options 1233

4.41.5.2 Nested Macros

Macros may be nested. Consider the following example:

$macro product(a,b) a*b

$macro addup(i,x,z) sum(i,product(x(i),z))

set j /j1*j10/;

Parameter a1(j) / #j 1 /, z, x1 /5/;

z = addup(j,a1,x1);

Observe that the macro product is nested in the macro addup. The assignment will expand to:

z = sum(j,a1(j)*x1);

Note that nested macros may result in an expansion of infinite length. An example follows.

$macro a b,a

display a;

This will expand into:

display b,b,b,b,b,b,b,b,b,b,b,b,b,b,b,b,b,...

In such a case GAMS will eventually refuse to do more substitutions and will issue a compilation error:

732 Too many edits on one single line - possible recursion in macro calls

compilation will be terminated

4.41.5.3 Ampersands in Macro Definitions

The expansion of arguments may be more carefully controlled by the use of ampersands & in the macro
body. A single ampersand & is used as a concatenation or separation symbol to indicate tokens that are
to be replaced. Consider the following example:

$macro f(i) sum(j, x(i,j))

$macro equ(q) equation equ_&q; \

equ_&q.. q =e= 0;

set i /i/, j /j/;

variable x(i,j);

equ(f(i))

This will expand into:

equation equ_f(i);equ_f(i).. sum(j, x(i,j)) =e= 0;

Note that without the ampersand notation, GAMS would have recognized only the third occurrence of q
and hence the expansion would have been:

1234 User's Guide

equation equ_q;equ_q.. sum(j, x(i,j)) =e= 0;

Two ampersands && immediately preceding a token will drop the most outer matching single or double
quotes of the replacement argument. This makes it possible to include expressions with spaces, commas
and unbalanced parentheses. The latter one is something users should really avoid doing. An example
follows.

$macro d(q) display &&q;

$macro ss(q) &&q)

set i /i/, k /k/;

parameter a1(i) / i 1/, z;

d(’"here it is" , i,k’)

d(’"(zz"’)

z=ss(’sum(i,a1(i)’);

z=ss(’prod(i,a1(i)’);

Note that the expressions d contain quotes, spaces and commas and the expression ss has unbalanced
parentheses within the quoted parts. In turn these expand to become:

display "here it is" , i,k;

display "(zz";

z=sum(i,a1(i));

z=prod(i,a1(i));

4.41.5.4 Additional Macro Features

Deeply nested macros may require aliased sets in indexed operations like sum and prod. A minor syntax
extension allows the implicit use of aliases. The suffix .local on a controlling set will use an implicit
alias within the scope of the indexed operation. Consider the following example:

$macro ratio(a,b) a/b

$macro total(q) sum(i,q(i))

set i /i1*i15/;

parameter a(i) / #i 1 /, b(i) / #i 2 /, r(i), asum;

asum = total(a);

r(i) = ratio(total(a), b(i));

The assignment statement will expand to:

asum = sum(i,a(i));

r(i) = sum(i,a(i))/b(i);

The second line will not compile because the i in the sum is already controlled from the i on the left.
The intention was the total macro is to add up the elements of a parameter indexed over i. As in the
r(i) assignment the macro might be used in a statement where i is already controlled hence when doing
the sum in the macro we want to use an alias of i. If we change the macro definition to

$macro total(q) sum(i.local,q(i))

4.41 Dollar Control Options 1235

The code works as expected because the i in the sum refers to the i.local and not the outside i.

Note that the the modifier .local is not limited to macros and may be used in any context. For further
details and more examples, see the detailed description of the dollar command option $on/offLocal.

Another feature of macros is the implicit use of the suffix .L in report writing and other data manipulation
statements. This allows using the same algebra in model definitions and assignment statements. The
following code illustrates this feature:

$macro sumIt(i,term) sum(i,term)

cost .. z =e= sumIt((i,j), (c(i,j)*x(i,j))) ;

supply(i) .. sumIt(j, x(i,j)) =l= a(i) ;

demand(j) .. sumIt(i, x(i,j)) =g= b(j) ;

Model transport /all/ ;

solve transport using lp minimizing z ;

Parameter tsupply(i) total demand for report

tdemand(j) total demand for report;

$onDotL

tsupply(i)=sumIt(j, x(i,j));

tdemand(j)=sumIt(i, x(i,j));

The option $onDotL enables the implicit suffix .L for variables. This feature was introduced for macros
with variables to be used in equation definitions as well as assignment statements. The matching option
$offDotL will disable this feature. Similarly, $offDotScale will access the .scale suffix of a variable or
equation in an assignment statement.

Three more switches are relevant to macros. The option $show will list any GAMS macros defined. The
option $on/$offMacro will enable or disable the expansion of macros; the default is $onMacro. Finally,
the option $on/offExpand will change the processing of macros appearing in the arguments of a macro
call. The default operation is not to expand macros in the arguments. The switch $onExpand enables the
recognition and expansion of macros in the macro argument list. The option $offExpand will restore the
default behavior.

Note that macro definitions are preserved in a save/restart file and are available again for a continued
compilation.

Summarizing, macros shares the name space of GAMS symbols, like sets, parameters, variables, etc.
Macros are recognized and expanded anywhere a proper GAMS identifier may be used. This may be
suppressed with the option $on/offMacro. The body of macros is only used during expansion. Hence,
macro definitions are not order dependent. Variables in macro bodies will have an implicit suffix .L

when they are used in assignment statements. This GAMS feature needs to be activated with the option
$onDotL.

4.41.6 Compressing and Decompressing Files

GAMS provides two dollar control options for compressing and decompressing GAMS input files:

Dollar Control Option Description

$compress <source> <target> The file source is compressed into the packed file target.

$decompress <source> <target> The compressed file source is decompressed into the unpacked
file target.

1236 User's Guide

Attention

Spaces are interpreted as separators between the source and target file names, hence quotes (single
or double) have to be used if the file names contain spaces.

Note that GAMS will recognize whether a file is compressed and will processes it accordingly.

Note

Like any other GAMS input files, all compressed files are platform-independent.

4.41.6.1 Compressing and Decompressing Files: A Simple Example

We use the well-known transportation model [TRNSPORT] to illustrate. First we copy the model from
the GAMS Model Library and then we create a compressed version of the original:

> gamslib trnsport

> echo $compress trnsport.gms t1.gms > t2.gms

> gams t2

Alternatively, the following code snippet may be used from within a GAMS file:

$call ’gamslib trnsport’

$compress trnsport.gms t1.gms

$include t1.gms

Note that the compressed input file t1.gms can be treated like any other GAMS input file. If it is
executed, the listing file will be identical to the listing file of the original input file trnsport.gms, since a
decompressed input is reported in the echo print. As usual, the parts of the model that are marked with
the dollar control option $on/offListing will not appear in the echo print.

The compressed file t1.gms can be decompressed as follows:

> echo $decompress t1.gms. t3.gms > t4.gms

> gams t4

Alternatively, from within a GAMS file:

$decompress t1.gms t3.gms

Observe that the decompressed file t3.gms is identical to the original file trnsport.gms. This can easily
be tested with the following command:

> diff trnsport.gms t3.gms

4.41 Dollar Control Options 1237

4.41.6.2 Compressing and Decompressing Files: The Model CEFILES

The following more elaborate example is self-explanatory. It is adapted from model [CEFILES] and can
easily be modified to test the use of compressed files.

* --- get model

$call gamslib -q trnsport

* --- compress and run model

$compress trnsport.gms t1.gms

$decompress t1.gms t1.org

$call diff trnsport.gms t1.org > %system.nullFile%

$if errorLevel 1 $abort files trnsport and t1 are different

* --- check to see if we get the same result

$call gams trnsport gdx=trnsport lo=%gams.lo%

$if errorLevel 1 $abort model trnsport failed

$call gams t1 gdx=t1 lo=%gams.lo%

$if errorLevel 1 $abort model t1 failed

$call gdxdiff trnsport t1 %system.reDirLog%

$if errorLevel 1 $abort results for trnsport and t1 are not equal

* --- also works with include files

$echo $include t1.gms > t2.gms

$call gams t2 gdx=t2 lo=%gams.lo%

$if errorLevel 1 $abort model t2 failed

$call gdxdiff trnsport t2 %system.reDirLog%

$if errorLevel 1 $abort results for trnsport and t2 are not equal

$terminate

4.41.7 Encrypting Files

When models are distributed to users other than the original developers, issues of privacy, security, data
integrity and ownership arise. To address these concerns, secure work files may be used and GAMS input
files may be encrypted. Note, that the encryption follows the work file security model and requires special
licensing.

Note

Like any other GAMS input files, all compressed and encrypted files are platform-independent.

Encryption is only available if a system is licensed for secure work files. There are two way to encrypt a
file: Encryption for a particular user group that is identified by a target license file or for a general wide
audience. In the prior case the key for encryption and decryption is extracted from the target license
(specified by command line parameter pLicense) while for the latter the key for encryption and decryption
is passed to GAMS via the command line parameters encryptKey and decryptKey. Note that once a file
has been encrypted it cannot be decrypted any more. GAMS provides the following dollar control option
to encrypt an input file:

$encrypt <source> <target>

Here the name of the input file to be encrypted is source and the name of the resulting encrypted file is
target.

1238 User's Guide

4.41.7.1 Encrypting Files: A Simple Example

We use again the transportation model [TRNSPORT] to illustrate. First we copy the model from the
GAMS Model Library and then we create an encrypted version of the original via a target license:

> gamslib -q trnsport

> echo $encrypt trnsport.gms t1.gms > t2.gms

> gams t2 pLicense=target lo=%gams.logOption%

Note that the first two lines are similar to the directives that we have used to compress the model above.
In the third line, the command line parameter pLicense specifies the target or privacy license to be used
as a user key for encrypting. Thus the new encrypted file t1.gms is locked to the license key target and
it can only be executed with the license file target:

> gams t1 license=target dumpOpt=11

Note that the command line parameter license is used to override the default GAMS license file
gamslice.txt that can be located in various system wide and user locations. Note further that the
command line parameter dumpOpt is usually used for debugging and maintenance. The value 11 causes a
clean copy of the input to be written to the file t1.dmp, where all include files and macros are expanded.
Observe that if some lines have been marked with the dollar control options $on/offListing in the original
file, then these lines will be suppressed in the file t1.dmp.

An alternative approach to encrypt GAMS source file without a target license is done by the pair of
command line parameters encryptKey and decryptKey:

> gamslib -q trnsport

> echo $encrypt trnsport.gms t1.gms > t2.gms

> gams t2 encryptKey=ThisIsAPasswordSomeoneNeedsToRunTheModel lo=%gams.logOption%

In the third line, the command line parameter encryptKey specifies the encryption key. Thus the new
encrypted file t1.gms is locked and requires this key to successfully decrypt via command line parameter
decryptKey:

> gams t1 decryptKey=ThisIsAPasswordSomeoneNeedsToRunTheModel

Anyother key will result in a failure with the message Integrity check failed.

Note

Once a file has been encrypted, it cannot be decrypted any more. There is no inverse mechanism to
recover the original file from the encrypted file. An attempt to decompress it using $decompress
will fail.

Observe that decrypting is done on the fly into memory when the GAMS system files are read. GAMS
will recognize if a file is just plain text or compressed and/or encrypted and will validate and process the
files accordingly.

4.41 Dollar Control Options 1239

4.41.7.2 Encrypting Files: The Model ENCRYPT

The following more elaborate example is self-explanatory; it is model [ENCRYPT] from the GAMS
Model Library.

$title Input File Encryption Demo (ENCRYPT,SEQ=318)

$onText

Input files can be encrypted with an encryption key. Either the

privacy license file mechanism or the command line parameter pair

encryptKey/decryptKey can be for managing the password. Similar to

compression, we offer an $encrypt utility to lock any file to a

specific key. Once a file has been encrypted it can only be read

by a gams program that has the matching license file or the matching

decryption key. There is no inverse operation possible: you cannot recover

the original GAMS file from the encrypted version.

To create an encrypted file, we need a license file which has the

security option enabled.

Keywords: GAMS language features, input file encryption

$offText

$if not set MYPLICENSE $set MYPLICENSE "%gams.sysdir%plicense.txt"

$ifthen not exist "%MYPLICENSE%"

$ log *** Target license file "%MYPLICENSE%" does not exist.

$ log *** Specify via --MYPLICENSE=...

$ log *** Encryption only via en/decryptKey

$ drop MYPLICENSE

$endif

* --- get model

$onDollar

$call gamslib -q trnsport

$ifthen.MYPLICENSE set MYPLICENSE

* --- encrypt and try to decrypt

$call rm -f t1.gms

$echo $encrypt trnsport.gms t1.gms > s1.gms

$call gams s1 plicense="%MYPLICENSE%" lo=%gams.lo%

$ifE errorLevel<>0 $abort encryption failed

$eolCom //

$if not errorFree $abort pending errors

$decompress t1.gms t1.org // this has to fail

$if errorFree $abort decompress did not fail

$clearError

*-- execute original and encrypted model

$call gams trnsport gdx=trnsport lo=%gams.lo%

$ifE errorLevel<>0 $abort model trnsport failed

$call gams t1 license="%MYPLICENSE%" gdx=t1 lo=%gams.lo%

$ifE errorLevel<>0 $abort model t1 failed

$call gdxdiff trnsport t1 %system.reDirLog%

$ifE errorLevel<>0 $abort results for trnsport and t1 are not equal

* --- use the encrypted file as an include file

1240 User's Guide

$onEcho > t2.gms

$offListing

* this is hidden

option limRow = 0, limCol = 0, solPrint = off;

$include t1.gms

$onListing

* this will show

$offEcho

$call gams t2 license="%MYPLICENSE%" lo=%gams.lo%

$ifE errorLevel<>0 $abort model t2 failed

* --- protect against viewing

* now we will show how to protect parts of an input

* file from viewing and extracting original source

* via the gams DUMPOPT parameter. We just need to

* encrypt again

* --- encrypt new model

$call rm -f t3.gms

$echo $encrypt t2.gms t3.gms > s1.gms

$call gams s1 plicense="%MYPLICENSE%" lo=%gams.lo%

$ifE errorLevel<>0 $abort encryption failed

$call gams t3 license="%MYPLICENSE%" gdx=t3 dumpopt=19 lo=%gams.lo%

$ifE errorLevel<>0 $abort model t3 failed

$call gdxdiff trnsport t3 %system.reDirLog%

$ifE errorLevel<>0 $abort results for trnsport and t3 are not equal

* --- check for hidden output

$call grep "this is hidden" t3.lst > %system.nullfile%

$if not errorLevel 1 $abort did not hide in listing

$call grep "this is hidden" t3.dmp > %system.nullfile%

$if not errorLevel 1 $abort did not hide in dump file

$endif.MYPLICENSE

* Same with encryptKey/decryptKey

* --- encrypt and try to decrypt

$call rm -f t1.gms

$echo $encrypt trnsport.gms t1.gms > s1.gms

$call gams s1 encryptKey=ThisIsMyPassword lo=%gams.lo%

$ifE errorLevel<>0 $abort encryption failed

$eolCom //

$if not errorFree $abort pending errors

$decompress t1.gms t1.org // this has to fail

$if errorFree $abort decompress did not fail

$clearError

*-- execute original and encrypted model

$call gams trnsport gdx=trnsport lo=%gams.lo%

$ifE errorLevel<>0 $abort model trnsport failed

$call gams t1 decryptKey=ThisIsMyPassword gdx=t1 lo=%gams.lo%

$ifE errorLevel<>0 $abort model t1 failed

$call gdxdiff trnsport t1 %system.reDirLog%

$ifE errorLevel<>0 $abort results for trnsport and t1 are not equal

* --- use the encrypted file as an include file

$onEcho > t2.gms

$offListing

4.42 The Put Writing Facility 1241

* this is hidden

option limRow = 0, limCol = 0, solPrint = off;

$include t1.gms

$onListing

* this will show

$offEcho

$call gams t2 decryptKey=ThisIsMyPassword lo=%gams.lo%

$ifE errorLevel<>0 $abort model t2 failed

* --- protect against viewing

* now we will show how to protect parts of an input

* file from viewing and extracting original source

* via the gams DUMPOPT parameter. We just need to

* encrypt again

* --- encrypt new model

$call rm -f t3.gms

$echo $encrypt t2.gms t3.gms > s1.gms

$call gams s1 encryptKey=ThisIsMyPassword lo=%gams.lo%

$ifE errorLevel<>0 $abort encryption failed

$call gams t3 decryptKey=ThisIsMyPassword gdx=t3 dumpopt=19 lo=%gams.lo%

$ifE errorLevel<>0 $abort model t3 failed

$call gdxdiff trnsport t3 %system.reDirLog%

$ifE errorLevel<>0 $abort results for trnsport and t3 are not equal

* --- check for hidden output

$call grep "this is hidden" t3.lst > %system.nullfile%

$if not errorLevel 1 $abort did not hide in listing

$call grep "this is hidden" t3.dmp > %system.nullfile%

$if not errorLevel 1 $abort did not hide in dump file

4.42 The Put Writing Facility

4.42.1 Introduction

While the GDX facility is widely used to exchange bulk GAMS data with other programs the put writing
facility allows to generate sophisticated reports in GAMS. The result are external ASCII files that are
structured using information that is stored by the GAMS system. The put writing facility offers users
numerous ways to control three format layers: the format of the external file that is written to, the format
of the pages of the external files and the format of output items. Hence the structure of the put writing
facility is more complex and requires more programming than the display statement, but there is much
more flexibility and control over the output. The put writing facility generates external files automatically
when the GAMS program is executed. The files are written sequentially, a single page at a time. The
current page is stored in a buffer, which is automatically written to an external file when the page is full.
Thus, the put writing facility has only control over the current page and does not have the ability to go
back to alter former pages. However, while a particular page is current, information placed on it may be
overwritten or removed at will.

This chapter is organized as follows. We will first introduce the file statement and the put statement,
which are at the core of the put writing facility. Then we will present a simple example
that will serve as illustration. We will also introduce some widely used features as we com-
ment on the example. The remainder on the chapter will cover in detail the external report
files, also called put files, the structure of put file pages and ways to control their format, types
of output items and their formatting controls, and the put utility statement, a variant of the
put statement that allows to special communication of formatted elements with the outside

1242 User's Guide

world. In addition, we will briefly discuss exception handling in the context of put statements
and GAMS errors that are specific to put statements. We will conclude the chapter with an
elaborate example. Note that put file attributes play a crucial role, since they are used for most
formatting controls. A complete list of all file attributes is given in section Put File Attributes.

4.42.2 The Syntax

The basic structure of the put writing facility in its simplest form is as follows:

File file_name {,file_name};

put file_name;

put item {,item};

Note that the first line is a file statement. File statements define one or more external files that will be
written to and specify internal names for them. These internal names wil be used in the GAMS model
to reference the external files when they are written to. The second line is a put statement that assigns
the file with the name file name as the current file. The third line is a put statement that writes one or
more items to the current file. Items are any type of output like explanatory text, set labels, parameters,
and variable, equation values and model attributes.

Next, we will present more details on the file statement and the put statement in the following two
subsections and then we will turn to a first example that will illustrate how the the put writing facility
works.

4.42.2.1 The File Statement: Defining Put Files

External files that are written to with the put writing facility are called put files. They are defined with a
file statement. The syntax for a file statement is as follows:

File[s] file_name ["text"] [external_file_name]

{,file_name ["text"] [external_file_name] } ;

The keyword file or files indicates that this is a file statement. It is follwed by the internal name
for the put file, file name. The internal file name is a handle for the put file, it is used in the GAMS
model to refer to the put file. The optional explanatory text may be used to describe the put file for
future reference and to ease readability. The final part of the file statement is the actual name of the put
file. Naming the external file is optional. In case it is omitted, by default, GAMS will create a name by
appending the extension .put to the internal name. Consider the following example:

File results;

Note that in this statement no external file name is specified. Thus GAMS will create the external file
results.put in the current working directory. Observe that by default, all put files are stored in the
current working directory. There are several ways to specify alternative directories for put files. For details
see section Choosing Where Put Files are Saved below.

4.42 The Put Writing Facility 1243

Note

Multiple put files may defined with one file statement.

Consider the following example:

File class1

class2 "this defines a specific external file" /report.txt/

log "this defines access to the GAMS log file" /’’/;

Observe that the internal name of the first file is class1. As no external name is specified, GAMS will
assign the absolute name class1.put to this file. The second file will be referenced in the model with the
name class2 and it corresponds to the external file report.txt. The third file is special: the internal
name '' is reserved for writing output to the GAMS log. Note that writing to the GAMS log can be
useful to monitor how the solution process of the model is progressing.

For further details on put files, see section Put Files below.

4.42.2.2 The Put Statement

The put statement is at the core of the put writing facility. It has two different functions: it specifies
which of the previously defined put files is the current file and it writes output to that file. The syntax for
the first function is simple:

put file_name;

The keyword put indicates that this is a put statement, file name is the internal name of a put file that
was previously defined with a file statement. This put statement has the effect that the specified file is
now ready to be written to. Note that this put statement is necessary even if only one put file has been
previously defined. For an example of how it is used when output is written to several different files, see
the next section.

The basic syntax for a put statement that is used to write output to a file is as follows:

put item {,item};

The statement begins with the keyword put followed by one or more items. Items may be a text (like
a quoted text, an explanatory text, the name of a set element), a numerical value (like the value of a
parameter, the value of an attribute, the solution status of the model) or a set value (YES or NO indicating
whether a label is an element of a specific set). These items are discussed in detail in section Output Items
below. In addition, GAMS facilitates writing a text block to a put file and including the content of an
external file in a put file. For details see sections Text Items: Text Blocks and The Put Utility Statement
respectively.

Note that it is also allowed to use only one put statement to assign one file as the current file and write to
it. The syntax follows:

put file_name item {,item};

In addition, it is permitted to use just one put statement to write to multiple files sequentially. Thus the
most general form of a put statement is as follows:

put file_name item {,item} {,file_name item {,item}};

Note that only one file is current at a time. When a file is current, the output items following the name of
this file will be written to the file. After this has been completed, the current file is reassigned to the next
internal file name in the statement. The last internal file name used in a put statement continues to be
the current file until a subsequent put statement uses an internal file name.

Observe that the keyword put has several variants: putclose, puttl, puthd, putpage and put utility.

1244 User's Guide

4.42.3 A First Example

We will use a small example to introduce the basic features of the put writing facility. The example is
based on the well-known transportation model [TRNSPORT]. The following code segment could be
placed at the end of the transportation model to create a report:

File factors /factors.dat/,

results /results.dat/;

put factors;

put ’Transportation Model Factors’ / /

’Freight cost ’, f,

@1#6, ’Plant capacity’/;

loop(i, put @3, i.tl, @15, a(i)/);

put /’Market demand’/;

loop(j, put @3, j.tl, @15, b(j)/);

put results;

put ’Transportation Model Results’ / / ;

loop((i,j), put i.tl, @12, j.tl, @24, x.l(i,j):8:4 /);

In the first line, the file statement defines the internal file names factors and results and connects
them to the external files factors.dat and results.dat respectively. These internal file names are used
inside the model to reference files which are external to the model.

In the second line, the put statement assigns the file factors as the current file, that is the file which is
currently available to be written to.

In the third line, the put statement starts the actual writing to the put file. The first item that is written
is the quoted text string 'Transportation Model Factors'. The item is followed by two slashes. A
slash instructs the cursor to move to the first column of the next line. Two slashes have the effect that
the cursor is moved to the first column of the second line, thus introducing a blank line.

Attention

Two slashes // are a popular end of line comment character sequence. So an intended blank line can
result in a comment in the GAMS code. A safe way to use slashes in put statement is to separate
the slashes by a space.

The next item is the string 'Freight cost ' followed by the value of the scalar f. Note that these output
items are separated by commas. Blanks and commas serve as delimiters for separating different output
items. These delimiters leave the cursor at the next column position in the file following the last item
written. In most cases, a blank and a comma may be used interchangeably. However, the comma is the
stronger form and will eliminate any ambiguities.

In the fifth line, the code above starts with the instruction @1#6. In the context of put statements, the
symbols @ and # serve to reposition the cursor to a specific column and row respectively. Thus in our case,
the cursor is repositioned to column 1 of row 6 of the put file. Then another text string is written and a
new line is started. The semicolon terminates the put statement. More details on cursor positioning are
given in section Controlling the Cursor On a Page.

In line 6, the next put statement is embedded within a loop statement. Note that the set i is the looping
set. The put statement writes at column position 3 the set label name and at column position 15 the value
of the parameter a(i) for each element of the set i. Observe that set element labels are referenced with
the name of the set and the suffix .te. For more information on identifier suffixes, see section Text Items
below. Note that the put statement has to be placed within a looping structure, since only one element of
the index set may be written with a put statement.

4.42 The Put Writing Facility 1245

In line 7, the first symbol after the keyword put is a slash, that has the effect that a blank line is inserted
before the text string 'Market demand' is written.

In line 8, we have again a put statement within a loop structure: the values of the parameter b are written
in a similar way to those of parameter a in line 6.

After execution, the put file factors.dat will look as follows:

Transportation Model Factors

Freight cost 90.00

Plant capacity

Seattle 350.00

San-Diego 600.00

Market demand

New-York 325.00

Chicago 300.00

Topeka 275.00

Note that this output has been formatted using the default file format values. GAMS offers several ways to
customize the format, see sections Global Item Formatting Controls and Local Item Formatting Controls
below for further information.

In the last three lines of the code above, the file results.dat is made current and the level values
associated with the variable x along with their corresponding set element index labels are written line by
line. Note that the format of the output results of the variable x is customized by specifying a field width
of 8 spaces with 4 of these spaces reserved for decimal places. This is an example of local formatting. The
put file results.dat will contain the following lines:

Transportation Model Results

Seattle New-York 50.0000

Seattle Chicago 300.0000

Seattle Topeka 0.0000

San-Diego New-York 275.0000

San-Diego Chicago 0.0000

San-Diego Topeka 275.0000

This small example has demonstrated the main features of the put writing facility. However, its surface
has just barely been scratched. In the remainder of this chapter we will describe in detail the many
features of the put writing facility. Observe that in section Creating a Report for the Model MEXSS at
the end of this chapter we will present a more elaborate report.

4.42.4 Put Files

As mentuioned earlier, external files that are written to with the put writing facility are called put files.
They are defined with a file statement and are made current with a put statement. Once they are current,
they may be written to. By default, put files are saved in the current working directory. In this section
we will cover more details on put files. We will discuss ways to specify other directories for put files,
introduce the putclose statement, a variant of the put statement that closes the current file, and we will
show how to append to an existing external file instead of replacing (overwriting) it. In addition, we will
introduce the notion of put file attributes including a list of all attributes.

1246 User's Guide

4.42.4.1 Choosing Where Put Files are Saved

Recall that by default, put files are saved in the current working directory. GAMS offers several ways to
specify other directories for put files. The easiest way to specify another directory is by including the
absolute or relative path in the file statement. Consider the following example:

File report / C:\Documents\GAMS\Output\report.dat /;

Note that the put file report.dat with the internal name report will be stored in the directory specified
in the file statement instead of the current working directory.

An alternative directory for all put files in a model may be specified with the command line parameter
PutDir. Assume we wish to write some ouput from running the well-known transportation model
[TRNSPORT] to the file results defined above. Consider the following GAMS call:

> gams trnsport PutDir=c:\output

Note that the file results.put will be stored in the directory specified in the GAMS call. Observe
that storing put files in the directory specified with PutDir is applies to all file that are not spec-
ified via an absolute file name. For more information on command line parameters, see chapter
The GAMS Call and Command Line Parameters. scratchdir as putdir option (.pdir) lets GAMS write
put files into the scratch directory.

The content of a put file will be sent to the GAMS log file if the put file is specified in the following way:

File name / ’’ /;

For example, the following code snippet may be added to the transportation model [TRNSPORT]:

File name / ’’ /;

put name ;

put ’instructions that will go to the GAMS log’ /;

put ’more instructions that will go to the GAMS log’ /

As a result, the respective GAMS log will contain the following lines:

...

instructions that will go to the log file

more instructions that will go to the log file

*** Status: Normal completion

--- Job trnsport.gms Stop 01/25/17 15:46:09 elapsed 0:00:00.320

4.42 The Put Writing Facility 1247

4.42.4.2 The Putclose Statement: Closing a Put File

Recall that the file statement and the put statement are at the core of the put writing facility. The
putclose statement is a variant of the put statement, it is used to close a put file. The syntax is as follows:

putclose [file_name] {item} {file_name item {item}};

If the file name is missing, putclose will close the current file. Often the putclose statement is used in
this simple form. Consider the following example:

File report;

put report;

put "This is a report."

putclose;

Note that the last line has the effect that the file report.put is closed. The file may be used again
later. As usual, it has to be assigned as the current file and then it may be written to. By default,
an existing file is overwritten (replaced). Alternatively, it may be appended to. For details see section
Writing to an Existing Put File below. The briefest version of the above code is

File report; putclose report "This is a report."

Closing a put file is useful for example when writing a solver option file from within the GAMS model.
Consider the following example, where we will create and close an option file for the solver MINOS.

File opt ’Minos option file’ / minos.opt /;

put opt ’Iteration limit 500’/

’Feasibility tolerance 1.0E-7’/ ;

putclose opt;

Note that the file minos.opt is closed with a simple putclose statement. This will make the file available
to be used by the solver. Observe that the code snippet above has to be placed before the respective solve
statement.

Now, the last three lines in the example above may be reduced to two lines in the following way:

putclose opt ’Iteration limit 500’/

’Feasibility tolerance 1.0E-7’/ ;

In this formulation, the putclose statement makes the file minos.opt current, writes to it and then closes
the file after the last item has been written. Even though this is shorter, many users prefer the first
formulation, since it is clearer.

Similarly to the put statement, the putclose statement may also be used to write to several files subsequently.
The only difference to the put statement is, that the last current file will be closed after is has been
written to.

Observe that GAMS automatically closes the put files of a model when it exits, even without a putclose
statement.

1248 User's Guide

4.42.4.3 Writing to an Existing Put File

When the put writing facility is used to write to a file that is not empty, by default, the existing content
is overwritten (replaced). However, GAMS provides the option to append to the file instead via the file
attribute append option (.ap). Consider the following example:

File append /append.dat/

put append;

put "This is the first line." /;

putclose;

append.ap = 1;

put append;

put "This is the second line.";

Note that the putclose statement in line 4 closes the file append.dat. The assignment in the next line
instructs the put writing facility to append to the file if the file is opened again and written to. Thus the
following output is generated:

This is the first line.

This is the second line

For information on file attributes in general, see section Put File Attributes below.

4.42.4.4 Put File Attributes

Put files have attributes that are mainly used to customize the format of put files, put file pages and
output items. Put file attributes are accessed in the

following way:

file_name.attribute

Here file name is the internal name of the put file and .attribute is the specific attribute that is to be
accessed. We can also access the specific attribute of the current file by file.attribute. This useful
in particular in batincludes that are used for multiple put files. Put file attributes may be used on the
left-hand side and right-hand side of assignments. Consider the following example:

factors.nw = 10;

scalar x; x = factors.nw;

In the first line, the attribute numeric field width (.nw) of the put file with the internal name factors

is assigned the value of 10. In the second line, the value of the attribute .nw is assigned to a scalar
parameter x. In addition, put file attributes may be used as output items. For an example, see section
Controlling the Cursor with File Attributes below. A complete list of put file attributes is given in
Table 1.

Table 1: Put File Attributes

4.42 The Put Writing Facility 1249

Put File Attribute Symbol Description Default Value Optional Values

Append option .ap Allows to append
to an existing file,
instead of replac-
ing (overwriting)
it. For more infor-
mation, see section
Writing to an Existing Put File.

0 0: Overwrite
1: Append

Bottom margin .bm
Number of blank
lines to be placed in
the bottom margin
of the page. The
bottom margin lines
are in adition to the
lines specified with
the file attribute
page size (.ps). Note
that this attribute
is functional only if
the value of the suffix
print control (.pc) is
zero.

0

Alphabetic case .case Specifies the case
in which alphabetic
characters are dis-
played in the put
file, regardless of the
input. Note that the
meaning of 1 and 2
differs from the one
for lcase.

0 0: Mixed case
1: Upper case
2: Lower case

Current column .cc This attribute may
be used to return
or set the current
cursor column in the
main window. For
more information, see
Current Cursor Column.

0 Value may be be-
tween 1 and the
page width.

Current row .cr This attribute may
be used to return
or set the current
cursor row in the
main window. For
more information, see
Current Cursor Row.

1 Value may be be-
tween 1 and the
page size minus any
header rows, title
rows and margins.

Number of put errors .errors See section
Put Errors for details
and an example.

0

Header current col-
umn

.hdcc
This attribute may
be used to return
or set the current
cursor column in the
header block. For
more information, see
Current Cursor Column.

0 Value may be be-
tween 1 and the
page width.

1250 User's Guide

Put File Attribute Symbol Description Default Value Optional Values

Header current row
.hdcr

This attribute may
be used to return
or set the current
cursor row in the
header block. For
more information, see
Current Cursor Row.

1 Value may be be-
tween 1 and the size
of the header.

Header last line .hdll
This attribute may
be used to return
the number of the
last line of the
page header or re-
set the last row
written in the page
header. For more
information, see
Last Line Control.

0

Alphabetic label case .lcase
Specifies the case
in which alphabetic
characters of a label
are displayed in the
put file, regardless of
the original casing.

0 0: Mixed case
1: Lower case
2: Upper case

Label justification
.lj

Alignment of set la-
bels.

2 1: Right, 2: Left, 3:
Center

Last line .ll
This attribute may
be used to return
the number of the
last line of the
main window or
reset the last row
written in the main
window. For more
information, see
Last Line Control.

0

Left margin .lm
Number of empty
columns to be placed
on the left of the
page.

0

Last page .lp
Returns the number
of pages that are al-
ready in the put file.
Note that setting this
attribute to zero does
not delete the pages
that have been writ-
ten to the file.

Label field width
.lw

Field width of
set label output.
For more infor-
mation, see section
Global Item Formatting Controls.

12 Values may be 0 or
larger.

4.42 The Put Writing Facility 1251

Put File Attribute Symbol Description Default Value Optional Values

Number of decimals .nd
Sets the number of
decimals that are
displayed for numeric
items. A value of
zero entails that
fixed-format output
will show the number
rounded to the near-
est integer. For an
example, see section
Global Item Formatting Controls.

2 Values may be be-
tween 0 and 20.

Numeric justification
.nj

Alignment of numeric
output.

1 1: Right, 2: Left, 3:
Center

Numeric round for-
mat

.nr Selects the format-
ting used for numeric
output. For example,
one can choose to
use scientific notation
(i.e. E-format) for
all numbers: this is
especially useful for
numbers so small
that they display
as only zeros in
fixed format with
the specified suffix
number of decimals
(.nd). For more
information and an
example, see section
Global Item Formatting Controls.

1 0: Item is displayed
in F or E format to fit
given width and deci-
mals.
1: Item is rounded
to fit given width and
decimals.
2: Item is displayed in
E format to fit given
width and decimals.
3: Item is rounded to
fit given width.
4: Item is displayed
in F or E format to
fit given width.

Numeric field width .nw Field width of
numeric output.
For more infor-
mation, see section
Global Item Formatting Controls.

12 Values may be 0 or
larger.

Numeric zero toler-
ance

.nz Sets the tolerance
level for which a num-
ber will be rounded to
zero for display pur-
poses. Note that in
case this attribute is
set to zero, rounding
will be determined by
the field width.

1.0e-10

PutDir becomes
scratch directory

.pdir
Setting this to
nonzero will result
in resetting the
PutDir to the scratch
directory. Since the
scratch directory
is unknown while
parameters are pro-
vided, this allows
to use the scratch
directory as PutDir.

0

1252 User's Guide

Put File Attribute Symbol Description Default Value Optional Values

Print control .pc Specifies the format
of the put file. The
options 4, 5, 6 and 8
create delimited files,
which are especially
useful when prepar-
ing output for the
direct importation
into other computer
programs such as
spreadsheets. For an
example, see section
Creating a Report for the Model MEXSS.

2 0: Standard paging
based on the current
page size. Partial
pages are padded
with blank lines.
Note that the file
suffix bottom margin
(.bm) is only func-
tional when used
with this print con-
trol option.
1: FORTRAN page
format. This option
places the numeral
one in the first col-
umn of the first row
of each page in the
standard FORTRAN
convention.
2: Continuous page.
This option is similar
to .pc option zero,
with the exception
that partial pages
in the file are not
padded with blank
lines to fill out the
page.
3: ASCII page control
characters inserted.
4: Formatted output;
non-numeric output
is quoted and each
item is delimited with
a blank space.
5: Formatted output;
non-numeric output
is quoted and each
item is delimited with
commas.
6: Formatted output;
non-numeric output
is quoted and each
item is delimited with
tabs.
7: Fixed width, fills
up line with trailing
blanks.
8: Formatted output;
each item is delimited
with a blank space.

4.42 The Put Writing Facility 1253

Put File Attribute Symbol Description Default Value Optional Values

Page size .ps Number of rows
(lines) that may be
placed on a page
of the put file. It
may be reset by the
user at any place in
the program.Observe
that the specification
of this attribute is
only effective if the at-
tribute print control
(.pc) has a value
other than its default
value. Note that a
put error will result
if it is set to value
that is smaller than
the number of rows
which have already
been written to the
current page.

60 Any value between 1
and 130.

Page width .pw Number of columns
(characters) that may
be placed on a single
row of the page. It
may be reset by the
user at any place in
the program. Note
that a put error will
result if it is set to
value that is smaller
than the number of
columns which have
already been written
to the current page.
Observe that if a
value is specified that
is above the upper
limit, then the value
will be reset to the up-
per limit.

32767 Any value between 1
and 32767.

Set value justification
.sj

Alignment of set val-
ues.

1 1: Right, 2: Left, 3:
Center

Set value field width .sw Field width of set
values. For more in-
formation, see section
Global Item Formatting Controls.

12 Values may be be-
tween 0 and 20.

1254 User's Guide

Put File Attribute Symbol Description Default Value Optional Values

Text fill .tf
Controls what con-
tent will be displayed,
if there is no explana-
tory text for a set
element, but a text
item with suffix .te
was specified. Note
that options 4, 5 and
6 are useful if the out-
put is intended to be
included in a GAMS
model at a later time.

2 0: Blanks are dis-
played.
1: Blanks will be dis-
played if the speci-
fied element does not
exist, otherwise the
name of the element
will be displayed.
2: The name of the el-
ement is displayed.
3: The name of the
element is displayed
even if an explanatory
text exists.
4: Like option 3,
but displays output
in quotes with comma
separators.
5: Like option 4, but
with periods as sepa-
rators.
6: Like option 4, but
with blanks as separa-
tors.

Text justification
.tj

Alignment of quoted
text and explanatory
text.

2 1: Right, 2: Left, 3:
Center

Title current column
.tlcc

This attribute may
be used to return
or set the current
cursor column in
the title block. For
more information, see
Current Cursor Column.

0 Value may be be-
tween 1 and the
page width.

Title current row
.tlcr

This attribute may be
used to return or set
the current cursor row
in the title block. For
more information, see
Current Cursor Row.

1 Value may be be-
tween 1 and the size
of the header.

Title last line .tlll
This attribute may
be used to return the
number of the last
line of the page title
or reset the last
row written in the
page title. For more
information, see
Last Line Control.

0

4.42 The Put Writing Facility 1255

Put File Attribute Symbol Description Default Value Optional Values

Top margin .tm
Number of blank
lines to be placed at
the top margin of
the page. These lines
are in addition to
the number of lines
specified with the file
attribute page size
(.ps).

0

Text field width
.tw

Field width for
quoted text and
explanatory text.
Note that a value
of zero forces the
field width to match
the exact size of the
item being displayed.
For more infor-
mation, see section
Global Item Formatting Controls.

0 Value may be 0 or
larger.

Window size .ws Returns the num-
ber of rows that
may be written to
the main window
given the num-
ber of rows in the
title and header blocks
and the page size.
Note that this at-
tribute is computed
by GAMS and cannot
be changed by the
user.

4.42.5 Put File Pages

In this section we will discuss the structure of put file pages, in particular how to write titles and headers.
In addition, we will give details on how users may control many aspects of the format of a put file page.

4.42.5.1 Adding Titles and Headers

Titles and headers are widely used when there are sections of a page that remain relatively constant
throughout a document. There are three independent writing areas on each page of a put file: the title
block, the header block and the main window. The layout of a page is shown in the following diagram.

+-----------------+

| Title Block |

+-----------------+

| Header Block |

+-----------------+

| |

| Main Window |

| |

+-----------------+

1256 User's Guide

Note that the put statement writes to the main window. There are two variants of the put statement
that write to the title block and header block respectively: the puttl statement and the puthd statement.

Observe that every page must have an entry in the main window. If a page has no output in its main
window, the page will not written, regardless of whether there are output items in the title or header
blocks. To force a page that has an empty window out to file, we recommend to simply write something
innocuous to the window, like the following:

put ’’; // space

This will initiate the main window of the page and thus the page will be written.

Further, note that the size of any area of a page is based on the number of lines written to it and the total
number of lines has to be smaller than the specified page size. A new page is started automatically whenever
a page is full. For details on manual pagination, see section The Putpage Statement: Controlling Paging.
Each area of a page is maintained independently. For example, we may write to the title block first, then
to the header block and then again to the title block. However once we have written to the main window,
all subsequent entries to the title and header are written to the next page, not the current page.

The Puttl Statement: Writing to the Title Block

The puttl (or putTitle which can be used as a synonym) statement is a variant of the put statement
that writes to the title block of a page. The syntax is as follows:

puttl [file_name] item {item};

The keyword puttl indicates that this is a puttl statement. The internal name of the file, file name,
may be omitted if the desired file is already current. Like in the put statement, the content that is written
is one or more items, that may be a text string, a numerical value or a set value. For more information
on items, see section Output Items below. Consider the following example:

puttl factors ’GAMS Put Example’;

If this line is placed before the put statement that writes to the main window in the example above, then
GAMS Put Example will be written to the title block.

Observe that title blocks often contain the name of the model and the number of the put page. Once content
is placed in the title block, it will be repeated on every page unless it is modified or deleted. For details
on how to write output like the page number to a put file, see section System Suffixes as Output Items
below.

Note

If content has already been written to the main window of a page, the items in the puttl statement
will appear in the title block starting from the next page. Thus the title has to be written before any
entries in the main window if it is to appear on the current page.

Observe that if the title and header blocks contain too many lines given the page size, the page will
overflow resulting in a put error.

4.42 The Put Writing Facility 1257

The Puthd Statement: Writing to the Header Block

Like the puttl statement, the puthd (or putHeader which can be used as a synonym) statement is a
variant of the put statement. Puthd statements write to the header block of a page. The syntax is as
follows:

puthd [file_name] item {item};

The keyword puthd indicates that this is a puthd statement. The internal name of the file, file name,
may be omitted if the desired file is already current. Like in the put statement, the content that is written
is one or more items. See section Output Items below for more information on items.

Observe that title blocks often contain a disclaimer or an instruction that is meant to be repeated on
every page. Once content is placed in the header block, it will be repeated on every page unless it is
modified or deleted.

Note

If content has already been written to the main window of a page, the items in the puthd statement
will appear in the header block starting from the next page. Thus the header has to be written
before any entries in the main window if it is to appear on the current page.

Observe that if the title and header blocks contain too many lines given the page size, the page will
overflow resulting in a put error.

The Putclear Statement: Deleting Title and Header Blocks

The putclear (or putfmcl which can be used as a synonym) statement may be used to delete the title
and header blocks. The syntax is simple:

putclear;

If the keyword putclear is inserted after a title and/or header block has been written, but before the
main window has been written to, then the title and/or header blocks of the current page will be deleted.
If the main window has already been written to, the the title and/or header block of the next and all
subsequent pages will be deleted. Note that if the user wishes to delete either only the title or only the
header block, the put file attributes .tlll and .hdll respectively may be set to zero. For more information,
see Last Line Control.

4.42.5.2 The Putpage Statement: Controlling Paging

A new page is started automatically if the bottom of a page is reached. Alternatively, a new page may be
started early using a variant of the put statement: the putpage statement. The syntax is as follows:

putpage [file_name] {item};

The keyword putpage indicates that this is a putpage statement. In its simplest form, the putpage
statement consists of just the keyword. If only the keyword is used, the current page will be terminated.
The optional file name makes the put file with the internal name file name current. If output items
follow, they will be written to the current page and a new page will be made available for the next put
statement.

Consider the following example:

File example / example.txt /;

putpage example "This text is placed in the main window and the page ends here.";

put "Here starts a new page in the same putfile."

Observe that three file attributes are helpful for manual paging: last page (.lp), window size (.ws) and
last line (.ll).

1258 User's Guide

4.42.5.3 Controlling the Format of a Put File Page

While GAMS established gracious defaults, there are numerous ways to customize the format of a put file
page. In this section we will present the put file attributes that facilitate the control of various aspects of
page formatting and ways to control the position of the cursor.

Controlling Page Size, Page Width and Margins

By default, 60 rows (lines) may be written on a put file page. At any point in the program the file
attribute page size (.ps) may be used to reset this value. Note that the upper limit is 130. Note further,
that a put error will result if the attribute is set to value that is smaller than the number of rows which
have already been written to the current page. Observe that the specification of .ps is only effective if
the attribute print control (.pc) has a value other than its default value.

By default, 255 characters (colums) may be written to each line of a put file page. Like the page size,
the page width may be reset at any point. GAMS provides the file attribute page width (.pw) to do this.
Note that the upper limit is 32767. Note further, that a put error will result if the attribute is set to value
that is smaller than the number of columns which have already been written to the current page.

By default, put file pages do not have top, bottom and left margins. However, it is easy to specify blank
lines for the margins with the file attributes top margin (.tm) and bottom margin (.bm). Note that the
lines reserved for the margins are in addition to the value specified for the page size (.ps). Observe
that the file attribute .bm is only functional if the value of the file attribute print control (.pc) is set to
zero. In addition, the number of empty columns for left margins may be specified with the file attribute
left margin (.lm)

Controlling the Print Format and the Use of Capital and Lower Case Letters

By default, GAMS prints continuous pages. However, the file attribute print control (.pc) offers several
alternative options. For a full list, see the respective entry in Table Put File Attributes above. Note in
particular that the options 4, 5, 6 and 8 create delimited files, which are useful for importing output to other
applications like spreadsheets. For an example, see section Creating a Report for the Model MEXSS.

By default, alphabetic characters are displayed in the case they were inputted. Note that the value of 1
for the file attribute alphabetic case (.case) will display all output in capital letters, regardless of the
input, and the value of 2 will result in only lower case letters being displayed.

Assume that we wish a put file report.txt to have pages with 72 characters to a row and 58 lines, ASCII
page control characters to be inserted at the end of every page, an additional top margin of 6 lines and all
output displayed in upper case. The following assignments will implement these specifications:

File report /report.txt/;

report.pw = 72; report.ps = 58; report.pc = 3;

report.tm = 6; report.case = 1;

Controlling the Cursor On a Page

There are three ways to control the position of the cursor: with cursor control characters, with the
system attribute system.tab and with file attributes. In this section we will give details on cursor control
characters, while inserting tabs and file attributes that are relevant for cursor control will be discussed in
the next two sections.

By default, the cursor is moved to the space immediately following the last character written. GAMS
provides the control characters listed in Table 2 to specify another position for the cursor.

4.42 The Put Writing Facility 1259

Symbol Description

#n
Move cursor position to row n of current page.

@n
Move cursor position to column n of current line.

/
Move cursor to first column of next line.

Table 2: Cursor Control Characters

Note that the numeric value n that follows the characters # and @ may be any expression or symbol
with a numeric value. An example is given below. Note further, that the character @ is commonly
used to align columns if the column headings have different widths. For an example, see section
Creating a Report for the Model MEXSS. Observe that the character @ may be used to overwrite output
items that were written earlier. Consider the following example:

File out /out.dat/;

put out;

put ’Good’ @3 ’morning everybody!’;

This code snippet will generate the following output:

Gomorning everybody!

Observe that cursor control characters are also used and discussed in the example at the beginning of this
chapter.

Controlling the Cursor with a System Attribute: Inserting Tabs

The system attribute system.tab may be used to insert tabs. Consider the following example:

File test / test.dat /;

put test;

put "1" system.tab "2" system.tab "3" ;

The put file will contain the following line, separating 1, 2, and 3 by tabs.

1 2 3

Controlling the Cursor with File Attributes

In addition to cursor control characters and tabs, the position of the cursor may be controlled using the
file attributes that will be discussed in this section. These file attributes refer to the current column, the
current row and the last line in the title block, the header block and the main window.

Current Cursor Column

As there are three independent writing areas on each put file page, there are three file attributes that
refer to the current column. They are listed in Table 3.

1260 User's Guide

Symbol Description

.cc Current cursor column in the main window.

.hdcc Current cursor column in the header block

.tlcc Current cursor column in the title block

Table 3: File Attributes for the Column Position of the Cursor

Note that the values for these attributes are numeric and they are updated only at the end of a
put statement. Consequently, their values will remain constant during a put statement, even if multiple
items or lines are displayed. Observe that the attributes may be used on the left-hand side and on the
right-hand side of an assignment statement to set the current column position and return it respectively.

The following example illustrates the updating of the cursor control suffixes and the use of cursor control
characters. The example is trivial but instructive:

Scalar lmarg ’left margin’ /6/;

File out; put out;

put @(lmarg+2) ’out.cc = ’, out.cc:0:0 ’ ’;

put @out.cc ’x’/ @out.cc ’y’/ @out.cc ’z ’;

put ’out.cc = ’ out.cc:0:0;

The resulting file out.put will contain the following lines:

out.cc = 1 x

y

z out.cc = 23

Note that the scalar lmarg is set to a specific value that will be used as an alignment tab. Symbols which
hold common alignment values such as margins or tabs are often useful for large structured documents.
The first put statement uses the cursor control character @ to relocate the cursor to column 8 where the
text item out.cc and the respective value for the file attribute .cc are displayed. Note that the numerical
value of the file attribute is formatted locally with the effect that only integers are displayed. We observe
that at the start of the first put statement the file attribute out.cc equals 1.

The second put statement illustrates the updating of the cursor control suffixes by writing the letters x, y
and z on three different lines. Each is preceded by moving the cursor to the value of the file attribute .cc.
Note that at the end of the first put statement the value of out.cc is updated to 20. Hence, out.cc is 20
at the start of the second put statement. As a single put statement is used to write all three letters, the
value of out.cc remains constant and thus the letters are written in the same column. At the end of the
second put statement the value of out.cc value is updated to 23 (observe that there are two blank spaces
after the letter z).

The third put statement writes the current value of the file attribute out.cc, which is the value at the
start of the put statement.

Current Cursor Row

As there are three independent writing areas on each put file page, there are three file attributes that
refer to the current row. They are listed in Table 4.

Symbol Description

.cr Current cursor row in the main window

.hdcr Current cursor row in the header block

.tlcr Current cursor row in the title block

4.42 The Put Writing Facility 1261

Table 4: File Attributes for the Row Position of the Cursor

Note that the values for these attributes are numeric and they updated only at the end of a put statement.
Consequently, their values will remain constant during a put statement regardless of how many rows are
displayed. Observe that the attributes may be used on the left-hand side and on the right-hand side of an
assignment statement to set the current row and return it respectively. The files attributes for the row
postion of the cursor behave similarly to those for the column position.

Last Line Control

Like the file attributes for the current column and row position, the file attributes for the last line have
three variants, one for each writing area. They are given in Table 5.

Symbol Description

.ll Last line in the main window

.hdll Last line in the header block

.tlll Last line in the title block

Table 5: File Attributes for the Last Line

Note that unlike the row and column controls, the last line attributes are updated continuously. Last line
attributes are especially useful for modifying the three writing areas of a page. They may be used on
the left-hand side and on the right-hand side of an assignment statement to set the current last line and
return it respectively. Rows will be deleted if the last line attribute is set to a value that is lower than the
current row.

Attention

The file attributes .tlll and .hdll may not hold values applicable to the current page, because
when the title or header blocks are modified, they will correspond to the title or header blocks of
the next page if the main window has been written to on the current page.

As mentioned above, in addition to determining the last line in a writing area, these file attributes may be
used to delete lines within a writing area. In the following example, the header block will be completely
deleted by resetting the attribute .hdll to zero.

File out;

puthd out ’This header statement will be eliminated’;

out.hdll = 0;

Note that a header is written initially. However, by changing the attribute .hdll to zero, the cursor is
reset to the top of the header block. As a result, the header will not be written unless something new is
added to the header block.

4.42.6 Output Items

Output items are the items in the put statement that are written to the put file. They may be a text,
a numerical value or a set value. In this section we will provide more information on these three types
of items. Observe that system suffixes and command line parameters are either text strings or have a
numerical value. They may also be used as output items.

1262 User's Guide

4.42.6.1 Text Items

Text items may be a quoted text, an explanatory text of identifiers and labels or names of set
elements. In this section we will give details on each of these text items. In addition, text
items may be system attributes or command line parameters. For these text items, see sections
System Suffixes as Output Items and Command Line Parameters as Output Items respectively. Details
on default field widths and alignments for text items and global and local customizing controls are given
in section Customizing the Format of Output Items.

Text Items: Quoted Text

The simplest text output item is a quoted text. A quoted text is any combination of characters or numbers
set apart by a pair of single (') or double (”) quotes with each the items needing to use a matching pair.
Thus the following three lines are all exactly equivalent.

put ’Run on ’ system.date ’ using source file ’ system.ifile;

put "Run on " system.date " using source file " system.ifile;

put ’Run on ’ system.date " using source file " system.ifile;

Note that there is a limit on the length of all output items: output items may not exceed the page width.
In case this limit is exceeded, a put error will be reported in the listing file. Put errors are introduced
and discussed in section Put Errors.

Text Items: Identifier Attributes

Text items like the explanatory text of an identifier, the name of a set element and the explanatory text
of a set element are specified with identifier attributes. The identifier attributes are listed in Table 6.

Identifier Attribute Symbol Description

Explanatory text of an identifier
.ts

Displays the descriptive text associated
with any identifier (like a set, a param-
eter, a variable, an equation, a model).

Name of a set element .tl
Displays the names of the individual
elements of a set. Observe that the
put statement must be embedded in
a loop statement, where the respective
set is the looping set or the set is a
singleton set.

4.42 The Put Writing Facility 1263

Identifier Attribute Symbol Description

Explanatory text of a set element .te(index list)
Displays the explanatory text associated
with a set element. Note that this at-
tribute requires the specification of a
driving index. If the set is a simple set,
the set name itself will have to be speci-
fied as index (see example below). If the
set is defined over an index, then the
index or a subset of the index may be
specified. A special case arises in case
users wish to gain access to the explana-
tory text that appears in the definition
of another set (see example below). Ob-
serve that if there is no explanatory text
for a set element in the set definition,
then either the name of the set element
(default) or a blank will be displayed,
depending on the value of the file at-
tribute text fill (.tf). Note that with
.tf=3 even if an explanatory text ex-
ists, the name of the element will be dis-
played. Observe that the put statement
must be embedded in a loop statement,
where the respective set is the looping
set or the set is a singleton set.

Indexed identifier with label combina-
tion

.tn
Displays the name of the identifier with
all individual label combinations. Ob-
serve that the put statement must be
embedded in a loop statement, where
the respective index is the looping set
or the set is a singleton set. See exam-
ple below.

Table 6: Identifier Attributes

Consider the following example:

Set i master set of sites / i1 Seattle, i2 Portland

i3 San Francisco, i4 Los Angeles, i5 /

j subset of sites / i3 * i5 / ;

File out; put out i.ts /;

loop(i, put i.tl, i.te(i) /);

The resulting put file out.put will contain the following output:

master set of sites

i1 Seattle

i2 Portland

i3 San Francisco

i4 Los Angeles

i5 i5

1264 User's Guide

Note that the explanatory text of the set i is written first, followed by the label names of the set i and
their respective explanatory texts. Note further that even though the set i does not have an index (it is
a simple set), an index is required for the attribute .te. In this case we specify as index the set itself.
Observe that the set element i5 was defined without an explanatory text. By default, GAMS inserts the
name of the element instead. This may be changed by alterning the code in the following way:

put out i.ts /;

out.tf = 0;

loop(i, put i.tl, i.te(i) /);

Note that we assign the value of zero to the file attribute text fill (.tf) before the put statement where
one of the items refers to the explanatory text of a set element. As a result, a blank will be displayed
where the explanatory text of the set element i5 is supposed to appear:

master set of sites

i1 Seattle

i2 Portland

i3 San Francisco

i4 Los Angeles

i5

Assume we also wish to display the elements of the set j and their explanatory texts. We could just adapt
the code above for the set j and add the following two lines:

put / j.ts /;

loop(j, put j.tl, j.te(j) /);

These lines will result in the follwing output to be appended to the put file:

subset of sites

i3

i4

i5

Note that the explanatory text associated with the set elements is missing, since there is no explanatory
text for the elements in the definition of the set j and the value of zero for text fill is still valid. However,
we may gain access to the explanatory text of the set elements in the definition of the set i in the following
way:

put / j.ts /;

loop(j, put j.tl, i.te(j) /);

Note that the the specification i.te(j) singles out the explanatory texts of the elements of the set i that
are also elements of the set j. Hence we will obtain the desired output:

subset of sites

i3 San Francisco

i4 Los Angeles

i5

4.42 The Put Writing Facility 1265

The following example illustrates the use of the identifier attribute .tn. The model [MEXSS] is a
simplified representation of the Mexican steel sector, where five steel plants have to satisfy the demand
for steel in three markets. Each steel plant i has several productive units m and the capacity of every unit
in every plant is specified with the parameter k(m,i). Assume we wish to write to a put file a list of all
nonzero capacities. We could add the following code to the model:

File out /out.dat/;

put out ’Capacity (in metric tons)’ / /;

loop((m,i)$k(m,i),

put k.tn(m,i), @30 ’=’ k(m,i) /;

)

Note that we restrict the loop statement with a logical condition to exclude entries of zero. The put file
out.dat will contain the following lines:

Capacity (in metric tons)

k(’blast-furn’,’ahmsa’) = 3.25

k(’blast-furn’,’fundidora’) = 1.40

k(’blast-furn’,’sicartsa’) = 1.10

k(’openhearth’,’ahmsa’) = 1.50

k(’openhearth’,’fundidora’) = 0.85

k(’bof’,’ahmsa’) = 2.07

k(’bof’,’fundidora’) = 1.50

k(’bof’,’sicartsa’) = 1.30

k(’direct-red’,’hylsa’) = 0.98

k(’direct-red’,’hylsap’) = 1.00

k(’elec-arc’,’hylsa’) = 1.13

k(’elec-arc’,’hylsap’) = 0.56

Observe that a more elaborate report for the model [MEXSS] is given in section Creating a Report for the Model MEXSS
at the end of this chapter. The identifier attribute .tn is particularly useful when creating scalar
EMP info files.

Text Items: Text Blocks

The easiest way to write blocks of text to a put file is with the dollar control options $onPut and $offPut.
Consider the following example:

File fx; put fx;

$onPut

We will write four

lines of text to the put file,

including a blank line.

$offPut

The put file fx.put will contain the following lines.

We will write four

lines of text to the put file,

including a blank line.

Note that these dollar control options have a variant that allows the substitution of compile-time variables.
For details see the description of $on/offPut.

1266 User's Guide

4.42.6.2 Numeric Items

Numeric items may be values of parameters, variable and equation attributes or model at-
tributes and expressions of such elemens. These numeric items will be discussed in this sec-
tion. In addition, numeric items may be command line parameters. For these numeric items,
see section Command Line Parameters as Output Items. Details on default field widths and
alignments for numeric items and global and local customizing controls are given in section
Customizing the Format of Output Items.

Numeric Items: Parameters and Functions

In our first example in this chapter, one of the output items was the parameter f. For convenience, we
repeat the respective code below:

put ’Freight cost ’, f;

Note that the simple name of the parameter is sufficient. In the same example we also had two parameters
that were defined over an index: a(i) and b(i). The respective lines of code follow:

loop(i, put @3, i.tl, @15, a(i)/);

* ...

loop(j, put @3, j.tl, @15, b(j)/);

Note that indexed parameters must be specified with their index and a put statement with an indexed
parameter has to be embedded within a loop structure.

Numeric Items: Variable and Equation Attributes

Recall that data associated with variables and equations is stored in variable attributes and equation
attributes respectively. A full list is given in sections Variable Attributes and Equation Attributes.

Suppose we wish to generate a report with the demand for each market in the transportation model
[TRNSPORT], the satisfied demand after solution of the model and the marginal cost of meeting the
demand. Recall that the demand data for each market is saved in the parameter b(j) and the relationship
between shipment quantities and demand is encoded in equation demand(j). The following code will
generate the desired report:

File report /report.dat/; put report;

loop(j,

put ’Report for ’ j.tl /

’Demand’ @35 b(j):10:0 /

’Demand satisfied’ @35 demand.l(j):10:0 /

’Marginal Cost of meeting demand’ @35 demand.m(j):10:2 / /;

);

Note that we use three numeric output items: the parameter b(j), the level value of the equation
demand.l(j) and the marginal value of the equation demand.m(j). Note further, that all three items are
indexed over the set j and thus the put statement has to be placed within a loop statement. Observe
that we customize the formatting of the items. For details see section Local Item Formatting Controls.
The put file report.dat will contain the following output:

4.42 The Put Writing Facility 1267

Report for New-York

Demand 325

Demand satisfied 325

Marginal Cost of meeting demand 0.23

Report for Chicago

Demand 300

Demand satisfied 300

Marginal Cost of meeting demand 0.15

Report for Topeka

Demand 275

Demand satisfied 275

Marginal Cost of meeting demand 0.13

Numeric Items: Model Attributes

GAMS models have many model attributes. An introduction and a complete list is given in section
Model Attributes. While in principle all model attributes may be used as output items, the attributes
.modelStat and .solveStat with their string valued counter parts .TModStat and .TSolStat are used
most frequently. They refer to the model status and solver termination condition after solution respectively.
For a complete list of their values, see sections Model Status and Solver Status.

Suppose we wish to generate a report that contains the time it took to execute the solve statement of the
transportation model [TRNSPORT], the objective value and the corresponding string valued model
and solver status. Recall that the name of the model is transport. The following code will generate the
desired report:

File report /report.dat/; put report;

put ’elapsed time in seconds of solve statement : ’ transport.etSolve:0 /

’objective value: : ’ transport.objVal:0 /

’model status: : ’ transport.tmodstat /

’solver status: : ’ transport.tsolstat ;

Observe that we customize the formatting of the first two items. For details see section
Local Item Formatting Controls. The put file report.dat will contain the following output:

elapsed time in seconds of solve statement : 0.11

objective value: : 153.68

model status: : 1 Optimal

solver status: : 1 Normal Completion

4.42.6.3 Set Value Items

There are only two set values: YES and NO. The set value will be YES if a label is an element of a specific
set and NO otherwise. Consider the following example which is adapted from the example in section
Text Items: Identifier Attributes above:

1268 User's Guide

Set i master set of sites / i1 Seattle, i2 Portland

i3 San Francisco, i4 Los Angeles, i5 /

j subset of sites / i3 * i5 / ;

File out2 / out2.dat /;

put out2 j.ts /;

out2.tf = 0;

loop(i, put i.tl, j(i), ’ ’, i.te(i) /);

Note that within the loop structure, the put statement writes each element of the set i, determines
whether it is a member of the set j and displays the respective set value, and adds the explanatory text
for the label. Hence the resulting put file out2.dat will look as follows:

subset of sites

i1 NO Seattle

i2 NO Portland

i3 YES San Francisco

i4 YES Los Angeles

i5 YES

Observe that the set values in the second column reflect set membership of the set j. Observe further,
that the missing explanatory text for label i5 is displayed as a blank, since the value of the file suffix
text fill (.tf) equals zero.

4.42.6.4 System Suffixes as Output Items

System suffixes contain information about a GAMS run, they are introduced and discussed in chapter
System Attributes. System suffixes may be used as output items in the context of put statements. They
are accessed in the following two ways:

system.attribute

%system.attribute%

Here system is a keyword and .suffix is a specific system suffixes. Note that system.suffix refer-
ences the execution-time version (which can be of type string or numeric) of the system suffixes and
%system.suffix% (which is interpreted by the compiler as part of the input string) references the
compile-time version. For further details on the difference between execution-time and compile-time
system suffixes, see chapter System Attributes. A complete list of all system suffixes is given in section
List of all System Suffixes, in Table 7 we present a list of the most common system suffixes.

System Attribute Description

.date Program execution date

.ifile Input file name

.ofile Output file name

.rdate Restart file date

.rfile Restart file name

.sfile Save file name

.title Title of the model as specified by $title

Table 7: A Selection of System Suffixes

4.42 The Put Writing Facility 1269

To illustrate how system suffixes are used, assume we wish to include the program execution date, the
name of the input (GAMS) file, and the page number of the current put statement in the input file to the
report results.dat in section A First Example above. We will modify the code in the following way:

File factors /factors.dat/, results /results.dat/;

* ...

put results;

puthd ’Program Execution Date:’, @26, system.date /

’Source File:’, @26, system.ifile /;

’Page Number:’, @26, system.page / /;

put ’Transportation Model Results’ / / ;

loop((i,j), put i.tl, @12, j.tl, @24, x.l(i,j):8:4 /);

The file results.dat will then contain the following lines:

Program Execution Date: 01/13/17

Source File: C:\Documents\GAMS\Models\trnsport.gms

Page Number: 1

Transportation Model Results

Seattle New-York 50.0000

Seattle Chicago 300.0000

Seattle Topeka 0.0000

San-Diego New-York 275.0000

San-Diego Chicago 0.0000

San-Diego Topeka 275.0000

Note that the date is given in the American format: month/day/year and can be reset via the command
line parameter DFormat. Also note that including the page number in the header block of a put file will
have the effect that the pages of the put file will be numbered. Of course, this is especially useful for
longer put files.

It is also possible to read environment variables at execution time in a put context using sysEnv.name as
in the following example:

$setEnv hello world

put_utility ’log’ / sysEnv.hello;

If the environment variable queried is not defined, the result depends on the value of the command line
parameter stringChk.

4.42.6.5 Command Line Parameters as Output Items

Command line parameters may also be used as output items. They are introduced and
discussed in chapter The GAMS Call and Command Line Parameters. For an overview of
all GAMS command line parameters, see section List of Command Line Parameters. Like
system suffixes , command line parameters are referenced in the context of a put statement either
compile-time strings or in an execution time version as follows:

put "%gams.parameter%";

put gams.parameter;

1270 User's Guide

Here parameter is a GAMS command line parameter. To illustrate how command line parameters are
used, assume we wish to include the page size of the input file, the name of the input file and the name of
the restart file in the report results.dat in section A First Example above. We will modify the code in
the following way:

File factors /factors.dat/, results /results.dat/ ;

* ...

put results;

put ’Transportation Model Results’// ;

loop((i,j), put i.tl, @12, j.tl, @24, x.l(i,j):8:4 //);

put / "Page size = %gams.ps%"

/ "GAMS input file = %gams.input%"

/ "GAMS restart file = %gams.restart%";

The last three lines of the put file results.dat follow:

Page size = 58

GAMS input file = C:\Documents\GAMS\Models\trnsport.gms

GAMS restart file =

Note that there was no restart file in the GAMS run, thus the value for %gams.restart% is the empty
string.

In this example it actually makes no difference if one uses the compile- or execution time version to query
the value of a command line parameter. This might be different, when doing the compile and execution
phase separately, e.g. when using remote execution. Here is a toy example showing the difference:

$onEchoV > logScrDir.gms

put_utility ’log’ / ’%gams.scrDir%’;

put_utility ’log’ / gams.scrDir;

$offEcho

$call gams logScrDir.gms a=c s=1 keep=1

$call gams logScrDir.gms a=e r=1

In the log, one will see that %gams.scrDir% is evaluated in the first run at compile time already, while
gams.scrDir is evaluated at execution time in the second run:

--- logScrDir.gms(1) 3 Mb

C:\Data\t m p\225d\

--- logScrDir.gms(2) 3 Mb

C:\Data\t m p\225e\

4.42.6.6 Customizing the Format of Output Items

GAMS provides global and local controls to modify the default format of output items. Global controls
are set with file attributes and apply to all output items in a put file that follow the assignment of a file
attribute. Local controls are used to change the format of only one specific output item.

Global Item Formatting Controls

The alignment (justification) of the field and the width of the field may be modified for all types of output
items. The attributes that control field alignment are listed in Table 8. Note that possible values are 1
(right), 2 (left) and 3 (center).

4.42 The Put Writing Facility 1271

Type of Output Item Symbol Default Value

Text items: set labels .lj 2: Left

Text items: quoted and explanatory text .tj 2: Left

Numeric values .nj 1: Right

Set values .sj 1: Right

Table 8: File Attributes for Field Alignment

The width of the field is specified with the number of spaces to be allocated. The attributes that control
field width are liste in Table 9.

Type of Output Item Symbol Default Value

Text items: set labels .lw 12

Text items: quoted and explanatory text .tw 0

Numeric values .nw 12

Set values .sw 12 (maximum 20)

Table 9: File Attributes for Field Width

Note that the value of zero signifies a variable field width, matching the the exact size of the item being
displayed. If a text output item does not fit within the specified field, truncation will occur to the right.
For numeric output items, the decimal portion of a number is rounded or scientific notation is used to fit
the number within the given field. If a number is still too large, asterisks will replace the value in the
output file.

For example, the following assignment will set the field width for numeric items in the file out.put globally
to 4:

out.nw = 4;

In addition to field alignment and field width, there are further global controls that apply to numeric
output items only. They are given in Table 10.

File Attribute Symbol Description Default Value Optional Values

Number of decimals .nd Sets the number of
decimals that are dis-
played for numeric
items. A value
of zero entails that
fixed-format output
will show the number
rounded to the near-
est integer.

2 Values may be be-
tween 0 and 20.

1272 User's Guide

File Attribute Symbol Description Default Value Optional Values

Numeric round for-
mat

.nr Selects the format-
ting used for numeric
output. For example,
one can choose to
use scientific notation
(i.e. E-format) for
all numbers: this is
especially useful for
numbers so small
that they display as
only zeros in fixed
format with the
value specified for
number of decimals
(.nd). The default
rounding format will
treat small values
in this way, but in
many situations, it
is important to be
aware that such small
values exist.

1 0: Item is displayed
in F or E format to fit
given width and deci-
mals.
1: Item is rounded
to fit given width and
decimals.
2: Item is displayed in
E format to fit given
width and decimals.
3: Item is rounded to
fit given width.
4: Item is displayed
in F or E format to
fit given width.

Numeric zero toler-
ance

.nz Sets the tolerance
level for which a num-
ber will be rounded to
zero for display pur-
poses. Note that in
case this attribute is
set to zero, rounding
is determined by the
field width.

1.0e-10

Table 10: File Attributes for Global Format Control Specific to Numeric Items

Note that numeric items are always formatted to fit within the specified width limit, but their display may
use fewer characters. Similarly, for some values of .nr, the number of digits shown is limited by the choice
of the .nd parameter, but fewer digits may be shown. At most 17 significant digits are included - this is
enough to represent any double-precision value unambiguously, i.e. as a base-10 string that converts back
into this same double. With this in mind, any number can be represented fully in E-format using at most
24 digits, e.g. -1.25E+102.

With .nr=0, the formatting routines honor the decimals limit. Values closer to 1 are displayed in fixed
format. Values so small they would display only zeros in fixed format are displayed in E-format, as are
values too large for the width limit. Formatting with .nr=1 is similar, but small values are shown in
fixed format even if they show all zeros. With .nr=2 E-format is used for all values, with the number of
trailing digits respecting the decimals limit .nd. The decimals limit is ignored for .nr=3, and fixed format
is used unless the value is so large that E-format output is shorter. Finally, .nr=4 is intended to be used
with larger output widths, e.g. 18 or 24, in order to show values of all magnitudes in as full a precision
as possible: it ignores the decimal limit and uses whatever format allows more significant digits in the
specified width.

The following example illustrates the result of different combinations of numeric file attributes. Note that
we will use five combinations of the file attributes .nd, .nz, .nr and .nw to display three numerical values.

Set c suffix combinations / comb1 * comb9 /

4.42 The Put Writing Facility 1273

v value indices / value1 * value5 / ;

Table suffix(c,*) numeric suffix combinations

nd nz nr nw

comb1 3 0 0 12

comb2 3 1e-5 0 12

comb3 3 1e-5 1 12

comb4 8 0 0 10

comb5 6 1e-5 1 12

comb6 0 1e-5 1 12

comb7 10 0 2 18

comb8 0 0 3 14

comb9 0 0 4 18 ;

Parameter value(v) test values

/ value1 1.2345678901e14

value2 [pi]

value3 -0.1234567

value4 0.0001234567

value5 1.234567e-13 / ;

File out; put out;

out.nj=2; out.lw=10; out.cc=11;

loop (v, put v.tl:21);

loop (c,

out.nd=suffix(c,"nd");

out.nz=suffix(c,"nz");

out.nr=suffix(c,"nr");

out.nw=suffix(c,"nw");

put / c.tl;

loop (v,

put @(ord(v)*21-10), value(v)

)

);

Observe that we have chosen to align the values to the left. This will enhance readability as the model
loops through the suffix combinations that entail different field widths. The resulting output file out.put

follows:

value1 value2 value3 value4 value5

comb1 1.234568E+14 3.142 -0.123 1.2345670E-4 1.234567E-13

comb2 1.234568E+14 3.142 -0.123 1.2345670E-4 0.000

comb3 1.234568E+14 3.142 -0.123 0.000 0.000

comb4 1.2346E+14 3.14159265 -0.1234567 0.00012346 1.2346E-13

comb5 1.234568E+14 3.141593 -0.123457 0.000123 0.000000

comb6 1.234568E+14 3 -0 0 0

comb7 1.2345678901E+14 3.1415926536E+00 -1.2345670000E-01 1.2345670000E-04 1.2345670000E-13

comb8 1.23456789E+14 3.141592653590 -0.12345670000 0.000123456700 0.000000000000

comb9 123456789010000 3.141592653589793 -0.12345678 1.234567E-4 1.234567E-13

Note that in comb1 the display of values switches to the exponential notation when the value becomes
smaller than the number of decimal places allowed. This is a result of .nr=0. Note further, that value4
is greater than the zero tolerance level (.nz), but smaller than the number of decimals allowed (.nd) in
both, comb2 and comb3. However, .nr=0 results in the exponential notation in the display of comb2, while
.nr=1 has the effect that this small value is rounded to zero. Observe that in comb6 fixed-format is used
whenever allowed by the width limit, and in these cases the output is rounded to integer because .nd is

1274 User's Guide

set to zero. With comb7 E-format is used in all cases: a leading space is added for positive values and
a minus sign to negative values, and the magnitude is indicated with an explicit plus/minus and two
digits (three if necessary). With comb8 we see fixed-format used whenever possible and as many digits
(significant or not) as allowed by the width. With comb9 we see only significant digits, with the format
chosen to allow the display of as many digits as possible.

Local Item Formatting Controls

The local item formatting controls allow to format specific output items. Note that local formatting
overrides global format settings. The syntax is as follows:

item:{<>}width:decimals;

Here item is the output item, followed by a colon, an alignment (justification) symbol, the field width,
a colon and the number of decimals to be displayed. Note that the limit on the number of the decimal
places is only valid for numeric output. Note further, that if a component of the local formatting feature
is omitted, then the respective global formatting settings will be used. The local alignment symbols are
listed in Table 11.

Symbol Alignment

> Right

< Left

<> Center

Table 11: Local Alignment Symbols

Observe that similar to global formatting, a field width of zero means that the field width will be variable,
depending on the item to be displayed.

The following example serves as illustration. Observe that we use end-of-line comments to annotate the
code.

File out; put out;

$eolCom //

Set i / i1*i3 /;

Parameter d(i) / i1 1426, i2 1347, i3 900 /;

Scalar f / 17.6745 /;

loop(i, put d(i):0:0 /); // default justification and a field width

// of variable size with no decimals

put / ’Right Justified Comment’:>50

/ ’Center Justified Truncated Comment’:<>20;

put / / f:<6:2; // left aligned scalar with 6 spaces for field width

// and two decimals

4.42.7 The Put Utility Statement

The put utility statement is a variant of the put statement that may be used to execute external
programs. The syntax is as follows:

4.42 The Put Writing Facility 1275

put_utility [file_name] ’command’ / ’arguments’ {/ ’command’ / ’arguments’};

The keyword put utility and its synonym put utilities indicate that this is a put utility statement.
The keyword is followed by the internal name of an external file, file name. Note that file name may
be omitted. It is not required for the put utility statement but might be used to activate a file to
be used with following put statements. Command denotes one of the commands listed in Table 12 below.
Commands are followed by a slash and their respective arguments. Observe that a put utility statement
may contain multiple command / argument pairs. An example is given below.

The following simple example illustrates the put utility statement:

File test / test.txt /;

put test "This is the original file."

put_utility ’ren’ / ’test.dat’;

putclose "This is the renamed file.";

test.ap = 1;

put "Write to the renamed file.";

Note that first the put file test.txt with the internal name test is defined, made current and written to.
Then the put utility statement uses the command ren to rename the current put file. The new name is
test.dat and the internal name test will from now on reference the new file test.dat. However, the
original file test.txt is not deleted. Hence, the code above will create two external files: test.txt and
test.dat. The file test.txt will contain the following line:

This is the original file.

The file test.dat will have the following content:

This is the renamed file.

Write to the renamed file.

Note

If Put File Attributes are specified, they are also considered for the put utility commands and
arguments. This could lead to surprising results in some cases, like in this example:

File test / test.txt /;

test.pc = 5;

put test "This is the original file."

put_utility ’ren’ / ’test.dat’;

putclose "This is the renamed file.";

This will trigger the following errors:

*** Error at line 5: Put_Utilities: Unknown request ""ren""

*** Error at line 5: Put_Utilities: Unknown request ""test.dat""

The problem is, that test.pc = 5; puts quotes around non-numeric output, and thus "ren"

(including the quotes) is not recognized as command anymore. To overcome this issue test.pc

should be set back to default for the ren command like this:

1276 User's Guide

File test / test.txt /;

test.pc = 5;

put test "This is the original file.";

test.pc = 2;

put_utility ’ren’ / ’test.dat’;

test.pc = 5;

putclose "This is the renamed file.";

We will present a list of all commands and their arguments in Table 12 and give examples for most
commands below.

Table 12: List of Commands and their Arguments

Command Description of Command Description of Arguments

assignText Allows to set the explanatory or la-
bel text of a singleton set element.
See example below.

Name of singleton set symbol and
text.

click Adds a clickable file reference to the
process window of the IDE. See ex-
ample below.

File name of the file to which the
reference will point.

dropEnv Removes an environment variable at
execution time.

Name of the environment variable.

ECArguments Allows to set the arguments for
execution time embedded code
execution. See example in section
Embedded Code at Execution Time.

Text for the embedded code argu-
ment.

exec Passes a command to the operating
system for execution. GAMS will
wait until the command is executed.
See example below. Note that the
distinction between exec and shell
is technical and may be operating
system specific. Typically, the abil-
ity to use redirect of standard input
output and the error console is in-
volved.

Command to be executed with ar-
guments.

exec.aSync Passes a command to the operat-
ing system for execution. However,
GAMS will not wait until the com-
mand is executed.

Command to be executed with
arguments. Job control is han-
dled identical to jobs spawned via
execute.async.

exec.aSyncNC Passes a command to the operat-
ing system for execution using a dif-
ferent console than the parent pro-
cess (Windows only). GAMS will
not wait until the command is ex-
ecuted, thus using multiple proces-
sors is possible. Job control is han-
dled identical to jobs spawned via
execute.async.

Command to be executed with ar-
guments.

exec.checkErrorLevel
Passes a command to the operating
system for execution. GAMS will
wait until the command is executed,
raises an execution error and aborts
the execution, if the errorLevel re-
turned is not 0.

Command to be executed with ar-
guments.

4.42 The Put Writing Facility 1277

Command Description of Command Description of Arguments

gdxIn Accesses the GDX file specified
in the argument. A subse-
quent directive execute load or
execute loadpoint without a spec-
ified file name will unload data from
the GDX file thus accessed. See ex-
ample below.

Name of the GDX file that data will
be loaded from.

gdxOut Creates a new GDX file or accesses
an existing GDX file specified in the
argument. A subsequent directive
execute unload without a specified
file name will write to the GDX file
thus created or accessed. Note that
if an existing GDX file is accessed,
it will be overwritten. See example
below.

Name of the GDX file to which data
will be unloaded.

glb Used by GAMS to facilitate building
the model library - not intended for
users.

–

htm Used by GAMS to facilitate building
the model library - not intended for
users.

–

inc
Includes the contents of an external
file in the currently active put file.
See example below.

File name of external file.

incLog Includes the contents of an external
file in the currently log file . See
example below.

File name of external file.

incMsg Includes the contents of an external
file in the currently listing file . See
example below.

File name of external file.

incMsgLog Includes the contents of an exter-
nal file in both, the log file and the
listing file. See example below.

File name of external file.

log Sends a message to the log file. See
example below.

Text of message.

msg Sends a message to the listing file.
See example below.

Text of message.

msgLog Sends a message to both, the log
file and the listing file. See example
below.

Text of message.

ren Creates a new external name for the
current put file. The internal name
will reference the new external file.
Any subsequent put statements will
write to the new file. See the simple
example above and a more complex
example below.

External file name.

save Writes a save file of the current state
of execution.

Name of save file.

setEnv Sets an environment variable at ex-
ecution time.

Name of the environment variable
and its value.

1278 User's Guide

Command Description of Command Description of Arguments

shell
Passes a command to the command
shell processor, where it is processed.
The processed form of the command
is then passed to the operating sys-
tem for execution. See example
below. Note that the distinction be-
tween shell and exec is technical
and may be operating system spe-
cific. Typically, the ability to use
redirect of standard input output
and the error console is involved.

Command to be executed with ar-
guments.

shell.checkErrorLevel
Passes a command to the command
shell processor, where it is processed.
The processed form of the command
is then passed to the operating sys-
tem for execution. GAMS checks
the errorLevel returned implicitly,
raises an execution error and aborts
the execution, if is not 0.

Command to be executed with ar-
guments.

solver
Selects a solver for a given or all
model types (use ∗) by name. See
example below.

Model type or ∗ and solver name.

stdOut Sends a message to stdOut indepen-
dent of the log file.

Text of message.

stdErr Sends a message to stdErr indepen-
dent of the log file.

Text of message.

title Changes the title on the DOS win-
dow.

New name for window.

winMsg Sends a message to a window on a
Windows machine. For examples,
see models [ASYNNTRP] and
[MRW01] in the GAMS Test Li-
brary.

Window name and message.

In the remainder of this section we will present examples.

Exec: Creating Empty Files by Executing External Program touch

Consider the following example:

Set i / 1*3 /;

loop(i, put_utility ’exec’ / ’touch ’ i.tl:0 ’.txt’);

Note that the command to be executed is touch. Thus this code snippet will create three empty files
called 1.txt, 2.txt and 3.txt.

Exec and Ren: Creating Directories and Renaming Files

Consider the following example:

4.42 The Put Writing Facility 1279

File test / test.txt /; put test;

Set i / i01*i07 /;

loop(i,

put_utilities ’exec’ / ’mkdir ’ ’test-’:0 i.tl:0;

put_utilities ’ren’ / ’test-’:0 i.tl:0 ’%system.dirSep%test-’:0 i.tl:0 ’.txt’:0 ;

put ’this should be ’ i.tl);

Observe that as the loop is executed, the first put utitily statement will create seven subdirectories called
test-i01, ..., test-i07. The second put utility statement will create a text file for each of the new
subdirectories. The text file in subdirectory test-i01 is called test-i01.txt, the text file in subdirectory
test-i02 is called test-i02.txt, etc. The put statement in the last line will write to each text file. For
example, the following line will be generated for the text file test-i01.txt:

this should be i01

Note that at the end of the loop, the external file associated with the internal file name test is the put
file test-i07.txt, since this file was the last current put file.

Inc: Including the Content of a File

In this example, we first create the external file recall.txt, write to it and close it. Then we create a
new external file called report.dat. In a third step we include the content of the first file in the second
file.

File recall /recall.txt/;

putclose recall "I am the external content."

File report /report.dat/;

put report "Here we include content from an external file.";

put_utility ’inc’ / ’recall.txt’ ;

Note that the file report.dat will contain the following lines:

Here we include content from an external file.

I am the external content.

IncMsg, IncLog and IncMsglog: Including the Content of a File to the Log File and Listing
file

In this example, we first create the external file recall.txt, write to it and close it. Then we include the
content of recall.txt into the log and listing file.

File recall /recall.txt/;

putclose recall "I am the external content." / "I go over more than one line.";

display ’before the include’;

put_utility ’incMsg’ / ’recall.txt’ ;

display ’after the include’;

The listing file of this model shows the content of recall.txt:

1280 User's Guide

---- 4 before the include

*** Start of include of file recall.txt

I am the external content.

I go over more than one line.

*** End of include of file recall.txt

---- 6 after the include

Msg, Log and Msglog: Writing to the Log File and Listing file

Consider the following example:

put_utility ’msg’ / ’This message is for the lst file.’

/ ’log’ / ’This message is for the log file.’

/ ’msgLog’ / ’And this message is for the lst and the log file.’ ;

Note that the following two lines will be generated in the log file:

This message is for the log file.

And this message is for the lst and the log file.

In addition, the listing file will contain the following two lines just before the report file summary.

This message is for the lst file.

And this message is for the lst and the log file.

Gdxout: Creating GDX Files and Unloading Data to them

Consider the following example:

Set j / 2005*2007 /;

Scalar random;

loop(j,

put_utility ’gdxOut’ / ’data’ j.tl:0;

random = uniform(0,1);

execute_unload random;

);

This code will create the GDX files data2005.gdx, data2006.gdx and data2007.gdx. Note that each
GDX file will contain a value between zero and 1 for the scalar random. For example, the file data2005.gdx
(exported to an ASCII via gdxdump) will have the following content:

Scalar random / 0.171747132 /;

Gdxin: Loading Data from GDX Files

Note that the following example is an extension of the previous example that demonstrated the use of the
command gdxout.

4.42 The Put Writing Facility 1281

loop(j,

put_utility ’gdxIn’ / ’data’ j.tl:0 ;

execute_load random;

display random;

);

This code loads the values of the scalar random from the GDX files data2005.gdx, data2006.gdx and
data2007.gdx and displays them in the listing file of the GAMS input file:

---- 19 PARAMETER random = 0.172

---- 19 PARAMETER random = 0.843

---- 19 PARAMETER random = 0.550

Shell: Writing to Various Files

Consider the following example:

Set j / j1*j5 /;

Scalar random;

loop(j,

random = uniformint(0,100);

put_utility ’shell’ / ’echo ’ random:0:0 ’ > ’ j.tl:0;

);

Observe that the shell script command echo outputs an integer between zero and 100 to the files j1, ...,
j5.

Click: Adding a Clickable Link

Assume that there is a file called sets.html in our working directory. Consider the following code snippet:

put_utility ’click’ / ’sets.html’ ;

If we run this code snippet with the GAMS IDE, the following clickable link will appear in the IDE
process window:

>>> File sets.html

Solver: Select a solver by name at execution time

The solver keyword allows to select a solver at execution time by name. Normally, the option statement
option solver=xpress, lp=cplex; is used to select the current solver, but in case where you want to
programatically change the solver as in this example, this put utility keyword can be useful. Consider the
following code snippet which extends the [DICE] model:

1282 User's Guide

...

set slv ’MIP solvers to run’ / cplex, cbc, gurobi, mosek, scip, xpress /;

parameter rep ’report status, time, objective value, and more’;

option bratio=1;

loop(slv,

put_utility ’solver’ / ’mip’ / slv.tl:0;

solve xdice using mip max wnx;

rep(slv,’sstat’) = xdice.solveStat;

rep(slv,’mstat’) = xdice.modelStat;

rep(slv,’obj’) = xdice.objVal;

rep(slv,’time’) = xdice.etSolve;

rep(slv,’solver id’) = xdice.sysIdent;

);

display rep;

If we run this code we get a report like this:

---- 82 PARAMETER rep report status, time, objective value, and more

sstat mstat obj time solver id

cplex 1.000 1.000 21.000 0.455 19.000

cbc 1.000 8.000 21.000 2.804 6.000

gurobi 1.000 1.000 21.000 0.631 32.000

mosek 1.000 1.000 21.000 4.425 48.000

scip 1.000 1.000 21.000 3.907 65.000

xpress 1.000 1.000 21.000 2.571 71.000

If one want's to set a solver for all possible model types (similar to option solver=xpress;) specific
model type has to be replaced by ∗: put utility 'solver' / '∗' / 'xpress';.

AssignText: Assigns label text to an element of a singleton set

GAMS has no string data type. The explanatory or label text of an element can serve in several situations
as a poor man's string type and used in put and put utility statements. The example below extends
the [TRNSPORT] model and disables flow on a particular connection. The solution point file created
by savePoint gets renamed to e.g. sol seattle new-york.gdx. The filename is assembled using the
assigntext keyword. This has been packaged for better readability in some STRING macros:

...

$macro STRINGDEF(sym) singleton set sym / sym /

$macro STRING(sym) sym.te(sym)

$macro STRINGASSIGN(sym,text) put_utility ’assignText’ / ’sym’ / text

$macro STRINGAPPEND(sym,text) put_utility ’assignText’ / ’sym’ / sym.te(sym) text

alias (i,ii), (j,jj);

transport.savePoint = 1;

STRINGDEF(fname);

loop((ii,jj),

x.up(ii,jj) = 0;

solve transport min z using lp;

x.up(ii,jj) = inf;

STRINGASSIGN(fname,’sol’);

STRINGAPPEND(fname,’_’ ii.tl:0);

STRINGAPPEND(fname,’_’ jj.tl:0 ’.gdx’);

put_utility ’shell’ / ’mv transport_p.gdx ’ STRING(fname);

);

4.42 The Put Writing Facility 1283

4.42.8 Conditional Put Statements

In GAMS, shorthand notation for conditional statement are dollar conditions, as introduced in chapter
Conditional Expressions, Assignments and Equations. Dollar conditions may also be used in the context
of a put statement and its variants. The syntax in its most general form is as follows:

put $ logical_condition [file_name] item {item} {file_name item {item}};

Note that like all put statements, the conditional put statement begins with the keyword put. The keyword
is followed by the dollar operator and a logical condition. If the logical condition is TRUE the put statement
will be executed, otherwise the put statement will be ignored. For details on logical conditions in GAMS,
see sections Logical Conditions and Filtering Sets. Observe that the remainder of the conditional put
statement is identical to the regular put statement introduced in section The Put Statement.

The following example demonstrates how dollar conditions are used in the context of put statements.

put$(a > 10) ’Some output items’;

Note that the quoted text will only be written to the put file if the scalar or variable a is greater than 10.

4.42.9 Errors Associated with Put Statements

There are two types of errors that may occur when the put writing facility is used: syntax errors and
put errors. In this section we will discuss these errors.

4.42.9.1 Syntax Errors in Put Statements

Syntax errors are caused by the incorrect usage of the GAMS language, including unmatched parentheses,
undefined identifiers, uncontrolled sets or the incorrect use of a keyword. These errors are detected during
program compilation and are always fatal to program execution. For more information on compilation
errors, see section Compilation Errors and the tutorials A GAMS Tutorial by Richard E. Rosenthal and
Fixing Compilation Errors.

4.42.9.2 Put Errors

Put errors are unique to the put writing facility. They are detected during program execution and are
caused when the specifications of file attributes are violated. Typical errors include assigning inappropriate
values to file attributes and attempts to write outside a page, like moving the cursor with the cursor
control character @ to a location beyond the page width. Consider the following example:

File out /out.dat/;

out.pw = 8;

put out "Let’s try this.";

Note that we specify the page width (.pw) to be just 8 characters. However, the quoted text has clearly
more than 8 characters. In such a case the GAMS code will be compiled and the log file will report
”Normal completion”. At the appropriate position in the listing file the following error will be reported:

1284 User's Guide

**** PUT ERROR FOR FILE out AT LINE 5: PUT LINE OVERFLOW - LOOK FOR **** ON PUTFILE, YOU CAN RESET .PW UP TO 32767

The put file out.dat will contain the following line:

Let’****

As put errors are not fatal and are not emphasized in the log file, they may be easily overlooked. Especially
in large put files, put errors may go undetected. GAMS provides the file attribute .errors that facilitates
the display of the numer of put errors. Consider the following example:

File out /out.dat/;

out.pw = 8;

put out "Let’s try this.";

abort$(out.errors) "Put errors in out:", out.errors;

Users may choose to output the number of put errors in a put file or display statement or even trigger an
execution error as in the example above.

4.42.10 Creating a Report for the Model MEXSS

We started this chapter with a simple example and we will complete it with a more elaborate example.
In this section we will show how the put writing facility may be used to create a report for the model
[MEXSS]. The code for the report may be inserted at the end of the original model and is shown below
in its entirety.

The model [MEXSS] analyzes the relative efficiency of five different plants for meeting the product
requirements of ingot steel in three different markets. The model may be used to identify the major
bottlenecks that constrain production in the system of plants. It will find the production levels in the
steel mills and shipments from the mills to the markets that will meet the market requirements at least
cost. We will create a report for this model that will present details on the available capacities of the
productive units at the five plants, the unused capacities and the marginal values of the capacities. This
report may be extended to include other data and results and the code may be reused to create new
reports if the data in the model is changed. For models that are run periodically, say, weekly or monthly,
reusable reports can be invaluable.

We will start the code for the report with defining the put file, setting the file attributes print control
and page size and making the the put file current. Then we will specify some global formatting settings.
We will continue with writing a title block and finally turn to the core of the report: a table with three
subtables. Note that we will use in-line comments to annotate the code. The code follows:

$eolcom //

File out /out.dat/;

out.pc=3; out.ps=54; // print control, page size

put out;

* Global Format Settings:

Scalars indent1 indent to first column of units display

indent2 indent to first column of field labels

indent3 indent to first column of first numeric field

textwide wide text / 80 /

textnarr narrow text / 30 / ;

4.42 The Put Writing Facility 1285

out.nr = 0; // numeric round format

out.tw = textwide; // width of text field

out.lw = 11; // width of label field

out.nw = 11; // width of numeric field

out.nd = 2; // number of decimals displayed

indent1 = 3;

indent2 = 30;

indent3 = 27;

* Title Block

puttl ’MEXICO STEEL - SMALL STATIC MODEL’:<> /

system.date:<>/ / /;

* Main Window

out.tj = 3; // alignment of text: center

put

’ This report is based on selected data and results from the model’/

’MEXSS in the GAMS Library. This model analyzes the relative efficiency’/

’of five different plants in meeting the product requirements for ingot’/

’steel in three different markets. The model aims to find the pattern ’/

’of production levels in the mills and shipments from the mills to the ’/

’markets that will meet the market requirements at the least cost. ’/

/

’Reference: Kendrick, D. A., Meeraus, A., Alatorre J., The Planning ’/

’of Investment Programs in the Steel Industry, John Hopkins Universi-’/

’ty Press, 1984. ’/

/ / /;

out.tj = 2; // alignment of text: left

out.tw = textnarr; // width of text field

putpage$(out.ll+card(m)+7 > out.ws); // manual paging

put ’Table 1. Plant Data and Results’:0 /’-------’/; // Table 1

out.cc = indent2; // current column

loop(i, put i.tl:<>); // column headings

put / / ’CAPACITY (metric tons)’; // Capacity

loop(m,

put / @indent1, m.te(m), @indent3; // row headings

loop(i, put k(m,i)); // numeric values

);

* Header Block with column headings for next page (will be used only if necessary)

puthd ’Table 1 (continued). Plant Data and Results’:0 /

’-------------------’/;

out.hdcc = indent2;

loop(i, put i.tl:<>); // column headings

puthd /’’;

* Main Window continued

if(out.ll+card(m)+sum((m,p)$b(m,p), 1)+3 > out.ws,

putpage; // manual paging

else put / /;

);

put ’UNUSED CAPACITY (metric tons)’; // Unused Capacity

1286 User's Guide

loop(m,

put / @indent1, m.te(m), @indent3; // row headings

loop(i, put (k(m,i)-cc.l(m,i))); // numeric values

);

if(out.ll+card(m)+4 > out.ws,

putpage; // manual paging

else put / /;

);

put ’MARGINAL VALUE OF CAPACITY’/ @indent1 ’(US$/ton)’; // Marginal Value of Capacity

loop(m,

put / @indent1, m.te(m), @indent3; // row headings

loop(i, put abs(cc.m(m,i))); // numeric values

);

Note that we set print control (.pc) to ASCII formfeed. Below we illustrate how to use one of the print
control settings that generate a delimited file. Observe that we group all global format parameters and
settings near the top of the code. This way of organizing the code will make it easy to modify the
structure of the report in the future as needed. Observe further, that the output items in the title block
are locally formatted to be center aligned.

In the remainder of the code the actual report is written in the main window. The block of text at the
beginning serves as a brief introduction to the report. Note that the core of the report is a table consisting
of three subtables, where the subtables share the column headings. Before writing the table, we insert
a test - the conditional putpage statement - to determine whether there is a sufficient number of lines
on the current page to accommodate the size of the first subtable. Thus the put writing facility would
start a new page if there were not enough rows. We repeat similar tests before the code for the other
two subtables. Observe that we insert a header block with the column headings. If a new page had to be
started since there were not enough rows for the second or the third subtable, the header block would
contain the column headings of the table. (Users might want to experiment by reducing the file attribute
page size (.ps) to say, 30.) The report that will be generated follows:

MEXICO STEEL - SMALL STATIC MODEL

01/31/17

This report is based on selected data and results from the model

MEXSS in the GAMS Library. This model analyzes the relative efficiency

of five different plants in meeting the product requirements for ingot

steel in three different markets. The model aims to find the pattern

of production levels in the mills and shipments from the mills to the

markets that will meet the market requirements at the least cost.

Reference: Kendrick, D. A., Meeraus, A., Alatorre J., The Planning

of Investment Programs in the Steel Industry, John Hopkins Universi-

ty Press, 1984.

Table 1. Plant Data and Results

ahmsa fundidora sicartsa hylsa hylsap

CAPACITY (metric tons)

blast furnaces 3.25 1.40 1.10 0.00 0.00

open hearth furnaces 1.50 0.85 0.00 0.00 0.00

4.42 The Put Writing Facility 1287

basic oxygen converters 2.07 1.50 1.30 0.00 0.00

direct reduction units 0.00 0.00 0.00 0.98 1.00

electric arc furnaces 0.00 0.00 0.00 1.13 0.56

UNUSED CAPACITY (metric tons)

blast furnaces 0.13 0.00 0.00 0.00 0.00

open hearth furnaces 0.00 0.00 0.00 0.00 0.00

basic oxygen converters 0.00 0.72 0.14 0.00 0.00

direct reduction units 0.00 0.00 0.00 0.00 0.39

electric arc furnaces 0.00 0.00 0.00 0.23 0.00

MARGINAL VALUE OF CAPACITY

(US$/ton)

blast furnaces 0.00 69.62 71.69 0.00 0.00

open hearth furnaces 53.76 1.72 2.09 138.03 145.02

basic oxygen converters 64.57 0.00 0.00 138.03 145.02

direct reduction units 0.00 0.00 0.00 80.08 0.00

electric arc furnaces 136.46 138.03 140.00 0.00 94.28

Assume we need the data reported in the first subtable above in a delimited file format in order to import
it to other applications, like spreadsheets or databases. Consider the following code:

file out2 / ’out2.csv’ /;

out2.pc=5;

put out2 ’capacity (metric tons)’;

loop(i, put i.tl);

loop(m,

put / m.te(m);

loop(i, put k(m,i));

);

Note that we set the file attribute page control (.pc) to 5. This means that non-numeric output items will
be quoted and each output item will be delimited with commas. Observe that field widths, alignments and
horizontal cursor relocations were completely avoided. The put file out2.put will contain the following
lines:

"capacity (metric tons)","ahmsa","fundidora","sicartsa","hylsa","hylsap"

"blast furnaces",3.25,1.40,1.10,0.00,0.00

"open hearth furnaces",1.50,0.85,0.00,0.00,0.00

"basic oxygen converters",2.07,1.50,1.30,0.00,0.00

"direct reduction units",0.00,0.00,0.00,0.98,1.00

"electric arc furnaces",0.00,0.00,0.00,1.13,0.56

While a comma is the most commonly used delimiting character, other delimiters like a blank space
(.pc=4) and a tab (.pc=6) may also be used.

For other examples of code that uses the put writing facility, see the various models in the GAMS Model
Library.

1288 User's Guide

4.43 Solver Usage

For the novice GAMS user, solver usage can be very simple: one runs the model and inspects the listing
file to see what the solution is. No knowledge of solver options or solver specific return codes is required.
While this is enough for some users, most will quickly find they need some basic knowledge of how to
control the solver and interpret the results. Section Controlling a Solver via GAMS Options describes
how to set the GAMS options that control a solver. Further, most solvers allow the user to set additional,
solver-specific options. These can be set via a solver specific options file, which will be discussed in Section
The Solver Options File. However, use of generic GAMS options should be preferred, since a GAMS
option setting applies to all solvers and is interpreted by the solvers in a consistent way.

A number of solvers can make use of an initialization of variable and equation values. This will be
discussed in Starting Point and Initial Basis.

Further solver specific topics, which are more interesting for advanced users, are discussed in the Sections
Solve trace and Branch-and-Cut-and-Heuristic Facility (BCH).

For some hints on how to select a solver, see Choosing an appropriate Solver.

4.43.1 Controlling a Solver via GAMS Options

GAMS options can be set on the GAMS command line, e.g.,

$ gams trnsport iterlim = 100

Additionally, they can be set by an option statement within a GAMS model, e.g.,

option iterlim = 100;

Finally, a model attribute can set a GAMS option for an individual model:

mymodel.iterlim = 100;

The model suffix takes precedence over the option statement, which takes precendence over the command
line parameters. If none of these methods is used to set an option, default values apply.

Further, one can unset any model-specific option by assigning it the value NA:

mymodel.iterlim = NA;

Unfortunately, not every option can be via as command line parameter, option statement, and model
attribute. We refer to

• Solver-Related Options for the list of solve-related options that can be set via the command line,

• Options that Control Solver-Specific Parameters and Options that Control the Choice of Solver for
the list of solve-related options that can be set via the option statement, and

• Model Attributes Mainly Used Before Solve for the list of solve-related model attributes.

4.43 Solver Usage 1289

4.43.2 The Solver Options File

To specify solver-specific options, it is necessary to use a solver option file. Two things are required to do
this: one must create an option file having a proper name, and one must tell the solver to read and use
this option file.

To tell a solver to use an option file, one can set the optfile model attribute or the optfile option to a
positive value. For example,

model mymodel /all/;

mymodel.optfile = 1;

solve mymodel using nlp maximizing dollars;

The option file takes its name from the solver being used: solvername.XYZ, where solvername is the
name of the solver that is specified, and the suffix XYZ depends on the value to which optfile has been
set. If its value is 1, the suffix is opt. For example, the option file when calling CONOPT would be called
conopt.opt. See the documentation on optfile for more information.

The format of the options file can change marginally from solver to solver. The following illustrates
some frequent features of the option file format. However, solvers may vary from this format. Thus, the
solver-specific documentation should be checked before using an option file.

• Blank lines in an option file are ignored.

• A comment line might begin with an asterisk (∗) in the first column, is not interpreted by either
GAMS or the solver, and is used purely for documentation.

• Each non-comment line contains only one option specification.

• The format for specifying options is as follows:

keyword(s) [modifier] [value]

The keyword may consist of one or more words and is not case sensitive. The value might be an
integer, a real, or a string. Real numbers can be expressed in scientific format, e.g., 1e-6. Note that
not all options require modifiers or values.

• Any errors in the spelling of keyword(s) or modifiers will lead to that option being misunderstood
and therefore ignored. Errors in the value of an option can result in unpredictable behavior. When
detected, errors are either ignored or pushed to a default or limiting value, but not all can or will be
detected.

Consider the following CPLEX options file,

* CPLEX options file

barrier

crossover 2

The first line begins with an asterisk and therefore contains comments. The first option specifies the use of
the barrier algorithm to solve the linear programming problem, while the second option specifies that the
crossover option 2 is to be used. Details of these options can be found in Summary of CPLEX Options.

Options can also be defined by generating an options file within the GAMS source code. Consider the
following code fragment for using MINOS options file,

1290 User's Guide

Model m /all/;

Option NLP = MINOS;

* MINOS options file

$onecho > minos.opt

scale option 2

completion partial

$offecho

m.OptFile = 1;

Solve m maximizing z using nlp ;

The first option sets the scale option to a value of 2. In this case, the keyword 'scale option' consists of
two words. In the second line, the 'completion' option is set to 'partial'. Details of these options can be
found in Summary of MINOS Options.

4.43.2.1 Dot Options

Dot options in a solver option file allow users to associate values to variables and equations using the
GAMS name of the variables and equations. The general syntax of a dot option in the option file is as
follows:

(variable/equation name).optionname (value)

Dot options can be specified for all, a block, a slice, and a single variable and equation. Please note
that a specific dot option may only apply to variables or equations (e.g. the GAMS/Gurobi dot option
prior applies to variables only). The following example makes the use of the dot option clear.

For example, suppose one has a GAMS declaration:

Set i /i1*i5/;

Set j /j2*j4/;

Variable v(i,j);

Equation e(i,j);

Consider the following lines in an option file with the imaginary option name dotopt:

Line in option file Explanation

variables.dotopt 1 Sets the value of all variables to 1

equations.dotopt 2 Sets the value of all equations to 2

v.dotopt 3 Sets the value of the variables in block v to 3

e.dotopt(∗,∗) 4 Sets the value of the equations in block e to 4

v.dotopt(∗,'j2') 5 Sets the value of the variables v that have j2 in the second index position
(slice) to 5

e.dotopt('i3',∗) 6 Sets the value of the equations e that have i3 in the first index position
(slice) to 6

w.dotopt('i2') 7 Sets the value of the single variables v('i2') to 7

e.dotopt('i3','j3') 8 Sets the value of the single equations e('i3','i3') to 8

The values of the dot option are applied in correspondence to the sequence in which they appear in the
option file. In the current example, the values of dotopt for the equation e would be as follows:

4.43 Solver Usage 1291

e.dotopt i1 i2 i3

j2 4 4 6

j3 4 4 8

j4 4 4 6

4.43.3 Starting Point and Initial Basis

4.43.3.1 Starting Point

NLP solvers that search for a locally optimal solution of a NLP require an initial point to start their
search. Further, the closer this initial point is to a local optimum, the less effort the solver may have to
spend. The latter can also be true for solvers that search for global optimal solutions, such as most LP or
MIP solver or global MINLP solvers.

Because of this immense importance of a starting point, GAMS always passes a starting point to a solver.
By default, the point passed on by GAMS is given by the level and marginal attributes of variables and
equations. If these values have not been set yet, default values are used. This default value is zero, except
for variables whose bounds would forbid this value. In this case, the bound closest to zero is used.

In addition to setting these values explicitly in a GAMS model, a user can also load them from a save file
or a GDX point file via execute loadpoint. The latter may have been generated by running a related
model and using option savepoint. Further, in models with several solve statements, the solution from
one solve, if any, is used to initialize the starting point for a succeeding solve. This happens automatically
since solutions from a solve statements are also stored in the level and marginal values of variables and
equations. Finally, note that model attribute defpoint can be used to force sending the default starting
point to a solver.

For some solvers, in particular for MIP or MINLP, an option may have to be set to make use of the
starting point. Further, some solvers offer the possibility to make use of a partial starting point or use
the starting point as a guide for the search. For details, see the specific solver manuals and look for
parameters like mipstart and the use of the GAMS parameter tryint.

4.43.3.2 Initial Basis

While for some solvers, the values of a starting point are sufficient to initialize the search, active-set
algorithms make use of a different form of starting information. An active-set algorithm tries to identify
which constraints are active (or binding) in a feasible or optimal solution, that is, which variables are
at one of their bounds and for which equations the activity equals the right-hand-side and the marginal
is non-zero. For example, the simplex method for linear programs is an active-set algorithm. The
classification of constraints as either active or inactive is closely linked to a basis. Active constraints are
called nonbasic and inactive constraints are called basic. A basis that specifies the active and inactive
constraints in an optimal solution is called an optimal basis.

Active-set algorithms may start by guessing an initial basis and then iteratively updating this basis until
an optimal basis is found. Solution time may be reduced substantially if a good approximation of the
optimal basis can be identified and passed on to the solver. Such a user-provided initial basis is called
an advanced basis. However, provision of an advanced basis does not always help. For example, the
presolving algorithms used in some solvers may cause the advanced basis to be ignored. Further, solvers
may perform poorly when the advanced basis provided is worse than what the solver would otherwise have
constructed with its own heuristics. Finally, not all algorithms benefit from the provision of an advanced
basis: interior-point algorithms are a notable example.

GAMS provides a hint to the solver to suggest whether a basis can or should be extracted from the initial
point. The hint is based on the number of rows (aka single equations) with nonzero marginals and the
value of the bratio option and is computed internally as:

1292 User's Guide

hint := (0 == bRatio) or (rowsWithNonzeroMarg > nRows * bratio)

While the setting of the variable level and marginal values is important in specifying an advanced basis,
only the marginal values for the rows are relevant in computing the basis hint and in choosing a value
for bratio. For example, in a problem with 1000 rows and with the default value of bratio (0.25), GAMS
would suggest a basis only if at least 250 nonbasic rows exist.

Note that the default starting point - all marginals zero - is usually not sufficient for the construction of
an initial basis. If the automatic transfer of a basis from one solve statement to the next leads to poor
behavior in the solver, setting the option bratio to 1 will cause the basis hint to be false and suppress
the use of an initial basis. Setting the model attribute defpoint to 1 or 2 will achieve the same result.
Conversely, setting bratio to 0 will force the basis hint to be true.

Active-set solvers in GAMS typically use the basis hint value to decide whether to extract (and use) the
advanced basis available in the starting point. Details can vary by solver, but typically it works as follows:

• Variables with a zero level value are suggested to be nonbasic if and only if they have a non-zero
marginal value.

• Variables with a non-zero level value are suggested to be nonbasic if the level value is equal one of
the variable bounds. The marginal values may also be used here: nonbasic variables correspond
with non-zero marginal values.

• Equations with non-zero marginal are suggested to be nonbasic. Otherwise, they are suggested to
be basic.

Thus, a user can attempt to explicitly provide an initial basis by setting a corresponding starting point.
That is, one can set a guess for an initial basis by specifying

• non-zero marginals for equations that are predicted to be active in a solution

• non-zero marginals for variables that are predicted to be at their bound in a solution

• non-zero levels for the variables that are predicted to be non-zero in a solution

4.43.4 Trace Features

Sometimes it might be useful to get certain information about a particular solve statement (or GAMS
job) in a compact and customizable format.

• The Trace file facility allows to create files containing information about the ”end data” of a GAMS
job and the contained solve statements.

• The Solve trace facility can provide more detailed information about the solution progress of a
particular solve statement (e.g. objective value of the incumbent solution or the best dual bound
every five seconds)

4.43 Solver Usage 1293

4.43.4.1 Trace File

The trace file contains information about the ”end data” of a GAMS job and the contained solve
statements. Creation of a trace file can be activated via command line parameter trace (see example
below). The trace feature supports several predefined formatting options, that is differently formatted
trace files can be created, depending on what output information is desired. The trace file format option
can be set via command line parameter traceOpt. The trace file header defines the contained trace records
and the associated trace record fields.

Note

• Trace information is appended to existing trace files in the format of the existing trace
file. That is, if a previous trace file of the same name already exists, then all new trace data
will be appended in the initial format, no matter if the current traceopt value actually implies
a different format.

• Trace file headers can be modified, i.e. the predefined formats can be customized and trace
record fields can be added or removed as needed.

Trace Records

A trace file can contain different types of trace records:

Trace Record Type Meaning

GamsStep A GamsStep refers to a GAMS execution phase (there are potentially multiple
phases of GAMS execution in a single GAMS Job). For example, a trace file
created with traceopt=0 for the [TRNSPORT] model, which contains a
single solve statement, will contain two GamsSteps, one referring top the
GAMS execution phase before the solve statement, the other one referring
to the execution phase after the solve statement. Note that this may change
depending on the setting of solveLink.

GamsExit GamsExit describes the final GamsStep.

GamsSolve GamsSolve describes a trace record referring to a solve statement. If a file
has multiple solve statements, the corresponding trace file can have multiple
GamsSolve trace records.

Trace Record Fields

For every trace record, the trace file can contain multiple fields from the following list.

Name of Field Meaning

CNS CNS solver.

ComputerName Computer name.

Direction Direction of optimization: 0=min, 1=max.

DNLP DNLP solver.

EMP EMP solver.

ETAlg Elapsed time it took to execute the solve algorithm (see corresponding
model attribute etAlg).

ETSolve Elapsed time it took to execute a solve statement in total (see corre-
sponding model attribute etSolve).

1294 User's Guide

Name of Field Meaning

ETSolver Elapsed time taken by the solver only (see corresponding model
attribute etSolver).

GamsCloseDownTime The time it takes to close down GAMS (which partly depends on
command line parameters) including the time to write the file sum-
mary, a GDX file, a (obfuscated) save file, a parameter file.

GamsCompTime Time of the GAMS compilation phase.

GamsElapsedTime Elapsed time since the start of a GAMS run in seconds.

GamsElements Number of labels.

GamsErrorCount Number of compilation and execution errors.

GamsExecTime GAMS execution time.

GamsLineNumber Number of lines. This corresponds to the number of lines in the
echo print of the input file.

GamsReturnCode GAMS return code.

GamsStartupTime The time it takes to start up GAMS including the time to check
and dump command line parameters, initialize certain internal data
structures, loading a work file, reading a license file.

GamsSymbols Number of symbols (also called identifiers) including names of
intrinsic functions and predefined symbols.

GamsTotalTime Total time of the corresponding trace record. Does only apply for
trace records of type GamsStep and GamsExit.

GamsVersionID String that contains a GAMS version ID, e.g. WEX282-282 for the
Windows 64bit version of GAMS 28.2.

InputFileName GAMS model filename.

JobDate Day when the job started.

JobTime Time when the Job started.

JulianDate Julian date number with start day/time of job.

LP LP solver.

Marginals Indicates availability of marginals: 0=no, 1=yes.

MCP MCP solver.

MINLP MINLP solver.

MIP MIP solver.

MIQCP MIQCP solver.

ModelGenerationTime Model generation time. Refers to the last model in the part of the
program that corresponds to the trace record.

ModelName Model name. Refers to the last model in the part of the program that
corresponds to the trace record.

ModelStatus Model status. Refers to the last model in the part of the program
that corresponds to the trace record.

ModelType Model type. Refers to the last model in the part of the program that
corresponds to the trace record.

MPEC MPEC solver.

NLP NLP solve.

NumberOfDiscreteVariables Number of discrete variables. Refers to the last model in the part of
the program that corresponds to the trace record.

NumberOfDomainViolations Number of domain violations (see also model attribute domUsd).

NumberOfEquations Number of equations. Refers to the last model in the part of the
program that corresponds to the trace record.

NumberOfInstructions Length of non-linear code.

NumberOfIterations Number of iterations. Refers to the solve of the last model in the part
of the program that corresponds to the trace record.

4.43 Solver Usage 1295

Name of Field Meaning

NumberOfNodes Number of nodes. Refers to the solve of the last model in the part of
the program that corresponds to the trace record. Only relevant if
some tree search algorithm (e.g. branch-and-bound was used).

NumberOfNonlinearNonZeros Number of non-zeroes. Refers to the last model in the part of the
program that corresponds to the trace record.

NumberOfNonZeros Number of variables. Refers to the last model in the part of the
program that corresponds to the trace record.

NumberOfVariables Number of variables. Refers to the last model in the part of the
program that corresponds to the trace record.

ObjectiveValue Objective value. Refers to the solve of the last model in the part of
the program that corresponds to the trace record.

ObjectiveValueEstimate Estimate of the best possible solution for a mixed-integer model (aka
best bound). Refers to the solve of the last model in the part of the
program that corresponds to the trace record.

OptionFile Solver option file number. Refers to the solve of the last model in the
part of the program that corresponds to the trace record.

Platform Platform ID, e.g. WEX for the Windows 64bit.

QCP QCP solver.

RMINLP RMINLP solver.

RMIP RMIP solver.

RMIQCP RMIQCP solver.

RMPEC RMPEC solver.

SolveLine Line number of the last solve statement in the part of the program
that corresponds to the trace record. This corresponds to the line
number in the echo print of the input file.

SolveNumber Number of solve statement for a particular model. For example, solve
myModelA...; solve myModelB...; solve myModelA...; results
in solve numbers 1, 1, 2.

SolverCalcTime Time spent in function and derivative calculations (deprecated, see
also model attribute resCalc).

SolverElapsedTime Elapsed time taken by the solver when solveLink=0 is used (almost
identical to model attribute etSolver).

SolverID Solver ID number.

SolverName Name of the solver. Refers to the solve of the last model in the part
of the program that corresponds to the trace record.

SolverReadTime Time to import model (deprecated, see also model attribute resIn).

SolverRealTime Elapsed time taken by the solver when solveLink=0 is used (almost
identical to model attribute etSolver).

SolverSignature String containing a solver signature, e.g. IBM ILOG CPLEX 28.2.0

r750fa45 Released Aug 19, 2019 WEI x86 64bit/MS Window.
Refers to the solver used to solve the last model in the part of the
program that corresponds to the trace record.

SolverStatus Solver Status. Refers to the solve of the last model in the part of the
program that corresponds to the trace record.

SolverTime Time used to solve the model in seconds reported by the solver (see
also model attribute resUsd).

SolverVersion Solver Version (see also model attribute sysVer).

SolverWriteTime Time to export solution (deprecated, see also model attribute resOut).

User1 Content of user1 string.

User2 Content of user2 string.

User3 Content of user3 string.

1296 User's Guide

Name of Field Meaning

User4 Content of user4 string.

User5 Content of user5 string.

UserName User name.

Trace Report

GAMS can create trace reports from trace files, if started with command line parameter action=gt.
The following sequence of commands loads model [TRNSPORT] from the GAMS model library, runs
trnsport.gms and creates a tracefile trc.txt, and produces a trace report plus a trace summary from
the trace file.

$ gamslib trnsport

$ gams trnsport trace=trc.txt

$ gams trc.txt a=gt

The trace file trc.txt contains the default trace record fields for the GamsStep and GamsSolve

trace records:

* Trace Record Definition

* GamsStep

* JobDate JobTime InputFileName GAMS GamsVersionID GamsReturnCode GamsErrorCount GamsStartupTime GamsCompTime GamsExecTime GamsCloseDownTime GamsTotalTime "User1"

* GamsSolve

* JobDate JobTime InputFileName ModelType SolverName SolverStatus ModelStatus SolveNumber SolveLine SolverID SolverVersion NumberOfEquations NumberOfVariables NumberOfNonZeros NumberOfNonlinearNonZeros NumberOfInstructions

* NumberOfIterations ModelGenerationTime SolverReadTime SolverCalcTime SolverWriteTime ObjectiveValue "User1"

*

09/25/19 07:04:00 trnsport.gms GAMS WEX282-282 1 0 0.015 0 0 0.016 0.031 ""

09/25/19 07:04:00 trnsport.gms LP CPLEX 1 1 1 64 23 NA 6 7 19 0 0 4 0 NA NA NA 153.675 ""

09/25/19 07:04:00 trnsport.gms GAMS WEX282-282 0 0 0 0 0 0 0 ""

The trace summary trc.sum contains condensed information about the trace records:

Trace Summary with TL=0 for [...]\trc.txt

Trace Records = 3, Error Records = 0, First Date = 09/25/19 07:04:00

The trace report is created in trc.lst and contains detailed information about the trace records from
the underlying trace file including a ModelSolveStat matrix that assigns a score from 0 to 9 to all
potential combinations of model status and solver status:

[...]

Trace Report for File: [...]\trc.txt

Using ModelSolveStat for TL=0

1 2 3 4 5 6 7 8 9 10 11 12 13

1 9

2 9 9 9 9 9 . . 9

3 9

4 9

5 9

4.43 Solver Usage 1297

6 . 5 5 5 5 . . 5

7 9 9 9 9 9 . . 9

8 9 9 9 9 9 . . 9

9 . 5 5 5 5 . . 5

10 9

11 5

12 3 . 3

13 3 3 . 3 .

14 4 4 4 4 4 6 . 4 . . . 3 .

15 9

16 9

17 9

18 9

19 9

Marked trace records are listed below:

Record Date Time Filename Type Solver Message

* Trace Record Definition

* GamsStep

* JobDate JobTime InputFileName GAMS GamsVersionID GamsReturnCode GamsErrorCount GamsStartupTime GamsCompTime GamsExecTime GamsCloseDownTime GamsTotalTime "User1"

* GamsSolve

* JobDate JobTime InputFileName ModelType SolverName SolverStatus ModelStatus SolveNumber SolveLine SolverID SolverVersion NumberOfEquations NumberOfVariables NumberOfNonZeros NumberOfNonlinearNonZeros NumberOfInstructions

* NumberOfIterations ModelGenerationTime SolverReadTime SolverCalcTime SolverWriteTime ObjectiveValue "User1"

*

First time stamp = 09/25/19 07:04:00

Last time stamp = 09/25/19 07:04:00

Total trace records = 3

Total comment records = 7

Total GAMS records = 2 all return codes

1 RC= 0 Normal completion

1 RC= 1 Executing subsystem

Time (sec) total mean

start 0.01 0.01

compile 0.00 0.00

execute 0.00 0.00

closedown 0.02 0.01

total 0.03 0.02

Total SOLVE records = 1 all return codes

solvestatus 1 RC= 1 1 Normal Completion

modelstatus 1 RC= 1 1 Optimal

Numbers total mean

equations 6 6.00

variables 7 7.00

1298 User's Guide

nonzeros 19 19.00

nonlinear 0 0.00

instruction 0 0.00

equations 6 6.00

Time (sec) total mean

generation 0.00 0.00

input 0.00 0.00

calculation 0.00 0.00

output 0.00 0.00

total solve 0.00 0.00

SOLVESTAT Cross Tabulation

1 2 3 4 5 6 7 8 9 10 11 12 13 tot

LP 1 1

total 1 0 0 0 0 0 0 0 0 0 0 0 0 1

MODELSTAT Cross Tabulation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 tot

LP 1 1

total 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

GTRACE TIME = 0.000 SECONDS VERID WEX282-282

[...]

The trace report may be particularly interesting, if the underlying trace file contains multiple trace records
from different solve statements. In combination with command line parameter traceLevel, it is easy to
filter for GamsSolve trace records with a low ModelSolveStat score, i.e. undesirable combinations of
model status and solver status. If we run [TRNSPORT] again with an iteration limit of 0 (remember
that the trace information will be appended to the trace file from the example above) and recreate the
trace report as follows

$ gams trnsport trace=trc.txt iterlim=0

$ gams trc.txt a=gt

the trace report shows two solve records and the obtained statuses:

Total SOLVE records = 2 all return codes

solvestatus 1 RC= 1 1 Normal Completion

solvestatus 1 RC= 2 2 Iteration Interrupt

modelstatus 1 RC= 1 1 Optimal

modelstatus 1 RC= 6 6 Intermediate Infeasible

A look at the ModelSolveStat matrix from the initial example, tells us that a combination of model
status 6 (Intermediate Infeasible) in combination with solve status 2 (Iteration Interrupt) results in a
score of 5. If we increase the traceLevel to a value greater than or equal to 5 and recreate the trace report
again, e.g. via

$ gams trc.txt a=gt tracelevel=5

4.43 Solver Usage 1299

the ModelSolveStat matrix at the beginning of the trace report changes such that only the scores greater
than 5 for accepted combinations of model and solver status are shown

Using ModelSolveStat for TL=5

1 2 3 4 5 6 7 8 9 10 11 12 13

1 9

2 9 9 9 9 9 . . 9

3 9

4 9

5 9

6

7 9 9 9 9 9 . . 9

8 9 9 9 9 9 . . 9

9

10 9

11

12

13

14 6

15 9

16 9

17 9

18 9

19 9

and GAMS throws an execution error

--- Starting trace report generation

*** Status: Execution error(s)

The trace file facility in combination with the trace report can be particularly useful for automated quality
assurance tests where certain expected outcomes should be audited.

4.43.4.2 Solve trace

In order to do accurate performance evaluations it may be useful to obtain more detailed information
about a solve than the ”end data” that the trace file provides. E.g., for a branch-and-bound based solver,
one may want to have intermediate information about the values of primal and dual bounds at the root
node and subsequent nodes within the search.

The solve trace option that is implemented in some of the GAMS solver interfaces allows users to output
solve information, e.g., primal and dual bounds, for every n nodes or at every time step. For example, the
user may be interested in the objective value of the incumbent solution or the best dual bound on the
optimal value every 50 nodes and every five seconds of the solve.

Note

The solve trace file format and options may change in a future GAMS release.

The solve trace option is invoked via a GAMS solver options file. Usually, options to specify a filename of
the trace file to be created and options to specify time and node intervals are available. Please refer to
the GAMS solver manuals for the exact names of these options (search for solvetrace or miptrace).

The solve trace file is written in comma-separated-value (CSV) format, where the entries in each line have
the following meaning:

1300 User's Guide

Column Name Meaning

lineNum a line index

seriesID indicator why the line was written: S = start of search, N = node frequency, T =
time frequency, E = end of search

node number of enumerated branch-and-bound nodes

seconds time since the solving started

bestFound primal bound, i.e., objective value of incumbent solution

bestBound dual bound, i.e., bound on optimal value

A sample solve trace file including statistics of a GAMS run using the MIP model [DICE] and the solver
XPRESS looks as follows:

* miptrace file miptrace.mtr: ID = XPRESS.1 Instance = dice

* fields are lineNum, seriesID, node, seconds, bestFound, bestBound

1, S, 1, 0.078, na, na

2, N, 101, 0.781, 21, 23.9369

3, N, 201, 0.875, 21, 23.5564

4, N, 304, 1.031, 21, 23.5564

5, E, 399, 1.094, 21, 21

* miptrace file miptrace.mtr closed

See also the slides for the presentation Advanced Use of GAMS Solver Links (2013) and the
accompanying scripts for some ideas on what to do with the solve trace functionality.

4.43.5 Branch-and-Cut-and-Heuristic Facility (BCH)

Global search algorithms can sometimes significantly benefit from user supplied routines that support the
solution process of an hard optimization problem. For example, branch-and-cut solvers (e.g., CPLEX,
Gurobi, SCIP, Xpress) can profit from user-supplied cutting planes or good feasible solutions. GAMS users
could supply these as part of the model given to the solver, by adding a set of constraints representing
likely to be violated cuts and an initial solution (possibly in combination with GAMS parameters like tryint
and solver-specific options like mipstart in CPLEX). However, this does not allow a dynamic interaction
between a running solver and user supplied routines that, for example, use a current relaxation solution to
construct cutting planes or feasible solutions. The GAMS Branch-and-Cut-and-Heuristic (BCH) facility
attempts to automate all major steps necessary to make callbacks that certain solvers provide for such
usage available to the GAMS user. This allows GAMS users to apply complex solution strategies without
having to have intimate knowledge about the inner workings of a specific solver.

Currently, only two solvers support the BCH facility: CPLEX and SBB. With GAMS/CPLEX,
user supplied GAMS programs that implement primal heuristics and cut generation can be used. With
SBB, only primal heuristics are possible.

As the name indicates, the BCH facility has been designed with the solving process of a branch-and-cut
solver (e.g., CPLEX, Gurobi, SCIP, Xpress) in mind. Such solvers often allow to call a user supplied
routine after a node in the branch-and-bound (B&B) tree has been processed. Within that routine,
available information like the solution of a relaxation (often an LP or NLP) at that node and the current
incumbent, if any, is exported by the BCH facility into a GDX file using the original GAMS namespace.
Next, different user supplied GAMS programs can be called, e.g., for finding cuts which are violated by the
relaxation solution (cut generator) or to find new incumbents (primal heuristic). These GAMS programs
should import the information from the GDX file and do their computations. After termination, the BCH
facility resumes control, reads the findings from the GAMS program and passes them to the solver.

https://www.gams.com/archives/presentations/ics2013_sl.pdf
https://www.gams.com/archives/presentations/ics_santafe2013_solvetrace.zip
https://www.gams.com/archives/presentations/ics_santafe2013_solvetrace.zip

4.43 Solver Usage 1301

A relaxation solution may be exported into a file bchout.gdx by the BCH facility. This GDX file does
not only contain the variable values as level values (.l), but also variable bounds (.lo and .up). For
a B&B solver, these are the local bounds at this node. Hence, they reflect branching decisions made
in the B&B tree and bound tightenings that were deduced by the solver. In a similar way, the BCH
facility may export an incumbent solution to the GDX file bchout i.gdx. The bounds for the incumbent
solution reflect global bounds, i.e., the original bounds, possibly tightened by the solver. GDX files can be
imported by the GAMS program using the compile time $load or run time execute load.

The BCH facility is activated and controlled by setting certain options in the solvers options file. The
precise names and meanings of the options may vary from one solver to another. Therefore, also the
corresponding GAMS solver manual should be checked. The options that come with the BCH facility can
be used to define the calls of the users GAMS programs, to determine when they should be called, and to
overwrite the filenames for the GDX files (to avoid name clashes). General BCH related options are the
following:

Name Description Default

UserGDXIn The name of the GDX file read back into the solver. bchin.gdx

UserGDXName The name of the GDX file exported from the solver with the
solution at the node.

bchout.gdx

UserGDXNameInc The name of the GDX file exported from the solver with the
incumbent solution.

bchout i.gdx

UserGDXPrefix Prefix to add to UserGDXIn, UserGDXName, and UserGDXNameInc empty

UserJobID
Postfix to add to listing and log filenames and to UserGDXIn,
UserGDXName, and UserGDXNameInc. Further, --UserJobID is
added to calls to users GAMS programs.

empty

UserKeep Calls users GAMS programs with gamskeep instead of gams. The
use of gamskeep will preserve the scratch directory similar to the
command line option keep

0

In the following, the interface for the available callbacks are explained in more detail and corresponding
options are listed.

4.43.5.1 Primal Heuristics

In the primal heuristic callback, the user can provide a GAMS program which tries to construct a feasible
solution based on the information provided by the solver, e.g., a current relaxation solution and the
current incumbent. Thus, the GAMS program could attempt to repair infeasibilities in the relaxation
solution or try to improve the incumbent from the solver.

If the GAMS program finds a new solution, it should store it in the level values of variables that correspond
to the original variables. For example, if the original model uses binary variable open(i,t), then at the
end of the GAMS program open.l(i,t) should contain a 0 (zero) or a 1 (one). The BCH facility calls
the GAMS program and instructs GAMS to store the results in a GDX file at termination. This GDX file
is then read in again by the BCH facility and the solution is passed back to the solver. The solver checks
this solution for infeasibilities and in case this check is passed and the solution is better than the best
known solution, the solver updates it's incumbent.

If the GAMS program cannot find a feasible solution, it can terminate with an execution error triggered
by an abort statement to prevent the BCH facility from reading the results from the heuristic run.

BCH parameters to control the primal heuristic call are typically the following:

Name Description Default

UserHeurFreq Determines the frequency of the heuristic call. 10

1302 User's Guide

Name Description Default

UserHeurMult Determines the multiplier for the frequency of the heuristic
call.

2

UserHeurInterval
Determines the interval when to apply the multiplier for the
frequency of the heuristic call. For example, for the first
100 (UserHeurInterval) nodes, the solver calls the heuris-
tic every 10th (UserHeurFreq) node. After 100 nodes, the
frequency gets multiplied by 10 (UserHeurMult), so that for
the next 100 nodes the solver calls the heuristic every 20th
node. For nodes 200-300, the heuristic get called every 40th
node, for nodes 300-400 every 80th node and after node 400
every 100th node.

100

UserHeurFirst For how many of the first nodes the heuristic should be called. 10

UserHeurObjFirst Similar to UserHeurFirst, but specifices for how many of
the first nodes the heuristic should be called if the optimal
value of the current nodes relaxation promises a significant
improvement of the current incumbent, i.e., the optimal value
of the relaxation at the node has to be closer to the current
dual bound than the current primal bound.

solver dependent

UserHeurNewInt Whether to calls the heuristic when the solver found a new
feasible solution.

no

UserHeurCall Arguments to the GAMS call to invoke the heuristic GAMS
program.

empty

As an example, for the Oil Pipeline Network Design problem, the BCH options to invoke the primal
heuristic in the GAMS program bchoil h.inc when using GAMS/CPLEX could be

userheurcall bchoil_h.inc mip cplex optcr 0 reslim 10

userheurfirst 5

userheurfreq 20

userheurinterval 1000

4.43.5.2 Cutting Planes

In the cut generator callback, the user can provide a GAMS program which tries to find a linear cut (that
is, a linear inequality) that is violated by the relaxation solution. The solver would then add these cuts to
it's cut pool. Typically, it then resolves the relaxation at the node and calls the cut generator again. If no
cutting planes are found, the solver will continue, e.g., by processing the next node. Please note that the
solver cannot perform validity checks on the provided cuts. Hence, it is possible to cut off areas of the
feasible region, including optimal solutions.

Exporting cuts is a little more complicated than a solution because next to the cut coefficients, also the
sense and the right-hand-side of the cut inequality needs to be exported. Further, exporting several cuts
with one call should be possible. For this purpose, the GAMS program has to define and fill a set cc and
parameters numcuts, rhs c(cc), and sense c(cc) appropriately. The set cc is used as a cut index. It
can be larger than the number of actually generated cuts.

Note

The elements of the cut index set must form a series of integers starting at 1 (1, 2, 3,...).

Parameter numcuts should specify the number of added cuts. rhs c(cc) should store the right-hand-side
of each cut. Finally, sense c(cc) should store the sense of each cut, which must be 1 for lower-equal (≤),
2 for equal (=, rather unusual for cuts), and 3 for greater-equal (≥). The corresponding declaration in
GAMS code may be

4.43 Solver Usage 1303

$set MaxCuts 100

Set cc ’cuts’ / 1 * %MaxCuts% /;

Parameters numcuts ’number of cuts to be added’ / 0 /

rhs_c(cc) ’cut rhs’

sense_c(cc) ’the sense of the cuts’;

The only thing missing are the cut coefficients. As it should be possible to return more than one cut,
using variable attributes like level values is not sufficient. Therefore, for each variable that is part of a
cut, a new parameter must be added in the GAMS program. The name of the parameter must be the
name of the corresponding variable with an additional c at the end. Further, the parameter must be
indexed like the variable, but with the cut index set cc added at the beginning. For example, assume
variable open(i,t) should be part of a cut. Then the cut coefficients should be stored in a parameter
open c(cc,i,t), e.g.,

Parameter open_c(cc,i,t) ’coefficients of variable open(i,t) in cut cc’;

The BCH facility reads all parameters that end in c, takes the base name and looks for a variable with
that name and indices and builds up the cut matrix. A cut cannot introduce a new variable into the
model. All cuts added to the model are assumed to be global cuts, that is, they need to be valid for the
entire problem, not just for the current node.

BCH parameters to control the cut generation call are typically the following:

Name Description Default

UserCutFreq Determines the frequency of the cut generator call. 10

UserCutMult Determines the multiplier for the frequency of the cut generator call. 2

UserCutInterval Determines the interval when to apply the multiplier for the frequency
of the cut generator call. See UserHeurInterval for details.

100

UserCutFirst Calls the cut generator for the first n nodes. 10

UserCutNewInt Whether to call the cut generator if the solver found a new integer
feasible solution.

no

UserCutCall Arguments to the GAMS call to invoke the cut generator GAMS
program.

empty

As an example, for the Oil Pipeline Network Design problem, the BCH options to invoke the cut generator
in the GAMS program bchoil c.inc when using GAMS/CPLEX could be

usercutcall bchoil_c.inc mip cplex

usercutfirst 0

usercutfreq 0

usercutnewint yes

4.43.5.3 Incumbent Callbacks

The incumbent callbacks can be used to execute a GAMS program when the solver found a new feasible
solution that improves the incumbent. Additionally, the incumbent check callback UserIncbCall can be
used to notify the solver whether the given feasible solution should be accepted by the solver. This allows
to implement a filtering mechanism that forces a solver to search for additional solutions even though an
optimal solution might have been found already. Furthermore, the callback UserLazyConCall allows to
add lazy constraints after an incumbent has been found.

The following parameters control the incumbent callbacks:

1304 User's Guide

Name Description Default

UserIncbCall
Arguments to the GAMS call to invoke the incumbent checking GAMS
program. The incumbent is rejected if the GAMS program terminates
normally. In case of a compilation or execution error, the incumbent
is accepted.

empty

UserIncbICall
Arguments to the GAMS call to invoke the incumbent reporting
GAMS program.

empty

UserLazyConCall
Arguments to the GAMS call to invoke the lazy constraint adding
GAMS program. Lazy constraints that cut off the incumbent are
expected (in a format similar to UserCutCall) if the GAMS program
terminates normally. In case of a compilation or execution error, the
incumbent is accepted.

empty

4.43.5.4 Examples

The GAMS model library contains a few examples to show to use the BCH facility:

• bchtlbas.gms : Trim Loss Minimization with Heuristic using BCH Facility This model
implements a very simple LP/MIP based primal heuristic for the trimloss minimization problem.

• bchfcnet.gms : Fixed Cost Network Flow Problem with Cuts using BCH Facility This
model implements simple but difficult to separate cuts for a network design problem. The global
solver BARON is used to find violated cuts by solving a non-convex MINLP.

• bchmknap.gms : Multi knapsack problem using BCH Facility This model implements
simple cover inequalities for the multi-knapsack problem.

• bchoil.gms : Oil Pipeline Design Problem using BCH Facility This is the most complex
example. It implements three different primal heuristics: an initial heuristic based on a simplified
cost structure, a rounding heuristic, and a local branching heuristic. In addition, complex cuts are
generated by solving regionalized versions of the original problem.

• dicegrid.gms : MIP Decomposition and Parallel Grid Submission - DICE Example
This example uses many of the UserJobID option to rename files, since running multiple jobs in
parallel requires the use of different filenames. This example also uses the incumbent reporting call
UserIncbICall.

• solnpool.gms : Cplex Solution Pool for a Simple Facility Location Problem This example
uses the incumbent checking call UserIncbCall as an advanced filter for accepting or rejecting
solutions found by CPLEX.

4.43.6 Choosing an appropriate Solver

For any of the GAMS problem classes (LP, MCP, MINLP, ...), there is no solver that is best on every
problem instance. Below, we provide some links to rules of thumb on choosing a solver or solver
comparisons.

• GAMS Blog: An Overview of Math Programming Solvers

• T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. Bixby, E. Danna, G. Gamrath, A.
Gleixner, S. Heinz, A. Lodi, H. Mittelmann, T. Ralphs, D. Salvagnin, D. Steffy, K. Wolter, MIPLIB

2010, Mathematical Programming Computations, 3:2 (2011) 103-163. preprint

• M. Bussieck and S. Vigerske, MINLP Solver Software (2014).

• SNOPT vs. IPOPT: P. Gill, M. Saunders, E. Wong, On the Performance of SQP Methods for

Nonlinear Optimization, 2015

• H. Mittelmann: Decision Tree for Optimization Software and Benchmarks for

Optimization Software

https://www.gams.com/blog/2022/09/an-overview-of-math-programming-solvers/
http://mpc.zib.de/index.php/MPC/article/view/56/28
http://mpc.zib.de/index.php/MPC/article/view/56/28
http://nbn-resolving.de/urn:nbn:de:0297-zib-12953
https://www.gams.com/~svigerske/publications/minlpsoft.pdf
http://doi.org/10.1007/978-3-319-23699-5_5
http://doi.org/10.1007/978-3-319-23699-5_5
http://plato.asu.edu/guide.html
http://plato.asu.edu/bench.html
http://plato.asu.edu/bench.html

4.43 Solver Usage 1305

4.43.6.1 Relative Merits of MINOS and CONOPT

How to choose between MINOS and CONOPT

It is almost impossible to predict how difficult it is to solve a particular model. The best and most reliable
way to find out which solver to use is to try out both. However, there are a few rules of thumb:

CONOPT 3 is well suited for models with very non-linear constraints. If you experience that MINOS has
problems achieving feasibility during the optimization, you should try CONOPT. On the other hand, if
your model has few nonlinearities outside the objective function, MINOS and QUADMINOS is probably
the best solver.

CONOPT is has a fast method for finding a first feasible solution that is particularly well suited for
models with few degrees of freedom (this means: the number of variables is approximately the same as the
number of constraints - in other words, models that are almost square). In these cases CONOPT is likely
to outperform MINOS while for models with many more variables than equations MINOS is probably
more suited.

CONOPT has a preprocessing step in which recursive equations and variables are solved and removed
from the model. If you have a model where many equations can be solved one by one, CONOPT will take
advantage of this property. Similarly, intermediate variables only used to define objective function terms
are eliminated from the model and the constraints are moved into the objective function.

CONOPT has many built-in tests (e.g. tests for detecting poor scaling). Many models that can be
improved by the modeler are rejected with a constructive message. CONOPT is therefore a useful
diagnostic tool during model development even if another solver is used for the production runs.

Why serious NLP modelers should have both MINOS and CONOPT

It is almost impossible to predict how difficult it is to solve a particular model. However, if you have
two solvers, you can try both. The overall reliability is increased and the expected solution time will be
reduced.

On a test set of 196 large and difficult models, many poorly scaled or without initial values, both MINOS
and CONOPT failed on 14 models. However only 4 failed on both MINOS and CONOPT. So the reliability
of the combined set of solvers is much better than any individual solver.

Many examples of poorly formulated models were observed on which MINOS failed. CONOPT rejected
many of the models, but with diagnostic messages pinpointing the cause of the problem. After incorporating
the changes suggested by CONOPT, both MINOS and CONOPT could solve the model. Switching
between the two solvers during the initial model building and debugging phase can often provide useful
information for improving the model formulation.

Special Offer for two NLP Solvers

In order to encourage modelers to have two NLP solvers, GAMS offers a 50% discount on the second
solver when both MINOS and CONOPT are purchased together.

1306 User's Guide

4.43.6.2 PATH versus MILES

This document describes some of the differences between the MCP solvers PATH and MILES. MILES
is a free solver, that comes with the GAMS/BASE module, while PATH is an optional solver, that is
charged for separately.

PATH and MILES are two GAMS solvers capable of solving mixed nonlinear complementarity problems
(MCP). Both solvers are based on the sequential linear complementarity algorithm, i.e., they both solve a
sequence of linear mixed complementarity problems whose solutions typically converge to the solution
of the MCP. To solve each of the linear subproblems (major iterations), both codes use a generalization
of an algorithm due to Lemke that is based on a sequence of pivots (minor iterations) similar to those
generated by the simplex method for linear programming. To do these pivots efficiently, both codes use
the same sparse linear algebra package.

As a result of the above similarities, the performance of the two codes is comparable for many ”easy”
models. Viewed over a broad range of problems, however, PATH is typically faster and more robust than
MILES. While both codes solve all the MCP and MPSGE models in GAMSLIB, PATH significantly
outperforms MILES on the MCPLIB test collection found at CPNET.

Most sophisticated MCP and MPSGE modelers prefer to use PATH over MILES. PATH has a crashing
scheme that allows it to quickly improve the user given starting point before starting to solve the linear
subproblems. This frequently speeds up solution time. PATH automatically attempts to fix ”singular”
models using a technique based on proximal perturbations. In many cases, this enables the linear
subproblems to be solved, leading to a model solution. This typically helps modelers at model development
time.

PATH has many more solution options to enable it solve difficult models. The code automatically tries
useful options on difficult problems using a restart procedure. PATH has a much more sophisticated
”globalization” procedure that typically improves speed and robustness. PATH implements a nonmonotone
watchdog technique. Stalling is frequently circumvented by allowing larger steps to be taken toward
solutions.

PATH has many more diagnostic features that help uncover problems in a model. In particular, singularities
in the model, zero rows and columns and several measures of optimality are returned to the user.
Theoretically, PATH has better convergence properties than MILES. In particular, new merit functions
are known to allow more reliable and faster convergence.

4.44 The Save and Restart Feature

GAMS saves the information provided in input files in intermediate - mostly binary - files, called work
files or scratch files. Some of these files are used to exchange information between GAMS and the solvers.
They are usually deleted just before a GAMS run is complete. However, these intermediate files may be
used to process an input file, save the result and later reload this file and continue with processing another
input file. Thus, input files may be processed sequentially through the use of the intermediate files. This
is a useful feature that can help to reduce the required time when, e.g., several runs of similar models are
being made, all of them sharing an equal large initialization part.

The same process may be described in a different way. Assume a large GAMS program is run and an
output file is generated, as usual. Suppose the large program is split in two parts. The first part is run
and the resulting work file is saved along with the resulting listing file. Then the second part is run after
reading in the data from the work file saved previously and a new listing file is generated for the second
part. The content of the two listing files will be the same as the content of the output from the very first
run when the large program was processed without interruption. Only the arrangement of the content will
slightly differ. Splitting the files makes it possible to interrupt a GAMS task and restart it later without
loss of information. Furthermore, changes could be made or errors corrected in the later parts.

4.44 The Save and Restart Feature 1307

Note

• The work file preserves all information (including declarations, values, option settings and
dollar control options) known to GAMS at the end of the run.

• The work file is not machine specific and thus is portable between platforms. However, a work
file that has been generated with one version of GAMS cannot be used for a restart with an
older GAMS version (unless command line parameter forceWork is set).

• Absolute or relative path names (e.g. for put files) that do not exist or have the wrong directory
separator may cause execution errors. Moreover, if the code in the work file executes a program
that might not exist on another platform (e.g. gdxxrw on Linux) the GAMS execution might
also result in execution errors.

This chapter illustrates the basics of the save and restart feature in Section Basic Usage and presents some
use cases in Section Use Cases. Preventing unauthorized access to and obfuscating the content of work files
is discussed in Sections Secure Work Files and Obfuscated Work Files, respectively. An overview of all
command line parameters for saving and restarting in GAMS is given in Section Save and Restart Options
(chapter The GAMS Call and Command Line Parameters).

4.44.1 Basic Usage

The mechanism to break up the compilation of a large input file into many components and stages is
provided by the command line parameters save and restart.

The following demonstrates saves and restarts with the well known transportation model [TRNSPORT].
First, the code is split into three parts, resulting in the files tranmodel.gms, transolve.gms, and
tranreport.gms. The file tranmodel.gms contains the first part of the model up to and including the
model statement:

Sets

i "canning plants" / seattle, san-diego /

j "markets" / new-york, chicago, topeka / ;

Parameters

a(i) "capacity of plant i in cases"

/ seattle 350

san-diego 600 /

b(j) "demand at market j in cases"

/ new-york 325

chicago 300

topeka 275 / ;

Table d(i,j) "distance in 1000 miles"

new-york chicago topeka

seattle 2.5 1.7 1.8

san-diego 2.5 1.8 1.4 ;

Scalar f "freight in dollars/case per 1000 miles" /90/ ;

Parameter c(i,j) "transport cost in $1000/case" ;

c(i,j) = f * d(i,j) / 1000 ;

Variables

x(i,j) "shipment quantities in cases"

z "total transportation costs in 1000$" ;

1308 User's Guide

Positive Variable x ;

Equations

cost "define objective function"

supply(i) "observe supply limit at plant i"

demand(j) "satisfy demand at market j" ;

cost .. z =e= sum((i,j), c(i,j)*x(i,j)) ;

supply(i) .. sum(j, x(i,j)) =l= a(i) ;

demand(j) .. sum(i, x(i,j)) =g= b(j) ;

Model transport /all/ ;

The file transolve.gms contains the solve statement:

solve transport using lp minimizing z;

And the third file, tranreport.gms, contains the display statement:

display x.l, x.m ;

Observe that concatenating the three files (in the right order) results in the original model [TRNSPORT].

4.44.1.1 Saving The Work File

The information in tranmodel.gms may be stored by using the following call to GAMS:

> gams tranmodel save=s1

This command line statement creates the output file tranmodel.lst and the work file s1.g00 in the
current working directory.

Note that the command line parameter s is a synonym to save.

4.44.1.2 Restarting from the Work File

Consider the following call:

> gams transolve restart=s1

GAMS reads the work file named s1.g00 and regenerates the information stored in tranmodel.gms. Then
transolve.gms is run and the result is as if the a concatenation of tranmodel.gms and transolve.gms

had been executed. Note, that the output file tranmodel.lst will contain the echo print of the model
and transolve.lst will contain the echo print of the solve statement and all the output generated by
the solve.

Note that the command line parameter r is a synonym of restart.

Observe that a restarted run always requires a GAMS input file to continue with. The restart does not
alter work files. They may be used repeatedly to continue a particular run many times, possibly with
many different continuation input files.

4.44 The Save and Restart Feature 1309

4.44.1.3 A Sequence of Saves and Restarts

In case there are more than two files that should be run sequentially, the second and any other non-final
run will have to generate input files for a following restart. Therefore, their workfiles need to be saved.

Following the splitup of model [TRNSPORT] into the three files tranmodel.gms, transolve.gms,
and tranreport.gms, a sequence of GAMS calls that would run the whole trnsport model could be as
follows:

> gams tranmodel s=s1

> gams transolve r=s1 s=s2

> gams tranreport r=s2

The listing file of tranreport.gms will contain the compilation output with the echo print of the display
statement, the final execution summary with the output generated from the display statement and the file
summary. The listing files of all three input files together will have the same content as trnsport.lst

(generated by a run of trnsport.gms).

Observe that the three files could also have been processed with a sequence of $include file statements.
The advantages of using the save and restart feature instead are given in section Use Cases below.

4.44.1.4 Avoiding Common Mistakes

A common mistake that occurs when using the save and restart feature is running GAMS on the same file
twice, e.g.,

> gams trnsport s=trans

> gams trnsport r=trans

In this case all the data and equation definitions are repeated, which will cause compilation errors for the
second run as in GAMS each data item may be defined only once.

Further, it is the responsibility of the modeler to ensure that the contents of the input file matches that of
the work file, although the compiler will issue errors if it detects any inconsistencies, such as references to
symbols not previously declared.

4.44.1.5 Prefixing Symbols in the Work File

Assume writing some reporting code that works off a restart file and new symbol names that have not
been used in the previous program are required. GAMS offers a convenient and systematic way to achieve
this by prefixing all symbols in the work file with a specified string. Consider the following example, again
using the transportation model [TRNSPORT]:

> gams trnsport s=prefixed symPrefix=aa_

This solves the model and saves the work file prefixed.g00. The command line parameter symPrefix has
the effect that all symbols in the work file are prefixed with aa . For the next step, consider the following
simple reporting code, saved in a file called report.gms:

1310 User's Guide

Scalar i / 0 /;

loop(aa_i, i = i+1);

display ’number of canning plants’, i;

Note that this code will be run with a restart from the work file prefixed.g00. Therefore, the looping set
aa i is identical to the set i in the model [TRANSPORT]. Since all symbols from the original model
have been prefixed, convenient symbol names can be used for reporting purposes. The run of report.gms
is achieved by the following call:

> gams report r=prefixed

The resulting listing file contains the following output:

---- 76 number of canning plants

PARAMETER i = 2.000

4.44.2 Use Cases

The basic function of a work file is to preserve information that has been expensive to produce. The
following discusses several use cases for work files.

4.44.2.1 Separation of Model and Data

The separation of model and data is one of the core principles of the GAMS modeling paradigm. Using
the save and restart feature helps to exploit this separation.

Separation of model and data will be illustrated on the transportation model [TRNSPORT]. First,
consider a GAMS file transportmodel.gms which contains only the algebraic representation of the
transportation problem, obtained by removing all data and execution statements from [TRNSPORT]:

Sets i canning plants

j markets ;

Parameters a(i) "capacity of plant i in cases"

b(j) "demand at market j in cases"

c(i,j) "transport cost in 1000$/case"

d(i,j) "distance in 1000 miles" ;

Scalar f "freight in $/case per 1000 miles" ;

Variables x(i,j) "shipment quantities in cases"

z "total transportation costs in 1000$" ;

Positive Variable x ;

Equations cost "define objective function"

supply(i) "observe supply limit at plant i"

demand(j) "satisfy demand at market j" ;

cost .. z =e= sum((i,j), c(i,j)*x(i,j)) ;

supply(i) .. sum(j, x(i,j)) =l= a(i) ;

demand(j) .. sum(i, x(i,j)) =g= b(j) ;

Model transport /all/ ;

4.44 The Save and Restart Feature 1311

Second, consider a GAMS file transportdata.gms that contains the data of the model as well as the
solve and display statements:

Sets i / seattle, san-diego /

j / new-york, chicago, topeka / ;

Parameters a(i) / seattle 350

san-diego 600 /

b(j) / new-york 325

chicago 300

topeka 275 / ;

Table d(i,j)

new-york chicago topeka

seattle 2.5 1.7 1.8

san-diego 2.5 1.8 1.4 ;

Scalar f / 90 / ;

c(i,j) = f * d(i,j) / 1000 ;

Solve transport using lp minimizing z ;

Display x.l, x.m ;

The second file (transportdata.gms) cannot be run alone as the definition of model transport is missing.
However, one may first run the first file (transportmodel.gms) and save its work file. Then one can
restart from this work file to run the second file:

> gams transportmodel.gms s=transmod

> gams transportdata.gms r=transmod

4.44.2.2 Advanced Separation of Model and Data

In the previous example some execution time statements namely the assignment of c, the solve, and
the display where performed in the data file. If the model execution logic is more complex we do
not want to add this to the data file. Hence we create in this example a restart file from this first file
but will only compile, but not execute (see difference between compile and execute phases in section
GAMS Compile Time and Execution Time Phase):

$onEmpty

Sets i(*) canning plants / /

j(*) markets / / ;

Parameters a(i) "capacity of plant i in cases" / /

b(j) "demand at market j in cases" / /

c(i,j) "transport cost in 1000$/case"

d(i,j) "distance in 1000 miles" / /;

Scalar f "freight in $/case per 1000 miles" / 0 /;

c(i,j) = f * d(i,j) / 1000 ;

Variables x(i,j) "shipment quantities in cases"

z "total transportation costs in 1000$" ;

1312 User's Guide

Positive Variable x ;

Equations cost "define objective function"

supply(i) "observe supply limit at plant i"

demand(j) "satisfy demand at market j" ;

cost .. z =e= sum((i,j), c(i,j)*x(i,j)) ;

supply(i) .. sum(j, x(i,j)) =l= a(i) ;

demand(j) .. sum(i, x(i,j)) =g= b(j) ;

Model transport /all/ ;

Solve transport using lp minimizing z ;

Display x.l, x.m ;

Second, we consider a file that contains the data of the model but no other execution time statements.
Because we already have empty data statements (/ /) for the data items in the first file, we need to
instruct the compiler to allow a second data statement with the real data using $onMulti:

$onMulti

Sets i / seattle, san-diego /

j / new-york, chicago, topeka / ;

Parameters a(i) / seattle 350

san-diego 600 /

b(j) / new-york 325

chicago 300

topeka 275 / ;

Table d(i,j)

new-york chicago topeka

seattle 2.5 1.7 1.8

san-diego 2.5 1.8 1.4 ;

Scalar f / 90 / ;

$offMulti

In order to run the model we first compile, but not execute the first model (see command line parameter
action=c) and create a save file. Next, we run the second model. This does a continued compilation, it
compiles the data statements from the second files and then executes the execution time statements from
the first (c(i,j)=..., solve ..., and display ...) and second (here there are none).

> gams transportmodel.gms action=c s=transmod

> gams transportdata.gms r=transmod

4.44.2.3 Generating Concise Listing Files

By default a GAMS listing file has many components, see chapter GAMS Output for details. In case a
more concise listing file is needed, the save and restart feature may be used to generate such a file.

Recall the reorganization of the transportation model [TRNSPORT] into a model file
trnsportmodel.gms and a data-and-solve file trnsportdata.gms from the previous section. Now
consider the addition of two further files. The first one, called trnsportreport.gms, contains post-
solution computations for reporting:

4.44 The Save and Restart Feature 1313

Parameter m(*,*) ’movement of commodities in cases’;

m(i,j) = x.l(i,j);

m(’total’,j) = sum(i, x.l(i,j));

m(i,’total’) = sum(j, x.l(i,j));

m(’total’,’total’) = sum(j, m(’total’,j));

The second one, called trnsportdisplay.gms, contains only a display statement:

Option decimals = 0;

Display m;

Using these four files, the following save and restart sequence can be called:

> gams trnsportmodel s=trans1

> gams trnsportdata r=trans1 s=trans2

> gams trnsportreport r=trans2 s=trans3

> gams trnsportdisplay r=trans3

The output file trnsportdisplay.lst is brief. Apart from the echo print, the execution time and the file
summary, it contains only the output generated by the display statement:

---- 52 PARAMETER m movement of commodities in cases

new-york chicago topeka total

seattle 50 300 350

san-diego 275 275 550

total 325 300 275 900

In this way it is possible to create output files that are concise and contain only the information needed,
while at the same time the more detailed output is stored in other listing files and may be inspected if
needed.

4.44.2.4 Incremental Program Development

GAMS programs are often developed in stages. A typical approach is to start with set statements, tables
and data manipulations, then equations are declared and defined, followed by model and solve statements
and finally assignments for generating reports. As each piece of the model is built, it should be run and
checked for errors by inserting diagnostic display and abort statements. As confidence grows that the
parts of the model are correct, it is useful to save the completed parts in a work file. Subsequently, it is
possible to work only on the piece under active development by restarting from the saved work file and
thus reducing running time and the amount of output produced in each of the development runs.

This approach is especially useful when working on the results report part, since the setup and solution of
a model instance is typically dominating the computing time, while the report part has to be run often to
get all details of setting up content and layout into a satisfying form. Thus, the model may be generated
and solved and the result saved in a work file. One may then restart from the work file while developing
the report.

1314 User's Guide

4.44.2.5 Tracking a Sequence of Difficult Solve Statements

In many cases where solves are known to be difficult and expensive, it may be too risky to let GAMS
process a job containing many solve statements. The risk is that if one solve does not proceed to normal
completion, then the following solve will not be possible or will start from a bad initial point and much
time and effort will be wasted.

An alternative is to request one solve at a time and save the work file. By doing so, the output of each
solve can be carefully inspected before proceeding. If everything is as expected, the job can be restarted
and the next solve be executed. If an error has occurred, the previous solve may be repeated, maybe with
a different initial point or modified working limits such as iteration or time limits.

4.44.2.6 What-If Analysis

Many modeling exercises involve a 'what if ' analysis, in which a base case is defined and the point of the
study is to see how the system changes when circumstances change, either naturally or by design. Often,
the effect of many different changes to the base case are considered separately.

The save and restart feature facilitates such analyses. The base case may be saved using a work file and then
all desired scenarios may be run separately by restarting from the same work file. Each scenario probably
involves only doing some changes to the data (e.g., coefficients in equations or variable bounds), solving
the changed model (the solution of the base case will then automatically be used as a starting point), and
reporting.

4.44.3 Secure Work Files

When models are distributed to users other than the original developers or embedded in applications to
be deployed by other developers, issues of privacy, security, data integrity and ownership arise. One may
have to hide, protect or purge some parts of the model before it can be released. The information to be
protected can be of numeric or symbolic nature. Examples include the following:

Privacy

A Social Accounting Matrix supplied by a statistical office is required in a general equilibrium
model to be used by the Ministry of Finance. The data from the statistical office needs to be
protected for obvious privacy reasons and the model experiments are used to evaluate policy
options that are highly confidential. Most of the model structure is public, most of the data
however is private and model results need to be transformed in such a way as to prohibit the
discovery of the original data.

Security

Components of a model contain proprietary information that describes mathematically a
chemical reaction. The associated algebra and some of the data are considered of strategic
importance and need to be hidden completely. However, the final model will be used at
different locations around the world.

Integrity

Data integrity safeguards are needed to assure the proper functioning of a model. Certain data
and symbolic information need to be protected from accidental changes that would compromise
the operation of the model.

To address these issues, so called secure work files have been introduced to GAMS. Such a work file
behaves like any other work file but it is locked to a specific user's license file. The content of a secure
work file protected against unauthorized access via the GAMS license mechanism.

Attention

A special GAMS license is required to create secure work file, see also Usage.

The security features of secure work files are not extended to the solver level. As a consequence, full
information about a model instance can be extracted on the GAMS solver level by a user that is
authorized to solve the model. See Limitations for more information.

4.44 The Save and Restart Feature 1315

4.44.3.1 An Introductory Example

The well-known transportation model [TRNSPORT] will be used again to illustrate the creation and
deployment of a secure work file. Assume one wants to distribute this model but there are concerns about
proprietary formulations and data. In addition, one would like to prevent that the user does unintentional
modifications to the model. It is assumed that the objective function and the supply constraints are to be
hidden from other users and only the demand figures should be allowed to be changed. Data that is not
needed any more will be purged as well.

First, a copy of the model from the model library is created, the model is run and a normal work file t1 is
created:

> gamslib trnsport

> gams trnsport s=t1

Next, a file t2.gms with access control commands is created,

$eolcom //

$protect all // make all symbols read only

$purge d f // remove items d and f

$hide cost supply a // make objective invisible

$expose transport b // allow changes to b

and a secure work file t2.g00 is created by executing t2.gms with a restart from t1.g00:

> gams t2 r=t1 s=t2 plicense=target

The newly created work file is secure since the access control commands were activated with the privacy
GAMS license option PLicense. This command line parameter specifies the name of the target user's
license file. The effect is that the work file t2.g00 can now only be read with the target license file.

The log output will contain the following lines:

GAMS Rev 124 Copyright (C) 1987-2001 GAMS Development...

Licensee: Source User Name

Source Company Name

*** Creating a Secure Restart File for:

*** Target User Name

*** Target Company Name

--- Starting continued compilation

--- T2.GMS(6) 1 Mb

--- Starting execution

*** Status: Normal completion

The three lines starting with ∗∗∗ are a recap of the content of the target license file. From now on, the
source and the target licenses are 'burned into' this file and all its descendants. One can now send the
restart file to the target user or system.

The target user may run the model with new data, add new GAMS statements and create new work files.
However, there are two restrictions: some of the symbols are hidden and this model can only be executed
using the target license file.

For example, the target user may want to half the demand and compare the original solution with the
new one. The following file, called t3.gms, will accomplish this:

1316 User's Guide

Parameter rep ’summary report’;

rep(i,j,’base’) = x.l(i,j);

b(j) = b(j)*0.5;

solve transport minimizing z using lp;

rep(i,j,’half’) = x.l(i,j);

display rep;

This new file may be executed on the target system, restarting from the work file t2.g00:

> gams t3 r=t2

The resulting log file will contain the following lines:

GAMS Rev 124 Copyright (C) 1987-2001 GAMS Development...

Licensee: Target User Name

Target User Company

*** Restarting from a Secure Restart File created by:

*** Source User Name

*** Source Company Name

--- Starting continued compilation

--- T3.GMS(5) 1 Mb

...

Note that the originator/owner of the secure work file is mentioned by name. A similar message will be
contained in the listing file:

...

EXECUTION TIME = 0.000 SECONDS 1.1 Mb WIN201-124

**** Secure Save/Restart File Source:

Source User Name

Source Company Name

**** Secure Save/Restart File Target:

Target User Name

Target User Company

...

A more detailed inspection of the listing file shows that the hidden variables and equations do not appear
in the usual equation and variable listings and the solution print. The hidden items can only be accessed
via a public (exposed) model and a solve statement. However, note that the full model instance may still
be accessed by the target user, see Limitations.

In the following, secure work files and the access control commands are described in more detail.

4.44 The Save and Restart Feature 1317

4.44.3.2 Usage

Secure work files control access to symbolic and numeric information and can only be read by a specific
GAMS user. The initial creation or additions to access control requires a special GAMS license. Saving
secure work files without new access controls does not require a special GAMS license. The creation or
addition of access control is signaled by the use of the GAMS command line parameter PLicense, which
gives the name of a privacy license file. The shortcut PLICENSE=LICENSE sets the privacy license to the
current license file. This is convenient when experimenting with access controls.

When a secure work file is written for the first time, the first and second lines of the current license file
and the privacy license file are inserted into the work file. This information cannot be changed any more
and the original source and the intended target users are locked into the work file.

A secure work file may be used just like any other work file and new work files may be derived from
secure files. However, their use is restricted to the target user specified with the command line parameter
PLicense. The target user can, if licensed, add access controls to an existing secure file by using the
parameter PLICENSE=LICENSE but cannot change the original information about source and target users.

There are four access control commands (ACCs) that are processed during the compilation phase. These
commands can be inserted anywhere in the program. They are processed in chronological order and have
the following syntax:

$acc ident1 ident2 ...

$acc all

Here ident1 and ident2 are GAMS identifiers previously defined in the program and acc denotes one of
the four access control commands:

Dollar Control Option Description

purge Removes the objects and all data associated.

hide Hides the objects but allows them to be used in model calculations.

protect The objects cannot be modified but they may be used in model calcula-
tions.

expose Removes all privacy restrictions, the symbols will be reverted to their
original state.

The keyword all applies the ACCs to all identifiers defined up to this point in the GAMS source code.
Note that ACCs may be changed and redefined within the same GAMS program. However, identifiers
inherited from a restart file cannot be changed.

4.44.3.3 A Practical Example

This section uses the transportation model [TRNSPORT] to show how to hide input data and results
from the target user. The target user will be allowed to view percentage changes from an unknown base
case only. In addition to the original model, a data initialization and a report model will be introduced.

First, a method to calculate input data is defined. As the GAMS language does not offer the definition of
methods (or functions), here a model is used to define algebraically the desired correspondence between
the input and output of the method we wish to emulate. Execution of the method will then correspond to
solving the model. The model is the following:

1318 User's Guide

$include trnsport.gms

Variable newc(i,j) ’new tansport data’;

Equation defnewc(i,j) ’definition of new transport data’;

defnewc(i,j).. newc(i,j) =e= f*d(i,j)/1000;

Model getc ’compute new transport data’ / defnewc /;

Solve getc using cns;

By solving model getc (see Constrained Nonlinear System (CNS) for details on problem type CNS), the
variable newc(i,j) will obtain the value of f∗d(i,j)/1000 in the variable level attributes. Thus, newc.l
corresponds to parameter c in the original model.

Next, the objective function of the original model is changed to reflect economies of scale. Furthermore,
a base case value basex is computed for later use in the reporting model:

Scalar beta ’scaling exponent’ / 1.1 /;

Equation newcost ’economies of scale objective function’;

newcost.. z =e= sum((i,j), newc.l(i,j) * x(i,j)**beta);

Model estrans / newcost, supply, demand /;

solve estrans using nlp minimizing z;

Parameter basex(i,j) ’base values of x’;

basex(i,j) = x.l(i,j);

Finally, a method to transform the results of model estrans to the relative change with respect to the
base case is defined. As for the computation of the input data (newc), a model is used to emulate this
method:

Variable delta(i,j) ’percentage change from base values’;

Equation defdelta(i,j) ’definition of delta’;

defdelta(i,j)$basex(i,j).. delta(i,j) =e= 100*(x.l(i,j)-basex(i,j))/basex(i,j);

Model rep / defdelta /;

solve rep using cns;

Assume the GAMS code above has been saved in a file p1.gms. Running GAMS on this file,

> gams p1 s=p1

creates a work file with the name p1.g00.

In the following, some test runs similar to those that are expected to be defined by the target user are
made. Three scenarios to be solved in a loop are defined in file u1.gms:

Set s / one, two, three /;

Parameter sbeta(s) / one 1.25, two 1.5, three 2.0 /

sf(s) / one 85, two 75, three 50 /;

Parameter report ’summary report’;

loop(s,

beta = sbeta(s);

https://en.wikipedia.org/wiki/Economies_of_scale

4.44 The Save and Restart Feature 1319

f = sf(s);

solve getc using cns;

solve estrans using nlp minmizing z;

solve rep using cns;

report(i,j,s) = delta.l(i,j);

report(’’,’beta’,s) = beta;

report(’’,’f’,s) = f;

report(’obj’,’z’,s) = z.l

);

display report;

File u1.gms can be executed with a restart from the work file p1.g00:

> gams u1 r=p1

The display statement generates the following output:

---- 109 PARAMETER report summary report

one two three

seattle .new-york -4.050 -6.967 -8.083

seattle .chicago -18.797 -27.202 -31.550

seattle .topeka 233.958 348.468 404.187

san-diego.new-york 3.605 6.201 7.194

san-diego.chicago 28.138 40.719 47.228

san-diego.topeka -15.512 -23.104 -26.799

.beta 1.250 1.500 2.000

.f 85.000 75.000 50.000

obj .z 526.912 1652.963 13988.774

Note that all symbols are still completely exposed. Access controls need to be added to the model p1.gms
before it can be made available to the target client. The information to be protected is the original
distance matrix and derived information. A recommended procedure is to first hide everything and then
enable access to only selected parts of the model. The access control information is collected in the file
s1.gms:

$hide all

$expose getc estrans rep

$expose i j z delta

$expose f beta a b

Using the initial workfile p1, a secure work file s1.g00 is created by executing

> gams s1 r=p1 s=s1 plicense=license

To test the system from the target users point of view, the license of the current GAMS system is used
also for the target user.

To test the secure work file, problem u1.gms is run again, restarting from the work file s1:

> gams u1 r=s1

Inspecting the resulting listing file, one observes that equation, variable and solution listings related to
the hidden variables are not shown anymore. Any attempt to reference a hidden variable will cause a
compilation error.

1320 User's Guide

4.44.3.4 Limitations

One of the design goals for secure work files has been to minimize the impact on other components of the
GAMS system. Solvers used within a secure environment should work as if called within a normal environ-
ment. This implies that certain information about a model can easily be recovered by using solvers like
CONVERT or solver options like writelp for CPLEX, writemps for CBC, or gams/interactive for SCIP.

For example, consider the secure work file t2.g00 from Section An Introductory Example. The target
user could now reproduce the complete model instance, including the hidden equation supply or the
objective function cost by running the following GAMS code, restarting from t2.g00:

option mip = scip;

transport.optfile = 1;

$echo gams/interactive = "display prob quit" > scip.opt

solve transport min z using mip;

This produces the log output:

...

original problem has 6 variables (0 bin, 0 int, 6 cont) and 5 constraints

STATISTICS

Problem name : r

Variables : 6 (0 binary, 0 integer, 0 implicit integer, 6 continuous)

Constraints : 0 initial, 5 maximal

OBJECTIVE

Sense : minimize

VARIABLES

[continuous] <x(seattle,new-york)>: obj=0.225, original bounds=[0,+inf]

[continuous] <x(seattle,chicago)>: obj=0.153, original bounds=[0,+inf]

[continuous] <x(seattle,topeka)>: obj=0.162, original bounds=[0,+inf]

[continuous] <x(san-diego,new-york)>: obj=0.225, original bounds=[0,+inf]

[continuous] <x(san-diego,chicago)>: obj=0.162, original bounds=[0,+inf]

[continuous] <x(san-diego,topeka)>: obj=0.126, original bounds=[0,+inf]

CONSTRAINTS

[linear] <supply(seattle)>: <x(seattle,new-york)>[C] +<x(seattle,chicago)>[C] +<x(seattle,topeka)>[C] <= 350;

[linear] <supply(san-diego)>: <x(san-diego,new-york)>[C] +<x(san-diego,chicago)>[C] +<x(san-diego,topeka)>[C] <= 600;

[linear] <demand(new-york)>: <x(seattle,new-york)>[C] +<x(san-diego,new-york)>[C] >= 325;

[linear] <demand(chicago)>: <x(seattle,chicago)>[C] +<x(san-diego,chicago)>[C] >= 300;

[linear] <demand(topeka)>: <x(seattle,topeka)>[C] +<x(san-diego,topeka)>[C] >= 275;

END

...

Note, that this approach is only possible for the target user, since its license is required to unlock the
work file. Further, the original algebra of the model is still protected by GAMS, only the generated model
instance (with original variable and equation names) and variable and equation symbols can be made
available this way.

A further limitation of secure work files is that the source and target license files are locked to the secure
work file and cannot be changed. If the target user receives a new license file (due to a system upgrade,
for example), the secure work file cannot be read any more by the target user and must be recreated.

4.44 The Save and Restart Feature 1321

4.44.4 Obfuscated Work Files

GAMS offers a limited set of facilities to change all the names and other documentation related to a
specific model run in a work file. This can be useful if the model has to be solved in an untrusted
computing environment, e.g., a public cloud facility. When the results are back in the secure environment,
the changed names can be transformed back to their original.

A work file that has all strings for symbols, set elements and explanatory text replaced with obfuscated
names is called an obfuscated work file. GAMS obfuscates by keeping the original length of the symbol
name or label name, but replaces them by a sequence of strings. For example, for symbols of length 3 it
creates A00, A01, A02, ..., Z . The method used for explanatory text is similar, but here GAMS always
uses the single quote character and thus may create many weird looking labels. In addition to item names,
labels and explanatory text, titles and subtitles in the listing file are obfuscated. Observe that other
strings that have some meaning in the execution of GAMS, e.g., file names, cannot be changed.

Despite of the changes in the string pool, a obfuscated work file has all the capabilities of a normal work
file.

Recall from Section Saving The Work File that work files are created with the command line parameter
save. Obfuscated work files are created with the variant saveobfuscate. The creation of an obfuscated
work file is often combined with the creation of a regular work file, as the latter will be necessary to
translate information from an obfuscated work file back to the name space of the original model.

In the following, the intended use of obfuscated work files is illustrated. First, a GAMS model (here
[TRNSPORT]) is compiled into a regular and an obfuscated work file:

> gamslib trnsport

> gams trnsport action=compile s=0named so=0obfuscated

Note, that the command line parameter action=compile is used to only compile, but not execute, the
model. Observe that the name of the regular work file is 0named.g00 and the name of obfuscated work
file is 0obfuscated.g00.

In the next step, the obfuscated work file is moved to a non-secure machine and GAMS is restarted from
this work file on an empty GAMS model file. This executes the original model (here trnsport), but
with all names obfuscated. The outcome of this execution is saved in another, still obfuscated, work file
1obfuscated.g00.

> echo *Empty > empty.gms

> gams empty r=0obfuscated s=1obfuscated

The work file 1obfuscated.g00 is now brought back to a trusted machine. To obtain the results, say
the marginal values of the supply equation, in a non-obfuscated form, GAMS is executed again on a
model that writes out values of supply.m to a GDX file supply.gdx. This model is restarted from the
obfuscated work file 1obfuscated.g00, but additionally the originally created non-obfuscated work file
0named.g00 is passed in via the command line parameter RestartNamed (short: rn):

> echo "execute_unload ’supply’, supply.m;" > unload.gms

> gams unload r=1obfuscated rn=0named

Recall, that the work file 0named.g00 resulted from the initial compilation and contains the names from
the original namespace. It never left the trusted environment. The effect of combining options r and rn is
that all content from the obfuscated work file is taken, except for the names of symbols and labels, the
explanatory texts, and the listing file titles and subtitles, which are read from the work file specified via
rn.

GAMS automatically performs the following three checks to ensure that the named and obfuscated work
files are consistent:

1322 User's Guide

1. The number of labels and symbols must be identical.

2. The size of the string pool must be identical.

3. The first 10 labels point to the same addresses in the string pool.

The first two checks imply that the execution in the obfuscated name space cannot introduce new symbols
or labels or even new strings (e.g., from display 'this is a new string'). Therefore, the empty
GAMS program that was used to execute from the obfuscated work file above can hardly be replaced by
any useful code since the obfuscated symbols and labels are not known.

4.45 Embedded Code Facility

4.45.1 Motivation

GAMS uses relational data tables as a basic data structure. With these, GAMS code for parallel assignment
and equation definition is compact, elegant, and efficient. However, traditional data structures (arrays,
lists, dictionaries, trees, graphs, ...) are not natively or easily available in GAMS. Though it is possible to
represent such data structures in GAMS, the GAMS code working with such structures can easily become
unwieldy, obfuscating, or inefficient. Also, in the past it was not easy to connect libraries from other
systems for special algorithms (e.g. graph algorithms, matrix operations, ...) to GAMS without some
data programming knowledge and a deep understanding of internal representation of GAMS data (e.g.
the GDX API).

The Embedded Code Facility addresses this need and extends the connectivity of GAMS to other
programming languages. It allows the use of external code (e.g. Python) during compile and execution
time. GAMS symbols are shared with the external code, so no communication via disk is necessary. It
utilizes an API (this API can be found in apifiles/C/api/emblib∗.h together with the code for the
Python and Connect embedded code library apifiles/C/api/embpyoo.c/h) and additional source code
for common tasks so that the user can concentrate on the task at hand and not the mechanics of moving
data in and out of GAMS.

4.45.2 Concept

As pointed out in section Motivation, the main idea of the Embedded Code Facility is to enable the use of
external code in GAMS and give this code direct in-memory access to the GAMS database (or better: to
GAMS symbols, namely sets, parameters, variables, and equations). This can be done by defining sections
in the GAMS code which contain code written in a defined external code. These sections can be used at both
GAMS compile and execution time (compare section GAMS Compile Time and Execution Time Phase).
Details about how to do this can be found in the Syntax section.

Note

We will continuously extend this feature to different programming languages. At the moment only
Python, Connect, and GAMS are supported.

Also, the system provides some help to develop and debug the external code independent of GAMS first.
More about this topic can be found in section Troubleshooting Embedded Python Code.

The communication of the data between the GAMS part of the program and the embedded code part
was inspired by the existing interface to GDX in many ways. For example, using dollar control options
$on/offMulti, $onMultiR, and $on/offFiltered it is possible to decide if data changed in the embedded
code should replace the GAMS data or get merged with it and just like loading data from GDX, one can
decide if data from embedded code should change the GAMS database filtered or domain checked.

apis/expert-level/gdxqdrep.html

4.45 Embedded Code Facility 1323

4.45.3 Simple Example

4.45.3.1 Python

In a very first example we look into some Python code that helps to split some label names that are already
present in GAMS. We do this at compile time in order to read the broken up pieces as individual sets
(country and city) into GAMS plus some mapping sets (mccCountry and mccCity) between the original
labels and the new labels. The compile-time embedded code starts with a $onEmbeddedCode followed by
the type of code to expect (Python:). The lines between $onEmbeddedCode and $offEmbeddedCode is
Python code. We do not want to go into Python details, but the first few lines initialize some empty
Python list objects (mccCountry and mccCity) as well as some empty Python set objects. In the
Python for loop that follows we iterate over all individual labels of the GAMS set cc. Python gets access
to the GAMS set cc via the member function get of the implicitly defined Python object gams. get

returns an object that is iterable and can be used in a Python for loop. The type of the records one
gets depend on the dimensionality and type of the GAMS symbol. In the loop body we use the Python
split function to extract the first (r[0] is country) and second (r[1] is city) part of the label. The
three strings cc, r[0], r[1] are used to build up the Python list objects that store the information
for the maps mccCountry and mccCity and the Python set objects that store the labels for the new
sets country and city. The Python set has the advantage to store a label just once even if we add it
multiple times. Python prepares to send items back to GAMS via the gams member function set that
can deal with both Python list and Python set objects. The command $offEmbeddedCode is followed
by a list (without separating commas) of GAMS symbols that instructs the GAMS compiler to read
these symbols back. This list is optional and can be left out. GAMS will import all symbols set by the
Python code. The GAMS compiler (without executing execution-time embedded code) does not know
which symbols will be implicitly loaded, hence it cannot define symbols. If such a symbol is referenced
further down in the compilation process, the compiler will complain with error $141: Symbol declared

but no values have been assigned. One can avoid this situation by explicitly list the symbols on the
end/pauseEmbeddedCode line.

Another caveat with implicit loading is related to aliases. GAMS does not allow to load data into an alias,
so the following code will fail with a compilation error 493 Alias cannot receive data:

Set i(*); Alias (i,j);

$onEmbeddedCode Python:

gams.set(’j’,[’i1’,’i2’,’i3’])

$offEmbeddedCode j

By leaving off the symbol j from the $offEmbeddedCode line, the code works fine and actually imports
the set i. The gams.set and other write methods in embedded code to an alias symbol, here j, actually
fills the aliased set, here i, and hence the implicit load will load the modified symbol i into GAMS.

Implicit loading also needs special consideration in the context of external input. Since embedded code
inside an $on/offExternalInput section is not executed if the command line parameter IDCGDXInput
has been set, there will be no symbols to be loaded implicitly. So make sure the symbols to load are given
explicitly in such a situation.

Note that GAMS syntax is case insensitive while Python is case sensitive. Hence, the strings that
represent the GAMS symbol names in the Python code can have any casing (e.g. gams.get("cc") or
gams.get("CC")), while the corresponding Python objects need to have consistent casing throughout the
Python code.

The following code presents the entire embeddedSplit example from the GAMS Data Utilities Library:

1324 User's Guide

Set cc / "France - Paris", "France - Lille", "France - Toulouse"

"Spain - Madrid", "Spain - Cordoba", "Spain - Seville", "Spain - Bilbao"

"USA - Washington DC", "USA - Houston", "USA - New York",

"Germany - Berlin", "Germany - Munich", "Germany - Bonn" /

country

city

mccCountry(cc,country<) Mapping between country and related elements in set cc

mccCity(cc,city<) Mapping between city and related elements in set cc;

$onEmbeddedCode Python:

mccCountry = []

mccCity = []

for cc in gams.get("cc"):

r = str.split(cc, " - ", 1)

mccCountry.append((cc,r[0]))

mccCity.append((cc,r[1]))

gams.set("mccCountry",mccCountry)

gams.set("mccCity",mccCity)

$offEmbeddedCode mccCountry mccCity

Option mccCountry:0:0:1, mccCity:0:0:1;

Display country, city, mccCountry, mccCity;

The display in the listing file looks as follows:

---- 25 SET country

Spain , USA , Germany, France

---- 25 SET city

Berlin , Bilbao , Cordoba , Madrid

New York , Washington DC, Paris , Houston

Munich , Lille , Seville , Bonn

Toulouse

---- 25 SET mccCountry

France - Paris .France

France - Lille .France

France - Toulouse .France

Spain - Madrid .Spain

Spain - Cordoba .Spain

Spain - Seville .Spain

Spain - Bilbao .Spain

USA - Washington DC.USA

USA - Houston .USA

USA - New York .USA

Germany - Berlin .Germany

Germany - Munich .Germany

Germany - Bonn .Germany

---- 25 SET mccCity

France - Paris .Paris

France - Lille .Lille

France - Toulouse .Toulouse

Spain - Madrid .Madrid

Spain - Cordoba .Cordoba

Spain - Seville .Seville

Spain - Bilbao .Bilbao

4.45 Embedded Code Facility 1325

USA - Washington DC.Washington DC

USA - Houston .Houston

USA - New York .New York

Germany - Berlin .Berlin

Germany - Munich .Munich

Germany - Bonn .Bonn

The second example demonstrates the use of embedded code at execution time. The syntax for the
execution time embedded code in this example is identical to the compile time variant with the exception
of the keywords that start and end the embedded code section: embeddedCode and endEmbeddedCode. It
is important to understand that the execution of the code happens at GAMS execution time, so e.g. no
new labels can be produced and send back to GAMS. In this example we use some Python code to generate
a random permutation of set elements of set i and store this in a two dimensional set p. In this example
we do not use a loop to iterate through the elements of a GAMS system but make use of the fact that
the Python object returned by gams.get("i") is iterable and can in its entirety be stored in the Python
list with name i with the short and powerful command i = list(gams.get("i")). The permutation
of elements in list p which is a copy of list i is created by the Python statement random.shuffle(p).
The following code presents the entire example:

Set i /i1*i10/

p(i,i) "permutation";

embeddedCode Python:

import random

i = list(gams.get("i"))

p = list(i)

random.shuffle(p)

for idx in range(len(i)):

p[idx] = (i[idx], p[idx])

gams.set("p", p)

endEmbeddedCode p

option p:0:0:1;

display p;

The display in the listing file looks as follows:

---- 11 SET p permutation

i1 .i1

i2 .i7

i3 .i5

i4 .i2

i5 .i10

i6 .i6

i7 .i9

i8 .i4

i9 .i8

i10.i3

4.45.3.2 Connect

In the following example, we need to process a CSV file that cannot be read directly by GAMS under
$onDelim. So we instruct Connect to read the CSV file into the Connect database and then write to
GAMS:

1326 User's Guide

Set dates, stocks;

Parameter stockprice(dates<,stocks<);

$onText

Read a CSV file that looks as follows:

date;symbol;price

2016/01/04;AAPL;105,35

2016/01/04;AXP;67,59

2016/01/04;BA;140,50

...

and can’t be read directly by GAMS under $onDelim because some labels

include ’/’ and are not quoted, use ’;’ as field separator, and ’,’ as

decimal character.

$offText

$onEmbeddedCode Connect:

- CSVReader:

file: stockprice.csv

name: stockprice

indexColumns: [1, 2]

valueColumns: [3]

fieldSeparator: ’;’

decimalSeparator: ’,’

- GAMSWriter:

symbols:

- name: stockprice

$offEmbeddedCode

display stockprice;

We leave the CSV file processing to the CSVReader and then export the stockprice symbol to GAMS.
Please note that the symbols written to GAMS by the GAMSWriter do not have to be explicitly listed on the
$offEmbeddedCode line, this is optional. Moreover, the Connect agents GAMSReader and GAMSWriter
are only available under embedded code.

We might use the data to calculate an optimal portfolio. The share of each stock in this optimal portfolio is
represented by the parameter share(stocks) and can be exported to Excel using the ExcelWriter. Before
exporting to Excel, the data first needs to be transferred from GAMS to Connect using the GAMSReader:

* Continues the code from the previous example

Parameter share(stocks);

* For demonstration we fill share with random numbers

share(stocks) = uniform(0,1);

embeddedCode Connect:

- GAMSReader:

symbols:

- name: share

- ExcelWriter:

file: share.xlsx

symbols:

- name: share

endEmbeddedCode

4.45 Embedded Code Facility 1327

4.45.3.3 GAMS

In the following example, we need some execution time GAMS power to create data needed at compilation.
We want to solve the bin packing problem. In order to solve this we need the set of bins which is not
part of the input data. There are different ways of dealing with this not so uncommon issue and they are
all given in the GAMS Model Library model binpacking, but we want to concenrate here on a solution
that utilizes embedded code GAMS:

Set i ’items’;

Parameter s(i<) ’item sizes’;

Scalar B ’bin capacity’;

$gdxLoad data.gdx s B

* Randomize the item sizes:

s(i) = uniform(0.9,1.1)*s(i);

Scalar nj ’number of bins required to pack all items’;

$save.keepCode bp

$onEmbeddedCode GAMS: restart=bp

scalar size /0/;

nj = 1; loop(i, size = size+s(i); if (size>B, nj = nj+1; size = s(i)));

$offEmbeddedCode nj

$eval NJ nj

Set j ’bins’ / b1*b%NJ% /;

* Simple optimization model to minimize number of bins:

Binary variable y(i,j) ’assignment of item to bin’, z(j) ’bin open’;

Variable open_bins ’number of open bins’;

Equations

defopen(j) ’allow item in open bins only’

defone(i) ’assign each item to one bin’

defobj ’count number of open bins’;

defopen(j).. sum(i, s(i)*y(i,j)) =l= z(j)*B;

defone(i).. sum(j, y(i,j)) =e= 1;

defobj.. open_bins =e= sum(j, z(j));

model bp ’bin packing’ /all/;

solve bp min open_bins using mip;

In this example we read the item sizes and the bin capacity from a GDX file and need to create the set
of bins j. We even randomize the item sizes (at GAMS execution time). In the embedded code GAMS
section we utilize a simple way to estimate the number of bins: we pack the items (in data entry order) in
a bin and as soon as the bin capacity is exceeded, we open the next bin. Obviously, this is far from being
an optimal strategy, but it allows based on the actual sizes to quickly overestimate the number of bins
required for the optimization model. The scalar of the number of bin (nj) is communicated back to the
outer GAMS process and we use this to set a compile time variable NJ that is used to build the set of bins
j. The embedded code GAMS that calculates nj can access the items and its sizes without declaration or
data statements. This is possible because the embedded code continues via embedded code arguments
restart=bp from a save file created one line above with $save.keepCode bp. Here the save file is created
at compile time via $save and the execution code compiled so far is kept in the save file due to suffix
.keepCode. So when the embedded code GAMS section runs, it first executes the code from the save
file (here s(i) = uniform(0.9,1.1)∗s(i);) before it executes its own code (nj=1; loop(i, ...);).
Without the suffix .keepCode the embedded code GAMS would have used the item sizes available at
compile time, i.e. the sizes as we find them in the GDX file. The remaining part of the model is a straight
forward binary linear model for the bin packing problem.

https://en.wikipedia.org/wiki/Bin_packing_problem

1328 User's Guide

4.45.4 Syntax

This section explains the GAMS functions/keywords which were introduced to enable the Embedded
Code Facility. The first subsection deals with the syntax for compile time, the second with the syntax for
execution time (compare section GAMS Compile Time and Execution Time Phase).

4.45.4.1 Compile Time

There are three dollar control options to start an embedded code section at compile time:

$onEmbeddedCode[.tag] [Connect|Python]: [arguments]

$onEmbeddedCodeS[.tag] [Connect|Python]: [arguments]

$onEmbeddedCodeV[.tag] [Connect|Python]: [arguments]

Lines following one of the above statements are passed on to the embedded code engine (e.g. Connect or
the Python interpreter) until this dollar control option, which ends the embedded code section at compile
time, is hit:

$offEmbeddedCode[.tag] {symbol[<[=]embSymbol[.dimX]]}

These dollar control options are explained here in more detail. The usage of the optional arguments by
the embedded code is explained in the specific embedded code engine section below.

Note

• The optional arguments from the $onEmbeddedCode[S|V][.tag] statement can be accessed
as gams.arguments in the Python code.

• The optional output symbols from the $offEmbeddedCode[.tag] statement need to be written
to by the embedded code.

• More about the specific GAMS Python syntax can be found below.

4.45.4.2 Execution Time

At execution time an embedded code section is started with one of these statements:

embeddedCode[.tag] [Connect|Python]: [arguments]

embeddedCodeS[.tag] [Connect|Python]: [arguments]

embeddedCodeV[.tag] [Connect|Python]: [arguments]

Similar to the compile time alternatives $onEmbeddedCode[S|V][.tag], the first two variants are synonyms
which allow parameter substitution in the code that follows, while the last variant does not allow this
but passes the code verbatim to the embedded code engine. The usage of the optional arguments by the
embedded code is explained in the specific embedded code engine section below. The arguments passed to
the embedded code engine at execution time can be extended by the put utility command ECArguments.
For example,

put_utility ’ECArguments’ / ’ world...’;

embeddedCode Python: Hello

gams.printLog(gams.arguments)

endEmbeddedCode

4.45 Embedded Code Facility 1329

prints Hello world....

Lines following one of the statements embeddedCode[S|V] are passed on to the embedded code engine
(e.g. the Python interpreter) until one of the following two statements, which end the embedded code
section at execution time, is hit:

endEmbeddedCode[.tag] {output symbols}

pauseEmbeddedCode[.tag] {output symbols}

When the optional tag suffix (which can be any string) is used to start an embedded code section, the
same one has to be used to end/pause that section. Both statements end the embedded code section and
switch back to GAMS syntax in the following lines. Also, both statements can be followed by a GAMS
symbol or a list of GAMS symbols which would get updated in the GAMS database after the embedded
code got executed. If output symbols are specified, they need to be written to (e.g. by gams.set for
embedded Python code) by the embedded code before.

To continue a previously paused embedded code section one of the following statements is used:

continueEmbeddedCode[.tag] [handle]: [arguments]

continueEmbeddedCodeS[.tag] [handle]: [arguments]

continueEmbeddedCodeV[.tag] [handle]: [arguments]

As seen before, the first two variants are synonyms which allow parameter substitution in the embedded
code that follows, while the last variant does not allow this but passes the code verbatim to the interpreter.
Again, the usage of the optional arguments by the embedded code is explained in the specific embedded
code engine section below.

New in these statements is the optional handle. If omitted, the last code section that was paused will be
continued. However, sometimes one might need to maintain different embedded code sections active in
parallel and independent of each other. There is a new function to store a handle of the last embedded
code section that was executed which could then later be used to continue a specific paused code section:

handle = embeddedHandle;

What it exactly means to end or pause/continue an embedded code section depends on the embedded
code engine and is explained in more detail with the code engine below. Independent of the embedded
code engine it is important to note that if GAMS stops and restarts while executing a solve statement
(with solveLink=0) continuing any embedded code section causes the code to fail with the following error
message:

Error executing "continueEmbeddedCode" section
--- (Hint: "Solve" with SolveLink=0 frees previously initialized embedded libraries):

Error at line 71: No embedded library initialized

This happens because under solvelink=0 the GAMS process terminates when the solver starts up. This
causes the loss of the state of the embedded code environment that is linked into the GAMS process as a
shared library. Under all other settings of solveLink the GAMS process is not stopped and restarted and
hence a paused embedded code environment can be continued after the solve statement has carried out.

1330 User's Guide

4.45.5 Python

GAMS and Python complement each other in many different ways. GAMS has a compact but readable
syntax for data assignment and equation definition statements. Python is a great scripting language to do
more traditional type programming especially string manipulation which is completely missing in GAMS.
Moreover, the vast number of packages help solving scientific problems outside the scope of GAMS. In
order to open this world to our customers in an easy way, GAMS comes with a Python 3 installation.
By default, this installation is used in the Embedded Code Facility for Python and is ready to be used
with the GAMS Python API. The Python installation is located in [GAMS directory]/GMSPython. In
contrast to earlier versions this installation comes without the Python package manager pip and therefore
is not easily extendable. GMSPython comes with a selection of third party packages and modules that are
either required by the APIs of the GAMS Python API collection or that are particularly helpful from
within embedded Python code. Those packages are located in the site-packages directory of GMSPython.
Running the GMSPython interpreter like follows will display all available modules:

[GAMS directory]/GMSPython/python -c"help(’modules’)"

The list of redistributed third party packages is subject to constant changes and it is not recommended to
rely on their availability. If you need packages that do not come with GMSPython, we recommend that you
install your own version of Python and follow a few steps to connect GAMS with your Python installation.
It is also possible to install pip for GMSPython using get-pip. While any Python installation should work
in combination with GAMS we can recommend the Anaconda or Miniconda Python distributions. These
Python distributions work with environments which allow you to have many different Python installations
at the same time that don't get in each other's way.

During the lifetime of the GAMS process a single Python interpreter is used and the code ”lives” in
Python's global scope. This means that objects defined in one embedded Python code section are still
there in another embedded Python code section:

$onEmbeddedCode Python:

s = ’Hello world’

$offEmbeddedCode

$onEmbeddedCode Python:

gams.printLog(s)

$offEmbeddedCode

will produce the following output in the GAMS log:

--- Starting compilation

--- main.gms(3) 2 Mb

--- Initialize embedded library embpycclib64.dll

--- Execute embedded library embpycclib64.dll

--- main.gms(6) 2 Mb

--- Initialize embedded library embpycclib64.dll

--- Execute embedded library embpycclib64.dll

Hello world

--- main.gms(7) 2 Mb

If the GAMS process stops and restarts during execution, e.g. because of a solve with solveLink=0,
the Python interpreter will be started new. This can cause complications if GAMS is in a sequence of
pause/continueEmbeddedCode as discussed above.

Note

Sometimes it is desirable to move Python code to separate files which get imported from within
an embedded Python code section. By default the current working directory is not considered by
Pythons import statement. In order to achieve this, one can add sys.path.append(".") before
the actual import.

4.45 Embedded Code Facility 1331

4.45.5.1 Interface between GAMS and Python

The Python class ECGamsDatabase is the interface between GAMS and Python. An instance of this class
is automatically created when an embedded code section is entered and can be accessed using the identifier
gams. The following methods can be used in order to interact with GAMS:

gams.get(symbolName, keyType=KeyType.STRING, keyFormat=KeyFormat.AUTO, valueFormat=ValueFormat.AUTO, recordFormat=RecordFormat.AUTO)

This method retrieves an iterable object representing the symbol identified with symbolName.
Typically there are two possibilities to access the records. Iterating using e.g. a for loop
provides access to the individual records. By calling list() on the iterable object, a list
containing all the data is created. Several optional parameters can be used in order to modify
the format of the retrieved data:

• keyType: Determines the data type of the keys. It can be either KeyType.STRING (labels)
or KeyType.INT (label indexes). The default setting is KeyType.STRING.

• keyFormat: Specifies the representation of the keys. Possible values are as follows:

– KeyFormat.TUPLE: Encapsulate keys in a tuple

– KeyFormat.FLAT: No encapsulation

– KeyFormat.SKIP: Keys are skipped and do not appear in the retrieved data

– KeyFormat.AUTO (default): Depending on the dimension of the GAMS symbol, a
default format is applied:

∗ Zero dimensional/scalar: KeyFormat.SKIP

· One dimensional: KeyFormat.FLAT

· Multi dimensional: KeyFormat.TUPLE

• valueFormat: Specifies the representation of the values. Possible values are as follows:

– ValueFormat.TUPLE: Encapsulate values in a tuple

– ValueFormat.FLAT: No encapsulation

– ValueFormat.SKIP: Values are skipped and do not appear in the retrieved data

– ValueFormat.AUTO (default): Depending on the type of the GAMS symbol, a default
formats is applied:

∗ Set: ValueFormat.SKIP

· Parameter: ValueFormat.FLAT

· Variable/Equation: ValueFormat.TUPLE

• recordFormat Specifies the encapsulation of records into tuples. Possible values are as
follows:

– RecordFormat.TUPLE: Encapsulates every record in a tuple

– RecordFormat.FLAT: No encapsulation. Throws an exception if it can not be applied.
It is guaranteed that the length of a retrieved Python list is equal to the number of
records of the corresponding GAMS symbol. This principle leads to an incompatibility
of RecordFormat.FLAT whenever a record consists of more than one item (e.g. multi
dimensional symbols, variables and equations which have five numeric values).

– RecordFormat.AUTO (default): Depending on the number of items that represent a
record, a default format is applied. If possible this is always RecordFormat.FLAT.

GAMS special values NA, INF, and -INF will be mapped to IEEE special values float('nan'),
float('inf'), and float('-inf'). GAMS special value EPS will be either mapped to 0 or
to the small numeric value 4.94066E-324 depending on the setting of flag gams.epsAsZero.

The following Python code shows some examples of gams.get and illustrates the use of different
formats:

1332 User's Guide

Set i / i1 text 1, i2 text 2 /

j / j1*j2 /

Scalar p0 /3.14/;

Parameter p1(i) / #i 3.14 /

p2(i,j) / i1.#j 3.14 /

Variable v0 / fx 3.14 /;

equation e1(i) / #i.fx 3.14 /

e2(i,j) / i1.#j.fx 3.14 /;

$onEmbeddedCode Python:

scalar parameter

gams.printLog(f"{list(gams.get(’p0’))}") # prints [3.14]

gams.printLog(f"{list(gams.get(’p0’, recordFormat=RecordFormat.TUPLE))}") # prints [(3.14,)]

one dimensional parameters:

gams.printLog(f"{list(gams.get(’p1’))}") # prints [(’i1’, 3.14), (’i2’, 3.14)]

gams.printLog(f"{list(gams.get(’p1’, keyFormat=KeyFormat.TUPLE))}") # prints [((’i1’,), 3.14), ((’i2’,), 3.14)]

gams.printLog(f"{list(gams.get(’p1’, valueFormat=ValueFormat.TUPLE))}") # prints [(’i1’, (3.14,)), (’i2’, (3.14,))]

gams.printLog(f"{list(gams.get(’p1’, keyFormat=KeyFormat.TUPLE, valueFormat=ValueFormat.TUPLE))}") # prints [(’i1’, (3.14,)), (’i2’, (3.14,))]

two dimensional parameter:

gams.printLog(f"{list(gams.get(’p2’))}") # prints [((’i1’, ’j1’), 3.14), ((’i1’, ’j2’), 3.14)]

gams.printLog(f"{list(gams.get(’p2’, keyFormat=KeyFormat.FLAT))}") # prints [(’i1’, ’j1’, 3.14), (’i1’, ’j2’, 3.14)]

one dimensional sets:

gams.printLog(f"{list(gams.get(’i’))}") # prints [’i1’, ’i2’]

gams.printLog(f"{list(gams.get(’i’,valueFormat=ValueFormat.FLAT))}") # prints [(’i1’, ’text 1’), (’i2’, ’text 2’)]

scalar variables/equations

gams.printLog(f"{list(gams.get(’v0’))}") # prints [(3.14, 0.0, 3.14, 3.14, 1.0)]

one dimensional variables/equations:

gams.printLog(f"{list(gams.get(’e1’))}") # prints [(’i1’, (3.14, 0.0, 3.14, 3.14, 1.0)), (’i2’, (3.14, 0.0, 3.14, 3.14, 1.0))]

gams.printLog(f"{list(gams.get(’e1’, valueFormat=ValueFormat.FLAT))}") # prints [(’i1’, 3.14, 0.0, 3.14, 3.14, 1.0), (’i2’, 3.14, 0.0, 3.14, 3.14, 1.0)]

gams.printLog(f"{list(gams.get(’e1’, keyFormat=KeyFormat.TUPLE))}") # prints [((’i1’,), (3.14, 0.0, 3.14, 3.14, 1.0)), ((’i2’,), (3.14, 0.0, 3.14, 3.14, 1.0))]

two dimensional variables/equations:

gams.printLog(f"{list(gams.get(’e2’))}") # prints [((’i1’, ’j1’), (3.14, 0.0, 3.14, 3.14, 1.0)), ((’i1’, ’j2’), (3.14, 0.0, 3.14, 3.14, 1.0))]

gams.printLog(f"{list(gams.get(’e2’, keyFormat=KeyFormat.FLAT, valueFormat=ValueFormat.FLAT))}") # prints [(’i1’, ’j1’, 3.14, 0.0, 3.14, 3.14, 1.0), (’i1’, ’j2’, 3.14, 0.0, 3.14, 3.14, 1.0)]

using label indexes instead of labels

gams.printLog(f"{list(gams.get(’p1’, keyType=KeyType.INT))}") # prints [(1, 3.14), (2, 3.14)]

gams.printLog(f"{list(gams.get(’i’, keyFormat=KeyFormat.TUPLE, valueFormat=ValueFormat.TUPLE, keyType=KeyType.INT))}") # prints [((1,), (’text 1’,)), ((2,), (’text 2’,))]

gams.printLog(f"{list(gams.get(’e2’, keyType=KeyType.INT))}") # prints [((1, 3), (3.14, 0.0, 3.14, 3.14, 1.0)), ((1, 4), (3.14, 0.0, 3.14, 3.14, 1.0))]

$offEmbeddedCode

gams.set(symbolName, data, mergeType=MergeType.DEFAULT, domCheck=DomainCheckType.DEFAULT, mapKeys=lambda x:x)

This method sets the data for the GAMS symbol identified with symbolName. The
parameter data takes a Python list or set containing items that represent the records
of the symbol. It is also possible to pass an instance of a subclass of GamsSymbol
(e.g. GamsParameter or GamsSet) when using the GAMS control API in an
embedded code section. In case of a Python list or set, depending on the type and
the dimension of the symbol, different formats can be used in order to specify the
data. Different formats can not be mixed within one list. In general each record
needs to be represented as a tuple containing the keys and the value field(s). Keys
and/or values can also be enclosed in a tuple. Keys can be entered as labels (string)
or label indexes (int). The argument mapKeys allows to pass a callable to remap the

4.45 Embedded Code Facility 1333

elements of the key (e.g. turn them explicitly into strings via mapKeys=str). Value
fields depend on the type of the symbol:

• Parameters: One numerical value

• Sets: explanatory text (optional)

• Variable/Equations: Five numerical values: level, marginal, lower bound, upper
bound, scale/prior/stage

IEEE special values float('nan'), float('inf'), and float('-inf') will be
remapped to GAMS special values NA, INF, and -INF. The small numeric value
4.94066E-324 will be mapped into GAMS special value EPS.

The following Python code gives some examples on different valid formats for different
symbol types and dimensions:

Set i / i1 text 1, i2 text 2 /

j / j1*j2 /

ii(i);

Scalar p0;

Parameter p1(i)

p2(i,j);

equation e1(i)

e2(i,j);

$onEmbeddedCode Python:

scalar parameter

gams.set(’p0’, [3.14])

gams.set(’p0’, [(3.14,)])

one dimensional parameters:

gams.set(’p1’, [("i1", 3.14), ("i2", 3.14)])

gams.set(’p1’, [(("i1",), 3.14), (("i2",), 3.14)])

gams.set(’p1’, [("i1", (3.14,)), ("i2", (3.14,))])

gams.set(’p1’, [(("i1",), (3.14,)), (("i2",), (3.14,))])

two dimensional parameter:

gams.set(’p2’, [(’i1’, ’j1’, 3.14), (’i1’, ’j2’, 3.14)])

gams.set(’p2’, [((’i1’, ’j1’), (3.14,)), ((’i1’, ’j2’), (3.14,))])

one dimensional sets:

gams.set(’ii’, [’i1’, ’i2’])

gams.set(’ii’, [(’i1’,), (’i2’,)])

one dimensional sets with explanatory text

gams.set(’ii’, [(’i1’, "text 1"), (’i2’, "text 2")])

gams.set(’ii’, [((’i1’,), ("text 1",)), ((’i2’,), ("text 2",))])

one dimensional variables/equations:

gams.set(’e1’, [("i1", 3.14, 0, 0, 10, 1), ("i2", 3.14, 0, 0, 10, 1)])

gams.set(’e1’, [("i1", (3.14, 0, 0, 10, 1)), ("i2", (3.14, 0, 0, 10, 1))])

gams.set(’e1’, [(("i1",), (3.14, 0, 0, 10, 1)), (("i2",), (3.14, 0, 0, 10, 1))])

two dimensional variables/equations:

gams.set(’e2’, [("i1", "j1", 3.14, 0, 0, 10, 1), ("i1", "j2", 3.14, 0, 0, 10, 1)])

gams.set(’e2’, [(("i1", "j1"), (3.14, 0, 0, 10, 1)), (("i1", "j2"), (3.14, 0, 0, 10, 1))])

using label indexes instead of labels

gams.set(’p1’, [((1,), (3.14,)), ((2,), (3.14,))]) # one dimensional parameter

gams.set(’ii’, [((1,), ("text 1",)), ((2,), ("text 2",))]) # one dimensional set

gams.set(’e2’, [((1, 3), (3.14, 0, 0, 10, 1)), ((1, 4), (3.14, 0, 0, 10, 1))]) # two dimensional equation/variable

$offEmbeddedCode p0 p1 p2 ii e1 e2

1334 User's Guide

The optional parameter mergeType specifies if data in a GAMS symbol
is merged (MergeType.MERGE) or replaced (MergeType.REPLACE). If left at
MergeType.DEFAULT it depends on the setting of $on/offMulti[R] if GAMS
does a merge, replace, or trigger an error during compile time. Dur-
ing execution time MergeType.DEFAULT is the same as MergeType.MERGE.
The optional parameter domCheck specifies if Domain Checking is applied
(DomainCheckType.CHECKED) or if records that would cause a domain violation
are filtered (DomainCheckType.FILTERED). If left at DomainCheckType.DEFAULT it
depends on the setting of $on/offFiltered if GAMS does a filtered load or checks the
domains during compile time. During execution time DomainCheckType.DEFAULT

is the same as DomainCheckType.FILTERED.

Note

When calling gams.set() in an embedded code section during execution time,
new labels that are not known to the current GAMS program can not be
added. The attempt will result in an execution error.

gams.getUel(idx)

Returns the label corresponding to the label index idx

gams.mergeUel(label)

Adds label to the GAMS universe if it was unknown and returns the corresponding
label index.

Note

When calling gams.mergeUel() in an embedded code section during execution
time, new labels that are not known to the current GAMS program can not
be added. The attempt will result in an execution error.

gams.getUelCount()

Returns the number of labels.

gams.printLog(msg)

Print msg to log.

gams.arguments

Contains the command line that was passed to the Python interpreter of the
embedded code section. The syntax for passing arguments to the Python interpreter
can be seen above.

gams.epsAsZero

Flag to read GAMS EPS as 0 (True) or as a small number, 4.94066E-324, when set
to False. Default is True.

gams.ws

Property to retrieve an instance of GamsWorkspace that allows to use the
GAMS control API. The instance is created when the property is read for the first
time using a temporary working directory. A different working directory can be
specified using gams.wsWorkingDir. For debug output, the property gams.debug
can be set to a value from DebugLevel

4.45 Embedded Code Facility 1335

gams.wsWorkingDir

Property that can be specified before accessing gams.ws for the first time in order
to set the working directory. Setting the property after the first call to gams.ws will
have no effect. of the created GamsWorkspace.

gams.db

Property to retrieve an instance of GamsDatabase. The instance is created when
the property is read for the first time and allows to access the GAMS symbols using
the methods of the GAMS control API.

gams.debug

Property that can be set to a value from DebugLevel for debug output. Default is
DebugLevel.Off (0). The property needs to be changed before accessing gams.ws
for the first time in order to take effect in the GAMS control API. Setting the
property after the first call to gams.ws will have no effect on the GamsWorkspace.

4.45.5.2 Using the Control API

The ECGamsDatabase class provides mechanisms for using the GAMS control API in an embedded code
section. The property gams.ws can be used to get an instance of GamsWorkspace. The property gams.db

allows to access an instance of GamsDatabase that can be used to read and write data from the internal
GAMS database like it can be done using gams.get and gams.set but using the access mechanisms of
the GamsDatabase class. In addition to the different reading and writing mechanisms offered by the
GAMS control API other classes like GamsModelInstance can be used inside embedded Python code.
This combination provides programmatic access to a generated model instance and exchange of update
parameters and results between Python and GAMS. The GAMS Library model embmiex1 gives an
example of how to combine embedded Python code and a GamsModelInstance which utilized the library
include $libInclude pyEmbMI.

Moreover, the GAMS Transfer Python API can be combine with the GAMS control API in the embedded
code context as the following example demonstrates:

Set i / i1*i1000 /; alias(i,j);

Parameter a(i,j), aInv(i,j);

a(i,j) = 1 / (ord(i)+ord(j) - 1);

a(i,i) = 1;

embeddedCode Python:

import gams.transfer as gt

import numpy as np

m = gt.Container(gams.db)

A = m.data["a"].toDense()

m.data[’aInv’].setRecords(np.linalg.inv(A))

m.write(gams.db, ["aInv"])

endEmbeddedCode aInv

1336 User's Guide

4.45.5.3 Exchange via Files and Environment Variables

The Python class ECGamsDatabase provides read and write access to GAMS symbols. There are two
other communication methods that can be used at GAMS compile time: files and environment variables.
At compile time the Python code can produce a text file that can be included into GAMS via $include
as in the following example:

$onEmbeddedCode Python: 10

with open(’i.txt’, ’w’) as f:

for i in range(int(gams.arguments)):

f.write(f’i{i+1}\n’)

$offEmbeddedCode

Set i /

$include i.txt

/;

display i;

Here the Python code received the number of elements to write to a text file via the argument after
Python:. This text file is then included in the data statement of the GAMS set i. The display in the
listing file looks as follows:

---- 20 SET i

i1 , i2 , i3 , i4 , i5 , i6 , i7 , i8 , i9 , i10

Python provides many packages to read input files for many different formats and hence can be used to
transform such formats to a GAMS compatible input format, as an alternative to providing the data via
list objects and the gams.set functionality.

The second alternative to exchange information at compile time are environment variables. GAMS and
Python allow to get and set environment variables and hence can be conveniently used to exchange small
pieces of information. The following code provides an example where the maximum value of a parameter
b is needed to build a set k:

Set i / i1*i5 /;

Parameter b(i) / i1 2, i2 7, i3 59, i4 2, i5 47 /;

$onEmbeddedCode Python:

import os

os.environ["MAXB"] = str(int(max([b for i,b in gams.get("b")])))

gams.printLog(f’max value in b is {os.environ["MAXB"]}’)

$offEmbeddedCode

$if x%sysEnv.MAXB%==x $abort MAXB is not set

Set k "from 0 to max(b)" / 0*%sysEnv.MAXB% /;

$eval CARDK card(k)

$log card(k)=%CARDK%

It is important to understand that os.environ is initialized when Python imports the os module. Hence, if
we later set an environment variable in GAMS (via $setEnv ABC abc or put utility "setEnv" / "ABC"

/ "abc") and access this in some embedded code via os.environ["ABC"], this will not provide the ex-
pected value ”abc”. In such a case the environment variable needs to be accessed via gams.get env("ABC")

(and can be stored in os.environ["ABC"]) as demonstrated by the following code:

4.45 Embedded Code Facility 1337

$onEmbeddedCode Python:

import os

os.environ["TEST"] = ’Hello world’

$offEmbeddedCode

$log TEST=%sysEnv.TEST%

$setEnv ABC abc

$onEmbeddedCode Python:

gams.printLog(f’ABC={os.environ.get("ABC", "ABC not set")}’)

gams.printLog(f’ABC={gams.get_env("ABC")}’)

$offEmbeddedCode

which produces the following output:

--- Starting compilation

--- main.gms(4) 2 Mb

--- Initialize embedded library embpycclib64.dll

--- Execute embedded library embpycclib64.dll

TEST=Hello world

--- main.gms(10) 2 Mb

--- Initialize embedded library embpycclib64.dll

--- Execute embedded library embpycclib64.dll

ABC=ABC not set

ABC=abc

Obviously, the set k can also be filled directly with data from within Python:

Set i / i1*i5 /;

Parameter b(i) / i1 2, i2 7, i3 59, i4 2, i5 47 /;

Set k(*) "from 0 to max(b)";

$onEmbeddedCode Python:

kmax = max([b for i,b in gams.get("b")])

gams.set(’k’,[str(k) for k in range(int(kmax+1))])

$offEmbeddedCode k

In both cases the resulting GAMS symbol k is a set with elements 0 to 59.

Note that the (∗) in the declaration of k is necessary to inform the compiler of dimensionality of the
symbol k. GAMS symbol declarations can be done without domain list, so a set k does not necessarily
mean that this is a one dimensional set. The compiler will learn the dimensionality from the use of k.
For example, if k shows up as a domain set in a declaration (parameter p(k)) it is clear that k is a one
dimensional set. Without knowing the dimensionality k will not be available with embedded code or
exported (at compile-time) to GDX and the following code

Set k;

$onEmbeddedCode Python:

gams.set(’k’,[’0’,’1’,’2’])

$offEmbeddedCode k

will fail with compilation error Cannot load/unload symbol with unknown dimension.

1338 User's Guide

4.45.5.4 Encodings

Python 3 expects source code to be encoded in UTF-8 per default. Therefore all embedded Python code
has to be encoded in UTF-8 as well. However, this can be customized by adding a comment in the format
coding=<encoding name> or # -∗- coding: <encoding name> -∗- as first line of an Embedded
Python Code section. The encoding can be changed from any Embedded Python Code section and will
affect all subsequent sections. So in case of a GAMS source file which is encoded using a non-UTF-8
encoding like cp1252 or others, it is sufficient to change the encoding only once in the very first Embedded
Code section. Note that UTF-16 encoding is not supported.

Note

Changing the source code encoding has no effect on the default encoding that is used by the open()

function since it uses whatever locale.getpreferredencoding(False) returns. Furthermore the
encoding used for stdin/stdout/stderr has to be controlled separately. This can be achieved by
setting the environment variable PYTHONIOENCODING.

4.45.5.5 Multiple Independent Python Sessions

At execution time the user has the ability to pause and continue an embedded code segment. As explained
at the beginning, the user Python code lives in Python's global scope.

4.45.5.6 Troubleshooting Embedded Python Code

The GAMS compiler ensures that the number of errors during execution time is minimized. While the
logic of the GAMS program might be flawed there is nothing (with a few exceptions) that the GAMS
system cannot execute. This is different if we embed foreign code in a GAMS program. The GAMS
compiler does not understand the foreign code syntax and just skips over it. Only when the code is
executed we will find out if everything works as expected. If the embedded code contains some (Python)
syntax errors the Python parser will inform us about this and the message will appear in the GAMS
log. For example, the following Python code using the gams.printLog function two times will generate a
syntax error:

$onEmbeddedCode Python:

gams.printLog(’hello’)

gams.printLog(’world...’)

$offEmbeddedCode

The GAMS log will provide some guidance:

--- Execute embedded library libembpycclib64.so

File "<string>", line 7

gams.printLog(’world...’)

^

IndentationError: unexpected indent

Python error! Return code from Python execution: -1

*** Error executing embedded code section:

*** Check log above

Moreover, if the Python code raises an exception which is not handled within the code this will also lead
to a compilation or execution error in GAMS depending at what phase the embedded code is executed.

https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONIOENCODING

4.45 Embedded Code Facility 1339

embeddedCode Python:

raise Exception(’something is wrong’)

endEmbeddedCode

will produce the following GAMS log and an execution time error:

--- Initialize embedded library libembpycclib64.so

--- Execute embedded library libembpycclib64.so

Exception from Python (line 0): something is wrong

*** Error at line 1: Error executing "embeddedCode" section: Check log above

Note

It is good practice to raise a Python exception if an error occurs. In any case using exit() needs to
be avoided since it terminates the executable in an uncontrolled way.

The Python code is executed as part of the GAMS process and GAMS gives control to the Python
interpreter when executing the embedded code. So in the worst case if the Python interpreter crashes, the
entire GAMS process will crash. Therefore, it is important to be able to test and debug the embedded
Python code independent of GAMS. In the following examples we call the Python interpreter executable
as part of a GAMS job. In principle this can be tested and debugged completely independent of GAMS
where a GDX file represents the content of the GAMS database.

In the first example we mimic the embedded code facility at compile time by exporting the entire GAMS
database to a GDX file debug.gdx. With $on/offEcho we write the embedded code with a few extra
lines at the top and bottom surrounded by a try/except block and execute the Python interpreter via
$call. One of the extra lines at the end of the embedded code triggers the creation of a GDX result file
debugOut.gdx which can be imported in subsequent $gdxin/$load commands.

Set i /i1*i10/

p(i,i) permutation;

$gdxOut debug.gdx

$unload

$gdxOut

$onEcho > debug.py

from gams.core.embedded import *

gams = ECGAMSDatabase(r’%gams.sysdir% ’[:-2], ’debug.gdx’)

try:

import random

i = list(gams.get("i"))

p = list(i)

random.shuffle(p)

for idx in range(len(i)):

p[idx] = (i[idx], p[idx])

gams.set("p", p)

gmdWriteGDX(gams._gmd,’debugOut.gdx’,1);

except Exception as e:

print(str(e))

$offEcho

$call.checkErrorLevel ="%gams.sysdir%GMSPython/python" debug.py

$gdxIn debugOut.gdx

$loadDC p

Option p:0:0:1;

Display p;

1340 User's Guide

In the second example we mimic the embedded code facility at execution time by exporting the entire
GAMS database to a GDX file debug.gdx via execute unload 'debug.gdx';. We write the embedded
code with a few extra lines at the top and bottom surrounded by a try/except block via the put facility
and execute the Python interpreter via execute. Identical to the compile time example, we export the
result to the GDX file debugOut.gdx which can be imported via the execute load statement.

Set i /i1*i10/

p(i,i) permutation;

execute_unload ’debug.gdx’;

file fpy / ’debug.py’ /; put fpy;

$onPutS

from gams.core.embedded import *

gams = ECGAMSDatabase(r’%gams.sysdir% ’[:-2],’debug.gdx’)

try:

import random

i = list(gams.get("i"))

p = list(i)

random.shuffle(p)

for idx in range(len(i)):

p[idx] = (i[idx], p[idx])

gams.set("p", p)

gmdWriteGDX(gams._gmd,’debugOut.gdx’,1);

except Exception as e:

print(str(e))

$offPut

putClose fpy;

execute.checkErrorLevel ’="%gams.sysdir%GMSPython/python" debug.py’;

execute_load ’debugOut.gdx’, p;

Option p:0:0:1;

Display p;

Automatic Indentation

All embedded Python code is automatically wrapped in a try-except block that requires an indentation
(two spaces). While this additional indentation makes no difference for most Python code, it does make
a difference when it comes to multi-line strings. Therefore, multi-line strings created with triple quotes
(either single or double quotes) are excluded from this rule to avoid unintentional spaces, e.g. when writing
to a file:

$onEmbeddedCode Python:

f = open("file.txt", "w")

f.write(’’’some

multi

line

string

’’’)

f.close()

$offEmbeddedCode

Still, when using the line continuation character (\) in combination with strings, one has to be aware of
the extra spaces that are added automatically:

4.45 Embedded Code Facility 1341

$onEmbeddedCode Python:

s = "some\

multi\

line\

string"

gams.printLog(s)

$offEmbeddedCode

This will print some multi line string instead of somemultilinestring due to the automatically
applied indentation.

SSL Certificate Error

When doing HTTPS requests from within Embedded Python code using packages like urllib or urllib3,
one might get an error indicating that no certificate was found:
urllib.error.URLError: <urlopen error [SSL: CERTIFICATE VERIFY FAILED] certificate verify failed: unable to get local

issuer certificate (ssl.c:1131)>

GMSPython comes with the certifi package that provides certificates to be used for validating the
trustworthiness of SSL certificates. In order to make use of those, one can set the environment variable
SSL CERT FILE at the beginning of the Embedded Code section, before making the actual request:

$onEmbeddedCode Python:

import certifi

import os

import urllib.request

os.environ[’SSL_CERT_FILE’] = certifi.where()

urllib.request.urlretrieve(’<url>’, ’<file>’)

$offEmbeddedCode

4.45.5.7 Performance Considerations of Embedded Python Code

If the same embedded code section (e.g. in a loop) is executed many times there are a few considerations
to be taken into account in order to get the best performance. For this we will experiment with the
example from the introduction. We look for a random permutation of a set i. In addition we have a
cost matrix c(i,ii) and we are looking for the least cost permutation. We should just formulate this
as matching in a bi-partite graph but in order to demonstrate some performance considerations we will
repeatedly call the Python code that provides a random permutation and we will evaluate the cost of the
permutation in GAMS and store the value of the cheapest one. Here is the naive implementation using
embedded code:

Set i / i1*i50 /

p(i,i) permutation;

Alias (i,ii);

Parameter c(i,i) cost of permutation;

c(i,ii) = uniform(-50,50);

Set iter / 1*100 /;

Scalar tcost

minTCost / +inf /;

loop(iter,

embeddedCode Python:

import random

i = list(gams.get("i"))

1342 User's Guide

p = list(i)

random.shuffle(p)

gams.set("p", [(i[idx], p[idx]) for idx in range(len(i))])

endEmbeddedCode p

tcost = sum(p, c(p));

if (tcost < minTCost, minTCost = tcost);

);

Display minTCost;

Even though the Python interpreter stays alive the fresh start and end of an embedded code section goes
together with the setup and initialization of multiple data structure, including the gams object of type
ECGAMSDatabase. We can avoid the repeated setup and initialization by using pause and continue:

Set i / i1*i50 /

p(i,i) permutation;

Alias (i,ii);

Parameter c(i,i) cost of permutation;

c(i,ii) = uniform(-50,50);

embeddedCode Python:

import random

pauseEmbeddedCode

Set iter / 1*100 /;

Scalar tcost

minTCost / +inf /;

loop(iter,

continueEmbeddedCode:

i = list(gams.get("i"))

p = list(i)

random.shuffle(p)

gams.set("p", [(i[idx], p[idx]) for idx in range(len(i))])

pauseEmbeddedCode p

tcost = sum(p, c(p));

if (tcost < minTCost, minTCost = tcost);

);

continueEmbeddedCode:

pass

endEmbeddedCode

Display minTCost;

The last embedded code execution of the Python pass statement is to clean up and terminate the Python
session. Since the amount of data is relatively small, there is little difference in the running time between
these variants.

There are other performance considerations. We can actually extract the set i once before the GAMS
loop starts. Moreover, we can work with label indexes rather than the labels itself. Indexes are integers
and are often faster than labels that are stored as strings. The only difference to the code above is the
extraction method of the Python list i by i = list(gams.get("i",keyType=KeyType.INT)).

4.45.5.8 Extending GMSPython

While we recommend to use your own Python installation if you need additional packages, there are ways
to extend the Python system that comes with GAMS in GMSPython. Here are the steps:

4.45 Embedded Code Facility 1343

1. Get pip via get-pip (https://pip.pypa.io/en/stable/installation/)

2. Update pip

3. Install additional packages

We highly recommend installing pip and additional packages in the user site (use --user when running
get-pip and pip). This is especially important for macOS users. Installing files in the GAMS system
directory may interfere with the file notarization and may prevent GAMS from starting properly. Here is
a typical dialog for Linux/macOS using curl to download get-pip.py. If you don't have curl or wget,
use your web browser for downloading.

curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py

/path/to/gams/GMSPython/python get-pip.py --user

~/.local/bin/pip install -U pip

~/.local/bin/pip install geocoder --user

4.45.5.9 Using an External Python 3 Installation

Let's assume you don't want to work with the GAMS distributed GMSPython but you want to connect
GAMS with a Python 3 installation of your liking. In order for the Embedded Code Facility to work, you
need to make the alternative Python interpreter aware of the required modules provided by GAMS by
following the Getting Started steps in the Python API documentation.

In addition to this you need to do one more step to allow GAMS to find your Python installation
when executing Embedded Python code: you need to point to the Python dynamic load library or
shared object. On Windows this file is called python3X.dll, on Linux libpython3.X.so, and on macOS
libpython3.X.dylib. The X stands for the minor version number of Python 3. While embedded code
has been built and tested for Python 3.12, chances are that you can also point to other Python 3 libraries.
Since the expert level API is required, the set of versions is limited to what GAMS supports (currently
GAMS ships these for Python 3.8 to 3.12). Limited experiments with the embedded code library for
Python 3.12 with Python 3.8, 3.9, 3.10, and 3.11 libraries were successful. You need to set the environment
variable GMSPYTHONLIB to point GAMS to the Python library:

• Windows:
set GMSPYTHONLIB=c:\path\to\python\python312.dll

• Linux:
export GMSPYTHONLIB=/path/to/python/lib/libpython3.12.so

• macOS:
export GMSPYTHONLIB=/path/to/python/lib/libpython3.12.dylib

GAMS will extract the Python home from the location of the Python library. In case this extraction does
not work (because of an unconventional Python installation), you can instruct GAMS to set the Python
home via the additional environment variable GMSPYTHONHOME. Please note, that this environment variable
only needs to be set for GAMS Embedded Python code, so it is sufficient to add these variables to the
GAMS configuration YAML file.

Note

When using environment-based Python distributions like Anaconda or Miniconda, it is not sufficient
to set GMSPYTHONLIB (and GMSPYTHONHOME). The environment to be used needs to be activated
properly before (e.g. conda activate myEnv). Packages like numpy which have been installed using
conda (conda install numpy) won't work otherwise. In addition to setting GMSPYTHONLIB we
therefore recommend to start GAMS itself and also tool like GAMS Studio from an activated conda
environment in order to make sure that the environment and all installed packages work as expected.

Although it is recommended to use a self-contained Python installation, it is possible to use a virtual
environment instead (e.g. via venv). In this case, GMSPYTHONLIB has to be set to the Python library of
the installation from which the environment was derived from. In addition, the PYTHONPATH environment
variable needs to be set to the site-packages directory of the virtual environment in order to make
its packages available. Note that with this setup the site-packages directory of the original Python
installation will also be found by GAMS Embedded Python code.

https://pip.pypa.io/en/stable/installation/

1344 User's Guide

4.45.5.10 Building your own Embedded Python Code Library

Although the Embedded Code Facility and its binary components are part of the GAMS distribution, it is
possible to build it manually from source using the following commands. The exact command line might
change depending on the compiler and the operating system in use:

• Windows:

cd [GAMS directory]/apifiles/C/api

icl.exe -Feembpycclib64.dll -IC:\path\to\python\include embpyoo.c gmdcc.c gclgms.c -LD -link -nodefaultlib:python38.lib

• Linux:

cd [GAMS directory]/apifiles/C/api

gcc -o libembpycclib64.so -nostartfiles -shared -Wl,-Bsymbolic -pthread -fPIC -Ipath/to/your/python/include/python3.12 embpyoo.c gmdcc.c gclgms.c -lm -ldl

• macOS on x86 64 CPUs:

cd [GAMS directory]/apifiles/C/api

gcc -o libembpycclib64.dylib -dynamiclib -shared -install_name @rpath/libembpycclib64.dylib -Ipath/to/your/python/include/python3.12 embpyoo.c gmdcc.c gclgms.c -lm -ldl

• macOS on arm64 CPUs:

cd [GAMS directory]/apifiles/C/api

clang -o libembpycclib64.dylib -dynamiclib -shared -install_name @rpath/libembpycclib64.dylib -Ipath/to/your/python/include/python3.12 embpyoo.c gmdcc.c gclgms.c -lm -ldl

4.45.6 Connect

The Connect framework gives unified and platform independent access to data exchange with different
formats (e.g. CSV and Excel). The instructions how to access the various data sources are given in YAML
syntax. These YAML instructions are the code for the embedded Connect code. The embedded Connect
code engine will parse the YAML instructions and use Connect agents to act upon the instructions. The
agents GAMSReader and GAMSWriter send data back and forth to GAMS. A simple example is given
above.

Embedded code Connect is build on top of embedded code Python. Similar considerations (e.g. Python
interpreter is loaded once) carry over from Python to Connect. Moreover, the agent PythonCode has
access to the object gams of type ECGamsDatabase which is used for communication of data with GAMS.
In contrast to embedded Python code, the code of the agent PythonCode does not execute in the global
scope but in a separate block. This means that variables set in the code are not available in another
PythonCode section. The following code ends up in the except clause and prints Cannot access my i.

embeddedCode Connect:

- PythonCode:

code: |

my_i = 1

- PythonCode:

code: |

try:

gams.printLog(f’{my_i}’)

except:

gams.printLog(’Cannot access my_i’)

endEmbeddedCode

4.45 Embedded Code Facility 1345

Since Python allows to add attributes to an object at runtime, the my i variable can be added to the
gams object and hence becomes available in different PythonCode sections and even in different embedded
Connect code parts (when pause/continue is used):

embeddedCode Connect:

- PythonCode:

code: |

gams.my_i = 1

- PythonCode:

code: |

gams.printLog(f’{gams.my_i}’)

pauseEmbeddedCode

continueEmbeddedCode:

- PythonCode:

code: |

gams.printLog(f’{gams.my_i}’)

endEmbeddedCode

Even though embedded code Python and Connect share the same basis, they run in different instantiations
of the Python interpreter and hence don't share e.g. the same gams object.

4.45.6.1 Substitutions in Embedded Connect Code

The GAMS compiler has mechanisms to substitute compile-time variables to parameterize GAMS code
including embedded code (unless the V, e.g. $onEmbeddedCodeV, of embedded code is used). Here is an
example how to use double-dash parameters to allow the user to set the CSV file name via the GAMS
command line (gams mymodel.gms --csvfilename=mystockprice.csv):

$if not set CSVFILENAME $set CSVFILENAME stockprice.csv

$onEmbeddedCode Connect:

- CSVReader:

file: %CSVFILENAME%

name: stockprice

indexColumns: [1, 2]

valueColumns: [3]

- GAMSWriter:

symbols:

- name: stockprice

$offEmbeddedCode

Not only user defined compile-time variables will be substituted, but also all other compile time variables,
e.g. %gams.scrDir% or %system.dirSep%. Another way to pass substitution instructions down to
embedded Connect code are the embedded code arguments:

$if not set MYCSVFILENAME $set MYCSVFILENAME stockprice.csv

$onEmbeddedCodeV Connect: --CSVFILENAME=%MYCSVFILENAME%

- CSVReader:

file: %CSVFILENAME%

name: stockprice

indexColumns: [1, 2]

valueColumns: [3]

- GAMSWriter:

symbols:

- name: stockprice

$offEmbeddedCode

1346 User's Guide

Together with the put utility command ECArguments that appends some arbitrary text to the embedded
code arguments this can be used to parameterize the embedded Connect code at execution time, e.g. to
create files based on label names:

Set i /1*5/; Parameter p(i);

loop(i,

p(i) = uniform(0,1);

put_utility ’ECArguments’ / ’--CSVFILENAME=’ i.tl:0 ’.csv’;

EmbeddedCodeV Connect:

- GAMSReader:

symbols:

- name: p

- CSVWriter:

name: p

file: %CSVFILENAME%

endEmbeddedCode

);

Please note that while the GAMS command line parameters allow various formats to specify
double-dash parameters, the embedded code Connect substitution arguments must be in the form
--key=value, so a = character to separate key and value with no spaces. The value might be a (double)
quoted string though. Please also note that the embedded code arguments set with put utility command
ECArguments will be applied to any subsequent embedded code section. So one might want to clear the
argument by adding a put utility "ECArguments" / ""; after the relevant embedded code section.

4.45.7 GAMS

The embedded code GAMS differs in various ways from the other embedded code languages. It's definitely
not a new language one gets access to or does things not easily possible in GAMS. Moreover, it does the
data communication not in-memory but via disk files. Mostly it adds some syntactical sugar to methods
to call GAMS from within GAMS that are available for a long time. So a compile time embedded code
GAMS section

$onEmbeddedCode GAMS: args

* ...

$offEmbeddedCode list_of_symbols

essentially can be done via some file creation via $on/offEcho, spawning of a GAMS process via $call,
and loading of symbols via $gdxLoad:

$onEcho > sub.gms

* ...

$offEcho

$call.checkErrorLevel gams sub.gms args gdx=sub.gdx

$gdxLoad sub.gdx list_of_symbols

Similar at execution time an embedded code GAMS section

embeddedCode GAMS: args

* First part ...

pauseEmbeddedCode list_of_symbols

continueEmbeddedCode GAMS:

* Second part ...

endEmbeddedCode list_of_symbols

4.45 Embedded Code Facility 1347

essentially can be done via some file creation via a put file, spawning of a GAMS process via execute,
and loading of symbols via execute loadpoint:

file fgms / ’sub.gms’ /; put fgms;

$onPut

* First part ...

$offPut

putclose;

execute.checkErrorLevel ’gams sub.gms args gdx=sub.gdx save=sub’

execute_loadpoint ’sub.gdx’, list_of_symbols;

put fgms;

$onPut

* Second part ...

$offPut

putclose;

execute.checkErrorLevel ’gams sub.gms args gdx=sub.gdx restart=sub’

execute_loadpoint ’sub.gdx’, list_of_symbols;

In addition to the more readable syntax provided by the embedded code syntax, embedded code GAMS
takes care of files (source, log, listing, GDX etc) and options related to these files, e.g. logFile. In case of
execution-time pauseEmbeddedCode/continueEmbeddedCode embedded code handles the management of
the save and restart operations which is especially convenient when working with multiple independent
embedded code sections in combination with function embeddedHandle. Moreover, the log and listing
streams of the embedded code GAMS section become part of the outer GAMS log and listing stream in
case the GAMS subprocess returns with an error. For example, the following code with a syntax error
(symbol names can't start with) in the embedded code section:

embeddedCode GAMS:

* This produces an error

set _i /1*10/;

endEmbeddedCode

results in the following relevant part of the log:

...

--- Initialize embedded library embgamscclib64.dll

--- Execute embedded library embgamscclib64.dll

*** Error running gams (return code 2)

--- Start of log file ecgamslog.dat:

--- Job myEmb.dat Start 01/18/23 12:24:00 42.0.0 3dcbfd09 WEX-WEI x86 64bit/MS Windows

...

--- Starting compilation

--- myEmb.dat(2) 3 Mb 1 Error

*** Error 2 in C:\Users\mbuss\Downloads\225e\myEmb.dat

Identifier expected

--- GDX File C:\Users\mbuss\Downloads\225e\ecgamsgdx.dat

--- myEmb.dat(2) 3 Mb 1 Error

*** Status: Compilation error(s)

--- Job myEmb.dat Stop 01/18/23 12:24:00 elapsed 0:00:00.007

--- End of log file ecgamslog.dat

*** Error at line 1: Error executing "embeddedCode" section: Inspect listing file for details

...

1348 User's Guide

and following relevant part of the listing file:

...

E x e c u t i o n

--- Start of include of file ecgamslst.dat

GAMS 42.1.0 3dcbfd09 Jan 30, 2023 WEX-WEI x86 64bit/MS Windows - 01/31/23 12:24:00 Page 1

G e n e r a l A l g e b r a i c M o d e l i n g S y s t e m

C o m p i l a t i o n

1 * This produces an error

2 set _i /1*10/;

**** $2

**** 2 Identifier expected

**** 1 ERROR(S) 0 WARNING(S)

...

**** USER ERROR(S) ENCOUNTERED

--- End of include of file ecgamslst.dat

**** Exec Error at line 1: Error executing "embeddedCode" section: Inspect listing file for details

...

4.45.7.1 Best Practices

Embedded code GAMS at compile time can be used to build up data, e.g. domain sets, required at compile
time inside an embedded code GAMS at execution time. Data from the embedded code GAMS section
can be moved via GDX (see example above) or file ASCII input files into the outer GAMS program. The
following two examples complements the bin packing example by demonstrating two ways to communicate
the data via an ASCII input file.

The following solution creates a global compile time variable for the size of set j:

...

$save.keepCode bp

$onEmbeddedCode GAMS: restart=bp

scalar size /0/;

nj = 1; loop(i, size = size+s(i); if (size>B, nj = nj+1; size = s(i)));

file fnj / ’nj.gms’ /; put fnj ’$setGlobal NJ ’ nj:0:0;

$offEmbeddedCode

$include nj

Set j ’bins’ / b1*b%NJ% /;

...

In the next solution the embedded code GAMS writes already the data statement for set j:

...

$save.keepCode bp

$onEmbeddedCode GAMS: restart=bp

scalar jcnt, size /0/;

nj = 1; loop(i, size = size+s(i); if (size>B, nj = nj+1; size = s(i)));

4.45 Embedded Code Facility 1349

file fnj / ’nj.gms’ /; put fnj ’* Set j:’;

* Either as short hand b1*bN or all individual elements

if (1=0,

put / ’b1*b’ nj:0:0;

else

for (jcnt=1 to nj, put / ’b’ jcnt:0:0);

);

$offEmbeddedCode

Set j ’bins’ /

$include nj

/;

...

Embedded code GAMS works best in combination with restarting from a save file. This makes the
embedded code short because it can utilize the symbol declarations and definitions from the restart
file. Save files can be created at compile time via $save[.keepCode] fileName and at execution time via
put utility 'save' / 'fileName';.

Execution time embedded code GAMS can be useful if at execution time GAMS needs to deal with new
labels as in the following sophisticated example. Here we build on top of the GAMS Model Library
trnsport model and represent the Jacobian matrix of the LP model utilizing the Convert option dumpGDX
in the original name space inside GAMS:

...

Model transport / all /;

* Generate the Jacobian (t.gdx) with e1,e2,e3,... and x1,x2,x3,... and a mapping (tdm.gdx) to map the

* scalar elements e1,e2,e3,... and x1,x2,x3,... to the original name space:

$onEcho > convert.opt

dumpGDX t.gdx

dictMap tdm.gdx

$offEcho

transport.optfile = 1; option lp=convert;

solve transport using lp minimizing z;

Sets

v ’variables block names’ / x, z /,

e ’equation block names’ / cost, supply, demand /

empty ’the empty string’ / ’’ /;

Parameter jac(e,*,*,v,*,*) ’Jacobian of the generated LP model’;

embeddedCode GAMS:

$call.checkErrorLevel gdxdump tdm.gdx noData > tdm.gms

$include tdm

Parameter A(i,j) ’Jacobian in e1,e2,.. (set i) and x1,x2,... (set j) space’, jac;

$gdxLoad t.gdx A

Alias (*,ti,tii,tj,tjj);

loop((cost_EM(i) ,x_VM(j,ti,tj)), jac(’cost’ ,’’ ,’’,’x’,ti,tj) = A(i,j));

loop((cost_EM(i) ,z_VM(j)), jac(’cost’ ,’’ ,’’,’z’,’’,’’) = A(i,j));

loop((supply_EM(i,tii),x_VM(j,ti,tj)), jac(’supply’,tii,’’,’x’,ti,tj) = A(i,j));

loop((supply_EM(i,tii),z_VM(j)), jac(’supply’,tii,’’,’z’,’’,’’) = A(i,j));

loop((supply_EM(i,tjj),x_VM(j,ti,tj)), jac(’demand’,’’,tjj,’x’,ti,tj) = A(i,j));

loop((supply_EM(i,tjj),z_VM(j)), jac(’demand’,’’,tjj,’z’,’’,’’) = A(i,j));

endEmbeddedCode jac

option jac:3:3:3; display jac;

1350 User's Guide

The display of the last line in the code provides the following output in the listing file:

---- 87 PARAMETER jac

x x x x x x z

seattle seattle seattle san-diego san-diego san-diego

new-york chicago topeka new-york chicago topeka

cost . . -0.225 -0.153 -0.162 -0.225 -0.162 -0.126 1.000

supply.seattle . 1.000 1.000 1.000

supply.san-diego. 1.000 1.000 1.000

demand. .seattle 1.000 1.000 1.000

demand. .san-diego 1.000 1.000 1.000

Other embedded code languages allow inside the language to set instructions to either filter/domain check or
replace/merge data that comes back into GAMS. At compile time the dollar control options $on/offFiltered
and $on/offMulti[R] impact the load of symbols from embedded code sections, including GAMS. At
execution time embedded code GAMS filters and merges the data. If a different behavior is required, the
symbols to be loaded should not be listed on the end/pauseEmbeddedCode line but should be loaded with
the appropriate execute load∗∗∗ call like execute load, execute loaddc, or execute loadpoint. The
GDX file to load can be set via put utility "gdxIn" / gams.scrDir "ecgamsgdx." gams.scrExt;:

Set ii / i0*i10 /, i / i1*i5 /; Parameter p(i) / i1 1, i3 1, i5 1 /;

embeddedCode GAMS:

Parameter p / i2 1, i4 1, i6 1 /;

endEmbeddedCode p

display p;

embeddedCode GAMS:

Parameter p / i2 1, i4 1, i6 1 /;

endEmbeddedCode

put_utility ’gdxIn’ / gams.scrDir ’ecgamsgdx.’ gams.scrExt;

execute_load p;

display p;

GAMS' first load of p filters and merges the symbol into the existing p resulting in i1 1, i2 1, i3 1,

i4 1, i5 1 while the second load replaces the symbol resulting in i2 1, i4 1. An execute loaddc p;

would have resulted in a domain violation (i6) and would have triggered an execution error.

4.46 GAMS Connect

4.46.1 Concept

GAMS Connect is a framework inspired by the concept of a so-called ETL (extract, transform, load)
procedure that allows to integrate data from various data sources. The GAMS Connect framework consists
of the Connect database and the Connect agents that operate on the Connect database. Via the available
Connect interfaces the user passes instructions to call Connect agents for reading data from various file
types into the Connect database, transforming data in the Connect database, and writing data from the
Connect database to various file types. Instructions are passed in YAML syntax. Note that in contrast
to a typical ETL procedure, read, transform and write operations do not need to be strictly separated.

https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html

4.46 GAMS Connect 1351

4.46.2 Usage

GAMS Connect is available via the GAMS command line parameters ConnectIn and ConnectOut, via
embedded code Connect, and as a standalone command line utility gamsconnect.

Instructions processed by the GAMS Connect interfaces need to be passed in YAML syntax as follows:

- <agent name1>:

<root option1>: <value>

<root option2>: <value>

.

.

<root option3>:

- <option1>: <value>

<option2>: <value>

.

.

- <option1>: <value>

<option2>: <value>

.

.

.

.

- <agent name2>:

.

.

.

.

The user lists the tasks to be performed successively. All tasks begin at the same indentation level starting
with a - (a dash and a space) followed by the Connect agent name and a : (a colon). Connect agent
options are represented in a simple <option>: <value> form. Please check the documentation of
Connect Agents for available options. Options at the first indentation level are called root options and
typically define general settings, e.g. the file name. While some agents only have root options, others
have a more complex options structure, where a root option may be a list of dictionaries containing other
options. A common example is the root option symbols (see e.g. GDXReader). Via symbols many agents
allow to define symbol specific options, e.g. the name of the symbol. The option tables of agents with a
more complex options structure provide a Scope to reflect this structure - options may be allowed at the
first indentation level (root) and/or are assigned to other root options (e.g. symbols).

Note that YAML syntax also supports an abbreviated form for lists and dictionary, e.g. <root option3>:
[{<option1>: <value>, <option2>: <value>}, {<option1>: <value>, <option2>:
<value>}].

Here is an example that uses embedded Connect code to process instructions:

$onecho > distance.csv

i;j;distance in miles

seattle;new-york;2,5

seattle;chicago;1,7

seattle;topeka;1,8

san-diego;new-york;2,5

san-diego;chicago;1,8

san-diego;topeka;1,4

$offecho

https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html

1352 User's Guide

$onecho > capacity.csv

i,capacity in cases

seattle,350.0

san-diego,600.0

$offecho

Set i ’Suppliers’, j ’Markets’;

Parameter d(i<,j<) ’Distance’, a(i) ’Capacity’;

$onEmbeddedCode Connect:

- CSVReader:

file: distance.csv

name: distance

indexColumns: [1, 2]

valueColumns: [3]

fieldSeparator: ’;’

decimalSeparator: ’,’

- CSVReader:

file: capacity.csv

name: capacity

indexColumns: [1]

valueColumns: [2]

- GAMSWriter:

symbols:

- name: distance

newName: d

- name: capacity

newName: a

$offEmbeddedCode

display i, j, d, a;

In this example, we are reading two CSV files distance.csv and capacity.csv using the CSVReader.
Then we directly write to symbols in GAMS using the GAMSWriter.

Note that even though GAMS is case insensitive, GAMS Connect is case sensitive, i.e., YAML instructions
are treated case sensitive. This also includes, e.g., indices in CSV files. Consider the following example
where the index j2 should be substituted by ABC when reading the CSV file y.csv:

$onecho > y.csv

i1,j1,2.5

i1,J2,1.7

i2,j1,1.8

i2,j2,1.4

$offecho

set i,j;

parameter p(i<,j<);

$onEmbeddedCode Connect:

- CSVReader:

file: y.csv

name: p

indexColumns: [1,2]

valueColumns: [3]

header: false

indexSubstitutions: { j2: ABC }

- GAMSWriter:

4.46 GAMS Connect 1353

writeAll: true

$offEmbeddedCode

display i,j,p;

Since the YAML instructions are treated case sensitive, the index J2 will not be substituted.

j1 J2 ABC

i1 2.500 1.700

i2 1.800 1.400

An exception are symbol names in the Connect database. Creating or accessing symbols, e.g. via the
name option of many agents, is case insensitive.

All instructions provided to the Connect framework are read using UTF-8 encoding (utf-8-sig). This
can be customized by adding a comment in the format # coding=<encoding name> or # -∗- coding:

<encoding name> -∗- as first line in the YAML code. Note that UTF-16 encoding is not supported.

A note on the sorting behavior of Connect agents. All reader and transformer agents do not guarantee
a specific order of the created symbol records. However, as the symbol records in the Connect database
are saved in categorical data structures, the order in the data source is preserved in ordered categories. All
writer agents guarantee that symbol records are written in the order of the categories. Here is an example:

$onecho > ijk_in.csv

i,j,k1,k2

i1,j2,,3

i2,j1,4,

i1,j1,1,2

i2,j2,5,6

$offecho

EmbeddedCode Connect:

- CSVReader:

file: ijk_in.csv

name: ijk

valueColumns: "3:lastCol"

indexColumns: [1,2]

- PythonCode:

code: |

sym = connect.container.data["ijk"]

print("ijk records in the Connect database after reading:\n", sym.records)

data_sorted = sym.records.sort_values(sym.records.columns[:-1].tolist())

print("ijk records sorted according to categories:\n", data_sorted)

sym.reorderUELs(uels=[’j1’,’j2’], dimensions=1)

data_sorted = sym.records.sort_values(sym.records.columns[:-1].tolist())

print("ijk records sorted according to reordered categories:\n", data_sorted)

- CSVWriter:

file: ijk_out.csv

name: ijk

unstack: True

endEmbeddedCode

1354 User's Guide

From the data source ijk in.csv, the CSVReader creates the symbol records as shown with the first
print:

ijk records in the Connect database after reading:

i j level_2 value

0 i1 j2 k2 3.0

1 i2 j1 k1 4.0

2 i1 j1 k1 1.0

3 i1 j1 k2 2.0

4 i2 j2 k1 5.0

5 i2 j2 k2 6.0

The ordered categories are inferred from the data source, therefore the order for column i is ['i1','i2'],
for column j ['j2','j1'] and for column k the order of the header ['k1','k2'] is preserved. The
categories define the order of the symbol records if sorted:

ijk records sorted according to categories:

i j level_2 value

0 i1 j2 k2 3.0

2 i1 j1 k1 1.0

3 i1 j1 k2 2.0

4 i2 j2 k1 5.0

5 i2 j2 k2 6.0

1 i2 j1 k1 4.0

If the order is not as desired, .reorderUELs() can be used to change the order of the categories, e.g. to
['j1','j2'] for column j:

ijk records sorted according to reordered categories:

i j level_2 value

2 i1 j1 k1 1.0

3 i1 j1 k2 2.0

0 i1 j2 k2 3.0

1 i2 j1 k1 4.0

4 i2 j2 k1 5.0

5 i2 j2 k2 6.0

The CSVWriter automatically sorts the symbol records according to the categories (note that the order of
column j was changed with the PythonCode agent) and therefore, the content of file ijk out.csv looks
as follows:

i,j,k1,k2

i1,j1,1.0,2.0

i1,j2,,3.0

i2,j1,4.0,

i2,j2,5.0,6.0

4.46.3 Connect Agents Summary

Current Connect agents support the following data source formats: CSV, Excel, GDX and SQL. The
following Connect agents are available:

4.46 GAMS Connect 1355

Connect agent Description Supported symbol types

Concatenate Allows concatenating multiple symbols
in the Connect database.

Sets and parameters

CSVReader Allows reading a symbol from a specified
CSV file into the Connect database.

Sets and parameters

CSVWriter Allows writing a symbol in the Connect
database to a specified CSV file.

Sets and parameters

DomainWriter Allows rewriting the domain informa-
tion of an existing Connect symbol.

Sets, parameters, variables, and equa-
tions

ExcelReader Allows reading symbols from a specified
Excel file into the Connect database.

Sets and parameters

ExcelWriter Allows writing symbols in the Connect
database to a specified Excel file.

Sets and parameters

Filter Allows to reduce symbol data by ap-
plying filters on labels and numerical
values.

Sets, parameters, variables, and equa-
tions

GAMSReader Allows reading symbols from the GAMS
database into the Connect database.

Sets, parameters, variables, and equa-
tions

GAMSWriter Allows writing symbols in the Connect
database to the GAMS database.

Sets, parameters, variables, and equa-
tions

GDXReader Allows reading symbols from a specified
GDX file into the Connect database.

Sets, parameters, variables, and equa-
tions

GDXWriter Allows writing symbols in the Connect
database to a specified GDX file.

Sets, parameters, variables, and equa-
tions

LabelManipulator Allows to modify labels of symbols in
the Connect database.

Sets, parameters, variables, and equa-
tions

Options Allows to set more general options that
can affect the Connect database and
other Connect agents.

-

Projection Allows index reordering and projection
onto a reduced index space of a GAMS
symbol.

Sets, parameters, variables, and equa-
tions

PythonCode Allows executing arbitrary Python code. -

RawCSVReader Allows reading unstructured data from
a specified CSV file into the Connect
database.

-

RawExcelReader Allows reading unstructured data from
a specified Excel file into the Connect
database.

-

SQLReader Allows reading symbols from a spec-
ified SQL database into the Connect
database.

Sets and parameters

SQLWriter Allows writing symbols in the Connect
database to a specified SQL database.

Sets and parameters

4.46.4 Getting Started

We introduce the basic functionalities of GAMS Connect agents on some simple examples. For more
examples see section Examples.

4.46.4.1 Simple Connect Example for CSV

The following example (a modified version of the trnsport model) shows how to read and write CSV
files. The full example is part of DataLib as model connect03. Here is a code snippet of the first lines:

1356 User's Guide

$onEcho > distance.csv

i,new-york,chicago,topeka

seattle,2.5,1.7,1.8

san-diego,2.5,1.8,1.4

$offEcho

$onEcho > capacity.csv

i,capacity

seattle,350

san-diego,600

$offEcho

$onEcho > demand.csv

j,demand

new-york,325

chicago,300

topeka,275

$offEcho

Set i ’canning plants’, j ’markets’;

Parameter d(i<,j<) ’Distance’, a(i) ’Capacity’, b(j) ’Demand’;

$onEmbeddedCode Connect:

- CSVReader:

file: distance.csv

name: d

indexColumns: 1

valueColumns: "2:lastCol"

- CSVReader:

file: capacity.csv

name: a

indexColumns: 1

valueColumns: 2

- CSVReader:

file: demand.csv

name: b

indexColumns: 1

valueColumns: 2

- GAMSWriter:

writeAll: True

$offEmbeddedCode

[...]

It starts out with the declaration of sets and parameters. With compile-time embedded Connect code,
data for the parameters is read from CSV files using the Connect agent CSVReader. The CSVReader
agent, for example, reads the CSV file distance.csv and creates the parameter d in the Connect database.
The name of the parameter must be given by the option name. Column number 1 is specified as the first
domain set using option indexColumns. The valueColumns option is used to specify the column numbers
2, 3 and 4 containing the values. Per default, the first row of the columns specified via valueColumns will
be used as the second domain set. The symbolic constant lastCol can be used if the number of index
or value columns is unknown. As a last step, all symbols from the Connect database are written to the
GAMS database using the Connect agent GAMSWriter. The GAMSWriter agent makes the parameters
d, a and b available outside the embedded Connect code. Note that the sets i and j are defined implicitly
through parameter d.

Finally, after solving the transport model, Connect can be used to export results to a CSV file:

4.46 GAMS Connect 1357

[...]

Model transport / all /;

solve transport using lp minimizing z;

EmbeddedCode Connect:

- GAMSReader:

symbols:

- name: x

- Projection:

name: x.l(i,j)

newName: x_level(i,j)

- CSVWriter:

file: shipment_quantities.csv

name: x_level

unstack: True

endEmbeddedCode

This time, we need to use execution-time embedded Connect code. The Connect agent GAMSReader
imports variable x into the Connect database. With the Connect agent CSVWriter we write the variable
level to the CSV file shipment quantities.csv:

i_0,new-york,chicago,topeka

seattle,50.0,300.0,0.0

san-diego,275.0,0.0,275.0

Setting the option unstack to True allows to use the last dimension as the header row.

4.46.4.2 Simple Connect Example for Excel

The following example is part of GAMS Model Library as model cta and shows how to read and write
Excel spreadsheets. Here is a code snippet of the first lines:

Set

i ’rows’

j ’columns’

k ’planes’;

Parameter

dat(k<,i<,j<) ’unprotected data table’

pro(k,i,j) ’information sensitive cells’;

* extract data from Excel workbook

$onEmbeddedCode Connect:

- ExcelReader:

file: cox3.xlsx

symbols:

- name: dat

range: Sheet1!A1

rowDimension: 2

columnDimension: 1

- name: pro

range: Sheet2!A1

rowDimension: 2

1358 User's Guide

columnDimension: 1

- GAMSWriter:

writeAll: True

$offEmbeddedCode

[...]

It starts out with the declaration of sets and parameters. With compile-time embedded Connect code,
data for the parameters is read from the Excel file cox3.xlsx using the Connect agent ExcelReader. The
ExcelReader agent allows reading data for multiple symbols that are listed under the keyword symbols,
here, parameter dat and pro. For each symbol, the symbol name is given by option name and the Excel
range by option range. The option rowDimension defines that the first two columns of the data range will
be used for the labels. In addition, the option columnDimension defines that the first row of the data
range will be used for the labels. As a last step, all symbols from the Connect database are written to the
GAMS database using the Connect agent GAMSWriter. The GAMSWriter agent makes the parameters
dat and pro available outside the embedded Connect code. Note that the sets i, j and k are defined
implicitly through parameter dat.

Finally, after solving the cox3c model with alternative solutions, Connect can be used to export results
to Excel:

[...]

loop(l$((obj.l - best)/best <= 0.01),

ll(l) = yes;

binrep(s,l) = round(b.l(s));

binrep(’’,’’,’Obj’,l) = obj.l;

binrep(’’,’’,’mSec’,l) = cox3c.resUsd*1000;

binrep(’’,’’,’nodes’,l) = cox3c.nodUsd;

binrep(’Comp’,’Cells’,’Adjusted’,l) = sum((i,j,k)$(not s(i,j,k)), 1$round(adjn.l(i,j,k) + adjp.l(i,j,k)));

solve cox3c min obj using mip;

);

embeddedCode Connect:

- GAMSReader:

symbols:

- name: binrep

- ExcelWriter:

file: results.xlsx

clearSheet: True

symbols:

- name: binrep

endEmbeddedCode

This time, we need to use execution-time embedded Connect code. The Connect agent GAMSReader
imports the reporting parameter binrep into the Connect database. With the Connect agent ExcelWriter
we write the parameter into the binrep sheet of the Excel file results.xlsx.

4.46.4.3 Simple Connect Example for SQL

The following example (a modified version of the whouse model) shows how to read from and write to a
SQL database (sqlite). The full example is part of DataLib as model connect04. Here is a code snippet
of the first lines:

4.46 GAMS Connect 1359

[...]

Set t ’time in quarters’;

Parameter

price(t) ’selling price ($ per unit)’

istock(t) ’initial stock (units)’;

Scalar

storecost ’storage cost ($ per quarter per unit)’

storecap ’stocking capacity of warehouse (units)’;

$onEmbeddedCode Connect:

- SQLReader:

connection: {"database": "whouse.db"}

symbols:

- name: t

query: "SELECT * FROM timeTable;"

type: set

- name: price

query: "SELECT * FROM priceTable;"

- name: istock

query: "SELECT * FROM iniStockTable;"

- name: storecost

query: "SELECT * FROM storeCostTable;"

- name: storecap

query: "SELECT * FROM storeCapTable;"

- GAMSWriter:

writeAll: True

$offEmbeddedCode

[...]

It starts out with the declaration of sets and parameters. With compile-time embedded Connect code,
data for all the symbols are read from the sqlite database whouse.db using the Connect agent SQLReader
by passing the connection url through the option connection. The SQLReader agent, for example, queries
the table priceTable for data and creates the parameter price in the Connect database. The SQLReader
allows reading data for multiple symbols that are listed under the keyword symbols and are fetched
through the same connection. For each symbol the name must be given by the option name. The SQL
query statement is passed through the option query. The symbol type can be specified using the option
type. By default, every symbol is treated as a GAMS parameter. As a last step, all symbols from
the Connect database are written to the GAMS database using the Connect agent GAMSWriter. The
GAMSWriter agent makes all read in symbols available outside the embedded Connect code.

Further, after solving the warehouse model, Connect can be used to export the results to tables in the
SQL database.

[...]

Model swp ’simple warehouse problem’ / all /;

solve swp minimizing cost using lp;

EmbeddedCode Connect:

- GAMSReader:

readAll: True

1360 User's Guide

- Projection:

name: stock.l(t)

newName: stock_level(t)

- Projection:

name: sell.l(t)

newName: sell_level(t)

- Projection:

name: buy.l(t)

newName: buy_level(t)

- SQLWriter:

connection: {"database": "whouse.db"}

ifExists: replace

symbols:

- name: stock_level

tableName: stock_level

- name: sell_level

tableName: sell_level

- name: buy_level

tableName: buy_level

endEmbeddedCode

Here, we need to use execution-time embedded Connect code. The Connect agent GAMSReader imports
all the variables into the Connect database. The SQLWriter agent then writes each symbol to respective
tables in the SQL database whouse.db. For example the stock level:

|t_0 |level |

|:-------|:---------|

|q-1 |100.0 |

|q-2 |0.0 |

|q-3 |0.0 |

|q-4 |0.0 |

The ifExists option allows to either append to an extending table or replace it with new data. By default,
the value for ifExists is set to fails.

4.46.5 Connect Agents

4.46.5.1 Concatenate

The Concatenate agent allows concatenating multiple symbols (sets or parameters) in the Connect database
into a single symbol of the same type. It takes the union of domain sets of all concatenated symbols and
uses that as the domain for the output symbol. There are several options to guide this domain finding
process which are explained below. The general idea is best explained with an example. Consider three
parameters p1(i,j), p2(k,i), and p3(k,l). The union of all domain sets is i, j, k, and l and, hence, the
output symbol will be parameterOutput(symbols,i,j,k,l). The very first index of parameterOutput
contains the name of the concatenated symbol followed by the domain sets. If a domain set is not used
by a concatenated symbol the corresponding records in parameterOutput will feature the emptyUel, a -

(dash) by default, as the following figures show:

The Concatenate agent is especially useful in combination with UI components that provide a pivot table,
like GAMS MIRO, to represent many individual output symbols in a single powerful and configurable
table format.

4.46 GAMS Connect 1361

Obviously, there are more complex situations with respect to the domain of the resulting parameterOutput.
For example, only a subset of domain sets are relevant and the remaining ones should be combined in
as few index positions as possible. For this, assume only domain sets i and k from the above example
are relevant and j and l can be combined in a single index position - a so-called universal domain. The
resulting parameterOutput would look as follows:

Moreover, the Concatenate agent needs to deal with universe domain sets ∗ and domain sets that are
used multiple times in a concatenated symbol. In addition to the symbols index (always the first index
position of the output symbol), by default the union of domain sets of the concatenated symbols determine
the domain of the output symbol. If a domain set (including the universe ∗) appears multiple times in a
concatenated symbol domain, these duplicates will be part of the output symbol domain. For example,
q1(∗,i,j,∗) and q2(∗,i,i) will result in the output symbol parameterOutput(symbols,∗,i,j,∗,i,)
by default, mapping index positions 1 to 4 of q1 to positions 2 to 5 of parameterOutput and index
positions 1 to 3 of q2 to 2, 3, and 6.

All the described situations can be configured with a few options of the agent. The option outputDimensions
allows to control the domain of the output symbol. The default behavior (outputDimension: all)
gets the domain sets from the concatenated symbols and builds the union with duplicates if required.
Alternatively, outputDimensions can be a list of the relevant domain sets (including an empty list).
In any case, the agent iterates through the concatenated symbols and maps the index positions of a
concatenated symbol into the index positions of the output symbol using the domain set names. Names
not present in outputDimensions will be added as universal domains. Per default, the domain set names
of a concatenated symbol will be the original domain set names as stored in the Connect database. There
are two ways to adjust the domain set names of concatenated symbols: dimensionMap and an explicitly
given domain for a symbol in the name option. The dimensionMap which is given once and holds for all
symbols allows to map original domain names of concatenated symbols to the desired domain names. The
name option provides such a map by symbol and via the index position rather than the domain names
of the concatenated symbol. In the above example with p1(i,j), p2(k,i), and p3(k,l), we could put
indices i and l as well as j and k together resulting in the following output symbol:

This can be accomplished in two ways: either we use dimensionMap: {i: il, l: il, j: jk, k:

jk} or we use name: p1(il,jk), name: p2(jk,il), and name: p3(jk,il) to explicitly define the
domain names for each symbol. Note that it is not required to set outputDimensions: [il,jk] since
per default the union of domain sets is built using the mapped domain names. In case a domain set is
used more than once in a domain of a concatenated symbol the mapping goes from left to right to find
the corresponding output domain. If this is not desired, the Projection agent can be used to reorder
index positions in symbols or explicit index naming can be used. In the example with q1(∗,i,j,∗) and
q2(∗,i,i), the second index position of q2 will be put together with the second index position of q1. If
one wants to map the second i of q2 (in the third index position) together with the i of q1 (in second
index position), one can, e.g., do with name: q1(∗,i,j,∗), and name: q2(∗,i2,i).

Note

1. The Concatenate agent creates result symbols parameterOutput and setOutput for parameters
and sets separately. Both have the same output domain. If you want different output domains
for parameterOutput and setOutput use two instantiations of the Concatenate agent.

2. Variables and equations need to be turned into parameters with the Projection agent before
they can be concatenated.

3. If option name is given without an explicit domain for the concatenated symbol, the domain
names stored in the Connect container are used and mapped via the dimensionMap option, if
provided.

4. A domain set of a concatenated symbol that cannot be assigned to an index in
outputDimensions will be mapped to a so-called universal domain. The Concatenate
agent automatically adds as many universal domains as required to the output symbols.

Here is a complete example that uses the Concatenate agent:

1362 User's Guide

Sets

i(i) / i0*i3 "i_text" /

j(j) / j0*j3 "j_text" /

k(k) / k0*k3 "k_text" /;

Parameters

p1(i) / i1 1 /

p2(k,j) / k1.j0 2, k1.j1 3, k1.j3 4 /

p3(j,j) / j1.j2 5, j2.j0 6, j3.j1 7, j3.j2 8 /

s / 5 /;

Positive Variable x(i,j);

x.l(i,j)$(uniform(0,1)>0.8) = uniformint(0,10);

EmbeddedCode Connect:

- GAMSReader:

readAll: True

- Projection:

name: x.l(i,j)

newName: x_level(i,j)

- Concatenate:

outputDimensions: [j,i]

- GDXWriter:

file: concat_output.gdx

symbols:

- name: setOutput

- name: parameterOutput

endEmbeddedCode

The resulting set and parameter outputs look as follows:

The following options are available for the Concatenate agent.

Option Scope Default Description

concatenateAll root auto Indicate if all sets and parameters in the Connect
database will be concatenated.

dimensionMap root None Define a mapping for the domain names of con-
catenated symbols as stored in the Connect
database to the desired domain names.

emptyUel root - Define a character to use for empty uels.

name symbols None Specify the name of the symbol with potentially
index space.

newName symbols None Specify a new name for the symbol in the
symbols column of the output symbol.

outputDimensions root all Define the dimensions of the output symbols.

parameterName root parameterOutput Name of the parameter output symbol.

setName root setOutput Name of the set output symbol.

skip root None Indicate if sets or parameters should be skipped.

symbols root None Specify symbol specific options.

trace root inherited Specify the trace level for debugging output.

universalDimension root uni Specify the base name of universal dimensions.

Detailed description of the options:

concatenateAll = boolean or string (default=auto)

4.46 GAMS Connect 1363

If True all sets and parameters in the given database are concatenated, symbols will be ignored.
Default is auto where the Concatenate agent uses symbols if specified, otherwise concatenates
all sets and parameters in the Connect database.

dimensionMap = dict (optional)

Define a mapping for domain names of concatenated symbols as stored in the Connect database
to the desired domain names. For example, dimensionsMap: {i: ij, j: ij} will map
both symbol domains i and j to ij.

emptyUel = string (default=-)

Define a character to use for empty uels.

name = string (required)

Specify the name of the symbol with potentially index space. Requires the format
symName(i1,i2,...,iN). The index space may be specified to establish a mapping for the
domain names of the symbol as stored in the Connect database to the desired domain names.
If no index space is provided, the domain names stored in the Connect data are used and
mapped via the dimensionMap option if provided.

newName = string (optional)

Specify a new name for the symbol in the symbols column of the output symbol.

outputDimensions = list or string (default=all)

Define the dimensions of the output symbols explicitly using a list, e.g., outputDimensions:
[i,j]. The default all gets the domain sets from the concatenated symbols and builds the
union with duplicates if required.

parameterName = string (default=parameterOutput)

Name of the parameter output symbol.

setName = string (default=setOutput)

Name of the set output symbol.

skip = string (optional)

Indicate if sets or parameters should be skipped. Per default the agent takes both sets and
parameters into account (if both are available via symbols or concatenateAll) and generates
a set and parameter output symbol with the same domain. If set is specified, the sets will
be skipped, i.e. sets are not taken into account for setting up the domain and no set output
symbol will be generated. If par is specified, the parameters will be skipped.

symbols = list (optional)

A list containing symbol specific options. Allows to concatenate a subset of symbols.

trace = integer (optional)

Specify the trace level for debugging output. For trace > 1 some scalar debugging output will
be written to the log. For trace > 2 the intermediate data frames will be written abbreviated
to the log. For trace > 3 the intermediate data frames will be written entirely to the log
(potentially large output). If trace has not been set, the trace value, set by the Options
agent, will be used.

universalDimension = string (default=uni)

Specify the base name of universal dimensions.

4.46.5.2 CSVReader

The CSVReader allows reading a symbol (set or parameter) from a specified CSV file into the Connect
database. Its implementation is based on the pandas.DataFrame class and its I/O API method read csv.
See Simple Connect Example for CSV for a simple example that uses the CSVReader.

1364 User's Guide

Option Default Description

autoColumn None Generate automatic column names.

autoRow None Generate automatic row labels.

decimalSeparator . (period) Specify a decimal separator.

fieldSeparator , (comma) Specify a field separator.

file None Specify a CSV file path.

header inferred Specify the header(s) used as the column names.

indexColumns None Specify columns to use as the row labels.

indexSubstitutions None Dictionary used for substitutions in the index columns.

name None Specify a symbol name for the Connect database.

names None List of column names to use.

quoting 0 Control field quoting behavior.

readCSVArguments None Dictionary containing keyword arguments for the
pandas.read csv method.

skipRows None Specify the rows to skip or the number of rows to skip.

stack inferred Stacks the column names to index.

textColumns None Specify columns to get the set element text from.

textSubstitutions None Dictionary used for substitutions in the text columns.

thousandsSeparator None Specify a thousands separator.

trace inherited Specify the trace level for debugging output.

valueColumns None Specify columns to get the values from.

valueSubstitutions None Dictionary used for substitutions in the value columns.

Detailed description of the options:

autoColumn = string (optional)

Generate automatic column names. The autoColumn string is used as the prefix for the column
label numbers. This option overrides the use of a header or names. However, if there is a
header row, one must skip the row by enabling header or using skipRows.

autoRow = string (optional)

Generate automatic row labels. The autoRow string is used as the prefix for the row label
numbers. The generated unique elements will be used in the first index position shifting other
elements to the right. Using autoRow can be helpful when there are no labels that can be used
as unique elements but also to store entries that would be a duplicate entry without a unique
row label.

decimalSeparator = string (default=.)

Specify a decimal separator. [. (period), , (comma)]

fieldSeparator = string (default=,)

Specify a field separator. [, (comma), ; (SemiColon), \t (Tab)]

file = string (required)

Specify a CSV file path.

header = boolean, list (optional)

4.46 GAMS Connect 1365

Specify the header(s) used as the column names. Default behavior is to infer the column
names: if no names are passed the behavior is identical to header=True and column names are
inferred from the first line of data, if column names are passed explicitly then the behavior is
identical to header=False. Explicitly pass header=True to be able to replace existing names.
Note that missing column names are filled with Unnamed: n (where n is the nth column (zero
based) in the DataFrame). Hence, reading the CSV file:

,j1,

i1,1,2

i2,3,4

,5,6

results in the following 2-dimensional parameter:

j1 Unnamed: 2

i1 1.000 2.000

i2 3.000 4.000

For a multi-row header, a list of integers can be passed providing the positions of the header
rows in the data. Note that reading multi-row header is only supported for parameters.
Moreover, the CSVReader can only read all columns and not a subset of columns, wherefore
only indexColumns can be specified and all other columns will automatically be read as
valueColumns. Note that indexColumns can not be provided as column names together with
a multi-row header. autoRow and autoColumn will be ignored in case of a multi-row header.
Here is an example how to read data with a multi-row header:

$onecho > multirow_header.csv

j,,j1,j1,j1,j2,j2,j2

k,,k1,k2,k3,k1,k2,k3

h,i,,,,,,

h1,i1,1,2,,4,5,6

h1,i2,,,3,4,5,

$offEcho

$onEmbeddedCode Connect:

- CSVReader:

file: multirow_header.csv

name: p

header: [1,2]

indexColumns: [1,2]

- PythonCode:

code: |

print(connect.container["p"].records)

$offEmbeddedCode

The same can be achieved if the data has no index column names:

j,,j1,j1,j1,j2,j2,j2

k,,k1,k2,k3,k1,k2,k3

h1,i1,1,2,,4,5,6

h1,i2,,,3,4,5,

If the first line of data after the multi-row header has no data in the valueColumns, the
CSVReader will interpret this line as index column names.

indexColumns = list or string (optional)

1366 User's Guide

Specify columns to use as the row labels. The columns can either be given as column
positions or column names. Column positions can be represented as an integer, a list of
integers or a string. For example: indexColumns: 1, indexColumns: [1, 2, 3, 4, 6]

or indexColumns: "1:4, 6". The symbolic constant lastCol can be used with the string
representation: "2:lastCol". If no header or names is provided, lastCol will be determined
by the first line of data. Column names can be represented as a list of strings. For example:
indexColumns: ["i1","i2"]. Note that indexColumns and valueColumns/textColumns
and must either be given as positions or names not both. Further note that indexColumns as
column names are not supported together with a multi-row header.

By default the pandas.read csv method interprets the following indices as NaN: ””, ”#N/A”,
”#N/A N/A”, ”#NA”, ”-1.#IND”, ”-1.#QNAN”, ”-NaN”, ”-nan”, ”1.#IND”, ”1.#QNAN”,
”<NA>”, ”N/A”, ”NA”, ”NULL”, ”NaN”, ”n/a”, ”nan”, ”null”. The default can be
changed by specifying pandas.read csv arguments keep default na and na value via
readCSVArguments. Rows with indices that are interpreted as NaN will be dropped au-
tomatically. The indexSubstitutions option allows to remap NaN entries in the index columns.

indexSubstitutions = dictionary (optional)

Dictionary used for substitutions in the index columns. Each key in indexSubstitutions is
replaced by its corresponding value. This option allows arbitrary replacements in the index
columns of the DataFrame including stacked column names. Consider the following CSV file:

i1,j1,2.5

i1,,1.7

i2,j1,1.8

i2,,1.4

Reading this data into a 2-dimensional parameter results in a parameter with NaN entries
dropped:

j1

i1 2.500

i2 1.800

By specifying indexSubstitutions: { .nan: j2 } we can substitute NaN entries by j2:

j1 j2

i1 2.500 1.700

i2 1.800 1.400

name = string (required)

Specify a symbol name for the Connect database. Note that each symbol in the Connect
database must have a unique name.

names = list (optional)

List of column names to use. If the file contains a header row, then you should explicitly pass
header=True to override the column names. Duplicates in this list are not allowed.

quoting = integer (default=0)

Control field quoting behavior. Use QUOTE MINIMAL (0), QUOTE ALL (1),
QUOTE NONNUMERIC (2) or QUOTE NONE (3). QUOTE NONNUMERIC (2) in-
structs the reader to convert all non-quoted fields to type float. QUOTE NONE (3) instructs
reader to perform no special processing of quote characters.

4.46 GAMS Connect 1367

readCSVArguments = dictionary (optional)

Dictionary containing keyword arguments for the pandas.read csv method. Not all ar-
guments of that method are exposed through the YAML interface of the CSVReader
agent. By specifying readCSVArguments, it is possible to pass arguments directly to
the pandas.read csv method that is used by the CSVReader agent. For example,
readCSVArguments: {keep default na: False, skip blank lines: False}.

skipRows = list or integer (optional)

Specify the rows to skip (list) or the number of rows to skip (integer). For example: skipRows:
[1, 3] or skipRows: 5.

stack = boolean (optional)

Stacks the column names to index. Defaults to True if there is more than one value/text
column, otherwise False. Note that missing column names are filled with Unnamed: n (where
n is the nth column (zero based) in the DataFrame).

textColumns = list or string (optional)

Specify columns to get the set element text from. The columns can be given as column
positions or column names. Column positions can be represented as a integer, a list of
integers or a string. For example: textColumns: 1, textColumns: [1, 2, 3, 4, 6] or
textColumns: "1:4, 6". The symbolic constant lastCol can be used with the string
representation: "2:lastCol". If no header or names is provided, lastCol will be determined
by the first line of data. Column names can be represented as a list of strings. For example:
textColumns: ["i1","i2"]. Note that textColumns and indexColumns must either be
given as positions or names not both.

By default the pandas.read csv method interprets the following text as NaN: ””, ”#N/A”,
”#N/A N/A”, ”#NA”, ”-1.#IND”, ”-1.#QNAN”, ”-NaN”, ”-nan”, ”1.#IND”, ”1.#QNAN”,
”<NA>”, ”N/A”, ”NA”, ”NULL”, ”NaN”, ”n/a”, ”nan”, ”null”. The default can be
changed by specifying pandas.read csv arguments keep default na and na value via
readCSVArguments. Rows with texts that are interpreted as NaN will be dropped auto-
matically. The textSubstitutions option allows to remap NaN entries in the text columns.

textSubstitutions = dictionary (optional)

Dictionary used for substitutions in the text columns. Each key in textSubstitutions is
replaced by its corresponding value. While it is possible to make arbitrary replacements
this is especially useful for controlling sparse/dense reading. The default reading behavior is
sparse since rows with text that is interpreted as NaN are dropped automatically. Consider the
following CSV file:

i1,text1

i2,

i3,text3

thousandsSeparator = string (optional)

Specify a thousands separator.

trace = integer (optional)

Specify the trace level for debugging output. For trace > 1 some scalar debugging output will
be written to the log. For trace > 2 the intermediate data frames will be written abbreviated
to the log. For trace > 3 the intermediate data frames will be written entirely to the log
(potentially large output). If trace has not been set, the trace value, set by the Options
agent, will be used.

https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html

1368 User's Guide

valueColumns = list or string (optional)

Specify columns to get the values from. The columns can be given as column positions or column
names. Column positions can be represented as a integer, a list of integers or a string. For
example: valueColumns: 1, valueColumns: [1, 2, 3, 4, 6] or valueColumns: "1:4,

6". The symbolic constant lastCol can be used with the string representation: "2:lastCol".
If no header or names is provided, lastCol will be determined by the first line of data. Column
names can be represented as a list of strings. For example: valueColumns: ["i1","i2"].
Note that valueColumns and indexColumns must either be given as positions or names not
both.

By default the pandas.read csv method interprets the following values as NaN: ””, ”#N/A”,
”#N/A N/A”, ”#NA”, ”-1.#IND”, ”-1.#QNAN”, ”-NaN”, ”-nan”, ”1.#IND”, ”1.#QNAN”,
”<NA>”, ”N/A”, ”NA”, ”NULL”, ”NaN”, ”n/a”, ”nan”, ”null”. The default can be
changed by specifying pandas.read csv arguments keep default na and na value via
readCSVArguments. Rows with values that are interpreted as NaN will be dropped auto-
matically. Changing the default of values that are interpreted as NaN is useful if, e.g., ”NA”
values should not be dropped but interpreted as GAMS special value NA. Moreover, the
valueSubstitutions option allows to remap NaN entries in the value columns.

valueSubstitutions = dictionary (optional)

Dictionary used for substitutions in the value columns. Each key in valueSubstitutions

is replaced by its corresponding value. While it is possible to make arbitrary replacements
this is especially useful for controlling sparse/dense reading. All NaN entries are removed
automatically by default which results in a sparse reading behavior. Consider the following
CSV file:

i1,j1,

i1,j2,1.7

i2,j1,

i2,j2,1.4

Reading this data into a 2-dimensional parameter results in a sparse parameter with all NaN
entries removed:

j2

i1 1.700

i2 1.400

By specifying valueSubstitutions: { .nan: EPS } we get a dense representation where
all NaN entries are replaced by GAMS special value EPS:

j1 j2

i1 EPS 1.700

i2 EPS 1.400

Beside EPS there are the following other GAMS special values that can be used
by specifying their string representation: INF, -INF, EPS, NA, and UNDEF. See the
GAMS Transfer documentation for more information.

Reading this data into a 1-dimensional set results in a sparse set in which all NaN entries (those
that do not have any set element text) are removed:

’i1’ ’text 1’,

’i3’ ’text 3’

4.46 GAMS Connect 1369

By specifying textSubstitutions: { .nan: '' } we get a dense representation:

’i1’ ’text 1’,

’i2’,

’i3’ ’text 3’

It is also possible to use textSubstitutions in order to interpret the set element text. Let's
assume we have the following CSV file:

,j1,j2,j3

i1,Y,Y,Y

i2,Y,Y,N

i3,0,Y,Y

Reading this data into a 2-dimensional set results in a dense set:

’i1’.’j1’ Y,

’i1’.’j2’ Y,

’i1’.’j3’ Y,

’i2’.’j1’ Y,

’i2’.’j2’ Y,

’i2’.’j3’ N,

’i3’.’j1’ 0,

’i3’.’j2’ Y,

’i3’.’j3’ Y

By specifying textSubstitutions: { 'N': .nan, '0': .nan } we replace all occurrences
of N and 0 by NaN which gets dropped automatically:

’i1’.’j1’ Y,

’i1’.’j2’ Y,

’i1’.’j3’ Y,

’i2’.’j1’ Y,

’i2’.’j2’ Y,

’i3’.’j2’ Y,

’i3’.’j3’ Y

4.46.5.3 CSVWriter

The CSVWriter allows writing a symbol (set or parameter) in the Connect database to a specified CSV
file. Variables and equations need to be turned into parameters with the Projection agent before they can
be written. See Simple Connect Example for CSV for a simple example that uses the CSVWriter.

Option Default Description

decimalSeparator . (period) Specify a decimal separator.

file None Specify a CSV file path.

fieldSeparator , (comma) Specify a field separator.

header True Indicate if the header will be written.

name None Specify the name of the symbol in the Connect database.

quoting 0 Control field quoting behavior.

setHeader None Specify a string that will be used as the header.

skipElementText False Indicate if the set element text will be skipped.

toCSVArguments None Dictionary containing keyword arguments for the pandas.to csv

method.

trace inherited Specify the trace level for debugging output.

unstack False Specify the dimensions to be unstacked to the header row(s).

1370 User's Guide

Detailed description of the options:

decimalSeparator = string (default=.)

Specify a decimal separator. [. (period), , (comma)]

file = string (required)

Specify a CSV file path.

fieldSeparator = string (default=,)

Specify a field separator. [, (comma), ; (SemiColon), \t (Tab)]

header = boolean (default=True)

Indicate if the header will be written.

name = string (required)

Specify the name of the symbol in the Connect database.

quoting = integer (default=0)

Control field quoting behavior. Use QUOTE MINIMAL (0), QUOTE ALL (1),
QUOTE NONNUMERIC (2) or QUOTE NONE (3). QUOTE MINIMAL (0) instructs
the writer to only quote those fields which contain special characters such as fieldSeparator.
QUOTE ALL (1) instructs the writer to quote all fields. QUOTE NONNUMERIC (2)
instructs the writer to quote all non-numeric fields. QUOTE NONE (3) instructs the writer
to never quote fields.

setHeader = string (optional)

Specify a string that will be used as the header. If an empty header is desired, the string can
be empty.

skipElementText = boolean (default=False)

Indicate if the set element text will be skipped. If False, the set element text will be written
in the last column of the CSV file.

toCSVArguments = dictionary (optional)

Dictionary containing keyword arguments for the pandas.to csv method. Not all arguments
of that method are exposed through the YAML interface of the CSVWriter agent. By specifying
toCSVArguments, it is possible to pass arguments directly to the pandas.to csv method
that is used by the CSVWriter agent. For example, toExcelArguments: {index label:

["index1", "index2", "index3"]}.

trace = integer (optional)

Specify the trace level for debugging output. For trace > 1 some scalar debugging output will
be written to the log. For trace > 2 the intermediate data frames will be written abbreviated
to the log. For trace > 3 the intermediate data frames will be written entirely to the log
(potentially large output). If trace has not been set, the trace value, set by the Options
agent, will be used.

unstack = boolean, list (default=False)

Specify the dimensions to be unstacked to the header row(s). If False (default) no dimension
will be unstacked to the header row. If True the last dimension will be unstacked to the header
row. If multiple dimensions should be unstacked to header rows, a list of integers providing
the dimension numbers to unstack can be specified.

4.46.5.4 DomainWriter

The DomainWriter agent allows to rewrite domain information for existing Connect symbols and helps
dealing with domain violations.

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_csv.html

4.46 GAMS Connect 1371

Option Scope Default Description

dropDomainViolations symbols False Indicate how to deal with domain violations.

name symbols None Specify the name of the symbol in the Connect
database.

symbols root None Specify symbol specific options.

trace root inherited Specify the trace level for debugging output.

writeAll root auto Indicate if all symbols in the Connect database will be
treated with the root dropDomainViolations setting.

Detailed description of the options:

dropDomainViolations = boolean (root)/boolean or string (symbols) (default=False)

The Connect symbols might have some domain violations. This agent allows to drop these
domain violations so a write to GAMS or GDX works properly. Setting the root option
dropDomainViolations: True together with writeAll: True will drop domain violations
from all symbols in the Connect database. The symbols option also allows to drop domain
violations. In the symbols section the dropDomainViolations attribute can be of type boolean
(True or False) or of type string (before and after). If the attribute has not been set for
the symbol, the attribute is inherited from the root attribute. The value before means that
domain violations are dropped before a new domain is applied, see attribute name. The value
after means that domain violations are dropped after a new domain is applied. The value
True means that domain violations are dropped before and after a new domain is applied.
False means to not drop domain violations.

name = string (required)

Specify a symbol name with index space for the Connect database. name requires the format
symName(i1,i2,...,iN). The list of indices needs to coincide with the names of the actual
GAMS domain sets for a regular domain. A relaxed domain is set if the index is quoted. For
example name: x(i,'j') means that for the first index a regular domain with domain set i
is established, while for the second index the universal domain ∗ is used and a relaxed domain
name j is set.

symbols = list (optional)

A list containing symbol specific options. Allows to concatenate a subset of symbols.

trace = integer (optional)

Specify the trace level for debugging output. For trace > 1 some scalar debugging output will
be written to the log. For trace > 2 the intermediate data frames will be written abbreviated
to the log. For trace > 3 the intermediate data frames will be written entirely to the log
(potentially large output). If trace has not been set, the trace value, set by the Options
agent, will be used.

writeAll = boolean or auto (default=auto)

Indicate if all symbols in the Connect database will be treated according to root attribute
dropDomainViolations. If True, treat all symbols according to dropDomainViolations and
ignore symbols. The default auto becomes True if there are no symbol options specified,
otherwise False.

4.46.5.5 ExcelReader

The ExcelReader agent allows to read symbols (sets and parameters) from an Excel file into the Connect
database. See Simple Connect Example for Excel for a simple example that uses the ExcelReader.

Note

The ExcelReader supports .xlsx and .xlsm files.

1372 User's Guide

Option Scope Default Description

autoMerge root/symbols False Indicate if empty cells in the labels should be
merged with previous cells.

columnDimension root/symbols 1 Column dimension of the symbol.

file root/symbols None Specify an Excel file path.

ignoreColumns symbols None Columns to be ignored when reading.

ignoreRows symbols None Rows to be ignored when reading.

ignoreText root/symbols auto Indicate if the set element text should be ignored.

index root None Specify the Excel range for reading symbols and
options directly from the spreadsheet.

indexSubstitutions root/symbols None Dictionary used for substitutions in the row and
column index.

mergedCells root False Control the handling of empty cells in the labels
and the values that are part of a merged Excel
range.

name symbols None Specify the name of the symbol in the Connect
database.

range symbols symName!A1 Specify the Excel range of a symbol.

rowDimension root/symbols 1 Row dimension of the symbol.

skipEmpty root/symbols 1 Number of empty rows or columns to skip before
the next empty row or column indicates the end
of the block for reading with open ranges.

symbols root None Specify symbol specific options.

trace root inherited Specify the trace level for debugging output.

type root/symbols par Control the symbol type.

valueSubstitutions root/symbols None Dictionary used for mapping in the values.

Detailed description of the options: autoMerge = boolean (default=False)

Indicate if empty cells in the labels should be merged with previous cells. If True, each empty
cell in the labels will be filled with the value of a previous cell that is not empty. This will
resolve merged cells in the labels and will also fill empty cells in the labels that are not part of
a merged cell. If the user wants to keep empty cells in the labels that are not part of a merged
cell and still resolve merged cells, autoMerge needs to be set to False and mergedCells needs
to be set to True.

columnDimension = integer (default=1)

The number of rows in the data range that will be used to define the labels for columns. The
first columnDimension rows of the data range will be used for labels.

file = string (required)

Specify an Excel file path.

ignoreColumns = list, integer or string (optional)

Columns to be ignored when reading. Specify a list of column numbers (integers) or letters
(strings) to ignore multiple columns. Specify a column number (integer) ot letter (string) to
ignore a single column.

ignoreRows = list or integer (optional)

4.46 GAMS Connect 1373

Specify rows to be ignored when reading. Specify a list of row numbers (integers) to ignore
multiple rows or specify a row number (integer) to ignore a single row.

ignoreText = boolean or string (default=auto)

Indicate if the set element text should be ignored. Can be set to True/False or auto. With
the default auto the set element text will be ignored based on the specification of range and
columnDimension/rowDimension. If either columnDimension or rowDimension is set to 0

and an open range is specified, the set element text will be ignored. If either columnDimension
or rowDimension is set to 0 and a full range is specified, the set element text will be ignored
if it is not included in the range specification. In all other cases the set element text will not
be ignored.

index = string (optional)

Specify the Excel range for reading symbols and options directly from the spreadsheet.

indexSubstitutions = dictionary (optional)

Dictionary used for substitutions in the row and column index. Each key in
indexSubstitutions is replaced by its corresponding value. This option allows arbitrary
replacements in the index. Consider the following Excel spreadsheet:

Reading this data into a 2-dimensional parameter results in a parameter with NaN entries
dropped:

j1

i1 1.000

i2 3.000

By specifying indexSubstitutions: { .nan: j2 } we can substitute NaN entries by j2:

j1 j2

i1 1.000 2.000

i2 3.000 4.000

mergedCells = boolean (default=False)

Control the handling of empty cells that are part of a merged Excel range. The option applies
to merged cells in the labels and the values, i.e., the numerical values in case of a GAMS
parameter and the set element text in case of a GAMS set. If False, the cells are left empty.
If True, the merged label/value is used in all cells. Note that setting this option to True has
an impact on performance since the Excel file has to be opened in a non-read-only mode
that results in non-constant memory consumption (no lazy loading). From the performance
perspective, autoMerge should be preferred over mergedCells if applicable.

name = string (required)

Specify a symbol name for the Connect database. Note that each symbol in the Connect
database must have a unique name.

range = string (default=symName!A1)

1374 User's Guide

Specify the Excel range of a symbol using the format sheetName!cellRange. cellRange can
be either a single cell also known as an open range (north-west corner like B2) or a full range
(north-west and south-east corner like B2:D4). Per default the ExcelReader uses the range
symName!A1, where symName is the name of the symbol that is read. If only sheetName! is
specified, the ExcelReader will use an open range starting at cell A1. The ExcelReader also
allows for named ranges - a named range includes a sheet name and a cell range. Before
interpreting the provided range attribute, the string will be used to search for a pre-defined
Excel range with that name.

rowDimension = integer (default=1)

The number of columns in the data range that will be used to define the labels for the rows.
The first rowDimension columns of the data range will be used for the labels.

skipEmpty = integer (deault=1)

Number of empty rows or columns to skip before the next empty row or column indicates the
end of the block for reading with open ranges. If a full range is specified skipEmpty will be
ignored.

symbols = list (optional)

A list containing symbol specific options.

trace = integer (optional)

Specify the trace level for debugging output. For trace > 1 some scalar debugging output will
be written to the log. For trace > 2 the intermediate data frames will be written abbreviated
to the log. For trace > 3 the intermediate data frames will be written entirely to the log
(potentially large output). If trace has not been set, the trace value, set by the Options
agent, will be used.

type = string (default=par)

Control the symbol type. Supported symbol types are par for parameters and set for sets.

valueSubstitutions = dictionary (optional)

Dictionary used for mapping in the values. Each key in valueSubstitutions is replaced
by its corresponding value. The replacement is only performed on the values which is the
numerical value in case of a GAMS parameter and the set element text in case of a GAMS
set. While it is possible to make arbitrary replacements this is especially useful for controlling
sparse/dense reading. All NaN entries are removed automatically by default which results in a
sparse reading behavior. Let's assume we have the following spreadsheet:

Reading this data into a 2-dimensional parameter results in a sparse parameter in which all
NaN entries are removed:

’i1’.’j1’ 2.5,

’i1’.’j2’ 1.7,

’i2’.’j2’ 1.8,

’i2’.’j3’ 1.4

By specifying valueSubstitutions: { .nan: EPS } we get a dense representation in which
all NaN entries are replaced by GAMS special value EPS:

4.46 GAMS Connect 1375

’i1’.’j1’ 2.5,

’i1’.’j2’ 1.7,

’i1’.’j3’ Eps,

’i2’.’j1’ Eps,

’i2’.’j2’ 1.8,

’i2’.’j3’ 1.4

Beside EPS there are the following other GAMS special values that can be used
by specifying their string representation: INF, -INF, EPS, NA, and UNDEF. See the
GAMS Transfer documentation for more information.

Let's assume we have data representing a GAMS set:

Reading this data into a 1-dimensional set results in a sparse set in which all NaN entries (those
that do not have any set element text) are removed:

’i1’ ’text 1’,

’i3’ ’text 3’

By specifying valueSubstitutions: { .nan: '' } we get a dense representation:

’i1’ ’text 1’

’i2’ ’’

’i3’ ’text 3’

It is also possible to use valueSubstitutions in order to interpret the set element text. Let's
assume we have the following Excel data:

Reading this data into a 2-dimensional set results in a dense set:

’i1’.’j1’ No,

’i1’.’j2’ Y,

’i1’.’j3’ Y,

’i2’.’j1’ Y,

’i2’.’j2’ Y,

’i2’.’j3’ Y,

’i3’.’j1’ Y,

’i3’.’j2’ Y,

’i3’.’j3’ N

By specifying valueSubstitutions: { 'N': .nan, 'No': .nan } we replace all occur-
rences of N and No by NaN which gets dropped automatically. Note that No has to be quotes in
order to not be interpreted as False by the YAML parser:

’i1’.’j2’ Y,

’i1’.’j3’ Y,

’i2’.’j1’ Y,

’i2’.’j2’ Y,

’i2’.’j3’ Y,

’i3’.’j1’ Y,

’i3’.’j2’ Y

1376 User's Guide

4.46.5.6 ExcelWriter

The ExcelWriter agent allows to write symbols (sets and parameters) from the Connect database to
an Excel file. Variables and equations need to be turned into parameters with the Projection agent
before they can be written. If the Excel file exists, the ExcelWriter appends to the existing file. See
Simple Connect Example for Excel for a simple example that uses the ExcelWriter.

Note

The ExcelWriter only supports .xlsx files.

Attention

Please be aware of the following limitation when appending to an Excel file with formulas using the
ExcelWriter: Whereas Excel stores formulas and the corresponding values, the ExcelReader and the
ExcelWriter read/store either formulas or values, not both. As a consequence, when appending to an
Excel file with formulas, all cells with formulas within the Excel file will not have values anymore and a
subsequent read by the ExcelReader results into NaN for these cells. To avoid this, write to a separate
output Excel file. On Windows one can merge the input Excel file with the output Excel file at the end
using the tool win32.ExcelMerge (see Connect Example for Excel (executeTool win32.ExcelMerge)).
An alternative approach when appending to an Excel file with formulas is to open and save the
Excel file before reading it to let Excel evaluate formulas and restore the corresponding values.

Option Scope Default Description

clearSheet root/symbols False Indicate if a sheet should be cleared before writing
if it exists.

columnDimension root/symbols auto Column dimension of the symbol.

file root None Specify an Excel file path.

mergedCells root/symbols False Write merged cells.

name symbols None Specify the name of the symbol in the Connect
database.

range symbols symName!A1 Specify the Excel range of a symbol.

symbols root None Specify symbol specific options.

trace root inherited Specify the trace level for debugging output.

valueSubstitutions root/symbols None Dictionary used for mapping in the value column
of the DataFrame.

writeAll root auto Indicate if all set and parameter type symbols
in the Connect database will be written to the
specified Excel file.

Detailed description of the options:

clearSheet = boolean (default=False)

Indicate if a sheet should be cleared before writing if it exists. The default is False where a
sheet will not be cleared if it exists, instead the ExcelWriter overwrites, i.e., writes content to
the sheet without removing the existing content.

columnDimension = integer (default=auto)

The last columnDimension index positions of the symbol that will be written to the rows that
define the labels of the columns. The first dim-columnDimension index positions will be written
to the columns that define the labels for the rows. With the default auto, columnDimension
will be set to 1 if dim>0 and otherwise to 0.

4.46 GAMS Connect 1377

file = string (required)

Specify an Excel file path.

mergedCells = boolean (default=False)

Write merged cells. Please be aware that overwriting already existing merged cells in a sheet
may cause problems, in that case consider setting clearSheet to True.

name = string (required)

Specify a symbol name for the Connect database.

range = string (default=symName!A1)

Specify the Excel range of a symbol using the format sheetName!cellRange. cellRange can
be either a single cell (north-west corner like B2) or a full range (north-west and south-east
corner like B2:D4). Per default the ExcelWriter uses the range symName!A1, where symName

is the name of the symbol that is written. If only sheetName! is specified, the ExcelWriter
will use an open range starting at cell A1. The ExcelWriter also allows for named ranges - a
named range includes a sheet name and a cell range. Before interpreting the provided range

attribute, the string will be used to search for a pre-defined Excel range with that name.

symbols = list (required)

A list containing symbol specific options.

trace = integer (optional)

Specify the trace level for debugging output. For trace > 1 some scalar debugging output will
be written to the log. For trace > 2 the intermediate data frames will be written abbreviated
to the log. For trace > 3 the intermediate data frames will be written entirely to the log
(potentially large output). If trace has not been set, the trace value, set by the Options
agent, will be used.

valueSubstitutions = dictionary (optional)

Dictionary used for mapping in the value column of the DataFrame. Each key in
valueSubstitutions is replaced by its corresponding value. The replacement is only per-
formed on the value column of the DataFrame which is the numerical value in case of a
GAMS parameter and the set element text in case of a GAMS set. Note that for parameters
the ExcelWriter automatically converts numerical GAMS special values to their string rep-
resentation, i.e., INF, -INF, EPS, NA, and UNDEF. See the GAMS Transfer documentation for
more information on GAMS special values. If the GAMS special values should be replaced
by custom values, use the string representation (upper case) in the dictionary. For example,
specify ‘{'EPS’: 0}to replace GAMS special valueEPS` by zero.

writeAll = boolean or auto (default=auto)

Indicate if all set and parameter type symbols in the Connect database will be written to the
specified Excel file. The default auto becomes True if there are no symbol options specified,
otherwise False. If True, the ExcelWriter writes each symbol into a separate sheet using the
range symName!A1.

1378 User's Guide

4.46.5.7 Filter

The Filter agent allows to reduce symbol data by applying filters on labels and numerical values. Here is
a complete example that uses the Filter agent:

Set i / seattle, san-diego /

j / new-york, chicago, topeka /;

Parameter d(i,j) /

seattle.new-york 2.5

seattle.chicago 1.7

seattle.topeka 1.8

san-diego.new-york 2.5

san-diego.chicago 1.8

san-diego.topeka 1.4

/;

$onEmbeddedCode Connect:

- GAMSReader:

symbols:

- name: d

- Filter:

name: d

newName: d_new

labelFilters:

- column: 1

keep: [’seattle’]

- column: 2

reject: [’topeka’]

valueFilters:

- column: value

rule: x<2.5

- GDXWriter:

file: report.gdx

symbols:

- name: d_new

$offEmbeddedCode

The records of the parameter d are filtered and stored in a new parameter called d new. Two label filters
remove all labels except seattle from the first dimension and remove the label topeka from the second
one. The remaining records are filtered by value where only values less than 2.5 are kept in the data. The
resulting parameter d new which is exported into report.gdx has only one record (seattle.chicago
1.7) left.

The following options are available for the Filter agent:

Option Scope Default Description

column labelFilters/valueFilters None Specify the column to which a filter is ap-
plied.

eps valueFilters True Used to keep or reject special value EPS.

infinity valueFilters True Used to keep or reject special value +INF.

keep labelFilters None Specify a list of labels to keep.

labelFilters root None Specify filters for index columns of a symbol.

na valueFilters True Used to keep or reject special value NA.

4.46 GAMS Connect 1379

Option Scope Default Description

name root None Specify a symbol name for the Connect
database.

negativeInfinity valueFilters True Used to keep or reject special value -INF.

newName root None Specify a new name for the symbol in the
Connect database.

regex labelFilters None Specify a regular expression to be used for
filtering labels.

reject labelFilters None Specify a list of labels to reject.

rule valueFilters None Specify a boolean expression to be used for
filtering on numerical columns.

ruleIdentifier valueFilters x The identifier used for the value filter rule.

trace root inherited Specify the trace level for debugging output.

undf valueFilters True Used to keep or reject special value UNDF.

valueFilters root None Specify filters for numerical columns of a
symbol.

Detailed description of the options:

column = integer or string (optional)

Used to specify the column on which a label filter or a value filter is applied. For label filters
the index position can be specified using an integer. For value filters, the following strings are
allowed depending on the symbol type:

• Set: not allowed

• Parameter: value, all

• Variable and Equation: level, marginal, upper, lower, scale, all

Specifying the string all will apply the filter on all columns of the current filter (all index
columns for labelFilters and all numerical columns for valueFilters).

eps = boolean (default=True)

Used to keep (True) or reject (False) special value EPS.

infinity = boolean (default=True)

Used to keep (True) or reject (False) special value +INF.

keep = list (optional)

A list of labels to be kept when applying the label filter. For each label filter it is only allowed
to specify either keep, reject, or regex at a time.

labelFilters = list (optional)

A list containing label filters.

na = boolean (default=True)

Used to keep (True) or reject (False) special value NA.

name = string (required)

1380 User's Guide

Specify the name of the symbol from the Connect database on whose data the filters will be
applied.

negativeInfinity = boolean (default=True)

Used to keep (True) or reject (False) special value -INF.

newName = string (required)

Specify a new name for the symbol in the Connect database which will get the data after all
filters have been applied. Each symbol in the Connect database must have a unique name.

regex = string (optional)

A string containing a regular expression that needs to match in order to keep the corresponding
label. Uses a full match paradigm which means that the whole label needs to match the
specified regular expression. For each label filter it is only allowed to specify either keep, reject,
or regex at a time.

reject = string (optional)

A list of labels to be rejected when applying the label filter. For each label filter it is only
allowed to specify either keep, reject, or regex at a time.

rule = string (optional)

Used to specify a boolean expression for a value filter. Each numerical value of the specified
column is tested and the corresponding record is only kept if the expression evaluates to true.
The string needs to contain Python syntax that is valid for pandas.Series. Comparison
operators like >, >=, <, <=, ==, or != can be used in combination with boolean operators
like & or |, but not and or or. Note that using & or | requires the operands to be enclosed in
round brackets in order to form a valid expression. As an example, the expression ((x<=10)
& (x>=0)) | (x>20) would keep only those values that are between 0 and 10 (included) or
greater than 20.

ruleIdentifier = string (default=x)

Specifies the identifier that is used in the rule of a value filter.

trace = integer (optional)

Specify the trace level for debugging output. For trace > 1 some scalar debugging output will
be written to the log. For trace > 2 the intermediate data frames will be written abbreviated
to the log. For trace > 3 the intermediate data frames will be written entirely to the log
(potentially large output). If trace has not been set, the trace value, set by the Options
agent, will be used.

undf = boolean (default=True)

Used to keep (True) or reject (False) special value UNDF.

valueFilters = list (optional)

A list containing value filters.

4.46.5.8 GAMSReader

The GAMSReader allows reading symbols from the GAMS database into the Connect database. Without
GAMS context (e.g. when running the gamsconnect script from the command line) this agent is not
available and its execution will result in an exception.

4.46 GAMS Connect 1381

Option Scope Default Description

name symbols None Specify the name of the symbol in the GAMS database.

newName symbols None Specify a new name for the symbol in the Connect database.

readAll root auto Indicate if all symbols in the GAMS database will be read into the
Connect database.

symbols root None Specify symbol specific options.

trace root inherited Specify the trace level for debugging output.

Detailed description of the options:

name = string (required)

Specify the name of the symbol in the GAMS database.

newName = string (optional)

Specify a new name for the symbol in the Connect database. Each symbol in the Connect
database must have a unique name.

readAll = boolean or auto (default=auto)

Indicate if all symbols in the GAMS database will be read into the Connect database. If True,
read all symbols into the Connect database and ignore symbols. The default auto becomes
True if there are no symbol options specified, otherwise False.

symbols = list (optional)

A list containing symbol specific options. Allows to read a subset of symbols.

trace = integer (optional)

Specify the trace level for debugging output. For trace > 1 some scalar debugging output will
be written to the log. For trace > 2 the intermediate data frames will be written abbreviated
to the log. For trace > 3 the intermediate data frames will be written entirely to the log
(potentially large output). If trace has not been set, the trace value, set by the Options
agent, will be used.

4.46.5.9 GAMSWriter

The GAMSWriter allows writing symbols in the Connect database to the GAMS database. Without
GAMS context (e.g. when running the gamsconnect script from the command line) and as part of the
connectOut command line option this agent is not available and its execution will result in an exception.

Option Scope Default Description

domainCheckType root/symbols default Specify if domain checking is applied or if records
that would cause a domain violation are filtered.

duplicateRecords root/symbols all Specify how to deal with duplicate records.

mergeType root/symbols default Specify if data in a GAMS symbol is merged or
replaced.

name symbols None Specify the name of the symbol in the Connect
database.

newName symbols None Specify a new name for the symbol in the GAMS
database.

symbols root None Specify symbol specific options.

trace root inherited Specify the trace level for debugging output.

writeAll root auto Indicate if all symbols in the Connect database will
be written to the GAMS database.

1382 User's Guide

Detailed description of the options:

domainCheckType = string (default=default)

Specify if Domain Checking is applied (checked) or if records that would cause a domain
violation are filtered (filtered). If left at default it depends on the setting of $on/offFiltered
if GAMS does a filtered load or checks the domains during compile time. During execution time
default is the same as filtered.

duplicateRecords = string (default=all)

The Connect container can hold multiple records even for the same indexes. Such duplicate
records are only a problem when exchanging the data with GAMS (and GDX). The attribute
determines which record(s) to keep in case of duplicate records. With the default of all the
GAMSWriter will fail in case duplicate records exist. With first the first record will be
written to GAMS, with last the last record will be written to GAMS. With none none of the
duplicate records will be written to GAMS. Note that the agent currently deals with duplicate
records in a case sensitive way.

mergeType = string (default=default)

Specify if data in a GAMS symbol is merged (merge) or replaced (replace). If left at default
it depends on the setting of $on/offMulti[R] if GAMS does a merge, replace, or triggers an
error during compile time. During execution time default is the same as merge.

name = string (required)

Specify the name of the symbol in the Connect database.

newName = string (optional)

Specify a new name for the symbol in the GAMS database. Note, each symbol in the GAMS
database must have a unique name.

symbols = list (optional)

A list containing symbol specific options. Allows to write a subset of symbols.

trace = integer (optional)

Specify the trace level for debugging output. For trace > 1 some scalar debugging output will
be written to the log. For trace > 2 the intermediate data frames will be written abbreviated
to the log. For trace > 3 the intermediate data frames will be written entirely to the log
(potentially large output). If trace has not been set, the trace value, set by the Options
agent, will be used.

writeAll = boolean or auto (default=auto)

Indicate if all symbols in the Connect database will be written to the GAMS database. If
True, write all symbols to the GAMS database and ignore symbols. The default auto becomes
True if there are no symbol options specified, otherwise False.

4.46.5.10 GDXReader

The GDXReader allows reading symbols from a specified GDX file into the Connect database.

4.46 GAMS Connect 1383

Option Scope Default Description

file root None Specify a GDX file path.

name symbols None Specify the name of the symbol in the GDX file.

newName symbols None Specify a new name for the symbol in the Connect database.

readAll root auto Indicate if all symbols in the GDX file will be read into the Connect
database.

symbols root None Specify symbol specific options.

trace root inherited Specify the trace level for debugging output.

Detailed description of the options:

file = string (required)

Specify a GDX file path.

name = string (required)

Specify the name of the symbol in the GDX file.

newName = string (optional)

Specify a new name for the symbol in the Connect database. Each symbol in the Connect
database must have a unique name.

readAll = boolean or auto (default=auto)

Indicate if all symbols in the GDX file will be read into the Connect database. If True, read
all symbols into the Connect database and ignore symbols. The default auto becomes True if
there are no symbol options specified, otherwise False.

symbols = list (optional)

A list containing symbol specific options. Allows to read a subset of symbols.

trace = integer (optional)

Specify the trace level for debugging output. For trace > 1 some scalar debugging output will
be written to the log. For trace > 2 the intermediate data frames will be written abbreviated
to the log. For trace > 3 the intermediate data frames will be written entirely to the log
(potentially large output). If trace has not been set, the trace value, set by the Options
agent, will be used.

4.46.5.11 GDXWriter

The GDXWriter allows writing symbols in the Connect database to a specified GDX file.

Option Scope Default Description

duplicateRecords root/symbols all Specify how to deal with duplicate records.

file root None Specify a GDX file path.

name symbols None Specify the name of the symbol in the Connect
database.

newName symbols None Specify a new name for the symbol in the GDX file.

symbols root None Specify symbol specific options.

trace root inherited Specify the trace level for debugging output.

writeAll root auto Indicate if all symbols in the Connect database will
be written to the GDX file.

1384 User's Guide

Detailed description of the options:

duplicateRecords = string (default=all)

The Connect container can hold multiple records even for the same indexes. Such duplicate
records are only a problem when exchanging the data with GDX (and GAMS). The attribute
determines which record(s) to keep in case of duplicate records. With the default of all the
GDXWriter will fail in case duplicate records exist. With first the first record will be written
to GDX, with last the last record will be written to GDX. With none none of the duplicate
records will be written to GDX. Note that the agent currently deals with duplicate records in
a case sensitive way.

file = string (required)

Specify a GDX file path.

name = string (required)

Specify the name of the symbol in the Connect database.

newName = string (optional)

Specify a new name for the symbol in the GDX file. Note, each symbol in the GDX file must
have a unique name.

symbols = list (optional)

A list containing symbol specific options. Allows to write a subset of symbols.

trace = integer (optional)

Specify the trace level for debugging output. For trace > 1 some scalar debugging output will
be written to the log. For trace > 2 the intermediate data frames will be written abbreviated
to the log. For trace > 3 the intermediate data frames will be written entirely to the log
(potentially large output). If trace has not been set, the trace value, set by the Options
agent, will be used.

writeAll = boolean or auto (default=auto)

Indicate if all symbols in the Connect database will be written to the GDX file. If True, write
all symbols to the GDX file and ignore symbols. The default auto becomes True if there are
no symbol options specified, otherwise False.

4.46.5.12 LabelManipulator

The LabelManipulator agent allows to modify labels of symbols in the Connect database. Four different
modes are available:

• case: Applies either upper, lower, or capitalize casing to labels.

• code: Replaces labels using a Python code.

• map: Uses a 1-dimensional GAMS set to perform an explicit mapping of labels.

• regex: Performs a replacement based on a regular expression.

Here is a complete example that uses the LabelManipulator agent in all four modes:

4.46 GAMS Connect 1385

Set i / seattle, san-diego /

j / new-york, chicago, topeka /

map / chicago ’Berlin’, san-diego ’Oslo’ /;

Parameter d(i,j) /

seattle.new-york 2.5

seattle.chicago 1.7

seattle.topeka 1.8

san-diego.new-york 2.5

san-diego.chicago 1.8

san-diego.topeka 1.4

/;

$onEmbeddedCode Connect:

- GAMSReader:

readAll: true

- LabelManipulator:

map:

setName: map

- LabelManipulator:

case:

rule: upper

- LabelManipulator:

symbols:

- name: d

code:

rule: x.split(’-’)[-1]

- LabelManipulator:

symbols:

- name: d

regex:

pattern: ’[^O]$’

replace: ’\g<0>X’

- PythonCode:

code: |

print("Set i:\n", connect.container["i"].records)

print("Set j:\n",connect.container["j"].records)

print("Parameter d:\n",connect.container["d"].records)

$offEmbeddedCode

The first LabelManipulator applies a mapping provided by the set map to the labels of all symbols in the
Connect database. This maps chicago to Berlin and san-diego to Oslo. The second LabelManipulator
changes the labels of all symbols to upper case. The third LabelManipulator is only applied on symbol
d and splits labels at - into a list and keeps the last entry. This changes NEW-YORK to YORK. The last
LabelManipulator is also only applied on symbol d and adds an X to the end of all labels that do not end
with an O. The resulting symbols look as follows:

Set i:

uni element_text

0 SEATTLE

1 OSLO

Set j:

uni element_text

0 NEW-YORK

1 BERLIN

2 TOPEKA

1386 User's Guide

Parameter d:

i j value

0 SEATTLEX YORKX 2.5

1 SEATTLEX BERLINX 1.7

2 SEATTLEX TOPEKAX 1.8

3 OSLO YORKX 2.5

4 OSLO BERLINX 1.8

5 OSLO TOPEKAX 1.4

The following options are available for the LabelManipulator agent:

Option Scope Default Description

case root None Apply specified casing to labels.

code root None Replace labels using Python code.

invert map False Used to invert the mapping direction.

map root None Replace labels using a 1-dimensional GAMS set con-
taining an explicit key-value mapping.

name symbols None Specify a symbol name for the Connect database.

newName symbols None Specify a new name for the symbol in the Connect
database.

outputSet regex/case/code None Name of the output set that contains the applied map-
ping.

pattern regex None The regular expression that needs to match.

regex root None Replace labels using a regular expression.

replace regex None The rule used for replacing labels that match the given
pattern.

rule case/code None case: The type of casing to be applied. code: Python
function that defines the mapping behavior.

ruleIdentifier code x The identifier used for labels in the rule.

setName map None The name of the GAMS set used in map mode.

symbols root None Specify symbol specific options.

trace root inherited Specify the trace level for debugging output.

writeAll root auto Indicate if all symbols in the Connect database will be
affected.

Detailed description of the options:

case = dictionary (optional)

Used for executing the LabelManipulator in case mode to apply a specified casing to labels. It
is only allowed to specify either case, code, map or regex.

code = dictionary (optional)

Used for executing the LabelManipulator in code mode to replace labels using a Python
function. The given Python function is executed with each label and its return value is used
as the replacement. It is only allowed to specify either case, code, map or regex.

invert = boolean (default=False)

Used for controlling the mapping direction in map mode. If set to False (default), the labels
that match a label of the provided 1-dimensional GAMS set are replaced by the corresponding
set element text. If set to True the direction is inverted, meaning all labels that match a set
element text of the GAMS set are replaced by the corresponding label.

4.46 GAMS Connect 1387

map = dictionary (optional)

Used for executing the LabelManipulator in map mode to replace labels using a 1-dimensional
GAMS set containing an explicit key-value mapping. It is only allowed to specify either case,
code, map or regex.

name = string (optional)

Specify the name of the symbol in the GAMS database. Data of the symbol gets replaced if
no newName is specified.

newName = string (optional)

Specify a new name for the symbol in the Connect database. The original symbol specified
under name remains unchanged. Each symbol in the Connect database must have a unique
name.

outputSet = string (optional)

Name of the output set that contains mappings that were actually applied on the symbol
labels. Per default no output set is written. Providing a name for the output set indicates
that an output set should be written to the Connect database. Note that each symbol in the
Connect database must have a unique name. Supported by case, code and regex mode.

pattern = string (optional)

The regular expression that needs to match for a label to be replaced.

regex = dictionary (optional)

Used for executing the LabelManipulator in regex mode to replace labels using a regular
expression. It is only allowed to specify either case, code, map or regex.

replace = string (optional)

A string that specifies the replacement for all labels for which a given pattern in regex mode
matches.

rule = string (optional)

Can be specified in case and code mode.

case: The type of casing to be applied. Allowed values are:

• lower: Change all labels to lower case.

• upper: Change all labels to upper case.

• capitalize: Change all labels to a capitalized casing - first letter becomes upper case,
all others become lower case.

code: A Python function that defines the mapping behavior.

ruleIdentifier = string (default=x)

Specifies the identifier that is used in the rule of the code mode.

setName = string

1388 User's Guide

Replace labels using a 1-dimensional GAMS set containing an explicit key-value mapping. A
1-dimensional GAMS set that contains an explicit key-value mapping to replace labels. If
invert: False (default) all labels that match a label of the GAMS set will be replaced by
the corresponding set element text.

symbols = dictionary (optional)

A list containing symbol specific options. Allows to execute the LabelManipulator on a subset
of GAMS symbols in the Connect database.

trace = integer (optional)

Specify the trace level for debugging output. For trace > 1 some scalar debugging output will
be written to the log. For trace > 2 the intermediate data frames will be written abbreviated
to the log. For trace > 3 the intermediate data frames will be written entirely to the log
(potentially large output). If trace has not been set, the trace value, set by the Options
agent, will be used.

writeAll = boolean or auto (default=auto)

Indicate if the LabelManipulator is applied to all symbols of the database or only a subset
of GAMS symbols in the Connect database. The default auto becomes True if there are no
symbol options specified, otherwise False.

4.46.5.13 Options

The Options agent allows to set more general options that can affect the Connect database and other
Connect agents. More specifically, the value of an option set via the Options agent can be inherited as a
default value to Connect agents that utilize the considered option.

Option Default Description

trace 0 Specify the trace level for debugging output.

Detailed description of the options:

trace = integer (default=0)

Specify the trace level for debugging output. A trace level of 0 (default) means no debugging
output. For trace > 0 the Connect database will write some scalar debugging output to
the log. The debugging output of Connect agents depends on their implementation of trace,
please refer to the corresponding documentation.

4.46.5.14 Projection

The Projection agent allows index reordering and projection onto a reduced index space of a GAMS
symbol. For variables and equations a suffix (.l, .m, .lo, .up, or .scale) can be extracted and is
written to a parameter. Otherwise, the type of the source symbol determines the type of the new symbol,
unless asSet is set to True. Variables and equations can be turned into parameters with an extra index
containing the labels level, marginal, lower, upper, and scale if the attribute asParameter is set to
True. Moreover, if name is a list of scalar symbols of the same type (parameters, variables, or equations),
they can be stored in a one-dimensional symbols of the same type with the index label being the name of
the scalar symbol.

4.46 GAMS Connect 1389

Option Default Description

aggregationMethod first Specify the aggregation method for the projection.

asParameter False Indicate that variable or equation symbols will be turned into a
parameter with an extra index that contains the suffix.

asSet False Indicate that the new symbol is a set independent of the type of the
source symbol.

name None Specify a symbol name with index space and potentially suffix for
the Connect database.

newName None Specify a new name with index space for the symbol in the Connect
database.

text None Element text for resulting sets.

trace inherited Specify the trace level for debugging output.

Detailed description of the options:

aggregationMethod = string (default=first)

Specify the method to aggregate when at least one index position is projected out. The
default is first, meaning that the first record will be stored in the new symbol. For sets,
variables, and equations (without a suffix specified) only first and last are meaningful.
For parameters, variables, and equations with suffix many other aggregation methods are
available and meaningful: max, mean, median, min, prod, sem (unbiased standard error of the
mean), sum, std (standard deviation), nunique (number of distinct elements), first, last.
The projection agent is based on pandas DataFrames and more detailed explanations of the
aggregation method can be found at the pandas website.

asParameter = boolean (default=False)

If the symbol specified by name is a variable or equation and asParameter is set to True,
the new symbol (after potential aggregationMethod is applied) will be a parameter with an
additional index (at the end of the index list) that contains the suffix labels level, marginal,
lower, upper, and scale and the corresponding suffix value.

asSet = boolean (default=False)

Usually the type of the source symbol and the use of a suffix with variables and equations
determine the type of the target symbol. With asSet set to True the target symbol will be a
set.

name = string or list of strings(required)

One either specifies a single symbol name with index space and potentially suffix for the
Connect database or a list of symbol names of scalar symbols. In the prior case, name requires
the format symName[.suffix](i1,i2,...,iN). The suffix is only allowed on variable and
equation symbols and need to be either l, m, lo, up, or scale. The list of indices does not
need to coincide with the names of the actual GAMS domain sets. This index list together
with the index list specified for newName is solely intended to establish the index order in the
symbol specified by newName. In the latter case (a list of symbol names) the symbols need to be
scalar symbols of the same type (parameter, variable, or equation) and a new one-dimensional
symbol (of the same type) is created (using newName) that holds the symbol names as labels.

newName = string (required)

https://pandas.pydata.org/docs/reference/frame.html

1390 User's Guide

Specify a new name with index space for the projected or reordered symbol in the Connect
database. Note that each symbol in the Connect database must have a unique name. newName
is given as symName(i1,i2,...,iN). The list of indices does not need to coincide with the
names of the actual GAMS domain sets. This index list together with the index list specified
for name is solely intended to establish the index order. Hence, the names in the index list
need to be unique and only names that are part of the index list specified for name can be
used. For example: name: p(I,j,k) and newName: q(k,i).

text = string (default=None)

Control the handling of element text if the resulting symbol is a set. If set to "", the text will
be dropped. When left at default (None) and the projected symbol is a set, the element text
of the original set will be used. For other symbols types, the text will be dropped. If text is a
string, this string will be assigned to all elements. The string can contain place holders {i1}
that will be replaced with the content of the matching index position. For example, text:
"{i2} - {i1}: {element text}", where {i1} and {i2} should be index space names in the
symbol name with index space (attribute name). {element text} refers to original element
text (set) or string representation of a numerical value (parameter or variable/equation with a
given suffix) of the source symbol.

trace = integer (optional)

Specify the trace level for debugging output. For trace > 1 some scalar debugging output
will be written to the log. For trace > 2 the intermediate arrays and data frames will be
written abbreviated to the log. For trace > 3 the intermediate arrays and data frames will
be written entirely to the log (potentially large output). If trace has not been set, the trace

value, set by the Options agent, will be used.

4.46.5.15 PythonCode

The PythonCode agent allows to execute arbitrary Python code. From within the code, it is possible to
access the GAMS database via gams.db (if the PythonCode agent is running in a GAMS context) and
the Connect database via connect.container. The GAMS database is an instance of GamsDatabase,
whereas the Connect database is a GAMS Transfer Container object. Furthermore there is a predefined
instructions list that can be filled with tasks that are automatically executed.

Option Default Description

code None Python code to be executed.

Detailed description of the options:

code = string (required)

Python code to be executed. The YAML syntax offers the pipe character (|) for specifying
multi-line strings:

- PythonCode:

code: |

print("Print from Python")

insert more Python code here

It is possible to generate instructions by appending tasks to the Python instructions list. A
task is specified by using Python data structures that match the schema of a specific Connect
agent. At the end of the Python code, all tasks in the instructions list are automatically
generated and executed. The following example shows how to fill the instructions list
with three ExcelWriter tasks that write different parameters (p0, p1, p2) into separate Excel
workbooks (data p0.xlsx, data p1.xlsx, data p2.xlsx).

4.46 GAMS Connect 1391

- GAMSReader:

readAll: True

- PythonCode:

code: |

symbols = [’p0’, ’p1’, ’p2’]

for s in symbols:

instructions.append(

{

’ExcelWriter’:

{

’file’: ’data_{}.xlsx’.format(s),

’symbols’: [{’name’: s}]

}

})

Using connect.container allows to access the Connect database directly in the Python code.
The connect.container is a GAMS Transfer Container object and data within the container
is stored as Pandas DataFrames. Please refer to the documentation of GAMS Transfer to
learn more about GAMS Transfer and its functionalities.

The following complete example shows how to access and modify Connect container data and
manually add a new symbol with the modified data to the Connect container:

Set i /1, 2, 3/

i_mod;

$onembeddedCode Connect:

- GAMSReader:

readAll: True

- PythonCode:

code: |

i_mod_records = [’i’+n for n in connect.container.data["i"].records.iloc[:,0]]

connect.container.addSet("i_mod", ["*"], records=i_mod_records)

- GAMSWriter:

symbols:

- name: i_mod

$offembeddedCode

display i, i_mod;

The first line takes the data of set i and adds an i at the beginning of each uel in the first
column of the dataframe. The last line writes the modified dataframe as set i mod to the
Connect database.

Here is another complete example modifying Connect container data and adding a new symbol
with the modified data:

Parameter p;

$onEcho > p_raw.csv

i,j,2000,2001

i1,j1,1,2

i2,j2,3,4

i3,j3,5,6

$offEcho

$onEmbeddedCode Connect:

- CSVReader:

file: p_raw.csv

1392 User's Guide

name: p_raw

header: True

indexColumns: "1,2"

valueColumns: "2:lastCol"

- PythonCode:

code: |

p_records = [[r[0] + ’_’ + r[1]] + list(r) for i,r in connect.container.data["p_raw"].records.iterrows()]

connect.container.addParameter("p", ["*"]*4, records=p_records)

- GAMSWriter:

symbols:

- name: p

$offEmbeddedCode

display p;

In this example, we take the data of parameter p raw and insert a column of the concatenated
row dimensions into the first column of the dataframe. The modified dataframe is then added
to the Connect container as records for the new symbol p. Here is a display of GAMS parameter
p:

INDEX 1 = i1_j1

2000 2001

i1.j1 1.000 2.000

INDEX 1 = i2_j2

2000 2001

i2.j2 3.000 4.000

INDEX 1 = i3_j3

2000 2001

i3.j3 5.000 6.000

4.46.5.16 RawCSVReader

The RawCSVReader allows reading of unstructured data from a specified CSV file into the Connect
database. Due to performance issues this agent is recommended for small to medium sized unstructured
CSV only. This reader works similarly compared to the RawExcelReader agent. It reads the entire CSV
file and represents its content in a couple of GAMS sets:

• r / r1, r2, ... / (rows)

• c / c1, c2, ... / (columns)

• vs(r,c) / s1.r1.c2 "cell text", ... / (cells with explanatory text)

• vu(r,c,∗) / s1.r1.c1."cell text" "cell text", ... (cells with potential GAMS label)

and a parameter vf(r,c) / r2.c2 3.14, ... / (cells with numerical values). Unlike RawExcelReader
cells with a date will be not interpreted and stored in vs and vu. Cells with a string value will be stored
in vs. If the string length exceeds the maximum length allowed for elements text, it will be truncated.

4.46 GAMS Connect 1393

RawCSVReader will try to represent the cell value as a number and if this succeeds stores the number
in vf. Strings of GAMS special values INF, -INF, EPS, NA, and UNDEF as well as TRUE and FALSE will
be also converted to its numerical counterpart. It will also try to represent the cell value as a string
and stores this as a label in the third position in vu. GAMS labels have a length limitation and hence
RawCSVReader automatically shortens the label to fit this limit. RawCSVReader will provide a unique
label (ending in ∼n where n is an integer for strings exceeding the label length limit) for each string in
the CSV file. The full string (if it fits) will be available as the element text of the vu record.

Option Default Description

cName c Symbol name for columns.

columnLabel C Label for columns.

file None Specify a CSV file path.

readAsString True Control the automatic pandas type conversion of cells.

readCSVArguments None Dictionary containing keyword arguments for the pandas.read csv

method.

rName r Symbol name for rows.

rowLabel R Label for rows.

trace inherited Specify the trace level for debugging output.

vfName vf Symbol name for cells with a numerical value.

vsName vs Symbol name for cells with an explanatory text.

vuName vu Symbol name for cells with a potential GAMS label.

Detailed description of the options:

cName = string (default=c)

Control the name of the set of columns.

columnLabel = string (default=C)

Control the labels for the set of columns (c).

file = string (required)

Specify a CSV file path.

readAsString = boolean (optional)

Control the type of cells returned by pandas.read csv. If this is set to True (default) all
cells are returned as string and the agent tries to interpret the string itself. If this is set to
False pandas will try to infer the type. In such a case the agent can't distinguish between
cells with 1 and 1.00 because pandas turned the integer 1 already into a float and the agent
has no way for recovering the original cell.

readCSVArguments = dictionary (optional)

Dictionary containing keyword arguments for the pandas.read csv method. By specifying
readCSVArguments, it is possible to pass arguments directly to the pandas.read csv method.
For example, readCSVArguments: {delimiter: ';'}.

rName = string (default=r)

Control the name of the set of rows.

rowLabel = string (default=R)

https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html
https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html

1394 User's Guide

Control the labels for the set of rows (r).

trace = integer (optional)

Specify the trace level for debugging output. For trace > 1 some scalar debugging output
will be written to the log. For trace > 2 the cell values and it's processing will be written
entirely to the log (potentially large output). If trace has not been set, the trace value, set
by the Options agent, will be used.

vfName = string (default=vf)

Control the name of the parameter for cells with a numerical value.

vsName = string (default=vs)

Control the name of the set for cells with an explanatory text.

vuName = string (default=vu)

Control the name of the set for cells with a potential GAMS label.

4.46.5.17 RawExcelReader

The RawExcelReader allows reading of unstructured data from a specified Excel file into the Connect
database. Due to performance issues this agent is recommended for small to medium sized unstructured
Excel files only. This reader works similarly compared to the xlsdump tool. It reads the entire spreadsheet
and represents its content in a couple of GAMS sets:

• s /s1, s2,.../ (workbook sheets)

• w / Sheet1, Sheet2, ... / (workbook sheets by name)

• ws(s,w) / s1.Sheet1, s2.Sheet2, ... / (workbook map)

• r / r1, r2, ... / (rows)

• c / c1, c2, ... / (columns)

• vs(s,r,c) / s1.r1.c2 "cell text", ... / (cells with explanatory text)

• vu(s,r,c,∗) / s1.r1.c1."cell text" "cell text", ... (cells with potential GAMS label)

and a parameter vf(s,r,c) / s1.r2.c2 3.14, ... / (cells with numerical values). Cells with a date
will be stored in it's string representation in vu and as a Julian date in vf. Cells with a string value will
be stored in vs. If the string length exceeds the maximum length allowed for elements text, it will be
truncated. Excel offers many other cell value types. RawExcelReader will try to represent the cell value
as a number and if this succeeds stores the number in vf. Strings of GAMS special values INF, -INF,
EPS, NA, and UNDEF will be also converted to its numerical counterpart. It will also try to represent the
cell value as a string and stores this as a label in the fourth position in vu. GAMS labels have a length
limitation and hence RawExcelReader automatically shortens the label to fit this limit. RawExcelReader
will provide a unique label (ending in ∼n where n is an integer for strings exceeding the label length limit)
for each string in the workbook. The full string (if it fits) will be available as the element text of the vu

record.

Option Default Description

cName c Symbol name for columns.

columnLabel C Label for columns.

4.46 GAMS Connect 1395

Option Default Description

file None Specify an Excel file path.

mergedCells False Control the handling of empty cells that are part of a merged Excel range.

rName r Symbol name for rows.

rowLabel R Label for rows.

sheetLabel S Label for workbook sheets.

sName s Symbol name for workbook sheets.

trace inherited Specify the trace level for debugging output.

vfName vf Symbol name for cells with a numerical value.

vsName vs Symbol name for cells with an explanatory text.

vuName vu Symbol name for cells with a potential GAMS label.

wName w Symbol name for workbook sheets by name.

wsName ws Symbol name for workbook map.

Detailed description of the options:

cName = string (default=c)

Control the name of the set of columns.

columnLabel = string (default=C)

Control the labels for the set of columns (c).

file = string (required)

Specify an Excel file path.

mergedCells = boolean (default=False)

Control the handling of empty cells that are part of a merged Excel range. If False, the
cells are left empty. If True, the merged value is used in all cells. Note that setting this
option to True has an impact on performance since the Excel workbook has to be opened in a
non-read-only mode that results in non-constant memory consumption (no lazy loading).

rName = string (default=r)

Control the name of the set of rows.

rowLabel = string (default=R)

Control the labels for the set of rows (r).

sheetLabel = string (default=S)

Control the labels for the set of workbook sheet (s).

sName = string (default=s)

Control the name of the set of workbook sheets.

trace = integer (optional)

1396 User's Guide

Specify the trace level for debugging output. For trace > 1 some scalar debugging output
will be written to the log. For trace > 2 the cell values and it's processing will be written
entirely to the log (potentially large output). If trace has not been set, the trace value, set
by the Options agent, will be used.

vfName = string (default=vf)

Control the name of the parameter for cells with a numerical value.

vsName = string (default=vs)

Control the name of the set for cells with an explanatory text.

vuName = string (default=vu)

Control the name of the set for cells with a potential GAMS label.

wName = string (default=w)

Control the name of the set of workbook sheets by name.

wsName = string (default=ws)

Control the name of the set of the workbook map.

4.46.5.18 SQLReader

The SQLReader agent allows to read symbols (sets and parameters) from a specified database management
system into the Connect database. It connects to MySQL, Postgres, MS-SQL (SQL-Server), SQLite and
PyODBC through their respective python packages to provide native SQL query support. Further, it also
utilizes pandas.DataFrame class' I/O API method read sql to connect to any other database provided
the relevant drivers are present on the system. See Simple Connect Example for SQL for a simple example
that uses the SQLReader.

Note

The connectivity to MS-Access databases is available on Windows only and requires a 64-bit
MS-Access ODBC driver. See connection for more information.

Option Scope Default Description

connection root None Connection dictionary to specify credentials for
the database.

connectionArguments root None Dictionary containing keyword arguments for the
connect constructor of the respective SQL library
or for the sqlalchemy.create engine construc-
tor.

connectionType root sqlite Specify the connection type to be used in order
to connect to that database.

dTypeMap root/symbols None Dictionary used to specify the dtype of columns.

indexSubstitutions symbols True Dictionary used for substitutions in the index
columns.

name symbols None Specify the name of the symbol in the Connect
database.

query symbols None Specify the SQL query.

readSQLArguments symbols None Dictionary containing keyword arguments for the
pandas.read sql method.

symbols root None Specify symbol specific options.

trace root inherited Specify the trace level for debugging output.

type root/symbols par Control the symbol type.

valueColumns symbols inferred Specify columns to get the values from.

valueSubstitutions symbols None Dictionary used for mapping in the value column
of the DataFrame.

4.46 GAMS Connect 1397

Detailed description of the options:

connection = dict (required)

Allows to specify the credentials to access the database. Below are examples for connection
dictionaries based on the selected connectionType.

SQLite:

connection: {’database’: ’absolute//path//to//datafile.db’}

Postgres/MySQL/SQLServer:

connection: {’user’: <username of the database server>, ’password’: <password>, ’host’: <hostname or ip adress>, ’port’: <port number of remote machine>, ’database’: <database name which you want to connect to>}

MS-Access:

connection: {’DRIVER’: ’Microsoft Access Driver (*.mdb, *.accdb)’, ’DBQ’: ’absolute//path//to//datafile.db’}

Note

The connectivity to MS-Access databases is available on Windows only and requires
a 64-bit MS-Access ODBC driver. If no MS-Access is installed or a 32-bit version of
MS-Access, download and install a 64-bit MS-Access ODBC Driver as a redistributable
package from MS (e.g. MS-Access 2013 Runtime x64).

SQLAlchemy:

Use connectionType: sqlalchemy to connect to various databases. Note that the argument
drivername: <dialect+driver> is required.

For dialect SQLite:

connection: {’drivername’: ’sqlite’, ’database’: ’absolute//path//to//datafile.db’}

For dialect Postgres:

connection: {’drivername’: ’postgresql+psycopg2’, ’username’: <username of the database server>, ’password’: <password>, ’host’: <hostname or ip adress>, ’port’: <port number of remote machine>, ’database’: <database name which you want to connect to>}

For dialect MySQL:

connection: {’drivername’: ’mysql+pymysql’, ’username’: <username of the database server>, ’password’: <password>, ’host’: <hostname or ip adress>, ’port’: <port number of remote machine>, ’database’: <database name which you want to connect to>}

For dialect MS-SQL(SQLServer):

connection: {’drivername’: ’mssql+pymssql’, ’username’: <username of the database server>, ’password’: <password>, ’host’: <hostname or ip adress>, ’port’: <port number of remote machine>, ’database’: <database name which you want to connect to>}

For dialect MS-Access:

connection: {’drivername’: ’access+pyodbc’, ’query’: {’odbc_connect’: ’DRIVER={Microsoft Access Driver (*.mdb, *.accdb)};DBQ=absolute//path//to//datafile.db;’}}

https://www.microsoft.com/en-in/download/details.aspx?id=39358

1398 User's Guide

Note

Connecting to databases other than SQLite, Postgres, MySQL and MS-SQL through
SQLAlchemy would require the respective driver of that database to be present on the
system. For example, in the above example sqlalchemy-access must be available in
order to connect to MS-Access through SQLAlchemy.

PyODBC:

Use connectionType: pyodbc to connect to various databases. Therefore, either specify the
DSN (Data Source Name):

connection: {’DSN’: <Data Source Name>}

or use:

connection: {’user’: <username of the database server>, ’password’: <password>, ’host’: <hostname or ip adress>, ’port’: <port number of remote machine>, ’database’: <database name which you want to connect to>, ’driver’: <name of the ODBC driver>}

connectionArguments = dict (optional)

Dictionary containing keyword arguments for the connect constructor of the respective SQL
library or for the sqlalchemy.create engine constructor.

connectionType = string (default=sqlite)

Following is the list of valid options for connection type.

1. sqlite (default)

2. postgres

3. mysql

4. sqlserver

5. access

6. sqlalchemy

7. pyodbc

A connection using pyodbc can be established to any database for which a DSN (Data Source
Name) is available on the system. The pyodbc connection works readily on windows platform
where DSN is already setup. Further, for non-windows platforms, the user is responsible for
installing the pyodbc package and handling any other dependencies for the local python
installation.

dTypeMap = dict (optional)

Allows to specify the dtype of columns in a dictionary as key: value pairs, i.e. <column>:
<dtype>.

indexSubstitutions = dict (optional)

Dictionary used for substitutions in the index columns. Each key in indexSubstitutions is
replaced by its corresponding value. This option allows arbitrary replacements in the index
columns.

name = string (required)

Name of the symbol in the Connect database. The name must be unique for each symbol.

query = string (required)

https://pypi.org/project/pyodbc

4.46 GAMS Connect 1399

Specify the SQL query which will fetch the desired table from the database system.

readSQLArguments = dict (optional)

Dictionary containing keyword arguments for the pandas.read sql method. Not all ar-
guments of that method are exposed through the YAML interface of the SQLReader
agent. By specifying readSQLArguments, it is possible to pass arguments directly to the
pandas.read sql method that is used by the SQLReader agent if connectionType is
sqlalchemy. If connectionType is not sqlalchemy, this option can be used to parame-
terize the SQL query. A small example showing how this option can be used is given below.

query: "SELECT i,j FROM stock_table WHERE value_col > %(value)s"

readSQLArguments: {’value’: 10}

Note

Different Database management systems use different parameter markers and some do
not support named parameter markers, e.g., PyODBC.

symbols = list (required)

A list containing symbol specific options.

trace = integer (optional)

Specify the trace level for debugging output. For trace > 1 some scalar debugging output
will be written to the log. For trace > 2 the intermediate arrays and data frames will be
written abbreviated to the log. For trace > 3 the intermediate arrays and data frames will
be written entirely to the log (potentially large output). If trace has not been set, the trace

value, set by the Options agent, will be used.

type = string (default=par)

Control the symbol type. Supported symbol types are par for GAMS parameters and set for
GAMS sets.

valueColumns = list or string (optional)

Specify columns to get the values from. The value columns contain numerical values in case of
a GAMS parameter and set element text in case of a GAMS set. The columns are given as
column names represented as a list of strings. For example: valueColumns: ["i1", "i2"].
If there is more than one value column specified, the column names are stacked to index
automatically. As string one can specify the symbolic constant lastCol (i.e. valueColumns:
"lastCol") or an empty string (i.e. valueColumns: ""). When lastCol is passed the last
column will be treated as a value column and all the other columns will be treated as index
columns. When an empty list is passed all columns will be treated as index columns. Specifying
an empty list is only valid for symbol type set since symbol type par requires at least one
value column. The default for symbol type par is lastCol and the default for symbol type
set is an empty string.

valueSubstitutions = dict (optional)

Dictionary used for mapping in the value column of the DataFrame. Each key in
valueSubstitutions is replaced by its corresponding value. The replacement is only per-
formed on the value column of the DataFrame which is the numerical value in case of a GAMS
parameter and the set element text in case of a GAMS set. While it is possible to make
arbitrary replacements this is especially useful for controlling sparse/dense reading.

https://pandas.pydata.org/docs/reference/api/pandas.read_sql.html

1400 User's Guide

4.46.5.19 SQLWriter

The SQLWriter agent allows to write symbols (sets and parameters) from the Connect database to a
specified database management system. Variables and equations need to be turned into parameters with
the Projection agent before they can be written. It connects to MySQL, Postgres, MS-SQL (SQL-Server),
SQLite and PyODBC through their respective python packages to provide faster write operations. Further,
it also utilizes pandas.DataFrame class' I/O API method to sql to connect to any other database
provided the relevant drivers are present on the system. See Simple Connect Example for SQL for a
simple example that uses the SQLWriter.

Note

The connectivity to MS-Access databases is available on Windows only and requires a 64-bit
MS-Access ODBC driver. See connection for more information.

Option Scope Default Description

connection root None Connection dictionary to specify credentials for
the database.

connectionArguments root None Dictionary containing keyword arguments for the
connect constructor of the respective SQL library
or for the sqlalchemy.create engine construc-
tor.

connectionType root None Specify the connection type to be used in order
to connect to that database.

ifExists root/symbols fail Specify the behavior when a table with the same
name exists in the database/schema.

insertMethod root/symbols default Specify the insertion method to be used to write
the table in the database.

name symbols None Specify the name of the symbol in the Connect
database.

schemaName root/symbols None Specify the schema name.

symbols root None Specify symbol specific options.

tableName symbols None Specify the SQL table/relation in the provided
database/schema.

toSQLArguments root/symbols None Dictionary containing keyword arguments for the
pandas.to sql method.

trace root inherited Specify the trace level for debugging output.

unstack root/symbols False Indicate if the last index column will be used as
a header row.

valueSubstitutions root/symbols None Dictionary used for mapping in the value column
of the DataFrame.

writeAll root auto Indicate if all set and parameter type symbols
in the Connect database will be written to the
specified DBMS.

Detailed description of the options:

connection = dict (required)

Allows to specify the credentials to access the database. See SQLReader connection for further
details and some examples.

4.46 GAMS Connect 1401

Note

The connectivity to MS-Access databases is available on Windows only and requires
a 64-bit MS-Access ODBC driver. If no MS-Access is installed or a 32-bit version of
MS-Access, download and install a 64-bit MS-Access ODBC Driver as a redistributable
package from MS (e.g. MS-Access 2013 Runtime x64).

connectionArguments = dict (optional)

Dictionary containing keyword arguments for the connect constructor of the respective SQL
library or for the sqlalchemy.create engine constructor.

connectionType = string (default=sqlite)

Following is the list of valid options for connection type.

1. sqlite (default)

2. postgres

3. mysql

4. sqlserver

5. access

6. sqlalchemy

7. pyodbc

A connection using pyodbc can be established to any database for which a DSN (Data Source
Name) is available on the system. The pyodbc connection works readily on windows platform
where DSN is already setup. Further, for non-windows platforms, the user is responsible for
installing the pyodbc package and handling any other dependencies for the local python
installation.

Note

pyodbc provides a simple and consistent API to connect to many different databases
using the Open Database Connectivity (ODBC) interface. This introduces the challenge
that database specific properties are not taken into consideration. For example, different
databases have different escaping syntax in order to escape special characters in column
names of a table. Thus, the implementation for connection type pyodbc is kept as a
general purpose connector to different databases while not escaping the special characters.

ifExists = string (default=fail)

Specify the behavior when a table with the same name exists in the database/schema. Valid
values are fail, replace and append.

insertMethod = string (default=default)

Specify the insertion method to be used to write the table in the database. Valid values are
bcp, bulkInsert, and default.

https://www.microsoft.com/en-in/download/details.aspx?id=39358
https://pypi.org/project/pyodbc

1402 User's Guide

Note

The options bulkInsert and bcp is not available with connection type sqlalchemy.
Further, the option bcp is reserved for connection type sqlserver. This is useful when
the SQL-Server database is available remotely. The bcp method uses MS-SQL's command
line utility of the same name to insert huge amount of data. In order to use this insertion
method, the user must download and install the utility as per the system requirements.
The utility is available for Windows as well as for Linux and macOS. On the other
hand, if the SQL-Server database is available locally, then the bulkInsert method can
be used and the bcp utility is not required.

The option bulkInsert uses special SQL queries for connection type mysql, postgres,
sqlserver and access. It creates a temporary csv file and then imports the same in the
database. It is to be noted that for MySQL the option LOCAL INFILE must be enabled
at the server side for this method to work successfully.

name = string (required)

Specify the name of the symbol in the Connect database.

schemaName = string (optional)

Specify the schema name for writing the table to the correct location. In Postgres, by default,
it writes to a public schema already present in every database.

symbols = list (required)

A list containing symbol specific options.

tableName = string (required)

Name of the SQL table/relation in the provided database/schema.

toSQLArguments = dict (optional)

Dictionary containing keyword arguments for the pandas.to sql method. Not all arguments
of that method are exposed through the YAML interface of the SQLWriter agent. By specifying
toSQLArguments, it is possible to pass arguments directly to the pandas.to sql method that
is used by the SQLWriter agent if connectionType is sqlalchemy.

trace = integer (optional)

Specify the trace level for debugging output. For trace > 1 some scalar debugging output
will be written to the log. For trace > 2 the intermediate arrays and data frames will be
written abbreviated to the log. For trace > 3 the intermediate arrays and data frames will
be written entirely to the log (potentially large output). If trace has not been set, the trace

value, set by the Options agent, will be used.

unstack = boolean (default=False)

Indicate if the last index column will be used as a header row.

valueSubstitutions = dict (optional)

Dictionary used for mapping in the value column of the DataFrame. Each key in
valueSubstitutions is replaced by its corresponding value. The replacement is only per-
formed on the value column of the DataFrame which is the numerical value in case of a GAMS
parameter, variable or equation and the set element text in case of a GAMS set.

writeAll = boolean or auto (default=auto)

Indicate if all set and parameter type symbols in the Connect database will be written to
the specified DBMS. The default auto becomes True if there are no symbol options specified,
otherwise False. If True, each symbol is written to a table in the specified DBMS where the
table name is defined by the name of the symbol.

https://learn.microsoft.com/en-us/sql/tools/bcp-utility?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/linux/sql-server-linux-setup-tools?view=sql-server-ver16&tabs=redhat-install%2Credhat-offline
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_sql.html

4.46 GAMS Connect 1403

4.46.6 Examples

This section provides a collection of more complex examples. For simple examples see section
Getting Started.

4.46.6.1 Connect Example for Excel (executeTool win32.ExcelMerge)

The following example shows how to read and write Excel files in Connect. On Windows with Excel
installed, the output sheets are merged back into the input workbook using tool win32.ExcelMerge. The
entire code is listed at the end of the example. This model is part of DataLib as model connect05.
First, the original matrix a is read using the GAMSReader and is then written to input.xlsx using the
ExcelWriter. After clearing symbols i and a in the GAMS database, the ExcelReader is used to read file
input.xlsx back in and create parameter a in the Connect database. The Projection agent extracts set i
from parameter a. With the GAMSWriter, symbols i and a are written to the GAMS database. The
tool linalg.invert calculates the inverse inva of a which is then written to output.xlsx using Connect's
GAMSReader and ExcelWriter at execution time. The following lines then check if the code is not executed
on a UNIX system and if Excel is available. If both is true, output.xlsx is merged into input.xlsx using
tool win32.ExcelMerge and both symbols inva and a can be read from input.xslx with a single instance
of the ExcelReader. If the code is executed on a UNIX system and/or Excel is not available, output.xlsx
can not be merged into input.xlsx, and both files need to be read to create the symbols inva and a. The
last part makes sure that inva is the inverse of a.

set i / i1*i3 /; alias (i,j,k);

table a(i,j) ’original matrix’

i1 i2 i3

i1 1 2 3

i2 1 3 4

i3 1 4 3

;

$onEmbeddedCode Connect:

- GAMSReader:

symbols:

- name: a

- ExcelWriter:

file: input.xlsx

symbols:

- name: a

$offEmbeddedCode

$onMultiR

$clear i a

$onEmbeddedCode Connect:

- ExcelReader:

file: input.xlsx

symbols:

- name: a

- Projection:

name: a(i,j)

newName: i(i)

asSet: True

- GAMSWriter:

writeAll: True

$offEmbeddedCode i a

1404 User's Guide

parameter

inva(i,j) ’inverse of a’

chk(i,j) ’check the product a * inva’

;

executeTool.checkErrorLevel ’linalg.invert i a inva’;

EmbeddedCode Connect:

- GAMSReader:

symbols:

- name: inva

- ExcelWriter:

file: output.xlsx

symbols:

- name: inva

endEmbeddedCode

Scalar mergedRead /0/;

executeTool ’win32.msappavail Excel’;

mergedRead$(errorLevel=0) = 1;

if (mergedRead,

executeTool.checkErrorLevel ’win32.excelMerge output.xlsx input.xlsx’;

EmbeddedCode Connect:

- ExcelReader:

file: input.xlsx

symbols:

- name: a

- name: inva

- GAMSWriter:

writeAll: True

endEmbeddedCode a inva

else

EmbeddedCode Connect:

- ExcelReader:

file: input.xlsx

symbols:

- name: a

- ExcelReader:

file: output.xlsx

symbols:

- name: inva

- GAMSWriter:

writeAll: True

endEmbeddedCode a inva

);

chk(i,j) = sum{k, a(i,k)*inva(k,j)};

chk(i,j) = round(chk(i,j),15);

display a,inva,chk;

chk(i,i) = chk(i,i) - 1;

abort$[card(chk)] ’a * ainv <> identity’;

4.46.6.2 Connect Example for Excel

The following example shows how to read and write Excel files in Connect. The entire code is listed at
the end of the example. This model is part of DataLib as model connect01. The example (inspired by

4.46 GAMS Connect 1405

the model herves) reads a 3-dimensional parameter from a spreadsheet that has one row index (code)
at the left side of the table and the other row index (labId) at the right of the table. A column index
(cut) is at the top of the table. The column index consists of floating-point numbers. The goal it to read
the data into GAMS but modify the labels of some sets: Only the first two decimal digits of the elements
in cut are significant. Moreover, the labId should be prefixed with an L. A new spreadsheet with the
new labels should be written. The layout of the table should remain with the exception of moving the
labId column also to the left. Here is a screenshot of the original table:

The following GAMS code uses a separate GAMS program (getdata.gms) to get the raw data from the
original spreadsheet. Connect runs inside a compile-time embedded code section and uses the Connect
agent RawExcelReader to get the raw Excel data. In some subsequent GAMS code the sets rr and
cut[Id] as well as the parameter raw are filled knowing the layout of the table (the code is written in a
way that the table can grow). This GAMS program gets executed and instructed to create a GDX file. In
a compile-time embedded Connect section the relevant symbols (rr, cutId, and raw) are read from this
GDX file. The Projection agent extracts the domain labid from the set rr and some Python code using
Connect agent PythonCode makes the label adjustments and sorts the data nicely. The Python code uses
the connect.container methods to read from and write to the Connect database. Finally, the GAMSWriter
agent sends the data to GAMS. In the main program at execution-time an embedded Connect code section
exports the labdata parameter in the required form (after reading it from GAMS with the GAMSReader
agent). Here is a screenshot of the resulting table:

In the remainder of the GAMS code another execution-time embedded Connect code is used to read
the data back from the newly created spreadsheet using Connect agent ExcelReader. The set rr is
created from parameter labdata using the Projection agent and everything is written back to GAMS
with Connect agent GAMSWriter. The original data and the data from the newly created spreadsheet
are exported to GDX (using execute unload) and compared to verify that the data is identical by calling
gdxdiff.

Set code, labId, cut, rr(code<,labId);

parameter labdata(code,labid,cut);

$onEcho > getdata.gms

* Symbols for RawExcelReader

alias (u,*); Set s,w,r,c,ws(s,w),vs(s,r,c),vu(s,r,c,u); Parameter vf(s,r,c);

$onEmbeddedCode Connect:

- RawExcelReader:

file: labdata.xlsx

- GAMSWriter:

writeAll: True

$offEmbeddedCode

* Symbols to be filled

alias (*,code,labId,cut); Parameter raw(code,labId,cut); Set cutId, rr(code,labId)

Set cX(c,cut) ’column index’, rX(r,code,labId) ’row index’;

Singleton set cLast(c); Scalar lastPos;

loop(ws(s,’ZAg’),

lastPos = smax(vu(s,r,c,u), c.pos); cLast(c) = c.pos=lastPos;

loop(r$(ord(r)>4),

rX(r,code,labId) $= vu(s,r,’C1’,code) and vu(s,r,cLast,labId));

loop(c$(ord(c)>1 and not cLast(c)),

cX(c,cut) $= vu(s,’R4’,c,cut));

loop((rX(r,code,labId),cX(c,cut)),

raw(code,labId,cut) = vf(s,r,c))

loop(cX(c,cut),

cutId(cut) = yes)

);

option rr<rX;

$offEcho

$call.checkErrorLevel gams getdata.gms lo=%gams.lo% gdx=getdata.gdx

1406 User's Guide

$onEmbeddedCode Connect:

- GDXReader:

file: getdata.gdx

symbols: [{name: rr}, {name: raw}, {name: cutId, newName: cut}]

- Projection:

name: rr(code,labid)

newName: labid(labid)

- PythonCode:

code: |

labid_records = sorted([’L’+t[0] for t in connect.container.data[’labid’].records.values], key=lambda t: int(t[1:]))

rr_records = sorted([(t[0],

’L’+t[1]) for t in connect.container.data[’rr’].records.values], key=lambda t: int(t[0]))

Trim elements of set cut to two decimal places

cut_records = sorted([’{:.2f}’.format(float(t[0])) for t in connect.container.data[’cut’].records.values], key=float)

labdata_records = [(t[0],

’L’+t[1],

’{:.2f}’.format(float(t[2])),

t[-1]) for t in connect.container.data[’raw’].records.values]

connect.container.addSet(’labid_mod’, [’*’], records=labid_records)

connect.container.addSet(’rr_mod’, [’*’]*2, records=rr_records)

connect.container.addSet(’cut_mod’, [’*’], records=cut_records)

connect.container.addParameter(’labdata’, [’*’]*3, records=labdata_records)

- GAMSWriter:

symbols: [{name: labid_mod, newName: labid}, {name: rr_mod, newName: rr}, {name: cut_mod, newName: cut}, {name: labdata}]

$offEmbeddedCode

execute_unload ’labdata.gdx’, labdata, cut, rr;

* Reintroduce 0 (zeros)

labdata(rr,cut) = labdata(rr,cut) + eps;

execute ’rm -f labdatanew.xlsx’;

* Write new workbook with good table

EmbeddedCode Connect:

- GAMSReader:

symbols: [{name: labdata}]

- ExcelWriter:

file: labdatanew.xlsx

valueSubstitutions: {EPS: 0}

symbols:

- name: labdata

range: ZAg!A4

endEmbeddedCode

option clear=rr, clear=labdata;

EmbeddedCode Connect:

- ExcelReader:

file: labdatanew.xlsx

symbols:

- name: labdata

rowDimension: 2

range: ZAg!A4

- Projection:

name: labdata(code,labid,cut)

newName: rr(code,labid)

asSet: True

- GAMSWriter:

writeAll: True

4.46 GAMS Connect 1407

endEmbeddedCode

execute_unload ’labdatanew.gdx’, labdata, cut, rr;

execute.checkErrorLevel ’gdxdiff labdata.gdx labdatanew.gdx > %system.NullFile%’;

4.46.6.3 Connect Example for CSV

The following example shows how to read and write CSV files in Connect. The entire code is listed at the
end of the example. This model is part of DataLib as model connect02. It starts out with defining
some data (stockprice) in a table statement in GAMS. With compile-time embedded Connect code
utilizing the GAMSReader agent to bring this data into Connect and exporting it as a CSV file with
agent CSVWriter. The GDXWriter agent also creates a GDX file with the data which is then used in a
subsequent call to feed gdxdump that produces the same CSV file as CSVWriter. The text comparison
tool diff is used to compare the two CSV files. The CSV file look as follows:

"date_0","AAPL","GOOG","MMM","MSFT","WMT"

"2012-20-11",12.124061,314.008026,60.966354,21.068886,46.991535

"2112-20-11",12.139372,311.741516,60.731037,20.850344,47.150307

"2212-20-11",12.203673,313.674286,61.467381,20.890808,46.991535

"2312-20-11",12.350039,315.387848,62.401108,21.068886,47.626663

"2712-20-11",12.448025,318.929565,62.461876,21.076981,47.499634

"2812-20-11",12.328911,318.655609,61.604042,20.898905,47.420238

"2912-20-11",12.404848,320.000549,62.332813,21.060795,47.626663

"3012-20-11",12.401172,321.744019,62.044331,21.012224,47.444057

In remainder of the example this CSV file is read back via the Connect agent CSVReader. The code also
utilizes the tool csv2gdx to read the CSV file into a GDX file. The code compares the results of both
methods. Csv2gdx also creates sets with the index elements as Dim1, Dim2, ... Therefore, Connect utilizes
the Projection agent to extract the index sets date and symbol from the parameter stockprice as sets
Dim1 and Dim2. The Connect agent GDXWriter creates a GDX file of the Connect database which then
can be compared with the GDX file created by csv2gdx. The GDX comparison tool gdxdiff is used to
compare the two GDX files.

Set date,symbol;

Table stockprice(date<,symbol<)

AAPL GOOG MMM MSFT WMT

2012-20-11 12.124061 314.008026 60.966354 21.068886 46.991535

2112-20-11 12.139372 311.741516 60.731037 20.850344 47.150307

2212-20-11 12.203673 313.674286 61.467381 20.890808 46.991535

2312-20-11 12.350039 315.387848 62.401108 21.068886 47.626663

2712-20-11 12.448025 318.929565 62.461876 21.076981 47.499634

2812-20-11 12.328911 318.655609 61.604042 20.898905 47.420238

2912-20-11 12.404848 320.000549 62.332813 21.060795 47.626663

3012-20-11 12.401172 321.744019 62.044331 21.012224 47.444057

;

* Use Connect CSVWriter to write GAMS data in CSV format moving the symbol index into the column (unstack: True)

$onEmbeddedCode Connect:

- GAMSReader:

symbols: [{name: stockprice}]

- GDXWriter:

file: sp_connect.gdx

writeAll: True

- CSVWriter:

file: sp_connect.csv

1408 User's Guide

name: stockprice

header: True

unstack: True

quoting: 2

$offEmbeddedCode

* Use gdxdump to create a CSV file and text compare the Connect and gdxdump CSV files

$call.checkErrorLevel gdxdump sp_connect.gdx output=sp_gdxdump.csv symb=stockprice format=csv columnDimension=Y > %system.NullFile%

$call.checkErrorLevel diff -q sp_connect.csv sp_gdxdump.csv > %system.nullFile%

* Use Connect CSVReader to read the newly created CSV file and deposit the result in a csv2gdx compatible format

$onEmbeddedCode Connect:

- CSVReader:

file: sp_connect.csv

name: stockprice

indexColumns: 1

valueColumns: "2:lastCol"

- Projection:

name: stockprice(date,symbol)

newName: Dim1(date)

asSet: True

- Projection:

name: stockprice(date,symbol)

newName: Dim2(symbol)

asSet: True

- GDXWriter:

file: sp_connect.gdx

writeAll: True

$offEmbeddedCode

* Use csv2gdx to create a GDX file and compare the Connect and csv2gdx GDX files

$call.checkErrorLevel csv2gdx sp_connect.csv output=sp_csv2gdx.gdx id=stockprice index=1 value=2..lastCol useHeader=y > %system.NullFile%

$call.checkErrorLevel gdxdiff sp_connect.gdx sp_csv2gdx.gdx > %system.NullFile%

4.46.7 Text Substitutions in YAML File

In many cases one would like to parameterize the text in the Connect instruction file. For example, some of
the Connect agents require a file name. Instead of hard coding the file name into the YAML instructions,
text substitutions allow to have a place holder for the attribute that is substituted out before giving the
instructions to Connect. The place holder in the YAML file uses the syntax %SOMETEXT%, similar to the
GAMS compile-time variables. For example:

- CSVReader:

file: %MYFILENAME%

name: distance

indexColumns: [1, 2]

valueColumns: [3]

Depending on how Connect runs, the substitution is done in various ways. The section
Substitutions in Embedded Connect Code described the substitution mechanisms for embedded Connect
code. When Connect is initiated via the command line parameters connectIn or connectOut, the user
defined parameter specified by double-dash command line parameters and the given GAMS command
line parameters, e.g. %gams.input% will be substituted in the YAML file. The list of parameters available
for substitution is printed to the GAMS log at the beginning of the job in the section GAMS Parameters

defined.

When Connect is initiated via the shell command gamsconnect all substitutions need to be specified on
the command line:

4.46 GAMS Connect 1409

gamsconnect myci.yaml key1=val1 key2=val2 ...

key can be just MYFILENAME or be composed like gams.Input or system.dirSep.

4.46.8 Use Connect Agents in Custom Python Code

Instead of passing instructions via one of the Connect interfaces, users can execute tasks directly in their
Python code by creating an instance of ConnectDatabase and calling method .exec task(task). The
task argument is expected to be a Python dictionary of form:

{

’<agent name>’:

{

’<root option1>’: <value>,

’<root option2>’: <value>,

... ,

’<root option3>’:

[

{

’<option1>’: <value>,

’<option2>’: <value>,

...

},

{

’<option1>’: <value>,

’<option2>’: <value>,

...

},

...

]

}

}

Users can either construct the Python dictionary themselves or let YAML create the dictionary from a
YAML script. The following example creates an instance of ConnectDatabase and executes two tasks:
First, the CSV file stockprice.csv is read into the Connect database and second, the symbol stockprice
is written to the GAMS database. In this example, the tasks are directly specified as Python dictionaries.

Set dates, stocks;

Parameter stockprice(dates<,stocks<);

$onEcho > stockprice.csv

date;symbol;price

2016/01/04;AAPL;105,35

2016/01/04;AXP;67,59

2016/01/04;BA;140,50

$offEcho

$onEmbeddedCode Python:

from gams.connect import ConnectDatabase

cdb = ConnectDatabase(gams._system_directory, ecdb=gams)

cdb.exec_task({’CSVReader’: {’file’: ’stockprice.csv’, ’name’: ’stockprice’, ’indexColumns’: [1, 2],

’valueColumns’: [3], ’fieldSeparator’: ’;’, ’decimalSeparator’: ’,’}})

cdb.exec_task({’GAMSWriter’: {’symbols’: [{’name’: ’stockprice’}]}})

$offEmbeddedCode

display stockprice;

1410 User's Guide

We can also construct the Python dictionaries by using YAML:

Set dates, stocks;

Parameter stockprice(dates<,stocks<);

$onEcho > stockprice.csv

date;symbol;price

2016/01/04;AAPL;105,35

2016/01/04;AXP;67,59

2016/01/04;BA;140,50

$offEcho

$onEmbeddedCode Python:

import yaml

from gams.connect import ConnectDatabase

cdb = ConnectDatabase(gams._system_directory, gams)

inst = yaml.safe_load(’’’

- CSVReader:

file: stockprice.csv

name: stockprice

indexColumns: [1, 2]

valueColumns: [3]

fieldSeparator: ’;’

decimalSeparator: ’,’

- GAMSWriter:

symbols:

- name: stockprice

’’’)

for task in inst:

cdb.exec_Task(task)

$offEmbeddedCode

display stockprice;

Here YAML creates a list of dictionaries (i.e. a list of tasks) from the given YAML script.

4.46.9 Command Line Utility gamsconnect

The GAMS system directory contains the utility gamsconnect to run Connect instructions directly from
the command line. On Windows the utility has the callable extension .cmd. This script wraps the Python
script connectdriver.py by calling the Python interpreter that ships with GAMS. gamsconnect operates
as the other Connect drivers on a YAML instruction file. The agents GAMSReader and GAMSWriter are
not available from gamsconnect and will trigger an exception. Substitutions can be passed to gamsconnect

via command line arguments as key=value, e.g. filename=myfile.csv and even gams.scrdir=/tmp/.
gamsconnect is called like this:

gamsconnect <YAMLFile> [key1=value1 [key2=value2 [key3=value3 [...]]]]

4.47 Extrinsic Functions 1411

4.47 Extrinsic Functions

4.47.1 Introduction

Mathematical functions play an important role in the GAMS language, especially for nonlinear models.
Like other programming languages, GAMS provides a number of built-in or intrinsic functions. GAMS is
used in an extremely diverse set of application areas and this creates frequent requests for the addition
of new and often sophisticated and specialized functions. There is a trade-off between satisfying these
requests and avoiding complexity not needed by most users. The GAMS Function Library Facility provides
the means for managing this trade-off, since it allows users to import functions from an external library
into a GAMS model. However, these external libraries can currently only provide functionality for the
evaluation of functions (incl. their first and second derivatives) in a point. Solvers that need to analyze
the algebraic structure of the model instance are therefore not able to work with extrinsic functions. This
includes the class of deterministic global solvers, see column ”Global” in this table, while, for example,
stochastic global solvers can work with extrinsic functions.

In this chapter we will demonstrate how to access functions from an extrinsic function library in a GAMS
model and we will describe the extrinsic function libraries that are included in the GAMS distribution. In
addition, we will provide some pointers for users who wish to build their own extrinsic function library.

4.47.2 Using Function Libraries

Function libraries are made available to a model with the following compiler directive:

$funcLibIn <InternalLibName> <ExternalLibName>

Here InternalLibName is a handle that will be used to refer to the library inside the model source
code, ExternalLibName is the file name of the shared library that implements the extrinsic functions.
If no path is given, GAMS will look for the library in the directory extrinsic functions in the
GAMS standard locations and in the GAMS system directory. To access a library that does not reside in
these standard places, the external name should include a relative or absolute path to the location of
the library. GAMS will then search for the specified library using the mechanisms specific to the host
operating system. When processing the directive $funcLibIn, GAMS will validate the library, make the
included functions available for use and add a table of the included functions to the listing file.

Note

The function library facility gives users complete control over naming so that potential name conflicts
between libraries can be avoided.

Before the individual functions may be used, they have to be declared in the following way:

Function <InternalFuncName> /<InternalLibName>.<FuncName>/;

Here InternalFuncName is the name of the individual function that will be used in the GAMS code. The
user may choose this internal name freely and thus avoid potential naming conflicts. InternalLibName is
the name of the function library as defined by the $funcLibIn directive and FuncName is the name of the
individual function in the external function library. Once functions have been declared in this way they
may be used like intrinsic functions.

Consider the following simple example:

1412 User's Guide

$funcLibIn myLib tricclib

Function myCos /myLib.Cosine/

mySin /myLib.Sine/

myPi /myLib.Pi/;

Scalar d;

d = myCos(myPi/3);

display d;

Note that in the first line the external trigonometric library tricclib is activated and the internal
name myLib is specified for it. Then the functions are declared. Observe that Cosine, Sine and Pi

are functions in the trigonometric library. After the library has been loaded and the functions have
been declared, the functions may be used as usual. The trigonometric library is discussed in section
Example: Trigonometric Library below.

4.47.3 Libraries that are included in the GAMS Distribution

In this section we will present the libraries that are included in the GAMS distribution: the Fitpack Library,
the Piecewise Polynomial Library, the Stochastic Library and the LINDO Sampling Library. Note that
the LINDO Sampling Library is only available for LINDO license holders. In addition, we will provide
details on the Mutex Library.

In the tables that follow, the ”Endogenous Classification” (last column) specifies in which models the
function may legally appear. In order of least to most restrictive, the choices are any, DNLP, NLP,
none. See section Classification of Models for details on model types in GAMS. Note well that functions
classified as any are only permitted with exogenous (constant) arguments.

A word on the notation in the tables below: for function arguments, lower case indicates that an endogenous
variable is allowed. For details on endogenous variables, see section Functions in Equation Definitions.
Upper case function arguments indicate that a constant is required. Arguments in square brackets may
be omitted: the default values used in such cases are specified in the function description provided.

4.47.3.1 The Fitpack Library

FITPACK by Paul Dierckx [43] is a Fortran-based library for one-dimensional and two-dimensional
spline interpolations. This library has been repackaged to work with the GAMS Function Library Facility.
The model [FITLIB01] from the GAMS Test Library is an example of the use of the library FITPACK
inside GAMS.

Note that the supporting points to which the function will be fit need to be stored in a three-dimensional
parameter, fitdata, in a GDX file fit.gdx. The first dimension is a function index, the second dimension
is the index of the supporting point and the third dimension takes one of the following four values: "w"
(weight), "x" (x-value), "y" (y-value) or "z" (z-value).

The FITPACK library is made available with the following directive:

$funcLibIn <InternalLibName> fitfclib

It provides the following functions:

http://www.netlib.org/dierckx

4.47 Extrinsic Functions 1413

Function Description End. Classif.

fitFunc(FUNIND,x[,y]) Evaluate spline DNLP

fitParam(FUNIND,PARAM[,VALUE]) Read or set parameters none

The function FitParam may be used to change certain parameters that are used for the evaluation. The
following values are defined:

• 1: Smoothing factor (S)

• 2: Degree of spline in direction x (Kx)

• 3: Degree of spline in direction y (Ky)

• 4: Lower bound of function in direction x (LOx)

• 5: Lower bound of function in direction y (LOy)

• 6: Upper bound of function in direction x (UPx)

• 7: Upper bound of function in direction y (UPy)

4.47.3.2 The Piecewise Polynomial Library

The Piecewise Polynomial Library may be used to evaluate piecewise polynomial functions. An example
is given in the model [PWPLIB01] in the GAMS Test Library. Note that the functions that are to be
evaluated need to be defined and stored in a GDX file. The following code snippet serves as illustration:

* Define two piecewise polynomial functions

Table pwpdata(*,*,*) ’1st index: function number, 2nd index: segment number, 3rd index: degree’

leftBound 0 1 2

1.1 1 2.4 -2.7 0.3

1.2 4 5.6 -4.3 0.5

2.1 0 0 -6.3333 0

2.2 0.3333 1.0370 -12.5554 9.3333

2.3 0.6667 9.7792 -38.7791 29

;

* Write pwp data to gdx file, which will be read by external library (pwpcclib)

$gdxout pwp.gdx

$unload pwpdata

$gdxout

Observe that on each row of the table pwpdata we have the following entries:

FuncInd.SegInd leftBound Coef0 Coef1 Coef2

Here FuncInd sets a function index and SegInd defines the index of the segment (or interval) which is
described. Further, LeftBound gives the lower bound of the segment. The upper bound will be taken
from the lower bound on the following segment, or set to infinity in case it is the last segment. Finally,
CoefX defines the X-th degree coefficient of the polynomial corresponding to this segment.

The Piecewise Polynomial Library is made available with the following directive:

$funcLibIn <InternalLibName> pwpcclib

It provides the following function:

1414 User's Guide

Function Description End. Classif.

pwpFunc(FUNIND,x) Piecewise polynomials DNLP

4.47.3.3 The Stochastic Library

The Stochastic Library provides random deviates, probability density functions, cumulative density
functions and inverse cumulative density functions for certain continuous and discrete distributions. This
library is made available with the following directive:

$funcLibIn <InternalLibName> stodclib

The continuous distributions that are available with this library are the following:

Distribution Description

beta(SHAPE 1,SHAPE 2) Beta distribution with shape parameters SHAPE 1 and SHAPE 2, see
MathWorld

cauchy(LOCATION,SCALE) Cauchy distribution with location parameter LOCATION and scale
parameter SCALE, see MathWorld

ChiSquare(DF) Chi-squared distribution with degrees of freedom DF, see
MathWorld

exponential(LAMBDA) Exponential distribution with rate of change LAMBDA, see
MathWorld

f(DF 1,DF 2) F-distribution with degrees of freedom DF 1 and DF 2, see
MathWorld

gamma(SHAPE,SCALE) Gamma distribution with shape parameter SHAPE and scale param-
eter SCALE, see MathWorld

gumbel(LOCATION,SCALE) Gumbel distribution with location parameter LOCATION and scale
parameter SCALE, see MathWorld

invGaussian(MEAN,SHAPE) Inverse Gaussian distribution with mean MEAN and scaling param-
eter SHAPE, see MathWorld

laplace(MEAN,SCALE) Laplace distribution with mean MEAN and scale parameter SCALE,
see MathWorld

logistic(LOCATION,SCALE) Logistic distribution with location parameter LOCATION and scale
parameter SCALE, see MathWorld

logNormal(LOCATION,SCALE) Lognormal distribution with location parameter LOCATION and
scale parameter SCALE, see MathWorld

normal(MEAN,STD DEV) Normal distribution with mean MEAN and standard deviation
STD DEV, see MathWorld

pareto(SCALE,SHAPE) Pareto distribution with scaling parameter SCALE and shape pa-
rameter SHAPE, see MathWorld

rayleigh(SIGMA) Rayleigh distribution with parameter SIGMA, see MathWorld

studentT(DF) Student's t-distribution with degrees of freedom DF, see
MathWorld

triangular(LOW,MID,HIGH) Triangular distribution between LOW and HIGH, where MID is the
most probable number, see MathWorld

uniform(LOW,HIGH) Uniform distribution between LOW and HIGH, see MathWorld

weibull(SHAPE,SCALE) Weibull distribution with shape parameter SHAPE and scaling pa-
rameter SCALE, see MathWorld

http://mathworld.wolfram.com/BetaDistribution.html
http://mathworld.wolfram.com/CauchyDistribution.html
http://mathworld.wolfram.com/Chi-SquaredDistribution.html
http://mathworld.wolfram.com/Chi-SquaredDistribution.html
http://mathworld.wolfram.com/ExponentialDistribution.html
http://mathworld.wolfram.com/ExponentialDistribution.html
http://mathworld.wolfram.com/F-Distribution.html
http://mathworld.wolfram.com/F-Distribution.html
http://mathworld.wolfram.com/GammaDistribution.html
http://mathworld.wolfram.com/GumbelDistribution.html
http://mathworld.wolfram.com/InverseGaussianDistribution.html
http://mathworld.wolfram.com/LaplaceDistribution.html
http://mathworld.wolfram.com/LogisticDistribution.html
http://mathworld.wolfram.com/LogNormalDistribution.html
http://mathworld.wolfram.com/NormalDistribution.html
http://mathworld.wolfram.com/ParetoDistribution.html
http://mathworld.wolfram.com/RayleighDistribution.html
http://mathworld.wolfram.com/Studentst-Distribution.html
http://mathworld.wolfram.com/Studentst-Distribution.html
http://mathworld.wolfram.com/TriangularDistribution.html
http://mathworld.wolfram.com/UniformDistribution.html
http://mathworld.wolfram.com/WeibullDistribution.html

4.47 Extrinsic Functions 1415

Further, the following discrete distributions are available:

Distribution Description

binomial(N,P) Binomial distribution with number of trials N and success prob-
ability P in each trial, see MathWorld

geometric(P) Geometric distribution with success probability P in each trial,
see MathWorld

hyperGeo(TOTAL,GOOD,TRIALS) Hypergeometric distribution with total number of elements
TOTAL, number of good elements GOOD and number of trials TRIALS,
see MathWorld

logarithmic(P-FACTOR) Logarithmic distribution with parameter P-FACTOR, also called
log-series distribution, see MathWorld

negBinomial(FAILURES,P) Negative Binomial distribution with FAILURES being the num-
ber of failures until the experiment is stopped and success proba-
bility P in each trial. The generated random number describes the
number of successes until the defined number of failures is reached,
see MathWorld

poisson(LAMBDA) Poisson distribution with mean LAMBDA, see MathWorld

uniformInt(LOW,HIGH) Integer Uniform distribution between LOW and HIGH, see
MathWorld

Note that for each distribution the library offers the following four functions, where DistributionName is
the name of the distribution as listed in the tables above, parameters are the parameters associated with
each distribution, and x is the point at which the function is to be evaluated. Note that x may be an
endogenous variable.

Function Description End. Classif. for
Continuous

Distributions

End. Classif. for
Discrete

Distributions

d<DistributionName>(parameters)
Generate a random de-
viate (sample from the
distribution)

none none

pdf<DistributionName>(x,parameters)
Probability density
function

DNLP none

cdf<DistributionName>(x,parameters)
Cumulative distribu-
tion function

DNLP none

icdf<DistributionName>(x,parameters)Inverse cumulative dis-
tribution function

DNLP none

For example, the functions for the Normal distribution are

Function Description End. Classif.

dNormal(MEAN,STD DEV)
Samples a random number from the Normal dis-
tribution

none

pdfNormal(x,MEAN,STD DEV) Probability density function for Normal distribu-
tion

DNLP

cdfNormal(x,MEAN,STD DEV) Cumulative distribution function for Normal dis-
tribution

DNLP

icdfNormal(x,MEAN,STD DEV) Inverse cumulative distribution function for Nor-
mal distribution

DNLP

Finally, the seed for the various random number generators can be set by using the following function:

http://mathworld.wolfram.com/BinomialDistribution.html
http://mathworld.wolfram.com/GeometricDistribution.html
http://mathworld.wolfram.com/HypergeometricDistribution.html
http://mathworld.wolfram.com/Log-SeriesDistribution.html
http://mathworld.wolfram.com/NegativeBinomialDistribution.html
http://mathworld.wolfram.com/PoissonDistribution.html
http://mathworld.wolfram.com/UniformDistribution.html
http://mathworld.wolfram.com/UniformDistribution.html

1416 User's Guide

Function Description End. Classif.

SetSeed(SEED) Defines the seed for random number generator none

In the following example, a sample of size 20 is generated from the Normal, Binomial, Cauchy, and
Lognormal distributions each:

$funcLibIn stolib stodclib

Functions randnorm /stolib.dnormal /

randbin /stolib.dbinomial /

randcauchy /stolib.dcauchy /

randlognorm /stolib.dlognormal /;

Set i / i1*i20 /;

Set j / norm, binomial, cauchy, lognorm /;

Parameter randx(i,j) "distribution sample";

randx(i,"norm") = randnorm(5,2);

randx(i,"binomial") = randbin(10,0.5);

randx(i,"cauchy") = randcauchy(5,1);

randx(i,"lognorm") = randlognorm(1.2,0.3);

display randx;

In the example, first the stochastic library is made available in GAMS, then the functions that will be
used from the library are declared, giving them names under which to refer to them in the GAMS model.

The output generated by the display statement is the following:

---- 15 PARAMETER randx distribution sample

norm binomial cauchy lognorm

i1 4.373 4.000 5.520 3.132

i2 5.655 6.000 6.813 4.192

i3 5.927 6.000 5.426 2.801

i4 1.340 4.000 5.898 3.689

i5 3.537 3.000 -3.069 2.746

i6 3.057 5.000 5.518 3.430

i7 4.212 3.000 0.136 1.577

i8 6.869 7.000 5.068 3.857

i9 3.481 4.000 -13.856 3.977

i10 5.001 4.000 5.274 2.261

i11 3.182 5.000 4.383 2.686

i12 5.688 6.000 2.914 2.102

i13 3.675 6.000 4.693 3.105

i14 4.028 5.000 1.813 2.418

i15 8.767 5.000 12.190 2.182

i16 3.558 3.000 -112.644 2.092

i17 2.402 4.000 4.078 2.523

i18 2.249 2.000 0.996 2.777

i19 5.639 4.000 3.931 2.678

i20 7.374 4.000 4.671 3.159

4.47 Extrinsic Functions 1417

4.47.3.4 The LINDO Sampling Library

The LINDO Sampling Library provides samples of random numbers for certain distributions.

It is made available by the following directive:

$funcLibIn <InternalLibName> lsadclib

Observe that a LINDO license is required to use this library.

The following table list the LINDO sampling functions.

Function Description End. Classif.

sampleLS<DistributionName>(parameters)
Creates a sample using the distribution
DistributionName, according to the dis-
tribution parameters, and returns a
HANDLE that references the sample, as
illustrated in the example below.

none

getSampleValues(HANDLE) Retrieves sampling created by the func-
tion sampleLS. See example below.

none

induceCorrelation(CORTYPE) Induces the correlation that was set
with the function setCorrelation before.
CORTYPE describes the correlation type:
0 (Pearson), 1 (Kendall) or 2 (Spearman).
See example below.

none

setCorrelation(SAMPLE1,SAMPLE2,COR)
Defines correlation between two sam-
plings. See example below.

none

setSeed(SEED) Specifies the seed for the random number
generator.

none

setRNG(RNG) Specifies the random number generator
that will be used. Possible values are
-1 (FREE), 0 (SYSTEM), 1 (LINDO1),
2 (LINDO2), 3 (LIN1), 4 (MULT1), 5
(MULT2), and 6 (MERSENNE).

none

The following tables list the available continuous and discrete distributions, respectively. Note that the
parameter SAMSIZE must be specified and describes the size of the sample. However, the parameter
VARRED is optional and facilitates choosing a variance reduction method. The values are 0 (meaning
”none”), 1 (meaning ”Latin Hyper Square”) and 2 (meaning ”Antithetic”). The default is Latin Hyper
Square sampling, it will be used if no variance reduction method is specified.

Continuous Distribution Description

beta(SHAPE 1,SHAPE 2,SAMSIZE[,VARRED]) Beta distribution specified by two shape param-
eters.

cauchy(LOCATION,SCALE,SAMSIZE[,VARRED]) Cauchy distribution specified by the location
and the scale parameter.

chisquare(DF,SAMSIZE[,VARRED]) Chi-Squared distribution specified by degrees of
freedom.

exponential(RATE,SAMSIZE[,VARRED]) Exponential distribution specified by rate of
change.

1418 User's Guide

Continuous Distribution Description

f(DF 1,DF 2,SAMSIZE[,VARRED]) F distribution specified by degrees of freedom.
Note that the function sampleLSf uses another
version of the F distribution than the function dF
from the Stochastic Library.

gamma(SHAPE,SCALE,SAMSIZE[,VARRED]) Gamma distribution specified by shape and
scale parameter.
Note that the function sampleLSgamma(A,B) is
equivalent to the function dGamma(B,A) from the
Stochastic Library.

gumbel(LOCATION,SCALE,SAMSIZE[,VARRED]) Gumbel distribution specified by location and
scale parameter.

laplace(LOCATION,SCALE,SAMSIZE[,VARRED]) Laplace distribution specified by location and
scale parameter.

logistic(LOCATION,SCALE,SAMSIZE[,VARRED]) Logistic distribution specified by location and
scale parameter.

lognormal(LOCATION,SCALE,SAMSIZE[,VARRED]) Log Normal distribution specified by location
and scale parameter.

normal(MEAN,STD DEV,SAMSIZE[,VARRED]) Normal distribution specified by given mean
and standard deviation.

pareto(SCALE,SHAPE,SAMSIZE[,VARRED]) Pareto distribution specified by shape and scale
parameter.

studentt(DF,SAMSIZE[,VARRED]) Student's t-distribution specified by degrees of
freedom.

triangular(LOW,MID,HIGH,SAMSIZE[,VARRED]) Triangular distribution specified by lower and
upper limit and mid value.

uniform(LOW,HIGH,SAMSIZE[,VARRED]) Uniform distribution specified by the given
bounds.

weibull(SCALE,SHAPE,SAMSIZE[,VARRED]) Weibull distribution specified by scale and
shape parameter.
Note that the function sampleLSweibull(A,B) is
equivalent to the function dWeibull(B,A) from the
Stochastic Library.

Discrete Distribution Description

binomial(N,P,SAMSIZE[,VARRED]) Binomial distribution specified by number of
trials N and success probability P in each trial.

hypergeo(TOTAL,GOOD,TRIALS,SAMSIZE[,VARRED])Hypergeometric distribution specified by total
number of elements, number of good elements, and
number of trials.

logarithmic(P-FACTOR,SAMSIZE[,VARRED]) Logarithmic distribution specified by
P-Factor.
Note that the function sampleLSlogarithmic

uses another version of the logarithmic distribution
than dLogarithmic from the Stochastic Library.

negbinomial(SUCC,P,SAMSIZE[,VARRED]) Negative Binomial distribution specified by
the number of successes and the probability of
success. The generated random number describes
the number of failures until the defined number of
successes is reached.
Note that the function sampleLSnegbinomial(R,P)
is equivalent to the function dNegBinomial(R,P-1)
from the Stochastic Library.

poisson(MEAN,SAMSIZE[,VARRED]) Poisson distribution specified by mean.

4.47 Extrinsic Functions 1419

The following example illustrates the use of the sample generator and shows the effect of the functions
setCorrelation and induceCorrelation:

$funcLibIn lsalib lsadclib

Functions normalSample / lsalib.SampleLSnormal /

getSampleVal / lsalib.getSampleValues /

setCor / lsalib.setCorrelation /

indCor / lsalib.induceCorrelation /;

Scalars d "dummy"

h "handle for first sample"

k "handle for second sample" ;

Set i "sample index" / i01*i12 /;

Parameters sv_h(i) "sample values for handle h"

sv_k(i) "sample values for handle k";

* generate two handles for 12 samples from normal distribution with mean 5 and std.dev. 2 each

h = normalSample(5,2,12);

k = normalSample(5,2,12);

* retrieve sample values from Lindo library

loop(i, sv_h(i) = getSampleVal(h));

loop(i, sv_k(i) = getSampleVal(k));

display sv_h, sv_k;

* set and induce a correlation between samples h and k

d = setCor(h,k,-1);

d = indCor(1);

* retrieve sample values again from correlated distribution

loop(i, sv_h(i) = getSampleVal(h));

loop(i, sv_k(i) = getSampleVal(k));

display sv_h, sv_k;

The resulting output shows that the values of sv k are reordered according to the desired correlation:

---- 25 PARAMETER sv_h sample values for handle h

i01 2.079, i02 6.454, i03 4.437, i04 2.747, i05 5.339, i06 4.059, i07 6.311, i08 7.512, i09 8.280, i10 3.380, i11 4.596, i12 5.752

---- 25 PARAMETER sv_k sample values for handle k

i01 5.509, i02 3.021, i03 7.550, i04 6.002, i05 4.227, i06 0.704, i07 3.890, i08 9.474, i09 5.084, i10 4.592, i11 3.311, i12 6.442

---- 35 PARAMETER sv_h sample values for handle h

i01 2.079, i02 6.454, i03 4.437, i04 2.747, i05 5.339, i06 4.059, i07 6.311, i08 7.512, i09 8.280, i10 3.380, i11 4.596, i12 5.752

1420 User's Guide

---- 35 PARAMETER sv_k sample values for handle k

i01 7.550, i02 3.021, i03 9.474, i04 6.442, i05 4.592, i06 0.704, i07 3.890, i08 6.002, i09 3.311, i10 5.084, i11 4.227, i12 5.509

4.47.3.5 The Mutex Library

The Mutex Library allows us to work with a process-level mutex - a program object that can be used to
synchronize multiple processes. For example, a mutex can be used to coordinate mutually exclusive access
to a resource shared between processes and, thus, prevent multiple processes from accessing the shared
resource at the same time. A mutex object is created with a unique name and can be acquired or locked
by only one process at a time. Each process waits to acquire the lock for (i.e. ownership of) the mutex
object before executing the code that accesses the shared resource. After accessing the shared resource,
the process releases or unlocks the mutex object and other processes waiting for the mutex can acquire
the lock and continue execution.

The Mutex Library may be used to prevent simultaneous access to shared resources when running GAMS
programs concurrently and the errors and hard-to-explain behavior that result. Such behavior is not
unusual or surprising: GAMS even has some language features to spawn programs asynchronously (e.g.
Asynchronous Execution), and these concurrent GAMS programs often share files. Consider the following
example where we have two GAMS programs A and B concurrently running a common code that writes a
GDX file containing a scalar x:

scalar x;

repeat

execute_load ’x.gdx’, x;

x = x + 1;

execute_unload ’x.gdx’, x;

until x > 100;

To ensure correct execution of the code, we want to ensure that programs A and B have mutually exclusive
access to the GDX file. In addition, we want the load-increment-unload sequence to occur atomically (i.e.
no other process reads or writes the GDX file during this sequence). The extrinsic function library mtxcc

provides us with some functions to accomplish this and similar tasks:

• Create(x): Creates a mutex with id x in the system. Returns 0 on success and UNDF in case of
error.

• Lock(x): Request to aquire or lock a mutex with id x: it returns immediately if the mutex is
available, otherwise it waits until the mutex becomes available. Returns 0 on success and UNDF in
case of error. Any process waiting in this call will wait forever if the mutex is never unlocked.

• Unlock(x): Unlocks or releases a previously locked mutex with id x. Returns 0 on success and UNDF

in case of error. If processes are waiting to acquire a lock on x, one of them will acquire the lock.
Note that the lock should be held by the unlocking process: behavior is undefined otherwise.

• TryLock(x): Like Lock, but if the mutex is not available, return 1 immediately instead of waiting.

• TimedLock(x,y): Like Lock, but instead of waiting forever, return 1 after waiting unsuccessfully
for y milliseconds.

• Delete(x): Erases a mutex with id x from the system. Returns 0 on success and UNDF in case of
error. Note that a process does not need to own the mutex to erase it. If a mutex is deleted and
there are remaining processes queued up waiting for the unlock, these processes will wait forever.

Continuing our previous example, we need to make the functions Lock and Unlock available so we can
use them to protect the entire loop body by enclosing it in Lock/Unlock calls.

4.47 Extrinsic Functions 1421

$funcLibIn mtxlib mtxcclib

Function lock / mtxlib.Lock /

unlock / mtxlib.Unlock /;

scalar x;

repeat

abort$lock(12345) ’Problems locking mutex’;

execute_load ’x.gdx’, x;

x = x + 1;

execute_unload ’x.gdx’, x;

abort$unlock(12345) ’Problems unlocking mutex’;

until x > 100;

Before we can use the mutex, we first have to create it. Also if both programs are done, we need to make
sure that the named mutex is erased at the end of the programs, otherwise named mutexes collect in your
system and consume resources (memory or disk depending on the implementation). Because the deletion
of a named mutex might be forgotten or a program exits while holding the lock to the mutex or another
concurrent system uses the same id, it is a good idea to find a unique mutex name, create it once, and
erase it at the end as shown in the following complete example:

* generate a unique mutex ID

$eval mtxID round(frac(jnow)*24*60*60*1000)

$onEcho > x.gms

$funcLibIn mtxlib mtxcclib

Function lock / mtxlib.Lock /

unlock / mtxlib.Unlock /;

scalar x;

repeat

abort$lock(%mtxID%) ’Problems locking mutex’;

execute_load ’x.gdx’, x;

x = x + 1;

put_utility ’log’ / ’Program %prgID% increased x to ’ x:0:0;

execute_unload ’x.gdx’, x;

abort$unlock(%mtxID%) ’Problems unlocking mutex’;

until x >= 100;

$offEcho

* Initialize x.gdx

scalar x /1/;

$gdxOut x.gdx

$unload x

$gdxOut

$onEcho > create.gms

$funcLibIn mtxlib mtxcclib

Function create / mtxlib.Create /;

abort$create(%mtxID%) ’problems creating mutex’;

$offEcho

* Create the mutex

$call.checkErrorLevel gams create.gms lo=2

* Asynchronously spawn A and B

$call.async ’gams x.gms --prgID=A fileStem=A’

$eval jhA JobHandle

$call.async ’gams x.gms --prgID=B fileStem=B’

$eval jhB JobHandle

* Wait until both jobs are back

1422 User's Guide

$set statA 0

$set statB 0

$label l1

$eval x sleep(1)

$if not %statA% == 2 $eval statA JobStatus(%jhA%)

$if not %statB% == 2 $eval statB JobStatus(%jhB%)

$if not %statA%%statB% == 22 $goto l1

$onEcho > erase.gms

$funcLibIn mtxlib mtxcclib

Function delete / mtxlib.Delete /;

abort$delete(%mtxID%) ’problems erasing mutex’;

$offEcho

* Erase the mutex

$call.checkErrorLevel gams erase.gms lo=2

The log indicates which program updated x and the GDX file x.gdx at what stage:

Program B increased x to 20

Program B increased x to 21

Program A increased x to 22

Program A increased x to 23

Models dicegrid and asyncincbi show more realistic uses for the mtxcc library.

4.47.4 Build Your Own Library

This section discusses the creation of a custom extrinsic function library. Before attempting to implement
such a library, we suggest to study the example libraries for which source code and test models are
available. These libraries are studied below.

Attention

Building extrinsic function libraries requires the knowledge of a regular programming language (like
C/C++, Fortran, ...) and experience with handling compilers and linkers to build dynamically linked
libraries. In some situation, it may be easier to use the simpler GAMS macros or batinclude files to
define own functions.

Note

Extrinsic functions are limited to 20 scalar arguments and return a scalar value.

An extrinsic function library consists of a specification part and a number of callbacks to evaluate the
defined functions at an input point.

The specification part is implemented by a callback querylibrary. It returns information about the
library itself, available functions, their arguments, endogenous classification, etc. to the GAMS execution
system. C, Delphi, or Fortran source code for this callback can be generated automatically by using the
Python helper script ql.py. The script processes a specification file ∗.spec, which is specified as first
argument. The format of this file is documented in the file tri.spec. Both ql.py and tri.spec are
contained in the source of the trigonometric library examples in the GAMS test library, obtainable via

4.47 Extrinsic Functions 1423

$ testlib trilib01

$ unzip trisource.zip

If an extrinsic function will be used within equations of a GAMS model, next to the function value evaluation
callback, also callbacks that compute first and second derivatives with respect to all endogenous arguments
at an input point should be provided. Occasionally, this can be inconvenient. Observe that GAMS can
use the function values at points close to the input point to estimate the derivate values using finite
differences. However, this method is not as accurate as analytic derivatives and requires a number
of function evaluations, thus the convenience comes at a price. The attribute MaxDerivative in the
specification of a function signals GAMS the highest derivatives this function will provide. For higher
order derivatives, GAMS will use finite differences to approximate the derivative values. However, a better
alternative is often the use of automatic differentiation when implementing the function evaluation. This
is demonstrated in the CPP Library Example, see section Automatic Differentiation for more details.

GAMS offers some support to check the implementation of of derivatives for extrinsic functions via
the function suffixes grad, gradn, hess and hessn. These function suffixes are defined for intrinsic and
extrinsic functions. For example, for an extrinsic function userfunc, the gradient evaluation that the user
implemented may be called with userfunc.grad. Further, an approximation of the gradient by finite
differences is available by calling userfunc.gradn. Comparing the results of these two calls can often help
to check the implementation of the gradient. The same principle applies for the Hessian and the function
suffixes .hess and .hessn. The GAMS options FDDelta and FDOpt can be used to influence the finite
difference calculations. For more details, see model [DERIVTST] in the GAMS Model Library.

4.47.4.1 Example: Trigonometric Library

The Trigonometric Library serves as an example of how to code and build an extrinsic function library.
The library is included in the GAMS distribution in binary form. In addition, the source code in C, Delphi,
and Fortran is available in the include files of the models [TRILIB01], [TRILIB02] and [TRILIB03]
respectively. The library implements the following extrinsic functions:

Function Description End. Classif.

setMode(MODE) Sets mode globally. Possible values are 0 for radian and 1 for
degree. May be overwritten by the optional argument MODE

in the functions cosine and sine.

none

cosine(x[,MODE]) Returns the cosine of the argument x. Note that the argument
MODE is optional, default setting: MODE = 0.

NLP

sine(x[,MODE]) Returns the sine of the argument x. Note that the argument
MODE is optional, default setting: MODE = 0.

NLP

pi Value of π = 3.141593... any

The C implementation of this extrinsic function library can be found in the files tricclib.c and
tricclibql.c. Together with the API specification file extrfunc.h, these files document the callbacks
that need to be implemented by a GAMS extrinsic function library. The file tricclibql.c implements
the querylibrary callback, which provides information about the library itself and the extrinsic functions
it implements. For example, the information that the function cosine has an endogenous required first
argument and an exogenous optional second argument is available from the querylibrary callback. The file
tricclibql.c (and also the Delphi and Fortran90 equivalents tridclibql.inc and triifortlibql.f90)
has been generated by the script ql.py by processing the specification file tri.spec.

4.47.4.2 Example: The CPP Library

The CPP library serves both as an example of how to use C++ to obtain gradients and Hessians ”for free”
and as a source of functions based on the multivariate Normal distribution. The library is available in

1424 User's Guide

compiled form and as C++ source. Test Library model [CPPLIB00] exercises the process of building a
shared library from C++ source and doing some basic tests, while models [CPPLIB01], [CPPLIB02],
[CPPLIB03], [CPPLIB04], and [CPPLIB05] are more thorough tests for the CPP library extrinsics
shipped with the distribution. These functions are listed and described in the following table. Note that
in keeping with the language conventions of statistics, PDF is shorthand for ”probability density function”
and CDF is shorthand for ”cumulative distribution function”.

Function Description End. Classif.

pdfUVN(x) PDF of uni-variate Normal distribution, see
MathWorld or R

NLP

cdfUVN(x) CDF of uni-variate Normal distribution, see
MathWorld or R

NLP

pdfBVN(x,y,r) PDF of bivariate Normal distribution, see
MathWorld or R

NLP

cdfBVN(x,y,r) CDF of bivariate Normal distribution, see
MathWorld or R

NLP

pdfTVN(x,y,z,r21,r31,r32) PDF of trivariate Normal distribution, see
MathWorldor R

NLP

Automatic Differentiation

Often, extrinsic functions are created in order to be used with endogenous arguments. In such cases
it is necessary to provide first and second derivatives with respect to these arguments in addition to
the function values themselves. One way to compute these derivatives is via automatic differentiation
techniques (see the article in Wikipedia for details).

Note that with C++ it is possible to overload the usual arithmetic operators (assignment, addition,
multiplication, etc.) so that automatic differentiation occurs with little or no change to the function-only
source code. This is the technique used to compute the derivatives in the CPP Library. Observe that the
Test Library model [CPPLIB00] includes all the source code for the CPP Library and illustrates the
steps needed to build the library from this source. The source is a working self-documentation of how the
process of automatic differentiation works.

Multi-Variate Normal Distributions

As shown in the table above, the CPP Library implements the PDF and CDF for the univariate, bivariate
and trivariate standard Normal distributions. We use the standard Normal (mean of 0, standard deviation
of 1) since intrinsic functions are limited to 20 arguments. The functions for the univariate case are
included as convenient examples and should give results (nearly) identical to the functions pdfNormal
and cdfNormal from the stochastic library. For the multivariate cases, the implementation is based on
TVPACK from Alan Genz, with some modifications to allow for proper computation of derivatives. Note
that we chose to implement the functions taking correlation coefficients as arguments, not a covariance
matrix. The conversion from a covariance matrix to correlation coefficients is straightforward. The
following R code describes this conversion. Here the package mnormt is used that computes the multivariate
CDF with similar code to Genz:
start with a mean mu and variance-covariance matrix S1
x <- c(1.0,3.0,3.0)
mu <- c(0.0,1.0,-1.0)
S1 <- matrix(c(1.0,1,1.5, 1,4,1.5, 1.5,1.5,9),3,3)
v1 <- pmnorm(x=x, mean=mu, varcov=S1)
convert to std normal with 3 correlation coeffs
R <- cov2cor(S1)
sd <- sqrt(diag(S1))
xn <- (x-mu) / sd
v2 <- pmnorm(x=xn, mean=0, varcov=R)

Note that for the bivariate case there is one correlation coefficient r. The CDF implementation is not
quite accurate to machine precision, it has 14 or 15 digits of accuracy. The trivariate case includes 3

http://mathworld.wolfram.com/NormalDistribution.html
http://mathworld.wolfram.com/NormalDistribution.html
http://cran.r-project.org/web/packages/mnormt/index.html
http://mathworld.wolfram.com/NormalDistribution.html
http://mathworld.wolfram.com/NormalDistribution.html
http://cran.r-project.org/web/packages/mnormt/index.html
http://mathworld.wolfram.com/BivariateNormalDistribution.html
http://mathworld.wolfram.com/BivariateNormalDistribution.html
http://cran.r-project.org/web/packages/mnormt/index.html
http://mathworld.wolfram.com/BivariateNormalDistribution.html
http://mathworld.wolfram.com/BivariateNormalDistribution.html
http://cran.r-project.org/web/packages/mnormt/index.html
http://mathworld.wolfram.com/TrivariateNormalDistribution.html
http://mathworld.wolfram.com/TrivariateNormalDistribution.html
http://cran.r-project.org/web/packages/mnormt/index.html
http://en.wikipedia.org/wiki/Automatic_differentiation
http://www.math.wsu.edu/faculty/genz/homepage

4.47 Extrinsic Functions 1425

correlation coefficients, the 3 off-diagonal elements from the lower triange of R above. The accuracy of the
CDF depends on the inputs: it is higher when the correlation is nearly zero and lower as the condition
number of R increases. Typically, an accuracy of 10−11 is all that can be achieved. In both multivariate
cases, we recommend to avoid evaluating at or near points where the correlation matrix is degenerate. At
nearly degenerate points, the accuracy of the distribution and density functions suffers. As the correlation
matrix becomes degenerate, the distribution becomes degenerate too.

4.47.4.3 Remark: Stateful Libraries

While GAMS intrinsic functions are stateless, users may implement stateful extrinsic functions, i.e.,
functions that have some memory. There are two ways to achieve stateful extrinsic functions:

1. Library initialization (LibInit): at initialization time, the function library reads some data that is
required to evaluate the provided functions. An example is the Piecewise Polynomial Library.

2. Previous function calls: function calls that alter the execution of successive function calls. An
example is the function SetMode from the Trigonometric Library.

Attention

Altering the state of an extrinsic function library by function evaluation calls is problematic, since
different parts of the GAMS system potentially use different instances of the function library.

For example, consider that the function SetMode of the Trigonometric Library is called via SetMode(1)

before a solve statement. Unless option solvelink is set to 5, the solver will run in a separate process with
a new instance of the function library and therefore will use the default mode, which is zero. Further, if
solvelink is set to zero, the GAMS process will terminate in order to execute the solve statement and
will restart a new GAMS process after the solve. The restarted GAMS process will load a fresh instance of
the extrinsic function library, which has no memory of the value of mode from before the solve statement.
This problem is demonstrated in the GAMS Test Library model [TRILIB04].

4.47.5 Extrinsic Functions vs. External Equations

In addition to extrinsic functions, GAMS offers another facility to include additional mathematical
functions in GAMS: external equations. These equations are denoted by equation type =x=. A feasible
solution for a model instance must satisfy all internal and external equations. External equations are
introduced and discussed in chapter External Equations.

Similar to extrinsic functions, it is the users responsibility to provide routines that evaluates the external
equation. Further, both facilities are especially pertinent to nonlinear models.

An overview of some characteristics of extrinsic functions and external equations is given in the following
table:

Characteristic Extrinsic Function External Equation

Maximum number of arguments 20 No limit

Available in statements Yes No

Debugging support Yes No

Returns Hessian to solver Yes No

1426 User's Guide

Consider the following example, which demonstrates how an equation z =
∫ x2

x1
x dx may be formulated

using either an extrinsic function and an external equation:

* using an extrinsic function

e1.. integralx(x1,x2) =e= z;

* using an external equation

e1.. 1*x1 + 2*x2 + 3*z =x= 1;

Note that the function integralx is assumed to be a user-defined extrinsic function, probably implemented
as integralx(x1, x2) = 1

2 (x2
2 − x2

1).

Note further, that the integers 1 to 3 in the external equation are mapped to indices for variables that
are used in external functions inside an external module. The right-hand side of the external equation
denotes the external equation number. It is assumed that the user-defined external equation implements
the function (x1, x2, z) 7→

∫ x2

x1
x dx− z.

As a simple example for the use of an extrinsic function in a statement, consider the following assignment,

which sets the level of variable y to the value of (
∫ 2

0
x dx)2:

y.l = sqr(integralx(0,2));

4.48 External Equations

GAMS provides a number of built-in or intrinsic functions for use in equations. Still, the extremely
diverse set of application areas in which GAMS is used can create demand for the addition of new and
often sophisticated and specialized functions. There is a trade-off between satisfying these requests and
avoiding complexity not needed by most users. The GAMS External Equations Facility provides one means
for managing this trade-off, since it allows users to import functions from an external library to define
equations in a GAMS model. However, these external libraries can currently only provide functionality
for the evaluation of functions (incl. their first derivatives) in a point. Solvers that need to analyze the
algebraic structure of the model instance are therefore not able to work with external equations. This
includes the class of deterministic global solvers, see column ”Global” in this table, while, for example,
stochastic global solvers can work with external equations.

Note

Both external equations and extrinsic functions aim to provide possibilities to extend GAMS by
user-provided mathematical functions. However, there are fundamental differences in the use and
implementation of both. For most situations, extrinsic functions should be preferred over external
equations. See also Extrinsic Functions vs. External Equations.

Attention

Building external equation libraries requires the knowledge of a regular programming language (like
C/C++, FORTRAN, ...) and experience with handling compilers and linkers to build dynamically
linked libraries.

4.48 External Equations 1427

Note

The external equation interface is not intended as a way to bypass some of the very useful model
checking done by GAMS for models that are solved with NLP solvers. External equations are still
assumed to be continuous with accurate and smooth first derivatives. The continuity assumption
implies that external equations must have very low noise levels, considerably below the feasibility
tolerance used by the solver. The assumption about accurate derivatives implies that derivatives must
be computed more accurately than can be done with standard finite differences. If these assumptions
are not satisfied, then there is no guarantee that the NLP solver can find a solution that has the
mathematical properties of a local optimum, i.e., a solution that satisfies the Karush-Kuhn-Tucker
conditions within the standard tolerances used by the solver.

In the following, connecting code written in FORTRAN, C, Delphi, or some other programming language
to equations and variables in a GAMS model is described. These GAMS equations will be referred to
as external equations and the compiled version of the programming routines will be referred to as the
external module that defines the external functions. The form of the external module depends on the
operating system that is used. The external module under Windows is a Dynamic Link Library (.dll)
and the external module under Unix is a shared object (.so or .dylib). In principle, any language or
system may be used to build the DLL or shared object that defines the external module, as long as the
interface conventions are not changed.

The GAMS Test Library provides examples of external equations consisting of GAMS models and C,
Delphi, Java, and FORTRAN code. For more details, see Section Examples in the GAMS Test Library.

The basic mechanism of external equations is to declare all the equations and variables using the usual
GAMS syntax. The interpretation of the external equations is done in a special way. Instead of the
usual semantic content, the external equations specify the mapping between the equation and variable
names used in GAMS and the function and variable indices used in the external module. This mapping is
described in Section Model Interface. The external module may be written in C, FORTRAN, or most
other programming languages. Section Programming Interface describes the general definitions for an
external module for C, Delphi, and FORTRAN from a programming language perspective. Note that the
way the program is compiled and converted into an external module is system and compiler specific. The
following Section Implementation gives detailed advice on various aspects of the implementation of the
external module.

4.48.1 Examples in the GAMS Test Library

Model [TESTEXEQ] gives an overview of all examples in the GAMS Test Library and may be used to
compile and run them. Note that the remainder of this chapter will reference examples that are listed
in this model. Further, model [COMPLINK] may be used as a script to compile and link external
equation libraries. Note that these models hardcore the path to the Java compiler and libraries and these
paths will need to be adapted by the user when running the Java examples.

Observe that regardless of how external libraries are built, the examples (e.g. [EX1]) will by default
solve a model without using external equations. To solve the example models with all kinds of different
external equation libraries, they may be run with the argument

--runall=1

Alternatively, only selected libraries may be used by using one or more of the following command line
parameters:

--runC=1

--runC_cb=1

--runD=1

--runD_cb=1

--runF=1

--runF_cb=1

--runJ=1

1428 User's Guide

4.48.2 Model Interface

4.48.2.1 External Equation Syntax

External equations that are used to specify the interface to the external module are declared in GAMS
like any other equation. The syntax for the external equation definition statement is as follows:

eqn_name(index_list)[$logical_condition(s)].. expression =x= expression ;

Note that the only difference to the usual equation definition is the use of the equation type =x=.

The equations defined by an external module are always interpreted as equality constraints with zero
right-hand sides. Thus inequalities have to be converted to equalities by adding explicit slack variables,
which will serve as additional external variables. A nonzero right-hand side need to be taken care of in
the external equation implementation.

4.48.2.2 Mapping of external equations and variables to indices

Some mappings must be specified to link an external module to a GAMS model. External equations are
assumed to be defined in terms of indices i = 1...m. These indices must be mapped to GAMS equation
names. Similarly, the variables used inside the external functions are assumed to be defined in terms of
indices j = 1...n. These indices must be mapped to GAMS variable names. Finally, the name of the
external module must be specified. Note that GAMS solvers are typically designed for large models and
rely on sparsity. The last part of the specification of a set of external equations is therefore the sparsity
pattern of the external equations, i.e., which variables appear in which equations.

The value of the constant term of the external equation must be an integer, since the value of the constant
maps the row of the GAMS equation to the index (in 1...m) of the external equation. Several blocks of
GAMS equations may be mapped to external equations using the =x= notation. The mapping between
GAMS equations of type =x= and indices 1...m must be bijective (one-to-one). This means that two
GAMS equations may not be mapped into the same external equation index and that there may not be
any holes in the list of external equation indices. Although there may be any number of blocks of GAMS
external equations, they must all map into and be implemented by one single external module.

The variable part of each external equation defines both the sparsity pattern of the external equation and
the mapping from GAMS variables to the indices of the external variables. The variable part must be a
sum of terms where each term is an integer times a variable. The existence of the term indicates that the
variable involved is used in the external equation and that there is a corresponding derivative. The value
of the coefficient defines the index of the external variable (in 1...n) that the GAMS variable is mapped
to. For example, the term 5∗Y indicates that the external equation depends on the GAMS variable Y and
that Y is mapped to the 5th element in the vector of external variables. Clearly, if a variable appears in
more than one external equation, then the value of its coefficient must be the same in each case.

Note that several blocks of GAMS variables may be used in external equations. In contrast to equations,
where all rows in an equation block are either external or not, some columns in a variable block may
be external while others are not. The mapping between GAMS variables that appear in equations of
type =x= and external variable indices 1...n must be bijective (one-to-one). This means that two GAMS
columns may not be mapped into the same external variable index and that there may not be any holes
in the list of external variable indices. Although there may be any number of blocks of GAMS variables
mapped to external variables, they must all map into one single vector passed to the subroutine in the
external module.

Observe that while some GAMS variables are external, there is no syntax provided to mark them as
external variables. They may be used in non-external GAMS equations as well as external equations.
Indeed, without this capability the model would be separable and the external equations and the functions
they map to would be of little use.

4.48 External Equations 1429

Note

• As the coefficients and right-hand sides in the GAMS definition of external equations are
interpreted as indices, users are not allowed to scale external equations and variables.

• External equations are treated in a special way, therefore the command line parameter and
model attribute HoldFixed will not treat any fixed external variables as constants.

4.48.2.3 Name of external module

The name of the external module in which the external equations are implemented may be defined in a
number of ways. By default, the external module is assumed to have the same name as the GAMS model
with an extension that is operating system dependent. The extension is .dll for Windows, .dylib for
macOS, and .so for any other Unix.

A custom name for the external module may be specified with a file statement. In this case the file name
has to be listed as an additional item in the model statement. If the library extension is omitted in the
file statement, GAMS will add the system-dependent extension automatically. This helps to make the
model portable between different operating systems.

Consider the following simple example:

File myextfile / extern /;

Model mymodel / all, myextfile /;

When model mymodel is solved, GAMS will try to load the an external module file named extern.so,
extern.dylib, or extern.dll, depending on the current operating system.

By default, the external module is assumed to be located in the directory external equations in the
GAMS standard locations or in the directory from which GAMS is called. A different location may be
specified with an added path in the file statement.

4.48.3 Programming Interface

This section discusses C, Delphi, and FORTRAN interfaces to the GAMS external equations facility.

The external equation module need to provide a function called GEFUNC. The beginning of the external
equation module typically looks as follows:

C:
#define GE EXPORT
#include "geheader.h"
GE API int GE CALLCONV
gefunc(int* icntr, double* x, double* f, double* d, msgcb t msgcb)

The header file geheader.h can be found in the testlib ml subdirectory of the GAMS distri-
bution. It defines GE API and GE CALLCONV and the signature of the function gefunc. GE API is
used to indicate to the compiler whether the function should be exported or imported. Due to
defining GE EXPORT before including geheader.h, GE API is defined such that the function will
be marked for export (declspec(dllexport) on Windows and visibility ("default")

with GCC). Further, GE CALLCONV indicates the calling convention that should be used on
Windows. Currently, this is defined to be stdcall. On other operating systems, it is empty.

FORTRAN:

1430 User's Guide

Integer Function gefunc (icntr, x, f, d, msgcb)
C Control Buffer:

Integer icntr(*)
C Numerical Input and Output:

Double Precision x(*), f, d(*)
C Message Callback Routine

External msgcb

Delphi:
uses

geheader d;
Function GeFunc(var Icntr: ticntr;

var x: tarray;
var F: double;
var D: tarray;
MsgFunc: tMsgCallBack): integer; stdcall;

The unit file geheader d.pas can be found in the testlib ml subdirectory of the GAMS
distribution.

In the following, the arguments of GEFUNC are described in detail.

4.48.3.1 Control vector icntr

The array icntr is a control vector that is used to pack and communicate control information between
GAMS and the external module. Some helpful definitions to work with the icntr array are provided by
the files geheader.h (C), geheader d.pas (Delphi), and gehelper.f90 (Fortran 90). The array elements
are the following:

Element Description

icntr[I Length] Holds the length of array icntr in number of elements. This is provided by
GAMS.

icntr[I Neq]
Number of external equation rows seen in the GAMS model. This is provided
by GAMS.

icntr[I Nvar]
Number of external variables seen in the GAMS model. This is provided by
GAMS.

icntr[I Nz]
Number of nonzero derivatives or Jacobian elements seen in the GAMS model.
This is provided by GAMS.

icntr[I Mode]
Current mode of operation. This is provided by GAMS. The following values
are possible:
DOINIT: Initialize. This will be the first call of GEFUNC, where initializations
needed by the external module may be performed.
DOTERM: Terminate. This will be the last call of GEFUNC, where cleanup tasks
needed by the external module may be performed.
DOEVAL: Function evaluation. External equations should be evaluated.
DOCONSTDERIV: Constant Derivatives. Information about constant derivatives
should be provided.
DOHVPROD: Hessian-Vector product. The product between the Hes-
sian of an external equation and a vector should be computed. See
Second Derivatives: Hessian times Vector for details.

icntr[I Eqno]
Index of the external equation to be evaluated during this call to GEFUNC. This
is provided by GAMS in function evaluation mode (icntr[I Mode]=DOEVAL)
and is a number between 1 and icntr[I Neq], inclusive. Note that the external
equation interface allows to communicate information about only one function
at a time.

icntr[I Dofunc]
Flag whether function value should be computed. icntr[I Dofunc] is pro-
vided by GAMS in function evaluation mode (icntr[I Mode]=DOEVAL). If set
to 1, then GEFUNC must return the numerical value of the function indexed
by icntr[I Eqno] in the scalar f.

4.48 External Equations 1431

Element Description

icntr[I Dodrv]
Flag whether derivative should be computed. icntr[I Dodrv] is provided
by GAMS in function evaluation mode (icntr[I Mode]=DOEVAL). If set to
1, then GEFUNC must return the numerical values of the derivatives of the
function indexed by icntr[I Eqno] in the array d.

icntr[I Newpt]
Flag for new point. icntr[I Newpt] is provided by GAMS in function
evaluation mode (icntr[I Mode]=DOEVAL). If set to 1, then the point x may
be different from the previous call of GEFUNC. If set to 0, then x will not have
changed since the previous call.

icntr[I Debug]
If icntr[I Debug] is set to a nonzero value by the external equation module,
then the functions GEstat and GElog will write all strings to a file called
debugext.txt and flush the buffer immediately after writing. The string
debugger may be used when a shared object crashes before GAMS has had
an opportunity to display the messages. In FORTRAN, the string debugger
will use FORTRAN unit icntr[I Debug]. For more details see Section
Message Output.

icntr[I Getfil]
Flag to request the name of a special directory or file from GAMS. The
following values are possible:
I Scr: Scratch directory,
I Wrk: Working directory,
I Sys: GAMS system directory,
I Cntr: Control file.
For more information, see Section Communicating Data to the External Module via Files.

icntr[I Smode]
Flag for string mode. This is provided by GAMS. For details see Section
Communicating Data to the External Module via Files.

icntr[I ConstDeriv]
Number of constant derivatives. Specifying this number during intialization
is optional. For details see Section Constant Derivatives below.

icntr[I HVProd]
Indicator for use of Hessian-Vector product for second order
derivatives. This entry is optional. For details see Section
Second Derivatives: Hessian times Vector below.

Observe that FORTRAN programmers will have to replace the square brackets [] with parentheses ().

4.48.3.2 Evaluation point x

Argument x is an array with icntr[I Nvar] elements and is provided by GAMS if GEFUNC is called in
function evaluation mode (icntr[I Mode] = DOEVAL). Typically, GAMS and the solvers ensure that the
individual elements of x are in between, or very close to, the variable bounds defined in the GAMS model.
During initialization and termination calls, x is not defined and the external module must not reference x.
C programmers should index this array starting at zero, i.e., the first external variable is referenced as
x[0].

4.48.3.3 Function value f

If icntr[I Mode] = DOEVAL and icntr[I Dofunc] = 1, then the external module must return the value
of the external equation icntr[I Eqno] in the scalar f. During initialization and termination calls, f must
not be referenced.

1432 User's Guide

4.48.3.4 Derivative vector d

If icntr[I Mode] = DOEVAL and icntr[I Dodrv] = 1, then the external module must return the values
of the derivatives of external function icntr[I Eqno] with respect to all variables in the array d. The
derivative with respect to variable x[i] is returned in d[i]. It is sufficient to set only those positions in d

that correspond to variables actually appearing in equation icntr[I Eqno]. Other positions are not being
used by GAMS and may be left undefined. During initialization and termination calls, d must not be
referenced.

4.48.3.5 Message callback msgcb

This argument is the address of a message callback routine that can be used to write messages to the
status and/or log files of the GAMS process. Its type definition in C is as follows:
typedef void (GE CALLCONV * msgcb t) (const int* mode, const int* nchars, const char* buf, int len);

The argument mode is used to point to an integer which indicates where messages should be written to.
This integer can be set to the following values:

• LOGFILE (1): Write the message to the log file only.

• STAFILE (2): Write the message to the status file only.

• LOGFILE | STAFILE (3): Write the message to both the log file and the status file. Observe that
the symbol | denotes the bitwise logical OR in C.

The argument nchars points to an integer that specifies the number of bytes contained in the message
(excluding the \0-terminator if there is one present). Thus, in C, nchars is typically set to strlen(buf).
The argument buf is a pointer to the character array containing the message to be printed. Finally, len
is the size or length of the string buf, thus it is typically the same as ∗nchars.

Calling the message callback msgcb from C is straightforward. Note that the arguments mode, nchars,
and buf are all call-by-reference and that addresses, not values, must be used. However, the argument
len is call-by-value and ∗nchars should be passed as its value.

If the implementation is done in Delphi or Visual Basic, observe that pointers of all types are 4-byte
quantities on a 32bit system and 8-byte quantities on a 64bit system. Integers are 4 bytes.

Calling this routine from a FORTRAN environment is a bit more complicated due to the different ways
that FORTRAN compilers handle strings. The Unix convention - at least the convention observed on all
systems for which GAMS is built - is that strings are passed by reference. In addition, the length of the
string is passed by value as a hidden 4-byte quantity appended to the end of the argument list. This is the
reason for including len as the last argument in msgcb. The argument len facilitates making FORTRAN
callbacks in a Unix environment like the following:
character*(*) msgbuf
int nchars, charcount
nchars = charcount(msgbuf)
call MSGCB (mode, nchars, msgbuf)

4.48 External Equations 1433

Status Code Definition

4.48.3.6 Return code

The function GEFUNC must return one of the following status codes:

Status Code Definition

0 No error occurred.

1 A function evaluation error was encountered. GAMS should not use the content
of f and/or d, but GEFUNC has recovered from the error and is ready to be called
at a new point. This status code should only be used in function evaluation mode
(icntr[I Mode]=DOEVAL).

2 Fatal error. If this value is returned during the initialization call, then GAMS
should abort immediately. It may be returned by GEFUNC during the initial call if
some initializations did not work correctly, or if some of the size values in icntr

had unexpected values. It may also be returned during function evaluation mode
(icntr[I Mode]=DOEVAL) if the external module has experienced problems from
which it cannot recover.

4.48.4 Implementation

After describing the function GEFUNC in Section Programming Interface above, this section offers some
practical comments on implementing GEFUNC.

4.48.4.1 Compiling and Linking

The examples for GAMS external equations contain a set of GAMS models for compiling the code on
various systems using various compilers. Note that the compiler and linker flags shown in these examples
should be used to ensure that the modules conform to the interface standard. In addition, the appropriate
include file (geheader.h, geheader d.pas, gehelper.f90) should be used.

4.48.4.2 Initialization Mode

The initialization mode should always check whether the external equations have the expected size:
icntr[I Neq], icntr[I Nvar] and icntr[I Nz] have to be tested against fixed expected values or values derived
from some external data set.

The initialization mode may be used for several purposes like allocating memory and initializing numerical
information or mapping information needed by the function evaluations that will follow. Data can be
computed or read from external data sources or it can be derived from calls to an external database. Note
that data that is shared with GAMS may be written to a file from GAMS using the put statement and
then read in GEFUNC. Note further, that users must close the put file with a putclose statement before the
solve statement. Observe that memory used to hold information from one invocation of GEFUNC to the
next should be static. For FORTRAN it should either be in a Common block or it should be included in a
Save statement.

4.48.4.3 Termination Mode

The termination mode may be used to perform some clean-up tasks like computing statistics, closing files,
and returning memory.

1434 User's Guide

4.48.4.4 Evaluation Mode

The bulk of the computational work will usually be in evaluation mode. Observe that GEFUNC only works
with one equation at a time. One of the reasons for this choice is that the addressing of derivatives
becomes very simple: there is one derivative for each variable and they have the same index in d and x,
respectively.

In some applications several functions are naturally evaluated together, for example, because all functions
are computed in some joint integration routine. The icntr[I Newpt] flag is included for these applications.
Using this flag, an implementation could evaluate all functions using a common routine when icntr[I Newpt]
equals 1 and saves the function and derivative values. Additionally, it returns the values corresponding to
equation icntr[I Eqno]. In subsequent calls to GEFUNC, icntr[I Newpt] will likely be zero and the function
and derivative values can quickly be extracted from the previously computed (and saved) information.

4.48.4.5 Evaluation Errors

It is good modeling practice to add bounds to the variables in such a way that all nonlinear functions are
defined for all values of the variables within the bounds. Most solvers will also guarantee that nonlinear
functions are called only when all entries of the vector x are between the bounds. However, it may not
be practical to add all the necessary bounds and the implementation of GEFUNC should therefore capture
evaluation errors such as division by zero, taking the logarithm of non-positive numbers, overflow in
exponentiation, etc. If an equation cannot be evaluated at the given point, function GEFUNC should simply
let the solver know about this situation by returning the value 1. The solver may then be able to backtrack
to a safe point and continue the optimization from there.

Attention

System-default or user-defined functions that handle evaluation errors (for example, the C library
function matherr()) will sometimes not work in the same way inside a DLL or a shared object as
they do in a self-contained program or a static library.

4.48.4.6 Message Output

External modules can send messages to the GAMS status file (usually the listing file) and the GAMS
log file (usually the screen). Messages to be included in the GAMS status file can be buffered using the
GEstat utility routine described below and messages to be included in the GAMS log file can be buffered
using the GElog utility routine. Note that it is not possible to open these files for writing in the external
module since GAMS or the solver process controls them.

Moreover, messages may be sent to both the status and log file without buffering, using the message
callback msgcb. This removes the limit imposed by the size of the message buffer and may also make
debugging somewhat simpler, since there is no need to worry about messages that never got flushed from
the buffer. As it may be difficult or impossible to use the message callback from some environments, both
the buffered and unbuffered techniques are provided.

Note that the two techniques for sending messages (buffered via GEstat and GElog and unbuffered via
the message callback msgcb) are complementary. Either one or the other may be used, but if both are
used in the same external module, the buffered messages will be printed after the unbuffered messages.

4.48 External Equations 1435

GEstat: The Utility Routine for Writing Messages to the Status File

GEstat is provided in the appropriate include file (Fortran 90: gehelper.f90, C: geheader.h, Delphi:
geheader d.pas). It is used to communicate messages that should be written to the GAMS status file.
The function definition follows:

FORTRAN:
subroutine gestat (icntr, line)

C Control Buffer:
Integer icntr(*)

C input parameters:
character*(*) line

C:
void GEstat(int* icntr, char* line)

Delphi:
Procedure GeStat(var icntr: ticntr; const s: shortstring);

Note that the first argument, icntr, must be passed through from the call of the function GEFUNC. The
content of the argument line (or s in Delphi) is packed into the control buffer as one line. When GEFUNC

returns, the content of the buffer will be written to the GAMS status file. GEstat may be called several
times, each time with one line. Observe that line should not be longer than 132 characters and the
overall amount of information written in one call to GEFUNC should not exceed 1000 characters. Further,
line should not contain any special characters such as new-line or tab.

In practice, GEstat is often used with calls like the following:

FORTRAN:
call GESTAT (icntr, ’ ’)
call GESTAT (icntr, ’**** External module based on abc.for’)

C:
GEstat (icntr, " ")
GEstat (icntr, "**** External module based on abc.c")

Delphi:
gestat(icntr,’ ’);
gestat(icntr,’**** External module based on abc.dpr’);

GElog: The Utility Routine for Writing Messages to the Log File

Like GEstat, GElog is provided in the appropriate include file. It is used to communicate messages that
should be written to the GAMS log file. Note that by default, the log file is the screen. Alternatively, log
may be written to a file that is specified with the GAMS command line parameter LogFile. The function
definition of GElog follows.

FORTRAN:
subroutine gelog(Icntr, line)

C Control Buffer:
Integer Icntr(*)

C input parameters:
character*(*) line

C:
void GElog(int* icntr, char* line)

Delphi:
Procedure GeLog(var icntr: ticntr; const s: shortstring);

Note that GElog behaves exactly like GEstat, with the status file replaced by the log file. The content of
line is written to a buffer that in turn is written to the log file when GEFUNC returns.

Observe that it is not possible to write directly to the screen with some combinations of operating system
and compiler. This may also depend on the options or flags that are used to build the external module.

Attention

On some systems writing directly to the screen may cause the external module to crash. Therefore,
it is advised not to write to the screen as a method for debugging, unless it is clear that it works.
Otherwise the module may continue to crash because of the debugging statements after all other
errors have been removed. Writing to a file and flushing the buffer is recommended as a safe
alternative.

1436 User's Guide

4.48.4.7 Communicating Data to the External Module via Files

Some external equations will need data from the GAMS program. This data may be passed on via one or
more files written using put statements. Usually, such put files will be written in the current directory
and the external module will look for them in the current directory. However, if users need to run multiple
copies of the same model at the same time, data files should be written in the GAMS scratch directory
and the external module should be directed to look for the data files in the scratch directory.

Note that a put file may be defined to be located in the scratch directory with the following file statement
in the GAMS model:

File f / ’%gams.scrdir%filename’ /;

Observe that if the extension .dat is used, GAMS will remove the file from the scratch directory after the
run. If another extension is used and the file is not deleted, GAMS will complain about an unexpected
file when it cleans up after the run. The external module can receive the name of the scratch directory
from GAMS during initialization by setting icntr[I Getfil] to I scr and returning immediately. GAMS
will then store the name of the scratch directory and length of the name in the communication buffer
and call GEFUNC in initialization mode again. Note that GEFUNC will now be called with the sub-mode
icntr[I Smode] set to I Scr. Then the name may be extracted using the following FORTRAN call:
call GENAME(Icntr, Scrlen, Scrdir)

Here, Scrdir (declared as character∗255) will receive the scratch directory and Scrlen (declared as
integer) will receive the actual length of Scrdir. In C, the call takes the following form:
char scratchDir[255];
int scratchDirLen;
scratchDirLen = GEname(icntr, scratchDir, sizeof(scratchDir));

Here the routine will return the number or characters transferred to the buffer scratchDir if successful
and the value -1 otherwise. If there is space, a terminating '\0'-byte will be written to scratchDir. If the
value returned is equal to sizeof(scratchDir), then the string returned will not be '\0'-terminated and
may have been truncated as well.

Observe that it is possible to get other directory or file names by specifying other values in icntr[I Getfil].
After setting this flag, GEFUNC must always return immediately.

For examples, see models [EX5] and [EXMCP3] and their respective FORTRAN and C source files.

4.48.4.8 Constant Derivatives

Some solvers, like the CONOPT solvers, can take advantage of the knowledge about constant derivatives
in equations, which are a result of linear terms. This can be especially useful if an external equation
represents an equation like Y=f(X), where Y is unbounded, since variable Y can then be substituted by
f(X).

However, with the external module interface as described so far, the solver cannot know which variables
appear linearly in the external equations. An optional extension allows to indicate that some of the
relationships are linear. This can be activated by returning the number of constant derivatives in
icntr[I ConstDeriv] during the call of GEFUNC in initialization mode.

If the solver can use this information (not all solvers will), then GEFUNC will be called again repetitively
with icntr[I Mode] set to DOCONSTDERIV, once for each external equation, with its index specified as usual
in icntr[I Eqno]. For each of these calls, values of all constant derivatives must be specified in the array d.
The remaining elements of d, both those corresponding to varying derivatives and to zeros, must be left
untouched. These special calls will take place after the initialization call and before the first function
evaluation call. Note that in these calls other flags like icntr[I Dofunc] and icntr[I Dodrv] and the array x
will not be defined.

For an example, see model [EX4X] with the corresponding Fortran 90 and C source files ex4xf cb.f90

and ex4xc cb.c, respectively. It is instructive to compare these files to the corresponding files without
constant derivatives: ex4f cb.f90 and ex4c cb.c.

4.48 External Equations 1437

4.48.4.9 Second Derivatives: Hessian times Vector

External modules cannot provide a solver with the Hessian matrix of external equations. However,
some solvers have particular options for internally approximating the Hessian. For example, see the
hessian approximation option for IPOPT or hessopt for KNITRO. Further, the solver CONOPT can take
advantage of second order information in the form of the product Hessian matrix ∇2f(x) times a vector v.
This special form can be used for external equations by setting icntr[I HVprod] to 1 during the call of
GEFUNC in initialization mode.

If the solver can use this information (not all solvers will), then GEFUNC may be called with icntr[I Mode]
set to DOHVPROD to request this operation. icntr[I Eqno] will hold the equation number and the array x

will hold the values of the variables (x) in its first icntr[I NVar] positions and a vector v in the following
icntr[I Nvar] positions. GEFUNC should evaluate and return d = ∇2f(x) v for the particular external
equation f at the particular point x. Note that d (which is otherwise used for the derivative vector) will
have been initialized to zero by GAMS.

∇2f(x) v will often be needed for several vectors v at the same point x. Therefore, icntr[I Newpt] will be
used to indicate changes in x in the usual way.

Note that model [EX1X] with the corresponding Fortran 90 source file shows how to use both constant
and second derivatives.

4.48.4.10 Debugging

Implementing external equations brings a number of new potential error sources which GAMS cannot
protect against as well as with pure GAMS models. For example, the argument lists in the C or FORTRAN
code may be incorrect or the linking process may create an incorrect external module. There is little
GAMS can do to help users with this type of errors. It is recommended to carefully follow the examples
and output debug messages during the setup calls, for example using the utility routines GEstat and
GElog.

Once the overall setup is correct and GAMS can establish proper communication with the external module,
there may still be numerical errors where the function values and the derivatives do not match.

Note that the solver CONOPT will by default call its Function and Derivative Debugger in the initial
point, if a model has any external equations. The debugger will check that the functions only depend
on the variables that are defined in the sparsity pattern and that derivatives computed by numerical
perturbation are consistent with the derivatives computed by the external module. If an error is found,
CONOPT will stop immediately with an appropriate message. For examples, see the GAMS Test Library
models [er1], [er2], and [er3], which illustrate different types of errors. The respective error messages
will appear if CONOPT is used as the NLP solver. Note that comments about the errors may be found in
the C or FORTRAN source code.

Observe that several types of errors cannot be detected. Derivatives that are computed in the external
module and are returned in positions that were not defined in the sparsity pattern in GAMS will be
filtered out by the interface and will therefore not be detected. Similarly, derivatives that should be
computed but are forgotten, may inherit values from the same derivatives in another equation computed
earlier. Finally, fixed variables cannot be perturbed, thus errors related to these variables will usually not
be detected.

1438 User's Guide

4.49 GAMS Return Codes

The most convenient way to embed a GAMS program in a different program (e.g. C#, Java, Python,
...) is the object orient API to GAMS. A much simpler but less powerful way is to make a call to
the GAMS executable (gams.exe (Windows) or gams (Unix)) with appropriate parameters from your
program. Different languages and operating systems have different ways of accomplishing such a task.
A common way to communicate a small piece of information from the GAMS program to the caller
program is the exit status or return code (see e.g. [https://en.wikipedia.org/wiki/Exit status] (
https://en.wikipedia.org/wiki/Exit status)). GAMS return codes allow the caller to get some

information about the status of the finished GAMS job. Note that return codes do not provide information
about a model inside the GAMS job: the model may have been infeasible or may have failed in another
way while the return code says all is fine. In fact, there may be multiple solves in a GAMS job, so
even conceptually it is not possible to return solution status codes in the return code. The user cannot
explicitly set the return code but can trigger action (e.g. abort 'stop';) that result in a specific return
code (here execution error (3)).

Note

In general, the value of zero for return codes denotes success and non-zero values denote failure.

We first demonstrate how to access return codes from within GAMS with a self-explanatory example and
then list all return codes. GAMS has the ability to call other programs via the $call (compile time) and
execute (execution time) commands. Naturally, GAMS can call GAMS in a recursive fashion. There are
different methods to access the return code of such a sub-GAMS job:

$onecho > x.gms

set a /1,2,3/;

$offecho

* Compile time access inside to return values

* Example for non-zero return code

$call gams x.gms lo=0 this_causes_a_parameter_error_with_return_code_6=1 > %system.nullfile%

* Check the return code via if [not] errorlevel n

$if not errorlevel 1 $abort expect a errorlevel >= 1

* Access the return code as function value of function errorLevel

$eval MYERRORLEVEL errorLevel

$log %MYERRORLEVEL%

* Example for zero return code

$call gams x.gms lo=0 > %system.nullfile%

* Check the return code via if [not] errorlevel n

$if errorlevel 1 $abort expect a errorlevel <= 0

* Access the return code as function value of function errorLevel

$eval MYERRORLEVEL errorLevel

$log %MYERRORLEVEL%

* Runtime

* Example for non-zero return code

execute ’gams x.gms lo=0 this_causes_a_parameter_error_with_return_code_6=1 > %system.nullfile%’;

https://en.wikipedia.org/wiki/Exit_status
https://en.wikipedia.org/wiki/Exit_status

4.49 GAMS Return Codes 1439

* Access the return code as function value of function errorLevel

scalar myerrorlevel;

myerrorlevel = errorlevel;

display ’should be 6:’, myerrorlevel;

* Example for zero return code

execute ’gams x.gms lo=0 > %system.nullfile%’;

* Access the return code as function value of function errorLevel

myerrorlevel = errorlevel;

display ’should be 0:’, myerrorlevel;

Command line interpreters or shells are a powerful way for job control and can naturally also run GAMS
jobs. Here are two examples that demonstrate how to access (actually echo) the return code from GAMS
in such environments:

Unix shell (e.g. bash):

$ gams mymodel ...

$ echo $?

Here $? is the environment variable that stores the return code from the last run.

Windows (cmd.exe):

C:\tmp> gams mymodel ...

C:\tmp> echo %errorlevel%

Here %errorlevel% is the environment variable that stores the return code from the last run.

Note

On UNIX, return codes are treated modulo 256, so the return code 400 will be 144 on Unix. The
return code modulo 256 is given in parenthesis in the table, if different from the return code.

4.49.1 List of the Error/Return Codes

The following table gives the list of the GAMS return codes:

Return Code Description

0 Normal return

1 Solver is to be called, the system should never return this number

2 There was a compilation error

3 There was an execution error

4 System limits were reached

5 There was a file error

6 There was a parameter error

7 There was a licensing error

8 There was a GAMS system error

9 GAMS could not be started

1440 User's Guide

Return Code Description

10 Out of memory

11 Out of disk

109 Could not create process/scratch directory

110 Too many process/scratch directories

112 Could not delete the process/scratch directory

113 Could not write the script gamsnext

114 Could not write the parameter file

115 Could not read environment variable

400 (144) Could not spawn the GAMS language compiler (gamscmex)

401 (145) Current directory (curdir) does not exist

402 (146) Cannot set current directory (curdir)

404 (148) Blank in system directory (UNIX only)

405 (149) Blank in current directory (UNIX only)

406 (150) Blank in scratch extension (scrext)

407 (151) Unexpected cmexRC

408 (152) Could not find the process directory (procdir)

409 (153) CMEX library not be found (experimental)

410 (154) Entry point in CMEX library could not be found (experimental)

411 (155) Blank in process directory (UNIX only)

412 (156) Blank in scratch directory (UNIX only)

909 (141) Cannot add path / unknown UNIX environment / cannot set environment variable

1000 (232) Driver error: incorrect command line parameters for gams

2000 (208) Driver error: internal error: cannot install interrupt handler

3000 (184) Driver error: problems getting current directory

4000 (160) Driver error: internal error: GAMS compile and execute module not found

5000 (126) Driver error: internal error: cannot load option handling library

Note that error 3000 is sometimes caused by specifying the current directory in Microsoft UNC format.
The return codes smaller than 100 come from the GAMS compiler and execution system (gamscmex) while
the codes above 100 come from the GAMS driver program (gams).

4.50 GAMS Data eXchange (GDX)

This document describes the GDX (GAMS Data eXchange) facilities available in GAMS. The GDX
facilities provide basic functionalities for exchanging GAMS data such as read and write. In addition to
these facilities, there are a number of GDX Tools for exchanging data between GAMS and other data
sources as well as for performing specific operations on a GDX file.

A GDX file is a file that stores the values of one or more GAMS symbols such as sets, parameters variables
and equations. GDX files can be used to prepare data for a GAMS model, present results of a GAMS
model, store results of the same model using different parameters etc. A GDX file does not store a model
formulation or executable statements. Among other usages a GDX file can also be used to prepare data
for a GAMS model, pass results of a GAMS model into different programs, and pass results into GAMS
from different programs.

GDX files are binary files that are portable between different platforms. They are written using the byte
ordering native to the hardware platform they are created on, but can be read on a platform using a
different byte ordering. See also General notes on GDX files .

4.50 GAMS Data eXchange (GDX) 1441

4.50.1 Reading a GDX file

Reading a GDX file into a GAMS model can be done during the compile phase or the execution phase.

4.50.1.1 Compile Phase

During compilation, we can use Dollar Control Options to read data from a GDX file. Reading during
the compile phase also allows us to define the elements of a set and the subsequent use of such a set as a
domain. For a complete list of available Dollar Control Options for reading data from a GDX file into
GAMS during compilation of a GAMS model please refer to Dollar Control Options for GDX Operations.

In addition to the chapters with examples linked from the list you will find further examples below.

4.50.1.2 Execution Phase

When reading data from a GDX file during execution phase the data in the GDX file will be the data
present in the GDX file at the time that the statement is executed. The results of all prior calculations
and the most recent solve for any model will be reflected. The statements to read data from a GDX file
during execution phase are:

• execute load

• execute loaddc

• execute loadpoint

• gdxLoad

execute load

The execute load statement acts like an assignment statement, except that it does not merge the data
read with the current data; it is a full replacement. The same restrictions apply as in an assignment
statement: we cannot assign to a set that is used as a domain, or to a set used as a loop control.

Sets defining domains cannot be loaded. However sets that are subsets of existing sets and do not define
new elements can be loaded at execution time (Domain defining sets can be loaded at compile time using
$load).

The statement with execute load can be used in one of the following forms:

execute_load ’file_name’, id1[, id2, ..., idn] ;

execute_load ’file_name’, id1=gdxid1[, id2=gdxid2, ..., idn=gdxidn] ;

execute_load ’file_name’, setid=* ;

where

Parameter(s) Description

file name Specify the name of the GDX file (with or
without the extension .gdx; read from the
current working directory)

id1, id2, ..., idn Read GAMS symbols id1, id2, ..., idn from
the GDX file; note that commas are optional

id1=gdxid1, id2=gdxid2, ..., id2=gdxid2 Read GAMS symbols id1, id2 with corre-
sponding names gdxid1, gdxid2, ..., gdxidn
in the GDX file; note that commas are op-
tional

setid=∗ Allow to load the universe of labels from a
GDX file into a set. Note, that only labels
known to the GAMS program will be loaded.

1442 User's Guide

Note

• Items must be declared with Set, Parameter, Scalar, Variable or Equation statements before
the execute load appears.

• When loading data domain checking is not enforced so that when an item is resident in a GDX
file for set elements not present in the current file these items are ignored and do not create
errors or cause generation of any messages. The execute loaddc variant checks to see that the
domains match.

See [load11] and [qp1x] from the GAMS Model Library on how to use execute load.

execute loaddc

With execute loaddc statement any domain violation will be reported and flagged as execution error. In
contrast, the execute load statement ignores all domain violations and loads only data that meets the
domain restrictions. In addition to loading data for sets, parameters and variables, we can load a field of
a variable into a parameter.

Warning: when loading a single field, all other fields are reset to their default value.

The statement with execute loaddc can be used in one of the following forms:

execute_loaddc ’file_name’, id1[, id2, ..., idn] ;

execute_loaddc ’file_name’, id1=gdxid1[, id2=gdxid2, ..., idn=gdxidn] ;

where

Parameter(s) Description

file name Specify the name of the GDX file (with or
without the extension .gdx; read from the
current working directory)

id1, id2, ..., idn Read GAMS symbols id1, id2, ..., idn from
the GDX file; note that commas are optional

id1=gdxid1, id2=gdxid2, ..., idn=gdxidn Read GAMS symbols id1, id2 with corre-
sponding names gdxid1, gdxid2, ..., gdxidn
in the GDX file; note that commas are op-
tional

setid=∗ Allow to load the universe of labels from a
GDX file into a set. Note, that only labels
known to the GAMS program will be loaded.

See [load7] example on how to use execute loaddc.

execute loadpoint

The execute loadpoint is similar to execute load, however, the new values are merged with the old
values.

4.50 GAMS Data eXchange (GDX) 1443

If no arguments besides the name of the GDX file are given, all variables and equations that match
variables and equations of the calling GAMS programs will be merged with the GDX level and marginal
values. Bounds, scales and priorities will remain unchanged. Note that implicitAssign can be particularly
useful in this context.

If one or more symbols to be loaded are specified explicitly, values for these symbols will be merged. For
variables and equations only the levels and marginals will be merged. To merge other variable or equation
attributes like bounds, scales and priorities, they have to be listed explicitly (e.g. execute loadpoint

'file name', x.lo; to merge the lower bound of variable x).

The statement with execute loadpoint can be used in one of the following forms:

execute_loadpoint ’file_name’[, id1, id2, ..., idn] ;

execute_loadpoint ’file_name’[, id1=gdxid1, id2=gdxid2, ..., idn=gdxidn] ;

where

Parameter(s) Description

file name Specify the name of the GDX file (with or without the extension
.gdx; read from the current working directory)

id1, id2, ..., idn Read GAMS symbols id1, id2, ..., idn from the GDX file; note
that commas are optional

id1=gdxid1, id2=gdxid2 Read GAMS symbols id1, id2 with corresponding names gdxid1,
gdxid2 in the GDX file; note that commas are optional

gdxLoad

By default, gdxLoad does the same as execute load. However, while execute load always replaces existing
data and loads data filtered (so records with domain violations are ignored), the behavior of gdxLoad can
be changed using the options replace and filtered.

If no arguments besides the name of the GDX file are given, all symbols that match symbols of the calling
GAMS programs will be loaded. Note that implicitAssign can be particularly useful in this context.

The statement with gdxLoad can be used in one of the following forms:

gdxLoad ’file_name’[, id1, id2, ..., idn] ;

gdxLoad ’file_name’[, id1=gdxid1, id2=gdxid2, ..., idn=gdxidn] ;

where

Parameter(s) Description

file name Specify the name of the GDX file (with or
without the extension .gdx; read from the
current working directory)

id1, id2, ..., idn Read GAMS symbols id1, id2, ..., idn from
the GDX file; note that commas are optional

id1=gdxid1, id2=gdxid2, ..., idn=gdxidn Read GAMS symbols id1, id2 with corre-
sponding names gdxid1, gdxid2, ..., gdxidn
in the GDX file; note that commas are op-
tional

setid=∗ Allow to load the universe of labels from a
GDX file into a set. Note, that only labels
known to the GAMS program will be loaded.

1444 User's Guide

4.50.1.3 Example 1 - Reading a GDX File

The file trnsport.gms (from [TRNSPORT]) has been modified to use the demand data from an
external source. Only the relevant declarations are shown.

The parameter B is read from the GDX file using the name 'demand', and only those elements that are in
the domain j will be used. Values for parameter B that are outside the domain j will be ignored without
generating any error messages.

* Example 1

Set

j markets / new-york, chicago, topeka / ;

Parameter

B(j) demand at market j in cases ;

$gdxin demanddata.gdx

$load b=demand

$gdxin

4.50.1.4 Example 2 - Reading a GDX File

In this example, the set J is also read from the GDX file, and is used as the domain for parameter B. All
elements read for the set J will be used. Values for the parameter B that are outside the domain J will be
ignored. Note that the dimension of set J is set to one by specifying its domain.

* Example 2

$gdxin demanddata.gdx

Set

J(*) markets;

$load j=markets

Parameter

B(j) demand at market j in cases ;

$load b=demand

$gdxin

4.50.1.5 Example 3 - Reading a GDX File

The $load command without parameters can read a listing of all symbols in a GDX file. The following:

* Example 3

$gdxin trnsport.gdx

$load

writes the following to the listing file:

4.50 GAMS Data eXchange (GDX) 1445

Content of GDX C:\XLSFUN\TRNSPORT.GDX

Number Type Dim Count Name

1 Set 1 2 i canning plants

2 Set 1 3 j markets

3 Parameter 1 2 a capacity of plant i in cases

4 Parameter 1 3 b demand at market j in cases

5 Parameter 2 6 d distance in thousands of miles

6 Parameter 0 1 f freight in dollars per case per thousand miles

7 Parameter 2 6 c transport cost in thousands of dollars per case

8 Variable 2 6 x shipment quantities in cases

9 Variable 0 1 z total transportation costs in thousands of dollars

10 Equation 0 1 cost define objective function

11 Equation 1 2 supply observe supply limit at plant i

12 Equation 1 3 demand satisfy demand at market j

which lists the items present by Type, Name, Number of sets the item is defined over(Dim), number of
elements in the file for this item (Count).

4.50.1.6 Example 4 - Reading a GDX File

Sometimes, a set is implicitly given by the elements of a parameter symbol. For example,

parameter a(i) / seattle 350, san-diego 600 / ;

in trnsport.gms implicitly defines the set of plants i. GAMS does not allow us to provide domain
checked data, if the data for domain sets is unknown. So this code produces a compilation error:

Set i plant;

Parameter a(i) capacity / seattle 350, san-diego 600 /;

When entering data directly in the GAMS source adding the domain sets before the actual parameter
declarations is usually not a problem, but when data comes from external sources (e.g. spreadsheets,
databases, etc), this often results in an additional query to the database, spreadsheet etc. Nowadays, such
data exchange happens mostly via the GD facility. With the domain load capability of the compile time
load instructions ($load, $loadDC, $loadR, $loadM, $loadDCM, and $loadDCR) one can project an index
position from a parameter or set symbol in the GDX container and load this slice into a one dimensional
set. Here is a simple example:

Set i plant;

Parameter a(i) capacity;

$gdxin data

$load i<adata a=adata

This will try to load set elements from the GDX parameter symbol adata into the set i and next load the
GDX parameter adata into the GAMS parameter a. The latter one is no problem anymore, since the
data for set i is known when loading symbol a. GAMS will use the domain information stored in GDX of
parameter adata to identify the index position to project on. If no appropriate domain information can
be found in GDX, the GAMS compiler will generate an error. In such case the user can explicitly select
an index position (here first index position) from the GDX symbol:

1446 User's Guide

$load i<adata.dim1 a=adata

The automatic index position matching (i.e. no .dimN) using the domain information stored in GDX
matches on the name of the set to be loaded and the domain set names stored in GDX for the symbol.
The domain in GDX are searched from right to left (start with n=symbol dimension, then n-1, n-2, ...)
and stops at the first match. With the projection symbol <=, the domain in GDX is searched from left to
right. This follows the style of the GAMS run time projection operation:

option sym1<sym2, sym1<=sym2;

Here is an example how to load. The network is defined by the capacity parameter cap contained in a
GDX container net.gdx:

parameter cap(n,n) / (1*3).4 5, 4.(5*9) 3 /;

The following code loads the entire node set n of the network as well as the nodes with outgoing (out)
and incoming (in) arcs and the capacity c.

set n nodes, out(n), in(n);

parameter c(n,n) capacity;

$gdxin net

$loadM n<=cap n<cap

$loadDC out<cap.dim1 in<cap.dim2 c=cap

display n, out, in;

The listing file looks as follows:

---- 6 SET n nodes

1, 2, 3, 4, 5, 6, 7, 8, 9

---- 6 SET out Domain loaded from cap position 1

1, 2, 3, 4

---- 6 SET in Domain loaded from cap position 2

4, 5, 6, 7, 8, 9

There is a potential issue with loading domains from parameters that have a zero value for some record.
Since GAMS works with sparse data, it is sometime difficult to distinguish between a record with value
zero (0) and the non-existence of a record. This is usually not a problem since we know the domain of a
parameter and hence know all potential records. In case of using a parameter to define the domain this
represents a source of confusion. Moreover, GDX has the capability of storing true zeros (most GDX tools
like gdxxrw have options (Squeeze=Y or N) to either write a true 0 or squeeze the 0s when writing GDX).
So in case GDX has a zero record, a domain load from such a parameter will include this record. Here is
an example. The spreadsheet Book1.xlsx contains the following data:

4.50 GAMS Data eXchange (GDX) 1447

The GDX utility GDXXRW with the following command line:

gdxxrw Book1.xlsx Squeeze=N par=dat rng=Sheet1!a1 rdim=1

reads the Excel data and produces a GDX container Book1.gdx with a one dimensional parameter dat(∗)
which can be viewed in the GDX Viewer in GAMS Studio:

Notice that label a4 is present while label a3 is not part of GDX symbol dat. Without the Squeeze=N
(the default is Squeeze=Y) we also would not have seen a4. If we load dat to define the domain (remember
we need to use $load i<dat.dim1 since gdxxrw does not write domain information to GDX), we will miss
out on a3 but have a4 (assuming Squeeze=N). Please also note that the zero record disappears on regular
loading and is turned into an EPS when loading under $OnEps:

set i;

parameter a(i);

$gdxin Book1

$load i<dat.dim1 a=dat

display i,a;

parameter a0(i);

$OnEps

$load a0=dat

display a0;

1448 User's Guide

This results in a listing file

---- 5 SET i Domain loaded from dat position 1

a1, a2, a4

---- 5 PARAMETER a

a1 5.000, a2 1.000

---- 9 PARAMETER a0

a1 5.000, a2 1.000, a4 EPS

With gdxxrw parameter Squeeze=Y the listing file would look as follows:

---- 5 SET i Domain loaded from dat position 1

a1, a2

---- 5 PARAMETER a

a1 5.000, a2 1.000

---- 9 PARAMETER a0

a1 5.000, a2 1.000

4.50.1.7 Example 5 - Reading a GDX File

The following statement reads gams element k, d, f, a, b, and x from file trans2.gdx during execution
phase:

execute_loaddc ’tran2’,k=j,d,f,a=sup,b=dem,x,supply;

where k be renamed from j, a be renamed from sup, and b be renamed from dem in the GDX file
tran2.gdx.

Suppose there is one element topeka missing from the set definition but the element remains in the GDX
file tran2.gdx. As a consequences the listing file contains an error message like:

**** GDX ERROR AT LINE 45 - Domain violation when loading from GDX file

**** 1 Domain errors for symbol k

topeka

**** GDX ERROR AT LINE 45 - Domain violation when loading from GDX file

**** 2 Domain errors for symbol d

seattle.topeka

san-diego.topeka

and the job is aborted with an execution error.

Note

• domain errors occur whenever set element names are not spelled exactly the same as an element
specified in the corresponding set in GAMS flagging alternative spellings or missing elements.

• domain errors do not arise when items are not specified with them set to zero (no entry for a
set element leaves to a corresponding value of zero)

4.50 GAMS Data eXchange (GDX) 1449

4.50.2 Writing a GDX file

Writing of GDX files in a GAMS model can be done during the compile phase or the execution phase. A
GDX file can also be written after compilation and execution.

4.50.2.1 Compile Phase

During compilation, we can use a group of Dollar Control Options to write data to a GDX file. Writing
during the compilation phase also allows us to define the elements of a set and the subsequent use of such
a set as a domain. For a complete list of available Dollar Control Options for writing data to a GDX file
during compilation of a GAMS model please refer to Dollar Control Options for GDX Operations.

In addition to the chapters with examples linked from the list you will find further examples below. Also
see [unload1] - [unload9] and [CompTimeWriteTrnsportGDX] for more examples on how to use
$gdxOut and $unLoad.

4.50.2.2 Execution Phase

When writing data to a GDX file during execution phase the data in the GDX file will be the data present
in the GDX file at the time that the statement is executed. The results of all prior calculations and the
most recent solve for any model will be reflected. The statements to write data to a GDX file during
execution phase are

• execute unload

• execute unloaddi

• execute unloadidx

• savepoint

execute unload, execute unloaddi, and execute unloadidx

The execute unload statement replaces an existing file with that name; it does not add symbols to or
replace symbols in an existing GDX file. Without specifying any identifier, all sets, parameters, variables
and equations will be written to the GDX file.

The execute unloaddi statement replaces an existing file with that name; it does not add symbols to
or replace symbols in an existing GDX file similar to execute unload, but also writes the domains of all
unloaded symbols to the same file.

The execute unloadidx statement requires that each symbol written is a parameter; each parameter
must have a domain specified for each index position. These domains have the requirement that they are
formed using an integer sequence for the UELs that starts at 1 (one). The domain names are changed to
indicate the size of each domain. This information is used when reading the data back from the GDX file
using $LoadIDX during compilation. Using the special domain names, the UELs for the domains can be
recovered without writing the domains to the GDX file; see example below.

The statement with execute unload can be used in one of the following forms:

execute_unload ’file_name’ , id1, id2, ..., idn ;

execute_unload ’file_name’ , id1=gdxid1, id2=gdxid2, ... ;

execute_unload ’file_name’ , setid=* ;

1450 User's Guide

The statement with execute unloaddi can be used in one of the following forms:

execute_unloaddi ’file_name’ , id1, id2, ..., idn ;

execute_unloaddi ’file_name’ , id1=gdxid1, id2=gdxid2, ... ;

execute_unloaddi ’file_name’ , setid=* ;

The statement with execute unloaddidx can be used in one of the following forms:

execute_unloadidx ’file_name’ , id1, id2, ..., idn ;

execute_unloadidx ’file_name’ , id1=gdxid1, id2=gdxid2, ... ;

execute_unloadidx ’file_name’ , setid=* ;

where

Parameter(s) Description

file name Specify the name of the GDX file (with or without the extension
.gdx; written to from the current working directory)

id1, id2, ..., idn Write GAMS symbols id1, id2, ..., idn into the GDX file

id1=gdxid1, id2=gdxid2 Write GAMS symbols id1, id2 with corresponding names gdxid1,
gdxid2 into the GDX file

Note

• when only file name is specified without other parameters all GAMS Symbols will be written
into the GDX file file name.

• The GAMS option gdxUELs controls which UELs are registered in file name. With option
gdxUELs = squeezed; (default) only the UELs that are required by the exported symbols are
registered while all known UELs are registered if we set option gdxUELs = full;. See also
[unload10].

• Variables and equations are always exported with all their attributes .l (level), .m (marginal),
.lo (lower bound), .up (upper bound), .scale (scale factor). Specifying a suffix for variables
or equations when calling execute unload does not change this behavior. So the following two
statements results in the same output:

execute_unload ’dataL.gdx’, x.L;

execute_unload ’data.gdx’, x;

See Example 2 - Writing a GDX file and [qp1x] on how to use execute unload. See [unload10] on
how to use execute unloaddi. See Example 3 - Writing a GDX file on how to use execute unloadidx.

Savepoint

A GDX file containing the marginals and levels for all variables and equations at the end of a solve will be
created with the command line parameter, model attribute or option statement Savepoint. One can save
the solution information from the last solve or from every solve. The points that are saved can be used to
provide an advanced basis, integer program starting point or NLP starting point.

The basic command line form is:

4.50 GAMS Data eXchange (GDX) 1451

gams mymodelname Savepoint=number

the model attribute form is

modelname.savepoint=number;

and the option statement form is

option savepoint=number

where

• when number equals 1/3 a point gdx file is saved from the last solution collected in the GAMS
model and the file name will be modelname p.gdx where model name is the name of the model
identified in the solve statement.

• when number equals 2/4 a point gdx file is saved from every solve in the GAMS model and the
file name will be modelname pnn.gdx where model name is the name of the model identified in the
solve statement and nn is the internal number of the solve. Thus if 10 solves occur one will get 10
files named modelname p1.gdx through modelname p10.gdx.

Note

When solving asynchronously, one should keep in mind, that the internal numbers mentioned
for savepoint=2/4 are generated when submitting the model, not when collecting it. And with
savepoint=1/3 it is the last solution collected, not the last model submitted that is written to the
savepoint.

The following example:

model firm / all /;

firm.savepoint=1;;

solve firm using LP maximizing objfun;

saved a point gdx file firm p.gdx.

and:

model transport /all/ ;

option savepoint=2;

set newseattle /s1,s2/;

parameter datador(newseattle) /s1 350, s2 450/;

loop(newseattle,

a("seattle")=datador(newseattle);

Solve transport using lp minimizing z ;

);

Display x.l, x.m ;

saved two point gdx files transport p1.gdx and transport p2.gdx.

1452 User's Guide

4.50.2.3 Example 1 - Writing a GDX file

This example has modified the file trnsport.gms from [TRNSPORT] by adding the following statements
after the last line.

...[TRNSPORT]...

d(i,j)=d(i,j)*10;

$gdxout tran

$unload i j

$unload d

$unload f

$unload b=dem a=sup

$gdxout

This example creates the GDX file tran.gdx containing the data for the sets i and j as well as the
parameters d, f, a and b during the compile time, when a and b have been renamed in the GDX file to
dem and sup. Also note the parameter d will not have been multiplied by 10 but rather take on their
compile time value.

An $unload statement above can specify more than one symbol to be written to a GDX file and the
similar result could also be accomplished using:

...[TRNSPORT]...

d(i,j)=d(i,j)*10;

$gdxout tran

$unload i j d f b=dem a=sup

$gdxout

4.50.2.4 Example 2 - Writing a GDX file

This example has modified from the file trnsport.gms (from [TRNSPORT]) by adding the following
statement right after the solve statement.

...[TRNSPORT]...

Solve trnsport using LP minimizing Z;

execute_unload ’results.gdx’, i, j, z, x;

After solving the model, the sets i and j and the variables z and x with all the data available after the
solve.

4.50 GAMS Data eXchange (GDX) 1453

4.50.2.5 Example 3 - Writing a GDX file

This example shows the use of the indexed write and read data during execution phase:

Set I /1*100/,

J /1*50 /;

parameter A(I,J) /1.1=11, 1.9=19, 10.1=101/;

execute_unloadidx ’data.gdx’, A;

Viewing the file data.gdx in GAMS Studio shows the modified domain information:

Figure 4.2 GAMS Studio showing data.gdx note the modified domains

To read from data.gdx, we use the indexed read:

Set I,J;

parameter A(I,J);

* load the data

$gdxin data.gdx

$loadidx A

$gdxin

* write all symbols so we can inspect in GAMS Studio

$gdxout test.gdx

$unload

$gdxout

execute_unloadidx ’data.gdx’, A;

Viewing the file test.gdx in GAMS Studio shows that the domains have been populated:

Figure 4.3 View test.gdx in GAMS Studio

1454 User's Guide

4.50.2.6 Writing a GDX file after compilation or execution

A GDX file containing all data items resident at the end of the run of a GAMS code can be created using the
gdx command line option either via GAMS call at the command line or via the GAMS Parameter Editor
in GAMS Studio. This will cause all sets, parameters, variables and equations to be written to the GDX
file.

For example:

gams mymodelname gdx=gdxfile_name

Or

gams mymodelname action=c gdx=gdxfile_name

where

• mymodelname specifies the name of the GAMS file

• gdxfile name gives the file name and possible path where the GDX file is to be retained. When no
path is specified the default directory is the current working directory where the main GAMS file
associated with the project is executed via Studio.

• action=c indicates request to write a GDX file after compilation only

• setting GDX to the string ”default” (i.e.gdx=default) causes GAMS to create a GDX file with the
GAMS file root name and a GDX extension. Thus

gams trnsport gdx=default

will cause GAMS to write the gdx file trnsport.gdx.

When GAMS Studio is used, the GDX file creation can be invoked by running the main file
with GDX creation.

Note

• When this option is used the GDX file is created just at the end of the GAMS execution so the
data written will contain the current values for all sets, parameters, variables and equations
that are on hand at the end of the GAMS job.

• The GDX data for the variables and equations contains the levels, marginals, lower bounds,
upper bounds and scales for each item.

• This yields a file that is automatically opened in Studio.

Using the gdx command line parameter when running the model via Studio, the process log will show
the GDX file name in green indicating that the file can be opened by clicking on the file link. See also
Inspecting contents with GAMS Studio.

4.50 GAMS Data eXchange (GDX) 1455

4.50.3 Inspecting contents of a GDX file

In addition to reading data from a GDX file during compile phase or execution phase there are a few
ways to examine the contents of a GDX file.

• Inspecting contents with GAMS Studio

• Inspecting contents with $load

• Inspecting contents with GDXDUMP

• Inspecting contents with GDXDIFF

4.50.3.1 Inspecting contents with GAMS Studio

GAMS Studio has a built-in GDX Viewer, which offers extensive possibilities to view the content of a
GDX file in a list or in a tabular view. For multidimensional data, you can rearrange the tabular view by
simply dragging a column to a different position. You can also filter and sort, and quickly copy data to
Excel or other spreadsheet programs. The GDX viewer is fast, which allows analysing big datasets. Learn
more about the GDX viewer here.

4.50.3.2 Inspecting contents with $load

The $load command without any parameters will show a listing of all symbols in the GDX file. See
Example 3 - Reading a GDX File on how to use $load to get a listing of all symbols.

4.50.3.3 Inspecting contents with GDXDUMP

The GDXDUMP utility can list the symbols in the file and it also can write sets and parameters formatted
as a GAMS data statement.

gdxdump gdxfile_name format=choice symb=optional choice

where

• the gdxfile name is the name of the GDX file to write data from.

1456 User's Guide

• the output is created to the screen not to a file. One can also write the GDX file contents into a
GAMS file using the command:

gdxdump gdxfile_name > filetouse.gms

• Data for a selected set, parameter, variable or equation (under all three of the output options when
a specific item is named using the SYMB option)

• Data for all sets, parameters, variables and equations (Under normal option when the SYMB is not
used)

• Data on solution items (variables and equations) formatted in a fashion suitable for import as a
basis in another GAMS program where the marginals and levels are output. All of the scalars, sets
and parameters (tables) in a GDX file to standard output formatted as a GAMS program with data
statements or in CSV format. It skips information for variables and equations.

• Under the format=CSV choice it only creates output when a symbol is selected using the SYMB
syntax.

• Under the format=CSV choice when the requested symbol is a variable or an equation one only gets
the level values not the marginal, under the other formats one gets all items.

• Under the format=gamsbas choice one gets all variables and equations when the SYMB syntax is
not used.

Suppose we wish to write out the GDX file tran.gdx, then we would use the command:

gdxdump tran

See more Examples on inspecting contents with GDXDUMP.

4.50.3.4 Inspecting contents with GDXDIFF

The GDXDIFF utility can be used to compare two GDX files by creating a third GDX file containing a
list of differences between all symbols. In particular for all items with the same name, type and dimension
in the two GDX files the differences in numerical values are written to a third GDX file with A summary
report written to standard output (ordinarily the LOG file).

Besides the integrated solution in GAMS Studio, this utility can be used either at command line, or by
$Call, or execute command.

gdxdiff file1 file2 {diffile} {Eps = value} {RelEps = value} {Field = FieldName} {ID=Identifier}

GDXDIFF requires the first two file name parameters,

• File1 Name of the first GDX file

• File2 Name of the second GDX file

The remaining parameters are optional

4.50 GAMS Data eXchange (GDX) 1457

• Diffile An optional third file name that is the name of the GDX file that contains the differences
found in the parameters. If that parameter, is absent the file will be named 'diffile.gdx' and placed
in the current directory.

• Eps = value A tolerance that is the maximum amount that two numbers may differ by ie given a1
and a2 then abs(a1-a2) is reported as different if it exceeds this tolerance

• RelEps = value A tolerance that is the maximum percentage amount that two numbers may differ
by ie given a1 and a2 then abs(a1-a2)/max(abs(a1),abs(a2)) is reported as different if it exceeds this
tolerance.

• Field = FieldName A field that if specified limits doen between the information for variables and
equations to specific attributes (Lo, L, Up, M, Scale and Prior)

• ID=Identifier Limits the comparisons to selected items; items not specified will be ignored. Multiple
items can be specified as: ID=id1 ID=id2 or ID=”id1 id2”

Suppose we wish to compare the GDX files tran.gdx and tran2.gdx, then we would use the command:

gdxdiff tran tran2

In turn the output to standard output (nominally the terminal screen) appears as follows:

Summary of differences:

d Data is different

dem Keys are different

sup Keys are different

supply Symbol not found in file 1

x Symbol not found in file 1

and summarizes the differences found. Simultaneously the file diffile.gdx when examined in
GAMS Studio contains the following:

which reports on the differences found in the two files.

Note

• Some new coding is introduced in the difference GDX file. Namely a new dimension is added
to the parameters being compared which can contain 4 entries

– dif1 indicates that the entry occurs in both files and shows the value found in the first file.

– dif2 indicates that the entry occurs in both files and shows the value found in the second
file.

– ins1 indicates that the entry only occurs in the first files and shows the value found.

– ins2 indicates that the entry only occurs in the second file and shows the value found.

• Only named items with the same name, type and dimension will be compared in the
diffile.gdx output. Named items that are new or are deleted will only appear in the
standard output summary report

See more Examples on inspecting contents with GDXDIFF.

1458 User's Guide

4.50.4 General notes on GDX files

There are several things worth noting about GDX files:

• When working with GDX only one GDX file can be open at a time.

• When reading data from a GDX file, the symbol to be read must be declared before the reading
statement appears.

• When the GDX file to be written has the same name as an existing GDX file the existing file will be
overwritten. The resultant file will only contain the new data; there is no merge or append option.

• The $unload command to write a GDX during compile time will only write out data defined in the
compilation at the point where the command appears. No results of any solves or calculations done
within the current GAMS program will be reported with $unload. This is not true when using the
execute unload or execute unloaddi commands.

• Both execute unload and execute unloaddi will write out data defined in the execution sequence
at the point where the command appears. The results of the most recent solve command and any
parameter calculations occurring before the GDX write will be reported.

• Any subsequent execute unload or execute unloaddi to a GDX file written earlier will totally
overwrite that file so care must be taken to write all wanted information in the last appearing
execute unload or execute unloaddi.

• A command line GDX write using the gdx=file name command line parameter will write out data
defined at the end of the execution sequence. The results of the most recent solve and any parameter
calculations will be reported.

• When loading data domain checking will not be enforced. When items are resident in the GDX file
for set elements that are not present in the current file these items will be ignored. GAMS will not
generate any message telling you which items are ignored.

• Options Savepoint and execute Loadpoint provide a GDX way of saving and loading a basis.

• The contents as they differ between GDX files can be examined with GDXMERGE or GDXDIFF.

• Starting with GAMS version 22.3, gdx files can be written in a compressed format unless the
environment variable GDXCOMPRESS is set to zero. A value of 1 indicates compression.

• GDX files from a different GAMS version can possibly be incompatible due to compression among
other changes. A current GAMS system can read all older GDX file formats. GDX files can be
converted to a compressed format or an older format using GDXCOPY.

• Users can also write their own programs accessing data in a GDX file via the expert-level GDX

API using gdxcclib library.

4.50.5 GAMS Data eXchange Tools

A number of GDX based tools and GDX related tools are included in the GAMS distribution and
maintained by GAMS. See also Tools Manuals.

• The data exchange tools provide functionality to exchange data between GAMS and other data
sources.

• The GDX service tools operate directly on GDX containers.

• Some of Data transformation tools perform very specific data transformation tasks that are either
awkward or inefficient to implement in GAMS directly.

Some utilities are avaiable only on specific platform. See Supported Platforms for more details.

apis/expert-level/gdxqdrep.html
apis/expert-level/gdxqdrep.html

4.51 Extended Mathematical Programming (EMP) 1459

4.51 Extended Mathematical Programming (EMP)

Extended Mathematical Programming (EMP) is an extension to algebraic modeling languages that
facilitates the automatic reformulation of new model types as models in more established mathematical
programming classes, allowing them to be solved by mature solver algorithms. A number of important
problem classes can be solved, e.g. Nash games and equilibria, bilevel programs, Disjunctive Programs and
Stochastic Programs. EMP is independent of the modeling language used but is currently implemented
only in GAMS. The new types of problems modeled with EMP are reformulated, using the GAMS solver
JAMS, as well established types of problems, and the reformulated models are passed to a suitable GAMS
solver to be solved.

EMP models are defined by information taken from two places: the traditional model definition and a
text file containing annotations or additional information. The usual model definition contains variables,
constraints and/or functions, and perhaps also an objective or matching information. Additional annota-
tions to specify relationships that don't fit within this traditional definition are taken from the EMP info
file. For example, the constraints for two optimizing agents in a competitive game can be specified with
traditional algebra, while the structure (who owns what variables and constraints) can be specified in the
info file. Together, this allows large, complex models to be specified in a convenient, precise, and flexible
way.

This chapter is organized as follows.

• EMP Annotations: the EMP Info File

• Soft Constraints

• Variational Inequalities (VI)

• Quasi-Variational Inequalities (QVI)

• Equilibrium Problems

• Embedded Complementarity Systems

• Equilibrium Problems with Shared Constraints

• Equilibrium Problems with Shared Variables

• Bilevel Programs

• Disjunctive Programming

• Stochastic Programming

• EMP Keywords

Note

• At the end of each section we present and discuss the general syntax that EMP provides to write
the annotations for that particular problem type. We use the usual GAMS syntax symbols:
[] (the enclosed construct is optional), { } (the enclosed construct may be repeated zero or
more times) and | (exclusive OR).

• Many EMP model examples are available in the GAMS EMP Library.

1460 User's Guide

4.51.1 EMP Annotations: the EMP Info File

EMP models are defined by both the usual content of a GAMS model and annotations found in a simple
text file named emp.info (aka the EMP info file). It is often most convenient to create this file via the
GAMS put writing facility. The annotations primarily serve to define the model (e.g. to specify that a
variable u is really the dual multiplier for a constraint g) but can also specify how a solver should process
the model. The annotations make use of EMP keywords to do this.

A simple example will serve as illustration. Consider the following NLP:

Minx,y,z −3x+ xy
s.t. x+ y ≤ 1

x+ y − z = 2
x, y ≥ 0

(1)

We will use EMP annotations to automatically generate the first order conditions (KKT conditions) of
this NLP and thus reformulate the NLP as an MCP:

Variables f, z;

Positive Variables x, y;

Equations g, h, defobj;

g.. x + y =l= 1;

h.. x + y - z =e= 2;

defobj.. f =e= -3*x + x*y;

Model comp / defobj, g, h /;

File info / ’%emp.info%’ /;

putclose info / ’modeltype mcp’;

solve comp using EMP minimizing f;

Observe that the model is defined in the usual way and the file emp.info contains just one line: modeltype
mcp. The EMP keyword modeltype indicates that the value following the keyword is the model type to
be used for the reformulation. In this example the model type is mcp. Here this specification is required:
the sole point of our EMP annotations is to generate an MCP and not (as is usually the case) to define
the model. Usually, the model algebra and annotations together imply the type of the reformulated model
and so no modeltype specification is required or wanted. Finally, note that the model type in the solve
statement is EMP: this is typical.

The solver JAMS implements the EMP framework. It processes the model and the annotations, automati-
cally reformulates the original EMP model as a model of a different (more easily solved) type, passes the
reformulated model on to an appropriate subsolver, and maps the resulting solution back into the original
problem space.

In case users wish to inspect the (scalar) reformulated model, the JAMS option FileName may be used to
specify the name of the file containing this model. Adding the following lines before the solve statement in
the GAMS code above will cause the MCP reformulation to be saved in the file myReform.gms.

File empopt / ’jams.opt’ /;

comp.optfile = 1;

putclose empopt / ’FileName myReform.gms’;

The listing file will contain some additional information - the EMP Summary - as part of the output for
each EMP model solved. We provide details on the EMP summary for each reformulation that we discuss
below.

4.51 Extended Mathematical Programming (EMP) 1461

4.51.2 Soft Constraints

In many cases modelers wish to relax certain constraints: violation of these constraints is allowed but
is associated with a well-defined penalty. The constraints that are allowed to be violated are called soft
constraints and the constraints that continue to hold are called hard constraints.

In this section we present a mathematical formulation of soft constraints, give an example of how soft con-
straints can be modeled with GAMS EMP and introduce the EMP annotations specific to soft constraints.

4.51.2.1 Soft Constraints: Mathematical Formulation

A general formulation of a constrained minimization problem is:

Minx∈Rn f(x)
s.t. ci(x) ≤ 0, ∀i ∈ I, (2)

where f and the functions ci are smooth, real-valued functions on a subset of Rn and I is a finite set of
indices. Note that in this problem all feasible solutions must satisfiy all constraints ci.

Now assume that some constraints are allowed to be violated (i.e. made soft), while the remaining
constraints continue to hold for all feasible solutions. The soft constraints are associated with a penalty
function that is added to the objective function. Since we have a minimization problem, the effect will be
a balance or compromise between competing goals: minimizing the objective and minimizing the penalty
functions.

Note

The penalty terms for soft constraints are added to the objective function in a minimization problem
and subtracted in a maximization problem.

Let L ∈ I be the set of indices for the soft constraints: this imples M := I \ L is the index set for the
hard constraints. Problem (2) becomes:

Minx∈Rn f(x) +
∑
i∈L wi gi (ci(x))

s.t. ci(x) ≤ 0, ∀i ∈M,
(3)

where the penalty functions gi are real-valued functions of ci(x), i ∈ L. As we will see later, EMP has
implementations of the following penalty functions: absolute value, least squares, and the maximum of a
term and zero. Further, wi is a multiplier associated with each penalty term, also called the weight. The
weights facilitate prioritizing soft constraints: the weight of more important constraints will be greater
than the weight of lesser constraints.

1462 User's Guide

4.51.2.2 Soft Constraints with EMP: A Simple Example

The following simple example is adapted from the JAMS solver manual:

Minx1,x2 −x2
1

s.t. log(x1) = 1
x2

2 ≥ 2
3x1 + x2 ≤ 5
x1, x2 ≥ 0

(4)

This problem can be formulated in GAMS as follows:

Positive Variables x1, x2;

Variables obj;

Equations f0 "objective function", f1, f2, f3;

f0.. obj =e= -sqr(x1);

f1.. log(x1) =e= 1;

f2.. sqr(x2) =g= 2;

f3.. 3*x1 + x2 =l= 5;

Model m /all/;

x1.l = 1; x2.l = 1;

solve m using NLP min obj;

Note that this problem has no feasible solution. Thus we choose to relax the first two constraints by
adding a penalty for their violation to the objective function. We also weight the relative importance or
priority of the objective and the violations of these two constraints by introducing weights to go with
these penalty functions. The resulting problem reads as follows:

Minx1,x2
−x2

1 + 5 ‖log(x1)− 1‖2 + 2 max(x2
2 − 2, 0)

s.t. 3x1 + x2 ≤ 5
x1, x2 ≥ 0

(5)

Note that the first constraint is replaced by a least squares penalty of (log(x1)− 1) with a weight of 5
and the second constraint by the penalty term max(x2

2 − 2, 0) with a weight of 2. However, the ”max”
penalty makes the objective function non-smooth. To rectify this, we implement the ”max” penalty by
introducing a new variable v that, due to its bounds and the direction of optimization, will take the value
max(x2

2 − 2, 0) at the solution. The result is:

Minx1,x2,v −x2
1 + 5 ‖log(x1)− 1‖2 + 2v

s.t. 3x1 + x2 ≤ 5
x1, x2 ≥ 0
v ≥ x2

2 − 2
v ≥ 0

(6)

This reformulation could of course be implemented directly in GAMS using standard GAMS syntax, but
the EMP solution is easier to create and maintain, to read and understand, and to scale upwards as
problem size and complexity increase. For the latter, we can simply add the following EMP annotations
and updated solve statement (to specify solution as an EMP) to the GAMS code above:

4.51 Extended Mathematical Programming (EMP) 1463

File soft / ’%emp.info%’ /;

put soft;

$onput

adjustequ

f1 sqr 5

f2 maxz 2

$offput

putclose;

solve m using EMP min obj;

Note that the EMP annotations contain three lines: the first line, containing the EMP keyword adjustequ

, indicates that the lines that follow specify soft constraints, i.e. equations to be converted to penalty
terms; the second line specifies the name of the first soft constraint f1, the penalty function to use, and -
optionally - the weight; and similarly the third line specifies the name of the second soft constraint f2,
the penalty function to use, and the weight.

The solver JAMS will use the information in the EMP annotations to automatically reformulate problem
(4) as problem (6) and pass it along to an NLP subsolver. The EMP Summary produced by JAMS will
contain the following line:

--- EMP Summary

...

Adjusted Constraint = 2

...

This output reflects that indeed two constraints were ”adjusted”, i.e. converted to penalty terms in the
objective function.

4.51.2.3 EMP Syntax for Soft Constraints

The EMP framework provides the following general syntax to specify constraints that are converted to
soft constraints:

AdjustEqu equ abs|sqr|maxz {weight}

{equ abs|sqr|maxz {weight}}

The EMP keyword AdjustEqu indicates that the lines that follow specify equations that are ”adjusted”:
they are moved from constraints to penalty terms in the objective function. Equ is the name of the
equation to penalize, while the three EMP keywords that follow indicate the penalty function to use. If
not specified, the weight used defaults to 1. For an example, see above or the model [SIMPENLP] in
the GAMS EMP Model Library.

4.51.3 Variational Inequalities (VI)

Variational inequalities provide a general mathematical framework for many problems arising in opti-
mization. For example, constrained optimization problems like LP and NLP are special cases of VI, and
systems of equations and complementarity problems can be cast as VI. Thus VI problems have many
applications, including those in transportation networks, signal processing, regression analysis, and game
theory.

In this section we present a mathematical formulation of VI, give an example of how VI can be modeled
with GAMS EMP, and introduce the EMP annotations specific to VI. Note that to fully and properly
understand some of this section, the introduction to MCP provides a useful background.

1464 User's Guide

4.51.3.1 Variational Inequalities: Mathematical Formulation

For a given continuous function F : Rn → Rn and a fixed closed convex set K ⊂ Rn the variational
inequality problem V I(F,K) is to find a point x∗ ∈ K such that:

〈F (x∗), (x− x∗)〉 ≥ 0, ∀x ∈ K, (7)

where 〈·, ·〉 denotes the usual inner product.

Observe that the VI generalizes many problem classes:

• If F (x) = 0 and K ≡ Rn, the VI is a system of nonlinear equations.

• If F (x) = 5f(x), the VI is a convex optimization problem.

• If F (x) = 5f(x) and K = {x |Ax = b,Hx ≤ h}, the VI is an NLP.

• If F (x) = 5f(x) = p and K = {x |Ax = b,Hx ≤ h}, the VI is an LP.

• If the feasible region is a boxB = {x ∈ Rn| li ≤ xi ≤ ui, for i = 1, . . . , n}, with li ≤ ui, li ∈ R∪{−∞}
and ui ∈ R ∪ {∞}, the VI is an MCP, where x∗ ∈ B is a solution of the respective MCP if for each
i = 1, . . . , n one of the following conditions holds:

Fi(x
∗) = 0 and li ≤ x∗i ≤ ui,

Fi(x
∗) > 0 and x∗i = li,

Fi(x
∗) < 0 and x∗i = ui.

(4.18)

Note that the set K is frequently defined in the following way:

K = {x |x ≥ 0, h(x) ≥ 0}. (8)

Further, note that the V I(F,K) represents a wider range of problems than classical optimization whenever
F (x) 6= 5f(x) for some objective function f (or equivalently, the Jacobian of F is not symmetric).
For example, problems that can be cast as VI include (generalized) Nash games and Nash equilibrium
problems, systems of equations, complementarity problems, and fixed-point problems.

4.51.3.2 Variational Inequalities with EMP: A Simple Example

Consider the following simple three dimensional linear example (adapted from Yashtini & Malek (2007)
[207]. Let

F (x) =

22x1 − 2x2 + 6x3 − 4
2x1 + 2x2

6x1 + 2x3

 , K = {x ∈ R3 |x1−x2 ≥ 1, −3x1−x3 ≥ −4, 2x1+2x2+x3 = 0, l ≤ x ≤ u},

(9)

where l = (−6,−6,−6)T , u = (6, 6, 6)T . N.B.: F is not the gradient of any function R3 → R. This
V I(F,K) has a unique solution: x = (2/3,−1/3,−2/3). The problem can be implemented in GAMS with
EMP as follows:

4.51 Extended Mathematical Programming (EMP) 1465

Set i /1*3/;

Variable x(i);

x.lo(i) = -6;

x.up(i) = 6;

Equations F(i), h1, h2, h3;

F(i).. (22*x(’1’) - 2*x(’2’) + 6*x(’3’) - 4)$sameas(i,’1’)

+ (2*x(’1’) + 2*x(’2’))$sameas(i,’2’)

+ (6*x(’1’) + 3*x(’3’))$sameas(i,’3’)

=n= 0;

h1.. x(’1’) -x(’2’) =g= 1;

h2.. -3*x(’1’) - x(’3’) =g= -4;

h3.. 2*x(’1’) + 2*x(’2’) + x(’3’) =e= 0;

Model linVI / F, h1, h2, h3 /;

File annotations /’%emp.info%’/;

put annotations;

putclose ’vi F x h1 h2 h3’;

solve linVI using EMP;

Observe that the function F and the constraints h are formulated using standard GAMS syntax. F is
implemented as an equation of type =n=, which does not imply or enforce any relationship between the
left-hand side and the right-hand side. Instead, this relationship is implied by the position of the matching
variables (given in the EMP info file) relative to their bounds. The annotations in the EMP info file
define the structure of the VI: what functions are matched to what variables, and what constraints serve
to define the set K. The EMP keyword vi indicates that the model is a VI, that the VI function F is
matched to the variable x, and that the constraints h1 h2 h3 define the set K.

Alternatively, the EMP annotations could be written as follows:

putclose ’vi F x’;

Here the equations after the equation-variable pair are omitted. This is acceptable, since by default any
equations that are part of the model but are not matched with a variable are automatically used to define
the set K.

Since VI problems have no objective, the short form of the solve statement is used.

The solver JAMS will reformulate the VI as an MCP and pass this on to an MCP subsolver. The
EMP Summary produced by JAMS will contain the following line:

--- EMP Summary

...

VI Functions = 3

...

This output reflects the fact that there were three VI functions in the model above, one for each member
of the set i.

Note that there are several VI models in the GAMS EMP Library. For example, the models [SIMPLEVI]
and [VI MCP] demonstrate how some models can be specified using either MCP or VI syntax. A simple
nonlinear VI is given in model [SIMPLEVI2]. As the transportation model is so well known, model
[TRANSVI] demonstrates how it can be cast as a VI.

1466 User's Guide

4.51.3.3 EMP Syntax for Variational Inequalities

The general syntax of the EMP annotations used to specify variational inequalities is as follows:

VI [{var|*}] { [-] equ var} [{[-] equ}]

The EMP keyword VI indicates that this is a variational inequality specification. The core of the VI
specification is the (list of) equation-variable pair(s): the other parts are optional. A pair matches the
equation equ with the variable var. This indicates that equ defines part of the VI function F , and that
these rows of F are perpendicular to columns taken from var. Multiple equation-variable pairs are allowed.
The optional variables before the pairs are called preceding variables. These are variables that appear (and
are often defined by) the constraints of the model, but they are not matched explicitly via the VI function
F . Instead, they are automatically matched with the zero function. See model [ZEROFUNC] for an
example and a more detailed discussion. The optional equations after the equation-variable pairs are
called trailing equations. They define the set K and may be omitted from the VI specification. By default,
any equations that are included in the model but are not matched with a variable are automatically used
to define the set K. Even though both preceding variables and trailing equations may be omitted from
the VI specification, we recommend to explicitly list them, since this clarifies intentions and eliminates
ambiguity.

The ”-” sign in the syntax above is used to flip (i.e. to reorient or negate) the marked equation, e.g.
so that x∗∗1.5 =L= y becomes y =G= x∗∗1.5. Flipped equations in EMP behave in the same way as
flipped equations in MCP.

Note

More than one VI specification may appear in a model. Often, it makes no difference whether
multiple equ-var pairs are part of the same or separate VI specifications, but this is not the case in
general. For an example, see model [SIMPLEVI4].

4.51.4 Quasi-Variational Inequalities (QVI)

Quasi-variational inequalities are a generalization of the variational inequality model: in a VI, the feasible
set is fixed, while the QVI allows the feasible set to vary with or be a function of the variables in the
model. To avoid repetition, we assume you are already familiar with the theory and notation for VI
models. In this section, we present a mathematical formulation of QVI, give an example of how QVI can
be modeled with GAMS EMP, and introduce the EMP annotations specific to QVI.

4.51.4.1 Quasi-Variational Inequalities: Mathematical Formulation

For a given continuous function F : Rn → Rn and a point-to-set mapping K(y) : Rn → Rn, the
quasi-variational inequality problem QV I(F,K) is to find a point y∗ ∈ K such that:

〈F (y∗), (y − y∗)〉 ≥ 0, ∀y ∈ K(y∗), (4.19)

where 〈·, ·〉 denotes the usual inner product.

If the point-to-set mapping K(y) : Rn → Rn is constant, then the QVI above reduces to a VI. In order to
define K(x) as a function of x it is convenient to introduce a shadow copy x of the variable y. It should
be understood that we have only one variable that appears in two forms: the variable of interest y and
the parameter variable x. Where y appears, we have a variable in the usual sense, and we take derivatives
wrt this variable when deriving optimality conditions. Where x appears, we have a constant variable, i.e.
we assume it is fixed when deriving optimality conditions. We can now use a function g(y, x) to define
K(·) and express QVI as: find a point y∗ ∈ K (with its associated parameter variable x∗) such that:

〈F (y∗), (y − y∗)〉 ≥ 0, ∀y s.t. g(y, x) <= 0. (4.20)

4.51 Extended Mathematical Programming (EMP) 1467

4.51.4.2 Quasi-Variational Inequalities with EMP: A Simple Example

Consider the following simple two dimensional linear example. Let y be the variable of interest with its
parameter variable x and let

F (y) =

[
2y1 + 8

3y2 − 100
3

1.25y1 + 2y2 − 22.5

]
, K(x) = {y ∈ R2 | y1 + x2 ≤ 15, x1 + y2 ≤ 20, 0 ≤ y, x ≤ 11}. (4.21)

This QV I(F,K) has a solution y = (10, 5). The problem can be implemented in GAMS with EMP as
follows:

set i / 1*2 /;

alias(i,j);

table A(i,j)

1 2

1 2 [8/3]

2 [5/4] 2 ;

parameters

b(i) / 1 [100/3], 2 22.5 /

Cy(i,j) / 1.1 1, 2.2 1 /

Cx(i,j) / 1.2 1, 2.1 1 /

rhs(i) / 1 15, 2 20 /

;

positive variables

y(j) ’variable of interest, aka decision variable’

x(j) ’parameter variable shadowing y’

;

y.up(j) = 11; x.up(j) = 11;

equations

F(i) ’FOC for agent optimization models’

g(i) ’define feasible set K(x) for QVI’

;

F(i).. sum{j, A(i,j)*y(j)} - b(i) =N= 0;

g(i).. sum{j, Cy(i,j)*y(j)} + sum{j, Cx(i,j)*x(j)} =L= rhs(i);

model m / F, g /;

file annotations / ’%emp.info%’ /;

putclose annotations ’qvi F y x g’ ;

solve m using emp;

Observe that the function F and the constraints g are formulated using standard GAMS syntax. F is
implemented as an equation of type =n=, which does not imply or enforce any relationship between the
left-hand side and the right-hand side. Instead, this relationship is implied by the position of the matching
variables (given in the EMP info file) relative to their bounds. The annotations in the EMP info file
define the structure of the QVI: what functions are matched to what variables, and what constraints serve
to define the mapping K(x). The EMP keyword qvi indicates that the model is a QVI, that the QVI
function F is matched to the variable-of-interest y with its parameter variable x, and that the constraints
g define the mapping K(x).

Since QVI problems have no objective, the short form of the solve statement is used.

The solver JAMS will reformulate the QVI as an MCP and pass this on to an MCP subsolver. The
EMP Summary produced by JAMS will contain the following lines:

1468 User's Guide

--- EMP Summary

...

VI Functions = 2

QVI Parameters = 2

...

This output reflects the fact that there were two VI functions in the model above, one for each member
of the set i, and that each of the variables matched to these functions was shadowed by a parameter
variable.

Note that there are two QVI models in the GAMS EMP Library, the models [SIMPLEQVI1] and
[SIMPLEQVI2] (an expanded version of the example shown above).

4.51.4.3 EMP Syntax for Quasi-Variational Inequalities

The general syntax of the EMP annotations used to specify quasi-variational inequalities is as follows:

QVI {0 var [parameterVar] | [-] equ var [parameterVar] } { [-] equ}

The EMP keyword QVI indicates that this is a quasi-variational inequality specification. All variables and
equations included in a QVI must be listed explicitly. First we have the VI functions, their matching
variables, and (optionally) the parameter variables shadowing these variables. Note that in a QVI there are
no preceding variables as we have in a VI spec:: instead, the implied match to the zero function is indicated
by the digit 0 appearing where an equation symbol would otherwise appear. After the function/variable
pairs have been listed, the trailing equations (i.e. the equations/constraints defining the mapping K(·))
appear.

4.51.5 Equilibrium Problems

While optimization problems have one decision maker that controls all decison variables, equilibrium
problems are a collection of optimization problems and variational inequalities, each controlled by a
different agent. We typically assume that each variable and each equation is controlled by or belongs to
exactly one agent. Variables that are controlled by one agent but appear in the equations of a second agent
are regarded as fixed or exogenous variables by that second agent: when taking first-order conditions, the
second agent won't take derivatives wrt these exogenous variables. Later we will relax this assumption and
introduce equilibrium problems with shared constraints and shared variables. Note that in this section
we will discuss equilibrium problems of the Nash type, i.e. where all agents are on the same level, each
assuming the decisions or strategies of the other agents are known and fixed. Equilibrium problems of the
Stackelberg type, where there are leaders and followers, are covered in section Bilevel Programs.

We start with the mathematical formulation of an equilibrium problem, next present two examples, and
conclude with a description of the EMP annotations for equilibrium problems.

4.51 Extended Mathematical Programming (EMP) 1469

4.51.5.1 Equilibrium Problems: Mathematical Formulation

Consider the following equilibrium problem with N agents solving minimization problems and one agent
solving a variational inequality:

Find (x∗1, . . . , x
∗
N , p

∗) satisfying
x∗i ∈ arg minxi fi(xi, x

∗
−i)

s.t. gi(xi, x
∗
−i) ≤ 0, for i = 1, . . . , N,

p∗ ∈ SOL (H(p, x∗),K(x∗)),
where K(x∗) = {p |w(p, x∗) ≤ 0}.

(10)

Note that fi(xi, x−i) denotes the objective function of the problem of agent i, gi(xi, x−i) are the constraints
relating to this optimization problem and x−i = (x1, . . . , xi−1, xi+1, . . . , xN) denotes the decisions of the
other agents. Further, SOL (H,K) represents the solution set of the variational inequality V I(H,K).

This problem can be implemented with EMP as follows:

Set i ;

Variables obj(i), x(i), p;

Equations deff(i), defg(i), defH, defw;

*Definitions of equations are omitted

Model equil / deff, defg, defH, defw /;

File myinfo /’%emp.info%’/;

put myinfo ’equilibrium’;

loop(i,

put / ’min’, obj(i), x(i), deff(i), defg(i);

);

put ’vi defH p defw’ /;

putclose myinfo;

solve equil using EMP;

Note that the GAMS variable obj(i) holds the value of fi(x), x(i) represents the variable xi and p

denotes the variable p, of course. The equations deff(i) and defg(i) are closed-form definitions of the
objective function fi(x) and the constraint gi(x) respectively. The equation defH defines the variational
inequality function H and the equation defw defines the set K. The EMP annotations found in the file
emp.info specify the equilibrium structure of the model:

equilibrium

min obj(’1’) x(’1’) deff(’1’) defg(’1’)

...

min obj(’N’) x(’N’) deff(’N’) defg(’N’)

vi defH p defw

The EMP keyword equilibrium indicates that the annotations are for an equilibrium problem. Each of
the EMP keywords min begins a new optimization problem (owned by a new agent), where each problem
has its own objective variable, decision variables, and equations / constraints. For example, the first
agent minimizes obj('1'), controls or owns x('1'), and is subject to the constraints deff('1') and
defg('1'). If other variables like x('2') and x('3') appear in deff('1') and defg('1'), they will be
treated as exogenous by the first agent. This specification is consistent with the formulation above in (9).
Each agent's optimization problem can be easily (re)constructed given the EMP annotations. Following
the optimization problems of the N agents we have the VI specification for agent p. The EMP keyword
vi is followed by the equation-variable pair defH p defining the VI function H and the equation defw

that defines the feasible set K.

Note that the short form of the solve statement is used for equilibrium problems. Objective variables (if
and when they exist) belong to individual agents, not to the model as a whole.

1470 User's Guide

4.51.5.2 Equilibrium Problems with EMP: A Simple Example

Consider the following example from Kim & Ferris (2017) [109]. In this economic equilibrium problem
there are three agents: one profit-maximizing producer, one utility-maximizing consumer and a market
that determines the price of three commodities based on production and demand. The problem data
include a technology matrix A, where the entry aij > 0 denotes the output of the commodity i for each
unit of activity of producer j and aij < 0 denotes the respective input. Further, an initial endowment b
and the demand function d(p) is given, where p is the price. The consumer maximizes her utility within
her budget, which depends on the price p and the initial endowment b. Let y represent the activity of
the producer, x represent the demand of the consumer and p represent the prices of commodities. Then
(y∗, x∗, p∗) is a general equilibrium if it satisfies the following:

−AT p∗ ≥ 0 No positive profit for each activity
b+Ay∗ − d(p∗) ≥ 0 No excess demand

p∗ ≥ 0, y∗ ≥ 0 Nonnegativity
−AT p∗ ⊥ y∗ No activity for earning negative profit and positive activity implies balanced profit

b+Ay∗ − d(p∗) ⊥ p∗ Zero price for excess supply and market clearance for positive price
(4.22)

The code for the respective model is given below. Note that instead of using the consumer demand
function d(p) in its explicit form, we introduce a utility-maximizing consumer with demand x.

set i ’commodities’ / 1*3 /;

variable u ’consumer utility’;

positive variables

y ’activity of the producer’

x(i) ’Marshallian demand of the consumer’

p(i) ’prices’

;

parameters

A(i) ’technology matrix’ / 1 1, 2 -1, 3 -1 /

s(i) ’budget share’ / 1 0.9, 2 0.1, 3 0 /

b(i) ’endowment’ / 1 0, 2 5, 3 3 /

;

equations

profit ’profit of activity’

mkt(i) ’constraint on excess demand’

udef ’Cobb-Douglas utility function’

budget ’budget constraint’

;

profit.. -sum(i, A(i)*p(i)) =g= 0;

mkt(i).. b(i) + A(i)*y - x(i) =g= 0;

udef.. u =e= sum(i, s(i)*log(x(i)));

budget.. sum(i, p(i)*x(i)) =l= sum(i, p(i)*b(i));

model m / mkt, profit, udef, budget /;

file empinfo /’%emp.info%’/; putclose empinfo

’equilibrium’ /

’ max’, u, ’x’, udef, budget /

’ vi profit y’ /

’ vi mkt p’ /

4.51 Extended Mathematical Programming (EMP) 1471

;

* the second commodity is used as a numeraire

p.fx(’2’) = 1;

x.l(i) = 1;

solve m using EMP;

Observe that in the EMP annotations the problems of the three agents are specified after the EMP keyword
equilibrium: the consumer solves a maximization problem (where the utility u is maximized) and the
activities of the producer and the price-setting market are expressed as VI. As there are three commodities,
the first VI actually generates three VI functions, one for each commodity. Thus there are three agents
and four VI functions in the equilibrium problem. This is reflected in the EMP Summary in the listing
file:

--- EMP Summary

...

VI Functions = 4

Equilibrium Agent = 3

...

In the GAMS EMP Library there are several models that have a similar form, e.g. Scarf's activity
analysis model [SCARFEMP-DEM] and the simple equilibrium problem [SIMPEQUIL]. The latter
demonstrates that there are equilibrium problems where the optimization problems of the individual
agents are solvable, but the overall equilibrium problem does not have a solution.

4.51.5.3 Equilibrium Problems with EMP: Example with Dual Variables

In many applications equilibrium problems come with a twist: the dual variable associated with a constraint
in the problem of one agent appears exogenously in the problem of another agent. The following simple
example with two agents is from model [DUALVAR] in the GAMS EMP Library.

Problem of the first agent:Min(v,w) z = v + w
s.t.

√
v + 1 + 2w ≥ 2 (⊥ u ≥ 0)

v, w ≥ 0

Problem of the second agent:V I : F (y) := y − 4u+ 1 (⊥ y free)

(11)

N.B.: the variable u that appears in the problem of the second agent is the dual multiplier (aka shadow
price) of the first agent's constraint. This equilibrium problem can be modeled in GAMS with EMP as
follows:

positive variables

v ’belongs to min agent’

w ’belongs to min agent’

u ’dual of min constraint’

;

free variables

y ’belongs to VI agent’

z ’objective var’

;

equations

defz ’objective def’

g ’constraint for min agent’

1472 User's Guide

Fy ’VI function’

;

defz.. v + w =e= z;

g.. sqrt(v+1) + 2*w =g= 2;

Fy.. y - 4*u + 1 =n= 0;

Model opt ’min agent and VI agent’ / defz, g, Fy /;

File empinfo / ’%emp.info%’ /; putclose empinfo

’equilibrium’ /

’ min z v w defz g’ /

’ vi Fy y’ /

’ dualvar u g’ /

;

defz.m = -1;

g.m = 0.5; Fy.m = 1;

v.l = 0; w.l = 0.5;

y.l = 1; u.l = 0.5;

solve opt using emp;

The EMP info file contains the EMP keyword equilibrium followed by the specifications for the two
agents: a minimization problem for the first agent and a VI for the second agent. The special relationship
between the variable u and the equation g is declared via the EMP keyword dualvar followed by the
respective variable-equation pair. Recall our usual assumption that each variable and each equation is
owned or controlled by exactly one agent. Since variable u is tied to equation g and g is owned by the
first agent, variable u is owned by the first agent also.

Besides the number of equilibrium agents and the number of VI functions, the EMP Summary lists the
number of dual variable maps:

--- EMP Summary

...

Dual Variable Maps = 1

...

VI Functions = 1

Equilibrium Agent = 2

...

Note

Although the example above contained an optimizing agent and a VI agent, dual variables most
often occur in equilibrium problems with several optimizing agents.

Other examples with dual variables in the GAMS EMP Library include a formulation of the well-
known transportation model as an equilibrium problem [TRANSEQL], Scarf's activity analysis model
[SCARFEMP-PRIMAL] and the general equilibrium model [TWO3EMP].

4.51 Extended Mathematical Programming (EMP) 1473

4.51.5.4 EMP Syntax for Equilibrium Problems

The EMP framework provides the following general syntax to specify equilibrium problems:

Equilibrium

{VIsol {equ}}

{Implicit {var equ}}

{MAX|MIN obj {var|*} {[-] equ}}

{VI {var|*} {[-] equ var} {[-] equ}}

{DualVar {var [-] equ}}

The EMP keyword Equilibrium indicates that the specifications that follow define the structure of an
equilibrium problem. The MAX, MIN, and VI keywords specify agents in the problem, while the rest of the
keywords are optional modifiers used to adjust the structure of the agent models or the meaning of the
equations they contain.

Note

An equilibrium problem must contain at least one agent, i.e must contain one of the keywords MAX,
MIN, or VI.

The EMP keyword VIsol identifies a shared constraint(s) and specifies the MCP reformulation to use for it:
see section Equilibrium Problems with Shared Constraints below for details. The keyword Implicit iden-
tifies a shared variable and its defining constraint: see section Equilibrium Problems with Shared Variables
below for details. The keywords MAX and MIN each begin the specification of an optimization
agent and are followed by the objective variable obj and the other variables and equations
owned by the agent, as described in the formulation and example above. The keyword VI be-
gins the specification of a VI agent: see the section on VI above for details. Finally, the EMP
keyword DualVar specifies that the variable var is the Lagrange multiplier for the equation
equ. For examples, see sections Equilibrium Problems with EMP: Example with Dual Variables and
Embedded Complementarity Systems.

The symbol '∗' specifies that the default or automatic assignment of variables to this agent be used, i.e.
the set of variables used in the equations owned by this agent but not explicitly or otherwise assigned to
another agent. Note that if a variable occurs in equations owned by multiple agents and is not explicitly
assigned to any agent, the default assignment is not well defined and using it will be flagged as an error.
To avoid confusion and promote clarity, we recommend that modelers use explicit variable lists and avoid
the '∗' symbol.

The ”-” sign in the syntax above is used to flip (i.e. to reorient or negate) the marked equation, e.g.
so that x∗∗1.5 =L= y becomes y =G= x∗∗1.5. Flipped equations in EMP behave in the same way as
flipped equations in MCP.

Note

When the EMP keyword equilibrium appears in the EMP annotations, the solve statement takes
the short form also used for complementarity problems in GAMS.

1474 User's Guide

4.51.6 Embedded Complementarity Systems

Embedded complementarity systems of the following form arise frequently in applications:

Minx f(x, y)
s.t. g(x, y) ≤ 0 (⊥ λ ≥ 0)

(12)

H(x, y, λ) = 0 (⊥ y free) (4.23)

Note that the optimization problem is over the variable x and it is parametrized by the variable y. The
choice of y is determined by the complementarity relationships represented here by H.

From an EMP perspective, there are two ways to annotate a GAMS model to specify the model above:
we will describe both below. These approaches provide equivalent additional information that prompts
the EMP tool to automatically create the following MCP:

0 = 5xL(x, y, λ) ⊥ x free
0 ≤ −5λ L(x, y, λ) ⊥ λ ≥ 0
0 = H(x, y, λ) ⊥ y free,

(13)

where the Lagrangian is defined as

L(x, y, λ) = f(x, y) + λT g(x, y). (4.24)

The first approach uses the EMP keywords dualequ and dualvar, as contained in the model
[FERRIS43].

variables obj, x, y;

positive variable lambda;

equations defobj, g, H;

* We omit the equation definitions here.

model ecs /defobj, g, H/;

file empinfo / ’%emp.info%’ /; putclose empinfo

’dualequ H y’ /

’dualvar lambda g’ / ;

solve ecs using EMP minimizing obj;

The external constraint H is expressed as a standard GAMS equation. The long form of the solve
statement is used here, which implies the existence of a single optimizing agent that by default owns all
equations and variables. The first EMP keyword dualequ indicates that the equation H and the variable
y do not belong to the optimizing agent: instead, y is treated as an exogenous variable by this agent, and
this agent is assumed to know nothing about the functional form of H, so that H will not appear in any
first-order conditions. Instead, a complementarity relationship between the function defined by H and
the variable y is required to exist at optimality. The EMP keyword dualvar indicates that the variable
lambda is the dual of the equation g. As a result lambda will be treated exogenously wherever it appears.
Given the EMP annotations for this model, JAMS will automatically reformulate the problem as the
MCP in (12) and pass this model to an MCP subsolver.

The EMP Summary produced by JAMS contains the following lines:

4.51 Extended Mathematical Programming (EMP) 1475

--- EMP Summary

Dual Variable Maps = 1

Dual Equation Maps = 1

The second modeling approach recasts the problem above as an equilibrium problem with two agents: the
first agent solves a minimization problem and the second agent solves a VI. The algebra in the model
remains the same: only the EMP annotations and the solve statement change.

putclose empinfo

’equilibrium’ /

’ min obj x g defobj’ /

’ vi H y’ /

’ dualvar lambda g’ /

solve ecs using EMP;

The EMP keyword equilibrium indicates we have an equilibrium problem. The EMP keyword min

indicates that the first agent solves a minimization problem with the objective variable obj, the decison
variable x and the equations g and defobj. In contrast to the first approach, where the default (because
of the long-form solve statement) is one optimizing agent owning all equations, here we specify the first
agent's minimization model explicitly and from the ground up. As a result it doesn't contain the equation
H and we do not use the dualequ keyword to take H out. Instead, the EMP keyword vi specifies that the
second agent solves a VI defined by H matched with the variable y. The dualvar keyword functions here
as it did in the previous example.

The EMP Summary produced by JAMS contains the following lines:

--- EMP Summary

...

Dual Variable Maps = 1

Dual Equation Maps = 0

VI Functions = 1

Equilibrium Agent = 2

...

Other examples of embedded complementarity systems in the GAMS EMP Library include the simple
equilibrium problem [SIMPEQUIL2], the equilibrium problem formulation of the well-known trans-
portation model [TRANSECS], the PIES energy equilibrium problem [PIES], the pure exchange
model [NEGISHI] and the spatial price equilibrium model [HARK-MONOP].

It's worthwhile highlighting the differences between the dualvar and dualequ keywords, as the two are
easily and frequently confused. The dualvar keyword makes reference to a constraint owned by an
optimizing agent. Derivatives of this constraint, multiplied by the variable referenced, appear in the
first-order optimality conditions for this agent. The dualvar keyword allows us to use this variable or
multiplier explicitly (and in a sense exogenously) in the model algebra. In constrast, the dualequ keyword
indicates that, contrary to what the default is, an equation is not owned by any optimizing agent, so no
derivatives of this equation will appear in any FOC or in the reformulated model. The two are similar in
that if a variable x appears with either dualvar or dualequ, no derivatives w.r.t. x will appear in the
model reformulation.

dualvar x F dualequ F x

Variable symbol appears first Equation symbol appears first

F is owned by an optimizing agent F is a system constraint

Derivatives of F appear in FOC No derivatives of F appear in derived model

Does not change ownership of F F is taken away from an optimizing agent

1476 User's Guide

Table 1: Differences between dualvar and dualequ

4.51.7 Equilibrium Problems with Shared Constraints

In the equilibrium problems we have discussed so far, each variable and each constraint was owned by a
single agent. In this section we relax the assumption that each constraint has to be controlled by a single
agent and introduce shared constraints. Shared constraints are constraints that appear in the problems of
several agents. They are mainly used to model resources shared among agents. Note that the examples in
this section are from Kim & Ferris (2017) [109].

Consider the following example:

Find (x∗1, . . . , x
∗
N) satisfying

x∗i ∈ arg minxi fi(xi, x
∗
−i)

s.t. gi(xi, x
∗
−i) ≤ 0

h(xi, x
∗
−i) ≤ 0, for i = 1, . . . , N.

(14)

The constraints gi are owned by agent i, while the constraint h is shared by all agents. This example can
be reformulated in two different ways, each with its own EMP annotations and resulting MCP. However,
both share the model formulation below:

variables obj(i), x(i);

equations deff(i), defg(i), defh;

model sharedc / deff, defg, defh /;

Observe that the equation defh implementing the shared constraint h(x) ≤ 0 is not indexed: it is exists
once, not once per agent. The first way to write the EMP annotations is as follows:

file empinfo / ’%emp.info%’ /;

put empinfo ’equilibrium’ /;

loop(i,

put ’min’, obj(i), x(i), deff(i), defg(i), defh; /;

);

putclose empinfo;

Here the equation defh appears in the minimization problem of each agent. As the equation defh is not
indexed by agent and appears in the problem of each agent, it is easy to see that it is a shared constraint.
Given these annotations, the EMP framework aggregates the FOC for each agent to create the following
MCP:

F (z) = ((Fi(z)
T)Ni=1)T , z = ((zTi)Ni=1)T ,

Fi(z) =

5xifi(x)−5xigi(x)λi −5xih(x)µi
gi(x)
h(x)

 , zi =

 xi
λi ≤ 0
µi ≤ 0

 , for i = 1, . . . , N.
(15)

Note that the equation h(·) is replicated for each agent and each agent is assigned a separate multiplier µi.

4.51 Extended Mathematical Programming (EMP) 1477

Attention

By default, the solver JAMS does not allow shared constraints. The option SharedEqu needs to be
specified in the option file jams.opt if shared constraints are intended, otherwise an error is reported
when they are detected. This cautious default helps minimize the number of surprising results.

A full model including the JAMS option file is given below.

The second way to write the EMP annotations uses the EMP keyword VIsol to specify that a variational
equilibrium be computed, i.e. a solution where the multipliers µi are all equal. The VIsol keyword should
appear after the EMP keyword equilibrium and before the descriptions of agent models.

put / ’VIsol defh’;

The multipliers to make equal (or, equivalently, the constraints not to replicate) are indicated by the
equation name(s) following the keyword VIsol. These constraints appear once in the resulting MCP, not
once per agent. The EMP tool creates the following MCP:

F (z) = ((Fi(z)
T)Ni=1, Fh(z)T)T , z = ((zTi)Ni=1, z

T
h)T ,

Fi(z) =

[
5xifi(x)−5xigi(x)λi −5xih(x)µ

gi(x)

]
, zi =

[
xi

λi ≤ 0

]
, for i = 1, . . . , N,

Fh(z) =
[
h(x)

]
, zh =

[
µ ≤ 0

]
.

(16)

If there are no constraints gi(x), then - assuming a constraint qualification - the equilibrium problem
with the shared constraint corresponds exactly to the variational inequality V I(F,X), where the set
X = {x |h(x) ≤ 0} and F (x) = ((5xifi(x)T)Ni=1)T . This corresponds in turn to the solution of the first
MCP (with the replicated shared constraints) in case that solution has the property that the multipliers
µi are all equal. This is what gives the latter solution its name variational equilibrium. If the equilibrium
problem with the shared constraint has a unique solution, both MCP reformulations will have the same
solution. Otherwise, the two MCPs that correspond to the two different EMP annotations may have
different solutions.

An example for shared constraints is the pollution of a river basin in Haurie & Krawczyk (1997) [96] and
Krawczyk & Uryasev (2000) [111], where the total amount of pollutants that may be dumped in a river
is restricted. This implies that the environmental constraints of some pollutant-producing agents are
shared. This example can be formulated as follows, where i is the agent index and m denotes the number
of shared constraints.

Find (x∗1, x
∗
2, x
∗
3) satisfying

x∗i ∈ arg minxi (c1i + c2ixi)xi −
(
d1 − d2

(∑3
j=1, j 6=i x

∗
j + xi

))
xi

s.t.
∑3
j=1, j 6=i x

∗
j (ujmejx

∗
j) + uimeixi ≤ Km,

for i = 1, 2, 3, m = 1, 2,
where (c, d, e, u,K) is the problem data.

(17)

Here three agents produce some commodities and aim to maximize their profit. The term (c1i + c2ixi)xi
denotes the total cost for each agent i and the term (d1 − d2(

∑3
j=1, j 6=i x

∗
j + xi))xi represents the revenue

for each agent. The amount of pollutants each agent dumps in the river is limited by the two shared
constraints. This problem can be implemented in GAMS with EMP as follows:

1478 User's Guide

Sets i / 1*3 /

m / 1*2 / ;

alias(i,j) ;

Variable obj(i) ;

Positive Variable x(i) ;

Parameters K(m) / 1 100, 2 100 /

d1 / 3 /

d2 / 0.01 /

e(i) / 1 0.5, 2 0.25, 3 0.75 / ;

Table c(m,i)

1 2 3

1 0.1 0.12 0.15

2 0.01 0.05 0.01 ;

Table u(i,m)

1 2

1 6.5 4.583

2 5.0 6.250

3 5.5 3.750 ;

Equations objdef(i)

cons(m) ;

objdef(i).. obj(i) =e= (c(’1’,i) + c(’2’,i)*x(i))*x(i) - (d1 - d2*sum(j, x(j)))*x(i);

cons(m).. sum(i, u(i,m)*e(i)*x(i)) =l= K(m);

Model m_shared / objdef, cons /;

File empinfo / ’%emp.info%’ /;

put empinfo ’equilibrium’ /;

put ’VIsol cons’ /;

loop(i,

put ’min’, obj(i), x(i), objdef(i), ’cons’ /;

);

putclose empinfo;

$echo SharedEqu > jams.opt

m_shared.optfile = 1;

solve m_shared using emp;

display x.l, cons.m;

Note that the shared environmental constraints are expressed with the equation cons. In the EMP
annotations, we have chosen the formulation with the EMP keyword VIsol. It leads to the solution
x∗ = (21.145, 16.028, 2.726). Alternatively, we could delete the line with the EMP keyword VIsol and
thus prompt the framework to compute the MCP in (15), resulting in the solution x∗ = (0, 6.473, 22.281).

4.51.8 Equilibrium Problems with Shared Variables

In the last section, we relaxed the restriction that each constraint has to be controlled by a single agent
and introduced shared constraints. In this section, we go a step further and allow shared variables. Note
that the content of this section is adapted from Kim & Ferris (2017) [109].

4.51 Extended Mathematical Programming (EMP) 1479

First, we introduce the notion of implicit variables. In mathematical terms, a variable y is called an
implicit variable if for each value of x there is at most one value of y satisfying (y, x) ∈ X. For such
implicit variables there exists one and only one function g(·) such that (g(x), x) ∈ X, where g is defined
over the set {x | ∃ y such that (y, x) ∈ X}. The set X is called the defining constraint of the variable y: the
value of y is implicitly defined by the value of x via the defining constraint. In the current implementation,
the defining constraint may only be represented as a system of equations and implicit variables must be
free variables in GAMS.

Shared variables in equilibrium problems are implicit variables that have the same defining constraint
for all agents that share the variable. Hence, the defining constraint becomes a shared constraint.
Consider the following equilibrium problem with the shared decision variable y and its defining constraint
X = {(y, x) |H(y, x) = 0}:

Find (y∗, x∗1, . . . , x
∗
N) satisfying

(y∗, x∗i) ∈ arg miny,xi fi(y, xi, x
∗
−i)

s.t. H(y, xi, x
∗
−i) = 0, for i = 1, . . . , N,

where H : Rm+n → Rm, y ∈ Rm
(18)

Note that there are N agents, m is the dimension of the variable y and n =
∑
i ni, where ni is the

dimension of xi. Assuming we have 4 agents, this example can be implemented in GAMS EMP as follows:

Set i / 1*4/;

Variables obj(i), x(i), y;

Equations deff(i), defH;

Model sharedv / deff, defH /;

File empinfo / ’%emp.info%’ /;

put empinfo ’equilibrium’ /;

put ’implicit y defH’ /;

loop (i,

put ’min’, obj(i), x(i), y, deff(i) /;

);

putclose empinfo;

solve sharedv using EMP;

In the EMP annotations, the EMP keyword implicit is used to declare the implicit variable y and its
defining constraint defH. Note that the keyword implicit must be followed by variable-constraint pairs.
If multiple pairs are specified with a single keyword implicit, they will be augmented to form a single
vector of implicit variables and its defining constraint.

Note

Implicit variables are declared before the agent problems are defined.

Observe that the shared variable y appears in the problem specification for each agent. However, the
defining equation defH does not appear in each problem specification, since it is assumed to be part of
the implicit variable.

1480 User's Guide

4.51.8.1 Reformulation Strategies for Equilibrium Problems with Shared Variables

Like other equilibrium problems, equilibrium problems with shared variables are reformulated as MCPs
by the EMP tool. Users can choose between three different reformulation strategies if shared decision
variables are involved. In the first strategy, the shared variables are replicated for each agent and the
respective KKT conditions are computed, resulting in the following MCP:

F (z) = [(Fi(z)
T)Ni=1]T , z = [(zTi)Ni=1]T

Fi(z) =

5xifi(x, y)− (5xiH(y, x))µi
5yifi(x, y)− (5yiH(y, x))µi

H(yi, x)

 , zi =

xiyi
µi

 . (19)

Note that in this MCP the constraint H and the variable y are replicated N times. The size of the MCP
is (n+ 2mN). This reformulation is obtained by specifying the option ImplVarModel=replication in
the JAMS options file.

The second reformulation strategy involves switching each shared variable with the multiplier associated
with its defining equation. This technique can be applied if all of the following three conditions are met:

1. The defining constraint is given as an equation.

2. The dimension of the range of the defining constraint equals the dimension of the shared variable.

3. The shared variable is a free (unbounded) variable.

The switching strategy uses the fact that in an MCP, the matching between free variables and equations
is somewhat arbitrary: it can be re-assigned without changing the solution. Applying this technique, we
obtain the following MCP:

F (z) = [(Fi(z)
T)Ni=1, Fh(z)T]T , z = [(zTi)Ni=1, z

T
h]T

Fi(z) =

[
5xifi(x, y)− (5xiH(y, x))µi
5yifi(x, y)− (5yiH(y, x))µi

]
, zi =

[
xi
µi

]
Fh(z) =

[
H(y, x)

]
, zh =

[
y
]
.

(20)

Observe that in this MCP, the defining constraint H and the shared variable y appear only once. Thus
the size of the problem is reduced to (n+mN +m). The EMP framework will use this reformulation if
the option ImplVarModel=switching is specified in the JAMS option file. This is currently the default
strategy used.

The third strategy is selected by specifying option ImplVarModel=substitution in the JAMS option
file. It uses the implicit function theorem to substitute the multipliers µi by new variables Λi, where
Λi = 5xiH(5yH)−1. This technique may be applied when the three conditions of the switching strategy
are satisfied, and in addition, the implicit function theorem holds for the defining constraints. The basic
idea is to regard the shared variable y as a function of other non-shared variables and apply the derivative.
At each solution to the problem (y∗, x∗), there exists a locally defined implicit function hx∗(x) such that
y∗ = hx∗(x∗) and H(hx∗(x), x) = 0 for each x in some neighborhood of x∗. It can be shown that given
the implications of the implicit function theorem and the new variables Λi, the equilibrium problem can
be reformulated as the MCP that follows. However, we omit a step-by-step mathematical derivation here,
it is given in Kim & Ferris (2017) [109].

F (z) = [(Fi(z)
T)Ni=1, Fh(z)T]T , z = [(zTi)Ni=1, z

T
h]T

Fi(z) =

[
5xifi(x, y)− (5yifi(x, y))Λi
5yH(y, x)Λi − (5xiH(y, x))

]
, zi =

[
xi
Λi

]
Fh(z) =

[
H(y, x)

]
, zh =

[
y
]
.

(21)

4.51 Extended Mathematical Programming (EMP) 1481

The size of this MCP is (n+mn+m). It can be significantly reduced if the shared variable is explicitly
defined, for example, H(y, x) = y − h(x). In this case, (5yH)−1 is the identity matrix, therefore it is not
neccessary to introduce the variables Λi and the MCP takes the following form:

F (z) = [(Fi(z)
T)Ni=1, Fh(z)T]T , z = [(zTi)Ni=1, z

T
h]T

Fi(z) =
[
5xifi(x, y)−5xiH(y, x)5y fi(x, y)

]
, zi =

[
xi
]

Fh(z) =
[
H(y, x)

]
, zh =

[
y
]
.

(22)

The size of this MCP is (n+m), which is a huge decrease compared to the other formulations. Note that
the EMP framework detects automatically if the shared variable is explicitly defined and exploits this fact.
In the following table an overview of the size of the MCP for the different reformulation techniques is
given.

Strategy Size of the MCP

Replication (n+ 2mN)

Switching (n+mN +m)

Substitution (implicit) (n+mn+m)

Substitution (explicit) (n+m)

Table 2: Size of the Reformulated MCP For Different Reformulation Techniques

4.51.8.2 Equilibrium Problems with Shared Variables: A Simple Example

The following simple example computes a saddle point of the Lagrangian associated with a minimization
over x subject to a single equality constraint with dual multiplier y. The GAMS EMP implementation
is from Youngdae Kim. The primal (minimizing) and dual (maximizing) agents share the variable L

containing the value of the Lagrangian, as well as its defining equation defL:

set i / 1*2 /;

variables

L ’Lagrangian function: f(x) - y * h(x)’

x(i) ’primal variables’

y ’dual variable’

;

equation defL;

defL..

L =e= sum{i, sqr(x(i)-1)} - y*(sum{i, x(i)} - 4);

model m / defL /;

file empinfo / ’%emp.info%’ /; putclose empinfo

’equilibrium’ /

’implicit L defL’ /

’ min L x’ /

’ max L y’ /

;

solve m using emp;

Note that the variable L is not indexed and it appears in the optimization problem of each agent. It is
declared to be an implicit variable (using the keyword implicit) in the first line following the equilibrium
keyword. Its defining constraint defL is listed only once, in this same line: it does not appear in the
problem specification of each agent. By modeling the Lagrangian as a shared variable, its defining equation
does not have to be replicated for each agent.

For other, more complex examples, both with shared decision variables and with a shared objective
variable, see Kim & Ferris 2017 [109] .

1482 User's Guide

4.51.9 Bilevel Programs

Bilevel programs are mathematical programs with optimization problems in their constraints. The main
problem is called the upper-level problem or the leader and the nested problem is called the lower-level
problem or the follower. A simple example is the bilevel programming problem that optimizes an upper-
level objective over constraints that include a lower-level optimization problem. A famous example from
economics is the Stackelberg game, where there is one leader and many followers. Bilevel programming is
used in many areas, for example the design of optimal tax instruments: the tax instrument is modeled in
the upper level and the clearing market is modeled in the lower level.

In this section we first present a mathematical formulation of a bilevel program with one follower and
introduce the respective EMP annotations. Then we present three examples: a simple first example, an
example with a variational inequality as the lower-level problem and an example with multiple followers
that form a Nash equilibrium. We conclude the section with a short discussion of the general
EMP syntax for bilevel programs.

4.51.9.1 Bilevel Programs: Mathematical Formulation

A bilevel program with one leader and one follower can be expressed as follows:

Minx∈X,y f(x, y)
s.t. h(x, y) ≤ 0

y solves Miny g(x, y)
s.t k(x, y) ≤ 0,

(23)

where

• x ∈ Rn are the upper-level variables,

• y ∈ Rm are the lower-level variables,

• f : Rn × Rm → R is the upper-level objective function,

• g : Rn × Rm → R is the lower-level objective function,

• h : Rn × Rm → Ru are the upper-level constraints, and

• k : Rn × Rm → Rl are the lower-level constraints.

Note that the upper-level constraints do not bind the lower-level decision maker.

This problem can be implemented with EMP as follows:

Sets i, j ;

Variables x(i), objout, y(i), objin;

Equations deff(x,y), defg(x,y), defh(x,y), defk(x,y);

* Definitions of equations are omitted

Model bilevel / deff, defg, defH, defw /;

$onecho > "%emp.info%"

bilevel x

min objin y defg defk

$offecho

solve bilevel using EMP minimizing objout ;

4.51 Extended Mathematical Programming (EMP) 1483

Note that the variables and equations of the program are defined in GAMS in the usual way. The special
bilevel structure of the model is specified in the EMP annotations. The EMP keyword bilevel indicates
that this is a bilevel problem. The name and direction of the leader's objective variable is taken from
the solve statement, but the other variables owned by the leader are listed after the bilevel keyword.
The lower-level problem is specified next via the EMP keyword min, followed by the follower's objective
variable objin. The other variables and the equations of the lower-level problem are listed next. Observe
that this is exactly the same syntax that we introduced above for specifying optimization problems in the
context of equilibrium problems.

The EMP tool reformulates the bilevel problem as a Mathematical Program with Equilibrium Constraints
(MPEC) and passes this on to a subsolver (e.g. NLPEC or KNITRO). The reformulation is obtained by
replacing the lower-level optimization problem by its KKT conditions, resulting in the following problem:

Minx∈X,y,λ f(x, y)
s.t. h(x, y) ≤ 0

k(x, y) ≤ 0
λi ≤ 0, i = 1, . . . , l
λiki(x, y) = 0, i = 1, . . . , l
5yL(x, y, λ) = 0,

(24)

where

L(x, y, λ) = g(x, y) +

l∑
i=1

λiki(x, y) (4.25)

is the Lagrangian function associated with the lower-level problem.

Note, however, that this reformulation is potentially problematic. KKT conditions require theoretical
assumptions (like convexity) to be necessary and sufficient for local optimality. There may be cases where
the lower lovel problem has multiple local solutions, but the modeler is interested in the global solution.
Hence the reformulation above may not lead to the global solution, even if a global subsolver is used
within the solver NLPEC.

Observe that there are two variations to problem (23) that the EMP framework is equipped to
handle: the lower-level problem may be a variational inequality instead of an optimization prob-
lem, and there may be multiple lower-level problems (optimizing and/or VI) each behaving in
a Nash manner. Examples follow in sections Bilevel Programs with EMP: A VI as Follower and
Bilevel Programs with EMP: Multiple Followers respectively.

4.51.9.2 Bilevel Programs with EMP: A Simple Example

To illustrate, we use model [BARD851] from the GAMS EMP Library. Mathematically, the problem is

Minx,y1,y2 (x− 1)2 + 2y2
1 − 2x

x ≥ 0
s.t. (y1, y2) solve Miny1,y2 (2y1 − 4)2 + (2y2 − 1)2 + xy1

s.t 4x+ 5y1 + 4x2 ≤ 12
−4x+ 5y1 + 4x2 ≤ −4

4x− 4y1 + 5x2 ≤ 4
−4x+ 4y1 + 4x2 ≤ −4
y1, y2 ≥ 0

(25)

Note that this problem does not have any upper-level constraints. The GAMS code follows.

1484 User's Guide

Positive Variables x, y1, y2;

Variables objout, objin;

Equations defout, defin, e1, e2, e3, e4;

defout.. objout =e= sqr(x-1) + 2*sqr(y1) - 2*x;

defin.. objin =e= sqr(2*y1-4) + sqr(2*y2-1) + x*y1;

e1.. 4*x + 5*y1 + 4*y2 =l= 12;

e2.. - 4*x - 5*y1 + 4*y2 =l= -4;

e3.. 4*x - 4*y1 + 5*y2 =l= 4;

e4.. - 4*x + 4*y1 + 5*y2 =l= 4;

Model bard / all /;

$echo bilevel x min objin y1 y2 defin e1 e2 e3 e4 > "%emp.info%"

solve bard use emp min objout;

The leader minimizes the variable objout, as specified in the solve statement. The EMP annotations
specify the rest of the bilevel structure: the variable x belongs to the upper-level problem, and there
is one lower-level agent or problem with objin minimized over the variables y1 and y2 subject to the
constraints or equations defin, e1, e2, e3 and e4.

Alternatively, we could write the EMP annotations as:

$echo bilevel x min objin * defin e1 e2 e3 e4 > "%emp.info%"

Here the lower-level variables are not listed: instead, the '∗' indicates that all variables in the GAMS
model not explicitly assigned to any agent are to be assigned to the follower.

The EMP Summary produced by JAMS gives the number of followers in the bilevel program:

--- EMP Summary

Bilevel Followers = 1

The GAMS EMP Library contains other bilevel examples, including several models bard∗, the engineering
models [CCMG74] and [CCMG153], and the simple nonconvex model [MIRRLESS]. The models
[JOINTC1] and [JOINTC2] illustrate the interplay of the decision variables of the upper-level and
lower-level problems.

4.51.9.3 Bilevel Programs with EMP: A VI as Follower

If the lower-level problem is a variational inequality, problem (23) will take the following form:

Minx,y f(x, y)
s.t. h(x, y) ≤ 0

y solves V I(F,K(x)),
(26)

where

4.51 Extended Mathematical Programming (EMP) 1485

• x ∈ Rn are upper-level variables and y ∈ Rm are lower-level variables, and

• K(x) ⊆ Rm is a closed convex set, parametrized by x.

Consider the following simple example adapted from [MULTMPEC]:

Minw,z z
s.t. ez + w = 2

z ≥ 1
w solves the V I(F,K), where K = R and F = w + z + 3

(27)

This bilevel problem can be modeled with EMP as follows:

variables w, z;

equations h, F;

h.. exp(z) + w =e= 2;

F.. w + z =n= -3;

z.lo = 1;

model bpvi / h, F /;

$onecho > %emp.info%

bilevel z

vi F w

$offecho

solve bpvi using emp min z;

Note that in the EMP annotations the lower-level problem is specified as a VI with the VI function F and
the corresponding variable w: for details see section EMP Syntax for Variational Inequalities. The count
of VI functions is indicated in the EMP Summary:

--- EMP Summary

...

VI Functions = 1

...

Bilevel Followers = 1

4.51.9.4 Bilevel Programs with EMP: Multiple Followers

The EMP framework allows multiple followers in a bilevel program. Taking the leader decisions as fixed,
these followers behave as the agents in a Nash equilibrium. Consider the engineering example [CCMG71]
from the GAMS EMP Library. In this bilevel program there are two followers, both solving minimization
problems, specified in the EMP annotations as follows:

...

$onecho > %emp.info%

bilevel x1 x2 x3 x4

min h1 u1 u2 u3 u4 defh1 e1

min h2 v1 v2 v3 v4 defh2 e2

$offecho

...

1486 User's Guide

The variables x1, x2, x3 and x4 are owned or controlled by the leader. The first follower minimizes
the variable h1 over the variables u1, u2, u3 and u4 subject to the constraint/equation e1. The second
follower is defined in a similar way. More details on how to specify optimization subproblems in the EMP
annotations are given in section EMP Syntax for Equilibrium Problems.

Observe that in the EMP annotations of the actual model [CCMG71] the following shorthand notation
is used:

...

$onecho > %emp.info%

bilevel x1 x2 x3 x4

min h1 * defh1 e1

min h2 * defh2 e2

$offecho

...

The symbol '∗' in the problem of the first follower indicates that this agent will optimize over all variables
appearing in equations defh1 and e1 (i.e. the equations it controls) that are not claimed by another agent.
In this case, the respective variables are u1, u2, u3 and u4. N.B.: in this example, if a variable appears in
the equations for both followers the problem structure is not well defined and an error will result. To
avoid confusion and promote clarity, we recommend that modelers explicitly list all the variables in each
agent's problem, as shown in the first version of the EMP annotations above.

The number of followers is indicated in the EMP Summary:

--- EMP Summary

...

Bilevel Followers = 2

The GAMS EMP Library contains several bilevel problems with several followers, e.g. the well-known
transportation model with a variable demand function cast as a bilevel problem with one optimization
follower and one VI follower [TRANSBP], a simple example with two VI followers [MULTMPEC],
and the spatial equilibrium Stackelberg model [HARK-STACK].

4.51.9.5 EMP Syntax for Bilevel Programs

The general syntax that EMP provides to specify bilevel programs in the EMP annotations file emp.info

is as follows:

Bilevel {var}

{MAX|MIN obj {var|*} {[-] equ}}

{VI {var|*} {[-] equ var} {[-] equ}}

{Dualvar {var [-] equ}}

A bilevel program is declared with the EMP keyword bilevel, followed by the decision variables of the
upper-level problem. The other specifications refer to the lower-level problems. These lower-level followers
are optional, but at least one follower has to be specified. Optimization problems are defined using the
EMP keyword max or min followed by the objective variable obj and the decision variables and the
equations that implement the constraints of the problem. Variational inequalities are introduced with the
EMP keyword vi: details of the specification are given in section EMP Syntax for Variational Inequalities.
The dualvar keyword is used in the same way as it is for equilibrium problems.

Note

While the EMP framework allows the symbol '∗' to be used to specify an automatically-created list
of variables, we recommend against using the '∗' in the annotations file. Instead, list all variables
explicitly to make the structure of the model clear and unambiguous to both human and machine
readers of the EMP info file.

4.51 Extended Mathematical Programming (EMP) 1487

4.51.10 Disjunctive Programming

Disjunctive programming is an alternative modeling approach to mixed integer programming. Both
mathematical programs model optimization problems that involve discrete and continuous variables.
The advantage of disjunctive programming is that it retains and exploits the inherent logic structure of
problems and thus reduces the combinatorics and improves the relaxations by using Boolean variables
and disjunction definitions for modeling discrete choices.

Disjunctive programs have many applications, including ordering of tasks in a production process,
organizing complex projects in a time saving manner and choosing the optimal route in a circuit.

In this section we first present the mathematical formulation of Generalized Disjunctive Programs (GDPs)
and then demonstrate how disjunctive programs are implemented with GAMS EMP using two simple
examples. Note that both examples are adapted from the LogMIP 2.0 User's Manual. At the end of
the section we introduce and discuss the syntax for EMP annotations for disjunctive programs.

For information on the development of disjunctive programming in GAMS EMP and its connection to the
solver LogMIP, see the respective section in the solver manual of the solver JAMS.

4.51.10.1 Generalized Disjunctive Programs (GDPs)

A GDP has Boolean and continuous variables, algebraic constraints that need to be satisfied regardless of
the discrete choices, disjunctions that represent the discrete choices, and logic propositions that contain
the logic relationships between the Boolean variables. Mathematically, the general structure of a GDP
may be expressed as follows:

Min f(x) Objective Function
s.t. g(x) ≤ 0 Algebraic Constraints∨

i∈Dk

[
Yik

rik(x) ≤ 0

]
, k ∈ K Disjunctions

Ω(Y) = True Logic Propositions
L ≤ x ≤ U, x ∈ Rn, Continuous Variables
Yik ∈ {True, False} Boolean Variables

(28)

where:

• f : Rn → R is a function, x is a vector of continuous variables with bounds L and U .

• g : Rn → Rl represents the set of global constraints.

• Each disjunction k ∈ K is composed of a number of terms i ∈ Dk that are connected by the Boolean
operator OR (

∨
).

• Each term i ∈ Dk consists of a Boolean variable Yik and a set of inequalities rik(x) ≤ 0, rik : Rn → Rj .
If Yik is true, then rik(x) ≤ 0 is enforced, otherwise these constraints are ignored.

• Ω(Y) = True are logic propositions for the Boolean variables Yik expressed in the Conjunctive
Normal Form Ω(Y) =

∧
t=1,2,...,T [

∨
Yjk∈Rt(Yjk)

∨
Yjk∈Qt(¬Yjk)], where for each clause t ∈ 1, . . . , T ,

Rt is the subset of Boolean variables that are non-negated and Qt is the subset of Boolean variables
that are negated.

N.B.: we assume that each disjunction is an exclusive-or, so that for each k exactly one variable Yik is
true. Put another way, we assume the logic constraints

∨
i∈Dk

Yik are contained in Ω(Y) = True.

There are three cases of disjunctive programs: the functions f , g and r are linear, some of them are
nonlinear, but convex, and some of them are nonlinear and nonconvex. Note that currently GAMS EMP
facilitates modeling only the first two cases.

http://www.logmip.ceride.gov.ar/files/pdfs/newUserManual.pdf

1488 User's Guide

4.51.10.2 Disjunctive Programming with EMP: Example with No Algebraic Constraints

Consider the following simple example, that has no algebraic constraints which must be satisfied regardless
of the disjunctive choices:

Minimize c+ 2x1 + x2 Objective Function
subject to Y1

−x1 + x2 + 2 ≤ 0
c ≤ 5

 ∨
 Y2

2− x2 ≤ 0
c ≤ 7

 Disjunctions

[
Y3

x1 − x2 ≤ 0

]
∨
[
¬Y3

x1 ≤ 1

]
Y1 ∧ ¬Y2 ⇒ ¬Y3 Logic Propositions
Y2 ⇒ ¬Y3

Y3 ⇒ ¬Y2

0 ≤ x1 ≤ 5 Continuous Variables
0 ≤ x2 ≤ 5
c ≥ 0

Yj ∈ {True, False}, j = 1, 2, 3 Boolean Variables

(29)

Observe that there are two disjunctions, each with two terms. In the first disjunction, each term is
governed by a different Boolean variable: the first term is active if Y1 is true and the second term is active
if Y2 is true. In the second disjunction, both terms are governed by the Boolean variable Y3: the first
term applies if Y3 is true and the second term applies if Y3 is false.

Note that the logic propositions imply that if Y1 is true and Y2 is false , then Y3 must be false, and that
Y2 and Y3 cannot both be true.

This example can be implemented in GAMS EMP as follows:

Set i / 1*2 /

j / 1*3 /;

Positive Variables x(i), c;

Variable z;

Binary Variables y(j);

x.up(i) = 5;

c.up = 7;

Equations Obj, Eq1, Eq2, Eq3, Eq4, Eq5, Eq6;

Obj.. z =e= c + 2*x(’1’) + x(’2’);

* Equations for Disjunctions

Eq1.. x(’2’) - x(’1’) =l= - 2;

Eq2.. c =l= 5;

Eq3.. x(’2’) =g= 2;

Eq4.. c =l= 7;

Eq5.. x(’1’) - x(’2’) =l= 1 ;

Eq6.. x(’1’) =l= 1;

4.51 Extended Mathematical Programming (EMP) 1489

* Equations for Logic Propositions

Logic Equations LEq1, LEq2, LEq3;

LEq1.. y(’1’) and not y(’2’) -> not y(’3’);

LEq2.. y(’2’) -> not y(’3’);

LEq3.. y(’3’) -> not y(’2’);

Model small1 / all /;

File emp / ’%emp.info%’ /;

put emp;

$onput

disjunction y(’1’) Eq1 Eq2 elseif y(’2’) Eq3 Eq4

disjunction y(’3’) Eq5 else Eq6

$offput

putclose;

Option optcr = 0.0;

solve small1 using EMP minimize z;

Note that in this model the Boolean variables Yj are implemented as GAMS binary variables, the
inequalities in the terms of the disjunctions are formulated as GAMS equations, and the logic propositions
are expressed as GAMS logic equations. The disjunctive structure of the model is specified in the
EMP annotations file emp.info. This file contains two lines (one per disjunction), each starting with the
EMP keyword disjunction and specifying the structure and content of its disjunction. In the first line
or disjunction, the binary variable y('1') that governs the first term is followed by the two equations
contained in this term. The EMP keyword elseif denotes the start of a new term, here governed by
the binary variable y('2') listed next and containing the two equations Eq3 and Eq4. Similarly, in the
second line, the binary variable y('3') that governs the first term of the second disjunction is followed by
the equation Eq5 contained in that term. As the binary variable governing the second term is just the
negation of y('3'), the keyword else is enough to specify this and is followed by the equation Eq6 of the
second term.

Note

Much more complex logical constructs for disjunctions are possible. For details, see section
EMP Syntax for Disjunctive Programming below.

Finally, note that the model type in the solve statement is EMP.

Given the annotations in the file emp.info, the solver JAMS reformulates the model as a MIP (Mixed
Integer Programming) model and passes it to a subsolver. By default, the convex hull relaxation is used
for the reformulation, but users may choose reformulations that use big M or indicator constraints: see
section EMP Syntax for Disjunctive Programming for details.

Observe that the listing file will contain some additional information if the model type EMP is used. The
EMP Summary and the Disjunction Summary may be particularly useful. The respective listings for our
example model follow:

--- EMP Summary

Logical Constraints = 3

Disjunctions = 2

...

...

--- Disjunction Summary

Disjunction 1 Term 2 is active

Disjunction 2 Term 2 is active

Note that the EMP summary lists the number of logic constraints and disjunctions and the disjunction
summary reports which terms of the disjunctions are active in the optimal solution.

1490 User's Guide

4.51.10.3 Disjunctive Programming with EMP: Example with No Logic Propositions

Consider the following simple example:

Min t Objective Function
s.t. t ≥ xA + 8 Algebraic Constraints

t ≥ xB + 5
t ≥ xC + 6[

Y1

xA − xC + 5 ≤ 0

]
∨
[

¬Y1

xC − xA + 2 ≤ 0

]
Disjunctions

[
Y2

xB − xC + 1 ≤ 0

]
∨
[

¬Y2

xC − xB + 6 ≤ 0

]
[

Y3

xA − xB + 5 ≤ 0

]
∨
[

¬Y3

xB − xA ≤ 0

]
t, xA, xB , xC ≥ 0 Continuous Variables

Yj ∈ {True, False}, j = 1, 2, 3 Boolean Variables

(30)

As this example has no logic propositions, the binary variables would not appear in any equations of a
GAMS formulation like the one above. As a result, the binary variables would not be part of the model
and any EMP annotations file that mentions these variables would be rejected by the EMP solver. To
avoid this problem, we can introduce a dummy equation and include it in the EMP model: this ensures
that the binary variables will be part of the GAMS model. The respective code follows:

set i / A, B, C /

j / 1*3 /

;

positive variables x(i), t;

binary variables y(j);

variable z;

equations obj, alg1, alg2, alg3,

d1t1, d1t2, d2t1, d2t2, d3t1, d3t2

dummy;

obj.. z =e= t;

* common algebraic equations

alg1.. t =g= x(’A’) + 8;

alg2.. t =g= x(’B’) + 5;

alg3.. t =g= x(’C’) + 6;

* equations for disjunctions

d1t1.. x(’A’) - x(’C’) + 5 =l= 0;

d1t2.. x(’C’) - x(’A’) + 2 =l= 0;

d2t1.. x(’B’) - x(’C’) + 1 =l= 0;

d2t2.. x(’C’) - x(’B’) + 6 =l= 0;

d3t1.. x(’A’) - x(’C’) + 5 =l= 0;

d3t2.. x(’B’) - x(’C’) =l= 0;

* dummy equation

dummy.. sum(j, y(j)) =g= 0;

4.51 Extended Mathematical Programming (EMP) 1491

model small2 / all /;

file emp / ’%emp.info%’ /;

putclose emp

"disjunction y(’1’) d1t1 else d1t2" /

"disjunction y(’2’) d2t1 else d2t2" /

"disjunction y(’3’) d3t1 else d3t2" /

;

option optcr = 0.0;

solve small2 using EMP minimize z;

Apart from the dummy equation, this formulation is very similar to the formulation in the first example
above.

EMP also supports an alternative formulation for models that have no logic equations, a formulation
using implicit default binary variables. These variables are denoted in the EMP annonations with the star
symbol '∗', which is internally replaced by a default binary variable. Note that this alternative model
does not contain any explicit binary variables Y(j) and hence the dummy equation may be omitted, as in
the following GAMS code which can be added to the model above:

model small3 ’no dummy equation needed’ / small2 - dummy /;

putclose emp

"disjunction * d1t1 else d1t2" /

"disjunction * d2t1 else d2t2" /

"disjunction * d3t1 else d3t2" /

;

solve small3 using EMP minimize z;

4.51.10.4 EMP Syntax for Disjunctive Programming

The general syntax that EMP provides to write disjunctions to the EMP annotations file emp.info is as
follows:

Disjunction [chull [chull eps] | bigM [big M value] | indic]

[NOT] var|* [NOT] {equ} {ELSEIF [NOT] var|* [NOT] {equ}} [ELSE [NOT] {equ}]

The EMP keyword Disjunction is mandatory, it indicates that what follows is a disjunction. The three
constructs that follow are optional and relate to the three possible reformulations: convex hull (chull), big
M method (bigM) or indicator constraints (indic). Note that in the the sequencing model [SEQUENCE]
all three options are implemented. Note further, that currently, indicator constraints can only be handled
by the solvers CPLEX, SCIP and XPRESS.

Note

• By default, the convex hull reformulation method is used.

• A different reformulation method may be used for each disjunction.

1492 User's Guide

Observe that for the convex hull reformulation, the value of the parameter epsilon may optionally be
specified. This parameter is an upper bound to check for constraint satisfaction, the default value is
0.0001.

Note that for the big M method, the value of M may optionally be specified. The value of M should be
large enough to relax the constraint, but it should not be too large, to avoid infeasible solutions. The
default value is 10000.

Following the EMP keyword disjunction, the first mandatory entry is a specification of the
variable that governs the disjunction: [NOT] var|∗. This may be either a binary variable,
a negated binary variable or the symbol '∗', that is internally replaced by default binary
variables. For an example and more details on the symbol '∗' in this context, see section
Disjunctive Programming with EMP: Example with No Logic Propositions. Further, {equ} denotes
a set of GAMS equation names that must be satisfied if the first disjunction term is selected. The
remainder of the syntax is self-explanatory.

Alternatively, the following syntax may be used:

Default [chull [chull eps] | bigM [big M value] | indic]

Disjunction [NOT] var|* [NOT] {equ} {ELSEIF [NOT] var|* [NOT] {equ}} [ELSE [NOT] {equ}]

Note that the first line is optional and serves to specify the reformulation method. The second line is
identical to the first formulation of the general syntax where the specification of the reformulation method
is omitted. Some users find this alternative syntax clearer, since the specification of the reformulation
method and the disjunction are separated.

In addition to the sequencing model [SEQUENCE] that was already mentioned, the GAMS EMP
Library has two other models for disjunctive programming: the manufacturing problem [FOODEMP]
and the job scheduling problem [MAKESPAN]

4.51.11 Stochastic Programming

Stochastic programs are mathematical programs that involve data that is not known with certainty.
Deterministic programs are formulated with fixed parameters, whereas real world problems frequently
include some uncertain parameters. Often these uncertain parameters follow a probability distribution
that is known or can be estimated. Thus stochastic programs approximate unknown data by probability
distributions. The goal is to find some policy that is feasible for all (or almost all) the possible data
instances and that maximizes the expectation of some function of the decision variables and the random
variables. The EMP framework includes an extension for stochastic programming that allows users
to model various stochastic problems as deterministic models, while information about the stochastic
structure of the problem, like probability distributions for some data, is specified in the EMP annotations.
Thus formulating stochastic programs becomes straightforward.

In the remainder of this chapter we discuss the stochastic programming extension of GAMS EMP. We
introduce the basics of stochastic programming with EMP using a two-stage stochastic model and then
show how the logic can be extended to multi-stage stochastic problems. In most stochastic problems the
expected value of the objective is optimized. The EMP framework facilitates optimizing two additional
risk measures: Value at Risk (VaR) and Conditional Value at Risk (CVaR). These alternative risk mea-
sures are discussed next. Another type of stochastic programming includes constraints that hold only
with certain probabilities. These constrains are called chance constraints (or probabilistic constraints),
they are the topic of the last section on stochastic programming. At the end of each section we give an
overview of the EMP annotations that are specific to each topic: stochastic programming with recourse,
additional risk measures, and chance constraints. A summary of all EMP keywords for stochastic pro-
gramming is given in section GAMS EMP Keywords for Stochastic Programming.

4.51 Extended Mathematical Programming (EMP) 1493

4.51.11.1 Stochastic Programming with Recourse

One way to think about stochastic problems is to require the decision maker to make a decision now
and then to minimize the expected costs of the consequences of that decision. This paradigm is called
the recourse model. The simplest form of the recourse model has two stages: a decision is made in the
first stage, then the realization of the uncertain parameters is revealed at the start of the second stage
and recourse actions can be taken given this new information. This simple model can be extended to
include more stages. In a multistage problem, a decision is made in the first stage, then some uncertainty
is resolved in the second stage and another decision is made based on this new knowledge, then some
other uncertainty is resolved and so on. The objective is to minimize the expected costs of the decisions
in all stages.

This section is organized as follows. We start with a mathematical formulation of the two-stage stochastic
problem with recourse, then show how such problems can be modeled with EMP using a simple example.
The uncertain data in this first example follows a discrete distribution, there are just three different
scenarios. Continuous distributions are more complex to model. Mostly, they are approximated to discrete
distributions by sampling, which is discussed next. The second example illustrates how the modeling
approach for a simple two-stage problem can be extended to solve a multi-stage problem. We conclude
this section with a description of the EMP annotations for stochastic programs with recourse.

Two-Stage Stochastic Programs: Mathematical Formulation

The simplest form of a stochastic program is the two-stage stochastic linear program with recourse. In
mathematical terms it is defined as follows.

Let x ∈ Rn and y ∈ Rm be two variables and let the set of all realizations of the unknown data be given
by Ω, Ω = {ω1, . . . , ωS} ⊆ Rr, where r is the number of the random variables representing the uncertain
parameters. Then the stochastic program is given by

Minx z = cTx + E[Q(x, ω)]
s.t. Ax = b, x ≥ 0,

where Q(x, ω) = Miny qTω y(ω)
s.t. Tωx + Wωy(ω) = hω, y(ω) ≥ 0, ∀ω ∈ Ω.

(31)

The first two lines define the first-stage problem and the last two lines define the second-stage problem. In
the first stage, x is the decision variable, cT represents the cost coefficients of the objective function and
E[Q(x, ω)] denotes the expected value of the optimal solution of the second stage problem. In addition, A
denotes the coefficients and b the right-hand side of the first stage constraints. In the second stage, y is
the decision variable, T represents the transition matrix, W the recourse matrix (cost of recourse) and h
the right-hand side of the second stage constraints. Note that all parameters and the decision variable
of the second stage are dependent on the specific realization of the stochastic data ω. The objective
variable z is also a random variable, since it is a function of ω. As a random variable cannot be optimized,
stochastic solvers automatically optimize the expected value of the objective variable z. Note that the
EMP framework allows other risk measures to be optimized in addition to the expected value. This is
discussed below.

In the first stage, a decision has to be made before the realization of the uncertain data is clear. The
optimal solution of the first stage is fixed and only then it will become known which values the uncertain
parameters will take. Given the fixed solution of the first stage and the new data, recourse action can be
taken in the second stage and the optimal solution determined. Each possible realization of the uncertain
data is represented by ωs ∈ Ω and is called a scenario. The objective is to find a feasible solution x that
minimizes the total cost, namely the sum of the first-stage costs and the expected second-stage costs.

One of the most common methods to solve a two-stage stochastic LP is to build and solve the deterministic
equivalent. Assume that the uncertain parameters follow a (finite) discrete distribution and that each

1494 User's Guide

scenario ωs occurs with probability P (ωs) = ps for all s = 1, . . . , S and
∑
s ps = 1. Thus E[Q(x, ω)] =∑

s psq
T ys, where ys denotes the optimal second-stage decision for the scenario ωs. Then the deterministic

equivalent can be expressed as follows:

cTx + p1q
T y1 + p2q

T y2 + . . . + pSq
T yS

s.t.
Ax = b
T1x + W1y1 = h1

T2x + W2y2 = h2

... +
. . .

...
TSx + WSyS = hS
x ∈ Rn y1 ∈ Rm y2 ∈ Rm yS ∈ Rm

(32)

Note that for stochastic linear programs the deterministic equivalent is just another (potentially very
large) linear program.

A GAMS EMP stochastic model has three parts: the core model, EMP annotations and the dictionary,
which contains output-handling information. The core model is a deterministic model, where the uncertain
data is given as fixed parameters. Often, the expected value of the probability distribution is chosen.

The annotations contain information about the stochastic features of the model: a specification of the
random variables and their distributions, details about the stages and possibly directions concerning
sampling.

Given the probability distributions of the random variables, the solvers of stochastic programming models
create various scenarios and evaluate them. In the dictionary users specify which results from each scenario
are to be stored in standard parameters in order to be accessed later. These three parts of a GAMS EMP
stochastic model will become much clearer as they are illustrated in the next subsection.

A Simple Example: The News Vendor Problem

Consider the following simple example adapted from the news vendor model [NBSIMPLE]. A news
vendor has to decide early in the morning how many newspapers to buy from a distributor on a particular
day in order to sell them to his customers. He knows from experience that the demand will be 45 in 70%
of all cases, 40 with a probability of 20% and 50 with a probability of 10%. If the demand is less than the
number of newspapers he bought in the morning, the left-over newspapers will be stored in an inventory
at a cost per unit. If the demand exceeds his expectations and there are more customers than newspapers,
then he will have to pay a penalty. He aims to maximize his profit by selling the newspapers at a higher
price than he has bought them. Mathematically, the problem can be expressed as follows:

Maxx Z(x,D) = −cx+ E[Q(x,D)], x ≥ 0,

where Q(x,D) = Maxs,i,l vsD − hiD − plD
s.t. x− sD − iD = 0

sD + lD = D, sD, iD, lD ≥ 0

(33)

where

• the variable x denotes the number of newspaper bought in the morning,

• c is the cost per newspaper,

• D is a random variable that denotes the uncertain demand; the set of all realizations of D is given
by Ω = {d1, d2, d3}, with d1 = 45, d2 = 40 and d3 = 50, and the respective probabilities p1 = 0.7,
p2 = 0.2 and p3 = 0.1,

4.51 Extended Mathematical Programming (EMP) 1495

• the variable s denotes the number of newspapers that are sold,

• v is the selling price,

• the variable i denotes the number of newspapers that could not be sold, in case the demand turned
out to be less than expected,

• h is the holding cost in the inventory per unit,

• the variable l denotes the unsatisfied demand, in case the demand turned out to be higher than
expected,

• p is the penalty per unit of unsatisfied demand.

Note that x is the first-stage decision variable and the variables s, i and l are the second-stage decision
variables. The second-stage decision variables are dependent on D. An overview of the stages in this
problem is given in the following table:

1st Stage Decision Variable 2nd Stage Decision Variable;
Ω = {d1, d2, d3}

Probabilities

x yd1 = (sd1 , ld1 , id1) Scenario 1: p1 = 0.7

x yd2 = (sd2 , ld2 , id2) Scenario 2: p2 = 0.2

x yd3 = (sd3 , ld3 , id3) Scenario 3: p3 = 0.1

Table 3: Two stages in the News Vendor Problem

Observe that the decision x has to be made before the realization of the demand D is known. Given the
uncertainty of the demand, we aim to maximize the expected value of the profit, denoted by E[Z(x,D)].
The expected value of the profit is the profit on average. Note that as we have a finite number of scenarios
and their probabilities are known, the expected value of the profit E[Z(x,D)] can be expressed as a
weighted sum:

E[Z(x,D)] = −cx+ E[Q(x,D)]

−cx+
∑3
k=1 pkQ(x, dk).

(34)

Note that in this example there are no first stage equations Ax = b.

The core model is the first part of the respective GAMS EMP model:

Variable z "profit";

Positive Variables

x "units bought"

i "inventory"

l "lost sales"

s "units sold";

Scalars c "purchase costs per unit" / 30 /

p "penalty shortage cost per unit" / 5 /

h "holding cost per leftover unit" / 10 /

v "revenue per unit sold" / 60 /

d "demand, random parameter" / 45 /;

Equations profit "profit to be maximized"

row1 "demand = UnitsSold + LostSales"

row2 "inventory = UnitsBought - UnitsSold";

1496 User's Guide

profit.. z =e= v*s - c*x - h*i - p*l;

row1.. d =e= s + l;

row2.. i =e= x - s;

Model nv / all /;

Observe that the model is defined in the usual way. In particular, the demand d is modeled as a fixed
parameter.

The EMP annotations are the second part. Here we specify the stochastic structure:

File emp / ’%emp.info%’ /;

put emp ’* problem %gams.i%’/;

$onput

randvar d discrete 0.7 45 0.2 40 0.1 50

stage 2 i l s d

stage 2 Row1 Row2

$offput

putclose emp;

First, we define the parameter d to be a random variable using the EMP keyword randvar and we specify
the probability distribution. The EMP keyword discrete indicates that d follows a discrete distribution:
with probability 0.7 it takes a value of 45, with probability 0.2 it takes a value of 40, and with probability
0.1 it takes a value of 50.

Note

If the sum of the probabilities of a discrete distribution is smaller or larger than 1, the EMP framework
will automatically normalize the probabilities so that the sum equals 1 and a corresponding remark
will appear in the log and listing file.

Observe that continuous distributions are also possible, see section Random Variables with Continuous Distributions
below for details.

Secondly, we specify which variables and equations belong to stage 2 using the EMP keyword stage. Note
that the variables and equations that are not listed in the annotations are automatically assigned to a
stage, by default stage 1 (this could be changed using the EMP keyword stageDefault). Only the objective
variable (in this case Z) and the objective equation (profit) are assigned to the highest stage specified
instead (stage 2 in this example). Observe that Z is in fact a random variable since it is a function of the
random variable D. As such it cannot be optimized directly, EMP implicitly maximizes the expected value
of Z. This might lead to some confusion since the expected value of Z belongs to stage 1. We show in
section Expected Value Revisited how to specify more clearly the fact that we are maximizing E(Z).

All keywords that can be used in EMP annotations in the context of stochastic programming are introduced
in subsequent examples and they are summarized in section GAMS EMP Keywords for Stochastic Programming.

The dictionary with output-handling information and the solve statement are the third part of the model.
After solving a stochastic programming model, only the solution of the expected value problem may be
accessed via the regular .l and .m fields. The results of the scenarios that were created and evaluated by
the stochastic solvers may be stored in standard parameters in the following way:

4.51 Extended Mathematical Programming (EMP) 1497

Set scen "scenarios" / s1*s3 /;

Parameter

s_d(scen) "demand realization by scenario"

s_x(scen) "units bought by scenario"

s_s(scen) "units sold by scenario"

s_rep(scen,*) "scenario probability" / #scen.prob 0/;

Set dict / scen .scenario.’’

d .randvar .s_d

s .level .s_s

x .level .s_x

’’ .opt .s_rep /;

solve nv max z use EMP scenario dict;

display s_d, s_x, s_s, s_rep;

The size of the set scen defines the maximal number of scenarios we are willing to store results for. It does
not have to match the number of scenarios that are actually generated in the solution process. Assume
that the size of the set scen is n and n is smaller than the number of generated scenarios. In this case
only the results for the first n scenarios will be stored. On the other hand, if the size of scen is larger
than the number of generated scenarios, then the positions of the surplus elements of scen will be empty
in the parameters (e.g. s d).

The elements of the three-dimensional set dict determine which scenario-dependent values will be stored.
The set contains mapping information between the symbols in the model in the first position and the
symbols in which scenario solution information is stored in the third position. The type of storing is
specified in the second position. The following entries are allowed:

Label Description

level Stores the level values of a scenario solution of a variable or equation.

marginal Stores the marginal values of a scenario solution of a variable or equation.

randvar Stores the realization of a random variable.

opt Stores the probability of each scenario.

scenario The symbol in the first position of the tuple is used as the scenario index.

Table 4 Entries in the second position of the tuples in the scenario dictionary

Attention

The first two tuples in the set dict are mandatory, all other elements of the set are optional. If
one of the first two tuples is missing, the stochastic model cannot be solved and an error will be
generated.

In the example above, we store the realization for each scenario of the random variable d in the parameter
s d, the level values of the variables s and x in the parameters s s and s x respectively and the actual
probability of each scenario in the parameter s rep.

Note

Storing and retrieving the actual probabilities of the scenarios may be particularly relevant if the
probabilities have been normalized such that their sum equals 1.

Finally, the solve statement needs to be adjusted: we use the model type EMP and add scenario dict to
indicate that a stochastic problem is to be solved.

1498 User's Guide

Random Variables with Continuous Distributions

Now we assume that the random variable D in the example above has a continuous distribution, say a
Normal distribution with mean 45 and standard deviation 10. The structure of the problem remains
unchanged, the only difference is that the set Ω, that is the set of all realizations of D, contains an
infinite number of scenarios. There are various ways of modeling this. For example, a sampling procedure
implemented in the solver can be used: a finite number of scenarios is generated to approximate Ω and
thus the problem is converted to a problem with a finite discrete distribution.

We can model a continuous distribution of the random variable in GAMS EMP by changing the annotations
in the following way:

randvar d normal 45 10

Note that currently only the solver LINDO has implemented a sampling procedure for parametric
distributions so that it can solve such a problem directly. If the solver DE is used, the sampling can be
performed by the LINDO system behind the scenes. More details about sampling are given in the next
section. All parametric distributions that can be modeled are listed in Table 5 .

Distribution Parameter 1 Parameter 2 Parameter 3

Beta shape 1 shape 2

Cauchy location scale

Chi Square deg. of freedom

Exponential lambda

F deg. of freedom 1 deg. of freedom 2

Gamma shape scale

Gumbel location scale

Laplace mean scale

Logistic location scale

LogNormal mean std dev

Normal mean std dev

Pareto scale shape

StudentT deg. of freedom

Triangular low mid high

Uniform low high

Weibull shape scale

Binomial n p

Geometric p

Hyper Geometric total good trials

Logarithmic p-factor

Negative Binomial failures p

Poisson lambda

Table 5: Parametric distributions supported by LINDO

Recall that there are two ways to specify that a specific solver should be used (that is not the default solver
for the problem type): with a command line parameter (e.g. emp=lindo) and with an option statement
(e.g. option emp = lindo;).

Examples with random variables that follow parametric distributions include the multistage example
below (three random variables with Gamma distributions) and the production model [PRODSP3] in

4.51 Extended Mathematical Programming (EMP) 1499

the GAMS EMP Model Library (one random variable that follows a Normal distribution and one random
variable that is uniformly distributed).

Sampling

Currently, only the solver LINDO has the ability to perform sampling for parametric distributions
directly. Note that LINDO generates 6 samples by default and users need a LINDO license for sam-
ple sizes larger than 10 (smaller sample sizes are included in the demo version, but just for certain
distributions). Also, changing the default variance reduction method requires a valid LINDO license.
There are three ways to customize sampling: including additional information in the EMP annotations,
generating a sample with the LINDO library lsadclib (these two options allow to pass on the samples
to other solvers with EMP SP capabilities) and setting various options in the solver LINDO. We discuss
each method in more detail in the next three subsections.

Customizing Sampling in the EMP Annotations

The EMP framework provides two keywords to facilitate sampling: sample and setSeed. The keyword
sample allows users to specify the size of the sample in the EMP annotations. Consider the following
example:

randvar d normal 45 10

sample d 9

The second line specifies that the size of the sample of the distribution of the random variable D is 9.
Note that currently the LINDO Sampling Library is used for this sampling. If the solver DE is used and
a parametric distribution for the random variable is specified, the second line with the keyword sample is
mandatory. Otherwise the following error message will appear:

*** Only random variables with sampled continuous distributions supported.

In addition to specifying the size of the sample, information about a mathematical variance reduction
method may be added in the line that starts with the keyword sample. Variance reduction is a procedure
used to increase the precision of the estimated values from the distribution. LINDO provides three
methods for reducing the variance: Monte Carlo sampling, Latin Square sampling and Antithetic sampling.
We illustrate with an example.

Consider a stochastic model with four random variables: E, F , G and H. Assume that E follows a Normal
distribution with mean 23 and standard deviation 5, F follows a Normal distribution with mean 37 and
standard deviation 8, G is uniformly distributed on the interval [0, 1] and H is binomially distributed with
n = 100 and p = 0.55. We wish that three variance reduction methods are applied: Antithetic sampling is
to be used for E and F , Monte Carlo sampling for G and Latin Square sampling for H. We insert the
following lines in the EMP annotations:

randvar e normal 23 5

randvar f normal 37 8

randvar g uniform 0 1

randvar h binomial 100 0.55

sample e f 10 method1

sample g 12 method2

sample h 8 method3

1500 User's Guide

First, the random variables and their distributions are defined. Next, details about the sampling procedures
are given. Note that the keyword sample can take more than one random variable if the sample size and
the variance reduction method for these random variables are identical. We need to add the following
lines before the solve statement to specify the content of method1, method2 and method3 (we assume that
the name of the model is nv):

$onecho > lindo.opt

SVR_LS_ANTITHETIC=method1

SVR_LS_MONTECARLO=method2

SVR_LS_LATINSQUARE=method3

$offecho

nv.optfile=1;

If Latin Square sampling should also be used for E and F , we would simply change the EMP annotations
to replace the label method1 with the label method3. For more details on variance reduction methods,
please consult the LINDO manual.

In addition, the EMP keyword setSeed may be used to further customize the sampling procedure:

setSeed <seed>

This line sets the seed (an integer number) for the random number generator of the sampling routines.
If setSeed is used in the EMP annotations, the seed will be set once before all samples are generated.
Please note that setSeed only works with a valid LINDO license.

Separating Sampling and Solving

Users may want to sample from a distribution with the LINDO system and solve the model with another
solver, say DE. This is possible with the sampling routines from the LINDO Sampling Library lsadclib.
We could solve the news vendor model by first drawing a sample from a Normal distribution with mean
45 and standard deviation 10 and then using the sample in the EMP annotations. The GAMS code for
sampling from a Normal distribution where the sample size is 9 follows:

$funclibin msllib lsadclib

Function setSeed / msllib.setSeed /

sampleNormal / msllib.sampleLSNormal /

getSampleValues / msllib.getSampleValues /;

Scalar k;

k = sampleNormal(45,10,9);

Set g /1*9/; parameter sv1(g);

loop(g,

sv1(g) = getSampleValues(k);

);

display sv1;

The directive in the first line makes the LINDO sampling library available, msllib is the internal library
name (see also $funcLibIn for more information). For further details and a list of the available probability
distributions, see section The LINDO Sampling Library.

In the following lines we demonstrate how the sample is used in the EMP annotations:

4.51 Extended Mathematical Programming (EMP) 1501

File emp / ’%emp.info%’ /;

put emp;

put ’randvar d discrete ’; loop(g, put (1/card(g)) ’ ’ sv1(g) ’ ’);

$onput

stage 2 I L S d

stage 2 Row1 Row2

$offput

putclose emp;

Note that the third line states that the random variable D follows a discrete distribution and the
probabilities and values are taken from the previously generated sample. The other lines of the annotations
remain unchanged.

Sampling Options for the Solver LINDO

There are some customizable sampling options in LINDO. Users could control the number of sampled
scenarios by setting any of the following LINDO/SP options in the file LINDO options file lindo.opt:

STOC_NSAMPLE_PER_STAGE - list of sample sizes per stage (starting at stage 2)

STOC_NSAMPLE_SPAR - common sample size per stochastic parameter

STOC_NSAMPLE_STAGE - common sample size per stage

For example, we could insert the following three lines before the solve statement:

option emp = lindo;

$echo STOC_NSAMPLE_STAGE = 100 > lindo.opt

nv.optfile = 1;

The first line directs GAMS to solve models of the type emp with the LINDO solver. The second line
writes STOC NSAMPLE STAGE = 100 to the file lindo.opt, it communicates to the solver to generate 100
samples per stage. The third line informs GAMS to use the solver option file (i.e. lindo.opt).

The following example shows how to use large samples and instruct LINDO to use a Benders decomposition
algorithm to tackle the problem:

$onecho > lindo.opt

STOC_MAX_NUMSCENS = 1000000

STOC_NSAMPLE_STAGE = 40

STOC_METHOD = 1

$offecho

In the second line we ensure that the maximum number of scenarios is large enough. The options in the
following lines state the sample size and determine the stochastic method to be used (1 means Nested
Benders Decomposition). For further details on LINDO options, please consult the LINDO user manual.

1502 User's Guide

Multistage Stochastic Programming Example

The modeling principles for two-stage stochastic models can be easily extended to multistage stochastic
models. At the beginning of each stage some uncertainty is resolved and recourse decisions or adjustments
are made after this information has become available. At the point where decisions are made only outcomes
of the current stage and previous stages are available. This logic can be pictured schematically as follows:

Make decision︸ ︷︷ ︸
Stage 1

→ Random Variable is realized→ Make decision︸ ︷︷ ︸
Stage 2

→ · · · → Random Variable is realized→ Make decision︸ ︷︷ ︸
Stage n

(4.26)

Observe that random variables which are realized in stage k are fixed parameters in stage k + 1 and
following; stage 1 random variables are in fact simply given deterministic values and will create a warning
or an error dependent on the solver selected.

Consider an inventory problem. At the end of each week the decision how many hats should be bought
in order to satisfy the stochastic demand in the following week must be made. The aim is to maximize
the profit. We assume that the stochastic demand can be modeled using a Gamma distribution. The
planning horizon is 3 weeks. Before the first week starts an initial purchase decision has to be made and
the goods are stored in the inventory for use in week 1. At this point only the distribution of the demand
of the first week is known. During the first week the actual demand is revealed and some items that were
stored in the inventory are sold. Some items may be left over; they are stored as the inventory for the
second week. In addition, a purchase decision for the second week has to be made given the size of the
inventory and the distribution of the demand in the second week. Again, the actual demand is revealed in
the course of the second week. The same holds for the third week.

We will model the problem with 4 stages, where the first stage corresponds to the preparation time before
the first week, the second stage corresponds to decisions made in the first week, the third stage corresponds
to decisions made in the second week and the fourth stage corresponds to decisions made in the third
week. Let t denote the stages. Note that while the stages range from t = 1 to t = 4, demand variables are
realized only at t = 2 to t = 4. Let yt be the amount bought and it the amount stored at the end of each
stage and let Dt denote the demand in each week and st the amount sold each week. Note that we denote
the demand with a capital D since it is a random variable. Let α = 10 be the cost per hat bought, β = 20
the revenue per hat sold and δ = 4 the storage cost per unit. Further, in the storage facility a maximum
of κ = 5000 hats can be stored.

Mathematically, this problem can be expressed as follows:

Maxst,yt,it z = −αy1 − γi1 + E[Max βs2(D2)− αy2(D2)− δi2(D2) + · · ·+
E[Max βs4(D4) +−αy4(D4)− δi4(D4)] . . .]

s.t. i1 = y1

it−1 + yt = st + it
st ≤ it−1

st ≤ Dt

it ≤ κ
y1, i1, st, yt, it ≥ 0,

(35)

where t = 2, . . . , 4 and Dt follows a Gamma distribution. Note that st, yt and it depend on the realization
of Dt.

As discussed above, the solvers use a sampling procedure to approximate a problem with a continuous
random variable by a problem with a discrete distribution. Figure 1 illustrates the stages assuming a
sample size of 6 (per stage). Note that this results in a total of 63 = 216 scenarios.

The problem can be modeled with GAMS EMP as follows:

4.51 Extended Mathematical Programming (EMP) 1503

Figure 4.4 Stages in the inventory model

* Core Model

Set t "stages" / 1*4 /;

Set st(t) "stages where sales occur" / 2*4 / ;

Positive Variables

y(t) "units to be bought in time period t"

i(t) "ending inventory in period t"

s(t) "units sold in time period t" ;

Free Variable

profit ;

Scalars

kappa "capacity of storage building" / 5000 /

alpha "cost per unit bought" / 10 /

beta "revenue per unit sold" / 20 /

delta "cost per unit stored at the end of time period" / 4 / ;

Parameters

k "shape of demand (1st parameter of gamma distribution)" / 16 /

d_theta(st) "scale of demand (2nd parameter of gamma distribution)" / 2 208.3125

3 312.5

4 125 /

d(st) "demand" ;

d(st) = k * d_theta(st);

Equations

defprofit "definition of profit"

balance(t) "balance equation"

sales1(st) "sales cannot exceed demand"

sales2(t) "sales cannot exceed inventory of previous time period" ;

1504 User's Guide

defprofit.. profit =e= sum(t, beta * s(t)$st(t) - alpha * y(t) - delta * i(t));

balance(t).. i(t-1) + y(t) =e= s(t)$st(t) + i(t) ;

sales1(st).. s(st) =l= d(st);

sales2(t)$st(t).. s(t) =l= i(t-1);

i.up(t) = kappa;

Model inventory /all/;

* EMP Annotations

File emp / ’%emp.info%’ /;

put emp; emp.nd=6;

put "randvar d(’2’) gamma ", k d_theta(’2’) /;

put "randvar d(’3’) gamma ", k d_theta(’3’) /;

put "randvar d(’4’) gamma ", k d_theta(’4’) /;

$onput

stage 1 y(’1’) i(’1’) balance(’1’)

stage 2 y(’2’) d(’2’) s(’2’) i(’2’) balance(’2’) sales1(’2’) sales2(’2’)

stage 3 y(’3’) d(’3’) s(’3’) i(’3’) balance(’3’) sales1(’3’) sales2(’3’)

stage 4 y(’4’) d(’4’) s(’4’) i(’4’) balance(’4’) sales1(’4’) sales2(’4’)

$offput

putclose emp;

* Dictionary

Set scen "scenarios" / s1*s216 /;

Parameters

s_d(scen,st) "demand realization by scenario"

s_y(scen,t) "units bought by scenario"

s_s(scen,t) "units sold by scenario"

s_i(scen,t) "units stored by scenario" ;

Set dict /

scen .scenario.’’

d .randvar .s_d

s .level .s_s

y .level .s_y

i .level .s_i /;

option emp=lindo;

solve inventory max profit using emp scenario dict;

display s_d, s_s, s_y, s_i;

Observe that in the core problem the values of the demand d(t) are replaced by the expected values of
the random variable Dt which follows a Gamma distribution. Note that as expected, in stage 1 we have
only the variables y and i, but no variables s and d. Recall that currently only the solver LINDO can
solve models with parametric distributions, see sections Random Variables with Continuous Distributions
and Sampling for more information.

EMP Syntax for Stochastic Programs with Recourse

The general syntax of the EMP annotations used to specify stochastic problems with recourse is as follows:

[randvar rv discrete prob val {prob val}]

[randvar rv distr par {par}]

[jrandvar rv rv {rv} prob val val {val} {prob val val {val}}]

4.51 Extended Mathematical Programming (EMP) 1505

[setSeed number]

[sample rv1 [rv2 ... rvn] sampleSize [varRedMethod]]

stage stageNo rv | equ | var {rv | equ | var}

{stage stageNo rv | equ | var {rv | equ | var}}

[stageDefault stageNo]

The first three lines present three ways to specify random variables: a single random variable with a discrete
distribution, a single random variable with a parametric distribution and joint random variables with
discrete distributions. Note that randvar, jrandvar and discrete are EMP keywords. The distribution
of single discrete random variables is defined by pairs of the probability prob of an outcome and the
corresponding realization val, see example above. The distribution of parametric random variables is
defined by the name of the distribution dist and the respective parameter(s) par. An overview of all
supported parametric distributions can be found in Table 5. All possible values for distr and the related
parameters par are listed there. The keyword jrandvar is used to define discrete random variables that
are jointly distributed. At least two random variables must be named. For an example, see the news
vendor model [NBDISCJOINT].

Note

At least one random variable must be defined and all three ways to define random variables may
appear in the EMP annotations. See the scheduling model [AIRLIFT] for an example with both,
a discrete random variable and a continuous random variable.

The keywords setSeed and sample are optional. The seed for the random number generator may be set
with setSeed. The random number generator is used for the sampling routines that are called with the
keyword sample. If setSeed is used, the seed will be set once before all samples will be generated. The
keyword sample is followed by the name of the respective random variable, the sample size (a number)
and - optionally - a variance reduction method. Note that the random variable must have been previously
declared to follow a parametric distribution. Note further, that the sample size of more than one random
variable may be customized simultaneously. Observe that the default sample size is 6. For details on
available variance reduction methods, see section Customizing Sampling in the EMP Annotations.

Note

• A valid LINDO license is required to use the keywords setSeed and sample. The keyword
sample may be used with a demo or community version of the LINDO license, but it is
limited to the Normal and Binomial distributions with a maximum sample size of 10 and the
variance reduction method cannot be changed.

• If a parametric distribution is used with any solver but LINDO, the keyword sample is
mandatory, see above for details.

With the keyword stage random variables, variables and equations are assigned to their respective stages,
where StageNo defines the stage number. Note that the default stage for all random variables, equations
and variables is 1, except for the objective equation and variable. The default for those is the highest
stage in the problem.

With the keyword stageDefault one can change the default stage to which symbols get assigned if they
are not listed with a stage keyword explicitly.

1506 User's Guide

4.51.11.2 Risk Measures with EMP

The literature on stochastic programming usually assumes that the expected value of the objective is
optimized. The EMP tool follows this trend and implicitly optimizes the expected value. However, there
are other risk measures that could be taken into consideration and that are frequently used in practice,
particularly in finance. For example, a fund manager might be more interested in the expected value of
the 10% worst cases of the projected wins than in the expected value of the overall distribution. The
expected value of a partition of the distribution at one tail is called Conditional Value at Risk. The EMP
framework provides special keywords to facilitate optimizing this risk measure. On a more abstract level,
risk measures can be understood as mechanisms to evaluate the effects of uncertainty in the underlying
system on the outcomes of interest. They can be used to modify the distribution of outcomes.

Using the example of an investor who wishes to balance expected rewards and the risk of loss when she
decides how to allocate assets in a portfolio, we explore how stochastic optimization problems involving
risk measures can be modeled with EMP. Note that this example is adapted from the stochastic portfolio
model [PORTFOLIO]. For simplicity of exposition, we only describe two-stage models here. In the
examples that follow, the period (0, T) is the period between investing in a portfolio of assets and return
from this portfolio.

We first present the example problem and introduce a new EMP keyword to model the
expected value explicitly. Then we introduce and discuss Value at Risk (VaR) and Conditional Value at Risk (CVaR).
At the end of this section, we give a summary of the EMP annotations that are specific to risk measures.

Note

The stochastic extension of EMP facilitates the optimization of a single risk measure or a combination
of risk measures (for example, the weighted sum of Expected Value and CVaR). In addition, the
modeler can choose to trade off risk measures.

Expected Value Revisited

Suppose an investor has the opportunity to invest a certain amount in three assets. She is given the
probability distribution in Table 6 that links each asset with a possible return at time T . The question
arises how she should allocate her funds between the three assets at time 0 in order to maximize her
expected return at time T .

Scenario Probability ATT GMC USX

s1 1/12 1.300 1.225 1.149

s2 1/12 1.103 1.290 1.260

s3 1/12 1.216 1.216 1.419

s4 1/12 0.954 0.728 0.922

s5 1/12 0.929 1.144 1.169

s6 1/12 1.056 1.107 0.965

s7 1/12 1.038 1.321 1.133

s8 1/12 1.089 1.305 1.732

s9 1/12 1.090 1.195 1.021

s10 1/12 1.083 1.390 1.131

s11 1/12 1.035 0.928 1.006

s12 1/12 1.176 1.715 1.908

Table 6: Return by scenario

4.51 Extended Mathematical Programming (EMP) 1507

Mathematically, the problem can be expressed as follows:

Max E[R]
s.t R =

∑
j wjvj∑

j wj = 1

wj ≥ 0,

(36)

where the variable R denotes the return and is a function of the random variable v, E[R] is the expected
return, wj is the weight associated with each asset j, and vj is the return of each asset j. The weights
can also be interpreted as proportions of the amount to be invested, their sum must equal 1. Note that
wj is the decision variable in this problem. Note further, that vj is a random variable that depends on
which scenario is realized.

We present two different ways to model this problem in GAMS EMP: in the first version the expected
value of the return is modeled implicitly and in the second version it is modeled explicitly. Both models
have two stages, in the first stage the weights are chosen without knowing which scenario will be realized,
in the second stage the 12 scenarios are taken into account. We start with the part of the code where the
data is given. It is named data.gms and it will be included in all models in this section.

Sets j "assets" / att, gmc, usx /

s "scenarios" / s1*s12 / ;

Table vs(s,j) "scenario returns from assets"

att gmc usx

s1 1.300 1.225 1.149

s2 1.103 1.290 1.260

s3 1.216 1.216 1.419

s4 0.954 0.728 0.922

s5 0.929 1.144 1.169

s6 1.056 1.107 0.965

s7 1.038 1.321 1.133

s8 1.089 1.305 1.732

s9 1.090 1.195 1.021

s10 1.083 1.390 1.131

s11 1.035 0.928 1.006

s12 1.176 1.715 1.908 ;

Parameters

v(j) "return from assets "

p(s) "probability" / #s [1/card(s)] / ;

v(j) = sum(s, vs(s,j))/card(s);

The first model is similar to the two-stage example model above, the fact that the expected return is being
maximized is not stated explicitly but is only implied:

* Core Model

$include data.gms

Variables

r "value of portfolio under each scenario"

w(j) "portfolio selection" ;

Positive Variables

w ;

Equations

1508 User's Guide

defr "return of portfolio"

budget "budget constraint" ;

defr.. r =e= sum(j, v(j)*w(j));

budget.. sum(j, w(j)) =e= 1;

Model portfolio / all /;

* EMP Annotations

File emp / ’%emp.info%’ /;

emp.nd=4;

put emp ’* problem %gams.i%’

/ ’stage 2 v r defr’

/ "jrandvar v(’att’) v(’gmc’) v(’usx’)"

loop(s,

put / p(s) vs(s,"att") vs(s,"gmc") vs(s,"usx"));

putclose emp;

* Dictionary

Parameters

s_v(s,j) "return from assets by scenario"

s_r(s) "return from portfolio by scenario" ;

Set dict / s .scenario.’’

v .randvar .s_v

r .level .s_r /;

solve portfolio using emp max r scenario dict;

display s_v, s_r;

As usual, the core model is defined first and the specifications relating to the stochastic structure of the
model are written to the file emp.info. Note that the statement emp.nd=4 ensures that 4 decimal places
are used for the values of the parameter vs. In the first line of the EMP annotations, the variables v and
r and the equation defr are assigned to the second stage. Note that the other variables and equations (in
this case, the variable w and the equation budget) are automatically assigned to the first stage. In the
second line of the annotations, the EMP keyword jrandvar is used to declare that v('att'), v('gmc')
and v('usx') are joint random variables, i.e. they are jointly distributed (thus we have 12 scenarios and
not 12∗12∗12=1728 scenarios). The respective probabilities and values are specified with a loop statement.
Observe that the syntax of the solve statement suggests that the return r is maximized. However, r is
in fact a random variable, since it is a function of random variables, so actually the expected return is
maximized.

In the second model we introduce a new variable for the expected return, evr. This new variable is linked
to the EMP keyword ExpectedValue in the annotations, thus it is made explicit that the expected value
of the return is optimized.

* Core Model

$include data.gms

Variables

r "value of portfolio under each scenario"

w(j) "portfolio selection"

evr "expected value of r"

obj "objective variable" ;

Positive Variables

w ;

Equations

4.51 Extended Mathematical Programming (EMP) 1509

defr "return of portfolio"

budget "budget constraint"

defobj "objective equation" ;

defr.. r =e= sum(j, v(j)*w(j));

budget.. sum(j, w(j)) =e= 1;

defobj.. obj =e= evr;

Model portfolio / all /;

* EMP Annotations

File emp / ’%emp.info%’ /;

emp.nd=4;

put emp ’* problem %gams.i%’

/ ’ExpectedValue r evr’

/ ’stage 1 obj defobj evr’

/ ’stage 2 v defr r’

/ "jrandvar v(’att’) v(’gmc’) v(’usx’)"

loop(s,

put / p(s) vs(s,"att") vs(s,"gmc") vs(s,"usx"));

putclose emp;

* Dictionary

Parameters

s_v(s,j) "return from assets by scenario"

s_r(s) "return from portfolio by scenario" ;

Set dict / s .scenario.’’

v .randvar .s_v

r .level .s_r /;

solve portfolio using emp max obj scenario dict;

In the EMP annotations, the EMP keyword ExpectedValue is followed by the variable r and the variable
evr. In this way the variable evr is declared to be the expected value of the (random) variable r. Note
that the new variables evr and obj belong to stage 1 and the variable evr is maximized (via obj). The
remainder of the annotations and the code referring to the output-handling information in the dictionary
are the same like in the first model. Both models have the same solution. We prefer the second model
since the syntax is more explicit and clearer.

Observe that the keyword ExpectedValue is particularly useful if users wish to model an objective that is
the weighted sum of several risk measures, thus trading-off different risk measures. An example with the
weighted sum of the expected value and Value at Risk as objective and an example with the weighted
sum of the expected value and Conditional Value at Risk as objective are given below.

Value at Risk (VaR)

The Value at Risk (VaR) is the value of the distribution at a given cut-off point; for example, the value
of the standard Normal distribution at the point x such that 95% of the distribution is to the left. In
this subsection we introduce the notion of VaR in more detail by developing a mathematical formulation,
demonstrating how VaR can be modeled with GAMS EMP using a simple example and showing how to
optimize the weighted sum of the expected value and VaR.

1510 User's Guide

VaR: Mathematical Formulation

Suppose G(x, ξ) is a real valued function of the decision vector x and a random data vector ξ and that it
denotes the loss function of a portfolio of assets. We aim to restrict potential losses and so we choose a
portfolio composition such that the loss only exceeds a certain threshold γ (γ ∈ R) with a probability
smaller or equal to α, α ∈ (0, 1), where α is small. This condition can be modeled as a chance constraint
and has the following form:

P (G(x, ξ) > γ) ≤ α (37)

It is easy to see that this can be written in the following way:

P (G(x, ξ)− γ ≤ 0) ≥ 1− α. (38)

Consider the random variable Zx := G(x, ξ) − γ. For a given value of x, let FZ(z) := P (Z ≤ z) be
the cumulative distribution function of Z. Now, the point x satisfies the constraint (37) if and only if
FZ(0) ≥ 1−α. This is equivalent to saying that x satisfies the constraint (39) if and only if F−1

Z (1−α) ≤ 0.

The (left-side) quantile F−1
Z (θ) is called Value at Risk. It is denoted by V aRθ(Z), i.e.

V aRθ(Z) = inf{t : FZ(t) ≥ θ}. (39)

Hence constraint (38) can be written in the following equivalent form:

V aR1−α(G(x, ξ)) ≤ γ. (40)

Value at Risk as introduced in equation (39) refers to a percentile on the left tail of a distribution. From
now on it will be denoted by V aRθ(Z). When considering the Value at Risk at the right tail of the
distribution, θ typically equals 0.9 or 0.95, it is denoted by V aRθ(Z).

Figure 2 illustrates V aR0.05(Z), where Z is normally distributed with mean µ = 0.645 and standard
deviation σ = 1.

The EMP framework provides the EMP keywords varlo and varup as a convenient alternative to chance
constraints to model Value at Risk.

VaR with EMP: A Simple Example

We continue to illustrate with the stochastic portfolio model that we have already used above. Consider
that the investor might be interested in a strategy that maximizes the threshold at a certain cutoff, say at
10% on the left tail of the return curve. Mathematically, the problem can be expressed as follows:

Max V aRθ[R]
s.t R =

∑
j wjvj∑

j wj = 1

wj ≥ 0,

(41)

where V aRθ is the Value at Risk at the lower θth percentile.

In the EMP annotations of the corresponding GAMS model we introduce a new variable for VaR (varr),
a scalar to specify the percentile we are interested in (theta) and the EMP keyword varlo:

4.51 Extended Mathematical Programming (EMP) 1511

Figure 4.5 VaR and CVaR

* Core Model

$include data.gms

Variables

r "value of portfolio under each scenario"

w(j) "portfolio selection"

varr "value at risk of r"

obj "objective variable" ;

Positive Variables

w ;

Scalar

theta "relative volume" / 0.1 /;

Equations

defr "return of portfolio"

budget "budget constraint"

defobj "objective equation" ;

defr.. r =e= sum(j, v(j)*w(j));

budget.. sum(j, w(j)) =e= 1;

defobj.. obj =e= varr;

Model portfolio / all /;

* EMP Annotations

File emp / ’%emp.info%’ /

put emp ’* problem %gams.i%’

1512 User's Guide

/ ’varlo r varr ’ theta

/ ’stage 1 obj defobj varr’

/ ’stage 2 r defr v’

/ "jrandvar v(’att’) v(’gmc’) v(’usx’)"

loop(s,

put / p(s) vs(s,"att") vs(s,"gmc") vs(s,"usx"));

putclose emp;

* Dictionary

Parameters

s_v(s,j) "return from assets by scenario"

s_r(s) "return from portfolio by scenario" ;

Set dict / s .scenario.’’

v .randvar .s_v

r .level .s_r /;

solve portfolio using emp max obj scenario dict;

The first line in the EMP annotations begins with the EMP keyword varlo. This line specifies that the
variable varr is the Value at Risk relating to the random variable r and the scalar theta is the percentile
(in range 0 to 1) we consider. The other lines in the annotations are similar to the second model above.
Note that the objective equals the Value at Risk at the left tail, denoted by V aR.

Observe that the EMP keyword varlo specifies VaR at the left tail of the probability distribution. For
the right tail of the distribution, the EMP keyword to be used is varup.

Note

• The keyword var is identical to varup which refers to the right tail of the distribution.

• Currently only the solver DE supports the keywords for VaR.

Note further, that it is only appropriate to maximize V aRα and minimize V aRα.

The implementation of the keywords varlo and varup is based on a mixed integer program similar to
that described in section Example with a Single Chance Constraint. Observe that these implementations
are likely to be hard and/or time consuming to solve. There is an option that allows users to customize
the big M value (default is 1000) in the same manner that we outline below:

$onecho > de.opt

VaRBigM = 500

$offecho

portfolio.optfile=1;

Observe that the EMP framework offers an alternative, shorter way to model VaR. There is no additional
variable for VaR, hence in the EMP annotations, the EMP keyword varlo is only followed by theta

and the objective variable in the solve statement is r. As varlo is specified in the annotations, the risk
measure is applied to the objective variable implicitly. The modified EMP annotations and the new solve
statement follow.

File emp / ’%emp.info%’ /;

put emp ’* problem %gams.i%’

/ ’varlo ’ theta

/ ’stage 2 r defr v’

/ "jrandvar v(’att’) v(’gmc’) v(’usx’)"

loop(s, put / p(s) vs(s,"att") vs(s,"gmc") vs(s,"usx"));

putclose emp;

...

solve portfolio using emp max r scenario dict;

Note that this alternative notation is shorter, but it is also opaque, therefore we recommend the first way.

4.51 Extended Mathematical Programming (EMP) 1513

Combining VaR and Expected Value

In a variation of the example above, consider an investor who aims to take into account both, the expected
return and the Value at Risk of the return at a certain threshold θ. She combines the two risk measures
and uses a scalar (λ) as a weight. A mathematical formulation of the problem reads as follows:

Max λE[R] + (1− λ)V aRθ[R]
s.t R =

∑
j wjvj∑

j wj = 1

wj ≥ 0,

(42)

where E[R] is the expected value of the return and V aRθ is the Value at Risk at the θth percentile.

This problem can be modeled in GAMS EMP as follows:

* Core Model

$include data.gms

Variables

r "value of portfolio under each scenario"

w(j) "portfolio selection"

varr "value at risk of r"

evr "expected value of r"

obj "objective variable" ;

Positive Variables

w ;

Scalars

theta "relative volume" / 0.1 /

lambda "weight EV versus VaR" / 0.2 /;

Equations

defr "return of portfolio"

budget "budget constraint"

defobj "convex combination of both risk measures" ;

defr.. r =e= sum(j, v(j)*w(j));

budget.. sum(j, w(j)) =e= 1;

defobj.. obj =e= lambda*evr + (1-lambda)*varr;

Model portfolio_ext / all /;

* EMP Annotations

File emp / ’%emp.info%’ /

put emp ’* problem %gams.i%’

/ ’ExpectedValue r evr’

/ ’varlo r varr ’ theta

/ ’stage 2 r defr v’

/ ’stage 1 defobj obj’

/ "jrandvar v(’att’) v(’gmc’) v(’usx’)"

loop(s,

put / p(s) vs(s,"att") vs(s,"gmc") vs(s,"usx"));

putclose emp;

* Dictionary

Parameters

s_v(s,j) "return from assets by scenario /s1.att 1/"

1514 User's Guide

s_r(s) "return from portfolio by scenario" ;

Set dict / s .scenario.’’

v .randvar .s_v

r .level .s_r /;

solve portfolio_ext using EMP max obj scenario dict;

Note that we introduced a variable for the expected value of the return like in the example above where
we modeled the expected return explicitly. Note further, that we added the parameter lambda and we
defined the variable obj to be the weighted sum of the expected value of the return evr and the lower
VaR varr. Observe that in the EMP annotations both keywords ExpectedValue and varlo are used.
The other parts of the model remain unchanged.

Conditional Value at Risk (CVaR)

The Conditional Value at Risk (CVaR) is the expected value of the left or right tail of the distribution;
for example, the expected value of the left 5% of the standard Normal distribution. Note that CVaR
is also called expected shortfall. In this subsection we introduce and discuss CVaR in more detail by
presenting a mathematical formulation, demonstrating how CVaR can be modeled with GAMS EMP
using a simple example and showing how to optimize the weighted sum of the expected value and CVaR.

CVaR: Mathematical Formulation

CV aRα is the expected average return (in a given time period) given that we are in the (α× 100)% left
tail of the return distribution, where α ∈ (0, 1). In other words, CV aRα is a mean of the left tail. For
example, if we are interested in the 5% worst cases, i.e. α = 0.05, CV aRα is the conditional expectation
of the return, given the return is no greater than VaR.

Let ξ be a random variable with probability density function p(ξ), let G(ξ) be a function of the random
variable ξ denoting the return of a portfolio of assets and let α ∈ (0, 1) be a probability. Then the
conditional value at risk of G(ξ) is defined as

CV aRα(G(ξ)) =
1

α

∫ V aRα

−∞
G(ξ) · p(ξ)dξ, (43)

where V aRα is the value at risk.

CVaR with EMP: A Simple Example

In the stochastic portfolio example that we have used throughout this section, the investor might be
interested to make sure that in the worst cases she loses as little as possible. Thus she could consider only
the worst 10% of possible cases and allocate her funds such that the expected mean return in these cases
is maximized. Mathematically, the problem can be expressed as follows:

Max CV aRθ[R]
s.t R =

∑
j wjvj∑

j wj = 1

wj ≥ 0,

(44)

where CV aRθ is the CVaR at the confidence level θ at the left tail of the distribution.

Like in the case of Value at Risk above, we introduce a new variable for CVaR (cvarr), a scalar to specify
the percentile we are interested in (theta) and the EMP keyword cvarlo in the EMP annotations:

4.51 Extended Mathematical Programming (EMP) 1515

* Core Model

$include data.gms

Variables

r "value of portfolio under each scenario"

w(j) "portfolio selection"

cvarr "conditional value at risk of r"

obj "objective variable" ;

Positive Variables

w ;

Scalar

theta "relative volume" / 0.1 /;

Equations

defr "return of portfolio"

budget "budget constraint"

defobj "objective equation" ;

defr.. r =e= sum(j, v(j)*w(j));

budget.. sum(j, w(j)) =e= 1;

defobj.. obj =e= cvarr;

Model portfolio / all /;

* EMP Annotations

File emp / ’%emp.info%’ /

put emp ’* problem %gams.i%’

/ ’cvarlo r cvarr’ theta

/ ’stage 1 obj defobj cvarr’

/ ’stage 2 r defr v’

/ "jrandvar v(’att’) v(’gmc’) v(’usx’)"

loop(s,

put / p(s) vs(s,"att") vs(s,"gmc") vs(s,"usx"));

putclose emp;

* Dictionary

Parameters

s_v(s,j) "return from assets by scenario"

s_r(s) "return from portfolio by scenario" ;

Set dict / s .scenario.’’

v .randvar .s_v

r .level .s_r /;

solve portfolio using emp max obj scenario dict;

In the EMP annotations, the first line starts with the EMP keyword cvarlo. This line specifies that the
variable cvarr is the left-tail CVaR relating to the random variable r and the scalar theta is the fraction
(in range 0 to 1) we consider. Like in the previous section, the objective variable, the objective equation
and the variable in the objective equation belong to the first stage while the equation that handles the
random data and all its variables belong to the second stage. Observe that the objective equals the
Conditional Value at Risk.

Note that the keyword cvarlo specifies CVaR at the left tail of the probability distribution. For the right
tail of the distribution the keyword to be used is cvarup.

1516 User's Guide

Note

• The EMP keyword cvar is identical to the keyword cvarup.

• Currently only the solver DE supports the keywords for CVaR.

The conditional value at risk denoting the mean of the right tail of the distribution can be denoted by
CV aR and is defined as:

CV aRα(G(ξ)) =
1

1− α

∫ ∞
V aRα

G(ξ) · p(ξ)dξ. (45)

Observe that it is only appropriate to maximize CV aRα and minimize CV aRα. Furthermore, CV aRα is
a concave function and so should only be constrained using e.g.

CV aRα ≥ γ

and CV aRα is convex, so should only appear in constraints like

CV aRα ≤ γ.

The EMP framework offers an alternative way to model CVaR. In this alternative formulation, there is no
additional variable for CVaR, hence in the EMP annotations, the EMP keyword cvarlo is only followed
by theta and the objective variable in the solve statement is r. As cvarlo is specified in the annotations,
the risk measure is applied to the objective variable implicitly. The modified EMP annotations and the
new solve statement follow.

File emp / ’%emp.info%’ /

put emp ’* problem %gams.i%’

/ ’cvarlo ’ theta

/ ’stage 2 r defr v’

/ "jrandvar v(’att’) v(’gmc’) v(’usx’)"

loop(s, put / p(s) vs(s,"att") vs(s,"gmc") vs(s,"usx"));

putclose emp;

...

solve portfolio using emp max r scenario dict;

Note that this alternative notation is shorter, but it is considerably less clear, therefore we recommend
the explicit notation of the first model.

Combining CVaR and Expected Value

In a final variation on the portfolio example, we consider an investor who aims to take into account both,
the expected return and the Conditional Value at Risk of the return at a certain threshold θ. She combines
the two risk measures and uses a scalar (λ) to weigh the two summands. A mathematical formulation of
the problem reads as follows:

Max λE[R] + (1− λ)CV aRθ[R]
s.t R =

∑
j wjvj∑

j wj = 1

wj ≥ 0,

(46)

where E[R] is the expected value of the return and CV aRθ is the CVaR at the confidence level θ.

This problem can be modeled with GAMS EMP as follows:

4.51 Extended Mathematical Programming (EMP) 1517

* Core Model

$include data.gms

Variables

r "value of portfolio under each scenario"

w(j) "portfolio selection"

cvarr "conditional value at risk of r"

evr "expected value of r"

obj "objective variable" ;

Positive Variables

w ;

Scalars

theta "relative volume" / 0.1 /

lambda "weight EV versus CVaR" / 0.2 /;

Equations

defr "return of portfolio"

budget "budget constraint"

defobj "convex combination of both risk measures" ;

defr.. r =e= sum(j, v(j)*w(j));

budget.. sum(j, w(j)) =e= 1;

defobj.. obj =e= lambda*evr + (1-lambda)*cvarr;

Model portfolio_ext / all /;

* EMP Annotations

File emp / ’%emp.info%’ /

put emp ’* problem %gams.i%’

/ ’ExpectedValue r evr’

/ ’cvarlo r cvarr ’ theta

/ ’stage 2 r defr v’

/ ’stage 1 defobj obj’

/ "jrandvar v(’att’) v(’gmc’) v(’usx’)"

loop(s,

put / p(s) vs(s,"att") vs(s,"gmc") vs(s,"usx"));

putclose emp;

* Dictionary

Parameters

s_v(s,j) "return from assets by scenario"

s_r(s) "return from portfolio by scenario" ;

Set dict / s .scenario.’’

v .randvar .s_v

r .level .s_r /;

solve portfolio_ext using emp max obj scenario dict;

Note that apart from the EMP keyword varlo being replaced by cvarlo, the code is identical to the code
above, where we maximized the weigthed sum of the expected value and VaR. Observe that by decreasing
the value of λ from 1 to 0 we can explore the results of an increasingly risk averse behavior.

EMP Syntax for Risk Measures

The EMP annotations where risk measures are used have the same general syntax like
stochastic models with recourse. In addition, the following keywords may be used:

1518 User's Guide

ExpectedValue rv var

varlo [rv var] scalar

varup [rv var] scalar

cvarlo [rv var] scalar

cvarup [rv var] scalar

The EMP keyword Expected Value is used to state that the variable var is the expected value of the
random variable rv. Note that the random variable rv must be defined to be a random variable in the
EMP annotations.

The EMP keywords varlo, varup, cvarlo and cvarup refer to VaR at the left tail of the distribution
(V aRα), VaR at the right tail of the distribution (V aRα), CVaR at the left tail of the distribution (
CV aRα) and CVaR at the right tail of the distribution (CV aRα) respectively.

Note

The EMP keyword var is a synonym to varup and cvar is a synonym to cvarup.

The specifications that follow all four keywords have a long and a short version. In the long version, the
random variable rv and the variable that is assigned to be the respective risk measure (VaR or CVaR)
are named explicitly. The scalar is a number in the interval (0, 1), it defines the percentile in VaR and
confidence level in CVaR. In the short version, only the scalar is specified. In this case the risk measure
will applied to the objective variable implicitly.

Note

These five keywords are only supported by the solver DE.

4.51.11.3 Chance Constraints with EMP

In stochastic programs with chance constraints the goal is to make an optimal decision prior to the
realization of random data while allowing the constraints (or some of them) to be violated with a certain
probability. Note that chance constraints are also called probabilistic constraints.

This section is organized as follows. After introducing a mathematical formulation of chance con-
straints, we show how such problems can be modeled with GAMS EMP using a simple example with
only one chance constraint. Then we extend the model to include multiple chance constraints. We
discuss the two ways to model problems with multiple chance constraints: using joint chance con-
straints and using individual chance constraints. Joint chance constraints require that all constraints
are satisfied simultaneously with a given probability. Individual chance constraints require each con-
straint to be satisfied with a given probability independently of other constraints. Further, the EMP
framework offers the option to penalize the violation of chance constraints. This is the topic of sub-
section Penalizing Violations of Chance Constraints. We conclude this section with an overview of the
EMP annotations that are specific to chance constraints.

4.51 Extended Mathematical Programming (EMP) 1519

Chance Constraints: Mathematical Formulation

Mathematically, a stochastic linear program with chance constraints can be expressed as follows:

Minx cTx
s.t. P (Ax ≤ b) ≥ p

x ≥ 0,
(47)

where x ∈ Rn is the decision variable and cT denotes the coefficients of the objective function, A ∈ Rm×n
is a random matrix and represents the coefficients and b ∈ Rm is a random vector and denotes the
right-hand side of the constraints. The distinctive feature of stochastic programs with chance constraints
is that the constraints (or some of them) may be violated with probability ε = 1− p, where 0 < p ≤ 1.
Note that ε is sometimes called the risk tolerance.

One way to solve a stochastic problem with chance constraints is to convert it to a mixed-integer problem
(MIP) first and then solve the MIP equivalent. The idea is to introduce a set of scenarios S and a vector
with binary variables, say yk ∈ Rm, for each scenario k ∈ S. The binary variables take value 1 if the
corresponding constraint is satisfied in a scenario and 0 otherwise. A scenario-based formulation of the
chance-constrained stochastic linear program above can be written as:

Minx cTx
s.t. Akx ≤ bk +Mk(1− yk)∑

k∈S yk ≥ p× |S|
x ≥ 0, y ∈ (0, 1)|S|,

(48)

where Mk ∈ Rm is a chosen big-M vector. The entries of the vector Mk should be chosen such that it
does not cut off any feasible solution if yk = 0.

Example with a Single Chance Constraint

We start with the simplest case, where the random matrix A consists of just one random vector a,
resulting in a problem with a single chance constraint. The following example is adapted from model
[SIMPLECHANCE].

Min x1 + x2

s.t. P (ωx1 + x2 ≥ 7) ≥ 0.75, ω ∈ Ω = {1, 2, 3, 4}
x1, x2 ≥ 0.

(49)

Here the random parameter ω has four possible realizations. Thus we have four scenarios and we assume
that each scenario is equally likely to be realized, i.e. πk = 1

4 , where πk denotes the probability that
scenario k is realized. Note that in this example b is fixed at 7. As p = 0.75 and each scenario is equally
likely to be realized, we need to choose x1 and x2 such that the inequality is satisfied in at least 3 scenarios.
For clarity, we spell out the inequalities for the scenarios:

k = 1 : ω1 = 1 ω1x1 + x2 ≥ 7
k = 2 : ω2 = 2 ω2x1 + x2 ≥ 7
k = 3 : ω3 = 3 ω3x1 + x2 ≥ 7
k = 4 : ω4 = 4 ω4x1 + x2 ≥ 7.

(50)

1520 User's Guide

The MIP equivalent of problem (49) is given below:

Min x1 + x2

s.t. 1x1 + x2 ≥ 7−M(1− y1)
2x1 + x2 ≥ 7−M(1− y2)
3x1 + x2 ≥ 7−M(1− y3)
4x1 + x2 ≥ 7−M(1− y4)

cc1 = 1−
∑
k π

kyk, k = 1, . . . , 4, πk = 1
4

x1, x2 ≥ 0
0 ≤ cc1 ≤ (1− 0.75)
yk ∈ (0, 1).

(51)

Observe that the first four constraints cover the four possible scenarios with ω taking the values 1, 2, 3
and 4 respectively. On the right-hand side we introduce a big-M factor and yk, a binary indicator variable.
yk takes the value 1 if the constraint is satisfied and zero otherwise. The new variable cc1 represents the
probability that the constraint is violated. If cc1 equals zero, the sum will equal 1, indicating that the
constraint is satisfied in all four scenarios. If cc1 = 0.25, the constraint will be unsatisfied in one scenario
out of four (for this scenario yk = 0).

The problem can be modeled in GAMS EMP as follows:

* Core Model

Positive Variables x1, x2;

Variables z;

Scalar om / 1 /;

Equations obj, e1;

obj.. z =e= x1 + x2;

e1.. om*x1 + x2 =g= 7;

Model sc / all /;

* EMP Annotations

File emp / ’%emp.info%’ /;

put emp;

$onput

randvar om discrete 0.25 1 0.25 2 0.25 3 0.25 4

chance e1 0.75

$offput

putclose emp;

* Dictionary

Set scen "scenarios" / s1*s4 /;

Parameter s_om(scen)

x1_l (scen)

x2_l (scen)

e1_l (scen);

Set dict / scen .scenario.’’

om .randvar .s_om

x1 .level .x1_l

x2 .level .x2_l

4.51 Extended Mathematical Programming (EMP) 1521

e1 .level .e1_l/;

solve sc min z use EMP scenario dict;

display s_om, x1_l, x2_l, e1_l;

Like other EMP stochastic programming models, the model consists of three parts: the core model, the
EMP annotations and the dictionary with output-handling information. As usual, the core model is
defined as a deterministic model and the specifications relating to the stochastic structure of the problem
are written to the file emp.info. In the EMP annotations, the EMP keyword randvar is used to declare a
parameter from the core model as a random variable. The keyword is followed by om, the random variable,
and the distribution. The EMP keyword discrete indicates that we have a discrete distribution. The
discrete distribution is specified via probability-numerical value pairs. Note that continuous distributions
are also possible. See section Random Variables with Continuous Distributions for more information.
The second line in the EMP annotations starts with the EMP keyword chance followed by the equation
e1 and a probability. The specification means that the constraints e1 must hold for at least 75% of all
scenarios. We can verify that this requirement has been enforced by checking in the listing file the level
value of the constraint e1 l. We will see that in the first scenario the constraint was violated, but is was
satisfied in all other scenarios.

Observe that the EMP keyword chance allows for an optional specification that is related
to a penalization factor for constraints that are violated. This topic is discussed in section
Penalizing Violations of Chance Constraints below.

Note

Currently, there are no stages in stochastic problems with chance constraints, unlike in stochastic
problems with recourse.

As the problem is solved as a MIP, it is important that the options OptCA and OptCR are assigned
appropriate values.

Note that the default value of M is 1e7 for the solver Lindo. To customize this and set it to, e.g., 1000
instead, one could insert the following five lines before the solve statement:

option emp = lindo;

$onecho > lindo.opt

STOC_BIGM 1e3

$offecho

sc.optfile = 1;

For DE the default value of M is 10000 and it could be changed to 1000 in a similar way as seen above
for Lindo:

option emp = de;

$onecho > de.opt

ccreform bigM 1e3

$offecho

sc.optfile = 1;

Note that ccreform is a DE option. This option allows to specify two alternative solution strategies: a
reformulation using a convex hull and a reformulation using indicator variables and indicator constraints.
The following line indicates that a convex hull with M = 1000 and ε = 0.00001 is to be used:

ccreform cHull 1e3 1e-6

For indicator variables and constraints, the following line is used:

ccreform indic

Note that currently only the solver CPLEX supports indicator variables, so the resulting reformulated
problem has to be solved with CPLEX.

1522 User's Guide

Examples with Multiple Chance Constraints

Stochastic problems with multiple chance constraints have two different forms: problems with joint chance
constraints and problems with multiple individual chance constraints. In problems with joint chance
constraints the constraints all have to be satisfied simultaneously with probability p. In problems with
multiple individual chance constraints each constraint carries its own risk tolerance. We illustrate with
two examples.

Joint Chance Constraints

We illustrate joint chance constraints by extending the example above by one constraint resulting in a
problem with two chance constraints:

Min x1 + x2

s.t. P (ω1x1 + x2 ≥ 7; ω2x1 + 3x2 ≥ 12) ≥ 0.6, (ω1, ω2) ∈ Ω
x1, x2 ≥ 0,

(52)

where

Ω = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (4, 3)} (4.27)

and

πk = π(ω1, ω2) =
1

12
for all (ω1, ω2) ∈ Ω. (4.28)

Note that both random variables follow discrete uniform distributions, ω1 has four realizations and ω2 has
three realizations. Thus we have 12 scenarios that are all equally likely. The MIP equivalent takes the
following form:

Min x1 + x2

s.t. 1x1 + x2 ≥ 7−M(1− y1)
1x1 + 3x2 ≥ 12−M(1− y1)
2x1 + x2 ≥ 7−M(1− y2)
1x1 + 3x2 ≥ 12−M(1− y2)
...
4x1 + x2 ≥ 7−M(1− y12)
3x1 + 3x2 ≥ 12−M(1− y12)

cc1 = 1−
∑
k π

kyk, k = 1, . . . , 12, πk = 1
12

x1, x2 ≥ 0
0 ≤ cc1 ≤ (1− 0.6)
yk ∈ (0, 1).

(53)

Note that the first set of constraints covers the 12 scenarios, where each scenario has two constraints. The
other constraints are similar to those introduced in the previous model.

The problem can be modeled with GAMS EMP as follows:

4.51 Extended Mathematical Programming (EMP) 1523

* Core Model

Positive Variables x1, x2;

Variables z;

Scalars om1, om2;

om1 = 1;

om2 = 1;

Equations obj, e1, e2;

obj.. z =e= x1 + x2;

e1.. om1*x1 + x2 =g= 7;

e2.. om2*x1 + 3*x2 =g= 12;

Model sc / all /;

* EMP Annotations

File emp / ’%emp.info%’ /;

put emp ’* problem %gams.i%’/;

$onput

randvar om1 discrete 0.25 1 0.25 2 0.25 3 0.25 4

randvar om2 discrete 0.3333 1 0.3334 2 0.3333 3

chance e1 e2 0.6

$offput

putclose emp;

* Dictionary

Set scen "scenarios" / s1*s12 /;

Parameters s_om1(scen)

s_om2(scen)

x1_l (scen)

x2_l (scen)

e1_l (scen)

e2_l (scen);

Set dict / scen .scenario.’’

om1 .randvar .s_om1

om2 .randvar .s_om2

x1 .level .x1_l

x2 .level .x2_l

e1 .level .e1_l

e2 .level .e2_l/;

solve sc min z use emp scenario dict;

display s_om1, s_om2, x1_l, x2_l, e1_l, e2_l;

In the EMP annotations, the line chance e1 e2 0.6 specifies that in at least 60% of all scenarios both
constraints e1 and e2 must be satisfied at the same time. There are a total of 12 scenarios, hence both
constraints must be satisfied in at least 8 scenarios (i.e. 12 × 0.6 = 7.2 ≤ 8). We can verify that this
requirement has been enforced by checking in the listing file the level values of the constraints, e1 l and
e2 l. Indeed, in the optimal solution both constraints hold in scenarios 4 to 12, meaning that there are 9
scenarios that satisfy both inequalities.

1524 User's Guide

Individual Chance Constraints

In stochastic problems with individual chance constraints there is no correlation between the probabilities
of the rows of the matrix A. Hence problem (47) takes the following form:

Minx cTx
s.t. P (Aix ≤ bi) ≥ pi, i = 1, . . . ,m

x ≥ 0.
(54)

To illustrate, we use an extended version of the the example from the previous section and replace the
joint chance constraints by individual chance constraints:

Min x1 + x2

s.t. P (ω1x1 + x2 ≥ 7) ≥ 0.75, ω1 ∈ Ω1 = {1, 2, 3, 4}
P (ω2x1 + 3x2 ≥ 12) ≥ 0.6, ω2 ∈ Ω2 = {1, 2, 3}
P (ω1x1 + ω2x2 ≥ 10) ≥ 0.5, (ω1, ω2) ∈ Ω1 × Ω2 = Ω
x1, x2 ≥ 0.

(55)

Note that Ω is defined as in (52) above, we have again 12 scenarios, each with probability πk = 1
12 .

However, in this example, the first inequality must hold in 9 out of 12 scenarios (0.75 × 12 = 9), the
second inequality must hold in 8 out of 12 inequalities (0.6× 12 = 7.2 ≤ 8) and the third inequality must
hold in 6 out of 12 scenarios. Note further, that we may have four types of scenarios: scenarios where
all constraints are violated, scenarios where two constraints are violated, scenarios where one constraint
is violated and scenarios where all three constraints are satisfied. The only condition is that for each
constraint there is the respective number of scenarios where the constraint is satisfied. Observe that the
random data in the third inequality is a combination of the random data of the first two inequalities. The
inequalities for the scenarios are given below:

k = 1 : ω1
1 = 1, ω1

2 = 1 ω1
1x1 + x2 ≥ 7
ω1

2x1 + 3x2 ≥ 12
ω1

1x1 + ω1
2x2 ≥ 10

k = 2 : ω2
1 = 1, ω2

2 = 2 ω2
1x1 + x2 ≥ 7
ω2

2x1 + 3x2 ≥ 12
ω2

1x1 + ω2
2x2 ≥ 10

...
k = 12 : ω12

1 = 4, ω12
2 = 3 ω12

1 x1 + x2 ≥ 7
ω12

2 x1 + 3x2 ≥ 12
ω12

1 x1 + ω12
2 x2 ≥ 10

(56)

4.51 Extended Mathematical Programming (EMP) 1525

The MIP equivalent follows:

Min x1 + x2

s.t. 1x1 + x2 ≥ 7−M(1− y1
1)

1x1 + 3x2 ≥ 12−M(1− y2
1)

1x1 + 1x2 ≥ 10−M(1− y3
1)

2x1 + x2 ≥ 7−M(1− y1
2)

1x1 + 3x2 ≥ 12−M(1− y2
2)

2x1 + 1x2 ≥ 10−M(1− y3
2)

...
4x1 + x2 ≥ 7−M(1− y1

12)
3x1 + 3x2 ≥ 12−M(1− y2

12)
4x1 + 3x2 ≥ 10−M(1− y3

12)

cc1 = 1−
∑
k π

ky1
k, k = 1, . . . , 12, πk = 1

12
cc2 = 1−

∑
k π

ky2
k, k = 1, . . . , 12, πk = 1

12
cc3 = 1−

∑
k π

ky3
k, k = 1, . . . , 12, πk = 1

12

x1, x2 ≥ 0
0 ≤ cc1 ≤ (1− 0.75)
0 ≤ cc2 ≤ (1− 0.6)
0 ≤ cc3 ≤ (1− 0.5)

yjk ∈ (0, 1).

(57)

As expected, there are three constraints for every scenario. Note that we introduced three new variables,
cc1, cc2 and cc3 and three corresponding constraints. Each of the variables has a different range reflecting
the different probabilities with which a constraint may be violated.

The core model of the GAMS code is very similar to the core model with joint chance constraints. We
just add the third inequality:

Equations obj, e1, e2, e3;

obj.. z =e= x1 + x2;

e1.. om1*x1 + x2 =g= 7;

e2.. om2*x1 + 3*x2 =g= 12;

e3.. om1*x1 + om2*x2 =g= 10;

There is a slight modification in the annotations:

File emp / ’%emp.info%’ /;

put emp ’* problem %gams.i%’/;

$onput

randvar om1 discrete 0.25 1 0.25 2 0.25 3 0.25 4

randvar om2 discrete 0.3333 1 0.3334 2 0.3333 3

chance e1 0.75

chance e2 0.6

chance e3 0.5

$offput

putclose emp;

Observe that we have three lines that start with the EMP keyword chance: every constraint is listed
separately with its respective probability.

1526 User's Guide

Note

In case one constraint has to be satisfied in all scenarios (so it is strictly speaking not a chance
constraint), then it has to be listed with probability 1.0.

An overview of which constraints are satisfied in which scenarios in the optimal solution is given in the
following table:

Scenarios 1 2 3 4 5 6 7 8 9 10 11 12

Scenarios where e1 is satisfied x x x x x x x x x

Scenarios where e1 is satisfied x x x x x x x x

Scenarios where e1 is satisfied x x x x x x x

Table 7: Overview of constraint satisfaction per scenario

Observe that all constraints are satisfied in as many scenarios as required and there are scenarios where
all three constraints are satisfied (k = 6, 8, 9, 11, 12), scenarios where only two constraints are satisfied
(k = 5, 7, 10), scenarios where only one constraint is satisfied (k = 2, 3, 4) and one scenario where all
constraints are violated (k = 1).

The choice whether joint or individual chance constraints should be used depends on the system being
modeled. Both approaches have their own advantages. Individual chance constraints are weaker since not
all constraints have to be satisfied at the same time. This can be clearly observed in the optimal solution
for example (55). The objective value is 5.20 in the model with joint chance constraints and 4.75 in the
model with individual chance constraints (assuming that each constraint is satisfied in 60% of all scenarios).
As it is a minimizing problem, the model with individual chance constraints yields the better result.
However, in this solution we have only 6 scenarios where both constraints are simultaneously satisfied
while each constraint is satisfied in eight scenarios in total for the joint chance constraint formulation, as
required.

Penalizing Violations of Chance Constraints

The EMP framework provides the syntax for a penalty factor for each scenario that violates one or more
constraints. In the example with joint constraints above, the EMP annotations could be modified in the
following way:

$onput

randvar om1 discrete 0.25 1 0.25 2 0.25 3 0.25 4

randvar om2 discrete 0.3333 1 0.3334 2 0.3333 3

chance e1 e2 0.6 3

$offput

Note that we added the number 3 at the end of the last line. This new entry represents a penalty factor.
Recall that the MIP equivalent (53) takes the following form:

Min z = x1 + x2

s.t. 1x1 + x2 ≥ 7−M(1− y1)
1x1 + 3x2 ≥ 12−M(1− y1)
...
4x1 + x2 ≥ 7−M(1− y12)
3x1 + 3x2 ≥ 12−M(1− y12)
cc1 = 1−

∑
k π

kyk, k = 1, . . . , 12, πk = 1
12

x1, x2 ≥ 0
0 ≤ cc1 ≤ (1− 0.6)
yk ∈ (0, 1).

(58)

4.51 Extended Mathematical Programming (EMP) 1527

Observe that the probability with which the constraints are allowed to be violated is stored in the variable
cc1. Introducing a penalty factor or weight w has the effect that the term (w × cc1) is added to the
objective function:

z = x1 + x2 + w × cc1 = x1 + x2 + 3 cc1 (4.29)

Similarly, we could add weights in the example with individual chance constraints:

chance E1 0.75 5

chance E2 0.6 6

chance E3 0.5 7

Given these annotations, we obtain the following objective function in the MIP equivalent:

z = x1 + x2 + 5 cc1 + 6 cc2 + 7 cc3. (4.30)

Penalty terms can be useful to explore sensitivities to slight changes.

Note

Like in the context of soft constraints, the penalty term is added in minimization problems and
subtracted in maximization problems.

Moreover, the probability expression cc1 in the MIP equivalent may be used as a variable in the original
model. For example, in the joint chance constraints problem above, we could introduce a new variable,
viol, in the objective function:

Min z = x1 + x2 + 3 ∗ viol (4.31)

Then we write the chance constraint specification in the EMP annotations as follows:

chance E1 E2 0.6 viol

The addition of the variable viol as penalty factor causes cc1 to be replaced by viol in the MIP equivalent.
Thus we have:

viol = 1−
∑
k

πkyk, k = 1, . . . , 12, πk =
1

12
, viol ∈ [0, 0.4]. (4.32)

Note that the corresponding model is equivalent to the joint chance constraints model with penalty factor
3 with which we started this subsection.

1528 User's Guide

EMP Syntax for Chance Constraints

The general syntax of the EMP annotations used to specify stochastic problems with chance constraints
is as follows:

[randvar rv discrete prob val {prob val}]

[randvar rv distr par {par}]

[jrandvar rv rv {rv} prob val val {val} {prob val val {val}}]

chance equ {equ} [holds] minRatio [weight|var]

{chance equ {equ} [holds] minRatio [weight|var]}

The first three lines present three ways to specify random variables. The syntax and logic is the same as
in stochastic problems with recourse, see above for details. Note that at least one random variable has to
be specified. The EMP keyword chance is used to define the constraint(s) that only have to hold for a
certain ratio of the possible outcomes. This ratio is given with the number minRatio (0 ≤ minRatio ≤ 1).
The keyword holds is optional and does not affect the solver. The remaining specifications are optional
and relate to the penalization of chance constraints that are violated. If weight is defined, the violation
of a chance constraint will be penalized in the objective function (weight× violationRatio). Alternatively,
if the name of a variable of the model (var) is specified, the violation will be multiplied by the value of
this variable instead of the fixed multiplier weight.

In this section we have introduced various versions of problems with chance constraints with simple
examples. For a more complex example, see the farming model [KILOSAFARM] in the GAMS EMP
Model Library.

4.51.12 EMP Keywords

Some words act as keywords in the context of the EMP annotations in the file emp.info, but they are not
GAMS reserved words, i.e. they are not keywords in the GAMS code apart from the EMP annotations.
In this section we present an overview of all GAMS EMP keywords, ordered according to the type of
programming where they are used.

4.51.12.1 GAMS EMP Keywords for Soft Constraints

EMP Keyword Description

abs Penalty function: absolute value of the equation.

adjustequ Indicates that the specification(s) that follow relate to equations that are converted
from constraints to penalty terms in the objective function.

maxz Penalty function: the maximum of the equation and zero. An example is given
above.

sqr Penalty function: least squares applied to the equation. An example is given
above.

4.51.12.2 GAMS EMP Keywords for Variational Inequalities

EMP Keyword Description

VI
Indicates that the specifications that follow are a variational inequality. See the
discussion of EMP specifications for VI and the example above.

QVI
Indicates that the specifications that follow are a quasi-variational inequality. See
the discussion of EMP specifications for QVI and the example above.

4.51 Extended Mathematical Programming (EMP) 1529

4.51.12.3 GAMS EMP Keywords for Equilibrium Problems

EMP Keyword Description

dualvar See below.

Equilibrium Indicates that the specifications that follow define the struc-
ture of an equilibrium problem. For examples, see sec-
tions Equilibrium Problems with EMP: A Simple Example and
Equilibrium Problems with EMP: Example with Dual Variables. The gen-
eral syntax of EMP annotations for equilibrium problems is introduced in section
EMP Syntax for Equilibrium Problems.

implicit Specifies a shared variable and its defining constraint. For details, see section
Equilibrium Problems with Shared Variables.

max This keyword is followed by the objective variable, the decision variable(s) and
the equation(s) of the maximization problem of one agent.

min
This keyword is followed by the objective variable, the decision variable(s) and
the equation(s) of the minimization problem of one agent.

VI Indicates that the specifications that follow define a VI, as in this example.

VIsol Specifies that the equation that follows is a shared constraint and prompts the
EMP framework to use the MCP reformulation where a variational inequality is
associated with the shared constraint. For more information and an example, see
section Equilibrium Problems with Shared Constraints.

4.51.12.4 GAMS EMP Keywords for Embedded Complementarity Systems

EMP Keyword Description

DualEqu This keyword is followed by an equation-variable pair. It establishes a complemen-
tarity relationship between an external equation and the named variable of the
model. An example is given above. See also the spatial price equilibrium model
[HARK-MONOP].

DualVar
This keyword is followed by a variable-equation pair. It specifies that
the variable is the dual of the equation. Examples are discussed
in sections Equilibrium Problems with EMP: Example with Dual Variables and
Embedded Complementarity Systems.

Note that problems with embedded complementarity systems can be recast as equilibrium problems.
Details are given in section Embedded Complementarity Systems.

4.51.12.5 GAMS EMP Keywords for Bilevel Programming

EMP Keyword Description

bilevel Indicates that the specifications that follow relate to a bilevel programming
problem. The keyword is follwed by the decision variable(s) of the upper-level
problem and the definitins(s) of the lower-level problem(s). For examples and
more details, see section Bilevel Programs.

dualvar See above.

max This keyword is followed by the objective variable, the decision variable(s) and
the equation(s) of the maximization problem of one agent.

min This keyword is followed by the objective variable, the decision variable(s) and
the equation(s) of the minimization problem of one agent, as in this example.

VI Indicates that the specifications that follow define a VI, as in this example.

1530 User's Guide

4.51.12.6 GAMS EMP Keywords for Disjunctive Programming

EMP Keyword Description

bigM Indicates that the big M reformulation method shall be used.

chull Indicates that a convex hull shall be used for the reformulation. Note that this is
the default method.

default Indicates that the specification that follows is the reformulation method.

disjunction Indicates that the specification that follows is a disjunction. For a discussion of
the general syntax following this keyword, see above.

indic Indicates that indicator constraints shall be used as reformulation method.

star (∗) The symbol ∗ will be replaced by internal default binary variables, thus explicit
binary variables that model the Boolean variables are not needed. Note that
default binary variables may only be used if there are no logic equations in the
model. For an example and more details, see above.

4.51.12.7 GAMS EMP Keywords for Stochastic Programming

EMP Keyword Description

chance Defines individual or joint chance constraints.

cvar Synonym to cvarup.

cvarlo This keyword assigns a variable to have the value CV aRα, where α is a scalar
that represents the confidence level for the Conditional Value at Risk. Note that
cvarlo refers to the left tail of the distribution. For more details and examples,
see section Conditional Value at Risk (CVaR).

cvarup This keyword assigns a variable to have the value CV aRα. α is a scalar that
represents the confidence level for the Conditional Value at Risk. Note that
cvarup refers to the right tail of the distribution.

discrete Indicates that the specification that follows is the discrete distribution of one or
more random variables.

ExpectedValue This keyword is used to state that a variable is the expected value of a random
variable.

jrandvar This keyword is used to define discrete random variables that are jointly distributed.
At least two random variables must be named. For an example, see the news
vendor model [NBDISCJOINT].

randvar This keyword declares that a parameter of the model is in fact a stochastic random
variable. The keyword is followed by the name of the parameter and details about
the probability distribution (discrete or parameteric). A list of all supported
parametric distributions is given in Table 4.

sample
This keyword allows users to customize the size of the sample of one or more
random variables from a continuous distribution and - optionally - to determine
the variance reduction method to be used. An example and further details are
given above. Note that without a valid LINDO license this is limited to the
Normal and Binomial distributions with a maximum sample size of 10.

setSeed This keyword sets the seed for the random number generator of the sampling
routines that are called via the keyword sample. If setSeed is used in EMP
annotations, the seed will be set once before all samples will be generated. Note
that a valid LINDO license is required to use this keyword.

stage This keyword is followed by a number and the names of the random variables,
variables and equations that are assigned to the respective stage. Stage 1 is
the default stage for all random variables, variables and equations that are not
assigned a stage explicitly except for objective equation and variable. Their default
stage is the highest stage in the model.

4.52 Accessing Model Libraries 1531

EMP Keyword Description

stageDefault This keyword is followed by a number. This specifies the default stage for all
random variables, variables and equations that are not assigned a stage explicitly
(except for objective equation and variable). If this keyword is not used explicitly,
the default is 1.

var Synonym to varup.

varlo This keyword assigns a variable to have the value V aRα, where α is a scalar
that represents the percentile of the Value at Risk. Note that varlo refers to
the left tail of the distribution. For more details and examples, see section
Value at Risk (VaR).

varup This keyword assigns a variable to have the value V aRα, where α is a scalar that
represents the percentile of the Value at Risk. Note that varup refers to the right
tail of the distribution and α typically equals 0.95 or 0.9. For further information,
see section Value at Risk (VaR).

Currently, two GAMS solvers can be used to solve stochastic programming models with EMP: DE and
LINDO. Not all keywords mentioned above are supported by both solvers. The following table specifies
which keywords can be used with which solvers. The keywords not mentioned in the table are supported
by all solvers mentioned.

DE LINDO

chance
√ √

jrandvar
√ √

randvar(discrete)
√ √

randvar(parametric)
√ √

sample
√ √

setSeed
√

var
√

cvar
√

ExpectedValue
√

Table 8: Solver capabilities

Note

In general, JAMS is the default solver for models of type EMP. However, since JAMS cannot handle
stochastic EMP models, GAMS switches the solver to DE automatically when, a stochastic EMP
model is tried to be solved with JAMS.

Further information about these solvers can be found in the corresponding solver manuals. The stochastic
programming options for the solver LINDO might be of particular interest.

4.52 Accessing Model Libraries

Professor Paul Samuelson is fond of saying that he hopes each generation of economists will be able to
"stand on the shoulders" of the previous generation. The library of models included with the GAMS
system is a reflection of this desire. We believe that the quality of modeling will be greatly improved
and the productivity of modelers enhanced if each generation can stand on the shoulders of the previous
generation by beginning with the previous models and enhancing and improving them. The Model
Libraries includes a large number of models, collectively organized as

1532 User's Guide

• GAMS Model Library - includes GAMS models representing interesting and sometimes classic
problems, ranged from production and shipment by firms, investment planning, cropping patterns
in agriculture, operation of oil refineries and petrochemical plants, macroeconomics stabilization,
applied general equilibrium, international trade in aluminum and in copper, water distribution
networks, and many more.

• GAMS Test Library - includes GAMS models developed for testing and quality control, both for
the GAMS base module and the many solvers distributed with the GAMS system.

• GAMS Data Utilities Library - includes GAMS models demonstrating various utilities to
interface GAMS with other tools and applications such as spreadsheets and database interface.

• GAMS EMP Library - includes GAMS Extended Mathematical Programming (EMP) models
that illustrate and test the capabilities of GAMS/EMP.

• GAMS API Library - includes GAMS Models used as scripts to compile and execute application
programs in various programming languages interfacing to GAMS.

• FIN Library - includes GAMS practical financial optimization models described in the book
Practical Financial Optimization: Decision Making for Financial Engineers by Con-

siglio, Nielsen and Zenios,

• NOA Library - includes GAMS nonlinear optimization applications models based on the book
Nonlinear Optimization Applications Using the GAMS Technology by Neculai Andrei.

• PSOPT Library - includes GAMS optimization models based on the book Power System

Optimization Modelling in GAMS by Alireza Soroudi.

The models included have been selected not only because they collectively provide strong shoulders for
new users to stand on, but also because they represent interesting and sometimes classic problems. For
example the trade-off between consumption and investment is richly illustrated in the Ramsey problem,
which can be solved using nonlinear programming methods. Examples of other problems included in the
library are production and shipment by firms, investment planning in time and space, cropping patterns
in agriculture, operation of oil refineries and petrochemical plants, macroeconomics stabilization, applied
general equilibrium, international trade in aluminum and in copper, water distribution networks, and
relational databases.

Another criterion for including models in the library is that they illustrate the modeling capabilities GAMS
offers. For example, the mathematical specification of cropping patterns can be represented handily in
GAMS. Another example of the system's capability is the style for specifying initial solutions as staring
points in the search for the optimal solution of dynamic nonlinear optimization problems.

Finally, some models have been selected for inclusion because they have been used in other modeling
systems. Examples are network problems and production planning models. These models permit the user
to compare how problems are set up and solved in different modeling systems.

Most of the models have been contributed by GAMS users. The submission of new models is encouraged.
If you would like to see your model in a future release of the library, please send the model and associated
documents and reports to GAMS Development Corporation.

4.52.1 Usage

4.52.1.1 Command Line Approach

One way to access the library is through command line. The following commands copy a model from the
library directory into the current directory.

https://www.amazon.com/Practical-Financial-Optimization-Decision-Engineers/dp/1405132019/ref=ed_oe_p
https://www.amazon.com/Nonlinear-Optimization-Applications-Technology-Springer/dp/1461467969
https://www.amazon.com/Nonlinear-Optimization-Applications-Technology-Springer/dp/1461467969
https://books.google.de/books/about/Power_System_Optimization_Modeling_in_GA.html?id=-kszDwAAQBAJ&redir_esc=y
https://books.google.de/books/about/Power_System_Optimization_Modeling_in_GA.html?id=-kszDwAAQBAJ&redir_esc=y

4.52 Accessing Model Libraries 1533

Command Library to access

gamslib GAMS Model Library

testlib GAMS Test Library

datalib GAMS Data Library

emplib GAMS EMP Library

apilib GAMS API Library

finlib FIN Library

noalib NOA Library

psoptlib PSOPT Library

Take the command gamslib for an example, if you enter gamslib without any parameters, the command
syntax will be displayed as shown below:

> gamslib modelname [target]

or

> gamslib modelnum [target]

where

• modelname is the modelname

• modelnum is the model sequence number, and

• target is the target file name.

If the target file name is not provided, the default is modelname.gms. The file will be automatically copied
into the current working directory. For example, the [TRNSPORT] model from the GAMS Model
library has sequence number 1 and could be copied in any of the following ways.

To copy [TRNSPORT] model file to target file trnsport.gms under the current directory:

> gamslib trnsport

> gamslib 1

To copy [TRNSPORT] model file to target file myname.gms under the current directory:

> gamslib trnsport myname

> gamslib 1 myname

The other commands have similar usage to gamslib command.

1534 User's Guide

4.52.1.2 IDE Approach

A convenient way to access the model library on the major platforms is the ”Model Library Explorer”
from GAMS Studio. It is described in detail in the GAMS Studio documentation.

Users may define their own library by using a GLB file. These libraries can also be accessed through
Studio.

4.53 Mathematical Programming System for General
Equilibrium analysis (MPSGE)

• Introduction to MPSGE

• MPSGE Models in GAMS

• Demand Theory and General Equilibrium: An Intermediate Level Introduction to MPSGE

• Constant Elasticity of Substitution Functions: Some Hints and Useful Formulae

• A Library of Small Examples for Self-Study

• Linking Implan Social Accounts to MPSGE

• The MPSGE guide is also available as PDF.

4.53.1 Introduction to MPSGE

MPSGE is a language used for formulating and solving Arrow–Debreu economic equilibrium models and
exists as a subsystem within GAMS. The name stands for ‘mathematical programming system for general
equilibrium’. MPSGE provides a short-hand non-algebraic representation for the systems of nonlinear
inequalities which underly general equilibrium models. The MPSGE framework is based on nested constant
elasticity of substitution utility and production functions. The data requirements for a model include
share and elasticity parameters, endowments, and tax rates for all the consumers and production sectors
in the model. These may or may not be calibrated from a consistent benchmark equilibrium dataset.

The main benefit of using MPSGE is that modelers are released from having to write the equations of
the model and the calibrated demand and supply functions. Experience shows that even computing the
parameters of the functions is error-prone. The tabular input format of MPSGE facilitates a compact,
non-algebraic representation of the equations of a model. Thus algebraic tedium and the scope for
programming errors are reduced, and more attention can be paid to economic interpretation and testing
of alternative formulations.

This chapter offers an introduction to MPSGE for users who are familiar with GAMS. For more information
on MPSGE and details on more advanced features, see [156] and

[130]. In addition, a library of small examples for self-study is available here .

This chapter is organized as follows. We start with an overview of some basic economic ideas and
general remarks on specifying an MPSGE model. Next, we introduce a first simple example. Then
we demonstrate how intermediate demand and joint production are modeled with MPSGE. We follow
with a third model that features a small open economy and also includes taxes on inputs and outputs,
labor-leisure choice, classical unemployment, and nested demand functions. We conclude the chapter
with an overview of MPSGE keywords and the syntax for specifying functions, some other features like
domain restrictions on variable declarations, and a few brief comments on MPSGE-specific output in the
GAMS listing file. Note that a full version of all MPSGE models that are discussed, including standard
GAMS versions, are given in the Appendix.

http://www.mpsge.org/markusen/markusen.htm
http://www.mpsge.org/implan98.htm
http://www.mpsge.org/markusen/markusen.htm

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1535

4.53.1.1 Some Basic Economic Ideas

MPSGE models are based on the following economic ideas. In each model there are multiple interacting
agents, where each agent solves an optimization problem. For example, consumers maximize utility
subject to their budget constraint, and producers minimize their cost given available technology. Agent
interactions are mediated by markets and prices and the optimal solution is an equilibrium where
prices and activity levels have adjusted so that markets for produced goods and input factors clear. In
equilibrium, each agent cannot do better by altering their behavior (given the constraints they face). In
this section we give more details on these basic economic ideas. In particular, we offer brief introductions
to consumer demand theory, producer supply theory and general economic equilibrium.

Consumer Demand Theory

Consumer choice is modeled using an optimization paradigm: consumers form a consumption bundle
which maximizes welfare subject to a budget constraint. As an abstract notion, this seems plausible, but
certain details must be dealt with to provide an operational application of the idea.

Consider the following example. Thomas lives in Ann Arbor where he spends 30% on housing and the rest
of his income on other goods. This information is essentially an observation of a benchmark equilibrium,
consisting of the prevailing prices and quantities of goods demanded. Now, Thomas has an employment
offer in Berlin which pays 50% more than he currently earns, but he is hesitant to take the job since rental
rates in Berlin are three times higher than in Ann Arbor. The question is: On purely economic grounds,
should he move?

Thomas' choices are illustrated below. Point a represents the benchmark point, where he spends the
amount Ha on housing in Ann Arbor. Point b represents a potential trade-off between housing and other
goods in Berlin, where he spends a lower percentage of his income on housing and more on other goods.

Figure 4.6 Thomas' Choices

Whether Thomas derives the same welfare from the choices represented by point b like those represented
by point a depends on the elasticity of substitution. The elasticity of substitution is the willingness to
exchange some amount of one good for more of the other good. The three curves in the figure above
represent three elasticities of substitution. Note that the less convex (flatter) the curve is, the higher is
the elasticity, i.e. the more willing is Thomas to substitue housing for other goods.

If the elasticity of substitution equals σ?, Thomas is indifferent between choices a and b, since both points
lie on the respective indifference curve. However, if the elasticity of substitution is lower, say is equals
σL, or higher, say it equals σH , then b will be worse than a and Thomas will not choose it. Hence, the

1536 User's Guide

elasticity of substitution is crucial in determining whether Thomas should move on economic grounds.
Note that the elasticity of substitution is a measure for Thomas' preferences.

The utility function can be deduced if prices and the associated choices are observed and the elasticity
of substitition is given. Thus, in MPSGE, a utility function is represented by benchmark (or observed)
quantities, benchmark prices and the associated elasticity of substitution. Benchmark quantities determine
an anchor point for the set of indifference curves. Benchmark prices fix the slope of the indifference curve
at that point. The elasticity of substitution is a measure of the curvature of the indifference curve and
specifies the utility function unambiguously.

Producer Supply Theory

While consumers aim to maximize their utility subject to a budget, producers aim to reduce their cost
of production given available technology. The activity of a firm is modeled as a production function
that maps inputs into outputs. Inputs are primary factors like labor, capital, land, raw materials etc.
and outputs are goods and services. Similarly to utility functions, in MPSGE, a production function is
represented by reference quantities of reference prices of inputs and outputs, elasticities of substitution
and elasticities of transformation.

Summarizing, the main principle for both, consumers and producers, is choice. Consumers choose
quantities of goods given their preferences, prices and budgets. Producers choose quantities of primary
factors and output levels given available technology. Available technology is modeled via elasticities of
substitution between inputs and elasticities of transformation between outputs.

General Economic Equilibrium

As mentioned above, MPSGE is a system for modeling general economic equilibria. General economic
equilibrium analysis studies the working of an economic system as a whole. The basic assumption is
that there are two types of agents in the economy: producers and consumers. Producers are assumed to
operate with constant return to scale and to be perfectly competitive price-taking firms. Further, they
are assumed to select factor inputs and output levels in order to maximize their profits given available
technology. Consumers are assumed to maximize their welfare subject to budget constraints (incomes
and endowments). An economy is in economic equilibrium if all consumers spend their given incomes
such that they gain maximum satisfaction, all firms in each sector minimize their costs given availabe
technology, and prices (for primary factors and commodities) and activity levels have adjusted such that
all agents cannot do better by altering their behavior given the constraints they face. In equilibrium, all
markets have cleared: in both, goods and factors markets, total demand equals total supply.

Mathematically, such an economy is modeled as a system of weak inequalities, where each inequality is
associated with a non-negative variable denoting a price or a quantity. If a particular weak inequality
holds as an equation, then the associated variable is strictly positive. If it holds as a strict inequality, then
the associated variable equals zero. This is a mixed complemantarity problem that can be formulated and
solved with standard GAMS syntax. For details see section Mixed Complementarity Problems (MCPs).
As we will demonstrate, MPSGE models can be translated to standard GAMS MCP models. However,
the framework that MPSGE offers is much more user-friendly, since modelers do not have to input the
complex equations manually.

4.53.1.2 Specifying an MPSGE Model

In this section we give an overview of the MPSGE model specification, a simple introductory example
follows in the next section. Like any standard GAMS program, a program with an embedded MPSGE
model begins with set and parameter definitions that will later be used in the model. The MPSGE model
is specified within an $ontext / $offtext block.

First, the name of the model must be defined:

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1537

$MODEL:mymodel

Here $MODEL is an MPSGE keyword and the model name mymodel is a GAMS identifier.

In a GAMS program lines within $on/offtext are are treated as a block comment. However, if the
preprocessor encounters the MPSGE model definition statement, it will recognize that an MPSGE model
specification follows and will process the code accordingly.

Note

Like GAMS, MPSGE is not case sensitive.

Secondly, the variables for an MPSGE model are declared. In every model, there are three classes central
variables:

• $SECTORS: variables for activity levels associated with constant returns to scale production sectors
in the economy, which are non-negative,

• $COMMODITIES: variables for commodity prices including all final goods, intermediate goods and
primary factors of production, which are also non-negative, and

• $CONSUMERS: variables for income levels, one for each “household” in the model, including any
government entities.

In addition, models may include auxiliary variables ($AUXILIARY) that are used to introduce endogenous
tax instruments or endogenous endowment quantities to a model.

Note

Unlike GAMS models, variables in an MPSGE model must be declared over an explicit domain.
Only variables that have been declared as one of the four MPSGE variable types may be used in the
MPSGE model. Error messages are generated for variables which are declared but not referenced.

Thirdly, the parameters for functions are specified in a structured manner. The general syntax for all
possible entries is given is section Syntax for Production and Demand Functions below. The MPSGE
framework uses these specifications to automatically generate the respective market-clearing and income-
balance equations. There are two types of functions:

• $PROD: This block defines a production function, specifying inputs, outputs and elasticities of
substitution and transformation. A production function must be given for each sector in the model.
Note that most of the power and subtleties of the MPSGE framework center on the $PROD tables.

• $DEMAND: This block defines a demand function. This function represents preferences (using reference
demands), initial factor endowments and elasticities of substitution. A demand function must be
specified for each consumer in the model.

Finally, any auxiliary variable has an associated equilibrium condition that is defined by the user with
conventional GAMS algebraic syntax and placed in a block called $CONSTRAINT.

These four parts - model definition, variable declarations, function specifications and possibly side
constraints for auxiliary variables - are the core of the MPSGE model specification. The model specification
is followed by the dollar control option $offtext and the following compiler directive:

$sysinclude mpsgeset mymodel

1538 User's Guide

This compiler directive instructs MPSGE to compile the functions and generates an external file called
MYMODEL.GEN. This external file is then loaded to the GAMS file with the following directive:

$include MYMODEL.GEN

Finally, a standard GAMS solve statement follows and the model will be handed for solution to one of
the MCP solvers:

solve mymodel using mcp;

Observe that the appropriate GAMS model type is MCP.

Most often the model is first evaluated at the benchmark point to test whether it is peoperly calibrated
and everything works as expected. This is achieved by setting the option iterlim to zero. Then one or
more counterfactuals are solved: first some parameter is modified using standard GAMS syntax, then the
$include statement is repeated and the model is solved again.

Note

"$sysInclude mpsgeset" allows for an optional argument -mt=0 or 1 after the model name. The
default value for the argument mt can be controlled via the double dash option --MPSGEMT=0 or 1.
If the mt option is set to 1 the MODEL.GEN file is created in the GAMS scratch directory. Hence
the $include before the solve needs to read $include "%gams.scrdir%MODEL.GEN". This allows
to run multiple MPSGE jobs with the same model in the same working directory. The default of
this option is 0. The model hansmge demonstrates the use.

4.53.1.3 An Introductory Example: Two Goods and Two Factors in a Closed Economy

In the canonical 2x2 model, two final goods, X and Y , are produced with two primary factors, labor
L and capital K, and there is a single representative agent (consumer) RA. The model is defined by
technology, preferences and endowments. We can describe prefrences by a utility function which provides
an ordinal ranking of consumption levels for X and Y . We assume that both factors are in fixed supply,
thus in equilibrium, factor endowments equal factor demands, and the supply of the two goods equal their
demand.

The problem can be cast as consisting of three production activities, X, Y and U , and five markets X, Y ,
U , K and L. The initial data for the model are given by the following matrix.

Production Sectors Consumers

Markets X Y U RA Row Sums

PX 100 -100 0

PY 50 -50 0

PU 150 -150 0

PK -50 -20 70 0

PL -50 -30 80 0

Column Sums 0 0 0 0

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1539

The data describes a representative equilibrium. Rows correspond to markets, where PX, PY , PU , PK
and PL are the prices for the commodity X, the commodity Y , the utility U , and capital and labor
respectively. Positive entries denote the value of commodity flows into the economy (sales or factor
supplies) and negative entries represent the value of commodity flows out of the economy (factor demands
and good demands). Observe that the sum of a row will equal zero if the market clears, i.e. the total
amount of commodity that flows into the economy equals the total amount of this commodity that flows
out of the economy. The matrix is called balanced if all rows and columns sum to zero.

Note that the layout of the matrix ensures that a complete list of the transactions associated with an
activity is given in each production column. The sum of a production sector column is zero if the value of
the outputs equals the costs of the inputs. A consumer column is balanced if the sum of primary factor
sales equals the value of final demands. Hence columns that sum to zero indicate zero profits. This type
of matrix is related to the concept of a social accounting matrix (or short: SAM).

The problem can be modeled with GAMS MPSGE as follows:

Parameter endow index of labour endowment / 1.0 /;

* MPSGE model declaration follows

$ontext

$MODEL:twobytwo

$SECTORS:

X ! Activity level for sector X -- benchmark=1

Y ! Activity level for sector Y -- benchmark=1

U ! Activity level for sector U -- benchmark=1

$COMMODITIES:

PX ! Relative price index for commodity X -- benchmark=1

PY ! Relative price index for commodity Y -- benchmark=1

PU ! Relative price index for commodity U -- benchmark=1

PL ! Relative price index for labor -- benchmark=1

PK ! Relative price index for capital -- benchmark=1

$CONSUMERS:

RA ! Income level for representative agent -- benchmark=150;

$PROD:X s:1

O:PX Q:100

I:PL Q: 50 ! Variable LX in the algebraic model

I:PK Q: 50 ! Variable KX in the algebraic model

$PROD:Y s:1

O:PY Q: 50

I:PL Q: 20 ! Variable LY in the algebraic model

I:PK Q: 30 ! Variable KY in the algebraic model

$PROD:U s:1

O:PU Q:150

I:PX Q:100 ! Variable DX in the algebraic model

I:PY Q: 50 ! Variable DY in the algebraic model

$DEMAND:RA

D:PU

E:PL Q: (70*endow)

E:PK Q: 80

1540 User's Guide

$offtext

* Compiler directive instructing MPSGE to compile the functions

$sysinclude mpsgeset twobytwo

* Benchmark replication

twobytwo.iterlim = 0;

$include TWOBYTWO.GEN

solve twobytwo using mcp;

abort$(abs(twobytwo.objval) gt 1e-7) "*** twobytwo does not calibrate ! ***";

twobytwo.iterlim = 1000;

* Counterfactual : 10% increase in labor endowment

endow = 1.1;

* Solve the model with the default normalization of prices which

* fixes the income level of the representative agent. The RA

* income level at the initial prices equals 80 + 1.1*70 = 157.

$include TWOBYTWO.GEN

solve twobytwo using mcp;

Note that an algebraic version of this model using standard GAMS syntax is given in the Appendix.

After the model statement where the model is named, variables are declared in each of the three central
variable classes. Unlike conventional GAMS syntax, in MPSGE, trailing comments in variable declarations
(starting with the symbol !) are interpreted as variable descriptors that will appear in the listing file.

Then three production blocks $PROD - one for each sector - follow. Output parameters are specified in
the line starting with the label O and input parameters are given in the line starting with the label I,
the respective quantities are listed in the field Q. Note that the first input in the production block for
sector X represents labor demand in sector X and the second input represents capital demand in sector X.
Similarly, the inputs in the production block for sector Y represent labor and capital demand for sector Y.
In the production block for sector U, the inputs represent demand for X and Y in sector U. In the field s:

next to the name of the sector the elasticity of substitution between the inpiuts is specified.

A demand block $DEMAND for the consumer RA completes the model specification. Demand parameters are
specified in the line starting with the label D and endowment parameters are given in the line starting
with the label E . Note that all possible entries for production and demand blocks are discussed in
section Syntax for Production and Demand Functions. Observe that there is no algebraic formulation
of equations, only parameter specifications. Given this input, the MPGSGE frameworks generates the
respective equations automatically.

Note that it is not necessary to fix a numeraire. If a numeraire is not specified, the normalization of prices
is arbitrary. For example, in the model above, RA is used as a numeraire and the following remark appears
in the listing file:

Default price normalization using income for RA

Note that the version of this model in the Appendix includes two additional counterfactual scenarios,
where first sector X is used as numeraire commodity and then the wage rate PL is fixed as numeraire. In the
Appendix, there are also two alternative versions of the model above: a model in standard GAMS syntax
where the equations that are automatically generated by the MPSGE framework are given explicitly, and
an MPSGE model that uses vector notation instead of scalars.

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1541

4.53.1.4 Modeling Intermediate Demand and Joint Production

In this section we extend the two by two model above in the following three ways:

1. We distinguish between production sectors and produced goods.

2. Each sector produces both goods, so we have joint production.

3. In addition to primary factors like labor and capital, goods enter the production process as inputs.
Thus we have intermediate demand.

The full MPSGE model and MCP and NLP versions of the model are given in the Appendix. Here we
reproduce and discuss only selected code snippets. The main difference to the simple model above is the
specification of the production block:

$PROD:X(j) s:1 t:1

O:P(i) Q:make0(i,j) ! S(i,j) in the MCP and NLP models

I:P(i) Q:use0(i,j) ! D(i,j) in the MCP and NLP models

I:PF(f) Q:fd0(f,j) ! FD(f,j) in the MCP and NLP models

Note that the supply is specified in the output line, the intermediate demand is given in the first input
line and the factor demand is listed in the second input line. Thus each sector j produces the goods i

using the intermediate goods i and the primary factors f. Consider the fully spelled-out production block
for sector s1:

$PROD:X("s1") s:1 t:1

O:P("g1") Q:6.0

O:P("g2") Q:2.0

I:P("g1") Q:4.0

I:P("g2") Q:2.0

I:PF("labor") Q:1.0

I:PF("capital") Q:1.0

At benchmark, sector s1 produces 6 units of good g1 and 2 units of good g2. The input for this output is
4 units of the good g1, 2 units of the good g2 and labor (one unit) and capital (one unit).

Note

Double quotes have to be used if a singleton set element is referenced in an MPSGE model. Single
quotes are not recognized.

Observe that the technology used to combine these four production factors is based on a Cobb-Douglas
production function, i.e. the elasticity of substitution equals 1, as indicated by the value in field s. In
addition, the curvature of the production possibility frontier (the constant elasticity of transformation
function) is given in field t.

1542 User's Guide

4.53.1.5 Modeling a Small Open Economy

An open economy is one in which goods are traded on international markets, typically at fixed international
prices, i.e. there are imports and exports. One class of models for small open economies are known as
”123 models” [42]. In the original 123 model, there was one small country, two producing sectors and three
goods (one domestic good, one import good and one export good). The 123 model we present and discuss
in this section has exogenously given world prices for imports and exports, taxes, labor-leisure choice,
classical unemployment and joint production. The programming language keeps track of tax revenue
flows, equations which are otherwise tedious to program. The model is a tiny version of the open economy
GTAP model [115]. It follows the canonical microecomic optimization framework: (i) consumers maximize
welfare subject to a budget constraint with fixed levels of investment and public expenditure, and (ii)
producers combine intermediate inputs and primary factors at least cost for given technology.

Note that the full MPSGE model mge123 and an algebraic version are given in the Appendix. In addition,
we introduce and discuss a version of the model that includes nesting. Note further, that the data for the
model and its variants are included in a separate GAMS file. Observe that the input-output matrix in
the data file provides data on value flows for primary production factors, intermediate goods and final
consumption products. In the following, we comment on selected code snippets and thereby discuss the
most important features of the model.

Consider the production block for the entire production of the small economy:

$PROD:Y t:etadx s:esubkl

O:PD Q:d0 P:1 ! YD

O:PX Q:x0 P:px0 A:GOVT T:tx ! YX

I:RK Q:kd0 P:rr0 A:GOVT T:tk ! KD

I:PL Q:ly0 P:pl0 A:GOVT T:tl N:TAU_TL ! LY

Note that the first output line represents production for the domestic market, which is denoted by the
variable YD in the algebraic version of the model. The reference price at benchmark is given in the new
field P.

Note

The default value for both P and Q fields is 1.0

The second output line represents production for the export market (variable YX in the algebraic version).
Observe that taxes are specified in the two new fields A and T: the tax recipient is specified in field A and
the tax rate is listed in field T. Note that the tax recipient must reference a $CONSUMER variable and the
tax rate tx (tax rate on exports) is given exogenously.

Attention

In MPSGE, the way exogneous taxes are computed depends on whether they are imposed on outputs
or inputs. Taxes on outputs are specified on a gross basis. Hence, if a tax on outputs has proportional
rate t, the producer price will be p(1− t), where p is the market price. However, taxes on inputs
are specified on a net basis. Hence, if a tax on inputs has ad valorem rate t , the user cost will be
p(1 + t), where p is the market price.

The first input line represents capital demand (variable KD in the algebraic version). The model includes
investment by the private (domestic) households, thus the variable RK denotes a rental price index. Observe
that capital is taxed exogenously at the capital tax rate tk.

The second input line represents labor demand (variable LY in the algebraic version). In addition to
an exogenous labor tax tl, an endogenous tax is imposed on this input. The endogenous tax rate is
determined by the auxiliary variable TAU TL, which is the entry in the field N at the end of the line. Note
that an equation associated with the auxiliary variable is specified in the following block:

$CONSTRAINT:TAU_TL

GOVT =e= PA * g0;

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1543

Note

When an auxiliary variable is fixed no constraint is required. When the lower bound of the auxiliary
variable is less than the upper bound, a constraint is required.

Note further, that the variable TAU TL is a wage replacement tax and at benchmark, it is fixed at zero. It
is positive in two of the four counterfactual scenarios.

Domestic demand is modeled using the Armington assumption: consumers demand one single good which
is an aggregation of composite goods consisting of the goods produced domestically and the imported
versions, where imports and domesctic goods in the same sector are imperfect substitutes. The aggregated
composite good is given by a constant elasticity of substitution aggregation function of the domestic goods
and the imported goods with elasticity of substitution sigmadm. In our model, sigmadm equals 4 (domestic
versus imported goods). The production of the Armington good is specified in the following block:

$PROD:A s:sigmadm

O:PA Q:a0 A:GOVT t:ta

I:PD Q:d0 ! DA

I:PM Q:m0 p:pm0 A:GOVT t:tm ! MA

Note that both inputs are intermediate goods. The first input line represents domestic absorption (variable
DA in the algebraic version of the model) and the second input line represents imports (variable MA in the
algebraic version). Imports are taxed with the import tariff rate tm and the composite good is taxed with
the excise and sales tax rate ta. Both taxes are exogenous.

In addition, the model contains production blocks for imports and exports. Foreign exchange (denoted by
the MPSGE variable PFX) is used in these two production blocks. It is the input in the production block
for imports and the output in the production block for exports.

The two consumers in the model are the government (MPSGE variable GOVT) and aggregated private
households (MPSGE variable HH). The demand block for the government agent is as follows:

$DEMAND:GOVT

E:PFX Q:bopdef

E:PA Q:dtax

E:PA Q:g0 R:TAU_LS

D:PA

Note that the first endowment line represents the balance of payment in the current account (denoted by
the $COMMODITIES variable PFX). In our model, exports exceed imports resulting in the deficit bopdef. If
imports are larger than exports there will be a surplus. The other two endowment lines represent taxes
that are paid by the households: a direct tax dtax and a lumpsum labor replacement tax that is specified
as an auxiliary variable and determined by the respective complementarity equation. In this model the
labor replacement tax is either a lumpsum tax (TAU LS) or it is levied on labor at a tax rate of TAU TL

(see above). Note that the direct tax and the lumpsum tax feature in the demand block for HH as negative
endowments. Negative endowments represent payments to be made. The demand block for HH follows:

$DEMAND:HH s:sigma

E:PA Q:(-g0) R:TAU_LS

E:PA Q:(-dtax)

E:RK Q:kd0

E:PA Q:(-i0)

E:PL Q:(ly0+l0) ! Labor endowment = ly0+l0 - UR * (ly0+l0)

E:PL Q:(-(ly0+l0)) R:UR

D:PA Q:c0

D:PL Q:l0

1544 User's Guide

Households demand two goods: the Armington composite good PA (first demand line) and leisure (second
demand line). Note that the first two endowment lines represent taxes as discussed above. The third and
and fourth endowment line relate to capital: the third line represents the income generated by capital
investment and the fourth line represents capital investments. The last two endowment lines refer to labor.
Labor endowment for the aggregated households equals the sum of labor and leisure minus the percentage
of unemployment. Note that at benchmark, the unemployment rate UG is fixed at zero, other scenarios
are explored in the counterfactuals.

In model mge123, the rate of substitution for domestic and imported goods that constitute the Armington
good PA is fixed at sigmadm = 4. Suppose that we want more control over substitution possibilities. For
example, we may wish to model a substitution rate in final demand that is different than for other uses
of the Armington good. MPSGE facilitates modeling this additional degree of freedom through nesting.
Consider the following demand block for HH from model mgenested, a variant of model mge123:

$DEMAND:HH s:sigma c:sigmac

E:PA Q:(-g0) R:TAU_LS

E:PA Q:(-dtax)

E:RK Q:kd0

E:PA Q:(-i0)

E:PL Q:(ly0+l0) ! Labor endowment = ly0+l0 - UR * (ly0+l0)

E:PL Q:(-(ly0+l0)) R:UR

D:PD Q:cd0 c:

D:PM Q:cm0 c:

D:PL Q:l0

Note that in this formulation the endowment lines are unchanged and we have three demand lines. The
first two demand lines have an additional field (c:). This tag indicates that these two goods are part of a
nest: they are combined to an intermediate good called C. The rate of substitution for the goods in the
nest is given in the first line of the demand block: c:sigmac. Observe that except for the substitution
rate, C equals PA. The structure of the final demand can be presented graphically using the followong
nesting diagram:

Figure 4.7 Structure of nested demand for HH

The nested utility function, expressed as a unit function is:

U =

θ(`¯̀
)1−1/σ

+ (1− θ)

(
α

(
D

D̄

)1−1/σC

+ (1− α)

(
M

M̄

)1−1/σC
) 1−1/σ

1−1/σC

1/1−1/σ

in which θ is the budget share of leisure (`) in aggregate expenditure, and α is the budget share of
domestic goods (D) in commodity expenditure, both evaluated at the benchmark point:

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1545

θ =
¯̀

¯̀+ D̄ + M̄

and

α =
D̄

D̄ + M̄

The demand for leisure is a function of extended income (HH):

` = ¯̀
(
pU
p`

)σ
HH

pU
(
¯̀+ D̄ + M̄

)
The demand for domestic and imported goods is a function of both the top-level elasticity of substitution,
σ, as well as the elasticity of substitution between consumption goods, σC :

D = D̄

(
pU
pC

)σ (
pC
pD

)σC HH

pU
(
¯̀+ D̄ + M̄

)
and

M = M̄

(
pU
pC

)σ (
pC
pM

)σC HH

pH(¯̀+ D̄ + M̄)

The graph illustrates the two-level nesting structure. Domestic goods and imports are combined in the
second-level nest with an elasticity of substitution of sigmac. Here we use the identifier C.

Note

The name space of nesting assignments is segmented from that of sets, parameters and variables in
the GAMS code. Two set idenifiers are predefined: s: and t:. All other identifiers are accepted
provided they have four or fewer characters.

The full model mgenested is given in the Appendix. Observe that as the substitution rate of the Armington
good in final demand has changed, some parameters are modified at the beginning of the program in order
to recalibrate the model.

A tariff reform is similar to a tax reform, it has a major influence on the structure of the budget of a
government. Suppose we wish to keep government expenditure constant and experiment with different
scenarios that represent different combinations of tax instruments. For example, at benchmark, in our
model the unemployment rate UR and the endogenous wage tax TAU TL are fixed at zero. Four alternative
closures are explored in the counterfactuals. They depend on revenue replacement (lumpsum versus wage
tax) and labor market (flexible versus fixed wages). An overview of the outcomes are given in the following
table:

1546 User's Guide

---- 1914 PARAMETER report Tariff Remove with Revenue Replacement (% impact)

Lump Sum Lump Sum Wage Tax Wage Tax

Flexible Rigid Wage Flexible Rigid Wage

PFX 4.6 4.6 13.0 9.4

PD -2.1 -2.1 5.9 2.6

RK 0.6 0.6 7.9 -1.6

PA -4.5 -4.5 3.3 2.22045E-14

GOVT 3299.9 3299.9 3574.4 3458.3

HH 40184.6 40184.6 42403.1 38219.6

PX 4.6 4.6 13.0 9.4

W 0.4 0.4 0.3 -7.5

Y 0.3 0.3 -0.5 -6.3

A 0.7 0.7 -4.15640E-2 -5.3

M 13.7 13.7 13.0 7.5

X 18.7 18.7 17.6 10.2

YD -8.8 -8.8 -9.5 -14.6

YX 18.7 18.7 17.6 10.2

KD 3.800191E-8 -7.9403E-11 -2.21554E-9 2.22045E-14

LY 0.6 0.6 -0.9 -11.9

DA -8.8 -8.8 -9.5 -14.6

MA 13.7 13.7 13.0 7.5

C 1.0 1.0 -5.89421E-2 -7.5

LD -0.9 -0.9 1.2 -7.5

PM 4.6 4.6 13.0 9.4

TAU_LS 38.1 38.1

TAU_TL 9.1 11.9

UR 10.0

Note that the classical unemployment part in this model provides a good way to motivate the usefulness of
the modeling framework. We easily produce a model which illustrates the importance of the labor market
formulation. When the real wage is downward rigid, replacement of tariffs with wage taxes reduces welfare
(denoted by W) by 7.9%, output by 6.6% and employment by 10%. If the wage is flexible, replacement of
tariffs by wage taxes leads to a 0.1% decrease in welfare.

4.53.1.6 MPSGE Keywords and Syntax

In the presentation of the general syntax in this section, we use the usual GAMS syntax symbols: []

(the enclosed construct is optional), { } (the enclosed construct may be repeated zero or more times) and
| (exclusive OR). EOL means ”end-of-line” and num expr denotes a number or GAMS numerical expression
that may include a dollar condition for exception handling.

MPSGE Keywords

MPSGE provides nine keywords that are used to specify an MPSGE model. They are given in Table 1.
Note that these keywords are not GAMS reserved words, i.e. they are not keywords in the GAMS code
apart from the MPSGE model specification.

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1547

MPSGE Keyword and Syntax Description

$MODEL:model name This keyword is used to assign the identifier model name to the
model. Model name must be a valid file name, since it is used to
form model name.GEN. This must be the first statement within
the $ontext - $offtext block containing the MPSGE code;
all lines in an $ontext - $offtext block before this keyword
are treated as comments.

$SECTORS:
sect1 ! Description1

sect2 ! Description2

...

This keyword is used to declare one or more variables for sectors
that are used in the model.

$COMMODITIES:
com1 ! Description1

com2 ! Description2

...

This keyword is used to declare one or more variables for com-
modities that are used in the model.

$CONSUMERS:
cons1 ! Description1

cons2 ! Description2

...

This keyword is used to declare one or more variables for con-
sumers that are used in the model.

$AUXILIARY:
aux1 ! Description1

aux2 ! Description2

...

This keyword is used to declare one or more auxiliary variables.
It is only used in models with side constraints and endogenous
taxes or rationed endowments.

$PROD:sector This keyword is used to specify a production function. A pro-
duction function must be specified for each sector in the model.
Note that sector must have been previously declared with a
$SECTORS statement.

$DEMAND:consumer This keyword is used to define a demand function. A demand
function must be specified for each consumer in the model.
Note that consumer must have been previously declared with a
$CONSUMERS statement.

$CONSTRAINT:auxiliary This keyword is used to specify a side constraint to be associated
with the auxiliary variable auxiliary. Note that auxiliary

must have been previously declared with an $AUXILIARY state-
ment.

$REPORT: This keyword identifies the set of additional variables to be
calculated. These variables are used for reports and include
outputs and inputs by sector, and demands and welfare by
individual consumers. The variables declared in $REPORT blocks
may not be used in model equations. Note that we did not
discuss report blocks in this chapter. For details see [130] .

Table 1: MPSGE Keywords

Syntax for Production and Demand Functions

In addition to the keywords above, MPSGE provides a fixed structure for specifying production and
demand functions. This structure has a tabular format with pre-specified fields (or labels). The names of
most fields are single letters that are reserved words in MPSGE. The exception are nest identifiers: they
are arbitray names with up to four characters.

The syntax for the definition of a production function is as follows.

$PROD:sector [s:num_expr] [t:num_expr] [a:num_expr {b:num_expr}]

O:commodity1 [Q:num_expr] [P:num_expr] [A:consumer] [T:num_expr {T:num_expr}] [N:auxiliary [M:num_expr]] [a: | b:]

I:commodity2 [Q:num_expr] [P:num_expr] [A:consumer] [T:num_expr {T:num_expr}] [N:auxiliary [M:num_expr]] [a: | b:]

1548 User's Guide

Note that the numerical expression num expr may be a parameter or a value.

Each production function block starts with the MPSGE keyword $PROD and the respective sector. Note
that the variable sector must have been previously defined in the $SECTORS block. The labels that follow
are optional. They include the following:

• s: Top level elasticity of substitution between inputs. The default value is zero.

• t: Elasticity of transformation between outputs in production. Can be zero, but not infinity.

• a:,b:,... Elasticities of substitution in individual input nests. Here a and b are nest identifiers.

Each production block has at least one output line O and one input line I. The value in the fields O and I

is a commodity that has been previously declared in the $COMMODITIES block. Note that only this first
field is mandatory, all other entries are optional and depend on the model. The valid labels for both lines
include the following:

• Q: Reference quantity. Default value is 1. When specified, it must be the second entry.

• P: Reference price. Default value is 1.

• A: Tax revenue agent, the entry must be a consumer that has been previously defined in the
$CONSUMERS block. This field must appear before the corresponding T or N field.

• T: Tax rate of the exogenous tax rate. Note that more that one tax rate may be listed in one line.

• N: Endogenous tax, the entry is an auxiliary variable that has been previously defined in the
$AUXILIARY block.

• M: Endogenous tax multiplier. The ad valorem tax rate is the product of the value of the endogenous
tax and this multiplier. Note that if the M field is omitted in a line with an N field, M:1 will be
assumed. Observe that the M field cannot be included in the absence of an N field.

• a:,b:,.. Nesting assignments. Only one such label may appear per line.

The syntax for the specification of a demand function is as follows.

$DEMAND:consumer [s:num_expr] [a:num_expr {b:num_expr}]

D:commodity1 [Q:num_expr] [P:num_expr] [a: | b:]

E:commodity2 [Q:num_expr] [R:auxiliary]

Each demand function block starts with the MPSGE keyword $DEMAND and the respective consumer.
Note that the variable consumer must have been previously declared in the $CONSUMERS block. The labels
that follow are optional. They include the following:

• s: Top level elasticity of substitution between demands.

• a:,b:,... Elasticities of substitution in individual demand nests.

Each demand block has at least one demand line D and it may have one or more endowment lines E. The
value in the fields D and E is a commodity that has been previously declared in the $COMMODITIES block.
Note that only this first field is mandatory, all other entries are optional and depend on the model. The
valid labels in a D line include the following:

• Q: Reference quantity. Default value is 1. When specified, it must be the second entry.

• P: Reference price. Default value is 1.

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1549

• a:,b:,.. Nesting assignments. Only one such label may appear per line.

The valid labels in an E line include the following:

• Q: Reference quantity. Default value is 1. When specified, it must be the second entry.

• R: Rationing instrument, the entry is an auxiliary variable that has been previously defined in
the $AUXILIARY block.

Auxiliary constraints in MPSGE models conform to standard GAMS equation syntax. They may refer
to any of the four classes of variables, $SECTORS, $COMMODITIES, $CONSUMERS and $AUXILIARY, but they
may not reference variables names declared within a $REPORT block. Complementarity conditions apply
to upper and lower bounds on auxiliary variables and the associated constraints. For this reason, the
orientation of the equation is important. When an auxiliary variable is designated POSITIVE (the default),
the auxiliary constraint should be expressed as an equation of the type =g=. If an auxiliary variable is
designated FREE, the associated constraint must be expressed as an equality (=e=).

Domain Restrictions on Variable Declarations

Domain restrictions on variable declarations are a crucial difference between models formulated in GAMS
and those formulated in MPSGE. In GAMS, variables are defined over a domain, but the explicit domain
used in the model is determined by CMEX at the point when the model is generated. In an MPSGE
model, users are required to declare the explicit domain for every variable. If they include variables which
are not referenced in the model, they will get a ”No source” or ”No sink” error message. If a variable is
referenced which is not declared, an error message will be generated by the MPSGE function evaluator.

Consider the following example of a sector declaration in MPSGE:

$SECTORS:

Y(i)$y0(i)

M(i)$m0(i)

...

The corresponding production blocks need to have the corresponding exception operators:

$PROD:Y(i)$y0(i)

...

$PROD:M(i)$m0(i)

...

For more information on exception handling in GAMS, see chapter Conditional Expressions, Assignments and Equations.

1550 User's Guide

The Nest Labor Operator and the Spanning Operator

The nest labor operator (.tl) is used to create a set of nests. The following example serves as illustraton
and is self-explanatory:

$PROD:Y s:0.5 m:0 i.tl(m):esubdm(i) va:1

O:PY Q:y0

I:PD(i) Q:d0(i) i.tl:

I:PM(i) Q:m0(i) i.tl:

I:PK Q:k0 va:

I:PL Q:l0 va:

The spanning operator (#) is a way to provide multiple inputs of one commodity. For example, a commodity
with price PM is a wholesale/retail trade margin. The benchmark value of margins on commodity i is
md0(i), and the net of margin (wholesale) value of commodity i sales is d0(i). If goods trade off in a
Cobb-Douglas nest at the gross of margin price, we can represent this in an MPSGE model as:

$PROD:A s:1 i.tl:0

O:PA Q:a0

I:P(i) Q:d0(i) i.tl:

I:PM#(i) Q:md0(i) i.tl:

4.53.1.7 MPSGE-Specific Output

The output in the listing file of an MPSGE model has some distinctive features. Note that the MPSGE
model specification is reproduced in the echo print. After the directive $offtext, the echo print is
interrupted and a symbol reference map is inserted. In this map, both, the identifiers defined using
standard GAMS syntax and MPSGE variables are listed. In addition to the standard GAMS data types,
the following MPSGE shorthand symbols may appear in this listing:

Shorthand Symbol MPSGE Data Type

ACTIV sector variable

AUXIL auxiliary variable

CONSU consumer variable

PRICE commodity variable

Table 2: Shorthand Symbols for MPSGE Data Types

For example, the symbol reference map for the first simple model in vector notation reads as follows:

Symbol Listing

Symbol Type References

========== ===== ==

CONS PARAM 19 23

DEMAND PARAM 20

ENDOW PARAM 24

F SET 9 16 16 24 24

FACTOR PARAM 16

I SET 3 14 15 15 16 20 20

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1551

PC PRICE 8 15 20

PF PRICE 9 16 24

PU PRICE 7 19 23

RA CONSU 12 22

SUPPLY PARAM 15

U ACTIV 4 18

Y ACTIV 3 14

Note that if the normalization was done automatically, a comment will appear after the solve summary
detailing which variable was used as a numeraire. For example,

Default price normalization using income for RA

Observe that the lower, level, upper and marginal values of the MPSGE variables are given in the
solution listing like for any other GAMS variable. For more information on standard GAMS output, see
chapter GAMS Output.

4.53.1.8 Appendix

Three Versions of Model TWOBYTWO

MPSGE Model TWOBYTWO

$title A two by two general equilibrium model -- scalar GAMS/MPSGE

parameter endow index of labour endowment / 1.0 /;

* MPSGE model declaration follows

$ontext

$MODEL:twobytwo

$SECTORS:

X ! Activity level for sector X -- benchmark=1

Y ! Activity level for sector Y -- benchmark=1

U ! Activity level for sector U -- benchmark=1

$COMMODITIES:

PX ! Relative price index for commodity X -- benchmark=1

PY ! Relative price index for commodity Y -- benchmark=1

PU ! Relative price index for commodity U -- benchmark=1

PL ! Relative price index for labor -- benchmark=1

PK ! Relative price index for capital -- benchmark=1

$CONSUMERS:

RA ! Income level for representative agent -- benchmark=150;

$PROD:X s:1

O:PX Q:100

I:PL Q: 50 ! Variable LX in the algebraic model

I:PK Q: 50 ! Variable KX in the algebraic model

$PROD:Y s:1

O:PY Q: 50

1552 User's Guide

I:PL Q: 20 ! Variable LY in the algebraic model

I:PK Q: 30 ! Variable KY in the algebraic model

$PROD:U s:1

O:PU Q:150

I:PX Q:100 ! Variable DX in the algebraic model

I:PY Q: 50 ! Variable DY in the algebraic model

$DEMAND:RA

D:PU

E:PL Q: (70*endow)

E:PK Q: 80

$offtext

* Compiler directive instructing MPSGE to compile the functions

$sysinclude mpsgeset twobytwo

* Benchmark replication

twobytwo.iterlim = 0;

$include TWOBYTWO.GEN

solve twobytwo using mcp;

abort$(abs(twobytwo.objval) gt 1e-7) "*** twobytwo does not calibrate ! ***";

twobytwo.iterlim = 1000;

* Counterfactual : 10% increase in labor endowment

endow = 1.1;

* Solve the model with the default normalization of prices which

* fixes the income level of the representative agent. The RA

* income level at the initial prices equals 80 + 1.1*70 = 157.

$include TWOBYTWO.GEN

solve twobytwo using mcp;

parameter equilibrium Equilibrium values;

* Save counterfactual values:

equilibrium("X.L","RA=157") = X.L;

equilibrium("Y.L","RA=157") = Y.L;

equilibrium("U.L","RA=157") = U.L;

equilibrium("PX.L","RA=157") = PX.L;

equilibrium("PY.L","RA=157") = PY.L;

equilibrium("PU.L","RA=157") = PU.L;

equilibrium("PL.L","RA=157") = PL.L;

equilibrium("PK.L","RA=157") = PK.L;

equilibrium("RA.L","RA=157") = RA.L;

equilibrium("PX.L/PX.L","RA=157") = PX.L/PX.L;

equilibrium("PY.L/PX.L","RA=157") = PY.L/PX.L;

equilibrium("PU.L/PX.L","RA=157") = PU.L/PX.L;

equilibrium("PL.L/PX.L","RA=157") = PL.L/PX.L;

equilibrium("PK.L/PX.L","RA=157") = PK.L/PX.L;

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1553

equilibrium("RA.L/PX.L","RA=157") = RA.L/PX.L;

* Fix a numeraire price index and recalculate:

PX.FX = 1;

$include TWOBYTWO.GEN

solve twobytwo using mcp;

equilibrium("X.L","PX=1") = X.L;

equilibrium("Y.L","PX=1") = Y.L;

equilibrium("U.L","PX=1") = U.L;

equilibrium("PX.L","PX=1") = PX.L;

equilibrium("PY.L","PX=1") = PY.L;

equilibrium("PU.L","PX=1") = PU.L;

equilibrium("PL.L","PX=1") = PL.L;

equilibrium("PK.L","PX=1") = PK.L;

equilibrium("RA.L","PX=1") = RA.L;

equilibrium("PX.L/PX.L","PX=1") = PX.L/PX.L;

equilibrium("PY.L/PX.L","PX=1") = PY.L/PX.L;

equilibrium("PU.L/PX.L","PX=1") = PU.L/PX.L;

equilibrium("PL.L/PX.L","PX=1") = PL.L/PX.L;

equilibrium("PK.L/PX.L","PX=1") = PK.L/PX.L;

equilibrium("RA.L/PX.L","PX=1") = RA.L/PX.L;

* Recalculate with a different numeraire.

* "Unfix" the price of X and fix the wage rate:

PX.UP = +inf;

PX.LO = 1e-5;

PL.FX = 1;

$include TWOBYTWO.GEN

solve twobytwo using mcp;

equilibrium("X.L","PL=1") = X.L;

equilibrium("Y.L","PL=1") = Y.L;

equilibrium("U.L","PL=1") = U.L;

equilibrium("PX.L","PL=1") = PX.L;

equilibrium("PY.L","PL=1") = PY.L;

equilibrium("PU.L","PL=1") = PU.L;

equilibrium("PL.L","PL=1") = PL.L;

equilibrium("PK.L","PL=1") = PK.L;

equilibrium("RA.L","PL=1") = RA.L;

equilibrium("PX.L/PX.L","PL=1") = PX.L/PX.L;

equilibrium("PY.L/PX.L","PL=1") = PY.L/PX.L;

equilibrium("PU.L/PX.L","PL=1") = PU.L/PX.L;

equilibrium("PL.L/PX.L","PL=1") = PL.L/PX.L;

equilibrium("PK.L/PX.L","PL=1") = PK.L/PX.L;

equilibrium("RA.L/PX.L","PL=1") = RA.L/PX.L;

display equilibrium;

1554 User's Guide

Model TWOBYTWO: Algebraic Version in GAMS MCP

$title A two by two general equilibrium model -- scalar GAMS/MCP

parameter endow index of labour endowment / 1.0 /;

* ===

* Variables which appear explicitly in the MPSGE model:

Nonnegative Variables

X Activity level for sector X -- benchmark=1

Y Activity level for sector Y -- benchmark=1

U Activity level for sector U -- benchmark=1

PU Relative price index for commodity U -- benchmark=1,

PX Relative price index for commodity X -- benchmark=1,

PY Relative price index for commodity Y -- benchmark=1

PL Relative price index for labor -- benchmark=1

PK Relative price index for capital -- benchmark=1;

Free Variable

RA Income level for representative agent -- benchmark=150;

* Assign default prices and activity levels:

X.L = 1; Y.L = 1; U.L = 1; PX.L = 1; PY.L = 1; PK.L = 1; PU.L = 1; RA.L = 150;

* Insert lower bounds to avoid bad function calls:

PX.LO = 0.001; PY.LO = 0.001; PU.LO = 0.001; PL.LO = 0.001; PK.LO = 0.001;

* ===

* Variables that enter the MPSGE model implicitly:

variables

LX ’compensated labor demand in sector x’

LY ’compensated labor demand in sector y’

KX ’compensated capital demand in sector x’

KY ’compensated capital demand in sector y’

DX ’compensated demand for x in sector u’

DY ’compensated demand for y in sector u’;

* Equations for the implicit variables:

Equations

lxdef ’compensated labor demand in sector x’

lydef ’compensated labor demand in sector y’

kxdef ’compensated capital demand in sector x’

kydef ’compensated capital demand in sector y’

dxdef ’compensated demand for x in sector u’

dydef ’compensated demand for y in sector u’;

lxdef.. LX =e= 50 * (PL**0.5 * PK**0.5)/PL;

lydef.. LY =e= 20 * (PL**0.4 * PK**0.6)/PL;

kxdef.. KX =e= 50 * (PL**0.5 * PK**0.5)/PK;

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1555

kydef.. KY =e= 30 * (PL**0.4 * PK**0.6)/PK;

dxdef.. DX =e= 100 * (PX**(2/3) * PY**(1/3))/PX;

dydef.. DY =e= 50 * (PX**(2/3) * PY**(1/3))/PY;

* Initial values:

LX.L = 50; LY.L = 20; KX.L = 50; KY.L = 30; DX.L = 100; DY.L = 50;

* ===

Equations

prf_x ’zero profit for sector x’

prf_y ’zero profit for sector y’

prf_u ’zero profit for sector u (Hicksian welfare index)’

mkt_x ’supply-demand balance for commodity x’

mkt_y ’supply-demand balance for commodity y’

mkt_l ’supply-demand balance for primary factor l’

mkt_k ’supply-demand balance for primary factor k’

mkt_u ’supply-demand balance for aggregate demand’

i_ra ’income definition for consumer (ra)’;

* Zero profit:

prf_x.. PL*LX + PK*KX =e= 100 * PX;

prf_y.. PL*LY + PK*KY =E= 50 * PY;

prf_u.. PX*DX + PY*DY =E= 150*PU;

* Market clearance:

mkt_x.. 100 * X =e= DX*U;

mkt_y.. 50 * Y =e= DY*U;

mkt_u.. 150 * U =E= RA / PU;

mkt_l.. 70 * endow =e= LX*X + LY*Y;

mkt_k.. 80 =e= KX*X + KY*Y;

* Income balance:

i_ra.. RA =e= (70*endow)*PL + 80*PK;

* We declare the model using the mixed complementarity syntax

* in which equation identifiers are associated with variables.

model algebraic / prf_x.X, prf_y.Y, prf_u.U, mkt_x.PX, mkt_y.PY, mkt_l.PL,

mkt_k.PK, mkt_u.PU, I_ra.RA,

lxdef.LX, lydef.LY, kxdef.KX, kydef.KY, dxdef.DX, dydef.DY /;

* Use sector x as the numeraire commodtity

PX.FX = PX.L;

algebraic.iterlim = 0;

solve algebraic using MCP;

algebraic.iterlim = 1000;

* Solve the same counterfactual:

1556 User's Guide

endow = 1.1;

* Fix the income level at the default level, i.e. the

* income level corresponding to the counterfactual

* endowment at benchmark price:

RA.FX = 80 + 1.1 * 70;

solve algebraic using MCP;

parameter equilibrium Equilibrium values;

* Save counterfactual values:

equilibrium("X.L","RA=157") = X.L;

equilibrium("Y.L","RA=157") = Y.L;

equilibrium("U.L","RA=157") = U.L;

equilibrium("PX.L","RA=157") = PX.L;

equilibrium("PY.L","RA=157") = PY.L;

equilibrium("PU.L","RA=157") = PU.L;

equilibrium("PL.L","RA=157") = PL.L;

equilibrium("PK.L","RA=157") = PK.L;

equilibrium("RA.L","RA=157") = RA.L;

equilibrium("PX.L/PX.L","RA=157") = PX.L/PX.L;

equilibrium("PY.L/PX.L","RA=157") = PY.L/PX.L;

equilibrium("PU.L/PX.L","RA=157") = PU.L/PX.L;

equilibrium("PL.L/PX.L","RA=157") = PL.L/PX.L;

equilibrium("PK.L/PX.L","RA=157") = PK.L/PX.L;

equilibrium("RA.L/PX.L","RA=157") = RA.L/PX.L;

* Fix a numeraire price index and recalculate:

RA.LO = -inf;

RA.UP = inf;

PX.FX = 1;

solve algebraic using mcp;

equilibrium("X.L","PX=1") = X.L;

equilibrium("Y.L","PX=1") = Y.L;

equilibrium("U.L","PX=1") = U.L;

equilibrium("PX.L","PX=1") = PX.L;

equilibrium("PY.L","PX=1") = PY.L;

equilibrium("PU.L","PX=1") = PU.L;

equilibrium("PL.L","PX=1") = PL.L;

equilibrium("PK.L","PX=1") = PK.L;

equilibrium("RA.L","PX=1") = RA.L;

equilibrium("PX.L/PX.L","PX=1") = PX.L/PX.L;

equilibrium("PY.L/PX.L","PX=1") = PY.L/PX.L;

equilibrium("PU.L/PX.L","PX=1") = PU.L/PX.L;

equilibrium("PL.L/PX.L","PX=1") = PL.L/PX.L;

equilibrium("PK.L/PX.L","PX=1") = PK.L/PX.L;

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1557

equilibrium("RA.L/PX.L","PX=1") = RA.L/PX.L;

* Recalculate with a different numeraire.

* "Unfix" the price of X and fix the wage rate:

PX.UP = +inf;

PX.LO = 1e-5;

PL.FX = 1;

solve algebraic using mcp;

equilibrium("X.L","PL=1") = X.L;

equilibrium("Y.L","PL=1") = Y.L;

equilibrium("U.L","PL=1") = U.L;

equilibrium("PX.L","PL=1") = PX.L;

equilibrium("PY.L","PL=1") = PY.L;

equilibrium("PU.L","PL=1") = PU.L;

equilibrium("PL.L","PL=1") = PL.L;

equilibrium("PK.L","PL=1") = PK.L;

equilibrium("RA.L","PL=1") = RA.L;

equilibrium("PX.L/PX.L","PL=1") = PX.L/PX.L;

equilibrium("PY.L/PX.L","PL=1") = PY.L/PX.L;

equilibrium("PU.L/PX.L","PL=1") = PU.L/PX.L;

equilibrium("PL.L/PX.L","PL=1") = PL.L/PX.L;

equilibrium("PK.L/PX.L","PL=1") = PK.L/PX.L;

equilibrium("RA.L/PX.L","PL=1") = RA.L/PX.L;

display equilibrium;

Indexed MPSGE Model TWOBYTWO

$title A two by two general equilibrium model -- indexed GAMS/MPSGE

Sets

i Produced goods / x, y /,

f Factors of production / L, K /;

table sam(*,*) Benchmark input-output matrix

X Y U RA

X 100 -100

Y 50 -50

U 150 -150

K -50 -20 70

L -50 -30 80;

parameters

supply(i) Benchmark supply of output of sectors,

factor(f,i) Benchmark factor demand,

demand(i) Benchmark demand for consumption,

endow(f) Factor endowment,

cons Benchmark total consumption;

* Extract data from the original format into model-specific arrays

1558 User's Guide

supply(i) = sam(i,i);

factor(f,i) = -sam(f,i);

demand(i) = -sam(i,’u’);

cons = sum(i, demand(i));

endow(f) = sam(f,’ra’);

display supply, factor, demand, cons, endow;

$ontext

$MODEL:twobytwo

$SECTORS:

Y(i) ! Activity level -- benchmark=1

U ! Final consumption index -- benchmark=1

$COMMODITIES:

PU ! Relative price of final consumption -- benchmkark=1

PC(i) ! Relative price of commodities -- benchmark=1

PF(f) ! Relative price of factors -- benchmark=1

$CONSUMERS:

RA ! Income level (benchmark=150)

$PROD:Y(i) s:1

O:PC(i) Q:supply(i)

I:PF(f) Q:factor(f,i)

$PROD:U s:1

O:PU Q:cons

I:PC(i) Q:demand(i)

$DEMAND:RA

D:PU Q:cons

E:PF(f) Q:endow(f)

$offtext

$sysinclude mpsgeset twobytwo

* Benchmark replication

twobytwo.iterlim = 0;

$include TWOBYTWO.GEN

solve twobytwo using mcp;

twobytwo.iterlim = 1000;

* Counterfactual : 10% increase in labor endowment

endow(’l’) = 1.1*endow(’l’);

* Solve the model with the default normalization of prices which

* fixes the income level of the representative agent. The RA

* income level at the initial prices equals 80 + 1.1*70 = 157.

$include TWOBYTWO.GEN

solve twobytwo using mcp;

parameter equilibrium Equilibrium values;

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1559

* Save counterfactual values:

equilibrium("Y.L",i,"RA=157") = Y.L(i);

equilibrium("U.L","_","RA=157") = U.L;

equilibrium("PC.L",i,"RA=157") = PC.L(i);

equilibrium("PF.L",f,"RA=157") = PF.L(f);

equilibrium("RA.L","_","RA=157") = RA.L;

equilibrium(’PC(i)/PC("x")’,i,"RA=157") = PC.L(i)/PC.L("x");

equilibrium(’PF(f)/PC("x")’,f,"RA=157") = PF.L(f)/PC.L("x");

equilibrium(’RA.L/PC("x")’,"_","RA=157") = RA.L/PC.L("x");

* Fix a numeraire price index and recalculate:

PC.FX("x") = 1;

$include TWOBYTWO.GEN

solve twobytwo using mcp;

equilibrium("Y.L",i,’PC("x")=1’) = Y.L(i);

equilibrium("U.L","_",’PC("x")=1’) = U.L;

equilibrium("PC.L",i,’PC("x")=1’) = PC.L(i);

equilibrium("PF.L",f,’PC("x")=1’) = PF.L(f);

equilibrium(’PC(i)/PC("x")’,i,’PC("x")=1’) = PC.L(i)/PC.L("x");

equilibrium(’PF(f)/PC("x")’,f,’PC("x")=1’) = PF.L(f)/PC.L("x");

equilibrium("RA.L","_",’PC("x")=1’) = RA.L;

equilibrium(’RA.L/PC("x")’,"_",’PC("x")=1’) = RA.L/PC.L("x");

* Recalculate with a different numeraire.

* "Unfix" the price of X and fix the wage rate:

PC.UP("X") = +inf; PC.LO("X") = 1e-5; PF.FX("L") = 1;

$include TWOBYTWO.GEN

solve twobytwo using mcp;

equilibrium("Y.L",i,’PF("L")=1’) = Y.L(i);

equilibrium("U.L","_",’PF("L")=1’) = U.L;

equilibrium("PC.L",i,’PF("L")=1’) = PC.L(i);

equilibrium("PF.L",f,’PF("L")=1’) = PF.L(f);

equilibrium(’PC(i)/PC("x")’,i,’PF("L")=1’) = PC.L(i)/PC.L("x");

equilibrium(’PF(f)/PC("x")’,f,’PF("L")=1’) = PF.L(f)/PC.L("x");

equilibrium("RA.L","_",’PF("L")=1’) = RA.L;

equilibrium(’RA.L/PC("x")’,"_",’PF("L")=1’) = RA.L/PC.L("x");

option equilibrium:3:2:1;

display equilibrium;

Three Versions of Model JPMGE

MPSGE Model JPMGE

$title Model with Joint Products and Intermediate Demand -- solved with GAMS/MPSGE

Sets j Sectors / s1*s2 /,

i Goods / g1*g2 /,

f Primary factors / labor, capital / ;

1560 User's Guide

alias (i,ii),(j,jj);

Table make0(i,j) Matrix -- supplies

s1 s2

g1 6 2

g2 2 10 ;

Table use0(i,j) Use matrix -- intermediate demands

s1 s2

g1 4 2

g2 2 6 ;

Table fd0(f,j) Factor demands

s1 s2

labor 1 3

capital 1 1 ;

Parameters

c0(i) Consumer demand / g1 2, g2 4 /

e0(f) Factor endowments;

e0(f) = sum(j, fd0(f,j));

display e0;

$ontext

$MODEL:jpmge

$SECTORS:

X(j) ! Activity index -- benchmark=1

$COMMODITIES:

P(i) ! Relative commodity price -- benchmark=1

PF(f) ! Relative factor price -- benchmark=1

$CONSUMERS:

Y ! Nominal household income=expenditure

$PROD:X(j) s:1 t:1

O:P(i) Q:make0(i,j) ! S(i,j) in the MCP and NLP models

I:P(i) Q:use0(i,j) ! D(i,j) in the MCP and NLP models

I:PF(f) Q:fd0(f,j) ! FD(f,j) in the MCP and NLP models

$REPORT:

v:S(i,j) O:P(i) PROD:X(j)

v:D(i,j) I:P(i) PROD:X(j)

v:FD(f,j) I:PF(f) PROD:X(j)

$DEMAND:Y s:1

D:P(i) Q:c0(i)

E:PF(f) Q:e0(f)

$REPORT:

v:C(i) D:P(i) DEMAND:Y

$offtext

$sysinclude mpsgeset jpmge

* Benchmark replication

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1561

jpmge.iterlim = 0;

$include JPMGE.GEN

solve jpmge using mcp;

abort$(abs(jpmge.objval) gt 1e-7) "JPMGE does not calibrate!";

jpmge.iterlim = 1000;

* Counterfactual : 10% increase in labor endowment

e0("labor") = 1.1 * e0("labor");

$include JPMGE.GEN

solve jpmge using mcp;

Parameter equilibrium Equilibrium values;

* Save counterfactual values:

equilibrium("X",j,"Y=6.4") = X.L(j);

equilibrium(i,j,"Y=6.4") = S.L(i,j)-D.L(i,j);

equilibrium(f,j,"Y=6.4") = FD.L(f,j);

equilibrium("C",i,"Y=6.4") = C.L(i);

equilibrium("X",j,"Y=6.4") = X.L(j);

equilibrium("P",i,"Y=6.4") = P.L(i);

equilibrium("PF",f,"Y=6.4") = PF.L(f);

equilibrium("Y","_","Y=6.4") = Y.L;

* Fix a numeraire price index and recalculate:

P.FX("g1") = 1;

$include JPMGE.GEN

solve jpmge using mcp;

equilibrium("X", j,’P("g1")=1’) = X.L(j);

equilibrium(i, j,’P("g1")=1’) = S.L(i,j)-D.L(i,j);

equilibrium(f, j,’P("g1")=1’) = FD.L(f,j);

equilibrium("C", i,’P("g1")=1’) = C.L(i);

equilibrium("X", j,’P("g1")=1’) = X.L(j);

equilibrium("P", i,’P("g1")=1’) = P.L(i);

equilibrium("PF", f,’P("g1")=1’) = PF.L(f);

equilibrium("Y","_",’P("g1")=1’) = Y.L;

* Recalculate with a different numeraire.

* "Unfix" the price of X and fix the wage rate:

P.UP("g1") = +inf;

P.LO("g1") = 1e-5;

PF.FX("labor") = 1;

$include JPMGE.GEN

solve jpmge using mcp;

equilibrium("X", j,’PF("labor")=1’) = X.L(j);

equilibrium(i, j,’PF("labor")=1’) = S.L(i,j)-D.L(i,j);

equilibrium(f, j,’PF("labor")=1’) = FD.L(f,j);

equilibrium("C", i,’PF("labor")=1’) = C.L(i);

equilibrium("X", j,’PF("labor")=1’) = X.L(j);

equilibrium("P", i,’PF("labor")=1’) = P.L(i);

1562 User's Guide

equilibrium("PF", f,’PF("labor")=1’) = PF.L(f);

equilibrium("Y","_",’PF("labor")=1’) = Y.L;

option equilibrium:3:2:1;

display equilibrium;

Algebraic Version of Model JPMGE: MCP Formulation

$title Model with Joint Products and Intermediate Demand -- solved with GAMS/MCP

Sets j Sectors / s1*s2 /,

i Goods / g1*g2 /,

f Primary factors / labor, capital / ;

alias (i,ii),(j,jj);

Table make0(i,j) Matrix -- supplies

s1 s2

g1 6 2

g2 2 10 ;

Table use0(i,j) Use matrix -- intermediate demands

s1 s2

g1 4 2

g2 2 6 ;

Table fd0(f,j) Factor demands

s1 s2

labor 1 3

capital 1 1 ;

Parameters

c0(i) Consumer demand / g1 2, g2 4 /

e0(f) Factor endowments;

e0(f) = sum(j, fd0(f,j));

display e0;

* ===

* Variables which appear explicitly in the MPSGE model:

Variables

X(j) ! Activity index -- benchmark=1

P(i) ! Relative commodity price -- benchmark=1

PF(f) ! Relative factor price -- benchmark=1

Y ! Nominal household income=expenditure;

X.L(j) = 1; P.L(i) = 1; PF.L(f) = 1; Y.L = sum(f,e0(f));

P.LO(i) = 1e-4; PF.LO(f) = 1e-4;

* ===

* Variables that enter the MPSGE model implicitly:

Variables

S(i,j) Compensated supply

D(i,j) Compensated intermediate demand

FD(f,j) Compensated factor demand

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1563

C(i) Final demand;

S.L(i,j) = make0(i,j);

D.L(i,j) = use0(i,j);

FD.L(f,j) = fd0(f,j);

C.L(i) = c0(i);

* ===

* Calibration calculations provided automatically by MPSGE:

Parameter thetad(i,j) Intermediate demand value share

thetas(i,j) Output value share

thetaf(f,j) Factor demand value share

thetac(i) Final demand value share;

thetas(i,j) = make0(i,j)/sum(ii,make0(ii,j));

thetad(i,j) = use0(i,j)/(sum(ii,use0(ii,j))+sum(ff,fd0(ff,j)));

thetaf(f,j) = fd0(f,j) /(sum(ii,use0(ii,j))+sum(ff,fd0(ff,j)));

thetac(i) = c0(i)/sum(ii,c0(ii));

alias (i,i_), (f,f_);

* Equations for the implicit variables:

Equations sdef, ddef, fddef, cdef;

$macro REV(j) (sqrt(sum(i_,thetas(i_,j)*sqr(P(i_)))))

sdef(i,j).. S(i,j) =e= make0(i,j)*P(i)/REV(j);

$macro COST(j) (prod(i_,P(i_)**thetad(i_,j))*prod(f_,PF(f_)**thetaf(f_,j)))

ddef(i,j).. D(i,j) =e= use0(i,j) * COST(j)/P(i);

fddef(f,j).. FD(f,j) =e= fd0(f,j) * COST(j)/PF(f);

cdef(i).. C(i) =e= thetac(i) * Y/P(i);

* ===

* Equilibrium conditions:

Equations prf_X(j), mkt_p(i), mkt_pf(f), income;

* Zero profit:

prf_X(j).. sum(f,PF(f)*FD(f,j)) + sum(i,P(i)*D(i,j)) =e= sum(i,P(i)*S(i,j));

* Market clearance:

mkt_P(i).. sum(j, X(j)*(S(i,j)-D(i,j))) =e= C(i);

mkt_PF(f).. e0(f) =e= sum(j, FD(f,j)*X(j));

* Income balance:

income.. Y =e= sum(f, PF(f)*e0(f));

1564 User's Guide

model jpmcp / sdef.S, ddef.D, fddef.FD, cdef.C, prf_X.X, mkt_P.P, mkt_PF.PF, income.Y /;

* ===

* Benchmark replication with iteration limit zero. Do not need

* to fix the price level at this point:

jpmcp.iterlim = 0;

solve jpmcp using mcp;

abort$(abs(jpmcp.objval) gt 1e-7) "JPMCP does not calibrate!";

jpmcp.iterlim = 1000;

* ===

* Counterfactual : 10% increase in labor endowment

e0("labor") = 1.1 * e0("labor");

* Fix the income level at the default level, i.e. the

* income level corresponding to the counterfactual

* endowment at benchmark price:

Y.FX = sum(f,e0(f));

solve jpmcp using mcp;

Parameter equilibrium Equilibrium values;

* Save counterfactual values:

equilibrium("X",j,"Y=6.4") = X.L(j);

equilibrium(i,j,"Y=6.4") = S.L(i,j)-D.L(i,j);

equilibrium(f,j,"Y=6.4") = FD.L(f,j);

equilibrium("C",i,"Y=6.4") = C.L(i);

equilibrium("X",j,"Y=6.4") = X.L(j);

equilibrium("P",i,"Y=6.4") = P.L(i);

equilibrium("PF",f,"Y=6.4") = PF.L(f);

equilibrium("Y","_","Y=6.4") = Y.L;

* Fix a numeraire price index and recalculate:

P.FX("g1") = 1;

Y.LO = -INF;

Y.UP = INF;

solve jpmcp using mcp;

equilibrium("X", j,’P("g1")=1’) = X.L(j);

equilibrium(i, j,’P("g1")=1’) = S.L(i,j)-D.L(i,j);

equilibrium(f, j,’P("g1")=1’) = FD.L(f,j);

equilibrium("C", i,’P("g1")=1’) = C.L(i);

equilibrium("X", j,’P("g1")=1’) = X.L(j);

equilibrium("P", i,’P("g1")=1’) = P.L(i);

equilibrium("PF", f,’P("g1")=1’) = PF.L(f);

equilibrium("Y","_",’P("g1")=1’) = Y.L;

* Recalculate with a different numeraire.

* "Unfix" the price of X and fix the wage rate:

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1565

P.UP("g1") = +inf;

P.LO("g1") = 1e-5;

PF.FX("labor") = 1;

solve jpmcp using mcp;

equilibrium("X", j,’PF("labor")=1’) = X.L(j);

equilibrium(i, j,’PF("labor")=1’) = S.L(i,j)-D.L(i,j);

equilibrium(f, j,’PF("labor")=1’) = FD.L(f,j);

equilibrium("C", i,’PF("labor")=1’) = C.L(i);

equilibrium("X", j,’PF("labor")=1’) = X.L(j);

equilibrium("P", i,’PF("labor")=1’) = P.L(i);

equilibrium("PF", f,’PF("labor")=1’) = PF.L(f);

equilibrium("Y","_",’PF("labor")=1’) = Y.L;

option equilibrium:3:2:1;

display equilibrium;

Algebraic Version of Model JPMGE: NLP Formulation

$title Model with Joint Products and Intermediate Demand -- solved as NLP

Sets j Sectors / s1*s2 /,

i Goods / g1*g2 /,

f Primary factors / labor, capital / ;

alias (i,ii),(j,jj);

Table make0(i,j) Matrix -- supplies

s1 s2

g1 6 2

g2 2 10 ;

Table use0(i,j) Use matrix -- intermediate demands

s1 s2

g1 4 2

g2 2 6 ;

Table fd0(f,j) Factor demands

s1 s2

labor 1 3

capital 1 1 ;

Parameters

c0(i) Consumer demand / g1 2, g2 4 /

e0(f) Factor endowments;

e0(f) = sum(j, fd0(f,j));

display e0;

* ===

* Variables which appear explicitly in the MPSGE model:

Nonnegative

Variable X(j) ! Activity index -- benchmark=1;

X.L(j) = 1;

1566 User's Guide

* ===

* Variables that enter the MPSGE model implicitly:

Variables

U Utility

S(i,j) Compensated supply

D(i,j) Compensated intermediate demand

FD(f,j) Compensated factor demand

C(i) Final demand;

S.L(i,j) = make0(i,j);

D.L(i,j) = use0(i,j);

FD.L(f,j) = fd0(f,j);

C.L(i) = c0(i);

* ===

* Calibration calculations provided automatically by MPSGE:

Parameter thetad(i,j) Intermediate demand value share

thetas(i,j) Output value share

thetaf(f,j) Factor demand value share

thetac(i) Final demand value share;

thetas(i,j) = make0(i,j)/sum(ii,make0(ii,j));

thetad(i,j) = use0(i,j)/(sum(ii,use0(ii,j))+sum(ff,fd0(ff,j)));

thetaf(f,j) = fd0(f,j) /(sum(ii,use0(ii,j))+sum(ff,fd0(ff,j)));

thetac(i) = c0(i)/sum(ii,c0(ii));

* ===

* Equilibrium conditions:

Equations production, goods, factors, utility;

* Zero profit:

production(j).. prod(i, (D(i,j)/use0(i,j))**thetad(i,j)) *

prod(f, (FD(f,j)/fd0(f,j))**thetaf(f,j)) =e=

sqrt(sum(i, thetas(i,j)*sqr(S(i,j)/make0(i,j))));

* Market clearance:

goods(i).. sum(j, X(j)*(S(i,j)-D(i,j))) =e= C(i);

factors(f).. e0(f) =e= sum(j, FD(f,j)*X(j));

* Income balance:

utility.. U =E= prod(i, (C(i)/c0(i))**thetac(i));

model jpnlp / production, goods, factors, utility/;

* ===

* Benchmark replication with iteration limit zero. Do not need

* to fix the price level at this point:

solve jpnlp using nlp maximizing U;

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1567

Parameter equilibrium Equilibrium values

pnum Numeraire price index;

* Save benchmark values:

pnum = sum(f,factors.m(f)*e0(f))/sum(f,e0(f));

equilibrium("X",j,"bmk") = X.L(j);

equilibrium(i,j,"bmk") = X.L(j)*(S.L(i,j)-D.L(i,j));

equilibrium(f,j,"bmk") = FD.L(f,j);

equilibrium("C",i,"bmk") = C.L(i);

equilibrium("X",j,"bmk") = X.L(j);

equilibrium("P",i,"bmk") = goods.m(i)/pnum;

equilibrium("PF",f,"bmk") = factors.m(f)/pnum;

equilibrium("Y","_","bmk") = sum(f,factors.m(f)*e0(f)/pnum);

* ===

* Counterfactual : 10% increase in labor endowment

e0("labor") = 1.1 * e0("labor");

solve jpnlp using nlp maximizing u;

* Save counterfactual values:

pnum = sum(f,factors.m(f)*e0(f))/sum(f,e0(f));

equilibrium("X",j,’labor+10%’) = X.L(j);

equilibrium(i,j,’labor+10%’) = X.L(j)*(S.L(i,j)-D.L(i,j));

equilibrium(f,j,’labor+10%’) = FD.L(f,j);

equilibrium("C",i,’labor+10%’) = C.L(i);

equilibrium("X",j,’labor+10%’) = X.L(j);

equilibrium("P",i,’labor+10%’) = goods.m(i)/pnum;

equilibrium("PF",f,’labor+10%’) = factors.m(f)/pnum;

equilibrium("Y","_",’labor+10%’) = sum(f,factors.m(f)*e0(f)/pnum);

option equilibrium:3:2:1;

display equilibrium;

Three Versions of a 123 Model

Data for Models: 123DATA

This data file is included in each of the following models.

$stitle Dataset for a 123 Model

set mcmrow Rows in the micro-consistent matrix /

PFX Current account,

PD Domestic ouputput

TA Sales and excise taxes

TM Import tariffs

TX Export taxes

TK Capital taxes

TL Labor taxes

RK Return to capital

1568 User's Guide

PL Wage rate

PA Price of Armington composite /,

mcmcol Columns in the micro-consistent matrix /

S Supply,

D Demand,

GOVT Government,

HH Households

INVEST Investment /;

table mcm(mcmrow,mcmcol) Microconsistent matrix

S D GOVT HH INVEST

PFX 106.386 -144.701 38.315

PD 218.308 -218.308

TA -32.027 32.027

TM -18.617 18.617

TX -1.136 1.136

TK -12.837 12.837

TL -3.539 3.539

RK -143.862 143.862

PL -163.320 163.320

PA 413.653 -35.583 -291.694 -86.376

* Parameter values describing base year equilibrium:

parameter px0 Reference price of exports

d0 Reference domestic supply

x0 Reference exports

kd0 Reference net capital earnings

ly0 Reference net labor earnings

rr0 Reference price of capital

pl0 Reference wage

tk Capital tax rate

tl Labor tax rate

ta Excise and sales tax rate

tx Tax on exports

a0 Aggregate supply (gross of tax)

g0 Government demand,

dtax Direct tax net transfers

m0 Imports

l0 Leisure demand

c0 Household consumption,

i0 Aggregate investment

tm Import tariff rate

pm0 Reference price of imports

pwm World price of imports /1/

pwx World price of exports /1/

bopdef Balance of payments deficit

etadx Elasticity of transformation (D versus X) /4/,

sigmadm Elasticity of substitution (D versus M) /4/,

esubkl Elasticity of substitution (K versus L) /1/,

sigma Elasticity of substitution (C versus LS) /0.4/;

d0 = mcm("pd","s");

x0 = mcm("pfx","s");

kd0 = -mcm("rk","s");

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1569

ly0 = -mcm("pl","s");

tx = -mcm("tx","s")/mcm("pfx","s");

tk = mcm("tk","s")/mcm("rk","s");

tl = mcm("tl","s")/mcm("pl","s");

px0 = 1 - tx;

rr0 = 1 + tk;

pl0 = 1 + tl;

parameter profit Zero profit check;

profit("PD") = d0;

profit("PX") = x0;

profit("TX") = -tx*x0;

profit("TK") = -tk*kd0;

profit("TL") = -tl*ly0;

profit("PL") = -ly0;

profit("RK") = -kd0;

alias (u,*);

profit("CHK") = sum(u, profit(u));

display profit, tx, tk, tl;

m0 = -mcm("pfx","d");

tm = mcm("tm","d")/mcm("pfx","d");

pm0 = 1 + tm;

a0 = mcm("pa","d");

g0 = -mcm("pa","govt");

ta = -mcm("ta","d")/mcm("pa","d");

bopdef = mcm("pfx","govt");

dtax = g0 - bopdef - tm*m0 - ta*a0 - tl*ly0 - tk*kd0 - tx*x0;

i0 = -mcm("pa","invest");

c0 = a0 - i0 - g0;

l0 = 0.75*ly0;

display g0;

MGE123: MPSGE Model

This is the base 123 MPSGE model.

$title Static 123 Model Ala Devarjan

$include 123data.gms

$ontext

$model:MGE123

$SECTORS:

Y ! Production

A ! Armington composite

M ! Imports

X ! Exports

$COMMODITIES:

PD ! Domestic price index

PX ! Export price index

1570 User's Guide

PM ! Import price index

PA ! Armington price index

PL ! Wage rate index

RK ! Rental price index

PFX ! Foreign exchange

$CONSUMERS:

HH ! Private households

GOVT ! Government

$AUXILIARY:

TAU_LS ! Lumpsum Replacement tax

TAU_TL ! Labor tax replacement

UR ! Unemployment rate

$PROD:Y t:etadx s:esubkl

O:PD Q:d0 P:1 ! YD

O:PX Q:x0 P:px0 A:GOVT T:tx ! YX

I:RK Q:kd0 P:rr0 A:GOVT T:tk ! KD

I:PL Q:ly0 P:pl0 A:GOVT T:tl N:TAU_TL ! LY

$report:

v:YD o:PD prod:Y

v:YX o:PX prod:Y

v:KD i:RK prod:Y

v:LY i:PL prod:Y

$PROD:A s:sigmadm

O:PA Q:a0 A:GOVT t:ta

I:PD Q:d0 ! DA

I:PM Q:m0 p:pm0 A:GOVT t:tm ! MA

$report:

v:DA i:PD prod:A

v:MA i:PM prod:A

$PROD:M

O:PM Q:m0

I:PFX Q:(pwm*m0)

$PROD:X

O:PFX Q:(pwx*x0)

I:PX Q:x0

$DEMAND:GOVT

E:PFX Q:bopdef

E:PA Q:dtax

E:PA Q:g0 R:TAU_LS

D:PA

$CONSTRAINT:UR

PL =G= PA;

$CONSTRAINT:TAU_LS

GOVT =e= PA * g0;

$CONSTRAINT:TAU_TL

GOVT =e= PA * g0;

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1571

$DEMAND:HH s:sigma

E:PA Q:(-g0) R:TAU_LS

E:PA Q:(-dtax)

E:RK Q:kd0

E:PA Q:(-i0)

E:PL Q:(ly0+l0) ! Labor endowment = ly0+l0 - UR * (ly0+l0)

E:PL Q:(-(ly0+l0)) R:UR

D:PA Q:c0

D:PL Q:l0

$report:

v:W w:HH

v:C d:PA demand:HH

v:LD d:PL demand:HH

$offtext

$sysinclude mpsgeset mge123

UR.FX = 0;

TAU_TL.FX = 0;

TAU_LS.UP = INF;

TAU_LS.LO = -INF;

mge123.iterlim = 0;

$include MGE123.GEN

solve mge123 using mcp;

abort$(mge123.objval > 1e-4) "Benchmark model does not calibrate.";

mge123.iterlim = 10000;

mge123.savepoint = 2;

Parameter report Tariff Remove with Revenue Replacement (% impact);

$onechov >%gams.scrdir%report.gms

abort$(mge123.objval > 1e-4) "Scenario fails to solve.";

report("W","%replacement%","%labormarket%") = 100*(W.L-1);

report("Y","%replacement%","%labormarket%") = 100*(Y.L-1);

report("A","%replacement%","%labormarket%") = 100 * (A.L-1);

report("M","%replacement%","%labormarket%") = 100 * (M.L-1);

report("X","%replacement%","%labormarket%") = 100 * (X.L-1);

report("YD","%replacement%","%labormarket%") = 100 * (YD.L/d0-1);

report("YX","%replacement%","%labormarket%") = 100 * (YX.L/x0-1);

report("KD","%replacement%","%labormarket%") = 100 * (KD.L/kd0-1);

report("LY","%replacement%","%labormarket%") = 100 * (LY.L/ly0-1);

report("DA","%replacement%","%labormarket%") = 100 * (DA.L/d0-1);

report("MA","%replacement%","%labormarket%") = 100 * (MA.L/m0-1);

report("C","%replacement%","%labormarket%") = 100 * (C.L/c0-1);

report("LD","%replacement%","%labormarket%") = 100 * (LD.L/l0-1);

report("PD","%replacement%","%labormarket%") = 100 * (PD.L/PL.L - 1);

report("PX","%replacement%","%labormarket%") = 100 * (PX.L/PL.L - 1);

report("PM","%replacement%","%labormarket%") = 100 * (PM.L/PL.L - 1);

report("PA","%replacement%","%labormarket%") = 100 * (PA.L/PL.L - 1);

report("PL","%replacement%","%labormarket%") = 100 * (PL.L/PL.L - 1);

report("RK","%replacement%","%labormarket%") = 100 * (RK.L/PL.L - 1);

report("PFX","%replacement%","%labormarket%") = 100 * (PFX.L/PL.L - 1);

report("HH","%replacement%","%labormarket%") = 100 * (HH.L/PL.L - 1);

report("GOVT","%replacement%","%labormarket%") = 100 * (GOVT.L/PL.L - 1);

1572 User's Guide

report("TAU_LS","%replacement%","%labormarket%") = 100*TAU_LS.L;

report("TAU_TL","%replacement%","%labormarket%") = 100*TAU_TL.L;

report("UR","%replacement%","%labormarket%") = 100*UR.L;

$offecho

* Tariff reform:

tm = 0;

UR.FX = 0;

TAU_LS.UP = +inf;

TAU_LS.LO = -inf;

TAU_TL.FX = 0;

$include MGE123.GEN

solve mge123 using mcp;

$set replacement Lump Sum

$set labormarket Flexible

$include %gams.scrdir%report

UR.FX = 0;

TAU_TL.UP = +inf;

TAU_TL.LO = -inf;

TAU_LS.FX = 0;

$include MGE123.GEN

solve mge123 using mcp;

$set replacement Wage Tax

$set labormarket Flexible

$include %gams.scrdir%report

UR.LO = 0;

UR.UP = +inf;

TAU_LS.UP = +inf;

TAU_LS.LO = -inf;

TAU_TL.FX = 0;

$include MGE123.GEN

solve mge123 using mcp;

$set replacement Lump Sum

$set labormarket Rigid Wage

$include %gams.scrdir%report

UR.LO = 0;

UR.UP = +inf;

TAU_TL.UP = +inf;

TAU_TL.LO = -inf;

TAU_LS.FX = 0;

$include MGE123.GEN

solve mge123 using mcp;

$set replacement Wage Tax

$set labormarket Rigid Wage

$include %gams.scrdir%report

option report:1:1:2;

display report;

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1573

Model MCP123: Algebraic Version in GAMS MCP

This GAMS model is the model mge123 translated verbatim into GAMS/MCP (algebraic) format. This is
the way the model will look in the MPSGEv2 framework.

$title Static 123 Model Ala Devarjan -- GAMS/MCP Format

$include 123data

* ===

* Variables which appear explicitly in the MPSGE model:

Nonnegative Variables

*$SECTORS:

Y Production

A Armington composite

M Imports

X Exports

*$COMMODITIES:

PD Domestic price index

PX Export price index

PM Import price index

PA Armington price index

PL Wage rate index

RK Rental price index

PFX Foreign exchange

*$CONSUMERS:

HH Private households

GOVT Government

*$AUXILIARY:

TAU_TL Wage replacement tax,

TAU_LS Lump sum replacement tax

UR Unemployment rate;

* Assign default prices and activity levels:

Y.L = 1; A.L = 1; M.L = 1; X.L = 1;

PD.L = 1; PX.L = 1; PM.L = 1; PA.L = 1; PL.L = 1; RK.L = 1; PFX.L = 1;

HH.L = c0+l0; GOVT.L=g0;

TAU_TL.L = 0; TAU_LS.L = 0; UR.L = 0;

* Insert lower bounds to avoid bad function calls:

PD.LO = 1e-4; PX.LO = 1e-4; PM.LO = 1e-4; PA.LO = 1e-4; PL.LO = 1e-4; RK.LO = 1e-4; PFX.LO = 1e-4;

* ===

* Variables enter the MPSGE model implicitly:

Variable

YD Production for the domestic market,

YX Production for the export market,

KD Capital demand,

LY Labor demand,

1574 User's Guide

DA Domestic absorption,

MA Imports,

C Consumption of goods (uncompensated),

LD Leisure demand (uncompensated);

* Equations for the implicit variables:

Equations YDdef, YXdef, KDdef, LYdef, DAdef, MAdef, Cdef, LDdef;

* Macros defining composite prices (unit cost and unit revenue):

Parameter thetal Labor share in cost function,

thetac Consumption share in expenditure function,

thetam Share parameter in Armington function

thetaz Share parameter in transformation function ;

thetal = ly0*pl0 /(kd0*rr0+ly0*pl0);

thetaz = x0 *px0 /(d0+x0*px0);

thetam = m0 *pm0 /(d0+m0*pm0);

thetac = c0/(c0+l0);

$macro CY ((PL*(1+tl+TAU_TL)/pl0)**thetal * (RK*(1+tk)/rr0)**(1-thetal))

$macro RY ((thetaz * (PX*(1-tx)/px0)**(1+etadx) + (1-thetaz) * PD**(1+etadx)) **(1/(1+etadx)))

$macro CA ((thetam *(PM*(1+tm)/pm0)**(1-sigmadm) + (1-thetam)*PD**(1-sigmadm))**(1/(1-sigmadm)))

$macro CU ((thetac*PA**(1-sigma) + (1-thetac)*PL**(1-sigma))**(1/(1-sigma)))

$macro W (HH.L/((c0+l0)*CU))

* Definitions of demand and supply functions:

YDdef.. YD =e= d0 * (PD/RY)**etadx;

YXdef.. YX =e= x0 * (PX*(1-tx)/(px0*RY))**etadx;

KDdef.. KD =e= kd0 * (CY*rr0/(RK*(1+tk)))**esubkl;

LYdef.. LY =e= ly0 * (CY*pl0/(PL*(1+tl+TAU_TL)))**esubkl;

DAdef.. DA =e= d0 * (CA/PD)**sigmadm;

MAdef.. MA =e= m0 * (CA*pm0/(PM*(1+tm)))**sigmadm;

Cdef.. C =e= c0 * W * (CU/PA)**sigma;

LDdef.. LD =e= l0 * W * (CU/PL)**sigma;

* Initialize:

YD.L = d0; YX.L = x0; KD.L = kd0; LY.L = ly0; DA.L = d0; MA.L = m0;

C.L = c0; LD.L = l0;

* ===

Equations

* Zero profit condition

profity domestic production,

profita Armington supply,

profitm imported goods production

profitx exported goods production

* Market clearing condition

marketd domestic goods market,

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1575

marketa Armington goods market

marketm imported goods market

marketx exported goods market

marketfx balance of payment

marketk capital market

marketl labor market

* Income balance

incomeg budget

incomeh household budget

* Additional constraints

tauTLdef Equal yield constraint (TL),

tauLSdef Equal yield constraint (LS),

URdef Lower bound on the real wage;

marketd.. Y*YD =e= A*DA;

profity.. KD*RK*(1+tk) + LY*PL*(1+tl+TAU_TL) =E= YD*PD + YX*PX*(1-tx);

marketa.. A*a0 =g= GOVT/PA + i0 + C;

profita.. PD*DA + PM*(1+tm)*MA =e= PA*a0*(1-ta);

marketm.. M*m0 =e= A*MA;

profitm.. PFX*pwm =e= PM;

marketx.. Y*YX =e= X*x0;

profitx.. PX =e= PFX*pwx;

marketfx.. X*pwx*x0 + bopdef =E= M*pwm*m0;

marketk.. kd0 =e= Y*KD;

marketl.. ly0+l0 =e= Y*LY + LD + (ly0+l0)*UR;

incomeg.. GOVT =e= PFX*bopdef + PA*dtax + PA*g0*TAU_LS + tx*PX*YX*Y +

tk*RK*KD*Y + (tl+TAU_TL)*PL*LY*Y + tm*PM*MA*A + ta*PA*a0*A;

tauTLdef.. GOVT =e= PA * g0;

tauLSdef.. GOVT =e= PA * g0;

URdef.. PL =G= PA;

incomeh.. HH =e= PL*(ly0+l0)*(1-UR) - PA*dtax - PA*g0*TAU_LS + RK*kd0 - PA*i0 ;

model mcp123 /marketd.PD, marketa.PA, marketm.PM, marketx.PX, marketfx.PFX, marketk.RK, marketl.PL,

profity.Y, profita.A, profitm.M, profitx.X, incomeg.GOVT, incomeh.HH, tauLSdef.TAU_LS, tauTLdef.TAU_TL, URdef.UR,

YDdef.YD, YXdef.YX, KDdef.KD, LYdef.LY, DAdef.DA, MAdef.MA, Cdef.C, LDdef.LD /;

* Establish a numeraire price index:

HH.FX = HH.L;

mcp123.iterlim = 0;

solve mcp123 using mcp;

1576 User's Guide

abort$(mcp123.objval > 1e-4) "Benchmark model does not calibrate.";

mcp123.iterlim = 10000;

Parameter report Tariff Remove with Revenue Replacement (% impact);

$onechov >%gams.scrdir%report.gms

abort$(mcp123.objval > 1e-4) "Scenario fails to solve.";

$ondotl

report("W","%replacement%","%labormarket%") = 100*(W-1);

report("Y","%replacement%","%labormarket%") = 100*(Y.L-1);

report("A","%replacement%","%labormarket%") = 100 * (A.L-1);

report("M","%replacement%","%labormarket%") = 100 * (M.L-1);

report("X","%replacement%","%labormarket%") = 100 * (X.L-1);

report("YD","%replacement%","%labormarket%") = 100 * (YD.L/d0-1);

report("YX","%replacement%","%labormarket%") = 100 * (YX.L/x0-1);

report("KD","%replacement%","%labormarket%") = 100 * (KD.L/kd0-1);

report("LY","%replacement%","%labormarket%") = 100 * (LY.L/ly0-1);

report("DA","%replacement%","%labormarket%") = 100 * (DA.L/d0-1);

report("MA","%replacement%","%labormarket%") = 100 * (MA.L/m0-1);

report("C","%replacement%","%labormarket%") = 100 * (C.L/c0-1);

report("LD","%replacement%","%labormarket%") = 100 * (LD.L/l0-1);

report("PD","%replacement%","%labormarket%") = 100 * (PD.L/PL.L - 1);

report("PX","%replacement%","%labormarket%") = 100 * (PX.L/PL.L - 1);

report("PM","%replacement%","%labormarket%") = 100 * (PM.L/PL.L - 1);

report("PA","%replacement%","%labormarket%") = 100 * (PA.L/PL.L - 1);

report("PL","%replacement%","%labormarket%") = 100 * (PL.L/PL.L - 1);

report("RK","%replacement%","%labormarket%") = 100 * (RK.L/PL.L - 1);

report("PFX","%replacement%","%labormarket%") = 100 * (PFX.L/PL.L - 1);

report("HH","%replacement%","%labormarket%") = 100 * (HH.L/PL.L - 1);

report("GOVT","%replacement%","%labormarket%") = 100 * (GOVT.L/PL.L - 1);

report("TAU_LS","%replacement%","%labormarket%") = 100*TAU_LS.L;

report("TAU_TL","%replacement%","%labormarket%") = 100*TAU_TL.L;

report("UR","%replacement%","%labormarket%") = 100*UR.L;

$offecho

* Tariff reform:

tm = 0;

* Consider four alternative closures depending on revenue

* replacement (lumpsum versus wage tax) and labor market

* (flexible versus fixed wages).

UR.FX = 0;

TAU_LS.UP = +inf;

TAU_LS.LO = -inf;

TAU_TL.FX = 0;

solve mcp123 using mcp;

$set replacement Lump Sum

$set labormarket Flexible

$include %gams.scrdir%report

UR.FX = 0;

TAU_TL.UP = +inf;

TAU_TL.LO = -inf;

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1577

TAU_LS.FX = 0;

solve mcp123 using mcp;

$set replacement Wage Tax

$set labormarket Flexible

$include %gams.scrdir%report

UR.LO = 0;

UR.UP = +inf;

TAU_LS.UP = +inf;

TAU_LS.LO = -inf;

TAU_TL.FX = 0;

solve mcp123 using mcp;

$set replacement Lump Sum

$set labormarket Rigid Wage

$include %gams.scrdir%report

UR.LO = 0;

UR.UP = +inf;

TAU_TL.UP = +inf;

TAU_TL.LO = -inf;

TAU_LS.FX = 0;

solve mcp123 using mcp;

$set replacement Wage Tax

$set labormarket Rigid Wage

$include %gams.scrdir%report

option report:1:1:2;

display report;

Model MGENESTED: MPSGE Model with Nesting

$title Static 123 Model Ala Devarjan

$include 123data.gms

parameter cd0 Final demand for domestic goods

cm0 Final demand for imports

sigmac Armington elasticity in final demand /0.5/;

* In this version of the model, we apply the tariff on imports

* in the M block, so we then can measure imports as value gross

* of tariff:

m0 = pm0*m0;

* Store the benchmark tax revenue in the tax rate parameter:

ta = a0 * ta;

* Impute final demand for domestic and imported goods:

cd0 = c0 * d0/(d0+m0);

cm0 = c0 * m0/(d0+m0);

1578 User's Guide

* Armington supply net final demand:

a0 = d0+m0-cd0-cm0+ta;

* Recalibrate taxes on A so that tax revenue remains unchanged:

ta = ta/a0;

$ontext

$model:MGE123

$SECTORS:

Y ! Production

A ! Armington composite

M ! Imports

X ! Exports

$COMMODITIES:

PD ! Domestic price index

PX ! Export price index

PM ! Import price index

PA ! Armington price index

PL ! Wage rate index

RK ! Rental price index

PFX ! Foreign exchange

$CONSUMERS:

HH ! Private households

GOVT ! Government

$AUXILIARY:

TAU_LS ! Lumpsum Replacement tax

TAU_TL ! Labor tax replacement

UR ! Unemployment rate

$PROD:Y t:etadx s:esubkl

O:PD Q:d0 P:1 ! YD

O:PX Q:x0 P:px0 A:GOVT T:tx ! YX

I:RK Q:kd0 P:rr0 A:GOVT T:tk ! KD

I:PL Q:ly0 P:pl0 A:GOVT T:tl N:TAU_TL ! LY

$report:

v:YD o:PD prod:Y

v:YX o:PX prod:Y

v:KD i:RK prod:Y

v:LY i:PL prod:Y

$PROD:X

O:PFX Q:(pwx*x0)

I:PX Q:x0

$PROD:A s:sigmadm

O:PA Q:a0 A:GOVT t:ta

I:PD Q:(d0-cd0) ! DA

I:PM Q:(m0-cm0)

$report:

v:DA i:PD prod:A

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1579

v:MA i:PM prod:A

$PROD:M

O:PM Q:m0

I:PFX Q:(pwm*m0/pm0) A:GOVT t:tm

$DEMAND:GOVT

E:PFX Q:bopdef

E:PA Q:dtax

E:PA Q:g0 R:TAU_LS

D:PA

$CONSTRAINT:UR

PL =G= PA;

$CONSTRAINT:TAU_LS

GOVT =e= PA * g0;

$CONSTRAINT:TAU_TL

GOVT =e= PA * g0;

$DEMAND:HH s:sigma c:sigmac

E:PA Q:(-g0) R:TAU_LS

E:PA Q:(-dtax)

E:RK Q:kd0

E:PA Q:(-i0)

E:PL Q:(ly0+l0) ! Labor endowment = ly0+l0 - UR * (ly0+l0)

E:PL Q:(-(ly0+l0)) R:UR

D:PL Q:l0

D:PD Q:cd0 c:

D:PM Q:cm0 c:

$report:

v:W w:HH

v:CD d:PD demand:HH

v:CM d:PM demand:HH

v:LD d:PL demand:HH

$offtext

$sysinclude mpsgeset mge123

UR.FX = 0;

TAU_TL.FX = 0;

TAU_LS.UP = INF;

TAU_LS.LO = -INF;

mge123.iterlim = 0;

$include MGE123.GEN

solve mge123 using mcp;

abort$(mge123.objval > 1e-4) "Benchmark model does not calibrate.";

mge123.iterlim = 10000;

parameter report Tariff Remove with Revenue Replacement (% impact);

$onechov >%gams.scrdir%report.gms

abort$(mge123.objval > 1e-4) "Scenario fails to solve.";

1580 User's Guide

report("W","%replacement%","%labormarket%") = 100*(W.L-1);

report("Y","%replacement%","%labormarket%") = 100*(Y.L-1);

report("A","%replacement%","%labormarket%") = 100 * (A.L-1);

report("M","%replacement%","%labormarket%") = 100 * (M.L-1);

report("X","%replacement%","%labormarket%") = 100 * (X.L-1);

report("YD","%replacement%","%labormarket%") = 100 * (YD.L/d0-1);

report("YX","%replacement%","%labormarket%") = 100 * (YX.L/x0-1);

report("KD","%replacement%","%labormarket%") = 100 * (KD.L/kd0-1);

report("LY","%replacement%","%labormarket%") = 100 * (LY.L/ly0-1);

report("DA","%replacement%","%labormarket%") = 100 * (DA.L/(d0-cd0)-1);

report("MA","%replacement%","%labormarket%") = 100 * (MA.L/(m0-cm0)-1);

report("CD","%replacement%","%labormarket%") = 100 * (CD.L/cd0-1);

report("CM","%replacement%","%labormarket%") = 100 * (CM.L/cm0-1);

report("LD","%replacement%","%labormarket%") = 100 * (LD.L/l0-1);

report("PD","%replacement%","%labormarket%") = 100 * (PD.L/PL.L - 1);

report("PX","%replacement%","%labormarket%") = 100 * (PX.L/PL.L - 1);

report("PM","%replacement%","%labormarket%") = 100 * (PM.L/PL.L - 1);

report("PA","%replacement%","%labormarket%") = 100 * (PA.L/PL.L - 1);

report("PL","%replacement%","%labormarket%") = 100 * (PL.L/PL.L - 1);

report("RK","%replacement%","%labormarket%") = 100 * (RK.L/PL.L - 1);

report("PFX","%replacement%","%labormarket%") = 100 * (PFX.L/PL.L - 1);

report("HH","%replacement%","%labormarket%") = 100 * (HH.L/PL.L - 1);

report("GOVT","%replacement%","%labormarket%") = 100 * (GOVT.L/PL.L - 1);

report("TAU_LS","%replacement%","%labormarket%") = 100*TAU_LS.L;

report("TAU_TL","%replacement%","%labormarket%") = 100*TAU_TL.L;

report("UR","%replacement%","%labormarket%") = 100*UR.L;

$offecho

* Tariff reform:

tm = 0;

UR.FX = 0;

TAU_LS.UP = +inf;

TAU_LS.LO = -inf;

TAU_TL.FX = 0;

$include MGE123.GEN

solve mge123 using mcp;

$set replacement Lump Sum

$set labormarket Flexible

$include %gams.scrdir%report

UR.FX = 0;

TAU_TL.UP = +inf;

TAU_TL.LO = -inf;

TAU_LS.FX = 0;

$include MGE123.GEN

solve mge123 using mcp;

$set replacement Wage Tax

$set labormarket Flexible

$include %gams.scrdir%report

* Lump sum revenue replacement -- downward rigid wage:

UR.LO = 0;

UR.UP = +inf;

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1581

TAU_LS.UP = +inf;

TAU_LS.LO = -inf;

TAU_TL.FX = 0;

$include MGE123.GEN

solve mge123 using mcp;

$set replacement Lump Sum

$set labormarket Rigid Wage

$include %gams.scrdir%report

UR.LO = 0;

UR.UP = +inf;

TAU_TL.UP = +inf;

TAU_TL.LO = -inf;

TAU_LS.FX = 0;

$include MGE123.GEN

solve mge123 using mcp;

$set replacement Wage Tax

$set labormarket Rigid Wage

$include %gams.scrdir%report

option report:1:1:2;

display report;

4.53.2 MPSGE Models in GAMS

MPSGE is a mathematical programming system for general equilibrium analysis which operates as a
subsystem within GAMS. MPSGE is essentially a library of function and Jacobian evaluation routines
which facilitates the formulation and analysis of AGE models. MPSGE simplifies the modeling process and
makes AGE modeling accessible to any economist who is interested in the application of these models. In
addition to solving specific modeling problems, the system serves a didactic role as a structured framework
in which to think about general equilibrium systems.

MPSGE requires the GAMS/BASE Module including the MILES MCP solver. Optionally it can use the
PATH MCP solver.

4.53.2.1 Introduction

This paper introduces a programming language for economic equilibrium modeling. The paper presents
the motivation for the system, the programming syntax, and three small scale examples. A library of larger
models are provided with the program. The purpose of the paper is to provide a concise introduction to
the modeling environment.

MPSGE is a modeling language specially designed for solving Arrow-Debreu economic equilibrium models.
(See Rutherford (1987, 1989).) The name stands for ”mathematical programming system for general
equilibrium”. The idea of the MPSGE program is to provide a transparent and relatively painless way to
write down and analyze complicated systems of nonlinear inequalities. The language is based on nested
constant elasticity of substitution utility functions and production functions. The data requirements for a
model include share and elasticity parameters for all the consumers and production sectors included in
the model. These may or may not be calibrated from a consistent benchmark equilibrium dataset.

GAMS, the ”Generalized Algebraic Modeling System”, is a modeling language which was originally
developed for linear, nonlinear and integer programming. This language was developed over 15 years ago
by Alex Meeraus when he was working at the World Bank. (See Brooke, Kendrick and Meeraus (1988).)

1582 User's Guide

Since that time, GAMS has been widely applied for large-scale economic and operations research modeling
projects.

MPSGE and GAMS embody different philosophies in their designs. MPSGE is appropriate for a specific
class of nonlinear equations, while GAMS is capable of representing any system of algebraic equations.
While GAMS is applicable in several disciplines, MPSGE is only applicable in the analysis of economic
models within a particular domain. The expert knowledge embodied in MPSGE is of particular use to
economists who are interested in the insights provided by formal models but who are unable to devote
many hours to programming. MPSGE provides a structured framework for novice modellers. When used
by experts, MPSGE reduces the setup cost of producing an operational model and the cost of testing
alternative specifications.

Prior to the connection with GAMS, the ”achilles heel” of MPSGE had been the process by which input
data was translated into the tabular format of the MPSGE input file. For small models, this translation
was not difficult. Given a calibrated ”benchmark equilibrium dataset”, a couple of hours with a word
processor is usually enough time to generate and investigate a moderately large model. If, however, a
model involves several classes of sectors and agents, a wide range of tax instruments and large tables of
input data, the word- processor approach is impossible. When there are many numbers, there are many
opportunities for oversights and typographical errors.

In contrast, the GAMS modeling language is designed for managing large datasets. The use of sets and
detached-coefficient matrix notation makes the GAMS environment very nice for both developing balanced
benchmark datasets and for writing solution reports. For large complicated models, a shortcoming of the
GAMS modeling environment lies in the specification of the nonlinear equations. Economic equilibrium
models, particularly those based on complicated functions such as nested CES, are easier to understand
at an abstract level than they are to specify in detail, and the translation of a model from input data into
algebraic relations can be a tedious and error- prone undertaking.

The interface between GAMS and MPSGE combines the strengths of both programs. The system uses
GAMS as the ”front end” and ”back end” to MPSGE facilitating data handling and report writing. The
language employs an extended MPSGE syntax based on GAMS sets, so that model specification is very
concise. In addition, the system includes two large-scale solvers, MILES (Rutherford (1993)) and PATH
(Ferris and Dirkse (1993)), which may be used interchangeably. The availability of two algorithms greatly
enhances robustness and reliability.

The remainder of this paper is organized as follows. Section 2 introduces MPSGE input syntax and
the GAMS interface using a small two-sector model of taxation. Section 3 extends the 2x2 model to
illustrate how the software is used to perform equal-yield (differential) tax policy analysis and to analyze
tax reform in a model with endogenous taxation. Section 4 provides a brief summary and conclusion. The
paper introduces language features largely through example. Details on language syntax and program
structure are provided in two appendices. Appendix A provides a complete statement of MPSGE syntax
and a summary of differences with the original (1989) language. Appendix B provides an overview of the
modeling environment and the structure of GAMS input files which employ MPSGE.

Before proceeding, both to placate impatient readers and to provide some hands-on experience for novices,
I recommend that readers install the GAMS system, then retrieve and process the library file THREEMGE
which contains three MPSGE models (HARBERGER, SHOVEN and SAMUELSON). Two commands to retrieve
and run these models:

gamslib threemge

gams threemge

After having processed this file, print the listing files (THREEMGE.LST) for reference.

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1583

4.53.2.2 A Mathematical Introduction

Mathiesen (1985) demonstrated that an Arrow-Debreu general economic equilibrium model could be
formulated and efficiently solved as a complementarity problem. Mathiesen's formulation may be posed in
terms of three sets of ”central variables”:

p = a non-negative n-vector of commodity prices including all final goods, intermediate goods
and primary factors of production;

y = a non-negative m-vector of activity levels for constant returns to scale production sectors
in the economy; and

M = an h-vector of income levels, one for each ”household” in the model, including any
government entities.

An equilibrium in these variables satisfies a system of three classes of nonlinear inequalities.

Zero Profit

The first class of constraint requires that in equilibrium no producer earns an ”excess” profit, i.e. the value
of inputs per unit activity must be equal to or greater than the value of outputs. This can be written in
compact form as:

−
∏
j(p) = Cj(p)−Rj(p) ≥ 0 ∀j

where
∏
j(p) is the unit profit function, the difference between unit revenue and unit cost, defined as:

Cj(p) = min{
∑
i

pixi|fj(x) = 1}

and

Rj(p) = max{
∑
i

piyi|gj(y) = 1}

where f and g are the associated production functions characterizing feasible input and output. For
example, if we have:

f(x) = φ
∏
i x

αi
i

∑
i αi = 1, αi ≥ 0

and
g(y) = ψmaxi

yi
βi

βi ≥ 0

then the dual functions will be:

C(p) =
1

φ

∏
i

(
pi
αi

)αi

and
R(p) =

∑
i

βipi

Market Clearance

1584 User's Guide

The second class of equilibrium conditions is that at equilibrium prices and activity levels, the supply of
any commodity must balance or exceed excess demand by consumers. We can express these conditions as:

∑
j

yi
δΠj(p)

δpi
+
∑
h

ωih ≥
∑
h

dih(p,Mh)

in which the first sum, by Shepard's lemma, represents the net supply of good i by the constant-returns
to scale production sectors, the second sum represents the aggregate initial endowment of good i by
households, and the sum on the right-hand-side represents aggregate final demand for good i by households,
given market prices p and household income levels M . Final demand are derived from budget-constrained
utility maximization:

dih(p,Mh) = argmax{Uh(x)|
∑
i

pixi = Mh}

in which Uh is the utility function for household h.

Income Balance

The third condition is that at an equilibrium, the value of each agent's income must equal the value of
factor endowments:

Mh =
∑
i

piωih

We always work with utility functions which exhibit non-satiation, so Walras' law will always hold:

∑
i

pidih = Mh =
∑
i

piωih

Aggregating market clearance conditions using equilibrium prices and the zero profit conditions using
equilibrium activity levels, it then follows that:

∑
j

yjΠj(p) = 0

or

yjΠj(p) = 0 ∀j

Furthermore, it follows that:

pi

(∑
j yi

δΠj(p)
δpi

+
∑
h ωih −

∑
h dih(p,Mh)

)
= 0 ∀i

In other words, complementary slackness is a feature of the equilibrium allocation even though it is not
imposed as an equilibrium condition, per-se. This means that in equilibrium, an production activity
which is operated makes zero profit and any production activity which earns a negative net return is idle.
Likewise, any commodity which commands a positive price has a balance between aggregate supply and
demand, and any commodity in excess supply has an equilibrium price of zero.

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1585

4.53.2.3 A small example: Harberger

This section of the paper introduces MPSGE model building using a two- good, two-factor (2x2) example.
This is addressed to readers who may be unfamiliar with GAMS and/or the original (scalar) MPSGE
syntax. The discussion provides some details on the formulation and specification of one small model
from the MPSGE library. Subsequently, two extensions are presented, one which illustrates equal yield
constraints and another which introduces a pure public good. These examples are by no means exhaustive
of the classes of equilibrium structures which can be investigated using the software, but they do provide
a starting point for new users.

The structure of MPSGE model HARBERGER is ”generic” Arrow-Debreu with taxes. Households obtain
income by supplying factors of production to industry or collecting tax revenue. This income is then
allocated between alternative goods in order to maximize welfare subject to the budget constraint.

Firms operate subject to constant returns to scale, selecting factor inputs in order to minimize cost subject
to technological constraints. For an algebraic description of a model closely related to this one, see Shoven
and Whalley (1984). The present model differs in two respects from the Shoven-Whalley example. First,
in this model there are intermediate inputs to production while in the Shoven-Whalley model goods are
produced using only value-added. Second, this model incorporates a labor-leisure choice so that the excess
burden of factor taxes here incorporates the disincentive to work associated with a lower net wage.

Benchmark Data

Table 1 presents most of the input data for a two good, two factor, closed economy model. This is an
economy in which, initially, taxes are levied only on capital inputs to production. We treat tax revenue as
though it were returned lump-sum to the households.

Sectors Consumers

X Y OWNERS WORKERS GOVT

PX 100 -20 -30 -50

PY -10 80 -40 -30

PK -20 -40 60

PL -50 -10 100 -40

TRNS 10 20 -30

TK -20 -10 30

The input data is presented in the form of a balanced matrix, the entries in which represent the value
of economic transactions in a given period (typically one year). Social accounting matrices (SAMs) can
be quite detailed in their representation of an economy, and they are also quite flexible. All sorts of
inter-account taxes, subsidies and transfers can be represented through an appropriate definition of the
accounts.

Traditionally, a SAM is square with an exact correspondence between rows and columns. (For an
introduction, see Pyatt and Round, ”Social Accounting Matrices: A Basis for Planning”, The World
Bank, 1985.) The numbers which appear in a conventional SAM are typically positive, apart from very
special circumstances, whereas the rectangular SAM displayed in Table 1 follows a sign convention wherein
supplies or receipts are represented by positive numbers and demands or payments are represented by
negative numbers. Internal consistency of a rectangular SAM implies that row sums and column sums are
zero. This means that supply equals demand for all goods and factors, tax payments equal tax receipts,
there are no excess profits in production, the value of each household expenditure equals the value of
factor income plus transfers, and the value of government tax revenue equals the value of transfers to
households.

1586 User's Guide

With simple MPSGE models, it is convenient to use a rectangular SAM format. This format emphasizes
how the MPSGE program structure is connected to the benchmark data. In the rectangular SAM, we
have one row for every market (traded commodity). In the present model, there are four markets, for
goods X and Y and factors L and K.

There are two types of columns in the rectangular SAM, corresponding to production sectors and consumers.
In the present model, there are two production sectors (X and Y) and three consumers (OWNERS, WORKERS
and GOVT).

Data Entry in GAMS

Consider a generalized version of the model in which the set of production sectors be denoted S (here, S =
{X,Y }). Let the set of goods be G. Production sectors are mapped one-to-one with the goods, so we see
that sets S and G are in fact the same set. Let F denote the set of primary factors (here, F = L,K), and
let H denote the set of households (here H={OWNER,WORKER}). Now that we have identified the underlying
sets, we may interpret the input matrix as a set of parameters with which we can easily specify the
benchmark equilibrium. (See Table 2.) It is quite common to begin a general equilibrium modeling project
with a large input-output table or social accounting matrix which may then be mapped onto a number of
submatrices, each of which is dimensioned according to the underlying sets used in the model.

Sectors Consumers

--

(S) Households(H) Government

--

Goods Markets (G): A(G,S)-B(G,S) -C(G,H)

Factor Markets (F): -FD(F,S) E(F,H)-D(F,H)

Capital taxes: -T("K",S) GREV

Transfers: TRN(H) -GREV

The GAMS specification of benchmark data is presented in Table 3 which begins with a statement of the
underlying sets (G,F,H). The statement "ALIAS (S,G)"; simply says that S and G both reference X,Y .
Thereafter follows the social accounting data table and declarations for the various submatrices. The
parameters ELAS() and ESUB() are elasticities (”free parameters”) which can be chosen independently
from the benchmark accounts. The parameters TFand PF are calibrated tax and reference price arrays
which are computed given benchmark factor and tax payments. (In this model, average and marginal tax
rates are not distinguished, so the benchmark marginal tax rate is simply the tax payment divided by the
net factor income.)

A general equilibrium model determines only relative prices. For purposes of reporting or constructing
value-indices, we use Laspeyres quantity index, THETA(G), the elements of which correspond to shares of
aggregate consumer expenditure in the benchmark period.

Table 3: Data Specification in GAMS for the 2x2 Model Harberger

* SECTION (i) DATA SPECIFICATION AND BENCHMARKING

SETS G GOODS AND SECTORS /X, Y/,

F PRIMARY FACTORS /K, L/,

H HOUSEHOLDS /OWNER, WORKER/;

ALIAS (S,G);

TABLE SAM(*,*) SOCIAL ACCOUNTING MATRIX

X Y OWNER WORKER GOVT

X 100 -20 -30 -50

Y -10 80 -40 -30

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1587

K -20 -40 60

L -50 -10 60

TK -20 -10 30

TRN 10 20 -30

PARAMETER

A(S) BENCHMARK OUTPUT

B(G,S) USE MATRIX (GOODS INPUTS BY SECTOR)

C(G,H) HOUSEHOLD DEMAND

FD(F,S) FACTOR DEMAND BY SECTOR

E(F,H) FACTOR ENDOWMENTS

D(F,H) FACTOR DEMAND BY HOUSEHOLDS

T(F,S) TAX PAYMENT BY FACTOR BY SECTOR

TRN(H) TRANSFER REVENUE

ELAS(S) ELASTICITY OF SUBSTITUTION IN PRODUCTION

ESUB(H) ELASTICITY OF SUBSTITUTION IN DEMAND

GREV BENCHMARK GOVERNMENT REVENUE

TF(F,S) FACTOR TAX RATE

PF(F,S) BENCHMARK FACTOR PRICES GROSS OF TAX

THETA(G) WEIGHTS IN NUMERAIRE PRICE INDEX

WBAR(H) BENCHMARK WELFARE INDEX;

* EXTRACT DATA FROM THE SOCIAL ACCOUNTING MATRIX:

A(S) = SAM(S,S);

B(G,S) = MAX(0, -SAM(G,S));

C(G,H) = -SAM(G,H);

FD(F,S) = -SAM(F,S);

E(F,H) = SAM(F,H);

D(F,H) = 0;

TRN(H) = SAM("TRN",H);

T("K",S) = -SAM("TK",S);

* INSTALL "FREE" ELASTICITY PARAMETERS:

E("L","WORKER") = 100;

D("L","WORKER") = 40;

ELAS(S) = 1;

ESUB(H) = 0.5;

* INSTALL FUNCTIONS OF BENCHMARK VALUES:

GREV = SUM(H, TRN(H));

TF(F,S) = T(F,S) / FD(F,S);

PF(F,S) = 1 + TF(F,S);

THETA(G) = SUM(H, C(G,H));

THETA(G) = THETA(G) / SUM(S, THETA(S));

WBAR(H) = SUM(G, C(G,H)) + SUM(F, D(F,H));

Model Specification

The MPSGE description of this model is shown in Table 4. Declarations following the $MODEL statement
indicate that the model involves one class of production activities (AL(S)), three classes of commodities
(P (G), W (F) and PT), and two types of consumers, private consumers (RA(H)), and a government
”consumer” (GOVT).

One $PROD: block describes the single class of production activities, and two $DEMAND: blocks characterize
endowments and preferences for the two classes of consumers.

1588 User's Guide

Consider the records associated with production sector AL(S). The entries on the first line of a $PROD:
block are elasticity values. The ”s:0” field indicates that the top-level elasticity of substitution between
inputs is zero (Leontief). The entry "a:ELAS(S)" indicates that inputs identified as belonging to the
"a:" aggregate trade off with an elasticity of substitution ELAS(S) (at the second level of the production
function). In these production functions, the primary factors (W (F)) are identified as entering in the
a : aggregate.

TABLE 4: MPSGE Model Specification and Benchmark Replication

* SECTION (ii) MPSGE MODEL DECLARATION

$ONTEXT

$MODEL:HARBERGER

$SECTORS:

AL(S)

$COMMODITIES:

P(G) W(F) PT

$CONSUMERS:

RA(H) GOVT

$PROD:AL(S) s:0 a:ELAS(S)

O:P(S) Q:A(S)

I:P(G) Q:B(G,S)

I:W(F) Q:FD(F,S) P:PF(F,S) A:GOVT T:TF(F,S) a:

$DEMAND:RA(H) s:1 a:ESUB(H)

D:P(G) Q:C(G,H) a:

D:W(F) Q:D(F,H)

E:W(F) Q:E(F,H)

E:PT Q:TRN(H)

$DEMAND:GOVT

D:PT Q:GREV

$REPORT:

V:CD(G,H) D:P(G) DEMAND:RA(H)

V:DF(F,H) D:W(F) DEMAND:RA(H)

V:EMPLOY(S) I:W("L") PROD:AL(S)

V:WLF(H) W:RA(H)

$OFFTEXT

* Invoke the preprocessor to declare the model for GAMS:

$SYSINCLUDE mpsgeset HARBERGER

* --

* SECTION (iii) BENCHMARK REPLICATION

HARBERGER.ITERLIM = 0;

$INCLUDE HARBERGER.GEN

SOLVE HARBERGER USING MCP;

ABORT$(ABS(HARBERGER.OBJVAL) GT 1.E-4)

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1589

"*** HARBERGER benchmark does not calibrate.";

HARBERGER.ITERLIM = 1000;

The records within a $PROD: block begin with "O:" or "I:". An "O:" indicates an output and an "I:"

represents an input. In both types of records, "Q:" is a ”quantity field” indicating a reference input or
output level of the named commodity. A "P:" signifies a reference price field. This price is measured as a
user cost, gross of applicable taxes. The default values for reference price and reference quantity are both
unity (i.e., a value of 1 is installed if a P: or Q: field is missing).

The A: and T: fields in a $PROD: block indicate tax agent and ad-valorem tax rate, respectively. The tax
agent is specified before the tax rate. A single input or output coefficient may have two or more taxes
applied. Consumers are treated symmetrically, and there is thus no restriction on the consumer to whom
the tax is paid. Typically, however, one consumer is associated with the government.

To better understand the relationship between reference prices and tax rate specification, consider inputs
of W.K to sector AL.X in this model. The benchmark payment to capital in the X sector is 20 and the
tax payment is 20. Hence the ad-valorem tax rate in the benchmark equilibrium is 100% (T : 1), and
the reference price of capital, market price of unity times (1 + 100%), is 2 (P : 2). If in a counterfactual
experiment the tax rate on capital inputs to sector X is altered, this will change the T : field but it will
not change the P : field. Q : and P : characterize a reference equilibrium point, and these are therefore
unaffected by subsequent changes in the exogenous parameters.

It is important to remember that the $PROD:AL(S) block represents as many individual production
functions as there are elements in set S (two in this case). Within the $PROD:AL(S) block, inputs refer
to sets G and F , while the output coefficient, O : P (S), refers only to set S. Sets referenced within a
commodity name in an I : or O : field may be sets which are ”controlled” by the sets referenced in the
function itself, in which case only a scalar entry is produced. In $PROD:AL(S) there are only outputs of
commodity S in sector S.

The first line of a $DEMAND block also contains fields (e.g.,s:, a:, b: etc.) which represent elasticities
of substitution. The subsequent records may begin with either an E : field or a D : field. These,
respectively, represent commodity endowments and demands. In the demand fields, the P : and Q : entries
are interpreted as reference price and reference quantity, analogous to the input fields in a $PROD block.
Ad-valorem taxes may not be applied on final demands, so that if consumption taxes are to be applied in
a model they must be levied on production activities upstream of the final demand.

The benchmark values for all activity levels and prices are equal to the default value of unity, and therefore
we are able to specify values in the Q : fields directly from the benchmark data. An equivalent model could
be specified in which the benchmark activity levels for AL(S) equal, for example, A(S,S). This would
then require rescaling the input and output coefficients for those sectors, and it would not necessarily be
helpful, because in a scaled model it is more difficult to verify consistency of the benchmark accounts and
MPSGE input file. Furthermore, for numerical reasons it is advisable to scale equilibrium values for the
central variables to be close to unity.

Government transfers to households are accomplished through the use of an ”artificial commodity” (PT).
The government is identified as the agent who receives all tax revenue (see the A:GOVT entry in both of
the $PROD: blocks). Commodity PT is the only commodity on which GOVT spends this income, hence
government tax revenue is divided between the two households in proportion to their endowments of the
artificial good. In order to scale units so that the benchmark price of PT is unity, the $30 of government
tax revenue chases 10 units of PT assigned to OWNER and 20 units assigned to WORKER. (See values
for TRN(H) in Table 3.)

The $REPORT section of the input file requests the solution system to return values for inputs, outputs,
final demands or welfare indices at the equilibrium. Only those items which are requested will be written
to the solution file. Each record in the report block begins with a V : (variable name) field. These names
must be distinct from all other names in the model. The second field of the report record must have one
of the labels I :, O : or D : followed by a commodity name, or the label W : followed by a consumer name.

1590 User's Guide

The third field's label must be "PROD:" in an I : or O : record, and it must be "DEMAND:" if it is a D:

record.

An Algebraic Formulation of Harberger Model

The unit cost of production in sector Ahs is given by a nested Leontief-CES function defined over the cost
of intermediate inputs and primary factors with ad-valorem taxes on factor demands. In equilibrium, the
unit cost must be no less than the market price of output:

Zero Net Profit

−
∏
s =

∑
g pgBbs + φs

(∑
f αfs(ωf (1 + tfs))

1−σs)
1

1−σs

)
− ps ≥ 0 ∀s|σs 6= 1

and

−
∏
s =

∑
g pgBbs + φs

(∏
f (ωf (1 + tfs))

αfs

)
− ps ≥ 0 ∀s|σs = 1

Income Balance for Government

Government tax income (PT) is determined by the value of tax revenue, calculated using activity levels,
compensated demands, market prices and ad-valorem tax rates:

PT =
∑
s

∂
∏
s

∂(ωf (1+tfs))
ALsωf tfs

Income Balance for Households

Household income is determined by the net of tax return to primary factors plus the household share of
government revenue:

Mh =
∑
f ωfEfh + shPT

Market Clearance for Goods

Producer output is equal to the sum of intermediate plus final demand:

ALg ≥
∑
sALsBgs +

∑
h
γhMh

eh(p)

(
eh(p)
pg

)σh
where γh is the household budget share devoted to the consumption of goods, and ehh is the “unit
expenditure function” which may be written:

eh(p) ≡
(∑

i βihp
1−σh
i

) 1
1−σh

Market Clearance for Factors

The aggregate supply of factors equals the sum of producer and consumer demand. Producers pay taxes
on factor inputs, consumers do not because we consider these demands to be “leisure” or “household
production”. Consumer demands for factors are specified as Cobb-Douglas (constant budget shares):

∑
hEfh =

∑
sALs

∂
∏
s

∂(ωf (1+tfs))
+
∑
h
µfhMh

ωf

MPSGE Formulation: Key Ideas

There are two points regarding the MPSGE function format which are important yet easily misunderstood
by new users:

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1591

1. The elasticities together with the reference quantities and reference prices of inputs and outputs
completely characterize the underlying nested CES functions. No other data fields in the $PROD: block
alters the technology. If, for example, a tax rate changes as part of a counter-factual experiment,
this has no effect on the reference price. The value in the P : field depends on the benchmark value
of the T : field if the model has been calibrated, but subsequent changes in T : do not change the
underlying technology.

2. Tax rates are interpreted differently for inputs and outputs. The tax rate on inputs is specified on a
net basis, while the tax rate on outputs is specified on a gross basis. That is, the user cost of an
input with market price p subject to an ad-valorem tax at rate t is p(1 + t), while the user cost of
an output subject to an ad-valorem tax at rate t is p(1− t). (A tax increases the producer cost of
inputs and decreases the producer value of outputs.)

MPSGE provides a limited number of economic components with which complex models can be constructed.
There are some models which lie outside the MPSGE domain, but in many cases it is possible to recast the
equilibrium structure in order to produce an MPSGE model which is logically equivalent to the original
model - usually after having introduced some sort of artificial commodity or consumer. In the present
model, the use of commodity PT to allocate government revenue between households provides a fairly
typical example of how this can be done. In the process of making such a transformation, one often gains
a meaningful economic insight.

The Solution Listing

The detailed solution listing for model HARBERGER is shown in Table 5. The standard GAMS report
facilities display solution values. Central variables are always either fixed (upper = lower), or they are
non-negative (lower bound = 0, upper bound = +INF). The MARGINAL column in the solution report
returns the value of the associated slack variable. Complementarity implies that in equilibrium, either the
level value of a variable will be positive or the marginal value will be positive, but not both.

The output file (not shown) also provides details on the computational process. For an explanation of
these statistics, see Rutherford (1993).

TABLE 5: GAMS Solution Listing for Model HARBERGER

---- VAR AL

LOWER LEVEL UPPER MARGINAL

X . 1.000 +INF .

Y . 1.000 +INF .

---- VAR P

LOWER LEVEL UPPER MARGINAL

X . 1.000 +INF .

Y . 1.000 +INF .

---- VAR W

LOWER LEVEL UPPER MARGINAL

K . 1.000 +INF .

L . 1.000 +INF .

LOWER LEVEL UPPER MARGINAL

---- VAR PT . 1.000 +INF .

---- VAR RA

LOWER LEVEL UPPER MARGINAL

1592 User's Guide

OWNER . 70.000 +INF .

WORKER . 120.000 +INF .

LOWER LEVEL UPPER MARGINAL

---- VAR GOVT . 30.000 +INF .

---- VAR CD

LOWER LEVEL UPPER MARGINAL

X.OWNER . 30.000 +INF .

X.WORKER . 50.000 +INF .

Y.OWNER . 40.000 +INF .

Y.WORKER . 30.000 +INF .

---- VAR DF

LOWER LEVEL UPPER MARGINAL

K.OWNER . . +INF EPS

K.WORKER . . +INF EPS

L.OWNER . . +INF EPS

L.WORKER . 40.000 +INF .

---- VAR EMPLOY

LOWER LEVEL UPPER MARGINAL

X . 50.000 +INF .

Y . 10.000 +INF .

---- VAR WLF

LOWER LEVEL UPPER MARGINAL

OWNER . 1.000 +INF .

WORKER . 1.000 +INF .

**** REPORT SUMMARY : 0 NONOPT

0 INFEASIBLE

0 UNBOUNDED

0 ERRORS

Computing Counter-factual Scenarios

Table 6 presents the GAMS code for specification and solution of three counterfactual equilibria. In these
experiments, the nonuniform system of capital taxes from the benchmark is replaced by three alternative
uniform factor tax structures: a tax on labor, a tax on capital, and a tax on both labor and capital. In
each case, the tax rate is chosen to replace the benchmark tax revenue at benchmark prices and demand
(ignoring induced substitution effects). Following each solution, the equilibrium values for tax revenue,
welfare (Hicksian equivalent variation), employment, prices and output are stored in parameter REPORT.

TABLE 6: Specification and Processing of Counter-Factual Scenarios

* --

* SECTION (iv) COUNTER-FACTUAL SPECIFICATION AND SOLUTION:

SET SC COUNTERFACTUAL SCENARIOS TO BE COMPUTED /

L UNIFORM TAX ON LABOR,

K UNIFORM TAX ON CAPITAL,

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1593

VA UNIFORM VALUE-ADDED TAX/

PARAMETER TAXRATE(F,S,SC) COUNTERFACTUAL TAX RATES,

REPORT(*,*,*,SC) SOLUTION REPORT - % CHANGES,

PINDEX PRICE DEFLATOR;

* SPECIFY COUNTER-FACTUAL TAX RATES TO ACHIEVE CETERIS

* PARIBUS BALANCED BUDGET:

TAXRATE("L",S,"L") = GREV / SUM(G, FD("L",G));

TAXRATE("K",S,"K") = GREV / SUM(G, FD("K",G));

TAXRATE("L",S,"VA") = GREV / SUM((F,G), FD(F,G));

TAXRATE("K",S,"VA") = GREV / SUM((F,G), FD(F,G));

LOOP(SC,

* INSTALL TAX RATES FOR THIS COUNTERFACTUAL:

TF(F,S) = TAXRATE(F,S,SC);

$INCLUDE HARBERGER.GEN

SOLVE HARBERGER USING MCP;

* --

* SECTION (v) REPORT WRITING:

* REPORT SOME RESULTS:

PINDEX = SUM(G, P.L(G) * THETA(G));

REPORT("REVENUE","_",SC) = 100 * (PT.L/PINDEX - 1);

REPORT("TAXRATE","_",SC) =

100 * SMAX((F,S), TAXRATE(F,S,SC));

REPORT("WELFARE",H,SC) = 100 * (WLF.L(H) - 1);

REPORT("EMPLOY",S,SC) = 100 * (EMPLOY.L(S)/FD("L",S) - 1);

REPORT("PRICE",G,SC) = 100 * (P.L(G)/PINDEX - 1);

REPORT("PRICE",F,SC) = 100 * (W.L(F)/PINDEX - 1);

REPORT("OUTPUT",S,SC) = 100 * (AL.L(S) - 1);

);

DISPLAY REPORT;

4.53.2.4 Alternative models: Shoven and Samuelson

The ”standard” MPSGE model is based on fixed endowments and tax rates, but many empirical models
do not fit into this structure. For example, in the model HARBERGER, the level of each replacement tax
was specified to be consistent with ”equal yield”, but as a result of the endogenous response of prices
and quantities, the resulting tax revenues differed significantly from the benchmark levels. For example,
when the capital tax is replaced by a uniform labor tax at a rate which, in the absence of labor supply
response, produces ”equal yield”, we find that tax revenue in fact declines by 39%. In order to perform
differential (equal yield) tax policy analysis, it is therefore necessary to accommodate the endogenous
determination of tax rates as part of the equilibrium computation. This is one of many possible uses of
”auxiliary variables” in MPSGE.

Tax Analysis with Equal Yield

Table 7 presents the MPSGE model definition for test problem SHOVEN. This model is equivalent to
the HARBERGER, apart from the addition of an auxiliary variable TAU. Within MPSGE, auxiliary variables

1594 User's Guide

can either represent price-adjustment instruments (endogenous taxes) or they can represent a quantity-
adjustment instruments (endowment rations). In model SHOVEN, TAU is used to proportionally scale factor
taxes in order to achieve a target level of government revenue. The auxiliary variable first appears in
the $PROD:AL(S) block, following the declaration of a tax agent. There are two fields associated with an
endogenous tax. The first field (N:) gives the name of the auxiliary variable which will scale the tax rate.
The second field (M:) specifies the multiplier. If the M : field is omitted, the multiplier assumes a default
value of unity. If the value in the M : field is zero, the tax does not apply.

The auxiliary variable TAU also appears at the bottom of the file where it labels an associated inequality
constraint. This constraint exhibits complementary slackness with the associated non-negative auxiliary
variable (i.e., if TAU is positive, the constraint must hold with an equality, whereas if the constraint is
non-binding TAU must be zero). An auxiliary variable may or may not appear in its associated constraint.

The constraint associated with TAU is based on a price index defined by THETA(G). The constraint assures
a level of tax revenue such that the value of transfers to households is held constant. (Endowments of the
commodity PT are fixed, so when the value of PT is fixed, then so too are the value of transfers from GOVT

to each of the households.)

SHOVEN illustrates how an auxiliary variable can be interpreted as a tax instrument. In the MPSGE
syntax, auxiliary variables may also be employed to endogenously determine commodity endowments.
There is no restrictions on how a particular auxiliary variable is to be interpreted. A single variable could
conceivably serve simultaneously as an endogenous tax as well as a endowment ratio, although this would
be rather unusual.

TABLE 7: Differential Tax Policy Analysis

MPSGE PREPROCESSOR VERSION 1/94 286/386/486 DOS

0 $MODEL: SHOVEN

1

2 $SECTORS:

3 AL(S)

4

5 $COMMODITIES:

6 P(G) W(F) PT

7

8 $CONSUMERS:

9 RA(H) GOVT

10

11 $AUXILIARY:

12 TAU

13

14 $REPORT:

15 V:CD(G,H) D:P(G) DEMAND:RA(H)

16 V:DF(F,H) D:W(F) DEMAND:RA(H)

17 V:EMPLOY(S) I:W("L") PROD:AL(S)

18 V:WLF(H) W:RA(H)

19

20 $PROD:AL(S) s:0 a:ELAS(S)

21 O:P(G) Q:A(G,S)

22 I:P(G) Q:B(G,S)

23 I:W(F) Q:FD(F,S) P:PF(F,S)

24 + A:GOVT N:TAU$TF(F,S) M:TF(F,S)$TF(F,S) a:

25

26 $DEMAND:RA(H) s:1 a:ESUB(H)

27 D:P(G) Q:C(G,H) a:

28 D:W(F) Q:D(F,H)

29 E:W(F) Q:E(F,H)

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1595

30 E:PT Q:TRN(H)

31

32 $DEMAND:GOVT

33 D:PT Q:GREV

34

35 $CONSTRAINT:TAU

36 PT =G= SUM(G, THETA(G) * P(G));

37

38 $OFFTEXT

An Algebraic Formulation of Shoven Model

Zero Net Profit

The unit cost of production in sector Ahs is given by a nested Leontief-CES function defined over the
cost of intermediate inputs and primary factors with ad-valorem taxes on factor demands. Unlike the
Harberger models, tax rates in this model are determined endogenously. In equilibrium, the unit cost
must be no less than the market price of output:

−
∏
s =

∑
g pgBbs + φs

(∑
f αfs(ωf (1 + τtfs))

1−σs
) 1

1−σs

− ps ≥ 0 ∀s|σs 6= 1

and

−
∏
s =

∑
g pgBbs + φs

(∏
f (ωf (1 + τtfs))

αfs

)
− ps ≥ 0 ∀s|σs = 1

Income Balance for Government

Government tax income (PT) is determined by the value of tax revenue, calculated using activity levels,
compensated demands, market prices and ad-valorem tax rates:

PT =
∑
s

∂
∏
s

∂(ωf (1+τtfs))
ALsωfτtfs

Equal Yield

In equilibrium, tax rates are multiplicatively adjusted to achieve a target level of government revenue:

PT =
∑
g θgpg

Income Balance for Households

Household income is determined by the net of tax return to primary factors plus the household share of
government revenue:

Mh =
∑
f ωfEfh + shPT

Market Clearance for Goods

Producer output is equal to the sum of intermediate plus final demand:

1596 User's Guide

ALg ≥
∑
sALsBgs +

∑
h
γhMh

eh(p)

(
eh(p)
pg

)σh
where γh is the household budget share devoted to the consumption of goods, and ehh is the “unit
expenditure function” which may be written:

eh(p) ≡
(∑

i βihp
1−σh
i

) 1
1−σh

Market Clearance for Factors

The aggregate supply of factors equals the sum of producer and consumer demand. Producers pay taxes
on factor inputs, consumers do not because we consider these demands to be “leisure” or “household
production”. Consumer demands for factors are specified as Cobb-Douglas (constant budget shares):

∑
hEfh =

∑
sALs

∂
∏
s

∂(ωf (1+τtfs))
+
∑
h
µfhMh

ωf

Public Goods and Endogenous Taxation

Consider a final extension of the 2x2 model in which tax revenue funds a pure public good. Model
SAMUELSON presented in Table 8. This model illustrates one of several ways that public goods can
be modelled in MPSGE. Here the level of public provision is determined by a Samuelson-condition
equating the sum of individual marginal rates of substitution (marginal benefit) with the marginal rate
of transformation (marginal cost). Unlike the equal yield formulation, the tax revenues collected by
GOVTare not returned lump-sum but are instead used to finance provision of a pure public good. This
representation of government has not been widely adopted in the CGE literature, perhaps because of the
difficulties involved in specifying preferences for public goods.

The relevant characteristic of a pure public good entering final demand is that each consumer ”owns”
the same quantity. Agents' attitudes toward public goods differ, and because there is no market,
agents' valuations of the public good will also differ. In an MPSGE model, the separate valuations are
accommodated through the introduction of ”personalized” markets for public good - one market for each
consumer. In the model, consumer expenditure encompasses both private and public ”purchases”, and
consumer income encompasses both private and public ”endowments”. An individual is endowed with a
quantity of her own version of the public good determined by the level of public expenditures. An increase
in taxes, to the extent that it increases tax revenue, will increase the level of public provision.

In this model, the structure of relative factor taxes is exogenous but the aggregate level of taxes is not.
Tax rates are scaled up or down so that the sum of individual valuations of the public good (the marginal
benefit) equals the cost of supply of the public good (the direct marginal cost).

Consider features of model SAMUELSON which do not appear in SHOVEN:

1. There are new commodities PG and VG(H). The first of these represents the direct marginal cost
of public output from sector GP, a Leontief technology which converts private goods inputs into
the public good. For the SAMUELSON structure, all government revenues apply to purchases of the
public good (observe that the only good demanded by consumer GOVTis PG). The prices VG(H)

represent the individual consumer valuations of the public good. Commodity VG(H) appears only
in the endowments and demands of consumer RA(H). The endowment record for VG(H) includes a
quantity V(H) which is the benchmark valuation of the public good by agent H.

2. There are two auxiliary variables. TAU has the same interpretation as in the SHOVEN, determining
the aggregate tax level. Auxiliary variable LGP is a rationing instrument representing an index of
the ”level of public goods provision”, scale to equal 1 in the benchmark. Consumer RA(H) thus is
endowed with a quantity of VG(H) given by V(H) ∗ LGP .

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1597

3. The constraint for TAU in SAMUELSON differs from the TAU constraint in SHOVEN. Here the
constraint represents the Samuelson condition, equating the marginal cost (PG∗GREV) and the sum
of individuals' marginal benefit (SUM(H,VG(H)∗V(H))). The constraint for LGP simply assigns LGP

equal to the sector GP activity level. (The LGP variable and constraint are only needed because the
R: field only accepts auxiliary variables.)

TABLE 8: Endogenous Determination of Tax Revenue

MPSGE PREPROCESSOR VERSION 1/94 286/386/486 DOS

0 $MODEL: SAMUELSON

1

2 $SECTORS:

3 AL(S) GP

4

5 $COMMODITIES:

6 P(G) W(F) PG VG(H)

7

8 $CONSUMERS:

9 RA(H) GOVT

10

11 $AUXILIARY:

12 TAU LGP

13

14 $REPORT:

15 V:CD(G,H) D:P(G) DEMAND:RA(H)

16 V:DF(F,H) D:W(F) DEMAND:RA(H)

17 V:EMPLOY(S) I:W("L") PROD:AL(S)

18 V:WLF(H) W:RA(H)

19

20 $PROD:AL(S) s:0 a:ELAS(S)

21 O:P(G) Q:A(G,S)

22 I:P(G) Q:B(G,S)

23 I:W(F) Q:FD(F,S) P:PF(F,S)

24 + A:GOVT N:TAU$TF(F,S) M:TF(F,S)$TF(F,S) a:

25

26 $PROD:GP s:0

27 O:PG Q:GREV

28 I:P(G) Q:GD(G)

29

30 $DEMAND:RA(H) s:1 a:ESUB(H)

31 D:P(G) Q:C(G,H) a:

32 D:W(F) Q:D(F,H)

33 D:VG(H) Q:V(H)

34 E:VG(H) Q:V(H) R:LGP

35 E:W(F) Q:E(F,H)

36

37 $DEMAND:GOVT

38 D:PG Q:GREV

39

40 $CONSTRAINT:TAU

41 GREV * PG =G= SUM(H, V(H) * VG(H));

42

43 $CONSTRAINT:LGP

44 LGP =G= GP;

45

46 $OFFTEXT

1598 User's Guide

An Algebraic Formulation of Samuelson Model

Zero Net Profit for Private Production

The unit cost of production in sector Ahs is given by a nested Leontief - Cobb-Douglas function defined
over the cost of intermediate inputs and primary factors with ad-valorem taxes on factor demands. Unlike
the Harberger models, tax rates in this model are determined endogenously. In equilibrium, the unit cost
must be no less than the market price of output:

−
∏
s =

∑
g pgBbs + φs

(∏
f (ωf (1 + τtfs))

αfs

)
− ps ≥ 0 ∀s

Zero Net Profit for Public Sector Contractors

The unit cost of public provision is determined by the market price of commodity inputs to the Leontief
activity. Input requirements are defined by a vector of public sector input coefficients, Ahg. In equilibrium,
the price paid by the government equals the cost of market inputs:

∑
g pgag − pG ≥ 0

Income Balance for Government

Government tax income (PT) is determined by the value of tax revenue, calculated using activity levels,
compensated demands, market prices and ad-valorem tax rates. In equilibrium, the value of tax revenue
equals the market cost of public sector output:

PT =
∑
s

∂
∏
s

∂(ωf (1+τtfs))
ALsωfτtfs = pGG

Income Balance for Households

Household income is determined by the net of tax return to primary factors plus the imputed value of
public provision:

Mh =
∑
f ωfEfh + vhG

Market Clearance for Private Goods

Producer output is equal to the sum of intermediate plus final demand:

ALg ≥
∑
sALsBgs +

∑
h
γhMh

eh(p)

(
eh(p)
pg

)σh

where γh is the household budget share devoted to the consumption of goods, and ehh is the “unit
expenditure function” which may be written:

eh(p) ≡
(∑

i βihp
1−σh
i

) 1
1−σh

Personalized Markets for Public Goods

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1599

We assume a “pure” public good in this model, hence each household may attach a different marginal
valuation to public provision in an equilibrium. In order to compute these marginal values, we include a
separate public good “market” for each houshold which balances the level of provision with the household
“demand”:

G = µGhMh

vh

in which µGh is the budget share of public goods in the top-level Cobb-Douglas preferences of household
h.

Market Clearance for Factors

The aggregate supply of factors equals the sum of producer and consumer demand. Producers pay taxes
on factor inputs, consumers do not because we consider these demands to be “leisure” or “household
production”. Consumer demands for factors are specified as Cobb-Douglas (constant budget shares):

∑
hEfh =

∑
sALs

∂
∏
s

∂(ωf (1+τtfs))
+
∑
h
µfhMh

ωf

Samuelson Rule for “Optimal” Provision of Public Goods

The tax rate multiplier is adjusted to balance the marginal cost of public provision with the summation
across households of marginal willingness to pay. Due to the existence of household factor demand, factor
taxes are necessarily distortionary and there will be an excess social cost of public funds. For this reason,
the Samuelson rule is neither necessary nor sufficient for optimal provision. We apply the rule here merely
to illustrate the programming methodology, even though the resulting equilibrium may be “suboptimal”:

PG =
∑
h vh

Comparing Model Results

Although the foregoing discussion has focused on the nuances of MPSGE model syntax, but there are many
interesting economic questions which can be addressed using even small-scale models such as tho ones
described here. Consider the output listing from parameter REPORT is displayed in Table 9. It is perhaps
surprising to note that none of the uniform tax structures represents a Pareto-superior choice compared to
the benchmark tax structure. Furthermore, from the standpoint of aggregate welfare ("WELFARE.TOTAL"
= income-weighted sum of individual EV's), only the uniform capital tax represents an improvement.

Table 9: Numerical Results from Alternative Models

INDEX 1 = HARBERGER

K L VA

REVENUE._ 3.9 -38.9 -0.8

TAXRATE._ 50.0 50.0 25.0

WELFARE.OWNER 1.9 42.4 18.5

WELFARE.WORKER -0.1 -26.8 -10.9

WELFARE.TOTAL 0.6 -1.3 -3.48143E-2

EMPLOY .X -5.3 -6.9 -8.4

EMPLOY .Y 20.5 34.4 22.1

PRICE .X -10.4 -11.2 -10.3

PRICE .Y 11.8 12.8 11.8

PRICE .K 3.9 59.5 24.5

PRICE .L -4.7 -38.9 -23.5

OUTPUT .X 3.6 -1.0 0.4

OUTPUT .Y -3.7 2.0 -2.0

1600 User's Guide

INDEX 1 = SHOVEN

K L VA

TAXRATE._ 47.1 134.2 25.3

WELFARE.OWNER 3.3 40.2 18.3

WELFARE.WORKER -1.0 -29.2 -10.8

WELFARE.TOTAL 0.6 -3.6 -3.51710E-2

EMPLOY .X -5.0 -19.7 -8.5

EMPLOY .Y 21.5 12.1 21.9

PRICE .X -10.4 -9.0 -10.3

PRICE .Y 11.9 10.2 11.8

PRICE .K 6.2 49.8 24.2

PRICE .L -5.0 -56.5 -23.6

OUTPUT .X 3.6 -7.9 0.3

OUTPUT .Y -3.4 -2.0 -2.1

INDEX 1 = SAMUELSON

K L VA

REVENUE ._ -1.4 -14.5 -6.7

TAXRATE ._ 45.7 88.8 22.8

WELFARE .OWNER 4.7 43.9 21.1

WELFARE .WORKER -2.0 -31.4 -12.9

WELFARE .TOTAL 0.5 -3.7 -0.4

EMPLOY .X -4.9 -7.5 -5.9

EMPLOY .Y 24.5 37.5 29.7

PRICE .X -10.7 -11.3 -10.9

PRICE .Y 12.2 13.0 12.5

PRICE .K 7.8 60.3 29.0

PRICE .L -6.0 -51.8 -24.5

OUTPUT .X 3.0 -2.2 0.9

OUTPUT .Y -2.3 3.3 -2.58148E-2

PROVISION._ -0.8 -13.9 -6.1

4.53.2.5 Summary

This paper has provided an introduction to a new GAMS subsystem for applied general modeling. This
extension of GAMS accomodates a tabular representation of highly nonlinear cost and expenditure
functions through which model specification is concise and transparent. The paper has presented three
small examples which illustrate the programming environment and its application to traditional economic
issues in public finance for which applied general equilibrium analysis is a standard tool. Further work
is underway in the development and evaluation of solution algorithms for applied general equilibrium
models implemented within GAMS/MPSGE. In addition to providing a convenient framework for model-
builders, the new GAMS/MPSGE system also simplifies the implementation and testing of algorithms for
complementarity problems. Information on the relative effectiveness of different solution strategies should
prove quite helpful to users who are using the system to solve very large systems of nonlinear equations.

4.53.2.6 References

• Ballard and Fullerton (1992) ”Distortionary Taxes and the Provision of Public Goods”, Journal of
Economic Perspectives 6(3).

• Brooke, T., D. Kendrick and A. Meeraus (1988) GAMS: A User's Guide, The Scientific Press,
Redwood City, California.

• Rutherford, T. (1993) ”MILES: A Mixed Inequality and nonLinear Equation Solver”, Working
Paper, Department of Economics, University of Colorado.

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1601

• Rutherford, T. (1987) ”Applied General Equilibrium Modeling”, Ph.D. thesis, Department of
Operations Research, Stanford University.

• Rutherford, T.F. (1989) ”General Equilibrium Modeling with <cite>MPSGE</cite>”, The Univer-
sity of Western Ontario.

• Shoven, J. and J. Whalley (1984) ”Applied General Equilibrium Models of Taxation and International
Trade: Introduction and Survey”, Journal of Economic Literature 22, 1007-1051.

• Thompson, G. and S. Thore (1992) Computational Economics , Scientific Press, Redwood City,
California.

4.53.2.7 Appendix A: Language Syntax

General syntax rules

• All input is free format (spaces and tabs are ignored) except keywords for which ”$” must
appeatr in column 1.

• End-of-line is significant. Continuation lines are indicated by a ”+” in column 1.

• In general, input is not case sensitive, except in the specification of sub-nests for production
and demand functions.

• Numeric expression involving GAMS parameters or constants must be enclosed in paren-
theses.

Keywords

Keywords typically appear in the following order:

Keywords Description

$ONTEXT Indicate the beginning of a GAMS comment block
containing an MPSGE model.

$MODEL:model name model name must be a legitimate file name.
This name is subsequently used to form
MODEL NAME.GEN (this file name must be upper
case when running under UNIX).

$SECTORS:, $COMMODITIES:, $AUXILIARY:,
$CONSUMERS:

Four keywords define variables which are used
in the model. Entries in these blocks share the
same syntax. The $AUXILIARY block is only used
in models with side constraints and endogenous
taxes or rationed endowments.

$PROD:sector Production functions must be specified for each
production sector in the model.

$DEMAND:consumer Demand functions must be specified for every con-
sumer in the model. General structure is the same
as for production functions above.

$CONSTRAINT:auxiliary Specifies a side constraint to be associated with a
specified auxiliary variable.

$REPORT: Identifies the set of additional variables to be calcu-
lated. These include outputs and inputs by sector
and demands by individual consumers.

$OFFTEXT Indicates the end of model specification.

Variable Declarations

1602 User's Guide

There are four classes of variables within an MPSGE model: activity levels for production sectors, prices
for commodities, income levels for consumers and level values for auxiliary variables. These classes of
variables are distinguished in order to permit additional semantic checking by the MPSGE preprocessor.
For example, if P has been declared as a price (within the $COMMODITIES: block), then the preprocessor
would report an error if it encountered "$PROD:P". |

The $SECTORS:, $COMMODITIES:, $CONSUMERS: and $AUXILIARY: blocks contain implicit GAMS variable
declarations in which the index sets must be specified in the GAMS program above and the variable
names must be distinct from all other symbols in the GAMS program. One or more variables may be
declared per line separated by one or more spaces.

$SECTORS:

Y(R,T) ! Output in region R in period T

K(T) ! "Aggregate capital stock, period T"

In these declarations, the trailing comments (signified by ”!”) are interpreted as variable name descriptors
which subsequently appear in the solution listing.

The equivalent GAMS declaration for these variables would be:

VARIABLES Y(R,T) Output in region R in period T

K(T) "Aggregate capital stock, period T";

As with the usual GAMS syntax, when a variable descriptor contains a punctuation symbol such as ”,”, it
is required to enclosed in quotes.

$SECTORS:

X(R,T)$(X0(R) GT 0)

Here, the GAMS conditional operator ”$” is used to restrict the domain of the variable X. The expression
following the dollar sign is passed through to the GAMS compiler and must conform to GAMS syntax
rules.

$SECTORS:

X Y(R)$Y0(R) Z ! Descriptor for Z

W(G,R,T) ! Descriptor for W

More than one symbol may appear on a single line. The descriptor only applies to the last one.

All MPSGE variables must be declared. When multidimensional variables are specified, they must be
declared explicitly - declarations like X(∗) are not permitted. Two further restrictions are that the sets
used in the declaration must be static rather than dynamic, and any variable which is declared must be
used in the model. There is a simple way to work around these restrictions. Let me illustrate with an
example. Suppose that in a model the set of production sectors AL is employed for all elements of a static
set S which satisfy a particular condition, for example BMX(S) not equal to 0. This would require that AL
be declared as follows:

$SECTORS:

AL(S)$BMX(S)

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1603

In this context, the symbol ”$” is used as an ”exception operator” which should be read as ”such that”.
In this case, we have generated one AL sector for each element of the set S for which BMX(S) is nonzero.

Function Declarations

Functional declarations characterize nested CES functions which characterize both preferences and
technology. The former are written within a $DEMAND: block and the latter within a $PROD: block. Tax
entries may appear within a $PROD: block but not within a $DEMAND: block, otherwise the syntax is nearly
identical. The syntax for these blocks will be described through a sequence of examples:

$PROD:Y(R) s:1

O:P(R) Q:Y0(R)

I:W(F,R) Q:FD0(F,R)

This block characterizes a Cobb-Douglas production function in which the elasticity of substitution
between inputs is one - "s:1" in the first line which sets a top level substitution elasticity equal to unity.
Variable Y(R) is an activity level declared within the $SECTORS: block. Variables P(R) and W(F,R) are
prices declared within the $COMMODITIES: block. The O: label indicates an output, and the I: prefix
indicates an input. The Q: fields in both records represent ”reference quantities”. Y0(R) and FD0(F,R)

must be GAMS parameters defined previously in the program.

$PROD:X(R) s:ESUB(R) a:0 b:(ESUB(R)*0.2)

O:PX Q:X0(R)

I:PY(G) Q:YX0(G,R) a:

I:PL Q:LX0(R) b:

I:PK Q:KX0(R) b:

The keyword line specifies three separate elasticities related to this function. ESUB(R) is the top level
elasticity of substitution. There are two sub-nests in the function. Nest a: is a Leontief nest (in which
the compensated elasticity is zero). The elasticity of subtitution in nest b: is one-fifth of the top level
elasticity.

In the function specification, commodities PY(G) (one input for each element of set G) enter in fixed
proportions. Commodities PL and PK enter in nest b.

If this function has been specified using a balance benchmark dataset with reference prices equal to unity,
then the following identity should be satisfied:

X0(R) = SUM(G, YX0(G,R)) + LX0(R) + KX0(R)

$PROD:AL(S) s:0 a:ELAS(S)

O:P(G) Q:A(G,S)

I:P(G) Q:B(G,S)

I:W(F) Q:FD(F,S) P:PF(F,S) A:GOVT T:TF(F,S) a:

In this function, we have two new ideas. The first is the use of a reference price denoted by "P:". This
entry indicates that the function should be calibrate to a reference point where individual input prices
(gross of tax) equal PF(F,S). If P: does not appear, prices of one are assumed.

The second new idea here is that taxes may be levied on production inputs. The A: label identifies the
name of the tax agent (a $CONSUMER:). The T: label identifies the ad-valorem tax rate.

1604 User's Guide

$DEMAND:RA(R)$RA0(R) s:1

E:PL Q:LE(R)

D:P(G)$DG(G) Q:D0(G,R)$DD(G,R) P:P0(G,R)

This function specification demonstrates the use of conditionals. This function is only generated when
RA0(R) is nonzero. The demands D: for a particular element of set G are suppressed entirely when DG(G)

equals 0. The Q: field also has an exception operator, so that the default value for Q: (unity) is applied
when DD(G,R) equals zero.

This example is somewhat artificial, but it illustrates the distinction between how exception operators
affect lead entries (I:, O:, D: and E:) and subsequent entries. When an exception is encountered on the
lead entry, the entire record may be suppressed. Exceptions on subsequent entries only applied to a single
field.

The valid labels in a function declaration ($PROD: or $DEMAND:) line include:

s: Top level elasticity of substitution between inputs or demands.

t: Elasticity of transformation between outputs in production. (valid only in $PROD blocks)

a:,b:,... Elasticities of substitution in individual input nests.

The recognized labels in an I: or O: line include:

Q: Reference quantity. Default value is 1. When specified, it must be the second entry.

P: Reference price. Default value is 1.

A: Tax revenue agent. Must be followed by a consumer name.

T: Tax rate field identifier. (More than one tax may apply to a single entry.)

N: Endogenous tax. This label must be followed by the name of an auxiliary variable.

M: Endogenous tax multiplier. The advalorem tax rate is the product of the value of the
endogenous tax and this multiplier.

a:,b:,.. Nesting assignments. Only one such label may appear per line.

The valid labels in an E: line include:

Q: Reference quantity

R: Rationing instrument indicating an auxiliary variable.

The valid labels in a D: line include:

Q: Reference quantity

P: Reference price

a:,b:... Nesting assignment

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1605

Constraints

Auxiliary constraints in MPSGE models conform to standard GAMS equation syntax. The may refer
to any of the four classes of variables, $SECTORS, $COMMODITIES, $CONSUMERS and $AUXILIARY, but they
may not reference variables names declared within a $REPORT block. Complementarity conditions apply
to upper and lower bounds on auxiliary variables and the associated constraints. For this reason, the
orientation of the equation is important. When an auxiliary variable is designated POSITIVE (the default),
the auxiliary constraint should be expressed as a ”greater or equal” inequality (=G=). If an auxiliary
variable is designated FREE, the associated constraint must be expressed as an equality (=E=).

$CONSTRAINT:TAU

G =G= X * Y;

$CONSTRAINT:MU(I)$MU0(I)

MU(I) * P(I) * Q(I) =G= SUM(J, THETA(I,J) * PX(J));

The exception applied in this example restricts the equation only to those elements of set I for which
MU0(I) is not zero.

Report Declaration

The GAMS interface to MPSGE normally returns level values only for the central variables - those declared
within $SECTORS:, $COMMODITIES:, $CONSUMERS: and $AUXILIARY: sections. An equilibrium determines
not only these values, but also levels of demand and supply by individual sectors and consumers. Given
benchmark information, elasticities and the equilibrium values, all such demands can be computed, but
this can be tedious to do by hand. In order to have these values returned by MPSGE, it is necessary to
indicate the name of the variable into which the value is to be returned. The general form is as follows:

$REPORT:

V:variable name I:commodity PROD:sector

V:variable name O:commodity PROD:sector

V:variable name D:commodity DEMAND:consumer

V:variable name W:consumer

The first row returns an input quantity, the second row returns an output quantity, the third returns a
demand quantity, and the fourth row returns a consumer welfare index. (Note: the level value returned
for a ”consumer variable” is an income level, not a welfare index.)

$REPORT:

V:DL(S) I:PF("L") PROD:Y(S)

V:DK(S) I:PF("K") PROD:Y(S)

V:SX(G,S)$SX0(G,S) O:PX(G) PROD:X(S)

V:D(G,H) D:P(G) DEMAND:RA(H)

V:W(H) W:RA(H)

Note that the ”$” exception is only meaningful on the first entry. Also notice that the domain of the
report variable must conform to the domain of the subsequent two entries.

Differences between Scalar and Vector MPSGE Syntax

1. $MODEL: statement The $MODEL statement is required in the vector format and it must precede all
other statements. A name which is an acceptable file name prefix must be used. The preprocessor
does not begin translation of anMPSGE model until it encounters a $MODEL statement following an
$ONTEXT record. The preprocessor continues to translate until it reaches an $OFFTEXT statement,
skipping blank lines and comment lines identified by a ”∗” in column 1.

1606 User's Guide

2. Case folding: In the vector syntax, upper and lower case letters are not distinguished. The entire
file is processed as though it were written in upper case. This is not compatible with the earlier
version ofMPSGE in which "P" and "p" were distinct.

3. Distinct names: Names used for variables in theMPSGE model must be distinct from each other
as well as from all other symbols in the GAMS program. If there is a GAMS set or parameter or
model named X, then X may not be used to identify anMPSGE sector or commodity.

4. Tabs:MPSGE fields are free format and tabs are translated to spaces by the preprocessor. Tabs
are permitted in GAMS provided that the compiler is properly configured (under DOS, "TABIN 8"

must be inserted in file GAMSPARM.TXT in the GAMS system directory).

Exception Handling

The GAMS exception operator can be used on virtually any entry in theMPSGE input file. For example,
if you want to have sector X(S) have one production structure for elements S in a subset T(S), you can
provide separate production function declarations as follows:

$PROD:X(S)$T(S)

... ! sector X described for S in T

$PROD:X(S)$(NOT T(S))

... ! sector X described for S not in T.

The preprocessor does not require one and exactly one declaration for each sector. If multiple declarations
appear, the later set of coefficients overwrites the earlier set.

Switches and Debug Output

Run-time tolerances and output switches may be specified within the vector-syntax model specification
or using the PUT facility, they can be written directly to the MPS input file. Output switches control
the level of debug output written by theMPSGE subsystem to the solver status file. Reports provided
by $ECHOP, $FUNLOG and $DATECH can be returned to the listing file by specifying "OPTION SYSOUT=ON;"

within the GAMS program prior to the SOLVE statement. The recognizedMPSGE parameters are:

$ECHOP: logical Default=.FALSE.

is a switch for returning all or part of the scalarMPSGE file to the solver status file. In order to have this
output printed in the listing file, enter the GAMS statement "OPTION SYSOUT=ON;" prior to solving the
model.

$PEPS: real Default=1.0E-6

is the smallest price for which price-responsive demand and supply functions are evaluated. If a price is
below PEPS, it is perturbed (set equal to PEPS) prior to the evaluation.

$EULCHK: logical Default=.TRUE.

is a switch for evaluating Euler's identity for homogeneous equations. The output is useful for monitoring
the numerical precision of a Jacobian evaluation. When a price or income level is perturbed in a function,
the Euler check may fail.

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1607

$WALCHK: logical Default=.TRUE.

is a switch for checking Walras's law. Like EULCHK, this switch is provided primarily to monitor
numerical precision. When an income level is perturbed, the Walras check may fail.

$FUNLOG: logical Default=.FALSE.

is a switch to generate a detailed listing of function evaluations for all production sectors and consumers.

FUNLOG triggers a function evaluation report which provides detailed output describing the evaluation
of supply and demand coefficients. The information provide is sufficient that an industrious graduate
student should be able to reproduce the results (given a pencil, paper and slide rule).

The evaluation report has the following headings:

1608 User's Guide

Heading Description

T Coefficient ”type” with the following interpretation:
IA Input aggregate
OA Output aggregate
I Input
O Output
D Demand
E Endowment

N Name (either nest identifier or commodity name)

PBAR Benchmark price (the P: field value)

P Current price (gross of tax)

QBAR Benchmark quantitity (the Q: field value)

Q Current quantity

KP Identifier for parent entry in nesting structure.

ELAS Associated elasticity (input or output aggregates only)

When $FUNLOG:.TRUE is specified, a complete report of demand and supply coefficients for every production
and demand function in every iteration. Be warned that with large models this can produce an enrmous
amount of output!

The following two function evaluation reports are generated in the first iteration in solving case "L" for
model HARBERGER:

Function Evaluation for: AL.X

T N PBAR P QBAR Q KP ELAS

--

IA s 1.0000E+00 8.9198E-01 1.0000E+02 1.0000E+02 0.00

OA t 1.0000E+00 1.0000E+00 1.0000E+02 1.0000E+02 0.00

IA a 1.0000E+00 8.7998E-01 9.0000E+01 9.0000E+01 s 1.00

O P.X 1.0000E+00 1.0000E+00 1.0000E+02 1.0000E+02 t

I P.Y 1.0000E+00 1.0000E+00 1.0000E+01 1.0000E+01 s

I W.K 2.0000E+00 1.5000E+00 2.0000E+01 2.3466E+01 a

I W.L 1.0000E+00 1.0000E+00 5.0000E+01 4.3999E+01 a

Function evaluation for: RA.OWNER

T N PBAR P QBAR Q KP ELAS

--

IA s 1.0000E+00 1.0000E+00 7.0000E+01 7.0000E+01 1.00

OA t 1.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.00

IA a 1.0000E+00 1.0000E+00 7.0000E+01 7.0000E+01 s 0.50

D P.X 1.0000E+00 1.0000E+00 3.0000E+01 3.0000E+01 a

D P.Y 1.0000E+00 1.0000E+00 4.0000E+01 4.0000E+01 a

E W.K 1.0000E+00 1.0000E+00 6.0000E+01 0.0000E+00

E PT 1.0000E+00 1.0000E+00 1.0000E+01 0.0000E+00

$DATECH: logical Default=.FALSE.

is a switch to generate a annotated listing of the function and Jacobian evaluation including a complete
listing of all the nonzero coefficients.

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1609

MPSGE generates an analytic full first-order Taylor series expansion of the nonlinear equations in every
iteration. Nonzero elements of the Jacobian matrix are passed to the system solver (MILES or PATH)
which uses this information in the direction-finding step of the Newton algorithm. Coefficients are produced
with codes which help interpret where they came from. The following codes are used:

• W0 indicates an element from the orthogonal part of F().

• W1 indicates an element from the non-orthogonal part of F().

• B indicates a linear term from F.

• E0 indicates a homogeneous Jacobian entry.

• E1 indicates a non-homogeneous Jacobian entry.

The Euler checksum examines elements from the linearization which are type "E0". The Walras check
sum examines elements from the function evaluation which are type "W0".

Needless to say, the $DATECH:.TRUE. switch produces a very big status file for large models. It is not
something which is very useful for the casual user.

Here is a partial listing of nonzeros generated during the first linearization for scenario "L" in model
HARBERGER:

-- Coefficients for sector:AL.X

P.X AL.X 1.0000E+02 B

AL.X P.X -1.0000E+02 B

P.Y AL.X -1.0000E+01 B

AL.X P.Y 1.0000E+01 B

W.K AL.X -2.3466E+01 B

AL.X W.K 3.5199E+01 B

W.L AL.X -4.3999E+01 B

AL.X W.L 4.3999E+01 B

W.K W.K 1.3037E+01 E0 1.3037E+01

W.K W.L -1.3037E+01 E0 -1.3037E+01

W.L W.K -1.9555E+01 E0 -1.9555E+01

W.L W.L 1.9555E+01 E0 1.9555E+01

GOVT AL.X -1.1733E+01 B

GOVT W.K -1.1733E+01 E1

GOVT W.K 6.5184E+00 E0 6.5184E+00

GOVT W.L -6.5184E+00 E0 -6.5184E+00

-- Income for consumer:RA.OWNER

W.K 6.0000E+01 W0

RA.OWNER W.K -6.0000E+01 B

PT 1.0000E+01 W0

RA.OWNER PT -1.0000E+01 B

RA.OWNER RA.OWNER 1.0000E+00 B

-- Demands for consumer:RA.OWNER

P.X -3.0000E+01 W0

P.Y -4.0000E+01 W0

P.X P.X 8.5714E+00 E0 8.5714E+00

P.X P.X 1.2857E+01 E0 1.2857E+01

P.X P.Y -8.5714E+00 E0 -8.5714E+00

P.X P.Y 1.7143E+01 E0 1.7143E+01

P.Y P.X -8.5714E+00 E0 -8.5714E+00

P.Y P.X 1.7143E+01 E0 1.7143E+01

P.Y P.Y 8.5714E+00 E0 8.5714E+00

P.Y P.Y 2.2857E+01 E0 2.2857E+01

P.X RA.OWNER -4.2857E-01 E0 -3.0000E+01

P.Y RA.OWNER -5.7143E-01 E0 -4.0000E+01

1610 User's Guide

4.53.2.8 Appendix B: File Structure

This appendix provides an overview of the structure of GAMS input files which includeMPSGE models.
The text of the paper presents many of these ideas by way of example, but it may also be helpful for some
users to have a ”template” for constructingMPSGE models. The discussion in this section focuses on
a ”generic” input file, the schematic form of which is presented in Table 10. This section first presents
a ”top down” view of program organization, and then it discusses aspects of the new syntax for model
specification.

Flow of Control

When a model is developed using GAMS as a front-end toMPSGE, the input file generally has five sections
as identified in Table 10. Section (i), the benchmarking section, contains standard GAMS statements.
This includes GAMS SET declarations, input data (SCALARS, PARAMETERS and TABLES), and PARAMETER

declarations for intermediate arrays used in benchmarking or model specification. In complex models,
this section of the file will typically contain some algebraic derivations, the result of which is a calibrated
benchmark equilibrium dataset.

Users who are unfamiliar with GAMS can consult the manual. Beginning GAMS programmers should
remember that theMPSGE interface to GAMS is unlike other solution subsystems. ”Level values” are
passed between the GAMS program andMPSGE in the usual fashion, butMPSGE models do not require
the explicit use of the VARIABLE or EQUATION statements.)

The second section of the file consists of a GAMS comment range, beginning with an $ONTEXT record
and ending with an $OFFTEXT record, followed by an invocation of the preprocessor. The preprocessor
writes operates on statements in theMPSGE model declaration which are ”invisible” to the GAMS
compiler. This program reads theMPSGE model statements and generates GAMS-readable code, including
a model name.gen file. Additional GAMS code produced by the preprocessor includes declarations for
each of the central variables and report variables in theMPSGE model.

The third section of the generic input file performs a ”benchmark replication” and may not be present in
all applications. There are four statements required for benchmark validation. The first statement sets
the iteration limit to be zero; the second statement causes theMPSGE model to be ”generated”, and the
third statement causes theMPSGE solver to read the model and return the deviations. In this call, the
level values passed to the solver are unaltered because the iteration limit is zero. Market excess supplies
and zero profit checks are returned in the ”marginals” of the associated commodity prices and activity
levels, respectively. The final statement in this section resets the iteration limit to 1000 (the default value)
for subsequent counter-factual computations.

Section (iv) defines and then computes a counter-factual equilibrium. A counter-factual equilibrium is
defined by parameter values such as tax rates or endowments which take on values different from those in
the benchmark equilibrium. Within the GAMS interface toMPSGE, it is also possible to fix one or more
central variables. When any variable is fixed, the associated equation is omitted from the equilibrium
system during the solution process but the resulting imbalance is then reported in the solution returned
through the marginal.

The final section of the file represents the GAMS algebra required for comparing counter-factual equilibria.
It would be possible, for example, to construct welfare measures or to report percentage changes in certain
values. All of these calculations are quite easy because the equilibrium values are returned as level values
in the associated variables.

The final section of the file represents the GAMS algebra required for comparing counter-factual equilibria.
It would be possible, for example, to construct welfare measures or to report percentage changes in certain
values. All of these calculations are quite easy because the equilibrium values are returned as level values
in the associated variables.

For large models, the advantage of the vector format is that by using appropriately defined GAMS sets,
the number of individual functions which need to be defined is reduced only to the number of ”classes” of
functions. This makes it possible to represent large dimensional models using only a few lines of code.

To summarize, here are the basic features of a program which uses GAMS as a front-end to MPSGE:

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1611

1. An MPSGE model is defined within a GAMS comment range followed by

$sysinclude mpsgeset model_name

2. Every SOLVE statement for a particular model is preceded by $INCLUDE MODEL.GEN. The GEN file
is written by the preprocessor based on the model structure.

3. Solution values for the cental variables in the MPSGE model and any declared ”report variables”
are returned in GAMS variable level values. Level values for slacks are returned as ”marginals” for
the associated variables.

4. The model description follows a format which is a direct extension of the scalar data format. Certain
aspects of the new language, such as case folding, are incompatible with the original MPSGE syntax.

GAMS Code Generated by the Preprocessor: the GEN File

Most novice users will find it easiest to treat the preprocessor output files as ”black boxes”. These files
contain GAMS source code required for declaring and generating the MPSGE input file. Table 11 contains
portions of the GEN file for the same model. Table 12 shows the preprocessor-generated listing and
symbol table which are always appended to the bottom of the GEN file. If a preprocessor error occurs,
it can be helpful to consult the symbol table to track down the bug. Finally, Table 13 shows the first
page of scalar format MPSGE input file produced by HARBERGER.GEN. Normally, this file is written
and then erased in the course of a GAMS run, although all or part of the file may be retained using the
$ECHOP: switch.

4.53.3 Demand Theory and General Equilibrium: An Intermediate Level
Introduction to MPSGE

This research was supported by the GAMS Applied General Equilibrium Research Fund. The author
remains responsible for any bugs which exist in this software.

Author

Thomas F. Rutherford, rutherford@colorado.edu Department of Economics University of Col-
orado

Date

1995

4.53.3.1 An Overview

This document describes a mathematical programming system for general equilibrium analysis named
MPSGE which operates as a subsystem to the mathematical programming language GAMS. MPSGE is
library of function and Jacobian evaluation routines which facilitates the formulation and analysis of AGE
models. MPSGE simplifies the modeling process and makes AGE modeling accessible to any economist
who is interested in the application of these models. In addition to solving specific modeling problems,
the system serves a didactic role as a structured framework in which to think about general equilibrium
systems.

MPSGE separates the tasks of model formulation and model solution, thereby freeing model builders from
the tedious task of writing model-specific function evaluation subroutines. All features of a particular
model are communicated to GAMS/MPSGE through a tabular input format. To use MPSGE, a user
must learn the syntax and conventions of this model definition language.

mailto:rutherford@colorado.edu

1612 User's Guide

The present paper is intended for students who have completed two semesters of study in microeconomics.
The purpose of this presentation is to give students a practical perspective on microeconomic theory. The
diligent student who works through all of the examples provided here should be capable of building small
models ”from scratch” to illustrate basic theory. This is a first step to acquiring a set of useable tools for
applied work.

The remainder of this paper is organized as follows. Section The Theory of Consumer Demand re-
view the theory of consumer demand; section Getting Started provides guidance on how to verify that
the GAMS/MPSGE software is operational; section Modeling Consumer Demand introduces the mod-
eling framework with three models illustrating the representation of consumer demand within the
MPSGE language. Section The Pure Exchange Model reviews the pure exchange model, and section
Modeling Pure Exchange with MPSGE presents two MPSGE models of exchange. Each of the model-
oriented sections present exercises based on the models which give students a chance to work through the
material on their own. Additional introductory examples for self-study can be found in the Markusen

library as well as in the GAMS Model Library (look for models with names ending in ”MGE”).

The level of presentation and diagrammatic exposition adopted here is based on Hal Varian's undergraduate
microeconomics textbook (Intermediate Microeconomics: A Modern Approach, Third Edition, W. W.
Norton & Company, Inc., 1993).

The ultimate objective of this piece is to remind students of some theory which they have already seen
and illustrate how these ideas can be used to build numerical models using GAMS with MPSGE. It is not
my intention to provide a graduate level presentation of this material. So far as possible, I have avoided
calculus and even algebra. The objective here is to demonstrate that what matters are economic ideas.
With the proper tools, it is possible to do concrete economic modeling without a lot of mathematical
formalism.

4.53.3.2 The Theory of Consumer Demand

A central idea underlying most microeconomic theory is that agents optimize subject to constraints. The
optimizing principle applied to consumer choice begins from the notion that agents have preferences over
consumption bundles and will always choose the most preferred bundle subject to applicable constraints.
To operationalize this theory, three issues which must be addressed:

1. How can we represent preferences?

2. What is the nature of constraints on consumer choice? and

3. How can the choice be modelled?

Preferences are relationships between alternative consumption ”bundles”. These can be represented
graphically using ”indifference curves”, as illustrated in Figure 1. Focusing now on the preferences of a
single consumer, the indifference curve is a line which connects all combinations of two goods x and y
between which our consumer is indifferent. As this curve is drawn, we have represented an agent with
”well-behaved preferences”: at any allocation, more is better (monotonicity), and averages are preferred
to extremes (convexity). Exactly one such indifference curve goes through each positive combination of x
and y. Higher indifference curves lie to the ”north-east”.

Figure 1: An Indifference Curve

http://www.mpsge.org/markusen/markusen.htm
http://www.mpsge.org/markusen/markusen.htm

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1613

1614 User's Guide

If we wish to characterize an agent's preferences, the ”marginal rate of substitution” (MRS) is a useful
point of reference. At a given combination of x and y, the marginal rate of substitution is the slope of the
associated indifference curve. As drawn, the MRS increases in magnitude as we move to the northwest and
the MRS decreases as we move to the south east. The intuitive understanding is that the MRS measures
the willingness of the consumer to trade off one good for the other. As the consumer has greater amounts
of x, she will be willing to trade more units of x for each additional unit of y – this results from convexity.

An ”ordinal” utility function U(x, y) provides a helpful tool for representing preferences. This is a function
which associates a number with each indifference curve. These numbers increase as we move to the
northeast, with each successive indifference curve representing bundles which are preferred over the last.
The particular number assigned to an indifference curve has no intrinsic meaning. All we know is that if
U(x1, y1) > U(x2, y2) , then the consumer prefers bundle 1 to bundle 2.

Figure 2 illustrates how it is possible to use a utility function to generate a diagram with the associated
indifference curves. This figure illustrates Cobb-Douglas well-behaved preferences which are commonly
employed in applied work.

Figure 2: Indifference Curves and Utility Levels

Up to this point, we have we have focused exclusively on the characterization of preferences. Let us
now consider the other side of the consumer model – the budget constraint. The simplest approach to

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1615

characterizing consumer income is to assume that the consumer has a fixed money income which she may
spend on any goods. The only constraint on this choice is that the value of the expenditure may not
exceed the money income. This is the standard budget constraint:

Px x+ Py y = M.

Graphically, this equation defines the line depicted in Figure 3. All points inside the budget line are
affordable. The consumer faces a choice of which affordable bundle to select.

Figure 3: The Budget Set

Within the framework of our theory, the answer is straightforward – the consumer will choose the one
combination of x and y from the set of affordable bundles which maximizes her utility. This combination
of x and y will be at the point where the indifference curve is tangent the budget line. This point is called
the optimal choice. We see this illustrated in Figure 4.

1616 User's Guide

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1617

Figure 4: Utility Maximization on the Budget Set

The standard model of consumer behavior provides a starting point for learning MPSGE. This introduction
is ”hands on” – I will discuss issues as they arise, assuming that you have access to a computer and can
invoke the program and read the output file. You may wish to learn the rudiments of GAMS syntax
before starting out, although you may be able to pick up these ideas as they come, depending on your
aptitude for computer languages.

4.53.3.3 Getting Started

For running MPSGE models, the GAMS/BASE module is required along with a suitable MCP solver
such as MILES or PATH. To verify that the system is operational, run one of the MPSGE library
models, e.g. SCARFMGE. This can be done easily via GAMS Studio (search for SCARFMGE in the
Model Library Explorer). Alternatively, from a command prompt, connect to a working directory (never
run models from the GAMS system directory!). Then, extract and run the model:

C:\>MKDIR WORK

C:\>CD WORK

C:\WORK>GAMSLIB SCARFMGE

C:\WORK>GAMS SCARFMGE

If the GAMS system is properly installed, these commands will cause GAMS to solve a sequence of models
from the SCARFMGE sample problem. The output from this process is written to file SCARFMGE.LST . If
you search for the word ”STATUS”, you can verify that all the cases are processed.
There are a number of MPSGE models included in the GAMS Model Library. If you are using a
GAMS demo license, you will be able to process most but not all of the library models. The demo license
limits the number of variables in the model to 1000.
Assuming that you have successfully installed the software, let us now proceed to some examples which
illustrate both the computing syntax and the underlying economics.

4.53.3.4 Modeling Consumer Demand

Example 1: Evaluating a Demand Function

Consider a standard consumer choice problem, one which might appear on a midterm examination in
intermediate microeconomics:

maxU(x, y) = ln(x) + 2 ln(y)
subject to:
1x+ 2y = 120

where 1 is the exogenous price of x and 2 is the price of y.

This type of problem is solved easily using GAMS/MINOS (as a nonlinear program). Strictly speaking,
it is not the sort of model for which you would need to use MPSGE. At the same time, this can be an
instructive example.

The key issue in this example is learning how to represent utility functions. MPSGE is ”non-algebraic” –
so function specification depends on an intuitive understanding of the underlying economic structure.

Consider Figure 5 and focus on a single point, x = 1, y = 1. There is an indifference curve through this
point, and the marginal rate of substitution (MRS) at this point is simply the slope of this curve. The
benchmark MRS does not uniquely determine the underlying preferences.

1618 User's Guide

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1619

Figure 5: A Calibrated Benchmark

A utility function is represented in MPSGE by the specification of: (i) benchmark demand quantities,
(ii) benchmark demand prices (iii) an elasticity of substitution at the benchmark point. Benchmark
quantities determine an anchor point for the set of indifference curves. Benchmark prices fix the slope
of the indifference curve at that point, and the elasticity describes the curvature of the indifference
curve. Speaking formally, elasticities provide a ”second order approximation” of the utility function. To
understand the importance of the benchmark elasticity of substitution, consider Figure 6. This figure
shows three indifference curves all of which share the same benchmark quantities and benchmark prices.
They differ only in the elasticities of substitution. The least convex (flattest) curve has the highest
elasticity, the most convex curve has the lowest elasticity. (When the elasticity of substitution is 0, the
indifference curve is L-shaped with the corner at the benchmark point.)

Figure 6:The Elasticity of Substitution

Let us now consider how the consumer optimization problem can be cast as a general equilibrium model.
We do this by adding a single factor of production and two ”production” sectors. For concreteness, let
the factor of production be called labor with a price PL. One production function converts one unit of
labor into one unit of x, the other sector converts 2 units of labor into one unit ofy. Setting the labor
endowment equal 120, the market clearance condition for labor reads:

1x+ 2y = 120

which is precisely the budget constraint for the consumer's problem.

1620 User's Guide

We will now present the program code, a few lines at a time. As part of working through the example,
the student should type these lines into a file.

A MPSGE model specification is always listed between $ONTEXT and $OFFTEXT statements. The first
statement within an MPSGE model-description assigns a name to the model. The model name must
begin with a letter and must have 10 or fewer characters.

$ONTEXT

$MODEL:DEMAND

The model specification begins by declaring variables for the model. In a standard model, there are three
types of variables: commodity prices, sectoral activity levels, and consumer incomes. The end of each line
may include ”! variable description ”.

N.B. The variables associated with commodities are prices, not quantities. (In this and subsequent models,
I use P as the first letter for each of the commodity variables to remind us that these variables are prices.)

N.B. The variable associated with a consumer is an income level, not a welfare index.

$SECTORS:

X ! ACTIVITY LEVEL FOR X = DEMAND FOR GOOD X

Y ! ACTIVITY LEVEL FOR Y = DEMAND FOR GOOD Y

$COMMODITIES:

PX ! PRICE OF X WHICH WILL EQUAL PL

PY ! PRICE OF Y WHICH WILL EQUAL 2 PL

PL ! PRICE OF THE ARTIFICIAL FACTOR L

$CONSUMERS:

RA ! REPRESENTATIVE AGENT INCOME

Function specifications follow the variable declarations. In this model, our first declarations correspond
to the two production sectors. In this model, the production structures are particularly simple. Each of
the sectors has one input and one output. In the MPSGE syntax, I: denotes an input and O: denotes
an output. The output quantity coefficients for both sectors are unity (Q:1). This means that the level
values for x and y correspond to the actual quantities produced. The final function specified in the model
represents the utility function and endowments for our single consumer. In this function, the E: entries
correspond to endowments and the D: entries are demands. Reference demands, reference prices and the
substitution elasticity (s:1) characterize preferences.

The demand entries shown here are consistent with a Cobb-Douglas utility function in which the budget
share for y is twice the budget share for x (i.e. the MRS at (1,1) equals 1/2):

$PROD:X

O:PX Q:1

I:PL Q:1

$PROD:Y

O:PY Q:1

I:PL Q:2

$DEMAND:RA s:1

E:PL Q:120

D:PX Q:1 P:(1/2)

D:PY Q:1 P:1

$OFFTEXT

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1621

The final three statements in this file invoke the MPSGE preprocessor, ”generate” and solve the model:

$SYSINCLUDE mpsgeset DEMAND

$INCLUDE DEMAND.GEN

SOLVE DEMAND USING MCP;

The preprocessor invocation ($SYSINCLUDE mpsgeset) should be placed immediately following the
$OFFTEXT block containing the model description. The model generator code, DEMAND.GEN, is pro-
duced by the previous statement and must be referenced immediately before each subsequent SOLVE
statement.

At this point, the reader should take the time to type the example into a file and execute the program
with GAMS/MPSGE.

This is possibly the first GAMS model which some readers have solved, so it is worth looking through
the listing file in some detail. After running the solver, we examine the listing file. I typically begin my
assessment of a model's solution by searching for ”STATUS”. For this model, we have the following:

S O L V E S U M M A R Y

MODEL DEMAND

TYPE MCP

SOLVER PATH FROM LINE 263

**** SOLVER STATUS 1 NORMAL COMPLETION

**** MODEL STATUS 1 OPTIMAL

RESOURCE USAGE, LIMIT 1.432 1000.000

ITERATION COUNT, LIMIT 5 1000

EVALUATION ERRORS 0 0

Work space allocated -- 4.86 Mb

Default price normalization using income for RA

This information is largely self-explanatory. The most important items are the SOLVER STATUS and MODEL

STATUS indicators. When the solver status is 1 and the model status is 1, the system has returned an
equilibrium.

For small models such as this, the limits on resource usage (time) and solver iterations have no effect.
(You can modify these values with the statements:

model.RESLIM = number of cpu seconds ;

model.ITERLIM = number of iterations ;

entered into the program before the SOLVE statement.)

The work space allocation for MPSGE models is determined by the number of variables in the model. It
is possible to exogenously specify the work space allocation by assigning

model.WORKSPACE = xx ;

1622 User's Guide

where xx is the desired number of megabytes.

The final message, "Default price normalization...", is significant. It reminds the user that an
Arrow-Debreu general equilibrium model determines only relative prices. In such an equilibrium, the
absolute scaling of prices is indeterminant. (I.e., if (p∗,M∗) are a set of equilibrium prices and income
levels, then (2 p∗,2 M∗) is also a solution, etc.)

It is common practice in economics to address the normalization issue through the specification of a
numeraire commodity. You can do this for an MPSGE model by ”fixing” a price, with a statement like:

PX.FX = 1;

entered following the model declaration ($SYSINCLUDE mpsgeset) but prior to the solver invocation.
When any price or income level is fixed, MPSGE recognizes that a numeraire has been specified and does
no automatic normalization.

Following some output from the solver (PATH in this case), the listing file provides a complete report of
equilibrium values. With MPSGE models, the equation listings are superfluous. The variable listings
provide all the relevant information.

For this model, the solution listing appears as follows:

LOWER LEVEL UPPER MARGINAL

---- VAR X . 40.000 +INF .

---- VAR Y . 40.000 +INF .

---- VAR PX . 1.000 +INF .

---- VAR PY . 2.000 +INF .

---- VAR PL . 1.000 +INF .

---- VAR RA . 120.000 +INF .

X SUPPLY AND DEMAND OF GOOD X

Y SUPPLY AND DEMAND OF GOOD Y

PX PRICE OF X WHICH WILL EQUAL CX * PL

PY PRICE OF Y WHICH WILL EQUAL CY * PL

PL PRICE OF THE ARTIFICIAL FACTOR L

RA REPRESENTATIVE AGENT INCOME

The LOWER and UPPER columns report variable bounds applied in the model. In these columns, zero is
represented by ”.” and infinity is represented by "+INF". The LEVEL column reports the solution value
returned by the algorithm. Here we see that the equilibrium price of x is 1 and the price of y is 2, as
determined by the specification of labor inputs.

Exercises 1

(a) The utility function calibration point is arbitrary. Here, we have selected x = y = 1 as the reference
quantity. Revise the program to use a different calibration point where x = 2 and y = 1, where
MRS(2, 1) = 1/4. (Remember to modify both the Q : and P : fields.) Rerun the model to demonstrate
that this does not change the result.

(b) Increase the price of x from 1 to 2 by changing the Q: coefficient for PL in sector X from 1 to 2. What
happens to the demand for x? Explain why a change in the price of x is represented by a change in the Q:
field for sector X.

(c) Compute an equilibrium in which commodity y is defined as the numeraire.

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1623

Example 2: Evaluating the MRS

This example further explores the representation of demand functions with MPSGE. It sets up a trivial
equilibrium model with two goods and one consumer which returns the marginal rate of substitution of
good x for good y at a given level of demand. The underlying utility function is:

U(x, y) = ln(x) + 4 ln(y)

When x = y = 1, the marginal rate of substitution of x for y is 1/4. We use this information to calibrate
the demand function, specifying the ratio of the reference prices of x to y equal to 1/4.

In an equilibrium, final demand always equals endowments for both goods, because these are the only
sources of demand and supply. The model as parameterized demonstrates that if we set endowments for
this model equal to the demand function calibration point, the model equilibrium price ratio equals the
benchmark MRS.

This program begins with some GAMS statements in which three scalar parameters are declared. These
parameters will be used in the place of numbers within the MPSGE model. The syntax for these GAMS
statements is introduced in Chapter 2 of the GAMS manual. In short, we declare x, y and MRS as scalar
parameters and initialize the first two of these to unity. The MRS parameter is assigned a value following
the solution of the model.

SCALAR

X QUANTITY OF X FOR WHICH THE MRS IS TO BE EVALUATED /1/

Y QUANTITY OF Y FOR WHICH THE MRS IS TO BE EVALUATED /1/

MRS COMPUTED MARGINAL RATE OF SUBSTITUTION;

The remainder of the MPSGE program is, in fact, simpler than Example 1.

$ONTEXT

$MODEL:MRSCAL

$COMMODITIES:

PX ! PRICE INDEX FOR GOOD X

PY ! PRICE INDEX FOR GOOD Y

$CONSUMERS:

RA ! REPRESENTATIVE AGENT

$DEMAND:RA s:1

D:PX Q:1 P:(1/4)

D:PY Q:1 P:1

E:PX Q:X

E:PY Q:Y

$OFFTEXT

$SYSINCLUDE mpsgeset MRSCAL

$INCLUDE MRSCAL.GEN

SOLVE MRSCAL USING MCP;

Following the solution, we compute a function of the solution values, the ratio of the price of x to the
price of y. We do this using the GAMS syntax which references the equilibrium level values of the PX and
PY and storing this result in the scalar MRS. This scalar value is then displayed in the listing file with 8
digits:

MRS = PX.L / PY.L;

OPTION MRS:8;

DISPLAY MRS;

1624 User's Guide

Exercises 2

(a) Show that the demand function is homothetic by uniform scaling of the x and y endowments. The
resulting MRS should remain unchanged.

(b)Modify the demand function calibration point so that the reference prices of both x and y equal unity
(hint: the marginal rate of substitution is:

MRS = x/(4y).

Example 3: Leisure Demand and Labor Supply

This model investigates the labor-leisure decision. A single consumer is endowed with labor which is either
supplied to the market or ”repurchased” as leisure. The consumer utility function over market goods (x
and y) and leisure is Cobb-Douglas:

U(x, y, L) = ln(x) + ln(y) + ln(L)

Goods x and y may only be purchased using funds obtained from labor sales. This constraint is written:

x+ y = LPROD LS

where goods x and y both have a price of unity at base year productivity and LPROD is an index of labor
productivity. An increase in productivity is equivalent to a proportional decrease in the prices of x and y.

The model declaration is as follows:

SCALAR LPROD AGGREGATE LABOR PRODUCTIVITY /1/,

CX COST OF X AT BASE YEAR PRODUCTIVITY /1/,

CY COST OF Y AT BASE YEAR PRODUCTIVITY /1/;

$ONTEXT

$MODEL:LSUPPLY

$SECTORS:

X ! SUPPLY=DEMAND FOR X

Y ! SUPPLY=DEMAND FOR Y

LS ! LABOR SUPPLY

$COMMODITIES:

PX ! MARKET PRICE OF GOOD X

PY ! MARKET PRICE OF GOOD Y

PL ! MARKET WAGE

PLS ! CONSUMER VALUE OF LEISURE

$CONSUMERS:

RA ! REPRESENTATIVE AGENT

$PROD:LS

O:PL Q:LPROD

I:PLS Q:1

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1625

$PROD:X

O:PX Q:1

I:PL Q:CX

$PROD:Y

O:PY Q:1

I:PL Q:CY

$DEMAND:RA s:1

E:PLS Q:120

D:PLS Q:1 P:1

D:PX Q:1 P:1

D:PY Q:1 P:1

$OFFTEXT

$SYSINCLUDE mpsgeset LSUPPLY

$INCLUDE LSUPPLY.GEN

SOLVE LSUPPLY USING MCP;

We can use this model to evaluate the wage elasticity of labor supply. In the initial equilibrium (computed
in the last statement) the demands for x, y and L all equal 40. A subsequent assignment to LPROD (below)
increases labor productivity. After computing a new equilibrium, we can use the change in labor supply to
determine the wage elasticity of labor supply, an important parameter in labor market studies. It should
be emphasized that the elasticity of labor supply should be an input rather than an output of a general
equilibrium model – this is a parameter for which econometric estimates can be obtained.

Here is how the programming works. First, we declare some scalar parameters which we will use for
reporting, then save the ”benchmark” labor supply in LS0:

SCALAR

LS0 REFERENCE LEVEL OF LABOR SUPPLY

ELS ELASTICITY OF LABOR SUPPLY WRT REAL WAGE;

LS0 = LS.L;

Next, we modify the value of scalar LPROD, increasing labor productivity by 1%. Because this is a
neoclassical model, this change is equivalent to increasing the real wage by 1%. We need to recompute
equilibrium prices after having changed the LPROD value:

LPROD = 1.01;

$INCLUDE LSUPPLY.GEN

SOLVE LSUPPLY USING MCP;

We use this solution to compute and report the elasticity of labor supply as the percentage change in the
LS activity:

ELS = 100 * (LS.L - LS0) / LS0;

DISPLAY ELS;

As the model is currently constructed, the wage elasticity of labor supply equals zero. This is because
the utility function is Cobb-Douglas over goods and leisure, and the consumer's only source of income is
labor. As the real wage rises, this increases both the demand for goods (labor supply) and the demand for
leisure. These effect exactly balance out and the supply of labor is unchanged.

1626 User's Guide

Exercises 3

(a) One way in which the labor supply elasticity might differ from zero in a model with Cobb-Douglas
final demand is if there were income from some other source. Let the consumer be endowed with good x
in addition to labor. What x endowment is consistent with a labor supply elasticity equal to 0.15?

(b) A second way to ”calibrate” the labor supply elasticity is to change the utility function. We can do
this by changing the s:1 to s:SIGMA, where SIGMA is a scalar value representing the benchmark elasticity
of substitution between x, y and L in final demand. Modify the program to include SIGMA as a scalar,
and find the value for SIGMA consistent with a labor supply elasticity equal to 0.15.

4.53.3.5 The Pure Exchange Model

Partial equilibrium analysis forms the basis of most economics courses at the undergraduate level. In these
models we focus on price, supply and demand for a single commodity. The partial equilibrium approach
neglects indirect effects, through which changes in the market for one good may influence the market for
another good.

In the previous section, we focused on the choices of a single consumer. In the present section, we
will explore the implications of interactions between many consumers with heterogeneous preferences.
Furthermore, the analysis will explore the potentially important interaction between market prices and
income which are determined jointly in a general equilibrium.

The most widely-used graphical framework for multi-agent exchange equilibrium analysis is the Edgeworth-
Bowley box as illustrated in Figure 7. In this diagram we model the following economy:

Figure 7: The Edgeworth-Bowley Box

• Two types of consumers, denoted A and B. We consider A and B to each represent
multiple consumers, each with the same endowments and preferences. This assumption is
helpful for justifying our assumption of perfectly competitive, price-taking behavior.

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1627

• Two commodities, denoted x and y

• Fixed endowments of both goods. The horizontal axis measures the total world endowment
of good X. The vertical axis measure the total world endowment of good Y . Any point
in the box then represents an allocation of goods between the two agents. The agent H
allocation is measured with respect to the lower left origin. The agent F allocation is
measured with respect to the upper right origin.

Each agent has a given initial endowment, here denoted point E. Furthermore, we assume that there is no
possibility for trade. The indifference curves through point E therefore represent autarchy welfare levels.

The key idea in this model is that trade can improve both agents' welfare. One agent gives some amount
good x to the other in return for an amount of good y. The ”terms of trade”, the rate of exchange between
x and y, is determined by the model. The model illustrates a number of important properties of market
economies:

• Trade is mutually beneficial. So long as the transactions are voluntary, neither H nor F
will be hurt by engaging in trade.

• Market prices can be used to guide the economy to a Pareto-efficient allocation, a state
of affairs in which further mutually-beneficial trades are not possible.

• There is no guarantee that the gains from trade will be ”fairly distributed” across
consumers. A competitive equilibrium may produce a significant welfare increase for one
consumer while have negligible impact on the other.

• There are multiple Pareto-efficient allocations, typically only one of which is a competitive
equilibrium. We can use this model to demonstrate that the issues of efficiency and equity
can be separated when there is the possibility of lump-sum income transfers between
agents.

4.53.3.6 Modeling Pure Exchange with MPSGE

Example 4: A 2x2 Exchange Model

In this program, we examine the simple two good, two agent model of exchange equilibrium. The world
endowments for goods x and y are both equal to 1. Six parameters are used to parameterize the model.
These are declared as scalars at the top of the program:

SCALAR XA AGENT A ENDOWMENT OF X (0 < XA < 1) /0.2/

YA AGENT A ENDOWMENT OF Y (0 < YA < 1) /0.8/

THETA_A AGENT A DEMAND SHARE PARAMETER FOR X /0.5/

THETA_B AGENT B DEMAND SHARE PARAMETER FOR X /0.8/

SIGMA_A AGENT A ELASTICITY PARAMETER /2.0/

SIGMA_B AGENT B ELASTICITY PARAMETER /0.5/;

This model is actually simpler than the models presented above because we have no need for production.
There are simply two commodities and two consumers. The consumers differ in terms of commodity
endowments and preferences. The competitive equilibrium prices are such that supply equals demand for
both goods and both agents spend an amount equal to their endowment income.

This model illustrates how to use computed function coefficients. See, for example, Q:(1-THETA A) in the
$DEMAND:A block. Any numeric input field in an MPSGE model may be ”computed”, provided that the
algebraic expression is enclosed within parentheses and legitimate GAMS code.

This model specification uses the default values for reference prices in the demand function blocks. When
P:value is not specified in a D:,I: or O: record, P:1 is assumed.

This model uses the more general constant-elasticity-of-substitution utility function.

1628 User's Guide

$ONTEXT

$MODEL:EXCHANGE

$COMMODITIES:

PX ! EXCHANGE PRICE OF GOOD X

PY ! EXCHANGE PRICE OF GOOD Y

$CONSUMERS:

A ! CONSUMER A

B ! CONSUMER B

$DEMAND:A s:SIGMA_A

E:PX Q:XA

E:PY Q:YA

D:PX Q:THETA_A

D:PY Q:(1-THETA_A)

$DEMAND:B s:SIGMA_B

E:PX Q:(1-XA)

E:PY Q:(1-YA)

D:PX Q:THETA_B

D:PY Q:(1-THETA_B)

$OFFTEXT

$SYSINCLUDE mpsgeset EXCHANGE

$INCLUDE EXCHANGE.GEN

SOLVE EXCHANGE USING MCP;

SCALAR

PRATIO EQUILIBRIUM PRICE OF X IN TERMS OF Y,

IRATIO EQUILIBRIUM RATIO OF CONSUMER A INCOME TO CONSUMER B INCOME;

PRATIO = PX.L / PY.L;

IRATIO = A.L / B.L;

DISPLAY IRATIO, PRATIO;

The foregoing sets up the model and computes the competitive equilibrium. After GAMS returns from
the solver, we declare and compute some report values.

Absolute levels of income and price returned from a general equilibrium model are not meaningful because
a model determines only relative prices. For this reason, we report equilibrium income and price levels in
relative terms.

In the final step, we compute an alternative efficient equilibrium, one in which the income levels for A and
B are equal. The purpose of this exercise is to demonstrate the second welfare theorem. When incomes are
both fixed, the equilibrium remains efficient, but the connection between market prices and endowment
income is eliminated.

In GAMS/MPSGE, a variable may be fixed using the GAMS syntax

variable.fx= value;

as illustrated in this model:

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1629

A.FX = 1;

B.FX = 1;

$INCLUDE EXCHANGE.GEN

SOLVE EXCHANGE USING MCP;

SCALAR TRANSFER IMPLIED TRANSFER FROM A TO B AS A PERCENTAGE OF INCOME;

TRANSFER = 100 * (A.L - PX.L * XA - PY.L * YA); PRATIO = PX.L / PY.L;

IRATIO = A.L / B.L;

DISPLAY TRANSFER, PRATIO, IRATIO;

Exercises 4

(a) Set up a separate models which computes the autarchy price ratios for consumers A and B. (You can
use one of the earlier models as a starting point.)

(b) Determine parameter values for which the endowment point is the equilibrium point.

(c) Set up a series of computations from which you can sketch the efficiency locus. Draw the Edgeworth
box diagram which is consistent with these values.

Example 5: Import Tariffs and Market Power

The exchange model provides a remarkably useful tool for analyzing issues related to international trade.
Formal trade theory is more complicated with the inclusion of separate production technologies. We will
present some of those models below. Before going forward, however, we will consider a slight generalization
of the 2x2 model exchange model. In this extension, we introduce independent markets for consumers A
and B and trade activities which deliver goods from one market to the other.

The set of input parameters largely the same as in the previous example. Two new parameters are
ad-valorem tariffs which apply on imports to each of the regions.

SCALAR XA AGENT A ENDOWMENT OF X (0 le XA le 1) /0.2/

YA AGENT A ENDOWMENT OF Y (0 le YA le 1) /0.8/

THETA_A AGENT A DEMAND SHARE PARAMETER FOR X /0.4/

THETA_B AGENT B DEMAND SHARE PARAMETER FOR X /0.6/

SIGMA_A AGENT A ELASTICITY PARAMETER /1.0/

SIGMA_B AGENT B ELASTICITY PARAMETER /1.0/,

T_A AD-VALOREM TARIFF ON IMPORTS TO AGENT A /0.10/

T_B AD-VALOREM TARIFF ON IMPORTS TO AGENT B /0.10/;

The program differs from the previous example in several respects. First, we introduce a separate
commodity price for each agent. In the absence of tariffs, these prices are identical.

A second difference is that in this model trade activities deliver goods from one agent to the other. These
are denoted M{good}{agent} for imports of {good} to {agent}. There are four flows which may be
operated in only one direction (the activity levels are non-negative). In terms of initial endowments and
preferences, this model has exactly the same economic structure as the previous model.

1630 User's Guide

$ONTEXT

$MODEL:TARIFFS

$SECTORS:

MXA ! TRADE IN X FROM B TO A

MXB ! TRADE IN X FROM A TO B

MYA ! TRADE IN Y FROM B TO A

MYB ! TRADE IN Y FROM A TO B

$COMMODITIES:

PXA ! PRICE OF GOOD X FOR AGENT A

PYA ! PRICE OF GOOD Y FOR AGENT A

PXB ! PRICE OF GOOD X FOR AGENT B

PYB ! PRICE OF GOOD Y FOR AGENT B

$CONSUMERS:

A ! CONSUMER A

B ! CONSUMER B

$DEMAND:A s:SIGMA_A

E:PXA Q:XA

E:PYA Q:YA

D:PXA Q:THETA_A

D:PYA Q:(1-THETA_A)

$DEMAND:B s:SIGMA_B

E:PXB Q:(1-XA)

E:PYB Q:(1-YA)

D:PXB Q:THETA_B

D:PYB Q:(1-THETA_B)

The trade activities each have one input and one output. They simply deliver a good (X or Y) from one
agent to the other. The new syntax presented here is specification of an ad-valorem tax. Adding a tax
requires two new fields. The first is "A:" which specifies the tax agent, a consumer who collects the tax
revenue as part of income. The second is "T:" which specifies the ad- valorem tax rate.

MPSGE permits taxes to applied on production inputs and outputs but it does not permit taxes on final
demand.

The tax applies on a net basis on inputs. For example, if we consider the MXA sector, the price of one
unit of input is given by:

Px B ∗ (1 + Ta)

where Px B is the net of tax price of a unit of x in the agent B market and Ta is the ad-valorem tariff
rate.

$PROD:MXA

O:PXA Q:1

I:PXB Q:1 A:A T:T_A

$PROD:MXB

O:PXB Q:1

I:PXA Q:1 A:B T:T_B

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1631

$PROD:MYA

O:PYA Q:1

I:PYB Q:1 A:A T:T_A

$PROD:MYB

O:PYB Q:1

I:PYA Q:1 A:B T:T_B

The final portions of the file introduces one use of ”MPSGE report variables”. In this case, report variables
are used to recover a Hicksian money-metric welfare index for each of the agents. We compute the initial,
tariff-ridden equilibrium in order to compute the benchmark welfare levels. We then set all tariffs to
zero and compute the free-trade equilibrium. Using the final welfare indices and the saved values of the
benchmark welfare levels, we are able to report the change in welfare from removing tariff distortions.

$REPORT:

V:WA W:A

V:WB W:B

$OFFTEXT

$SYSINCLUDE mpsgeset TARIFFS

$INCLUDE TARIFFS.GEN

SOLVE TARIFFS USING MCP;

SCALAR

WA0 BENCHMARK WELFARE INDEX FOR AGENT A

WB0 BENCHMARK WELFARE INDEX FOR AGENT B;

WA0 = WA.L;

WB0 = WB.L;

T_A = 0;

T_B = 0;

$INCLUDE TARIFFS.GEN

SOLVE TARIFFS USING MCP;

SCALAR

EVA HICKSIAN EQUIVALENT VARIATION FOR AGENT A

EVB HICKSIAN EQUIVALENT VARIATION FOR AGENT B;

EVA = 100 * (WA.L-WA0)/WA0;

EVB = 100 * (WB.L-WB0)/WB0;

DISPLAY EVA, EVB;

Exercises 5

(a) Find the ”optimal tariff” in this model for agent A, assuming that agent B does not retaliate and
leaves her tariff rate at the benchmark level.

(b) Insert the endowment and preference parameters from the previous problem, retaining the same
”benchmark” tariff rates. Does free trade benefit both countries? If not, why not?

1632 User's Guide

4.53.4 Constant Elasticity of Substitution Functions: Some Hints and Useful
Formulae

Notes prepared for GAMS General Equilibrium Workshop held December, 1995 in Boulder Colorado.

Author

Thomas F. Rutherford, Department of Economics, University of Colorado

Date

December, 1995

4.53.4.1 The Basics

In many economic textbooks the constant elasticity of substitution (CES) utility function is defined as:

U(x, y) = (αxρ + (1− α)yρ)
1
ρ ,

It is a fairly routine but tedious calculus excercise to demonstrate that the associated demand functions
are:

x(px, py,M) =

(
α

px

)σ
=

M

ασp1−σ
x + (1− α)σp1−σ

y

,

and

y(px, py,M) =

(
1− α
py

)σ
M

ασp1−σ
x + (1− α)σp1−σ

y

,

The corresponding indirect utility function has is:

V (px, py,M) = M

(
ασp1−σ

x + (1− α)σp1−σ
y

) 1
σ−1

,

Note that U(x,y) is linearly homogeneous:

U(λx, λy) = λU(x, y)

This is a convenient cardinalization of utility, because percentage changes in U are equivalent to percentage
Hicksian equivalent variations in income.

Because U is linearly homogeneous, V is homogeneous of degree one in M and degree −1 in p.

In the representation of technology, we have an analogous set of relationships, based on the cost and
compensated demand functions. If we have a CES production function of the form:

y(K,L) = γ
(
αKρ + (1− α)Lρ

) 1
ρ ,

mailto:rutherford@colorado.edu

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1633

the unit cost function then has the form:

c(pK , pL) =
(1

γ

)(
ασp1−σ

K + (1− α)σp1−σ
L

) 1
1−σ

,

and associated demand functions are:

K(pK , pL) =

(
y

γ

)(
αγc(pK , pL)

pK

)σ
,

and

L(pK , pL) =

(
y

γ

)(
(1− α)γc(pK , pL)

pL

)σ
.

In most large-scale applied general equilibrium models, we have many function parameters to specify with
relative ly few observations. The conventional approach is to calibrate functional parameters to a single
benchmark equilibrium. For example, if we have benchmark estimates for output, labor, capital inputs
and factor prices , we calibrate function coefficients by inverting the factor demand functions:

θ = p̄kK̄
p̄kK̄+P̄LL̄

, ρ = σ−1
σ , α = θK̄

−1
ρ ,

and

γ = ȳ
[
αK̄ρ + (1− α)L̄ρ

]−1
ρ .

4.53.4.2 The Calibrated Share Form

Calibration formulae for CES functions are messy and difficult to remember. Consequently, the specification
of function coefficients is complicated and error-prone. For applied work using calibrated functions, it is
much easier to use the ”calibrated share form” of the CES function. In the calibrated form, the cost and
demand functions explicitly incorporate

• benchmark factor demands

• benchmark factor prices

• the elasticity of substitution

• benchmark cost

• benchmark output

• benchmark value shares

In this form, the production function is written:

y = ȳ

[
θ

(
K

K̄

)ρ
+ (1− θ)

(
L

L̄

)ρ] 1
ρ

The only calibrated parameter, θ , represents the value share of capital at the benchmark point. The
corresponding cost functions in the calibrated form is written:

1634 User's Guide

c(pK , pL) = c̄

[
θ

(
pK
p̄k

)1−σ

+ (1− θ)
(
pL
p̄L

)1−σ] 1
1−σ

where c̄ = p̄LL̄+ p̄KK̄and the compensated demand functions are:

K(pK , pL, y) = K̄
y

ȳ

(
p̄K c

pK c̄

)σ
and

L(pK , pL, y) = L̄
y

ȳ

(
c p̄L
c̄ pK

)σ
.

Normalizing the benchmark utility index to unity, the utility function in calibrated share form is written:

U(x, y) =

[
θ

(
x

x̄

)ρ
+ (1− θ)

(
y

ȳ

ρ
)] 1

ρ

Defining the unit expenditure function as:

e(px, py) =

[
θ

(
px
p̄x

)1−σ

+ (1− θ)
(
py
p̄y

)] 1
1−σ

the indirect utility function is:

V (px, py,M) =
M

M̄e(px, py)

and the demand functions are:

x(px, py,M) = x̄ V (px, py,M)

(
e(px, py)p̄x

px

)σ

and

y(px, py,M) = ȳ V (px, py,M)

(
e(px, py)p̄y

py

)σ
The calibrated form extends directly to the n-factor case. An n-factor production function is written:

y = f(x) = ȳ

[∑
i

θi

(
xi
x̄i

)ρ] 1
ρ

and has unit cost function:

C(p) = C̄

[∑
i

θi

(
pi
p̄i

)1−σ] 1
1−σ

and compensated factor demands:

xi = x̄i
y

ȳ

(
Cp̄i
C̄pi

)σ

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1635

4.53.4.3 Excercises

(i) Show that given a generic CES utility function:

U(x, y) = (αρ + (1− α)yρ)
1
p

can be represented in share form using:

x̄ = 1, ȳ = 1, p̄x = tα, p̄y = t(1− α), M̄ = t.

for any value of t > 0.

(ii) Consider the utility function defined:

U(x, y) = (x− a)α(y − b)1−α

A benchmark demand point with both prices equal and demand for y equal to twice the demand for x.
Find values for which are consistent with optimal choice at the benchmark. Select these parameters so
that the income elasticity of demand for x at the benchmark point equals 1.1.

(iii) Consider the utility function:

U(x, L) = (αLρ + (1− α)xρ)
1
ρ

which is maximized subject to the budget constraint:

pxx = M + ω(L̄− L)

in which M is interpreted as non-wage income, ω is the market wage rate. Assume a benchmark equilibrium
in which prices for x and L are equal, demands for x and L are equal, and non-wage income equals
one-half of expenditure on x. Find values of α and ρ consistent with these choices and for which the price
elasticity of labor supply equals 0.2.

(iv) Consider a consumer with CES preferences over two goods. A price change makes the benchmark
consumption bundle unaffordable, yet the consumer is indifferent. Graph the choice. Find an equation
which determines the elasticity of substitution as a function of the benchmark value shares. (You can
write down the equation, but it cannot be solved in closed form.)

(v) Consider a model with three commodities, x, y, and z. Preferences are CES. Benchmark demands and
prices are equal for all goods. Find demands for x, y and z for a doubling in the price of x as a function
of the elasticity of substitution.

(iv) Consider the same model in the immediately preceeding question, except assume that preferences are
instead given by:

U(x, y, z) = (βmin(x, y)ρ + (1− β)zρ)
1
ρ

Determine βfrom the benchmark, and find demands for x, y and z if the price of x doubles.

1636 User's Guide

4.53.4.4 Flexibility and Non-Separable CES functions

We let πi denote the user price of the ith input, and let xi(π) be the cost-minizing demand for the ith
input. The reference price and quantities are π̄i and x̄i . One can think of set i as {K,L,E,M} but the
methods we employ may be applied to any number of inputs. Define the reference cost, and reference
value share for ith input by C̄ and θi , where

C̄ ≡
∑
i

π̄ix̄i

and

θi ≡
πix̄i
C̄

.

The single-level constant elasticity of substitution cost function in ”calibrated share form” is written:

C(π) = C̄

(∑
i

θi
(πi
π̄i

)1−σ) 1
1−σ

Compensated demands may be obtained from Shephard's lemma:

xi(π) =
δC

δπi
≡ Ci = x̄i

(
C(π)

C̄

π̄i
πi

)σ
Cross-price Allen-Uzawa elasticities of substitution (AUES) are defined as:

σij ≡
CijC

CiCj

where

Cij =
δ2C(π)

δπi δπj
=
δxi
δπj

=
δxj
δπi

For single-level CES functions:
σij = σ ∀i6=j .

The CES cost function exibits homogeneity of degree one, hence Euler's condition applies to the second
derivatives of the cost function (the Slutsky matrix):∑

j

Cij(π)(πj) = 0

or, equivalently: ∑
j

σij(θj) = 0

The Euler condition provides a simple formula for the diagonal AUES values:

σii =
−
∑
j 6=i σijθj

θi

As an aside, note that convexity of the cost function implies that all minors of order 1 are negative, i.e.
σii < 0 ∀i. Hence, there must be at least one positive off-diagonal element in each row of the AUES or
Slutsky matrices. When there are only two factors, then the off-diagonals must be negative. When there
are three factors, then only one pair of negative goods may be complements.

Let:

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1637

k be the reference the index of second-level nest

sik denote the fraction of good i inputs assigned to the kth nest

ωk denote the benchmark value share of total cost which enters through the kth nest

γ denote the top-level elasticity of substitution

σk denote the elasticity of substitution in the kth aggregate

pk(π) denote the price index associated with aggregate k, normalized to equal unity in the
benchmark, i.e.:

pk(π) =

[∑
i sikθi

ωk
(
πi
Π̄i

)1−σk]
1

1−σk

The two-level nested, nonseparable constant-elasticity-of-substitution (NNCES) cost function is then
defined as:

C(π) = C̄

(∑
k

ωkpk(π)1−γ
) 1

1−γ

Demand indices for second-level aggregates are needed to express demand functions in a compact form.
Let zk(π) denote the demand index for aggregate k, normalized to unity in the benchmark; i.e.

zk(π) =

(
C(π)

C̄

1

pk(π)

)γ
Compensated demand functions are obtained by differentiating C(π) . In this derivative, one term arise
for each nest in which the commodity enters, so:

xi(π) = x̄i
∑
K

zk(π)

(
pk(π)π̄i
πi

)σk
= x̄i

∑
k

(
C(π)

C̄

1

pk(π)

)γ (
pk(π)π̄i
πi

)σk

Simple differentiation shows that benchmark cross-elasticities of substitution have the form:

σij = γ +
∑
k

(σk − γ)siksjk
ωk

Given the benchmark value shares θi and the benchmark cross-price elasticities of substitution, σij ,
we can solve for values of , sik , ωk, σk and γ . We compute these parameters using a constrained
nonlinear programming algorithm, CONOPT, which is available through GAMS, the same programming
environment in which the equilibrium model is specified. Perroni and Rutherford (EER, 1994) prove that
calibration of the NNCES form is possible for arbitrary dimensions whenever the given Slutsky matrix is
negative semi-definite. The two-level (NxN) function is flexible for three inputs; and although we have
not proven that it is flexible for 4 inputs, the only difficulties we have encountered have resulted from
indefinite calibration data points.

Two GAMS programs are listed below. The first illustrates two analytic calibrations of the three-factor
cost function. The second illustrates the use of numerical methods to calibrate a four-factor cost function.

1638 User's Guide

4.53.4.5 Two NNCES calibrations for a 3-input cost functions

* ==

* Model-specific data defined here:

SET I Production input aggregates / A,B,C /; ALIAS (I,J);

PARAMETER

THETA(I) Benchmark value shares /A 0.2, B 0.5, C 0.3/

AUES(I,J) Benchmark cross-elasticities (off-diagonals) /

A.B 2

A.C -0.05

B.C 0.5 /;

* ==

* Use an analytic calibration of the three-factor CES cost

* function:

ABORT$(CARD(I) NE 3) "Error: not a three-factor model!";

* Fill in off-diagonals:

AUES(I,J)$AUES(J,I) = AUES(J,I);

* Verify that the cross elasticities are symmetric:

ABORT$SUM((I,J), ABS(AUES(I,J)-AUES(J,I))) " AUES values non-symmetric?";

* Check that all value shares are positive:

ABORT$(SMIN(I, THETA(I)) LE 0) " Zero value shares are not valid:",THETA;

* Fill in the elasticity matrices:

AUES(I,I) = 0; AUES(I,I) = -SUM(J, AUES(I,J)*THETA(J))/THETA(I); DISPLAY AUES;

SET N Potential nesting /N1*N3/

K(N) Nesting aggregates used in the model

I1(I) Good fully assigned to first nest

I2(I) Good fully assigned to second nest

I3(I) Good split between nests;

SCALAR ASSIGNED /0/;

PARAMETER

ESUB(*,*) Alternative calibrated elasticities

SHR(*,I,N) Alternative calibrated shares

SIGMA(N) Second level elasticities

S(I,N) Nesting assignments (in model)

GAMMA Top level elasticity (in model);

* First the Leontief structure:

ESUB("LTF","GAMMA") = SMAX((I,J), AUES(I,J));

ESUB("LTF",N) = 0;

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1639

LOOP((I,J)$((AUES(I,J) EQ ESUB("LTF","GAMMA"))*(NOT ASSIGNED)),

I1(I) = YES;

I2(J) = YES;

ASSIGNED = 1;

);

I3(I) = YES$((NOT I1(I))*(NOT I2(I)));

DISPLAY I1,I2,I3;

LOOP((I1,I2,I3),

SHR("LTF",I1,"N1") = 1;

SHR("LTF",I2,"N2") = 1;

SHR("LTF",I3,"N1") = THETA(I1)*(1-AUES(I1,I3)/AUES(I1,I2)) /

(1 - THETA(I3) * (1-AUES(I1,I3)/AUES(I1,I2)));

SHR("LTF",I3,"N2") = THETA(I2)*(1-AUES(I2,I3)/AUES(I1,I2)) /

(1 - THETA(I3) * (1-AUES(I2,I3)/AUES(I1,I2)));

SHR("LTF",I3,"N3") = 1 - SHR("LTF",I3,"N1") - SHR("LTF",I3,"N2");

);

ABORT$(SMIN((I,N), SHR("LTF",I,N)) LT 0) "Benchmark AUES is indefinite.";

* Now, the CES function:

ESUB("CES","GAMMA") = SMAX((I,J), AUES(I,J));

ESUB("CES","N1") = 0;

LOOP((I1,I2,I3),

SHR("CES",I1,"N1") = 1;

SHR("CES",I2,"N2") = 1;

ESUB("CES","N2") = (AUES(I1,I2)*AUES(I1,I3)-AUES(I2,I3)*AUES(I1,I1)) /

(AUES(I1,I3)-AUES(I1,I1));

SHR("CES",I3,"N1") =

(AUES(I1,I2)-AUES(I1,I3)) / (AUES(I1,I2)-AUES(I1,I1));

SHR("CES",I3,"N2") = 1 - SHR("CES",I3,"N1");

);

ABORT$(SMIN(N, ESUB("CES",N)) LT 0) "Benchmark AUES is indefinite?";

ABORT$(SMIN((I,N), SHR("CES",I,N)) LT 0) "Benchmark AUES is indefinite?";

PARAMETER PRICE(I) PRICE INDICES USING TO VERIFY CALIBRATION

AUESCHK(*,I,J) CHECK OF BENCHMARK AUES VALUES;

PRICE(I) = 1;

$ontext

$MODEL:CHKCALIB

$SECTORS:

Y ! PRODUCTION FUNCTION

D(I)

$COMMODITIES:

PY ! PRODUCTION FUNCTION OUTPUT

P(I) ! FACTORS OF PRODUCTION

PFX ! AGGREGATE PRICE LEVEL

$CONSUMERS:

RA

$PROD:Y s:GAMMA K.TL:SIGMA(K)

1640 User's Guide

O:PY Q:1

I:P(I)#(K) Q:(THETA(I)*S(I,K)) K.TL:

$PROD:D(I)

O:P(I) Q:THETA(I)

I:PFX Q:(THETA(I)*PRICE(I))

$DEMAND:RA

D:PFX

E:PFX Q:2

E:PY Q:-1

$OFFTEXT

$SYSINCLUDE mpsgeset CHKCALIB

SCALAR DELTA /1.E-5/;

SET FUNCTION /LTF, CES/;

ALIAS (I,II);

LOOP(FUNCTION,

K(N) = YES$SUM(I, SHR(FUNCTION,I,N));

GAMMA = ESUB(FUNCTION,"GAMMA");

SIGMA(K) = ESUB(FUNCTION,K);

S(I,K) = SHR(FUNCTION,I,K);

LOOP(II,

PRICE(J) = 1; PRICE(II) = 1 + DELTA;

$INCLUDE CHKCALIB.GEN

SOLVE CHKCALIB USING MCP;

AUESCHK(FUNCTION,J,II) = (D.L(J)-1) / (DELTA*THETA(II));

));

AUESCHK(FUNCTION,I,J) = AUESCHK(FUNCTION,I,J) - AUES(I,J);

DISPLAY AUESCHK;

* Evaluate the demand functions:

$LIBINCLUDE qadplot

SET PR Alternative price levels /PR0*PR10/;

PARAMETER

DEMAND(FUNCTION,I,PR) Demand functions

DPLOT(PR,FUNCTION) Plotting output array;

LOOP(II,

LOOP(FUNCTION,

K(N) = YES$SUM(I, SHR(FUNCTION,I,N));

GAMMA = ESUB(FUNCTION,"GAMMA");

SIGMA(K) = ESUB(FUNCTION,K);

S(I,K) = SHR(FUNCTION,I,K);

LOOP(PR,

PRICE(J) = 1;

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1641

PRICE(II) = 0.2 * ORD(PR);

$INCLUDE CHKCALIB.GEN

SOLVE CHKCALIB USING MCP;

DEMAND(FUNCTION,II,PR) = D.L(II);

DPLOT(PR,FUNCTION) = D.L(II);

);

);

$LIBINCLUDE qadplot DPLOT PR FUNCTION

);

DISPLAY DEMAND;

4.53.4.6 A Comparison of Locally-Identical Functions

A Comparison of Locally-Identical Functions

Figure 1: Demand Function Comparison – Good A

Figure 2: Demand Function Comparison – Good B

Figure 3: Demand Function Comparison – Good C

1642 User's Guide

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1643

4.53.4.7 Numerical calibration of NNCES given KLEM elasticities

SET I Production input aggregates / K, L, E, M/; ALIAS (I,J);

* ==

* Model-specific data defined here:

PARAMETER

THETA(I) Benchmark value shares /K 0.2, L 0.4, E 0.05, M 0.35/

AUES(I,J) Benchmark cross-elasticities (off-diagonals) /

K.L 1

K.E -0.1

K.M 0

L.E 0.3

L.M 0

E.M 0.1 /;

* ==

SCALAR EPSILON Minimum value share tolerance /0.001/;

* Fill in off-diagonals:

AUES(I,J)$AUES(J,I) = AUES(J,I);

* Verify that the cross elasticities are symmetric:

ABORT$SUM((I,J), ABS(AUES(I,J)-AUES(J,I))) " AUES values non-symmetric?";

* Check that all value shares are positive:

ABORT$(SMIN(I, THETA(I)) LE 0) " Zero value shares are not valid:",THETA;

* Fill in the elasticity matrices:

AUES(I,I) = 0; AUES(I,I) = -SUM(J, AUES(I,J)*THETA(J))/THETA(I); DISPLAY AUES;

* ==

* Define variables and equations for NNCES calibration:

SET N Nests within the two-level NNCES function /N1*N4/,

K(N) Nests which are in use;

VARIABLES

S(I,N) Fraction of good I which enters through nest N,

SHARE(N) Value share of nest N,

SIGMA(N) Elasticity of substitution within nest N,

GAMMA Elasticity of substitution at the top level,

OBJ Objective function;

POSITIVE VARIABLES S, SHARE, SIGMA, GAMMA;

EQUATIONS

SDEF(I) Nest shares must sum to one,

TDEF(N) Nest share in total cost,

ELAST(I,J) Consistency with given AUES values,

OBJDEF Maximize concentration;

1644 User's Guide

ELAST(I,J)$(ORD(I) GT ORD(J))..

AUES(I,J) =E= GAMMA +

SUM(K, (SIGMA(K)-GAMMA)*S(I,K)*S(J,K)/SHARE(K));

TDEF(K).. SHARE(K) =E= SUM(I, THETA(I) * S(I,K));

SDEF(I).. SUM(N, S(I,N)) =E= 1;

* Maximize concentration at the same time keeping the elasticities

* to be reasonable:

OBJDEF.. OBJ =E= SUM((I,K),S(I,K)*S(I,K))

- SQR(GAMMA) - SUM(K, SQR(SIGMA(K)));

MODEL CESCALIB /ELAST, TDEF, SDEF, OBJDEF/;

* Apply some bounds to avoid divide by zero:

SHARE.LO(N) = EPSILON;

SCALAR SOLVED Flag for having solved the calibration problem /0/

MINSHR Minimum share in candidate calibration;

SET TRIES Counter on the number of attempted calibrations /T1*T10/;

* We use the random number generator to select starting points,

* so it is helpful to initialize the seed so that the results

* will be reproducible:

OPTION SEED=0;

LOOP(TRIES$(NOT SOLVED),

* Initialize the set of active nests and the bounds:

K(N) = YES;

S.LO(I,N) = 0; S.UP(I,N) = 1;

SHARE.LO(N) = EPSILON; SHARE.UP(N) = 1;

SIGMA.LO(N) = 0; SIGMA.UP(N) = +INF;

* Install a starting point:

SHARE.L(K) = MAX(UNIFORM(0,1), EPSILON);

S.L(I,K) = UNIFORM(0,1);

GAMMA.L = UNIFORM(0,1);

SIGMA.L(K) = UNIFORM(0,1);

* Drop any basis information so that we start from scratch:

SDEF.M(I) = 0; TDEF.M(K) = 0; ELAST.M(I,J) = 0;

SOLVE CESCALIB USING NLP MAXIMIZING OBJ;

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1645

SOLVED = 1$(CESCALIB.MODELSTAT LE 2);

* We have a solution -- now see if it is not on a bound:

IF (SOLVED,

MINSHR = SMIN(K, SHARE.L(K)) - EPSILON;

IF (MINSHR EQ 0,

* Drop nests which have shares equal to EPSILON in the current

* solution:

K(N)$(SHARE.L(N) EQ EPSILON) = NO;

S.FX(I,N)$(NOT K(N)) = 0;

SHARE.FX(N)$(NOT K(N)) = 0;

SIGMA.FX(N)$(NOT K(N)) = 0;

DISPLAY "Recalibrating with the following nests:",K;

SOLVE CESCALIB USING NLP MAXIMIZING OBJ;

IF (CESCALIB.MODELSTAT GT 2, SOLVED = 0;);

MINSHR = SMIN(K, SHARE.L(K)) - EPSILON;

IF (MINSHR EQ 0, SOLVED = 0;);

);

);

);

IF (SOLVED,

DISPLAY "Function calibrated:",GAMMA.L,SIGMA.L,SHARE.L,S.L;

ELSE

DISPLAY "Function calibration fails!";

);

$ONTEXT

*==

Solution from MINOS obtained on the second try, following an

ITERATION INTERRUPT on the first:

---- 151 Function calibrated:

---- 151 VARIABLE GAMMA.L = 0.300 Elasticity of

substitution at the

top level

---- 151 VARIABLE SIGMA.L Elasticity of substitution within nest N

N3 7.804

---- 151 VARIABLE SHARE.L Value share of nest N

1646 User's Guide

N1 0.604, N2 0.266, N3 0.030, N4 0.100

---- 151 VARIABLE S.L Fraction of good I which enters through

nest N

N1 N2 N3 N4

K 0.797 0.069 0.133

L 0.960 0.040

E 1.000

M 0.630 0.304 0.067

*==

The following solution is obtained by CONOPT on the second try, following a LOCALLY INFEASIBLE
termination on the first problem. Notice that it is identical to the MINOS solution except that the nesting
assigments have been permuted:

---- 149 Function calibrated:

---- 149 VARIABLE GAMMA.L = 0.300 Elasticity of

substitution at the

top level

---- 149 VARIABLE SIGMA.L Elasticity of substitution within nest N

N4 7.804

---- 149 VARIABLE SHARE.L Value share of nest N

N1 0.100, N2 0.604, N3 0.266, N4 0.030

---- 149 VARIABLE S.L Fraction of good I which enters through

nest N

N1 N2 N3 N4

K 0.133 0.797 0.069

L 0.960 0.040

E 1.000

M 0.067 0.630 0.304

*==

$OFFTEXT

PARAMETER PRICE(I) PRICE INDICES USING TO VERIFY CALIBRATION

AUESCHK(I,J) CHECK OF BENCHMARK AUES VALUES;

PRICE(I) = 1;

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1647

$ontext

$MODEL:CHKCALIB

$SECTORS:

Y ! PRODUCTION FUNCTION

D(I)

$COMMODITIES:

PY ! PRODUCTION FUNCTION OUTPUT

P(I) ! FACTORS OF PRODUCTION

PFX ! AGGREGATE PRICE LEVEL

$CONSUMERS:

RA

$PROD:Y s:GAMMA.L K.TL:SIGMA.L(K)

O:PY Q:1

I:P(I)#(K) Q:(THETA(I)*S.L(I,K)) K.TL:

$PROD:D(I)

O:P(I) Q:THETA(I)

I:PFX Q:(THETA(I)*PRICE(I))

$DEMAND:RA

D:PFX

E:PFX Q:2

E:PY Q:-1

$OFFTEXT

$SYSINCLUDE mpsgeset CHKCALIB

CHKCALIB.ITERLIM = 0;

$INCLUDE CHKCALIB.GEN

SOLVE CHKCALIB USING MCP;

CHKCALIB.ITERLIM = 2000;

SCALAR DELTA /1.E-5/;

ALIAS (I,II);

LOOP(II,

PRICE(J) = 1; PRICE(II) = 1 + DELTA;

$INCLUDE CHKCALIB.GEN

SOLVE CHKCALIB USING MCP;

AUESCHK(J,II) = (D.L(J)-1) / (DELTA*THETA(II));

);

DISPLAY AUES, AUESCHK;

4.53.4.8 Calibrating Labor Supply and Savings Demand

This material was published in the MUG newsletter, 8/95.

Following Ballard, Fullerton, Shoven and Whalley (BFSW), we consider a representative agent whose
utility is based upon current consumption, future consumption and current leisure. Changes in ”future

1648 User's Guide

consumption” in this static framework are associated with changes in the level of savings. There are three
prices which jointly determine the price index for future consumption. These are:

PI the composite price index for investment goods

PK the composite rental price for capital services

PC the composite price of current consumption.

All of these prices equal unity in the benchmark equilibrium.

Capital income in each future year finances future consumption, which is expected to cost the same as in
the current period, PC (static expectations). The consumer demand for savings therefore depends not
only on PI , but also on PK and PC , namely:

PS =
PIPC
PK

The price index for savings is unity in the benchmark period. In a counter-factual equilibrium, however,
we would expect generally that PS 6= PI . When these price indices are not equal, there is a ”virtual tax
payment” associated with savings demand.

Following BFSW, we adopt a nested constant-elasticity-of-substitution function to represent preferences.
In this function, at the top level demand for savings (future consumption) trades off with a second CES
aggregate of leisure and current consumption. These preferences can be summarized with the following
expenditure function:

PU =
[
αP 1−σS

H + (1− α)P 1−σS
H

] 1
1−σS

Preferences are homothetic, so we have defined PU as a linearly homogeneous cost index for a unit of
utility. We conveniently scale this price index to equal unity in the benchmark. In this definition, α is the
benchmark value share for current consumption (goods and leisure). PH is a compositive price for current
consumption defined as:

PH =
[
βP 1−σL

l + (1− β)P 1−σL
C

] 1
1−σL

in which β is the benchmark value share for leisure within current consumption. Demand functions can
be written as follows:

S = S0

(
PU
PF

)σS
I

I0PU
,

C = C0

(
PH
PC

)σL (
PU
PH

)σS
I

I0PU
,

and

` = `0

(
PH
PL

)σL (
PU
PH

)σS
I

I0PU
,

Demands are written here in terms of their benchmark values (S0, C0 and `0) and current and benchmark
income (I and I0).

There are four components in income. The first is the value of labor endowment (E), defined inclusive of
leisure. The second is the value of capital endowment (K). The third is all other income (M). The
fourth is the value of ”virtual tax revenue” associated with differences between the shadow price of savings
and the cost of investment.

I = PLE + PKK +M + (PS − PI)S

The following parameter values are specified exogenously:

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1649

1. ζ = 1.75 is the ratio of labor endowment:

ζ ≡ E/L0

where L0 is the benchmark labor supply. Given ζ and L 0 we have:

`0 = L0(ζ − 1)

2. ξ = 0.15 is the uncompensated elasticity of labor supply with respect to the net of tax wage, i.e.

ξ =
δL

δPL

PL
L

=
δ(E − `)
δPL

PL
L

= − δ`

δPL

PL
L

3. η = 0.4 is the elasticity of savings with respect to the return to capital:

η ≡ δS

δPK

S

PK

Shephard's lemma applied at benchmark prices provides the following identities which are helpful in
deriving expressions for η and ξ :

δPU
δPH

= α,
δPU
δPS

= 1− α, δPH
δPL

= β,
δPH
δPC

= 1− β,

It is then a relatively routine application of the chain rule to show that:

ξ = (ζ − 1)

[
σL + β(σS − σL)− αβ(σS − 1)− E

I0

]
and

η = σSα+
K

I0

The expression for eta does not involve σL , so we may first solve for σS and use this value in
determining σL :

σS =
η − K

I0

α

and

αL =

ξ
ξ−1 − σSβ(1− α)− αβ + E

I0

1− β

4.53.4.9 A Maquette Illustrating Labor Supply and Savings Demand Calibration

* Exogenous elasticity:

SCALAR XI UNCOMPENSATED ELASTICITY OF LABOR SUPPLY /0.15/,

ETA ELASTICITY OF SAVINGS WRT RATE OF RETURN /0.40/,

ZETA RATIO OF LABOR ENDOWMENT TO LABOR SUPPLY /1.75/;

* Benchmark data:

SCALAR C0 CONSUMPTION /2.998845E+2/,

S0 SAVINGS /70.02698974/,

LS0 LABOR SUPPLY / 2.317271E+2/,

K0 CAPITAL INCOME /93.46960577/,

PL0 MARGINAL WAGE /0.60000000/;

* Calibrated parameters:

SCALAR EL0 LABOR ENDOWMENT

1650 User's Guide

L0 LEISURE DEMAND

M0 NON-WAGE INCOME

I EXTENDED GROSS INCOME

ETAMIN SMALLEST PERMISSIBLE VALUE FOR ETA,

XIMIN SMALLEST PERMISSIBLE VALUE FOR XI,

ALPHA CURRENT CONSUMPTION VALUE SHARE

BETA LEISURE VALUE SHARE IN CURRENT CONSUMPTION

SIGMA_L ELASTICITY OF SUBSTITUTION WITHIN CURRENT CONSUMPTION

SIGMA_S ELASTICITY OF SUBSTITUTION - SAVINGS VS CURRENT CONSUMPTION

TS SAVINGS PRICE ADJUSTMENT;

* Convert labor supply into net of tax units:

LS0 = LS0 * PL0;

* Labor endowment (exogenous):

EL0 = ZETA * LS0;

* Leisure demand:

L0 = EL0 - LS0;

* Non-labor, non-capital income:

M0 = C0 + S0 - LS0 - K0;

* Extended gross income:

I = L0 + C0 + S0;

* Leisure share of current consumption:

BETA = L0 / (C0 + L0);

* Current consumption value share:

ALPHA = (L0 + C0) / I;

* Calibrated elasticity:

SIGMA_S = (ETA - K0 / I) / ALPHA;

ETAMIN = K0 / I;

ABORT$(SIGMA_S LT 0) " Error: cannot calibrate SIGMA_S", ETAMIN;

* Calibrated elasticity of substitution between leisure and consumption:

SIGMA_L = (XI*(LS0/L0)-SIGMA_S*BETA*(1-ALPHA)-ALPHA*BETA+EL0/I)/(1-BETA);

XIMIN = -(L0/LS0) * (- SIGMA_S * BETA * (1-ALPHA) - ALPHA*BETA + EL0/I);

ABORT$(SIGMA_L LT 0) " Error: cannot calibrate SIGMA_L", XIMIN;

DISPLAY "Calibrated elasticities:", SIGMA_S, SIGMA_L;

$ONTEXT

$MODEL:CHKCAL

$COMMODITIES:

4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE) 1651

PL

PK

PC

PS

$SECTORS:

Y

S

$CONSUMERS:

RA

$PROD:Y

O:PC Q:(K0+LS0-S0)

I:PL Q:(LS0-S0)

I:PK Q:K0

$PROD:S

O:PS A:RA T:TS

I:PL

$DEMAND:RA s:SIGMA_S a:SIGMA_L

E:PC Q:M0

E:PL Q:EL0

E:PK Q:K0

D:PS Q:S0

D:PC Q:C0 a:

D:PL Q:L0 a:

$OFFTEXT

$SYSINCLUDE mpsgeset CHKCAL

S.L = S0;

TS = 0;

* VERIFY THE BENCHMARK:

CHKCAL.ITERLIM = 0;

$INCLUDE CHKCAL.GEN

SOLVE CHKCAL USING MCP;

* CHECK THE LABOR SUPPLY ELASTICITY:

PL.L = 1.001;

CHKCAL.ITERLIM = 0;

$INCLUDE CHKCAL.GEN

SOLVE CHKCAL USING MCP;

* Compute induced changes in labor supply using the labor market

* "marginal", PL.M. This marginal returns the net excess supply of

* labor at the given prices. We started from a balanced benchmark,

* with no change in labor demand (the iteration limit was zero).

* Hence, PL.M returns the magnitude of the change in labor supply.

* We multiply by the benchmark wage (1) and divide by the benchmark

* labor supply (LS0) to produce a finite difference approximation

* of the elasticity:

DISPLAY "CALIBRATION CHECK -- THE FOLLOWING VALUES SHOULD BE IDENTICAL:", XI;

XI = (PL.M / 0.001) * (1 / LS0);

1652 User's Guide

DISPLAY XI;

PL.L = 1.0;

* CHECK THE ELASTICITY OF SAVINGS WRT RENTAL RATE OF CAPITAL:

PK.L = 1.001;

PS.L = 1 / 1.001;

TS = 1 / 1.001 - 1;

CHKCAL.ITERLIM = 0;

* Compute elasticity of savings with respect to the rental rate of

* capital. This requires some recursion in order to account for the

* effect of changes in savings on effective income. When PK increases,

* PS declines -- there is an effective "subsidy" for saving, paid from

* consumer income. In order to obtain a difference approximation for

* the elasticity of savings response, we need to make sure the virtual

* tax payments are properly handled. In the MPSGE model, this means

* that the level value for S must be adjusted so that it exactly equals

* the savings. We do this recursively:

SET ITER /IT1*IT5/;

PS.M = 1;

LOOP(ITER$(ABS(PS.M) GT 1.0E-8),

$INCLUDE CHKCAL.GEN

SOLVE CHKCAL USING MCP;

S.L = S.L - PS.M;

);

DISPLAY "CALIBRATION CHECK -- THE FOLLOWING VALUES SHOULD BE IDENTICAL:", ETA;

ETA = ((S.L - S0) / 0.001) * (1 / S0);

DISPLAY ETA;

Chapter 5

Solver Manuals

A large number of solvers for mathematical programming models have been hooked up to GAMS. The
tables below provide a brief description of each solver, the model types each solver is cabable of solving,
and the platforms supported by each solver. For general information on using GAMS solvers, see
Solver Usage.

Solver Vendor Description

ALPHAECP 2.11 Abo University MINLP solver based on the extended
cutting plane (ECP) method

ANTIGONE 1.1 Princeton University Deterministic global optimization for
MINLP

BARON The Optimization Firm, LLC Branch-And-Reduce Optimization
Navigator for proven global solutions

CBC 2.10 COIN-OR Foundation High-performance LP/MIP solver

CONOPT 3 ARKI Consulting and Development Large scale NLP solver

CONOPT 4 ARKI Consulting and Development Large scale NLP solver

CONVERT GAMS Development Corp Framework for translating modes into
scalar models of other languages

COPT 7.0 Cardinal Operations High-performance LP/MIP solver

CPLEX 22.1 IBM ILOG High-performance LP/MIP solver

DE GAMS Development Corp Generates and solves the determinis-
tic equivalent of a stochastic program,
included in EMP/SP

DECIS G. Infanger, Inc. Large scale stochastic programming
solver

DICOPT 2 GAMS Development Corp Framework for solving MINLP models

EXAMINER GAMS Development Corp A tool for examining solution points
and assessing their merit

GAMSCHK Bruce McCarl A System for Examining the Struc-
ture and Solution Properties of Linear
Programming Problems Solved using
GAMS

GUROBI 11.0 Gurobi Optimization High performance LP/MIP solver

GUSS GAMS Development Corp A framework for solving many in-
stances of related models efficiently
(Gather-Update-Solver-Scatter)

HiGHS 1.6 ERGO High performance LP/MIP solver

1654 Solver Manuals

Solver Vendor Description

IPOPT 3.14 COIN-OR Foundation Interior Point Optimizer for large
scale nonlinear programming

JAMS GAMS Development Corp Solver to reformulate extended math-
ematical programs (incl. LogMIP)

KESTREL NEOS Framework for using remote NEOS
solvers with a local GAMS system

KNITRO 14.0 Artelys Large scale NLP and MINLP solver

LINDO 14.0 Lindo Systems Inc. A stochastic solver from Lindo Sys-
tems, Inc. Includes an unrestricted
version of LINDOGLOBAL

LINDOGLOBAL 14.0 Lindo Systems Inc. MINLP solver for proven global solu-
tions

MILES University of Colorado at Boulder MCP solver

MINOS 5.6 Stanford University NLP solver

MOSEK 10 MOSEK ApS Large scale mixed-integer conic pro-
gramming solver

NLPEC GAMS Development Corp MPEC to NLP translator that uses
other GAMS NLP solvers

ODHCPLEX 7 Optimization Direct Inc ODHeuristic on top of Cplex

PATHNLP University of Wisconsin - Madison Large scale NLP solver for convex
problems

PATH University of Wisconsin - Madison Large scale MCP solver

QUADMINOS 5.6 Stanford University Quad-precision NLP solver

SBB ARKI Consulting and Development Branch-and-Bound algorithm for solv-
ing MINLP models

SCIP 8.1 Zuse Institute Berlin et.al. High-performance Constraint Integer
Programming solver

SHOT 1.1 Abo Akademi University MINLP solver based on the extended
supporting hyperplane (ESH) method

SNOPT 7.7 Stanford University Large scale SQP based NLP solver

SOPLEX 6.0 Zuse Institute Berlin High-performance LP solver

XPRESS 41.01 FICO High performance LP/MIP and SLP
based MINLP solver

5.1 Model Types

GAMS is able to formulate models in many different types of problem classes or model types. Typically,
a solver will be capable of solving (i.e. will accept as input) more than one model type. The solver/model
type matrix shows which solver is capable of which model type:

LP
MIP NLP MCP MPECCNS DNLP MINLPQCP MIQCPStoch. Global

ALPHAECP X X
ANTIGONE X X X X X X X∗
BARON X X X X X X X X X∗
CBC X X
CONOPT
3

X X X X X

CONOPT
4

X X X X X

5.1 Model Types 1655

LP
MIP NLP MCP MPECCNS DNLP MINLPQCP MIQCPStoch. Global

COPT X X X X
CPLEX X X X X
DECIS X X
DICOPT X X
GUROBIX X X X X X X
GUSS X X X X X X X X X
IPOPT X X X X X
HiGHS X X
KESTRELX X X X X X X X X X
KNITROX X X X X X X X X
LINDO X X X X X X X X X∗
LINDOGLOBALX X X X X X X X∗
MILES X
MINOS X X X X X
MOSEK X X X X X X X
NLPEC X X
ODHCPLEX X X
PATH X X
QUADMINOSX

SBB X X
SCIP X X X X X X X X∗
SHOT X X
SNOPT X X X X X
SOPLEXX
XPRESSX X X X X X X X

∗ deterministic global solver

When choosing a solver, some judgement should be applied when considering the listed model type
capabilities for the solver - the same capability ”check boxes” does not imply equality in capacity or
suitability. For example, take a hypothetical solver WeOpt designed to solve MINLP models. Since
the problem class MINLP includes NLP, MIP, and LP as subclasses, solver WeOpt could include these
capabilities also. If WeOpt is also a good performer on NLP models, it would include that capability. But
if it does not shine at all as a MIP or LP solver, we would choose not to include MIP and LP in the
capability list for WeOpt. In such a case one can always solve using a more general model type (e.g. solve
an LP model as NLP so WeOpt can be used), but WeOpt will not advertise itself as an LP solver. Since
the WeOpt solver does not even recognize MCP or MPEC models, we don't include those capabilities.

There are two types of non-linear solvers: local and global. A local solver can find a local optimum but
generally cannot comment on global optimality of the solution. A local optimum is a point where the
objective value is better than its neighboring points but could be worse than a distant point. On the other
hand, a global solver can find and prove that the obtained solution is a global optimum i.e., there is no
feasible solution that would result in a better objective value. It is worth noting that a local solver can
solve a model to global optimality in some special cases. In the table shown, the entries with ∗ in the
column Global indicate solvers that can solve a model to global optimality.

There are other differences in solvers that are difficult to quantify or cannot be captured by a capability
table like the one shown. For example, for nonconvex NLP or QCP models, one solver could look only for
first-order stationary points, another for local solutions, a third for local solutions using a scatter search
or similar search heuristic, and a fourth could do a true global search for the global optimum. The relative
merits (measured typically by speed alone) of solvers is the subject of considerable benchmarking activity
and discussion.

The GAMS sales team can help answer questions you may have about solver capability. We also offer free
evaluation licenses to help you decide what solvers are most suitable for your models.

1656 Solver Manuals

5.2 Supported Platforms

The solver/platform matrix shows which platforms each solver is supported on. In addition, where a
vendor has discontinued solver support for a particular platform and we continue to ship the last available
supported version, this version number is indicated as well.

x86 64bit
MS Windows

x86 64bit
Linux

x86 64bit
macOS

arm 64bit
macOS

ALPHAECP 2.11 X X X X
ANTIGONE 1.1 X X X X
BARON X X X X
CBC 2.10 X X X X
CONOPT 3 X X X X
CONOPT 4 X X X X
COPT 7.0 X X X X
CPLEX 22.1 X X X X
DECIS X X X X
DICOPT 2 X X X X
GUROBI 11.0 X X X X
GUSS X X X X
IPOPT 3.14 X X X X
HiGHS 1.6 X X X X
KESTREL X X X X
KNITRO 14.0 X X X X
LINDO 14.0 X X X X
LINDOGLOBAL 14.0 X X X X
MILES X X X X
MINOS 5.6 X X X X
MOSEK 10 X X X X
NLPEC X X X X
ODHCPLEX 7 X X
PATH X X X X
QUADMINOS 5.6 X X X X

SBB X X X X
SCIP 8.1 X X X X
SHOT 1.1 X X X X
SNOPT 7.7 X X X X
SOPLEX 6.0 X X X X
XPRESS 41.01 X X X

5.3 AlphaECP

Author

Tapio Westerlund (twesterl@abo.fi) and Toni Lastusilta. Åbo Akademi University, Finland

Ville-Pekka Eronen. University of Turku, Finland

5.3.1 Introduction

AlphaECP is a Mixed-Integer Non-Linear Programming (MINLP) solver based on the extended cutting
plane (ECP) method. The solver can be applied to general MINLP problems and it can ensure global

mailto:twesterl@abo.fi

5.3 AlphaECP 1657

optimal solutions for pseudo-convex MINLP problems. The documentation is written as if the considered
problem is a minimization problem, if not otherwise denoted.

The ECP method is an extension of Kelley's cutting plane method, which was originally given for convex
NLP problems [105] . The method only requires the solution of a MIP sub-problem in each iteration.
The MIP sub-problems can be solved to optimality, to feasibility, or only to an integer relaxed solution
in intermediate iterations. This makes the ECP algorithm efficient and easy to implement. Further
information about the underlying algorithm can be found in [200] and [145] [174] [199] [201] .

Further developments of the GAMS/AlphaECP algorithm have introduced additional functionality. A NLP
solver can now be called at MIP solutions. This improves AlphaECP's ability to find feasible and accurate
solutions, especially for MINLP problems which mainly contain continuous variables. Furthermore, a
heuristic that reselects cutting planes during the iteration procedure can be used to improve the capability
of solving non-convex problems. In addition to the termination based on constraint tolerance the algorithm
can terminate also if relative objective gap termination criterion is satisfied. This is only supported for
convex problems.

5.3.1.1 Licensing and software requirements

Users need to have a GAMS/AlphaECP license in order to use GAMS/AlphaECP. In addition, a licensed
MIP solver is required for solving the mixed integer sub-problem, and a licensed NLP solver is required if
the NLP option is used.

5.3.1.2 Running AlphaECP

AlphaECP solves MINLP models. If AlphaECP is not specified as the default solver for these models it
can be invoked by issuing the following command before the solve statement:

option minlp=alphaecp, miqcp=alphaecp;

In principle AlphaECP can also handle NLP models, but it is more suitable for MINLP problems. However,
when combined with an NLP solver it can find solutions the NLP solver cannot find by itself. In this case
it acts as a good starting point generator. If you want to solve NLPs with AlphaECP you need to trick
the GAMS system by solving your NLP as an MINLP:

solve mynlpmodel minimizing obj using minlp;

Constraint violations are reported throughout the progress of AlphaECP and at the end of the algorithm.
The violation is reported for the non-linear constraints only. The violation of the linear constraints is
subject to the feasibility tolerance of the MIP/NLP solver.

1658 Solver Manuals

5.3.2 GAMS/AlphaECP Output

The log output below is obtained for the MINLP model fuel.gms from the GAMS model library:

--

Welcome to AlphaECP v2.11.01

MINLP Problem Solver using the Extended Cutting Plane Approach.

Method development - T.Westerlund, Abo Akademi University, FIN

Algorithm development - T.Lastusilta, Abo Akademi University, FIN

Algorithm development - V.-P. Eronen, Turku University, FIN

Westerlund Tapio and Poern Ray (2002). Optimization & Engineering, 3, 253-280

--

Minimization problem: "fuel.gms"

The GAMS-model has in total 39 elements of which 15% are non-linear(NL)

included in 16 constraints of which 25% are NL

The NL constraint signs: =E=(3), =G=(1), =L=(0)

The number of variables in NL elements are 6 from a total of 16

variables: Continuous(13), Binary(3), Integer(0)

Using following settings

AlphaECP option file optfile=0

Time limit for AlphaECP (in seconds) reslim=10000000000

Solvelink for NLP and MIP sub-solver solvelink=5

Solver trace file solvetrace=(Inactive)

Cutting plane strategy (0-3) CUTdelcrit=3

Cut generation pace CUTnrcuts=0

Updating multiplier if MIP is infeasible ECPbeta=1.3

Write encountered solutions to gdx files ECPdumpsol=0

Updating multiplier when verifying solution ECPgamma=2

Maximum number of AlphaECP iterations ECPiterlim=-1

Level of AlphaECP output to statusfile (0-4) ECPloglevel=0

Master strategy (0=User 1=Convex) ECPmaster=0

Return solution (1.MIP/2.NLP/...) ECPretsol=2

User specified start-point (0-3) ECPstart=3

AlphaECP strategy (1-5) ECPstrategy=2

AlphaECP termination criterion (1-2) ECPtoltype=1

Upper limit of considered MIP solutions per MIP call MIPnrsols=50

Relative MIP gap in intermediate sub-problems (0->1.0) MIPoptcr=1.00

Initial iteration limit when MIPoptcr is reduced MIPoptcrlim=200

Strategy to increase MIPoptcrlim MIPoptcrlimtype=0

MIP is solved to optimality with this frequency MIPoptimaliter=0

Strategy for multiple MIP solutions MIPsolstrat=1

MIP solver for sub-problems and . option file number MIPsolver=cplex.0

NLP strategy. Inactive:0 Active strategy:1-5 NLPcall=5

NLP solver call at next (incremental) iteration NLPcalliter=0

NLP time limit per call (in seconds or auto=0) NLPreslim=30

NLP solver for sub-problems and . option file number NLPsolver=conopt.0

Constraint tolerance TOLepsg=0.001

Distance tolerance for a new linearization TOLepsz=0.1

Gradient tolerance TOLgrad=1e-06

Infinity bound (MIP variable bound) TOLinfbnd=1e+10

Relative termination tolerance for MINLP TOLoptcr=(Inactive)

Itera Stepcode, Number Point Alpha OPT Movement Viol Maximum MIPobjval

tion Problems of Cuts usage Upd. CR Norm Cons Violation

Start-point: NL constraint (1) infeasibile

0 H 0 0 0 1 0 4 1.8E+03 NA

5.3 AlphaECP 1659

1 SAFGI 1 1 1 1 9.3E+03 0 1.1E-13 8566.12

1 FOUND SOLUTION: 8566.12 (NLP) in 1 sec.

2 SAFH 1 1 0 1 6.6E+03 4 1.8E+03 4844.02

3 SAFH 3 2 0 1 8.4E+03 3 1.8E+03 7031.72

4 SAFH 4 3 0 1 1E+03 2 1.8E+03 10157

5 SAH 5 4 0 1 0 1 7E+02 11925

6 SAH 6 5 0 1 1.1E+03 2 3.5E+02 11925

7 SAH 8 6 0 1 1.9E+03 2 5.3E+02 11925

8 SAH 9 7 0 1 8.8E+02 3 2.6E+02 11925

9 SAH 12 8 0 1 8.8E+02 3 1.3E+02 11925

10 SAH 15 9 0 1 4.4E+02 3 66 11925

...

79 SAIJL 101 65 0 1 0 0 0.00067 11925

80 SAJ 100 64 0 0.5 0 0 0.00067 11925

81 SAJ 100 64 0 0.3 0 0 0.00067 11925

...

100 AI 106 39 1 0 0 0 0.00067 11925

101 AI 106 39 1 0 0 0 0.00067 11925

102 AIJ 106 39 0 0 0 0 0.00067 11925

AlphaECP: Iteration procedure terminated normally

Problem : fuel.gms

Solver Status : Normal Completion

Model Status : Locally Optimal

Exit comment : No Issues

Final solution : NLP

Objective value : 8566.1189616876672517

Max constraint (4) : 1.1368683772161602974e-13

Alternative solution : MIP

Alt. objective value : 8566.1189616876672517

Max constraint (4) : 1.1368683772161602974e-13

Time used (seconds) : 0.81

Time limit (seconds) : 10000000000

Iterations used : 102

Iteration limit : -1

Function evaluations : 496

Gradient evaluations : 186

Domain violations : 0

Gradients unusable : 0

Alphamax bound violations : 0

ECP time usage : 3.9 %

NLP time usage : 3.8 %

MIP time usage : 92.3 %

Optimal/total MIPs : 19/102

NLP solver calls : 8

In every iteration, information about the MIP problem and modifications to it is given in 10 columns.
Here is a description of the different columns:

Iteration: Iteration identifier.

Stepcode, Problems: Letter for what actions were taken in this iteration, i.e. MIP problem modifications
before the next iteration.

A: MIP solver feasible.

1660 Solver Manuals

B: MIP solver feasible after moving cutting planes, i.e. alpha update.

C: MIP solver feasible after moving cutting planes close to their generation point. The
movement is done to make it easier to satisfy nonlinear equality constraints.

D: Line search was successful (in ECPstrategy 3).

E: Line search failed (in ECPstrategy 3).

F: A NLP solver was called.

G: Found a MINLP solution.

H: Added linearization(s) to the next MIP problem.

I: Updated alpha values and possibly added linearizations.

J: All cutting planes are valid underestimators for the pseudo-convex constraints, except for
the nonlinear objective function constraint.

K: The nonlinear objective function constraint value and MIP solution value differ more than
εf . A linearization was done to reduce the difference (in ECPstrategy 3).

L: Removed all temporal linearizations.

M: Domain violation(s), some of the constraint could not be evaluated.

N: Some cutting plane(s) could not be generated because of gradient problems.

O: No cutting planes could be generated.

P: Reselecting cuts because cutting planes are repeatedly moved close to their generation
point.

Q: Added temporal linearization(s).

R: Failed to add temporal linearization(s).

S: MIP solver strategy to find encountered solutions selected.

T: MIP solver strategy to require MIPnrsols solutions selected.

U: MIP solver strategy to require MIPnrsols solutions with a MIPoptcr <= 0.2 selected.

Number of Cuts: The number of cutting planes the solved MIP problem had.

Point usage: Number of points used to generate the cuts in the solved MIP problem.

Alpha Upd.: The number of times the alpha values has been increased.

OPTCR: Relative MIP gap. Note that this is different from TOLoptcr.

Movement Norm: The Euclidean norm of the current and previous MIP solution.

Viol Cons: Number of unsatisfied (violating) nonlinear constraints.

Maximum Violation: The most violating nonlinear constraint value.

MIPobjval/NLobjval: MIP or nonlinear objective variable value depending on ECPstrategy setting.

The cut reselection heuristic is called in the following cases:

5.3 AlphaECP 1661

1. If the MIP solver would otherwise return infeasible.

2. When the violation is not reducing, but the cutting planes are repeatedly moved close to their
generation point.

3. When the violation is not reducing and domain violations are repeatedly encountered.

The heuristic reselects cutting planes in different ways, but always ensures that the same point cannot be
found twice.

Pointusage 6/90 Cutusage 15/341 (0,135)

Pointusage informs how many points of all usable points have been used to generate the cutting planes.
Cutusage tells how many cuts of all usable cuts have been used. The first number in (0,135) tells how
many cuts is required by the user, see CUTnrcuts and the second number gives the sum of added and
removed cuts, i.e. a measure of how much the MIP problem has been modified. AlphaECP may fix some
cuts and remove points and cuts during the cut reselection procedure in order to save memory.

At the end of each solve AlphaECP gives a summary which includes Problem, Solver Status, Model Status,
etc. Note the following lines:

• Exit comment may give further information than solverstatus on why the solution procedure
stopped.

• Domain violations (function evaluation failed) or Gradients unusable (all gradients < TOLgrad)
might be caused by poor variable bounds.

• Alphamax bound violations inform the user how many times an alphamax value was calculated
to be > 10154 and was reset to 10154.

5.3.3 Notes about Options

To instruct AlphaECP to read an option file you may use ModelName.OptFile = 1. The name of the
option file is in this case alphaecp.opt. For further information, see The Solver Options File. AlphaECP
supports the GAMS parameters reslim and optCR, however, other GAMS parameters are passed on to
the sub-solvers. Note that optCR is transferred to option TOLoptcr. Furthermore, you may also pass
additional sub-solver specific options to the sub-solvers. For example, if you want to use all available
threads and sub-solver CPLEX in opportunistic parallel search mode, then you may specify this in a
GAMS model, in a similar way, as follows:

Model m / all /;

Option threads=0;

m.optfile=1;

$echo MIPsolver cplex.1 > alphaecp.opt

$echo parallelmode -1 > cplex.opt

Solve m using MINLP minimizing objvar;

The following information is worth noting when you are interested in AlphaECP options. A linearization
of a nonlinear constraint is called a cutting plane or cut. Here a point refers to the variable levels. Global
optimality can be guaranteed for pseudo-convex problems. However, if the objective variable is in a
nonlinear constraint and pseudo-convex, then ECPstrategy >= 3 needs to be used to guarantee global
optimality (because one non-linear equality constraint makes a problem non-pseudo-convex, and hence
also non-convex). The basic options might significantly impact the solution procedure, and the best values
are likely to be problem specific. The user is therefore encouraged to try different values for the basic
options.

5.3.4 Summary of AlphaECP Options

5.3.4.1 Basic options

1662 Solver Manuals

Option Description Default

CUTnrcuts
Cut generation pace 0

ECPmaster
Master strategy (0=User 1=Convex) 0

MIPnrsols
Upper limit of considered MIP solutions per MIP call 50

MIPsolstrat
MIP solution collection strategy 1

MIPsolver
MIP solver for sub-problems and . option file number GAMS MIP solver

NLPsolver
NLP solver for sub-problems and . option file number GAMS NLP solver

reslim
Time limit for AlphaECP (in seconds) GAMS reslim

5.3.4.2 Algorithmic options for advanced users

Option Description Default

CUTdelcrit
Cutting plane strategy 3

ECPbeta
Updating multiplier if MIP is infeasible 1.3

ECPdumpsol
Write encountered solutions to gdx files 0

ECPgamma
Updating multiplier when verifying solution 2.0

ECPiterlim
Maximum number of AlphaECP iterations -1

ECPloglevel
Level of AlphaECP output to statusfile 0

ECPpcostrategy
Pseudo-convex objective function strategy 3

ECPretsol
Return solution (1.MIP/2.NLP/3.QUALITY/4.PERFORMANCE) 2

ECPstart
User specified start-point 3

ECPstrategy
AlphaECP strategy 2

ECPtoltype
AlphaECP termination criterion 1

solvelink
Solvelink for NLP and MIP sub-solver 5

solvetrace
Filename of solvetrace file

solvetracetime
Time interval when a trace record is written 1

TOLepsf
Pseudo-convex objective function termination tolerance 1e-3

TOLepsg
Constraint tolerance 1e-3

TOLepsz
Distance tolerance for a new linearization 1e-1

TOLgrad
Gradient tolerance 1e-6

TOLinfbnd
Infinity bound (MIP variable bound) 1e10

TOLoptcr
Relative termination tolerance for MINLP GAMS optCR

5.3.4.3 MIP Solver related options

5.3 AlphaECP 1663

Option Description Default

MIPloglevel
Level of MIP solver output 0

MIPoptcr
Relative MIP gap in intermediate sub-problems 1.0

MIPoptcrlim
Initial iteration limit when MIPoptcr is reduced 200

MIPoptcrlimtype
Strategy to increase MIPoptcrlim 0

MIPoptimaliter
MIP is solved to optimality with this frequency 0

5.3.4.4 NLP Solver related options

Option Description Default

NLPcall
NLP strategy 5

NLPcalliter
NLP solver call at next (incremental) iteration 0

NLPlimsameint
NLP call after a number of recurring integer solutions 5

NLPloglevel
Level of NLP solver output 0

NLPreslim
NLP time limit per call 0

5.3.5 Detailed Descriptions of AlphaECP Options

CUTdelcrit (integer): Cutting plane strategy ←↩

Default: 3

value meaning

0 Do not remove any valid cuts.

1 As 0 and allow temporary cuts at semirandom points if normal cuts can not be
made.

2 Allow temporary cuts and cut reselection, and use memory to save points and
cuts.

3 As 2 and call the reselection heuristic before termination to improve the solution.

CUTnrcuts (real): Cut generation pace ←↩

The number of linearizations that are generated during an iteration can be chosen by AlphaECP,
proportional to the number of violating constraints, or can be determined by a fixed amount.
Furthermore, the cut reselection CUTdelcrit >=2 adds cuts to the problem so that the
requested cut generation pace is taken into consideration.

Default: 0

value meaning

0 Let AlphaECP decide.

0<n<1 Number of linearizations = n∗ the number of linearizations that is possible to
generate.

>1 Specifies the number of linearizations to generate.

1664 Solver Manuals

ECPbeta (real): Updating multiplier if MIP is infeasible ←↩

In case of an infeasible MIP solution, the invalid cuts are updated with the ECPbeta multiplier.

Range: [1.001, ∞]

Default: 1.3

ECPdumpsol (integer): Write encountered solutions to gdx files ←↩

Default: 0

value meaning

0 No.

1 Solutions that the NLP solver found.

2 Solutions that the NLP or MIP solver found.

ECPgamma (real): Updating multiplier when verifying solution ←↩

If a MINLP solution is obtained but some cuts are not valid underestimators they are updated
with the ECPgamma multiplier in order to make them into valid underestimators.

Range: [1.001, ∞]

Default: 2.0

ECPiterlim (integer): Maximum number of AlphaECP iterations ←↩

This is the maximum number of iterations given to AlphaECP to perform the optimization.
Value -1 deactivates the AlphaECP iteration limit.

Default: -1

value meaning

-1 No limit.

>=0 Specifies an iteration limit.

ECPloglevel (integer): Level of AlphaECP output to statusfile ←↩

Default: 0

value meaning

0 No additional output to statusfile.

1 Report solutions.
Report all encountered solutions with their corresponding variable levels.

2 Report main actions at iteration level
(available for minimization problems).

3 Report main actions at linearization level
(available for minimization problems).

4 Full reporting.
Report the main actions taken, the linearizations, function values, and solution
points for every iteration and line search details (available for minimization
problems).

5.3 AlphaECP 1665

ECPmaster (integer): Master strategy (0=User 1=Convex) ←↩

The master strategy sets some options in order to solve a model with specific characteristics
more efficiently. The affected options are noted in the log output. The set options takes
precedence over the value set by the user for the affected options.

Default: 0

value meaning

0 Use only user defined options.

1 The model is convex. Set option ECPstrategy, CUTdelcrit and ECPtoltype.

ECPpcostrategy (integer): Pseudo-convex objective function strategy ←↩

Default: 3

value meaning

1 Remove support.
Remove old support planes when a new pseudo-convex problem is formed.

2 Replace support.
Replace old support planes with linearizations of the reduction constraint when a
new pseudo-convex problem is formed.

3 Remove support and line search.
Remove old support planes when a new pseudo-convex problem is formed and
perform a line search when it is possible.

4 Replace support and line search.
Replace old support planes with linearizations of the reduction constraint when
a new pseudo-convex problem is formed and perform a line search when it is
possible.

ECPretsol (integer): Return solution (1.MIP/2.NLP/3.QUALITY/4.PERFORMANCE) ←↩

The reported solution can be extracted from either the MIP or NLP solver result. If the MIP
solution is returned only the primal values are available.

Default: 2

value meaning

1 Choose MIP solution if it is available.

2 Choose NLP solution if it is available.

3 Choose the solution with the best tolerance.

4 Choose the solution with the best objective value.

ECPstart (integer): User specified start-point ←↩

Define which variable levels are used when the optimization is started.

Default: 3

value meaning

0 Do not use a start-point; start the algorithm by solving the linear part (MIP) of
the problem.

1666 Solver Manuals

value meaning

1 Use the user specified startpoint, but adjust the variable levels with a small value.

2 Use the exact start-point set by the user.

3 Use the exact start-point if linearly feasible; else adjust variable levels with a
small value.

ECPstrategy (integer): AlphaECP strategy ←↩

Default: 2

value meaning

1 Convex strategy.
Ensures global optimality for problems with convex objective function and convex
constraints.

2 Pseudo-convex constraints.
Ensures global optimality for problems with convex objective function and pseudo-
convex constraints.

3 Pseudo-convex objective.
Ensures global optimality for problems with pseudo-convex objective function and
pseudo-convex constraints. The reformulation of a non-linear objective function
into a constraint must be done in a specific way. The requirement is that the
objective variable must be in a linear part of the non-linear function. Assuming
that the minimized or maximized variable is called objvar, the reformulation can
be done as follows: (objective function expression) - objvar =E= 0. Furthermore,
this strategy can effectively use a feasible start-point.

4 Pseudo-convex objective, but first complete with ECPstrategy 2.
(Only the necessary linearizations are removed when the ECPstrategy is changed.)

5 Pseudo-convex objective, but find the first solution with ECPstrategy 2.
(Only the necessary linearizations are removed when the ECPstrategy is changed.)

ECPtoltype (integer): AlphaECP termination criterion ←↩

Default: 1

value meaning

1 Use termination based on tolerances TOLepsg and TOLepsf.

2 Terminate also if relative objective gap is satisfied according to TOLoptcr.
The relative objective gap termination criterion also called relative termination
criterion is only supported for convex problems when using ECPstrategy=1. The
relative termination criterion can be used for non-convex problems, as well as,
with ECPstrategy=2, however, in this case it may not work properly because the
lower bound may be invalid.

MIPloglevel (boolean): Level of MIP solver output ←↩

By default the detailed log of the MIP solver is suppressed in the AlphaECP log stream. If
this option is turned on the MIP log will be merged into the AlphaECP log.

Default: 0

value meaning

0 No output.

1 MIP solver log goes to GAMS log.

5.3 AlphaECP 1667

MIPnrsols (integer): Upper limit of considered MIP solutions per MIP call ←↩

When the MIP solver returns several solutions the most suitable solution is chosen. Many
times the solutions from the MIP solver are similar and a larger number might help to find a
feasible MINLP solution if the constraints are almost satisfied. See MIPsolstrat to change the
solution collection strategy.

Range: {1, ..., ∞}

Default: 50

MIPoptcr (real): Relative MIP gap in intermediate sub-problems ←↩

The relative stopping tolerance sent to the MIP solver for intermediate MIP problems. Note
that the MIPoptcr value is decreased automatically to zero during the optimization.

Range: [0, 1]

Default: 1.0

MIPoptcrlim (integer): Initial iteration limit when MIPoptcr is reduced ←↩

The MIPoptcr parameter is reduced in steps: From 1 to 0.5 to 0.3 to 0.2 to 0.1 to 0.0. The
first reduction is at iteration MIPoptcrlim. The following reductions occur also at iteration
MIPoptcrlim but it is updated with a strategy defined by parameter MIPoptcrlimtype. Note
that a step reduction may happen for other reasons.

Range: {1, ..., ∞}

Default: 200

MIPoptcrlimtype (integer): Strategy to increase MIPoptcrlim ←↩

Default: 0

value meaning

0 Exponential increase of MIPoptcrlim.
The parameter MIPoptcrlim is increased by multiplying it by 2. The increase
occurs at iteration ”MIPoptcrlim”. If MIPoptcrlim=200 it will have values
200,400,800 etc.

1 Linear increase of MIPoptcrlim.
The parameter MIPoptcrlim is increased by adding the original value of
MIPoptcrlim to it. If MIPoptcrlim=200 it will have values 200,400,600 etc.

MIPoptimaliter (integer): MIP is solved to optimality with this frequency ←↩

Defines the frequency to solve the MIP problem to optimum before the algorithm sets
MIPoptcr=0 and, hence, solves MIP problems to optimum. For example if MIPoptimaliter=n,
then at least every nth iteration the MIP problem is solved to the optimum. Solving MIP
problem to optimum yields a lower bound for a convex MINLP problem which can help to
terminate the algorithm faster if ECPtoltype=2 is used. Non-default value is not recommended
for non-convex problems nor if ECPstrategy >1.

Default: 0

1668 Solver Manuals

value meaning

0 Never.

n>0 Every nth iteration, where n is the given value.

MIPsolstrat (integer): MIP solution collection strategy ←↩

Default: 1

value meaning

0 Instruct MIP solver to return only one solution.

1 Instruct MIP solver to return any solutions encountered during MIP procedure.

2 Instruct MIP solver to search for solutions to obtain requested number MIPnrsols
solutions.

3 As 2, but also require the solutions to fulfill MIPoptcr >= 0.2.

4 Let AlphaECP decide.

MIPsolver (string): MIP solver for sub-problems and . option file number ←↩

solver[.n] Solver is the name of the GAMS MIP solver and n is the integer corresponding
to optfile. The option file is appended to the option file, that is written by AlphaECP. Hence,
the specified options take precedence over the options set by AlphaECP. If .n is missing, the
optfile is treated as zero i.e. the MIP solver will not look for a options file specified by the
user. This option can be used to overwrite the default that uses the MIP solver specified with
an Option NLP = solver; statement or the default GAMS solver for NLP.

Default: GAMS MIP solver

NLPcall (integer): NLP strategy ←↩

Determine when the NLP solver is called.

Default: 5

value meaning

0 No output.

1 Call the NLP solver at end of AlphaECP algorithm.

2 As 1 and when a better solution is found.

3 As 2 and when the same integer solution is encountered NLPlimsameint times.

4 Let AlphaECP decide.

5 Let AlphaECP decide and add noise to the variable levels before call.

NLPcalliter (integer): NLP solver call at next (incremental) iteration ←↩

Specify an iteration interval for the NLP solver calls.

Default: 0

NLPlimsameint (integer): NLP call after a number of recurring integer solutions ←↩

If the same integer solution is encountered NLPlimsameint times in a row then the NLP solver
is called. The counter is reset after the NLP solver is called.

Range: {1, ..., ∞}

Default: 5

5.3 AlphaECP 1669

NLPloglevel (boolean): Level of NLP solver output ←↩

By default the detailed log of the NLP solver is suppressed in the AlphaECP log stream. If
this option is turned on the NLP log will be merged into the AlphaECP log.

Default: 0

value meaning

0 No output.

1 NLP solver log goes to GAMS log.

NLPreslim (real): NLP time limit per call ←↩

The time limit (in seconds) given to the chosen NLP solver at each NLP solver call. Setting
this option to 0 calculates a time limit which is relative to the problem size.

Default: 0

NLPsolver (string): NLP solver for sub-problems and . option file number ←↩

solver[.n] Solver is the name of the GAMS NLP solver that should be used in the root node,
and n is the integer corresponding to optfile. If .n is missing, the optfile is treated as zero,
i.e., the NLP solver will not look for an options file. This option can be used to overwrite the
default that uses the NLP solver specified with an Option NLP = solver; statement or the
default GAMS solver for NLP.

Default: GAMS NLP solver

reslim (real): Time limit for AlphaECP (in seconds) ←↩

Default: GAMS reslim

solvelink (integer): Solvelink for NLP and MIP sub-solver ←↩

Default: 5

value meaning

1 Call NLP and MIP solver via script.

2 Call NLP and MIP solver via module.

5 Call NLP and MIP solver in memory.

solvetrace (string): Filename of solvetrace file ←↩

solvetracetime (real): Time interval when a trace record is written ←↩

Default: 1

TOLepsf (real): Pseudo-convex objective function termination tolerance ←↩

Maximum allowed absolute difference between the nonlinear and the MIP objective function
value (used only in ECPstrategy 3).

Range: [1e-20, 1]

Default: 1e-3

1670 Solver Manuals

TOLepsg (real): Constraint tolerance ←↩

The nonlinear constraint tolerance defines the maximum value that a nonlinear constraint
may violate. For example, a constraint required to be zero may hold a value +/- TOLepsg at a
solution.

Range: [1e-20, 1]

Default: 1e-3

TOLepsz (real): Distance tolerance for a new linearization ←↩

The maximum perpendicular distance between a valid cutting plane and its generation point
(MIP solution).

Range: [1e-20, 1]

Default: 1e-1

TOLgrad (real): Gradient tolerance ←↩

The absolute value of a gradient's partial derivative must be above TOLgrad value in order for
it to be considered nonzero.

Range: [1e-20, 1]

Default: 1e-6

TOLinfbnd (real): Infinity bound (MIP variable bound) ←↩

All variables must have a positive and a negative finite bound in order to ensure a bounded
MIP problem. The finite bound value TOLinfbnd will be applied to single or double unbounded
variables.

Default: 1e10

TOLoptcr (real): Relative termination tolerance for MINLP ←↩

The relative objective gap termination criterion is satisfied if |UB-LB|/ (10E-
12+max(|LB|,|UB|)) < TOLoptcr, where UB is the current best upper bound and LB
is the current best lower bound. Upper bounds are obtained from solving NLP problems and
lower bounds are obtained from lower bounds of MIP problems. If the inequality holds true
and ECPtoltype=2, the algorithm terminates.

Range: [1e-20, ∞]

Default: GAMS optCR

5.3.6 FAQ

• What are good settings to solve a convex problem?

Use ECPmaster 1.

• What are good settings if the solution speed is essential?

Try ECPstrategy 1 and CUTdelcrit 1 to see if using multiple threads for the MIP solver
improves the solution speed. However, there is considerable chance that a feasible solution
for a non-convex problem with nonlinear equality constraints cannot be found.

• What are good settings when the solution quality is essential?

Use NLPcalliter 1 and MIPsolstrat 4 or 3, and also try different values, for CUTnrcuts
option, for example 0.1.

• The objective function is non-linear, should the default ECPstrategy be used?

If the objective function constraint can be written in the required form of ECPstrategy 3

then this strategy may find a better solution. If the constraints and the objective function
are pseudo-convex the global optimal solution will be found.

5.4 ANTIGONE 1671

5.4 ANTIGONE

Author

Christodoulos A. Floudas, floudas@titan.princeton.edu; Computer-Aided Systems Laboratory;
Department of Chemical and Biological Engineering; Princeton University

Ruth Misener, r.misener@imperial.ac.uk; Centre for Process Systems Engineering; Imperial
College London

Date

16 April 2013

5.4.1 Introduction

ANTIGONE, Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations, is a
deterministic general mixed-integer nonlinear global optimization framework [134] [135] [137] [136] [138] .

MINLP is defined:
min f0(x, y, z)

s.t. bLO
m ≤ fm(x, y, z) ≤ bUP

m ∀ m ∈ {1, . . . , M}

x ∈ RC ; y ∈ {0, 1}B ; z ∈ ZI

(MINLP)

where C, B, I, and M represent the number of continuous variables, binary variables, integer variables,
and constraints, respectively. Parameters vectors bLO

m and bUP
m bound the constraints. We assume that it

is possible to infer finite bounds
[
xLi , x

U
i

]
on the variables participating in nonlinear terms fm and that

the image of fm is finite on x. Typical expressions for f0(x, y, z) and fm(x, y, z) are:

fm(x, y, z) = cm + aTm [x; y; z] + [x; y; z]
T
Qm [x; y; z]

+

Sm∑
s=1

csm ·
C∏
c=1

x
psm, c
c +

Em∑
e=1

cem · ex +

Lm∑
`=1

c`m · log x

where the powers psm, c are constant reals; cm, am, Qm, csm , cem , c`m are constant coefficients; Sm, Em,
Lm are the number of signomial, exponential, and logarithmic terms, respectively.

As illustrated in Figure 5.1, ANTIGONE responds dynamically to exploit special structure within (MINLP).
ANTIGONE falls broadly into the category of branch-and-bound global optimization because it: generates
and solves convex relaxations of the nonconvex MINLP that rigorously bound the global solution; finds
feasible solutions via local optimization; divides and conquers the feasible set to generate a sequence of
convex relaxations converging to the global optimum [68] [67] .

5.4.1.1 Licensing and software requirements

Using GAMS/ANTIGONE requires

1. an ANTIGONE license,

2. a CPLEX license, and

3. a CONOPT or SNOPT license.

mailto:floudas@titan.princeton.edu
mailto:r.misener@imperial.ac.uk

1672 Solver Manuals

Figure 5.1 Given an MINLP optimization problem, ANTIGONE reformulates the model,
detects special structure in the reformulated MINLP, solves the optimization problem, and

returns the model with respect to the original problem variables

5.4.1.2 Running GAMS/ANTIGONE

GAMS/ANTIGONE solves: NLP; MINLP; RMINLP; QCP; MIQCP; RMIQCP; CNS. If GAMS/ANTIGONE is
not the default solver for these models, it can be called using the following command before the solve

statement:

option nlp=antigone, minlp=antigone, rminlp=antigone;

5.4.2 GAMS/ANTIGONE Output

The log output shown below is generated using the MINLP model cecil 13 from the MINLPLib.

ANTIGONE: Algorithms for coNTinuous/Integer Global Optimization; Version 1.0

Ruth Misener and Christodoulos A. Floudas

Computer-Aided Systems Laboratory (CASL)

Department of Chemical & Biological Engineering; Princeton University

Before Pre-processing:

840 Variables

660 Continuous

180 Binary

929 Equations

After Pre-processing:

520 Variables

418 Continuous

102 Binary

499 Equations

291 Linear

208 Nonconvex nonlinear

232 Nonlinear Terms

232 Signomial

730 Possible Reformulation Linearization Technique (RLT) equations

34 RLT Equations Added Outright to Formulation

Constituent Libraries:

http://www.minlplib.org/gms/cecil_13.gms

5.4 ANTIGONE 1673

CPLEX Solving relaxations

CONOPT Finding feasible points

LAPACK Addressing linear systems

Boost Bounding Intervals

Time (s) Nodes explored Nodes remaining Best possible Best found Relative Gap

65 1 1 -1.158e+05 -1.157e+05 +1.032e-03

134 1 1 -1.157e+05 -1.157e+05 +4.337e-04

202 1 1 -1.157e+05 -1.157e+05 +4.334e-04

258 1 1 -1.157e+05 -1.157e+05 +4.140e-06

Solving MILP relaxation at tree level 0 ----------------------------------

341 1 1 -1.157e+05 -1.157e+05 +4.091e-06

413 1 1 -1.157e+05 -1.157e+05 +4.011e-06

Solving MILP relaxation at tree level 0 ----------------------------------

483 1 1 -1.157e+05 -1.157e+05 +4.001e-06

571 1 1 -1.157e+05 -1.157e+05 +3.959e-06

Solving MILP relaxation at tree level 0 ----------------------------------

640 1 1 -1.157e+05 -1.157e+05 +3.880e-06

Solving MILP relaxation at tree level 0 ----------------------------------

702 1 0 -1.157e+05 -1.157e+05 +1.000e-06

Termination Status : Global minimum

Best Feasible Point: -1.156565e+05

Best Possible Point: -1.156566e+05

Relative Gap: +1.000000e-06

Algorithm analysis :

0 Nodes explored

0 Nodes remaining

0 Maximum tree depth

183 Cutting Planes (183 Globally Valid)

183 Signomial

702.38 Total time (CPU s)

0.07 Pre-processing

698.56 Solving MILP relaxations

0.95 Searching for feasible solutions

2.79 Variable bounds tightening

2.31 OBBT

1.48 FBBT (0.13 EC; 0.92 RLT; 0.00 Factoring)

0.00 Branching

0.00 Reliability branching

5.4.3 Summary of ANTIGONE Options

5.4.3.1 General Options

1674 Solver Manuals

Option Description Default

abs opt tol
absolute stopping tolerance GAMS optca

dumpsolutions
name of solutions index gdx file for writing alternate solutions

max number nodes
node limit GAMS nodlim

max time
resource limit GAMS reslim

readparams
read secondary option file in ANTIGONE syntax

rel opt tol
relative stopping tolerance GAMS optcr

trydual
call CONOPT or SNOPT to produce duals 5

5.4.3.2 Options for Solving the MILP Relaxations

Option Description Default

cplex optfile
read a secondary GAMS/CPLEX options file that will be applied
to every LP and MILP subsolve

cut generation epsilon
absolute violation threshold for separating hyperplanes 1e-4

nominal time limit
nominal time limit for solving MILP subproblems 100

populate solution pool
emphasis on generating starting points 3

5.4.3.3 Options for Finding Feasible Solutions

Option Description Default

conopt optfile
read a secondary GAMS/CONOPT options file that will be applied
to every NLP subsolve

feas soln time limit
time limit (s) for an NLP solve 30

feas tolerance
absolute feasibility tolerance 1e-6

nlp solver
use CONOPT or SNOPT to find feasible solutions conopt

5.4.3.4 Options for Branching

Option Description Default

branching bounds push away
branch a minimum fraction away from the variable bounds 0.1

branching weight
branch on a convex combination of midpoint and solution 0.25

num reliability tests
number of strong branching initialization tests 8

reliability branching
heuristic choice for building reliable pseudocosts error

reliability branching mu
score parameter for building reliability 0.15

use reliability branching
use reliability branching? 1

5.4 ANTIGONE 1675

5.4.3.5 Options for Bounding

Option Description Default

fbbt improvement bound
bounds reduction improvement threshold needed to exit FBBT
loop

0.999

max fbbt iterations
maximum number of FBBT iterations 50

max obbt iterations
maximum number of OBBT iterations 30

max time each obbt
time limit (s) for each OBBT LP 10

obbt improvement bound
bounds reduction improvement threshold 0.95

use obbt
use optimality-based bounds tightening? 1

5.4.3.6 Options for Logging to the Console

Option Description Default

logging freq
how often should we log progress to the console? 5

logging level
logging information level -1

print options
print the option parameter choices used in a single run? 1

5.4.3.7 Options for Addressing Special Structure

Option Description Default

adaptive add rlt
use the dynamic approach to adaptively determine
deep RLT cuts?

1

adaptive add rlt tree depth
tree depth for heuristic that adaptively determines
deep RLT cuts

3

add bilinear terms
allow addition of nonconvex bilinear terms to gener-
ate deep RLT cuts

1

convexity cuts
derive convexity-based separating cuts for multivari-
able terms?

1

dominant ec only
add only the low-dimension edge-concave aggrega-
tions introducing dominant cuts into relaxations?

1

eigenvector projections
use eigenvector projections as additional cuts? 1

eigenvector projection partitioning
allow partitioning on eigenvector projections? 1

low dim edge concave agg
use low-dimension edge-concave aggregations? 1

max partitioned quantities
number of partitioned quantities 0

max rlt cuts
maximum number of violated RLT cuts to add before
resolving the relaxation?

100

naive add ec
naively integrate all low-dimension edge-concave ag-
gregations into relaxations?

0

naive add rlt
naively add all RLT cuts to the relaxations? 0

number of partitions
how many partitions per variable? 1

1676 Solver Manuals

Option Description Default

partitioning scheme
Partitioning scheme can be linear or logarithmic linear

piecewise linear partitions
use piecewise-linear partitioning? 0

rlt
find RLT variable/equation and equation/equation
pairs?

1

use alpha bb
apply globally-valid alphaBB cuts to tighten a node
relaxation

1

use edge concave dynamic
apply locally-valid edge-concave cuts to tighten a
node relaxation

1

In addition, GAMS option threads specifies the number of processors to use for linear algebra routines,
e.g., when computing eigenvalues of a quadratic coefficients matrix. By default, all available processors
are used.

5.4.4 Detailed Descriptions of ANTIGONE Options

abs opt tol (real): absolute stopping tolerance ←↩

Default: GAMS optca

adaptive add rlt (boolean): use the dynamic approach to adaptively determine deep RLT cuts? ←↩

In the first few levels of the branch-and-bound tree, query the RLT equations after solving
an initial relaxation. Add violated equations to the relaxation and resolve. Track the most
commonly-violated equations and include those cuts in later nodes.

Default: 1

adaptive add rlt tree depth (integer): tree depth for heuristic that adaptively determines deep RLT
cuts ←↩

To the specified tree depth, solve the relaxation of a node twice if RLT equations are violated.
After this depth, automatically add the most commonly violated cuts to the solution of each
node

Range: {1, ..., 100}

Default: 3

add bilinear terms (boolean): allow addition of nonconvex bilinear terms to generate deep RLT cuts ←↩

Default: 1

branching bounds push away (real): branch a minimum fraction away from the variable bounds ←↩

Range: [0, 0.5]

Default: 0.1

branching weight (real): branch on a convex combination of midpoint and solution ←↩

5.4 ANTIGONE 1677

The branching weight specifies the emphasis on the midpoint of a variable, so larger branching
weights imply branching closer to the center of a variable range.

Range: [0, 1]

Default: 0.25

conopt optfile (string): read a secondary GAMS/CONOPT options file that will be applied to every
NLP subsolve ←↩

Gain direct access to the GAMS/CONOPT options. The value of the string should match the
name of the GAMS/CONOPT options file.

convexity cuts (boolean): derive convexity-based separating cuts for multivariable terms? ←↩

Default: 1

cplex optfile (string): read a secondary GAMS/CPLEX options file that will be applied to every LP
and MILP subsolve ←↩

Gain direct access to the GAMS/CPLEX options. Specifying an options file allows, for
example, the possibility of running the CPLEX subsolver with multiple threads. The value of
the string should match the name of the GAMS/CPLEX options file.

cut generation epsilon (real): absolute violation threshold for separating hyperplanes ←↩

Absolute violation threshold to generate separating hyperplanes for convex multivariable terms

Range: [1e-7, 10]

Default: 1e-4

dominant ec only (boolean): add only the low-dimension edge-concave aggregations introducing domi-
nant cuts into relaxations? ←↩

Default: 1

dumpsolutions (string): name of solutions index gdx file for writing alternate solutions ←↩

The GDX file specified by this option will contain a set call index that contains the names
of GDX files with the individual solutions. For details see example model dumpsol in the
GAMS Test Library.

eigenvector projections (boolean): use eigenvector projections as additional cuts? ←↩

Default: 1

eigenvector projection partitioning (boolean): allow partitioning on eigenvector projections? ←↩

Default: 1

fbbt improvement bound (real): bounds reduction improvement threshold needed to exit FBBT loop
←↩

Range: [0, 1]

Default: 0.999

feas soln time limit (real): time limit (s) for an NLP solve ←↩

1678 Solver Manuals

Range: [1, ∞]

Default: 30

feas tolerance (real): absolute feasibility tolerance ←↩

Default: 1e-6

logging freq (real): how often should we log progress to the console? ←↩

Wait at least the specified time in seconds before next output to the console

Range: [1, ∞]

Default: 5

logging level (integer): logging information level ←↩

Log to the console at the specified level (-1: default; 0: minimal logging; 3: extensive logging)

Default: -1

5.4 ANTIGONE 1679

value meaning

-1 minimal plus warnings

0 minimal

1 entering info

2 updating info

3 includes Cplex updates

low dim edge concave agg (boolean): use low-dimension edge-concave aggregations? ←↩

Default: 1

max fbbt iterations (integer): maximum number of FBBT iterations ←↩

Range: {1, ..., 100}

Default: 50

max number nodes (integer): node limit ←↩

Default: GAMS nodlim

max obbt iterations (integer): maximum number of OBBT iterations ←↩

Range: {1, ..., 100}

Default: 30

max partitioned quantities (integer): number of partitioned quantities ←↩

Range: {0, ..., 50}

Default: 0

max rlt cuts (integer): maximum number of violated RLT cuts to add before resolving the relaxation?
←↩

Range: {1, ..., 1000}

Default: 100

max time (real): resource limit ←↩

Default: GAMS reslim

max time each obbt (real): time limit (s) for each OBBT LP ←↩

Range: [1, 100]

Default: 10

naive add ec (boolean): naively integrate all low-dimension edge-concave aggregations into relaxations?
←↩

Default: 0

naive add rlt (boolean): naively add all RLT cuts to the relaxations? ←↩

Default: 0

nlp solver (string): use CONOPT or SNOPT to find feasible solutions ←↩

Note, that independent of the setting for this option, for the initial NLP solve from the user
provided starting point, always CONOPT is used, if available. Further, for the final NLP solve
(see trydual), always CONOPT is used, if available, otherwise SNOPT is used.

Default: conopt

1680 Solver Manuals

value meaning

conopt Conopt

snopt Snopt

nominal time limit (real): nominal time limit for solving MILP subproblems ←↩

Nominal time limit for solving MILP subproblems. Terminate long-running MILP subproblems
over this time limit once they reach an integer feasible point

Range: [0.1, 1000]

Default: 100

number of partitions (integer): how many partitions per variable? ←↩

Range: {0, ..., 16}

Default: 1

num reliability tests (integer): number of strong branching initialization tests ←↩

Range: {1, ..., 100}

Default: 8

obbt improvement bound (real): bounds reduction improvement threshold ←↩

Bounds reduction improvement threshold needed to exit OBBT loop This parameter also
determines whether to continue obbt in child; if the parent bound improvement is less than
this threshold, then child node won't try OBBT

Range: [0, 1]

Default: 0.95

partitioning scheme (string): Partitioning scheme can be linear or logarithmic ←↩

Linear partitioning uses a number of binary variables linear in the number of partitions
while logarithmic partitioning uses a number of binary variables logarithmic in the number of
breakpoints. Linear partitioning tends to be numerically favorable for a few breakpoints while
logarithmic partitioning is better for a larger number of breakpoints.

Default: linear

value meaning

linear Linear partitioning

logarithmic Logarithmic partitioning

piecewise linear partitions (boolean): use piecewise-linear partitioning? ←↩

Default: 0

populate solution pool (integer): emphasis on generating starting points ←↩

5.4 ANTIGONE 1681

Emphasis on generating many starting points for NLP solves using the CPLEX solution pool
feature. Larger number implies more starting points.

Range: {0, ..., 4}

Default: 3

print options (boolean): print the option parameter choices used in a single run? ←↩

Default: 1

readparams (string): read secondary option file in ANTIGONE syntax ←↩

reliability branching (string): heuristic choice for building reliable pseudocosts ←↩

Default: error

value meaning

error Max Error Branching

forward Forward branching

reverse Reverse branching

reliability branching mu (real): score parameter for building reliability ←↩

Range: [0, 1]

Default: 0.15

rel opt tol (real): relative stopping tolerance ←↩

Default: GAMS optcr

rlt (boolean): find RLT variable/equation and equation/equation pairs? ←↩

Default: 1

trydual (real): call CONOPT or SNOPT to produce duals ←↩

Spend the specified amount of time in seconds or less in producing a dual solution by calling
CONOPT or SNOPT.

Range: [0, ∞]

Default: 5

use alpha bb (boolean): apply globally-valid alphaBB cuts to tighten a node relaxation ←↩

Default: 1

use edge concave dynamic (boolean): apply locally-valid edge-concave cuts to tighten a node relaxation
←↩

Default: 1

use obbt (boolean): use optimality-based bounds tightening? ←↩

Default: 1

use reliability branching (boolean): use reliability branching? ←↩

Default: 1

1682 Solver Manuals

(a) Binary Expression Tree
(b) Factorable Programming

Tree

(c) Flattened Expression Tree

Figure 5.2 (a) A binary tree represents algebraic expressions; (b) A factorable programming
tree employs operator-based relaxations; (c) The ANTIGONE transformation to a flattened
expression tree allows access to term-based underestimators; Convex form (x1 − 4)2 is not

expanded.

5.4.5 ANTIGONE Algorithmic Features

As illustrated in Figure 5.1, the primary algorithmic features in ANTIGONE are reformulating model input,
elucidating special structure, and branch-and-bound global optimization [134] [135] [137] [136] [138] .

5.4.5.1 Reformulating Model Input

As illustrated in Figure 5.2, ANTIGONE transforms a factorable programming tree into a flattened
expression tree to capitalize on the development of tight convex underestimators for specific classes
of nonlinear terms. ANTIGONE extends the efficacy of hybrid strategies by meaningfully integrating
mutually reinforcing operator- and term-based strategies [27] [76] [136] . This approach reformulates
towards multivariable terms with specialized underestimators while maintaining a tree-like representation
of powers that cannot be distributed and convex operators that can be exploited by dynamic cut generation.

5.4.5.2 Elucidating Special Structure

After reformulating the user-defined MINLP, ANTIGONE detects special mathematical structure that it
will exploit in the branch-and-cut phase (Section Branch-and-Bound Global Optimization). The types of
special structure that ANTIGONE considers are: reformulation-linearization technique (RLT) equations;
convexity/concavity; edge-convexity/edge-concavity; αBB relaxations; term-specific underestimators [134]
[135] [137] [136] [138] .

• RLT multiplies every pairwise combination of: variables; nonlinear terms; equations [11] [119]
[135] [136] [138] [169] [170] [171] [172] [173] . ANTIGONE saves the combinations that do not
introduce new terms into the model formulation and updates these equations at every node of the
branch-and-cut tree. Special RLT equations are added directly to the model formulation; other RLT
equations are used as cutting planes and integrated into the feasibility-based bounds tightening
routines.

5.5 BARON 1683

Figure 5.3 Inheritance Structure of Base Class Term

• Convexity/Concavity permits the easy generation of a cutting plane at a point x̂:

f(x) ≥ f(x̂) + f '(x) · (x− x̂) (convex)
f(x) ≤ f(x̂) + f '(x) · (x− x̂) (concave)

Based on interval arithmetic, terms and multi-term expressions are labeled as always/sometimes/never
convex/ concave; this information is used in the branch-and-cut phase.

• Edge-Convexity/Edge-Concavity implies a vertex polyhedral envelope; ANTIGONE labels
terms and multi-term expressions as always/sometimes/never edge-convex/edge-concave with a
simple interval arithmetic test [133] [175] [176] [177] .

• αBB underestimators convexify an expression with univariate quadratics [5] [6] [10] [66] [128];
ANTIGONE uses αBB to relax aggregates of bilinear terms.

• Term-Specific Underestimators are diagrammed in Figure 5.3; their implementation is based on
work available in the open literature [53] [52] [65] [77] [118] [125] [123] [124] [129] [133] [134] [146]
[175] [176] [178] .

5.4.5.3 Branch-and-Bound Global Optimization

After the reformulation and special structure detection phases, ANTIGONE initiates a branch-and-
cut global optimization algorithm that generates tight convex underestimators, dynamically generates
separating hyperplanes, bounds the variables [6] [10] [5] [11] [18] [49] [50] [116] [157] [158] [172] [173] [191];
branches on the search space [3] [18], and finds feasible solutions.

5.5 BARON

Author

Nick Sahinidis, The Optimization Firm, LLC, niksah@minlp.com, http://www.minlp.com

Date

5 June 2015

mailto:niksah@minlp.com
http://www.minlp.com

1684 Solver Manuals

5.5.1 Introduction

The Branch-And-Reduce Optimization Navigator (BARON) is a GAMS solver for the global solution of
nonlinear (NLP) and mixed-integer nonlinear programs (MINLP).

While traditional NLP and MINLP algorithms are guaranteed to converge only under certain convexity
assumptions, BARON implements deterministic global optimization algorithms of the branch-and-bound
type that are guaranteed to provide global optima under fairly general assumptions. These include the
existence of finite lower and upper bounds on nonlinear expressions in the NLP or MINLP to be solved.

BARON implements algorithms of the branch-and-bound type enhanced with a variety of constraint
propagation, interval analysis, and duality techniques for reducing ranges of variables in the course of the
algorithm. Rigorous relaxations are constructed by enlarging the feasible region and/or underestimating
the objective function.

Parts of the BARON software were created at the University of Illinois at Urbana-Champaign. The
algorithms implemented in the software, the theory behind them, and some related applications are
(partly) described in [157] [51] [158] [161] [93] [120] [78] [187] [168] [188] [163] [79] [159] [178] [179] [180]
[183] [184] [165] [160] [162] [7] [181] [164] [182] [36] [12] [149] [13] [106] [107] [208] [209] [108] [210] [14] .

5.5.1.1 Licensing and software requirements

In order to use GAMS/BARON, users will need to have a GAMS/BARON license. BARON comes with
several embedded LP/MIP/QP and NLP solvers (CBC; IPOPT, FilterSD, FilterSQP). Additionally,
GAMS/BARON users can expedite convergence by accessing CPLEX and XPRESS to solve BARON's
LP/MIP/QP subproblems and MINOS, SNOPT, and any GAMS NLP solver, such as CONOPT, to solve
BARON's NLP subproblems. These solvers need to be licensed with GAMS separately.

By default, GAMS/BARON will attempt to use CPLEX as the LP solver and select an NLP solver
automatically. The user can use the options LPSol and NLPSol to specify the LP/MIP/QP and NLP solver,
respectively. If the user does not have a license for the user-specified solver, BARON will automatically
select a licensed one and may default to CLP/CBC and IPOPT if no other LP/MIP and NLP solver is
available, respectively. BARON can be used without a local NLP solver by setting DoLocal and NumLoc
to 0.

5.5.1.2 Running GAMS/BARON

BARON is capable of solving models of the following types: LP, MIP, RMIP, NLP, DNLP, RMINLP, and
MINLP. If BARON is not specified as the default solver for these models, it can be invoked by issuing the
following command before the solve statement:

option <modeltype>=baron;

where <modeltype> stands for LP, MIP, RMIP, QCP, MIQCP, RMIQCP, CNS, NLP, DNLP, MINLP, or RMINLP.

5.5.2 Model requirements

In order to achieve convergence to global optimality, additional model constraints may be required. The
additional constraints may speed up solver time and increase the probability of success.

5.5 BARON 1685

5.5.2.1 Variable and expression bounds

All nonlinear expressions in the mathematical program to be solved must be bounded below and/or above.
It is important that finite lower and upper bounds be provided by the user on all problem variables. Note
that providing finite bounds on variables alone may not suffice to guarantee finite bounds on nonlinear
expressions arising in the model.

For example, consider the term 1/x for x ∈ [0,1], which has finite variable bounds, but is unbounded.
It is important to provide bounds for problem variables that guarantee that the problem functions are
finitely-valued. If the user model does not include variable bounds that guarantee that all nonlinear
expressions are finitely-valued, BARON will attempt to infer appropriate bounds from problem constraints.
If this step fails, global optimality of the solutions provided is not guaranteed. Occasionally, because of
the lack of bounds no numerically stable lower bounding problems can be constructed, in which case
BARON may terminate.

See section Some BARON features on how to specify variable bounds.

5.5.2.2 Allowable nonlinear functions

In addition to multiplication and division, GAMS/BARON can handle nonlinear functions that involve
exp(x), ln(x), xα for real α, βx for real β, xy, and |x|. Currently, there is no support for other functions,
including the trigonometric functions sin(x), cos(x), etc.

5.5.3 BARON output

5.5.3.1 BARON log output

The log output below is obtained for the MINLP model gear.gms from the GAMS model library using
absolute and relative optimality tolerances of 1e-6.

===

BARON version 15.6.5. Built: LNX-64 Fri Jun 5 08:34:09 EDT 2015

If you use this software, please cite:

Tawarmalani, M. and N. V. Sahinidis, A polyhedral

branch-and-cut approach to global optimization,

Mathematical Programming, 103(2), 225-249, 2005.

BARON is a product of The Optimization Firm, LLC. http://www.minlp.com/

Parts of the BARON software were created at the

University of Illinois at Urbana-Champaign.

===

This BARON run may utilize the following subsolver(s)

For LP/MIP: ILOG CPLEX

For NLP: MINOS, SNOPT, GAMS external NLP, COIN IPOPT with MUMPS and METIS, FILTERSD

===

Starting solution is feasible with a value of 36.1767610000

Doing local search

Solving bounding LP

Starting multi-start local search

Preprocessing found feasible solution with value 4.23791612465

Done with local search

===

1686 Solver Manuals

Iteration Open nodes Time (s) Lower bound Upper bound

1 1 0.02 1.00000 4.23792

* 1+ 1 0.02 1.00000 3.29321

* 1+ 1 0.02 1.00000 2.20487

1 1 0.02 1.00000 2.20487

* 2 2 0.02 1.00000 1.06987

* 3+ 1 0.03 1.00000 1.01273

* 4+ 2 0.03 1.00000 1.00117

* 4+ 2 0.03 1.00000 1.00018

* 4 2 0.03 1.00000 1.00004

* 14 8 0.04 1.00000 1.00001

* 30 0 0.05 1.00000 1.00000

30 0 0.05 1.00000 1.00000

Cleaning up

*** Normal completion ***

Wall clock time: 0.05

Total CPU time used: 0.05

Total no. of BaR iterations: 30

Best solution found at node: 30

Max. no. of nodes in memory: 11

All done

===

The solver first tests feasibility of the user-supplied starting point. This point is found to be feasible with
an objective function value of 36.1767610000. BARON subsequently performs a randomized local search
procedure and, eventually, finds a feasible solution with an objective of 4.23791612465. Then, the iteration
log provides information every 1,000,000 branch-and-bound iterations and every 30 seconds. Additionally,
information is printed at the end of the root node, whenever the value of the incumbent is improved by at
least 10-5, and at the end of the search. A star (∗) in the first position of a line indicates that a better
feasible solution was found that improves the value of previous best known solution by at least 10-5. The
log fields include the iteration number, number of open branch-and-bound nodes, the CPU time taken
thus far, the lower bound, and the upper bound for the problem. The log output fields are summarized
below:

Field Description

Itn. no. The number of the current iteration. A plus (+) following the iteration number denotes
reporting while solving a probing (as opposed to a relaxation) subproblem of the
corresponding node.

Open Nodes Number of open nodes in branch-and-reduce tree.

Time Current computational time in seconds. CPU time is reported for single-threaded jobs
and wall clock time is reported for multi-threaded jobs.

Lower Bound Current lower bound on the model.

Upper Bound Current upper bound on the model.

Once the branch-and-reduce tree is searched, the best solution is isolated and a corresponding dual solution
is calculated. Finally, the total number of branch-and-reduce iterations (number of search tree nodes) is
reported, followed by the node where the best solution was identified (a -1 indicates preprocessing as
explained in the next section on termination messages).

5.5 BARON 1687

5.5.3.2 Termination messages, model and solver statuses

Upon normal termination, BARON will report the node where the optimal solution was found. We refer
to this node as nodeopt. Associated with this node is a return code indicating the status of the solution
found at nodeopt. The return code is given in the log line:

Best solution found at node: (return code)

The return codes have the following interpretation:

-3 : no feasible solution found

-2 : the best solution found was the user-supplied

-1 : the best solution was found during preprocessing

i : the best solution was found in the i-th node of the tree

In addition to reporting nodeopt, upon termination, BARON will issue one of the following statements:

∗∗∗ Normal completion ∗∗∗

This is the most desirable termination status. The problem has been solved within tolerances
in this case. If BARON returns a code of -3, then no feasible solution exists.

∗∗∗ Heuristic termination ∗∗∗

While global optimality is not guaranteed in this case, BARON will terminate with this message
when (a) a feasible solution has been found and (b) the progress of lower/upper bounds satisfies
the heuristic termination criterion set by the user through BARON's DeltaTerm option.

∗∗∗ User did not provide appropriate variable bounds ∗∗∗

The user will need to read the BARON output (in file sum.dat in the scratch directory, use
GAMS parameter keep=1 to prevent the automatic removal of this directory) for pointers to
variables and expressions with missing bounds. The model should be modified in order to
provide bounds for variables and intermediate expressions that make it possible for BARON
to construct reliable relaxations. Even though relaxation bounds are printed on the screen
to give the user a feeling for convergence, these bounds may not be valid for the problem at
hand. This message is followed by one of the following two messages:

∗∗∗Infeasibility is therefore not guaranteed ∗∗∗

This indicates that, because of missing bounds, no feasible solution was found, but
model infeasibility was not proven.

∗∗∗ Globality is therefore not guaranteed ∗∗∗

This indicates that, because of missing bounds, a feasible solution was found, but
global optimality was not proven.

∗∗∗ Max. allowable nodes in memory reached ∗∗∗

The user will need to increase the physical memory of the computer or change algorithmic
options, such as branching and node selection rules, to reduce the size of the search tree and
memory required for storage.

1688 Solver Manuals

∗∗∗ Max. allowable BaR iterations reached ∗∗∗

The user will need to increase the maximum number of allowable iterations. The BARON
option is MaxIter. To specify this in GAMS, one can use the NodLim option. We remark that
the BARON option MaxIter overrides NodLim.

∗∗∗ Max. allowable CPU time exceeded ∗∗∗

The user will need to increase the maximum of allowable CPU time. The BARON option is
MaxTime. To specify this in GAMS, one can use the ResLim option. We remark that the
BARON option MaxTime overrides ResLim.

∗∗∗ Problem is numerically sensitive ∗∗∗

BARON is designed to automatically handle problems with numerical difficulties. However, for
certain problems, the global optimum is numerically sensitive. This occurs, for instance, when
the objective function value varies significantly over small neighborhoods of points that are
strictly outside the feasible region but nonetheless feasible within numerical tolerances. When
BARON returns this message, the ”Best possible” reported on the objective is likely correct.

∗∗∗ Search interrupted by user ∗∗∗

The run was interrupted by the user (Ctrl-C).

∗∗∗ Insufficient memory for data structures ∗∗∗

More memory is needed to set up the problem data structures. The user will need to increase
the physical memory available on the computer in order to accommodate problems of this size.

∗∗∗ A potentially catastrophic access violation just took place ∗∗∗

In the unlikely event of a memory access violation, BARON will terminate the search and
return the best known solution. Please report problems that lead to this condition to Nick
Sahinidis (niksah@minlp.com).

5.5.4 Some BARON features

The features described in this section rely on options that are further detailed in the next section. For
details of the algorithmic implementations, the user may wish to consult publications cited at the end of
this document.

5.5.4.1 No starting point is required

In contrast to many NLP algorithms that require a feasible starting point, a starting point is not required
for BARON. A user may optionally provide a starting point for all or even some of the problem variables.
BARON will judiciously initialize any variables that are not initialized by the user. Even when the problem
functions cannot be evaluated at a user-provided starting point, BARON is still capable of carrying out
its global search.

For problems for which GAMS compilation is aborted because the nonlinear functions cannot be evaluated
at the starting point, the user can use the following commands before the SOLVE statement:

MaxExecError = 100000;

option sys12 = 1;

The first command asks GAMS to continue compilation for as many as MaxExecError execution errors.
The sys12 option will pass the model to the BARON despite the execution errors. Even though the
starting point is bad in this case, BARON is capable of carrying out its global search.

mailto:niksah@minlp.com

5.5 BARON 1689

5.5.4.2 Finding a few of the best or all feasible solutions

BARON offers a facility, through its NumSol option, to find the best few, or even all feasible, solutions to
a model. The development of this facility was motivated by combinatorial optimization problems but the
facility is applicable to continuous problems as well. Even for combinatorial problems, BARON does not
rely on integer cuts to find multiple solutions. Instead, it utilizes a single search tree, thus providing a
computationally efficient method for finding multiple solutions. Furthermore, because BARON's approach
applies to integer as well as continuous programs, it can be used to find all feasible solutions to a system
of nonlinear equality and inequality constraints.

Once a model is solved by BARON with the NumSol option, the solutions found can be recovered using
the GAMS GDX facility. An example is provided below.

$eolcom !

$Ontext

Purpose: demonstrate use of BARON option ’numsol’ to obtain the best

numsol solutions of an optimization problem in a single branch-and-bound

search tree.

The model solved here is a linear general integer problem with 18 feasible

solutions. BARON is run with a request to find up to 20 solutions. The

model solved is the same as the one solved in gamslib/icut.gms.

$Offtext

set i index of integer variables / 1 * 4 /

variables x(i) variables

z objective variable

integer variable x;

x.lo(i) = 2; x.up(i) = 4; x.fx(’2’) = 3; ! fix one variable

x.up(’4’) = 3; ! only two values

equation obj obj definition;

* pick an objective function which will order the solutions

obj .. z =e= sum(i, power(10,card(i)-ord(i))*x(i));

model enum / all /;

* instruct BARON to return numsol solutions

$onecho > baron.opt

numsol 20

gdxout multsol

$offecho

enum.optfile=1; option mip=baron, limrow=0, limcol=0, optca=1e-5,

optcr=1e-5; solve enum minimizing z using mip;

* recover BARON solutions through GDX

set sol /multsol1*multsol100/; variables xsol(sol,i), zsol(sol);

execute ’gdxmerge multsol*.gdx > %gams.scrdir%merge.%gams.scrext%’;

execute_load ’merged.gdx’, xsol=x, zsol=z;

1690 Solver Manuals

option decimals=8;

display xsol.l, zsol.l;

5.5.4.3 Using BARON as a multi-start heuristic solver

To gain insight into the difficulty of a nonlinear program, especially with regard to existence of multiple
local solutions, modelers often make use of multiple local searches from randomly generated starting points.
This can be easily done with BARON's NumLoc option, which determines the number of local searches to
be done by BARON's preprocessor. BARON can be forced to terminate after preprocessing by setting the
number of iterations to 0 through the MaxIter option. In addition to local search, BARON's preprocessor
performs extensive reduction of variable ranges. To sample the search space for local minima without range
reduction, one would have to set to 0 the range reduction options TDo, MDo, LBTTDo, and OBTTDo.
On the other hand, leaving these options to their default values increases the likelihood of finding high
quality local optima during preprocessing. If NumLoc is set to -1, local searches in preprocessing will be
done from randomly generated starting points until global optimality is proved or MaxTime seconds have
elapsed.

5.5.4.4 Systematic treatment of unbounded problems

If BARON declares a problem as unbounded, it will search for and may report a vertex and direction of
an unbounded ray. In addition, BARON will report the best solution found. This will be a feasible point
that is as far as possible along an unbounded ray while avoiding numerical errors due to floating point
arithmetic.

5.5.4.5 Systematic treatment of infeasible problems

If BARON declares a problem as infeasible, it has the capability to identify a subset of the constraints
that are infeasible and become feasible once any one of them is eliminated. This, so-called, irreducibly
inconsistent system (IIS) can be obtained by BARON for all types of problems handled by BARON,
including linear and nonlinear, continuous and integer, convex and nonconvex, and problems with
complementarity constraints. BARON's CompIIS option can be used to identify an IIS.

As an example, consider the problem of minimizing the nonconvex function x1x3 over the following
nonconvex constrained set:

e1 : 85 + 0.006x2x5 + 0.0006x1x4 − 0.002x3x5 <= 92

e2 : 0.8x2x5 + 0.003x1x2 + 0.002x2
3 = 110

e3 : 9 + 0.005x3x5 + 0.001x1x3 + 0.002x3x4 <= 25

78 ≤ x1 ≤ 102

33 ≤ x2 ≤ 45

27 ≤ xi ≤ 45, i = 3, . . . , 5

When this problem is solved with CompIIS equal to 1, BARON provides the following result in the listing
file:

5.5 BARON 1691

Number of equations in the IIS: 1.

Upper: e_2 <= 110

Number of variables in the IIS: 3.

Lower: x_1 >= 78

Lower: x_2 >= 33

Lower: x_5 >= 27

The IIS consists of the lower bounds of variables x1, x2, and x5, along with the ≤ part of the equality
constraint e2. This suggests that constraint e2 and the entire model can be made feasible by lowering the
lower bound of any of the three variables that are part of the IIS, whereas modifying the bounds of x3

would not make the model feasible.

If a problem is known to be infeasible and the user desires to identify an IIS, it may be beneficial to set
BARON's NumLoc option to zero. Doing so will deactivate BARON's initial upper bounding search,
which involves multiple local searches. On the other hand, DoLocal should be nonzero in order to permit
local search during the solution of certain subproblems that BARON solves while searching for an IIS.

5.5.4.6 Handling of complementarity constraints

Complementarity relationships of the type f(x)g(x) = 0 are automatically recognized and exploited
algorithmically by BARON. The functions f and g may be univariate or multivariate, linear or nonlinear,
convex or nonconvex, in terms of continuous and/or integer variables, and may be subject to additional
constraints in the model. These complementarity relationships can be inferred by BARON even when
implied by problem constraints and variable bounds. As a result, BARON can solve general mathematical
programs with equilibrium constraints (MPECs). This class of problems includes the classical linear
complementarity problem

(LCP): Find z ≥ 0 and q such that

Mz + q ≥ 0,

zt(Mz + q) = 0

as well as the more general mixed complementarity problem

(MCP): Given a function f : Rn → Rn and bounds l, u ∈ Rn with R = R ∪ {−∞,+∞}, find z ∈ Rn and
w, v ∈ Rn+ such that

f(z) = w − v,
l ≤ z ≤ u,

(z − l)tw = 0,

(u− z)tv = 0.

Both problems are automatically recognized and exploited by BARON without the user having to mark
complementarities in any special way. In GAMS, all these problems can be solved by BARON when
declared as NLP or MINLP models.

1692 Solver Manuals

5.5.4.7 Parallel capabilities

For difficult problems with integer variables, most of BARON's time is spent on solving MIP relaxations.
Hence, considerable speedups may be obtained via parallel solution of the MIP subproblems. For this
purpose, the option threads may be used to specify the number of cores that BARON's MIP subsolver is
allowed to use. By default, this option has the value of 1, meaning that a single core will be utilized.

5.5.5 The BARON options

The BARON options allow the user to control termination tolerances, branching and relaxation strategies,
heuristic local search options, and output options as detailed in this section.

Many options can also be set in the GAMS model. The most relevant GAMS options are ResLim, NodLim,
OptCA, OptCR, OptFile, and CutOff. The IterLim option is not implemented. specify BARON iterations,
the user can set the MaxIter option, which is equivalent to the GAMS option NodLim.

Additionally, a BARON Options file can be provided. See section The Solver Options File for general use
of solver option files.

For branching, users can specify separate branching priorities for any discrete and continuous variables
using Dot Options. To specify variable branching priorities, one specifies

(variable).prior(value)

in the BARON options file, where (value) can be any non-negative real value. The lower the value,
the higher the priority for branching, see also Setting Priorities for Branching. Specifying maxdouble for
(value) translates to passing 0 as branching priority for (variable).

5.5.5.1 Termination options

Option Description Default

AbsConFeasTol
Absolute constraint feasibility tolerance
This tolerance is used for general constraints and variable bounds.
AbsConFeasTol must be ≥ 1e-12. A point is considered feasible for
a constraint/bound if the absolute or relative constraint feasibility
tolerance is satisfied.
Range: [1e-12, ∞]

1e-5

AbsIntFeasTol
Absolute integer feasibility tolerance
All integer variable values must satisfy this tolerance.
AbsIntFeasTol must be ≥ 1e-12. A point is considered integer
feasible for a variable if integrality is satisfied using the absolute or
relative integer feasibility tolerance.
Range: [1e-12, ∞]

1e-5

BoxTol
Box elimination tolerance.
Boxes will be eliminated if smaller than this tolerance. BoxTol

must be ≥ 1e-12.

1e-8

CutOff
Eliminate solutions that are no better than this value
Can also be used with the GAMS model attribute option CutOff.

GAMS CutOff

DeltaA
Absolute improvement for insufficient progress termination
DeltaA (δa) must be ≥ 1e-12.
Range: [1e-12, ∞]

∞

5.5 BARON 1693

Option Description Default

DeltaR
Relative improvement for insufficient progress termination
DeltaR (δr) must be ≥ 1e-12.
Range: [1e-12, ∞]

1

DeltaT
Time interval for insufficient progress termination
If DeltaTerm is set to 1, BARON will terminate if insufficient
progress is made over DeltaT (δt) consecutive seconds. If δt is
set to a non-positive quantity, BARON will automatically set δt

equal to -δt times the CPU time taken till the end of root node
processing. DeltaT can take any real value.
Range: [-∞, ∞]

-100

DeltaTerm
Indicates whether insufficient progress termination is on or off
Users have the option to request BARON to terminate if insufficient
progress is made over DeltaT (δt) consecutive seconds. Progress is
measured using the absolute and relative improvement thresholds
DeltaA (δa) and DeltaR (δr). Termination will occur if, over a
period of δt consecutive seconds, the value of the best solution
found by BARON is not improved by at least an absolute amount
δa or an amount equal to δr times the value of the incumbent at
time t-δt. This termination condition is enforced after processing
the root node and only after a feasible solution has been obtained.
Because it relies on CPU time measurements, which may depend on
machine load, this option may result in nondeterministic behavior.
0: do not enforce this termination condition
1: terminate if progress is insufficient

0

EpsA
Absolute termination tolerance.
BARON terminates if |U-L| ≤ EpsA, where U and L are the up-
per and lower bound, respectively, on the optimal value of the
optimization problem at the current iteration. EpsA must be ≥
1e-12.

GAMS OptCA

EpsR
Relative termination tolerance.
BARON terminates if |U-L| ≤ EpsR|U|, where U and L are the ob-
jective function value of the incumbent and the lower bound (if
minimizing, otherwise upper bound) on the optimal value, respec-
tively, for the optimization problem at the current iteration.

GAMS OptCR

FirstFeas
Changes the search for first numsol solutions
If set to 1, BARON will terminate once it finds NumSol feasible
solutions, irrespective of solution quality.
0: search for the best NumSol feasible solutions
1: find NumSol solutions irrespective of solution quality

0

FirstLoc
Terminate the search as soon as a local optimum is found 0

ISolTol
Solution Distance
Separation distance between solutions. This option is used in con-
junction with NumSol. For combinatorial optimization problems,
feasible solutions are isolated. For continuous problems, feasible so-
lution points within an l∞ distance that does not exceed IsolTol

will be treated as identical by BARON. IsolTol must be ≥ 1e-12.

1e-4

MaxIter
Maximum number of branch-and-reduce iterations allowed
Setting MaxIter to 0 will force BARON to terminate after root
node preprocessing. Setting MaxIter to 1 will result in termination
after the solution of the root node. MaxIter must be ≥ -1, where
-1 implies unlimited.
Range: {-1, ..., ∞}

GAMS NodeLim

1694 Solver Manuals

Option Description Default

MaxTime
Maximum time allowed (sec)
MaxTime must be -1 or > 0, where -1 implies unlimited. For single-
threaded jobs, i.e., when threads equals 1, this limit is enforced on
CPU time consumed by the job. For multi-threaded jobs, the limit
is enforced on wall clock time.

GAMS ResLim

NumSol
Number of feasible solutions to be found
Solutions found will be listed in the results file. As long as NumSol
6= -1, these solutions will be sorted from best to worse. If NumSol is
set to -1, BARON will search for all feasible solutions to the given
model and print them, in the order in which they are found, in the
results file. NumSol must be ≥ -1.
Range: {-1, ..., ∞}

1

RelConFeasTol
Relative constraint feasibility tolerance
This tolerance is used for general constraints and variable bounds.
RelConFeasTol must be ≥ 0. A point is considered feasible for a
constraint/bound if the absolute or relative constraint feasibility
tolerance is satisfied.
Range: [0, 0.1]

0

RelIntFeasTol
Relative integer feasibility tolerance
All integer variable values must satisfy this tolerance.
RelIntFeasTol must be ≥ 0. A point is considered integer feasible
for a variable if integrality is satisfied using the absolute or relative
integer feasibility tolerance.
Range: [0, 0.1]

0

5.5.5.2 Relaxation options

Option Description Default

Nouter1
Number of outer approximators of convex univariant functions
NOuter1 must be ≥ 0.

4

NoutIter
Number of rounds of cutting plane generation at node relaxation
NOutIter must be a ≥ 0.

4

NoutPerVar
Number of outer approximations per variable for convex multivariate
functions
NOutPerVar must be ≥ 0.

4

OutGrid
Number of grid points per variable for convex multivariate approxima-
tors of BARON's CONVEX EQUATIONS.
OutGrid must be a ≥ 0.

20

Threads
Number of cores used for solution of MIP subproblems
The value of this option is passed to CBC, CPLEX, and XPRESS.
GAMS option threads set to 0 corresponds to Threads=1.
Range: {1, ..., ∞}

GAMS Threads

5.5.5.3 Range reduction options

Option Description Default

LBTTDo
Linear-feasibility-based range reduction option (poor man's LPs)
0: no range reduction based on feasibility.
1: range reduction done based on feasibility.

1

MDo
Marginals-based reduction option
0: no range reduction based on marginals.
1: range reduction done based on marginals.

1

5.5 BARON 1695

Option Description Default

OBTTDo
Optimality based tightening option
0: no range reduction based on optimality.
1: range reduction done based on optimality.

1

PDo
Number of probing problems allowed
-2: automatically decided by BARON.
-1: probing on all variables.
0: no range reduction by probing.
n: probing on n variables.

-2

TDo
Nonlinear-feasibility-based range reduction option (poor man's NLPs)
0: no bounds tightening is performed.
1: bounds tightening is performed.

1

5.5.5.4 Tree management options

Option Description Default

BrPtStra
Branching point selection strategy
0: BARONs dynamic strategy
1: w-branching
2: bisection-branching
3: convex combination of 1 and 2

0

BrVarStra
Branching variable selection strategy
0: BARONs dynamic strategy
1: largest violation
2: longest edge

0

NodeSel
Specifies the node selection rule to be used for exploring the search tree
0: BARONs mixed selection scheme
1: best bound
2: last in first out [LIFO]
3: minimum infeasibility

0

5.5.5.5 Local search options

Option Description Default

DoLocal
Local search option for upper bounding
0: no local search is done during upper bounding
1: BARON's dynamic local search decision rule

1

NumLoc
Number of local searches done in preprocessing
The first local search begins with the user-specified starting point. Subsequent
local searches are done from judiciously chosen starting points. If NumLoc is
set to -1, local searches in preprocessing will be done until proof of globality or
MaxTime is reached. If NumLoc is set to -2, BARON decides the number of
local searches in preprocessing based on problem and NLP solver characteristics.
NumLoc must be ≥ -2.
Range: {-2, ..., ∞}

-2

5.5.5.6 Output Options

1696 Solver Manuals

Option Description Default

LocRes
Option to control output from local search
0: no local search output
1: detailed results from local search will be printed to res.dat file

0

prfreq
Log output frequency in number of nodes 1000000

prlevel
Defines the level of log output printed.
0: all log output is suppressed
1: print log output

1

prtimefreq
Log output frequency in number of seconds 30

5.5.5.7 Subsolver Options

Option Description Default

AllowCbc
Indicator for use of CLP/CBC with automatic
LP/MIP/QP solver selection

1

AllowCplex
Indicator for use of CPLEX with automatic
LP/MIP/QP solver selection

1

AllowExternal
Indicator for use of External NLP solver with
automatic NLP solver selection
In case of automatic NLP solver selection, this
option can be used to selectively permit or
disallow the use of external GAMS NLP solver
as an NLP subsolver.
0: do not use the GAMS external NLP solver
for local search
1: consider the GAMS external NLP solver
for local search

1

AllowFilterSD
Indicator for use of FILTERSD with auto-
matic NLP solver selection
In case of automatic NLP solver selection, this
option can be used to selectively permit or
disallow the use of FILTERSD as an NLP
subsolver.
0: do not use FILTERSD for local search
1: consider FILTERSD for local search

1

AllowFilterSQP
Indicator for use of FILTERSQP with auto-
matic NLP solver selection
In case of automatic NLP solver selection, this
option can be used to selectively permit or
disallow the use of FILTERSQP as an NLP
subsolver.
0: do not use FILTERSQP for local search
1: consider FILTERSQP for local search

1

AllowHsl
Indicator for use of HSL LA04 with automatic
LP solver selection

1

AllowIpopt
Indicator for use of IPOPT with automatic
NLP solver selection
In case of automatic NLP solver selection, this
option can be used to selectively permit or dis-
allow the use of IPOPT as an NLP subsolver.
0: do not use IPOPT for local search
1: consider IPOPT for local search

0 on macOS/ARM64, 1 otherwise

5.5 BARON 1697

Option Description Default

AllowMinos
Indicator for use of MINOS with automatic
NLP solver selection
In case of automatic NLP solver selection,
this option can be used to selectively permit
or disallow the use of MINOS as an NLP
subsolver.
0: do not use MINOS for local search
1: consider MINOS for local search

1

AllowSnopt
Indicator for use of SNOPT with automatic
NLP solver selection
In case of automatic NLP solver selection,
this option can be used to selectively permit
or disallow the use of SNOPT as an NLP
subsolver.
0: do not use SNOPT for local search
1: consider SNOPT for local search

1

AllowXpress
Indicator for use of FICO XPRESS with au-
tomatic LP/MIP/QP solver selection

0 on macOS/ARM64, 1 otherwise

ExtNLPsolver
External GAMS NLP solver and option file
(e.g. conopt.1)
Specifies the GAMS NLP solver to be used
when NLPSol is set to -1 or 6. All GAMS
NLP solvers are available through this op-
tion. If a non-existing solver is specified or
the solver chosen cannot solve NLPs, NLPSol
will be reset to its default. A GAMS solver
options file can be specified for the GAMS
NLP solver by adding a dot followed by the
options file number to the solver name, e.g.,
setting ExtNLPSolver to CONOPT.42 would in-
struct GAMS/CONOPT to use options file
conopt.o42.

conopt

LPAlg
Specifies the LP algorithm to be used (avail-
able only with CPLEX as the LP solver)
0: automatic selection of LP algorithm
1: primal simplex
2: dual simplex
3: barrier

0

LPSol
Specifies the LP/MIP/QP Solver to be used
By default, BARON will select the LP solver
and may switch between different LP solvers
during the search according to problem charac-
teristics and solver performance. The solvers
CPLEX, if available, and CBC will be used
for this purpose. A single specific LP solver
can be specified by setting this option to a
value other than the default. If the specified
solver is not licensed, BARON will default to
automatic solver selection.
-1: Automatic LP/MIP/QP solver selection
and switching strategy
3: CPLEX
7: XPRESS
8: CLP/CBC
15: HSL LA04

-1

1698 Solver Manuals

Option Description Default

NLPSol
Specifies the NLP solver to be used
By default, BARON will select the NLP solver
and may switch between different NLP solvers
during the search, based on problem charac-
teristics and solver performance. Any combi-
nation of licensed NLP solvers may be used
in that case. A single specific NLP solver can
be specified by setting this option to a value
other than the default. If the specified solver
is not licensed, BARON will default to auto-
matic solver selection.
-1: Automatic NLP solver selection and
switching strategy
0: Local search based on function evaluations
alone with no calls to local solvers
2: MINOS
4: SNOPT
6: GAMS NLP solver (see ExtNLPsolver)
9: IPOPT
10: FILTERSD
14: FILTERSQP

-1

5.5.5.8 Other Options

Option Description Default

CompIIS
Request the computation of an Irreducible Inconsistent Set (IIS)
In case of an infeasible problem, this option can be used to search for an IIS.
Setting this option 1, works very well for most problems.
0: do not search for an IIS
1: the search for an IIS is based on a fast heuristic
2: an IIS is obtained using a deletion filtering algorithm
3: an IIS is obtained using an addition filtering algorithm
4: an IIS is obtained using an addition-deletion filtering algorithm
5: an IIS is obtained using a depth-first search algorithm

0

IISInt
Indicates whether general integers should be considered as potential members
of the IIS
When search for an IIS is requested through CompIIS, BARON assumes that
the model is unlikely to include an error in terms of binaries, i.e., the binary
definitions are assumed correct and the IIS output should be interpreted with
respect to binary definitions. General integer bounds may be assumed as
correct or can be questioned using the option IISint. Integrality is enforced
in both cases.
0: do not consider general integers as part of an IIS, assume them to be
correct
1: consider general integers (but not binaries) as part of an IIS

0

IISOrder
Order in which constraints are considered in the search for an IIS
-1: auto set to aim for a small IIS depending on the value of CompIIS
1: arrange constraints in problem order
2: arrange constraints in ascending order of degree
3: arrange constraints in descending order of degree
>3: random order using IISorder as seed

-1

WantDual
whether to try to provide dual solution values
0: BARON may or may not return a dual solution.
1: BARON will return a dual solution using an inexpensive technique to solve
a KKT system corresponding to the best primal solution identified

1

5.6 CBC 1699

5.5.5.9 Interface and Conversion

Option Description Default

BarName
Name of BARON problem file to be written 225a/mybaron.dat

ClockType
Type of clock to use when reporting solving time back to GAMS
wall: report time according to ”clock on the wall” (as used by
most GAMS solver links)
cpu: report time used by CPU (summed up over all cores)
baron: report same time as used by BARON (”cpu” if one thread,
”wall” if multiple threads)

wall

.EquClass
Equation Classification
Specifies nature of named constraint in the users model. This is
a Dot Option. Slices like supply.EquClass("new-york") 1 are
allowed.
0: Regular constraint.
1: Relaxation-only constraint. These constraints are provided
to BARON as RELAXATION ONLY EQUATIONS and used to help
strengthen the relaxation bound but are not considered as part of
the user model and thus not used for feasibility testing of solutions
or local search. Adding, for instance, the first-order optimality con-
ditions as relaxation-only constraints often expedites convergence.
2: Convex constraint. These constraints are provided to BARON
as CONVEX EQUATIONS and used to generate cutting planes from the
set of outer approximating supporting hyperplanes of the convex
constraint set.
3: Convex constraint that is relaxation-only.

0

GDXOut
Prefix for GDX file names for multiple solutions if NumSol > 1.

InfBnd
infinity value to be used on bounds
If set to 0, then no bounds are used.

0

5.6 CBC

CBC (COIN-OR Branch and Cut) is an open-source mixed integer programming solver working with the
COIN-OR LP solver CLP and the COIN-OR Cut generator library Cgl. The code has been written
primarily by John J. Forrest. Most of the CBC documentation in the section was copied from the help in
the CBC standalone version.

The CBC link in GAMS supports continuous, binary, integer, semicontinuous, semiinteger variables,
special ordered sets of type 1 and 2, and branching priorities.

5.6.1 Usage

The following statement can be used inside your GAMS program to specify using CBC

Option LP = CBC; { or MIP or RMIP }

The above statement should appear before the Solve statement. If CBC was specified as the default solver
during GAMS installation, the above statement is not necessary.

For usage and syntax of solver options file, see Section The Solver Option File. Following is an example
options file cbc.opt.

https://github.com/coin-or/Cbc
https://github.com/coin-or/Clp
https://github.com/coin-or/Cgl

1700 Solver Manuals

cuts root

perturbation off

It will cause CBC to use cut generators only in the root node and turns off the perturbation of the LP
relaxation.

GAMS/CBC currently does not support the GAMS Branch-and-Cut-and-Heuristic (BCH) Facility. If you
need to use GAMS/CBC with BCH, please consider to use a GAMS system of version ≤ 23.3.

The following GAMS parameters are currently supported by GAMS/CBC: reslim, iterlim, nodlim, optca,
optcr, cheat, cutoff, and threads.

5.6.2 List of Options

There are many parameters which can affect the performance the CBCs Branch and Cut Algorithm. First
just try with default settings and look carefully at the log file. Did cuts help? Did they take too long?
Look at the output to see which cuts were effective and then do some tuning (see the option cuts). If the
preprocessing reduced the size of the problem or strengthened many coefficients then it is probably wise
to leave it on. Switch off heuristics which did not provide solutions. The other major area to look at is
the search. Hopefully good solutions were obtained fairly early in the search so the important point is to
select the best variable to branch on. See whether strong branching did a good job – or did it just take a
lot of iterations? Adjust the options strongBranching and trustpseudocosts.

In the following, we summarize all available CBC options.

5.6.2.1 General Options

Option Description Default

clocktype
type of clock for time measurement wall

reslim
maximum seconds GAMS reslim

special
options passed unseen to CBC

writemps
create MPS file for problem

5.6.2.2 LP Options

Option Description Default

autoScale
Whether to scale objective, rhs and bounds of problem if they
look odd (experimental)

0

biasLU
Whether factorization biased towards U LX

bscale
Whether to scale in barrier (and ordering speed) off

crash
Whether to create basis for problem off

crossover Whether to get a basic solution with the simplex algorithm after
the barrier algorithm finished

on

denseThreshold
Threshold for using dense factorization -1

dualPivot
Dual pivot choice algorithm automatic

5.6 CBC 1701

Option Description Default

factorization
Which factorization to use normal

gamma Whether to regularize barrier off

idiotCrash
Whether to try idiot crash -1

iterlim
Maximum number of iterations before stopping GAMS iterlim

KKT
Whether to use KKT factorization in barrier 0

maxFactor
Maximum number of iterations between refactorizations 200

passPresolve
How many passes in presolve 5

perturbation
Whether to perturb the problem 1

presolve
Whether to presolve problem on

primalPivot
Primal pivot choice algorithm automatic

primalWeight
Initially algorithm acts as if it costs this much to be infeasible 1e+10

psi
Two-dimension pricing factor for Positive Edge criterion -0.5

randomSeedClp
Random seed for Clp 1234567

scaling
Whether to scale problem automatic

smallFactorization
Threshold for using small factorization -1

sparseFactor
Whether factorization treated as sparse 1

sprintCrash
Whether to try sprint crash -1

startalg
LP solver for root node dual

substitution
How long a column to substitute for in presolve 3

tol dual
For an optimal solution no dual infeasibility may exceed this
value

1e-07

tol presolve
Tolerance to use in presolve 1e-08

tol primal
For a feasible solution no primal infeasibility, i.e., constraint
violation, may exceed this value

1e-07

5.6.2.3 MIP Options

Option Description Default

costStrategy
How to use costs for branching priorities off

cutoff
Bound on the objective value for all solutions GAMS cutoff

cutoffConstraint
Whether to use cutoff as constraint off

dumpsolutions
name of solutions index gdx file for writing alternate solu-
tions

dumpsolutionsmerged
name of gdx file for writing all alternate solutions

expensiveStrong
Whether to do even more strong branching 0

extraVariables
Allow creation of extra integer variables 0

1702 Solver Manuals

Option Description Default

fixOnDj
Try heuristic based on fixing variables with reduced costs
greater than this

-1

increment
A valid solution must be at least this much better than last
integer solution

GAMS cheat

infeasibilityWeight
Each integer infeasibility is expected to cost this much 0

loglevel
amount of output printed by CBC 1

maxsol
Maximum number of solutions to save 100

mipstart
whether it should be tried to use the initial variable levels
as initial MIP solution

0

multipleRootPasses
Do multiple root passes to collect cuts and solutions 0

nodeStrategy
What strategy to use to select the next node from the branch
and cut tree

fewest

nodlim
node limit GAMS nodlim

optca
Stop when gap between best possible and best less than this GAMS optca

optcr
Stop when gap between best possible and best known is less
than this fraction of larger of two

GAMS optcr

OrbitalBranching
Whether to try orbital branching off

parallelmode
whether to run opportunistic or deterministic deterministic

preprocess Whether to use integer preprocessing sos

printfrequency
frequency of status prints 0

randomSeedCbc
Random seed for Cbc -1

sollim
Maximum number of feasible solutions to get ∞

solvefinal
final solve of MIP with fixed discrete variables 1

solvetrace
name of trace file for solving information

solvetracenodefreq
frequency in number of nodes for writing to solve trace file 100

solvetracetimefreq
frequency in seconds for writing to solve trace file 5

sosPrioritize
How to deal with SOS priorities off

strategy
Switches on groups of features 1

strongBranching
Number of variables to look at in strong branching 5

threads
Number of threads to try and use GAMS threads

tol integer
For a feasible solution no integer variable may be more than
this away from an integer value

1e-07

trustPseudoCosts
Number of branches before we trust pseudocosts 10

5.6.2.4 MIP Options for Cutting Plane Generators

Option Description Default

cliqueCuts
Whether to use Clique cuts ifmove

conflictcuts
Conflict Cuts 0

5.6 CBC 1703

Option Description Default

cut passes root
Number of rounds that cut generators are applied in the root node 20 or 100

cut passes slow
Maximum number of rounds for slower cut generators 10

cut passes tree
Number of rounds that cut generators are applied in the tree 10

cutDepth
Depth in tree at which to do cuts -1

cutLength
Length of a cut -1

cuts
Switches all cut generators on or off on

flowCoverCuts
Whether to use Flow Cover cuts ifmove

gomoryCuts
Whether to use Gomory cuts ifmove

gomorycuts2
Whether to use alternative Gomory cuts off

knapsackCuts
Whether to use Knapsack cuts ifmove

lagomoryCuts
Whether to use Lagrangean Gomory cuts off

latwomirCuts
Whether to use Lagrangean TwoMir cuts off

liftAndProjectCuts
Whether to use Lift and Project cuts off

mirCuts
Whether to use Mixed Integer Rounding cuts ifmove

probingCuts
Whether to use Probing cuts ifmove

reduceAndSplitCuts
Whether to use Reduce-and-Split cuts off

reduceAndSplitCuts2
Whether to use Reduce-and-Split cuts - style 2 off

residualCapacityCuts
Whether to use Residual Capacity cuts off

twoMirCuts
Whether to use Two phase Mixed Integer Rounding cuts root

zeroHalfCuts
Whether to use zero half cuts ifmove

5.6.2.5 MIP Options for Primal Heuristics

Option Description Default

combine2Solutions
Whether to use crossover solution heuristic off

combineSolutions
Whether to use combine solution heuristic off

Dins
Whether to try Distance Induced Neighborhood Search off

diveSolves
Diving solve option 100

DivingCoefficient
Whether to try Coefficient diving heuristic off

DivingFractional
Whether to try Fractional diving heuristic off

DivingGuided
Whether to try Guided diving heuristic off

DivingLineSearch
Whether to try Linesearch diving heuristic off

DivingPseudoCost
Whether to try Pseudocost diving heuristic off

DivingRandom
Whether to try Diving heuristics off

1704 Solver Manuals

Option Description Default

DivingVectorLength
Whether to try Vectorlength diving heuristic off

dwHeuristic
Whether to try Dantzig Wolfe heuristic off

feaspump
Whether to try the Feasibility Pump heuristic on

feaspump artcost
Costs ≥ this treated as artificials in feasibility pump 0

feaspump cutoff
Fake cutoff for use in feasibility pump 0

feaspump fracbab
Fraction in feasibility pump 0.5

feaspump increment
Fake increment for use in feasibility pump 0

feaspump passes
How many passes to do in the Feasibility Pump heuris-
tic

20

greedyHeuristic
Whether to use a greedy heuristic on

heuristics
Switches most primal heuristics on or off 1

hOptions
Heuristic options 0

localTreeSearch
Whether to use local tree search when a solution is
found

0

naiveHeuristics
Whether to try some stupid heuristic off

pivotAndComplement
Whether to try Pivot and Complement heuristic off

pivotAndFix
Whether to try Pivot and Fix heuristic off

proximitySearch
Whether to do proximity search heuristic off

randomizedRounding
Whether to try randomized rounding heuristic off

Rens
Whether to try Relaxation Enforced Neighborhood
Search

off

Rins
Whether to try Relaxed Induced Neighborhood Search off

roundingHeuristic
Whether to use simple (but effective) Rounding heuris-
tic

on

VndVariableNeighborhoodSearch
Whether to try Variable Neighborhood Search off

vubheuristic
Type of VUB heuristic -1

5.6.3 Detailed Options Description

In the following, we give a detailed description of all available CBC options.

autoScale: Whether to scale objective, rhs and bounds of problem if they look odd (experimental) ←↩

Range: boolean

Default: 0

biasLU: Whether factorization biased towards U ←↩

Range: UU, UX, LX, LL

Default: LX

5.6 CBC 1705

bscale: Whether to scale in barrier (and ordering speed) ←↩

Range: off, on, off1, on1, off2, on2

Default: off

cliqueCuts: Whether to use Clique cuts ←↩

Value 'on' enables the cut generator and CBC will try it in the branch and cut tree (see
cutDepth on how to fine tune the behavior). Value 'root' lets CBC run the cut gener-
ator generate only at the root node. Value 'ifmove' lets CBC use the cut generator in
the tree if it looks as if it is doing some good and moves the objective value. Value
'forceon' turns on the cut generator and forces CBC to use it at every node. Reference:

https://github.com/coin-or/Cgl/wiki/CglClique

Range: off, on, root, ifmove, forceOn, onglobal

Default: ifmove

clocktype: type of clock for time measurement ←↩

value meaning

cpu CPU clock

wall Wall clock

Default: wall

combine2Solutions: Whether to use crossover solution heuristic ←↩

This heuristic does branch and cut on the problem given by fixing variables which have the
same value in two or more solutions. It obviously only tries after two or more solutions. Value
'on' means to use the heuristic in each node of the tree, i.e. after preprocessing. Value 'before'
means use the heuristic only if option doHeuristics is used. Value 'both' means to use the
heuristic if option doHeuristics is used and during solve.

Range: off, on, both, before

Default: off

combineSolutions: Whether to use combine solution heuristic ←↩

This heuristic does branch and cut on given problem by just using variables which have
appeared in one or more solutions. It is obviously only tried after two or more solutions
have been found. Value 'on' means to use the heuristic in each node of the tree, i.e. after
preprocessing. Value 'before' means use the heuristic only if option doHeuristics is used. Value
'both' means to use the heuristic if option doHeuristics is used and during solve.

value meaning

off
on

both

before

onquick

bothquick

beforequick

0 Same as off. This is a deprecated setting.

1 Same as on. This is a deprecated setting.

https://github.com/coin-or/Cgl/wiki/CglClique

1706 Solver Manuals

Default: off

conflictcuts: Conflict Cuts ←↩

Equivalent to setting cutoffconstraint=conflict

Range: boolean

Default: 0

costStrategy: How to use costs for branching priorities ←↩

Value 'priorities' assigns highest priority to variables with largest absolute cost. This primitive
strategy can be surprisingly effective. Value 'columnorder' assigns the priorities 1, 2, 3, ... with
respect to the column ordering. Value '01first' ('01last') assignes two sets of priorities such
that binary variables get high (low) priority. Value 'length' assigns high priority to variables
that occur in many equations.

value meaning

off

priorities

columnOrder

01first

binaryfirst This is a deprecated setting. Please use 01first.

01last

binarylast This is a deprecated setting. Please use 01last.

length

singletons

nonzero

generalForce

Default: off

crash: Whether to create basis for problem ←↩

If crash is set to 'on' and there is an all slack basis then Clp will flip or put structural variables
into the basis with the aim of getting dual feasible. On average, dual simplex seems to perform
better without it and there are alternative types of 'crash' for primal simplex, e.g. 'idiot' or
'sprint'. A variant due to Solow and Halim which is as 'on' but just flips is also available.

Range: off, on, solow halim, lots, idiot1, idiot2, idiot3, idiot4, idiot5, idiot6, idiot7

Default: off

crossover: Whether to get a basic solution with the simplex algorithm after the barrier algorithm finished
←↩

Interior point algorithms do not obtain a basic solution. This option will crossover to a basic
solution suitable for ranging or branch and cut.

value meaning

on

off

presolve

0 Same as off. This is a deprecated setting.

1 Same as on. This is a deprecated setting.

5.6 CBC 1707

Default: on

cut passes root: Number of rounds that cut generators are applied in the root node ←↩
The default is to do 100 passes if the problem has less than 500 columns, 100 passes (but
stop if the drop in the objective function value is small) if the problem has less than 5000
columns, and 20 passes otherwise. A negative value -n means that n passes are also applied if
the objective does not drop.

Range: {-∞, ..., ∞}
Default: 20 or 100

Synonym: passCuts

cut passes slow: Maximum number of rounds for slower cut generators ←↩
Some cut generators are fairly slow - this limits the number of times they are tried. The cut
generators identified as 'may be slow' at present are Lift and project cuts and both versions of
Reduce and Split cuts.

Range: {-1, ..., ∞}
Default: 10

Synonym: slowcutpasses

cut passes tree: Number of rounds that cut generators are applied in the tree ←↩
The default is to do one pass. A negative value -n means that n passes are also applied if the
objective does not drop.

Range: {-∞, ..., ∞}
Default: 10

Synonym: passTreeCuts

cutDepth: Depth in tree at which to do cuts ←↩
Cut generators may be off, on, on only at the root node, or on if they look useful. Setting this
option to a positive value K let CBC call a cutgenerator on a node whenever the depth in the
tree is a multiple of K. The default of -1 lets CBC decide.

Range: {-1, ..., ∞}
Default: -1

cutLength: Length of a cut ←↩
At present this only applies to Gomory cuts. -1 (default) leaves as is. Any value >0 says that
all cuts ≤ this length can be generated both at root node and in tree. 0 says to use some
dynamic lengths. If value ≥10,000,000 then the length in tree is value%10000000 - so 10000100
means unlimited length at root and 100 in tree.

Range: {-1, ..., ∞}
Default: -1

cutoff: Bound on the objective value for all solutions ←↩
All solutions must have a better objective value than the value of this option. CBC also
updates this value whenever it obtains a solution to the value of the objective function of the
solution minus the cutoff increment.

Range: real

Default: GAMS cutoff

cutoffConstraint: Whether to use cutoff as constraint ←↩
For some problems, cut generators and general branching work better if the problem would be
infeasible if the cost is too high. If this option is enabled, the objective function is added as
a constraint which right hand side is set to the current cutoff value (objective value of best
known solution)

1708 Solver Manuals

value meaning

off
on

variable

forcevariable

conflict

0 Same as off. This is a deprecated setting.

1 Same as on. This is a deprecated setting.

Default: off

Synonym: constraintfromCutoff

cuts: Switches all cut generators on or off ←↩

This can be used to switch on or off all cut generators (apart from Reduce and Split). Then
one can turn individual ones off or on. Value 'on' enables the cut generator and CBC will try
it in the branch and cut tree (see cutDepth on how to fine tune the behavior). Value 'root'
lets CBC run the cut generator generate only at the root node. Value 'ifmove' lets CBC use
the cut generator in the tree if it looks as if it is doing some good and moves the objective
value. Value 'forceon' turns on the cut generator and forces CBC to use it at every node.

Range: off, on, root, ifmove, forceOn

Default: on

Synonym: cutsOnOff

denseThreshold: Threshold for using dense factorization ←↩

If processed problem ≤ this use dense factorization

Range: {-1, ..., 10000}

Default: -1

Dins: Whether to try Distance Induced Neighborhood Search ←↩

Value 'on' means to use the heuristic in each node of the tree, i.e. after preprocessing. Value
'before' means use the heuristic only if option doHeuristics is used. Value 'both' means to use
the heuristic if option doHeuristics is used and during solve.

value meaning

off
on

both

before

often

0 Same as off. This is a deprecated setting.

1 Same as on. This is a deprecated setting.

Default: off

diveSolves: Diving solve option ←↩

5.6 CBC 1709

If >0 then do up to this many solves. However, the last digit is ignored and used for extra
options: 1-3 enables fixing of satisfied integer variables (but not at bound), where 1 switches
this off for that dive if the dive goes infeasible, and 2 switches it off permanently if the dive
goes infeasible.

Range: {-1, ..., 200000}

Default: 100

DivingCoefficient: Whether to try Coefficient diving heuristic ←↩

Value 'on' means to use the heuristic in each node of the tree, i.e. after preprocessing. Value
'before' means use the heuristic only if option doHeuristics is used. Value 'both' means to use
the heuristic if option doHeuristics is used and during solve.

value meaning

off
on

both

before

0 Same as off. This is a deprecated setting.

1 Same as on. This is a deprecated setting.

Default: off

DivingFractional: Whether to try Fractional diving heuristic ←↩

Value 'on' means to use the heuristic in each node of the tree, i.e. after preprocessing. Value
'before' means use the heuristic only if option doHeuristics is used. Value 'both' means to use
the heuristic if option doHeuristics is used and during solve.

value meaning

off
on

both

before

0 Same as off. This is a deprecated setting.

1 Same as on. This is a deprecated setting.

Default: off

DivingGuided: Whether to try Guided diving heuristic ←↩

Value 'on' means to use the heuristic in each node of the tree, i.e. after preprocessing. Value
'before' means use the heuristic only if option doHeuristics is used. Value 'both' means to use
the heuristic if option doHeuristics is used and during solve.

value meaning

off
on

both

before

0 Same as off. This is a deprecated setting.

1 Same as on. This is a deprecated setting.

1710 Solver Manuals

Default: off

DivingLineSearch: Whether to try Linesearch diving heuristic ←↩

Value 'on' means to use the heuristic in each node of the tree, i.e. after preprocessing. Value
'before' means use the heuristic only if option doHeuristics is used. Value 'both' means to use
the heuristic if option doHeuristics is used and during solve.

value meaning

off
on

both

before

0 Same as off. This is a deprecated setting.

1 Same as on. This is a deprecated setting.

Default: off

DivingPseudoCost: Whether to try Pseudocost diving heuristic ←↩

Value 'on' means to use the heuristic in each node of the tree, i.e. after preprocessing. Value
'before' means use the heuristic only if option doHeuristics is used. Value 'both' means to use
the heuristic if option doHeuristics is used and during solve.

value meaning

off
on

both

before

0 Same as off. This is a deprecated setting.

1 Same as on. This is a deprecated setting.

Default: off

DivingRandom: Whether to try Diving heuristics ←↩

This switches on a random diving heuristic at various times. One may prefer to individually
turn diving heuristics on or off. Value 'on' means to use the heuristic in each node of the tree,
i.e. after preprocessing. Value 'before' means use the heuristic only if option doHeuristics is
used. Value 'both' means to use the heuristic if option doHeuristics is used and during solve.

value meaning

off
on

both

before

0 Same as off. This is a deprecated setting.

1 Same as on. This is a deprecated setting.

Default: off

Synonym: DivingSome

5.6 CBC 1711

DivingVectorLength: Whether to try Vectorlength diving heuristic ←↩

Value 'on' means to use the heuristic in each node of the tree, i.e. after preprocessing. Value
'before' means use the heuristic only if option doHeuristics is used. Value 'both' means to use
the heuristic if option doHeuristics is used and during solve.

value meaning

off
on

both

before

0 Same as off. This is a deprecated setting.

1 Same as on. This is a deprecated setting.

Default: off

dualPivot: Dual pivot choice algorithm ←↩

The Dantzig method is simple but its use is deprecated. Steepest is the method of choice and
there are two variants which keep all weights updated but only scan a subset each iteration.
Partial switches this on while automatic decides at each iteration based on information about
the factorization. The PE variants add the Positive Edge criterion. This selects incoming
variables to try to avoid degenerate moves. See also option psi.

value meaning

automatic

dantzig

partial

steepest

PEsteepest

PEdantzig

auto Same as automatic. This is a deprecated setting.

Default: automatic

dumpsolutions: name of solutions index gdx file for writing alternate solutions ←↩

The name of a solutions index gdx file for writing alternate solutions found by CBC. The GDX
file specified by this option will contain a set called index that contains the names of GDX
files with the individual solutions.

Range: string

Default: empty

dumpsolutionsmerged: name of gdx file for writing all alternate solutions ←↩

Range: string

Default: empty

dwHeuristic: Whether to try Dantzig Wolfe heuristic ←↩

1712 Solver Manuals

This heuristic is very very compute intensive. It tries to find a Dantzig Wolfe structure and
use that. Value 'on' means to use the heuristic in each node of the tree, i.e. after preprocessing.
Value 'before' means use the heuristic only if option doHeuristics is used. Value 'both' means
to use the heuristic if option doHeuristics is used and during solve.

Range: off, on, both, before

Default: off

expensiveStrong: Whether to do even more strong branching ←↩

Strategy for extra strong branching. 0 is normal strong branching. 1, 2, 4, and 6 does strong
branching on all fractional variables if at the root node (1), at depth less than modifier (2),
objective equals best possible (4), or at depth less than modifier and objective equals best
possible (6). 11, 12, 14, and 16 are like 1, 2, 4, and 6, respecitively, but do strong branching
on all integer (incl. non-fractional) variables. Values ≥ 100 are used to specify a depth limit
(value/100), otherwise 5 is used. If the values ≥ 100, then above rules are applied to value%100.

Range: {0, ..., ∞}

Default: 0

extraVariables: Allow creation of extra integer variables ←↩

Switches on a trivial re-formulation that introduces extra integer variables to group together
variables with same cost.

Range: {-∞, ..., ∞}

Default: 0

factorization: Which factorization to use ←↩

The default is to use the normal CoinFactorization, but other choices are a dense one, OSL's,
or one designed for small problems.

Range: normal, dense, simple, osl

Default: normal

feaspump: Whether to try the Feasibility Pump heuristic ←↩

This heuristic is due to Fischetti, Glover, and Lodi and uses a sequence of LPs to try and
get an integer feasible solution. Some fine tuning is available by options passFeasibilityPump
and pumpTune. Value 'on' means to use the heuristic in each node of the tree, i.e. after
preprocessing. Value 'before' means use the heuristic only if option doHeuristics is used. Value
'both' means to use the heuristic if option doHeuristics is used and during solve.

value meaning

off
on

both

before

0 Same as off. This is a deprecated setting.

1 Same as on. This is a deprecated setting.

5.6 CBC 1713

Default: on

Synonym: feasibilityPump

feaspump artcost: Costs ≥ this treated as artificials in feasibility pump ←↩

A value of 0.0 means off. Otherwise, variables with costs ≥ this are treated as artificial
variables and fixed to lower bound in feasibility pump.

Range: [0, ∞]

Default: 0

Synonym: artificialCost

feaspump cutoff: Fake cutoff for use in feasibility pump ←↩

A value of 0.0 means off. Otherwise, add a constraint forcing objective below this value in
feasibility pump

Range: real

Default: 0

Synonym: pumpCutoff

feaspump fracbab: Fraction in feasibility pump ←↩

After a pass in the feasibility pump, variables which have not moved about are fixed and if
the preprocessed model is smaller than this fraction of the original problem, a few nodes of
branch and bound are done on the reduced problem.

Range: [1e-05, 1.1]

Default: 0.5

Synonym: fractionforBAB

feaspump increment: Fake increment for use in feasibility pump ←↩

A value of 0.0 means off. Otherwise use as absolute increment to cutoff when solution found
in feasibility pump

Range: real

Default: 0

Synonym: pumpIncrement

feaspump passes: How many passes to do in the Feasibility Pump heuristic ←↩

Range: {0, ..., 10000}

Default: 20

Synonym: passFeasibilityPump

fixOnDj: Try heuristic based on fixing variables with reduced costs greater than this ←↩

1714 Solver Manuals

If this is set integer variables with reduced costs greater than this will be fixed before branch
and bound - use with extreme caution!

Range: real

Default: -1

flowCoverCuts: Whether to use Flow Cover cuts ←↩

Value 'on' enables the cut generator and CBC will try it in the branch and cut tree (see
cutDepth on how to fine tune the behavior). Value 'root' lets CBC run the cut gener-
ator generate only at the root node. Value 'ifmove' lets CBC use the cut generator in
the tree if it looks as if it is doing some good and moves the objective value. Value
'forceon' turns on the cut generator and forces CBC to use it at every node. Reference:

https://github.com/coin-or/Cgl/wiki/CglFlowCover

Range: off, on, root, ifmove, forceOn, onglobal

Default: ifmove

gamma: Whether to regularize barrier ←↩

Range: off, on, gamma, delta, onstrong, gammastrong, deltastrong

Default: off

gomoryCuts: Whether to use Gomory cuts ←↩

The original cuts - beware of imitations! Having gone out of favor, they are now more
fashionable as LP solvers are more robust and they interact well with other cuts. They
will almost always give cuts (although in this executable they are limited as to number of
variables in cut). However the cuts may be dense so it is worth experimenting (Long allows
any length). Value 'on' enables the cut generator and CBC will try it in the branch and
cut tree (see cutDepth on how to fine tune the behavior). Value 'root' lets CBC run the
cut generator generate only at the root node. Value 'ifmove' lets CBC use the cut generator
in the tree if it looks as if it is doing some good and moves the objective value. Value
'forceon' turns on the cut generator and forces CBC to use it at every node. Reference:
https://github.com/coin-or/Cgl/wiki/CglGomory

Range: off, on, root, ifmove, forceOn, onglobal, forceandglobal, forceLongOn, long

Default: ifmove

gomorycuts2: Whether to use alternative Gomory cuts ←↩

Value 'on' enables the cut generator and CBC will try it in the branch and cut tree (see
cutDepth on how to fine tune the behavior). Value 'root' lets CBC run the cut generator
generate only at the root node. Value 'ifmove' lets CBC use the cut generator in the tree if it
looks as if it is doing some good and moves the objective value. Value 'forceon' turns on the
cut generator and forces CBC to use it at every node. This version is by Giacomo Nannicini
and may be more robust than gomoryCuts.

Range: off, on, root, ifmove, forceOn, endonly, long, longroot, longifmove, forceLongOn,
longendonly

Default: off

Synonym: GMICuts

https://github.com/coin-or/Cgl/wiki/CglFlowCover
https://github.com/coin-or/Cgl/wiki/CglGomory
https://github.com/coin-or/Cgl/wiki/CglGomory

5.6 CBC 1715

greedyHeuristic: Whether to use a greedy heuristic ←↩

This heuristic tries to obtain a feasible solution by just fixing a percentage of variables and
then try a small branch and cut run. Value 'on' means to use the heuristic in each node of the
tree, i.e. after preprocessing. Value 'before' means use the heuristic only if option doHeuristics
is used. Value 'both' means to use the heuristic if option doHeuristics is used and during solve.

Range: off, on, both, before

Default: on

heuristics: Switches most primal heuristics on or off ←↩

This option can be used to switch on or off all heuristics that search for feasible solutions,
except for the local tree search, as it dramatically alters the search. Then individual heuristics
can be turned off or on.

Range: boolean

Default: 1

Synonym: heuristicsOnOff

hOptions: Heuristic options ←↩

Value 1 stops heuristics immediately if the allowable gap has been reached. Other values are
for the feasibility pump - 2 says do exact number of passes given, 4 only applies if an initial
cutoff has been given and says relax after 50 passes, while 8 will adapt the cutoff rhs after the
first solution if it looks as if the code is stalling.

Range: {-∞, ..., ∞}

Default: 0

idiotCrash: Whether to try idiot crash ←↩

This is a type of 'crash' which works well on some homogeneous problems. It works best on
problems with unit elements and rhs but will do something to any model. It should only be
used before the primal simplex algorithm. It can be set to -1 when the code decides for itself
whether to use it, 0 to switch off, or n > 0 to do n passes.

Range: {-1, ..., ∞}

Default: -1

increment: A valid solution must be at least this much better than last integer solution ←↩

Whenever a solution is found the bound on the objective value for new solutions is set to the
objective function of the found solution (in a minimization sense) plus this. If it is not set
then CBC will try and work one out, e.g. if all objective coefficients are multiples of 0.01 and
only integer variables have entries in the objective function, then the increment can be set to
0.01. Be careful if setting this to a negative value!

Range: real

Default: GAMS cheat

infeasibilityWeight: Each integer infeasibility is expected to cost this much ←↩

1716 Solver Manuals

A primitive way of deciding which node to explore next. Satisfying each integer infeasibility is
expected to cost this much.

Range: [0, ∞]

Default: 0

iterlim: Maximum number of iterations before stopping ←↩

For an LP, this is the maximum number of iterations to solve the LP. For a MIP, this option
is ignored.

Range: {0, ..., ∞}

Default: GAMS iterlim

Synonym: maxIterations

KKT: Whether to use KKT factorization in barrier ←↩

Range: boolean

Default: 0

knapsackCuts: Whether to use Knapsack cuts ←↩

Value 'on' enables the cut generator and CBC will try it in the branch and cut tree (see
cutDepth on how to fine tune the behavior). Value 'root' lets CBC run the cut gener-
ator generate only at the root node. Value 'ifmove' lets CBC use the cut generator in
the tree if it looks as if it is doing some good and moves the objective value. Value
'forceon' turns on the cut generator and forces CBC to use it at every node. Reference:

https://github.com/coin-or/Cgl/wiki/CglKnapsackCover

Range: off, on, root, ifmove, forceOn, onglobal, forceandglobal

Default: ifmove

lagomoryCuts: Whether to use Lagrangean Gomory cuts ←↩

This is a gross simplification of 'A Relax-and-Cut Framework for Gomory's Mixed-Integer Cuts'
by Matteo Fischetti & Domenico Salvagnin. This simplification just uses original constraints
while modifying objective using other cuts. So you don't use messy constraints generated by
Gomory etc. A variant is to allow non messy cuts e.g. clique cuts. So 'only' does this while
'clean' also allows integral valued cuts. 'End' is recommended and waits until other cuts have
finished before it does a few passes. The length options for gomory cuts are used.

Range: off, endonlyroot, endcleanroot, root, endonly, endclean, endboth, onlyaswell,
cleanaswell, bothaswell, onlyinstead, cleaninstead, bothinstead, onlyaswellroot, cleanaswellroot,
bothaswellroot

Default: off

latwomirCuts: Whether to use Lagrangean TwoMir cuts ←↩

This is a Lagrangean relaxation for TwoMir cuts. See lagomoryCuts for description of options.

Range: off, endonlyroot, endcleanroot, endbothroot, endonly, endclean, endboth, onlyaswell,
cleanaswell, bothaswell, onlyinstead, cleaninstead, bothinstead

Default: off

https://github.com/coin-or/Cgl/wiki/CglKnapsackCover

5.6 CBC 1717

liftAndProjectCuts: Whether to use Lift and Project cuts ←↩

These cuts may be expensive to compute. Value 'on' enables the cut generator and CBC will
try it in the branch and cut tree (see cutDepth on how to fine tune the behavior). Value 'root'
lets CBC run the cut generator generate only at the root node. Value 'ifmove' lets CBC use
the cut generator in the tree if it looks as if it is doing some good and moves the objective
value. Value 'forceon' turns on the cut generator and forces CBC to use it at every node.
Reference: https://github.com/coin-or/Cgl/wiki/CglLandP

Range: off, on, root, ifmove, forceOn

Default: off

localTreeSearch: Whether to use local tree search when a solution is found ←↩

The heuristic is from Fischetti and Lodi and is not really a heuristic although it can be used
as one (with limited functionality). It is not switched on when heuristics are switched on.

Range: boolean

Default: 0

loglevel: amount of output printed by CBC ←↩

Range: {0, ..., ∞}

Default: 1

maxFactor: Maximum number of iterations between refactorizations ←↩

If this is left at its default value of 200 then CLP will guess a value to use. CLP may decide
to re-factorize earlier for accuracy.

Range: {1, ..., ∞}

Default: 200

maxsol: Maximum number of solutions to save ←↩

Maximal number of solutions to store during search and to dump into gdx files if dumpsolutions
options is set.

Range: {0, ..., ∞}

Default: 100

Synonym: maxSavedSolutions

mipstart: whether it should be tried to use the initial variable levels as initial MIP solution ←↩

This option controls the use of advanced starting values for mixed integer programs. A setting
of 1 indicates that the variable level values should be checked to see if they provide an integer
feasible solution before starting optimization.

Range: boolean

Default: 0

mirCuts: Whether to use Mixed Integer Rounding cuts ←↩

https://github.com/coin-or/Cgl/wiki/CglLandP

1718 Solver Manuals

Value 'on' enables the cut generator and CBC will try it in the branch and cut tree (see
cutDepth on how to fine tune the behavior). Value 'root' lets CBC run the cut gener-
ator generate only at the root node. Value 'ifmove' lets CBC use the cut generator in
the tree if it looks as if it is doing some good and moves the objective value. Value
'forceon' turns on the cut generator and forces CBC to use it at every node. Reference:

https://github.com/coin-or/Cgl/wiki/CglMixedIntegerRounding2

Range: off, on, root, ifmove, forceOn, onglobal

Default: ifmove

Synonym: mixedIntegerRoundingCuts

multipleRootPasses: Do multiple root passes to collect cuts and solutions ←↩

Solve (in parallel, if enabled) the root phase this number of times, each with its own different
seed, and collect all solutions and cuts generated. The actual format is aabbcc where aa is the
number of extra passes; if bb is non zero, then it is number of threads to use (otherwise uses
threads setting); and cc is the number of times to do root phase. The solvers do not interact
with each other. However if extra passes are specified then cuts are collected and used in later
passes - so there is interaction there. Some parts of this implementation have their origin in
idea of Andrea Lodi, Matteo Fischetti, Michele Monaci, Domenico Salvagnin, and Andrea
Tramontani.

Range: {0, ..., ∞}

Default: 0

naiveHeuristics: Whether to try some stupid heuristic ←↩

This is naive heuristics which, e.g., fix all integers with costs to zero!. Value 'on' means to use
the heuristic in each node of the tree, i.e. after preprocessing. Value 'before' means use the
heuristic only if option doHeuristics is used. Value 'both' means to use the heuristic if option
doHeuristics is used and during solve.

value meaning

off
on

both

before

0 Same as off. This is a deprecated setting.

1 Same as on. This is a deprecated setting.

Default: off

nodeStrategy: What strategy to use to select the next node from the branch and cut tree ←↩

Normally before a feasible solution is found, CBC will choose a node with fewest infeasibilities.
Alternatively, one may choose tree-depth as the criterion. This requires the minimal amount
of memory, but may take a long time to find the best solution. Additionally, one may specify
whether up or down branches must be selected first (the up-down choice will carry on after a
first solution has been bound). The default choice 'hybrid' does breadth first on small depth
nodes and then switches to 'fewest'.

Range: hybrid, fewest, depth, upfewest, downfewest, updepth, downdepth

Default: fewest

https://github.com/coin-or/Cgl/wiki/CglMixedIntegerRounding2

5.6 CBC 1719

nodlim: node limit ←↩

Maximum number of nodes that are enumerated in the Branch and Bound tree search.

Range: {-1, ..., ∞}

Default: GAMS nodlim

Synonyms: maxNodes nodelim

optca: Stop when gap between best possible and best less than this ←↩

If the gap between best known solution and the best possible solution is less than this value,
then the search will be terminated. Also see ratioGap.

Range: [0, ∞]

Default: GAMS optca

Synonym: allowableGap

optcr: Stop when gap between best possible and best known is less than this fraction of larger of two ←↩

If the gap between the best known solution and the best possible solution is less than
this fraction of the objective value at the root node then the search will terminate. See
'allowableGap' for a way of using absolute value rather than fraction.

Range: [0, ∞]

Default: GAMS optcr

Synonym: ratioGap

OrbitalBranching: Whether to try orbital branching ←↩

This switches on Orbital branching. Value 'on' just adds orbital, 'strong' tries extra fixing
in strong branching. 'cuts' just adds global cuts to break symmetry. 'fastish' only computes
symmetry at root. 'lightweight' is as on where computation seems cheap

Range: off, on, strong, force, simple, fastish, lightweight, moreprinting, cuts, cutslight

Default: off

parallelmode: whether to run opportunistic or deterministic ←↩

Determines whether a parallel MIP search (threads > 1) should be done in a deterministic
(i.e., reproducible) way or in a possibly faster but not necessarily reproducible way

Range: opportunistic, deterministic

Default: deterministic

passPresolve: How many passes in presolve ←↩

Normally Presolve does 10 passes but you may want to do less to make it more lightweight
or do more if improvements are still being made. As Presolve will return if nothing is being
taken out, you should not normally need to use this fine tuning.

Range: {-200, ..., 100}

Default: 5

1720 Solver Manuals

perturbation: Whether to perturb the problem ←↩

Perturbation helps to stop cycling, but CLP uses other measures for this. However, large
problems and especially ones with unit elements and unit right hand sides or costs benefit
from perturbation. Normally CLP tries to be intelligent, but one can switch this off.

Range: boolean

Default: 1

pivotAndComplement: Whether to try Pivot and Complement heuristic ←↩

Value 'on' means to use the heuristic in each node of the tree, i.e. after preprocessing. Value
'before' means use the heuristic only if option doHeuristics is used. Value 'both' means to use
the heuristic if option doHeuristics is used and during solve.

Range: off, on, both, before

Default: off

pivotAndFix: Whether to try Pivot and Fix heuristic ←↩

Value 'on' means to use the heuristic in each node of the tree, i.e. after preprocessing. Value
'before' means use the heuristic only if option doHeuristics is used. Value 'both' means to use
the heuristic if option doHeuristics is used and during solve.

value meaning

off
on

both

before

0 Same as off. This is a deprecated setting.

1 Same as on. This is a deprecated setting.

Default: off

preprocess: Whether to use integer preprocessing ←↩

This tries to reduce size of model in a similar way to presolve and it also tries to strengthen the
model - this can be very useful and is worth trying. Value 'save' saves the presolved problem
to a file presolved.mps. Value 'equal' will turn inequality-cliques into equalities. Value 'sos'
lets CBC search for rows with upper bound 1 and where all nonzero coefficients are 1 and
creates special ordered sets if the sets are not overlapping and all integer variables (except for
at most one) are in the sets. Value 'trysos' is same as 'sos', but allows any number of integer
variables outside of sets. Value 'equalall' lets CBC turn all valid inequalities into equalities by
adding integer slack variables.

Range: off, on, save, equal, sos, trysos, equalall, strategy, aggregate, forcesos, stopaftersaving

Default: sos

presolve: Whether to presolve problem ←↩

Presolve analyzes the model to find such things as redundant equations, equations which fix
some variables, equations which can be transformed into bounds, etc. For the initial solve of
any problem this is worth doing unless one knows that it will have no effect. Option 'on' will
normally do 5 passes, while using 'more' will do 10.

5.6 CBC 1721

value meaning

on

off
more

0 Same as off. This is a deprecated setting.

1 Same as on. This is a deprecated setting.

Default: on

primalPivot: Primal pivot choice algorithm ←↩

The Dantzig method is simple but its use is deprecated. Exact devex is the method of choice
and there are two variants which keep all weights updated but only scan a subset each iteration.
Partial switches this on while 'change' initially does 'dantzig' until the factorization becomes
denser. This is still a work in progress. The PE variants add the Positive Edge criterion. This
selects incoming variables to try to avoid degenerate moves. See also Towhidi, M., Desrosiers,
J., Soumis, F., The positive edge criterion within COIN-OR's CLP; Omer, J., Towhidi, M.,
Soumis, F., The positive edge pricing rule for the dual simplex.

value meaning

automatic

exact

dantzig

partial

steepest

change

sprint

PEsteepest

PEdantzig

auto Same as automatic. This is a deprecated setting.

Default: automatic

primalWeight: Initially algorithm acts as if it costs this much to be infeasible ←↩

The primal algorithm in Clp is a single phase algorithm as opposed to a two phase algorithm
where you first get feasible then optimal. So Clp is minimizing this weight times the sum of
primal infeasibilities plus the true objective function (in minimization sense). Too high a value
may mean more iterations, while too low a value means the algorithm may iterate into the
wrong directory for long and then has to increase the weight in order to get feasible.

Range: [1e-20, ∞]

Default: 1e+10

printfrequency: frequency of status prints ←↩

Controls the number of nodes that are evaluated between status prints.

Range: {0, ..., ∞}

Default: 0

1722 Solver Manuals

probingCuts: Whether to use Probing cuts ←↩

Value 'on' enables the cut generator and CBC will try it in the branch and cut tree (see cutDepth
on how to fine tune the behavior). Value 'root' lets CBC run the cut generator generate only
at the root node. Value 'ifmove' lets CBC use the cut generator in the tree if it looks as if it is
doing some good and moves the objective value. Value 'forceon' turns on the cut generator and
forces CBC to use it at every node. Value 'forceOnBut' turns on probing and forces CBC to do
probing at every node, but does only probing, not strengthening etc. Value 'strong' forces CBC
to strongly do probing at every node, that is, also when CBC would usually turn it off because
it hasn't found something. Value 'forceonbutstrong' is like 'forceonstrong', but does only
probing (column fixing) and turns off row strengthening, so the matrix will not change inside
the branch and bound. Reference: https://github.com/coin-or/Cgl/wiki/CglProbing

Range: off, on, root, ifmove, forceOn, onglobal, forceonglobal, forceOnBut, forceOnStrong,
forceOnButStrong, strongRoot

Default: ifmove

proximitySearch: Whether to do proximity search heuristic ←↩

This heuristic looks for a solution close to the incumbent solution (Fischetti and Monaci, 2012).
The idea is to define a sub-MIP without additional constraints but with a modified objective
function intended to attract the search in the proximity of the incumbent. The approach
works well for 0-1 MIPs whose solution landscape is not too irregular (meaning the there is
reasonable probability of finding an improved solution by flipping a small number of binary
variables), in particular when it is applied to the first heuristic solutions found at the root
node. Value 'on' means to use the heuristic in each node of the tree, i.e. after preprocessing.
Value 'before' means use the heuristic only if option doHeuristics is used. Value 'both' means
to use the heuristic if option doHeuristics is used and during solve.

value meaning

off
on

both

before

10

100

300

0 Same as off. This is a deprecated setting.

1 Same as on. This is a deprecated setting.

Default: off

psi: Two-dimension pricing factor for Positive Edge criterion ←↩

The Positive Edge criterion has been added to select incoming variables to try and avoid
degenerate moves. Variables not in the promising set have their infeasibility weight multiplied
by psi, so 0.01 would mean that if there were any promising variables, then they would always
be chosen, while 1.0 effectively switches the algorithm off. There are two ways of switching this
feature on. One way is to set psi to a positive value and then the Positive Edge criterion will
be used for both primal and dual simplex. The other way is to select PEsteepest in dualpivot
choice (for example), then the absolute value of psi is used. Code donated by Jeremy Omer.
See Towhidi, M., Desrosiers, J., Soumis, F., The positive edge criterion within COIN-OR's
CLP; Omer, J., Towhidi, M., Soumis, F., The positive edge pricing rule for the dual simplex.

Range: [-1.1, 1.1]

Default: -0.5

https://github.com/coin-or/Cgl/wiki/CglProbing

5.6 CBC 1723

randomizedRounding: Whether to try randomized rounding heuristic ←↩

Value 'on' means to use the heuristic in each node of the tree, i.e. after preprocessing. Value
'before' means use the heuristic only if option doHeuristics is used. Value 'both' means to use
the heuristic if option doHeuristics is used and during solve.

value meaning

off
on

both

before

0 Same as off. This is a deprecated setting.

1 Same as on. This is a deprecated setting.

Default: off

randomSeedCbc: Random seed for Cbc ←↩

Allows initialization of the random seed for pseudo-random numbers used in heuristics such as
the Feasibility Pump to decide whether to round up or down. The special value of 0 lets Cbc
use the time of the day for the initial seed.

Range: {-1, ..., ∞}

Default: -1

Synonym: randomCbcSeed

randomSeedClp: Random seed for Clp ←↩

Initialization of the random seed for pseudo-random numbers used to break ties in degenerate
problems. This may yield a different continuous optimum and, in the context of Cbc, different
cuts and heuristic solutions. The special value of 0 lets CLP use the time of the day for the
initial seed.

Range: {0, ..., ∞}

Default: 1234567

Synonym: randomSeed

reduceAndSplitCuts: Whether to use Reduce-and-Split cuts ←↩

These cuts may be expensive to generate. Value 'on' enables the cut generator and CBC will
try it in the branch and cut tree (see cutDepth on how to fine tune the behavior). Value 'root'
lets CBC run the cut generator generate only at the root node. Value 'ifmove' lets CBC use
the cut generator in the tree if it looks as if it is doing some good and moves the objective
value. Value 'forceon' turns on the cut generator and forces CBC to use it at every node.
Reference: https://github.com/coin-or/Cgl/wiki/CglRedSplit

Range: off, on, root, ifmove, forceOn

Default: off

reduceAndSplitCuts2: Whether to use Reduce-and-Split cuts - style 2 ←↩

https://github.com/coin-or/Cgl/wiki/CglRedSplit

1724 Solver Manuals

This switches on reduce and split cuts (either at root or in entire tree). This version is by
Giacomo Nannicini based on Francois Margot's version. Standard setting only uses rows in
tableau ≤ 256, long uses all. These cuts may be expensive to generate. See option cuts for
more information on the possible values.

Range: off, on, root, longOn, longRoot

Default: off

Synonym: reduce2AndSplitCuts

Rens: Whether to try Relaxation Enforced Neighborhood Search ←↩

Value 'on' means to use the heuristic in each node of the tree, i.e. after preprocessing. Value
'before' means use the heuristic only if option doHeuristics is used. Value 'both' means to use
the heuristic if option doHeuristics is used and during solve. Value 'on' just does 50 nodes.
200, 1000, and 10000 does that many nodes.

value meaning

off
on

both

before

200

1000

10000

dj

djbefore

usesolution

0 Same as off. This is a deprecated setting.

1 Same as on. This is a deprecated setting.

Default: off

residualCapacityCuts: Whether to use Residual Capacity cuts ←↩

Value 'on' enables the cut generator and CBC will try it in the branch and cut tree (see
cutDepth on how to fine tune the behavior). Value 'root' lets CBC run the cut gener-
ator generate only at the root node. Value 'ifmove' lets CBC use the cut generator in
the tree if it looks as if it is doing some good and moves the objective value. Value
'forceon' turns on the cut generator and forces CBC to use it at every node. Reference:

https://github.com/coin-or/Cgl/wiki/CglResidualCapacity

Range: off, on, root, ifmove, forceOn

Default: off

reslim: maximum seconds ←↩

Range: [-1, ∞]

Default: GAMS reslim

Synonym: seconds

Rins: Whether to try Relaxed Induced Neighborhood Search ←↩

Value 'on' means to use the heuristic in each node of the tree, i.e. after preprocessing. Value
'before' means use the heuristic only if option doHeuristics is used. Value 'both' means to use
the heuristic if option doHeuristics is used and during solve.

https://github.com/coin-or/Cgl/wiki/CglResidualCapacity

5.6 CBC 1725

value meaning

off
on

both

before

often

0 Same as off. This is a deprecated setting.

1 Same as on. This is a deprecated setting.

Default: off

roundingHeuristic: Whether to use simple (but effective) Rounding heuristic ←↩

Value 'on' means to use the heuristic in each node of the tree, i.e. after preprocessing. Value
'before' means use the heuristic only if option doHeuristics is used. Value 'both' means to use
the heuristic if option doHeuristics is used and during solve.

value meaning

off
on

both

before

0 Same as off. This is a deprecated setting.

1 Same as on. This is a deprecated setting.

Default: on

scaling: Whether to scale problem ←↩

Scaling can help in solving problems which might otherwise fail because of lack of accuracy. It
can also reduce the number of iterations. It is not applied if the range of elements is small.
When the solution is evaluated in the unscaled problem, it is possible that small primal and/or
dual infeasibilities occur. Option 'equilibrium' uses the largest element for scaling. Option
'geometric' uses the squareroot of the product of largest and smallest element. Option 'auto'
let CLP choose a method that gives the best ratio of the largest element to the smallest one.

value meaning

off

equilibrium

geometric

automatic

dynamic

rowsonly

auto Same as automatic. This is a deprecated setting.

Default: automatic

smallFactorization: Threshold for using small factorization ←↩

If processed problem ≤ this use small factorization

1726 Solver Manuals

Range: {-1, ..., 10000}

Default: -1

sollim: Maximum number of feasible solutions to get ←↩

Range: {1, ..., ∞}

Default: ∞

Synonym: maxSolutions

solvefinal: final solve of MIP with fixed discrete variables ←↩

Whether the MIP with discrete variables fixed to solution values should be solved after CBC
finished.

Range: boolean

Default: 1

solvetrace: name of trace file for solving information ←↩

Name of file for writing solving progress information during solve.

Range: string

Default: empty

solvetracenodefreq: frequency in number of nodes for writing to solve trace file ←↩

Range: {0, ..., ∞}

Default: 100

solvetracetimefreq: frequency in seconds for writing to solve trace file ←↩

Range: [0, ∞]

Default: 5

sosPrioritize: How to deal with SOS priorities ←↩

This sets priorities for SOS. Values 'high' and 'low' just set a priority relative to the for integer
variables. Value 'orderhigh' gives first highest priority to the first SOS and integer variables a
low priority. Value 'orderlow' gives integer variables a high priority then SOS in order.

Range: off, high, low, orderhigh, orderlow

Default: off

sparseFactor: Whether factorization treated as sparse ←↩

Range: boolean

Default: 1

special: options passed unseen to CBC ←↩

5.6 CBC 1727

This parameter let you specify CBC options which are not supported by the GAMS/CBC
interface. The string value given to this parameter is split up into parts at each space and
added to the array of parameters given to CBC (in front of the -solve command). Hence, you
can use it like the command line parameters for the CBC standalone version.

Range: string

Default: empty

sprintCrash: Whether to try sprint crash ←↩

For long and thin problems this method may solve a series of small problems created by taking
a subset of the columns. The idea as 'Sprint' was introduced by J. Forrest after an LP code of
that name of the 60's which tried the same tactic (not totally successfully). CPLEX calls it
'sifting'. -1 lets CLP automatically choose the number of passes, 0 is off, n is number of passes

Range: {-1, ..., ∞}

Default: -1

Synonym: sifting

startalg: LP solver for root node ←↩

Determines the algorithm to use for an LP or the initial LP relaxation if the problem is a MIP.

value meaning

primal Primal Simplex algorithm

dual Dual Simplex algorithm

barrier Primal-dual predictor-corrector algorithm

Default: dual

strategy: Switches on groups of features ←↩

This turns on newer features. Use 0 for easy problems, 1 is default, 2 is aggressive. 1 uses
Gomory cuts with a tolerance of 0.01 at the root node, does a possible restart after 100 nodes if
many variables could be fixed, activates a diving and RINS heuristic, and makes the feasibility
pump more aggressive.

Range: {0, ..., 2}

Default: 1

strongBranching: Number of variables to look at in strong branching ←↩

In order to decide which variable to branch on, the code will choose up to this number of
unsatisfied variables to try minimal up and down branches on. Then the most effective one is
chosen. If a variable is branched on many times then the previous average up and down costs
may be used - see also option trustPseudoCosts.

Range: {0, ..., ∞}

Default: 5

substitution: How long a column to substitute for in presolve ←↩

1728 Solver Manuals

Normally Presolve gets rid of 'free' variables when there are no more than 3 coefficients in a
row. If you increase this, the number of rows may decrease but the number of coefficients may
increase.

Range: {0, ..., 10000}

Default: 3

threads: Number of threads to try and use ←↩

If set to 0, then multithreading of Cbc itself is disabled, but all available processors are made
available for linear algebra subroutines.

Range: {0, ..., 99}

Default: GAMS threads

tol dual: For an optimal solution no dual infeasibility may exceed this value ←↩

Normally the default tolerance is fine, but one may want to increase it a bit if the dual simplex
algorithm seems to be having a hard time. One method which can be faster is to use a large
tolerance e.g. 1.0e-4 and the dual simplex algorithm and then to clean up the problem using
the primal simplex algorithm with the correct tolerance (remembering to switch off presolve
for this final short clean up phase).

Range: [1e-20, ∞]

Default: 1e-07

Synonym: dualTolerance

tol integer: For a feasible solution no integer variable may be more than this away from an integer value
←↩

Beware of setting this smaller than the primal feasibility tolerance.

Range: [1e-20, 0.5]

Default: 1e-07

Synonym: integerTolerance

tol presolve: Tolerance to use in presolve ←↩

One may want to increase this tolerance if presolve says the problem is infeasible and one has
awkward numbers and is sure that the problem is really feasible.

Range: [1e-20, ∞]

Default: 1e-08

Synonym: preTolerance

tol primal: For a feasible solution no primal infeasibility, i.e., constraint violation, may exceed this value
←↩

5.6 CBC 1729

Normally the default tolerance is fine, but one may want to increase it a bit if the primal
simplex algorithm seems to be having a hard time.

Range: [1e-20, ∞]

Default: 1e-07

Synonym: primalTolerance

trustPseudoCosts: Number of branches before we trust pseudocosts ←↩

Using strong branching computes pseudo-costs. This parameter determines after how many
branches for a variable we just trust the pseudo costs and do not do any more strong branching.

Range: {-3, ..., ∞}

Default: 10

twoMirCuts: Whether to use Two phase Mixed Integer Rounding cuts ←↩

Value 'on' enables the cut generator and CBC will try it in the branch and cut tree (see
cutDepth on how to fine tune the behavior). Value 'root' lets CBC run the cut gener-
ator generate only at the root node. Value 'ifmove' lets CBC use the cut generator in
the tree if it looks as if it is doing some good and moves the objective value. Value
'forceon' turns on the cut generator and forces CBC to use it at every node. Reference:

https://github.com/coin-or/Cgl/wiki/CglTwomir

Range: off, on, root, ifmove, forceOn, onglobal, forceandglobal, forceLongOn

Default: root

VndVariableNeighborhoodSearch: Whether to try Variable Neighborhood Search ←↩

Value 'on' means to use the heuristic in each node of the tree, i.e. after preprocessing. Value
'before' means use the heuristic only if option doHeuristics is used. Value 'both' means to use
the heuristic if option doHeuristics is used and during solve.

Range: off, on, both, before, intree

Default: off

vubheuristic: Type of VUB heuristic ←↩

This heuristic tries and fix some integer variables.

Range: {-2, ..., 20}

Default: -1

writemps: create MPS file for problem ←↩

Write the problem formulation in MPS format. The parameter value is the name of the MPS
file.

Range: string

Default: empty

zeroHalfCuts: Whether to use zero half cuts ←↩

Value 'on' enables the cut generator and CBC will try it in the branch and cut tree (see
cutDepth on how to fine tune the behavior). Value 'root' lets CBC run the cut generator
generate only at the root node. Value 'ifmove' lets CBC use the cut generator in the tree if it
looks as if it is doing some good and moves the objective value. Value 'forceon' turns on the
cut generator and forces CBC to use it at every node. This implementation was written by
Alberto Caprara.

Range: off, on, root, ifmove, forceOn, onglobal

Default: ifmove

https://github.com/coin-or/Cgl/wiki/CglTwomir

1730 Solver Manuals

5.7 CONOPT 3

Author

Arne Drud, ARKI Consulting and Development A/S, Bagsvaerd, Denmark

5.7.1 Introduction

This documentation is for CONOPT3. We will refer to CONOPT3 as CONOPT in the following. Note
that there is also the improved version CONOPT4.

Nonlinear models created with GAMS must be solved with a nonlinear programming (NLP) algorithm.
Currently, there is a large number of different solvers available and the number is growing.

The most important distinction between the solvers is whether they attempt to find a local or a global
solution. Solvers that attempt to find a global solution (so called Global Solvers) can usually not solve
very large models. As a contrast most Local Solvers can work with much larger models, and models with
over 10,000 variables and constraints are not unusual. If the model has the right mathematical properties,
e.g. is convex, then Local Solvers will find a global optimum. Unfortunately, the mathematical machinery
for testing whether a general NLP model is convex or not has not yet been developed (and is expected to
be in the class or hard problems).

It is almost impossible to predict how difficult it is to solve a particular model with a particular algorithm,
especially for NLP models, so GAMS cannot select the best algorithm for you automatically. When
GAMS is installed you must select one of the nonlinear programming algorithms as the default solver for
NLP models. If you want to switch between algorithms for a particular model you may add the statement
Option NLP = <solvername>, in your GAMS source file before the Solve statement, you may add NLP

= <solvername> on the GAMS command line or by rerunning the gamsinst program.

The only reliable way to find which solver to use for a particular class of models is so far to experiment.
However, there are a few rules of thumb:

CONOPT is well suited for models with very nonlinear constraints. If you experience that a solver has
problems maintaining feasibility during the optimization you should try CONOPT. On the other hand, if
you have a model with few nonlinearities outside the objective function then other solvers could be the
best solver.

CONOPT has a fast method for finding a first feasible solution that is particularly well suited for models
with few degrees of freedom. If you have a model with roughly the same number of constraints as variable
you should try CONOPT. CONOPT can also be used to solve square systems of equations without an
objective function corresponding to the GAMS model class CNS - Constrained Nonlinear System.

CONOPT can use second derivatives. If the number of variables is much larger than the number of
constraints CONOPT will use second derivatives and overall progress can be considerably faster than
for MINOS or SNOPT. IPOPT and KNITRO will also use second derivatives, but the method is very
different and it is not possible to predict which solver will be better.

CONOPT has a preprocessing step in which recursive equations and variables are solved and removed
from the model. If you have a model where many equations can be solved one by one then CONOPT will
take advantage of this property. Similarly, intermediate variables only used to define objective terms are
eliminated from the model and the constraints are moved into the objective function.

CONOPT has many built-in tests and messages, and many models that can and should be improved by
the modeler are rejected with a constructive message. CONOPT is therefore also a helpful debugging tool
during model development. The best solver for the final, debugged model may or may not be CONOPT.

5.7 CONOPT 3 1731

CONOPT has been designed for large and sparse models. This means that both the number of variables
and equations can be large. Indeed, NLP models with over 100,000 equations and variables have been
solved successfully, and CNS models with over 1,000,000 equations and variables have also been solved.
The components used to build CONOPT have been selected under the assumptions that the model is
sparse, i.e. that most functions only depend on a small number of variables. CONOPT can also be used
for denser models, but the performance will suffer significantly.

CONOPT is designed for models with smooth functions, but it can also be applied to models that do
not have differentiable functions, in GAMS called DNLP models. However, CONOPT will use the same
algorithm used for a real NLP model and it will search for a point that satisfies standard first-order
optimality conditions without taking into account that parts of the model could be non-smooth or non-
differentiable. The lack of smoothness may confuse the algorithm in CONOPT causing slow convergence,
and a point that satisfies standard first-order optimality conditions may not even exist. There are therefore
no guaranties whatsoever for this class of models. If CONOPT terminates with a locally optimal solution
then the solution will indeed be locally optimal. However, you will sometimes get termination messages
like ”Convergence too slow” or ”No change in objective although the reduced gradient is greater than the
tolerance” that indicate unsuccessful termination. The final point may or may not be locally optimal. If
possible, you should try to reformulate a DNLP model to an equivalent or approximately equivalent form
as described in section NLP and DNLP Models .

Most modelers should not be concerned with algorithmic details such as choice of algorithmic sub-
components or tolerances. CONOPT has considerable build-in logic that selects a solution approach
that seems to be best suited for the type of model at hand, and the approach is adjusted dynamically as
information about the behavior of the model is collected and updated. The description of the CONOPT
algorithm has therefore been moved to an appendix (Appendix A) and most modelers can skip it. However,
if you are solving very large or complex models or if you are experiencing solution difficulties you may
benefit from using non-standard tolerances or options, in which case you will need some understanding of
what CONOPT is doing to your model. Some guidelines for selecting options can be found at the end of
Appendix A and a list of all options and tolerances is shown in Appendix B.

The main text of this User's Guide will give a short overview over the iteration output you
will see on the screen (section Iteration Output), and explain the termination messages (sec-
tion CONOPT Termination Messages). We will then discuss function evaluation errors (section
Function Evaluation Errors), the use of options (section The CONOPT Options File), and give a
CONOPT perspective on good model formulation including topics such as initial values and bounds,
simplification of expressions, and scaling (section Hints on Good Model Formulation). Finally, we will
discuss the difference between NLP and DNLP models (section NLP and DNLP Models).

5.7.2 Iteration Output

On most machines you will by default get a logline on your screen or terminal at regular intervals. The
iteration log may look something like this:

CONOPT 3 Jul 4, 2012 23.9.4 WEX 35892.35906 WEI x86_64/MS Windows

C O N O P T 3 version 3.15G

Copyright (C) ARKI Consulting and Development A/S

Bagsvaerdvej 246 A

DK-2880 Bagsvaerd, Denmark

Iter Phase Ninf Infeasibility RGmax NSB Step InItr MX OK

0 0 1.6354151782E+01 (Input point)

Pre-triangular equations: 2

Post-triangular equations: 1

1732 Solver Manuals

1 0 1.5354151782E+01 (After pre-processing)

2 0 3.0983571843E+00 (After scaling)

10 0 12 3.0814290456E+00 0.0E+00 T T

20 0 12 3.0814290456E+00 0.0E+00 T T

30 0 13 3.0814290456E+00 0.0E+00 F F

40 0 18 2.3738740159E+00 2.3E-02 T T

50 0 23 2.1776589484E+00 0.0E+00 F F

Iter Phase Ninf Infeasibility RGmax NSB Step InItr MX OK

60 0 33 2.1776589484E+00 0.0E+00 T T

70 0 43 2.1776589484E+00 0.0E+00 F F

80 0 53 2.1776589484E+00 0.0E+00 F F

90 0 63 2.1776589484E+00 0.0E+00 F F

100 0 73 2.1776589484E+00 0.0E+00 F F

110 0 83 2.1776589484E+00 0.0E+00 F F

120 0 93 2.1776589484E+00 0.0E+00 F F

130 0 103 2.1776589484E+00 0.0E+00 F F

140 0 113 2.1776589484E+00 0.0E+00 T T

150 0 119 8.7534351971E-01 0.0E+00 F F

Iter Phase Ninf Infeasibility RGmax NSB Step InItr MX OK

160 0 124 9.5022881759E-01 0.0E+00 F F

170 0 134 9.5022881759E-01 0.0E+00 F F

180 0 144 9.5022881759E-01 0.0E+00 F F

190 0 154 9.5022881759E-01 0.0E+00 F F

201 1 160 9.4182618946E-01 4.3E+01 134 2.4E-06 T T

206 1 130 8.2388503304E-01 9.5E+01 138 1.0E+00 13 T T

211 1 50 1.0242911941E-01 6.9E+00 84 7.2E-01 24 T T

216 1 16 2.6057507770E-02 1.3E+00 52 6.1E-01 17 T T

221 1 5 7.2858773666E-04 6.1E-03 38 6.0E-01 7 F F

** Feasible solution. Value of objective = 1.00525015566

Iter Phase Ninf Objective RGmax NSB Step InItr MX OK

226 3 1.0092586645E+00 4.4E-04 38 1.0E+00 3 T T

231 3 1.0121749760E+00 1.4E+00 24 4.8E-01 9 T T

236 3 1.0128148550E+00 4.8E-06 13 5.8E-02 12 F T

241 3 1.0128161551E+00 2.5E-06 12 9.1E+03 F T

246 4 1.0128171043E+00 1.2E-07 13 1.0E+00 3 F T

247 4 1.0128171043E+00 5.7E-08 13

** Optimal solution. Reduced gradient less than tolerance.

The first few lines identify the version of CONOPT you use.

The first iterations have a special interpretation: iteration 0 represents the initial point exactly as received
from GAMS, iteration 1 represent the point that is the result of CONOPT's pre-processing, and iteration
2 represents the same point after scaling (even if scaling is turned off).

The remaining iterations are characterized by the value of ”Phase” in column 2. The model is infeasible
during Phase 0, 1, and 2 and the Sum of Infeasibilities in column 4 (labeled ”Infeasibility”) is being
minimized; the model is feasible during Phase 3 and 4 and the actual objective function, also shown in
column 4 (now labeled ”Objective”), is minimized or maximized. Phase 0 iterations are Newton-like
iterations. They are very cheap so you should not be concerned if there are many of these Phase 0
iterations. During Phase 1 and 3 the model behaves almost linearly and CONOPT applies special linear
iterations that take advantage of the linearity. These iterations are sometimes augmented with some inner
”Sequential Linear Programming” (SLP) iterations, indicated by a number of inner SLP iterations in
the ”InItr” column. During Phase 2 and 4 the model behaves more nonlinear and most aspects of the

5.7 CONOPT 3 1733

iterations are therefore changed: the line search is more elaborate, and CONOPT needs second order
information to improve the convergence. For small and simple models CONOPT will approximate second
order information as a byproduct of the line searches. For larger and more complex models CONOPT will
use some inner ”Sequential Quadratic Programming” (SQP) iterations based on exact second derivatives.
These SQP iterations are identified by the number of inner SQP iterations in the ”InItr” column.

The column ”NSB” for Number of SuperBasics defines the degree of freedom or the dimension of the
current search space, and ”rgmax” measures the largest reduced gradient among the non-optimal variables.
Rgmax should eventually converge towards zero, but convergence is not expected to be monotone. The
last two columns labeled ”MX” and ”OK” gives information about the line search: OK = T means that
the line search was well-behaved, and OK = F means that the line search was terminated before an
optimal step length was found because it was not possible to find a feasible solution for large step lengths.
MX = T means that the line search was terminated by a variable reaching a bound (always combined
with OK = T), and MX = F means that the step length was determined by nonlinearities. If OK = T
then the step length was optimal; if OK = F then the constraints were too nonlinear to allow CONOPT
to make a full optimal step.

5.7.3 CONOPT Termination Messages

CONOPT may terminate in a number of ways. This section will show most of the termination
messages and explain their meaning. It will also show the Model Status returned to GAMS in
<model>.modelStat, where <model> represents the name of the GAMS model. The Solver Status
returned in <model>.solveStat will be given if it is different from 1 (Normal Completion). We will in
all cases first show the message from CONOPT followed by a short explanation. The first 4 messages are
used for optimal solutions and CONOPT will return modelStat = 2 (Locally Optimal), except as noted
below:

** Optimal solution. There are no superbasic variables.

The solution is a locally optimal corner solution. The solution is determined by constraints only, and it is
usually very accurate. In some cases CONOPT can determine that the solution is globally optimal and it
will return modelStat = 1 (Optimal).

** Optimal solution. Reduced gradient less than tolerance.

The solution is a locally optimal interior solution. The largest component of the reduced gradient is less
than the tolerance rtredg with default value 1.e-7. The value of the objective function is very accurate
while the values of the variables are less accurate due to a flat objective function in the interior of the
feasible area.

** Optimal solution. The error on the optimal objective function

value estimated from the reduced gradient and the estimated

Hessian is less than the minimal tolerance on the objective.

The solution is a locally optimal interior solution. The largest component of the reduced gradient is larger
than the tolerance rtredg. However, when the reduced gradient is scaled with information from the
estimated Hessian of the reduced objective function the solution seems optimal. For this to happen the
objective must be large or the reduced objective must have large second derivatives so it is advisable to
scale the model. See the sections on ”Scaling” and ”Using the Scale Option in GAMS” for details on how
to scale a model.

1734 Solver Manuals

** Optimal solution. Convergence too slow. The change in

objective has been less than xx.xx for xx consecutive

iterations.

CONOPT stops with a solution that seems optimal. The solution process is stopped because of slow
progress. The largest component of the reduced gradient is greater than the optimality tolerance rtredg,
but less than rtredg multiplied by the largest Jacobian element divided by 100. The model must have
large derivatives so it is advisable to scale it.

The four messages above all exist in versions where ”Optimal” is replaced by ”Infeasible” and modelStat
will be 5 (Locally Infeasible) or 4 (Infeasible). The infeasible messages indicate that a Sum of Infeasibility
objective function is locally minimal, but positive. If the model is convex it does not have a feasible
solution; if the model is non-convex it may have a feasible solution in a different region. See the section
on ”Initial Values” for hints on what to do.

** Feasible solution. Convergence too slow. The change in

objective has been less than xx.xx for xx consecutive

iterations.

** Feasible solution. The tolerances are minimal and

there is no change in objective although the reduced

gradient is greater than the tolerance.

The two messages above tell that CONOPT stops with a feasible solution. In the first case the solution
process is very slow and in the second there is no progress at all. However, the optimality criteria have not
been satisfied. These messages are accompanied by modelStat = 7 (Feasible Solution) and solveStat = 4
(Terminated by Solver). The problem can be caused by discontinuities if the model is of type DNLP; in this
case you should consider alternative, smooth formulations as discussed in section NLP and DNLP Models
. The problem can also be caused by a poorly scaled model. See section Scaling for hints on model scaling.
Finally, it can be caused by stalling as described in section Stalling in Appendix A. The two messages also
exist in a version where ”Feasible” is replaced by ”Infeasible”. modelStat is in this case 6 (Intermediate
Infeasible) and solveStat is still 4 (Terminated by Solver); these versions tell that CONOPT cannot make
progress towards feasibility, but the Sum of Infeasibility objective function does not have a well defined
local minimum.

<var>: The variable has reached infinity

** Unbounded solution. A variable has reached ’infinity’.

Largest legal value (Rtmaxv) is xx.xx

CONOPT considers a solution to be unbounded if a variable exceeds the indicated value of rtmaxv (default
1.e10) and it returns with modelStat = 3 (Unbounded). The check for unboundedness is done at every
iteration which means that CONOPT will stop if an intermediate solution has a variable that is very
large, even if none of the variables in the optimal solution have large values. Check whether the solution
appears unbounded or the problem is caused by the scaling of the unbounded variable ”<var>” mentioned
in the first line of the message. If the model seems correct you are advised to scale it. There is also a
lazy solution: you can increase the largest legal value, rtmaxv, as mentioned in the section on options.
However, you will pay through reduced reliability or increased solution times. Unlike LP models, where
an unbounded model is recognized by an unbounded ray and the iterations are stopped far from ”infinity”,
CONOPT will actually have to make a line search and move to a region with large values of the variables.
This may lead to bad scaling and to many different kinds of tolerance and roundoff problems, including
problems of determining whether a solution is feasible or not.

The message above exists in a version where ”Unbounded” is replaced by ”Infeasible” and modelStat is 5
(Locally Infeasible). You may also see a message like

5.7 CONOPT 3 1735

<var>: Free variable becomes too large

** Infeasible solution. A free variable exceeds the allowable

range. Current value is 1.02E+10 and current upper bound

(Rtmaxv) is 1.00E+10

These two messages indicate that some variables become very large before a feasible solution has been
found. You should again check whether the problem is caused by the scaling of the unbounded variable
”<var>” mentioned in the first line of the message. If the model seems correct you should scale it.

** The time limit has been reached.

The time or resource limit defined in GAMS, either by default (usually 1000 seconds) or by Option

ResLim = xx; or <model>.ResLim = xx; statements, has been reached. CONOPT will return with
solveStat = 3 (Resource Interrupt) and modelStat either 6 (Locally Infeasible) or 7 (Feasible Solution).

** The iteration limit has been reached.

The iteration limit defined in GAMS, either by default (usually 2000000000 iterations) or by Option

IterLim = xx; or <model>.IterLim = xx; statements, has been reached. CONOPT will return with
solveStat = 2 (Iteration Interrupt) and modelStat either 6 (Locally Infeasible) or 7 (Feasible Solution).

** Domain errors in nonlinear functions.

Check bounds on variables.

The number of function evaluation errors has reached the limit defined in GAMS by Option DomLim =

xx; or <model>.DomLim = xx; statements or the default limit of 0 function evaluation errors. CONOPT
will return with solveStat = 5 (Evaluation Error Limit) and modelStat either 6 (Locally Infeasible) or 7
(Feasible Solution). See more details in section Function Evaluation Errors .

** An initial derivative is too large (larger than Rtmaxj= xx.xx)

Scale the variables and/or equations or add bounds.

<var> appearing in

<equ>: Initial Jacobian element too large = xx.xx

and

** A derivative is too large (larger than Rtmaxj= xx.xx).

Scale the variables and/or equations or add bounds.

<var> appearing in

<equ>: Jacobian element too large = xx.xx

These two messages appear if a derivative or Jacobian element is very large, either in the initial point or
in a later intermediate point. The relevant variable and equation pair(s) will show you where to look.
A large derivative means that the function changes very rapidly even after a very small change in the
variable and it will most likely create numerical problems for many parts of the optimization algorithm.
Instead of attempting to solve a model that most likely will fail, CONOPT will stop and you are advised
to adjust the model if at all possible.

If the offending derivative is associated with a Log(x) or 1/x term you may try to increase the lower bound
on x. If the offending derivative is associated with an Exp(x) term you must decrease the upper bound on
x. You may also try to scale the model, either manually or using the variable.Scale and/or equation.Scale
option in GAMS as described in section Scaling There is also in this case a lazy solution: increase the limit
on Jacobian elements, rtmaxj; however, you will pay through reduced reliability or longer solution times.

In addition to the messages shown above you may see messages like

1736 Solver Manuals

** An equation in the pre-triangular part of the model cannot be

solved because the critical variable is at a bound.

** An equation in the pre-triangular part of the model cannot be

solved because of too small pivot.

or

** An equation is inconsistent with other equations in the

pre-triangular part of the model.

These messages containing the word ”Pre-triangular” are all related to infeasibilities identified by
CONOPT's pre-processing stage and they are explained in detail in section Iteration 1: Preprocessing in
Appendix A.

Usually, CONOPT will be able to estimate the amount of memory needed for the model based on statistics
provided by GAMS. However, in some cases with unusual models, e.g. very dense models or very large
models, the estimate will be too small and you must request more memory yourself using a statement like
<model>.WorkFactor = x.x; or <model>.WorkSpace = xx; in GAMS or by adding WorkFactor=xx

to the command line call of GAMS. The message you will see is similar to the following:

** FATAL ERROR ** Insufficient memory to continue the

optimization.

You must request more memory.

Current CONOPT space = 0.29 Mbytes

Estimated CONOPT space = 0.64 Mbytes

Minimum CONOPT space = 0.33 Mbytes

CONOPT time Total 0.109 seconds

of which: Function evaluations 0.000 = 0.0%

1st derivative evaluations 0.000 = 0.0%

The text after ”Insufficient memory to” may be different; it says something about where CONOPT ran
out of memory. If the memory problem appears during model setup the message will be accompanied
by solveStat = 13 (System Failure) and modelStat = 13 (Error No Solution) and CONOPT will not
return any values. If the memory problem appears later during the optimization solveStat will be 11
(Internal Solver Failure) and modelStat will be either 6 (Intermediate Infeasible) or 7 (Feasible Solution)
and CONOPT will return primal solution values. The marginals of both equations and variables will be
zero or EPS.

It is recommended that you use the WorkFactor option if you must change the amount of memory. The
same number will usually work for a whole family of models. If you prefer to use WorkSpace, the GAMS
WorkSpace option corresponds to the amount of memory, measured in Mbytes.

A new termination message has been added from version 3.16C:

** Feasible solution. The solution process has been terminated

because intermediate results have become NaN (Not A Number).

and similar with Infeasible. To prevent non-sensible results and/or infinite loops in special degenerate
cases CONOPT has added checks for internal intermediate results being NaN (Not A Number) or very
large. If this happens CONOPT will try to change some tolerances and try to continue the optimization.
If this attempt fails CONOPT will stop and return the message above. The solver status will return 4
”Terminated by Solver” and model status 6 or 7, ”Intermediate Infeasible” or ”Intermediate Feasible.”
Section Overflow and NaN (Not A Number) in Appendix A has more details on the sources of NaN and
the actions that can be taken by the user and by CONOPT.

5.7 CONOPT 3 1737

5.7.4 Function Evaluation Errors

Many of the nonlinear functions available with GAMS are not defined for all values of their arguments.
Log is not defined for negative arguments, Exp overflows for large arguments, and division by zero is
illegal. To avoid evaluating functions outside their domain of definition you should add reasonable variable
bounds. CONOPT will in return guarantee that the nonlinear functions never are evaluated with variables
outside their bounds.

In some cases bounds are not sufficient, e.g. in the expression Log(Sum(i, x(i))): in some models each
individual x should be allowed to become zero, but the Sum should not. In this case you should introduce
an intermediate variable and an extra equation, e.g. xSumDef .. xSum =E= sum(i,x(i)); add a lower
bound on xSum; and use xSum as the argument to the Log function. See section Simple Expressions for
additional comments on this topic.

Whenever a nonlinear function is called outside its domain of definition, GAMS' function evaluator will
intercept the function evaluation error and prevent the system to crash. GAMS will replace the undefined
result by some appropriate real number, and it will make sure the error is reported to the modeler as part
of the standard solution output in the GAMS listing file. GAMS will also report the error to CONOPT,
so CONOPT can try to correct the problem by backtracking to a safe point. Finally, CONOPT will be
instructed to stop after DomLim errors.

During Phase 0, 1, and 3 CONOPT will often use large steps as the initial step in a line search and
functions will very likely be called with some of the variables at their lower or upper bound. You are
therefore likely to get a division-by-zero error if your model contains a division by x and x has a lower
bound of zero. And you are likely to get an exponentiation overflow error if your model contains Exp(x)
and x has no upper bound. However, CONOPT will usually not get trapped in a point outside the domain
of definition for the model. When GAMS' function evaluator reports that a point is ”bad”, CONOPT
will decrease the step length, and it will for most models be able to recover and continue to an optimal
solution. It is therefore safe to use a large value for DomLim instead of GAMS default value of 0.

CONOPT may get stuck in some cases, for example because there is no previous point to backtrack to,
because ”bad” points are very close to ”reasonable” feasible points, or because the derivatives are not
defined in a feasible point. The more common messages are:

** Fatal Error ** Function error in initial point in Phase 0

procedure.

** Fatal Error ** Function error after small step in Phase 0

procedure.

** Fatal Error ** Function error very close to a feasible point.

** Fatal Error ** Function error while reducing tolerances.

** Fatal Error ** Function error in Pre-triangular equations.

** Fatal Error ** Function error after Preprocessing.

** Fatal Error ** Function error in Post-triangular equation.

In the first four cases you must either add better bounds or define better initial values. If the problem is
related to a pre- or post-triangular equation as shown by the last three messages then you can turn part
of the pre-processing off as described in section Iteration 1: Preprocessing . in Appendix A. However,
this may make the model harder to solve, so it is usually better to add bounds and/or initial values.

1738 Solver Manuals

5.7.5 The CONOPT Options File

CONOPT has been designed to be self-tuning. Most tolerances are dynamic. As an example: The
feasibility of a constraint is always judged relative to the dual variable on the constraint and relative to
the expected change in objective in the coming iteration. If the dual variable is large then the constraint
must be satisfied with a small tolerance, and if the dual variable is small then the tolerance is larger.
When the expected change in objective in the first iterations is large then the feasibility tolerances are
also large. And when we approach the optimum and the expected change in objective becomes smaller
then the feasibility tolerances become smaller.

Because of the self-tuning nature of CONOPT you should in most cases be well off with default tolerances.
If you do need to change some tolerances, possibly following the advice in Appendix A, it can be done in
the CONOPT Options file. The name of the CONOPT Options file is on most systems ”conopt.opt”.
You must tell the solver that you want to use an options file with the statement <model>.OptFile = 1

in your GAMS source file before the Solve statement or with OptFile = 1 on the command line.

The format of the CONOPT Options file consists in its simplest form of a number of lines like these:

rtmaxv = 1.e12

lfnsup = 500

The value must be written using legal GAMS format, i.e. a real number may contain an optional E
exponent, but a number may not contain blanks. The value must have the same type as the option, i.e.
real options must be assigned real values, integer options must be assigned integer values, and logical
options must be assigned logical values. The logical value representing true are true, t, yes, or 1, and
the logical values representing false are false, f, no, or 0.

In previous versions of CONOPT you could add ”SET” in front of the option assignment. This is no
longer supported. You can still replace the equal sign with := and you can add end of line comments after
a # or ! character. Lines starting with ∗ in column 1 are treated as comment lines.

5.7.6 Hints on Good Model Formulation

This section will contain some comments on how to formulate a nonlinear model so it becomes easier to
solve with CONOPT. Most of the recommendations will be useful for any nonlinear solver, but not all.
We will try to mention when a recommendation is CONOPT specific.

5.7.6.1 Initial Values

Good initial values are important for many reasons. Initial values that satisfy or closely satisfy many of
the constraints reduces the work involved in finding a first feasible solution. Initial values that in addition
are close to the optimal ones also reduce the distance to the final point and therefore indirectly the
computational effort. The progress of the optimization algorithm is based on good directional information
and therefore on good derivatives. The derivatives in a nonlinear model depend on the current point,
and the initial point in which the initial derivatives are computed is therefore again important. Finally,
non-convex models may have multiple solutions, but the modeler is looking for one in a particular part of
the search space; an initial point in the right neighborhood is more likely to return the desired solution.

The initial values used by CONOPT are all coming from GAMS. The initial values used by GAMS are by
default the value zero projected on the bounds. I.e. if a variable is free or has a lower bound of zero, then
its default initial value is zero. Unfortunately, zero is in many cases a bad initial value for a nonlinear
variable. An initial value of zero is especially bad if the variable appears in a product term since the initial
derivative becomes zero, and it appears as if the function does not depend on the variable. CONOPT will

5.7 CONOPT 3 1739

warn you and ask you to supply better initial values if the number of derivatives equal to zero is larger
than 20 percent.

If a variable has a small positive lower bound, for example because it appears as an argument to the Log
function or as a denominator, then the default initial value is this small lower bound and it is also bad
since this point will have very large first and second derivatives.

You should therefore supply as many sensible initial values as possible by making assignment to the level
value, var.L, in GAMS. An easy possibility is to initialize all variables to 1, or to the scale factor if you
use GAMS' scaling option. A better possibility is to select reasonable values for some variables that from
the context are known to be important, and then use some of the equations of the model to derive values
for other variables. A model may contain the following equation:

pmDef(it) .. pm(it) =e= pwm(it)*er*(1 + tm(it)) ;

where pm, pwm, and er are variables and tm is a parameter. The following assignment statements use the
equation to derive consistent initial values for PM from sensible initial values for pwm and er:

er.l = 1; pwm.l(it) = 1;

pm.l(it) = pwm.l(it)*er.l*(1 + tm(it)) ;

With these assignments equation pmDef will be feasible in the initial point, and since CONOPT uses a
feasible path method it will remain feasible throughout the optimization (unless the pre-processor destroys
it, see section Iteration 1: Preprocessing in Appendix A).

If CONOPT has difficulties finding a feasible solution for your model you should try to use this technique
to create an initial point in which as many equations as possible are satisfied. You may also try the optional
Crash procedure described in section Preprocessing: The Optional Crash Procedure in Appendix A by
adding the line lstcrs=t to the CONOPT options file. The crash procedure tries to identify equations
with a mixture of uninitialized variables and variables with initial values, and it solves the equations with
respect to the uninitialized variables; the effect is similar to the manual procedure shown above.

5.7.6.2 Bounds

Bounds have two purposes in nonlinear models. Some bounds represent constraints on the reality that is
being modeled, e.g. a variable must be positive. These bounds are called model bounds. Other bounds
help the algorithm by preventing it from moving far away from any optimal solution and into regions with
singularities in the nonlinear functions or unreasonably large function or derivative values. These bounds
are called algorithmic bounds.

Model bounds have natural roots and do not cause any problems. Algorithmic bounds require a closer
look at the functional form of the model. The content of a Log should be greater than say 1.e-3, the
content of an Exp should be less than 5 to 8, and a denominator should be greater than say 1.e-2. These
recommended lower bounds of 1.e-3 and 1.e-2 may appear to be unreasonably large. However, both
Log(x) and 1/x are extremely nonlinear for small arguments. The first and second derivatives of Log(x)
at x=1.e-3 are 1.e+3 and -1.e6, respectively, and the first and second derivatives of 1/x at x=1.e-2 are
-1.e+4 and 2.e+6, respectively.

If the content of a Log or Exp function or a denominator is an expression then it may be advantageous to
introduce a bounded intermediate variable as discussed in the next section.

Note that bounds in some cases can slow the solution process down. Too many bounds may for example
introduce degeneracy. If you have constraints of the following type

1740 Solver Manuals

vub(i) .. x(i) =l= y;

or

ysum .. y =e= sum(i, x(i));

and x is a Positive Variable then you should in general not declare y a Positive Variable or add a
lower bound of zero on y. If y appears in a nonlinear function you may need a strictly positive bound.
Otherwise, you should declare y a free variable; CONOPT will then make y basic in the initial point and
y will remain basic throughout the optimization. New logic in CONOPT tries to remove this problem
by detecting when a harmful bound is redundant so it can be removed, but it is not yet a fool proof
procedure.

Section Iteration 1: Preprocessing in Appendix A gives another example of bounds that can be counter
productive.

5.7.6.3 Simple Expressions

The following model component

Parameter mu(i);

Variable x(i), s(i), obj;

Equation objDef;

objDef .. obj =e= Exp(Sum(i, Sqr(x(i) - mu(i)) / s(i)));

can be re-written in the slightly longer but simpler form

Parameter mu(i);

Pariable x(i), s(i), obj, inTerm;

Equation intDef, objDef;

intDef .. inTerm =e= Sum(i, Sqr(x(i) - mu(i)) / s(i));

objDef .. obj =e= Exp(inTerm);

The first formulation has very complex derivatives because Exp is taken of a long expression. The second
formulation has much simpler derivatives; Exp is taken of a single variable, and the variables in intDef
appear in a sum of simple independent terms.

In general, try to avoid nonlinear functions of expressions, divisions by expressions, and products of
expressions, especially if the expressions depend on many variables. Define intermediate variables that
are equal to the expressions and apply the nonlinear function, division, or product to the intermediate
variable. The model will become larger, but the increased size is taken care of by CONOPT's sparse
matrix routines, and it is compensated by the reduced complexity. If the model is solved with CONOPT
using explicit second derivatives then simple expressions will result in sparser second derivatives that are
both faster to compute and to use.

The reduction in complexity can be significant if an intermediate expression is linear. The following model
fragment:

Variable x(i), y;

Equation yDef;

yDef .. y =e= 1 / Sum(i, x(i));

5.7 CONOPT 3 1741

should be written as

Variable x(i), xSum, y;

Equation xSumDef, yDef;

xSumDef .. xSum =e= Sum(i, x(i));

yDef .. y =e= 1 / xSum;

xSum.lo = 1.e-2;

for three reasons. First, because the number of nonlinear derivatives is reduced in number and complexity.
Second, because the lower bound on the intermediate result will bound the search away from the singularity
at xSum = 0. And third, because the matrix of second derivatives for the last model only depend on
xSum while it depends on all x in the first model.

The last example shows an added potential saving by expanding functions of linear expressions. A
constraint depends in a nonlinear fashion on the accumulated investments, inv, like

con(i) .. f(Sum(j$(ord(j) le ord(i)), inv(j))) =l= b(i);

A new intermediate variable, cap(i), that is equal to the content of the Sum can be defined recursively
with the constraints

cDef(i) .. cap(i) =e= inv(i) + cap(i-1);

and the original constraints become

con(i) .. f(cap(i)) =l= b(i);

The reformulated model has n additional variables and n additional linear constraints. In return, the
original n complex nonlinear constraints have been changed into n simpler nonlinear constraints. And the
number of Jacobian elements, that has a direct influence on much of the computational work both in
GAMS and in CONOPT, has been reduced from n∗(n+1)/2 nonlinear elements to 3∗n-1 linear elements
and only n nonlinear element. If f is an invertible increasing function you may even rewrite the last
constraint as a simple bound:

cap.lo(i) = finv(b(i));

Some NLP solvers encourage you to move as many nonlinearities as possible into the objective which may
make the objective very complex. This is neither recommended nor necessary with CONOPT. A special
pre-processing step (discussed in section Iteration 1: Preprocessing in Appendix A) will aggregate parts
of the model if it is useful for CONOPT without increasing the complexity in GAMS.

1742 Solver Manuals

5.7.6.4 Scaling

Nonlinear as well as Linear Programming Algorithms use the derivatives of the objective function and the
constraints to determine good search directions, and they use function values to determine if constraints
are satisfied or not. The scaling of the variables and constraints, i.e. the units of measurement used for
the variables and constraints, determine the relative size of the derivatives and of the function values and
thereby also the search path taken by the algorithm.

Assume for example that two goods of equal importance both cost $1 per kg. The first is measured in
gram, the second in tons. The coefficients in the cost function will be $1000/g and $0.001/ton, respectively.
If cost is measured in $1000 units then the coefficients will be 1 and 1.e-6, and the smaller may be ignored
by the algorithm since it is comparable to some of the zero tolerances.

CONOPT assumes implicitly that the model to be solved is well scaled. In this context well scaled means:

• Basic and superbasic solution values are expected to be around 1, e.g. from 0.01 to 100. Nonbasic
variables will be at a bound, and the bound values should not be larger than say 100.

• Dual variables (or marginals) on active constraints are expected to be around 1, e.g. from 0.01 to
100. Dual variables on non-binding constraints will of course be zero.

• Derivatives (or Jacobian elements) are expected to be around 1, e.g. from 0.01 to 100.

Variables become well scaled if they are measured in appropriate units. In most cases you should select
the unit of measurement for the variables so their expected value is around unity. Of course there will
always be some variation. Assume x(i) is the production at location i. In most cases you should select the
same unit of measurement for all components of x, for example a value around the average capacity.

Equations become well scaled if the individual terms are measured in appropriate units. After you have
selected units for the variables you should select the unit of measurement for the equations so the expected
values of the individual terms are around one. If you follow these rules, material balance equations will
usually have coefficients of plus and minus one.

Derivatives will usually be well scaled whenever the variables and equations are well scaled. To see if the
derivatives are well scaled, run your model with a positive Option LimRow and look for very large or very
small coefficients in the equation listing in the GAMS output file.

CONOPT computes a measure of the scaling of the Jacobian, both in the initial and in the final point,
and if it seems large it will be printed. The message looks like:

** WARNING ** The variance of the derivatives in the initial

point is large (= 4.1). A better initial

point, a better scaling, or better bounds on the

variables will probably help the optimization.

The variance is computed as Sqrt(Sum(Log(Abs(jac(i)))∗∗2)/nz) where jac(i) represents the nz nonzero
derivatives (Jacobian elements) in the model. A variance of 4.1 corresponds to an average value
of Log(jac)∗∗2 of 4.1∗∗2, which means that Jacobian values outside the range Exp(-4.1)=0.017 to
Exp(+4.1)=60.4 are about as common at values inside. This range is for most models acceptable,
while a variance of 5, corresponding to about half the derivatives outside the range Exp(-5)=0.0067 to
Exp(+5)=148, can be dangerous.

5.7 CONOPT 3 1743

Scaling of Intermediate Variables

Many models have a set of variables with a real economic or physical interpretation plus a set of
intermediate or helping variables that are used to simplify the model. We have seen some of these in
section Simple Expressions on Simple Expressions. It is usually rather easy to select good scaling units
for the real variables since we know their order of magnitude from economic or physical considerations.
However, the intermediate variables and their defining equations should preferably also be well scaled,
even if they do not have an immediate interpretation. Consider the following model fragment where x, y,
and z are variables and y is the intermediate variable:

Set p / p0*p4 /

Parameter a(p) / p0 211, p1 103, p2 42, p3 31, p4 6 /

yDef .. y =e= Sum(p, a(p)*Power(x,Ord(p)-1));

zDef .. z =e= Log(y);

x lies in the interval 1 to 10 which means that y will be between 211 and 96441 and Z will be between
5.35 and 11.47. Both x and z are reasonably scaled while y and the terms and derivatives in yDef are
about a factor 1.e4 too large. Scaling y by 1.e4 and renaming it ys gives the following scaled version of
the model fragment:

yDefs1 .. ys =e= Sum(p, a(p)*Power(x,Ord(p)-1))*1.e-4;

zDefs1 .. z =e= Log(ys*1.e4);

The z equation can also be written as

zDefs2 .. z =e= Log(ys) + Log(1.e4);

Note that the scale factor 1.e-4 in the yDefs1 equation has been placed on the right hand side. The
mathematically equivalent equation

yDefs2 .. ys*1.e4 =e= Sum(p, a(p)*Power(x,Ord(p)-1));

will give a well scaled YS, but the right hand side terms of the equation and their derivatives have not
changed from the original equation yDef and they are still far too large.

Using the Scale Option in GAMS

The rules for good scaling mentioned above are exclusively based on algorithmic needs. GAMS has been
developed to improve the effectiveness of modelers, and one of the best ways seems to be to encourage
modelers to write their models using a notation that is as ”natural” as possible. The units of measurement
is one part of this natural notation, and there is unfortunately often a conflict between what the modeler
thinks is a good unit and what constitutes a well scaled model.

To facilitate the translation between a natural model and a well scaled model GAMS has introduced the
concept of a scale factor, both for variables and equations. The notation and the definitions are quite
simple. First of all, scaling is by default turned off. To turn it on, enter the statement <model>.ScaleOpt
= 1; in your GAMS program somewhere after the Model statement and before the Solve statement.
<model> is the name of the model to be solved. If you want to turn scaling off again, enter the statement
<model>.ScaleOpt = 0; somewhere before the next Solve.

The scale factor of a variable or an equation is referenced with the suffix ”.Scale”, i.e. the scale factor of
variable x(i) is referenced as x.Scale(i). Note that there is one scale value for each individual component
of a multidimensional variable or equation. Scale factors can be defined in assignment statements with
x.Scale(i) on the left hand side, and scale factors, both from variables and equations, can be used on the
right hand side, for example to define other scale factors. The default scale factor is always 1, and a scale
factor must be positive; GAMS will generate an execution time error if the scale factor is less than 1.e-20.

The mathematical definition of scale factors is a follows: The scale factor on a variable, V s is used to
related the variable as seen by the modeler, V m, to the variable as seen by the algorithm, V a, as follows:

1744 Solver Manuals

V m = V a ∗ V s

This means, that if the variable scale, V s, is chosen to represent the order of magnitude of the modeler's
variable, V m, then the variable seen by the algorithm, V a, will be around 1. The scale factor on an
equation, Gs, is used to related the equation as seen by the modeler, Gm, to the equation as seen by the
algorithm, Ga, as follows:

Gm = Ga ∗Gs

This means, that if the equation scale, Gs, is chosen to represent the order of magnitude of the individual
terms in the modelers version of the equation, Gm, then the terms seen by the algorithm, Ga, will be
around 1.

The derivatives in the scaled model seen by the algorithm, i.e. dGa/dV a, are related to the derivatives in
the modelers model, dGm/dV m, through the formula:

dGa/dV a = dGm/dV m ∗ V s/Gs

i.e. the modelers derivative is multiplied by the scale factor of the variable and divided by the scale factor
of the equation. Note, that the derivative is unchanged if V s = Gs. Therefore, if you have a GAMS
equation like

G .. V =e= expression;

and you select Gs = V s then the derivative of V will remain 1. If we apply these rules to the example
above with an intermediate variable we can get the following automatic scale calculation, based on an
”average” reference value for x:

Scalar xRef; xRef = 6;

y.Scale = Sum(p, a(p)*Power(xRef,Ord(p)-1));

yDef.Scale = y.Scale;

or we could scale y using values at the end of the x interval and add safeguards as follows:

y.Scale = Max(Abs(Sum(p, a(p)*Power(x.Lo,Ord(p)-1))),

Abs(Sum(p, a(p)*Power(x.Up,Ord(p)-1))),

0.01);

Lower and upper bounds on variables are automatically scaled in the same way as the variable itself.
Integer and binary variables cannot be scaled.

GAMS' scaling is in most respects hidden for the modeler. The solution values reported back from a
solution algorithm, both primal and dual, are always reported in the user's notation. The algorithm's
versions of the equations and variables are only reflected in the derivatives in the equation and column
listings in the GAMS output if Option LimRow and/or LimCol are positive, and in debugging output from
the solution algorithm, generated with Option SysOut = On. In addition, the numbers in the algorithms
iteration log will represent the scaled model: the infeasibilities and reduced gradients will correspond to
the scaled model, and if the objective variable is scaled, the value of the objective function will be the
scaled value.

A final warning about scaling of multidimensional variables is appropriate. Assume variable x(i,j,k) only
appears in the model when the parameter ijk(i,j,k) is nonzero, and assume that Card(i) = Card(j) =
Card(k) = 100 while Card(ijk) is much smaller than 100∗∗2 = 1.e6. Then you should only scale the
variables that appear in the model, i.e.

x.Scale(i,j,k)$ijk(i,j,k) = expression;

The statement

x.Scale(i,j,k) = expression;

will generate records for x in the GAMS database for all combinations of i, j, and k for which the expression
is different from 1, i.e. up to 1.e6 records, and apart from spending a lot of time you will very likely run
out of memory. Note that this warning also applies to non-default lower and upper bounds.

5.7 CONOPT 3 1745

5.7.7 NLP and DNLP Models

GAMS has two classes of nonlinear model, NLP and DNLP. NLP models are defined as models in which
all functions that appear with endogenous arguments, i.e. arguments that depend on model variables, are
smooth with smooth derivatives. DNLP models can in addition use functions that are smooth but have
discontinuous derivatives. The usual arithmetic operators (+, -, ∗, /, and ∗∗) can appear on both model
classes.

The functions that can be used with endogenous arguments in a DNLP model and not in an NLP model
are Abs, Min, and Max and as a consequence the indexed operators SMin and SMax.

Note that the offending functions can be applied to expressions that only involve constants such as
parameters, var.l, and equ.m. Fixed variables are in principle constants, but GAMS makes its tests based
on the functional form of a model, ignoring numerical parameter values and numerical bound values, and
terms involving fixed variables can therefore not be used with Abs, Min, or Max in an NLP model.

The NLP solvers used by GAMS can also be applied to DNLP models. However, it is important to know
that the NLP solvers attempt to solve the DNLP model as if it was an NLP model. The solver uses the
derivatives of the constraints with respect to the variables to guide the search, and it ignores the fact
that some of the derivatives may change discontinuously. There are at the moment no GAMS solvers
designed specifically for DNLP models and no solvers that take into account the discontinuous nature of
the derivatives in a DNLP model.

5.7.7.1 DNLP Models: What Can Go Wrong?

Solvers for NLP Models are all based on making marginal improvements to some initial solution until some
optimality conditions ensure no direction with marginal improvements exist. A point with no marginally
improving direction is called a Local Optimum.

The theory about marginal improvements is based on the assumption that the derivatives of the constraints
with respect to the variables are a good approximations to the marginal changes in some neighborhood
around the current point.

Consider the simple NLP model, Min Sqr(x), where x is a free variable. The marginal change in the
objective is the derivative of Sqr(x) with respect to x, which is 2∗x. At x = 0, the marginal change in all
directions is zero and x = 0 is therefore a Local Optimum.

Next consider the simple DNLP model, Min Abs(x), where x again is a free variable. The marginal change
in the objective is still the derivative, which is +1 if x > 0 and -1 if x < 0. When x = 0, the derivative
depends on whether we are going to increase or decrease x. Internally in the DNLP solver, we cannot be
sure whether the derivative at 0 will be -1 or +1; it can depend on rounding tolerances. An NLP solver
will start in some initial point, say x = 1, and look at the derivative, here +1. Since the derivative is
positive, x is reduced to reduce the objective. After some iterations, x will be zero or very close to zero.
The derivative will be +1 or -1, so the solver will try to change x. however, even small changes will not
lead to a better objective function. The point x = 0 does not look like a Local Optimum, even though it
is a Local Optimum. The result is that the NLP solver will muddle around for some time and then stop
with a message saying something like: ”The solution cannot be improved, but it does not appear to be
optimal.”

In this first case we got the optimal solution so we can just ignore the message. However, consider the
following simple two-dimensional DNLP model: Min Abs(x1+x2) + 5∗Abs(x1-x2) with x1 and x2 free
variables. Start the optimization from x1 = x2 = 1. Small increases in x1 will increase both terms and
small decreases in x1 (by dx) will decrease the first term by dx but it will increase the second term by
5∗dx. Any change in x1 only is therefore bad, and it is easy to see that any change in x2 only also is bad.
An NLP solver may therefore be stuck in the point x1 = x2 = 1, even though it is not a local solution:
the direction (dx1,dx2) = (-1,-1) will lead to the optimum in x1 = x2 = 0. However, the NLP solver
cannot distinguish what happens with this model from what happened in the previous model; the message
will be of the same type: ”The solution cannot be improved, but it does not appear to be optimal.”

1746 Solver Manuals

5.7.7.2 Reformulation from DNLP to NLP

The only reliable way to solve a DNLP model is to reformulate it as an equivalent smooth NLP model.
Unfortunately, it may not always be possible. In this section we will give some examples of reformulations.

The standard reformulation approach for the ABS function is to introduce positive and negative deviations
as extra variables: The term z = Abs(f(x)) is replaced by z = fPlus + fMinus, fPlus and fMinus are
declared as positive variables and they are defined with the identity: f(x) =e= fPlus - fMinus. The
discontinuous derivative from the Abs function has disappeared and the part of the model shown here is
smooth. The discontinuity has been converted into lower bounds on the new variables, but bounds are
handled routinely by any NLP solver. The feasible space is larger than before; f(x) = 5 can be obtained
both with fPlus = 5, fMinus = 0, and z = 5, and with fPlus = 1000, fMinus = 995, and z = 1995. Provided
the objective function has some term that tries to minimize z, either fPlus or fMinus will become zero and
z will end with its proper value.

You may think that adding the smooth constraint fPlus ∗ fMinus =e= 0 would ensure that either fPlus or
fMinus is zero. However, this type of so-called complementarity constraint is ”bad” in any NLP model.
The feasible space consists of the two half lines: (fPlus = 0 and fMinus ≥ 0) and (fPlus ≥ 0 and fMinus
= 0). Unfortunately, the marginal change methods used by most NLP solvers cannot move from one half
line to the other, and the solution is stuck at the half line it happens to reach first.

There is also a standard reformulation approach for the Max function. The equation z =e= Max(f(x),g(y))
is replace by the two inequalities, z =g= f(x) and z =g= g(y). Provided the objective function has some
term that tries to minimize z, one of the constraints will become binding as equality and z will indeed be
the maximum of the two terms.

The reformulation for the Min function is similar. The equation z =E= Min(f(x),g(y)) is replaced by the
two inequalities, z =l= f(x) and z =l= g(y). Provided the objective function has some term that tries to
maximize z, one of the constraints will become binding as equality and z is indeed the minimum of the
two terms.

Max and Min can have more than two arguments and the extension should be obvious.

The non-smooth indexed operators, SMax and SMin can be handled using a similar technique: for example,
z =E= SMax(i, f(x,i)) is replaced by the indexed inequality: inEq(i) .. z =l= f(x,i);

The reformulations that are suggested here all enlarge the feasible space. They require the objective
function to move the final solution to the intersection of this larger space with the original feasible space.
Unfortunately, the objective function is not always so helpful. If it is not, you may try using one of the
smooth approximations described next. However, you should realize, that if the objective function cannot
help the ”good” approximations described here, then your overall model is definitely non-convex and it is
likely to have multiple local optima.

5.7.7.3 Smooth Approximations

Smooth approximations to the non-smooth functions ABS, MAX, and MIN are approximations that have
function values close to the original functions, but have smooth derivatives.

A smooth GAMS approximation for Abs(f(x)) is

Sqrt(Sqr(f(x)) + Sqr(delta))

5.7 CONOPT 3 1747

where delta is a small scalar. The value of delta can be used to control the accuracy of the approximation
and the curvature around f(x) = 0. The approximation error is largest when f(x) is zero, in which case the
error is delta. The error is reduced to approximately Sqr(delta)/2 for f(x) = 1. The second derivative is
1/delta at f(x) = 0 (excluding terms related to the second derivative of f(x)). A delta value between 1.e-3
and 1.e-4 should in most cases be appropriate. It is possible to use a larger value in an initial optimization,
reduce it and solve the model again. You should note, that if you reduce delta below 1.e-4 then large
second order terms might lead to slow convergence or even prevent convergence.

The approximation shown above has its largest error when f(x) = 0 and smaller errors when f(x) is far
from zero. If it is important to get accurate values of Abs exactly when f(x) = 0, then you may use the
alternative approximation

Sqrt(Sqr(f(x)) + Sqr(delta)) - delta

instead. The only difference is the constant term. The error is zero when f(x) is zero and the error grows
to -delta when f(x) is far from zero.

Some theoretical work uses the Huber, H(∗), function as an approximation for Abs. The Huber function
is defined as

H(x) = x for x > delta,

H(x) = -x for x < -delta and

H(x) = Sqr(x)/2/delta + delta/2 for -delta < x < delta.

Although the Huber function has some nice properties, it is for example accurate when Abs(x) > delta, it
is not so useful for GAMS work because it is defined with different formula for the three pieces.

A smooth GAMS approximation for Max(f(x),g(y)) is

(f(x) + g(y) + Sqrt(Sqr(f(x)-g(y)) + Sqr(delta)))/2

where delta again is a small scalar. The approximation error is delta/2 when f(x) = g(y) and decreases
with the difference between the two terms. As before, you may subtract a constant term to shift the
approximation error from the area f(x) = g(y) to areas where the difference is large. The resulting
approximation becomes

(f(x) + g(y) + Sqrt(Sqr(f(x)-g(y)) + Sqr(delta)) - delta)/2

Similar smooth GAMS approximations for Min(f(x),g(y)) are

(f(x) + g(y) - Sqrt(Sqr(f(x)-g(y)) + Sqr(delta)))/2

and

(f(x) + g(y) - Sqrt(Sqr(f(x)-g(y)) + Sqr(delta)) + delta)/2

Appropriate delta values are the same as for the Abs approximation: in the range from 1.e-2 to 1.e-4.

It appears that there are no simple symmetric extensions for Max and Min of three or more arguments or
for indexed SMax and SMin.

1748 Solver Manuals

5.7.7.4 Are DNLP Models Always Non-smooth?

A DNLP model is defined as a model that has an equation with an Abs, Max, or Min function with
endogenous arguments. The non-smooth properties of DNLP models are derived from the non-smooth
properties of these functions through the use of the chain rule. However, composite expressions involving
Abs, Max, or Min can in some cases have smooth derivatives and the model can therefore in some cases
be smooth.

One example of a smooth expression involving an Abs function is common in water systems modeling.
The pressure loss over a pipe, dH, is proportional to the flow, Q, to some power, P. P is usually around +2.
The sign of the loss depend on the direction of the flow so dH is positive if Q is positive and negative if Q is
negative. Although GAMS has a Sign function, it cannot be used in a model because of its discontinuous
nature. Instead, the pressure loss can be modeled with the equation dH =E= const ∗ Q ∗ Abs(Q)∗∗(P-1),
where the sign of the Q-term takes care of the sign of dH, and the Abs function guaranties that the real
power ∗∗ is applied to a non-negative number. Although the expression involves the Abs function, the
derivatives are smooth as long as P is greater than 1. The derivative with respect to Q is const ∗ (P-1) ∗
Abs(Q)∗∗(P-1) for Q > 0 and -const ∗ (P-1) ∗ Abs(Q)∗∗(P-1) for Q < 0. The limit for Q going to zero
from both right and left is 0, so the derivative is smooth in the critical point Q = 0 and the overall model
is therefore smooth.

Another example of a smooth expression is the following terribly looking Sigmoid expression:

Sigmoid(x) = Exp(Min(x,0)) / (1+Exp(-Abs(x)))

The standard definition of the sigmoid function is

Sigmoid(x) = Exp(x) / (1+Exp(x))

This definition is well behaved for negative and small positive x, but it not well behaved for large positive
x since Exp overflows. The alternative definition:

Sigmoid(x) = 1 / (1+Exp(-x))

is well behaved for positive and slightly negative x, but it overflows for very negative x. Ideally, we would
like to select the first expression when x is negative and the second when x is positive, i.e.

Sigmoid(x) = (Exp(x)/(1+Exp(x)))$(x < 0) + (1/(1+Exp(-x)))$(x > 0)

but a $ -control that depends on an endogenous variable is illegal. The first expression above solves this
problem. When x is negative, the nominator becomes Exp(x) and the denominator becomes 1+Exp(x).
And when x is positive, the nominator becomes Exp(0) = 1 and the denominator becomes 1+Exp(-x).
Since the two expressions are mathematically identical, the combined expression is of course smooth, and
the Exp function is never evaluated for a positive argument.

Unfortunately, GAMS cannot recognize this and similar special cases so you must always solve models
with endogenous Abs, Max, or Min as DNLP models, even in the cases where the model is smooth.

5.7 CONOPT 3 1749

5.7.7.5 Are NLP Models Always Smooth?

NLP models are defined as models in which all operators and functions are smooth. The derivatives
of composite functions, that can be derived using the chain rule, will therefore in general be smooth.
However, it is not always the case. The following simple composite function is not smooth: y = Sqrt(
Sqr(x)). The composite function is equivalent to y = Abs(x), one of the non-smooth DNLP functions.

What went wrong? The chain rule for computing derivatives of a composite function assumes that all
intermediate expressions are well defined. However, the derivative of Sqrt grows without bound when the
argument approaches zero, violating the assumption.

There are not many cases that can lead to non-smooth composite functions, and they are all related to the
case above: The real power, x∗∗y, for 0 < y < 1 and x approaching zero. The Sqrt function is a special
case since it is equivalent to x∗∗y for y = 0.5.

If you have expressions involving a real power with an exponent between 0 and 1 or a Sqrt, you should in
most cases add bounds to your variables to ensure that the derivative or any intermediate terms used in
their calculation become undefined. In the example above, Sqrt(Sqr(x)), a bound on x is not possible
since x should be allowed to be both positive and negative. Instead, changing the expression to Sqrt(
Sqr(x) + Sqr(delta)) may lead to an appropriate smooth formulation.

Again, GAMS cannot recognize the potential danger in an expression involving a real power, and the
presence of a real power operator is not considered enough to flag a model as a DNLP model. During the
solution process, the NLP solver will compute constraint values and derivatives in various points within
the bounds defined by the modeler. If these calculations result in undefined intermediate or final values, a
function evaluation error is reported, an error counter is incremented, and the point is flagged as a bad
point. The following action will then depend on the solver. The solver may try to continue, but only if
the modeler has allowed it with an Option DomLim = xxx;. The problem of detecting discontinuities is
changed from a structural test at the GAMS model generation stage to a dynamic test during the solution
process.

You may have a perfectly nice model in which intermediate terms become undefined. The composite
function Sqrt(Power(x,3)) is mathematically well defined around x = 0, but the computation will involve
the derivative of Sqrt at zero, that is undefined. It is the modeler's responsibility to write expressions in a
way that avoids undefined intermediate terms in the function and derivatives computations. In this case,
you may either add a small strictly positive lower bound on x or rewrite the function as x∗∗1.5

5.7.8 APPENDIX A: Algorithmic Information

The objective of this Appendix is to give technically oriented users some understanding of what CONOPT
is doing so they can get more information out of the iteration log. This information can be used to prevent
or circumvent algorithmic difficulties or to make informed guesses about which options to experiment
with to improve CONOPT's performance on particular model classes.

5.7.8.1 Overview of CONOPT

CONOPT is a GRG-based algorithm specifically designed for large nonlinear programming problems
expressed in the following form

min or max f(x) (1)

subject to g(x) = b (2)

lo < x < up (3)

1750 Solver Manuals

where x is the vector of optimization variables, lo and up are vectors of lower and upper bounds, some
of which may be minus or plus infinity, b is a vector of right hand sides, and f and g are differentiable
nonlinear functions that define the model. n will in the following denote the number of variables and m
the number of equations. (2) will be referred to as the (general) constraints and (3) as the bounds.

The relationship between the mathematical model in (1)-(3) above and the GAMS model is simple:
The inequalities defined in GAMS with =l= or =g= are converted into equalities by addition of properly
bounded slacks. Slacks with lower and upper bound of zero are added to all GAMS equalities to ensure
that the Jacobian matrix, i.e. the matrix of derivatives of the functions g with respect to the variables
x, has full row rank. All these slacks are together with the normal GAMS variables included in x. lo
represent the lower bounds defined in GAMS, either implicitly with the Positive Variable declaration, or
explicitly with the Var.Lo notation, as well as any bounds on the slacks. Similarly, up represent upper
bounds defined in GAMS, e.g. with the Var.Up notation, as well as any bounds on the slacks. g represent
the non-constant terms of the GAMS equations themselves; non-constant terms appearing on the right
hand side are by GAMS moved to the left hand side and constant terms on the left hand side are moved
to the right. The objective function f is simply the GAMS variable to be minimized or maximized.

Additional comments on assumptions and design criteria can be found in the Introduction to the main
text.

5.7.8.2 The CONOPT Algorithm

The algorithm used in CONOPT is based on the GRG algorithm first suggested by Abadie and Carpentier
(1969). The actual implementation has many modifications to make it efficient for large models and for
models written in the GAMS language. Details on the algorithm can be found in Drud (1985 and 1992).
Here we will just give a short verbal description of the major steps in a generic GRG algorithm. The later
sections in this Appendix will discuss some of the enhancements in CONOPT that make it possible to
solve large models.

The key steps in any GRG algorithm are:

1. Initialize and Find a feasible solution.

2. Compute the Jacobian of the constraints, J .

3. Select a set of n basic variables, xb, such that B, the sub- matrix of basic column from J , is
nonsingular. Factorize B. The remaining variables, xn, are called nonbasic.

4. Solve BTu = df/dxb for the multipliers u.

5. Compute the reduced gradient, r = df/dx− JTu. r will by definition be zero for the basic variables.

6. If r projected on the bounds is small, then stop. The current point is close to optimal.

7. Select the set of superbasic variables, xs, as a subset of the nonbasic variables that profitably can be
changed, and find a search direction, ds, for the superbasic variables based on rs and possibly on
some second order information.

8. Perform a line search along the direction d. For each step, xs is changed in the direction ds and xb
is subsequently adjusted to satisfy g(xb, xs) = b in a pseudo-Newton process using the factored B
from step 3.

9. Go to 2.

5.7 CONOPT 3 1751

The individual steps are of course much more detailed in a practical implementation like CONOPT.
Step 1 consists of several pre-processing steps as well as a special Phase 0 and a scaling procedure as
described in the following sections Iteration 0: The Initial Point to Finding a Feasible Solution: Phase 0
. The optimizing steps are specialized in several versions according to the whether the model appears to
be almost linear or not. For ”almost” linear models some of the linear algebra work involving the matrices
J and B can be avoided or done using cheap LP-type updating techniques, second order information is
not relevant in step 7, and the line search in step 8 can be improved by observing that the optimal step as
in LP almost always will be determined by the first variable that reaches a bound. Similarly, when the
model appears to be fairly nonlinear other aspects can be optimized: the set of basic variables will often
remain constant over several iterations, and other parts of the sparse matrix algebra will take advantage of
this (section Finding a Feasible Solution: Phase 1 and 2 and Linear and Nonlinear Mode: Phase 1 to 4).
If the model is ”very” linear an improved search direction (step 7) can be computed using specialized inner
LP-like iterations (section Linear Mode: The SLP Procedure) and a steepest edge procedure can be useful
for certain models that needs very many iterations (section Linear Mode: The Steepest Edge Procedure).
If the model is ”very” nonlinear and has many degrees of freedom an improved search direction (step 7)
can be computed using specialized inner SQP-like iterations based on exact second derivatives for the
model (section Nonlinear Mode: The SQP Procedure).

The remaining two sections give some short guidelines for selecting non-default options (section
How to Select Non-default Options), and discuss miscellaneous topics (section Miscellaneous Topics) such
as CONOPT's facilities for strictly triangular models (section Triangular Models) and for square systems
of equations, in GAMS represented by the model class called CNS or Constrained Nonlinear System
(section Constrained Nonlinear System or Square Systems of Equations), as well as numerical difficulties
due to loss of feasibility (section Loss of Feasibility) and slow or no progress due to stalling (section
Stalling).

5.7.8.3 Iteration 0: The Initial Point

The first few ”iterations” in the iteration log (See section Iteration Output), in the main text for an
example) are special initialization iterations, but they have been counted as real iterations to allow the
user to interrupt at various stages during initialization. Iteration 0 corresponds to the input point exactly
as it was received from GAMS. The sum of infeasibilities in the column labeled ”Infeasibility” includes all
residuals, also from the objective constraint where ”z =e= expression” will give rise to the term Abs(z -
expression) that may be nonzero if z has not been initialized. You may stop CONOPT after iteration 0
with Option IterLim = 0; in GAMS. The solution returned to GAMS will contain the input point and
the values of the constraints in this point. The marginals of both variables and equations have not yet
been computed and they will be returned as EPS.

This possibility can be used for debugging when you have a reference point that should be feasible, but
is infeasible for unknown reasons. Initialize all variables to their reference values, also all intermediate
variables, and call CONOPT with IterLim = 0. Then compute and display the following measures of
infeasibility for each block of constraints, represented by the generic name eq:

=e= constraints: Round(Abs(eq.L - eq.Lo),3)

=l= constraints: Round(Min(0,eq.L - eq.Up),3)

=g= constraints: Round(Min(0,eq.Lo - eq.L),3)

The Round function rounds to 3 decimal places so GAMS will only display the infeasibilities that are
larger than 5.e-4.

Similar information can be derived from inspection of the equation listing generated by GAMS with
Option LimRow = nn;, but although the method of going via CONOPT requires a little more work during
implementation it can be convenient in many cases, for example for large models and for automated model
checking.

1752 Solver Manuals

5.7.8.4 Iteration 1: Preprocessing

Iteration 1 corresponds to a pre-processing step. Constraint-variable pairs that can be solved a priori
(so-called pre-triangular equations and variables) are solved and the corresponding variables are assigned
their final values. Constraints that always can be made feasible because they contain a free variable with
a constant coefficient (so-called post-triangular equation-variable pairs) are excluded from the search for a
feasible solution and from the Infeasibility measure in the iteration log. Implicitly, equations and variables
are ordered as shown in Figure 1.

Preprocessing: Pre-triangular Variables and Constraints

The pre-triangular equations are those labeled A in Figure 1. They are solved one by one along the
”diagonal” with respect to the pre-triangular variables labeled I. In practice, CONOPT looks for equations
with only one non-fixed variable. If such an equation exists, CONOPT tries to solve it with respect to
this non-fixed variable. If this is not possible the overall model is infeasible, and the exact reason for
the infeasibility is easy to identify as shown in the examples below. Otherwise, the final value of the
variable has been determined, the variable can for the rest of the optimization be considered fixed, and
the equation can be removed from further consideration. The result is that the model has one equation
and one non-fixed variable less. As variables are fixed new equations with only one non-fixed variable may
emerge, and CONOPT repeats the process until no more equations with one non-fixed variable can be
found.

This pre-processing step will often reduce the effective size of the model to be solved. Although the
pre-triangular variables and equations are removed from the model during the optimization, CONOPT
keeps them around until the final solution is found. The dual variables for the pre-triangular equations
are then computed so they become available in GAMS.

CONOPT has a special option for analyzing and solving completely triangular models. This option is
described in section Triangular Models .

The following small GAMS model shows an example of a model with pre-triangular variables and equations:

Variable x1, x2, x3, obj;

Equation e1, e2, e3;

e1 .. Log(x1) + x2 =e= 1.6;

e2 .. 5 * x2 =e= 3;

e3 .. obj =e= Sqr(x1) + 2 * Sqr(x2) + 3 * Sqr(x3);

x1.Lo = 0.1;

Model demo / All /; Solve demo using NLP Minimizing obj;

5.7 CONOPT 3 1753

Equation e2 is first solved with respect to x2 (result 3/5 = 0.6). It is easy to solve the equation since x2
appears linearly, and the result will be unique. x2 is then fixed and the equation is removed. Equation e1
is now a candidate since x1 is the only remaining non- fixed variable in the equation. Here x1 appears
nonlinear and the value of x1 is found using an iterative scheme based on Newton's method. The iterations
are started from the value provided by the modeler or from the default initial value. In this case x1 is
started from the default initial value, i.e. the lower bound of 0.1, and the result after some iterations is x1
= 2.718 = Exp(1).

During the recursive solution process it may not be possible to solve one of the equations. If the lower
bound on x1 in the model above is changed to 3.0 you will get the following output:

** An equation in the pre-triangular part of the model cannot

be solved because the critical variable is at a bound.

Residual= 9.86122887E-02

Tolerance (RTNWTR)= 6.34931126E-07

e1: Infeasibility in pre-triangular part of model.

x1: Infeasibility in pre-triangular part of model.

The solution order of the critical equations and

variables is:

e2 is solved with respect to

x2. Solution value = 6.0000000000E-01

e1 could not be solved with respect to

x1. Final solution value = 3.0000000000E+00

e1 remains infeasible with residual = 9.8612288668E-02

The problem is as indicated that the variable to be solved for is at a bound, and the value suggested
by Newton's method is on the infeasible side of the bound. The critical variable is x1 and the critical
equation is e1, i.e. x1 tries to exceed its bound when CONOPT solves equation e1 with respect to x1. To
help you analyze the problem, especially for larger models, CONOPT reports the solution sequence that
led to the infeasibility: In this case equation e2 was first solved with respect to variable x2, then equation
e1 was attempted to be solved with respect to x1 at which stage the problem appeared. To make the
analysis easier CONOPT will always report the minimal set of equations and variables that caused the
infeasibility.

Another type of infeasibility is shown by the following model:

Variable x1, x2, x3, obj;

Equation e1, e2, e3;

e1 .. Sqr(x1) + x2 =e= 1.6;

e2 .. 5 * x2 =e= 3;

e3 .. obj =e= Sqr(x1) + 2 * Sqr(x2) + 3 * Sqr(x3);

Model demo / All /; Solve demo using NLP Minimizing obj;

where Log(x1) has been replaced by Sqr(x1) and the lower bound on x1 has been removed. This model
gives the message:

** An equation in the pre-triangular part of the model cannot

be solved because of too small pivot.

Adding a bound or initial value may help.

Residual= 4.0000000

1754 Solver Manuals

Tolerance (RTNWTR)= 6.34931126E-07

e1: Infeasibility in pre-triangular part of model.

x1: Infeasibility in pre-triangular part of model.

The solution order of the critical equations and

variables is:

e2 is solved with respect to

x2. Solution value = 6.0000000000E-01

e1 could not be solved with respect to

x1. Final solution value = 0.0000000000E+00

e1 remains infeasible with residual =-4.0000000000E+00

After equation e2 has been solved with respect to x2, equation e1 that contains the term Sqr(x) should
be solved with respect to x1. The initial value of x1 is the default value zero. The derivative of e1 with
respect to x1 is therefore zero, and it is not possible for CONOPT to determine whether to increase or
decrease x1. If x1 is given a nonzero initial value the model will solve. If x1 is given a positive initial
value the equation will give x1 = 1, and if x1 is given a negative initial value the equation will give x1 =
-1. The last type of infeasibility that can be detected during the solution of the pre-triangular or recursive
equations is shown by the following example

Variable x1, x2, x3, obj;

Equation e1, e2, e3;

e1 .. Log(x1) + x2 =e= 1.6;

e2 .. 5 * x2 =e= 3;

e3 .. obj =e= Sqr(x1) + 2 * Sqr(x2) + 3 * Sqr(x3);

e4 .. x1 + x2 =e= 3.318;

x1.Lo = 0.1;

Model demo / All /; Solve demo using NLP Minimizing obj;

that is derived from the first model by the addition of equation e4. This model produces the following
output

** An equation is inconsistent with other equations in the

pre-triangular part of the model.

Residual= 2.81828458E-04

Tolerance (RTNWTR)= 6.34931126E-07

The pre-triangular feasibility tolerance may be relaxed with

a line:

SET RTNWTR X.XX

in the CONOPT control program.

e4: Inconsistency in pre-triangular part of model.

The solution order of the critical equations and

variables is:

e2 is solved with respect to

5.7 CONOPT 3 1755

x2. Solution value = 6.0000000000E-01

e1 is solved with respect to

x1. Solution value = 2.7182818285E+00

All variables in equation e4 are now fixed

and the equation is infeasible. Residual = 2.8182845830E-04

First e2 is solved with respect to x2, then e1 is solved with respect to x1 as indicated by the last part of
the output. At this point all variables that appear in equation e4, namely x1 and x2, are fixed, but the
equation is not feasible. e4 is therefore inconsistent with e1 and e2 as indicated by the first part of the
output. In this case the inconsistency is fairly small, 2.8E-04, so it could be a tolerance problem. CONOPT
will always report the tolerance that was used, rtnwtr - the triangular Newton tolerance, and if the
infeasibility is small it will also tell how the tolerance can be relaxed. Section The CONOPT Options File
gives further details on how to change tolerances, and a complete list of options is given in Appendix B.

You can turn the identification and solution of pre-triangular variables and equations off by adding the
line lspret = f in the CONOPT control program. This can be useful in some special cases where the
point defined by the pre-triangular equations gives a function evaluation error in the remaining equations.
The following example shows this:

Variable x1, x2, x3, x4, obj;

Equation e1, e2, e3, e4;

e1 .. Log(1+x1) + x2 =e= 0;

e2 .. 5 * x2 =e= -3;

e3 .. obj =e= 1*Sqr(x1) + 2*Sqrt(0.01 + x2 - x4) + 3*Sqr(x3);

e4 .. x4 =l= x2;

MOdel fer / All /; Solve fer Minimizing obj using NLP;

All the nonlinear functions are defined in the initial point in which all variables have their default value
of zero. The pre-processor will compute x2 = -0.6 from e2 and x1 = 0.822 from e1. When CONOPT
continues and attempts to evaluate e3, the argument to the Sqrt function is negative when these new
triangular values are used together with the initial x4 = 0, and CONOPT cannot backtrack to some safe
point since the function evaluation error appears the first time e3 is evaluated. When the pre-triangular
preprocessor is turned off, x2 and x4 are changed at the same time and the argument to the Sqrt function
remains positive throughout the computations. Note, that although the purpose of the e4 inequality is to
guarantee that the argument of the Sqrt function is positive in all points, and although e4 is satisfied
in the initial point, it is not satisfied after the pre-triangular constraints have been solved. Only simple
bounds are strictly enforced at all times. Also note that if the option lspret = f is used then feasible
linear constraints will in fact remain feasible.

An alternative (and preferable) way of avoiding the function evaluation error is to define an intermediate
variable equal to 0.01+x2-x4 and add a lower bound of 0.01 on this variable. The inequality e4 could then
be removed and the overall model would have the same number of constraints.

Preprocessing: Post-triangular Variables and Constraints

Consider the following fragment of a larger GAMS model:

Variable util(t) Utility in period t

totutil Total Utility;

Equation utilDef(T) Definition of Utility

tutilDef Definition of Total Utility;

utilDef(T).. util(t) =e= nonlinear function of other variables;

tutilDef .. totutil =e= Sum(t , util(t) / (1+r)**Ord(t));

Model demo / All /; Solve demo Maximizing totutil using NLP;

1756 Solver Manuals

The part of the model shown here is easy to read and from a modeling point of view it should be considered
well written. However, it could be more difficult to solve than a model in which variable util(t) was
substituted out because all the utilDef equations are nonlinear constraints that the algorithms must ensure
are satisfied.

To make well written models like this easy to solve CONOPT will move as many nonlinearities as possible
from the constraints to the objective function. This automatically changes the model from the form that
is preferable for the modeler to the form that is preferable for the algorithm. In this process CONOPT
looks for free variables that only appear in one equation outside the objective function. If such a variable
exists and it appears linearly in the equation, like util(t) appears with coefficient 1 in equation utilDef(t),
then the equation can always be solved with respect to the variable. This means that the variable logically
can be substituted out of the model and the equation can be removed. The result is a model that has one
variable and one equation less, and a more complex objective function. As variables and equations are
substituted out, new candidates for elimination may emerge, so CONOPT repeats the process until no
more candidates exist.

This so-called post-triangular preprocessing step will often move several nonlinear constraints into the
objective function where they are much easier to handle, and the effective size of the model will decrease.
In some cases the result can even be a model without any general constraints. The name post-triangular
is derived from the way the equations and variables appear in the permuted Jacobian in Figure 1. The
post-triangular equations and variables are the ones on the lower right hand corner labeled B and II,
respectively.

In the example above, the util variables will be substituted out of the model together with the nonlinear
utilDef equations provided the util variables are free and do not appear elsewhere in the model. The
resulting model will have fewer nonlinear constraints, but more nonlinear terms in the objective function.

Although you may know that the nonlinear functions on the right hand side of utilDef always will produce
positive util values, you should in general not declare util to be a Positive Variable. If you do, CONOPT
may not be able to eliminate util(t), and the model will be harder to solve. It is of course unfortunate
that a redundant bound changes the solution behavior, and to reduce this problem CONOPT will try to
estimate the range of nonlinear expressions using interval arithmetic. If the computed range of the right
hand side of the utilDef constraint is within the bounds of util, then these bounds cannot be binding and
util is a so-called implied free variable that can be eliminated.

The following model fragment from a least squares model shows another case where the preprocessing
step in CONOPT is useful:

Variable residual(case) Residuals

ssq Sum of Squared Residuals;

Equation eqEst(case) Equation to be estimated

ssqDef Definition of objective;

eqEst(case).. residual(case) =e= expression in other variables;

SSQDEF .. ssq =e= Sum(case, Sqr(residual(case)));

Model lsqLarge / All /; Solve lsqLarge using NLP Minimizing ssq;

CONOPT will substitute the residual variables out of the model using the eqEst equations. The model
solved by CONOPT is therefore mathematically equivalent to the following GAMS model

Variable ssq Sum of Squared Residuals;

Equation ssqd Definition of objective;

Ssqd .. ssq =e= Sum(case, Sqr(expression in other variables));

Model lsqSmall / All /;

Solve lsqSmall using NLP Minimizing ssq;

5.7 CONOPT 3 1757

However, if the ”expression in other variables” is a little complicated, e.g. if it depends on several variables,
then the first model, lsqLarge, will be much faster to generate with GAMS because its derivatives in
equation qEst and ssqDef are much simpler than the derivatives in the combined ssqd equation in the
second model, lsqSmall. The larger model will therefore be faster to generate, and it will also be faster to
solve because the computation of both first and second derivatives will be faster.

Note that the comments about what are good model formulations are dependent on the preprocessing
capabilities in CONOPT. Other algorithms may prefer models like lsqSmalL over lsqLarge. Also note
that the variables and equations that are substituted out are still indirectly part of the model. CONOPT
evaluates the equations and computes values for the variables each time the value of the objective function
is needed, and their values are available in the GAMS solution.

It is not necessary to have a coefficient of 1 for the variable to be substituted out in the post-triangular
phase. However, a non-zero coefficient cannot be smaller than the absolute pivot tolerance used by
CONOPT, rtpiva.

The number of pre- and post-triangular equations and variables is printed in the log file between iteration 0
and 1 as shown in the iteration log in section Iteration Output of the main text. The sum of infeasibilities
will usually decrease from iteration 0 to 1 because fewer constraints usually will be infeasible. However, it
may increase as shown by the following example:

Positive Variable x, y, z;

Equation e1, e2;

e1.. x =e= 1;

e2.. 10*x - y + z =e= 0;

started from the default values x.L = 0, y.L = 0, and z.L = 0. The initial sum of infeasibilities is 1 (from
e1 only). During pre-processing x is selected as a pre-triangular variable in equation e1 and it is assigned
its final value 1 so e1 becomes feasible. After this change the sum of infeasibilities increases to 10 (from e2
only).

You may stop CONOPT after iteration 1 with Option IterLim = 1; in GAMS. The solution returned
to GAMS will contain the pre-processed values for the variables that can be assigned values from the
pre-triangular equations, the computed values for the variables used to solve the post-triangular equations,
and the input values for all other variables. The pre- and post-triangular constraints will be feasible, and
the remaining constraints will have values that correspond to this point. The marginals of both variables
and equations have not been computed yet and will be returned as EPS.

The crash procedure described in the following sub-section is an optional part of iteration 1.

Preprocessing: The Optional Crash Procedure

In the initial point given to CONOPT the variables are usually split into a group with initial value
provided by the modeler (in the following called the assigned variables) and a group of variables for which
no initial value has been provided (in the following called the default variables). The objective of the
optional crash procedure is to find a point in which as many of the constraints as possible are feasible,
primarily by assigning values to the default variables and by keeping the assigned variables at their initial
values. The implicit assumption in this procedure is that if the modeler has assigned an initial value to a
variable then this value is ”better” then a default initial value.

The crash procedure is an extension of the triangular pre-processing procedure described above and is
based on a simple heuristic: As long as there is an equation with only one non-fixed variable (a singleton
row) then we should assign a value to the variable so the equation is satisfied or satisfied as closely as
possible, and we should then temporarily fix the variable. When variables are fixed additional singleton
rows may emerge and we repeat the process. When there are no singleton rows we fix one or more variables
at their initial value until a singleton row appears, or until all variables have been fixed. The variables to

1758 Solver Manuals

be fixed at their initial value are selected using a heuristic that both tries to create many row singletons
and tries to select variables with ”good values”. Since the values of many variables will come to depend
in the fixed variables, the procedure favors assigned variables and among these it favors variables that
appear in many feasible constraints.

Figure 2 shows a reordered version of Figure 1. The variables labeled IV are the variables that are kept
at their initial values, primarily selected from the assigned variables. The equations labeled C are then
solved with respect to the variables labeled III, called the crash-triangular variables. The crash-triangular
variables will often be variables without initial values, e.g. intermediate variables. The number of
crash-triangular variables is shown on the iteration output between iteration 0 and 1, but only if the crash
procedure is turned on.

The result of the crash procedure is an updated initial point in which usually a large number of equations
will be feasible, namely all equations labeled A, B, and C in Figure 2. There is, as already shown with the
small example in Section Preprocessing: Post-triangular Variables and Constraints above, no guarantee
that the sum of infeasibilities will be reduced, but it is often the case, and the point will often provide a
good starting point for the following procedures that finds an initial feasible solution.

The crash procedure is activated by adding the line lstcrs=t in the options file. The default value of
lstcrs (lstcrs = Logical Switch for Triangular Crash) is f or false, i.e. the crash procedure is not
normally used. Before turning the crash procedure on you must turn the definitional equations (see next
sub-section) off.

Preprocessing: Definitional Equations

From version 3.16 CONOPT has introduced the concept of Definitional Equations. In section
Simple Expressions it was recommended to introduce intermediate variables to simplify complex ex-
pressions. If the intermediate variables are free or if the bounds defined by the modeler cannot be binding
then we call the constraints that define the intermediate variables ”Definitional Equations” and the
intermediate variables ”Defined Variables”. Some models have a large number of definitional equations,
and CONOPT tries to recognize them and take advantage of the special structure. Defined variables that
only appear in or feed into the objective are recognized as post-triangular variables as discussed in section
Preprocessing: Post-triangular Variables and Constraints but defined variables can also be used in the
simultaneous constraints. The picture is similar to fig 2. with the C-rows representing the definitional
constraints and the III-variables the defined variables. The main differences between crash- triangular
variables and defined variable are that (1) defined variables are free or have non-binding bounds and the
definitional equations can therefore always be made feasible, (2) defined variables are cheaper to recognize,
(3) since they have a natural interpretation, using them is probably more numerical stable, and (4) there
are most likely fewer defined variables than crash-triangular variables.

The number of definitional equations is printed in the log file between iteration 0 and 1 if CONOPT finds
any. The definitional equations are used to give the defined variables new values, so it is no longer so
important the give intermediate variables initial values. In the process the sum of infeasibilities may grow
but CONOPT consider it more important to keep these constraints feasible. The defined variables are
also made basic and they will most likely stay basic throughout the solution process.

There are three new options introduced to controls the detection of definitional equations: lsusdf,
lsuqdf, and lfusdf. They are described in Appendix B. By default CONOPT will only look for unique
definitional constraints, but the options allow the user to experiment with a more aggressive strategy.

From version 3.16F there is an additional option, lmusdf, used to control how the definitional equations
are used during the optimization. The option is summarized in Appendix B. By default, definitional
equations are only used to define initial values and an initial basis and their special properties are ignored
during the optimization. If there are many definitional equations and they are fairly nonlinear then it
can sometimes be beneficial to force the definitional variables to remain basic and to use the definitional
equations to compute values for the defined variables in all intermediate trial points. This behavior is
turned on with lmusdf = 1. The point where lmusdf = 1 start to pay off depends on the model and the
degree of nonlinearity, but a guess is that the number of definitional equations should exceed half the
number of equations remaining after the pre- and post-triangular equations have been removed before it
is worth while.

5.7 CONOPT 3 1759

Preprocessing and Function evaluation errors

Function evaluation errors may occure during pre-processing is an equation that is a candidate for becoming
pre-triangular. Since GAMS requires all functions to be defined in the starting point this can only happen
if a previously solved pre-triangular variable has recived new a value that makes the function undefined.
An example is:

positive variable x1, x2

equation e1, e2;

e1 .. x1 =E= 10;

e2 .. x2 =E= log(5-x1);

The pre-triangular variable x1 is changed to 10, a value that is inconsistent with equation e2. You can
see the changes that CONOPT has made during pre-processing with the option prprec = true and this
should help identify why the model does not solve.

After identifying and solving the pre-triangular part of the model CONOPT looks for implied bounds,
and if an initial variable violates such an implied bound, CONOPT will move it inside the bound. This
change can give rise to a function evaluation error in one of the remaining constraints. An example is:

positive variable x1, x2, x3, x4;

equation e1, e2;

e1.. x1 + x2 =L= 10;

e2.. x4 =E= log(x1+x3-20);

x1.l = 100; x3.up = 100;

From constraint e1 we can derive that both x1 and x2 must have (implied) upper bounds of 10. Since the
initial value of x1 is above this implied bound it is changed by the pre-processor. After the pre-processor
finishes, e2 will give a function evaluation error. Again, option prprec = true will give output that
describes the changes in the variables which should help identify the problem.

5.7.8.5 Iteration 2: Scaling

Iteration 2 is the last dummy iteration during which the model is scaled, if scaling is turned on. The
default is to turn scaling on. The Infeasibility column shows the scaled sum of infeasibilities. You may
again stop CONOPT after iteration 2 with Option IterLim = 2; in GAMS, but the solution that is
reported in GAMS will have been scaled back again so there will be no change from iteration 1 to iteration
2.

The following description of the automatic scaling procedure is included for completeness. Experiments
have so far given mixed results with some advantage for scaling, and scaling is therefore by default turned
on, corresponding to the CONOPT option lsscal = t. Users are recommended to be cautious with the
automatic scaling procedure. If scaling is a problem, try to use manual scaling or scaling in GAMS (see
section Scaling in the main text) based on an understanding of the model.

The scaling procedure multiplies all variables in group III and all constraints in group C (see Figure 1) by
scale factors computed as follows:

1. CONOPT computes the largest term for each constraint, i. This is defined as the maximum of the
constant right hand side, the slack (if any), and Abs(jac(i,j)∗x(j)) where jac(i,j) is the derivative and
x(j) is the variable.

1760 Solver Manuals

2. The constraint scale factor is defined as the largest term in the constraint, projected on the interval
[rtmins, rtmaxs]. The constraint is then divided by the constraint scale factor. Ignoring the
projection, the result is a model in which the largest term in each constraint is exactly 1. The
purpose of the projection is to prevent extreme scaling. The default value of rtmins is 1 which
implies that we do not scale the constraints up. Constraints with only small terms remain unchanged.
The default value of rtmaxs is 2∗∗30 or around 1.07e9 so terms much larger than 1.e9 are only
partially scaled down and will still remain large.

3. The terms Abs(jac(i,j)∗x(j)) after constraint scaling measure the importance of each variable in the
particular constraint. The variable scale is selected so the largest importance of the variable over
all constraints is 1. This gives a very simple variable scale factor, namely the absolute value of the
variable. The variable is then divided by the variable scale factor. To avoid extreme scaling we again
project on the interval [rtmins, rtmaxs]. Variables less than rtmins (default 1) are therefore not
scaled up and variables over rtmaxs (default 2∗∗30 = 1.07e9) are only partially scaled down.

You should note that CONOPT by default scales large numbers down, but it does not scale small numbers
up. You should therefore try to avoid having variables or terms in expressions that are small but significant.
If this is not possible, allow CONOPT to scale up by giving the option rtmins a value less than 1.

All scale factors are rounded down to a power of 2 to preserve precision in the internal computations. To
avoid difficulties with rapidly varying variables and derivatives CONOPT recomputes the scale factors at
regular intervals (see lfscal).

The options that control scaling, lsscal, lfscal, rtmins, and rtmaxs, are all described in Appendix B.

5.7.8.6 Finding a Feasible Solution: Phase 0

The GRG algorithm used by CONOPT is a feasible path algorithm. This means that once it has found a
feasible point it tries to remain feasible and follow a path of improving feasible points until it reaches a
local optimum. CONOPT starts with the point provided by GAMS. This point will always satisfy the
bounds (3): GAMS will simply move a variable that is outside its bounds to the nearer bound before it
is presented to the solver. If the general constraints (2) also are feasible then CONOPT will work with
feasible solutions throughout the optimization. However, the initial point may not satisfy the general
constraints (2). If this is not the case, CONOPT must first find an initial feasible point. This first step can
be just as hard as finding an optimum for some models. For some models feasibility is the only problem.

CONOPT has two methods for finding an initial feasible point. The first method is not very reliable but
it is fast when it works; the second method is reliable but slower. The fast method is called Phase 0 and
it is described in this section. It is used first. The reliable method, called Phase 1 and 2, will be used if
Phase 0 terminates without a feasible solution.

Phase 0 is based on the observation that Newton's method for solving a set of equations usually is very
fast, but it may not always converge. Newton's method in its pure form is defined for a model with the
same number of variables as equations, and no bounds on the variables. With our type of model there are
usually too many variables, i.e. too many degrees of freedom, and there are bounds. To get around the
problem of too many variables, CONOPT selects a subset with exactly m ”basic” variables to be changed.
The rest of the variables will remain fixed at their current values, that are not necessarily at bounds. To
accommodate the bounds, CONOPT will try to select variables that are away from their bounds as basic,
subject to the requirement that the Basis matrix, consisting of the corresponding columns in the Jacobian,
must have full rank and be well conditioned.

The Newton equations are solved to yield a vector of proposed changes for the basic variables. If the full
proposed step can be applied we can hope for the fast convergence of Newton's method. However, several
things may go wrong:

1. The infeasibilities, measured by the 1-norm of g (i.e. the sum of the absolute infeasibilities, excluding
the pre- and post-triangular equations), may not decrease as expected due to nonlinearities.

5.7 CONOPT 3 1761

2. The maximum step length may have to be reduced if a basic variable otherwise would exceed one of
its bounds.

In case 1. CONOPT tries various heuristics to find a more appropriate set of basic variables. If this does
not work, some ”difficult” equations, i.e. equations with large infeasibilities and significant nonlinearities,
are temporarily removed from the model, and Newton's method is applied to the remaining set of ”easy”
equations.

In case 2. CONOPT will remove the basic variable that first reaches one of its bounds from the basis
and replace it by one of the nonbasic variables. Newton's method is then applied to the new set of basic
variables. The logic is very close to that of the dual simplex method. In cases where some of the basic
variables are exactly at a bound CONOPT uses an anti degeneracy procedure based on Ryan and Osborne
(1988) to prevent cycling.

Phase 0 will end when all equations except possibly some ”difficult” equations are feasible within some
small tolerance. If there are no difficult equations, CONOPT has found a feasible solution and it will
proceed with Phase 3 and 4. Otherwise, Phase 1 and 2 is used to make the difficult equations feasible.

The iteration output will during Phase 0 have the following columns in the iteration log: Iter, Phase, Ninf,
Infeasibility, Step, MX, and OK. The number in the Ninf column counts the number of ”difficult” infeasible
equations, and the number in the Infeasibility column shows the sum of the absolute infeasibilities in all
the general constraints, both in the easy and in the difficult ones. There are three possible combinations of
values in the MX and OK columns: combination (1) has F in the MX column and T in the OK column and
it will always be combined with 1.0 in the Step column: this is an ideal Newton step. The infeasibilities
in the easy equations should be reduced quickly, but the difficult equations may dominate the number in
the Infeasibility column so you may not observe it. However, a few of these iterations is usually enough
to terminate Phase 0. Combination (2) has T in the MX column indicating that a basic variable has
reached its bound and is removed from the basis as in case 2. above. This will always be combined with
T in the OK column. The Step column will show a step length less than the ideal Newton step of 1.0.
Combination (3) has F in both the MX and OK column. It is the bad case and will always be combined
with a step of 0.0: this is an iteration where nonlinearities are dominating and one of the heuristics from
case 1. must be used.

The success of the Phase 0 procedure is based on being able to choose a good basis that will allow a full
Newton step. It is therefore important that as many variables as possible have been assigned reasonable
initial values so CONOPT has some variables away from their bounds to select from. This topic was
discussed in more detail in section Initial Values .

The start and the iterations of Phase 0 can, in addition to the crash option described in section
Finding a Feasible Solution: Phase 0 be controlled with the three options lslack, lsmxbs, and lmmxsf

described in Appendix B.

5.7.8.7 Finding a Feasible Solution: Phase 1 and 2

Most of the equations will be feasible when phase 0 stops. To remove the remaining infeasibilities CONOPT
uses a procedure similar to the phase 1 procedure used in Linear Programming: artificial variables are
added to the infeasible equations (the equations with Large Residuals), and the sum of these artificial
variables is minimized subject to the feasible constraints remaining feasible. The artificial variable are
already part of the model as slack variables; their bounds are simply relaxed temporarily.

This infeasibility minimization problem is similar to the overall optimization problem: minimize an
objective function subject to equality constraints and bounds on the variables. The feasibility problem
is therefore solved with the ordinary GRG optimization procedure. As the artificial variables gradually
become zero, i.e. as the infeasible equations become feasible, they are taken out of the auxiliary objective
function. The number of infeasibilities (shown in the Ninf column of the log file) and the sum of
infeasibilities (in the Infeasibility column) will therefore both decrease monotonically.

The iteration output will label these iterations as phase 1 and/or phase 2. The distinction between phases
1 (linear mode) and 2 (nonlinear mode) is similar to the distinction between phases 3 and 4, which are
described in the next sections.

1762 Solver Manuals

5.7.8.8 Linear and Nonlinear Mode: Phase 1 to 4

The optimization itself follows step 2 to 9 of the GRG algorithm shown in The CONOPT Algorithm
above. The factorization in step 3 is performed using an efficient sparse LU factorization similar to the
one described by Suhl and Suhl (1990). The matrix operations in step 4 and 5 are also performed sparse.

Step 7, selection of the search direction, has several variants, depending on how nonlinear the model is
locally. When the model appears to be fairly linear in the area in which the optimization is performed, i.e.
when the function and constraint values are close to their linear approximation for the steps that are taken,
then CONOPT takes advantages of the linearity: The derivatives (the Jacobian) are not computed in
every iteration, the basis factorization is updated using cheap LP techniques as described by Reid (1982),
the search direction is determined without use of second order information, i.e. similar to a steepest
descend algorithm, and the initial steplength is estimated as the step length where the first variable
reaches a bound; very often, this is the only step length that has to be evaluated. These cheap almost
linear iterations are referred to a Linear Mode and they are labeled Phase 1 when the model is infeasible
and objective is the sum of infeasibilities and Phase 3 when the model is feasible and the real objective
function is optimized.

When the constraints and/or the objective appear to be more nonlinear CONOPT will still follow step 2
to 9 of the GRG algorithm. However, the detailed content of each step is different. In step 2, the Jacobian
must be recomputed in each iteration since the nonlinearities imply that the derivatives change. On the
other hand, the set of basic variables will often be the same and CONOPT will take advantage of this
during the factorization of the basis. In step 7 CONOPT uses the BFGS algorithm to estimate second
order information and determine search directions. And in step 8 it will often be necessary to perform
more than one step in the line search. These nonlinear iterations are labeled Phase 2 in the output if the
solution is still infeasible, and Phase 4 if it is feasible. The iterations in phase 2 and 4 are in general more
expensive than the iteration in phase 1 and 3.

Some models will remain in phase 1 (linear mode) until a feasible solution is found and then continue
in phase 3 until the optimum is found, even if the model is truly nonlinear. However, most nonlinear
models will have some iterations in phase 2 and/or 4 (nonlinear mode). Phase 2 and 4 indicates that
the model has significant nonlinear terms around the current point: the objective or the constraints
deviate significantly from a linear model for the steps that are taken. To improve the rate of convergence
CONOPT tries to estimate second order information in the form of an estimated reduced Hessian using
the BFGS formula.

Each iteration is, in addition to the step length shown in column ”Step”, characterized by two logicals:
MX and OK. MX = T means that the step was maximal, i.e. it was determined by a variable reaching a
bound. This is the expected value in Phase 1 and 3. MX = F means that no variable reached a bound
and the optimal step length will in general be determined by nonlinearities. OK = T means that the line
search was well-behaved and an optimal step length was found; OK = F means that the line search was
ill-behaved, which means that CONOPT would like to take a larger step, but the feasibility restoring
Newton process used during the line search did not converge for large step lengths. Iterations marked
with OK = F (and therefore also with MX = F) will usually be expensive, while iterations marked with
MX = T and OK = T will be cheap.

5.7.8.9 Linear Mode: The SLP Procedure

When the model continues to appear linear CONOPT will often take many small steps, each determined
by a new variable reaching a bound. Although the line searches are fast in linear mode, each require one
or more evaluations of the nonlinear constraints, and the overall cost may become high relative to the
progress. In order to avoid the many nonlinear constraint evaluations CONOPT may replace the steepest
descend direction in step 7 of the GRG algorithm with a sequential linear programming (SLP) technique
to find a search direction that anticipates the bounds on all variables and therefore gives a larger expected
change in objective in each line search. The search direction and the last basis from the SLP procedure
are used in an ordinary GRG-type line search in which the solution is made feasible at each step. The

5.7 CONOPT 3 1763

SLP procedure is only used to generate good directions; the usual feasibility preserving steps in CONOPT
are maintained, so CONOPT is still a feasible path method with all its advantages, especially related to
reliability.

Iterations in this so-called SLP-mode are identified by numbers in the column labeled InItr in the
iteration log. The number in the InItr column is the number of non- degenerate SLP iterations. This
number is adjusted dynamically according to the success of the previous iterations and the perceived
linearity of the model.

The SLP procedure generates a scaled search direction and the expected step length in the following line
search is therefore 1.0. The step length may be less than 1.0 for several reasons:

• The line search is ill-behaved. This is indicated with OK = F and MX = F.

• A basic variable reaches a bound before predicted by the linear model. This is indicated with MX =
T and OK = T.

• The objective is nonlinear along the search direction and the optimal step is less than one. This is
indicated with OK = T and MX = F.

CONOPT will by default determine if it should use the SLP procedure or not, based on progress
information. You may turn it off completely with the line lseslp = f in the CONOPT options file
(usually conopt.opt). The default value of lseslp (lseslp = Logical Switch Enabling SLP mode) is t or
true, i.e. the SLP procedure is enabled and CONOPT may use it when considered appropriate. It is
seldom necessary to define lseslp, but it can be useful if CONOPT repeatedly turns SLP on and off, i.e.
if you see a mixture of lines in the iteration log with and without numbers in the InItr column.

5.7.8.10 Linear Mode: The Steepest Edge Procedure

When optimizing in linear mode (Phase 1 or 3) CONOPT will by default use a steepest descend algorithm
to determine the search direction. CONOPT allows you to use a Steepest Edge Algorithm as an alternative.
The idea, borrowed from Linear Programming, is to scale the nonbasic variables according to the Euclidean
norm of the ”updated column” in a standard LP tableau, the so-called edge length. A unit step for a
nonbasic variable will give rise to changes in the basic variables proportional to the edge length. A unit
step for a nonbasic variable with a large edge length will therefore give large changes in the basic variables
which has two adverse effects relative to a unit step for a nonbasic variable with a small edge length: a
basic variable is more likely to reach a bound after a very short step length, and the large change in basic
variables is more likely to give rise to larger nonlinear terms.

The steepest edge algorithm has been very successful for linear programs, and our initial experience has
also shown that it will give fewer iterations for most nonlinear models. However, the cost of maintaining
the edge lengths can be more expensive in the nonlinear case and it depends on the model whether steepest
edge results in faster overall solution times or not. CONOPT uses the updating methods for the edge
lengths from LP, but it must re-initialize the edge lengths more frequently, e.g. when an inversion fails,
which happens more frequently in nonlinear models than in linear models, especially in models with many
product terms, e.g. blending models, where the rank of the Jacobian can change from point to point.

Steepest edge is turned on with the line, lsanrm = t, in the CONOPT options file (usually conopt.opt).
The default value of lsanrm (lsanrm = Logical Switch for A- Norm) is f or false, i.e. the steepest edge
procedure is turned off.

The steepest edge procedure is mainly useful during linear mode iterations. However, it has some influence
in phase 2 and 4 also: The estimated reduced Hessian in the BFGS method is initialized to a diagonal
matrix with elements on the diagonal computed from the edge lengths, instead of the usual scaled unit
matrix.

1764 Solver Manuals

5.7.8.11 Nonlinear Mode: The SQP Procedure

When progress is determined by nonlinearities CONOPT needs second order information. Some second
order information can be derived from the line search and is used in the first iterations in Phase 2 or 4.
Depending on progress, CONOPT may switch to a Sequential Quadratic Programming (SQP) procedure
that works on a sub-model with linear constraints and a quadratic objective function. The constraints
are a linearization of the nonlinear constraints, and the objective function is derived from the Hessian of
the Lagrangian function. CONOPT will inside the SQP procedure use exact second order information
computed by GAMS. The result of the SQP procedure is a search direction and a basis and CONOPT will
afterwards use the same line search procedure and feasibility preserving steps as after the SLP procedure.
CONOPT remains a feasible path method with all its advantages, especially related to reliability.

Iterations in this so-called SQP-mode are identified by numbers in the column labeled ”InItr” in the
iteration log. The number in the InItr column is the number of non-degenerate SQP iterations. The
effort spend inside the SQP procedure is adjusted dynamically according to the success of the previous
iterations and the reduction in reduced gradient in the quadratic model.

The SQP procedure generates a scaled search direction and the expected step length in the following line
search is therefore 1.0. The step length may be less than 1.0 for several reasons:

• The line search is ill-behaved. This is indicated with OK = F and MX = F.

• A basic variable reaches a bound before predicted by the linear model of the constraints. This is
indicated with MX = T and OK = T.

• The objective is much more nonlinear along the search direction than expected and the optimal step
is not one. This is indicated with OK = T and MX = F.

CONOPT will by default determine if it should use the SQP procedure or not, based on progress
information. You may turn it off completely with the line lsesqp = f in the CONOPT options file
(usually conopt.opt). The default value of lsesqp (lsesqp = Logical Switch Enabling SQP mode) is t or
true, i.e. the SQP procedure is enabled and CONOPT may use it when considered appropriate. It is
seldom necessary to define lsesqp, but it can be used for experimentation.

In connection with 1st and 2nd derivatives the listing file (∗.lst) will have a few extra lines. The first looks
as follows:

The model has 537 variables and 457 constraints

with 1597 Jacobian elements, 380 of which are nonlinear.

The Hessian of the Lagrangian has 152 elements on the diagonal,

228 elements below the diagonal, and 304 nonlinear variables.

The first two lines repeat information given in the GAMS model statistics and the last two lines describe
second order information. CONOPT uses the matrix of second derivatives (the Hessian) of a linear
combination of the objective and the constraints (the Lagrangian). The Hessian is symmetric and the
statistics show that it has 152 elements on the diagonal and 228 below for a total of 380 elements in this
case. This compares favorably to the number of elements in the matrix of first derivatives (the Jacobian).

For some models you may see the following message instead (before the usual CONOPT banner):

** Warning ** Memory Limit for Hessians exceeded.

You can use the Conopt option "rvhess"

5.7 CONOPT 3 1765

The creation of the matrix of second derivatives has been interrupted because the matrix became too
dense. A dense matrix of second derivatives will be slow to compute and it will need a lot of memory. In
addition, it is likely that a dense Hessian will make some of the computations inside the SQP iterations so
slow that the potential saving in number of iterations is used up computing and manipulating the Hessian.

CONOPT can use second derivatives even if the Hessian is not available. A special version of the function
evaluation routine can compute the Hessian multiplied by a vector (the so-called directional second
derivative) without computing the Hessian itself. This routine is used when the Hessian is not available.
The directional second derivative approach will require one directional second derivative evaluation call
per inner SQP iteration instead of one Hessian evaluation per SQP sub-model.

If you get the ”Memory Limit for Hessians exceeded” message you may consider rewriting some equation.
Look for nonlinear functions applied to long linear or separable expressions such as log(sum(i,x(i)); as
discussed in Section Simple Expressions . An expression like this will create a dense Hessian with card(i)
rows and columns. You should consider introducing an intermediate variable that is equal to the long
linear or separable expression and then apply the nonlinear function to this single variable. You may also
experiment with allocating more memory for the dense Hessian and use it despite the higher cost; it may
reduce the number of iterations. This can be done by adding the option rvhess = XX to the CONOPT
options file. rvhess is a memory factor with default value 10 so you need a larger value. The value 0.0 is
special; it means do not impose a memory limit on the Hessian.

The time spend on the many types of function and derivative evaluations are reported in the listing file in
a section like this:

CONOPT time Total 0.734 seconds

of which: Function evaluations 0.031 = 4.3%

1st Derivative evaluations 0.020 = 2.7%

2nd Derivative evaluations 0.113 = 15.4%

Directional 2nd Derivative 0.016 = 2.1%

The function evaluations are computations of the nonlinear terms in the model, and 1st Derivatives
evaluations are computations of the Jacobian of the model. 2nd Derivative evaluations are computations of
the Hessian of the Lagrangian, and Directional 2nd derivative evaluations are computations of the Hessian
multiplied by a vector, computed without computing the Hessian itself. The lines for 2nd derivatives will
only be present if CONOPT has used this type of 2nd derivative.

If your model is not likely to benefit from 2nd derivative information or if you know you will run out of
memory anyway you can save a small setup cost by telling CONOPT not to generate it using option
dohess = f.

5.7.8.12 How to Select Non-default Options

The non-default options have an influence on different phases of the optimization and you must therefore
first observe whether most of the time is spend in Phase 0, Phase 1 and 3, or in Phase 2 and 4.

Phase 0: The quality of Phase 0 depends on the number of iterations and on the number and sum of
infeasibilities after Phase 0. The iterations in Phase 0 are much faster than the other iterations, but the
overall time spend in Phase 0 may still be rather large. If this is the case, or if the infeasibilities after
Phase 0 are large you may try to use the triangular crash options:

lstcrs = t

Observe if the initial sum of infeasibility after iteration 1 has been reduced, and if the number of phase 0
iterations and the number of infeasibilities at the start of phase 1 have been reduced. If lstcrs reduces the
initial sum of infeasibilities but the number of iterations still is large you may try:

1766 Solver Manuals

lslack = t

CONOPT will after the preprocessor immediately add artificial variables to all infeasible constraints so
Phase 0 will be eliminated, but the sum and number of infeasibilities at the start of Phase 1 will be larger.
You are in reality trading Phase 0 iterations for Phase 1 iterations.

You may also try the experimental bending line search with

lmmxsf = 1

The line search in Phase 0 will with this option be different and the infeasibilities may be reduced faster
than with the default lmmxsf = 0. It is likely to be better if the number of iterations with both MX = F
and OK∼=∼F is large. This option may be combined with lstcrs = t. Usually, linear constraints that
are feasible will remain feasible. However, you should note that with the bending linesearch linear feasible
constraints could become infeasible.

Phase 1 and 3: The number of iterations in Phase 1 and Phase 3 will probably be reduced if you use
steepest edge, lsanrm = t, but the overall time may increase. Steepest edge seems to be best for models
with less than 5000 constraints, but work in progress tries to push this limit upwards. Try it when the
number of iterations is very large, or when many iterations are poorly behaved identified with OK = F in
the iteration log. The default SLP mode is usually an advantage, but it is too expensive for a few models.
If you observe frequent changes between SLP mode and non-SLP mode, or if many line searches in the
SLP iterations are ill-behaved with OK = F, then it may be better to turn SLP off with lseslp = f.

Phase 2 and 4: There are currently not many options available if most of the time is spend in Phase 2
and Phase 4. If the change in objective during the last iterations is very small, you may reduce computer
time in return for a slightly worse objective by reducing the optimality tolerance, rtredg.

5.7.8.13 Miscellaneous Topics

Triangular Models

A triangular model is one in which the non-fixed variables and the equations can be sorted such that
the first equation only depends on the first variable, the second equation only depends on the first two
variables, and the p-th equation only depends on the first p variables. Provided there are no difficulties
with bounds or small pivots, triangular models can be solved one equation at a time using the method
describe in section Preprocessing: Pre-triangular Variables and Constraints and the solution process will
be very fast and reliable.

Triangular models can in many cases be useful for finding a good initial feasible solution: Fix a subset of
the variables so the remaining model is known to be triangular and solve this triangular simulation model.
Then reset the bounds on the fixed variables to their original values and solve the original model. The
first solve will be very fast and if the fixed variables have been fixed at good values then the solution will
also be good. The second solve will start from the good feasible solution generated by the first solve and
it will usually optimize much more quickly than from a poor start.

The modeler can instruct CONOPT that a model is supposed to be triangular with the option
lstria = t. CONOPT will then use a special version of the preprocessing routine (see section
Preprocessing: Pre-triangular Variables and Constraints) that solves the model very efficiently. If the
model is solved successfully then CONOPT terminates with the message:

** Feasible solution to a recursive model.

5.7 CONOPT 3 1767

and the Model Status will be 2, Locally Optimal, or 1, Optimal, depending on whether there were any
nonlinear pivots or not. All marginals on both variables and equations are returned as 0 (zero) or EPS.

Two SOLVEs with different option files can be arranged by writing the option files as they are needed
from within the GAMS program with PUT statements followed by a PutClose. You can also have two
different option files, e.g., conopt.opt and conopt.op2, and select the second with the GAMS statement
<model>.OptFile = 2;.

The triangular facility handles a number of error situations:

1. Non-triangular models: CONOPT will ensure that the model is indeed triangular. If it is not,
CONOPT will return model status 5, Locally Infeasible, plus some information that allows the
modeler to identify the mistake. The necessary information is related to the order of the variables
and equations and number of occurrences of variables and equations, and since GAMS does no have
a natural place for this type of information CONOPT returns it in the marginals of the equations
and variables. The solution order for the triangular equations and variables that have been solved
successfully are defined with positive numbers in the marginals of the equations and variables. For
the remaining non- triangular variables and equations CONOPT shows the number of places they
appear as negative numbers, i.e. a negative marginal for an equation shows how many of the non-
triangular variables that appear in this equation. You must fix one or more variables until at least
one of the non-triangular equation only has one non-fixed variable left.

2. Infeasibilities due to bounds: If some of the triangular equations cannot be solved with respect to
their variable because the variable will exceed the bounds, then CONOPT will flag the equation
as infeasible, keep the variable at the bound, and continue the triangular solve. The solution to
the triangular model will therefore satisfy all bounds and almost all equations. The termination
message will be

** Infeasible solution. xx artificial(s) have been

introduced into the recursive equations.

and the model status will be 5, Locally Infeasible.
The modeler may in this case add explicit artificial variables with high costs to the infeasible
constraints and the resulting point will be an initial feasible point to the overall optimization model.
You will often from the mathematics of the model know that only some of the constraints can be
infeasible, so you will only need to check whether to add artificials in these equations. Assume that
a block of equations matbal(m,t) could become infeasible. Then the artificials that may be needed
in this equation can be modeled and identified automatically with the following GAMS constructs:

Set aposart(m,t) Add a positive artificial in Matbal

anegart(m,t) Add a negative artificial in Matbal;

aposart(m,t) = No; anegart(m,t) = No;

Positive Variable

vposart(m,t) Positive artificial variable in Matbal

vnegart(m,t) Negative artificial variable in Matbal;

matbal(m,t).. Left hand side =e= right hand side

+ vposart(m,t)$aposart(m,t) - vnegart(m,t)$anegart(m,t);

objDef.. obj =e= other_terms +

weight * Sum((m,t), vposart(m,t)$aposart(m,t)

+vnegart(m,t)$anegart(m,t));

Solve triangular model ...

aposart(m,t)$(matbal.l(m,t) > matbal.Up(m,t)) = Yes;

anegart(m,t)$(matbal.l(m,t) < matbal.Lo(m,t)) = Yes;

Solve final model ...

1768 Solver Manuals

3. Small pivots: The triangular facility requires the solution of each equation to be locally unique
which also means that the pivots used to solve each equation must be nonzero. The model segment

e1 .. x1 =e= 0;

e2 .. x1 * x2 =e= 0;

will give the message

x2 appearing in

e2: Pivot too small for triangular model. Value=0.000E+00

** Infeasible solution. The equations were assumed to be

recursive but they are not. A pivot element is too small.

However, the uniqueness of x2 may not be relevant if the solution just is going to be used as an
initial point for a second model. The option lsismp = t (for Logical Switch: Ignore Small Pivots)
will allow zero pivots as long as the corresponding equation is feasible for the given initial values.

Constrained Nonlinear System or Square Systems of Equations

There is a special model class in GAMS called CNS - Constrained Nonlinear System. A constrained
nonlinear system is a square system of equations, i.e. a model in which the number of non-fixed variables
is equal to the number of constraints. Currently, CONOPT and PATH are the only solvers with special
treatment for this model class. A CNS model can be solved with a solve statement like

Solve <model> using CNS;

without an objective term. In some cases it may be convenient to solve a CNS model with a standard
solve statement combined with an options file that has the statement lssqrs = t. In the latter case,
CONOPT will check that the number of non-fixed variables is equal to the number of constraints. In
either case, CONOPT will attempt to solve the constraints with respect to the non-fixed variables using
Newton's method. The solution process does not include a lot of the safeguards used for ordinary NLP
models and when it work it is often very fast and it uses less memory than for the corresponding NLP
model. The lack of safeguards means that the solution process just will stop with an error message in
some difficult situations and return the current intermediate infeasible solution. Examples of difficulties
are that the Jacobian to be inverted is singular, or if one of the non-fixed variables tries to move outside
their bounds as described with examples below.

Slacks in inequalities are counted as non-fixed variables which effectively means that inequalities should
not be binding. Bounds on the variables are allowed, especially to prevent function evaluation errors for
functions that only are defined for some arguments, but the bounds should not be binding in the final
solution.

The solution returned to GAMS will in all cases have marginal values equal to 0 or EPS, both for the
variables and the constraints.

The termination messages for CNS models are different from the termination messages for optimization
models. The message you hope for is

** Feasible solution to a square system.

that usually will be combined with model status 16-Solved. If CONOPT in special cases can guarantee
that the solution is unique, for example if the model is linear, then the model status will be 15-Solved
Unique.

There are two potential error termination messages related to CNS models. A model with the following
two constraints

5.7 CONOPT 3 1769

e1 .. x1 + x2 =e= 1;

e2 .. 2*x1 + 2*x2 =e= 2;

will result in the message

** Error in Square System: Pivot too small.

e2: Pivot too small.

x1: Pivot too small.

”Pivot too small” means that the set of constraints is linearly dependent in the current point and there
is no unique search direction for Newtons method so CONOPT terminates. The message points to one
variable and one constraint. However, this just indicates that the linearly dependent set of constraints and
variables include the constraint and variable mentioned. The offending constraint and variable will also be
labeled 'DEPND' for linearly dependent in the equation listing. The error will usually be combined with
model status 5 - Locally Infeasible. In the cases where CONOPT can guarantee that the infeasibility is not
caused by nonlinearities the model status will be 4 - Infeasible. If the constraints are linearly dependent
but the current point satisfy the constraints then the solution status will be 17 - Solved Singular, indicating
that the point is feasible, but there is probably a whole ray of feasible solution through the current point.

It should be mentioned that the linear dependency and small pivot could be caused by the initial point
and that the model could have a solution. An example is

e1.. x1*x2 =E= 1;

e2.. x1+x2 =E= 3;

x1.l = 1; x2.l = 1;

A model with these two constraints and the bound

e1 .. x1 + x2 =e= 2;

e2 .. x1 - x2 =e= 0;

x1.lo = 1.5;

will result in the message

** Error in Square System: A variable tries to exceed its bound.

x1: The variable tries to exceed its bound.

because the solution, (x1,x2) = (1,1) violates the bound on x1. This error case will also be combined with
model status 5-Locally Infeasible. In the cases where CONOPT can guarantee that the infeasibility is not
caused by nonlinearities the model status will be 4 - Infeasible. If you encounter problems with active
bounds but you think it is caused by nonlinearities and that there is a solution, then you may try to use
the bending linesearch with option lmmxsf = t.

The CNS facility can be used to generate an initial feasible solution in almost the same way as the
triangular model facility: Fix a subset of the variables so the remaining model is uniquely solvable, solve
this model with the CNS solver or with lssqrs = t, reset the bounds on the fixed variables, and solve
the original model. The CNS facility can be used on a larger class of models that include simultaneous
sets of equations. However, the square system must be non-singular and feasible; CONOPT cannot, like
in the triangular case, add artificial variables to some of the constraints and solve the remaining system
when a variable reaches one of its bounds.

Additional information on CNS can be found in the GAMS User's Guide.

1770 Solver Manuals

Loss of Feasibility

During the optimization you may sometimes see a phase 0 iteration and in rare cases you will see the
message ”Loss of Feasibility - Return to Phase 0”. The background for this is as follows:

To work efficiently, CONOPT uses dynamic tolerances for feasibility and during the initial part of the
optimization where the objective changes rapidly fairly large infeasibilities may be acceptable. As the
change in objective in each iteration becomes smaller it will be necessary to solve the constraints more
accurately so the ”noise” in objective value from the inaccurate constraints will remain smaller than the
real change. The noise is measured as the scalar product of the constraint residuals with the constraint
marginals.

Sometimes it is necessary to revise the accuracy of the solution, for example because the algorithmic
progress has slowed down or because the marginal of an inaccurate constraint has grown significantly
after a basis change, e.g. when an inequality becomes binding. In these cases CONOPT will tighten the
feasibility tolerance and perform one or more Newton iterations on the basic variables. This will usually
be very quick and it happens silently. However, Newton's method may fail, for example in cases where the
model is degenerate and Newton tries to move a basic variable outside a bound. In this case CONOPT
uses some special iteration similar to those discussed in section Finding a Feasible Solution: Phase 0 and
they are labeled Phase 0.

These Phase 0 iterations may not converge, for example if the degeneracy is significant, if the model is
very nonlinear locally, if the model has many product terms involving variables at zero, or if the model is
poorly scaled and some constraints contain very large terms. If the iterations do not converge, CONOPT
will issue the ”Loss of feasibility ...” message, return to the real Phase 0 procedure, find a feasible solution
with the smaller tolerance, and resume the optimization.

In rare cases you will see that CONOPT cannot find a feasible solution after the tolerances have been
reduced, even though it has declared the model feasible at an earlier stage. We are working on reducing
this problem. Until a final solution has been implemented you are encouraged to (1) consider if bounds
on some degenerate variables can be removed, (2) look at scaling of constraints with large terms, and
(3) experiment with the two feasibility tolerances, rtnwma and rtnwmi (see Appendix B), if this happens
with your model.

Stalling

CONOPT will usually make steady progress towards the final solution. A degeneracy breaking strategy
and the monotonicity of the objective function in other iterations should ensure that CONOPT cannot
cycle. Unfortunately, there are a few places in the code where the objective function may move in the
wrong direction and CONOPT may in fact cycle or move very slowly.

The objective value used to compare two points, in the following called the adjusted objective value, is
computed as the true objective plus a noise adjustment term equal to the scalar product of the residuals
with the marginals (see section Loss of Feasibility where this noise term also is used). The noise adjustment
term is very useful in allowing CONOPT to work smoothly with fairly inaccurate intermediate solutions.
However, there is a disadvantage: the noise adjustment term can change even though the point itself does
not change, namely when the marginals change in connection with a basis change. The adjusted objective
is therefore not always monotone. When CONOPT looses feasibility and returns to Phase 0 there is an
even larger chance of non-monotone behavior.

To avoid infinite loops and to allow the modeler to stop in cases with very slow progress CONOPT has
an anti-stalling option. An iteration is counted as a stalled iteration if it is not degenerate and (1) the
adjusted objective is worse than the best adjusted objective seen so far, or (2) the step length was zero
without being degenerate (see OK = F in section Linear and Nonlinear Mode: Phase 1 to 4). CONOPT
will stop if the number of consecutive stalled iterations (again not counting degenerate iterations) exceeds
lfstal and lfstal is positive. The default value of lfstal is 100. The message will be:

5.7 CONOPT 3 1771

** Feasible solution. The tolerances are minimal and

there is no change in objective although the reduced

gradient is greater than the tolerance.

Large models with very flat optima can sometimes be stopped prematurely due to stalling. If it is
important to find a local optimum fairly accurately then you may have to increase the value of lfstal.

Overflow and NaN (Not A Number)

Very large values or overflow can appear in a number of places. CONOPT cannot use these values in the
optimization since the results would be unreliable or useless. CONOPT is therefore trying to detect these
values and take appropriate action.

Even though most modern computers can work with numbers from 1.e-300 to 1.e+300 CONOPT considers
all numbers that are larger than 1.e40 or NaN to be 'bad' and useles. NaN means Not A Number and
includes Infinity and Real Overflow.

Bad numbers can have two sources. They can come from the modeler expressions or they can be generated
internally in CONOPT. The nonlinear constraints or the derivatives of these constraints may return very
large values. If a constraint returns a bad number you will see a message like

** A function value is very large or NaN (Not a Number).

Add bound to ensure that the function values are defined and bounded.

and if a derivatives returns a bad number the message will be something like

** A derivative is very large or NaN (Not a Number).

Add bound to ensure that the derivatives are defined and bounded.

The modeler must in both cases adjust the model to prevent that CONOPT receives these bad numbers
so CONOPT stops immediately.

Bad numbers can also in rare cases appear as a result of computations inside CONOPT. Since all primal
variables and all derivatives are bounded the bad numbers can only appear as a result of operations
involving the factorization of the basis matrix, including the dual variables. You will in this case see a
message like

** Overflow or Nan (Not A Number) has been encountered indicating

numerical difficulties. Trying to repair by increasing the

absolute and relative pivot tolerances (Rtpiva and Rvpivr)

and allowing small values to be scaled up by decreasing

the minimum scale factor, Rtmins.

Since the source of the problem is the factorization of the basis CONOPT will adjust the tolerances
that are used while computing this factorization. Essentially, we must avoid very small pivots and the
pivoting tolerances are therefore increased. The source of very small pivots can also be constraints were
all terms are very small so CONOPT will also change the minimum scaling factor to try to avoid this
source. CONOPT will continue the optimization after changing the tolerances and if the problem appears
again if will change the tolerances even more, but since there is a limit to how much they can be adjusted
CONOPT may have to give up and it will happen with this message

1772 Solver Manuals

** Overflow or Nan (Not A Number) continues to be encountered

after multiple attempt to repair by changed tolerances.

CONOPT will give up.

The termination message will in this case be

** Feasible solution. The solution process has been terminated

because intermediate results have become NaN (Not A Number).

or

** Feasible solution. The solution process has been terminated

because intermediate results have become NaN (Not A Number).

If you encounter messages with NaN it is always a problem with scaling or structure. The most likely
source is constraints with only small terms. Try to avoid them by scaling the variables and constraints
appropriately, or try to use option rtmins. Or make CONOPT ignore these constraints by using a larger
absolute pivot tolerance, rtpiva.

Another source are structured models with long chains of relationships. These models will usually have
lags or leads and neighboring variables are related with a factor different from one, i.e.

dyn(i).. x(i) =e= x(i-1)*1.5 + u(i);

or

dif(i).. 2*x(i) =e= x(i-1) + x(i+1) + u(i);

CONOPT will try to solve the constraints in the proper order to avoid exploding variables, but a larger
relative pivot tolerance, rtpivr, may also help. If you have a dynamic model and the variables are
supposed to grow rapidly over time then you may consider having a scale factor that also grows with time.

External Equations and Extrinsic Functions

CONOPT can be used with external equations and extrinsic functions written in a programming language
such as Fortran or C. Additional information is available in the GAMS User's Guide External Equations
and Extrinsic Functions.

Extrinsic functions can be debugged using the function suffixes gradn and hessn which use finite differences
to approximate the gradient and Hessian using multiple function calls. For details check model derivtst in
the GAMS Model Library. If external equations are present CONOPT will automatically turn the Function
and Derivative Debugger on in the initial point to discover potential errors in the gradient calculation
inside the external library. The debugger will not only check the gradients of the external library but
even check the gradients calculated by GAMS. In rare cases the debugger may report problems in the
regular algebra part of the model for which GAMS has calculated the gradients. These violates should
be small and can be ignored. After verifying that the external part of the model has been programmed
correctly you may turn debugging off again by setting Lkdebg to 0 in an options file.

The debugger has two types of check. The first type ensures that the external equations do not depend on
other variables than the ones you have specified in the GAMS representation. Structural errors found by
these check are usually caused by programming mistakes and must be corrected. The second type of check
verifies that the derivatives returned by the external equations and extrinsic functions are consistent with
the rate of change in function values. A derivative is considered to be wrong if the value returned by the
modeler deviates from the value computed using numerical differences by more than rtmxj2 times the
step used for the numerical difference (usually around 1.e-7). This check is correct if second derivatives
are less than rtmxj2. rtmxj2 has a default value of 1.e4. If your model has larger second derivatives you
may increase it in order not to get wrong error messages.

The number of error messages from the Function and Derivative Debugger is limited by lfderr with a
default value of 10.

See Debugging options for a list of options that control the debugger.

5.7 CONOPT 3 1773

5.7.9 APPENDIX B - Options

The options that ordinary GAMS users can access are listed below. Options starting on R assume real
values, options starting on LS assume logical values (TRUE, T, 1, or FALSE, F, or 0), and all other
CR-Cells starting on L assume integer values. The logical option dohess is only used by the interface
between GAMS and CONOPT.

5.7.9.1 Algorithmic options

Option Description Default

LF2DRV
Limit on errors in Directional Second Derivative evaluation. 10

LFDEGI
Limit on number of degenerate iterations before starting degeneracy
breaking strategy.

10

LFEERR
Limit on number of function evaluation errors. Overwrites GAMS
Domlim option

GAMS DomLim

LFHSOK
Limit on errors in Hessian evaluation. 10

LFITER
Maximum number of iterations. Overwrites GAMS Iterlim option. GAMS IterLim

LFMXNS
Maximum number of new superbasic variables added in one iteration. auto

LFNICR
Limit on number of iterations with slow progress (relative less than
Rtobjl).

20

LFNSUP
Maximum number of superbasic variables in the approximation to the
Reduced Hessian.

auto

LFSCAL
Rescaling frequency. 5

LFSTAL
Limit on the number of stalled iterations. 100

LFUSDF
Limit on the number of candidates for defined variable in one constraint 2

LMDEBG
Method used by the function and derivative debugger. 0

LMMXSF
Method used to determine the step in Phase 0. 0

LMMXST
Method used to determine the maximum step while tightening toler-
ances.

0

LMNDIA
Method for initializing the diagonal of the approximate Reduced Hessian 0

LMSCAL
Method used for scaling. 3

LMUSDF
Method used with defined variables 0

LS2NDI
Flag for approximating Hessian information for incoming superbasics. 0

LS2PTJ
Flag for use of perturbations to compute 2nd derivatives in SQP method. 1

LSANRM
Flag for turning Steepest Edge on. 0

LSCRSH
Flag for crashing an initial basis without fixed slacks 1

LSESLP
Flag for enabling SLP mode. 1

LSESQP
Flag for enabling of SQP mode. 1

LSISMP
Flag for Ignoring Small Pivots in Triangular models 0

LSLACK
Flag for selecting initial basis as Crash-triangular variables plus slacks. 0

LSPOST
Pre-processor flag for identifying and using post-triangular equations. 1

LSPRET
Pre-processor flag for identifying and using pre-triangular equations. 1

1774 Solver Manuals

Option Description Default

LSSCAL
Flag for dynamic scaling. 1

LSSQRS
Flag for Square System. Alternative to defining modeltype=CNS in
GAMS

0

LSTCRS
Flag for using the triangular crash method. 0

LSTRIA
Flag for triangular or recursive system of equations. 0

LSTRID
Flag for turning diagnostics on for the post-triangular equations. 0

LSUQDF
Flag for requiring defined variables to be unique 1

LSUSDF
Flag for forcing defined variables into the basis 1

PRDEF
Flag for printing the defined variables and their defining constraints. 0

PRPOST
Flag for printing the post-triangular part of the model 0

PRPREC
Flag for printing the variables changed by the pre-processor 0

PRPRET
Flag for printing the pre-triangular part of the model 0

RTBND1
Bound filter tolerance for solution values close to a bound. 1.e-7

RTBNDT
Bound tolerance for defining variables as fixed. 1.e-7

RTIPVA
Absolute Pivot Tolerance for building initial basis. 1.e-7

RTIPVR
Relative Pivot Tolerance for building initial basis 1.e-3

RTMAXJ
Upper bound on the value of a function value or Jacobian element. 1.e10

RTMAXS
Upper bound on scale factors. 1.e9

RTMAXV
Upper bound on solution values and equation activity levels 1.e10

RTMINA
Zero filter for Jacobian elements and inversion results. 1.e-20

RTMINJ
Filter for small Jacobian elements to be ignored during scaling. 1.e-5

RTMINS
Lower bound for scale factors computed from values and 1st derivatives. 1

RTMNS2
Lower bound for scale factors based on large 2nd derivatives. 1.e-6

RTNWMA
Maximum feasibility tolerance (after scaling). 1.e-7

RTNWMI
Minimum feasibility tolerance (after scaling). 4.e-10

RTNWTR
Feasibility tolerance for triangular equations. 2.0e-8

RTOBJL
Limit for relative change in objective for well-behaved iterations. 3.0e-12

RTOBJR
Relative accuracy of the objective function. 3.0e-13

RTONED
Accuracy of One-dimensional search. 0.2

RTPIVA
Absolute pivot tolerance. 1.e-10

RTPIVR
Relative pivot tolerance during basis factorizations. 0.05

RTPIVT
Absolute pivot tolerance for nonlinear elements in pre-triangular equa-
tions.

1.e-5

RTPIVU
Relative pivot tolerance during basis updates. 0.05

RTPREC
Tolerance for printing variables changed by the pre-processor 0.0

RTPREL
Tolerance for defining large changes in variables in pre-processor 0.01

5.7 CONOPT 3 1775

Option Description Default

RTREDG
Optimality tolerance for reduced gradient. 1.e-7

RVFILL
Fill in factor for basis factorization. 5

RVTIME
Time Limit. Overwrites the GAMS Reslim option. GAMS ResLim

5.7.9.2 Debugging options

Option Description Default

LFDERR
Limit on number of error messages from function and derivative debugger. 10

LKDEBG
Flag for debugging of first derivatives 0

RTMXJ2
Upper bound on second order terms. 1.e4

RTZERN
Zero-Noise in external equations 0.0

5.7.9.3 Output options

Option Description Default

LFEMSG
Limit on number of error messages related to large function value and Jacobian
elements.

10

LFILOG
Frequency for log-lines for non-SLP/SQP iterations. auto

LFILOS
Frequency for log-lines for SLP or SQP iterations. auto

LFTMSG
Limit on number of error messages related to infeasible pre-triangle. 25

5.7.9.4 Interface options

Option Description Default

cooptfile

DO2DIR
Flag for computing and using directional 2nd derivatives. auto

DOHESS
Flag for computing and using 2nd derivatives as Hessian of Lagrangian. auto

heaplimit
Maximum Heap size in MB allowed Infinite

pretri2log
Send messages about the pre-triangular analyser to the log 0

RVHESS
Memory factor for Hessian generation: Skip if #Hessian elements > #Jacobian
elements∗Rvhess, 0 means unlimited.

10

cooptfile (string): ←↩

DO2DIR (boolean): Flag for computing and using directional 2nd derivatives. ←↩

If turned on, make directional second derivatives (Hessian matrix times directional vector)
available to CONOPT. The default is on, but it will be turned off of the model has external

1776 Solver Manuals

equations (defined with =X=) and the user has not provided directional second derivatives.
If both the Hessian of the Lagrangian (see DOHESS) and directional second derivatives are
available then CONOPT will use both: directional second derivatives are used when the
expected number of iterations in the SQP sub-solver is low and the Hessian is used when the
expected number of iterations is large.

Default: auto

DOHESS (boolean): Flag for computing and using 2nd derivatives as Hessian of Lagrangian. ←↩

If turned on, compute the structure of the Hessian of the Lagrangian and make it available
to CONOPT. The default is usually on, but it will be turned off if the model has external
equations (defined with =X=) or if the Hessian becomes too dense. See also DO2DIR and
RVHESS.

Default: auto

heaplimit (real): Maximum Heap size in MB allowed ←↩

Default: Infinite

LF2DRV (integer): Limit on errors in Directional Second Derivative evaluation. ←↩

If the evaluation of Directional Second Derivatives (Hessian information in a particular
direction) has failed more than Lf2drv times CONOPT will not attempt to evaluate them
any more and will switch to methods that do not use Directional Second Derivatives. Note
that second order information may not be defined even if function and derivative values are
well-defined, e.g. in an expression like power(x,1.5) at x=0.

Default: 10

LFDEGI (integer): Limit on number of degenerate iterations before starting degeneracy breaking strategy.
←↩

The default CONOPT pivoting strategy has focus on numerical stability, but it can potentially
cycle. When the number of consecutive degenerate iterations exceeds LFDEGI CONOPT will
switch to a pivoting strategy that is guaranteed to break degeneracy but with slightly weaker
numerical properties.

Default: 10

LFDERR (integer): Limit on number of error messages from function and derivative debugger. ←↩

The function and derivative debugger (see LKDEBG) may find a very large number of errors,
all derived from the same source. To avoid very large amounts of output CONOPT will stop
the debugger after LFDERR error have been found.

Range: {1, ..., ∞}

Default: 10

LFEERR (integer): Limit on number of function evaluation errors. Overwrites GAMS Domlim option←↩

Synonym: domlim

Function values and their derivatives are assumed to be defined in all points that satisfy the
bounds of the model. If the function value or a derivative is not defined in a point CONOPT
will try to recover by going back to a previous safe point (if one exists), but it will not do it
more than at most Lfeerr times. If CONOPT is stopped by functions or derivatives not being
defined it will return with a intermediate infeasible or intermediate non-optimal model status.

Default: GAMS DomLim

5.7 CONOPT 3 1777

LFEMSG (integer): Limit on number of error messages related to large function value and Jacobian
elements. ←↩

Very large function value or derivatives (Jacobian elements) in a model will lead to numerical
difficulties and most likely to inaccurate primal and/or dual solutions. CONOPT is therefore
imposing an upper bound on the value of all function value and derivatives. This bound is
1.e30 for scaled models and RTMAXJ for unscaled models. If the bound is violated CONOPT
will return with an intermediate infeasible or intermediate non-optimal solution and it will
issue error messages for all the violating function value and Jacobian elements, up to a limit
of Lfemsg error messages.

Range: {1, ..., ∞}

Default: 10

LFHSOK (integer): Limit on errors in Hessian evaluation. ←↩

If the evaluation of Hessian information has failed more than Lfhsok times CONOPT will not
attempt to evaluate it any more and will switch to methods that do not use the Hessian. Note
that second order information may not be defined even if function and derivative values are
well-defined, e.g. in an expression like power(x,1.5) at x=0.

Default: 10

LFILOG (integer): Frequency for log-lines for non-SLP/SQP iterations. ←↩

Lfilog and Lfilos can be used to control the amount of iteration send to the log file. The
non-SLP/SQP iterations, i.e. iterations in phase 0, 1, and 3, are usually fast and writing a log
line for each iteration may be too much, especially for smaller models. The default value for
the log frequency for these iterations is therefore set to 10 for small models, 5 for models with
more than 500 constraints or 1000 variables and 1 for models with more than 2000 constraints
or 3000 variables.

Range: {1, ..., ∞}

Default: auto

LFILOS (integer): Frequency for log-lines for SLP or SQP iterations. ←↩

Lfilog and Lfilos can be used to control the amount of iteration send to the log file. Iterations
using the SLP and/or SQP sub-solver, i.e. iterations in phase 2 and 4, may involve several
inner iterations and the work per iteration is therefore larger than for the non-SLP/SQP
iterations and it may be relevant to write log lines more frequently. The default value for the
log frequency is therefore 5 for small models and 1 for models with more than 500 constraints
or 1000 variables.

Range: {1, ..., ∞}

Default: auto

LFITER (integer): Maximum number of iterations. Overwrites GAMS Iterlim option. ←↩

Synonym: iterlim

The iteration limit can be used to prevent models from spending too many resources. You
should note that the cost of the different types of CONOPT iterations (phase 0 to 4) can be
very different so the time limit (GAMS Reslim or option RVTIME) is often a better stopping
criterion. However, the iteration limit is better for reproducing solution behavior across
machines.

Default: GAMS IterLim

1778 Solver Manuals

LFMXNS (integer): Maximum number of new superbasic variables added in one iteration. ←↩

When there has been a sufficient reduction in the reduced gradient in one subspace new
non-basics can be selected to enter the superbasis. The ones with largest reduced gradient of
proper sign are selected, up to a limit. If Lfmxns is positive then the limit is min(500,Lfmxns).
If Lfmxns is zero (the default) then the limit is selected dynamically by CONOPT depending
on model characteristics.

Default: auto

LFNICR (integer): Limit on number of iterations with slow progress (relative less than Rtobjl). ←↩

The optimization is stopped if the relative change in objective is less than RTOBJL for Lfnicr
consecutive well-behaved iterations.

Range: {2, ..., ∞}

Default: 20

LFNSUP (integer): Maximum number of superbasic variables in the approximation to the Reduced
Hessian. ←↩

CONOPT uses and stores a dense lower-triangular matrix as an approximation to the Reduced
Hessian. The rows and columns correspond to the superbasic variable. This matrix can use a
large amount of memory and computations involving the matrix can be time consuming so
CONOPT imposes a limit on on the size. The limit is LFNSUP if LFNSUP is defined by the
modeler and otherwise a value determined from the overall size of the model. If the number
of superbasics exceeds the limit, CONOPT will switch to a method based on a combination
of SQP and Conjugate Gradient iterations assuming some kind of second order information
is available. If no second order information is available CONOPT will use a quasi-Newton
method on a subset of the superbasic variables and rotate the subset as the reduced gradient
becomes small.

Range: {5, ..., ∞}

Default: auto

LFSCAL (integer): Rescaling frequency. ←↩

The row and column scales are recalculated at least every Lfscal new point (degenerate
iterations do not count), or more frequently if conditions require it.

Range: {1, ..., ∞}

Default: 5

LFSTAL (integer): Limit on the number of stalled iterations. ←↩

An iteration is considered a stalled iteration it there is no change in objective because the
linesearch is limited by nonlinearities or numerical difficulties. Stalled iterations will have Step
= 0 and F in the OK column of the log file. After a stalled iteration CONOPT will usually try
various heuristics to get a better basis and a better search direction. However, the heuristics
may not work as intended or they may even return to the original bad basis, so to prevent
cycling CONOPT stops after Lfstal stalled iterations and returns an Intermediate Infeasible
or Intermediate Nonoptimal solution.

Range: {2, ..., ∞}

Default: 100

5.7 CONOPT 3 1779

LFTMSG (integer): Limit on number of error messages related to infeasible pre-triangle. ←↩

If the pre-processor determines that the model is infeasible it tries to define a minimal set
of variables and constraints that define the infeasibility. If this set is larger than LFTMSG
elements the report is considered difficult to use and it is skipped.

Default: 25

LFUSDF (integer): Limit on the number of candidates for defined variable in one constraint ←↩

When there are more than one candidate to be selected as a defined variable in a constraint
CONOPT tries to select the most appropriate in order to select as many defined variables
as possible. However, to avoid too much arbitrariness this is only attempted if there are not
more than Lfusdf candidates.

Default: 2

LKDEBG (integer): Flag for debugging of first derivatives ←↩

Lkdebg controls how often the derivatives are tested. Debugging of derivatives is only relevant
for user-written functions in external equations defined with =X=. The amount of debugging
is controlled by LMDEBG. See RTMXJ2 for a definition of when derivatives are considered
wrong.

Default: 0

value meaning

-1 The derivatives are tested in the initial point only.

0 No debugging

+n The derivatives are tested in all iterations that can be divided by Lkdebg, provided
the derivatives are computed in this iteration. (During phase 0, 1, and 3 derivatives
are only computed when it appears to be necessary.)

LMDEBG (integer): Method used by the function and derivative debugger. ←↩

The function and derivative debugger (turned on with LKDEBG) can perform a fairly cheap
test or a more extensive test, controlled by LMDEBG. See RTMXJ2 for a definition of when
derivatives are considered wrong. All tests are performed in the current point found by the
optimization algorithm.

Default: 0

value meaning

0 Perform tests for sparsity pattern and tests that the numerical values of the
derivatives appear to be correct. This is the default.

1 As 0 plus make extensive test to determine if the functions and their derivatives
are continuous around the current point. These tests are much more expensive and
should only be used of the cheap test does not find an error but one is expected
to exist.

LMMXSF (integer): Method used to determine the step in Phase 0. ←↩

The steplength used by the Newton process in phase 0 is computed by one of two alternative
methods controlled by LMMXSF:

1780 Solver Manuals

Default: 0

5.7 CONOPT 3 1781

value meaning

0 The standard ratio test method known from the Simplex method. CONOPT
adds small perturbations to the bounds to avoid very small pivots and improve
numerical stability. Linear constraints that initially are feasible will remain feasible
with this default method.

1 A method based on bending (projecting the target values of the basic variables
on the bounds) until the sum of infeasibilities is close to its minimum. Linear
constraints that initially are feasible may become infeasible due to bending. The
method does not use anti-degeneracy. This will to be taken care off by removing
difficult constraints from the Newton Process at regular intervals. The bending
method can sometimes be useful for CNS models that stop when a variable exceeds
its bound in an intermediate point even though the final solution is known to be
inside the bounds.

LMMXST (integer): Method used to determine the maximum step while tightening tolerances. ←↩

The steplength used by the Newton process when tightening tolerances is computed by one of
two alternative methods controlled by LMMXST:

Default: 0

value meaning

0 The standard ratio test method known from the Simplex method. CONOPT
adds small perturbations to the bounds to avoid very small pivots and improve
numerical stability. Linear constraints that initially are feasible will remain feasible
with this default method.

1 A method based on bending (projecting the target value of the basic variables on
the bounds) until the sum of infeasibilities is close to its minimum.

LMNDIA (integer): Method for initializing the diagonal of the approximate Reduced Hessian ←↩

Each time a nonbasic variable is made superbasic a new row and column is added to the
approximate Reduced Hessian. The off-diagonal elements are set to zero and the diagonal to a
value controlled by LMNDIA:

Default: 0

value meaning

0 The new diagonal element is set to the geometric mean of the existing diagonal
elements. This gives the new diagonal element an intermediate value and new
superbasic variables are therefore not given any special treatment. The initial
steps should be of good size, but build-up of second order information in the new
sub-space may be slower. The larger diagonal element may also in bad cases cause
premature convergence.

1 The new diagonal elements is set to the minimum of the existing diagonal elements.
This makes the new diagonal element small and the importance of the new
superbasic variable will therefore be high. The initial steps can be rather small,
but better second order information in the new sub-space should be build up
faster.

LMSCAL (integer): Method used for scaling. ←↩

CONOPT will by default use scaling of the equations and variables of the model to improve
the numerical behavior of the solution algorithm and the accuracy of the final solution, see

1782 Solver Manuals

LSSCAL and LMSCAL. The objective of the scaling process is to reduce the values of all
large primal and dual variables as well as the values of all large first derivatives so they become
closer to 1. Small values are usually not scaled up, see RTMAXS and RTMINS. Scaling
method 3 is recommended. The others are only kept for backward compatibility.

Default: 3

value meaning

0 Scaling is based on repeatedly dividing the rows and columns by the geometric
means of the largest and smallest elements in each row and column. Very small
elements less than RTMINJ are considered equal to RTMINJ.

1 Similar to 3 below, but the projection on the interval [Rtmins,Rtmaxs] is applied
at a different stage. With method 1, abs(X)∗abs(Jac) with small X and very
large Jac is scaled very aggressively with a factor abs(Jac). With method 3, the
scale factor is abs(X)∗abs(Jac). The difference is seen in models with terms like
Sqrt(X) close to X = 0.

2 As 1 but the terms are computed based on a moving average of the squares X and
Jac. The purpose of the moving average is to keep the scale factor more stable.
This is often an advantage, but for models with very large terms (large variables
and in particular large derivatives) in the initial point the averaging process may
not have enough time to bring the scale factors into the right region.

3 Rows are first scaled by dividing by the largest term in the row, then columns
are scaled by dividing by by the maximum of the largest term and the value of
the variable. A term is here defined as abs(X)∗abs(Jac) where X is the value of
the variable and Jac is the value of the derivative (Jacobian element). The scale
factors are then projected on the interval between Rtmins and Rtmaxs.

LMUSDF (integer): Method used with defined variables ←↩

When defined variables are identified (see LSUSDF) they can be used in two ways, controlled
by LMUSDF:

Default: 0

value meaning

0 Defined variables are only used in the initial point and for the initial basis (default).

1 Defined variables are kept basic and the defining constraints are used to recursively
assign values to the defined variables in all trial points.

LS2NDI (boolean): Flag for approximating Hessian information for incoming superbasics. ←↩

If Ls2ndi is turned on (1) CONOPT will try to estimate second order Hessian information
for incoming superbasic variables based on directional second derivatives. This is more costly
than the standard method described under LMNDIA.

Default: 0

LS2PTJ (boolean): Flag for use of perturbations to compute 2nd derivatives in SQP method. ←↩

If on (1) CONOPT may use perturbations of the Jacobian to compute directional 2nd
derivatives if they are not provided with other cheaper and more accorate methods. With
GAMS it is only relevant for models with functions defined in external function libraries or
models with external equations defined with the =X= equation type.

Default: 1

5.7 CONOPT 3 1783

LSANRM (boolean): Flag for turning Steepest Edge on. ←↩

Flag used to turn steepest edge pricing on (1) or off (0). Steepest edge pricing makes the
individual iterations more expensive but it may decrease their number. Only experimentation
can show if it is worth while.

Default: 0

LSCRSH (boolean): Flag for crashing an initial basis without fixed slacks ←↩

When turned on (1) CONOPT will try to crash a basis without fixed slacks in the basis. Fixed
slacks are only included in a last round to fill linearly dependent rows. When turned off, large
infeasible slacks will be included in the initial basis with preference for variables and slacks far
from bound.

Default: 1

LSESLP (boolean): Flag for enabling SLP mode. ←↩

If Lseslp is on (the default) then the SLP (sequential linear programming) sub-solver can be
used, otherwise it is turned off.

Default: 1

LSESQP (boolean): Flag for enabling of SQP mode. ←↩

If Lsesqp is on (the default) then the SQP (sequential quadratic programming) sub-solver can
be used, otherwise it is turned off.

Default: 1

LSISMP (boolean): Flag for Ignoring Small Pivots in Triangular models ←↩

Ignore SMall Pivots. When turned on CONOPT will ignore the non-uniqueness from small
pivots during a triangular solve (see LSTRIA). Note, that the non-uniqueness may propagate
to later equations, but we cannot check for it in nonlinear equations.

Default: 0

LSLACK (boolean): Flag for selecting initial basis as Crash-triangular variables plus slacks. ←↩

When turned on together with LSTCRS CONOPT will use the triangular crash procedure
and select the initial basis as the crash-triangular variables plus slacks in all remaining rows.

Default: 0

LSPOST (boolean): Pre-processor flag for identifying and using post-triangular equations. ←↩

When turned on (the default) CONOPT will try to identify post-triangular equations. Other-
wise this phase is ignored.

Default: 1

LSPRET (boolean): Pre-processor flag for identifying and using pre-triangular equations. ←↩

When turned on (the default) CONOPT will try to identify pre-triangular equations. Otherwise
this phase is ignored.

Default: 1

1784 Solver Manuals

LSSCAL (boolean): Flag for dynamic scaling. ←↩

When Lsscal is on (the default) CONOPT will use dynamic scaling of equations and variables.
See also LMSCAL.

Default: 1

LSSQRS (boolean): Flag for Square System. Alternative to defining modeltype=CNS in GAMS ←↩

When turned on the modeler declares that this is a square system, i.e. the number of non-fixed
variables must be equal to the number of constraints, no bounds must be active in the final
solution, and the basis selected from the non-fixed variables must always be nonsingular.

Default: 0

LSTCRS (boolean): Flag for using the triangular crash method. ←↩

When turned on CONOPT will try to crash a triangular basis using ideas by Gould and Reid.
The procedure relies on identifying and using good initial values provided by the modeler and
only assigning values to variables that are not initialized. Should only be used when several
important variables have been given reasonable initial values. The sum of infeasibilities may
for some models grow during the crash procedure, so modelers are advised that the option
should be used with caution. The option will be ignored if defined variables are forced into
the bases Lsusdf.

Default: 0

LSTRIA (boolean): Flag for triangular or recursive system of equations. ←↩

If turned on the equations must form a recursive system. Equations that depend on known
variables are allowed as long as they are consistent, e.g. x = 1 and 2∗x = 2. If the equations
are not recursive the model is considered infeasible, and the equations with minimum row
count are flagged together with the columns they intersect. See also LSISMP.

Default: 0

LSTRID (boolean): Flag for turning diagnostics on for the post-triangular equations. ←↩

If turned on certain diagnostic messages related to the post-triangular equations will be printed.
The messages are mainly related to unusual modeling constructs where linear variables for
example only appear in the objective or where certain constraints are guarantied redundant.

Default: 0

LSUQDF (boolean): Flag for requiring defined variables to be unique ←↩

When turned on (1) CONOPT will not allow defined variables unless they are unique. We
exclude a variable if it can be defined from more than one equation, and we exclude equations
if they can be used to define more than one variable.

Default: 1

LSUSDF (boolean): Flag for forcing defined variables into the basis ←↩

When turned on (1) CONOPT will identify defined variables from constraints of the type
x(i) = f(x) where x(i) is free or implied free. The largest number of defined variables possible
will be made basic and will be assigned initial values that are consistent with their defining
constraint. When turned off (0) defined variables and their defining constraints are treated
like all other variables and constraints. When turned on the triangular crash (LSTCRS) will
not be used

Default: 1

5.7 CONOPT 3 1785

PRDEF (boolean): Flag for printing the defined variables and their defining constraints. ←↩

When turned on (1) CONOPT will print a list of the defined variables and their defining
constraints in the order in which they can be evaluated.

Default: 0

pretri2log (boolean): Send messages about the pre-triangular analyser to the log ←↩

Default: 0

PRPOST (boolean): Flag for printing the post-triangular part of the model ←↩

When turned on (1) CONOPT will print a list of the post-triangular constraints and the
variables they are solved for in the order in which they can be evaluated.

Default: 0

PRPREC (boolean): Flag for printing the variables changed by the pre-processor ←↩

When turned on (1) CONOPT will print a list of the variables that are changed by the
pre-processor. The list includes pre-triangular variables, variables changed by implied bounds,
and definitional variables. The three lists can for some models be very long and you can limit
the list to variables that are changed by more than (RTPREC)

Default: 0

PRPRET (boolean): Flag for printing the pre-triangular part of the model ←↩

When turned on (1) CONOPT will print a list of the pre-triangular constraints and the
variables they are solved for, including the solution values, in the order in which they are
solved.

Default: 0

RTBND1 (real): Bound filter tolerance for solution values close to a bound. ←↩

A variable is considered to be at a bound if its distance from the bound is less than Rtbnd1
Max(1,ABS(Bound)). If you need a very small value then your model is probably poorly
scaled.

Range: [3.e-13, 1.e-5]

Default: 1.e-7

RTBNDT (real): Bound tolerance for defining variables as fixed. ←↩

A variable is considered fixed if the distance between the bounds is less than Rtbndt ∗
Max(1,Abs(Bound)). The tolerance is also used on implied bounds (from converted inequalities)
and these implied bounds may be infeasible up to Rtbndt.

Range: [3.e-13, 1.e-5]

Default: 1.e-7

RTIPVA (real): Absolute Pivot Tolerance for building initial basis. ←↩

1786 Solver Manuals

Absolute pivot tolerance used during the search for a first logically non-singular basis. The
default is fairly large to encourage a better conditioned initial basis.

Range: [3.e-13, 1.e-3]

Default: 1.e-7

RTIPVR (real): Relative Pivot Tolerance for building initial basis ←↩

Relative pivot tolerance used during the search for a first logically non-singular basis.

Range: [1.e-4, 0.9]

Default: 1.e-3

RTMAXJ (real): Upper bound on the value of a function value or Jacobian element. ←↩

Very large values of variables, function value, and derivatives and in particular large variations
in the absolute value of the variables, functions, and derivatives makes the model harder to
solve and poses problems for both feasibility and optimality tests. CONOPT will usually
try to scale the model (see LSSCAL) to remove these problems. However, scaling can also
make important aspects of a model appear un-important and there is therefore a limit to
how aggressively we can scale a model (see RTMAXS and RTMINS). To avoid serious scaling
problems CONOPT poses upper bounds on all variables (see RTMAXV) and all function
value and derivatives, RTMAXJ.

Range: [1.e4, 1.e30]

Default: 1.e10

RTMAXS (real): Upper bound on scale factors. ←↩

Scale factors are projected on the interval from Rtmins to Rtmaxs. Is used to prevent very
large or very small scale factors due to pathological types of constraints. RTMAXS is silently
increased to max(RTMAXV,RTMAXS)/100 if RTMAXV or RTMAXJ have large non-default
values.

Range: [1, 1.e20]

Default: 1.e9

RTMAXV (real): Upper bound on solution values and equation activity levels ←↩

See RTMAXJ for a discussion of why CONOPT poses upper bounds on variables and derivatives.
If the value of a variable, including the objective function value, exceeds RTMAXV then the
model is considered to be unbounded and the optimization process returns the solution with
the large variable flagged as unbounded.

Range: [1.e5, 1.e30]

Default: 1.e10

RTMINA (real): Zero filter for Jacobian elements and inversion results. ←↩

Contains the smallest absolute value that an intermediate result can have. If it is smaller, it is
set to zero. It must be smaller than RTPIVA/10.

Range: [1.e-30, ∞]

Default: 1.e-20

5.7 CONOPT 3 1787

RTMINJ (real): Filter for small Jacobian elements to be ignored during scaling. ←↩

A Jacobian element is considered insignificant if it is less than Rtminj. The value is used to
select which small values are scaled up during scaling of the Jacobian.

Range: [1.e-7, 1.e-3]

Default: 1.e-5

RTMINS (real): Lower bound for scale factors computed from values and 1st derivatives. ←↩

Scale factors used to scale variables and equations are projected on the range Rtmins to Rtmaxs.
The limits are used to prevent very large or very small scale factors due to pathological types
of constraints. The default value for Rtmins is 1 which means that small values are not scaled
up. If you need to scale small value up towards 1 then you must define a value of Rtmins < 1.

Range: [1.e-10, 1]

Default: 1

RTMNS2 (real): Lower bound for scale factors based on large 2nd derivatives. ←↩

Scaling of the model is in most cases based on the values of the variables and the first derivatives.
However, if the scaled variables and derivatives are reasonable but there are large values in
the Hessian of the Lagrangian (the matrix of 2nd derivatives) then the lower bound on the
scale factor can be made smaller than Rtmins. CONOPT will try to scale variables with large
2nd derivatives by one over the square root of the diagonal elements of the Hessian. However,
the revised scale factors cannot be less than Rtmns2.

Range: [1.e-9, 1]

Default: 1.e-6

RTMXJ2 (real): Upper bound on second order terms. ←↩

The function and derivative debugger (see LKDEBG) tests if derivatives computed using the
modelers routine are sufficiently close to the values computed using finite differences. The
term for the acceptable difference includes a second order term and uses RTMXJ2 as an upper
bound on second order derivatives in the model. Larger RTMXJ2 values will allow larger
deviations between the user-defined derivatives and the numerically computed derivatives.

Range: [1, ∞]

Default: 1.e4

RTNWMA (real): Maximum feasibility tolerance (after scaling). ←↩

The feasibility tolerance used by CONOPT is dynamic. As long as we are far from the optimal
solution and make large steps it is not necessary to compute intermediate solutions very
accurately. When we approach the optimum and make smaller steps we need more accuracy.
RTNWMA is the upper bound on the dynamic feasibility tolerance and RTNWMI is the lower
bound.

Range: [1.e-10, 1.e-3]

Default: 1.e-7

RTNWMI (real): Minimum feasibility tolerance (after scaling). ←↩

1788 Solver Manuals

See RTNWMA for a discussion of the dynamic feasibility tolerances used by CONOPT.

Range: [4.e-11, 1.e-5]

Default: 4.e-10

RTNWTR (real): Feasibility tolerance for triangular equations. ←↩

Triangular equations are usually solved to an accuracy of RTNWMI. However, if a variable
reaches a bound or a constraint only has pre-determined variables then the feasibility tolerance
can be relaxed to Rtnwtr.

Range: [3.e-13, 1.e-4]

Default: 2.0e-8

RTOBJL (real): Limit for relative change in objective for well-behaved iterations. ←↩

The change in objective in a well-behaved iteration is considered small and the iteration counts
as slow progress if the change is less than Rtobjl ∗ Max(1,Abs(Objective)). See also LFNICR.

Range: [3.0e-13, 1.0e-5]

Default: 3.0e-12

RTOBJR (real): Relative accuracy of the objective function. ←↩

It is assumed that the objective function can be computed to an accuracy of Rtobjr ∗ max(1,
abs(Objective)). Smaller changes in objective are considered to be caused by round-off errors.

Range: [3.0e-14, 10.e-6]

Default: 3.0e-13

RTONED (real): Accuracy of One-dimensional search. ←↩

The onedimensional search is stopped if the expected decrease in then objective estimated from
a quadratic approximation is less than Rtoned times the decrease so far in this onedimensional
search.

Range: [0.05, 0.8]

Default: 0.2

RTPIVA (real): Absolute pivot tolerance. ←↩

During LU-factorization of the basis matrix a pivot element is considered large enough if its
absolute value is larger than Rtpiva. There is also a relative test, see RTPIVR.

Range: [2.2e-16, 1.e-7]

Default: 1.e-10

RTPIVR (real): Relative pivot tolerance during basis factorizations. ←↩

5.7 CONOPT 3 1789

During LU-factorization of the basis matrix a pivot element is considered large enough relative
to other elements in the column if its absolute value is at least Rtpivr ∗ the largest absolute
value in the column. Small values or Rtpivr will often give a sparser basis factorization at the
expense of the numerical accuracy. The value used internally is therefore adjusted dynamically
between the users value and 0.9, based on various statistics collected during the solution
process. Certain models derived from finite element approximations of partial differential
equations can give rise to poor numerical accuracy and a larger user-value of Rtpivr may help.

Range: [1.e-3, 0.9]

Default: 0.05

RTPIVT (real): Absolute pivot tolerance for nonlinear elements in pre-triangular equations. ←↩

The smallest pivot that can be used for nonlinear or variable Jacobian elements during the
pre-triangular solve. The pivot tolerance for linear or constant Jacobian elements is Rtpiva.
The value cannot be less that Rtpiva.

Range: [2.2e-16, 1.e-3]

Default: 1.e-5

RTPIVU (real): Relative pivot tolerance during basis updates. ←↩

During basischanges CONOPT attempts to use cheap updates of the LU-factors of the basis.
A pivot is considered large enough relative to the alternatives in the column if its absolute
value is at least Rtpivu ∗ the other element. Smaller values of Rtpivu will allow sparser basis
updates but may cause accumulation of larger numerical errors.

Range: [1.e-3, 0.9]

Default: 0.05

RTPREC (real): Tolerance for printing variables changed by the pre-processor ←↩

The list of variables changed by the pre-processor (see (PRPREC)) can be limited to the
variables that are changed by more than RTPREC, defined as deltaX > RTPREC ∗ max(1,
abs(X)).

Range: [0.0, ∞]

Default: 0.0

RTPREL (real): Tolerance for defining large changes in variables in pre-processor ←↩

The statistics for the number of variables that are changed in the pro-processor are classified
as small and large changes. The change, DeltaX, is defined as large if deltaX > RTPREL ∗
max(1, abs(X)).

Range: [0.0, ∞]

Default: 0.01

RTREDG (real): Optimality tolerance for reduced gradient. ←↩

1790 Solver Manuals

The reduced gradient is considered zero and the solution optimal if the largest superbasic
component of the reduced gradient is less than Rtredg.

Range: [3.e-13, 1]

Default: 1.e-7

RTZERN (real): Zero-Noise in external equations ←↩

By default CONOPT will debug the derivatives returned from External functions in GAMS
in the initial point (see LKDEBG). If external functions have constant derivatives then the
constant terms are still part of the external function and this can give rise to small inaccuracies
in the contribution of the constant derivatives to the function value. This noise can cause the
debugger to incorrectly state that a the external equation depend on the variable with the
constant derivative. A larger value of Rtzern should remove the error.

Range: [0.0, 1]

Default: 0.0

RVFILL (real): Fill in factor for basis factorization. ←↩

Rvfill is used in the initial allocation of memory for the factorization of the basis. The fill-in
(number of new nonzeros) is assumed to be Rvfill-1 times the initial number of nonzeros in the
basis. The default is 5 but you may experiment with a smaller value (down to 1.0) for models
that use too much memory to get started. If Rvfill is small you may get slower execution due to
increased memory movement. And you may still run out of memory later in the optimization.

Range: [1.00, 20]

Default: 5

RVHESS (real): Memory factor for Hessian generation: Skip if #Hessian elements > #Jacobian
elements∗Rvhess, 0 means unlimited. ←↩

The Hessian of the Lagrangian is considered too dense and is not passed on to CONOPT if
the number of nonzero elements in the Hessian of the Lagrangian is greater than the number
of nonlinear Jacobian elements multiplied by Rvhess. The assumption is that a very dense
Hessian is expensive both to compute and use. If Rvhess = 0.0 then there is no limit on the
number of Hessian elements.

Default: 10

RVTIME (real): Time Limit. Overwrites the GAMS Reslim option. ←↩

Synonym: reslim

The upper bound on the total number of seconds that can be used in the execution phase.
There are only tests for time limit once per iteration. The default value is 10000. Rvtime
is overwritten by Reslim when called from GAMS. Rvtime is defined in ProbSize and/or
UpdtSize when used as a subroutine library.

Default: GAMS ResLim

5.8 CONOPT 1791

5.7.10 APPENDIX C: References

J. Abadie and J. Carpentier, Generalization of the Wolfe Reduced Gradient Method to the case of
Nonlinear Constraints, in Optimization, R. Fletcher (ed.), Academic Press, New York, 37–47 (1969).

A. Drud, A GRG Code for Large Sparse Dynamic Nonlinear Optimization Problems, Mathematical
Programming 31, 153–191 (1985).

A. S. Drud, CONOPT – A Large-Scale GRG Code, ORSA Journal on Computing 6, 207–216 (1992).

A. S. Drud, CONOPT: A System for Large Scale Nonlinear Optimization, Tutorial for CONOPT Subroutine
Library, 16p, ARKI Consulting and Development A/S, Bagsvaerd, Denmark (1995).

A. S. Drud, CONOPT: A System for Large Scale Nonlinear Optimization, Reference Manual for CONOPT
Subroutine Library, 69p, ARKI Consulting and Development A/S, Bagsvaerd, Denmark (1996).

J. K. Reid, A Sparsity Exploiting Variant of Bartels-Golub Decomposition for Linear Programming Bases,
Mathematical Programming 24, 55–69 (1982).

D. M. Ryan and M. R. Osborne, On the Solution of Highly Degenerate Linear Programmes, Mathematical
Programming 41, 385–392 (1988).

U. H. Suhl and L. M. Suhl, Computing Sparse LU Factorizations for Large-Scale Linear Programming
Bases, ORSA Journal on Computing 2, 325–335 (1990).

5.8 CONOPT

Author

Arne Drud, ARKI Consulting and Development A/S, Bagsvaerd, Denmark

5.8.1 Introduction

CONOPT4 is an NLP solver derived from CONOPT3 but with many improvements. This documentation
is intended to be self-contained, and there will therefore be some repetitions from the CONOPT3
documentation. We will refer to CONOPT4 as CONOPT in the following.

Nonlinear models created with GAMS must be solved with a nonlinear programming (NLP) algorithm.
There are many solvers available, and the number is growing. It is almost impossible to predict how easy
or difficult it is to solve a particular model with a particular algorithm, especially for NLP models, so
GAMS cannot automatically select the best algorithm. The only reliable way to find which solver to use
for a particular class of models is to experiment. However, it may be useful to classify different solvers
and describe where CONOPT fits into this picture.

The most important distinction between NLP solvers is whether they attempt to find a local or a global
solution. Solvers that attempt to find a global solution, called Global Solvers, will usually use some
branch and bound technique and they can usually not solve very large models. As a contrast, most Local
Solvers that only search for a locally optimal solution, can work with much larger models. If the model
has the right mathematical properties, e.g., is convex, then Local Solvers will find a global optimum.
Unfortunately, the theory for testing whether a general NLP model is convex is not very developed and is
expected to be in the class of hard problems. CONOPT belongs to the class of Local Solvers, and it can
be used for very large models.

1792 Solver Manuals

Within the class of Local Solvers, the main distinction is between solvers based on Active Set methods and
Interior Point methods. Active Set solvers are generally good for models with many equality constraints
and few bounds. Interior Point solvers are generally good for models with many inequalities and many
bounds, where the combinatorial nature of which inequalities and bounds are active play an important
role. CONOPT is an Active Set solver.

Finally, within Active Set solvers we distinguish between Feasible Path methods and methods where
feasibility only is found in the final point together with optimality. Feasible Path methods iterate through
a sequence of feasible points, gradually improving the solution. It is assumed that the feasibility of the
intermediate points will give more relevant derivatives and therefore better directions towards the optimal
solution, and therefore will reduce the number of iterations relative to methods that do not enforce
feasibility. On the other hand, each iteration will be more expensive because maintaining feasibility comes
at a cost. CONOPT is a Feasible Path method, and great care has been taken to find an initial feasible
solution and to reduce the cost of maintaining feasibility.

In addition to NLP models CONOPT has a good algorithm for CNS (Constrained Nonlinear Systems
or Square Systems of equations) and CONOPT has been used to solve CNS models with many million
variables and constraints.

This documentation will describe the basic algorithm and how the iteration output can help the user
understand the solution progress. It will also describe some options that can be used to control the
behavior of the algorithm. It should be emphasized that most users do not need any options. CONOPT
has been designed to adjust its behavior based on statistics for the model and information about the
progress of the algorithm.

5.8.2 The CONOPT Algorithm

The algorithm used in CONOPT is based on the GRG algorithm first suggested by Abadie and Carpentier
(1969). The actual implementation has many modifications to make it efficient for large models. Here we
will just give a short verbal description of the major steps in a generic GRG algorithm applied to the
model:

Min or max f(x)

s.t. g(x) = 0

lb <= x <= ub

where x represents the set of variables, f represents the objective function, g represents a vector of
constraints, and lb and ub represent vectors of lower and upper bounds. Inequalities are handled by adding
properly bounded slack variables. The key steps in any GRG algorithm are:

1. Initialize and find a feasible solution.

2. Compute the Jacobian of the constraints, J .

3. Select a set of n basic variables, xb, from x such that B, the sub-matrix of basic columns selected
from J , is nonsingular. Factorize B. The remaining variables, xn, are called nonbasic.

4. Solve BTu = df/dxb for the multipliers u.

5. Compute the reduced gradient, rgra = df/dx− JTu. rgra will be zero for the basic variables.

6. If rgra projected on the bounds is small, then stop. The current point is close to local optimality.

7. Select the set of superbasic variables, xs, as a subset of the nonbasic variables that have a reduced
gradient pointing away from the bounds, and find a search direction, ds, for the superbasic variables
based on rgra and possibly on second order information.

5.8 CONOPT 1793

8. Perform a line search along the direction ds. For each step, xs is changed in the direction ds and
the basic variables xb are subsequently adjusted to satisfy the constraints g(xb, xs) = 0 using an
iterative Newton-like process with the factored B from step 3. When feasible the objective function
f(x) is evaluated and used to adjust the step and/or decide to terminate the search.

9. Go to 2.

The individual steps are of course much more detailed in the practical implementation in CONOPT. Step
1 consists of several pre-processing steps that usually create a smaller and easier model to be optimized.
Step 1 also has a special Phase 0 and a scaling procedure as described in the following sections. The
work involving the basis B, the LU factorization of B, and all operations involving B (step 3, 4, and 8)
have been optimized to work even for very large models. The selection of search direction and optimizing
step-lengths are specialized according to whether the model appears to be almost linear or not. For almost
linear models some of the linear algebra work involving the matrices J and B is done using cheap LP-type
updating techniques, second order information is not relevant in step 7, and the line search in step 8 has
been improved by observing that the optimal step almost always will be determined by the first variable
that reaches a bound. Similarly, when the model appears to be nonlinear, other aspects are optimized:
the sets of basic and superbasic variables will often remain constant over several iterations, and the search
direction is improved by using 2nd order information provided by GAMS. The choice of whether to use
the almost linear or the nonlinear components is taken dynamically based on observations of the progress
of the algorithm. Finally, the one-dimensional search and the feasibility restoring Newton iterations in
step 8 have been optimized using quadratic inter- and extrapolations and they take advantage of linearity
in the relevant constraints.

5.8.3 Iteration Output

When running CONOPT you will get a log-file that will look like this:

CONOPT 4 44.2.0 7d8c2acc Aug 17, 2023 WEI x86 64bit/MS Window

C O N O P T version 4.31

Copyright (C) ARKI Consulting and Development A/S

Bagsvaerdvej 246 A

DK-2880 Bagsvaerd, Denmark

The user model has 610 constraints and 666 variables

with 2432 Jacobian elements, 1518 of which are nonlinear.

The Hessian of the Lagrangian has 306 elements on the diagonal,

714 elements below the diagonal, and 562 nonlinear variables.

Iter Phase Ninf Infeasibility RGmax NSB Step InItr MX OK

0 0 1.1198119428E+02 (Input point)

The pre-triangular part of the model has 4 constraints and 11 variables.

The post-triangular part of the model has 2 constraints and variables.

There are 425 definitional constraints and defined variables.

Preprocessed model has 179 constraints and 228 variables

with 1953 Jacobian elements, 1828 of which are nonlinear.

Iter Phase Ninf Infeasibility RGmax NSB Step InItr MX OK

9.8752676396E+01 (Full preprocessed model)

2.1093011202E-01 (After scaling)

2.0060649250E-01 (After adjusting individual variables)

1794 Solver Manuals

1 0 1.9323934856E-01 1.0E+00 1 T T

2 0 1.9273037524E-01 1.0E+00 1 T T

3 0 1.9272947599E-01 1.0E+00 1 T T

4 1 1 1.9121491986E-01 2.8E-02 24 6.0E-03 25 F F

5 1 1 1.8991312916E-01 7.9E-02 7 5.0E-03 7 F F

6 1 1 1.7954812670E-01 8.3E-02 50 7.9E-02 9 T T

7 1 1 1.6192877703E-01 1.0E-02 49 9.8E-01 10 F F

Iter Phase Ninf Infeasibility RGmax NSB Step InItr MX OK

8 1 1 1.5263773874E-01 3.8E-01 15 1.8E-01 15 F F

9 1 1 9.4548821232E-02 3.9E-01 49 1.0E+00 22 T T

10 1 1 5.5194560481E-02 1.0E-01 40 8.6E-01 17 T T

11 1 1 3.8130110738E-02 1.2E-01 40 1.0E+00 16 T T

12 1 1 2.1971971978E-02 9.0E-02 29 1.0E+00 14 T T

13 1 1 6.3168158469E-05 3.7E-01 7 1.2E+00 8 T T

** Feasible solution. Value of objective = 206.562941019

Iter Phase Ninf Objective RGmax NSB Step InItr MX OK

14 3 3.2026635060E+02 1.2E+02 18 2.4E-01 25 T T

15 3 4.0972213088E+02 2.1E+02 43 1.8E-01 25 F F

16 3 4.7700306262E+02 1.7E+02 44 1.9E-01 25 F F

17 3 4.9785498881E+02 6.9E+02 48 1.3E-01 19 F F

18 3 5.3401705259E+02 6.5E+02 48 1.0E+00 21 T T

19 3 5.5254890008E+02 8.0E+02 46 8.7E-01 17 T T

20 3 5.6360530732E+02 5.5E+02 48 1.0E+00 9 T T

21 3 5.7367560270E+02 6.5E+02 47 1.0E+00 11 T T

22 3 5.8820821496E+02 6.2E+02 47 3.1E+00 8 F F

23 3 5.9375570902E+02 7.6E+02 47 1.0E+00 15 T T

Iter Phase Ninf Objective RGmax NSB Step InItr MX OK

24 3 6.2588529990E+02 7.6E+02 46 4.7E+00 14 T T

25 3 6.4664801061E+02 8.1E+02 47 3.7E+00 13 F F

26 3 6.6175989091E+02 7.4E+02 48 2.9E+00 16 F T

27 3 6.7789059174E+02 6.8E+02 48 9.3E+00 14 F F

28 3 6.9697407332E+02 7.1E+02 48 1.2E+01 19 T T

29 3 7.1098057393E+02 7.1E+02 48 1.4E+01 15 T T

30 4 8.6895316171E+02 1.9E+03 48 2.4E-01 18 F T

31 4 9.5309471994E+02 1.5E+03 49 8.1E-02 47 F F

32 4 1.0261710184E+03 2.1E+03 49 8.9E-02 46 F F

33 4 1.0583894431E+03 7.8E+02 49 4.2E-02 47 F F

Iter Phase Ninf Objective RGmax NSB Step InItr MX OK

34 4 1.1225408637E+03 1.2E+04 49 8.8E-02 53 F F

35 4 1.1679673256E+03 1.3E+02 49 9.4E-02 47 F F

36 4 1.2151335208E+03 9.0E+02 49 1.4E-01 35 F F

37 4 1.2291455843E+03 7.3E+01 49 1.2E-01 24 F F

38 4 1.2392640422E+03 7.3E+01 49 1.2E-01 14 F F

39 4 1.2705894285E+03 7.9E+01 49 6.9E-01 17 F F

40 4 1.2785695198E+03 9.9E+01 49 6.0E-01 12 T T

41 4 1.2823556479E+03 1.2E+01 48 1.0E+00 12 T T

42 4 1.2823990320E+03 1.2E+00 43 1.0E+00 10 F T

43 4 1.2823997232E+03 4.8E-02 43 1.0E+00 13 F T

Iter Phase Ninf Objective RGmax NSB Step InItr MX OK

44 4 1.2823997236E+03 9.2E-04 43 1.0E+00 11 F T

45 4 1.2823997236E+03 7.4E-06 43 1.0E+00 8 F T

46 4 1.2823997236E+03 1.9E-08 43

5.8 CONOPT 1795

** Optimal solution. Reduced gradient less than tolerance.

The first few lines identify the version of CONOPT. CONOPT is updated at regular intervals, and if you
want to report a problem, it is important to identify the version you are using.

The next lines show the size of the model measured in constraints, variables, and Jacobian elements;
these numbers are also shown in the GAMS log. Usually, you will also see information about the Hessian
(the matrix of 2nd derivatives) of the Lagrangian (a function combining the objective function and the
constraints, L = f(x) +uT g(x) where u is a vector of dual variables). For some very large or dense models
and models with few degrees of freedom, 2nd order information is not automatically available and these
lines will be missing. You can force 2nd order information to be used with the option Flg Hessian.

When CONOPT has received the model from GAMS it evaluates the constraint and determines the initial
(sum of) Infeasibilities in the input point. It then executes a preprocessor that tries to reduce the size
of the model and to find a solution that is closer to feasibility. The information from the preprocessor
depends on the model and is described in the section Preprocessor.

After the preprocessors finishes, the model is scaled, and all later reporting of infeasibilities refers to the
scaled model.

The remaining part of the log file describes the optimization iterations with the iteration number in the
first column. For very small models you may not see all iterations in the iteration log. The options
Frq Log SlpSqp and Frq Log Simple can be used to increase or decrease the log frequency.

The type of each iteration is described by the value of ”Phase” in column 2. During Phase 0, 1, and 2 the
model is infeasible and the Sum of Infeasibilities in column 4, labeled ”Infeasibility”, is being minimized.
During Phase 1 and 2 the number in column “Ninf” tells how many constraints are still infeasible. These
infeasibilities are minimized subject to the feasible constraints remaining feasible, and Ninf will therefore
usually not increase. During Phase 3 and 4 the model is feasible and the actual objective function, also
shown in column 4 and now labeled ”Objective”, is either minimized or maximized according to the Solve
statement in GAMS.

Phase 0 iterations are Newton-like iterations. The background is described in the section
Phase 0 - Finding an Initial Feasible Solution. During Phase 1 and 3 the model behaves almost linearly
and CONOPT applies special linear iterations that take advantage of the linearity. These iterations are
usually combined into several inner ”Sequential Linear Programming” (SLP) iterations, and the number
of these inner iterations are shown in the ”InItr” column. During Phase 2 and 4 the model behaves more
nonlinearly, either in the objective (Phase 4 only) or in the constraints, and most aspects of the iterations
are therefore changed: the line search is more elaborate, and CONOPT needs second order information to
improve the convergence. CONOPT uses inner ”Sequential Quadratic Programming” (SQP) iterations
based on exact second derivatives computed by GAMS. The number of these inner iterations are shown in
the ”InItr” column.

The algorithm in Phase 1 and 3 is almost the same; the only difference is in the set of constraints (in
Phase 3 all constraints and in Phase 1 the feasible constraints) and in the objective function (in Phase 3
the user objective function and in Phase 1 the sum of the residuals in the infeasible constraints). The
same applies to Phase 2 vs. Phase 4.

The SLP or SQP iterations will define a search direction on the tangent plane of the nonlinear constraints.
CONOPT will follow this direction and use one or more steps to find the best solution in the direction.
This process is called the one-dimensional search. Because CONOPT is a Feasible Path Method and the
constraints in general are nonlinear, the points on the tangent plane are usually not feasible and CONOPT
will therefore adjust some of the variables to make the constraints feasible, before the objective function
is evaluated in a feasible point. The feasibility restoring process is based on an adaption of Newton's
method where only a subset of the variables, the Basic variables, are adjusted.

The remaining numbers in the iteration log describes the one-dimensional search. The column ”NSB”
for Number of SuperBasics defines the degree of freedom or the dimension of the current search space,

1796 Solver Manuals

and ”Rgmax” measures the largest reduced gradient among the non-optimal variables. Rgmax should
eventually converge to zero, but convergence will in general not be monotone. The last two columns
labeled ”MX” and ”OK” give information about the one-dimensional search. OK = T means that the
one-dimensional search was well-behaved, and the step described in column “Step” is close to the local
optimum in the selected search direction. OK = F means that the one-dimensional search was stopped
short of an optimal step, usually because the Newton iterations used to find a feasible solution only
converge for small steps. MX = T means that the one-dimensional search was terminated because a
variable reached a bound or an inequality became binding. This is always combined with OK = T. MX =
F means that the step length was determined by the nonlinearity of the objective function.

The step suggested by the SLP or SQP procedure is always 1.0. The linear or quadratic approximation is
therefore good when the optimal step is 1.0. Iterations with step 1.0 are often faster because it is sufficient
to evaluate a single step. The last iteration in phase 1, iteration 11 and 12 in the log-file above, are very
good and the last iterations before optimality, iteration 41 to 46 in phase 4, are also very good.

In the initial part of the optimization, when we are far from the final solution, the direction found by
the SLP or SQP procedure will often suggest large changes in the variables, and the feasibility restoring
Newton iterations may not converge due to large nonlinearities. We will therefore see more iteration with
OK = F and Step < 1 in the beginning, e.g., iteration 15 to 17 in phase 3 and iteration 31 to 39 in phase
4.

5.8.4 Termination Messages

When CONOPT has finished it will show a termination message describing why it has finished. This
section will show most of these messages followed by a short explanation. It will also show the Model
Status returned to GAMS in <model>.ModelStat, where <model> represents the name of the GAMS
model. The Solver Status returned in <model>.SolveStat will be given if it is different from 1 (Normal
Completion). We will in all cases first show the message from CONOPT followed by a short explanation.

The first 4 messages are used for optimal solutions and CONOPT will return ModelStat = 2 (Locally
Optimal), except as noted below:

** Optimal solution. There are no superbasic variables.

The solution is a locally optimal corner solution. The solution is determined by constraints only, and
both the values of the variables and the value of the objective function are usually very accurate. In some
cases, CONOPT can determine that the solution is globally optimal, and it will return ModelStat = 1
(Optimal).

** Optimal solution. Reduced gradient less than tolerance.

The solution is a locally optimal interior solution. The largest component of the reduced gradient is
less than the optimality tolerance, Tol Optimality, with default value 1.e-7. The value of the objective
function is very accurate while the values of the variables can be less accurate due to a flat objective
function in the interior of the feasible area.

** Optimal solution. The error on the optimal objective function

value estimated from the reduced gradient and the estimated

Hessian is less than the minimal tolerance on the objective.

The solution is a locally optimal interior solution. The largest component of the reduced gradient is
larger than the optimality tolerance, Tol Optimality. However, when the reduced gradient is scaled with
second order information the solution seems optimal. For this to happen the objective must be large or
the reduced objective must have large second derivatives, so it is advisable to scale the model if possible.

5.8 CONOPT 1797

** Optimal solution. Convergence too slow. The change in

objective has been less than xx.xx for xx consecutive

iterations.

CONOPT stops with a solution that seems optimal. The solution process is stopped because of slow
progress. The largest component of the reduced gradient is greater than the optimality tolerance,
Tol Optimality, but less than Tol Optimality multiplied by the largest Jacobian element divided by
100. The model must have large derivatives, so it is advisable to scale it.

The four messages above all exist in versions where ”Optimal” is replaced by ”Infeasible” and ModelStat
will be 5 (Locally Infeasible) or 4 (Infeasible). The infeasible messages indicate that the Sum of Infeasibility
objective function in Phase 1 or 2 is locally minimal, but positive. If the model is convex, it does not have
a feasible solution; if the model is non-convex it may have a feasible solution in a different region. See the
section on Initial Values in the Tutorial and Examples section of the GAMS User’s Guide for hints on
what to do.

** Feasible solution. Convergence too slow. The change in

objective has been less than xx.xx for xx consecutive

iterations.

** Feasible solution. The tolerances are minimal and

there is no change in objective although the reduced

gradient is greater than the tolerance.

The two messages above tell that CONOPT stops with a feasible solution. In the first case the solution
process is very slow and in the second there is no progress at all and the optimality criteria have not been
satisfied. These messages are accompanied by ModelStat = 7 (Feasible Solution) and SolveStat = 4 (Termi-
nated by Solver). The problem can be caused by discontinuities if the model is of type DNLP; in this case
you should consider alternative, smooth formulations as discussed in section Reformulating DNLP Models
in the Tutorials and Examples. The problem can also be caused by a poorly scaled model. See section
Good NLP formulation and in particular the section on Scaling variables and Equations in Tutorials and
Examples. Finally, it can be caused by stalling as described in section Stalling. The two messages also
exist in a version where ”Feasible” is replaced by ”Infeasible”. ModelStat is in this case 6 (Intermediate
Infeasible) and SolveStat is still 4 (Terminated by Solver); these versions tell that CONOPT cannot make
progress towards feasibility, but the Sum of Infeasibility objective function does not have a well-defined
local minimum.

** Unbounded solution. A variable has reached ’infinity’.

Largest legal value (Lim_Variable) is xx.xx

CONOPT considers a solution to be unbounded if a variable exceeds the indicated value of Lim Variable
(default 1.e15) and it returns ModelStat = 3 (Unbounded). The check for unboundedness is done at
every iteration which means that CONOPT will stop if an intermediate solution has a variable that is
very large, even if none of the variables in the optimal solution have large values. The variable that has
reached ‘Infinity’ is shown in the listing file. You should check whether the solution appears unbounded,
or the problem is caused by the scaling of the unbounded variable. If the model seems correct you are
advised to scale it. There is also a lazy solution: you can increase the largest legal value, Lim Variable,
as mentioned in the section on options. However, you will most likely pay through reduced reliability or
increased solution times. Unlike LP models, where an unbounded model is recognized by an unbounded
ray and the iterations are stopped far from ”infinity”, CONOPT will make a line search and move to a
region with large values of the variables. This may lead to bad scaling and derived tolerance and round
off problems, including problems of determining whether a solution is feasible or not.

The message above exists in a version where ”Unbounded” is replaced by ”Infeasible” and ModelStat is 5
(Locally Infeasible). You may also see a message like

1798 Solver Manuals

** Infeasible solution. A free variable exceeds the allowable

range. Current value is xx.xx and current upper bound

(Lim_Variable) is xx.xx

These Infeasible messages indicate that some variables become very large before a feasible solution has
been found. You should again check whether the problem is caused by the scaling of the unbounded
variable. If the model seems correct you should scale it.

** The time limit has been reached.

The time or resource limit defined in GAMS, either by default (usually 1000 seconds) or by Option

ResLim = xx; or <model>.ResLim = xx; statements, has been reached. CONOPT will return with
SolveStat = 3 (Resource Interrupt) and ModelStat either 6 (Locally Infeasible) or 7 (Feasible Solution).

** The iteration limit has been reached.

The iteration limit defined in GAMS, either by default (usually 2000000000 iterations) or by Option

IterLim = xx; or <model>.IterLim = xx; statements, has been reached. CONOPT will return with
SolveStat = 2 (Iteration Interrupt) and ModelStat either 6 (Locally Infeasible) or 7 (Feasible Solution).

** Domain error(s) in nonlinear functions. -or-

** Domain error(s) in nonlinear functions. NaN returned -or-

** Domain error(s) in nonlinear functions. Residual too large.

Check bounds on variables.

The number of function evaluation errors or bad function values has reached the limit defined in GAMS
by Option DomLim = xx; or <model>.DomLim = xx; statements or the default limit of 0 function
evaluation errors. CONOPT will return with SolveStat = 5 (Evaluation Error Limit) and ModelStat
either 6 (Locally Infeasible) or 7 (Feasible Solution).

Many of the nonlinear functions available with GAMS are not defined for all values of their arguments.
Log is not defined for negative arguments, Exp overflows for large arguments, and division by zero is
illegal. To avoid evaluating functions outside their domain of definition you should add reasonable variable
bounds. CONOPT will in return guarantee that the nonlinear functions never are evaluated with variables
outside their bounds. For more advice, see details in section Good NLP Formulations in the Tutorials
and Examples section of the GAMS User’s Guide.

** An initial derivative is too large (larger than xx.xx)

Scale the variables and/or equations or add bounds.

<var> appearing in

<equ>: Initial Jacobian element too large = xx.xx

and

** A derivative is too large (larger than xx.xx).

Scale the variables and/or equations or add bounds.

<var> appearing in

<equ>: Jacobian element too large = xx.xx

5.8 CONOPT 1799

These two messages appear if a derivative or Jacobian element is very large, either in the initial point or
in a later intermediate point. The relevant variable and equation pair(s) will be shown in the listing file
and will guide you where to look. A large derivative means that the function changes very rapidly even
after a very small change in the variable and it will most likely create numerical problems for many parts
of the optimization algorithm. Instead of attempting to solve a model that most likely will fail, CONOPT
will stop, and you are advised to adjust the model.

If the offending derivative is associated with a Log(x) or 1/x term you may try to increase the lower bound
on x. If the offending derivative is associated with an Exp(x) term you must decrease the upper bound on
x. You may also try to scale the model, either manually or using the variable.Scale and/or equation.Scale
option in GAMS as described in the section Scaling variables and Equations in the Tutorials and Examples
part of the GAMS documentation.

5.8.5 Preprocessor

The preprocessor in CONOPT3 identifies pre- and post-triangular variables and constraints, and it handles
these variables and constraints in a special way to make some internal routines run more efficiently.

CONOPT goes one step further and distinguishes between a 'user model' as defined by the user via the
GAMS language, and an 'internal model'. Pre-triangular variables and constraints are simply removed
from the user model and are not present in the internal model. Post-triangular variables and constraints
are collapsed into a single condensed objective function. And definitional constraints are eliminated. After
the internal model has been solved, CONOPT translates the internal solution back into the solution for
the user model and reports this solution to the user.

In addition to the simple pre- and post-triangular variables and constraints, the preprocessor in CONOPT
looks at more possibilities for simplifying the model. Some of the new features are:

• Fixed variables are removed completely.

• Constraints that represent simple inequalities are identified and changed into simple bounds on the
variables and the constraints are removed.

• Simple monotone constraints such as exp(x) =L= c1 or log(y) =L= c2 are converted into simple
bounds on the variables and then removed.

• Forcing constraints such as x1 + x2 =L= 0 with x1.lo = 0 and x2.lo = 0 are identified, the
variables are fixed, and the constraints are removed.

• Redundant constraints such as x1 + x2 =L= 3 with x1.lo = 0, x1.up = 1, x2.lo = 0, and x2.up

= 1 are identified and removed.

• Linear and monotone constraints are used to compute 'implied bounds' on many variables and these
bounds can help CONOPT get a better starting point for finding an initial feasible solution. The
implied bounds may also change a non-monotone constraint into a monotone constraint, and they
may help identify redundant constraints.

• Some non-monotone constraints such as sqr(x1) + sqr(x2) =L= 1 can also be used to derive
implied bounds (here -1 < x1 < +1 and -1 < x2 < +1) that both can improve the starting
point and can be used to determine that other terms are monotone or redundant.

• Constraints with exactly two variables, e.g., simple linear identities such as x1 =E= a∗x2 + b or
simple monotone identities such as x3 =E= exp(x4), are used to move bounds between the two
variables and this may result in more variables being included in the post-triangle.

• Linear constraints that are identical or proportional to others are identified and removed.

• Pairs of constraints that define a lower and an upper bound on the same linear expression or
proportional linear expressions, e.g., 1 =L= x1 + x2 and 2∗x1+2∗x2 =L= 4, are turned into a single
ranged constraint with a double-bounded slack variable.

1800 Solver Manuals

• Nonlinear constraints that become linear when the pre-triangular variables are fixed are recognized
as being linear with the resulting simplifications.

Some of the new preprocessing steps are useful when solving sub-models in a Branch and Bound environment.
A constraint like x =L= M∗y where y is a binary variable fixed at either 0 or 1 is turned into a simple
bound on x. And a constraint like sum(i, x(i)) =L= Cap∗y (with x.lo(i) = 0) combined with y

fixed at zero will force all x(i) to zero.

The preprocessor also identifies constructs that are easy to make feasible. There are currently two types:

• Penalty terms: A penalty constraint is defined as a constraint of the form f(x1,x2,..) + p -

n =E= 0, where p and n are positive variables, and where p and n only appear in post-triangular
constraints or in previously identified penalty constraint. For any feasible values of the x-variables it
is easy to find values of p and n that make the penalty constraint feasible: p = max(0,-f(x)) and
n = max(0,f(x)). The definition is easily generalized to constraints where p and n have coefficients
different from one and nonzero bounds; the essence is the presence of two linear unbounded terms of
opposite sign.

• Minimax terms: A minimax group is defined as a group of constraints of the form eq(i)..

fi(x1,x2,..) =L= z where z is common to the group and otherwise only appears in post-triangular
constraints, and z is unbounded from above. For any feasible value of the x-variables it is easy to
find a value of z that makes the minimax group feasible: z = smin(i: fi(x)). The definition is
easily generalized to groups of constraints where z has coefficients different from one and where the
direction of the inequality is reversed.

The preprocessor will also recognize definitional constraints: constraints of the form x =E= f(y), where x

is a free variable or the bounds on x cannot be binding, are called definitional constraints and x is called
a defined variable. If there are many potential defined variables the preprocessor will select a recursive
set and logically eliminate them from the internal model: The values of the defined variables are easily
derived from the values of all other variables by solving the definitional constraints in their recursive order.
These values are then substituted into the remaining constraints before their residuals are computed. The
matrix of derivatives of the remaining constraints is computed from the overall matrix of derivatives via
an efficient elimination of the triangular definitional constraints.

The following extract from the log-file for the otpop.gms model in the GAMS Library shows the main
output from the preprocessor:

The user model has 77 constraints and 104 variables

with 285 Jacobian elements, 100 of which are nonlinear.

The Hessian of the Lagrangian has 17 elements on the diagonal,

33 elements below the diagonal, and 66 nonlinear variables.

Iter Phase Ninf Infeasibility RGmax NSB Step InItr MX OK

0 0 4.0939901439E+03 (Input point)

The pre-triangular part of the model has 32 constraints and 43 variables.

The post-triangular part of the model has 9 constraints and variables.

There are 13 definitional constraints and defined variables.

Preprocessed model has 23 constraints and 39 variables

with 88 Jacobian elements, 25 of which are nonlinear.

Iter Phase Ninf Infeasibility RGmax NSB Step InItr MX OK

1.0510968588E+03 (Full preprocessed model)

4.5063072017E+01 (After scaling)

5.8 CONOPT 1801

The first few lines define the size of the user model. After the description of the initial sum of infeasibilities
there are three lines with statistics from the preprocessor. Note that the pre-triangular part of the model
has more variables than constraints, in this case because there are fixed variables. The post-triangular
part will always have the same number of constraints as variables, and the same is true for definitional
constraints and defined variables.

After the statistics from the preprocessor the size of the resulting internal model is shown. The number of
constraints in the preprocessed model, here 23, is computed from 77 constraints in the user model minus
32 removed in the pre-triangle, 9 removed in the post-triangle, and 13 removed as definitional constraints.
Similarly, the number of variables in the preprocessed model, here 39, is computed from 104 variables in
the user model minus 43 removed in the pre-triangle, 9 removed in the post-triangle, and 13 removed as
definitional variables. The Jacobian counts cannot be derived easily. And there is no Hessian information
for the internal model; it is costly to compute the Hessian for the internal model and it will in most cases
be very dense so all use of 2nd order information in the internal model is computed by mapping variables
and constraints to the user model and using the Hessian in the user model.

Other examples of output from the preprocessor are explained in the section on Alternative Sub-Models.

There are some options that control the preprocessor:

• You can turn the preprocessor off using the option Flg Prep = false. Note that CONOPT still will
generate an internal model, but it will be very close to the user model.

• You can turn the search for definitional constraints off using option Flg NoDefc = true. The time
used for the search will usually be recovered later by cheaper iterations, except for models that solve
in very few iterations.

5.8.6 Adjust Initial Point

If the preprocessed model is infeasible, CONOPT starts with a new 'Adjust Initial Point' procedure. The
procedure reduces the sum of infeasibilities by changing individual variables one at a time. The procedure
is very cheap because changing a single variable only involves a small part of the overall model. The
procedure will as a by-product produce a large part of a good initial basis and many constraints will
become feasible. If the Adjust Initial Point procedure reduces the infeasibilities, the log file will have a
line as shown below (from otpop.gms):

Iter Phase Ninf Infeasibility RGmax NSB Step InItr MX OK

1.0510968588E+03 (Full preprocessed model)

4.5063072017E+01 (After scaling)

2.7782397440E+00 (After adjusting individual variables)

5 0 1.5284282657E+00 1.0E+00 1 T T

As this example shows, the procedure can in some cases reduce the sum of infeasibilities significantly. In
rarer cases it will find a feasible solution.

The time used by the Adjust Initial Point procedure can in rare cases, usually for very dense models, be
large. If you experience this, you can turn the procedure off with option Flg AdjIniP = false.

1802 Solver Manuals

5.8.7 Phase 0 - Finding an Initial Feasible Solution

CONOPT is a feasible path method, but the initial point defined by the user will not always be feasible,
and the Adjust Initial Point procedure may not reduce the infeasibilities to zero.

Phase 0 searches for a feasible solution using a procedure based on Newton's method for solving nonlinear
equalities. If a basis has been provided by GAMS (see the GAMS Option Bratio for details) then the
initial basis will be as chosen from the GAMS basis with adjustments to make it non-singular. Otherwise,
a set of basic variables is selected with preference for variables away from their bounds. It may not be
possible to find a full basis with variables away from their bounds so the initial basis may also have some
slack variables. The standard Newton's method defines a change direction for these basic variables but
bounds and basic slacks will sometimes prevent this direction from reducing the sum of infeasibilities.
CONOPT is therefore using an LP-like pricing step to select a subset of the constraints for with Newton's
method will reduce the sum of infeasibilities. Newton's method applied to this subset gives a search
direction and if a full step can be taken without reaching any bounds the constraints in the subset will
usually become feasible rather quickly. If bounds become active the basis is changed and the process is
repeated. The constraints that are not in the Newton subset, usually few, will subsequently be made
feasible using a phase 1 procedure.

This log file extract showing Phase 0 is from GAMS Library model mathopt3.gms:

Iter Phase Ninf Infeasibility RGmax NSB Step InItr MX OK

1.7198687345E+03 (Full preprocessed model)

7.9643177481E+00 (After scaling)

1.0113241089E+00 (After adjusting individual variables)

1 0 8.6918201909E-01 2.5E-01 2 F F

2 0 4.1584560783E-01 1.0E+00 1 T T

3 S0 9.1316232150E-01 1.0E+00 1 T T

4 0 8.4915160660E-01 2.5E-01 1 F F

5 S0 6.2619863264E-01 1.0E+00 1 T T

6 0 6.1975571905E-01 1.0E+00 1 T T

7 0 6.1974675345E-01 1.0E+00 1 T T

8 1 2 1.5206900053E-01 1.0E+00 2 7.5E-01 2 F F

The InItr column shows the number of basis changes for each outer iteration and Step = 1 indicates
that the full solution from Newton's method was used. For some of the iterations Step is less than 1
indicating that the direction found by the inner linear model could not be used in full due to nonlinearities.
There are some lines with 'S0' instead of 0 in the Phase column. The S tells that the model was scaled
before the iteration and the sum of infeasibilities was increased during this scaling procedure. The sum of
infeasibilities is therefore not monotone decreasing, even if each outer iteration does decrease them.

Phase 0 terminates when the Newton subset is made feasible and CONOPT switches to Phase 1 where
the remaining constraints are handled. In this model there are just 2 infeasible constraints left.

5.8.8 Transition between SLP and SQP

The transition from SLP (Phase 1 or 3) to SQP (Phase 2 or 4) and back again is in CONOPT3 based
on monitoring failure. This logic has been changed in CONOPT, so transition is based on continuous
measurements of curvature, both in the general constraints and in the objective function, combined with
estimates of computational costs and progress for SLP and SQP.

The continuation of the log file for GAMS Library model otpop.gms shows some of this:

5.8 CONOPT 1803

Iter Phase Ninf Objective RGmax NSB Step InItr MX OK

6 3 2.3861517936E+02 3.6E+02 12 2.1E-01 7 F T

7 3 1.4308470370E+02 1.1E+02 16 2.0E-01 9 F T

8 3 9.4375606705E+01 1.5E+02 16 1.8E-01 5 F F

9 3 2.4652509772E+01 7.4E+01 16 6.7E-01 2 F T

10 4 2.4445151316E-02 3.3E+01 16 1.0E+00 6 F T

11 4 5.0735392100E-06 4.4E+00 16 1.0E+00 5 F T

12 4 1.0276261682E-09 1.9E-02 16 1.0E+00 3 F T

13 4 1.4326828955E-13 2.8E-06 16 1.0E+00 1 F T

14 4 1.4326828955E-13 4.0E-10 16

** Optimal solution. Reduced gradient less than tolerance.

Iterations 6 to 9 are SLP iterations (Phase 3) and iterations 10 to 14 are SQP iterations (Phase 4). The
SLP iterations have Step less than 1 due to nonlinear objective terms and CONOPT jumps directly from
SLP to SQP. You may in other models see that SQP is replaced by SLP after some iterations where the
nonlinearities are measured to be very small.

5.8.9 Bad Iterations

Bad iterations, flagged with “F” in the “OK” column can be a problem. They appear if the output
from the SLP or SQP procedure is a search direction where CONOPT cannot move very far because
it is difficult to make the nonlinear constraints feasible again. The efforts spent in solving the SLP or
SQP procedure is therefore partially wasted. The problem is usually associated with a basis that is
ill-conditioned or has Jacobian elements that change very fast.

CONOPT monitors the quality of the basis using information that already has been computed such as
the size of elements of the tangent for basic variables relative to similar elements for superbasic variables
and intermediate results from the computation of the reduced costs. This information is then used to
trigger the search for a better basis, that usually will allow CONOPT to make larger steps in the following
one-dimensional searches.

5.8.10 Saddle Points and Directions of Negative Curvature

CONOPT is based on moving in a direction derived from the gradient, or the reduced gradient for models
with constraints. If the reduced gradient projected on the bounds is zero, then the solution satisfies
the first-order optimality conditions (the KKT or Karush-Kuhn-Tucker conditions), and it is standard
procedure to stop. Unfortunately, this means that we can stop in a saddle-point.

It is not very common to move towards a saddle-point and get stuck there. However, it is not uncommon
that the initial point, provided by a user or by default, is a saddle point. A simple example is the constraint
x∗y =E= 1 started with x.l = y.l = 0; this construct can easily end with a locally infeasible solution.
Another example is minimize z, z =E= x∗y with the same starting point; it could end locally optimal
without moving even though better points exist in the neighborhood.

CONOPT has added a procedure that tries to find a direction of negative curvature that can move the
solution point away from a saddle-point. The procedure is only called in points that satisfy the first order
optimality conditions and it is therefore usually only called once, and it is a cheap safeguard. The theory
behind the method is developed for models without degeneracy and it works very well in practice for these
models. Models with some kind of degeneracy (basic variables at bound or nonbasic variables with zero
reduced cost) use the same procedure, but it is in this case only a heuristic that cannot be guaranteed to
find a direction of negative curvature, even if one exists.

If you know that there are no directions of negative curvature, you can turn the procedure off by setting
the logical option Flg NegCurve to false. If the model is known to be convex you can set the logical
option Flg Convex to true and it will also turn this procedure off. The saving is usually very small,
except for models that solve in very few iterations and for models with very many super basics.

There is no output in the log file for negative curvature. If a direction of negative curvature is found
CONOPT will follow this direction and the optimization continues. Otherwise, the solution is declared
locally optimal.

1804 Solver Manuals

5.8.11 Alternative Sub-Models

During an optimization CONOPT can work with up to three different internal sub-models. These models
are:

• Full Model: This model consists of the constraints in the user's model excluding all pre- and post-
triangular constraints and with the definitional variables eliminated by their defining constraints.
The objective function is the user’s objective function.

• No-Penalty Model: This model consists of the Full Model excluding all penalty and mini-max
constraints. This model does not have an objective function and it is terminated when a feasible
solution has been found.

• Linear Feasibility Model: This model consists of the subset of linear constraints of the Full Model.
The Linear Feasibility model is either solved without an objective function or minimizing a quadratic
distance measure; this is discussed below.

The pre-triangular variables are considered fixed, and they do not appear in any of the sub-models.
Their influence comes through their contribution to coefficients and constant terms. The post-triangular
variables are considered intermediate variables in the definition of the objective function. They do not
appear in the last two models that only are concerned with feasibility, and they only appear indirectly
via the objective in the Full Model. The defined variables are considered intermediate variables in the
definition of the remaining constraints in the same way as post-triangular variables are intermediate in the
objective. The variables in the Full Model are all variables excluding pre- and post-triangular variables
and excluding defined variables; this set can include variables that do not appear in any constraints.
The constraints of the full models are all constraints excluding pre- and post-triangular constraints and
with the definitional constraints logically eliminated. The variables in the Linear Feasibility Model and
in the No-Penalty Model are the variables that appear in the constraints of these models, excluding
pre-triangular variables.

5.8.11.1 No-Penalty Model

CONOPT always starts by searching for a feasible solution and the sub-models only play a role in this
part of the optimization. Therefore, these sub-models are irrelevant if the initial point provided by the
modeler is feasible. If there are many penalty and/or minimax constraints then the No-Penalty Model
will be much smaller than the Full Model and it is more efficient to use the smaller model while searching
for feasibility. The No-Penalty model is therefore only introduced for efficiency reasons. It is by default
solved before the Full Model if all the following conditions are satisfied:

• The Flg NoPen options is true (the default value),

• The model is not a CNS model,

• The user did not provide an initial basis,

• Some of the constraints in the No-Penalty Model are infeasible,

• The number of penalty and minimax constraints is more than the number of constraints in the Full
Model multiplied by the value of option Rat NoPen. The default value of Rat NoPen is 0.1, i.e.,
the No-Penalty Model is only defined and solved if it is at least 10% smaller than the Full Model.

An example of a log-file for a model with a No-Penalty model is from the prolog.gms model in the
GAMS Library:

5.8 CONOPT 1805

The user model has 23 constraints and 21 variables

with 129 Jacobian elements, 14 of which are nonlinear.

The Hessian of the Lagrangian has 0 elements on the diagonal,

4 elements below the diagonal, and 6 nonlinear variables.

Iter Phase Ninf Infeasibility RGmax NSB Step InItr MX OK

0 0 1.2977431398E+03 (Input point)

The post-triangular part of the model has 1 constraints and variables.

There are 17 penalty and minimax constraints with 3 variables.

Reduced model without penalty components has 5 constraints and

17 variables with 46 Jacobian elements, 0 of which are nonlinear.

Iter Phase Ninf Infeasibility RGmax NSB Step InItr MX OK

1.2960000000E+03 (Model without penalty constraints)

5.0625000000E+00 (After scaling)

0.0000000000E+00 (After adjusting individual variables)

Previous model terminated and penalty components are added back in.

Full preprocessed model has 22 constraints and 20 variables

with 120 Jacobian elements, 8 of which are nonlinear.

Iter Phase Ninf Infeasibility RGmax NSB Step InItr MX OK

0.0000000000E+00 (After adjusting penalty variables)

There are no pre-triangular variables and constraints, and the pre-triangular line is therefore missing.
There are also no definitional constraints and the line describing definitional constraints is also missing.
On the other hand, there is a line saying that the model has 17 penalty and minimax constraints involving
a total of 3 variables.

Since there is a significant number of penalty and minimax constraints, CONOPT starts by generating the
No-Penalty model without the penalty and minimax constraints and without the pre- and post-triangular
constraints. The 23 constraints in the user model are reduced by 1 post-triangular constraint and 17
minimax and penalty constraints, leaving 5 constraints. Similarly, the 21 variables in the user model are
reduced by 1 post-triangular variable and 3 variables in the penalty and minimax constraints, leaving 17
variables.

This No-Penalty model is scaled and made feasible, in this case by the Adjust Initial Point procedure
described above. After the No-Penalty model has become feasible CONOPT generates the full internal
model, and the 3 variables from the penalty and minimax constraints are adjusted as described in the
section on the Preprocessor and the Full Model is then feasible.

5.8.11.2 Linear Feasibility Model

The Linear Feasibility Model is introduced to avoid locally infeasible solutions where some linear constraints
are infeasible and some feasible nonlinear constraint block for the linear constraint becoming feasible.
The Linear Feasibility Model is used to produce a starting point to one of the nonlinear sub-models
(the No-Penalty Model or the Full Model) that satisfies all linear constraints. If the Linear Feasibility
Model is proved to be infeasible then the overall model is proved to be globally infeasible (independent of
nonlinearities) and there is no reason to proceed with the nonlinear part of the model.

The Linear Feasibility Model is only useful if the model has some linear constraints and if the initial point
provided by the modeler does not satisfy these constraints. If the Linear Feasibility Model finds a feasible
solution to the linear constraints, it continues in one of four possible ways:

1806 Solver Manuals

A. Use the first feasible solution directly without using extra effort to improve the solution.

B. Perform an approximate minimization of the weighted distance from the user's initial
point. Only the variables that have non-default initial values are included in the distance
measure, i.e. variables with an initial value (xini) that is different from zero projected on the
bounds, i.e. xini ne min(max(0,x.lo),x.up). The distance measure is sqr((x-xini) /

max(1,abs(xini))).

C. As in B, but with all variables included in the distance measure.

D. As in C, but with xini defined as a value between the lower and upper bounds.

Possibility A is fast, but it may give a starting point for the nonlinear model far from the initial point
provided by the user. B is slower but gives a starting point for the nonlinear model that is close to the
point provided by the user. The variables included in the distance measure in B are the variables that the
user has given a value to and therefore are expected to be important. C and D are also slower, but because
they have different objective functions, they may provide different starting points for the nonlinear model
and may therefore avoid locally infeasible solutions.

Once the Linear Feasibility Model has been solved, with or without a distance objective function, the
No-Penalty Model and/or the Full Model are started. All variables that appear in the Linear Feasibility
Model are started from the solution values from this model and the remaining variables, that only appear
in nonlinear constraints, are started from the values received from the modeler.

The order in which the sub-models are solved depends on the Linear Feasibility Model strategy, defined
with option, Lin Method:

1. If Lin Method has the default value 1 then the initial point and basis is assumed to be good and
CONOPT will start with the No-Penalty Model (only if the conditions mentioned above are satisfied)
followed by the Full Model. If the model terminates locally optimal, unbounded, or on some resource
limit (time, iterations, function evaluations) CONOPT terminates. We only build and solve the
Linear Feasibility Model if the No-Penalty or Full model terminates locally infeasible. If the Linear
Feasibility Model is infeasible, the overall model is infeasible and CONOPT terminates. Otherwise,
we minimize objective B and use the solution point as a second starting point for the nonlinear
model. If this attempt also terminates locally infeasible, we try to generate an alternative initial
point with objective C and then with objective D. If all these attempts fail, the model is labeled
locally infeasible.

2. With Lin Method = 2 CONOPT will start directly with the Linear Feasibility Model with objective
A followed by the No-Penalty and Full models. If they are locally infeasible from this starting point,
we followed the procedure from above with objective B, C, and then D.

3. Lin Method = 3 is like Lin Method = 2 except that the first objective A is skipped.

Sometimes the objective functions are identical. If all variables have default initial values, then A and B
are the same, and if all variables have non-default initial values, then B and C are the same. CONOPT
will check for this and will not solve identical sub-models.

The number of times we restart after a locally infeasible solution is controlled by the option, Num Rounds.
The default value is 4, i.e., we will by default try very hard to find a feasible point as shown in the example
below. The value 1 will make CONOPT terminate immediately if a locally infeasible point is found,
without going back to the Linear Feasibility Model. Num Rounds can be used if you are not interested in
spending extra time on a model that is likely to be infeasible. This is particularly relevant when CONOPT
is used as the sub-solver inside SBB, where infeasible sub-problems are common.

An example of a log-file where all Linear Feasibility objectives are used is taken from ex5 3 2.gms in the
GlobalLib collection of test models. It shows the repeated starts of the Linear Feasibility Model followed
by the Full Preprocessed model:

5.8 CONOPT 1807

Preprocessed model has 22 variables and 16 constraints

with 59 Jacobian elements, 24 of which are nonlinear.

Iter Phase Ninf Infeasibility RGmax NSB Step InItr MX OK

4.1200000000E+02 (Full preprocessed model)

8.4843750000E+00 (After scaling)

6.2500000000E-01 (After adjusting individual variables)

1 1 1 6.2500000000E-01 0.0E+00 5 0.0E+00 T T

4 1 1 6.2500000000E-01 0.0E+00 4

** Infeasible solution. Reduced gradient less than tolerance.

Initial linear feasibility model has 22 variables and 7 constraints

with 22 linear Jacobian elements.

Objective: Distance to initial point (nondefault variables)

Iter Phase Ninf Infeasibility RGmax NSB Step InItr MX OK

3.0200000000E+02 (Linear feasibility model)

3.1718750000E+00 (After scaling)

** Linear constraints feasible. Distance = 0.00000000000

Iter Phase Ninf Distance RGmax NSB Step InItr MX OK

6 4 0.0000000000E+00 0.0E+00 0

Restarting preprocessed model from a new starting point.

Iter Phase Ninf Infeasibility RGmax NSB Step InItr MX OK

1.1000000000E+02 (Full preprocessed model)

5.3125000000E+00 (After scaling)

11 2 1 6.2500000000E-01 0.0E+00 0

** Infeasible solution. There are no superbasic variables.

Restarting linear feasibility model.

Objective: Distance to initial point (all variables)

Iter Phase Ninf Infeasibility RGmax NSB Step InItr MX OK

0.0000000000E+00 (Linear feasibility model)

0.0000000000E+00 (After scaling)

** Linear constraints feasible. Distance = 90002.0000000

Iter Phase Ninf Distance RGmax NSB Step InItr MX OK

16 4 2.2501000000E+04 1.8E-12 5

Restarting preprocessed model from a new starting point.

Iter Phase Ninf Infeasibility RGmax NSB Step InItr MX OK

1.8492500000E+02 (Full preprocessed model)

1.0775781250E+01 (After scaling)

21 1 1 6.2500000000E-01 5.4E-03 3 0.0E+00 T T

26 1 1 6.2499999982E-01 3.7E-07 3 2.4E+03 T T

27 2 1 6.2500000000E-01 0.0E+00 2

** Infeasible solution. Reduced gradient less than tolerance.

1808 Solver Manuals

Restarting linear feasibility model.

Objective: Distance to point away from bounds

Iter Phase Ninf Infeasibility RGmax NSB Step InItr MX OK

1.4210854715E-14 (Linear feasibility model)

5.5511151231E-17 (After scaling)

** Linear constraints feasible. Distance = 15.1922028230

Iter Phase Ninf Distance RGmax NSB Step InItr MX OK

31 4 2.5570990132E+00 1.1E-04 13 1.0E+00 2 F T

32 4 2.5570990132E+00 7.7E-11 13

Restarting preprocessed model from a new starting point.

Iter Phase Ninf Infeasibility RGmax NSB Step InItr MX OK

6.0836352222E+02 (Full preprocessed model)

9.7890253865E+00 (After scaling)

35 S0 0 2.3859378417E+00 1.0E+00 3 T T

** Feasible solution. Value of objective = 1.86415945946

Iter Phase Ninf Objective RGmax NSB Step InItr MX OK

40 4 1.8641594595E+00 0.0E+00 0

** Optimal solution. There are no superbasic variables.

The Full Model is infeasible when started directly from the values provided by the user. The Linear
Feasibility model is then solved to get a different starting point for the Full model where the linear part is
feasible. The Full Model is also infeasible from this point, and it is necessary to solve the Linear Feasibility
model three times with different objective functions before the full model becomes feasible.

If the model is defined to be convex with option Flg Convex = true then a locally infeasible solution
is labeled globally infeasible with ModelStat = 4, and the Linear Feasibility Model will not be used. A
locally optimal solution is also labeled (globally) optimal with ModelStat = 1.

5.8.12 Scaling

The Tutorials and Examples section of the GAMS User’s Guide has some general recommendations about
scaling the user’s model. These recommendations also apply to CONOPT.

In addition to the scaling done by the user, CONOPT will also scale the model internally by defining
scale factors for both variables and constraints. The purpose of scaling is to get a scaled Jacobian matrix
where the nonzero elements are neither very large nor very small, and scaled variables that are neither
very large nor very small.

Variables are scaled with the formula xint = xuser / vscale and constraints are scaled with the formula
gint = guser / gscale, where ‘int’ and ‘user’ represent the user model and the internal (scaled) model
and vscale and gscale are scale factors for variables and constraints. As a result, the Jacobian elements
changes with Jacint = Jacuser ∗ vscale / gscale.

For LP models the Jacobian is constant and scaling is usually done once. For nonlinear models the
Jacobian changes with the solution point and scaling is therefore done at regular intervals.

In a nonlinear model a small variable or a small Jacobian element may be small because it is insignificant,
but it may also be significant and just small in the current point. CONOPT is therefore using a scaling

5.8 CONOPT 1809

procedure that scales large variables values and large Jacobian terms down to around 1, but it does not
scale small variables values and small Jacobian terms up. The modeler is therefore advised to make sure
that the expected solution values are not very small and that the terms in constraint are not all very
small.

There are two options relevant for scaling: Tol Scale Max is the largest scaling factor that CONOPT
will use. The default value is 1.e15 and it is applied to both variables and constraints. Tol Scale Min is
the smallest scaling factor that CONOPT will use. The default value is 1 and it is also applied to both
variables and constraints. The default values imply what was mentioned above, that very large terms can
be scaled down, but small terms are not scaled up. If you have small but significant terms you may set
Tol Scale Min below 1 but notice that insignificant small terms may also be scaled up and may disturb
the solution process.

If the largest value of a variable, option Lim Variable or the internal value of ‘infinity’, is increased you
may consider increasing Tol Scale Max as well.

5.8.13 CNS Models

There is a special model class in GAMS called CNS - Constrained Nonlinear System. A constrained
nonlinear system is a square system of equations, i.e., a model in which the number of non-fixed variables
is equal to the number of constraints. A CNS model can be solved with a solve statement like

Solve <model> using CNS;

without an objective term. CONOPT will attempt to solve the constraints with respect to the non-fixed
variables using Newton's method. When it works, it is often very fast, and it uses less memory than for
the corresponding NLP model, but the solution process does not include a lot of the safeguards used for
ordinary NLP models. The lack of safeguards means that the solution process will stop with an error
message in some difficult situations and return the current intermediate infeasible solution. Some examples
are shown below.

Slacks in inequalities are counted as non-fixed variables which effectively means that inequalities should
not be binding. Bounds on the variables are allowed, especially to prevent function evaluation errors for
functions that only are defined for some arguments, but the bounds should not be binding in the final
solution.

Since there is no objective function the solution returned to GAMS will in all cases have marginal values
equal to 0 or EPS, both for the variables and the constraints.

The termination messages for CNS models are different from the termination messages for optimization
models. The message you hope for is this:

** Feasible solution to a square system.

that usually will be combined with ModelStat = 16 - Solved. If CONOPT in special cases can guarantee
that the solution is unique, for example if the model is linear, then ModelStat will be 15 - Solved Unique.

There are two potential error termination messages related to CNS models. A model with the following
two constraints

e1 .. x1 + x2 =e= 1;

e2 .. 2*x1 + 2*x2 =e= 2;

1810 Solver Manuals

will result in this message

** Error in Square System: Pivot too small.

e2: Pivot too small.

x1: Pivot too small.

”Pivot too small” means that the set of constraints is linearly dependent on the current point and there
is no unique search direction for Newton's method, so CONOPT terminates. In the listing file (but not
the log-file) the message points to one variable and one constraint. However, this pair of constraint and
variable just indicates that the linearly dependent set of constraints and variables include the constraint
and variable mentioned. The offending constraint and variable will also be labeled 'DEPND' for linearly
dependent in the equation listing. The error will usually be combined with ModelStat = 5 - Locally
Infeasible. In cases where CONOPT can guarantee that the infeasibility is not caused by nonlinearities
ModelStat will be 4 - Infeasible. If the constraints are linearly dependent but the current point satisfies
the constraints then the solution status will be 17 - Solved Singular, indicating that the point is feasible,
but there is probably a whole ray of feasible solution through the current point.

It should be mentioned that linear dependency and small pivot could be caused by the initial point and
that the model could have a solution. An example is:

e1.. x1*x2 =E= 1;

e2.. x1+x2 =E= 3;

x1.l = 1; x2.l = 1;

A model with these two constraints and the bound

e1 .. x1 + x2 =e= 2;

e2 .. x1 - x2 =e= 0;

x1.lo = 1.5;

will result in the message

** Error in Square System: A variable tries to exceed its bound.

x1: The variable tries to exceed its bound.

because the solution, (x1,x2) = (1,1) violates the lower bound on x1. This error case will also be combined
with ModelStat = 5 - Locally Infeasible. In the cases where CONOPT can guarantee that the infeasibility
is not caused by nonlinearities ModelStat will be 4 - Infeasible.

CNS can in some cases be used to generate an initial feasible solution: Fix a subset of the variables so the
remaining model is uniquely solvable, solve this model with the CNS solver, reset the bounds on the fixed
variables, and solve the original model. This two-solve method gives better control over the first feasible
solution and can be useful for very large models.

Additional information on CNS can be found in the GAMS User's Guide

5.8.14 Multiple Threads

CONOPT can use multiple threads for some internal computations and GAMS can use multiple threads
for function and derivative evaluations. In addition to function and derivative evaluations, multiple threads
are only used for certain very large and dense computations and there are not so many of these in the
types of models usually built with GAMS. In addition, multiple threads have some overhead, and they are
therefore mainly useful for very large models. Currently, the best improvements have been for very large
models with more than 100,000 variables or constraints, and especially for very large CNS models.

Threads can be turned on with the GAMS command-line option Threads=n or with the CONOPT option
threads.

5.8 CONOPT 1811

5.8.15 Loss of Feasibility

During the optimization you may sometimes see a phase 0 iteration and in rare cases you will see the
message ”Loss of Feasibility - Return to Phase 0”. The background for this is as follows:

To work efficiently, CONOPT uses dynamic tolerances for feasibility and during the initial part of the
optimization, where the objective changes rapidly, larger infeasibilities are accepted. As the change in
objective between iterations becomes smaller it is necessary to solve the constraints more accurately so
the uncertainty of the objective value caused by inaccurate constraints will remain smaller than the actual
change. The accuracy of the objective is measured as the scalar product of the constraint residuals with
the constraint marginals.

Sometimes it is necessary to revise the accuracy of the solution, for example because the algorithmic
progress has slowed down or because the marginal of an inaccurate constraint has grown significantly
after a basis change, e.g., when an inequality becomes binding. In these cases, CONOPT will reduce the
feasibility tolerance and perform one or more Newton iterations on the basic variables. This will usually
be very quick, and it happens silently. However, Newton's method may fail, for example in cases where the
model is degenerate, and Newton tries to move a basic variable outside a bound. In this case CONOPT uses
some special iteration similar to those discussed in section Phase 0 - Finding an Initial Feasible Solution
and they are labeled Phase 0.

These Phase 0 iterations may not converge, for example if the degeneracy is significant, if the model is
very nonlinear locally, if the model has many product terms involving variables at zero, or if the model is
poorly scaled and some constraints contain very large terms. If the iterations do not converge, CONOPT
will issue the ”Loss of feasibility ...” message, return to the real Phase 0 procedure, find a feasible solution
with the smaller tolerance, and resume the optimization.

In rare cases you will see that CONOPT cannot find a feasible solution after the tolerances have been
reduced, even though it has declared the model feasible at an earlier stage. In this case CONOPT will
stop, restore the last point that was labeled feasible and return this point as an intermediate feasible
solution.

Although the problems may appear to be with too tight tolerances it is not a good idea to relax the
feasibility tolerances. Relaxed feasibility tolerances will give more inaccurate objective function values
that result in difficulties for the progress of the optimization as discussed in the next section.

5.8.16 Stalling

CONOPT will usually make steady progress towards the final solution. A degeneracy breaking strategy
and the monotonicity of the objective function in other iterations should ensure that CONOPT cannot
cycle. Unfortunately, there are a few places in the code where the objective function may move in the
wrong direction and CONOPT may in fact cycle or move very slowly.

The objective value used to compare two points, in the following called the adjusted objective value, is
computed as the true objective plus an accuracy adjustment term equal to the scalar product of the
residuals with the marginals (see the previous section where this accuracy term also is used). The accuracy
adjustment term is very useful in allowing CONOPT to work smoothly with inaccurate intermediate
solutions. However, there is a disadvantage: the accuracy adjustment term can change even though the
point itself does not change, namely when the marginals change in connection with a basis change. The
adjusted objective is therefore not always monotone. When CONOPT loses feasibility and returns to
Phase 0 there is an even larger chance of non-monotone behavior.

To prevent infinite loops and to allow the modeler to stop in cases with very slow progress CONOPT has
an anti-stalling option. An iteration is counted as a stalled iteration if it is not degenerate and (1) the
adjusted objective is worse than the best adjusted objective seen so far, or (2) the step length was zero
without being degenerate (see OK = F in section Linear and Nonlinear Mode: Phase 1 to 4). CONOPT
will stop if the number of consecutive stalled iterations (again not counting degenerate iterations) exceeds
Lim StallIter and Lim StallIter is positive. The default value of Lim StallIter is 100. The message
will be:

1812 Solver Manuals

** Feasible solution. The tolerances are minimal and

there is no change in objective although the reduced

gradient is greater than the tolerance.

Large models with very flat optima can sometimes be stopped prematurely due to stalling. If it is
important to find a local optimum accurately then you may have to increase the value of Lim StallIter.

5.8.17 APPENDIX A - Options

The options that ordinary GAMS users can access are listed below.

5.8.17.1 Algorithmic options

Option Description Default

Flg AdjIniP
Flag for calling Adjust Initial Point 1

Flg Convex
Flag for defining a model to be convex 0

Flg Crash Slack
Flag for pre-selecting slacks for the initial basis. 0

Flg Dbg Intv
Flag for debugging interval evaluations. 0

Flg NegCurve
Flag for testing for negative curvature when apparently optimal 1

Flg NoDefc
Flag for turning definitional constraints off. The default is false. 0

Flg NoPen
Flag for allowing the Model without penalty constraints 1

Flg SLPMode
Flag for enabling SLP mode. 1

Flg SQPMode
Flag for enabling of SQP mode. 1

Flg Square
Flag for Square System. Alternative to defining modeltype=CNS
in GAMS

0

Flg TraceCNS
Flag for tracing a CNS solution. 0

Frq Rescale
Rescaling frequency. 5

Lim Err 2DDir
Limit on errors in Directional Second Derivative evaluation. 10

Lim Err Fnc Drv
Limit on number of function evaluation errors. Overwrites
GAMS Domlim option

GAMS DomLim

Lim Err Hessian
Limit on errors in Hessian evaluation. 10

Lim Iteration
Maximum number of iterations. Overwrites GAMS Iterlim
option.

GAMS IterLim

Lim NewSuper
Maximum number of new superbasic variables added in one
iteration.

auto

Lim RedHess
Maximum number of superbasic variables in the approximation
to the Reduced Hessian.

auto

Lim SlowPrg
Limit on number of iterations with slow progress (relative less
than Tol Obj Change).

20

Lim StallIter
Limit on the number of stalled iterations. 100

Lim Start Degen
Limit on number of degenerate iterations before starting degen-
eracy breaking strategy.

100

5.8 CONOPT 1813

Option Description Default

Lim Time
Time Limit. Overwrites the GAMS Reslim option. GAMS ResLim

Lim Variable
Upper bound on solution values and equation activity levels 1.e15

Lin Method
Method used to determine if and/or which Linear Feasibility
Models to use

1

Mtd Dbg 1Drv
Method used by the function and derivative debugger. 0

Mtd RedHess
Method for initializing the diagonal of the approximate Reduced
Hessian

0

Mtd Scale
Method used for scaling. 3

Mtd Step Phase0
Method used to determine the step in Phase 0. auto

Mtd Step Tight
Method used to determine the maximum step while tightening
tolerances.

0

Num Rounds
Number of rounds with Linear Feasibility Model 4

Rat NoPen
Limit on ratio of penalty constraints for the No Penalty model
to be solved

0.1

Tol Bound
Bound filter tolerance for solution values close to a bound. 1.e-7

Tol BoxSize
Initial box size for trust region models for overall model 10

Tol BoxSize Lin
Initial box size for trust region models for linear feasibility model 1000

Tol Box LinFac
Box size factor for linear variables applied to trust region box
size

10

Tol Def Mult
Largest growth factor allowed in the block of definitional con-
straints

1.e4

Tol Feas Max
Maximum feasibility tolerance (after scaling). 1.e-7

Tol Feas Min
Minimum feasibility tolerance (after scaling). 4.e-10

Tol Feas Tria
Feasibility tolerance for triangular equations. 1.0e-8

Tol Fixed
Tolerance for defining variables as fixed based on initial or derived
bounds.

4.e-10

Tol Jac Min
Filter for small Jacobian elements to be ignored during scaling. 1.e-5

Tol Linesearch
Accuracy of One-dimensional search. 0.2

Tol Obj Acc
Relative accuracy of the objective function. 3.0e-13

Tol Obj Change
Limit for relative change in objective for well-behaved iterations. 3.0e-12

Tol Optimality
Optimality tolerance for reduced gradient when feasible. 1.e-7

Tol Opt Infeas
Optimality tolerance for reduced gradient when infeasible. 1.e-7

Tol Opt LinF
Optimality tolerance when infeasible in Linear Feasibility Model 1.e-10

Tol Piv Abs
Absolute pivot tolerance. 1.e-10

Tol Piv Abs Ini
Absolute Pivot Tolerance for building initial basis. 1.e-7

Tol Piv Abs NLTr
Absolute pivot tolerance for nonlinear elements in pre-triangular
equations.

1.e-5

Tol Piv Ratio
Relative pivot tolerance during ratio-test 1.e-8

Tol Piv Rel
Relative pivot tolerance during basis factorizations. 0.05

Tol Piv Rel Ini
Relative Pivot Tolerance for building initial basis 1.e-3

1814 Solver Manuals

Option Description Default

Tol Piv Rel Updt
Relative pivot tolerance during basis updates. 0.05

Tol Scale2D Min
Lower bound for scale factors based on large 2nd derivatives. 1.e-6

Tol Scale Max
Upper bound on scale factors. 1.e25

Tol Scale Min
Lower bound for scale factors computed from values and 1st
derivatives.

1

Tol Scale Var
Lower bound on x in x∗Jac used when scaling. 1.e-5

Tol Zero
Zero filter for Jacobian elements and inversion results. 1.e-20

Trace MinStep
Minimum step between Reinversions when using TraceCNS. 0.001

5.8.17.2 Debugging options

Option Description Default

Flg Interv
Flag for using intervals in the Preprocessor 1

Flg Prep
Flag for using the Preprocessor 1

Flg Range
Flag for identifying sets of ranged constraints 1

Lim Dbg 1Drv
Flag for debugging of first derivatives 0

Lim Hess Est
Upper bound on second order terms. 1.e4

Lim Msg Dbg 1Drv
Limit on number of error messages from function and derivative
debugger.

10

5.8.17.3 Output options

Option Description Default

Frq Log Simple
Frequency for log-lines for non-SLP/SQP iterations. auto

Frq Log SlpSqp
Frequency for log-lines for SLP or SQP iterations. auto

Lim Msg Large
Limit on number of error messages related to large function value and
Jacobian elements.

10

Lim Pre Msg
Limit on number of error messages related to infeasible pre-triangle. 25

5.8.17.4 Interface options

Option Description Default

cooptfile

Flg 2DDir
Flag for computing and using directional 2nd derivatives. auto

Flg Hessian
Flag for computing and using 2nd derivatives as Hessian of La-
grangian.

auto

HEAPLIMIT
Maximum Heap size in MB allowed 1e20

HessianMemFac
Memory factor for Hessian generation: Skip if Hessian elements >
Nonlinear Jacobian elements∗HessianMemFac, 0 means unlimited.

0

5.8 CONOPT 1815

Option Description Default

THREADC
Number of compatibility threads used for comparing different
values of THREADS

1

THREADF
Number of threads used for function evaluation 1

threads
Number of threads used by Conopt internally GAMS Threads

cooptfile (string): ←↩

Flg 2DDir (boolean): Flag for computing and using directional 2nd derivatives. ←↩

If turned on, make directional second derivatives (Hessian matrix times directional vector)
available to CONOPT. The default is on, but it will be turned off of the model has external
equations (defined with =X=) and the user has not provided directional second derivatives.
If both the Hessian of the Lagrangian (see Flg Hessian) and directional second derivatives
are available then CONOPT will use both: directional second derivatives are used when the
expected number of iterations in the SQP sub-solver is low and the Hessian is used when the
expected number of iterations is large.

Default: auto

Flg AdjIniP (boolean): Flag for calling Adjust Initial Point ←↩

If Flg AdjIniP is on (the default) then the Adjust Initial Point routine is called after the
pre-processor. Can be turned off if the routine is very slow.

Default: 1

Flg Convex (boolean): Flag for defining a model to be convex ←↩

When turned on (the default is off) CONOPT knows that a local solution is also a global
solution, whether it is optimal or infeasible, and it will be labeled appropriately. At the
moment, Flg NegCurve will be turned off. Other parts of the code will gradually learn to take
advantage of this flag.

Default: 0

Flg Crash Slack (boolean): Flag for pre-selecting slacks for the initial basis. ←↩

When turned on (1) CONOPT will select all infeasible slacks as the first part of the initial
basis.

Default: 0

Flg Dbg Intv (boolean): Flag for debugging interval evaluations. ←↩

Flg Dbg Intv controls whether interval evaluations are debugged. Currently we check that
the lower bound does not exceed the upper bound for all intervals returned, both for function
values and for derivatives.

Default: 0

Flg Hessian (boolean): Flag for computing and using 2nd derivatives as Hessian of Lagrangian. ←↩

1816 Solver Manuals

If turned on, compute the structure of the Hessian of the Lagrangian and make it available
to CONOPT. The default is usually on, but it will be turned off if the model has external
equations (defined with =X=) or cone constraints (defined with =C=) or if the Hessian
becomes too dense. See also Flg 2DDir and HessianMemFac.

Default: auto

Flg Interv (boolean): Flag for using intervals in the Preprocessor ←↩

If turned on (default), CONOPT will attempt to use interval evaluations in the preprocessor
to determine if functions are monotone or if intervals for some of the variables can be excluded
as infeasible.

Default: 1

Flg NegCurve (boolean): Flag for testing for negative curvature when apparently optimal ←↩

When turned on (the default) CONOPT will try to identify directions with negative curvature
when the model appears to be optimal. The objective is to move away from saddlepoints. Can
be turned off when the model is known to be convex and cannot have negative curvature.

Default: 1

Flg NoDefc (boolean): Flag for turning definitional constraints off. The default is false. ←↩

If Flg NoDefc is on, the Preprocessor will not look for definitional constraints and variables.

Default: 0

Flg NoPen (boolean): Flag for allowing the Model without penalty constraints ←↩

When turned on (the default) CONOPT will create and solve a smaller model without the
penalty constraints and variables and the minimax constraints and variables if the remaining
constraints are infeasible in the initial point. This is often a faster way to start the solution
process.

Default: 1

Flg Prep (boolean): Flag for using the Preprocessor ←↩

If turned on (default), CONOPT will use its preprocessor to try to determine pre- and
post-triangluar components of the model and find definitional constraints.

Default: 1

Flg Range (boolean): Flag for identifying sets of ranged constraints ←↩

If turned on (default), CONOPT will as part of its preprocessor look for sets of parallel linear
constraints and turn each set into a single ranged constraints. There is currently a potential
problem with the duals on these constraints and if duals are important ranges can be turned
off with this flag.

Default: 1

Flg SLPMode (boolean): Flag for enabling SLP mode. ←↩

5.8 CONOPT 1817

If Flg SLPMode is on (the default) then the SLP (sequential linear programming) sub-solver
can be used, otherwise it is turned off.

Default: 1

Flg SQPMode (boolean): Flag for enabling of SQP mode. ←↩

If Flg SQPMode is on (the default) then the SQP (sequential quadratic programming) sub-
solver can be used, otherwise it is turned off.

Default: 1

Flg Square (boolean): Flag for Square System. Alternative to defining modeltype=CNS in GAMS ←↩

When turned on the modeler declares that this is a square system, i.e. the number of non-fixed
variables must be equal to the number of constraints, no bounds must be active in the final
solution, and the basis selected from the non-fixed variables must always be nonsingular.

Default: 0

Flg TraceCNS (boolean): Flag for tracing a CNS solution. ←↩

When turned on the model must, for fixed value of the objective variable, be a CNS model
and must satisfy the conditions of a CNS. The model is first solved as a CNS with the initial
value of the objective fixed and the objective is then minimized or maximized subject to the
CNS constraints.

Default: 0

Frq Log Simple (integer): Frequency for log-lines for non-SLP/SQP iterations. ←↩

Frq Log Simple and Frq Log SlpSqp can be used to control the amount of iteration send to
the log file. The non-SLP/SQP iterations, i.e. iterations in phase 0, 1, and 3, are usually fast
and writing a log line for each iteration may be too much, especially for smaller models. The
default value for the log frequency for these iterations is therefore set to 10 for small models, 5
for models with more than 500 constraints or 1000 variables and 1 for models with more than
2000 constraints or 3000 variables.

Default: auto

Frq Log SlpSqp (integer): Frequency for log-lines for SLP or SQP iterations. ←↩

Frq Log Simple and Frq Log SlpSqp can be used to control the amount of iteration send to
the log file. Iterations using the SLP and/or SQP sub-solver, i.e. iterations in phase 2 and
4, may involve several inner iterations and the work per iteration is therefore larger than for
the non-SLP/SQP iterations and it may be relevant to write log lines more frequently. The
default value for the log frequency is therefore 5 for small models and 1 for models with more
than 500 constraints or 1000 variables.

Default: auto

Frq Rescale (integer): Rescaling frequency. ←↩

The row and column scales are recalculated at least every Frq Rescale new point (degenerate
iterations do not count), or more frequently if conditions require it.

Default: 5

HEAPLIMIT (real): Maximum Heap size in MB allowed ←↩

1818 Solver Manuals

Range: [0, ∞]

Default: 1e20

HessianMemFac (real): Memory factor for Hessian generation: Skip if Hessian elements > Nonlinear
Jacobian elements∗HessianMemFac, 0 means unlimited. ←↩

The Hessian of the Lagrangian is considered too dense therefore too expensive to evaluate and
use, and it is not passed on to CONOPT if the number of nonzero elements in the Hessian
of the Lagrangian is greater than the number of nonlinear Jacobian elements multiplied by
HessianMemFac. See also Flg Hessian. If HessianMemFac = 0.0 (the default value) then there
is no limit on the number of Hessian elements.

Default: 0

Lim Dbg 1Drv (integer): Flag for debugging of first derivatives ←↩

Lim Dbg 1Drv controls how often the derivatives are tested. Debugging of derivatives is only
relevant for user-written functions in external equations defined with =X=. The amount
of debugging is controlled by Mtd Dbg 1Drv. See Lim Hess Est for a definition of when
derivatives are considered wrong.

Default: 0

value meaning

-1 The derivatives are tested in the initial point only.

0 No debugging

+n The derivatives are tested in all iterations that can be divided by Lim Dbg 1Drv,
provided the derivatives are computed in this iteration. (During phase 0, 1, and 3
derivatives are only computed when it appears to be necessary.)

Lim Err 2DDir (integer): Limit on errors in Directional Second Derivative evaluation. ←↩

If the evaluation of Directional Second Derivatives (Hessian information in a particular
direction) has failed more than Lim Err 2DDir times CONOPT will not attempt to evaluate
them any more and will switch to methods that do not use Directional Second Derivatives.
Note that second order information may not be defined even if function and derivative values
are well-defined, e.g. in an expression like power(x,1.5) at x=0.

Default: 10

Lim Err Fnc Drv (integer): Limit on number of function evaluation errors. Overwrites GAMS Domlim
option ←↩

Function values and their derivatives are assumed to be defined in all points that satisfy the
bounds of the model. If the function value or a derivative is not defined in a point CONOPT
will try to recover by going back to a previous safe point (if one exists), but it will not do it
more than at most Lim Err Fnc Drv times. If CONOPT is stopped by functions or derivatives
not being defined it will return with a intermediate infeasible or intermediate non-optimal
model status.

Default: GAMS DomLim

Lim Err Hessian (integer): Limit on errors in Hessian evaluation. ←↩

5.8 CONOPT 1819

If the evaluation of Hessian information has failed more than Lim Err Hessian times CONOPT
will not attempt to evaluate it any more and will switch to methods that do not use the
Hessian. Note that second order information may not be defined even if function and derivative
values are well-defined, e.g. in an expression like power(x,1.5) at x=0.

Default: 10

Lim Hess Est (real): Upper bound on second order terms. ←↩

The function and derivative debugger (see Lim Dbg 1Drv) tests if derivatives computed using
the modelers routine are sufficiently close to the values computed using finite differences. The
term for the acceptable difference includes a second order term and uses Lim Hess Est as an
estimate of the upper bound on second order derivatives in the model. Larger Lim Hess Est
values will allow larger deviations between the user-defined derivatives and the numerically
computed derivatives.

Default: 1.e4

Lim Iteration (integer): Maximum number of iterations. Overwrites GAMS Iterlim option. ←↩

The iteration limit can be used to prevent models from spending too many resources. You
should note that the cost of the different types of CONOPT iterations (phase 0 to 4) can
be very different so the time limit (GAMS Reslim or option Lim Time) is often a better
stopping criterion. However, the iteration limit is better for reproducing solution behavior
across machines.

Default: GAMS IterLim

Lim Msg Dbg 1Drv (integer): Limit on number of error messages from function and derivative debugger.
←↩

The function and derivative debugger (see Lim Dbg 1Drv) may find a very large number of
errors, all derived from the same source. To avoid very large amounts of output CONOPT
will stop the debugger after Lim Msg Dbg 1Drv error(s) have been found.

Default: 10

Lim Msg Large (integer): Limit on number of error messages related to large function value and
Jacobian elements. ←↩

Very large function value or derivatives (Jacobian elements) in a model will lead to numerical
difficulties and most likely to inaccurate primal and/or dual solutions. CONOPT is therefore
imposing an upper bound on the value of all function values and derivatives. This bound
is 1.e30. If the bound is violated CONOPT will return with an intermediate infeasible or
intermediate non-optimal solution and it will issue error messages for all the violating Jacobian
elements, up to a limit of Lim Msg Large error messages.

Default: 10

Lim NewSuper (integer): Maximum number of new superbasic variables added in one iteration. ←↩

When there has been a sufficient reduction in the reduced gradient in one subspace new
non-basics can be selected to enter the superbasis. The ones with largest reduced gradient
of proper sign are selected, up to a limit. If Lim NewSuper is positive then the limit is
min(500,Lim NewSuper). If Lim NewSuper is zero (the default) then the limit is selected
dynamically by CONOPT depending on model characteristics.

Default: auto

1820 Solver Manuals

Lim Pre Msg (integer): Limit on number of error messages related to infeasible pre-triangle. ←↩

If the pre-processor determines that the model is infeasible it tries to define a minimal set of
variables and constraints that define the infeasibility. If this set is larger than Lim Pre Msg
elements the report is considered difficult to use and it is skipped.

Default: 25

Lim RedHess (integer): Maximum number of superbasic variables in the approximation to the Reduced
Hessian. ←↩

CONOPT uses and stores a dense lower-triangular matrix as an approximation to the Reduced
Hessian. The rows and columns correspond to the superbasic variable. This matrix can use
a large amount of memory and computations involving the matrix can be time consuming
so CONOPT imposes a limit on on the size. The limit is Lim RedHess if Lim RedHess is
defined by the modeler and otherwise a value determined from the overall size of the model.
If the number of superbasics exceeds the limit, CONOPT will switch to a method based
on a combination of SQP and Conjugate Gradient iterations assuming some kind of second
order information is available. If no second order information is available CONOPT will use
a quasi-Newton method on a subset of the superbasic variables and rotate the subset as the
reduced gradient becomes small.

Default: auto

Lim SlowPrg (integer): Limit on number of iterations with slow progress (relative less than
Tol Obj Change). ←↩

The optimization is stopped if the relative change in objective is less than Tol Obj Change

for Lim SlowPrg consecutive well-behaved iterations.

Default: 20

Lim StallIter (integer): Limit on the number of stalled iterations. ←↩

An iteration is considered a stalled iteration if there is no change in objective because the
linesearch is limited by nonlinearities or numerical difficulties. Stalled iterations will have
Step = 0 and F in the OK column of the log file. After a stalled iteration CONOPT will try
various heuristics to get a better basis and a better search direction. However, the heuristics
may not work as intended or they may even return to the original bad basis, especially if the
model does not satisfy standard constraints qualifications and does not have a KKT point. To
prevent cycling CONOPT will therefore stop after Lim StallIter stalled iterations and returns
an Intermediate Infeasible or Intermediate Nonoptimal solution.

Default: 100

Lim Start Degen (integer): Limit on number of degenerate iterations before starting degeneracy breaking
strategy. ←↩

The default CONOPT pivoting strategy has focus on numerical stability, but it can poten-
tially cycle. When the number of consecutive degenerate iterations exceeds Lim Start Degen
CONOPT will switch to a pivoting strategy that is guaranteed to break degeneracy but with
slightly weaker numerical properties.

Default: 100

Lim Time (real): Time Limit. Overwrites the GAMS Reslim option. ←↩

5.8 CONOPT 1821

The upper bound on the total number of seconds that can be used in the execution phase.
There are only tests for time limit once per iteration. The default value is 10000. Lim Time is
overwritten by Reslim when called from GAMS.

Range: [0, ∞]

Default: GAMS ResLim

Lim Variable (real): Upper bound on solution values and equation activity levels ←↩

If the value of a variable, including the objective function value and the value of slack variables,
exceeds Lim Variable then the model is considered to be unbounded and the optimization
process returns the solution with the large variable flagged as unbounded. A bound cannot
exceed this value.

Range: [1.e5, 1.e30]

Default: 1.e15

Lin Method (integer): Method used to determine if and/or which Linear Feasibility Models to use ←↩

The Linear Feasibility Model can use different objectives: Objective 1 is no objective, i.e. the
first point that satisfies the Linear Feasibility Model is used as a starting point for the Full
Model. Objective 2 minimizes a scaled distance from the initial point for all variables defined
by the modeler. Objective 3 minimizes a scaled distance from the initial point for all variables
including those not defined by the modeler. Objective 4 minimizes a scaled distance from
random a point selected away from bounds.

Default: 1

value meaning

1 Ignore Linear Feasibility Model in the first round and use objective 2, 3, and 4
(see above) in the following rounds as long as model is locally infeasible. This is
the default method.

2 Use Linear Feasibility Model with objective 1 in the first round and continue with
objective 2, 3, and 4 in the following rounds as long as model is locally infeasible.

3 Use Linear Feasibility Model with objective 2 in the first round and continue with
objective 3 and 4 in the following rounds as long as model is locally infeasible.

Mtd Dbg 1Drv (integer): Method used by the function and derivative debugger. ←↩

The function and derivative debugger (turned on with Lim Dbg 1Drv) can perform a fairly
cheap test or a more extensive test, controlled by Mtd Dbg 1Drv. See Lim Hess Est for a
definition of when derivatives are considered wrong. All tests are performed in the current
point found by the optimization algorithm.

Default: 0

value meaning

0 Perform tests for sparsity pattern and tests that the numerical values of the
derivatives appear to be correct. This is the default.

1 As 0 plus make extensive test to determine if the functions and their derivatives
are continuous around the current point. These tests are much more expensive and
should only be used of the cheap test does not find an error but one is expected
to exist.

1822 Solver Manuals

Mtd RedHess (integer): Method for initializing the diagonal of the approximate Reduced Hessian ←↩

Each time a nonbasic variable is made superbasic a new row and column is added to the
approximate Reduced Hessian. The off-diagonal elements are set to zero and the diagonal to a
value controlled by Mtd RedHess:

Default: 0

value meaning

0 The new diagonal element is set to the geometric mean of the existing diagonal
elements. This gives the new diagonal element an intermediate value and new
superbasic variables are therefore not given any special treatment. The initial
steps should be of good size, but build-up of second order information in the new
sub-space may be slower. The larger diagonal element may also in bad cases cause
premature convergence.

1 The new diagonal elements is set to the minimum of the existing diagonal elements.
This makes the new diagonal element small and the importance of the new
superbasic variable will therefore be high. The initial steps can be rather small,
but better second order information in the new sub-space should be build up
faster.

Mtd Scale (integer): Method used for scaling. ←↩

CONOPT will by default use scaling of the equations and variables of the model to improve
the numerical behavior of the solution algorithm and the accuracy of the final solution (see
also Frq Rescale.) The objective of the scaling process is to reduce the values of all large
primal and dual variables as well as the values of all large first derivatives so they become
closer to 1. Small values are usually not scaled up, see Tol Scale Max and Tol Scale Min.
Scaling method 3 is recommended. The others are only kept for backward compatibility.

Default: 3

value meaning

0 Scaling is based on repeatedly dividing the rows and columns by the geometric
means of the largest and smallest elements in each row and column. Very small
elements less than Tol Jac Min are considered equal to Tol Jac Min.

1 Similar to 3 below, but the projection on the interval
[Tol Scale Min,Tol Scale Max] is applied at a different stage. With method 1,
abs(X)∗abs(Jac) with small X and very large Jac is scaled very aggressively with
a factor abs(Jac). With method 3, the scale factor is abs(X)∗abs(Jac). The
difference is seen in models with terms like Sqrt(X) close to X = 0.

2 As 1 but the terms are computed based on a moving average of the squares X and
Jac. The purpose of the moving average is to keep the scale factor more stable.
This is often an advantage, but for models with very large terms (large variables
and in particular large derivatives) in the initial point the averaging process may
not have enough time to bring the scale factors into the right region.

3 Rows are first scaled by dividing by the largest term in the row, then columns are
scaled by dividing by by the maximum of the largest term and the value of the
variable. A term is here defined as abs(X)∗abs(Jac) where X is the value of the
variable and Jac is the value of the derivative (Jacobian element). The scale factor
are then projected on the interval between Tol Scale Min and Tol Scale Max.

Mtd Step Phase0 (integer): Method used to determine the step in Phase 0. ←↩
The steplength used by the Newton process in phase 0 is computed by one of two alternative
methods controlled by Mtd Step Phase0:

5.8 CONOPT 1823

Default: auto

value meaning

0 The standard ratio test method known from the Simplex method. CONOPT
adds small perturbations to the bounds to avoid very small pivots and improve
numerical stability. Linear constraints that initially are feasible will remain feasible
with this method. It is the default method for optimization models.

1 A method based on bending (projecting the target values of the basic variables
on the bounds) until the sum of infeasibilities is close to its minimum. Linear
constraints that initially are feasible may become infeasible due to bending.

Mtd Step Tight (integer): Method used to determine the maximum step while tightening tolerances.
←↩

The steplength used by the Newton process when tightening tolerances is computed by one of
two alternative methods controlled by Mtd Step Tight:

Default: 0

value meaning

0 The standard ratio test method known from the Simplex method. CONOPT
adds small perturbations to the bounds to avoid very small pivots and improve
numerical stability. Linear constraints that initially are feasible will remain feasible
with this default method.

1 A method based on bending (projecting the target value of the basic variables on
the bounds) until the sum of infeasibilities is close to its minimum.

Num Rounds (integer): Number of rounds with Linear Feasibility Model ←↩

Lin Method defined which Linear Feasibility Model are going to be solved if the previous
models end Locally Infeasible. The number of rounds is limited by Num Rounds.

Range: {1, ..., 4}

Default: 4

Rat NoPen (real): Limit on ratio of penalty constraints for the No Penalty model to be solved ←↩

The No-Penalty model can only be generated and solved if the number of penalty and minimax
constraints exceed Rat NoPen times the constraints in the Full Model.

Default: 0.1

THREADC (integer): Number of compatibility threads used for comparing different values of THREADS
←↩

Range: {0, ..., ∞}

Default: 1

THREADF (integer): Number of threads used for function evaluation ←↩

Range: {0, ..., ∞}

Default: 1

1824 Solver Manuals

threads (integer): Number of threads used by Conopt internally ←↩

Range: {0, ..., ∞}

Default: GAMS Threads

Tol Bound (real): Bound filter tolerance for solution values close to a bound. ←↩

A variable is considered to be at a bound if its distance from the bound is less than Tol Bound
∗ Max(1,ABS(Bound)). The tolerance is used to build the initial bases and is used to flag
variables during output.

Range: [3.e-13, 1.e-5]

Default: 1.e-7

Tol BoxSize (real): Initial box size for trust region models for overall model ←↩

The new Phase 0 methods solves an LP model based on a scaled and linearized version of
the model with an added trust region box constraint around the initial point. Tol BoxSize
defines the size of the initial trust region box. During the optimization the trust region box is
adjusted based on how well the linear approximation fits the real model.

Range: [0.01, 1.e6]

Default: 10

Tol BoxSize Lin (real): Initial box size for trust region models for linear feasibility model ←↩

Similar to Tol BoxSize but applied to the linear feasibility model. Since this model has linear
constraints the default initial box size is larger.

Range: [0.01, 1.e8]

Default: 1000

Tol Box LinFac (real): Box size factor for linear variables applied to trust region box size ←↩

The trust region box used in the new Phase 0 method limits the change of variables so 2nd
order terms will not become too large. Variables that appear linearly do not have 2nd order
terms and the initial box size is therefore larger by a factor Tol Box LinFac.

Range: [1, 1.e4]

Default: 10

Tol Def Mult (real): Largest growth factor allowed in the block of definitional constraints ←↩

The block of definitional constraints form a triangular matrix. This triangular matrix can hide
large accumulating growth factors that can lead to increases in the initial sum of infeasibilities
and to numerical instability. Tol Def Mult is an upper bound on these growth factors. If it
is exceeded some critical chains of definitional constraints will be broken leading to a larger
internal model, that should be numerically better behaved.

Range: [1.01, ∞]

Default: 1.e4

Tol Feas Max (real): Maximum feasibility tolerance (after scaling). ←↩

5.8 CONOPT 1825

The feasibility tolerance used by CONOPT is dynamic. As long as we are far from the optimal
solution and make large steps it is not necessary to compute intermediate solutions very
accurately. When we approach the optimum and make smaller steps we need more accuracy.
Tol Feas Max is the upper bound on the dynamic feasibility tolerance and Tol Feas Min

is the lower bound. It is NOT recommended to use loose feasibility tolerances since the
objective, including the sum of infeasibility objective, will be less accurate and it may prevent
convergence.

Range: [1.e-10, 1.e-3]

Default: 1.e-7

Tol Feas Min (real): Minimum feasibility tolerance (after scaling). ←↩

See Tol Feas Max for a discussion of the dynamic feasibility tolerances used by CONOPT.

Range: [3.e-13, 1.e-5]

Default: 4.e-10

Tol Feas Tria (real): Feasibility tolerance for triangular equations. ←↩

Triangular equations are usually solved to an accuracy of Tol Feas Min. However, if a
variable reaches a bound or if a constraint only has pre-determined variables then the feasibility
tolerance can be relaxed to Tol Feas Tria.

Range: [3.e-13, 1.e-4]

Default: 1.0e-8

Tol Fixed (real): Tolerance for defining variables as fixed based on initial or derived bounds. ←↩

A variable is considered fixed if the distance between the bounds is less than Tol Fixed ∗
Max(1,Abs(Bound)). The tolerance is used both on the users original bounds and on the
derived bounds that the preprocessor implies from the constraints of the model.

Range: [3.e-13, 1.e-8]

Default: 4.e-10

Tol Jac Min (real): Filter for small Jacobian elements to be ignored during scaling. ←↩

A Jacobian element is considered insignificant if it is less than Tol Jac Min. The value is used
to select which small values are scaled up during scaling of the Jacobian. Is only used with
scaling method Mtd Scale = 0.

Range: [1.e-7, 1.e-3]

Default: 1.e-5

Tol Linesearch (real): Accuracy of One-dimensional search. ←↩

The onedimensional search is stopped if the expected decrease in then objective estimated
from a quadratic approximation is less than Tol Linesearch times the decrease so far in this
onedimensional search.

Range: [0.05, 0.8]

Default: 0.2

1826 Solver Manuals

Tol Obj Acc (real): Relative accuracy of the objective function. ←↩

It is assumed that the objective function can be computed to an accuracy of Tol Obj Acc
∗ max(1, abs(Objective)). Smaller changes in objective are considered to be caused by
round-off errors.

Range: [3.0e-14, 1.e-6]

Default: 3.0e-13

Tol Obj Change (real): Limit for relative change in objective for well-behaved iterations. ←↩

The change in objective in a well-behaved iteration is considered small and the iteration counts
as slow progress if the change is less than Tol Obj Change ∗ Max(1,Abs(Objective)). See also
Lim SlowPrg.

Range: [3.0e-13, 1.0e-5]

Default: 3.0e-12

Tol Optimality (real): Optimality tolerance for reduced gradient when feasible. ←↩

The reduced gradient is considered zero and the solution optimal if the largest superbasic
component of the reduced gradient is less than Tol Optimality.

Range: [3.e-13, 1]

Default: 1.e-7

Tol Opt Infeas (real): Optimality tolerance for reduced gradient when infeasible. ←↩

The reduced gradient is considered zero and the solution infeasible if the largest superbasic
component of the reduced gradient is less than Tol Opt Infeas.

Range: [3.e-13, 1]

Default: 1.e-7

Tol Opt LinF (real): Optimality tolerance when infeasible in Linear Feasibility Model ←↩

This is a special optimality tolerance used when the Linear Feasibility Model is infeasible.
Since the model is linear the default value is smaller than for nonlinear submodels.

Range: [3.e-13, 1.e-4]

Default: 1.e-10

Tol Piv Abs (real): Absolute pivot tolerance. ←↩

During LU-factorization of the basis matrix a pivot element is considered large enough if its
absolute value is larger than Tol Piv Abs. There is also a relative test, see Tol Piv Rel.

Range: [2.2e-16, 1.e-7]

Default: 1.e-10

Tol Piv Abs Ini (real): Absolute Pivot Tolerance for building initial basis. ←↩

5.8 CONOPT 1827

Absolute pivot tolerance used during the search for a first logically non-singular basis. The
default is fairly large to encourage a better conditioned initial basis.

Range: [3.e-13, 1.e-3]

Default: 1.e-7

Tol Piv Abs NLTr (real): Absolute pivot tolerance for nonlinear elements in pre-triangular equations.
←↩

The smallest pivot that can be used for nonlinear or variable Jacobian elements during the pre-
triangular solve. The pivot tolerance for linear or constant Jacobian elements is Tol Piv Abs.
The value cannot be less that Tol Piv Abs.

Range: [2.2e-16, 1.e-3]

Default: 1.e-5

Tol Piv Ratio (real): Relative pivot tolerance during ratio-test ←↩

During ratio-rests, the lower bound on the slope of a basic variable to potentially leave the
basis is Tol Piv Ratio ∗ the largest term in the computation of the tangent.

Range: [1.e-10, 1.e-6]

Default: 1.e-8

Tol Piv Rel (real): Relative pivot tolerance during basis factorizations. ←↩

During LU-factorization of the basis matrix a pivot element is considered large enough relative
to other elements in the column if its absolute value is at least Tol Piv Rel ∗ the largest
absolute value in the column. Small values or Tol Piv Rel will often give a sparser basis
factorization at the expense of the numerical accuracy. The value used internally is therefore
adjusted dynamically between the users value and 0.9, based on various statistics collected
during the solution process. Certain models derived from finite element approximations of
partial differential equations can give rise to poor numerical accuracy and a larger user-value
of Tol Piv Rel may help.

Range: [1.e-3, 0.9]

Default: 0.05

Tol Piv Rel Ini (real): Relative Pivot Tolerance for building initial basis ←↩

Relative pivot tolerance used during the search for a first logically non-singular basis.

Range: [1.e-4, 0.9]

Default: 1.e-3

Tol Piv Rel Updt (real): Relative pivot tolerance during basis updates. ←↩

During basischanges CONOPT attempts to use cheap updates of the LU-factors of the basis.
A pivot is considered large enough relative to the alternatives in the column if its absolute
value is at least Tol Piv Rel Updt ∗ the other element. Smaller values of Tol Piv Rel Updt
will allow sparser basis updates but may cause accumulation of larger numerical errors.

Range: [1.e-3, 0.9]

Default: 0.05

1828 Solver Manuals

Tol Scale2D Min (real): Lower bound for scale factors based on large 2nd derivatives. ←↩

Scaling of the model is in most cases based on the values of the variables and the first derivatives.
However, if the scaled variables and derivatives are reasonable but there are large values in
the Hessian of the Lagrangian (the matrix of 2nd derivatives) then the lower bound on the
scale factor can be made smaller than Tol Scale Min. CONOPT will try to scale variables
with large 2nd derivatives by one over the square root of the diagonal elements of the Hessian.
However, the revised scale factors cannot be less than Tol Scale2D Min.

Range: [1.e-9, 1]

Default: 1.e-6

Tol Scale Max (real): Upper bound on scale factors. ←↩

Scale factors are projected on the interval from Tol Scale Min to Tol Scale Max. Is used to
prevent very large or very small scale factors due to pathological types of constraints. The
upper limit is selected such that Square(X) can be handled for X close to Lim Variable. More
nonlinear functions may not be scalable for very large variables.

Range: [1, 1.e30]

Default: 1.e25

Tol Scale Min (real): Lower bound for scale factors computed from values and 1st derivatives. ←↩

Scale factors used to scale variables and equations are projected on the range Tol Scale Min
to Tol Scale Max. The limits are used to prevent very large or very small scale factors due to
pathological types of constraints. The default value for Tol Scale Min is 1 which means that
small values are not scaled up. If you need to scale small value up towards 1 then you must
define a value of Tol Scale Min < 1.

Range: [1.e-10, 1]

Default: 1

Tol Scale Var (real): Lower bound on x in x∗Jac used when scaling. ←↩

Rows are scaled so the largest term x∗Jac is around 1. To avoid difficulties with models where
Jac is very large and x very small a lower bound of Tol Scale Var is applied to the x-term.

Range: [1.e-8, 1]

Default: 1.e-5

Tol Zero (real): Zero filter for Jacobian elements and inversion results. ←↩

Contains the smallest absolute value that an intermediate result can have. If it is smaller, it is
set to zero. It must be smaller than Tol Piv Abs/10.

Default: 1.e-20

Trace MinStep (real): Minimum step between Reinversions when using TraceCNS. ←↩

The optimization is stopped with a slow convergence message if the change in trace variable
or objective is less than this tolerance between reinversions for more than two consecutive
reinversions. The step is scaled by the distance from the initial value to the critical bound.

Range: [0, 1]

Default: 0.001

5.9 CONVERT 1829

5.9 CONVERT

5.9.1 Introduction

CONVERT is a utility which transforms a GAMS model instance into a scalar model where all confidential
information has been removed or into formats used by other modeling and solution systems. CONVERT
is designed to achieve the following goals:

• Permit users to convert a confidential model into GAMS scalar format so that any idenifiable
structure is removed. It can then be passed on to others for investigation without confidentiality
being lost.

• A way of sharing GAMS test problems for use with other modeling systems or solvers.

CONVERT comes free of charge with any licensed GAMS system and can convert GAMS models into a
number of formats, see Section Target languages and formats for a list.

5.9.2 How to use CONVERT

CONVERT is run like any other GAMS solver. From the command line this is:

>> gams modelname modeltype=convert

where modelname is the GAMS model name and modeltype the solver indicator for a particular model
type (e.g. LP, MIP, RMIP, QCP, MIQCP, RMIQCP, NLP, DNLP, CNS, MINLP, or MCP). CONVERT
can also be specified via the option statement within the model itself before the solve statement:

option modeltype=convert;

5.9.3 The GAMS Scalar Format

By default, CONVERT generates a scalar GAMS model (gams.gms) from the input model. The scalar
model exhibits the following characteristics:

• A model without sets or indexed parameters. It does not exhibit any of the advanced characteristics
of modeling systems and is easily transformable.

• A model with a new set of individual variables, depicting each variable in the GAMS model as one of
3 types: positive, integer or binary. Each variable is numbered sequentially, i.e. all positive GAMS
variables are mapped into n single variables x1, x2, ..., xn.

• A model with individual equations depicting each variable in the GAMS model. All equations are
also numbered sequentially, that is equations e1, e2, ..., em.

Equation and variable bounds, as well as variable starting values are preserved from the original GAMS
formulation.

As an example, suppose the user wishes to translate the GAMS Model Library model trnsport into
scalar format, One would run

1830 Solver Manuals

gams trnsport.gms lp=convert

which would generate the following scalar model gams.gms:

* LP written by GAMS Convert at 11/19/20 15:28:05

*

* Equation counts

* Total E G L N X C B

* 6 1 3 2 0 0 0 0

*

* Variable counts

* x b i s1s s2s sc si

* Total cont binary integer sos1 sos2 scont sint

* 7 7 0 0 0 0 0 0

* FX 0

*

* Nonzero counts

* Total const NL

* 19 19 0

* Solve m using LP minimizing x7;

Variables

x1,x2,x3,x4,x5,x6,x7;

Positive Variables

x1,x2,x3,x4,x5,x6;

Equations

e1,e2,e3,e4,e5,e6;

e1.. -0.225 * x1 - 0.153 * x2 - 0.162 * x3 - 0.225 * x4 - 0.162 * x5 - 0.126 *

x6 + x7 =E= 0;

e2.. x1 + x2 + x3 =L= 350;

e3.. x4 + x5 + x6 =L= 600;

e4.. x1 + x4 =G= 325;

e5.. x2 + x5 =G= 300;

e6.. x3 + x6 =G= 275;

Model m / all /;

m.limrow = 0;

m.limcol = 0;

Solve m using LP minimizing x7;

Note that the resulting scalar model does not contain any of the descriptive information about the data
or the context of the constraints.

Additionally, a dictionary file (dict.txt) is created by default which specifies a mapping between the
variable and equation names in the scalar model and their corresponding names in the original model.

For the above example, the dictionary file is

LP written by GAMS Convert at 11/19/20 15:28:05

5.9 CONVERT 1831

Equation counts

Total E G L N X C B

6 1 3 2 0 0 0 0

Variable counts

x b i s1s s2s sc si

Total cont binary integer sos1 sos2 scont sint

7 7 0 0 0 0 0 0

FX 0

Nonzero counts

Total const NL

19 19 0

Equations 1 to 6

e1 cost

e2 supply(seattle)

e3 supply(san-diego)

e4 demand(new-york)

e5 demand(chicago)

e6 demand(topeka)

Variables 1 to 7

x1 x(seattle,new-york)

x2 x(seattle,chicago)

x3 x(seattle,topeka)

x4 x(san-diego,new-york)

x5 x(san-diego,chicago)

x6 x(san-diego,topeka)

x7 z

Conversion of a GAMS model to a scalar one may be handy for model debugging. However, in this case,
it may be good to retain the original variable and equation names. The following simple sed command
attempts to achieve this:

sed -n -e "s:^ *\([exbi][0-9][0-9]*\) \(.*\):s/\1/\2/g:gp" dict.txt | sed -n ’1!G;h;$p’ > mod.txt

sed -f mod.txt gams.gms

For the above example, this outputs:

Variables

x(seattle,new-york),x(seattle,chicago),x(seattle,topeka),x(san-diego,new-york),x(san-diego,chicago),x(san-diego,topeka),z;

Positive Variables

x(seattle,new-york),x(seattle,chicago),x(seattle,topeka),x(san-diego,new-york),x(san-diego,chicago),x(san-diego,topeka);

Equations

cost,supply(seattle),supply(san-diego),demand(new-york),demand(chicago),demand(topeka);

cost.. -0.225 * x(seattle,new-york) - 0.153 * x(seattle,chicago) - 0.162 * x(seattle,topeka) - 0.225 * x(san-diego,new-york) - 0.162 * x(san-diego,chicago) - 0.126 *

x(san-diego,topeka) + z =E= 0;

supply(seattle).. x(seattle,new-york) + x(seattle,chicago) + x(seattle,topeka) =L= 350;

supply(san-diego).. x(san-diego,new-york) + x(san-diego,chicago) + x(san-diego,topeka) =L= 600;

demand(new-york).. x(seattle,new-york) + x(san-diego,new-york) =G= 325;

demand(chicago).. x(seattle,chicago) + x(san-diego,chicago) =G= 300;

demand(topeka).. x(seattle,topeka) + x(san-diego,topeka) =G= 275;

1832 Solver Manuals

Of course, this is not a valid GAMS code and cannot be compiled, but it may be sufficient to view the
model algebra as generated by the GAMS compiler.

By using

sed -n -e "y/(),-/____/" -e "s:^ *\([exbi][0-9][0-9]*\) \(.*\):s/\1/\2/g:gp" dict.txt | sed -n ’1!G;h;$p’ > mod.txt

sed -f mod.txt gams.gms

one gets for this example

Variables

x_seattle_new_york_,x_seattle_chicago_,x_seattle_topeka_,x_san_diego_new_york_,x_san_diego_chicago_,x_san_diego_topeka_,z;

Positive Variables

x_seattle_new_york_,x_seattle_chicago_,x_seattle_topeka_,x_san_diego_new_york_,x_san_diego_chicago_,x_san_diego_topeka_;

Equations

cost,supply_seattle_,supply_san_diego_,demand_new_york_,demand_chicago_,demand_topeka_;

cost.. -0.225 * x_seattle_new_york_ - 0.153 * x_seattle_chicago_ - 0.162 * x_seattle_topeka_ - 0.225 * x_san_diego_new_york_ - 0.162 * x_san_diego_chicago_ - 0.126 *

x_san_diego_topeka_ + z =E= 0;

supply_seattle_.. x_seattle_new_york_ + x_seattle_chicago_ + x_seattle_topeka_ =L= 350;

supply_san_diego_.. x_san_diego_new_york_ + x_san_diego_chicago_ + x_san_diego_topeka_ =L= 600;

demand_new_york_.. x_seattle_new_york_ + x_san_diego_new_york_ =G= 325;

demand_chicago_.. x_seattle_chicago_ + x_san_diego_chicago_ =G= 300;

demand_topeka_.. x_seattle_topeka_ + x_san_diego_topeka_ =G= 275;

This can even be compiled by GAMS and gives the correct solution.

The proposed commands come with several limitations and may not produce in all cases the desired output.
For example, wrong results would be printed if the original model contains variable or equation names that
start with {b,i,e,x}[digit]. Also semicontinuous or semiinteger variables or special ordered sets are
not supported by the above. We leave it to the experienced user to extend the command appropriately.

5.9.4 The OSiL Format

The Optimization Services Instance Language (OSiL) [70] specifies an XML-based format to represent
optimization problem instances. GAMS/CONVERT can write MINLP model instances in OSiL format.
Expression trees are written in OSnL format.

Next to the indexed operations for sum, product, minimum, and maximum, and the operations for
subtraction and division, the following intrinsic functions are mapped to their OSnL counterparts: sqr,
sqrt, exp, log, log2, log10, abs, cos, sin, tan, arccos, arcsin, arctan, sinh, cosh, tanh, pi, div,
gamma, loggamma, floor, ceil, round, trunc, sign fact, binomial. The functions cvPower, power,
rpower, vcpower are all mapped to OSnL's power operator, thus conditions on arguments are not
preserved. Functions arctan2, centropy, edist, errorf, and poly are represented by an expression
according to their algebraic definition. The intrinsic functions signpower, entropy, sigmoid, gammareg,
beta, logbeta, and betareg are also written to OSiL files, but do not follow the OSnL standard (as
it currently does not offer these functions). Thus, OSiL readers may reject XML files that use these
functions. Finally, also the logical functions are written to OSiL by using their OSnL counterpart.

https://www.coin-or.org/OS/OSiL.html
https://www.coin-or.org/OS/OSnL.html
https://www.coin-or.org/OS/OSnL.html

5.9 CONVERT 1833

5.9.5 User-Specified Options

CONVERT options are passed on through option files. If you specify <modelname>.optfile = 1; before
the SOLVE statement in your GAMS model, CONVERT will look for and read an option file with the
name convert.opt (see The Solver Options File for general use of solver option files). The syntax for
the CONVERT option file is

optname value

with one option on each line. For example,

ampl

This option file would tell CONVERT to produce an AMPL input file. For file format options, the user
can specify the filename for the file to be generated. For example, the option file entry

lingo myfile.lng

would generate a LINGO input file format called myfile.lng. Using the option lingo by itself, would
produce the default output file for that option (lingo.lng).

All available options are listed in the following tables.

5.9.5.1 Target languages and formats

Option Description Default

All
Generates all supported file formats

Ampl
Generates Ampl input file ampl.mod

AmplNL
Generates Ampl .nl file ampl.nl

CplexLP
Generates CPLEX LP format input file cplex.lp

CplexMPS
Generates CPLEX MPS format input file cplex.mps

Dict
Generates Convert to GAMS Dictionary dict.txt

DictMap
Generates Convert to GAMS Dictionary Map dictmap.gdx

DumpGDX
Generates GDX with model data incl. Jacobian and Hessian evaluated
at current point

dump.gdx

FileList
Generates file list of file formats generated files.txt

FixedMPS
Generates fixed format MPS file fixed.mps

Gams
Generates GAMS scalar model. This is the default conversion format
used.

gams.gms

JuMP
Generates JuMP scalar model jump.jl

Lingo
Generates Lingo input file lingo.lng

NLP2dual
Generates the Wolfe dual of a smooth optimization model gamsdual.gms

NLP2MCP
Generates GAMS scalar MCP model gamsmcp.gms

OSiL
Generates Optimization Services instance Language (OSiL) file osil.xml

Pyomo
Generates Pyomo Concrete scalar model pyomo.py

1834 Solver Manuals

5.9.5.2 Other options

Option Description Default

AmplNLBin
Enables binary .nl file 0

AmplNlInitDual
Which initial equation marginal values
to write to .nl file
0: Write no values
1: Write only nondefault values
2: Write all values

1

AmplNlInitPrimal
Which initial variable level values to
write to .nl file
0: Write no values
1: Write only nondefault values
2: Write all values

2

DualType
Controls type of Wolfe dual to generate
in NLP2dual
None: No Wolfe dual generated
NLPScalarBounds: NLP dual where
variable bounds become scalars used
in equations
NLPConstantBounds: NLP dual where
finite variable bounds become constants
in equations
BiLevel: Bilevel model with outer
problem optimizing over the duals
MPEC: MPEC obtained by explicitly in-
cluding FOC of BiLevel inner problem

None

GDXHessian
Enable hessian information for
DumpGDX

0

GDXNames
Enable variable and equation names for
DumpGDX

1

GDXQuadratic
Enable quadratic information for
DumpGDX

0

GDXUELs
Enable UELs for DumpGDX 1

GmsInsert
Line to be inserted before the solve
statement

$if NOT 'gams.u1' == ''
$include 'gams.u1'

HeaderTimeStamp
Control format of time stamp in header
of output file
None: Use no timestamp
default: Use the traditional default
timestamp

default

IntervalEval
Include interval evaluations in
DumpGDX

0

ObjVar
Name of objective variable GAMS index name, e.g. x1

PermuteEqus
Random seed for permutation of equa-
tions (0: no permutation)

0

PermuteVars
Random seed for permutation of vari-
ables (0: no permutation)

0

5.10 COPT 1835

Option Description Default

QExtractAlg
quadratic extraction algorithm in
GAMS interface
0: Automatic
1: ThreePass: Uses a three-pass for-
ward / backward / forward AD tech-
nique to compute function / gradient /
Hessian values and a hybrid scheme for
storage.
2: DoubleForward: Uses forward-mode
AD to compute and store function, gra-
dient, and Hessian values at each node
or stack level as required. The gradi-
ents and Hessians are stored in linked
lists.
3: Concurrent: Uses ThreePass and
DoubleForward in parallel. As soon as
one finishes, the other one stops.

0

Reform
Force reformulations 100

SkipNRows
Skip constraints of type =N= 0

Width
Max line width of output format
Range: {40, ..., ∞}

80

5.10 COPT

Cardinal Optimizer by Cardinal Operations is a solver for mixed-integer linear and convex quadratic
programming problems.

5.10.1 Usage

A GAMS/COPT or GAMS/COPT-Link license is required to use the GAMS/COPT interface that is
distributed with GAMS. If only a GAMS/COPT-Link license is available, also a separate COPT license
needs to be installed on the system, see the ”Cardinal Operations User Guide” for details.

The following statement can be used inside your GAMS program to specify using COPT

Option MIP = COPT; { or LP, QCP, MIQCP, ... }

The above statement should appear before the Solve statement. If COPT was specified as the default
solver during GAMS installation, the above statement is not necessary.

COPT supports special ordered sets (SOS), but no semicontinuous or semiinteger variables.

5.10.1.1 Specification of COPT Options

The following GAMS parameters are currently supported by GAMS/COPT: reslim, iterlim, nodlim, optcr,
optca, tryint, and threads.

Further options can be set via a solver options file, see Section The Solver Option File for further
information. Following is an example options file copt.opt:

TreeCutLevel 0

SimplexThreads 4

It will cause COPT to use cut generators only in the root node (for a MI(QC)P solve) and specifies to use
4 threads in the simplex algorithm.

https://www.shanshu.ai/copt

1836 Solver Manuals

5.10.1.2 Specification of Indicators

Indicators are a modeling tool to specify that certain equations in a model must only be satisfied if certain
binary variables take a specified value. Indicators are not supported by the GAMS language, but can be
passed to COPT via a GAMS/COPT solver options file, see Indicator Constraints for more details on its
syntax.

5.10.1.3 MIP Starting Point

When solving a MIP, by default all values that are specified as variable levels in the GAMS model are
passed as starting point to COPT (unless MipStartMode = 0). However, if GAMS option tryint is set to
a nonzero value or MipStartMode = 2, then only values of binary and integer variables which fractionality
is at most the value tryint are passed as starting point to COPT (possible fractional values are rounded
to integers). COPT will then try to complete this partial solution to a feasible solution.

5.10.1.4 Solution Pool

When COPT solves a problem, it may find several solutions, whereof only the best one is available to the
GAMS user via the variable level values in the GAMS model. If the option solnpool is specified, then all
alternative solutions found by COPT are written into GDX files and an index file with the name given by
the this option is written. If the option solnpoolmerge is specified, then all alternative solutions found by
COPT are written into a single GDX file, which name is given by the this option.

The GAMS testlib model dumpsol shows an example use for this option.

5.10.1.5 Infeasible and unbounded LPs

If an LP is found infeasible by COPT, a primal infeasibility certificate in form of a Farkas proof (see
also Mosek manual) is computed. The GAMS/COPT link returns the values of this certificate in the
equations marginal values and sets the INFES markers (see solution listing) for those equations that are
included in the Farkas proof.

If an LP is found unbounded by COPT, a dual infeasibility certificate in form of a primal ray is computed.
If the problem is feasible, then the primal ray gives a direction in which the objective function can be
infinitely improved. The GAMS/COPT link returns the values of the primal ray in the variable level
values and sets UNBND markers (see solution listing) for those variables that are included in the ray.

COPT option ReqFarkasRay can be used to disable the calculation of these infeasibility certificates.

5.10.1.6 Finding an Irreducible Inconsistent Subsystem (IIS) of Constraints

If an LP or MIP is infeasible, COPT has the capability to identify a subset of the constraints that are
infeasible and become feasible once any one of them is eliminated. Option iis can be used to enable finding
an IIS.

As an example, consider a GAMS model containing

Positive Variables x, y;

Equation e1;

e1.. x + y =l= -1;

5.10 COPT 1837

The corresponding COPT output when iis has been set to 1 will look like

Starting the simplex solver using 1 thread

Method Iteration Objective Primal.NInf Dual.NInf Time

Dual 0 0.0000000000e+00 1 0 0.00s

Solving finished

Status: Infeasible Objective: - Iterations: 0 Time: 0.00s

Start the IIS computation for an LP

Iteration Min RowBnd Max RowBnd Min ColBnd Max ColBnd Time

0 0 1 0 2 0.00s

1 0 1 0 2 0.00s

2 1 1 0 2 0.00s

3 1 1 1 2 0.00s

4 1 1 2 2 0.00s

IIS summary: 1 rows, 2 bounds of columns

IIS computation finished (0.000s)

IIS is minimal

Number of equations in IIS: 1

Upper: e1 <= -1

Number of variables in IIS: 2

Lower: x >= 0

Lower: y >= 0

That is, COPT finds the problem infeasible. Then the IIS computation is started and an IIS is found.
The IIS is then printed to the log and listing file. It consists of the lower bounds of variables x and y and
equation e1. This suggests that the entire model can be made feasible by lowering the lower bound of x
or y or by increasing the right-hand side of e1.

If one knows in advance that the problem is infeasible, then option iis can be set to 2 to skip the initial
solve.

5.10.1.7 Using the Feasibility Relaxation

The feasibility relaxation is enabled by the FeasRelax parameter in a COPT solver option file.

With the FeasRelax option COPT selectively relaxes the variable bounds and constraint sides of an
infeasible model instance in a way that a weighted penalty function is minimized. In essence, the feasible
relaxation tries to suggest the least change that would achieve feasibility. It returns an infeasible solution
to GAMS and marks the relaxations of bounds and constraints with the INFES marker in the solution
section of the listing file.

Attention

At the moment, COPT can only relax sides of linear constraints. Indicator and quadratic constraints
are not considered for relaxation.

By default all equation sides are candidates for relaxation and weighted equally but none of the variable
bounds can be relaxed. This default behavior can be modified by assigning relaxation preferences to
variable bounds and constraints. These preferences can be conveniently specified with the dot option
feaspref. A zero preference means that the associated bound or constraint side is not to be modified. The
weighted penalty function is constructed from these preferences. The larger the preference, the more likely
it will be that a given variable bound or constraint side will be relaxed. However, it is not necessary to
specify a unique preference for each bound or range. In fact, it is conventional to use only the values 0
(zero) and 1 (one) except when your knowledge of the problem suggests assigning explicit preferences.

Preferences can be specified through a COPT solver option file. The syntax is:

1838 Solver Manuals

(variable or equation) .feaspref (value)

For example, suppose we have a GAMS declaration:

Set i /i1*i5/;

Set j /j2*j4/;

variable v(i,j); equation e(i,j);

Then, the relaxation preference in the copt.opt file can be specified by:

feasrelax 1

v.feaspref 1

v.feaspref(’i1’,*) 2

v.feaspref(’i1’,’j2’) 0

e.feaspref(*,’j1’) 0

e.feaspref(’i5’,’j4’) 2

First we turn the feasible relaxation on. Furthermore, we specify that all variables v(i,j) have preference
of 1, except variables over set element i1, which have a preference of 2. The variable over set element i1
and j2 has preference 0. Note that preferences are assigned in a procedural fashion so that preferences
assigned later overwrite previous preferences. The same syntax applies for assigning preferences to
equations as demonstrated above. If you want to assign a preference to all variables or equations in a
model, use the keywords variables or equations instead of the individual variable and equations names
(e.g. variables.feaspref 1).

The parameter FeasRelaxMode allows different strategies in finding feasible relaxation in one or two phases.
In its first phase, it attempts to minimize its relaxation of the infeasible model. That is, it attempts to find
a feasible solution that requires minimal change. In its second phase, it finds an optimal solution (using
the original objective) among those that require only as much relaxation as it found necessary in the first
phase. Values of the parameter FeasRelaxMode indicate two aspects: (1) whether to stop in phase one or
continue to phase two and (2) how to measure the relaxation (as a sum of required relaxations; as the
number of constraints and bounds required to be relaxed; as a sum of the squares of required relaxations).
Also check model feasopt1 in the GAMS model library.

5.10.1.8 Parameter Tuning Tool

The COPT tuning tool performs multiple solves on a model instance, choosing different parameter settings
for each run, in a search for settings that improve runtime or other quality measures. The longer it is run,
the more likely it is to find a significant improvement. For notes on the limitation of parameter tuning
tools, see also the GAMS/Gurobi manual.

A number of tuning-related parameters allow to control the operation of the tuning tool. To enable
tuning, option Tuning needs to be set. The value of Tuning will be used as a prefix for the name of
option files written by the solver link. The amount of time spend for tuning can be controlled by option
TuneTimeLimit. Options TuneMode and TuneMeasure allow to specify whether solving time or bounds
on the optimal value should be used as quality measure for the tuning time.

Options that are set in a GAMS/COPT options file are considered as fixed parameters and are not
changed by the tuning tool. Since the GAMS/COPT link changes the default for a few COPT options,
please check the log for the fixed parameters.

Using option TuneParams, a COPT options file with parameters that should be tuned can be specified.
Note that this parameter file is read by COPT directly, so that its syntax may deviate from the one of
GAMS/COPT solver option files. The file allows multiple values for each parameter name. For example,

5.10 COPT 1839

if the file contains the lines RootCutLevel 0 1 2 3 and TreeCutLevel 0 1 2 3, then the tuner will
optimize only the amount of cutting plane generation for the given instance. If TuneParams is not set, the
tuner will generate tuning parameter sets automatically.

If the tuning tool found one or several parameter sets that improve performance, then these will be written
into files named <Tuning>.<idx>, where Tuning is the value of option Tuning and idx the index of the
parameter set. The parameter set that yields best performance has index 000. GAMS/COPT does not
return a solution if the tuning tool is used. Tuning cannot be used at the same time as other advanced
features, like feasibility relaxation.

5.10.2 List of COPT Options

In the following, we give a detailed list of available COPT options.

5.10.2.1 Limits and Tolerances

Option Description Default

AbsGap
The absolute gap for MIP
Range: [0, ∞]

GAMS optca

BarIterLimit
Barrier iteration limit
Range: {0, ..., ∞}

GAMS iterlim

DualTol
The tolerance for dual solutions and reduced cost
Range: [1e-09, 0.0001]

1e-06

FeasTol
The feasibility tolerance
Range: [1e-09, 0.0001]

1e-06

IntTol
The integer feasibility tolerance
Range: [1e-09, 0.1]

1e-06

MatrixTol
The input matrix coefficient tolerance
Range: [0, 1e-07]

1e-10

NodeLimit
Limit of nodes for MIP
Range: {-1, ..., ∞}

GAMS nodlim

RelGap
The relative gap for MIP
Range: [0, ∞]

GAMS optcr

SolTimeLimit
Time limit that is only effictive after a primal feasible solution has
been found
Range: [0, 1e+20]

1e+20

TimeLimit
Time limit of the optimization
Range: [0, 1e+20]

GAMS reslim

5.10.2.2 Presolving and Scaling

Option Description Default

Dualize
Whether to dualize a problem before solving it
-1: Choose automatically.
0: No dualizing.
1: Dualizing the problem.

-1

1840 Solver Manuals

Option Description Default

Presolve
Level of presolving performed before solving a problem
-1: Choose automatically.
0: No presolving.
1: Fast presolving.
2: Normal presolving.
3: Aggressive presolving.

-1

Scaling
Whether to perform scaling before solving a problem
-1: Choose automatically.
0: No scaling.
1: Apply scaling.

-1

5.10.2.3 LP solving

Option Description Default

BarHomogeneous
Whether to use homogeneous self-dual form in barrier
-1: Choose automatically.
0: No.
1: Yes.

-1

BarOrder
Ordering method for barrier
-1: Choose automatically.
0: Approximate Minimum Degree (AMD).
1: Nested Dissection (ND).

-1

BarStart
Starting Point method for barrier
-1: Choose automatically.
0: Simple.
1: Mehrotra.
2: Modified Mehrotra.

-1

Crossover
Whether to run crossover after barrier
-1: Choose automatically. Only run crossover when the LP solution is
not primal-dual feasible.
0: No.
1: Yes.

1

DualPerturb
Whether to allow the objective function perturbation
-1: Choose automatically.
0: No perturbation.
1: Allow objective function perturbation.

-1

DualPrice
Specifies the dual simplex pricing algorithm
-1: Choose automatically.
0: Using Devex pricing algorithm.
1: Using dual steepest-edge pricing algorithm .

-1

LpMethod
Specifies the LP method
-1: Dual Simplex for LP. Automatic choice between Dual Simplex and
Barrier for MIP.
1: Dual simplex.
2: Barrier.
3: Crossover.
4: Concurrent (Use simplex and barrier simultaneously).
5: Choose automatically.

-1

ReqFarkasRay
Whether to return a Farkas or Ray when an LP is infeasible or un-
bounded
Range: boolean

1

5.10 COPT 1841

5.10.2.4 MIP solving

Option Description Default

ConflictAnalysis
Whether to perform conflict analysis
-1: Automatic.
0: No.
1: Yes.

-1

CutLevel
Level of cutting planes generation
-1: Automatic.
0: Off.
1: Fast.
2: Normal.
3: Aggressive.

-1

DivingHeurLevel
Level of diving heuristics
-1: Automatic.
0: Off.
1: Fast.
2: Normal.
3: Aggressive.

-1

FAPHeurLevel
Level of fix-and-propagate heuristics
-1: Automatic.
0: Off.
1: Fast.
2: Normal.
3: Aggressive.

-1

HeurLevel
Level of heuristics
-1: Automatic.
0: Off.
1: Fast.
2: Normal.
3: Aggressive.

-1

MipStartMode
Specifies MIP start mode
-1: Automatic.
0: Disable MIP starts.
1: Only use full and feasible MIP
starts.
2: Try to complete partial feasible MIP
starts by solving subMIPs.

-1, if GAMS tryint = 0, otherwise 2

MipStartNodeLimit
Limit of nodes for MIP start sub-MIP
(to complete partial MIP starts) (-1:
unlimited)
Range: {-1, ..., ∞}

-1

NodeCutRounds
Maximum cut rounds in a local node
Range: {-1, ..., ∞}

-1

RootCutLevel
Level of root cutting planes generation
-1: Automatic.
0: Off.
1: Fast.
2: Normal.
3: Aggressive.

-1

RootCutRounds
Maximum cut rounds in the root (-1:
unlimited)
Range: {-1, ..., ∞}

-1

1842 Solver Manuals

Option Description Default

RoundingHeurLevel
Level of rounding heuristics
-1: Automatic.
0: Off.
1: Fast.
2: Normal.
3: Aggressive.

-1

StrongBranching
Level of strong branching
-1: Automatic.
0: Off.
1: Fast.
2: Normal.
3: Aggressive.

-1

SubMipHeurLevel
Level of sub-MIP heuristics
-1: Automatic.
0: Off.
1: Fast.
2: Normal.
3: Aggressive.

-1

TreeCutLevel
Level of tree cutting planes generation
-1: Automatic.
0: Off.
1: Fast.
2: Normal.
3: Aggressive.

-1

5.10.2.5 Multithreading

Option Description Default

BarThreads
Number of threads to use in the barrier solver
Range: {-1, ..., 128}

-1

CrossoverThreads
Number of threads to use in the crossover
Range: {-1, ..., 128}

-1

MipTasks
Number of parallel tasks in MIP solving (-1: automatic)
Range: {-1, ..., 256}

-1

SimplexThreads
Number of threads to use in the simplex solver
Range: {-1, ..., 128}

-1

Threads
Number of threads to use (-1: automatic, 0: 1 thread)
GAMS threads = 0 sets the default for COPT threads to -1, i.e.,
let COPT choose the number of processors to use.
Range: {-1, ..., 128}

GAMS threads

5.10.2.6 Infeasibility Analysis

5.10 COPT 1843

Option Description Default

.feaspref
preference to include variable bound or equa-
tion side into feasibility relaxation
The higher the value, the more likely it will
be that associated variable bounds or equation
sides are relaxed when computing a feasible
relaxation. If zero, then the associated variable
bounds or equation sides are not to considered
for relaxation.
Range: [0, ∞)

1.0 for equations, 0.0 for variables

FeasRelax
whether to compute a feasible relaxation in-
stead of solving the problem
Range: boolean
Synonyms: feasopt

0

FeasRelaxMode
Specifies the feasibility relaxation mode
0: Minimize sum of violations.
1: Optimize original objective function under
minimal sum of violations.
2: Minimize number of violations.
3: Optimize original objective function under
minimal number of violations.
4: Minimize sum of squared violations.
5: Optimize original objective function under
minimal sum of squared violations.
Synonyms: feasoptmode

0

iis
whether to compute an Irreducible Inconsistent
Subsystem (IIS) if the problem is infeasible
0: no
1: compute IIS after solve if infeasible
2: compute IIS without solving original prob-
lem

0

IISMethod
Specifies the IIS method
-1: Automatic.
0: Find smaller IIS.
1: Find IIS quickly.

-1

5.10.2.7 Parameter Tuning

Option Description Default

TuneMeasure
Method to aggregate multiple permutation solves into a single mea-
sure for tuner
-1: Choose automatically.
0: Average value.
1: Maximum value.

-1

TuneMethod
Tuning method
-1: Choose automatically.
0: Greedy search strategy.
1: Broader search strategy.

-1

TuneMode
Specifies tuning mode for tuner
-1: Choose automatically.
0: Solving time.
1: Relative optimality gap.
2: Primal bound (objective function value of incumbent).
3: Dual bound (bound on optimal value).

-1

1844 Solver Manuals

Option Description Default

TuneOutputLevel
Output level for tuner
0: No tuning log.
1: Summary of the improved parameters only.
2: Summary of each tuning attempt.
3: Detailed log of each tuning attempt.

2

TuneParams
COPT parameter file with options to be tuned
For each parameter, multiple values can be specified.
Range: string

TunePermutes
Number of permuted solves for each parameter set by tuner (0: auto)
Range: {0, ..., ∞}

0

TuneTargetRelGap
Target relative gap for tuning
Range: [0, ∞]

0.0001

TuneTargetTime
Target elapsed time for tuning
Range: [0, ∞]

0.01

TuneTimeLimit
Time limit of tuning (0: auto)
Range: [0, 1e+20]

0

Tuning
If set, enables tuning tool. The option value should be the prefix for
names of tuned option files that are written.
Range: string

5.10.2.8 GAMS/COPT link

Option Description Default

readparams
read COPT parameter file
Range: string

solnpool
Solution pool file name
The name of a solutions index gdx file for writing alternate solutions
found by COPT. The GDX file specified by this option will contain
a set called index that contains the names of GDX files with the
individual solutions.
Range: string

solnpoolmerge
Solution pool file name for merged solutions
Range: string

solvefinal
whether to solve the LP obtained from fixing discrete variables and
variables in SOS after a MIP solve
If marginals are not accessed after a MIP solve, it is advised to disable
this option.
Range: boolean

1

solvetrace
name of file for writing solving progress information during solve
Range: string

solvetracenodefreq
frequency in number of nodes for writing to solve trace file
The node frequency does not work when COPT is run with multiple
threads.
Range: {0, ..., ∞}

100

solvetracetimefreq
frequency in seconds for writing to solve trace file
Range: (0, ∞)

5

writebas
name of file to which to write advanced starting basis in basis format
Range: string

writebin
name of file to which to write problem in COPT binary format
Range: string

writelp
name of file to which to write problem in LP file format
Range: string

5.11 CPLEX 1845

Option Description Default

writemps
name of file to which to write problem in MPS file format
Range: string

writemst
name of file to which to write MIP starting point
Range: string

5.11 CPLEX

5.11.1 Introduction

GAMS/Cplex is a GAMS solver that allows users to combine the high level modeling capabilities of
GAMS with the power of Cplex optimizers. Cplex optimizers are designed to solve large, difficult problems
quickly and with minimal user intervention. Access is provided (subject to proper licensing) to Cplex
solution algorithms for linear, quadratically constrained and mixed integer programming problems. While
numerous solving options are available, GAMS/Cplex automatically calculates and sets most options at
the best values for specific problems.

All Cplex options available through GAMS/Cplex are summarized at the end of this document.

5.11.2 How to Run a Model with Cplex

The following statement can be used inside your GAMS program to specify using Cplex

Option LP = Cplex; { or QCP, MIP, MIQCP, RMIP or RMIQCP }

The above statement should appear before the Solve statement. If Cplex was specified as the default
solver during GAMS installation, the above statement is not necessary.

Attention

The free bare-bone link mode (previously GAMS/OSICPLEX) that allowed to solve LP and MIP
when the user had a separate CPLEX license has been removed. If you relied on using this bare-bone
link option, then do not hesitate to contact sales@gams.com to arrange for a GAMS/CPLEX
Solver Link license.

5.11.3 Overview of Cplex

5.11.3.1 Linear Programming

Cplex solves LP problems using several alternative algorithms. The majority of LP problems solve best
using Cplex's state of the art dual simplex algorithm. Certain types of problems benefit from using the
primal simplex algorithm, the network optimizer, the barrier algorithm, or the sifting algorithm. The
concurrent option will allow solving with different algorithms in parallel. The solution is returned by the
first to finish.

Solving linear programming problems is memory intensive. Even though Cplex manages memory very
efficiently, insufficient physical memory is one of the most common problems when running large LPs. When
memory is limited, Cplex will automatically make adjustments which may negatively impact performance.
If you are working with large models, study the section entitled Physical Memory Limitations carefully.

mailto:sales@gams.com

1846 Solver Manuals

Cplex is designed to solve the majority of LP problems using default option settings. These settings usually
provide the best overall problem optimization speed and reliability. However, there are occasionally reasons
for changing option settings to improve performance, avoid numerical difficulties, control optimization run
duration, or control output options.

Some problems solve faster with the primal simplex algorithm rather than the default dual simplex
algorithm. Very few problems exhibit poor numerical performance in both the primal and the dual.
Therefore, consider trying primal simplex if numerical problems occur while using dual simplex.

Cplex has a very efficient algorithm for network models. Network constraints have the following property:

• each non-zero coefficient is either a +1 or a -1

• each column appearing in these constraints has > exactly 2 nonzero entries, one with a +1 >
coefficient and one with a -1 coefficient

Cplex can also automatically extract networks that do not adhere to the above conventions as long as
they can be transformed to have those properties.

The barrier algorithm is an alternative to the simplex method for solving linear programs. It employs a
primal-dual logarithmic barrier algorithm which generates a sequence of strictly positive primal and dual
solutions. Specifying the barrier algorithm may be advantageous for large, sparse problems.

Cplex provides a sifting algorithm which can be effective on problems with many more variables than
equations. Sifting solves a sequence of LP subproblems where the results from one subproblem are used
to select columns from the original model for inclusion in the next subproblem.

GAMS/Cplex also provides access to the Cplex Conflict Refiner previously known as IIS (Irreducibly
Inconsistent Set). The conflict refinder takes an infeasible program and produces an set of conflicting
constraints. Such a set consists of constraints and variable bounds which is infeasible but becomes feasible
if any one member of the set is dropped. GAMS/Cplex reports the conflict in terms of GAMS equation
and variable names and includes the conflict report as part of the normal solution listing.

5.11.3.2 Quadratically Constrained Programming

Cplex can solve models with quadratic constraints. These are formulated in GAMS as models of type
QCP. QCP models are solved with the Cplex Barrier method.

QP models are a special case that can be reformulated to have a quadratic objective function and only
linear constraints. Those are automatically reformulated from GAMS QCP models. When such problems
are convex, Cplex normally solves them efficiently in polynomial time. Nonconvex QPs, however, are
known to be quite hard. Cplex applies various approaches to those problems, such approaches as barrier
algorithms or branch and bound algorithms. Notably, in the branch and bound approach, there is no
theoretical guarantee about the complexity of such a problem. Consequently, solution of such a problem
(that is, a nonconvex QP) can take many orders of magnitude longer than the solution of a convex QP of
comparable dimensions. Therefore, the default is to reject such model. The parameter OptimalityTarget
allows to change this behavior.

For QCP models Cplex returns a primal and in most cases also dual values.

5.11 CPLEX 1847

5.11.3.3 Mixed-Integer Programming

The methods used to solve pure integer and mixed integer programming problems require dramatically
more mathematical computation than those for similarly sized pure linear programs. Many relatively
small integer programming models take enormous amounts of time to solve.

For problems with integer variables, Cplex uses a branch and cut algorithm which solves a series of LP,
subproblems. Because a single mixed integer problem generates many subproblems,even small mixed
integer problems can be very compute intensive and require significant amounts of physical memory.

GAMS and GAMS/Cplex support Special Order Sets of type 1 and type 2 as well as semi-continuous and
semi-integer variables.

Cplex can also solve problems of GAMS model type MIQCP. As in the continuous case, if the base model
is a QP the Simplex methods can be used and duals will be available at the solution. If the base model is
a QCP, only the Barrier method can be used for the nodes and only primal values will be available at the
solution.

5.11.3.4 Feasible Relaxation

The Conflict Refiner identifies the causes of infeasibility by means of inconsistent set of constraints.
However, you may want to go beyond diagnosis to perform automatic correction of your model and
then proceed with delivering a solution. One approach for doing so is to build your model with explicit
slack variables and other modeling constructs, so that an infeasible outcome is never a possibility. An
automated approach offered in GAMS/Cplex is known as FeasOpt (for Feasible Optimization) and turned
on by parameter FeasOpt in a CPLEX option file. More details can be found in the section entitled
Using the Feasibility Relaxation.

5.11.3.5 Solution Pool: Generating and Keeping Multiple Solutions

This section introduces the solution pool for storing multiple solutions to a mixed integer programming
problem (MIP and MIQCP). The chapter also explains techniques for generating and managing those
solutions.

The solution pool stores multiple solutions to a mixed integer programming (MIP and MIQCP) model.
With this feature, you can direct the algorithm to generate multiple solutions in addition to the optimal
solution. For example, some constraints may be difficult to formulate efficiently as linear expressions, or
the objective may be difficult to quantify exactly. In such cases, obtaining multiple solutions will help you
choose one which best fits all your criteria,including the criteria that could not be expressed easily in a
conventional MIP or MIQCP model. For example,

• You can collect solutions within a given percentage of the optimal solution. To do so, apply the
solution pool gap parameters SolnPoolAGap and SolnPoolGap.

• You can collect a set of diverse solutions. To do so, use the solution pool replacement parameter
SolnPoolReplace to set the solution pool replacement strategy to 2. In order to control the diversity
of solutions even more finely, apply a diversity filter.

• In an advanced application of this feature, you can collect solutions with specific properties. To do
so, see the use of the incumbent filter.

• You can collect all solutions or all optimal solutions to model. To do so, set the solution pool
intensity parameter SolnPoolIntensity to its highest value.

Please note, that the value for best possible can exceed the optimal solution value if CPLEX has already
solved the model to optimality but continues to search for additional solutions.

1848 Solver Manuals

Filling the Solution Pool

There are two ways to fill the solution pool associated with a model: You can accumulate successive
incumbents or generate alternative solutions by populating the solution pool. The method is selected with
the parameter SolnPoolPop:

• The regular optimization procedure automatically adds incumbents to the solution pool as they are
discovered (SolnPoolPop = 1).

• Cplex also provides a procedure specifically to generate multiple solutions. You can invoke this
procedure by setting option SolnPoolPop = 2. You can also invoke this procedure many times
in a row in order to explore the solution space differently. In particular, you may invoke this
procedure multiple times to find additional solutions, especially if the first solutions found are not
satisfactory. This is done by specifying a GAMS program (option SolnPoolPopRepeat) that inspects
the solutions. In case this GAMS program terminates normally, i.e. no execution or compilation
error, the exploration for alternative solutions proceeds.

The option SolnPoolReplace designates the strategy for replacing a solution in the solution pool when
the solution pool has reached its capacity. The value 0 replaces solutions according to a first-in, first-out
policy. The value 1 keeps the solutions with the best objective values. The value 2 replaces solutions in
order to build a set of diverse solutions.

If the solutions you obtain are too similar to each other, try setting SolnPoolReplace to 2.

The replacement strategy applies only to the subset of solutions created in the current call of populate.
Solutions already in the pool are not affected by the replacement strategy. They will not be replaced, even if
they satisfy the criterion of the replacement strategy. So with every repeated call of the populate procedure
the solution pool will be extended by the newly found solution. After the GAMS program specified
in SolnPoolPopRepeat determined to continue the search for alternative solutions, the file specified by
option SolnPoolPopDel option is read in. The solution numbers present in this file will be delete from
the solution pool before the populate routine is called again. The file is automatically deleted by the
GAMS/Cplex link after processing.

Enumerating All Solutions

With the solution pool, you can collect all solutions to a model. To do so, set the solution pool intensity
parameter SolnPoolIntensity to its highest value, 4 and set SolnPoolPop = 2.

You can also enumerate all solutions that are valid for a specific criterion. For example, if you want to
enumerate all alternative optimal solutions, do the following:

• Set the pool absolute gap parameter SolnPoolAGap = 0.0 (for models with potential numerical
issues, better use a small non-zero like 1e-6).

• Set the pool intensity parameter SolnPoolIntensity = 4.

• Set the populate limit parameter PopulateLim to a value sufficiently large for your model; for
example, 2100000000.

• Set the pool population parameter SolnPoolPop = 2.

5.11 CPLEX 1849

Beware, however, that, even for small models, the number of possible solutions is likely to be huge.
Consequently, enumerating all of them will take time and consume a large quantity of memory.

There may be an infinite number of possible values for a continuous variable, and it is not practical to
enumerate all of them on a finite-precision computer. Therefore, populate gives only one solution for each
set of binary and integer variables, even though there may exist several solutions that have the same
values for all binary and integer variables but different values for continuous variables.

Likewise, for the same reason, the populate procedure does not generate all possible solutions for unbounded
models. As soon as the proof of unboundedness is obtained, the populate procedure stops.

Cplex uses numerical methods of finite-precision arithmetic. Consequently, the feasibility of a solution
depends on the value given to tolerances. Two parameters define the tolerances that assess the feasibility
of a solution:

• the integrality tolerance EpInt

• the feasibility tolerance EpRHS

A solution may be considered feasible for one pair of values for these two parameters, and infeasible for a
different pair. This phenomenon is especially noticeable in models with numeric difficulties, for example,
in models with BigM coefficients.

Since the definition of a feasible solution is subject to tolerances, the total number of solutions to a model
may vary, depending on the approach used to enumerate solutions, and on precisely which tolerances are
used. In most models, this tolerance issue is not problematic. But, in the presence of numeric difficulties,
Cplex may create solutions that are slightly infeasible or integer infeasible, and therefore create more
solutions than expected.

Filtering the Solution Pool

Filtering allows you to control properties of the solutions generated and stored in the solution pool. Cplex
provides two predefined ways to filter solutions.

If you want to filter solutions based on their difference as compared to a reference solution, use a diversity
filter. This filter is practical for most purposes. However, if you require finer control of which solutions to
keep and which to eliminate, use the incumbent filter.

Diversity Filter

A diversity filter allows you to generate solutions that are similar to (or different from) a set of reference
values that you specify for a set of binary variables using dot option DivFlt and lower and upper bounds
DivFltLo and DivFltUp. In particular, you can use a diversity filter to generate more solutions that are
similar to an existing solution or to an existing partial solution. If you need more than one diversity filter,
for example, to generate solutions that share the characteristics of several different solutions, additional
filters can be specified through a Cplex Filter File using parameter ReadFLT. Details can be found in the
example model solnpool in the GAMS model library.

1850 Solver Manuals

Incumbent Filter

If you need to enforce more complex constraints on solutions (e.g. if you need to enforce nonlinear
constraints), you can use the incumbent filtering. The incumbent checking routine is part of the
GAMS BCH Facility. It will accept or reject incumbents independent of a solution pool. During the
populate or regular optimize procedure, the incumbent checking routine specified by the parameter
UserIncbCall is called each time a new solution is found, even if the new solution does not improve the
objective value of the incumbent. The incumbent filter allows your application to accept or reject the new
solution based on your own criteria. If the GAMS program specified by UserIncbCall terminates normally,
the solution is rejected. If this program returns with a compilation or execution error, the incumbent is
accepted.

Accessing the Solution Pool

The solutions are stored in GAMS Data eXchange (GDX) file and can be loaded by your GAMS program.
Details can be found in the model solnpool in the GAMS model library and in . If you instruct Cplex to
generate thousands of solution this becomes inefficient. The option SolnPoolMerge triggers the creation
of a single GDX file containing all solutions.

The GAMS/Cplex link produces, if properly instructed, a GAMS Data eXchange(GDX) file with name
specified in SolnPool that contains a set Index with elements file1, file2, ... The associated text of
these elements contain the file names of the individual GDX solution file. The name is constructed using
the prefix soln (which can be specified differently by option SolnPoolPrefix), the name of the model and a
sequence number. For example soln loc p1.gdx. GAMS/Cplex will overwrite existing GDX files without
warning. The set Index allows us to conveniently walk through the different solutions in the solution pool.
A complete model can be found in the model solnpool in the GAMS model library.

...

solve mymodel min z using mip;

set soln possible solutions in the solution pool /file1*file1000/

solnpool(soln) actual solutions;

file fsol;

execute_load ’solnpool.gdx’, solnpool=Index;

loop(solnpool(soln),

put_utility fsol ’gdxin’ / solnpool.te(soln):0:0;

execute_loadpoint;

display z.l;

);

If you instruct Cplex to generate thousands of solution this method becomes inefficient. The option
SolnPoolMerge triggers the creation of a single GDX file containing all solutions. Details on usage of this
option can be found in the model solmpool in the GAMS model library.

5.11.3.6 Benders Algorithm

CPLEX implements Benders algorithm.

Given a formulation of a problem, CPLEX can decompose the model into a single master and (possibly
multiple) subproblems. To do so, CPLEX makes use of annotations that you supply for your model. This
approach can be applied to mixed-integer linear programs (MILP). For certain types of problems, this
approach can offer significant performance improvements.

5.11 CPLEX 1851

The parameter, BendersStrategy, specifies to CPLEX how you want to apply Benders algorithm as a
strategy to solve your model. By default, if you did not annotate your model to specify a decomposition,
CPLEX executes conventional branch and bound. If you annotated your model, CPLEX attempts to
refine your decomposition and applies Benders algorithm. With this parameter, you can direct CPLEX to
decompose your model and to apply its implementation of Benders algorithm in one of these alternative
ways:

• 1: CPLEX attempts to decompose your model strictly according to your annotations.

• 2: CPLEX decomposes your model by using your annotations as hints and refining the decomposition
where it can. CPLEX initially decomposes your model according to your annotation and then
attempts to refine that decomposition by further decomposing the specified subproblems. This
approach can be useful if you annotate certain variables to go into master, and all others to go into
a single subproblem, which CPLEX can then decompose further for you.

• 3: CPLEX automatically decomposes your model, ignoring any annotations you may have supplied.
CPLEX puts all integer variables into the master, puts all continuous variables into a subproblem
and decomposes that subproblem, if possible.

If you want to specify a decomposition to CPLEX, you need to annotate your model and specify a Benders
partition of your variable space. These Benders partition can be conveniently specified with the dot option
BendersPartition or through the .stage variable suffix.

These Benders partition values specify to CPLEX whether certain variables belong to the master or to
one of the subproblems assigned to workers (where the subproblems are numbered from 1 (one) to N, the
number of subproblems). If you annotate a given variable with the value 0 (zero), CPLEX assigns that
variable to the master. If you annotate a given variable with the value i, where i is greater than or equal to
1 (one), CPLEX assigns that variable to subproblem i. If a variable is not specified, the default will be to
go into the master problem. Note that with variable.BendersPartition 1 you can assign all variables
to the subproblem and then selectively assign the master variables with varname.BendersPartition 0.

If you want to communicate the Benders partition values via the .stage variable suffix, the partition
numbers are off by one compared to the partition number via the dot option. So the master variables
have stage 1, and the subproblems start with stage 2. If you want to leave a variable unassigned you can
either make the stage 0 or fractional (e.g. 1.5). Discrete variables are automatically put into the master
problem and don't need to be set. In addition to specifying the Benders partition values via the .stage
variable suffix the link option BendersPartitionInStage needs to be set to 1.

CPLEX produces an error if the annotated decomposition does not yield disjoint subproblems. For
example, if your annotations specify that two (or more) variables belong in different subproblems, yet
your model specifies that these variables participate in the same constraint, then these variables are linked.
Consequently, the subproblems where these variables appear according to your annotations are not disjoint
with respect to the partition.

5.11.3.7 Multiple Objectives

While typical optimization models have a single objective function, real-world optimization problems often
have multiple, competing objectives. For example, in a production planning model, you may want to both
maximize profits and minimize late orders, or in a workforce scheduling application, you may want to
both minimize the number of shifts that are short-staffed while also respecting worker's shift preferences.

The main challenge you face when working with multiple, competing objectives is deciding how to manage
the tradeoffs between them. Cplex provides tools that simplify the task: Cplex allows you to blend multiple
objectives, to treat them hierarchically, or to combine the two approaches. In a blended approach, you
optimize a weighted combination of the individual objectives. In a hierarchical or lexicographic approach,
you set a priority for each objective, and optimize in priority order. When optimizing for one objective,

1852 Solver Manuals

you only consider solutions that would not degrade the objective values of higher-priority objectives.
Cplex allows you to enter and manage your objectives, to provide weights for a blended approach, or
to set priorities for a hierarchical approach. Cplex will only solve multi-objective models with strictly
linear objectives. Moreover, for continous models, Cplex will report a primal only solution (not dual
information).

Following the workforce application the specifications of the objectives would be done as follows:

equations defObj, defNumShifts, defSumPreferences;

variables obj, numShifts, sumPreferences;

defobj.. obj =e= numShifts - 1/100*sumPreferences;

defNumShifts.. numShifts =e= ...;

defSumPreferences.. sumPreferences =e= ...;

model workforce /all/;

solve workforce minimizing obj using mip;

With the default setting Cplex will solve the blended objective. Using the parameter MultObj Cplex will
use a hierarchical approach. A hierarchical or lexicographic approach assigns a priority to each objective,
and optimizes for the objectives in decreasing priority order. At each step, it finds the best solution
for the current objective, but only from among those that would not degrade the solution quality for
higher-priority objectives. The priority is specified by the absolute value of the objective coefficient in
the blended objective function (defObj). In the example, the numShifts objective with coefficient 1 has
higher priority than the sumPreferences objective with absolute objective coefficient 1/100. The sign of
the objective coefficient determines the direction of the particular objective function. So here numShifts

will be minimized (same direction as on the solve statement) while sumPreferences will be maximized.
GAMS needs to identify the various objective functions, therefore the objective variables can only appear
in the blended objective functions and in the particular objective defining equation.

By default, the hierarchical approach won't allow later objectives to degrade earlier objectives. This
behavior can be relaxed through a pair of attributes: ObjNRelTol and ObjNAbsTol. Their meaning
differs for continuous and discrete models:

• Discrete models: By setting one of the two tolerances for a particular objective, you can indicate
that later objectives are allowed to degrade this objective by the specified relative or absolute
amount, respectively. In our earlier example, if the optimal value for numShifts is 100, and if we set
ObjNAbsTol for this objective to 20, then the second optimization step maximizing sumPreferences

would find the best solution for the second objective from among all solutions with objective 120 or
better for numShifts. Note that if you modify both tolerances, later optimizations would use the
looser of the two values (i.e., the one that allows the larger degradation).

• Continuous Models: ObjNAbsTol does not include a hard constraint for previous objective functions
in susequent solves. Instead, ObjNAbsTol defines a threshold for the reduced costs above which
nonbasic variables in the associated LP solve will be fixed at the bound at which they reside. The
option ObjNRelTol has no effect here. In order to apply the above discrete strategy for continuous
models, set MultObjTolMip to 1.

5.11.4 GAMS Options

The following GAMS options are used by GAMS/Cplex:

• Option BRatio = x;

5.11 CPLEX 1853

Determines whether or not to use an advanced basis. A value of 1.0 causes GAMS to
instruct Cplex not to use an advanced basis. A value of 0.0 causes GAMS to construct a
basis from whatever information is available. The default value of 0.25 will nearly always
cause GAMS to pass along an advanced basis if a solve statement has previously been
executed.

• Option IterLim = n;

Sets the simplex iteration limit. Simplex algorithms will terminate and pass on the current
solution to GAMS.

Cplex handles the iteration limit for MIP problems differently than some other GAMS
solvers. The iteration limit is applied per node instead of as a total over all nodes. For
MIP problems, controlling the length of the solution run by limiting the execution time
(ResLim) is preferable.

Simlarly, when using the sifting algorithm, the iteration limit is applied per sifting
iteration (ie per LP). The number of sifting iterations (LPs) can be limited by setting
Cplex parameter SiftItLim. It is the number of sifting iterations that is reported back to
GAMS as iterations used.

• Option ResLim = x;

Sets the time limit in seconds. In case resLim assumes its default value (1e+10) Cplex
will use its own default (1e+75). The algorithm will terminate and pass on the current
solution to GAMS.

• Option SysOut = On;

Will echo Cplex messages to the GAMS listing file. This option may be useful in case of a
solver failure.

• ModelName.Cheat = x;

Cheat value: each new integer solution must be at least x better than the previous one.
Can speed up the search, but you may miss the optimal solution. The cheat parameter is
specified in absolute terms (like the OptCA option). The Cplex option ObjDif overrides
the GAMS cheat parameter.

• ModelName.Cutoff = x;

Cutoff value. When the branch and bound search starts, the parts of the tree with an
objective worse than x are deleted. This can sometimes speed up the initial phase of the
branch and bound algorithm.

• ModelName.NodLim = x;

Maximum number of nodes to process for a MIP problem.

• Option OptCA = x;

Absolute optimality criterion for a MIP problem. The OptCA option asks Cplex to stop
when

|BP −BF | < OptCA

where BF is the objective function value of the current best integer solution while BP is
the best possible integer solution.

Note: This option also influences the SubMIPs (e.g., used for the RINS heuristic) and can
thus influence the solution path.

• ModelName.OptCR = x;

Relative optimality criterion for a MIP problem. Notice that Cplex uses a different
definition than GAMS normally uses. The OptCR option asks Cplex to stop when

(|BP −BF |)/(1.0e− 10 + |BF |) < OptCR

where BF is the objective function value of the current best integer solution while BP is
the best possible integer solution. The GAMS definition is:

1854 Solver Manuals

(|BP −BF |)/(|BP |) < OptCR

Note: This option also influences the SubMIPs (e.g., used for the RINS heuristic) and can
thus influence the solution path.

• ModelName.OptFile= 1;

Instructs Cplex to read the option file. The name of the option file is cplex.opt.

• ModelName.PriorOpt= 1;

Instructs Cplex to use priority branching information passed by GAMS through the
variable.prior parameters.

• ModelName.TryInt= x;

Causes GAMS/Cplex to make use of current variable values when solving a MIP problem.
If a variable value is within x of a bound, it will be moved to the bound and the preferred
branching direction for that variable will be set toward the bound. The preferred branching
direction will only be effective when priorities are used. Priorities and tryint are sometimes
not very effective and often outperformed by GAMS/CPLEX default settings. Supporting
GAMS/CPLEX with knowledge about a known solution can be passed on by different
means, please read more about this in section entitled Starting from a MIP Solution.

GAMS/Cplex also sets many model attributes that can by used in your GAMS program by
accessing ModelName.suffix. A list of model attributes available after the solve can be found here
Model Attributes Mainly Used After Solve.

Cplex has the concept of deterministic time i.e. a measure of time that respects the same solution path to
arrive at the same values in the solution while it yields the same level of performance for repeated solving
of the same model with the same parameter settings, on the same computing platform. The length of
a deterministic time tick may vary by platform. Nevertheless, ticks are normally consistent measures
for a given platform (combination of hardware and software) carrying the same load. In other words,
the correspondence of ticks to clock time depends on the hardware, software, and the current load of
the machine. For the same platform and same load, the ratio of ticks per second stays roughly constant,
independent of the model solved. However, for very short optimization runs, the variation of this ratio
is typically high. GAMS/Cplex reports the deterministic time ticks spend inside Cplex in the model
attribute ETAlg. Normally ETAlg is reporting the seconds.

5.11.5 Summary of CPLEX Options

The various Cplex options are listed here by category, with a few words about each to indicate its function.
The options are listed again, in alphabetical order and with detailed descriptions, in the last section of
this document.

5.11.5.1 Preprocessing and General Options

Option Description Default

advind
advanced basis use determined by GAMS Bratio

aggfill
aggregator fill parameter 10

aggind
aggregator on/off -1

bndrng
do lower / upper bound ranging

calcqcpduals
calculate the dual values of a quadrati-
cally constrained problem

1

5.11 CPLEX 1855

Option Description Default

clocktype
clock type for computation time 2

coeredind
coefficient reduction on/off -1

cpumask
switch and mask to bind threads to
processors (Linux only)

auto

datacheck
controls data consistency checking and
modeling assistance

0

depind
dependency checker on/off -1

dettilim
deterministic time limit 1.0e+75

feasopt
computes a minimum-cost relaxation
to make an infeasible model feasible

0

feasoptmode
mode of FeasOpt 0

.feaspref
feasibility preference 1

fixoptfile
name of option file which is read just
before solving the fixed problem

folding
LP folding will be attempted during the
preprocessing phase

-1

freegamsmodel
preserves memory by dumping the
GAMS model instance representation
temporarily to disk

0

iafile
secondary option file to be read in inter-
active mode triggered by iatriggerfile

iatriggerfile
file that triggers the reading of a sec-
ondary option file in interactive mode

iatriggertime
time interval in seconds the link looks
for the trigger file in interactive mode

60

indicoptstrict
abort in case of an error in indicator
constraint in solver option file

1

interactive
allow interactive option setting after a
Control-C

0

lpmethod
algorithm to be used for LP problems 0

memoryemphasis
reduces use of memory 0

multobj
controls the hierarchical optimization
of multiple objectives

0

multobjdisplay
level of display during multiobjective
optimization

1

multobjmethod
method used for multi-objective solves 0

multobjoptfiles
List of option files used for individual
solves within multi-objective optimiza-
tion

multobjtolmip
enables hard constraints for hierarchi-
cal optimization objectives based on
degradation tolerances

1

names load GAMS names into Cplex 1

numericalemphasis
emphasizes precision in numerically un-
stable or difficult problems

0

objnabstol
allowable absolute degradation for ob-
jective

1856 Solver Manuals

Option Description Default

objnreltol
allowable relative degradation for ob-
jective

objrng
do objective ranging no objective ranging is done

optimalitytarget
type of optimality that Cplex targets 0

parallelmode
parallel optimization mode 1

predual
give dual problem to the optimizer 0

preind
turn presolver on/off 1

prepass number of presolve applications to per-
form

-1

prereform
set presolve reformulations 3

printoptions
list values of all options to GAMS list-
ing file

0

qextractalg
quadratic extraction algorithm in
GAMS interface

0

qpmethod
algorithm to be used for QP problems 0

qtolin
linearization of the quadratic terms in
the objective function of a QP or MIQP
model

-1

randomseed
sets the random seed differently for di-
versity of solutions

changes with each Cplex release

readparams
read Cplex parameter file

reduce
primal and dual reduction type 3

relaxpreind
presolve for initial relaxation on/off -1

rerun rerun problem if presolve infeasible or
unbounded

nono

rhsrng
do right-hand-side ranging no right-hand-side ranging is

done

rngrestart
write GAMS readable ranging informa-
tion file

ranging information is printed

to the listing file

scaind
matrix scaling on/off 0

solutiontype
type of solution (basic or non basic) for
an LP or QP

0

threads
global default thread count GAMS Threads

tilim
overrides the GAMS ResLim option GAMS ResLim

tuning
invokes parameter tuning tool

tuningdettilim
tuning deterministic time limit per
model or suite

1.0e+75

tuningdisplay
level of information reported by the tun-
ing tool

1

tuningmeasure
measure for evaluating progress for a
suite of models

1

tuningrepeat
number of times tuning is to be re-
peated on perturbed versions

1

tuningtilim
tuning time limit per model or suite 0.2∗GAMS ResLim

5.11 CPLEX 1857

Option Description Default

warninglimit
determines how many times warnings
of a specific type (datacheck=2) will be
displayed

10

workdir
directory for working files current or project directory

workmem
memory available for working storage 2048.0

5.11.5.2 Simplex Algorithmic Options

Option Description Default

conflictalg
algorithm CPLEX uses in the conflict re-
finer to discover a minimal set of conflict-
ing constraints in an infeasible model

0

conflictdisplay
decides how much information CPLEX re-
ports when the conflict refiner is working

1

craind
crash strategy (used to obtain starting
basis)

1

dpriind
dual simplex pricing 0

dynamicrows
switch for dynamic management of rows -1

epper perturbation constant 1.0e-06

iis
run the conflict refiner also known as IIS
finder if the problem is infeasible

0

netfind
attempt network extraction 2

netppriind
network simplex pricing 0

perind
force initial perturbation 0

perlim
number of stalled iterations before pertur-
bation

0

ppriind
primal simplex pricing 0

pricelim
pricing candidate list 0, in which case it is determined

automatically

reinv
refactorization frequency 0, in which case it is determined

automatically

sifting
switch for sifting from simplex optimiza-
tion

1

5.11.5.3 Simplex Limit Options

Option Description Default

itlim
iteration limit GAMS IterLim

netitlim
iteration limit for network simplex large

objllim
objective function lower limit -1.0e+75

objulim
objective function upper limit 1.0e+75

singlim
limit on singularity repairs 10

1858 Solver Manuals

5.11.5.4 Simplex Tolerance Options

Option Description Default

epmrk
Markowitz pivot tolerance 0.01

epopt
optimality tolerance 1.0e-06

eprhs
feasibility tolerance 1.0e-06

ltol
basis identification primal tolerance 0

mtol
basis identification dual tolerance 0

netepopt
optimality tolerance for the network simplex method 1.0e-06

neteprhs
feasibility tolerance for the network simplex method 1.0e-06

5.11.5.5 Barrier Specific Options

Option Description Default

baralg
algorithm selection 0

barcolnz
dense column handling 0

barcrossalg
barrier crossover method 0

barepcomp
convergence tolerance 1.0e-08

bargrowth
unbounded face detection 1.0e+12

baritlim
iteration limit large

barmaxcor
maximum correction limit -1

barobjrng
maximum objective function 1.0e+20

barorder
row ordering algorithm selection 0

barqcpepcomp
convergence tolerance for the barrier optimizer for QCPs 1.0e-07

barstartalg
barrier starting point algorithm 1

5.11.5.6 Sifting Specific Options

Option Description Default

siftalg
sifting subproblem algorithm 0

siftitlim
limit on sifting iterations large

5.11.5.7 MIP Algorithmic Options

Option Description Default

bbinterval
best bound interval 7

5.11 CPLEX 1859

Option Description Default

.benderspartition
Benders partition 0

benderspartitioninstage
Benders partition through stage variable suffix 0

bendersstrategy
Benders decomposition algorithm as a strategy 0

bndstrenind
bound strengthening -1

bqpcuts
boolean quadric polytope cuts for nonconvex QP or MIQP
solved to global optimality

0

brdir
set branching direction 0

bttol
backtracking limit 1.0

cardls
decides how often to apply the cardinality local search
heuristic (CLSH)

-1

cliques
clique cut generation 0

covers cover cut generation 0

cutlo
lower cutoff for tree search -1.0e+75

cuts
default cut generation 0

cutsfactor
cut limit -1.0

cutup
upper cutoff for tree search 1.0e+75

disjcuts
disjunctive cuts generation 0

divetype
MIP dive strategy 0

eachcutlim
sets a limit for each type of cut 2100000000

flowcovers
flow cover cut generation 0

flowpaths
flow path cut generation 0

fpheur
feasibility pump heuristic 0

fraccuts
Gomory fractional cut generation 0

gubcovers
GUB cover cut generation 0

heurfreq
heuristic frequency 0

heuristiceffort
the effort that CPLEX spends on heuristics during a MIP
solve

1.0

implbd
implied bound cut generation 0

.lazy
Lazy constraints activation 0

lazyconstraints
Indicator to use lazy constraints 0

lbheur
local branching heuristic 0

liftprojcuts
lift-and-project cuts 0

localimplied
generation of locally valid implied bound cuts 0

lowerobjstop
in a minimization MILP or MIQP, the solver will abort
the optimization process as soon as it finds a solution of
value lower than or equal to the specified value

-1e75

mcfcuts
multi-commodity flow cut generation 0

1860 Solver Manuals

Option Description Default

mipemphasis
MIP solution tactics 0

mipkappastats
MIP kappa computation 0

mipordind
priority list on/off GAMS PriorOpt

mipordtype
priority order generation 0

mipsearch
search strategy for mixed integer programs 0

mipstart
use mip starting values 0

mipstopexpr
stopping expression for branch and bound

miqcpstrat
MIQCP relaxation choice 0

mircuts
mixed integer rounding cut generation 0

multimipstart
use multiple mipstarts provided via gdx files

nodecuts
decide whether or not cutting planes are separated at the
nodes of the branch-and-bound tree

0

nodefileind
node storage file indicator 1

nodesel
node selection strategy 1

preslvnd
node presolve selector 0

probe
perform probing before solving a MIP 0

qpmakepsdind
adjust MIQP formulation to make the quadratic matrix
positive-semi-definite

1

relaxfixedinfeas
accept small infeasibilties in the solve of the fixed problem 0

repeatpresolve
reapply presolve at root after preprocessing -1

rinsheur
relaxation induced neighborhood search frequency 0

rltcuts
Reformulation Linearization Technique (RLT) cuts 0

solvefinal
switch to solve the problem with fixed discrete variables 1

sos1reform
automatic logarithmic reformulation of special ordered
sets of type 1 (SOS1)

0

sos2reform
automatic logarithmic reformulation of special ordered
sets of type 2 (SOS2)

0

startalg
MIP starting algorithm 0

strongcandlim
size of the candidates list for strong branching 10

strongitlim
limit on iterations per branch for strong branching 0

subalg
algorithm for subproblems 0

submipnodelim
limit on number of nodes in an RINS subMIP 500

submipscale
scale the problem matrix when CPLEX solves a subMIP
during MIP optimization

0

submipstartalg
starting algorithm for a subMIP of a MIP 0

submipsubalg
algorithm for subproblems of a subMIP of a MIP 0

5.11 CPLEX 1861

Option Description Default

symmetry
symmetry breaking cuts -1

upperobjstop
in a maximization MILP or MIQP, the solver will abort
the optimization process as soon as it finds a solution of
value greater than or equal to the specified value

1e75

.usercut
User cut activation 0

usercutpool
Indicator to use user cuts 0

varsel
variable selection strategy at each node 0

workeralgorithm
set method for optimizing benders subproblems 0

zerohalfcuts
zero-half cuts 0

5.11.5.8 MIP Limit Options

Option Description Default

aggcutlim
aggregation limit for cut generation 3

auxrootthreads
number of threads for auxiliary tasks at the root node 0

cutpass
maximum number of cutting plane passes 0

fraccand
candidate limit for generating Gomory fractional cuts 200

fracpass
maximum number of passes for generating Gomory fractional cuts 0

intsollim
maximum number of integer solutions large

nodelim
maximum number of nodes to solve GAMS NodLim

polishafterdettime
deterministic time before starting to polish a feasible solution 1.0e+75

polishafterepagap
absolute MIP gap before starting to polish a feasible solution 0.0

polishafterepgap
relative MIP gap before starting to polish a solution 0.0

polishafterintsol
MIP integer solutions to find before starting to polish a feasible
solution

2147483647

polishafternode
nodes to process before starting to polish a feasible solution 2147483647

polishaftertime
time before starting to polish a feasible solution 1.0e+75

probedettime
deterministic time spent probing 1.0e+75

probetime
time spent probing 1.0e+75

repairtries
try to repair infeasible MIP start 0

trelim
maximum space in memory for tree 1.0e+75

5.11.5.9 MIP Solution Pool Options

Option Description Default

.divflt
solution pool range filter coefficients 0

1862 Solver Manuals

Option Description Default

divfltlo
lower bound on diversity mindouble

divfltup
upper bound on diversity maxdouble

populatelim
limit of solutions generated for the solution pool by populate
method

20

readflt
reads Cplex solution pool filter file

solnpool
solution pool file name

solnpoolagap
absolute tolerance for the solutions in the solution pool 1.0e+75

solnpoolcapacity
limits of solutions kept in the solution pool 2100000000

solnpoolgap
relative tolerance for the solutions in the solution pool 1.0e+75

solnpoolintensity
solution pool intensity for ability to produce multiple solutions 0

solnpoolmerge
solution pool file name for merged solutions

solnpoolnumsym
maximum number of variable symbols when writing merged solu-
tions

10

solnpoolpop
methods to populate the solution pool 1

solnpoolpopdel
file with solution numbers to delete from the solution pool

solnpoolpoprepeat
method to decide if populating the solution should be repeated

solnpoolprefix
file name prefix for GDX solution files soln

solnpoolreplace
strategy for replacing a solution in the solution pool 0

5.11.5.10 MIP Tolerance Options

Option Description Default

bendersfeascuttol
Tolerance for whether a feasibility cut has been violated in Benders
decomposition

1.0e-06

bendersoptcuttol
Tolerance for optimality cuts in Benders decomposition 1.0e-06

epagap absolute stopping tolerance GAMS OptCA

epgap relative stopping tolerance GAMS OptCR

epint
integrality tolerance 1.0e-05

eplin
degree of tolerance used in linearization 0.001

objdif
overrides GAMS Cheat parameter 0.0

relobjdif
relative cheat parameter 0.0

5.11.5.11 Output Options

Option Description Default

bardisplay
progress display level 1

5.11 CPLEX 1863

Option Description Default

clonelog
enable clone logs 0

exactkappa
report exact condition number in quality report 0

mipdisplay
progress display level 4

mipinterval
progress display interval 0

miptrace
filename of MIP trace file

mpslongnum
MPS file format precision of numeric output 1

netdisplay
network display level 2

quality
write solution quality statistics 0

siftdisplay
sifting display level 1

simdisplay
simplex display level 1

writeannotation
produce a Cplex annotation file

writebas
produce a Cplex basis file

writeflt
produce a Cplex solution pool filter file

writelp
produce a Cplex LP file

writemps
produce a Cplex MPS file

writemst
produce a Cplex mst file

writeord
produce a Cplex ord file

writeparam
produce a Cplex parameter file with all active options

writepre
produce a Cplex LP/MPS/SAV file of the presolved problem

writeprob
produce a Cplex problem file and inferrs the type from the extension

writesav
produce a Cplex binary problem file

5.11.5.12 BCH Facility Options

Option Description Default

usercallparmfile
Command-line parameter include file used in GAMS command-line
calls triggered by BCH

usercutcall
the GAMS command line to call the cut generator

usercutfirst
calls the cut generator for the first n nodes 10

usercutfreq
determines the frequency of the cut generator model calls 10

usercutinterval
determines the interval when to apply the multiplier for the fre-
quency of the cut generator model calls

100

usercutmult
determines the multiplier for the frequency of the cut generator
model calls

2

usercutnewint
calls the cut generator if the solver found a new integer feasible
solution

1

usergdxin
the name of the GDX file read back into Cplex bchin.gdx

1864 Solver Manuals

Option Description Default

usergdxname
the name of the GDX file exported from the solver with the solution
at the node

bchout.gdx

usergdxnameinc
the name of the GDX file exported from the solver with the incum-
bent solution

bchout i.gdx

usergdxprefix
prefixes usergdxin, usergdxname, and usergdxnameinc

usergdxsol
the name of the GDX file exported by Cplex to store the solution
of extra columns

bchsol.gdx

userheurcall
the GAMS command line to call the heuristic

userheurfirst
calls the heuristic for the first n nodes 10

userheurfreq
determines the frequency of the heuristic model calls 10

userheurinterval
determines the interval when to apply the multiplier for the fre-
quency of the heuristic model calls

100

userheurmult
determines the multiplier for the frequency of the heuristic model
calls

2

userheurnewint
calls the heuristic if the solver found a new integer feasible solution 1

userheurobjfirst
Similar to UserHeurFirst but only calls the heuristic if the relaxed
objective promises an improvement

0

userincbcall
the GAMS command line to call the incumbent checking program

userincbicall
the GAMS command line to call the incumbent reporting program

userjobid
postfixes lf, o on call adds –userjobid to the call. Postfixes gdxname,
gdxnameinc and gdxin

userkeep
calls gamskeep instead of gams 0

userlazyconcall
the GAMS command line to call the lazy constraint generator

5.11.5.13 The GAMS/Cplex Options File

The GAMS/Cplex options file consists of one option or comment per line. An asterisk (∗) at the beginning
of a line causes the entire line to be ignored. Otherwise, the line will be interpreted as an option name
and value separated by any amount of white space (blanks or tabs).

Following is an example options file cplex.opt.

scaind 1

simdisplay 2

It will cause Cplex to use a more aggressive scaling method than the default. The iteration log will have
an entry for each iteration instead of an entry for each refactorization.

5.11.6 Special Notes

5.11.6.1 Physical Memory Limitations

For the sake of computational speed, Cplex should use only available physical memory rather than virtual
or paged memory. When Cplex recognizes that a limited amount of memory is available it automatically
makes algorithmic adjustments to compensate. These adjustments almost always reduce optimization

5.11 CPLEX 1865

speed. Learning to recognize when these automatic adjustments occur can help to determine when
additional memory should be added to the computer.

On virtual memory systems, if memory paging to disk is observed, a considerable performance penalty is
incurred. Increasing available memory will speed the solution process dramatically. Also consider option
MemoryEmphasis to conserve memory where possible.

When solving LPs, the Simplex algorithm (lpmethod 1 or 2) usually consumes less memory than the
Barrier algorithm (lpmethod 2). During the Simplex algorithm, Cplex performs an operation called
refactorization at a frequency determined by the ReInv option setting. The longer Cplex works between
refactorizations, the greater the amount of memory required to complete each iteration. Therefore, one
means for conserving memory is to increase the refactorization frequency. Since refactorization is an
expensive operation, increasing the refactorization frequency by reducing the ReInv option setting generally
will slow performance. Cplex will automatically increase the refactorization frequency if it encounters low
memory availability. This can be seen by watching the iteration log. The default log reports problem
status at every refactorization. If the number of iterations between iteration log entries is decreasing,
Cplex is increasing the refactorization frequency. Since Cplex might increase the frequency to once per
iteration, the impact on performance can be dramatic. Providing additional memory should be beneficial.

GAMS/Cplex also provides the option FreeGAMSModel to free some memory allocated by the GAMS
link and making it available to Cplex. This only works when the GAMS parameter solveLink is set 0
which should be always done when memory is tight because GAMS completely vacates memory.

The Threads options also has a significant impact on memory consumption. The concurrent solvers keep
multiple copies of the problem in memory which double or even triples the amount of memory consumed.
If memory tight, set the Threads parameter to 1.

Not loading GAMS names into CPLEX can also help in saving some memory. This can be done by setting
the model attribute dictFile or by using CPLEX option names.

5.11.6.2 Using Special Ordered Sets

For some models a special structure can be exploited. GAMS allows you to declare SOS1 and SOS2
variables (Special Ordered Sets of type 1 and 2).

In Cplex the definition for SOS1 variables is:

• A set of variables for which at most one variable may be non-zero.

The definition for SOS2 variables is:

• A set of variables for which at most two variables may be non-zero. If two variables are non-zero,
they must be adjacent in the set.

5.11.6.3 Using Semi-Continuous and Semi-Integer Variables

GAMS allows the declaration of semi-continuous and semi-integer variables. These variable types are
directly supported by GAMS/Cplex. For example:

SemiCont Variable x;

x.lo = 3.2;

x.up = 8.7;

SemiInt Variable y;

y.lo = 5;

y.up = 10;

Variable x will be allowed to take on a value of 0.0 or any value between 3.2 and 8.7. Variable y will be
allowed to take on a value of 0 or any integral value between 5 and 10.

1866 Solver Manuals

5.11.6.4 Running Out of Memory for MIP Problems

The most common difficulty when solving MIP problems is running out of memory. This problem arises
when the branch and bound tree becomes so large that insufficient memory is available to solve an LP
subproblem. As memory gets tight, you may observe frequent warning messages while Cplex attempts to
navigate through various operations within limited memory. If a solution is not found shortly the solution
process will be terminated with an unrecoverable integer failure message.

The tree information saved in memory can be substantial. Cplex saves a basis for every unexplored node.
When utilizing the best bound method of node selection, the list of such nodes can become very long for
large or difficult problems. How large the unexplored node list can become is entirely dependent on the
actual amount of physical memory available and the actual size of the problem. Certainly increasing the
amount of memory available extends the problem solving capability. Unfortunately, once a problem has
failed because of insufficient memory, you can neither project how much further the process needed to go
nor how much memory would be required to ultimately solve it.

Memory requirements can be limited by using the WorkMem, option with the NodeFileInd option. Setting
NodeFileInd to 2 or 3 will cause Cplex to store portions of the branch and bound tree on disk whenever it
grows to larger than the size specified by option WorkMem. That size should be set to something less
than the amount of physical memory available.

Another approach is to modify the solution process to utilize less memory.

• Set option NodeSel to use a best estimate strategy or, more drastically a depth-first-search. Depth
first search rarely generates a large unexplored node list since Cplex will be diving deep into the
branch and bound tree rather than jumping around within it.

• Set option VarSel to use strong branching. Strong branching spends extra computation time at each
node to choose a better branching variable. As a result it generates a smaller tree. It is often faster
overall, as well.

• On some problems, a large number of cuts will be generated without a correspondingly large benefit
in solution speed. Cut generation can be turned off using option Cuts.

• Use the Simplex algorithm instead of the Barrier algorithm using options StartAlg and SubAlg.

• Use option solvefinal to avoid solving the final LP.

See also Physical Memory Limitations.

5.11.6.5 Failing to Prove Integer Optimality

One frustrating aspect of the branch and bound technique for solving MIP problems is that the solution
process can continue long after the best solution has been found. Remember that the branch and bound
tree may be as large as 2n nodes, where n equals the number of binary variables. A problem containing
only 30 binary variables could produce a tree having over one billion nodes! If no other stopping criteria
have been set, the process might continue ad infinitum until the search is complete or your computer's
memory is exhausted.

In general you should set at least one limit on the optimization process before beginning an optimization.
Setting limits ensures that an exhaustive tree search will terminate in reasonable time. Once terminated,
you can rerun the problem using some different option settings.

5.11 CPLEX 1867

5.11.6.6 Starting from a MIP Solution

You can provide a known solution (for example, from a MIP problem previously solved or from your
knowledge of the problem) to serve as the first integer solution. When you provide such a starting solution,
you may invoke relaxation induced neighborhood search (RINS heuristic) or solution polishing to improve
the given solution. This first integer solution may include continuous and discrete variables of various
types, such as semi-continuous variables or special ordered sets.

If you specify values for all discrete variables, GAMS/CPLEX will check the validity of the values as an
integer-feasible solution; if you specify values for only a portion of the discrete variables, GAMS/CPLEX
will attempt to fill in the missing values in a way that leads to an integer-feasible solution. If the specified
values do not lead directly to an integer-feasible solution, GAMS/CPLEX will apply a quick heuristic to
try to repair the MIP Start. The number of times that GAMS/CPLEX applies the heuristic is controlled
by the repair tries parameter (RepairTries). If this process succeeds, the solution will be treated as an
integer solution of the current problem.

A MIP start will only be used by GAMS/CPLEX if the MipStart parameter is set to 1. The starting
values must be set via the .L variable attribute in the GAMS model before the solve statement.

5.11.6.7 Using the Feasibility Relaxation

The feasibility relaxation is enabled by the FeasOpt parameter in a CPLEX solver option file.

With the FeasOpt option CPLEX accepts an infeasible model and selectively relaxes the bounds and
constraints in a way that minimizes a weighted penalty function. In essence, the feasible relaxation tries
to suggest the least change that would achieve feasibility. It returns an infeasible solution to GAMS and
marks the relaxations of bounds and constraints with the INFES marker in the solution section of the
listing file.

By default all equations are candidates for relaxation and weighted equally but none of the variables can
be relaxed. This default behavior can be modified by assigning relaxation preferences to variable bounds
and constraints. These preferences can be conveniently specified with the dot option FeasPref. A negative
or zero preference means that the associated bound or constraint is not to be modified. The weighted
penalty function is constructed from these preferences. The larger the preference, the more likely it will
be that a given bound or constraint will be relaxed. However, it is not necessary to specify a unique
preference for each bound or range. In fact, it is conventional to use only the values 0 (zero) and 1 (one)
except when your knowledge of the problem suggests assigning explicit preferences.

Preferences can be specified through a CPLEX solver option file. The syntax is:

(variable or equation) .feaspref (value)

For example, suppose we have a GAMS declaration:

Set i /i1*i5/;

Set j /j2*j4/;

variable v(i,j); equation e(i,j);

Then, the relaxation preference in the cplex.opt file can be specified by:

feasopt 1

v.feaspref 1

v.feaspref(’i1’,*) 2

v.feaspref(’i1’,’j2’) 0

e.feaspref(*,’j1’) 0

e.feaspref(’i5’,’j4’) 2

1868 Solver Manuals

First we turn the feasible relaxation on. Furthermore, we specify that all variables v(i,j) have preference
of 1, except variables over set element i1, which have a preference of 2. The variable over set element i1
and j2 has preference 0. Note that preferences are assigned in a procedural fashion so that preferences
assigned later overwrite previous preferences. The same syntax applies for assigning preferences to
equations as demonstrated above. If you want to assign a preference to all variables or equations in a
model, use the keywords variables or equations instead of the individual variable and equations names
(e.g. variables.feaspref 1).

The parameter FeasOptMode allows different strategies in finding feasible relaxation in one or two phases.
In its first phase, it attempts to minimize its relaxation of the infeasible model. That is, it attempts to
find a feasible solution that requires minimal change. In its second phase, it finds an optimal solution
(using the original objective) among those that require only as much relaxation as it found necessary in
the first phase. Values of the parameter FeasOptMode indicate two aspects: (1) whether to stop in phase
one or continue to phase two and (2) how to measure the relaxation (as a sum of required relaxations;
as the number of constraints and bounds required to be relaxed; as a sum of the squares of required
relaxations). Please check description of parameters FeasOpt and FeasOptMode for details. Also check
example models feasopt∗ in the GAMS Model library.

5.11.6.8 Sensitivity Analysis

Sensitivity analysis (post-optimality analysis) in linear programming allows one to find out more about
an optimal solution for a problem. In particular, objective ranging and right-hand-side ranging give
information about how much an objective coefficient or a right-hand-side value can change without
changing the optimal basis. In other words, they give information about how sensitive the optimal basis is
to a change in the objective function or a right-hand-side.

Although not so much used for practical large scale problems and not available for mixed-integer or
nonlinear models, ranging information can still be of use in some circumstances. This section describes
how to produce ranging information with GAMS/CPLEX.

To obtain objective ranging information for a particular variable, the name of the GAMS variable should
be specified with the ObjRng option. For example, to obtain ranging information for a variable prod, add
the line

objrng prod

to a CPLEX options file. The ObjRng option can be repeated to specify ranging for more than one
variable. To specify ranging for all variables, use the keyword all, i.e.,

objrng all

Similarly, to obtain right-hand-side ranging information for a particular equation, the name of the equation
should be specified with the RhsRng option. Also this option can be repeated to obtain right-hand-side
ranging information for several equations. To specify ranging for all equations use the keyword all.

As an example, consider solving the model [TRNSPORT] from the GAMS model library with CPLEX
and options file

objrng all

rhsrng all

This gives the following table in the listing file:

5.11 CPLEX 1869

EQUATION NAME LOWER CURRENT UPPER

------------- ----- ------- -----

cost -INF 0 +INF

supply(seattle) 300 350 625

supply(san-diego) 550 600 +INF

demand(new-york) 50 325 375

demand(chicago) 25 300 350

demand(topeka) 0 275 325

VARIABLE NAME LOWER CURRENT UPPER

------------- ----- ------- -----

x(seattle, new-york) 0.216 0.225 0.225

x(seattle, chicago) 0 0.153 0.162

x(seattle, topeka) 0.126 0.162 +INF

x(san-diego, new-york) 0.225 0.225 0.234

x(san-diego, chicago) 0.153 0.162 +INF

x(san-diego, topeka) 0 0.126 0.162

z -INF 1 +INF

If obtaining ranging information in a listing file is not sufficient, option RngRestart can be used to specify
a file to which to write ranging information in GAMS syntax. For example, using an options file containing

rhsrng supply

rhsrng demand

rngrestart ranges.inc

will result in a file named ranges.inc being written with the following content:

* Include file with ranging information

* The set RNGLIM /LO,UP/ is assumed to be

* declared.

PARAMETER supplyRNG(i,RNGLIM) /

seattle.LO 300

seattle.UP 625

san-diego.LO 550

san-diego.UP +INF

/;

PARAMETER demandRNG(j,RNGLIM) /

new-york.LO 50

new-york.UP 375

chicago.LO 25

chicago.UP 350

topeka.LO 0

topeka.UP 325

/;

For each equation specified, the ranging information is stored in a newly declared corresponding GAMS
parameter. The name of the parameter is based on the name of the equation, but with RNG appended.
The user is responsible for ensuring that the new name does not exceed the maximum symbol name length
of GAMS identifiers. Further, the domain list of the new parameter is the same as the domain list for
the corresponding equation with an additional dimension added to the end. The user is responsible for
ensuring that the new parameter does not exceed the maximum number of index positions.

1870 Solver Manuals

5.11.7 GAMS/Cplex Log File

Cplex reports its progress by writing to the GAMS log file as the problem solves. Normally the GAMS
log file is directed to the computer screen.

The log file shows statistics about the presolve and continues with an iteration log.

For the primal simplex algorithm, the iteration log starts with the iteration number followed by the scaled
infeasibility value. Once feasibility has been attained, the objective function value is listed instead. At
the default value for option simdisplay there is a log line for each refactorization. The screen log has the
following appearance:

Tried aggregator 1 time.

LP Presolve eliminated 2 rows and 39 columns.

Aggregator did 30 substitutions.

Reduced LP has 243 rows, 335 columns, and 3912 nonzeros.

Presolve time = 0.01 sec.

Using conservative initial basis.

Iteration log . . .

Iteration: 1 Scaled infeas = 193998.067174

Iteration: 29 Objective = -3484.286415

Switched to devex.

Iteration: 98 Objective = -1852.931117

Iteration: 166 Objective = -349.706562

Optimal solution found.

Objective : 901.161538

The iteration log for the dual simplex algorithm is similar, but the dual infeasibility and dual objective
are reported instead of the corresponding primal values:

Tried aggregator 1 time.

LP Presolve eliminated 2 rows and 39 columns.

Aggregator did 30 substitutions.

Reduced LP has 243 rows, 335 columns, and 3912 nonzeros.

Presolve time = 0.01 sec.

Iteration log . . .

Iteration: 1 Scaled dual infeas = 3.890823

Iteration: 53 Dual objective = 4844.392441

Iteration: 114 Dual objective = 1794.360714

Iteration: 176 Dual objective = 1120.183325

Iteration: 238 Dual objective = 915.143030

Removing shift (1).

Optimal solution found.

Objective : 901.161538

The log for the network algorithm adds statistics about the extracted network and a log of the network
iterations. The optimization is finished by one of the simplex algorithms and an iteration log for that is
produced as well.

5.11 CPLEX 1871

Tried aggregator 1 time.

LP Presolve eliminated 2 rows and 39 columns.

Aggregator did 30 substitutions.

Reduced LP has 243 rows, 335 columns, and 3912 nonzeros.

Presolve time = 0.01 sec.

Extracted network with 25 nodes and 116 arcs.

Extraction time = -0.00 sec.

Iteration log . . .

Iteration: 0 Infeasibility = 1232.378800 (-1.32326e+12)

Network - Optimal: Objective = 1.5716820779e+03

Network time = 0.01 sec. Iterations = 26 (24)

Iteration log . . .

Iteration: 1 Scaled infeas = 212696.154729

Iteration: 62 Scaled infeas = 10020.401232

Iteration: 142 Scaled infeas = 4985.200129

Switched to devex.

Iteration: 217 Objective = -3883.782587

Iteration: 291 Objective = -1423.126582

Optimal solution found.

Objective : 901.161538

The log for the barrier algorithm adds various algorithm specific statistics about the problem before
starting the iteration log. The iteration log includes columns for primal and dual objective values and
infeasibility values. A special log follows for the crossover to a basic solution.

Tried aggregator 1 time.

LP Presolve eliminated 2 rows and 39 columns.

Aggregator did 30 substitutions.

Reduced LP has 243 rows, 335 columns, and 3912 nonzeros.

Presolve time = 0.02 sec.

Number of nonzeros in lower triangle of A*A’ = 6545

Using Approximate Minimum Degree ordering

Total time for automatic ordering = 0.01 sec.

Summary statistics for Cholesky factor:

Rows in Factor = 243

Integer space required = 578

Total non-zeros in factor = 8491

Total FP ops to factor = 410889

Itn Primal Obj Dual Obj Prim Inf Upper Inf Dual Inf

0 -1.2826603e+06 7.4700787e+08 2.25e+10 6.13e+06 4.00e+05

1 -2.6426195e+05 6.3552653e+08 4.58e+09 1.25e+06 1.35e+05

2 -9.9117854e+04 4.1669756e+08 1.66e+09 4.52e+05 3.93e+04

3 -2.6624468e+04 2.1507018e+08 3.80e+08 1.04e+05 1.20e+04

4 -1.2104334e+04 7.8532364e+07 9.69e+07 2.65e+04 2.52e+03

5 -9.5217661e+03 4.2663811e+07 2.81e+07 7.67e+03 9.92e+02

6 -8.6929410e+03 1.4134077e+07 4.94e+06 1.35e+03 2.16e+02

7 -8.3726267e+03 3.1619431e+06 3.13e-07 6.84e-12 3.72e+01

8 -8.2962559e+03 3.3985844e+03 1.43e-08 5.60e-12 3.98e-02

9 -3.8181279e+03 2.6166059e+03 1.58e-08 9.37e-12 2.50e-02

10 -5.1366439e+03 2.8102021e+03 3.90e-06 7.34e-12 1.78e-02

11 -1.9771576e+03 1.5960442e+03 3.43e-06 7.02e-12 3.81e-03

1872 Solver Manuals

12 -4.3346261e+02 8.3443795e+02 4.99e-07 1.22e-11 7.93e-04

13 1.2882968e+02 5.2138155e+02 2.22e-07 1.45e-11 8.72e-04

14 5.0418542e+02 5.3676806e+02 1.45e-07 1.26e-11 7.93e-04

15 2.4951043e+02 6.5911879e+02 1.73e-07 1.43e-11 5.33e-04

16 2.4666057e+02 7.6179064e+02 7.83e-06 2.17e-11 3.15e-04

17 4.6820025e+02 8.1319322e+02 4.75e-06 1.78e-11 2.57e-04

18 5.6081604e+02 7.9608915e+02 3.09e-06 1.98e-11 2.89e-04

19 6.4517294e+02 7.7729659e+02 1.61e-06 1.27e-11 3.29e-04

20 7.9603053e+02 7.8584631e+02 5.91e-07 1.91e-11 3.00e-04

21 8.5871436e+02 8.0198336e+02 1.32e-07 1.46e-11 2.57e-04

22 8.8146686e+02 8.1244367e+02 1.46e-07 1.84e-11 2.29e-04

23 8.8327998e+02 8.3544569e+02 1.44e-07 1.96e-11 1.71e-04

24 8.8595062e+02 8.4926550e+02 1.30e-07 2.85e-11 1.35e-04

25 8.9780584e+02 8.6318712e+02 1.60e-07 1.08e-11 9.89e-05

26 8.9940069e+02 8.9108502e+02 1.78e-07 1.07e-11 2.62e-05

27 8.9979049e+02 8.9138752e+02 5.14e-07 1.88e-11 2.54e-05

28 8.9979401e+02 8.9139850e+02 5.13e-07 2.18e-11 2.54e-05

29 9.0067378e+02 8.9385969e+02 2.45e-07 1.46e-11 1.90e-05

30 9.0112149e+02 8.9746581e+02 2.12e-07 1.71e-11 9.61e-06

31 9.0113610e+02 8.9837069e+02 2.11e-07 1.31e-11 7.40e-06

32 9.0113661e+02 8.9982723e+02 1.90e-07 2.12e-11 3.53e-06

33 9.0115644e+02 9.0088083e+02 2.92e-07 1.27e-11 7.35e-07

34 9.0116131e+02 9.0116262e+02 3.07e-07 1.81e-11 3.13e-09

35 9.0116154e+02 9.0116154e+02 4.85e-07 1.69e-11 9.72e-13

Barrier time = 0.39 sec.

Primal crossover.

Primal: Fixing 13 variables.

12 PMoves: Infeasibility 1.97677059e-06 Objective 9.01161542e+02

0 PMoves: Infeasibility 0.00000000e+00 Objective 9.01161540e+02

Primal: Pushed 1, exchanged 12.

Dual: Fixing 3 variables.

2 DMoves: Infeasibility 1.28422758e-36 Objective 9.01161540e+02

0 DMoves: Infeasibility 1.28422758e-36 Objective 9.01161540e+02

Dual: Pushed 3, exchanged 0.

Using devex.

Total crossover time = 0.02 sec.

Optimal solution found.

Objective : 901.161540

For MIP problems, during the branch and bound search, Cplex reports the node number, the number of
nodes left, the value of the Objective function, the number of integer variables that have fractional values,
the current best integer solution, the best relaxed solution at a node and an iteration count. The last
column show the current optimality gap as a percentage. CPLEX logs an asterisk (∗) in the left-most
column for any node where it finds an integer-feasible solution or new incumbent. The + denotes an
incumbent generated by the heuristic.

Tried aggregator 1 time.

MIP Presolve eliminated 1 rows and 1 columns.

Reduced MIP has 99 rows, 76 columns, and 419 nonzeros.

Presolve time = 0.00 sec.

Iteration log . . .

Iteration: 1 Dual objective = 0.000000

Root relaxation solution time = 0.01 sec.

5.11 CPLEX 1873

Nodes Cuts/

Node Left Objective IInf Best Integer Best Node ItCnt Gap

0 0 0.0000 24 0.0000 40

* 0+ 0 6.0000 0 6.0000 0.0000 40 100.00%

* 50+ 50 4.0000 0 4.0000 0.0000 691 100.00%

100 99 2.0000 15 4.0000 0.4000 1448 90.00%

Fixing integer variables, and solving final LP..

Tried aggregator 1 time.

LP Presolve eliminated 100 rows and 77 columns.

All rows and columns eliminated.

Presolve time = 0.00 sec.

Solution satisfies tolerances.

MIP Solution : 4.000000 (2650 iterations, 185 nodes)

Final LP : 4.000000 (0 iterations)

Best integer solution possible : 1.000000

Absolute gap : 3

Relative gap : 1.5

5.11.8 Detailed Descriptions of CPLEX Options

These options should be entered in the options file after setting the GAMS ModelName.OptFile parameter
to 1. The name of the options file is cplex.opt. The options file is case insensitive and the keywords
should be given in full.

advind (integer): advanced basis use ←↩

Use an Advanced Basis. GAMS/Cplex will automatically use an advanced basis from a
previous solve statement. The GAMS BRatio option can be used to specify when not to use an
advanced basis. The Cplex option AdvInd can be used to ignore a basis passed on by GAMS
(it overrides BRatio).

Default: determined by GAMS Bratio

value meaning

0 Do not use advanced basis

1 Use advanced basis if available

2 Crash an advanced basis if available (use basis with presolve)

aggcutlim (integer): aggregation limit for cut generation ←↩

Limits the number of constraints that can be aggregated for generating flow cover and mixed
integer rounding cuts. For most purposes, the default will be satisfactory.

Default: 3

aggfill (integer): aggregator fill parameter ←↩

Aggregator fill limit. If the net result of a single substitution is more non-zeros than the setting
of the AggFill parameter, the substitution will not be made.

Default: 10

1874 Solver Manuals

aggind (integer): aggregator on/off ←↩

This option, when set to a nonzero value, will cause the Cplex aggregator to use substitution
where possible to reduce the number of rows and columns in the problem. If set to a positive
value, the aggregator will be applied the specified number of times, or until no more reductions
are possible. At the default value of -1, the aggregator is applied once for linear programs and
an unlimited number of times for mixed integer problems.

Default: -1

value meaning

-1 Once for LP, unlimited for MIP

0 Do not use

>0 Aggregator will be applied the specified number of times

auxrootthreads (integer): number of threads for auxiliary tasks at the root node ←↩

Partitions the number of threads for CPLEX to use for auxiliary tasks while it solves the root
node of a problem. On a system that offers N processors or N global threads, if you set this
parameter to n, where N>n>0 then CPLEX uses at most n threads for auxiliary tasks and at
most N-n threads to solve the root node. See also the parameter Threads.

You cannot set n, the value of this parameter, to a value greater than or equal to N, the
number of processors or global threads offered on your system. In other words, when you
set this parameter to a value other than its default, that value must be strictly less than the
number of processors or global threads on your system. Independent of the auxiliary root
threads parameter, CPLEX will never use more threads than those defined by the global
default thread count parameter. CPLEX also makes sure that there is at least one thread
available for the main root tasks. For example, if you set the global threads parameter to 3
and the auxiliary root threads parameter to 4, CPLEX still uses only two threads for auxiliary
root tasks in order to keep one thread available for the main root tasks. At its default value,
0 (zero), CPLEX automatically chooses the number of threads to use for the primary root
tasks and for auxiliary tasks. The number of threads that CPLEX uses to solve the root
node depends on several factors: 1) the number of processors available on your system; 2) the
number of threads available to your application on your system (for example, as a result of
limited resources or competition with other applications); 3) the value of the global default
thread count parameter Threads.

Default: 0

value meaning

-1 Off: do not use additional threads for auxiliary tasks

0 Automatic: let CPLEX choose the number of threads to use

N>n>0 Use n threads for auxiliary root tasks

baralg (integer): algorithm selection ←↩

Selects which barrier algorithm to use. The default setting of 0 uses the infeasibility-estimate
start algorithm for LPs and MIP subproblems and the standard barrier algorithm, option
3, for other cases. The standard barrier algorithm is almost always fastest. The alternative
algorithms, options 1 and 2, may eliminate numerical difficulties related to infeasibility, but
will generally be slower.

Default: 0

5.11 CPLEX 1875

value meaning

0 Same as 1 for LPs and MIP subproblems, 3 otherwise

1 Infeasibility-estimate start

2 Infeasibility-constant start

3 standard barrier algorithm

barcolnz (integer): dense column handling ←↩

Determines whether or not columns are considered dense for special barrier algorithm handling.
At the default setting of 0, this parameter is determined dynamically. Values above 0 specify
the number of entries in columns to be considered as dense.

Default: 0

barcrossalg (integer): barrier crossover method ←↩

Selects which crossover method is used at the end of a barrier optimization. To turn off
crossover set SolutionType to 2.

Default: 0

value meaning

0 Automatic

1 Primal crossover

2 Dual crossover

bardisplay (integer): progress display level ←↩

Determines the level of progress information to be displayed while the barrier method is
running.

Default: 1

value meaning

0 No progress information

1 Display normal information

2 Display diagnostic information

barepcomp (real): convergence tolerance ←↩

Determines the tolerance on complementarity for convergence of the barrier algorithm. The
algorithm will terminate with an optimal solution if the relative complementarity is smaller
than this value.

Default: 1.0e-08

bargrowth (real): unbounded face detection ←↩

Used by the barrier algorithm to detect unbounded optimal faces. At higher values, the barrier
algorithm will be less likely to conclude that the problem has an unbounded optimal face, but
more likely to have numerical difficulties if the problem does have an unbounded face.

Default: 1.0e+12

1876 Solver Manuals

baritlim (integer): iteration limit ←↩

Determines the maximum number of iterations for the barrier algorithm. When set to 0,
no Barrier iterations occur, but problem setup occurs and information about the setup is
displayed (such as Cholesky factorization information). When left at the default value, there
is no explicit limit on the number of iterations.

Default: large

barmaxcor (integer): maximum correction limit ←↩

Specifies the maximum number of centering corrections that should be done on each iteration.
Larger values may improve the numerical performance of the barrier algorithm at the expense
of computation time. The default of -1 means the number is automatically determined.

Default: -1

barobjrng (real): maximum objective function ←↩

Determines the maximum absolute value of the objective function. The barrier algorithm
looks at this limit to detect unbounded problems.

Default: 1.0e+20

barorder (integer): row ordering algorithm selection ←↩

Determines the ordering algorithm to be used by the barrier method. By default, Cplex
attempts to choose the most effective of the available alternatives. Higher numbers tend to
favor better orderings at the expense of longer ordering run times. The automatic option
includes additional processing and may yield results that differ from the explicit choice.

Default: 0

value meaning

0 Automatic

1 Approximate Minimum Degree (AMD)

2 Approximate Minimum Fill (AMF)

3 Nested Dissection (ND)

barqcpepcomp (real): convergence tolerance for the barrier optimizer for QCPs ←↩

Range: [1.0e-12, 1.0e+75]

Default: 1.0e-07

barstartalg (integer): barrier starting point algorithm ←↩

This option sets the algorithm to be used to compute the initial starting point for the barrier
solver. The default starting point is satisfactory for most problems. Since the default starting
point is tuned for primal problems, using the other starting points may be worthwhile in
conjunction with the PreDual parameter.

Default: 1

5.11 CPLEX 1877

value meaning

1 default primal, dual is 0

2 default primal, estimate dual

3 primal average, dual is 0

4 primal average, estimate dual

bbinterval (integer): best bound interval ←↩

Set interval for selecting a best bound node when doing a best estimate search. Active only
when NodeSel is 2 (best estimate). Decreasing this interval may be useful when best estimate is
finding good solutions but making little progress in moving the bound. Increasing this interval
may help when the best estimate node selection is not finding any good integer solutions.
Setting the interval to 1 is equivalent to setting NodeSel to 1.

Default: 7

bendersfeascuttol (real): Tolerance for whether a feasibility cut has been violated in Benders decompo-
sition ←↩

Default: 1.0e-06

bendersoptcuttol (real): Tolerance for optimality cuts in Benders decomposition ←↩

Default: 1.0e-06

.benderspartition (integer): Benders partition ←↩

Default: 0

benderspartitioninstage (boolean): Benders partition through stage variable suffix ←↩

Default: 0

bendersstrategy (integer): Benders decomposition algorithm as a strategy ←↩

Given a formulation of a problem, CPLEX can decompose the model into a single master and
(possibly multiple) subproblems. To do so, CPLEX can make use of annotations that you
supply for your model. The strategy can be applied to mixed-integer linear programs (MILP).
For certain types of problems, this approach offers significant performance improvements as
subproblems can be solved in parallel.

For mixed integer programs (MIP), under certain conditions, CPLEX can apply Benders
algorithm to improve the search to find more feasible solutions more quickly.

Default: 0

value meaning

-1 Off
Execute conventional branch and bound; ignore any Benders annotations. That
is, do not use Benders algorithm even if a Benders partition of the current model
is present

1878 Solver Manuals

value meaning

0 Automatic
If annotations specifying a Benders partition of the current model are available,
CPLEX attempts to decompose the model. CPLEX uses the master as given by the
annotations, and attempts to partition the subproblems further, if possible, before
applying Benders algorithm to solve the model. If the user supplied annotations,
but the annotations supplied do not lead to a complete decomposition into master
and disjoint subproblems (that is, if the annotations are wrong in that sense),
CPLEX produces an error.

1 Apply user annotations
CPLEX applies Benders algorithm to a decomposition based on annotations
supplied by the user. If no annotations to decompose the model are available,
this setting produces an error. If the user supplies annotations, but the supplied
annotations do not lead to a complete partition of the original model into disjoint
master and subproblems, then this setting produces an error.

2 Apply user annotations with automatic support for subproblems
CPLEX accepts the master as given and attempts to decompose the remaining
elements into disjoint subproblems to assign to workers. It then solves the
Benders decomposition of the model. If no annotations to decompose the model
are available, this setting produces an error. If the user supplies annotations, but
the supplied annotations do not lead to a complete partition of the original model
into disjoint master and subproblems, then this setting produces an error.

3 Apply automatic decomposition
CPLEX ignores any annotation supplied with the model; CPLEX applies presolve;
CPLEX then automatically generates a Benders partition, putting integer variables
in master and continuous linear variables into disjoint subproblems. CPLEX
then solves the Benders decomposition of the model. If the problem is a strictly
linear program (LP), that is, there are no integer-constrained variables to put into
master, then CPLEX reports an error. If the problem is a mixed integer linear
program (MILP) where all variables are integer-constrained, (that is, there are no
continuous linear variables to decompose into disjoint subproblems) then CPLEX
reports an error.

bndrng (string): do lower / upper bound ranging ←↩

Calculate sensitivity ranges for the specified GAMS lower and upper bounds. Unlike most
options, BNDRng can be repeated multiple times in the options file. Sensitivity range information
will be produced for each GAMS lower and upper bound named. Specifying all will cause
range information to be produced for all lower and upper bounds. Range information will
be printed to the beginning of the solution listing in the GAMS listing file unless option
RngRestart is specified.

bndstrenind (integer): bound strengthening ←↩

Use bound strengthening when solving mixed integer problems. Bound strengthening tightens
the bounds on variables, perhaps to the point where the variable can be fixed and thus removed
from consideration during the branch and bound algorithm. This reduction is usually beneficial,
but occasionally, due to its iterative nature, takes a long time.

Default: -1

value meaning

-1 Determine automatically

0 Don't use bound strengthening

1 Use bound strengthening

5.11 CPLEX 1879

bqpcuts (integer): boolean quadric polytope cuts for nonconvex QP or MIQP solved to global optimality
←↩

Default: 0

value meaning

-1 Do not generate BQP cuts

0 Determined automatically

1 Generate BQP cuts moderately

2 Generate BQP cuts aggressively

3 Generate BQP cuts very aggressively

brdir (integer): set branching direction ←↩

Used to decide which branch (up or down) should be taken first at each node.

Default: 0

value meaning

-1 Down branch selected first

0 Algorithm decides

1 Up branch selected first

bttol (real): backtracking limit ←↩

This option controls how often backtracking is done during the branching process. At each
node, Cplex compares the objective function value or estimated integer objective value to
these values at parent nodes; the value of the bttol parameter dictates how much relative
degradation is tolerated before backtracking. Lower values tend to increase the amount of
backtracking, making the search more of a pure best-bound search. Higher values tend to
decrease the amount of backtracking, making the search more of a depth-first search. This
parameter is used only once a first integer solution is found or when a cutoff has been specified.

Range: [0.0, 1.0]

Default: 1.0

calcqcpduals (integer): calculate the dual values of a quadratically constrained problem ←↩

Default: 1

value meaning

0 Do not calculate dual values

1 Calculate dual values as long as it does not interfere with presolve reductions

2 Calculate dual values and disable any presolve reductions that would interfere

cardls (integer): decides how often to apply the cardinality local search heuristic (CLSH) ←↩

Default: -1

value meaning

-1 Do not apply CLSH

1880 Solver Manuals

value meaning

0 Automatic

1 Apply the CLSH only at the root node

2 Apply the CLSH at the nodes of the branch and bound tree

cliques (integer): clique cut generation ←↩

Determines whether or not clique cuts should be generated during optimization.

Default: 0

value meaning

-1 Do not generate clique cuts

0 Determined automatically

1 Generate clique cuts moderately

2 Generate clique cuts aggressively

3 Generate clique cuts very aggressively

clocktype (integer): clock type for computation time ←↩

Decides how computation times are measured for both reporting performance and terminating
optimization when a time limit has been set. Small variations in measured time on identical
runs may be expected on any computer system with any setting of this parameter.

Default: 2

value meaning

0 Automatic

1 CPU time

2 Wall clock time

clonelog (integer): enable clone logs ←↩

The clone logs contain information normally recorded in the ordinary log file but inconvenient
to send through the normal log channel in case of parallel execution. The information likely to
be of most interest to you are special messages, such as error messages, that result from calls
to the LP optimizers called for the subproblems. The clone log files are named cloneK.log,
where K is the index of the clone, ranging from 0 (zero) to the number of threads minus one.
Since the clones are created at each call to a parallel optimizer and discarded when it exits, the
clone logs are opened at each call and closed at each exit. The clone log files are not removed
when the clones themselves are discarded.

Default: 0

value meaning

-1 Clone log files off

0 Automatic

1 Clone log files on

coeredind (integer): coefficient reduction on/off ←↩

5.11 CPLEX 1881

Coefficient reduction is a technique used when presolving mixed integer programs. The benefit
is to improve the objective value of the initial (and subsequent) linear programming relaxations
by reducing the number of non-integral vertexes. However, the linear programs generated at
each node may become more difficult to solve.

Default: -1

value meaning

-1 Automatic

0 Do not use coefficient reduction

1 Reduce only to integral coefficients

2 Reduce all potential coefficients

3 Reduce aggressively with tilting

conflictalg (integer): algorithm CPLEX uses in the conflict refiner to discover a minimal set of conflicting
constraints in an infeasible model ←↩

Default: 0

conflictdisplay (integer): decides how much information CPLEX reports when the conflict refiner is
working ←↩

Default: 1

value meaning

0 No output

1 Summary display

2 Detailed display

covers (integer): cover cut generation ←↩

Determines whether or not cover cuts should be generated during optimization.

Default: 0

value meaning

-1 Do not generate cover cuts

0 Determined automatically

1 Generate cover cuts moderately

2 Generate cover cuts aggressively

3 Generate cover cuts very aggressively

cpumask (string): switch and mask to bind threads to processors (Linux only) ←↩

The value of this parameter serves as a switch to turn on (or to turn off) CPLEX binding of
multiple threads to multiple processors on platforms where this feature is available. Hexadecimal
values of this parameter serve as a mask to specify to CPLEX which processors (or cores) to
use in binding multiple threads to multiple processors. CPU binding is also sometimes known
as processor affinity. CPU binding reduces the variability of CPLEX runs. On some occasions,
running the same CPLEX on the same (non trivial) models would produce a big variation in
runtime, e.g. 1000 seconds versus 900 seconds on a 12 core machine. These differences happen

1882 Solver Manuals

while CPLEX still gets exactly the same results and executes the exact same path, thanks to
its completely deterministic algorithms. Running the same tests with CPU binding enabled
reduced this variability in running time significantly.

If not set to off or auto CPLEX treats the value of this parameter as a string that resembles
a hexadecimal number without the usual 0x prefix. A valid string consists of these elements:
a) any digit from 0 (zero) through 9 (inclusive), b) any lower case character in the range a
through f (inclusive), and c) any upper case character in the range A through F (inclusive).
CPLEX rejects a string containing any other digits or characters than those.

When the value of this parameter is a valid string, each bit of this string corresponds to a
central processing unit (CPU), that is, to a processor or core. The lowest order bit of the string
corresponds to the first logical CPU, and the highest order corresponds to the last logical CPU.
For example, 00000001 designates processor #0, 00000003 designates processors #0 and #1,
FFFFFFFF designates all processors #0 through #31. CPLEX uses the ith CPU if and only if
the ith bit of this string is set to 1 (one). Tip: For GNU/Linux users, this parameter behaves
like the taskset command (except that this parameter lacks the prefix 0x).

If this CPU mask parameter is set to a valid string that designates a hexadecimal number,
but global Threads count is set to 0 (zero), then CPLEX still starts as many threads as the
number of cores on the machine, but only the cores enabled in the mask will be used.

For example, if a user sets this CPU mask parameter to the hexadecimal value ”f” on a 16-core
machine, and the user sets the global Threads count to 0 (zero), the result is 16 threads. These
16 threads will be bound to the first four cores in a round-robin way: treads 1,5,9,13 to core 1,
threads 2,6,10,14 to core 2 and so on. This situation is probably not what the user intended.
Therefore, if you set this CPU mask parameter, then you should also set global threads count;
indeed, you should set the threads parameter to the number of active cores designated by the
mask.

For example, on a 16 core machine, consider the difference between the value ”off” and the
value ffff. If the value of this parameter is ”off” CPLEX does no binding. If the value of this
parameter is ffff, CPLEX binds threads to cores.

Default: auto

value meaning

auto CPLEX decides whether to bind threads to cores (or processors)

off CPLEX performs no binding

hex CPLEX binds the threads in round-robin fashion to the cores specified by the
mask

craind (integer): crash strategy (used to obtain starting basis) ←↩

The crash option biases the way Cplex orders variables relative to the objective function when
selecting an initial basis.

Default: 1

value meaning

-1 Primal: alternate ways of using objective coefficients. Dual: aggressive starting
basis

0 Primal: ignore objective coefficients during crash. Dual: aggressive starting basis

1 Primal: alternate ways of using objective coefficients. Dual: default starting basis

5.11 CPLEX 1883

cutlo (real): lower cutoff for tree search ←↩

Sets the lower cutoff tolerance. When the problem is a maximization problem, CPLEX cuts off
or discards solutions that are less than the specified cutoff value. If the model has no solution
with an objective value greater than or equal to the cutoff value, then CPLEX declares the
model infeasible. In other words, setting the lower cutoff value c for a maximization problem
is similar to adding this constraint to the objective function of the model: obj>=c.

This option overrides the GAMS Cutoff setting.

This parameter is not effective with FeasOpt. FeasOpt cannot analyze an infeasibility intro-
duced by this parameter. If you want to analyze such a condition, add an explicit objective
constraint to your model instead.

Default: -1.0e+75

cutpass (integer): maximum number of cutting plane passes ←↩

Sets the upper limit on the number of passes that will be performed when generating cutting
planes on a mixed integer model.

Default: 0

value meaning

-1 None

0 Automatically determined

>0 Maximum passes to perform

cuts (string): default cut generation ←↩

Allows generation setting of all optional cuts at once. This is done by changing the meaning
of the default value (0: automatic) for the various Cplex cut generation options. The
options affected are Cliques, Covers, DisjCuts, FlowCovers, FlowPaths, FracCuts,
GUBCovers, ImplBd, LiftProjCuts, MCFCuts, MIRCuts, and Symmetry.

Default: 0

value meaning

-1 Do not generate cuts

0 Determined automatically

1 Generate cuts moderately

2 Generate cuts aggressively

3 Generate cuts very aggressively

4 Generate cuts highly aggressively

5 Generate cuts extremely aggressively

cutsfactor (real): cut limit ←↩

This option limits the number of cuts that can be added. For values between zero and one
inclusive (that is, in the range [0.0, 1.0], CPLEX generates no cuts.

For values strictly greater than 1.0 (one), CPLEX limits the number of rows in the model with
cuts added.

1884 Solver Manuals

The limit on this total is the product of CutsFactor times the original number of rows. If
CPLEX has presolved the model, the original number of rows is the number of rows in the
presolved model. (This behavior with respect to a presolved model is unchanged.)

CPLEX regards negative values of this parameter as equivalent to the default value -1.0. That
is, a negative value specifies no particular limit on the number of cuts. CPLEX computes and
dynamically adjusts such a limit automatically

Default: -1.0

cutup (real): upper cutoff for tree search ←↩

Sets the upper cutoff tolerance. When the problem is a minimization problem, CPLEX cuts
off or discards any solutions that are greater than the specified upper cutoff value. If the
model has no solution with an objective value less than or equal to the cutoff value, CPLEX
declares the model infeasible. In other words, setting an upper cutoff value c for a minimization
problem is similar to adding this constraint to the objective function of the model: obj<=c.

This option overrides the GAMS Cutoff setting.

This parameter is not effective with FeasOpt. FeasOpt cannot analyze an infeasibility intro-
duced by this parameter. If you want to analyze such a condition, add an explicit objective
constraint to your model instead.

Default: 1.0e+75

datacheck (integer): controls data consistency checking and modeling assistance ←↩

When the value of this parameter is set to level 2, CPLEX turns on both data consistency
checking and modeling assistance. At this level, CPLEX issues warnings at the start of the
optimization about disproportionate values (too large, too small) in coefficients, bounds, and
righthand sides (RHS).

Default: 0

value meaning

0 Data checking off

1 Data checking on

2 Data checking and model assistance on

depind (integer): dependency checker on/off ←↩

This option determines if and when the dependency checker will be used.

Default: -1

value meaning

-1 Automatic

0 Turn off dependency checking

1 Turn on only at the beginning of preprocessing

2 Turn on only at the end of preprocessing

3 Turn on at the beginning and at the end of preprocessing

dettilim (real): deterministic time limit ←↩

5.11 CPLEX 1885

Sets a time limit expressed in ticks, a unit to measure work done deterministically.

The length of a deterministic tick may vary by platform. Nevertheless, ticks are normally
consistent measures for a given platform (combination of hardware and software) carrying the
same load. In other words, the correspondence of ticks to clock time depends on the hardware,
software, and the current load of the machine. For the same platform and same load, the ratio
of ticks per second stays roughly constant, independent of the model solved. However, for very
short optimization runs, the variation of this ratio is typically high.

Default: 1.0e+75

disjcuts (integer): disjunctive cuts generation ←↩

Determines whether or not to generate disjunctive cuts during optimization. At the default of
0, generation is continued only if it seems to be helping.

Default: 0

value meaning

-1 Do not generate disjunctive cuts

0 Determined automatically

1 Generate disjunctive cuts moderately

2 Generate disjunctive cuts aggressively

3 Generate disjunctive cuts very aggressively

divetype (integer): MIP dive strategy ←↩

The MIP traversal strategy occasionally performs probing dives, where it looks ahead at both
children nodes before deciding which node to choose. The default (automatic) setting chooses
when to perform a probing dive, and the other two settings direct Cplex when to perform
probing dives: never or always.

Default: 0

value meaning

0 Automatic

1 Traditional dive

2 Probing dive

3 Guided dive

.divflt (real): solution pool range filter coefficients ←↩

A diversity filter for a solution pool (see option SolnPool) allows you generate solutions that
are similar to (or different from) a set of reference values that you specify for a set of binary
variables. In particular, you can use a diversity filter to generate more solutions that are
similar to an existing solution or to an existing partial solution.

A diversity filter drives the search for multiple solutions toward new solutions that satisfy
a measure of diversity specified in the filter. This diversity measure applies only to binary
variables. Potential new solutions are compared to a reference set. This reference set is
specified with this dot option. If no reference set is specified, the difference measure will be
computed relative to the other solutions in the pool. The diversity measure is computed by
summing the pair-wise absolute differences from solution and the reference values.

Default: 0

1886 Solver Manuals

divfltlo (real): lower bound on diversity ←↩

Please check option DivFlt for general information on a diversity filter.

If you specify a lower bound on the diversity using DivFltLo, Cplex will look for solutions
that are different from the reference values. In other words, you can say, Give me solutions
that differ by at least this amount in this set of variables.

Default: mindouble

divfltup (real): upper bound on diversity ←↩

Please check option DivFlt for general information on a diversity filter.

If you specify an upper bound on diversity DivFltUp, Cplex will look for solutions similar to
the reference values. In other words, you can say, Give me solutions that are close to this one,
within this set of variables.

Default: maxdouble

dpriind (integer): dual simplex pricing ←↩

Pricing strategy for dual simplex method. Consider using dual steepest-edge pricing. Dual
steepest-edge is particularly efficient and does not carry as much computational burden as the
primal steepest-edge pricing.

Default: 0

value meaning

0 Determined automatically

1 Standard dual pricing

2 Steepest-edge pricing

3 Steepest-edge pricing in slack space

4 Steepest-edge pricing, unit initial norms

5 Devex pricing

dynamicrows (integer): switch for dynamic management of rows ←↩

This parameter specifies how CPLEX should manage rows in the current model during dual
simplex optimization. More specifically, this parameter controls the use of the kernel simplex
method (KSM) for the dual simplex algorithm. That is, CPLEX dynamically adjusts the
dimensions of the basis matrix during execution of the dual simplex algorithm, according to
the settings of this parameter.

When the value of this parameter is -1, its default value, this parameter specifies that the
user wants CPLEX to manage rows dynamically, adjusting the dimensions of the basis matrix
during dual simplex optimization. When it is set to 0, this parameter specifies that CPLEX
must keep all rows. When it is set to 1, this parameter specifies that CPLEX can keep or
discard rows according to its internal calculations.

Default: -1

value meaning

-1 Automatic

0 Keep all rows

1 Manage rows

5.11 CPLEX 1887

eachcutlim (integer): sets a limit for each type of cut ←↩

This parameter allows you to set a uniform limit on the number of cuts of each type that
Cplex generates. By default, the limit is a large integer; that is, there is no effective limit by
default.

Tighter limits on the number of cuts of each type may benefit certain models. For example, a
limit on each type of cut will prevent any one type of cut from being created in such large
number that the limit on the total number of all types of cuts is reached before other types of
cuts have an opportunity to be created. A setting of 0 means no cuts.

This parameter does not influence the number of Gomory cuts. For means to control the
number of Gomory cuts, see also the fractional cut parameters: FracCand, FracCuts, and
FracPass.

Default: 2100000000

epagap (real): absolute stopping tolerance ←↩

Synonym: optca

Absolute tolerance on the gap between the best integer objective and the objective of the best
node remaining. When the value falls below the value of the epagap setting, the optimization
is stopped. This option overrides GAMS OptCA which provides its initial value.

Note: This option also influences the SubMIPs (e.g., used for the RINS heuristic) and can
thus influence the solution path.

Default: GAMS OptCA

epgap (real): relative stopping tolerance ←↩

Synonym: optcr

Relative tolerance on the gap between the best integer objective and the objective of the best
node remaining. When the value falls below the value of the epgap setting, the mixed integer
optimization is stopped. Note the difference in the Cplex definition of the relative tolerance
with the GAMS definition. This option overrides GAMS OptCR which provides its initial
value.

Note: This option also influences the SubMIPs (e.g., used for the RINS heuristic) and can
thus influence the solution path.

Range: [0.0, 1.0]

Default: GAMS OptCR

epint (real): integrality tolerance ←↩

Integrality Tolerance. This specifies the amount by which an integer variable can be different
than an integer and still be considered feasible.

Range: [0.0, 0.5]

Default: 1.0e-05

eplin (real): degree of tolerance used in linearization ←↩

Default: 0.001

1888 Solver Manuals

epmrk (real): Markowitz pivot tolerance ←↩

The Markowitz tolerance influences pivot selection during basis factorization. Increasing the
Markowitz threshold may improve the numerical properties of the solution.

Range: [1.0e-04, 1.0]

Default: 0.01

epopt (real): optimality tolerance ←↩

The optimality tolerance influences the reduced-cost tolerance for optimality. This option
setting governs how closely Cplex must approach the theoretically optimal solution.

Range: [1.0e-09, 0.1]

Default: 1.0e-06

epper (real): perturbation constant ←↩

Perturbation setting. Highly degenerate problems tend to stall optimization progress. Cplex
automatically perturbs the variable bounds when this occurs. Perturbation expands the bounds
on every variable by a small amount thereby creating a different but closely related problem.
Generally, the solution to the less constrained problem is easier to solve. Once the solution to
the perturbed problem has advanced as far as it can go, Cplex removes the perturbation by
resetting the bounds to their original values.

If the problem is perturbed more than once, the perturbation constant is probably too large.
Reduce the epper option to a level where only one perturbation is required. Any value greater
than or equal to 1.0e-8 is valid.

Default: 1.0e-06

eprhs (real): feasibility tolerance ←↩

Feasibility tolerance. This specifies the degree to which a problem's basic variables may violate
their bounds. This tolerance influences the selection of an optimal basis and can be reset to a
higher value when a problem is having difficulty maintaining feasibility during optimization.
You may also wish to lower this tolerance after finding an optimal solution if there is any
doubt that the solution is truly optimal. If the feasibility tolerance is set too low, Cplex may
falsely conclude that a problem is infeasible.

Range: [1.0e-09, 0.1]

Default: 1.0e-06

exactkappa (boolean): report exact condition number in quality report ←↩

Default: 0

feasopt (boolean): computes a minimum-cost relaxation to make an infeasible model feasible ←↩

With Feasopt turned on, a minimum-cost relaxation of the right hand side values of constraints
or bounds on variables is computed in order to make an infeasible model feasible. It marks
the relaxed right hand side values and bounds in the solution listing.

Several options are available for the metric used to determine what constitutes a minimum-cost
relaxation which can be set by option FeasOptMode.

Feasible relaxations are available for all problem types with the exception of quadratically
constraint problems.

Default: 0

5.11 CPLEX 1889

value meaning

0 Turns Feasible Relaxation off

1 Turns Feasible Relaxation on

feasoptmode (integer): mode of FeasOpt ←↩

The parameter FeasOptMode allows different strategies in finding feasible relaxation in one or
two phases. In its first phase, it attempts to minimize its relaxation of the infeasible model.
That is, it attempts to find a feasible solution that requires minimal change. In its second
phase, it finds an optimal solution (using the original objective) among those that require
only as much relaxation as it found necessary in the first phase. Values of the parameter
FeasOptMode indicate two aspects: (1) whether to stop in phase one or continue to phase two
and (2) how to measure the minimality of the relaxation (as a sum of required relaxations;
as the number of constraints and bounds required to be relaxed; as a sum of the squares of
required relaxations).

Default: 0

value meaning

0 Minimize sum of relaxations
Minimize the sum of all required relaxations in first phase only

1 Minimize sum of relaxations and optimize
Minimize the sum of all required relaxations in first phase and execute second
phase to find optimum among minimal relaxations

2 Minimize number of relaxations
Minimize the number of constraints and bounds requiring relaxation in first phase
only

3 Minimize number of relaxations and optimize
Minimize the number of constraints and bounds requiring relaxation in first phase
and execute second phase to find optimum among minimal relaxations

4 Minimize sum of squares of relaxations
Minimize the sum of squares of required relaxations in first phase only

5 Minimize sum of squares of relaxations and optimize
Minimize the sum of squares of required relaxations in first phase and execute
second phase to find optimum among minimal relaxations

.feaspref (real): feasibility preference ←↩

You can express the costs associated with relaxing a bound or right hand side value during a
FeasOpt run through the .feaspref option. The input value denotes the users willingness to
relax a constraint or bound. More precisely, the reciprocal of the specified value is used to
weight the relaxation of that constraint or bound. The user may specify a preference value
less than or equal to 0 (zero), which denotes that the corresponding constraint or bound must
not be relaxed.

Default: 1

fixoptfile (string): name of option file which is read just before solving the fixed problem ←↩

flowcovers (integer): flow cover cut generation ←↩

Determines whether or not flow cover cuts should be generated during optimization.

Default: 0

1890 Solver Manuals

value meaning

-1 Do not generate flow cover cuts

0 Determined automatically

1 Generate flow cover cuts moderately

2 Generate flow cover cuts aggressively

flowpaths (integer): flow path cut generation ←↩

Determines whether or not flow path cuts should be generated during optimization. At the
default of 0, generation is continued only if it seems to be helping.

Default: 0

value meaning

-1 Do not generate flow path cuts

0 Determined automatically

1 Generate flow path cuts moderately

2 Generate flow path cuts aggressively

folding (integer): LP folding will be attempted during the preprocessing phase ←↩

Default: -1

value meaning

-1 Automatic

0 Turn off folder

1 Moderate level of folding

2 Aggressive level of folding

3 Very aggressive level of folding

4 Highly aggressive level of folding

5 Extremely aggressive level of folding

fpheur (integer): feasibility pump heuristic ←↩

Controls the use of the feasibility pump heuristic for mixed integer programming (MIP) models.

Default: 0

value meaning

-1 Turns Feasible Pump heuristic off

0 Automatic

1 Apply the feasibility pump heuristic with an emphasis on finding a feasible solution

2 Apply the feasibility pump heuristic with an emphasis on finding a feasible solution
with a good objective value

fraccand (integer): candidate limit for generating Gomory fractional cuts ←↩

Limits the number of candidate variables for generating Gomory fractional cuts.

Default: 200

5.11 CPLEX 1891

fraccuts (integer): Gomory fractional cut generation ←↩

Determines whether or not Gomory fractional cuts should be generated during optimization.

Default: 0

value meaning

-1 Do not generate Gomory fractional cuts

0 Determined automatically

1 Generate Gomory fractional cuts moderately

2 Generate Gomory fractional cuts aggressively

fracpass (integer): maximum number of passes for generating Gomory fractional cuts ←↩

Sets the upper limit on the number of passes that will be performed when generating Gomory
fractional cuts on a mixed integer model. Ignored if parameter FracCuts is set to a nonzero
value.

Default: 0

value meaning

0 0 Automatically determined

>0 Maximum passes to perform

freegamsmodel (boolean): preserves memory by dumping the GAMS model instance representation
temporarily to disk ←↩

In order to provide the maximum amount of memory to the solver this option dumps the
internal representation of the model instance temporarily to disk and frees memory. This
option only works with SolveLink=0 and only for models without quadratic constraints.

Default: 0

gubcovers (integer): GUB cover cut generation ←↩

Determines whether or not GUB (Generalized Upper Bound) cover cuts should be generated
during optimization. The default of 0 indicates that the attempt to generate GUB cuts should
continue only if it seems to be helping.

Default: 0

value meaning

-1 Do not generate GUB cover cuts

0 Determined automatically

1 Generate GUB cover cuts moderately

2 Generate GUB cover cuts aggressively

heurfreq (integer): heuristic frequency ←↩

This option specifies how often to apply the node heuristic. Setting to a positive number
applies the heuristic at the requested node interval. A value of 100, for example, means that
heuristics are invoked every hundredth node in the tree.

1892 Solver Manuals

Default: 0

5.11 CPLEX 1893

value meaning

-1 Do not use the node heuristic

0 Determined automatically

>0 Call heuristic at the requested node interval

heuristiceffort (real): the effort that CPLEX spends on heuristics during a MIP solve ←↩

The value is used to increase (if >1) or decrease (if <1) the effort that CPLEX spends on
heuristics during a MIP solve. If set to 0, no heuristic will run.

Default: 1.0

iafile (string): secondary option file to be read in interactive mode triggered by iatriggerfile ←↩

If in interactive mode and this option is set, options will be read from the file specified by this
option instead of direct user input (as described in interactive). This option file read can be
triggered by interrupting Cplex with a Control-C or using the option iatriggerfile. If defined,
GAMS/CPLEX looks for this file (content irrelevant) all iatriggertime seconds and if found,
reads the option file iafile. The iatriggerfile is removed afterwards so it does not trigger twice.

iatriggerfile (string): file that triggers the reading of a secondary option file in interactive mode ←↩

See iafile.

iatriggertime (real): time interval in seconds the link looks for the trigger file in interactive mode ←↩

See iafile.

Default: 60

iis (integer): run the conflict refiner also known as IIS finder if the problem is infeasible ←↩

Find an set of conflicting constraints or IIS (Irreducably Inconsistent Set) and write an conflict
report to the GAMS solution listing if the model is found to be infeasible.

Default: 0

value meaning

0 No conflict analysis

1 Conflict analysis after solve if infeasible

2 Conflict analysis without previous solve

implbd (integer): implied bound cut generation ←↩

Determines whether or not implied bound cuts should be generated during optimization.

Default: 0

value meaning

-1 Do not generate implied bound cuts

0 Determined automatically

1 Generate implied bound cuts moderately

2 Generate implied bound cuts aggressively

1894 Solver Manuals

indicoptstrict (boolean): abort in case of an error in indicator constraint in solver option file ←↩

If enabled and a variable or equation specified in an indicator constraint is not present in
the model, model generation will abort with an error message. Otherwise, if this option is
disabled, erroneous indicator constraints are ignored and a warning is printed.

Default: 1

interactive (boolean): allow interactive option setting after a Control-C ←↩

When set to yes, options can be set interactively after interrupting Cplex with a Control-C.
Options are entered just as if they were being entered in the cplex.opt file. Control is returned
to Cplex by entering continue. The optimization can be aborted by entering abort. This
option can only be used when running from the command line. Moreover, the GAMS option
InteractiveSolver needs to be set to 1.

Default: 0

intsollim (integer): maximum number of integer solutions ←↩

This option limits the MIP optimization to finding only this number of mixed integer solutions
before stopping.

Default: large

itlim (integer): iteration limit ←↩

Synonym: iterlim

The iteration limit option sets the maximum number of iterations before the algorithm
terminates, without reaching optimality. This Cplex option overrides the GAMS IterLim
option. Any non-negative integer value is valid.

Default: GAMS IterLim

.lazy (boolean): Lazy constraints activation ←↩

Determines whether a linear constraint is treated as a lazy constraint. At the beginning of the
MIP solution process, any constraint whose Lazy attribute is set to 1 (the default value is 0)
is removed from the model and placed in the lazy constraint pool. Lazy constraints remain
inactive until a feasible solution is found, at which point the solution is checked against the
lazy constraint pool. If the solution violates any lazy constraint, the solution is discarded and
one or more of the violated lazy constraints are pulled into the active model.

Lazy constraints are only active if option LazyConstraints is enabled and are specified through
the option .lazy. The syntax for dot options is explained in the Introduction chapter of the
Solver Manual.

Default: 0

lazyconstraints (boolean): Indicator to use lazy constraints ←↩

Default: 0

lbheur (boolean): local branching heuristic ←↩

This parameter lets you control whether Cplex applies a local branching heuristic to try to
improve new incumbents found during a MIP search. By default, this parameter is off. If you
turn it on, Cplex will invoke a local branching heuristic only when it finds a new incumbent. If
Cplex finds multiple incumbents at a single node, the local branching heuristic will be applied
only to the last one found.

Default: 0

5.11 CPLEX 1895

value meaning

0 Off

1 Apply local branching heuristic to new incumbent

liftprojcuts (integer): lift-and-project cuts ←↩

Default: 0

value meaning

-1 Do not generate lift-and-project cuts

0 Determined automatically

1 Generate lift-and-project cuts moderately

2 Generate lift-and-project cuts aggressively

3 Generate lift-and-project cuts very aggressively

localimplied (integer): generation of locally valid implied bound cuts ←↩

Default: 0

value meaning

-1 Do not generate locally valid implied bound cuts

0 Determined automatically

1 Generate locally valid implied bound cuts moderately

2 Generate locally valid implied bound cuts aggressively

3 Generate locally valid implied bound cuts very aggressively

lowerobjstop (real): in a minimization MILP or MIQP, the solver will abort the optimization process as
soon as it finds a solution of value lower than or equal to the specified value ←↩

Default: -1e75

lpmethod (integer): algorithm to be used for LP problems ←↩

Specifies which LP algorithm to use. If left at the default value (0 for automatic), and a
primal-feasible basis is available, primal simplex will be used. If no primal-feasible basis is
available, and Threads is equal to 1, dual simplex will be used. If Threads is greater than 1
and no primal-feasible basis is available, the concurrent option will be used.

Sifting may be useful for problems with many more variables than equations.

The concurrent option runs multiple methods in parallel. The first thread uses dual simplex.
The second thread uses barrier. The next thread uses primal simplex. Remaining threads are
used by the barrier run. If the aspect ratio (number of columns versus number of rows) is
large, and if more than 10 threads are available, then concurrent optimization also invokes
sifting on the LP. The solution is returned by first method to finish.

Default: 0

value meaning

0 Automatic

1 Primal Simplex

1896 Solver Manuals

value meaning

2 Dual Simplex

3 Network Simplex

4 Barrier

5 Sifting

6 Concurrent

ltol (real): basis identification primal tolerance ←↩

Default: 0

mcfcuts (integer): multi-commodity flow cut generation ←↩

Specifies whether Cplex should generate multi-commodity flow (MCF) cuts in a problem
where Cplex detects the characteristics of a multi-commodity flow network with arc capacities.
By default, Cplex decides whether or not to generate such cuts. To turn off generation of
such cuts, set this parameter to -1. Cplex is able to recognize the structure of a network as
represented in many real-world models. When it recognizes such a network structure, Cplex is
able to generate cutting planes that usually help solve such problems. In this case, the cuts
that Cplex generates state that the capacities installed on arcs pointing into a component of
the network must be at least as large as the total flow demand of the component that cannot
be satisfied by flow sources within the component.

Default: 0

value meaning

-1 Do not generate MCF cuts

0 Determined automatically

1 Generate MCF cuts moderately

2 Generate MCF cuts aggressively

memoryemphasis (boolean): reduces use of memory ←↩

This parameter lets you indicate to Cplex that it should conserve memory where possible.
When you set this parameter to its non default value, Cplex will choose tactics, such as data
compression or disk storage, for some of the data computed by the barrier and MIP optimizers.
Of course, conserving memory may impact performance in some models. Also, while solution
information will be available after optimization, certain computations that require a basis that
has been factored (for example, for the computation of the condition number Kappa) may be
unavailable.

Default: 0

value meaning

0 Do not conserve memory

1 Conserve memory where possible

mipdisplay (integer): progress display level ←↩

The amount of information displayed during MIP solution increases with increasing values of
this option.

Default: 4

5.11 CPLEX 1897

value meaning

0 No display

1 Display integer feasible solutions

2 Displays nodes under mipinterval control

3 Same as 2 but adds information on cuts

4 Same as 3 but adds LP display for the root node

5 Same as 3 but adds LP display for all nodes

mipemphasis (integer): MIP solution tactics ←↩

This option controls the tactics for solving a mixed integer programming problem.

Default: 0

value meaning

0 Balance optimality and feasibility

1 Emphasize feasibility over optimality

2 Emphasize optimality over feasibility

3 Emphasize moving the best bound

4 Emphasize hidden feasible solutions

5 Find high quality feasible solutions as early as possible

mipinterval (integer): progress display interval ←↩

Controls the frequency of node logging when the parameter MIPDisplay is set higher than 1
(one). Frequency must be an integer; it may be 0 (zero), positive, or negative. By default,
CPLEX displays new information in the node log during a MIP solve at relatively high frequency
during the early stages of solving a MIP model, and adds lines to the log at progressively
longer intervals as solving continues. In other words, CPLEX logs information frequently in
the beginning and progressively less often as it works. When the value is a positive integer n,
CPLEX displays new incumbents, plus it displays a new line in the log every n nodes. When
the value is a negative integer n, CPLEX displays new incumbents, and the negative value
determines how much processing CPLEX does before it displays a new line in the node log. A
negative value close to zero means that CPLEX displays new lines in the log frequently. A
negative value far from zero means that CPLEX displays new lines in the log less frequently.
In other words, a negative value of this parameter contracts or dilates the interval at which
CPLEX displays information in the node log.

Default: 0

mipkappastats (integer): MIP kappa computation ←↩

MIP kappa summarizes the distribution of the condition number of the optimal bases CPLEX
encountered during the solution of a MIP model. That summary may let you know more about
the numerical difficulties of your MIP model. Because MIP kappa (as a statistical distribution)
requires CPLEX to compute the condition number of the optimal bases of the subproblems
during branch-and-cut search, you can compute the MIP kappa only when CPLEX solves the
subproblem with its simplex optimizer. In other words, in order to obtain results with this
parameter, you can not use the sifting optimizer nor the barrier without crossover to solve the
subproblems. See the parameters StartAlg and SubAlg.

Computing the kappa of a subproblem has a cost. In fact, computing MIP kappa for the basis
matrices can be computationally expensive and thus generally slows down the solution of a

1898 Solver Manuals

problem. Therefore, the setting 0 (automatic) tells CPLEX generally not to compute MIP
kappa, but in cases where the parameter NumericalEmphasis is turned on, CPLEX computes
MIP kappa for a sample of subproblems. The value 1 (sample) leads to a negligible performance
degradation on average, but can slow down the branch-and-cut exploration by as much as 10%
on certain models. The value 2 (full) leads to a 2% performance degradation on average, but
can significantly slow the branch-and-cut exploration on certain models. In practice, the value
1 (sample) is a good trade-off between performance and accuracy of statistics. If you need
very accurate statistics, then use value 2 (full).

In case CPLEX is instructed to compute a MIP kappa distribution, the parameter Quality is
automatically turned on.

Default: 0

value meaning

-1 No MIP kappa statistics; default

0 Automatic: let CPLEX decide

1 Compute MIP kappa for a sample of subproblems

2 Compute MIP kappa for all subproblems

mipordind (boolean): priority list on/off ←↩

Synonym: prioropt

Use priorities. Priorities should be assigned based on your knowledge of the problem. Variables
with higher priorities will be branched upon before variables of lower priorities. This direction
of the tree search can often dramatically reduce the number of nodes searched. For example,
consider a problem with a binary variable representing a yes/no decision to build a factory,
and other binary variables representing equipment selections within that factory. You would
naturally want to explore whether or not the factory should be built before considering what
specific equipment to purchased within the factory. By assigning a higher priority to the
build/no build decision variable, you can force this logic into the tree search and eliminate
wasted computation time exploring uninteresting portions of the tree. When set at 0 (default),
the MIPOrdInd option instructs Cplex not to use priorities for branching. When set to 1,
priority orders are utilized.

Note: Priorities are assigned to discrete variables using the .prior suffix in the GAMS model.
Lower .prior values mean higher priority. The .prioropt model suffix has to be used to signal
GAMS to export the priorities to the solver.

Default: GAMS PriorOpt

value meaning

0 Do not use priorities for branching

1 Priority orders are utilized

mipordtype (integer): priority order generation ←↩

This option is used to select the type of generic priority order to generate when no priority
order is present.

Default: 0

5.11 CPLEX 1899

value meaning

0 None

1 decreasing cost magnitude

2 increasing bound range

3 increasing cost per coefficient count

mipsearch (integer): search strategy for mixed integer programs ←↩

Sets the search strategy for a mixed integer program. By default, Cplex chooses whether to
apply dynamic search or conventional branch and cut based on characteristics of the model.

Default: 0

value meaning

0 Automatic

1 Apply traditional branch and cut strategy

2 Apply dynamic search

mipstart (integer): use mip starting values ←↩

This option controls the use of advanced starting values for mixed integer programs. A setting
of 2 indicates that the values should be checked to see if they provide an integer feasible
solution before starting optimization. For mipstart equals 1, 2, 3 or 4 fractional values are
rounded to the nearest integer value if the integrality violation is larger than CPLEX's integer
tolerance and smaller or equal to tryint. A partial MIP start is applied for mipstart equals 1,
3 or 4. Here, for discrete variables only integer values (after possible rounding) are added to
the advanced starting values.

Default: 0

value meaning

0 do not use the values

1 set discrete variable values and use auto mipstart level

2 set all variable values and use check feasibility mipstart level

3 set discrete variable values and use solve fixed mipstart level

4 set discrete variable values and use solve sub-MIP mipstart level

5 set discrete variable values and use solve repair-MIP mipstart level

6 set discrete variable values and use no checks at all. Warning: CPLEX may accept
infeasible points as solutions!

mipstopexpr (string): stopping expression for branch and bound ←↩

If the provided logical expression is true, the branch-and-bound is aborted. Supported values
are: etalg, resusd, nodusd, objest, objval. Supported opertators are: +, -, ∗, /, ∧, %, !=, ==,
<, <=, >, >=, !, &&, ||, (,), abs, ceil, exp, floor, log, log10, pow, sqrt. Example:
nodusd >= 1000 && abs(objest - objval) / abs(objval) < 0.1

If multiple stop expressions are given in an option file, the algorithm stops if any of them is
true (|| concatenation).

miptrace (string): filename of MIP trace file ←↩

1900 Solver Manuals

For a description of this feature, see chapter Solve trace.

Note: In contrast to other solvers, GAMS/CPLEX doesn't append the MIP trace file after a
certain time or node count, but when CPLEX reports global progress. In order to indicate
this, the MIP trace file will show X instead of N or T.

miqcpstrat (integer): MIQCP relaxation choice ←↩

This option controls how MIQCPs are solved. For some models, the setting 2 may be more
effective than 1. You may need to experiment with this parameter to determine the best
setting for your model.

Default: 0

value meaning

0 Automatic

1 QCP relaxation
Cplex will solve a QCP relaxation of the model at each node.

2 LP relaxation
Cplex will solve a LP relaxation of the model at each node.

mircuts (integer): mixed integer rounding cut generation ←↩

Determines whether or not to generate mixed integer rounding (MIR) cuts during optimization.
At the default of 0, generation is continued only if it seems to be helping.

Default: 0

value meaning

-1 Do not generate MIR cuts

0 Determined automatically

1 Generate MIR cuts moderately

2 Generate MIR cuts aggressively

mpslongnum (boolean): MPS file format precision of numeric output ←↩

Determines the precision of numeric output in the MPS file formats. When this parameter is
set to its default value 1 (one), numbers are written to MPS files in full-precision; that is, up
to 15 significant digits may be written. The setting 0 (zero) writes files that correspond to the
standard MPS format, where at most 12 characters can be used to represent a value. This
limit may result in loss of precision.

Default: 1

value meaning

0 Use limited MPS precision

1 Use full-precision

mtol (real): basis identification dual tolerance ←↩

Default: 0

multimipstart (string): use multiple mipstarts provided via gdx files ←↩

5.11 CPLEX 1901

Specifies (multiple) GDX files with values for the variables. Each file is treated as one intial
guess for the MIP start. These MIP starts are added in addition to the initial guess provided by
the level attribute. A MIP start GDX file can be created, for example, by using the command
line option savepoint.

multobj (boolean): controls the hierarchical optimization of multiple objectives ←↩

Default: 0

multobjdisplay (integer): level of display during multiobjective optimization ←↩

Default: 1

value meaning

0 No display

1 Summary display after each subproblem

2 Summary display after each subproblem, as well as subproblem logs

multobjmethod (integer): method used for multi-objective solves ←↩

When solving a continuous multi-objective model using a hierarchical approach, the model is
solved once for each objective. The algorithm used to solve for the highest priority objective is
controlled by the LPMethod parameter. This parameter determines the algorithm used to
solve for subsequent objectives.

Default: 0

multobjoptfiles (string): List of option files used for individual solves within multi-objective optimization
←↩

The options given by the option files in multobjoptfiles are applied on top of the default
GAMS/CPLEX options. This includes options set by the user via the standard option file.

If the list of option files in multobjoptfiles is less than the number of objective functions, the
default GAMS/CPLEX options (incl. user options as before) are used to solve the remaining
instances. Additional option files (i.e. more than objective functions) are ignored.

Applied options can be verified by setting multobjdisplay to 2.

multobjtolmip (boolean): enables hard constraints for hierarchical optimization objectives based on
degradation tolerances ←↩

CPLEX supports two different strategies to handle the degradation tolerances objnabstol
and objnreltol depending on the problem type (continuous or discrete), see objnabstol. This
setting enables the discrete strategy for continous models. Note that objnreltol has no effect
for discrete models. Enabling this option can lead to higher solution times.

Default: 1

names (boolean): load GAMS names into Cplex ←↩

This option causes GAMS names for the variables and equations to be loaded into Cplex.
These names will then be used for error messages, log entries, and so forth. Setting names to
no may help if memory is very tight.

Default: 1

netdisplay (integer): network display level ←↩

This option controls the log for network iterations.

Default: 2

1902 Solver Manuals

value meaning

0 No network log.

1 Displays true objective values

2 Displays penalized objective values

netepopt (real): optimality tolerance for the network simplex method ←↩

This optimality tolerance influences the reduced-cost tolerance for optimality when using the
network simplex method. This option setting governs how closely Cplex must approach the
theoretically optimal solution.

Range: [1.0e-11, 0.1]

Default: 1.0e-06

neteprhs (real): feasibility tolerance for the network simplex method ←↩

This feasibility tolerance determines the degree to which the network simplex algorithm will
allow a flow value to violate its bounds.

Range: [1.0e-11, 0.1]

Default: 1.0e-06

netfind (integer): attempt network extraction ←↩

Specifies the level of network extraction to be done.

Default: 2

value meaning

1 Extract pure network only

2 Try reflection scaling

3 Try general scaling

netitlim (integer): iteration limit for network simplex ←↩

Iteration limit for the network simplex method.

Default: large

netppriind (integer): network simplex pricing ←↩

Network simplex pricing algorithm. The default of 0 (currently equivalent to 3) shows best
performance for most problems.

Default: 0

value meaning

0 Automatic

1 Partial pricing

2 Multiple partial pricing

3 Multiple partial pricing with sorting

5.11 CPLEX 1903

nodecuts (integer): decide whether or not cutting planes are separated at the nodes of the branch-and-
bound tree ←↩

Default: 0

nodefileind (integer): node storage file indicator ←↩

Specifies how node files are handled during MIP processing. Used when parameter WorkMem
has been exceeded by the size of the branch and cut tree. If set to 0 when the tree memory
limit is reached, optimization is terminated. Otherwise a group of nodes is removed from the
in-memory set as needed. By default, Cplex transfers nodes to node files when the in-memory
set is larger than 128 MBytes, and it keeps the resulting node files in compressed form in
memory. At settings 2 and 3, the node files are transferred to disk. They are stored under a
directory specified by parameter WorkDir and Cplex actively manages which nodes remain in
memory for processing.

Default: 1

value meaning

0 No node files

1 Node files in memory and compressed

2 Node files on disk

3 Node files on disk and compressed

nodelim (integer): maximum number of nodes to solve ←↩

Synonym: nodlim

The maximum number of nodes solved before the algorithm terminates, without reaching
optimality. This option overrides the GAMS NodLim model suffix. When this parameter is set
to 0 (this is only possible through an option file), Cplex completes processing at the root; that
is, it creates cuts and applies heuristics at the root. When this parameter is set to 1 (one), it
allows branching from the root; that is, nodes are created but not solved.

Default: GAMS NodLim

nodesel (integer): node selection strategy ←↩

This option is used to set the rule for selecting the next node to process when backtracking.

Default: 1

value meaning

0 Depth-first search
This chooses the most recently created node.

1 Best-bound search
This chooses the unprocessed node with the best objective function for the
associated LP relaxation.

2 Best-estimate search
This chooses the node with the best estimate of the integer objective value that
would be obtained once all integer infeasibilities are removed.

3 Alternate best-estimate search

numericalemphasis (boolean): emphasizes precision in numerically unstable or difficult problems ←↩

1904 Solver Manuals

This parameter lets you indicate to Cplex that it should emphasize precision in numerically
difficult or unstable problems, with consequent performance trade-offs in time and memory.

Default: 0

value meaning

0 Off

1 Exercise extreme caution in computation

objdif (real): overrides GAMS Cheat parameter ←↩

Synonym: cheat

A means for automatically updating the cutoff to more restrictive values. Normally the most
recently found integer feasible solution objective value is used as the cutoff for subsequent
nodes. When this option is set to a positive value, the value will be subtracted from (added
to) the newly found integer objective value when minimizing (maximizing). This forces the
MIP optimization to ignore integer solutions that are not at least this amount better than
the one found so far. The option can be adjusted to improve problem solving efficiency by
limiting the number of nodes; however, setting this option at a value other than zero (the
default) can cause some integer solutions, including the true integer optimum, to be missed.
Negative values for this option will result in some integer solutions that are worse than or
the same as those previously generated, but will not necessarily result in the generation of all
possible integer solutions. This option overrides the GAMS Cheat parameter.

Default: 0.0

objllim (real): objective function lower limit ←↩

Setting a lower objective function limit will cause Cplex to halt the optimization process once
the minimum objective function value limit has been exceeded.

Default: -1.0e+75

objnabstol (string): allowable absolute degradation for objective ←↩

This parameter is used to set the allowable degradation for an objective when doing hierar-
chical multi-objective optimization (MultObj). The syntax for this parameter is ObjNAbsTol

ObjVarName value.

Hierarchical multi-objective optimization will optimize for the different objectives in the model
one at a time, in priority order. For MIPs (or if MultObjTolMip is enabled), if it achieves
objective value z when it optimizes for this objective, then subsequent steps are allowed to
degrade this value by at most ObjNAbsTol. For LPs, ObjNAbsTol defines a threshold for
reduced costs above which nonbasic variables in the associated LP solve will be fixed at the
bound at which they reside.

objnreltol (string): allowable relative degradation for objective ←↩

This parameter is used to set the allowable degradation for an objective when doing hierar-
chical multi-objective optimization (MultObj). The syntax for this parameter is ObjNRelTol

ObjVarName value.

Hierarchical multi-objective optimization will optimize for the different objectives in the model
one at a time, in priority order. For MIPs (or if MultObjTolMip is enabled), if it achieves
objective value z when it optimizes for this objective, then subsequent steps are allowed to
degrade this value by at most ObjNRelTol∗|z|. This option has no effect for continuous models.

5.11 CPLEX 1905

objrng (string): do objective ranging ←↩

Calculate sensitivity ranges for the specified GAMS variables. Unlike most options, ObjRng can
be repeated multiple times in the options file. Sensitivity range information will be produced
for each GAMS variable named. Specifying all will cause range information to be produced
for all variables. Range information will be printed to the beginning of the solution listing in
the GAMS listing file unless option RngRestart is specified.

Default: no objective ranging is done

objulim (real): objective function upper limit ←↩

Setting an upper objective function limit will cause Cplex to halt the optimization process
once the maximum objective function value limit has been exceeded.

Default: 1.0e+75

optimalitytarget (integer): type of optimality that Cplex targets ←↩

This parameter specifies the type of solution that CPLEX attempts to compute with respect
to the optimality of that solution when CPLEX solves a continuous (QP) or mixed integer
(MIQP) quadratic model. In other words, the variables of the model can be continuous or
mixed integer and continuous; the objective function includes a quadratic term, and perhaps
the objective function is not positive semi-definite (non PSD). This parameter does not apply
to quadratically constrained mixed integer problems (MIQCP); that is, this parameter does
not apply to mixed integer problems that include a quadratic term among the constraints.

Default: 0

value meaning

0 Automatic
CPLEX first attempts to compute a provably optimal solution. If CPLEX cannot
compute a provably optimal solution because the objective function is not convex,
CPLEX will return with an error (Q is not PSD).

1 Search for a globally optimal solution to a convex model
CPLEX searches for a globally optimal solution to a convex model. In problems
of type QP or MIQP, this setting interacts with linearization switch QToLin for
QP, MIQP

2 Search for a solution that satisfies first-order optimality conditions no optimality
guarantee
CPLEX first attempt to compute a provably optimal solution. If CPLEX cannot
compute a provably optimal solution because the objective function is not convex,
CPLEX searches for a solution that satisfies first-order optimality conditions but
is not necessarily globally optimal.

3 Search for a globally optimal solution regardless of convexity
If the problem type is QP, CPLEX first changes the problem type to MIQP.
CPLEX then solves the problem (whether originally QP or MIQP) to global
optimality. In problems of type QP or MIQP, this setting interacts with with
linearization switch QToLin for QP, MIQP. With this setting information about
dual values is not available for the solution.

parallelmode (integer): parallel optimization mode ←↩

Sets the parallel optimization mode. Possible modes are automatic, deterministic, and
opportunistic.

1906 Solver Manuals

In this context, deterministic means that multiple runs with the same model at the same
parameter settings on the same platform will reproduce the same solution path and results. In
contrast, opportunistic implies that even slight differences in timing among threads or in the
order in which tasks are executed in different threads may produce a different solution path
and consequently different timings or different solution vectors during optimization executed
in parallel threads. When running with multiple threads, the opportunistic setting entails less
synchronization between threads and consequently may provide better performance.

In deterministic mode, Cplex applies as much parallelism as possible while still achieving
deterministic results. That is, when you run the same model twice on the same platform with
the same parameter settings, you will see the same solution and optimization run.

More opportunities to exploit parallelism are available if you do not require determinism.
In other words, Cplex can find more opportunities for parallelism if you do not require an
invariant, repeatable solution path and precisely the same solution vector. To use all available
parallelism, you need to select the opportunistic parallel mode. In this mode, Cplex will utilize
all opportunities for parallelism in order to achieve best performance.

However, in opportunistic mode, the actual optimization may differ from run to run, including
the solution time itself and the path traveled in the search.

Parallel MIP optimization can be opportunistic or deterministic.

Parallel barrier optimization is only deterministic.

A GAMS/Cplex run will use deterministic mode unless explicitly specified.

If ParallelMode is explicitly set to 0 (automatic) the settings of this parallel mode parameter
interact with settings of the Threads parameter. Let the result number of threads available to
Cplex be n (note that negative values for the threads parameter are possible to exclude work
on some cores).

Here is is list of possible value:

Default: 1

value meaning

-1 Enable opportunistic parallel search mode

0 Automatic

1 Enable deterministic parallel search mode

perind (boolean): force initial perturbation ←↩

Perturbation Indicator. If a problem automatically perturbs early in the solution process,
consider starting the solution process with a perturbation by setting PerInd to 1. Manually
perturbing the problem will save the time of first allowing the optimization to stall before
activating the perturbation mechanism, but is useful only rarely, for extremely degenerate
problems.

Default: 0

value meaning

0 not automatically perturbed

1 automatically perturbed

5.11 CPLEX 1907

perlim (integer): number of stalled iterations before perturbation ←↩

Perturbation limit. The number of stalled iterations before perturbation is invoked. The
default value of 0 means the number is determined automatically.

Default: 0

polishafterdettime (real): deterministic time before starting to polish a feasible solution ←↩

Default: 1.0e+75

polishafterepagap (real): absolute MIP gap before starting to polish a feasible solution ←↩

Solution polishing can yield better solutions in situations where good solutions are otherwise
hard to find. More time-intensive than other heuristics, solution polishing is actually a variety
of branch-and-cut that works after an initial solution is available. In fact, it requires a solution
to be available for polishing, either a solution produced by branch-and-cut, or a MIP start
supplied by a user. Because of the high cost entailed by solution polishing, it is not called
throughout branch-and-cut like other heuristics. Instead, solution polishing works in a second
phase after a first phase of conventional branch-and-cut. As an additional step after branch-
and-cut, solution polishing can improve the best known solution. As a kind of branch-and-cut
algorithm itself, solution polishing focuses solely on finding better solutions. Consequently, it
may not prove optimality, even if the optimal solution has indeed been found. Like the RINS
heuristic, solution polishing explores neighborhoods of previously found solutions by solving
subMIPs.

Sets an absolute MIP gap (that is, the difference between the best integer objective and the
objective of the best node remaining) after which CPLEX stops branch-and-cut and begins
polishing a feasible solution. The default value is such that CPLEX does not invoke solution
polishing by default.

Default: 0.0

polishafterepgap (real): relative MIP gap before starting to polish a solution ←↩

Sets a relative MIP gap after which CPLEX will stop branch-and-cut and begin polishing a
feasible solution. The default value is such that CPLEX does not invoke solution polishing by
default.

Default: 0.0

polishafterintsol (integer): MIP integer solutions to find before starting to polish a feasible solution ←↩

Sets the number of integer solutions to find before CPLEX stops branch-and-cut and begins
to polish a feasible solution. The default value is such that CPLEX does not invoke solution
polishing by default.

Default: 2147483647

polishafternode (integer): nodes to process before starting to polish a feasible solution ←↩

Sets the number of nodes processed in branch-and-cut before CPLEX starts solution polishing,
if a feasible solution is available.

Default: 2147483647

polishaftertime (real): time before starting to polish a feasible solution ←↩

1908 Solver Manuals

Tells CPLEX how much time in seconds to spend during mixed integer optimization before
CPLEX starts polishing a feasible solution. The default value is such that CPLEX does not
start solution polishing by default.

Default: 1.0e+75

populatelim (integer): limit of solutions generated for the solution pool by populate method ←↩

Limits the number of solutions generated for the solution pool during each call to the populate
procedure. Populate stops when it has generated PopulateLim solutions. A solution is counted
if it is valid for all filters (see DivFlt and consistent with the relative and absolute pool gap
parameters (see SolnPoolGap and SolnPoolAGap), and has not been rejected by the incumbent
checking routine (see UserIncbCall), whether or not it improves the objective of the model.
This parameter does not apply to MIP optimization generally; it applies only to the populate
procedure.

If you are looking for a parameter to control the number of solutions stored in the solution
pool, consider the parameter SolnPoolCapacity instead.

Populate will stop before it reaches the limit set by this parameter if it reaches another limit,
such as a time or node limit set by the user.

Default: 20

ppriind (integer): primal simplex pricing ←↩

Pricing algorithm. Likely to show the biggest impact on performance. Look at overall solution
time and the number of Phase I and total iterations as a guide in selecting alternate pricing
algorithms. If you are using the dual Simplex method use DPriInd to select a pricing algorithm.
If the number of iterations required to solve your problem is approximately the same as the
number of rows in your problem, then you are doing well. Iteration counts more than three
times greater than the number of rows suggest that improvements might be possible.

Default: 0

value meaning

-1 Reduced-cost pricing
This is less compute intensive and may be preferred if the problem is small or
easy. This option may also be advantageous for dense problems (say 20 to 30
nonzeros per column).

0 Hybrid reduced-cost and Devex pricing

1 Devex pricing
This may be useful for more difficult problems which take many iterations to
complete Phase I. Each iteration may consume more time, but the reduced number
of total iterations may lead to an overall reduction in time. Tenfold iteration
count reductions leading to threefold speed improvements have been observed. Do
not use devex pricing if the problem has many columns and relatively few rows.
The number of calculations required per iteration will usually be disadvantageous.

2 Steepest edge pricing
If devex pricing helps, this option may be beneficial. Steepest-edge pricing is
computationally expensive, but may produce the best results on exceptionally
difficult problems.

3 Steepest edge pricing with slack initial norms
This reduces the computationally intensive nature of steepest edge pricing.

4 Full pricing

5.11 CPLEX 1909

predual (integer): give dual problem to the optimizer ←↩

Solve the dual. Some linear programs with many more rows than columns may be solved faster
by explicitly solving the dual. The PreDual option will cause Cplex to solve the dual while
returning the solution in the context of the original problem. This option is ignored if presolve
is turned off.

Default: 0

value meaning

-1 do not give dual to optimizer

0 automatic

1 give dual to optimizer

preind (boolean): turn presolver on/off ←↩

Perform Presolve. This helps most problems by simplifying, reducing and eliminating redun-
dancies. However, if there are no redundancies or opportunities for simplification in the model,
if may be faster to turn presolve off to avoid this step. On rare occasions, the presolved model,
although smaller, may be more difficult than the original problem. In this case turning the
presolve off leads to better performance. Specifying 0 turns the aggregator off as well.

Default: 1

prepass (integer): number of presolve applications to perform ←↩

Number of MIP presolve applications to perform. By default, Cplex determines this automati-
cally. Specifying 0 turns off the presolve but not the aggregator. Set PreInd to 0 to turn both
off.

Default: -1

value meaning

-1 Determined automatically

0 No presolve

>0 Number of MIP presolve applications to perform

prereform (integer): set presolve reformulations ←↩

Default: 3

preslvnd (integer): node presolve selector ←↩

Indicates whether node presolve should be performed at the nodes of a mixed integer program-
ming solution. Node presolve can significantly reduce solution time for some models. The
default setting is generally effective.

Default: 0

value meaning

-1 No node presolve

0 Automatic

1 Force node presolve

2 Perform probing on integer-infeasible variables

3 Perform aggressive node probing

1910 Solver Manuals

pricelim (integer): pricing candidate list ←↩

Size for the pricing candidate list. Cplex dynamically determines a good value based on
problem dimensions. Only very rarely will setting this option manually improve performance.
Any non-negative integer values are valid.

Default: 0, in which case it is determined automatically

printoptions (boolean): list values of all options to GAMS listing file ←↩

Write the values of all options to the GAMS listing file. Valid values are no or yes.

Default: 0

probe (integer): perform probing before solving a MIP ←↩

Determines the amount of probing performed on a MIP. Probing can be both very powerful
and very time consuming. Setting the value to 1 can result in dramatic reductions or dramatic
increases in solution time depending on the particular model.

Default: 0

value meaning

-1 No probing

0 Automatic

1 Limited probing

2 More probing

3 Full probing

probedettime (real): deterministic time spent probing ←↩

Default: 1.0e+75

probetime (real): time spent probing ←↩

Limits the amount of time in seconds spent probing.

Default: 1.0e+75

qextractalg (integer): quadratic extraction algorithm in GAMS interface ←↩

Default: 0

value meaning

0 Automatic

1 ThreePass: Uses a three-pass forward / backward / forward AD technique to
compute function / gradient / Hessian values and a hybrid scheme for storage.

2 DoubleForward: Uses forward-mode AD to compute and store function, gradient,
and Hessian values at each node or stack level as required. The gradients and
Hessians are stored in linked lists.

3 Concurrent: Uses ThreePass and DoubleForward in parallel. As soon as one
finishes, the other one stops.

qpmakepsdind (boolean): adjust MIQP formulation to make the quadratic matrix positive-semi-definite

5.11 CPLEX 1911

←↩

Determines whether Cplex will attempt to adjust a MIQP formulation, in which all the
variables appearing in the quadratic term are binary. When this feature is active, adjustments
will be made to the elements of a quadratic matrix that is not nominally positive semi-definite
(PSD, as required by Cplex for all QP formulations), to make it PSD, and will also attempt to
tighten an already PSD matrix for better numerical behavior. The default setting of 1 means
yes but you can turn it off if necessary; most models should benefit from the default setting.

Default: 1

value meaning

0 Off

1 On

qpmethod (integer): algorithm to be used for QP problems ←↩

Specifies which QP algorithm to use.

At the default of 0 (automatic), barrier is used for QP problems and dual simplex for the root
relaxation of MIQP problems.

Default: 0

value meaning

0 Automatic

1 Primal Simplex

2 Dual Simplex

3 Network Simplex

4 Barrier

5 Sifting

6 Concurrent dual, barrier, and primal

qtolin (integer): linearization of the quadratic terms in the objective function of a QP or MIQP model ←↩

This parameter switches on or off linearization of the quadratic terms in the objective function
of a quadratic program or of a mixed integer quadratic program.

In a convex mixed integer quadratic program, this parameter controls whether Cplex linearizes
the product of binary variables in the objective function during presolve. In a nonconvex
quadratic program or mixed integer quadratic program solved to global optimality according
to OptimalityTarget, this parameter controls how Cplex linearizes the product of bounded
variables in the objective function during presolve.

This parameter interacts with the existing parameter OptimalityTarget: When the solution
target type is set to 1 (that is, Cplex searches for a globally optimal solution to a convex
model), then in a convex MIQP, this parameter tells Cplex to replace the product of a binary
variable and a bounded linear variable by a linearly constrained variable. When the solution
target type is set to 3, then in a nonconvex QP or nonconvex MIQP, this parameter controls
the initial relaxation.

Default: -1

1912 Solver Manuals

value meaning

-1 Automatic

0 Off, Cplex does not linearize quadratic terms in the objective

1 On, Cplex linearizes quadratic terms in the objective

quality (boolean): write solution quality statistics ←↩

Write solution quality statistics to the listing and log file. If set to yes, the statistics appear
after the Solve Summary and before the Solution Listing and contain information about
infeasibility levels, solution value magnitued, and the condition number (kappa):

Solution Quality Statistics:

unscaled scaled

max sum max sum

primal infeasibility 0.000e+00 0.000e+00 0.000e+00 0.000e+00

dual infeasibility 0.000e+00 0.000e+00 0.000e+00 0.000e+00

primal residual 0.000e+00 0.000e+00 0.000e+00 0.000e+00

dual residual 0.000e+00 0.000e+00 0.000e+00 0.000e+00

primal solution vector 3.000e+02 9.000e+02 3.000e+02 9.000e+02

dual solution vector 1.000e+00 1.504e+00 1.000e+00 1.504e+00

slacks 5.000e+01 5.000e+01 5.000e+01 5.000e+01

reduced costs 3.600e-02 4.500e-02 3.600e-02 4.500e-02

Condition number of the scaled basis matrix = 9.000e+00

Default: 0

randomseed (integer): sets the random seed differently for diversity of solutions ←↩

Default: changes with each Cplex release

readflt (string): reads Cplex solution pool filter file ←↩

The GAMS/Cplex solution pool options cover the basic use of diversity and range filters for
producing multiple solutions. If you need multiple filters, weights on diversity filters or other
advanced uses of solution pool filters, you could produce a Cplex filter file with your favorite
editor or the GAMS Put Facility and read this into GAMS/Cplex using this option.

readparams (string): read Cplex parameter file ←↩

reduce (integer): primal and dual reduction type ←↩

Determines whether primal reductions, dual reductions, or both, are performed during prepro-
cessing. It is occasionally advisable to do only one or the other when diagnosing infeasible or
unbounded models.

Default: 3

value meaning

0 No primal or dual reductions

1 Only primal reductions

2 Only dual reductions

3 Both primal and dual reductions

5.11 CPLEX 1913

reinv (integer): refactorization frequency ←↩

Refactorization Frequency. This option determines the number of iterations between refac-
torizations of the basis matrix. The default should be optimal for most problems. Cplex's
performance is relatively insensitive to changes in refactorization frequency. Only for extremely
large, difficult problems should reducing the number of iterations between refactorizations be
considered. Any non-negative integer value is valid.

Default: 0, in which case it is determined automatically

relaxfixedinfeas (boolean): accept small infeasibilties in the solve of the fixed problem ←↩

Sometimes the solution of the fixed problem of a MIP does not solve to optimality due to
small (dual) infeasibilities. The default behavior of the GAMS/Cplex link is to return the
primal solution values only. If the option is set to 1, the small infeasibilities are ignored and a
full solution including the dual values are reported back to GAMS.

Default: 0

value meaning

0 Off

1 On

relaxpreind (integer): presolve for initial relaxation on/off ←↩

This option will cause the Cplex presolve to be invoked for the initial relaxation of a mixed
integer program (according to the other presolve option settings). Sometimes, additional
reductions can be made beyond any MIP presolve reductions that may already have been
done.

Default: -1

value meaning

-1 Automatic

0 do not presolve initial relaxation

1 use presolve on initial relaxation

relobjdif (real): relative cheat parameter ←↩

The relative version of the ObjDif option. Ignored if ObjDif is non-zero.

Default: 0.0

repairtries (integer): try to repair infeasible MIP start ←↩

This parameter lets you indicate to Cplex whether and how many times it should try to repair
an infeasible MIP start that you supplied. The parameter has no effect if the MIP start you
supplied is feasible. It has no effect if no MIP start was supplied.

Default: 0

value meaning

-1 None: do not try to repair

0 Automatic

>0 Maximum tries to perform

1914 Solver Manuals

repeatpresolve (integer): reapply presolve at root after preprocessing ←↩

This integer parameter tells Cplex whether to re-apply presolve, with or without cuts, to a
MIP model after processing at the root is otherwise complete.

Default: -1

value meaning

-1 Automatic

0 Turn off represolve

1 Represolve without cuts

2 Represolve with cuts

3 Represolve with cuts and allow new root cuts

rerun (string): rerun problem if presolve infeasible or unbounded ←↩

The Cplex presolve can sometimes diagnose a problem as being infeasible or unbounded.
When this happens, GAMS/Cplex can, in order to get better diagnostic information, rerun
the problem with presolve turned off. The GAMS solution listing will then mark variables
and equations as infeasible or unbounded according to the final solution returned by the
simplex algorithm. The IIS option can be used to get even more diagnostic information. The
rerun option controls this behavior. Valid values are auto, yes, no and nono. The value of
auto is equivalent to no if names are successfully loaded into Cplex and option IIS is set to
no. In that case the Cplex messages from presolve help identify the cause of infeasibility or
unboundedness in terms of GAMS variable and equation names. If names are not successfully
loaded, rerun defaults to yes. Loading of GAMS names into Cplex is controlled by option
Names. The value of nono only affects MIP models for which Cplex finds a feasible solution in
the branch-and-bound tree but the fixed problem turns out to be infeasible. In this case the
value nono also disables the rerun without presolve, while the value of no still tries this run.
Feasible integer solution but an infeasible fixed problem happens in few cases and mostly with
badly scaled models. If you experience this try more aggressive scaling (ScaInd) or tightening
the integer feasibility tolerance EPInt. If the fixed model is infeasible only the primal solution
is returned to GAMS. You can recognize this inside GAMS by checking the marginal of the
objective defining constraint which is always nonzero.

Default: nono

value meaning

auto Automatic

yes Rerun infeasible models with presolve turned off

no Do not rerun infeasible models

nono Do not rerun infeasible fixed MIP models

rhsrng (string): do right-hand-side ranging ←↩

Calculate sensitivity ranges for the specified GAMS equations. Unlike most options, RHSRng
can be repeated multiple times in the options file. Sensitivity range information will be
produced for each GAMS equation named. Specifying all will cause range information to be
produced for all equations. Range information will be printed to the beginning of the solution
listing in the GAMS listing file unless option RngRestart is specified.

Default: no right-hand-side ranging is done

rinsheur (integer): relaxation induced neighborhood search frequency ←↩

5.11 CPLEX 1915

Cplex implements a heuristic known a Relaxation Induced Neighborhood Search (RINS) for
MIP and MIQCP problems. RINS explores a neighborhood of the current incumbent to try
to find a new, improved incumbent. It formulates the neighborhood exploration as a MIP, a
subproblem known as the subMIP, and truncates the subMIP solution by limiting the number
of nodes explored in the search tree.

Parameter RINSHeur controls how often RINS is invoked. A value of 100, for example, means
that RINS is invoked every hundredth node in the tree.

Default: 0

value meaning

-1 Disable RINS

0 Automatic

>0 Call RINS at the requested node interval

rltcuts (integer): Reformulation Linearization Technique (RLT) cuts ←↩

This parameter controls the addition of cuts based on the Reformulation Linearization Tech-
nique (RLT) for nonconvex quadratic programs (QP) or mixed integer quadratic programs
(MIQP) solved to global optimality. That is, the OptimalityTarget parameter must be set to
3. The RLTCuts option is not controlled by the option Cuts.

Default: 0

value meaning

-1 Do not generate RLT cuts

0 Determined automatically

1 Generate RLT cuts moderately

2 Generate RLT cuts aggressively

3 Generate RLT cuts very aggressively

rngrestart (string): write GAMS readable ranging information file ←↩

Write ranging information, in GAMS readable format, to the file named. If the file extension
is GDX, the ranging information is exported as GDX file. Options ObjRng and RHSRng are
used to specify which GAMS variables or equations are included.

Default: ranging information is printed to the listing file

scaind (integer): matrix scaling on/off ←↩

This option influences the scaling of the problem matrix.

Default: 0

value meaning

-1 No scaling

0 Standard scaling
An equilibration scaling method is implemented which is generally very effective.

1 Modified, more aggressive scaling method
This method can produce improvements on some problems. This scaling should
be used if the problem is observed to have difficulty staying feasible during the
solution process.

1916 Solver Manuals

siftalg (integer): sifting subproblem algorithm ←↩

Sets the algorithm to be used for solving sifting subproblems.

Default: 0

value meaning

0 Automatic

1 Primal simplex

2 Dual simplex

3 Network simplex

4 Barrier

siftdisplay (integer): sifting display level ←↩

Determines the amount of sifting progress information to be displayed.

Default: 1

value meaning

0 No display

1 Display major iterations

2 Display LP subproblem information

sifting (boolean): switch for sifting from simplex optimization ←↩

Default: 1

siftitlim (integer): limit on sifting iterations ←↩

Sets the maximum number of sifting iterations that may be performed if convergence to
optimality has not been reached.

Default: large

simdisplay (integer): simplex display level ←↩

This option controls what Cplex reports (normally to the screen) during optimization. The
amount of information displayed increases as the setting value increases.

Default: 1

value meaning

0 No iteration messages are issued until the optimal solution is reported

1 An iteration log message will be issued after each refactorization
Each entry will contain the iteration count and scaled infeasibility or objective
value.

2 An iteration log message will be issued after each iteration
The variables, slacks and artificials entering and leaving the basis will also be
reported.

singlim (integer): limit on singularity repairs ←↩

5.11 CPLEX 1917

The singularity limit setting restricts the number of times Cplex will attempt to repair the
basis when singularities are encountered. Once the limit is exceeded, Cplex replaces the current
basis with the best factorizable basis that has been found. Any non-negative integer value is
valid.

Default: 10

solnpool (string): solution pool file name ←↩

The solution pool enables you to generate and store multiple solutions to a MIP problem.
The option expects a GDX filename. This GDX file name contains the information about the
different solutions generated by Cplex. Inside your GAMS program you can process the GDX
file and read the different solution point files. Please check the GAMS/Cplex solver guide
document and the example model solnpool.gms from the GAMS model library.

solnpoolagap (real): absolute tolerance for the solutions in the solution pool ←↩

Sets an absolute tolerance on the objective bound for the solutions in the solution pool.
Solutions that are worse (either greater in the case of a minimization, or less in the case of a
maximization) than the objective of the incumbent solution according to this measure are not
kept in the solution pool.

Values of the solution pool absolute gap and the solution pool relative gap SolnPoolGap may
differ: For example, you may specify that solutions must be within 15 units by means of the
solution pool absolute gap and also within 1% of the incumbent by means of the solution pool
relative gap. A solution is accepted in the pool only if it is valid for both the relative and the
absolute gaps.

The solution pool absolute gap parameter can also be used as a stopping criterion for the
populate procedure: if populate cannot enumerate any more solutions that satisfy this objective
quality, then it will stop. In the presence of both an absolute and a relative solution pool gap
parameter, populate will stop when the smaller of the two is reached.

Default: 1.0e+75

solnpoolcapacity (integer): limits of solutions kept in the solution pool ←↩

Limits the number of solutions kept in the solution pool. At most, SolnPoolCapacity solutions
will be stored in the pool. Superfluous solutions are managed according to the replacement
strategy set by the solution pool replacement parameter SolnPoolReplace.

The optimization (whether by MIP optimization or the populate procedure) will not stop if
more than SolnPoolCapacity are generated. Instead, stopping criteria are regular node and
time limits and PopulateLim, SolnPoolGap and SolnPoolAGap.

Default: 2100000000

solnpoolgap (real): relative tolerance for the solutions in the solution pool ←↩

Sets a relative tolerance on the objective bound for the solutions in the solution pool. Solutions
that are worse (either greater in the case of a minimization, or less in the case of a maximization)
than the incumbent solution by this measure are not kept in the solution pool.

Values of the solution pool absolute gap SolnPoolAGap and the solution pool relative gap may
differ: For example, you may specify that solutions must be within 15 units by means of the
solution pool absolute gap and within 1% of the incumbent by means of the solution pool
relative gap. A solution is accepted in the pool only if it is valid for both the relative and the
absolute gaps.

The solution pool relative gap parameter can also be used as a stopping criterion for the
populate procedure: if populate cannot enumerate any more solutions that satisfy this objective
quality, then it will stop. In the presence of both an absolute and a relative solution pool gap
parameter, populate will stop when the smaller of the two is reached.

Default: 1.0e+75

1918 Solver Manuals

solnpoolintensity (integer): solution pool intensity for ability to produce multiple solutions ←↩

Controls the trade-off between the number of solutions generated for the solution pool and the
amount of time or memory consumed. This parameter applies both to MIP optimization and
to the populate procedure.

Values from 1 to 4 invoke increasing effort to find larger numbers of solutions. Higher values
are more expensive in terms of time and memory but are likely to yield more solutions.

Default: 0

value meaning

0 Automatic
Its default value, 0 , lets Cplex choose which intensity to apply.

1 Mild: generate few solutions quickly
For value 1, the performance of MIP optimization is not affected. There is no
slowdown and no additional consumption of memory due to this setting. However,
populate will quickly generate only a small number of solutions. Generating more
than a few solutions with this setting will be slow. When you are looking for a
larger number of solutions, use a higher value of this parameter.

2 Moderate: generate a larger number of solutions
For value 2, some information is stored in the branch and cut tree so that it
is easier to generate a larger number of solutions. This storage has an impact
on memory used but does not lead to a slowdown in the performance of MIP
optimization. With this value, calling populate is likely to yield a number of
solutions large enough for most purposes. This value is a good choice for most
models.

3 Aggressive: generate many solutions and expect performance penalty
For value 3, the algorithm is more aggressive in computing and storing information
in order to generate a large number of solutions. Compared to values 1 and 2, this
value will generate a larger number of solutions, but it will slow MIP optimization
and increase memory consumption. Use this value only if setting this parameter
to 2 does not generate enough solutions.

4 Very aggressive: enumerate all practical solutions
For value 4, the algorithm generates all solutions to your model. Even for small
models, the number of possible solutions is likely to be huge; thus enumerating
all of them will take time and consume a large quantity of memory.

solnpoolmerge (string): solution pool file name for merged solutions ←↩

Similar to solnpool this option enables you to generate and store multiple solutions to a MIP
problem. The option expects a GDX filename. This GDX file contains all variables with an
additional first index (determined through SolnPoolPrefix) as parameters (Cplex only reports
the primal solution). Inside your GAMS program you can process the GDX file and read all
solutions in one read operation. Please check the GAMS/Cplex solver guide document for
further solution pool options and the example model solmpool.gms from the GAMS model
library.

solnpoolnumsym (integer): maximum number of variable symbols when writing merged solutions ←↩

Default: 10

solnpoolpop (integer): methods to populate the solution pool ←↩

5.11 CPLEX 1919

Regular MIP optimization automatically adds incumbents to the solution pool as they are
discovered. Cplex also provides a procedure known as populate specifically to generate multiple
solutions. You can invoke this procedure either as an alternative to the usual MIP optimizer
or as a successor to the MIP optimizer. You can also invoke this procedure many times in
a row in order to explore the solution space differently (see option SolnPoolPopRepeat). In
particular, you may invoke this procedure multiple times to find additional solutions, especially
if the first solutions found are not satisfactory.

Default: 1

value meaning

1 Just collect the incumbents found during regular optimization

2 Calls the populate procedure

solnpoolpopdel (string): file with solution numbers to delete from the solution pool ←↩

After the GAMS program specified in SolnPoolPopRepeat determined to continue the search
for alternative solutions, the file specified by this option is read in. The solution numbers
present in this file will be delete from the solution pool before the populate routine is called
again. The file is automatically deleted by the GAMS/Cplex link after processing.

solnpoolpoprepeat (string): method to decide if populating the solution should be repeated ←↩

After the termination of the populate procedure (see option SolnPoolPop). The GAMS
program specified in this option will be called which can examine the solutions in the solution
pool and can decide to run the populate procedure again. If the GAMS program terminates
normally (not compilation or execution time error) the search for new alternative solutions
will be repeated.

solnpoolprefix (string): file name prefix for GDX solution files ←↩

Default: soln

solnpoolreplace (integer): strategy for replacing a solution in the solution pool ←↩

Default: 0

value meaning

0 Replace the first solution (oldest) by the most recent solution; first in, first out

1 Replace the solution which has the worst objective

2 Replace solutions in order to build a set of diverse solutions

solutiontype (integer): type of solution (basic or non basic) for an LP or QP ←↩

Specifies the type of solution (basic or non basic) that CPLEX attempts to compute for a
linear program (LP) or for a quadratic program (QP). In this context, basic means having to
do with the basis, and non basic applies to the variables and constraints not participating in
the basis.

By default (that is, when the value of this parameter is 0 (zero) automatic), CPLEX seeks
a basic solution (that is, a solution with a basis) for all linear programs (LP) and for all
quadratic programs (QP).

When the value of this parameter is 1 (one), CPLEX seeks a basic solution, that is, a solution
that includes a basis with a basic status for variables and constraints. In other words, CPLEX
behaves the same way for the values 0 (zero) and 1 (one) of this parameter.

1920 Solver Manuals

When the value of this parameter is 2, CPLEX seeks a pair of primal-dual solution vectors.
This setting does not prevent CPLEX from producing status information, but in seeking a pair
of primal-dual solution vectors, CPLEX possibly may not produce basic status information;
that is, it is possible that CPLEX does not produce status information about which variables
and constraints participate in the basis at this setting.

Do not use the deprecated value -1 (minus one) of the parameter barrier crossover algorithm
to turn off crossover of the barrier algorithm but use this parameter to indicate that a
primal-dual pair is sufficient.

Default: 0

value meaning

0 Automatic

1 Basic solution

2 primal-dual pair

solvefinal (boolean): switch to solve the problem with fixed discrete variables ←↩

Sometimes the solution process after the branch-and-cut that solves the problem with fixed
discrete variables takes a long time and the user is interested in the primal values of the
solution only. In these cases, solvefinal can be used to turn this final solve off. Without the
final solve no proper marginal values are available and only NAs are returned to GAMS.

Default: 1

value meaning

0 Do not solve the fixed problem

1 Solve the fixed problem and return duals

sos1reform (integer): automatic logarithmic reformulation of special ordered sets of type 1 (SOS1) ←↩

Default: 0

sos2reform (integer): automatic logarithmic reformulation of special ordered sets of type 2 (SOS2) ←↩

Default: 0

startalg (integer): MIP starting algorithm ←↩

Selects the algorithm to use for the initial relaxation of a MIP.

Default: 0

value meaning

0 Automatic

1 Primal simplex

2 Dual simplex

3 Network simplex

4 Barrier

5 Sifting

6 Concurrent

5.11 CPLEX 1921

strongcandlim (integer): size of the candidates list for strong branching ←↩

Limit on the length of the candidate list for strong branching (VarSel = 3).

Default: 10

strongitlim (integer): limit on iterations per branch for strong branching ←↩

Limit on the number of iterations per branch in strong branching (VarSel = 3). The default
value of 0 causes the limit to be chosen automatically which is normally satisfactory. Try
reducing this value if the time per node seems excessive. Try increasing this value if the time
per node is reasonable but Cplex is making little progress.

Default: 0

subalg (integer): algorithm for subproblems ←↩

Strategy for solving linear sub-problems at each node.

Default: 0

value meaning

0 Automatic

1 Primal simplex

2 Dual simplex

3 Network optimizer followed by dual simplex

4 Barrier with crossover

5 Sifting

submipnodelim (integer): limit on number of nodes in an RINS subMIP ←↩

Controls the number of nodes explored in an RINS subMIP. See option RINSHeur.

Default: 500

submipscale (integer): scale the problem matrix when CPLEX solves a subMIP during MIP optimization
←↩

Default: 0

value meaning

-1 No scaling

0 Standard scaling

1 Modified, more aggressive scaling method

submipstartalg (integer): starting algorithm for a subMIP of a MIP ←↩

Default: 0

value meaning

0 Automatic

1 Primal simplex

2 Dual simplex

1922 Solver Manuals

value meaning

3 Network simplex

4 Barrier

5 Sifting

submipsubalg (integer): algorithm for subproblems of a subMIP of a MIP ←↩

Default: 0

value meaning

0 Automatic

1 Primal simplex

2 Dual simplex

3 Network optimizer followed by dual simplex

4 Barrier with crossover

5 Sifting

symmetry (integer): symmetry breaking cuts ←↩

Determines whether symmetry breaking cuts may be added, during the preprocessing phase,
to a MIP model.

Default: -1

value meaning

-1 Automatic

0 Turn off symmetry breaking

1 Moderate level of symmetry breaking

2 Aggressive level of symmetry breaking

3 Very aggressive level of symmetry breaking

4 Highly aggressive level of symmetry breaking

5 Extremely aggressive level of symmetry breaking

threads (integer): global default thread count ←↩

Synonym: gthreads

Default number of parallel threads allowed for any solution method. Negative values are
interpreted as the number of cores to leave free so setting threads to -1 leaves one core
free for other tasks. Cplex does not understand negative values for the threads parameter.
GAMS/Cplex will translate this into a positive number by applying the following formula:
max(1,number of cores-|threads|). Setting threads to 0 lets Cplex use at most 32 threads or
the number of cores of the machine, whichever is smaller.

Default: GAMS Threads

tilim (real): overrides the GAMS ResLim option ←↩

Synonym: reslim

The time limit setting determines the amount of time in seconds that Cplex will continue to
solve a problem. This Cplex option overrides the GAMS ResLim option. Any non-negative
value is valid.

Default: GAMS ResLim

5.11 CPLEX 1923

trelim (real): maximum space in memory for tree ←↩

Sets an absolute upper limit on the size (in megabytes) of the branch and cut tree. If this
limit is exceeded, Cplex terminates optimization.

Default: 1.0e+75

tuning (string): invokes parameter tuning tool ←↩

Invokes the Cplex parameter tuning tool. The mandatory value following the keyword specifies
a GAMS/Cplex option file. All options found in this option file will be used but not modified
during the tuning. A sequence of file names specifying existing problem files may follow the
option file name. The files can be in LP, MPS or SAV format. Cplex will tune the parameters
either for the problem provided by GAMS (no additional problem files specified) or for the
suite of problems listed after the GAMS/Cplex option file name without considering the
problem provided by GAMS. Due to technical reasons a single option input line is limited by
256 characters. If the list of model files exceeds this length you can provide a second, third, ...
line starting again with keyword tuning and a list of model instance files.

The result of such a tuning run is the updated GAMS/Cplex option file with a tuned set of
parameters. The solver and model status returned to GAMS will be NORMAL COMPLETION and
NO SOLUTION. More details on Cplex tuning can be found on IBM's web page. Tuning is
incompatible with the BCH facility and other advanced features of GAMS/Cplex.

tuningdettilim (real): tuning deterministic time limit per model or suite ←↩

Default: 1.0e+75

tuningdisplay (integer): level of information reported by the tuning tool ←↩

Specifies the level of information reported by the tuning tool as it works.

Default: 1

value meaning

0 Turn off display

1 Display standard minimal reporting

2 Display standard report plus parameter settings being tried

3 Display exhaustive report and log

tuningmeasure (integer): measure for evaluating progress for a suite of models ←↩

Controls the measure for evaluating progress when a suite of models is being tuned. Choices
are mean average and minmax of time to compare different parameter sets over a suite of
models

Default: 1

value meaning

1 mean average

2 minmax

tuningrepeat (integer): number of times tuning is to be repeated on perturbed versions ←↩

http://www-01.ibm.com/support/docview.wss?uid=swg21400023

1924 Solver Manuals

Specifies the number of times tuning is to be repeated on perturbed versions of a given problem.
The problem is perturbed automatically by Cplex permuting its rows and columns. This
repetition is helpful when only one problem is being tuned, as repeated perturbation and
re-tuning may lead to more robust tuning results. This parameter applies to only one problem
in a tuning session.

Default: 1

tuningtilim (real): tuning time limit per model or suite ←↩

Sets a time limit per model and per test set (that is, suite of models).

As an example, suppose that you want to spend an overall amount of time tuning the parameter
settings for a given model, say, 2000 seconds. Also suppose that you want Cplex to make
multiple attempts within that overall time limit to tune the parameter settings for your model.
Suppose further that you want to set a time limit on each of those attempts, say, 200 seconds
per attempt. In this case you need to specify an overall time limit of 2000 using GAMS option
reslim or Cplex option TiLim and tuningtilim to 200.

Default: 0.2∗GAMS ResLim

upperobjstop (real): in a maximization MILP or MIQP, the solver will abort the optimization process
as soon as it finds a solution of value greater than or equal to the specified value ←↩

Default: 1e75

usercallparmfile (string): Command-line parameter include file used in GAMS command-line calls
triggered by BCH ←↩

.usercut (boolean): User cut activation ←↩

Determines whether a linear constraint is treated as a user cut. At the beginning of the MIP
solution process, any constraint whose usercut attribute is set to 1 (the default value is 0) is
removed from the model and placed in the user cut pool. User cuts may be used by CPLEX at
any time to improve the solution process. There is no guarantee that they are actually used.

The user cut pool is only active if option usercutpool is enabled and are specified through the
option .usercut. The syntax for dot options is explained in the Introduction chapter of the
Solver Manual.

Default: 0

usercutcall (string): the GAMS command line to call the cut generator ←↩

More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

usercutfirst (integer): calls the cut generator for the first n nodes ←↩

More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

Default: 10

usercutfreq (integer): determines the frequency of the cut generator model calls ←↩

More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

Default: 10

5.11 CPLEX 1925

usercutinterval (integer): determines the interval when to apply the multiplier for the frequency of the
cut generator model calls ←↩

More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

Default: 100

usercutmult (integer): determines the multiplier for the frequency of the cut generator model calls ←↩

More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

Default: 2

usercutnewint (boolean): calls the cut generator if the solver found a new integer feasible solution ←↩

More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

Default: 1

usercutpool (boolean): Indicator to use user cuts ←↩

Default: 0

usergdxin (string): the name of the GDX file read back into Cplex ←↩

More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

Default: bchin.gdx

usergdxname (string): the name of the GDX file exported from the solver with the solution at the node
←↩

More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

Default: bchout.gdx

usergdxnameinc (string): the name of the GDX file exported from the solver with the incumbent
solution ←↩

More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

Default: bchout i.gdx

usergdxprefix (string): prefixes usergdxin, usergdxname, and usergdxnameinc ←↩

More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

usergdxsol (string): the name of the GDX file exported by Cplex to store the solution of extra columns
←↩

More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

Default: bchsol.gdx

userheurcall (string): the GAMS command line to call the heuristic ←↩

More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

userheurfirst (integer): calls the heuristic for the first n nodes ←↩

1926 Solver Manuals

More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

Default: 10

userheurfreq (integer): determines the frequency of the heuristic model calls ←↩

More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

Default: 10

userheurinterval (integer): determines the interval when to apply the multiplier for the frequency of the
heuristic model calls ←↩

More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

Default: 100

userheurmult (integer): determines the multiplier for the frequency of the heuristic model calls ←↩

More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

Default: 2

userheurnewint (boolean): calls the heuristic if the solver found a new integer feasible solution ←↩

More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

Default: 1

userheurobjfirst (integer): Similar to UserHeurFirst but only calls the heuristic if the relaxed objective
promises an improvement ←↩

More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

Default: 0

userincbcall (string): the GAMS command line to call the incumbent checking program ←↩

More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

userincbicall (string): the GAMS command line to call the incumbent reporting program ←↩

More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

userjobid (string): postfixes lf, o on call adds –userjobid to the call. Postfixes gdxname, gdxnameinc and
gdxin ←↩

More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

userkeep (boolean): calls gamskeep instead of gams ←↩

More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

Default: 0

userlazyconcall (string): the GAMS command line to call the lazy constraint generator ←↩

More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

Note: There is no guarantee that CPLEX will use all of the added violated lazy constraints
provided due to technical and/or efficiency reasons. It may thus happen that a later candidate
solution violates previously provided lazy constraints. In this case consider passing the
constraint again.

varsel (integer): variable selection strategy at each node ←↩

This option is used to set the rule for selecting the branching variable at the node which has
been selected for branching. The default value of 0 allows Cplex to select the best rule based
on the problem and its progress.

Default: 0

5.11 CPLEX 1927

value meaning

-1 Branch on variable with minimum infeasibility
This rule may lead more quickly to a first integer feasible solution, but will usually
be slower overall to reach the optimal integer solution.

0 Branch variable automatically selected

1 Branch on variable with maximum infeasibility
This rule forces larger changes earlier in the tree, which tends to produce faster
overall times to reach the optimal integer solution.

2 Branch based on pseudo costs
Generally, the pseudo-cost setting is more effective when the problem contains
complex trade-offs and the dual values have an economic interpretation.

3 Strong Branching
This setting causes variable selection based on partially solving a number of
subproblems with tentative branches to see which branch is most promising. This
is often effective on large, difficult problems.

4 Branch based on pseudo reduced costs

warninglimit (integer): determines how many times warnings of a specific type (datacheck=2) will be
displayed ←↩

By default, when modeling assistance is turned on via the data consistency checking parameter,
CPLEX will display 10 warnings for a given modeling issue and then omit the rest. This
parameter controls this limit and allows the user to display all of the warnings if desired. In
order to see all warnings change the value to its negative.

Default: 10

workdir (string): directory for working files ←↩

The name of an existing directory into which Cplex may store temporary working files. Used
for MIP node files and by out-of-core Barrier.

Default: current or project directory

workeralgorithm (integer): set method for optimizing benders subproblems ←↩

Default: 0

value meaning

0 Automatic

1 Primal Simplex

2 Dual Simplex

3 Network Simplex

4 Barrier

5 Sifting

workmem (real): memory available for working storage ←↩

Upper limit on the amount of memory, in megabytes, that Cplex is permitted to use for
working files. See parameter WorkDir.

Default: 2048.0

1928 Solver Manuals

writeannotation (string): produce a Cplex annotation file ←↩

writebas (string): produce a Cplex basis file ←↩

Write a basis file.

writeflt (string): produce a Cplex solution pool filter file ←↩

Write the diversity filter to a Cplex FLT file.

writelp (string): produce a Cplex LP file ←↩

Write a file in Cplex LP format.

writemps (string): produce a Cplex MPS file ←↩

Write an MPS problem file.

writemst (string): produce a Cplex mst file ←↩

Write a Cplex MST (containing the MIP start) file.

writeord (string): produce a Cplex ord file ←↩

Write a Cplex ORD (containing priority and branch direction information) file.

writeparam (string): produce a Cplex parameter file with all active options ←↩

Write a Cplex parameter (containing all modified Cplex options) file.

writepre (string): produce a Cplex LP/MPS/SAV file of the presolved problem ←↩

Synonym: writepremps

Write a Cplex LP, MPS, or SAV file of the presolved problem. The file extension determines
the problem format. For example, WritePre presolved.lp creates a file presolved.lp in
Cplex LP format.

writeprob (string): produce a Cplex problem file and inferrs the type from the extension ←↩

Write a problem file in a format inferred from the extension. Possible formats are

• SAV: Binary matrix and basis file

• MPS: MPS format

• LP: CPLEX LP format with names modified to conform to LP format

• REW: MPS format, with all names changed to generic names

• RLP: LP format, with all names changed to generic names

• ALP: LP format, with generic name of each variable, type of each variable, bound of each
variable If the file name ends with .bz2 or .gz, a compressed file is written.

writesav (string): produce a Cplex binary problem file ←↩

Write a binary problem file.

zerohalfcuts (integer): zero-half cuts ←↩

Decides whether or not to generate zero-half cuts for the problem. The value 0, the default,
specifies that the attempt to generate zero-half cuts should continue only if it seems to be
helping. If the dual bound of your model does not make sufficient progress, consider setting
this parameter to 2 to generate zero-half cuts more aggressively.

Default: 0

5.12 Deterministic Equivalent (DE) 1929

value meaning

-1 Off

0 Automatic

1 Generate zero-half cuts moderately

2 Generate zero-half cuts aggressively

5.11.9 Setting up a GAMS/Cplex-Link license

The GAMS/Cplex-Link license requires that you have a valid license agreement with IBM for use of the
current version of the Cplex library.

To add the Cplex-Link to your GAMS license, please write to sales@gams.com to confirm that you have
such a license agreement and that your use of the GAMS solver will comply with the terms of that license
agreement. Please reference your GAMS License ID, DCxxxx.

5.12 Deterministic Equivalent (DE)

Author

Martha Loewe

5.12.1 Introduction

DE is a solver for stochastic programs modeled with GAMS Extended Mathematical Programming for
Stochastic Programming (EMP SP). DE can solve multi-stage LP, MIP, QCP, NLP and MINLP stochastic
programming models. For details about EMP SP and the syntax to modify an existing GAMS model
to be an stochastic programming model in GAMS EMP SP see Stochastic Programming. A list of DE
solver options is given at the end of this document.

Stochastic programs are mathematical programs that include data that is not known with certainty, but
is approximated by probability distributions. The simplest form of a stochastic program is the two-stage
stochastic linear program with recourse. In mathematical terms it is defined as follows.

Let x ∈ Rn and y ∈ Rm be two variables and let the set of all realizations of the unknown data be given
by Ω, Ω = {ω1, . . . , ωS} ⊆ Rr, where r is the number of the random variables representing the uncertain
parameters. Then the stochastic program is given by

Minx z = cTx + E[Q(x, ω)]
s.t. Ax = b, x ≥ 0,

where Q(x, ω) = Miny qTω y(ω)
s.t. Tωx + Wωy(ω) = hω, y(ω) ≥ 0, ∀ω ∈ Ω.

(5.1)

The first two lines define the first-stage problem and the last two lines define the second-stage problem.
In the first stage, x is the decison variable, cT represents the cost coefficients of the objective function and
E[Q(x, ω)] denotes the expected value of the optimal solution of the second stage problem. In addition, A
denotes the coefficients and b the right-hand side of the first stage constraints. In the second stage, y is
the decision variable, T represents the transition matrix, W the recourse matrix (cost of recourse) and h

mailto:sales@gams.com

1930 Solver Manuals

the right-hand side of the second stage constraints. Note that all parameters and the decision variable
of the second stage are dependent on ω. The objective variable z is also a random variable, since it is a
function of ω. As a random variable cannot be optimized, DE automatically optimizes the expected value
of the objective variable z. DE is also able to optimize other risk measures, as will be discussed later.

In the first stage, a decision has to be made before the realization of the uncertain data is clear. The
optimal solution of the first stage is fixed and only then the values that the uncertain parameters take will
become known. Given the fixed solution of the first stage and the new data, in the second stage recourse
action can be taken and the optimal solution determined. Each possible realization of the uncertain data
is represented by an ωs ∈ Ω and is called a scenario. The objective is to find a feasible solution x that
minimizes the total cost, namely the sum of the first-stage costs and the expected second-stage costs.

One of the most common methods to solve a two-stage stochastic LP is to build and solve the deterministic
equivalent. Assume that the uncertain parameters follow a (finite) discrete distribution and that each
scenario ωs occurs with probability P (ωs) = ps for all s = 1, . . . , S and

∑
s ps = 1. So E[Q(x, ω)] =∑

s psq
T ys, where ys denotes the optimal second-stage decision for the scenario ωs. Then the deterministic

equivalent can be expressed as follows:

cTx + p1q
T y1 + p2q

T y2 + . . . + pSq
T yS

s.t.
Ax = b
T1x + W1y1 = h1

T2x + W2y2 = h2

... +
. . .

...
TSx + WSyS = hS
x ∈ Rn y1 ∈ Rm y2 ∈ Rm yS ∈ Rm

(5.2)

Note that for stochastic linear programs the deterministic equivalent is just a very large linear program.

The solver DE automatically generates the deterministic equivalent of a stochastic program and then
hands it over for solution to a solver, termed the subsolver. The subsolver is the default solver for the
type of model to be solved. The user may choose another subsolver with the option subsolver.

If modelers want to use DE, they may either add the option

option emp = de;

before the solve statement in the model or they may choose the solver DE on the command line, e.g.

gams mymodel.gms emp=de

5.12.2 Random Variables

Random variables and their distributions and stages determine the number of scenarios in the model and
thus the number of equations that are generated for the deterministic equivalent. If there are two or more
random variables in one stage they may be jointly distributed or not.

Assume that there is a two-stage stochastic model M2 that has two random variables a and b in the
second stage. The random variables both follow a discrete distribution, the uncertain data for a is given
by Ωa and the uncertain data for b is given by Ωb. If the random variables are not jointly distributed,
then |Ωa| × |Ωb| scenarios are generated. If the random variables are jointly distributed, then we need to
have |Ωa| = |Ωb| and the number of scenarios is |Ωa|.

5.12 Deterministic Equivalent (DE) 1931

In addition to two-stage stochastic models, DE can also solve multi-stage stochastic models. Let M4 be a
stochastic model with four stages. In each of the stages after the first stage new data is revealed that
was unknown in the previous stages. Assume that in each stage there is just one random variable. Let
ΩI denote the uncertain data in the second stage and ΩII and ΩIII represent the uncertain data of the
third and fourth stage respectively. Let |ΩI| = n1, |ΩII| = n2 and |ΩIII| = n3. DE builds the deterministic
equivalent of this model by recursively generating a scenario tree. In the second stage the number of
scenarios is n1, in the third stage there are n1×n2 scenarios and in the fourth stage there are n1×n2×n3

scenarios. Note that the number of scenarios in the model equals the number of scenarios in the last stage.
However, the number of equations generated for the deterministic equivalent is the sum of the scenarios in
each stage, so in this example it is n1 + n1 × n2 + n1 × n2 × n3 = n1 × (1 + n2 × (1 + n3)).

The following figure illustrates the scenario tree of a stochastic model with four stages.

Note that the structure of the scenario tree is limited: each node in a stage has exactly the same number
of arcs.

If there is more than one random variable per stage, then the number of scenarios increases accordingly.
Note that there is no absolute limit to the number of stages and random variables, but the model can
become very large very quickly as the number of stages and random variables increases. Note further that
the random variables are stagewise independent. The realization of the random variables in one stage
does not influence the realization of the random variables in a later stage.

5.12.3 Sampling Procedures

DE can solve only stochastic programs with random variables that follow discrete probability distributions.
If the random data follows a continuous probability distribution the set Ω has an infinite number of
elements. Sampling is a process that generates a finite approximation ΩN to Ω. The size of ΩN is N
and each element of ΩN has the same probability p = 1

N . Thus continuous probability distributions are
approximated by discrete distributions. EMP SP provides the keyword sample to facilitate sampling. An
example follows.

randvar d normal 45 10

sample d 100

1932 Solver Manuals

These two lines are a portion of the emp.info file. In the first line d is defined as a random variable that
follows a Normal distribution with mean 45 and standard deviation 10. In the second line it is specified
that the continuous distribution is approximated by a sample of size 100. Note that the user determines
the sample size N . Note further that the use of the keyword sample is mandatory for random variables
with continuous distributions. Otherwise the following error message will appear:

*** Only random variables with sampled continuous distributions supported.

Observe that behind the scenes the sampling is performed by the LINDO system. So the modeler needs a
LINDO licence for sample sizes larger than 10 (smaller sample sizes are included in the demo version).
The LINDO system offers three variance reduction algorithms: the Antithetic algorithm, the Latin Square
algorithm and the Monte Carlo algorithm. They may be enabled using either the option svr ls antithetic
or svr ls latinsquare or svr ls montecarlo respectively.

Alternatively, the modeler may chose to generate a sample of the distribution first and then enter the
sample as a discrete distribution in the emp.info file. There are two stochastic libraries that can be used
for this procedure: the GAMS Stochastic Library and the LINDO Sampling Library. An example and
details about the procedure using the LINDO library are given in section Sampling in the EMP manual.

5.12.4 The Expected Value Problem

Consider the special case where the sample size is 1 and the ”sampled” value equals the expected value
of the random variable. This entails that the random variable is replaced by its expected value. The
resulting model is deterministic and is called the Expecetd Value Program. DE facilitates solving the
Expected Value Problem through the option solveEVProb. If this option is specified in the option file
(see example below) the Expected Value Problem is solved after the original stochastic model and the
solution is reported. In addition, DE offers the option to choose a separate subsolver for the Expecetd
Value Problem, the option evsubsolver.

In the following example the stochastic model is solved with the subsolver Conopt and the Expected Value
Problem is solved with the subsolver Minos.

$onecho > de.opt

subsolver conopt

solveEVProb

evsubsolver minos

$offecho

mymodel.optfile=1;

solve mymodel min obj using emp scenario dict;

Note that the option solveEVProb is not defined for models with chance constraints and models featuring
VaR and CVaR. These model types are discussed in the next section.

5.12.5 What types of models can DE handle?

As mentioned earlier, DE can solve two-stage and multi-stage stochastic linear, quadratic and nonlinear
models and the mixed-integer versions of all these models. There are two further classes of stochastic
models that DE is equipped to solve: stochastic programs with chance constraints and stochastic programs
with other risk measures such as Variance at Risk (VaR) and Conditional Variance at Risk (CVaR). CVaR
is also called Expected Shortfall.

5.12 Deterministic Equivalent (DE) 1933

In stochastic programs with chance constraints the goal is to make an optimal decision prior to the
realization of random data while allowing the constraints to be violated with a certain probability.
Mathematically, a stochastic linear program with chance constraints can be expressed as follows:

Minx cTx
s.t. P (Ax ≤ b) ≥ p

x ≥ 0,
(5.3)

where x ∈ Rn is the decision variable and cT denotes the coefficients of the objective function, A ∈ Rm×n
is a random matrix and represents the coefficients and b ∈ Rm is a random vector and denotes the
right-hand side of the constraints. The distinctive feature of stochastic programs with chance constraints
is that the constraints (or some of them) may be violated with probability ε = 1− p, where 0 < p ≤ 1.

DE offers three reformulation options to solve stochastic programs with chance constraints: a reformulation
using a mixed-integer program with big M notation, a convex hull reformulation and the use of indicator
variables and indicator constraints. Note that the default is the MIP reformulation (the default value of
M is set to 10000 and can be customized). With the option ccreform the reformulation method can be
determined by the user.

For details on single and joint chance constraints and examples how to use the option ccreform, see the
section Chance Constraints with EMP in the EMP manual. Note that random variables in programs with
chance constraints may follow discrete or continuous probability distributions. Note further that there are
no stages in stochastic programs with chance constraints.

As mentioned earlier, DE automatically optimizes the expected value of the objective function variable.
DE also supports other risk measures, such as VaR and CVaR. In mathematical terms, DE is able to
solve the following:

Minx R(z), (5.4)

where z represents the objective function variable and R denotes a risk measure such as the Expected
Value, VaR and CVaR or a combination of risk measures (e.g. the weighted sum of Expected Value and
CVaR). In addition, the modeler can also choose to trade off risk measures. For more details about risk
measures see section Risk Measures with EMP in the EMP manual.

5.12.6 Reformulation Techniques

In this section some details are given about the reformulations that DE is performing behind the scenes.

5.12.6.1 Simple two-stage stochastic model

As mentioned previously, DE converts a stochastic model into its deterministic equivalent. Using
the model nbsimple.gms from the GAMS EMP model library as an example, we show how exactly
the deterministic equivalent is built. Note that this model is also discussed in detail in the section
A Simple Example: The News Vendor Problem of the EMP manual.

The model is given by the following equations:

Maxx z(x) = −cx+ E[Q(x, ω)], x ≥ 0, (5.5)

1934 Solver Manuals

where

Q(x, ω) = Maxs,i,l vs(ω)− hi(ω)− pl(ω)

s.t. x− s(ω)− i(ω) = 0

s(ω) + l(ω) = d(ω)

s(ω), i(ω), l(ω) ≥ 0 ∀ω ∈ Ω.

Here c, v, h and p are some given parameters, the first-stage decision variable is x, the second-stage
decision variables are s, i and l and the uncertain data is represented by the random variable d(ω).
We assume that the annotations specify that d follows a Normal distribution and the sample size to
approximate this continuous distribution is 4 (where all scenarios are equally likely, so p(s) = 0.25).

First, DE draws 4 values from the Normal distribution specified in the annotations. These 4 values are the
basis for the 4 scenarios that are generated. For each scenario, a separate equation for the two second-stage
constraints is built (that are 8 equations). In the process, for each of the three decison variables of the
second stage 4 variables are generated since the second-stage decison variables may take different values
for each scenario. Next, an equation for the profit for each scenario is generated (4 equations) and finally,
the equation to compute the average profit is built. So there are a total of 13 equations. They are given
here:

x− s1 − i1 = 0
x− s2 − i2 = 0
x− s3 − i3 = 0
x− s4 − i4 = 0
s1 + l1 = d1

s2 + l2 = d2

s3 + l3 = d3

s4 + l4 = d4

z1 = −cx+ vs1 − hi1 − pl1
z2 = −cx+ vs2 − hi2 − pl2
z3 = −cx+ vs3 − hi3 − pl3
z4 = −cx+ vs4 − hi4 − pl4
z = 0.25z1 + 0.25z2 + 0.25z3 + 0.25z4

(5.6)

Note that there is only one realization of the first-stage decision variable x while for the second-stage
decision variables there as many realizations as there are scenarios.

5.12.6.2 A multi-stage stochastic model

DE recursively builds a scenario tree to generate the deterministic equivalent of multi-stage models. We
take the model inventory from the EMP manual to demonstrate how this is done. The 4-stage model is
given by the following equations:

Maxy1,i1 z = −αy1 − γi1 + E[Q((y1, i1), ωI) + E[Q((y1, i1), ωII) + E[Q((y1, i1), ωIII)]]]

s.t. i1 = y1

y1, i1 ≥ 0,

where

Q((y1, i1), ωζ) = Maxst,yt,it βst(ωζ)− αyt(ωζ)− δit(ωζ)
s.t. it−1 + yt = st + it

st ≤ it−1

st ≤ dt(ωζ)
it ≤ κ
st, yt, it ≥ 0 for t = 2, 3, 4.

5.12 Deterministic Equivalent (DE) 1935

Here y1 and i1 are the first-stage decision variables and yt, it and st are the decison variables of the
later stages; α, β, γ, δ and κ denote fixed parameters. The uncertain data is represented by the random
variable dt(ωζ), where ωζ ∈ Ωζ and ζ = I, II, III. Note that st, yt and it depend on the realization of dt.
Now assume that dt follows a continuous distribution and the sample size to approximate this distribution
is just 3 for stages 2 to 4. Note that in multi-stage models the sample size may vary for each stage. Note
further that for all practical purposes this sample size is too small, it was chosen here for reasons of clarity
of exposition. As usual, the distribution(s) and sample size(s) are specified in the annotations. Observe
that the last constraint (it ≤ κ) is implemented as a bound on the variable it, not as an equation. So, in
addition to the objective equations, there is one equation in the first stage and three equations in each of
the later stages.

This model is reformulated in the following way. First, an equation for the first stage constraint is
generated. Secondly, three realizations of d2 are chosen through a sampling procedure, so there are three
scenarios at stage 2. For each of these three realizations of the random variable the equations for the
second stage are generated (9 equations). Thirdly, three realizations of d3 are sampled for stage 3. Each
of these three realizations may follow one of the three scenarios of the second stage, so there are nine
scenarios in stage 3 and hence 9× 3 = 27 equations are generated for stage 3. The procedure is repeated in
stage 4 where there are 27 scenarios and 27× 3 = 81 equations. Next, the value of the objective variable
for each scenario is computed by generating 27 equations for zs and finally, an equation to compute z is
built, where z =

∑
s p(s)zs.

5.12.6.3 Chance Constraints

Models with chance constraints are reformulated as mixed integer problems by default. This reformulation
is discussed in detail in the section Chance Constraints with EMP in the EMP manual. Reformulations
using a convex hull or indicator variables and indicator constraints are also possible. The reformulation
method may be determined by the user with the option ccreform.

5.12.6.4 Computing VaR

Models involving VaR are reformulated using mixed integer programs with big M notation. By the
example model portfolio.gms we demonstrate how this is done. This model is discussed in the section
Value at Risk (VaR) in the EMP manual. The model is given by the following equations:

Max V aRθ[R]
s.t R =

∑
j wjvj(ω) ∀ω ∈ Ω∑

j wj = 1

wj ≥ 0,

(5.7)

where V aRθ is the VaR at the lower θth percentile, the variable R is the return (and is a function of the
random variable vj(ω)), wj the weight associated with each asset j and vj(ω) is the (random variable)
return of each asset j. The weights can also be interpreted as proportions of the amount to be invested,
their sum must be 1. Note that wj is the decision variable in this problem.

Let y(s) be a binary variable that acts as an indicator variable. For each scenario, it equals 1 if the return
R ≥ V aRθ[R] and it is 0 otherwise. Then the model is reformulated to the following MIP:

Max V aRθ[R]
s.t r(s) =

∑
j wjvj(s) ∀s = 1, . . . , S

r(s) ≥ V aRθ[R]−M(1− y(s)) ∀s = 1, . . . , S
cc = 1−

∑
s p(s)y(s)∑

j wj = 1

0 ≤ cc ≤ θ
wj ≥ 0.

(5.8)

1936 Solver Manuals

Here r(s) denotes the return per scenario and cc is a variable that represents the probability of violations
(a violation occurs if in a scenario the return is smaller than V aRθ[R]). As usual, p(s) is the probability
that a scenario occurs and M is the big M . The first three constraints together with the bounds on cc
ensure that the probability of violations is smaller than or equal to θ.

Note that the default value for big M for models with VaR is 1000 (and it is different from the default
value for big M for chance constraints). It may be customized with the option varbigm.

5.12.6.5 Computing CVaR

Models with CVaR are reformulated by converting the annotations into new variables and equations.
Using the model portfolio.gms as an example we demonstrate how this is done. This model features
in the GAMS EMP library and is also discussed in the section Conditional Value at Risk (CVaR) in the
EMP manual. The model is given by:

Max CV aRθ[R]
s.t R =

∑
j wjvj(ω) ∀ω ∈ Ω∑

j wj = 1

wj ≥ 0,

(5.9)

where CV aRθ is the CVaR at the left tail of the distribution at the confidence level θ and all other
variables are as defined above. Note that again, wj is the decision variable in this problem.

DE reformulates this model by introducing three new variables and three associated equations. Let r(s)
denote the return per scenario, t the target return to be achieved with probability approximately 1− θ
and d(s), d(s) ≥ 0, the lower deviation from t per scenario. The equations follow.

r(s) =
∑
j

wjvj(s)

d(s) ≥ t− r(s)

CV aRθ[R] = t− 1

θ

∑
p(s)d(s)

(5.10)

Thus the model is reformulated to an LP and may be solved by an appropriate solver. It is easy to see
that t equals V aRθ[R].

5.12.7 Logfile

The logfile gives much information about the solver progress. The following is the DE log output from
running the nbdiscjoint model from the GAMS EMP Model Library:

--- Starting compilation

--- nbdisjoint.gms(74) 3 Mb

--- Starting execution: elapsed 0:00:00.024

--- nbdisjoint.gms(72) 4 Mb

--- collecting and writing gdx file

--- Generating EMP model nb

--- nbdisjoint.gms(72) 6 Mb

--- 5 rows 9 columns 19 non-zeroes

--- 6 nl-code 2 nl-non-zeroes

5.12 Deterministic Equivalent (DE) 1937

--- nbdisjoint.gms(72) 4 Mb

--- Executing DE: elapsed 0:00:00.083

--- Input model type identified and solved as LP

DE 24.5.1 r54187 Released Sep 23, 2015 DEG x86 64bit/MacOS X

--- DE has 26 rows 50 columns 116 non-zeroes

IBM ILOG CPLEX 24.5.1 r54187 Released Sep 23, 2015 DEG x86 64bit/MacOS X

Cplex 12.6.2.0

Reading data...

Starting Cplex...

Unable to load names.

Tried aggregator 1 time.

LP Presolve eliminated 14 rows and 31 columns.

Reduced LP has 12 rows, 19 columns, and 36 nonzeros.

Presolve time = 0.01 sec. (0.02 ticks)

Iteration log . . .

Iteration: 1 Dual infeasibility = 52.800000

Iteration: 10 Dual objective = 2660.700000

LP status(1): optimal

Cplex Time: 0.06sec (det. 0.05 ticks)

Optimal solution found.

Objective : 1173.900000

--- Restarting execution

--- nbdisjoint.gms(72) 2 Mb

--- Reading solution for model nb

--- nbdisjoint.gms(72) 3 Mb

--- scattering and reading gdx file

--- randvar Id = d maps to s_d

--- nbdisjoint.gms(72) 3 Mb

--- randvar Id = r maps to s_r

--- level Id = s maps to s_s

--- level Id = x maps to s_x

--- nbdisjoint.gms(72) 4 Mb

--- Scatter finished in 2 ms

--- nbdisjoint.gms(74) 4 Mb

*** Status: Normal completion

--- Job nbdisjoint.gms Stop 12/06/15 18:02:47 elapsed 0:00:00.382

First, the model in scalar form is generated. It has 5 equations, so the model statistics report 5 rows.
Further, it has 6 positive variables, one free variable and 2 random variables, so there are 9 columns. A
matrix form representation of the model with the variables as columns and the equations as rows has 19
non-zero entries. Next, DE generates the deterministic equivalent. The statistics for the deterministic
equivalent indicate that there are 26 rows, 50 columns and 116 non-zero entries. The stochastic model has
6 scenarios, so for each second-stage equation there are 6 equations in the deterministic equivalent (i.e.
a total of 24 equations). In addition, there is one first-stage equation and one equation to compute the
expected value of the objective variable, which brings the sum total to 26 equations or rows. Similarly, for
each second-stage variable in the stochastic model there are 6 variables in the determininistic equivalent
(i.e a total of 48 variables). In addition, there is the first-stage decision variable and a variable for the
expected value of the objective adding up to a total of 50 variables or columns.

Note that the model type is identified as an LP and thus the default LP solver is invoked. In this case the
subsolver is Cplex and most of the remainder of the logfile is output from the subsolver. At the end the
mapping specified in the dictionary is performed.

1938 Solver Manuals

The logfile of solving stochastic models with VaR or CVaR is similar. It reports that the model type is
being determined, the deterministic equivalent built and then handed over to the appropriate subsolver
to be solved. However, when solving stochastic programs with chance constraints there is much more
happening behind the scenes. DE automatically hands over the model to the subsolver JAMS. By default,
JAMS reformulates the model and generates a scalar version of it. The scalar version of the reformulated
model is then handed back to the GAMS system to be solved by an appropriate subsolver. The logfile
reports the progress of the subsolver until the model is solved. Then the solution from the GAMS subsolver
is handed to JAMS and a list of disjunsctions and their activity level is reported. (The equations in
the scalar version of the reformulated model that may be left unsatisfied are called disjunctions. Active
disjunctions refer to equations that are satisfied and not active disjunctions refer to equations that are not
satisfied.)

Parts of the DE logfile from running the simplechance model from the GAMS EMP Model Library are
given below. These parts of the logfile demonstrate the solution process for stochastic models with chance
constraints that was just described.

...

--- Generating EMP model sc

--- simplechance.gms(79) 6 Mb

--- 3 rows 5 columns 9 non-zeroes

--- 9 nl-code 4 nl-non-zeroes

--- simplechance.gms(79) 4 Mb

--- Executing DE: elapsed 0:00:00.024

--- Input model type identified and solved as LP

DE 24.5.1 r54187 Released Sep 23, 2015 DEG x86 64bit/MacOS X

--- Reset Solvelink = 2

JAMS 1.0 24.5.1 r54187 Released Sep 23, 2015 DEG x86 64bit/MacOS X

JAMS - Solver for Extended Mathematical Programs (EMP)

--

--- Using Option File

Reading parameter(s) from "jams.159"

>> EMPInfoFile .../Models/225a/jamsinfo.dat

>> SubSolver CPLEX

Finished reading from "jams.159"

--- EMP Summary

Logical Constraints = 0

Disjunctions = 7

Adjusted Constraint = 0

Flipped Constraints = 0

Dual Variable Maps = 0

Dual Equation Maps = 0

VI Functions = 0

Equilibrium Agent = 0

Bilevel Followers = 0

*** Warning 7 of 7 BigM disjunctions use DE’s default for bigM (10000)

--- The model .../Models/225a/emp.dat will be solved by GAMS

--- Job emp.dat Start 12/06/15 18:43:18 24.5.1 r54187 DEX-DEG x86 64bit/MacOS X

GAMS 24.5.1 Copyright (C) 1987-2015 GAMS Development. All rights reserved

...

--- Generating MIP model m

5.12 Deterministic Equivalent (DE) 1939

--- emp.dat(68) 3 Mb

--- 10 rows 19 columns 40 non-zeroes

--- 7 discrete-columns

--- Executing CPLEX: elapsed 0:00:00.016

IBM ILOG CPLEX 24.5.1 r54187 Released Sep 23, 2015 DEG x86 64bit/MacOS X

Cplex 12.6.2.0

Reading data...

Starting Cplex...

....

MIP Solution: 4.750000 (11 iterations, 0 nodes)

Final Solve: 4.750000 (2 iterations)

...

--- Reading solution for model m

*** Status: Normal completion

--- Job emp.dat Stop 12/06/15 18:43:18 elapsed 0:00:00.299

--- Returning from GAMS step

--- Disjunction Summary

Disjunction 1 is not active

Disjunction 2 is active

Disjunction 3 is active

Disjunction 4 is active

Disjunction 5 is not active

Disjunction 6 is active

Disjunction 7 is active

--- Restarting execution

--- simplechance.gms(79) 2 Mb

--- Reading solution for model sc

--- simplechance.gms(79) 3 Mb

--- scattering and reading gdx file

--- randvar Id = om1 maps to s_om1

--- simplechance.gms(79) 3 Mb

--- randvar Id = om2 maps to s_om2

--- level Id = x1 maps to x1_l

--- marginal Id = x1 maps to x1_m

--- level Id = x2 maps to x2_l

--- level Id = e1 maps to e1_l

--- level Id = e2 maps to e2_l

--- simplechance.gms(79) 4 Mb

--- Scatter finished in 2 ms

--- simplechance.gms(81) 4 Mb

*** Status: Normal completion

5.12.8 Summary of DE Options

5.12.8.1 General Options

Option Description Default

correlationtype
Sample correlation type 0

1940 Solver Manuals

Option Description Default

empinfofile
Path and name of file containing additional EMP-SP information as
randvar, jrandvar, stage etc.

subsolver
Subsolver to run

subsolveropt
Optfile value to pass to the subsolver 1

svr ls antithetic
Sample variance reduction map to Lindo Antithetic algorithm

svr ls latinsquare
Sample variance reduction map to Lindo Latin Square algorithm

svr ls montecarlo
Sample variance reduction map to Lindo Montecarlo algorithm

5.12.8.2 Options for chance constraint models

Option Description Default

ccreform
Reformulation option passed to JAMS bigM

jamsopt
JAMS option file

5.12.8.3 Options for recourse models

Option Description Default

evsubsolver
Subsolver to run on expected value problem

evsubsolveropt
Optfile value to pass to the subsolver for expected value problem 1

maxnodes
Tree size limit 100000

solveEVProb
Solve and report the expected value solution 0

varbigm
Big M for Value at Risk reformulation 1000.0

5.12.9 Detailed Descriptions of DE Options

ccreform (string): Reformulation option passed to JAMS ←↩

This option determines how to formulate the indicator contraints of the chance constraints in
the deterministic equivalent. The model is passed to JAMS for the actual reformulation and
solution with a subsolver. The possible reformulation options are bigM [big eps threshold],
chull [big eps], and indic. The indic setting only works with solver that under stand
the indicator syntax in a GAMS option file.

Default: bigM

correlationtype (integer): Sample correlation type ←↩

Default: 0

value meaning

0 Pearson

1 Kendall

2 Spearman

5.12 Deterministic Equivalent (DE) 1941

empinfofile (string): Path and name of file containing additional EMP-SP information as randvar,
jrandvar, stage etc. ←↩

evsubsolver (string): Subsolver to run on expected value problem ←↩

evsubsolveropt (integer): Optfile value to pass to the subsolver for expected value problem ←↩

Range: {1, ..., 999}

Default: 1

jamsopt (string): JAMS option file ←↩

maxnodes (integer): Tree size limit ←↩

Range: {1000, ..., ∞}

Default: 100000

solveEVProb (no value): Solve and report the expected value solution ←↩

Default: 0

subsolver (string): Subsolver to run ←↩

subsolveropt (integer): Optfile value to pass to the subsolver ←↩

Range: {1, ..., 999}

Default: 1

svr ls antithetic (string): Sample variance reduction map to Lindo Antithetic algorithm ←↩

svr ls latinsquare (string): Sample variance reduction map to Lindo Latin Square algorithm ←↩

svr ls montecarlo (string): Sample variance reduction map to Lindo Montecarlo algorithm ←↩

varbigm (real): Big M for Value at Risk reformulation ←↩

Default: 1000.0

1942 Solver Manuals

5.13 DECIS

Author

Gerd Infanger; Vienna University of Technology; Stanford University 1

5.13.1 DECIS

5.13.1.1 Introduction

DECIS is a system for solving large-scale stochastic programs, i.e. programs that include parameters
(coefficients and right-hand sides) that are not known with certainty, but are assumed to be known by
their probability distribution. It employs Benders decomposition and advanced Monte Carlo sampling
techniques. DECIS includes a variety of solution strategies, such as solving the universe problem, the
expected value problem, Monte Carlo sampling within the Benders decomposition algorithm, and Monte
Carlo pre-sampling. When using Monte Carlo sampling the user has the option of employing crude
Monte Carlo without variance reduction techniques, or using as variance reduction techniques importance
sampling or control variates, based on either an additive or a multiplicative approximation function.
Pre-sampling is limited to using crude Monte Carlo only.

For solving linear and nonlinear programs (master and subproblems arising from the decomposition) DECIS
interfaces with MINOS or CPLEX. MINOS, see Murtagh and Saunders (1983) [142] , is a state-of-the-art
solver for large-scale linear and nonlinear programs, and CPLEX is one of the fastest linear programming
solvers available.

For details about the DECIS system consult the DECIS User's Guide see Infanger (1997) [100] . It
includes a comprehensive mathematical description of the methods used by DECIS. In this Guide we
concentrate on how to use DECIS directly from GAMS, and especially on how to model stochastic
programs using the GAMS/DECIS interface. First, however, in section What DECIS Can Do we give a
brief description of what DECIS can do and what solution strategies it uses. This description has been
adapted from the DECIS User's Guide. In section GAMS/DECIS we discuss in detail how to set up a
stochastic problem using GAMS/DECIS and give a description of the parameter setting and outputs
obtained. In Appendix A - GAMS/DECIS Illustrative Examples we show the GAMS/DECIS formulation
of two illustrative examples (APL1P and APL1PC) discussed in the DECIS User's Guide. A list of DECIS
error messages are represented in Appendix B - Error Messages.

5.13.1.2 What DECIS Can Do

DECIS solves two-stage stochastic linear programs with recourse:

min z = cx+ Efωyω

s/t Ax = b

−Bωx+ Dωyω = dω

x, yω ≥ 0, ω ∈ Ω.

1Copyright ©1989 – 1999 by Gerd Infanger. All rights reserved. The GAMS/DECIS User’s Guide is copyrighted and all
rights are reserved. Information in this document is subject to change without notice and does not represent a commitment
on the part of Gerd Infanger. The DECIS software described in this document is furnished under a license agreement and
may be used only in accordance with the terms of this agreement. The DECIS software can be licensed through Infanger
Investment Technology, LLC or through Gams Development Corporation.

http://www.gams.com/docs/DECIS-Users_Guide.pdf

5.13 DECIS 1943

where x denotes the first-stage, yω the second-stage decision variables, c represents the first-stage and fω

the second-stage objective coefficients, A, b represent the coefficients and right hand sides of the first-stage
constraints, and Bω, Dω, dω represent the parameters of the second-stage constraints, where the transition
matrix Bω couples the two stages. In the literature Dω is often referred to as the technology matrix or
recourse matrix. The first stage parameters are known with certainty. The second stage parameters are
random parameters that assume outcomes labeled ω with probability p(ω), where Ω denotes the set of all
possible outcome labels.

At the time the first-stage decision x has to be made, the second-stage parameters are only known by
their probability distribution of possible outcomes. Later, after x has already been determined, an actual
outcome of the second-stage parameters will become known, and the second-stage decision yω is made
based on knowledge of the actual outcome ω. The objective is to find a feasible decision x that minimizes
the total expected costs, the sum of first-stage costs and expected second-stage costs.

For discrete distributions of the random parameters, the stochastic linear program can be represented by
the corresponding equivalent deterministic linear program:

min z = cx + p1fy1 + p2fy2 + · · · + pW fyW

s/t Ax = b
−B1x + Dy1 = d1

−B2x + Dy2 = d2

...
. . .

...
−BWx + DyW = dW

x, y1, y2, . . . , yW ≥ 0,

which contains all possible outcomes ω ∈ Ω. Note that for practical problems W is very large, e.g., a
typical number could be 1020, and the resulting equivalent deterministic linear problem is too large to be
solved directly.

In order to see the two-stage nature of the underlying decision making process the folowing representation
is also often used:

min cx + E zω(x)

Ax = b

x ≥ 0

where

zω(x) = min fωyω

Dωyω = dω +Bωx

yω ≥ 0, ω ∈ Ω = {1, 2, . . . ,W}.

DECIS employs different strategies to solve two-stage stochastic linear programs. It computes an exact
optimal solution to the problem or approximates the true optimal solution very closely and gives a
confidence interval within which the true optimal objective lies with, say, 95% confidence.

1944 Solver Manuals

5.13.1.3 Representing Uncertainty

It is favorable to represent the uncertain second-stage parameters in a structure. Using V = (V1, . . . , Vh)
an h-dimensional independent random vector parameter that assumes outcomes vω = (v1, . . . , vh)ω with
probability pω = p(vω), we represent the uncertain second-stage parameters of the problem as functions of
the independent random parameter V :

fω = f(vω), Bω = B(vω), Dω = D(vω), dω = d(vω).

Each component Vi has outcomes vωii , ωi ∈ Ωi, where ωi labels a possible outcome of component i, and
Ωi represents the set of all possible outcomes of component i. An outcome of the random vector

vω = (vω1
1 , . . . , vωhh)

consists of h independent component outcomes. The set

Ω = Ω1 × Ω2 × . . .× Ωh

represents the crossing of sets Ωi. Assuming each set Ωi contains Wi possible outcomes, |Ωi| = Wi, the
set Ω contains W =

∏
Wi elements, where |Ω| = W represents the number of all possible outcomes of the

random vector V . Based on independence, the joint probability is the product

pω = pω1
1 pω2

2 · · · p
ωh
h .

Let η denote the vector of all second-stage random parameters, e.g., η = vec(f,B,D, d). The outcomes of
η may be represented by the following general linear dependency model:

ηω = vec(fω, Bω, dω, dω) = Hvω, ω ∈ Ω

where H is a matrix of suitable dimensions. DECIS can solve problems with such general linear dependency
models.

5.13.1.4 Solving the Universe Problem

We refer to the universe problem if we consider all possible outcomes ω ∈ Ω and solve the corresponding
problem exactly. This is not always possible, because there may be too many possible realizations ω ∈ Ω.
For solving the problem DECIS employs Benders decomposition, splitting the problem into a master
problem, corresponding to the first-stage decision, and into subproblems, one for each ω ∈ Ω, corresponding
to the second-stage decision. The details of the algorithm and techniques used for solving the universe
problem are discussed in The DECIS User's Manual.

Solving the universe problem is referred to as strategy 4. Use this strategy only if the number of universe
scenarios is reasonably small. There is a maximum number of universe scenarios DECIS can handle, which
depends on your particular resources.

5.13 DECIS 1945

5.13.1.5 Solving the Expected Value Problem

The expected value problem results from replacing the stochastic parameters by their expectation. It is a
linear program that can also easily be solved by employing a solver directly. Solving the expected value
problem may be useful by itself (for example as a benchmark to compare the solution obtained from solving
the stochastic problem), and it also may yield a good starting solution for solving the stochastic problem.
DECIS solves the expected value problem using Benders decomposition. The details of generating the
expected value problem and the algorithm used for solving it are discussed in the DECIS User's Manual.
To solve the expected value problem choose strategy 1.

5.13.1.6 Using Monte Carlo Sampling

As noted above, for many practical problems it is impossible to obtain the universe solution, because the
number of possible realizations |Ω| is way too large. The power of DECIS lies in its ability to compute
excellent approximate solutions by employing Monte Carlo sampling techniques. Instead of computing the
expected cost and the coefficients and the right-hand sides of the Benders cuts exactly (as it is done when
solving the universe problem), DECIS, when using Monte Carlo sampling, estimates the quantities in
each iteration using an independent sample drawn from the distribution of the random parameters. In
addition to using crude Monte Carlo, DECIS uses importance sampling or control variates as variance
reduction techniques.

The details of the algorithm and the different techniques used are described in the DECIS User's Manual.
You can choose crude Monte Carlo, referred to as strategy 6, Monte Carlo importance sampling, referred
to as strategy 2, or control variates, referred to as strategy 10. Both Monte Carlo importance sampling
and control variates have been shown for many problems to give a better approximation compared to
employing crude Monte Carlo sampling.

When using Monte Carlo sampling DECIS computes a close approximation to the true solution of the
problem, and estimates a close approximation of the true optimal objective value. It also computes a
confidence interval within which the true optimal objective of the problem lies, say with 95% confidence.
The confidence interval is based on rigorous statistical theory. An outline of how the confidence interval
is computed is given in the DECIS User's Manual. The size of the confidence interval depends on the
variance of the second-stage cost of the stochastic problem and on the sample size used for the estimation.
You can expect the confidence interval to be very small, especially when you employ importance sampling
or control variates as a variance reduction technique.

When employing Monte Carlo sampling techniques you have to choose a sample size (set in the parameter
file). Clearly, the larger the sample size the better will be the approximate solution DECIS computes, and
the smaller will be the confidence interval for the true optimal objective value. The default value for the
sample size is 100. Setting the sample size too small may lead to bias in the estimation of the confidence
interval, therefore the sample size should be at least 30.

5.13.1.7 Monte Carlo Pre-sampling

We refer to pre-sampling when we first take a random sample from the distribution of the random
parameters and then generate the approximate stochastic problem defined by the sample. The obtained
approximate problem is then solved exactly using decomposition. This is in contrast to the way we used
Monte Carlo sampling in the previous section, where we used Monte Carlo sampling in each iteration of
the decomposition.

The details of the techniques used for pre-sampling are discussed in the DECIS User's Manual. DECIS
computes the exact solution of the sampled problem using decomposition. This solution is an approximate
solution of the original stochastic problem. Besides this approximate solution, DECIS computes an
estimate of the expected cost corresponding to this approximate solution and a confidence interval within
which the true optimal objective of the original stochastic problem lies with, say, 95% confidence. The

1946 Solver Manuals

confidence interval is based on statistical theory, while its size depends on the variance of the second-stage
cost of the stochastic problem and on the sample size used for generating the approximate problem. In
conjunction with pre-sampling no variance reduction techniques are currently implemented.

Using Monte Carlo pre-sampling you have to choose a sample size. Clearly, the larger the sample size you
choose, the better will be the solution DECIS computes, and the smaller will be the confidence interval for
the true optimal objective value. The default value for the sample size is 100. Again, setting the sample
size too small may lead to a bias in the estimation of the confidence interval, therefore the sample size
should be at least 30.

To use Monte Carlo pre-sampling choose strategy 8.

5.13.1.8 Regularized Decomposition

When solving practical problems, the number of Benders iterations can be quite large. In order to control
the decomposition, with the hope to reduce the iteration count and the solution time, DECIS makes use
of regularization. When employing regularization, an additional quadratic term is added to the objective
of the master problem, representing the square of the distance between the best solution found so far (the
incumbent solution) and the variable x. Using this term, DECIS controls the distance between solutions
in successive decomposition iterations.

To enable regularization you have to set the corresponding parameter. You also have to choose the value
of the constant rho in the regularization term. The default is regularization disabled. Details of how
DECIS carries out regularization are represented in the DECIS User's Manual.

Regularization is only implemented when using MINOS as the optimizer for solving subproblems. Reg-
ularization has proven to be helpful for problems that need a large number of Benders iteration when
solved without regularization. Problems that need only a small number of Benders iterations without
regularization are not expected to improve much with regularization, and may need even more iterations
with regularization than without.

5.13.2 GAMS/DECIS

GAMS stands for General Algebraic Modeling Language, and is one of the most widely used modeling
languages. Using DECIS directly from GAMS spares you from worrying about all the details of the input
formats. It makes the problem formulation much easier but still gives you almost all the flexibility of
using DECIS directly.

The link from GAMS to DECIS has been designed in such a way that almost no extensions to the GAMS
modeling language were necessary for carrying out the formulation and solution of stochastic programs.
In a future release of GAMS, however, additions to the language are planned that will allow you to model
stochastic programs in an even more elegant way.

5.13.2.1 Setting up a Stochastic Program Using GAMS/DECIS

The interface from GAMS to DECIS supports the formulation and solution of stochastic linear programs.
DECIS solves them using two-stage decomposition. The GAMS/DECIS interface resembles closely the
structure of the SMPS (stochastic mathematical programming interface) discussed in the DECIS User's
Manual. The specification of a stochastic problem using GAMS/DECIS uses the following components:

• the deterministic (core) model,

• the specification of the decision stages,

• the specification of the random parameters, and

• setting DECIS as the optimizer to be used.

5.13 DECIS 1947

5.13.2.2 Starting with the Deterministic Model

The core model is a deterministic linear program where all random parameters are replaced by their mean
or by a particular realization. One could also see it as a GAMS model without any randomness. It could
be a deterministic model that you have, that you intend to expand to a stochastic one. Using DECIS with
GAMS allows you to easily extend a deterministic linear programming model to a stochastic one. For
example, the following GAMS model represents a deterministic version of the electric power expansion
planning illustrative example discussed in Infanger (1994).

* APL1P test model

* Dr. Gerd Infanger, November 1997

* Deterministic Program

set g generators / g1, g2/;

set dl demand levels /h, m, l/;

parameter alpha(g) availability / g1 0.68, g2 0.64 /;

parameter ccmin(g) min capacity / g1 1000, g2 1000 /;

parameter ccmax(g) max capacity / g1 10000, g2 10000 /;

parameter c(g) investment / g1 4.0, g2 2.5 /;

table f(g,dl) operating cost

h m l

g1 4.3 2.0 0.5

g2 8.7 4.0 1.0;

parameter d(dl) demand / h 1040, m 1040, l 1040 /;

parameter us(dl) cost of unserved demand / h 10, m 10, l 10 /;

free variable tcost total cost;

positive variable x(g) capacity of generators;

positive variable y(g, dl) operating level;

positive variable s(dl) unserved demand;

equations

cost total cost

cmin(g) minimum capacity

cmax(g) maximum capacity

omax(g) maximum operating level

demand(dl) satisfy demand;

cost .. tcost =e= sum(g, c(g)*x(g))

+ sum(g, sum(dl, f(g,dl)*y(g,dl)))

+ sum(dl,us(dl)*s(dl));

cmin(g) .. x(g) =g= ccmin(g);

cmax(g) .. x(g) =l= ccmax(g);

omax(g) .. sum(dl, y(g,dl)) =l= alpha(g)*x(g);

demand(dl) .. sum(g, y(g,dl)) + s(dl) =g= d(dl);

model apl1p /all/;

option lp=minos;

solve apl1p using lp minimizing tcost;

scalar ccost capital cost;

scalar ocost operating cost;

1948 Solver Manuals

ccost = sum(g, c(g) * x.l(g));

ocost = tcost.l - ccost;

display x.l, tcost.l, ccost, ocost, y.l, s.l;

5.13.2.3 Setting the Decision Stages

Next in order to extend a deterministic model to a stochastic one you must specify the decision stages.
DECIS solves stochastic programs by two-stage decomposition. Accordingly, you must specify which
variables belong to the first stage and which to the second stage, as well as which constraints are first-stage
constraints and which are second-stage constraints. First stage constraints involve only first-stage variables,
while second-stage constraints involve both first- and second-stage variables. You must specify the stage
of a variable or a constraint by setting the stage suffix ”.STAGE” to either one or two depending on if it
is a first or second stage variable or constraint. For example, expanding the illustrative model above by

* setting decision stages

x.stage(g) = 1;

y.stage(g, dl) = 2;

s.stage(dl) = 2;

cmin.stage(g) = 1;

cmax.stage(g) = 1;

omax.stage(g) = 2;

demand.stage(dl) = 2;

would make x(g) first-stage variables, y(g, dl) and s(dl) second-stage variables, cmin(g) and cmax(g)
first-stage constraints, and omax(g) and demand(g) second-stage constraints. The objective is treated
separately, you don't need to set the stage suffix for the objective variable and objective equation.

Note that the use of the .stage variable and equation suffix causes the GAMS scaling facility (i.e. the
.scale suffix) to be unavailable. Stochastic models have to be scaled manually.

5.13.2.4 Specifying the Stochastic Model

DECIS supports any linear dependency model, i.e., the outcomes of an uncertain parameter in the
linear program are a linear function of a number of independent random parameter outcomes. DECIS
considers only discrete distributions: you must approximate any continuous distributions by discrete
ones. The number of possible realizations of the discrete random parameters determines the accuracy of
the approximation. A special case of a linear dependency model arises when you have only independent
random parameters in your model. In this case the independent random parameters are mapped one to
one into the random parameters of the stochastic program. We will present the independent case first and
then expand to the case with linear dependency. According to setting up a linear dependency model we
present the formulation in GAMS by first defining independent random parameters and then defining the
distributions of the uncertain parameters in your model.

Specifying Independent Random Parameters

There are of course many different ways you can set up independent random parameters in GAMS. In
the following we show one possible way that is generic and thus can be adapted for different models.
The set-up uses the set stoch for labeling outcome named ”out” and probability named ”pro” of each
independent random parameter. In the following we show how to define an independent random parameter,
say, v1. The formulation uses the set omega1 as driving set, where the set contains one element for
each possible realization the random parameter can assume. For example, the set omega1 has four

5.13 DECIS 1949

elements according to a discrete distribution of four possible outcomes. The distribution of the random
parameter is defined as the parameter v1, a two-dimensional array of outcomes ”out” and corresponding
probability ”pro” for each of the possible realizations of the set omega1, ”o11”, ”o12”, ”o13”, and
”o14”. For example, the random parameter v1 has outcomes of −1.0,−0.9,−0.5,−0.1 with probabilities
0.2, 0.3, 0.4, 0.1, respectively. Instead of using assignment statements for inputting the different realizations
and corresponding probabilities you could also use the table statement. Always make sure that the sum of
the probabilities of each independent random parameter adds to one.

* defining independent stochastic parameters

set stoch /out, pro /;

set omega1 / o11, o12, o13, o14 /;

table v1(stoch, omega1)

o11 o12 o13 o14

out -1.0 -0.9 -0.5 -0.1

pro 0.2 0.3 0.4 0.1

;

Random parameter v1 is the first out of five independent random parameters of the illustrative model
APL1P, where the first two represent the independent availabilities of the generators g1 and g2 and the
latter three represent the independent demands of the demand levels h, m, and l. We also represent the
definitions of the remaining four independent random parameters. Note that random parameters v3, v4,
and v5 are identically distributed.

set omega2 / o21, o22, o23, o24, o25 /;

table v2(stoch, omega2)

o21 o22 o23 o24 o25

out -1.0 -0.9 -0.7 -0.1 -0.0

pro 0.1 0.2 0.5 0.1 0.1

;

set omega3 / o31, o32, o33, o34 /;

table v3(stoch, omega1)

o11 o12 o13 o14

out 900 1000 1100 1200

pro 0.15 0.45 0.25 0.15

;

set omega4 / o41, o42, o43, o44 /;

table v4(stoch,omega1)

o11 o12 o13 o14

out 900 1000 1100 1200

pro 0.15 0.45 0.25 0.15

;

set omega5 / o51, o52, o53, o54 /;

table v5(stoch,omega1)

o11 o12 o13 o14

out 900 1000 1100 1200

pro 0.15 0.45 0.25 0.15

;

1950 Solver Manuals

Defining the Distributions of the Uncertain Parameters in the Model

Having defined the independent stochastic parameters (you may copy the setup above and adapt it for
your model), we next define the stochastic parameters in the GAMS model. The stochastic parameters of
the model are defined by writing a file, the GAMS stochastic file, using the put facility of GAMS. The
GAMS stochastic file resembles closely the stochastic file of the SMPS input format. The main difference
is that we use the row, column, bounds, and right hand side names of the GAMS model and that we can
write it in free format.

Independent Stochastic Parameters

First we describe the case where all stochastic parameters in the model are independent, see below the
representation of the stochastic parameters for the illustrative example APL1P, which has five independent
stochastic parameters.

First define the GAMS stochastic file ”MODEL.STG” (only the exact name in uppercase letters is
supported) and set up GAMS to write to it. This is done by the first two statements. You may want to
consult the GAMS manual for how to use put for writing files. The next statement ”INDEP DISCRETE”
indicates that a section of independent stochastic parameters follows. We then write all possible outcomes
and corresponding probabilities for each stochastic parameter by using loop statements. Of course one
could also write each line separately, but the loops work nicely. Writing a ”∗” between the definitions of
the independent stochastic parameters is merely for optical reasons and can be omitted.

* defining distributions (writing file MODEL.STG)

file stg /MODEL.STG/;

put stg;

put "INDEP DISCRETE" /;

loop(omega1,

put "x g1 omax g1 ", v1("out", omega1), " period2 ", v1("pro", omega1) /;

);

put "*" /;

loop(omega2,

put "x g2 omax g2 ", v2("out", omega2), " period2 ", v2("pro", omega2) /;

);

put "*" /;

loop(omega3,

put "RHS demand h ", v3("out", omega3), " period2 ", v3("pro", omega3) /;

);

put "*" /;

loop(omega4,

put "RHS demand m ", v4("out", omega4), " period2 ", v4("pro", omega4) /;

)

put "*" /;

loop(omega5,

put "RHS demand l ", v5("out", omega5), " period2 ", v5("pro", omega5) /;

);

putclose stg;

In the example APL1P the first stochastic parameter is the availability of generator g1. In the model
the parameter appears as the coefficient of variable x(g1) in equation omax(g1). The definition using
the put statement first gives the stochastic parameter as the intersection of variable x(g1) with equation
omax(g1), but without having to type the braces, thus x g1 omax g1, then the outcome v1(”out”, omega1)
and the probability v1(”pro”, omega1) separated by ”period2”. The different elements of the statement
must be separated by blanks. Since the outcomes and probabilities of the first stochastic parameters are

5.13 DECIS 1951

driven by the set omega1 we loop over all elements of the set omega1. We continue and define all possible
outcomes for each of the five independent stochastic parameters.

In the example of independent stochastic parameters, the specification of the distribution of the stochasic
parameters using the put facility creates the following file ”MODEL.STG”, which then is processed by
the GAMS/DECIS interface:

INDEP DISCRETE

x g1 omax g1 -1.00 period2 0.20

x g1 omax g1 -0.90 period2 0.30

x g1 omax g1 -0.50 period2 0.40

x g1 omax g1 -0.10 period2 0.10

*

x g2 omax g2 -1.00 period2 0.10

x g2 omax g2 -0.90 period2 0.20

x g2 omax g2 -0.70 period2 0.50

x g2 omax g2 -0.10 period2 0.10

x g2 omax g2 0.00 period2 0.10

*

RHS demand h 900.00 period2 0.15

RHS demand h 1000.00 period2 0.45

RHS demand h 1100.00 period2 0.25

RHS demand h 1200.00 period2 0.15

*

RHS demand m 900.00 period2 0.15

RHS demand m 1000.00 period2 0.45

RHS demand m 1100.00 period2 0.25

RHS demand m 1200.00 period2 0.15

*

RHS demand l 900.00 period2 0.15

RHS demand l 1000.00 period2 0.45

RHS demand l 1100.00 period2 0.25

RHS demand l 1200.00 period2 0.15

For defining stochastic parameters in the right-hand side of the model use the keyword RHS as the column
name, and the equation name of the equation which right-hand side is uncertain, see for example the
specification of the uncertain demands RHS demand h, RHS demand m, and RHS demand l. For defining
uncertain bound parameters you would use the keywords UP, LO, or FX, the string bnd, and the variable
name of the variable whose upper, lower, or fixed bound is uncertain.

Note all the keywords for the definitions are in capital letters, i.e., ”INDEP DISCRETE”, ”RHS”, and
not represented in the example ”UP”, ”LO”, and ”FX”.

Note that in GAMS equations, variables may appear in the right-hand side, e.g. "EQ.. X+1 =L= 2∗Y".
When the coefficient 2 is a random variable, we need to be aware that GAMS will generate the following
LP row X - 2∗Y =L= -1. Suppose the probability distribution of this random variable is given by:

set s scenario /pessimistic, average, optimistic/;

parameter outcome(s) / pessimistic 1.5

average 2.0

optimistic 2.3 /;

parameter prob(s) / pessimistic 0.2

average 0.6

optimistic 0.2 /;

then the correct way of generating the entries in the stochastic file would be:

1952 Solver Manuals

loop(s,

put "Y EQ ",(-outcome(s))," PERIOD2 ",prob(s)/;

);

Note the negation of the outcome parameter. Also note that expressions in a PUT statement have to be
surrounded by parentheses. GAMS reports in the row listing section of the listing file how equations are
generated. You are encouraged to inspect the row listing to discover or confirm how coefficients appear in
a generated LP row.

Dependent Stochastic Parameters

Next we describe the case of general linear dependency of the stochastic parameters in the model, see
below the representation of the stochastic parameters for the illustrative example APL1PCA, which has
three dependent stochastic demands driven by two independent stochastic random parameters. First we
give the definition of the two independent stochastic parameters, which in the example happen to have
two outcomes each.

* defining independent stochastic parameters

set stoch /out, pro/;

set omega1 / o11, o12 /;

table v1(stoch,omega1)

o11 o12

out 2.1 1.0

pro 0.5 0.5 ;

set omega2 / o21, o22 /;

table v2(stoch, omega2)

o21 o22

out 2.0 1.0

pro 0.2 0.8 ;

We next define the parameters of the transition matrix from the independent stochastic parameters to the
dependent stochastic parameters of the model. We do this by defining two parameter vectors, where the
vector hm1 gives the coefficients of the independent random parameter v1 in each of the three demand
levels and the vector hm2 gives the coefficients of the independent random parameter v2 in each of the
three demand levels.

parameter hm1(dl) / h 300., m 400., l 200. /;

parameter hm2(dl) / h 100., m 150., l 300. /;

Again first define the GAMS stochastic file ”MODEL.STG” and set GAMS to write to it. The statement
BLOCKS DISCRETE indicates that a section of linear dependent stochastic parameters follows.

* defining distributions (writing file MODEL.STG)

file stg / MODEL.STG /;

put stg;

put "BLOCKS DISCRETE" /;

scalar h1;

loop(omega1,

put "BL v1 period2 ", v1("pro", omega1)/;

5.13 DECIS 1953

loop(dl,

h1 = hm1(dl) * v1("out", omega1);

put "RHS demand ", dl.tl:1, " ", h1/;

);

);

loop(omega2,

put " BL v2 period2 ", v2("pro", omega2) /;

loop(dl,

h1 = hm2(dl) * v2("out", omega2);

put "RHS demand ", dl.tl:1, " ", h1/;

);

);

putclose stg;

Dependent stochastic parameters are defined as functions of independent random parameters. The
keyword BL labels a possible realization of an independent random parameter. The name besides the BL
keyword is used to distinguish between different outcomes of the same independent random parameter
or a different one. While you could use any unique names for the independent random parameters, it
appears natural to use the names you have already defined above, e.g., v1 and v2. For each realization
of each independent random parameter define the outcome of every dependent random parameter (as
a function of the independent one). If a dependent random parameter in the GAMS model depends
on two or more different independent random parameters the contributions of each of the independent
parameters are added. We are therefore in the position to model any linear dependency model. (Note
that the class of models that can be accommodated here is more general than linear. The functions, with
which an independent random variable contributes to the dependent random variables can be any ones
in one argument. As a general rule, any stochastic model that can be estimated by linear regression is
supported by GAMS/DECIS.)

Define each independent random parameter outcome and the probability associated with it. For example,
the statement starting with BL v1 period2 indicates that an outcome of (independent random parameter)
v1 is being defined. The name period2 indicates that it is a second-stage random parameter, and v1(”pro”,
omega1) gives the probability associated with this outcome. Next list all random parameters dependent
on the independent random parameter outcome just defined. Define the dependent stochastic parameter
coefficients by the GAMS variable name and equation name, or ”RHS” and variable name, together with
the value of the parameter associated with this realization. In the example, we have three dependent
demands. Using the scalar h1 for intermediately storing the results of the calculation, looping over the
different demand levels dl we calculate h1 = hm1(dl) ∗ v1(”out”, omega1) and define the dependent
random parameters as the right-hand sides of equation demand(dl).

When defining an independent random parameter outcome, if the block name is the same as the previous
one (e.g., when BL v1 appears the second time), a different outcome of the same independent random
parameter is being defined, while a different block name (e.g., when BL v2 appears the first time) indicates
that the first outcome of a different independent random parameter is being defined. You must ensure
that the probabilities of the different outcomes of each of the independent random parameters add up to
one. The loop over all elements of omega1 defines all realizations of the independent random parameter v1
and the loop over all elements of omega2 defines all realizations of the independent random parameter v2.

Note that for the first realization of an independent random parameter, you must define all dependent
parameters and their realizations. The values entered serve as a base case. For any other realization of an
independent random parameter you only need to define the dependent parameters that have different
coefficients than have been defined in the base case. For those not defined in a particular realization, their
values of the base case are automatically added.

In the example of dependent stochastic parameters above, the specification of the distribution of the
stochastic parameters using the put facility creates the following file ”MODEL.STG”, which then is
processed by the GAMS/DECIS interface:

1954 Solver Manuals

BLOCKS DISCRETE

BL v1 period2 0.50

RHS demand h 630.00

RHS demand m 840.00

RHS demand l 420.00

BL v1 period2 0.50

RHS demand h 300.00

RHS demand m 400.00

RHS demand l 200.00

BL v2 period2 0.20

RHS demand h 200.00

RHS demand m 300.00

RHS demand l 600.00

BL v2 period2 0.80

RHS demand h 100.00

RHS demand m 150.00

RHS demand l 300.00

Again all the keywords for the definitions are in capital letters, i.e., ”BLOCKS DISCRETE”, ”BL”,
”RHS”, and not represented in the example ”UP”, ”LO”, and ”FX”.

Note that you can only define random parameter coefficients that are nonzero in your GAMS model.
When setting up the deterministic core model put a nonzero entry as a placeholder for any coefficient that
you wish to specify as a stochastic parameter. Specifying a random parameter at the location of a zero
coefficient in the GAMS model causes DECIS to terminate with an error message.

5.13.2.5 Setting DECIS as the Optimizer

After having finished the stochastic definitions you must set DECIS as the optimizer. This is done by
issuing the following statements:

* setting DECIS as optimizer

* DECISM uses MINOS, DECISC uses CPLEX

option lp=decism;

apl1p.optfile = 1;

The statement option lp = decism sets DECIS with the MINOS LP engine as the optimizer to be used
for solving the stochastic problem. Note that if you do not use DECIS, but instead use any other linear
programming optimizer, your GAMS model will still run and optimize the deterministic core model that
you have specified. The statement apl1p.optfile = 1 directs GAMS to process the file DECIS.OPT, in which
you may define any DECIS parameters.

Setting Parameter Options in the GAMS Model

The options iteration limit and resource limit can be set directly in your GAMS model file. For example,
the following statements

option iterlim = 1000;

option reslim = 6000;

limit the number of decomposition iterations to be less than or equal to 1000, and the elapsed time for
running DECIS to be less than or equal to 6000 seconds or 100 minutes.

5.13 DECIS 1955

Setting Parameters in the DECIS Options File

In the DECIS options file you can specify parameters regarding the solution algorithm used and control
the output of the DECIS program. There is a record for each parameter you want to specify. Each record
consists of the value of the parameter you want to specify and the keyword identifying the parameter,
separated by a blank character or a comma. You may specify parameters with the following keywords:
istrat, nsamples, nzrows, iwrite, ibug, iscratch, ireg, rho, tolben, and tolw in any order. Each keyword
can be specified in lower case or upper case text in the format (A10). Since DECIS reads the records
in free format you don't have to worry about the format, but some computers require that the text is
inputted in quotes. Parameters that are not specified in the parameter file automatically assume their
default values. See details of these parameters from Section Description of GAMS/DECIS Options.

Example

In the following example the parameters istrat = 7, nsamples = 200, and nzrows = 200 are specified. All
other parameters are set at their default values. DECIS first solves the expected value problem and then
the stochastic problem using crude Monte Carlo sampling with a sample size of nsamples = 200. DECIS
reserves space for a maximum of nzrows = 50 cuts.

7 "ISTRAT"

200 "NSAMPLES"

50 "NZROWS"

Setting MINOS Parameters in the MINOS Specification File

When you use MINOS as the optimizer for solving the master and the subproblems, you must specify
optimization parameters in the MINOS specification file ”MINOS.SPC”. Each record of the file corresponds
to the specification of one parameter and consists of a keyword and the value of the parameter in free
format. Records having a ”∗” as their first character are considered as comment lines and are not further
processed. For a detailed description of these parameters, see the MINOS Users' Guide (Murtagh and
Saunders (1983) [142] . The following parameters should be specified with some consideration:

• AIJ TOLERANCE — Specifies the nonzero tolerance for constraint matrix elements of the problem.
Matrix elements aij that have a value for which |aij | is less than ”AIJ TOLERANCE” are considered
by MINOS as zero and are automatically eliminated from the problem. It is wise to specify ”AIJ
TOLERANCE 0.0 ”

• SCALE — Specifies MINOS to scale the problem (”SCALE YES”) or not (”SCALE NO”). It is
wise to specify ”SCALE NO”.

• ROWS — Specifies the number of rows in order for MINOS to reserve the appropriate space in its
data structures when reading the problem. ”ROWS” should be specified as the number of constraints
in the core problem or greater.

• COLUMNS — Specifies the number of columns in order for MINOS to reserve the appropriate space
in its data structures when reading the problem. ”COLUMNS” should be specified as the number
of variables in the core problem or greater.

• ELEMENTS — Specifies the number of nonzero matrix coefficients in order for MINOS to reserve
the appropriate space in its data structures when reading the problem. ”ELEMENTS” should be
specified as the number of nonzero matrix coefficients in the core problem or greater.

1956 Solver Manuals

Example

The following example represents typical specifications for running DECIS with MINOS as the optimizer.

BEGIN SPECS

PRINT LEVEL 1

LOG FREQUENCY 10

SUMMARY FREQUENCY 10

MPS FILE 12

ROWS 20000

COLUMNS 50000

ELEMENTS 100000

ITERATIONS LIMIT 30000

*

FACTORIZATION FREQUENCY 100

AIJ TOLERANCE 0.0

*

SCALE NO

END OF SPECS

Setting CPLEX Parameters Using System Environment Variables

When you use CPLEX as the optimizer for solving the master and the subproblems, optimization
parameters must be specified through system environment variables. You can specify the parameters
”CPLEXLICDIR”, ”SCALELP”, ”NOPRESOLVE”, ”ITERLOG”, ”OPTIMALITYTOL”, ”FEASIBILI-
ITYTOL”, and ”DUALSIMPLEX”.

• CPLEXLICDIR — Contains the path to the CPLEX license directory. For example, on a Unix
system with the CPLEX license directory in /usr/users/cplex/cplexlicdir you issue the command
setenv CPLEXLICDIR /usr/users/cplex/cplexlicdir.

• SCALELP — Specifies CPLEX to scale the master and subproblems before solving them. If the
environment variable is not set no scaling is used. Setting the environment variable, e.g., by issuing
the command setenv SCALELP yes, scaling is switched on.

• NOPRESOLVE — Allows to switch off CPLEX's presolver. If the environment variable is not set,
presolve will be used. Setting the environment variable, e.g., by setting setenv NOPRESOLVE yes,
no presolve will be used.

• ITERLOG — Specifies the iteration log of the CPLEX iterations to be printed to the file
”MODEL.CPX”. If you do not set the environment variable no iteration log will be printed.
Setting the environment variable, e.g., by setting setenv ITERLOG yes, the CPLEX iteration log is
printed.

• OPTIMALITYTOL — Specifies the optimality tolerance for the CPLEX optimizer. If you do
not set the environment variable the CPLEX default values are used. For example, setting setenv
OPTIMALITYTOL 1.0E-7 sets the CPLEX optimality tolerance to 0.0000001.

• FEASIBILIITYTOL — Specifies the feasibility tolerance for the CPLEX optimizer. If you do
not set the environment variable the CPLEX default values are used. For example, setting setenv
FEASIBILITYTOL 1.0E-7 sets the CPLEX optimality tolerance to 0.0000001.

• DUALSIMPLEX — Specifies the dual simplex algorithm of CPLEX to be used. If the environment
variable is not set the primal simplex algorithm will be used. This is the default and works beautifully
for most problems. If the environment variable is set, e.g., by setting setenv DUALSIMPLEX yes,
CPLEX uses the dual simplex algorithm for solving both master and subproblems.

5.13 DECIS 1957

5.13.2.6 GAMS/DECIS Output

After successfully having solved a problem, DECIS returns the objective, the optimal primal and optimal
dual solution, the status of variables (if basic or not), and the status of equations (if binding or not) to
GAMS. In the case of first-stage variables and equations you have all information available in GAMS,
as you would with any other solver, but instead of obtaining the optimal values for a deterministic core
problem you actually have the optimal values for the stochastic problem. However, for second-stage
variables and constraints the e xpected values of the optimal primal and optimal dual solution are reported.
This saves space and is useful for the calculation of risk measures. However, the information as to what
the optimal primal and dual solutions were in the different scenarios of the stochastic programs is not
reported back to GAMS. In a future release of the GAMS/DECIS interface the GAMS language is planned
to be extended to handle the scenario second-stage optimal primal and dual values at least for selected
variables and equations.

While running, DECIS outputs important information about the progress of the execution to your computer
screen. After successfully solving a problem, DECIS also outputs its optimal solution to the solution
output file ”MODEL.SOL”. The debug output file ”MODEL.SCR” contains important information about
the optimization run, and the optimizer output files ”MODEL.MO” (when using DECIS with MINOS) or
”MODEL.CPX” (when using DECIS with CPLEX) contain solution output from the optimizer used. In
the DECIS User's Guide you find a detailed discussion of how to interpret the screen output, the solution
report and the information in the output files.

The Screen Output

The output to the screen allows you to observe the progress of a DECIS run. After the program logo
and the copyright statement, you see four columns of output being written to the screen as long as the
program proceeds. The first column (from left to right) represents the iteration count, the second column
the lower bound (the optimal objective of the master problem), the third column the best upper bound
(exact value or estimate of the total expected cost of the best solution found so far), and the fourth column
the current upper bound (exact value or estimate of the total expected cost of current solution). After
successful completion, DECIS quits with ”Normal Exit”, otherwise, if an error has been encountered, the
programs stops with the message ”Error Exit”.

Example

When solving the illustrative example APL1P using strategy 5, we obtain the following report on the
screen:

T H E D E C I S S Y S T E M

Copyright (c) 1989 -- 1999 by Dr. Gerd Infanger

All rights reserved.

iter lower best upper current upper

0 -0.9935E+06

1 -0.4626E+06 0.2590E+05 0.2590E+05

2 0.2111E+05 0.2590E+05 0.5487E+06

3 0.2170E+05 0.2590E+05 0.2697E+05

4 0.2368E+05 0.2384E+05 0.2384E+05

5 0.2370E+05 0.2384E+05 0.2401E+05

6 0.2370E+05 0.2370E+05 0.2370E+05

iter lower best upper current upper

6 0.2370E+05

7 0.2403E+05 0.2470E+05 0.2470E+05

8 0.2433E+05 0.2470E+05 0.2694E+05

9 0.2441E+05 0.2470E+05 0.2602E+05

1958 Solver Manuals

10 0.2453E+05 0.2470E+05 0.2499E+05

11 0.2455E+05 0.2470E+05 0.2483E+05

12 0.2461E+05 0.2467E+05 0.2467E+05

13 0.2461E+05 0.2467E+05 0.2469E+05

14 0.2461E+05 0.2465E+05 0.2465E+05

15 0.2463E+05 0.2465E+05 0.2467E+05

16 0.2463E+05 0.2465E+05 0.2465E+05

17 0.2464E+05 0.2465E+05 0.2465E+05

18 0.2464E+05 0.2464E+05 0.2464E+05

19 0.2464E+05 0.2464E+05 0.2464E+05

20 0.2464E+05 0.2464E+05 0.2464E+05

21 0.2464E+05 0.2464E+05 0.2464E+05

22 0.2464E+05 0.2464E+05 0.2464E+05

Normal Exit

The Solution Output File

The solution output file contains the solution report from the DECIS run. Its name is ”MODEL.SOL”.
The file contains the best objective function value found, the corresponding values of the first-stage
variables, the corresponding optimal second-stage cost, and a lower and an upper bound on the optimal
objective of the problem. In addition, the number of universe scenarios and the settings for the stopping
tolerance are reported. In the case of using a deterministic strategy for solving the problem, exact values
are reported. When using Monte Carlo sampling, estimated values, their variances, and the sample
size used for the estimation are reported. Instead of exact upper and lower bounds, probabilistic upper
and lower bounds, and a 95% confidence interval, within which the true optimal solution lies with 95%
confidence, are reported. A detailed description of the solution output file can be found in the DECIS
User's Guide.

The Debug Output File

The debug output file contains the standard output of a run of DECIS containing important information
about the problem, its parameters, and its solution. It also contains any error messages that may occur
during a run of DECIS. In the case that DECIS does not complete a run successfully, the cause of the
trouble can usually be located using the information in the debug output file. If the standard output does
not give enough information you can set the debug parameter ibug in the parameter input file to a higher
value and obtain additional debug output. A detailed description of the debug output file can be found in
the DECIS User's Guide.

The Optimizer Output Files

The optimizer output file ”MODEL.MO” contains all the output from MINOS when called as a subroutine
by DECIS. You can specify what degree of detail should be outputted by setting the appropriate ”PRINT
LEVEL” in the MINOS specification file. The optimizer output file ”MODEL.CPX” reports messages
and the iteration log (if switchwd on using the environment variable) from CPLEX when solving master
and sub problems.

5.13.3 Description of GAMS/DECIS Options

5.13.3.1 DECIS Solver Options

Option Description Default

IBug
Debug output 0

5.13 DECIS 1959

Option Description Default

IReg
Indicator for regularized decomposition - MINOS only 0

IScratch
Internal unit number for output and debug 17

IStrat
Defines the solution strategy used 3

IWrite
Subproblem output 0

NSamples
Sample size used for the estimation 100

NZRows
Number of rows reserved for cuts in the master problem 100

Rho
rho parameter of regularization term in the objective function 1000

TolBen
Tolerance for stopping the decomposition algorithm 1e-7

TolW
tolerance when writing debug solution output 1e-9

IBug (integer): Debug output ←↩

Default: 0

value meaning

0 DECIS does not write any debug output

1 Solution of the master problem on each iteration

2 Value 1 plus scenario index and the optimal objective value for each subproblem
solved

3 Value 2 plus information regarding importance sampling

4 Value 3 plus optimal dual variables of the cuts

5 Value 4 plus coeffcients and the right-hand side of the cuts

6 Value 5 plus dump of the master problem and the subproblem in MPS format

IReg (boolean): Indicator for regularized decomposition - MINOS only ←↩

Default: 0

IScratch (integer): Internal unit number for output and debug ←↩

Range: {1, ..., ∞}

Default: 17

IStrat (integer): Defines the solution strategy used ←↩

Default: 3

value meaning

1 Solves the expected value problem

2 Solves the stochastic problem using Monte Carlo importance sampling

3 Refers to istrat = 1 plus istrat = 2

4 Solves the stochastic universe problem

5 Refers to istrat = 1 plus istrat = 4

6 Solves the stochastic problem using crude Monte Carlo sampling

7 Refers to istrat = 1 plus istrat = 6

8 Solves the stochastic problem using Monte Carlo pre-sampling

9 Refers to istrat = 1 plus istrat = 8

10 Solves the stochastic problem using control variates

11 Refers to istrat = 1 plus istrat = 10

1960 Solver Manuals

IWrite (integer): Subproblem output ←↩

Default: 0

value meaning

0 No optimizer output is written

1 Optimizer output is written to the file

NSamples (integer): Sample size used for the estimation ←↩

Range: {30, ..., ∞}

Default: 100

NZRows (integer): Number of rows reserved for cuts in the master problem ←↩

Range: {1, ..., ∞}

Default: 100

Rho (real): rho parameter of regularization term in the objective function ←↩

Default: 1000

TolBen (real): Tolerance for stopping the decomposition algorithm ←↩

Default: 1e-7

TolW (real): tolerance when writing debug solution output ←↩

Default: 1e-9

5.13.4 Appendix A - GAMS/DECIS Illustrative Examples

5.13.4.1 Example APL1P

* APL1P test model

* Dr. Gerd Infanger, November 1997

set g generators /g1, g2/;

set dl demand levels /h, m, l/;

parameter alpha(g) availability / g1 0.68, g2 0.64 /;

parameter ccmin(g) min capacity / g1 1000, g2 1000 /;

parameter ccmax(g) max capacity / g1 10000, g2 10000 /;

parameter c(g) investment / g1 4.0, g2 2.5 /;

table f(g,dl) operating cost

h m l

g1 4.3 2.0 0.5

g2 8.7 4.0 1.0;

parameter d(dl) demand / h 1040, m 1040, l 1040 /;

parameter us(dl) cost of unserved demand / h 10, m 10, l 10 /;

free variable tcost total cost;

positive variable x(g) capacity of generators;

positive variable y(g, dl) operating level;

positive variable s(dl) unserved demand;

5.13 DECIS 1961

equations

cost total cost

cmin(g) minimum capacity

cmax(g) maximum capacity

omax(g) maximum operating level

demand(dl) satisfy demand;

cost .. tcost =e= sum(g, c(g)*x(g))

+ sum(g, sum(dl, f(g,dl)*y(g,dl)))

+ sum(dl,us(dl)*s(dl));

cmin(g) .. x(g) =g= ccmin(g);

cmax(g) .. x(g) =l= ccmax(g);

omax(g) .. sum(dl, y(g,dl)) =l= alpha(g)*x(g);

demand(dl) .. sum(g, y(g,dl)) + s(dl) =g= d(dl);

model apl1p /all/;

* setting decision stages

x.stage(g) = 1;

y.stage(g, dl) = 2;

s.stage(dl) = 2;

cmin.stage(g) = 1;

cmax.stage(g) = 1;

omax.stage(g) = 2;

demand.stage(dl) = 2;

* defining independent stochastic parameters

set stoch /out, pro /;

set omega1 / o11, o12, o13, o14 /;

table v1(stoch, omega1)

o11 o12 o13 o14

out -1.0 -0.9 -0.5 -0.1

pro 0.2 0.3 0.4 0.1

;

set omega2 / o21, o22, o23, o24, o25 /;

table v2(stoch, omega2)

o21 o22 o23 o24 o25

out -1.0 -0.9 -0.7 -0.1 -0.0

pro 0.1 0.2 0.5 0.1 0.1

;

set omega3 / o31, o32, o33, o34 /;

table v3(stoch, omega1)

o11 o12 o13 o14

out 900 1000 1100 1200

pro 0.15 0.45 0.25 0.15

;

set omega4 / o41, o42, o43, o44 /;

table v4(stoch,omega1)

o11 o12 o13 o14

out 900 1000 1100 1200

pro 0.15 0.45 0.25 0.15

;

set omega5 / o51, o52, o53, o54 /;

table v5(stoch,omega1)

o11 o12 o13 o14

out 900 1000 1100 1200

pro 0.15 0.45 0.25 0.15

;

* defining distributions

file stg /MODEL.STG/;

put stg;

put "INDEP DISCRETE" /;

loop(omega1,

put "x g1 omax g1 ", v1("out", omega1), " period2 ", v1("pro", omega1) /;

1962 Solver Manuals

);

put "*" /;

loop(omega2,

put "x g2 omax g2 ", v2("out", omega2), " period2 ", v2("pro", omega2) /;

);

put "*" /;

loop(omega3,

put "RHS demand h ", v3("out", omega3), " period2 ", v3("pro", omega3) /;

);

put "*" /;

loop(omega4,

put "RHS demand m ", v4("out", omega4), " period2 ", v4("pro", omega4) /;

);

put "*" /;

loop(omega5,

put "RHS demand l ", v5("out", omega5), " period2 ", v5("pro", omega5) /;

);

putclose stg;

* setting DECIS as optimizer

* DECISM uses MINOS, DECISC uses CPLEX

option lp=decism;

apl1p.optfile = 1;

solve apl1p using lp minimizing tcost;

scalar ccost capital cost;

scalar ocost operating cost;

ccost = sum(g, c(g) * x.l(g));

ocost = tcost.l - ccost;

display x.l, tcost.l, ccost, ocost, y.l, s.l;

5.13 DECIS 1963

5.13.4.2 Example APL1PCA

* APL1PCA test model

* Dr. Gerd Infanger, November 1997

set g generators /g1, g2/;

set dl demand levels /h, m, l/;

parameter alpha(g) availability / g1 0.68, g2 0.64 /;

parameter ccmin(g) min capacity / g1 1000, g2 1000 /;

parameter ccmax(g) max capacity / g1 10000, g2 10000 /;

parameter c(g) investment / g1 4.0, g2 2.5 /;

table f(g,dl) operating cost

h m l

g1 4.3 2.0 0.5

g2 8.7 4.0 1.0;

parameter d(dl) demand / h 1040, m 1040, l 1040 /;

parameter us(dl) cost of unserved demand / h 10, m 10, l 10 /;

free variable tcost total cost;

positive variable x(g) capacity of generators;

positive variable y(g, dl) operating level;

positive variable s(dl) unserved demand;

equations

cost total cost

cmin(g) minimum capacity

cmax(g) maximum capacity

omax(g) maximum operating level

demand(dl) satisfy demand;

cost .. tcost =e= sum(g, c(g)*x(g))

+ sum(g, sum(dl, f(g,dl)*y(g,dl)))

+ sum(dl,us(dl)*s(dl));

cmin(g) .. x(g) =g= ccmin(g);

cmax(g) .. x(g) =l= ccmax(g);

omax(g) .. sum(dl, y(g,dl)) =l= alpha(g)*x(g);

demand(dl) .. sum(g, y(g,dl)) + s(dl) =g= d(dl);

model apl1p /all/;

* setting decision stages

x.stage(g) = 1;

y.stage(g, dl) = 2;

s.stage(dl) = 2;

cmin.stage(g) = 1;

cmax.stage(g) = 1;

omax.stage(g) = 2;

demand.stage(dl) = 2;

* defining independent stochastic parameters

set stoch /out, pro/;

set omega1 / o11, o12 /;

table v1(stoch,omega1)

o11 o12

out 2.1 1.0

pro 0.5 0.5 ;

set omega2 / o21, o22 /;

table v2(stoch, omega2)

o21 o22

out 2.0 1.0

pro 0.2 0.8 ;

parameter hm1(dl) / h 300., m 400., l 200. /;

parameter hm2(dl) / h 100., m 150., l 300. /;

* defining distributions (writing file MODEL.STG)

1964 Solver Manuals

file stg / MODEL.STG /;

put stg;

put "BLOCKS DISCRETE" /;

scalar h1;

loop(omega1,

put "BL v1 period2 ", v1("pro", omega1)/;

loop(dl,

h1 = hm1(dl) * v1("out", omega1);

put "RHS demand ", dl.tl:1, " ", h1/;

);

);

loop(omega2,

put " BL v2 period2 ", v2("pro", omega2) /;

loop(dl,

h1 = hm2(dl) * v2("out", omega2);

put "RHS demand ", dl.tl:1, " ", h1/;

);

);

putclose stg;

* setting DECIS as optimizer

* DECISM uses MINOS, DECISC uses CPLEX

option lp=decism;

apl1p.optfile = 1;

solve apl1p using lp minimizing tcost;

scalar ccost capital cost;

scalar ocost operating cost;

ccost = sum(g, c(g) * x.l(g));

ocost = tcost.l - ccost;

display x.l, tcost.l, ccost, ocost, y.l, s.l;

5.13 DECIS 1965

5.13.5 Appendix B - Error Messages

1. ERROR in MODEL.STO: kwd, word1, word2 was not matched in first realization of block
The specification of the stochastic parameters is incorrect. The stochastic parameter has not been
specified in the specification of the first outcome of the block. When specifying the first outcome of
a block always include all stochastic parameters corresponding to the block.

2. Option word1 word2 not supported
You specified an input distribution in the stochastic file that is not supported. Check the DECIS
manual for supported distributions.

3. Error in time file
The time file is not correct. Check the file MODEL.TIM. Check the DECIS manual for the form of
the time file.

4. ERROR in MODEL.STO: stochastic RHS for objective, row name2
The specification in the stochastic file is incorrect. You attempted to specify a stochastic right-hand
side for the objective row (row name2). Check file MODEL.STO.

5. ERROR in MODEL.STO: stochastic RHS in master, row name2
The specification in the stochastic file is incorrect. You attempted to specify a stochastic right-hand
side for the master problem (row name2). Check file MODEL.STO.

6. ERROR in MODEL.STO: col not found, name1
The specification in the stochastic file is incorrect. The entry in the stochastic file, name1, is not
found in the core file. Check file MODEL.STO.

7. ERROR in MODEL.STO: invalid col/row combination, (name1/name2)
The stochastic file (MODEL.STO) contains an incorrect specification.

8. ERROR in MODEL.STO: no nonzero found (in B or D matrix) for col/row (name1, name2)
There is no nonzero entry for the combination of name1 (col) and name2(row) in the B-matrix or in
the D-matrix. Check the corresponding entry in the stochastic file (MODEL.STO). You may want
to include a nonzero coefficient for (col/row) in the core file (MODEL.COR).

9. ERROR in MODEL.STO: col not found, name2
The column name you specified in the stochastic file (MODEL.STO) does not exist in the core file
(MODEL.COR). Check the file MODEL.STO.

10. ERROR in MODEL.STO: stochastic bound in master, col name2
You specified a stochastic bound on first-stage variable name2. Check file MODEL.STO.

11. ERROR in MODEL.STO: invalid bound type (kwd) for col name2
The bound type, kwd, you specified is invalid. Check file MODEL.STO.

12. ERROR in MODEL.STO: row not found, name2
The specification in the stochastic file is incorrect. The row name, name2, does not exist in the core
file. Check file MODEL.STO.

13. ERROR: problem infeasible
The problem solved (master- or subproblem) turned out to be infeasible. If a subproblem is infeasible,
you did not specify the problem as having the property of ”complete recourse”. Complete recourse
means that whatever first-stage decision is passed to a subproblem, the subproblem will have a
feasible solution. It is the best way to specify a problem, especially if you use a sampling based
solution strategy. If DECIS encounters a feasible subproblem, it adds a feasibility cut and continues
the execution. If DECIS encounters an infeasible master problem, the problem you specified is
infeasible, and DECIS terminates. Check the problem formulation.

14. ERROR: problem unbounded
The problem solved (master- or subproblem) turned out to be unbounded. Check the problem
formulation.

1966 Solver Manuals

15. ERROR: error code: inform
The solver returned with an error code from solving the problem (master- or subproblem). Consult
the users' manual of the solver (MINOS or CPLEX) for the meaning of the error code, inform.
Check the problem formulation.

16. ERROR: while reading SPECS file
The MINOS specification file (MINOS.SPC) containes an error. Check the specification file. Consult
the MINOS user's manual.

17. ERROR: reading mps file, mpsfile
The core file mpsfile (i.e., MODEL.COR) is incorrect. Consult the DECIS manual for instructions
regarding the MPS format.

18. ERROR: row 1 of problem is not a free row
The first row of the problem is not a free row (i.e., is not the objective row). In order to make the
first row a free row, set the row type to be 'N'. Consult the DECIS manual for the MPS specification
of the problem.

19. ERROR: name not found = nam1, nam2
There is an error in the core file (MODEL.COR). The problem cannot be decomposed correctly.
Check the core file and check the model formulation.

20. ERROR: matrix not in staircase form
The constraint matrix of the problem as specified in core file (MODEL.COR) is not in staircase
form. The first-stage rows and columns and the second-stage rows and columns are mixed within
each other. Check the DECIS manual as to how to specify the core file. Check the core file and
change the order of rows and columns.

5.13 DECIS 1967

5.13.6 DECIS License and Warranty

The software, which accompanies this license (the "Software") is the property of Gerd Infanger and is
protected by copyright law. While Gerd Infanger continues to own the Software, you will have certain
rights to use the Software after your acceptance of this license. Except as may be modified by a license
addendum, which accompanies this license, your rights and obligations with respect to the use of this
Software are as follows:

• You may

1. Use one copy of the Software on a single computer,

2. Make one copy of the Software for archival purposes, or copy the software onto the hard disk
of your computer and retain the original for archival purposes,

3. Use the Software on a network, provided that you have a licensed copy of the Software for each
computer that can access the Software over that network, item After a written notice to Gerd
Infanger, transfer the Software on a permanent basis to another person or entity, provided that
you retain no copies of the Software and the transferee agrees to the terms of this agreement.

• You may not

1. Copy the documentation, which accompanies the Software,

2. Sublicense, rent or lease any portion of the Software,

3. Reverse engineer, de-compile, disassemble, modify, translate, make any attempt to discover the
source code of the Software, or create derivative works from the Software.

5.13.6.1 Limited Warranty:

Gerd Infanger warrants that the media on which the Software is distributed will be free from defects for a
period of thirty (30) days from the date of delivery of the Software to you. Your sole remedy in the event
of a breach of the warranty will be that Gerd Infanger will, at his option, replace any defective media
returned to Gerd Infanger within the warranty period or refund the money you paid for the Software.
Gerd Infanger does not warrant that the Software will meet your requirements or that operation of the
Software will be uninterrupted or that the Software will be error-free.

THE ABOVE WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES,
WHETHER EXPRESS OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

5.13.6.2 Disclaimer of Damages:

REGARDLESS OF WHETHER ANY REMEDY SET FORTH HEREIN FAILS OF ITS ESSENTIAL
PURPOSE, IN NO EVENT WILL GERD INFANGER BE LIABLE TO YOU FOR ANY SPECIAL,
CONSEQUENTIAL, INDIRECT OR SIMILAR DAMAGES, INCLUDING ANY LOST PROFITS OR
LOST DATA ARISING OUT OF THE USE OR INABILITY TO USE THE SOFTWARE EVEN IF
GERD INFANGER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

IN NO CASE SHALL GERD INFANGER'S LIABILITY EXCEED THE PURCHASE PRICE FOR THE
SOFTWARE. The disclaimers and limitations set forth above will apply regardless of whether you accept
the Software.

1968 Solver Manuals

5.13.6.3 General:

This Agreement will be governed by the laws of the State of California. This Agreement may only be
modified by a license addendum, which accompanies this license or by a written document, which has
been signed by both you and Gerd Infanger. Should you have any questions concerning this Agreement,
or if you desire to contact Gerd Infanger for any reason, please write:

Gerd Infanger, 1590 Escondido Way, Belmont, CA 94002, USA.

Note

Copyright © 1989 – 1999 by Gerd Infanger. All rights reserved. The GAMS/DECIS User's Guide
is copyrighted and all rights are reserved. Information in this document is subject to change without
notice and does not represent a commitment on the part of Gerd Infanger. The DECIS software
described in this document is furnished under a license agreement and may be used only in accordance
with the terms of this agreement. The DECIS software can be licensed through Infanger Investment
Technology, LLC or through Gams Development Corporation.

5.14 DICOPT

5.14.1 Introduction

DICOPT is a program for solving mixed-integer nonlinear programming (MINLP) problems that involve
linear binary or integer variables and linear and nonlinear continuous variables. While the modeling
and solution of MINLP optimization problems has not yet reached the stage of maturity and reliability
achieved by linear, integer, or non-linear programming modeling, these problems still have rich areas
of application. For example, they often arise in engineering design, management sciences, and finance.
DICOPT (DIscrete and Continuous OPTimizer) was originally developed by Jagadisan Viswanathan, Ignacio
E. Grossmann, and Aldo Vecchietti at the Engineering Design Research Center (EDRC) at Carnegie
Mellon University. Currently, DICOPT is maintained by GAMS. The program is based on the extensions
of the outer-approximation algorithm for the equality relaxation strategy. The MINLP algorithm inside
DICOPT solves a series of NLP and MIP sub-problems. These sub-problems can be solved using any NLP
(Nonlinear Programming) or MIP (Mixed-Integer Programming) solver that runs under GAMS. The
performance will heavily depend on the choice of the selected subsolvers.

Although the algorithm has provisions to handle non-convexities, it does not necessarily obtain the global
optimum.

The GAMS/DICOPT system has been designed with two main goals in mind:

• to build on existing modeling concepts, introduce a minimum of extensions to the existing modeling
language, and provide upward compatibility to ensure easy transition from existing modeling
applications to nonlinear mixed-integer formulations

• to use existing optimizers to solve the DICOPT sub-problems. This allows one to match the best
algorithms to the problem at hand and guarantees that any new development and enhancements in
the NLP and MIP solvers become automatically and immediate available to DICOPT.

5.14.2 Requirements

In order to use DICOPT you will need to have access to a licensed GAMS BASE system as well as at least
one licensed MIP solver and one licensed NLP solver. For difficult models it is advisable to also have
access to multiple solvers.

5.14 DICOPT 1969

5.14.3 How to Run a Model with GAMS/DICOPT

DICOPT is only able to solve MINLP and MIQCP models. If you did not specify DICOPT as the default
solver you can use the following statement in your GAMS model:

option minlp = dicopt;

This should appear before the solve statement. DICOPT automatically uses the default MIP and NLP
solver to solve its sub-problems. One can override this with GAMS statements like:

option nlp = conopt; { or any other nlp solver }

option mip = gurobi; { or any other mip solver }

These options can also be specified on the command line:

> gams mymodel minlp=dicopt nlp=conopt mip=gurobi

In the Integrated Development Environment (IDE) the command line option can be specified in the edit
line in the right upper corner of the main window.

Possible NLP solvers include conopt, ipopt, knitro, minos, and snopt. Possible MIP solvers include
cplex, gurobi, and xpress.

With an option file it is even possible to use alternate solvers in different cycles. Section DICOPT Options
explains this is in detail.

5.14.4 Overview of DICOPT

DICOPT solves models of the form:

min or max f(x, y)
subject to g(x, y) ∼ b

`x ≤ x ≤ ux
y ∈ d`ye, ..., buyc

(MINLP)

where x are the continuous variables and y are the discrete variables. The symbol ∼ is used to denote
a vector of relational operators {≤,=,≥}. The constraints can be either linear or non-linear. Bounds `
and u on the variables are handled directly. dxe indicates the smallest integer, greater than or equal to x.
Similarly, bxc indicates the largest integer, less than or equal to x. The discrete variables can be either
integer variables or binary variables.

1970 Solver Manuals

5.14.5 The Algorithm

The algorithm in DICOPT is based on three key ideas:

• Outer Approximation

• Equality Relaxation

• Augmented Penalty

Outer Approximation refers to the fact that the surface described by a convex function lies above the
tangent hyper-plane at any interior point of the surface. (In 1-dimension, the analogous geometrical result
is that the tangent to a convex function at an interior point lies below the curve). In the algorithm outer-
approximations are attained by generating linearizations at each iterations and accumulating them in order
to provide successively improved linear approximations of nonlinear convex functions that underestimate
the objective function and overestimate the feasible region.

Equality Relaxation is based on the following result from non-linear programming. Suppose the MINLP
problem is formulated in the form:

minimize or maximize f(x) + cT y
subject to G(x) +Hy ∼ b

` ≤ x ≤ u
y ∈ {0, 1}

i.e. the discrete variables are binary variables and they appear linearly in the model.

Let y(0) be any fixed binary vector and let x(0) be the solution of the corresponding NLP subproblem:

minimize cT y(0) + f(x)
subject to Ay(0) + h(x) = 0

By(0) + g(x) ≤ 0
` ≤ x ≤ u

Further let

T (0) = diag(ti,i)
ti,i = sign(λi)

where λi is the Lagrange multiplier of the i-th equality constraint.

If f is pseudo-convex, h is quasi-convex, and g is quasi-convex, then x0 is also the solution of the following
NLP:

minimize cT y(0) + f(x)
subject to T (0)(Ay(0) + h(x)) ≤ 0

By(0) + g(x) ≤ 0
` ≤ x ≤ u

In colloquial terms, under certain assumptions concerning the convexity of the nonlinear functions, an
equality constraint can be relaxed to be an inequality constraint. This property is used in the MIP
master problem to accumulate linear approximations.

5.14 DICOPT 1971

Augmented Penalty refers to the introduction of (non-negative) slack variables on the right hand sides of
the just described inequality constraints and the modification of the objective function when assumptions
concerning convexity do not hold.

The algorithm underlying DICOPT starts by solving the NLP in which the 0-1 conditions on the binary
variables are relaxed. If the solution to this problem yields an integer solution the search stops. Otherwise,
it continues with an alternating sequence of nonlinear programs (NLP) called subproblems and mixed-
integer linear programs (MIP) called master problems. The NLP subproblems are solved for fixed 0-1
variables that are predicted by the MIP master problem at each (major) iteration. For convex problems
the master problem also provides a lower bound on the objective function. This lower bound (in the
case of minimization) increases monotonically as iterations proceed due to the accumulation of linear
approximations. Note that in the case of maximization this bound is an upper bound which can be used as
a stopping criterion through a DICOPT option stop 1 (see section DICOPT Options). Another stopping
criterion that tends to work very well for non-convex problems (and even for convex problems) is based on
the heuristic: stop as soon as the NLP subproblems start worsening (i.e. the current NLP subproblem has
an optimal objective function that is worse than the previous NLP subproblem). This stopping criterion
relies on the use of the augmented penalty, and is used in the description of the algorithm below. This is
also the default stopping criterion in the implementation of DICOPT. The algorithm can be stated briefly
as follows:

1. Solve the NLP relaxation of the MINLP program. If y(0) = y is integer, stop(integer optimum

found). Else continue with step 2.

2. Find an integer point y(1) with an MIP master problem that features an augmented penalty function
to find the minimum over the convex hull determined by the half-spaces at the solution (x(0), y(0)).

3. Fix the binary variables y = y(1) and solve the resulting NLP. Let (x(1), y(1)) be the corresponding
solution.

4. Find an integer solution y(2) with a MIP master problem that corresponds to the minimization over
the intersection of the convex hulls described by the half-spaces of the KKT points at y(0) and y(1).

5. Repeat steps 3 and 4 until there is an increase in the value of the NLP objective function. (Re-
peating step 4 means augmenting the set over which the minimization is performed with additional
linearizations - i.e. half-spaces - at the new KKT point).

In the MIP problems integer cuts are added to the model to exclude previously determined integer vectors
y(1), y(2), ..., y(K).

For a detailed description of the theory and references to earlier work, see [193] [110] [52] .

The algorithm has been extended to handle general integer variables and integer variables appearing
nonlinearly in the model.

5.14.6 Modeling

5.14.6.1 Relaxed Model

Before solving a model with DICOPT, the user is strongly advised to experiment with the relaxed model
where the integer restrictions are ignored. This is the RMINLP model. As the DICOPT will start solving
the relaxed problem and can use an existing relaxed optimal solution, it is a good idea to solve the RMINLP

always before attempting to solve the MINLP model, i.e., the following fragment is not detrimental with
respect to performance:

1972 Solver Manuals

model m /all/;

option nlp=conopt;

option mip=cplex;

option rminlp=conopt;

option minlp=dicopt;

*

* solve relaxed model

*

solve m using rminlp minimizing z;

abort$(m.modelstat > 2.5) "Relaxed model could not be solved";

*

* solve minlp model

*

solve m using minlp minimizing z;

The second SOLVE statement will only be executed if the first SOLVE was successful, i.e., if the model
status was one (optimal) or two (locally optimal).

In general it is not a good idea to try to solve an MINLP model if the relaxed model cannot be solved
reliably. As the RMINLP model is a normal NLP model, some obvious points of attention are:

• Scaling. If a model is poorly scaled an NLP solver may not be able find the optimal or even a
feasible solution. Some NLP solvers have automatic scaling algorithms, but often it is better to
attack this problem on the modeling level. The GAMS scaling facility can help in this respect.

• Starting point. If a poor starting point is used, the NLP solver may not be able to find a feasible or
optimal solution. A starting point can be set by setting level values, e.g. X.L = 1;. The GAMS
default levels are zero, with is often not a good choice.

• Adding bounds. Add bounds so that all functions can be properly evaluated. If you have a function√
x or log(x) in the model, you may want to add a bound X.LO=0.001;. If a function like log(f(x))

is used, you may want to introduce an auxiliary variable and equation y = f(x) with an appropriate
bound Y.LO=0.001;.

In some cases the relaxed problem is the most difficult model. If more than one NLP solver is available
you may want to try them in a sequence:

model m /all/;

option nlp=conopt;

option mip=cplex;

option rminlp=conopt;

option minlp=dicopt;

*

* solve relaxed model

*

solve m using rminlp minimizing z;

if (m.modelstat > 2.5,

option rminlp=minos;

solve m using rminlp minimizing z;

);

if (m.modelstat > 2.5,

option rminlp=snopt;

solve m using rminlp minimizing z;

);

*

* solve minlp model

*

solve m using minlp minimizing z;

5.14 DICOPT 1973

In this fragment we first try to solve the relaxed model using CONOPT. If that fails we try MINOS, and if
that solve also fails we try SNOPT.

It is worthwhile to spend some time getting the relaxed model to solve reliably and speedily. In most
cases, modeling improvements in the relaxed model, such as scaling, will also benefit the subsequent NLP
sub-problems. In general these modeling improvements turn out to be rather solver independent: changes
that improve the performance with CONOPT will also help solving the model with MINOS.

5.14.6.2 OPTCR and OPTCA

The DICOPT algorithm assumes that the integer sub-problems are solved to optimality. The GAMS options
for OPTCR and OPTCA are therefore ignored: subproblems are solved with both tolerances set to zero. If
you want to solve a MIP sub-problem with an optimality tolerance you can use the DICOPT option file to
set OPTCR or OPTCA. For more information see section DICOPT Options.

For models with many discrete variables, it may be necessary to introduce an OPTCR or OPTCA option in
order to solve the model in acceptable time. For models with a limited number of integer variables the
default to solve MIP sub-models to optimality may be acceptable.

5.14.6.3 Integer Formulations

A number of MIP formulations are not very obvious and pose a demand on the modeler's knowledge and
experience. A good overview of integer programming modeling is given in [202] .

Many integer formulations use a so-called big- M construct. It is important to choose small values for
those big- M numbers. As an example consider the fixed charge problem where yi ∈ {0, 1} indicate if
facility i is open or closed, and where xi is the production at facility i. Then the cost function can be
modeled as:

Ci = fiyi + vixi
xi ≤Miyi

yi ∈ {0, 1}
0 ≤ xi ≤ capi

where fi is the fixed cost and vi the variables cost of operating a facility i. In this case the chosen Mi

should be large enough that xi is not restricted if yi = 1. On the other hand, it should be as small as
possible. This leads to a choice to have Mi equal to the (tight) upperbound of variable xi (i.e. the capacity
capi of facility i).

5.14.6.4 Non-smooth Functions

GAMS alerts NLP modelers against the use of non-smooth functions such as min(), max(), smin(),
smax() and abs(). In order to use these functions, a non-linear program needs to be declared as a DNLP
model instead of a regular NLP model:

option dnlp=conopt;

model m /all/;

solve m minimizing z using dnlp;

1974 Solver Manuals

This construct will warn the user that problems may arise due to the use of non-smooth functions.

A possible solution is to use a smooth approximation. For instance, the function f(x) = |x| can be
approximated by g(x) =

√
x2 + ε for some ε > 0. This approximation does not contain the point (0, 0).

An alternative approximation can be devised that has this property:

f(x) ≈ 2x

1 + e−x/h
− x

MINLP models do not have such protection against non-smooth functions, but the use of such functions
is just as problematic here. It is possible to use discrete variables with MINLP models in order to model
if-then-else situations. For instance, in the case of the absolute value we can replace x by x+ − x− and |x|
by x+ + x− by using:

x = x+ − x−
|x| = x+ + x−

x+ ≤ δM
x− ≤ (1− δ)M

x+, x− ≥ 0
δ ∈ {0, 1}

where δ is a binary variable.

5.14.7 GAMS Options

GAMS options are specified in the GAMS model source, using either the option statement or a model
suffix.

5.14.7.1 The OPTION Statement

An option statement sets a global parameter. An option statement should appear before the solve

statement, as in:

model m /all/;

option iterlim=100;

solve m using minlp minimizing z;

Option statements that affect the behavior of DICOPT are listed below:

• option domlim = n;
This option sets a limit on the total accumulated number of non-linear function evaluation errors
that are allowed while solving the NLP subproblems or inside DICOPT itself. An example of a
function evaluation error or domain error is taking the square root of a negative number. This
situations can be prevented by adding proper bounds. The default is zero, i.e. no function evaluation
errors are allowed.

In case a domain error occurs, the listing file will contain an appropriate message, including
the equation that is causing the problem. For instance:

**** ERRORS(S) IN EQUATION loss(cc,sw)

2 instance(s) of - UNDEFINED REAL POWER (RETURNED 0.0E+00)

5.14 DICOPT 1975

If such errors appear you can increase the DOMLIM limit, but often it is better to prevent the errors
from occurring in the first place. In many cases this can be accomplished by adding appropriate
bounds. Sometimes extra variables and equations need to be added to accomplish this. For instance,
with an expression like log(x − y), you may want to introduce a variable z > ε and an equation
z = x− y, so that the expression can be rewritten as log(z).

• option iterlim = n;
This option sets a limit on the total accumulated (minor) iterations performed in the MIP and NLP
subproblems.

• option minlp = dicopt;
This option selects DICOPT to solve MINLP problems.

• option mip = s;
This option sets the MIP solver to be used for the MIP master problems. Note that changing from
one MIP solver to another can lead to different results, and may cause DICOPT to follow a different
path.

• option nlp = s;
This option sets the NLP solver to be used for the NLP sub-problems. Note that changing from one
NLP solver to another can lead to different results, and may cause DICOPT to follow a different path.

• option optca = x;
This option is ignored. MIP master problems are solved to optimality unless specified differently in
the DICOPT option file.

• option optcr = x;
This option is ignored. MIP master problems are solved to optimality unless specified differently in
the DICOPT option file.

• option reslim = x;
This option sets a limit on the total accumulated time (in seconds) spent inside DICOPT and the
subsolvers.

• option sysout = on;
This option will print extra information to the listing file.

In the list above (and in the following) n indicates an integer number. GAMS will also accept fractional
values, which will be rounded. Options marked with an x parameter expect a real number. Options
with an s parameter expect a string argument.

5.14.7.2 The Model Suffix

Some options are set by assigning a value to a model suffix, as in:

model m /all/;

m.optfile=1;

solve m using minlp minimizing z;

Model suffixes that affect the behavior of DICOPT are listed below:

• m.dictfile = 1;
This option tells GAMS to write a dictionary file containing information about GAMS identifiers
(equation and variables names). Such information is needed when the DICOPT option nlptracelevel

is used, otherwise the option can be ignored.

1976 Solver Manuals

• m.iterlim = n;
Sets the total accumulated (minor) iteration limit. This option overrides the global iteration limit
set by an option statement, e.g.,

model m /all/;

m.iterlim = 100;

option iterlim = 1000;

solve m using minlp minimizing z;

will cause DICOPT to use an iteration limit of 100.

• m.optfile = 1;
This option instructs DICOPT to read an option file dicopt.opt. This file should be located in the
current directory (or the project directory when using the GAMS IDE). The contents of the option
file will be echoed to the listing file and to the screen (the log file):

--- DICOPT: Reading option file D:\MODELS\SUPPORT\DICOPT.OPT

> maxcycles 10

--- DICOPT: Starting major iteration 1

If the option file does not exist, the algorithm will proceed using its default settings. An appropriate
message will be displayed in the listing file and in the log file:

--- DICOPT: Reading option file D:\MODELS\SUPPORT\DICOPT.OPT

--- DICOPT: File does not exist, using defaults...

--- DICOPT: Starting major iteration 1

• m.optfile = n;
If n > 1 then the option file that is read is called dicopt.op n (for n = 2, ..., 9) or dicopt.o n (for
n = 10, ..., 99). E.g. m.optfile=2; will cause DICOPT to read dicop.op2.

• m.prioropt = 1;
This option turns on the use of priorities on the discrete variables. Priorities influence the branching
order chosen by the MIP solver during solution of the MIP master problems. The use of priorities
can greatly impact MIP solver performance. The priorities themselves have to be specified using
the .prior variables suffix, e.g. x.prior(i,j) = ord(i);. Contrary to intuition, variables with a
lower value for their priority are branched on before variables with a higher priority, i.e., the most
important variables should get lower priority values.

• m.reslim = x;
Sets the total accumulated time limit. This option overrides the global time limit set by an option
statement.

5.14.8 DICOPT Options

This sections describes the options that can be specified in the DICOPT option file. This file is usually
called dicopt.opt. The optfile model suffix must be set to tell DICOPT to read this file:

model m /all/;

m.optfile=1;

solve m using minlp minimizing z;

The option file is searched for in the current directory, or in the project directory when the IDE is used.

The option file is a standard text file, with a single option on each line. All options are case-insensitive. A
line is a comment line if it starts with an asterisk, ∗ in column one. A valid option file can look like:

5.14 DICOPT 1977

* stop only on infeasible MIP or hitting a limit

stop 0

* use minos to solve first NLP sub problem

* and conopt for all subsequent ones

nlpsolver minos conopt

A convenient way to write the option file from within a GAMS model is to use the following construct:

$onecho > dicopt.opt

stop 0

nlpsolver minos conopt

$offecho

This will make the model self-contained. Notice, however, that this overwrites an existing file dicopt.opt.

Available DICOPT options are listed below:

5.14.8.1 Algorithmic options

Option Description Default

continue
How to proceed in case of NLP errors 2

convex If enabled, the defaults for a number of other options are set to values
appropriate to convex MINLPs

0

dumpsubprob
Whether to dump MIP and NLP subproblems into GAMS files 0

infbnd
Bound to use for unbounded integer variables in integer cuts 10000

infeasder
Use derivatives of infeasible nonlinear subproblems 0

maxcycles
Maximum number of cycles 20

relaxed
How to start DICOPT 1

solvelink
Solvelink for NLP and MIP subsolver 5

stop
Stopping criterion 2

usexinit
Use the user initial point as starting point for all NLP solves 0

weight
Penalty parameter, set above 1e20 to disable penalty relaxation 1000

5.14.8.2 Tolerances

Option Description Default

epsmip
Tolerance on test on monotonic improvement of MIP master problem 1.0e-6

epsx Tolerance for integer values when loading relaxed solution 1.0e-3

5.14.8.3 MIP masterproblem options

1978 Solver Manuals

Option Description Default

mipiterlim
List of iteration limits

mipoptfile
List of option files for MIP solver

mipreslim
List of resource limits

mipsolver
List of MIP solvers

optca
List of OPTCA values

optcr
List of OPTCR values

5.14.8.4 NLP subproblem options

Option Description Default

domlim
List of allowed number of domain errors

nlpiterlim
List of iteration limits

nlpoptfile
List of option files for NLP solver

nlpreslim
List of resource limits

nlpsolver
List of NLP solvers

nlptracefile
Base name of trace files nlptrace

nlptracelevel
Trace level 0

5.14.8.5 Feasibility Pump

Option Description Default

feaspump
Whether to run the Feasibility Pump 0

fp acttol
Tolerance on when to consider an equation as active 1E-6

fp cutoffdecr
Additional relative decrement of cutoff value for the original objective
function

0.1

fp dumpsubprob
Whether to dump subproblems (NLPs and MIPs) into GAMS files 0

fp integercuts
Whether to add integer cuts after an NLP subproblem has been solved
to optimality

1

fp iterlimit
Major Iteration limit 20

fp mipgap
Optimality tolerance (relative gap) to use for solving MIP projection
problem

0.01

fp projcuts
Whether to add cut derived from projection of MIP solution onto
NLP feasible set

1

fp projzerotol
Tolerance on when to consider optimal value of projection problem as
zero, which may trigger the solution of a Sub-NLP

1E-4

fp sollimit
Stop when a number of (improving) solutions has been bound maxint

fp stalllimit
Stop when no improving solution has been bound for a number of FP
iterations, -1 to disable

5

5.14 DICOPT 1979

Option Description Default

fp subsolverlog
Whether to show the log of subsolvers 0

fp timelimit
Time limit maxdouble

fp transfercuts
Whether to transfer cuts from the Feasibility Pump MIP to the
DICOPT MIP (all except from the round in which the FP MIP
became infeasible)

1

5.14.8.6 Detailed Options Description

continue (integer): How to proceed in case of NLP errors ←↩

This option can be used to let DICOPT continue in cases of NLP solver failure. The preferred
approach is to fix the model so that NLP subproblems solve without problems. In some cases,
however, (partial) failures of an NLP solver in solving the NLP subproblems can be ignored,
as DICOPT may recover later on. Adding the option continue 0 during model debugging
enables DICOPT to function in a more specific way.

Default: 2

value meaning

0 Stop on solver failure
Stop on solver failure. DICOPT will terminate when an NLP subproblem can not
be solved to optimality. Some NLP solvers terminate with a status other than
optimal if not all of the termination criteria are met. For instance, the change
in the objective function is negligible (indicating convergence) but the reduced
gradients are not within the required tolerance. Such a solution may or may not
be close to the (local) optimum. Using continue 0 will prevent DICOPT from
accepting such a solution.

1 Accept non-optimal feasible solutions
NLP subproblem failures resulting in a non-optimal but feasible solutions are
accepted. Sometimes an NLP solver cannot make further progress towards meeting
all optimality conditions, although the current solution is feasible. Such a solution
can be accepted by this option.

2 Ignore infeasible solutions
NLP subproblem failures resulting in a non-optimal but feasible solution are
accepted (as in option continue 1). NLP subproblem failures resulting in an
infeasible solution are ignored. The corresponding configuration of discrete
variables is forbidden to be used again. An integer cut to accomplish this is added
to subsequent MIP master problems. Note that the relaxed NLP solution should
be feasible. This setting is the default.

convex (boolean): If enabled, the defaults for a number of other options are set to values appropriate to
convex MINLPs ←↩

If this option is enable, the default option values will be changed such that DICOPT will
stop on crossover (stop set to 1), linearizations from infeasible NLP subproblems will be
added to the MIP master problem (infeasder set to 1), penalty relaxation is no longer applied
to linearizations (weight set to maxdouble), and the feasibility pump is run if there are no
semicontinuous or semiinteger variables and no special ordered sets (feaspump set to 1).

Default: 0

domlim (string): List of allowed number of domain errors ←↩

1980 Solver Manuals

domlim i1 i2 . . . in. Sets a limit of the number of function and derivative evaluation errors for
a particular cycle. A number of −1 means that the global GAMS option domlim is used. The
last number in sets a domain error limit for all cycles n, n+ 1,

Example: domlim 0 100 0

The NLP solver in the second cycle is allowed to make up to 100 evaluation errors,
while all other cycles must be solved without evaluation errors.

The default is to use the global GAMS domlim option.

dumpsubprob (boolean): Whether to dump MIP and NLP subproblems into GAMS files ←↩

For subproblems of the feasibility pump, use option fp dumpsubprob.

Default: 0

epsmip (real): Tolerance on test on monotonic improvement of MIP master problem ←↩

This option can be used to relax the test on MIP objective functions. The objective function
values of the MIP master problems should form a monotonic worsening curve. This is not
the case if the MIP master problems are not solved to optimality. If the options OPTCR or
OPTCA are set to a nonzero value, this test is bypassed. If the test fails, DICOPT will fail with a
message:

The MIP solution became better after adding integer cuts. Something

is wrong. Please check if your model is properly scaled. Also check

your big M formulations -- the value of M should be relatively small.

This error can also occur if you used a MIP solver option file with

a nonzero OPTCR or OPTCA setting. In that case you may want to increase

the EPSMIP setting using a DICOPT option file.

The value of

PreviousObj− CurrentObj

1 + |PreviousObj|
is compared against epsmip. In case the test fails but you want DICOPT to continue anyway,
you may want to increase the value of epsmip. The current values used in the test (previous
and current MIP objective, epsmip) are printed along with the above message to provide
information about how much you should increase epsmip to pass the test. Normally, you
should not have to change this value.

Default: 1.0e-6

epsx (real): Tolerance for integer values when loading relaxed solution ←↩

This tolerance is used to distinguish integer variables that are set to an integer value by the
user, or integer variables that are fractional. See the option relaxed.

Default: 1.0e-3

feaspump (integer): Whether to run the Feasibility Pump ←↩

Default: 0

value meaning

0 Do not run the Feasibility Pump

1 Run the Feasibility Pump if there are no semicontinuous or semiinteger variables
and no special ordered sets

2 Always run the Feasibility Pump

5.14 DICOPT 1981

fp acttol (real): Tolerance on when to consider an equation as active ←↩

Default: 1E-6

fp cutoffdecr (real): Additional relative decrement of cutoff value for the original objective function ←↩

Default: 0.1

fp dumpsubprob (boolean): Whether to dump subproblems (NLPs and MIPs) into GAMS files ←↩

Default: 0

fp integercuts (integer): Whether to add integer cuts after an NLP subproblem has been solved to
optimality ←↩

Default: 1

value meaning

0 Do not use integer cuts

1 Use integer cuts only for mixed-binary problems

2 Always use integer cuts

fp iterlimit (integer): Major Iteration limit ←↩

Default: 20

fp mipgap (real): Optimality tolerance (relative gap) to use for solving MIP projection problem ←↩

Default: 0.01

fp projcuts (boolean): Whether to add cut derived from projection of MIP solution onto NLP feasible
set ←↩

Default: 1

fp projzerotol (real): Tolerance on when to consider optimal value of projection problem as zero, which
may trigger the solution of a Sub-NLP ←↩

Default: 1E-4

fp sollimit (integer): Stop when a number of (improving) solutions has been bound ←↩

Default: maxint

fp stalllimit (integer): Stop when no improving solution has been bound for a number of FP iterations,
-1 to disable ←↩

Range: {-1, ..., ∞}

Default: 5

fp subsolverlog (boolean): Whether to show the log of subsolvers ←↩

Default: 0

fp timelimit (real): Time limit ←↩

1982 Solver Manuals

Default: maxdouble

fp transfercuts (boolean): Whether to transfer cuts from the Feasibility Pump MIP to the DICOPT
MIP (all except from the round in which the FP MIP became infeasible) ←↩

Default: 1

infbnd (real): Bound to use for unbounded integer variables in integer cuts ←↩

Value to use for missing bounds on discrete variables when constructing integer cuts.

Default: 10000

infeasder (integer): Use derivatives of infeasible nonlinear subproblems ←↩

This option is to determine whether linearizations of infeasible NLP subproblems are added or
not added to the MIP master problem.

Default: 0

value meaning

0 No linearizations of infeasible NLP subproblems
This is the default option in which no linearizations are added in the infeasible
NLP subproblems. In this case a simple integer cut is added to remove from
consideration the 0-1 vector that gave rise to the infeasible NLP. Since this may
slow the convergence, it is recommended to reformulate the MINLP with ”elastic”
constraints (i.e., adding slacks to infeasible constraints and adding a penalty for
them in the objective) to ensure that the NLP subproblems are mathematically
feasible.

1 Add linearization for infeasible NLP subproblems
This will add linearizations derived from the infeasible NLP subproblem to the
master problem. This option is recommended to speed up convergence when
the MINLP is known to be convex (i.e. its continuous relaxation is convex).
The possibility of cutting-off the global optimum is increased if it is used for a
nonconvex MINLP.

maxcycles (integer): Maximum number of cycles ←↩

The maximum number of cycles or major iterations performed by DICOPT.

Default: 20

mipiterlim (string): List of iteration limits ←↩

mipiterlim i1 i2 . . . in sets an iteration limit on individual MIP master problems. The last
number in is valid for all subsequent cycles n, n+ 1, A number of −1 indicates that there
is no (individual) limit on the corresponding MIP master problem. A global iteration limit is
maintained through the GAMS option iterlim.

Example: mipiterlim 10000 -1

The first MIP master problem cannot use more than 10000 iterations, while subse-
quent MIP master problems are not individually restricted.

Example: mipiterlim 10000

Sets an iteration limit of 10000 on all MIP master problems.

5.14 DICOPT 1983

When this option is used it is advised to have the option continue set to its default of 2. The
default for this option is not to restrict iteration counts on individual solves of MIP master
problems. The default for this option is not to restrict iteration counts on individual solves of
MIP master problems.

mipoptfile (string): List of option files for MIP solver ←↩

mipoptfile s1 s2 . . . sn specifies the option file to be used for the MIP master problems. Several
option files can be specified, separated by a blank. If a digit 1 is entered the default option file
for the MIP solver in question is being used. The digit 0 indicates that no option file is to be
used. The last option file is also used for subsequent MIP master problems.

Example: mipoptfile mip.opt mip2.opt 0

This option will cause the first MIP master problem solver to read the option file
mip.opt and the second one to read the option file mip2.opt; subsequent MIP
master problem solvers will not use any option file.

Example: mipoptfile 1

This will cause the MIP solver for all MIP subproblems to read a default option file
(e.g. cplex.opt, xpress.opt, gurobi.opt etc.).

Option files are located in the current directory (or the project directory when using the IDE).
The default is not to use an option file.

mipreslim (string): List of resource limits ←↩

mipreslim x1 x2 . . . xn sets a resource (time) limit on individual MIP master problems. The
last number xn is valid for all subsequent cycles n, n+ 1, A number −1.0 means that the
corresponding MIP master problem is not individually time restricted. A global time limit is
maintained through the GAMS option reslim.

Example: mipreslim -1 10000 -1

The MIP master problem in cycle 2 cannot use more than 100 seconds, while
subsequent MIP master problems are not individually restricted.

Example: mipreslim 1000

Sets a time limit on all MIP master problems of 1000 seconds.

When this option is used it is advised to have the option continue set to its default of 2. The
default for this option is not to restrict individually the time a solver can spent on the MIP
master problem.

mipsolver (string): List of MIP solvers ←↩

This option specifies with MIP solver to use for the MIP master problems.

Example: mipsolver cplex xpress

This instructs DICOPT to use Cplex for the first MIP and XPRESS for the second
and subsequent MIP problems. The last entry may be used for more than one
problem.

The names to be used for the solvers are the same as one uses in the GAMS statement OPTION
MIP=....;. The default is to use the default MIP solver.
Note that changing from one MIP solver to another can lead to different results, and may
cause DICOPT to follow a different path.

nlpiterlim (string): List of iteration limits ←↩

1984 Solver Manuals

nlpiterlim i1 i2 . . . in sets an iteration limit on individual NLP subproblems. The last number
in is valid for all subsequent cycles n, n+ 1, A number of −1 indicates that there is no
(individual) limit on the corresponding NLP subproblem. A global iteration limit is maintained
through the GAMS option reslim.

Example: nlpiterlim 1000 -1

The first (relaxed) NLP subproblem cannot use more than 1000 iterations, while
subsequent NLP subproblems are not individually restricted.

Example: nlpiterlim 1000

Sets an iteration limit of 1000 on all NLP subproblems.

When this option is used it is advised to have the option continue set to its default of 2.
This default does not restrict the amount of iterations an NLP solver can spend on an NLP
subproblem, other than the global iteration limit.

nlpoptfile (string): List of option files for NLP solver ←↩

nlpoptfile s1 s2 . . . sn specifies the option file to be used for the NLP subproblems. Several
option files can be specified, separated by a blank. If a digit 1 is entered, the default option
file for the NLP solver in question is being used. The digit 0 indicates that no option file is to
be used. The last option file is also used for subsequent NLP subproblems.

Example: nlpoptfile nlp.opt nlp2.opt 0

This option will cause the first NLP subproblem solver to read the option file nlp.opt
and the second one to read the option file nlp2.opt; subsequent NLP subproblem
solvers will not use any option file.

Example: nlpoptfile 1

This will cause the NLP solver for all NLP subproblems to read a default option file
(e.g. conopt.opt, minos.opt, snopt.opt etc.).

Option files are located in the current directory (or the project directory when using the IDE).
The default is not to use an option file.

nlpreslim (string): List of resource limits ←↩

nlpreslim x1 x2 . . . xn sets a resource (time) limit on individual NLP subproblems. The last
number xn is valid for all subsequent cycles n, n + 1, A number −1.0 means that the
corresponding NLP subproblem is not individually time restricted. A global time limit is
maintained through the GAMS option reslim.

Example: nlpreslim 100 -1

The first (relaxed) NLP subproblem can not use more than 100 seconds, while
subsequent NLP subproblems are not individually restricted.

Example: nlpreslim 1000

Sets a time limit of 1000 seconds on all NLP subproblems.

When this option is used it is advised to have the option continue set to its default of 2. This
default does not restrict the time an NLP solver can spend on an NLP subproblem (other
than the global resource limit).

nlpsolver (string): List of NLP solvers ←↩

nlpsolver s1 s2 . . . sn. This option specifies which NLP solver to use for the NLP subproblems.

5.14 DICOPT 1985

Example: nlpsolver conopt minos snopt

tells DICOPT to use CONOPT for the relaxed NLP, MINOS for the second NLP
subproblem, and SNOPT for the third and subsequent ones. The last entry is used for
more than one subproblem: for all subsequent ones DICOPT will use the last specified
solver.

The names to be used for the solvers are the same as those used in the GAMS statementOPTION
NLP=....;. The default is to use the default NLP solver. Note that changing from one NLP
solver to another can lead to different results, and may cause DICOPT to follow a different path.

nlptracefile (string): Base name of trace files ←↩

Name of the files written if the option nlptracelevel is set. Only the stem is needed:
if the name is specified as nlptracefile nlptrace, then files of the form nlptrace.001,
nlptrace.002, etc. are written. These files contain the settings of the integer variables so
that NLP subproblems can be investigated independently of DICOPT.

Default: nlptrace

nlptracelevel (integer): Trace level ←↩

This sets the level for NLP tracing, which writes a file for each NLP sub-problem, so that
NLP sub-problems can be investigated outside the DICOPT environment. See also the option
DICOPTnlptracefile ”nlptracefile”.

By including a trace file in your original problem and changing it into an MINLP problem, the
subproblem will be solved directly by an NLP solver. This option only works if the names in the
model (names of variables and equations) are exported by GAMS. This can be accomplished
by using the m.dictfile model suffix, as in m.dictfile=1;. In general it is more convenient
to use the CONVERT solver to generate isolated NLP models (see section Model Debugging).

Default: 0

value meaning

0 No trace info is written
No trace files are written. This is the default.

1 GAMS file with fixed integer variables
A GAMS file for each NLP subproblem is written which fixes the discrete variables.

2 Include levels of continuous variables
As nlptracelevel 1, but in addition level values of the continuous variables are
written.

3 Include all levels and marginals
As nlptracelevel 2, but in addition marginal values for the equations and
variables are written.

optca (string): List of OPTCA values ←↩

optca x1 x2 . . . xn. The absolute optimality criterion for the MIP master problems. The
GAMS option optca is ignored, as, by default, DICOPT wants to solve MIP master problems to
optimality. It is possible to stop the MIP solver earlier to allow it to solve a large problem, by
specifying a value for optca or optcr in a DICOPT option file. With setting a value for optca,
the MIP solver is instructed to stop as soon as the gap between the best possible integer
solution and the best found integer solution is less than x, i.e. stop as soon as

|BestFound− BestPossible| ≤ x

1986 Solver Manuals

It is possible to specify a different optca value for each cycle. The last number xn is valid for
all subsequent cycles n, n+ 1,

Example: optca 10

Stop the search in all MIP problems as soon as the absolute gap is less than 10.

Example: optca 0 10 0

Sets a nonzero optca value of 10 for cycle 2, while all other MIP master problems
are solved to optimality.

The default is zero.

optcr (string): List of OPTCR values ←↩

optcr x1 x2 . . . xn. The relative optimality criterion for the MIP master problems. The
GAMS option optcr is ignored, as by default DICOPT wants to solve MIP master problems to
optimality. To allow it to solve a large problem it is possible to stop the MIP solver earlier by
specifying a value for optca or optcr in a DICOPT option file. With setting a value for optcr,
the MIP solver is instructed to stop as soon as the relative gap between the best possible
integer solution and the best found integer solution is less than x, i.e., stop as soon as

|BestFound− BestPossible|
|BestPossible|

≤ x

Note that the relative gap cannot be evaluated if the best possible integer solution is zero.
In these cases the absolute optimality criterion optca can be used. It is possible to specify
a different optcr value for each cycle. The last number xn is valid for all subsequent cycles
n, n+ 1,

Example: optcr 0.1

Stop the search in all the MIP problems as soon as the relative gap is smaller than
10%.

Example: optcr 0 0.01 0

Sets a nonzero optcr value of 1% for cycle 2, while all other MIP master problems
are solved to optimality.

The default is zero.

relaxed (integer): How to start DICOPT ←↩

In some cases it may be possible to use a known configuration of the discrete variables. Some
users have very difficult problems, where the relaxed problem cannot be solved but where
NLP sub-problems with the integer variables fixed are much easier. If a reasonable integer
configuration is known in advance in theses cases we can bypass the relaxed NLP and tell
DICOPT to directly start with this integer configuration. The integer variables need to be
specified by the user before the solve statement by assigning values to the levels, as in Y.L(I)

= INITVAL(I);.

Default: 1

value meaning

0 Start with all integers fixed to the starting value
The first NLP sub-problem will be executed with all integer variables fixed to the
values specified by the user. If you don't assign a value to an integer variable,it
will retain it's current value, which is zero by default

1 Start with relaxed NLP
The first NLP problem is the relaxed NLP problem: all integer variables are
relaxed between their bounds. This is the default.

2 Start with mixture of fixed and relaxed integers
The first NLP subproblem will be executed with some variables fixed and some
relaxed. The program distinguishes the fixed from the relaxed variables by
comparing the initial values against the bounds and the tolerance allowed EPSX.
EPSX has a default value of 1.e-3. This can be changed through the option file.

5.14 DICOPT 1987

solvelink (integer): Solvelink for NLP and MIP subsolver ←↩

This option defines the solvelink used for the NLP and MIP subsolver.

Default: 5

value meaning

1 Call NLP and MIP solver via script

2 Call NLP and MIP solver via module

5 Call NLP and MIP solver in memory

stop (integer): Stopping criterion ←↩

This option defines the stopping criterion to be used. The search is always stopped when
the (minor) iteration limit (the iterlim option), the resource limit (the reslim option), or
the major iteration limit (see maxcycles) is hit or when the MIP master problem becomes
infeasible.
Note: In general a higher number stops earlier, although in some cases stopping rule 2 may
terminate the search earlier than rule 1. Section Modeling shows some experiments with these
stopping criteria.

Default: 2

value meaning

0 Stop on maxcycles
Do not stop unless an iteration limit, resource limit, or major iteration limit is hit
or an infeasible MIP master problem becomes infeasible. This option can be used
to verify that DICOPT does not stop too early when using one of the other stopping
rules. In general it should not be used on production runs, as in general DICOPT
will often find the optimal solution using one of the more optimistic stopping
rules. Do not stop unless an iteration limit, resource limit, or major iteration
limit is hit or an infeasible MIP master problem becomes infeasible. This option
can be used to verify that DICOPT does not stop too early when using one of
the other stopping rules. In general it should not be used on production runs, as
in general DICOPT will find often the optimal solution using one of the more
optimistic stopping rules.

1 Stop on crossover
Stop as soon as the bound defined by the objective of the last MIP master problem
is worse or close (w.r.t. GAMS option optcr) to the best NLP solution found (a
crossover occurred). For convex problems this gives a global solution, provided
the weights are large enough and optcr is set to 0. This stopping criterion should
only be used if it is known or it is very likely that the nonlinear functions are
convex. In the case of non-convex problems the bounds of the MIP master problem
are not rigorous. Therefore, the global optimum can be cut off with the setting
stop 1.

2 Stop on worsening
Stop as soon as the NLP subproblems stop improving. This worsening criterion
is a heuristic. For non-convex problems in which valid bounds can not be obtained
the heuristic often works very well. Even on convex problems, in many cases it
terminates the search very early while providing an optimal or a very good integer
solution. The criterion is not checked before major iteration three.

3 Stop on crossover or worsening
Stop as soon as a crossover occurs or when the NLP subproblems start to worsen.
(This is a combination of 1 and 2).

1988 Solver Manuals

usexinit (boolean): Use the user initial point as starting point for all NLP solves ←↩

Default: 0

weight (real): Penalty parameter, set above 1e20 to disable penalty relaxation ←↩

The value of the penalty coefficients.

Default: 1000

5.14.9 DICOPT Output

DICOPT generates lots of output on the screen. DICOPT itself and also the NLP and MIP solvers that
handle the sub-problems write messages to the screen. The most important part is the last part of the
screen output.

In this section we will discuss the output DICOPT writes to the screen and the listing file using the model
procsel.gms (this model is part of the GAMS model library). A DICOPT log is written and the reason
why DICOPT terminated is explanied.

--- DICOPT: Checking convergence

--- DICOPT: Search stopped on worsening of NLP subproblems

--- DICOPT: Log File:

Major Major Objective CPU time Itera- Evaluation Solver

Step Iter Function (Sec) tions Errors

NLP 1 5.35021 0.05 8 0 conopt

MIP 1 2.48869 0.28 7 0 cplex

NLP 2 1.72097< 0.00 3 0 conopt

MIP 2 2.17864 0.22 10 0 cplex

NLP 3 1.92310< 0.00 3 0 conopt

MIP 3 1.42129 0.22 12 0 cplex

NLP 4 1.41100 0.00 8 0 conopt

--- DICOPT: Terminating...

--- DICOPT: Stopped on NLP worsening

The search was stopped because the objective function

of the NLP subproblems started to deteriorate.

--- DICOPT: Best integer solution found: 1.923099

--- Reading solution for model process

*** Status: Normal completion

Notice that the integer solutions are provided by the NLP's except for major iteration one (the first NLP
is the relaxed NLP). For all NLP's except the relaxed one the binary variables are fixed, according to a
pattern determined by the previous MIP which operates on a linearized model. The integer solutions
marked with a ' <' are an improvement. We see that the NLP in cycle 4 starts to deteriorate, and DICOPT

stops based on its default stopping rule.

Note that if the criterion stop 1 had been used the search would have been terminated at iteration 3.
The reason is that the upper bound to the profit predicted by the MIP (1.42129) exceeds the best current
NLP solution (1.9231). Since it can be shown that the MINLP involves convex nonlinear functions, 1.9231
is the global optimum and the criterion stop 1 is rigorous.

In case the DICOPT run was not successful, or if one of the subproblems could not be solved, the listing
file will contain all the status information provided by the solvers of the subproblems. For each iteration
the configuration of the binary variables will also be printed. This extra information can also be requested
via the GAMS option:

option sysout = on ;

5.14 DICOPT 1989

5.14.10 Special Notes

This section covers some special topics of interest to users of DICOPT.

5.14.10.1 Stopping Rule

Although the default stopping rule behaves quite well in practice there some cases where it terminates too
early. In this section we discuss the use of the stopping criteria.

When we run the example procsel.gms with stopping criterion 0, we see the following DICOPT log:

--- DICOPT: Starting major iteration 10

--- DICOPT: Search terminated: infeasible MIP master problem

--- DICOPT: Log File:

Major Major Objective CPU time Itera- Evaluation Solver

Step Iter Function (Sec) tions Errors

NLP 1 5.35021 0.06 8 0 conopt

MIP 1 2.48869 0.16 7 0 cplex

NLP 2 1.72097< 0.00 3 0 conopt

MIP 2 2.17864 0.10 10 0 cplex

NLP 3 1.92310< 0.00 3 0 conopt

MIP 3 1.42129 0.11 12 0 cplex

NLP 4 1.41100 0.00 8 0 conopt

MIP 4 0.00000 0.22 23 0 cplex

NLP 5 0.00000 0.00 3 0 conopt

MIP 5 -0.27778 0.16 22 0 cplex

NLP 6 -0.27778 0.00 3 0 conopt

MIP 6 -1.00000 0.16 21 0 cplex

NLP 7 -1.00000 0.00 3 0 conopt

MIP 7 -1.50000 0.22 16 0 cplex

NLP 8 -1.50000 0.00 3 0 conopt

MIP 8 -2.50000 0.11 16 0 cplex

NLP 9 -2.50000 0.00 3 0 conopt

MIP 9 *Infeas* 0.11 0 0 cplex

--- DICOPT: Terminating...

--- DICOPT: Stopped on infeasible MIP

The search was stopped because the last MIP problem

was infeasible. DICOPT will not be able to find

a better integer solution.

--- DICOPT: Best integer solution found: 1.923099

--- Restarting execution

--- PROCSEL.GMS(98) 0 Mb

--- Reading solution for model process

*** Status: Normal completion

This example shows some behavioral features that are not uncommon for other MINLP models. First,
DICOPT often finds the best integer solution in the first few major iterations. Second, in many cases as
soon as the NLP's start to give worse integer solution no better integer solution will be found. This
observation is the motivation to make stopping option 2, where DICOPT stops as soon as the NLP's start
to deteriorate, the default stopping rule. In this example DICOPT would have stopped in major iteration 4
(you can verify this in the previous section). In many cases this will give the best integer solution. For
this problem, DICOPT has indeed found the global optimum.

1990 Solver Manuals

Based on experience with other models, we find that the default stopping rule (stop when the NLP
becomes worse) performs well in practice. In many cases it finds the global optimum solution for both
convex and non-convex problems. In some cases, however, it may provide a sub-optimal solution. In those
cases where you want more reassurance that no good integer solutions are missed you can use one of the
other stopping rules.

Changing the MIP or NLP solver can change the path that DICOPT follows, since the sub-problems may
have non-unique solutions. The optimum stopping rule for a particular problem depends on the MIP and
NLP solvers used.

The bounds of the MIP master problem are not rigorous in the case of non-convex problems. Therefore,
the global optimum can be cut-off with stop 1. However, this option is the best stopping criterion for
convex problems.

5.14.10.2 Solving the NLP Problems

Using a combination of NLP solvers has been found effective in cases where the relaxed NLP and/or the
other NLP sub-problems are very difficult. For example, MINOS has many more difficulties to establish if a
model is infeasible, so one would like to use CONOPT for NLP subproblems that are either infeasible or
barely feasible. The nlpsolver option can be used to specify the NLP solver to be used for each iteration.

Infeasible NLP sub-problems can be problematic for DICOPT Those subproblems cannot be used to form a
new linearization. Effectively only the current integer configuration is excluded from further consideration
by adding appropriate integer cuts, but otherwise an infeasible NLP sub-problem provides no useful
information to be used by the DICOPT algorithm. If your model shows many infeasible NLP sub-problems
you can try to use the infeasder option. Otherwise a strategy that can help is to introduce explicit slack
variables and add them with a penalty to the objective function.

Assume your model is of the form:

min f(x, y)
g(x, y) ∼ b
` ≤ x ≤ u
y ∈ {0, 1}

where ∼ is a vector of relational operators {≤,=,≥}. x are continuous variables and y are the binary
variables. If many of the NLP subproblems are infeasible, we can try the following elastic formulation:

min f(x, y) +M
∑
i(s

+
i + s−i)

y = yB + s+ − s−
g(x, y) ∼ b
` ≤ x ≤ u
0 ≤ y ≤ 1
0 ≤ s+, s− ≤ 1
yB ∈ {0, 1}

I.e., the variables y are relaxed to be continuous with bounds [0, 1], and binary variables yB are introduced
that are related to the variables y through a set of the slack variables s+, s−. The slack variables are
added to the objective with a penalty parameter M . The choice of a value for M depends on the size of
f(x, y), on the behavior of the model, etc. Typical values are 100 or 1000.

5.14 DICOPT 1991

5.14.10.3 Solving the MIP Master Problems

MIP master problems may become expensive to solve when there are many discrete variables. One of the
first things to try is to see if a different MIP solver can solve your particular problems more efficiently.

Different formulations can have dramatic impact on the performance of MIP solvers. Therefore it is
advised to try out several alternative formulations. The use of priorities can have a big impact on some
models. It is possible to specify a nonzero value for OPTCA and OPTCR in order to prevent the MIP solver
from spending an unacceptable long time proving optimality of MIP master problems.

If the MIP master problem is infeasible the DICOPT solver will terminate. In this case you may want to
try the same reformulation discussed in the previous paragraph.

5.14.10.4 Feasibility Pump

The feasibility pump is similar to the Outer-approximation, but its objective is to completely focus on
finding good feasible solutions rather than optimal ones. The main idea of this algorithm is to decompose
the original mathematical programming problem in two parts: integer feasibility and constraint feasibility.
By solving an MIP subproblem its solution is an integer feasible solution, which may violate the constraints;
and by solving a continuous relaxation of the original MINLP (NLP subproblem) the solution is constraint
feasible but might not be integral. By minimizing in successive iterations the distance between these two
types of solutions it is expected to achieve a solution that is both constraint and integral feasible.

The feasibility pump can be used as a standalone solver for convex MINLP problems. This is achieved
by iteratively applying the method, while including a bound to the objective function. This bound is
obtained by the best known solution and an epsilon improvement. This will result in the global optimum
of a convex MINLP [28]. The drawback of this algorithm is that it may require many iterations, since
each time the objective function is restricted to improve only by epsilon.

In DICOPT, the feasibility pump can be applied before the Outer-approximation method by setting
option feaspump. In the feasibility pump, large improvements in the objective function are enforced at
each iteration (option fp cutoffdecr). After the method finishes, all the cuts and the best known solution
are passed to the Outer-approximation method to prove optimality. More details on the implementation
of the feasibility pump in DICOPT can be found in [19].

5.14.10.5 Model Debugging

In this paragraph we discuss a few techniques that can be helpful in debugging your MINLP model.

• Start with solving the model as an RMINLP model. Make sure this model solves reliably before solving
it as a proper MINLP model. If you have access to different NLP solvers, make sure the RMINLP

model solves smoothly with all NLP solvers. CONOPT, especially, can generate useful diagnostics such
as Jacobian elements (i.e. matrix elements) that become too large.

• Try different NLP and MIP solvers on the subproblems. Example: use the GAMS statement OPTION
NLP=KNITRO; to solve all NLP subproblem using the solver KNITRO.

• The GAMS option statement OPTION SYSOUT = ON; can generate extra solver information that can
be helpful for diagnosing problems.

• If many of the NLP subproblems are infeasible, add slacks as described in section
Solving the NLP Problems.

• Run DICOPT in pedantic mode by using the DICOPT option: CONTINUE 0. Make sure all NLP
subproblems solve to optimality.

1992 Solver Manuals

• Don't allow any nonlinear function evaluation errors, i.e. keep the DOMLIM limit at zero. See the
discussion on DOMLIM in section The OPTION Statement.

• If you have access to another MINLP solver such as AlphaECP, SHOT, or SBB or even global
solvers like Antigone or BARON, try to use a different solver on your model. To select another
solver (here SBB) use the following GAMS option statement: OPTION MINLP=SBB;.

• Individual NLP or MIP subproblems can be extracted from the MINLP by using the CONVERT solver,
which will write a model in scalar GAMS notation that can then be solved using any GAMS NLP or
MIP solver. E.g., to generate the second NLP subproblem, you can use the following DICOPT option:
NLPSOLVER CONOPT CONVERT. The model will be written to the file GAMS.GMS. A disadvantage of
this technique is that some precision is lost due to the fact that files are being written in plain
ASCII. The advantage is that you can visually inspect these files and look for possible problems
such as poor scaling.

5.15 EXAMINER

5.15.1 Introduction

This document describes GAMS/Examiner, a tool for examining points and making an unbiased, inde-
pendent assessment of their merit. In short, it checks if solutions are really solutions. As an example,
it can take a solution point reported as optimal by a solver and examine it for primal feasibility, dual
feasibility, and optimality. Examiner has a number of different modes, allowing it to check the input point
from GAMS/Base as well as the solution passed by a solver back to GAMS.

Many of the tests done by Examiner (perhaps all of them!) are already being done by the GAMS solvers,
so Examiner is in a sense redundant. However, the ability to make an independent, transparent check
of a solver's solution is very useful in solver development, testing, and debugging. It is also useful when
comparing the solutions returned by two different solvers. Finally, a tool like the Examiner allows one
to examine solutions using different optimality tolerances and optimality criteria in a way that is not
possible when working with the solvers directly.

GAMS/Examiner is installed automatically with your GAMS system. Without a full GAMS/Base license,
examiner will run in student or demonstration mode (i.e. it will examine small models only).

5.15.2 Usage

Examiner can be used with all supported model types. Since Examiner doesn't really solve any problems,
it is not a good choice for a default solver, and when installing GAMS it does not appear as an option in
the list of possible solver defaults. However, you can choose Examiner via the command line:

gams trnsport LP=examiner;

or via a GAMS option statement

option LP=examiner;

5.15 EXAMINER 1993

somewhere before the solve statement.

Since Examiner is not really a solver, many of the usual GAMS options controlling solvers have no impact
on it. However, the sysout option is interpreted in the usual way.

The optimality checks done in Examiner are first-order optimality checks done at a given point. A
discussion here of these conditions and all they imply would be redundant: any good intro text in
optimization will cover them. For linear programming, first-order optimality is all one needs to prove
global optimality. For nonlinear programming, these conditions may or may not be necessary or sufficient
for optimality; this depends on the convexity of the feasible set and objective and the form of the
constraints. For integer programming models, these checks only make sense if we turn the global problem
into a local one by adding bounds to the model, essentially fixing each discrete variable to its current
value: these bounds are added automatically by Examiner.

Examiner runs in two basic modes of operation: it can examine the input point passed from GAMS/Base
to the solver, and it can examine the point passed from the solver back to GAMS. Each mode can be used
independent of the other. By default it will operate in the first mode, examining the initial ”solution”
passed to it by GAMS, but only if GAMS indicates it is passing an advanced basis to the solver (cf. the
GAMS User Guide and the bratio option). If you wish to use the second solver-check mode, you may
specify an appropriate subsolver using the subsolver option (see section Options). If no subsolver is
selected, the default solver for the model type being solved is used. In most cases you will want to use an
option file to specify exactly what type of examination you wish to perform. The rules for using an option
file are described in The Solver Options File.

5.15.2.1 Solution Points: Definition

There are a number of different ways a solution point can be defined. Of course the different definitions
will typically result in the same points being produced, but there are cases where this will not be precisely
so. Since Examiner is intended to explore and analyze these cases, we must make these definitions precise.
The following four points are defined and used in Examiner:

1. The gamspoint is the input point provided by GAMS to Examiner. The GAMS input point includes
level & marginal values for the rows and columns: Examiner uses these exactly as given.

2. The initpoint is determined by the variable levels (primal vars) and equation marginals (dual vars)
provided by GAMS to Examiner. These values are used to compute the equation levels and variable
marginals / reduced costs using the function evaluator in Examiner, rather than using the values
passed in by GAMS.

3. The solupoint is similar to the initpoint: it uses the variable levels (primal vars) and equation
marginals (dual vars) to compute the equation levels and variable marginals. The variable levels and
equation marginals used are those returned by the subsolver.

4. The solvpoint is the point returned by the subsolver. The subsolver returns both level and marginal
values for the rows and columns: Examiner uses these, exactly as given.

5.15.2.2 Checks Performed

There are a number of checks that can be performed on any of the solution points. By default, Examiner
tries to choose the appropriate checks. For example, if a primal simplex solver returns a model status
of nonoptimal, the only checks that make sense are feasibility in the primal variables and constraints.
However, this automatic choice of appropriate checks is not possible when checking points passed in from
GAMS/Base.

1. Primal variable feasibility: check that all primal variables are within bounds.

1994 Solver Manuals

2. Primal constraint feasibility: check that all primal constraints are satisfied.

3. Dual variable feasibility: check that all dual variables are within bounds.

4. Dual constraint feasibility: check that all dual constraints are satisfied.

5. Primal complementary slackness: check complementarity between the primal variables and the
dual constraints / reduced costs.

6. Dual complementary slackness: check complementarity between the dual variables / equation
marginals and the equation slacks.

7. Equilibrium condition complementarity: check complementarity of the equation/variable pairs
in complementarity models (MCP, MPEC).

The checks above are implemented with default tolerances. These tolerances can be changed via an option
file (see section Options).

Different ways exist to check the items mentioned above. For example, different norms can be used to
measure the error of the residual when checking for primal feasibility. Currently, we have only implemented
one way to make these checks.

For optimization models, it is possible to define a merit function that measures how well a given point
satisfies conditions 1 through 6 above. Such a function is always nonnegative, and its value represents the
error between the given point and a true solution. If such an input point is well-defined (e.g. if only one
point is selected for examination) then Examiner will compute the merit function value at this point and
return it in the RObj model attribute.

5.15.2.3 Scaling

By default, Examiner makes its checks on the original, unscaled model. In many cases, however, it is
important to take scaling into account. Consider the effect of row scaling on the simple constraint x2 ≤ 9
where x = 3.5. Multiplying this constraint through by large or small constants changes the amount of the
constraint violation proportionately, but the distance to feasibility is not changed. Applying row scaling
to the original model eliminates this problem.

Most solvers scale a model before solving it, so any feasibility or optimality checks and tolerances are
applied to the scaled model. The process of unscaling the model can result in a loss of feasibility or
optimality. Even though we do not have access to the scales applied by the solver and cannot precisely
construct the same scaled model, we can get a better idea of how the solver performed by looking at a
model scaled by Examiner than by looking at the original.

It is also interesting to see what the model scaling looks like, even if we do not apply the scales to do the
Examiner checks. If the row scales are in a nice range, say [.1,100], we can have some confidence that the
model is well-scaled. In contrast, if the row scales are in the range [1,1e8] we may question the precision
of the solution provided.

For each row, Examiner computes the true row scale as

max(‖RHSi‖,max
j

(‖Aij‖ ·max(1, ‖xj‖)))

In this way variables with a large level value lead to large scale factors. To make the scale factor
independent of the variable values, use an option file line of "AbsXScale 0". This replaces the term
max(1, ‖xj‖) above with 1.

Since the user may wish to limit the size of the scale factors applied, the true row scales are projected
onto the scale factor bounds to get the applied scale factors. The scale factors are applied when making
a scaled check by dividing the rows by the scale factors and multiplying the corresponding Lagrange
multipliers by these same factors. When making unscaled checks information about the true scales is still
included in the output to give the user a hint about potential scaling issues.

Note that the scaled and unscaled checks are made independently. By default only the unscaled checks
are performed. If you turn the scaled checks on via an option file line "scaled 1", this will not turn off
the unscaled checks. You will need an option file line of "unscaled 0" to turn off unscaled checks.

5.15 EXAMINER 1995

5.15.3 Options

The following options control the behavior of GAMS/Examiner. Many of these are boolean (i.e. on/off)
options. In this case, zero indicates off, nonzero on. For details on how to create and use an option file,
see the section on the Solver Option File.

5.15.3.1 General Options

Option Description Default

absXScale
Whether to make scale factors dependent on x values.
If on, the matrix coefficients are multiplied by max(1,abs(x)) when
computing the scale factors. If off, the matrix coefficients are taken
as is. See Section Scaling.

1

dumpGamsPoint
Whether to dump the GamsPoint to a basis file in GAMS source
format.

0

dumpInitPoint
Whether to dump the InitPoint to a basis file in GAMS source
format.

0

dumpSoluPoint
Whether to dump the SoluPoint to a basis file in GAMS source
format.

0

dumpSolvPoint
Whether to dump the SolvPoint to a basis file in GAMS source
format.

0

examineGamsPoint
Whether to examine the GamsPoint. 0

examineInitPoint
Whether to examine the InitPoint.
By default, this option is on if GAMS/Base passes an advanced
basis, and off otherwise.

auto

examineSoluPoint
Whether to examine the SoluPoint.
By default, this option is on if a subsolver has been selected, and
off otherwise.

auto

examineSolvPoint
Whether to examine the SolvPoint.
By default, this option is on if a subsolver has been selected, and
off otherwise.

auto

fCheckAll
If set, forces all checks on or off. auto

fCheckATTR
If set, forces the model attributes check on or off. auto

fCheckDCMP
If set, forces the dual complementary slackness check on or off. auto

fCheckDCON
If set, forces the dual constraint feasibility check on or off. auto

fCheckDVAR
If set, forces the dual variable feasibility check on or off. auto

fCheckPCMP
If set, forces the primal complementary slackness check on or off. auto

fCheckPCON
If set, forces the primal constraint feasibility check on or off. auto

fCheckPVAR
If set, forces the primal variable feasibility check on or off. auto

objvarAutoAdjust
Adjust objective variable to satisfy objective equation 0

perpSys
Controls output during examination of solution points.
If on, print out the point in a way that allows for easy visual
inspection and verification of the KKT or first order optimality
conditions. First, the primal level values and bounds are printed
next to the reduced costs. Next, the duals levels and bounds are
printed next to the row slacks.

0

returnGamsPoint
Whether to return the GamsPoint as a solution to GAMS/Base. 0

returnInitPoint
Whether to return the InitPoint as a solution to GAMS/Base. auto

1996 Solver Manuals

Option Description Default

returnSoluPoint
Whether to return the SoluPoint as a solution to GAMS/Base. auto

returnSolvPoint
Whether to return the SolvPoint as a solution to GAMS/Base. auto

scaled
Whether to apply checks to a scaled version of the model. 0

scaleLB
Lower bound for applied row scales. 1

scaleUB
Upper bound for applied row scales. maxdouble

showSlacks
explicitly show the infeasibilities or slacks for failed checks 0

subSolver
Indicates what subsolver to run.
By default, the subsolver used is the default subsolver for the model
type in question.

auto

subSolverOpt
optfile value to pass to the subsolver auto

trace
If set, trace information will be computed and appended to this
file.

none

unScaled
Whether to apply checks to the original, unscaled version of the
model.

1

5.15.3.2 Tolerance Options

Option Description Default

dualCSTol
Tolerance on dual complementary slackness, i.e. between the dual variables
and the primal constraints.

1e-7

dualFeasTol
Tolerance on dual feasibility, i.e. to check feasibility of the dual variables
and the dual constraints.

1e-6

ECTol
Tolerance on equilibrium condition complementarity.
Applicable to MCP and MPEC models, where the equilibrium conditions
are given by the equation-variable pairs in the model statement.

1e-6

primalCSTol
Tolerance on primal complementary slackness, i.e. between the primal
variables and the dual constraints.

1e-7

primalFeasTol
Tolerance on primal feasibility, i.e. to check feasibility of the primal
variables and constraints.

1e-6

showTol
relative tolerance for showSlacks - we only want to see explicit slacks that
are relatively small

1e-4

5.16 GAMSCHK

Abridged GAMSCHK USER DOCUMENTATION - Version 1.1
A System for Examining the Structure and Solution Properties of GAMS Model Instances

Author

Bruce A. McCarl, Professor, Department of Agricultural Economics, Texas A&M University

Date

April 2013

5.16 GAMSCHK 1997

5.16.1 GAMSCHK USER DOCUMENTATION

This document describes procedures designed to aid users who wish to examine empirical GAMS models
for possible flaws. The conceptual basis for many of the routines herein is supplied in McCarl and Spreen,
and McCarl et.al.

The function of the specific components of GAMSCHK are to:

• List coefficients for user selected equations and/or variables using the DISPLAYCR procedure.

• List the characteristics of selected groups of variables and/or equations using MATCHIT.

• List the characteristics of equation and variable blocks using BLOCKLIST.

• Examine a GAMS model to see whether any variables and equations contain specification errors
using ANALYSIS.

• Generate schematics depicting the characteristics of coefficients by variable and equation blocks
using BLOCKPIC.

• Generate a schematic for small GAMS models or portions of larger models depicting the location of
coefficients by sign and magnitude using PICTURE.

• Reconstruct the reduced cost of variables and the activity within equations after a model solution
using POSTOPT.

• Help resolving problems with unbounded or infeasible models using NONOPT and ADVISORY.

5.16.2 General Notes on Package Usage

GAMSCHK must replace a solver. This is done using a GAMS option statement of the form:

OPTION LP= GAMSCHK;

or

OPTION NLP=GAMSCHK;

or

OPTION MIP=GAMSCHK;

which replaces either the solver of the particular model type with GAMSCHK. In turn, the user will
invoke the solver using the statement:

SOLVE MODELNAME USING LP MINIMIZING OBJNAME;

where MODELNAME is the name used in the GAMS MODEL statement; OBJNAME is the objective
variable name for the model; and the type of solver that GAMSCHK has replaced which must also be
able to solve this type of problem (LP, NLP, MIP, ...) is identified. The following are examples of GAMS
sequences which can be added to the GAMS file:

OPTION NLP=GAMSCHK;

SOLVE TRANSPORT USING NLP MINIMIZING Z;

or

OPTION LP=GAMSCHK;

SOLVE FEED USING LP MINIMIZING COST;

or

OPTION MIP=GAMSCHK;

SOLVE RESOURCE USING MIP MAXIMIZING PROFIT;

1998 Solver Manuals

5.16.2.1 Selecting a Procedure and Providing Input - the ∗.GCK File

GAMSCHK requires that the user indicate which procedures are to be employed. This is specified through
the use of the ∗.GCK file where the ∗ refers to the filename from the GAMS execution instruction. 2 The
general form of that file is:

FIRST PROCEDURE NAME

ITEM SELECTION INPUT

SECOND PROCEDURE NAME

ITEM SELECTION INPUT

Spaces and capitalization are ignored in this input. For example, a ∗.GCK file could look like

DISPLAYCR

variables

SELL(*,*,FANCY)

maketable

Invariables

transport(plant2,*,fancy)

Equations

objT

notthere

inequations

resourceq(plant1)

PICTURE

The first procedure name in this case is DISPLAYCR and the following 10 lines indicate the items to be
selected. Then, we also request PICTURE. Selection entries are treated using several assumptions. In
particular:

1. If the ∗.GCK file is empty then it is assumed that the BLOCKPIC procedure is selected.

2. Spaces maybe freely used in the GCK input file.

3. Upper, lower, or mixed case input is accepted.

4. GAMSCHK recognizes certain words. These words are listed in Appendix A: Reserved Names and
cannot be used as variable or equation names.

5.16.2.2 The ∗.GCK file: General Notes on Item Selection

Some of the procedures permit selection of variables, equations or functions. Specifically, the DISPLAYCR,
PICTURE, POSTOPT, and MATCHIT procedures accept input identifying the variables and equations
to be utilized. Also NONOPT accepts limited input controlling its function. General observations about
the selection requests are

1. Variables can be chosen by entering the word VARIABLE or VARIABLES possibly with a modifier,
followed by variable selection statements.

2Thus, if the GAMS instructions are in the file called MYMODEL, and GAMS is invoked using the DOS command
GAMS MYMODEL, then the GCK file would be called MYMODEL.GCK. If GAMS instructions are on the filename with
a period in it then the name up to the period will be used, i.e., the GCK file associated with MYMODEL.IT would be
MYMODEL.GCK

5.16 GAMSCHK 1999

2. Variables can also be selected using the INEQUATION or INEQUATIONS syntax followed by
names of equations. Use of this syntax results in selection of variables with coefficients in the named
equations.

3. Equations are selected by entering the keyword, EQUATION or EQUATIONS possibly with a
modifier, followed by equation selection statements.

4. Equations can also be selected using the INVARIABLE or INVARIABLES syntax followed by names
of variables. Use of this syntax results in selection of equations in which the named variables have
coefficients.

5. Certain item selection modifier keywords can be used depending on procedure. The INTERSECT
keyword works with procedures DISPLAYCR and POSTOPT. The INEQUATION and INVARI-
ABLE keywords work with procedures DISPLAYCR, PICTURE and POSTOPT. LISTEQUATION
and LISTVARIABLE keywords work with the MATCHIT procedure. INSOLUTION, NOTINSOLU-
TION, BINDING, and NOTBINDING keywords work with POSTOPT. The keywords VERBOSE
and IDENTIFY work with NONOPT.

6. If variable or equation names do not follow the keyword, then usually all variables or equations are
assumed selected.

When variables or equations are to be selected after an item selection keyword, a number of input
conventions apply. These conventions are:

1. If a variable or equation name is entered without any following parentheses, then all cases for that
variable or equation are selected.

2. The selection entries identify specific elements from among the sets over which the variables and
equations are defined. In specifying these elements one can use various wild card entries as discussed
below or an element name. Note GAMS set or subset names cannot be used. Set membership
information is not available to the GAMSCHK routines.

3. Wild cards can be used to select items. An ”∗” will select any item. For example, ”B∗” will select
anything starting with a B. ”A?B” will select anything beginning with A, ending with B with one
intervening alpha numeric character.

4. When individual elements are specified, you need not enclose them in quotes (”).

5. Quotes must be specified to include set item names with spaces, and special characters. In that case
wild cards do not work and all input up to the next quote is simply copied.

6. When the selected item has more dimensions than specified, then all later dimensions are handled
as if a wild card were specified. For example, when a variable X is defined with reference to 4 sets
in the GAMS instructions, but only 3 parameters are specified in the GAMSCHK input, then the
request is handled as if all elements of the 4th are desired.

7. When the selected item has less dimensions in GAMS than in the item selection input, then all
additional dimensions are ignored. Thus, when a variable X is defined with reference to 3 sets in
GAMS, but 4 parameters are specified in the item selection file, then the 4th specification is ignored.

8. Multiple selection statements can appear on successive lines of the ∗.GCK file. Output is ordered
according to the way items are found in the GAMS file which is determined by the ordering of
variables, equations, and set elements in the original GAMS input.

9. Error messages will be generated when an entry cannot be matched to a GAMS element.

10. Examples include

2000 Solver Manuals

Example Explanation

X(∗,CLEVELAND) which indicates that X will be selected for any element of the first set
where the element in the second set equals CLEVELAND

X(SEATTLE) when X is two dimensional selects all cases where the first set element
is SEATTLE

X(SEATTLE,CHICAGO,Z) when X is two dimensional selects the case where the first set element
equals SEATTLE, and the second element equals CHICAGO. The third
is ignored.

X all X's will be selected

X(S∗, C.O, Z) when X is three dimensional selects where all X's with first element
starting with S, second element beginning with C and ending with O
and third element Z will be selected.

∗ all variables or equations will be selected

{empty selection set} all variables or equations will be selected

5.16.2.3 Procedure Output

In all cases the output generated by the procedure will be written to the ∗.LST file associated with the
GAMS call. Thus, if the file is called MODEL with the ∗.GCK file (MODEL.GCK), then all output will
be on MODEL.LST.

5.16.2.4 Nonlinear Terms

GAMS models examined with GAMSCHK may involve nonlinear terms. In such cases, GAMSCHK uses
the value of the nonlinear term sent forth from GAMS which is an accurate marginal, not total value.
GAMS develops this value based on the current level value of the variable. This will either be: a) the
starting point selected by GAMS, if the model has not been solved, or b) the current solution value,
if the model has been solved. The most accurate portrayals of the coefficients will be generated after
the model has been solved through a GAMS SOLVE command before invoking GAMSCHK. Some cases
may require a solution and/or the specification of a good starting point before using GAMSCHK. Also,
nonlinear terms potentially cause misleading coefficients as those values are local marginal, not global,
values determined by the current levels of the variables. Nonlinear terms are marked with ∗∗∗ in the
DISPLAYCR, POSTOPT, and NONOPT output.

5.16.2.5 Entering Comments in the ∗.GCK File

The ∗.GCK file has been programmed so that users can enter comments. These comments can take
one of two forms. Comments that begin with a hash mark are copied to the output when the program
runs. Comments which begin with a question mark are simply overlooked. Thus, one can temporarily
comment GAMSCHK selection statements making them inactive by putting in question marks. If multiple
procedures are being run or if some sort of output is decided to screen in the computer output then the
hash marks can be entered.

5.16.2.6 Controlling Page Width in the ∗.GCK File

When running multiple procedures, in particular the pictures with other procedures, it is often desirable
to have some procedures run with wide page widths, but the rest with a narrower page width. The GCK
file provides the option to narrow the page width using a PW= command. In particular, what one can
do is run GAMS with a large page width, i.e. run GAMS BLOCK pw=200, then insert in the GCK file
instructions which narrow that page width for selected procedures. Users should note that the page width
can never be made any wider than the default page width when running with GAMS. Information in
excess of the page width will be ignored. Thus, if the model is run under the default status which has a
page width of 75 characters then GAMSCHK will reduce the page width down to the maximum page
width allowed. Consequently, the pw= command can only be used to narrow the page width from the
default page width, not increase it.

5.16 GAMSCHK 2001

5.16.2.7 Running Multiple Procedures

GAMSCHK can run multiple procedures during one job. This is done by simply stacking the sequence of
the commands in the .GCK file.

5.16.3 Use of the Procedures

The following section describes the procedures available in GAMSCHK and their input requirements.

5.16.3.1 DISPLAYCR

Brief Purpose: DISPLAYCR displays all coefficients from the empirical model for a set of user selected
equations and variables. All nonzero coefficients under each selected variable or in each selected equation
are displayed with the associated variable or equation name and coefficient value. The selection entries
may refer to all terms in equations under variables or only those coefficients at the intersection of the
selected variables and equations.

Usage Notes: This option mirrors the GAMS LIMCOL and LIMROW options, but allows the user to
select the specific items to be displayed. Partial displays within a variable or equation are also allowed
using INTERSECT. Use of VARIABLE and EQUATION keywords followed by selection statements
allows one to select variables and equations. Use of the INVARIABLE command allows users to select the
equations which are associated with a particular variable. For example, if one is having trouble with a
particular variable and wants to look at competition in the equations in which it appears, then selecting
the variable under the INVARIABLE command will display the complete contents of all the equations
in which the selected variables have coefficients. Similarly, the INEQUATION command will display
the complete contents of all variables which fall in a particular equation. Nonlinear terms are marked
with ∗∗∗. When the keyword INTERSECT is found then only the coefficients at the intersection of the
specified equations and variables are selected. Use of INTERSECT with the INVARIABLE syntax results
in the named variables and the equations in which they fall being selected. Similarly, use of INTERSECT
with the INEQUATION syntax results in selection of the named equations and the variables which fall in
those equations

Note that when GAMS internal scaling features are employed the default option is that the scaled output
is displayed. This can be altered using the DESCALE feature of the solver options file.

Input File: The keyword DISPLAYCR is entered followed by optional lines of item selection input
identifying the variables and equations to be displayed. This file can contain the keywords VARIABLE,
INVARIABLE, EQUATION, and INEQUATION, with each followed by a specification of the items to
be selected using the procedure input specification conventions that were described above. The keyword
INTERSECT can also be used. Several special cases are relevant:

• If none of the above keywords are found after DISPLAYCR and another procedure name does not
follow, then the input is assumed to identify variables.

• If input is found but the VARIABLE or INEQUATION keyword cannot be found then no variables
are assumed selected.

• If the VARIABLE keyword is entered, but is followed by the end of file or an Appendix A reserved
word and INEQUATION does not appear, then all variables are assumed selected.

• If the EQUATION or INVARIABLE keyword cannot be found, then no equations are assumed
selected.

• If the EQUATION keyword is entered, but is followed by the end of the file or a reserved word and
the INVARIABLE command does not occur, then all equations are assumed selected.

2002 Solver Manuals

• The keyword INVARIABLE is allowed. It should be followed by variable selection statements.
In turn, DISPLAYCR selects all equations which have nonzero entries under the INVARIABLE
selections.

• The keyword INEQUATION may be used. It should be followed by equation selection statements. In
turn, DISPLAYCR selects all variables which have nonzero entries in the INEQUATION selections.

• The keyword INTERSECT causes only coefficients at the intersection of the specified equations and
variables to be displayed. This occurs for all specifications in this run of DISPLAYCR. One should
use DISPLAYCR again if some intersecting and some non-intersecting displays are desired.

• When INTERSECT appears along with INVARIABLE, the named variable is selected along with
all the equations in which it falls. Similarly, when INTERSECT and INEQUATION appear then all
the named equations and the variables appearing in them are selected.

5.16.3.2 MATCHIT

Brief Purpose: MATCHIT retrieves the names and characteristics of selected variables and equations.
The characteristics reported tell whether the items are nonlinear as well as reporting scaling characteristics
and counts of the coefficients. MATCHIT will summarize the items which match a request or list all the
items individually.

Usage Notes: The input to MATCHIT can include the keywords VARIABLE and EQUATION along
with those keywords with the prefix LIST attached. When the LIST prefix is not used, the procedure
summarizes the characteristics of all items which match the item requests counting the number of
matching items, the number of those items which are nonlinear, the total coefficients under or in those
items, the number of positive, negative, and nonlinear coefficients that fall under or in those items.
This does not list the names of the individual items which match. If the LIST prefix is used (entering
LISTVARIABLE or LISTEQUATION) then the individual matching items are printed in the order in
which they are encountered. For each matching item the information tells whether it is nonlinear, how
many total coefficients it has, the count of positive, negative, and nonlinear coefficients falling under it,
and the minimum and maximum absolute values of coefficients under it (excluding the objective function
coefficient).

Note that when GAMS internal scaling features are employed then by default scaled output is displayed.
This can be altered using the DESCALE feature of the solver options file.

Input File: This file contains the keyword MATCHIT, followed by optional item selection input data.
The optional input identifies the variables and equations to be displayed. This input can contain the
keywords VARIABLE or LISTVARIABLE followed by a specification of the variables to be selected using
the procedure input specification conventions that were described above. This can be followed by the
keyword EQUATION or LISTEQUATION and the specified entries.

Several special cases are relevant:

• If the procedure name is not followed by any selection input, then a count of all variables and
equations appears.

• If the input is found, but the input does not begin with VARIABLE, EQUATION, LISTVARIABLE,
or LISTEQUATION keywords, then the input is assumed to contain variable names.

• If the VARIABLE keyword is entered, but is not followed by variable selection statements, and
LISTVARIABLE does not appear, then all variables are assumed selected.

• If the EQUATION or LISTEQUATION keyword cannot be found, then equations are assumed
selected.

5.16 GAMSCHK 2003

• If the EQUATION keyword is entered, but is not followed by equation selection statements or a
LISTEQUATION entry, then all equations are assumed selected.

• The keyword LISTVARIABLE is allowed. It should be followed by variable selection statements. In
turn, MATCHIT lists all variables which fall under the request.

• The keyword LISTEQUATION may also be used. It should be followed by equation selection
statements. In turn, MATCHIT lists all equations which fall under the request.

5.16.3.3 ANALYSIS

Brief Purpose: Analyzes the structure of all variables and equations. Information is given on errors
involving obvious model misspecifications causing redundancy, zero variable values, infeasibility, unbound-
edness, or obvious constraint relaxations in linear programs. The checks are those identified in Tables 1, 2
and 3.

Usage Notes: The analysis tests given in Tables 1 and 2 are utilized to determine if individual variables
or equations in the model possess obvious specification errors. One test, for example, considers whether or
not in a maximization problem a variable appears which has a positive return in the objective function,
but no coefficients in the constraints indicating an obviously unbounded model. Similarly, information is
provided on whether certain equations can never be satisfied. For example, tests examine whether an
equality equation appears with a negative right hand side and all positives on the left hand side. Also tests
see whether the bounds on variables preclude equation satisfaction or make equations redundant (Table 3).
In ANALYSIS these tests are applied to each and every variable and equation. The BLOCKPIC and
BLOCKLIST routines utilize the tests on a block by block basis. Thus, the messages will be triggered
only if every variable or equation in that block has the same problem. Also interactions between variables
and equations are not checked so ANALYSIS only finds flaws contained in individual variables/equations.

Input File: The keyword ANALYSIS is all that is accepted.

5.16.3.4 BLOCKLIST

Brief Purpose: The BLOCKLIST procedure displays the number and characteristics of the items in
each GAMS variable and equation block.

Usage Notes: The characteristic information gives:

1. The variable sign restriction or equation inequality type.

2. The number of variables or equations in this block;

3. The number of variables or equations with at least one nonlinear term in this block.

4. The number of positive coefficients under the variables or in the equations.

5. The number of negative coefficients under the variables or in the equations.

6. The number of nonlinear coefficients under the variables or in the equations.

7. The largest coefficient in absolute value in this block;

8. The smallest coefficient in absolute value in this block. Analysis tests are also performed as discussed
under the ANALYSIS procedure.

Note that when GAMS internal scaling features are employed, the default option is that the scaled output
is displayed. This can be altered using the DESCALE feature of the solver options file.

Input File: No input other than the procedure name is needed.

2004 Solver Manuals

5.16.3.5 BLOCKPIC

Brief Purpose: Generates model schematics and scaling information. The schematics depict coefficient
signs, total and average number of coefficients within each GAMS equation and variable block.

Usage Notes: These schematics are designed to aid users in identifying flaws in coefficient placement
and sign. The summary information on problem scaling characteristics is designed to help users in scaling
data. The scaling information is usually reported after any GAMS scaling (using the variablename.scale
and equationname.scale features) but before solver scaling. (The user can change whether descaling is
done - see the options file). Analysis tests are done using the procedures in Tables 1 and 2.

Note that when GAMS internal scaling features are employed the default option is that the scaled output
is displayed. This can be altered using the DESCALE feature of the solver options file.

Input File: The keyword BLOCKPIC is all that is recognized.

5.16.3.6 PICTURE

Brief Purpose: Generates a schematic depicting the location, sign and magnitude of coefficients for
selected variables and equations. Users can use this schematic to help identify flaws in coefficient placement,
magnitude, or sign. Reports are also generated on the number of individual elements in the pictured
portions of each variable and equation.

Usage Notes: This output can be quite large, so PICTURE should only be used for small models or
model components. Note that when GAMS internal scaling features are employed, the default option is
that the scaled output is displayed. This can be altered using the DESCALE feature of the solver options
file.

Input File: Optional input instructions may appear after the PICTURE keyword. This input selects the
variables and equations to be included. Only coefficients at the intersection of the selected variables and
equations are portrayed. The selected item in the .GCK file can contain the keywords VARIABLE, or
INVARIABLE followed by a specification of the selected variables using the procedure input specification
conventions above. This can be followed by the keywords EQUATION or INEQUATION and the specified
entries. Several special cases are also relevant:

• If the VARIABLE or INEQUATION keywords cannot be found, then all variables are assumed
selected.

• If the EQUATION or INVARIABLE keywords cannot be found, then all equations are assumed to
selected.

• If the none of the VARIABLE, INVARIABLE, EQUATION, or INEQUATION keywords are found,
everything is pictured and all other input is ignored.

• When the INVARIABLE keyword is used, then all equations in which those variables have coefficients
are selected along with the named variables.

• When the INEQUATION keyword is used, then all variables which have coefficients in the named
equations are selected along with the named equations.

5.16 GAMSCHK 2005

5.16.3.7 POSTOPT

Brief Purpose: Does post optimality computations. In that capacity POSTOPT either:

• Reconstructs the reduced cost of variables after a GAMS model solution. Modelers can use this
information to discover why certain variables are nonbasic or why certain shadow prices take on
particular values, or

• Reconstructs the usage and supply across an equation after a GAMS model solution. Modelers can
use this information to discover why certain variables or slacks take on particular values, as well as
to find out where items within equations are produced and/or used.

Usage Notes: POSTOPT uses essentially the same input conventions as does DISPLAYCR. Thus, the
usage notes in that selection are also relevant here. In addition:

1. POSTOPT requires a solution has been obtained GAMSCHK will automatically cause a solver to
be invoked unless suppressed by the options file;

2. Nonlinear terms may not be accurate in the row sums as their marginal value not their total value
is used but GAMS will have adjusted the right-hand sides for their presence; and

3. Attention can be restricted to only certain types of variables or equations. Variables that are
INSOLUTION (Nonzero or with Zero marginals), NOTINSOLUTION (zero with a nonzero marginal)
can be requested, BINDING or NONBINDING equations can be focused on.

Note that when GAMS internal scaling features are employed, the default option is that the unscaled
output is displayed. This can be altered using the DESCALE feature of the solver options file.

Input File: An optional input file is read in, indicating the specific variables desired using the conventions
explained under DISPLAYCR above. In addition:

• One can enter INSOLUTION to restrict attention to variables which are nonzero or have zero
marginals.

• One can enter NOTINSOLUTION to restrict attention to zero variables.

• The above entries restrict alteration in all VARIABLE or INEQUATION selection statements in a
POSTOPT run.

• One can enter BINDING to only consider equations with zero slack. Similarly, NONBINDING
considers equations with nonzero slack.

• The above equation specifications restrict all sections by all EQUATION or INVARIABLES items
in a POSTOPT run.

5.16.3.8 ADVISORY

Brief Purpose: To identify variables which could be unbounded or equations and variable bounds which
could cause a model to be infeasible.

Usage Notes: The ADVISORY procedure causes a presolution report on the set of all: a) variables which
could be unbounded and/or b) equations and variable bounds which could cause infeasibility. The tests
used are summarized in Table 3. This procedure identifies all variables which would need to be bounded
as well as all constraints which need artificial variables if one wishes to diagnose problems in a model.
The same output is also generated by NONOPT but the ADVISORY version does not require a solution.

Input file: Just the word ADVISORY

2006 Solver Manuals

5.16.3.9 NONOPT

Brief Purpose: To help diagnose unbounded and infeasible models.

Usage Notes: The NONOPT procedure can be used in either an informative mode or with models
which terminate as unbounded or infeasible. NONOPT will look through an optimal model reporting all
variables which may be potentially unbounded or infeasible and all equations which may be infeasible
using the checks explained under the ADVISORY section. Also in an unbounded model NONOPT can
report the names of unbounded or infeasible variables or equations as well as either budgeting or row
summing them. NONOPT runs after a solution and causes a solve to occur.

Input File: NONOPT may be followed by optional keywords IDENTIFY or VERBOSE. The IDEN-
TIFY keyword causes GAMSCHK to report potential unbounded variables and/or infeasible equations.
VERBOSE causes full budgets and row summing as done by the POSTOPT procedure on infeasible
equations, and/or variables as well as unbounded variables and/or equations. Only the last encountered
of the VERBOSE or IDENTIFY keywords will be obeyed. The details on these options are as follows:

1. If the IDENTIFY keyword is used, then the rules in Table 3 are applied to the model. Identify
also anticipates that large upper bounds and/or artificial variables may be present. In an optimal
condition all variable and equation levels that have exponents greater than the user supplied level
filter in the options file (or 6 by default) are identified as items which could be involved with an
unbounded model. Similarly, all variables or equations with marginals greater in exponent than
the user supplied marginal exponent filter will be identified as items potentially involved with an
infeasible model.

2. When the VERBOSE keyword is read then all variables and equations which are listed as nonoptimal
or infeasible are treated using the budgeting and row summing aspects of POSTOPT.

3. When no keyword is found and the model solution is not optimal then the nonoptimal equations,
infeasible equations and/or nonoptimal variables automatically listed.

5.16.4 Options File

GAMSCHK accepts an option file controlling solver choice (when needed); descaling; and size of the
nonoptimal filters; the number of variable and column blocks selection entries allowed. The file is called
GAMSCHK.OPT

5.16.4.1 Solver Choice Options

GAMSCHK calls for the solution of the problem when the POSTOPT or NONOPT procedures are used.
In doing this, GAMSCHK internally selects the default GAMS solver for a problem class. Users may
override this choice using the solver options file. Users may also force or suppress the solution process.

There are 16 solver related keywords allowed in the options file. These are as follows:

OPTION Purpose

LP Gives name of solver for LP problems

MIP Gives name of solver for MIP problems

RMIP Gives name of solver for RMIP problems

NLP Gives name of solver for NLP problems

MCP Gives name of solver for MCP problems

MPEC Gives name of solver for MPEC problems

5.16 GAMSCHK 2007

OPTION Purpose

RMPEC Gives name of solver for RMPEC problems

CNS Gives name of solver for CNS problems

DNLP Gives name of solver for DNLP problems

MINLP Gives name of solver for MINLP problems

RMINLP Gives name of solver for RMINLP problems

SOLVERNAME Gives name of solver to be used regardless of problem type

NOSOLVE Suppresses solution of the problem

SOLVE Forces solution of the problem

DESCALE Controls treatment of scaling

OPTFILE Solver options file number

In the first five cases, the option name is followed by the name of one of the licensed solvers. If the options
file is empty, then the default solver will be used. If a solver name is given, then that solver will be used
provided it matches the name of a solver GAMS recognizes.

5.16.4.2 When Should I Use SOLVE or NOSOLVE

Ordinarily GAMSCHK will cause a solver to be used if either the POSTOPT or the NONOPT options
are used. However, users can force solutions under other cases or suppress solutions if desired.

One should only force a solution (using the SOLVE option) when one wishes to use the solution information
after GAMSCHK is done either to examine the solution output or do post optimality calculations. Forcing
a solution will not cause GAMSCHK to have improved representations of nonlinear terms. That will only
occur when a SOLVE statement is executed before the SOLVE statement involving GAMSCHK.

5.16.4.3 Control of Number of Variable and Row Selections Allowed

The GAMSCHK program uses an upper estimate on the number of variable or equation blocks. In rare
circumstances users may wish to override this choice. The options for this are:

OPTION Purpose

VARBLOCK Maximum number of variable blocks allowed

EQUBLOCK Maximum number of equation blocks allowed

These options are followed by a number, but should not be routinely used.

5.16.4.4 Scaling

GAMS users may be utilizing internal features which involve scaling through the Model-
name.SCALEOPT=1, VariableName.SCALE, and EquationName.SCALE options. GAMSCHK can
work with these options to create output which reflects scaled, unscaled or partially unscaled output.
In particular, the command DESCALE can be entered with one of three options: NEVER, ALL, or
PART. If you enter NEVER, then none of the model output will be descaled. If you enter ALL, then
all of the model output will be descaled. The third option is to use PART. In that case the NONOPT
and POSTOPT output will be descaled whereas scaled information will be displayed for PICTURE,
BLOCKPIC, BLOCKLIST, MATCHIT and DISPLAYCR. The PART option allows investigation of
scaling. If you do not enter a DESCALE option then all information will be reported as if the PART
option was chosen.

2008 Solver Manuals

5.16.4.5 NONOPT Filters

The NONOPT model in ”IDENTIFY” mode checks through a model solution to identify large marginals
and/or large variable values. The limits on these checks are provided by two options:

OPTION Purpose

LEVELFILT Numerical value of exponent on ”unbounded levels”

MARGFILT Numerical value of exponent on ”infeasible marginals”

These options provide upper bounds on the exponents of the absolute values for the levels and marginals.
They are followed by an integer which gives the exponent. Thus, entries like

LEVELFILT 7

MARGFILT 7

will cause the reporting of all marginals and levels which are greater in absolute value than 107.

5.16.4.6 Example Options File

The GAMSCHK option file is called GAMSCHK.OPT. An example of a file could look like the following
6 lines:

LP SOPLEX

MIP CBC

VARBLOCK 50

SOLVE

DESCALE PART

LEVELFILT 4

5.16.4.7 Solver Options File

One other important aspect regarding the options file involves the use of a problem solver options file
when a solver such as SOPLEX, CBC, IPOPT etc. is also being used. As seen above the GAMSCHK.OPT
does not recognize option commands such as those which would be submitted to the programming model
solvers - SOPLEX for example. In all cases GAMSCHK will cause the default option file for the solver to
be used when invoking the solver. Thus if SOPLEX and the options file is invoked is being used, SOPLEX
options are controlled by the option file SOPLEX.OPT while GAMSCHK.OPT controls GAMSCHK
operation. Users can change the number of the solver options file being used by using the OPTFILE
parameter in the options file. OPTFILE 2 would cause use of solver options file .OP2.

5.16.5 Known Bugs

There are a few bugs that can cause GAMSCHK to report improper outputs or results. A list of the
known bugs, their symptoms and a remedy is given below.

5.16 GAMSCHK 2009

Symptom Cause Remedy
Zero Shadow Prices in
POSTOPT

Old GAMS version or no Prior
Solve

1) Make sure the model was
solved, 2) if it was, do not sup-
press solve in option file, or 3)
update to most recent GAMS ver-
sion

Descaling Does Not Work Old Version of GAMS Update
GAMS Blows up after GAM-
SCHK Runs

Old GAMS version Ignore, *.LST file, results are fine,
can be fixed by updating to the
most recent version of GAMS

POSTOPT has error in budgets
equal to twice objective func-
tion coefficient for nonlinear max-
imizations

Old GAMS MINOS version Switch to a minimization formu-
lation or update GAMS/MINOS

ROWSUM does not fully account
for the value of nonlinear terms
in POSTOPT

Value of nonlinear terms sent
from GAMS are only a marginal
value

None planned. GAMSCHK
would need reprogramming

Error message about size of VAR-
BLOCK or EQNBLOCK

exceeded maximum number of
blocks

Modify option file, enlarging or
eliminating parameters

GAMSCHK won’t run Files are not properly installed Recheck installation. If still
doesn’t work report to author

Zero shadow prices when using
NOSOLVE

Old version of GAMS solvers or
Shadow prices suppressed

Try changing GAMSCOMP.TXT
lines 2 or 0 to 12 or 10, if that
doesn’t work update GAMS.

5.16.6 Tables

Table 1: Conditions under which a modeler should be advised of potential difficulty for equations without
nonlinear terms.

• a/ The PS cases indicate, because the variables in this equation follow this pattern, that:

1. The variables appearing with nonzeros in this equation are forced to equal zero.

2. This equation can never be satisfied and is obviously infeasible.

3. This equation is redundant. The nonnegativity conditions are a stronger restriction.

• b/ In the examples x denotes indexed non-negative variables, y indexed non-positive variables, and
z a single unrestricted variable.

• c/ Here and in the cases below at least one nonzero must occur.

• d/ These entries give examples of the problem covered by each warning. Namely, in the first
case examining only the nonnegative variables suppose all those variables have signs ≥ 0 but the
right-hand-side is zero. Thus, we have X ≥ 0 and X ≤ 0 which implies X = 0. A warning is
generated in that case.

• e/ Only one coefficient is allowed.

2010 Solver Manuals

Type of Count of coefficients under a variable of this type Sign of Type of PSa/ Examplesb/

constraint with a particular sign RHS

Nonnegative Nonpositive Unrestricted

+ - + - + -

≥ 0 c/ 0 0 ≥ 0 0 0 0 Zero Variables - Case 1
∑
x ≤ 0d/, −

∑
y ≤ 0,

∑
x−

∑
y ≤ 0

≤ ≥ 0 0 0 ≥ 0 0 0 - Infeasible -Case 2
∑
x ≤ −k, −

∑
y ≤ −k,

∑
x−

∑
y ≤ −k

0 ≥ 0 ≥ 0 0 0 0 + or 0 Redundant -Case 3 −
∑
x ≤ +k,

∑
y ≤ +k, −

∑
x+

∑
y ≤ k

≥0 0 0 ≥0 0 0 0 Zero Variables - Case 1
∑
x = 0, −

∑
y = 0,

∑
x−

∑
y = 0

0 ≥0 ≥0 0 0 0 0 Zero Variables - Case 1 −
∑
x = 0,

∑
y = 0, −

∑
x+

∑
y = 0

= ≥0 0 0 ≥0 0 0 - Infeasible - Case 2
∑
x−

∑
y = −k

0 ≥0 ≥0 0 0 0 + Infeasible - Case 2 −
∑
x+

∑
y = k

0 0 0 0 ≥0e/ ≥0e/ 0 Zero Variable - Case 1 z = 0, − z = 0

0 ≥0 ≥0 0 0 0 0 Zero Variables - Case 1 −
∑
x ≥ 0,

∑
y ≥ 0, −

∑
x+

∑
y ≥ k

≥ 0 ≥0 ≥0 0 0 0 0 or + Infeasible -Case 2 −
∑
x ≥ k,

∑
y ≥ k, −

∑
x+

∑
y ≥ k

≥0 0 0 ≥0 0 0 - or 0 Redundant -Case 3
∑
x ≥ −k, −

∑
y ≥ −k,

∑
x−

∑
y ≥ −k

5.16 GAMSCHK 2011

Table 2: Conditions under which a modeler should be warned about variables in a maximization problem.

Number of aij ’s of a sign in
Type of Objective function ≥ rows = rows ≤ rows
Variable coefficient sign + - + - + - PSa/ Examples

Nonnegative

+ ≥0 0 0 0 0 ≥0 Unbounded max xb/

Variable x+DQ ≥ a
case 1 −x+ EQ ≤ b

- 0 ≥0 0 0 ≥0 0 Zero optimal max − x
solution −x+DQ ≥ a
case 2 x+ EQ ≤ b

0 ≥0 0 0 0 0 ≥0 Variable Relaxes max ox
constraint x+DQ ≥ a

case 3 −x+DQ ≤ b
0 ≥0 0 ≥0c/ ≥0c/ 0 ≥0 Variable max ox

Relaxes x+DQ ≥ a
constraint x+ FQ = g

case 4 −x+ EQ ≤ b

Nonpositive

- 0 ≥0 0 0 ≥0 0 Unbounded max − y
Variable −y +DQ > a
case 1 y + EQ ≤ b

+ ≥0 0 0 0 0 ≥0 Zero optimal max yb/

solution y +DQ > a
case 2 −y + EQ ≤ b

0 0 ≥0 0 0 ≥0 0 Variable Relaxes max ox
constraint −y +DQ ≥ a

case 3 y + EQ ≤ b
0 ≥0 0 ≥0c/ ≥0c/ 0 ≥0 Variable max ox

Relaxes −y +DQ ≥ a
constraint y + FQ = g

case 4 y + EQ ≤ b

Unrestricted
+/- 0 0 0 0 0 0 Unbounded max ± z

Variable
case 1

• a/ PS cases are: The variables which satisfy this condition are:

1. Unbounded as they contribute to the objective function while satisfying the constraints.

2. Obviously zero since they consume constraint resources and have a cost in the objective function.

3. Warning this variable relaxes all constraints in which it appears

4. Warning this variable relaxes all the equality constraints in which it appears in one direction

• b/ Here x(y) has a positive objective term and can be increased without ever violating any constraints
so x(y) is unbounded.

• c/ Only one coefficient can be present in the equality rows

2012 Solver Manuals

Table 3: Conditions When Model Elements Could be Unbounded or Infeasible.

Conditions for Potential Unbounded Variables – Presence of Bounds

Sign of Objective
Types of Variables in Max Problem Upper Lower

≥0a/ + None —b/

≤ 0 - — None
Unrestricted + None —
Unrestricted — — None

• a/ If a non negative variable has a positive objective function coefficient without an upper bound,
then the variable could be unbounded.

• b/ Any reasonable value can exist for this item

Conditions for Potential Infeasibility Caused by Bounds on Variables

Existence of Bounds
Types of Variables Lower Upper

≥c/0 + —
≤0 — —

Unrestricted + —
Unrestricted — —

• c/ If a nonnegative variable has a positive lower bound then it could cause infeasibility.

Conditions for Potential Infeasibility in Equations

Type of Equations RHS

≤d/ -
≥ +
= + or -

• d/ When a less than or equal equation is present it may not be able to be satisfied if it has a
negative RHS.

5.16 GAMSCHK 2013

Table 4: Conditions for Potential Infeasibility or Redundancy in Equations Based on Bounds on Variables.

TYPE OF CONSTRAINT PS
≤b ≥b

SUM OF THE SMALLEST VALUEa/
>b — INFEASIBLE
— >b REDUNDANT

SUM OF THE LARGEST VALUEb/
— <b INFEASIBLE
<b — REDUNDANT

Note:

• a/ Suppose Xj is bounded with LBj (lower bound) ≤ Xj ≤ UBj (upper bound), and we have the
sum evaluated at the lower bounds will be the smallest value which could happen in that sum. If
the constraint is < b, then if the sum is > b, we know that this constraint will never be satisfied. If
the constraint is > b, and the sum is > b, we know that this constraint will not limit any possible X
value. Hence, it is redundant.

• b/ Suppose Xj is bounded as follows, LBj (lower bound) ≤ Xj ≤ UBj (upper bound), and we have
the sum evaluated at the upper bounds which is either > b or < b, in that sum. If the sum is < b,
and the constraint holds it < b then we know that this constraint will not limit any possible X
value. Hence, it is redundant. If the constraint holds it greater than b, but the sum is < b, we know
that this constraint will never be satisfied.

• c/ Thanks to Paul Preckel for bringing these tests to the authors' attention.

2014 Solver Manuals

5.16.7 Appendix A: Reserved Names

VARIABLE

VARIABLES

EQUATION

EQUATIONS

INVARIABLE

INVARIABLES

INEQUATION

INEQUATIONS

LISTVARIABLE

LISTVARIABLES

LISTEQUATION

LISTEQUATIONS

POSTOPT

DISPLAYCR

PICTURE

BLOCKPIC

ANALYSIS

MATCHIT

BLOCKLIST

NONOPT

INSOLUTION

NOTINSOLUTION

NONINSOLUTON

VERBOSE

ADVISORY

BINDING

NONBINDINGdo

NOTBINDING

INTERSECT

IDENTIFY

PW=

5.16 GAMSCHK 2015

5.16.8 Appendix B: GAMSCHK One Page Summary

Invoking GAMSCHK OPTION LP=GAMSCHK Keywords allowed in GCK file

Keyword Allowed SubKEYWORDS Brief Description
DISPLAYCR Displays coefficients of selected variables and equations

VARIABLE* Indicates variable selections follow
INVARIABLE* Indicates equations are wanted in which selected variables fall
EQUATION* Indicates equation selections follow
INEQUATION* Indicates variables are wanted that fall in selected equations
INTERSECT++ Show coefficients which appear at intersections of selected var/eqn

MATCHIT List variable and equation names and summarize characteristics
VARIABLE* Summarizes all variables matching selection statements
LISTVARIABLE* Lists each variable matching a selection statement
EQUATION* Summarizes all equations matching a selection statement
LISTEQUATION* Lists each equation matching a selection statement

ANALYSIS Checks for obvious structural defects
BLOCKLIST Summarizes characteristics of variable and equation blocks
BLOCKPIC Generates block level schematics
PICTURE Generates tableau schematics

VARIABLE* Indicates variable selections follow
INVARIABLE* Indicates equations are wanted in which selected variables fall
EQUATION* Indicates equation selections follow
INEQUATION* Indicates variables are wanted that fall in selected equations

POSTOPT Reconstructs reduced cost and equation activity
VARIABLE* Indicates variable selections follow
INVARIABLE* Indicates variable selections follow
EQUATION* Indicates equation selections follow
INEQUATION* Indicates variables are wanted that fall in selected equations
INTERSECT++ Show coefficients which appear at intersections of selected var/eqn
NOTINSOLUTION++ Only nonzero vars or those with zero reduced cost
INSOLUTION++ Only zero vars will be selected
BINDING++ Only eqns with zero slack will be computed
NONBINDING++ Only eqns with nonzero slack will be computed

ADVISORY List potential infeasible and unbounded items
NONOPT Lists potential or actual nonoptimal items

IDENTIFY Same as ADVISORY but after solution
VERBOSE Does POSTOPT computations on nonoptimals

Other Notes

• Items marked above with an ∗ are followed by item selection statements.

• Items marked with ++ modifiy the types of variables, equations and coefficients selected.

• In item selection an ∗ is a wild card for multiple characters while a . is a wildcard for one character.

• Spaces and capitalization don't matter in any of the input.

• Options file controls scaling, solver choice, nonopt filters and maximum allowed selections.

• Page width is controlled by a PW= keyword but cannot exceed GAMS page width.

• Lines beginning with a ? or a # are treated as comments.

2016 Solver Manuals

5.16.9 Appendix C: Summary of GAMSCHK Options

Option Description Default

CNS
solver for CNS problems

DESCALE
controls treatment of scaling part

DNLP
solver for DNLP problems

EQUBLOCK
maximum number of equation blocks allowed
Range: {-∞, ..., ∞}

-5

LEVELFILT
numerical value of exponent on ”unbounded levels”
Range: {-5, ..., ∞}

6

LP
solver for LP problems

MARGFILT
numerical value of exponent on ”infeasible marginals”
Range: {-5, ..., ∞}

6

MCP
solver for MCP problems

MINLP
solver for MINLP problems

MIP
solver for MIP problems

MPEC
solver for MPEC problems

NLP
solver for NLP problems

NOSOLVE
suppresses solution of the problem

OPTFILE
solver options file number

RMINLP
solver for RMINLP problems

RMIP
solver for RMIP problems

RMPEC
solver for RMPEC problems

SOLVE
forces solution of the problem

SOLVERNAME
solver for any problems

VARBLOCK
maximum number of variable blocks allowed
Range: {-∞, ..., ∞}

-5

5.16.10 GAMSCHK References

• Brooke, A., D. Kendrick, and A. Meeraus. GAMS: A User's Guide. The Scientific Press, South San
Francisco, CA, 1988.

• McCarl, B.A. ”So Your GAMS Model Didn't Work Right: A Guide to Model Repair.” Texas A&M
University, College Station, TX, 1994.

• McCarl, B.A., and T.H. Spreen. ”Applied Mathematical Programming Using Algebraic Systems.”
Draft Book, Department of Agricultural Economics, Texas A&M University, College Station, TX,
1996.

• McCarl, B.A. GAMSCHK. Slides of INFORMS talk, 1996.

• McCarl, B.A. GAMSCHK. Older version of GAMSCHK User Documentation with additional GAMS

examples.

http://www.gams.com/docs/contributed/present_mccarl_96.pdf
http://www.gams.com/docs/pdf/gamschk.pdf
http://www.gams.com/docs/other/gamschk.zip
http://www.gams.com/docs/other/gamschk.zip

5.17 Gurobi 2017

5.17 Gurobi

Gurobi Optimization, [www.gurobi.com] (http://www.gurobi.com)

5.17.1 Introduction

The Gurobi suite of optimization products include state-of-the-art simplex and parallel barrier solvers
for linear programming (LP) and quadratic programming (QP), parallel barrier solver for quadratically
constrained programming (QCP), as well as parallel mixed-integer linear programming (MILP), mixed-
integer quadratic programming (MIQP), mixed-integer quadratically constrained programming (MIQCP)
and (mixed-integer) nonlinear programming (NLP) solvers.

The Gurobi MIP solver includes shared memory parallelism, capable of simultaneously exploiting any
number of processors and cores per processor. The implementation is deterministic: two separate runs on
the same model will produce identical solution paths.

While numerous solving options are available, Gurobi automatically calculates and sets most options at
the best values for specific problems. All Gurobi options available through GAMS/Gurobi are summarized
at the end of this chapter.

We offer a GAMS/Gurobi-Link license that works in combination with a Gurobi callable library license
from Gurobi Optimization Inc.

Attention

The free bare-bone link mode (previously GAMS/OSIGUROBI) that allowed to solve LP and MIP
when the user had a separate GUROBI license has been removed. If you relied on using this bare-bone
link option, then do not hesitate to contact sales@gams.com to arrange for a GAMS/Gurobi-Link
license.

5.17.2 How to Run a Model with Gurobi

The following statement can be used inside your GAMS program to specify using Gurobi

Option LP = Gurobi; { or MIP or RMIP or QCP or MIQCP or RMIQCP }

The above statement should appear before the solve statement. If Gurobi was specified as the default
solver during GAMS installation, the above statement is not necessary.

http://www.gurobi.com
mailto:sales@gams.com

2018 Solver Manuals

5.17.3 Overview of GAMS/Gurobi

5.17.3.1 Linear, Quadratic and Quadratic Constrained Programming

Gurobi can solve LP and convex QP problems using several alternative algorithms, while the only choice
for solving convex QCP is the parallel barrier algorithm. The majority of LP problems solve best using
Gurobi's state-of-the-art dual simplex algorithm, while most convex QP problems solve best using the
parallel barrier algorithm. Certain types of LP problems benefit from using the parallel barrier or the
primal simplex algorithms, while for some types of QP, the dual or primal simplex algorithm can be a
better choice. If you are solving LP problems on a multi-core system, you should also consider using the
concurrent optimizer. It runs different optimization algorithms on different cores, and returns when the
first one finishes.

GAMS/Gurobi also provides access to the Gurobi infeasibility finder. The infeasibility finder takes an
infeasible linear program and produces an irreducibly inconsistent set of constraints (IIS). An IIS is a set
of constraints and variable bounds which is infeasible but becomes feasible if any one member of the set is
dropped. GAMS/Gurobi reports the IIS in terms of GAMS equation and variable names and includes the
IIS report as part of the normal solution listing. The infeasibility finder is activated by the option IIS.
Another option for analyzing infeasible model the FeasOpt option which instructs GAMS/Gurobi to find
a minimal feasible relaxation of an infeasible model. See section Feasible Relaxation for details.

GAMS/Gurobi supports sensitivity analysis (post-optimality analysis) for linear programs which allows
one to find out more about an optimal solution for a problem. In particular, objective ranging and
constraint ranging give information about how much an objective coefficient or a right-hand-side and
variable bounds can change without changing the optimal basis. In other words, they give information
about how sensitive the optimal basis is to a change in the objective function or the bounds and right-hand
side. GAMS/Gurobi reports the sensitivity information as part of the normal solution listing. Sensitivity
analysis is activated by the option Sensitivity.

The Gurobi presolve can sometimes diagnose a problem as being infeasible or unbounded. When this
happens, GAMS/Gurobi can, in order to get better diagnostic information, rerun the problem with
presolve turned off. The rerun without presolve is controlled by the option ReRun. In default mode only
problems that are small (i.e. demo sized) will be rerun.

Gurobi can either presolve a model or start from an advanced basis or primal/dual solution pair. Often
the solve from scratch of a presolved model outperforms a solve from an unpresolved model started from
an advanced basis/solution. It is impossible to determine a priori if presolve or starting from a given
advanced basis/solution without presolve will be faster. By default, GAMS/Gurobi will automatically use
an advanced basis or solution from a previous solve statement. The GAMS BRatio option can be used
to specify when not to use an advanced basis/solution. The GAMS/Gurobi option UseBasis can be used
to ignore or force a basis/solution passed on by GAMS (it overrides BRatio). In case of multiple solves in
a row and slow performance of the second and subsequent solves, the user is advised to set the GAMS
BRatio option to 1.

5.17.3.2 Mixed-Integer Programming

The methods used to solve pure integer and mixed integer programming problems require dramatically
more mathematical computation than those for similarly sized pure linear or quadratic programs. Many
relatively small integer programming models take enormous amounts of time to solve.

For problems with discrete variables, Gurobi uses a branch and cut algorithm which solves a series
of subproblems, LP subproblems for MILP, QP subproblems for MIQP, and QCP subproblems or LP
outer approximation subproblems for MIQCP. Because a single mixed integer problem generates many
subproblems, even small mixed integer problems can be very compute intensive and require significant
amounts of physical memory. With option nonConvex Gurobi can also solve nonconvex (MI)QP and
(MI)QCP problems using a spatial branch-and-bound method.

5.17 Gurobi 2019

GAMS/Gurobi supports Special Order Sets of type 1 and type 2 as well as semi-continuous and semi-integer
variables.

You can provide a known solution (for example, from a MIP problem previously solved or from your
knowledge of the problem) to serve as the first integer solution.

If you specify some or all values for the discrete variables together with GAMS/Gurobi option MipStart,
Gurobi will check the validity of the values as an integer-feasible solution. If this process succeeds, the
solution will be treated as an integer solution of the current problem.

The Gurobi MIP solver includes shared memory parallelism, capable of simultaneously exploiting any
number of processors and cores per processor. The implementation is deterministic: two separate runs on
the same model will produce identical solution paths.

5.17.3.3 Nonlinear Programming

Gurobi can solve (mixed-integer) nonlinear programs to global optimality either directly or by approxi-
mating the model by piecewise-linear functions and/or reformulating nonlinear constraints into supported
linear and/or quadratic constraints (see also funcnonlinear.)

For Gurobi to accept a nonlinear constraint, it has to be in one of the forms listed below. Furthermore,
GAMS/Gurobi can automatically reformulate a nonlinear constraint into the supported form by enabling
nlreform.

• MAX constraint:

eq1.. r =e= max(x1,x2,x3,...,c);

eq2.. r =e= smax(i, x(i));

• MIN constraint:

eq1.. r =e= min(x1,x2,x3,...,c);

eq2.. r =e= smin(i, x(i));

• AND constraint:

eq1.. r =e= b1 and b2 and b3 and ...;

eq2.. r =e= sand(i, b(i));

• OR constraint:

eq1.. r =e= b1 or b2 or b3 or ...;

eq2.. r =e= sor(i, b(i));

• ABS constraint:

eq.. r =e= abs(x);

• EXP constraint:

eq1.. r =e= exp(x);

eq2.. r =e= x**a;

eq3.. r =e= a**x;

Here, a > 0 and for eq3 the lower bound of x must be nonnegative.

• LOG constraint:

2020 Solver Manuals

eq1.. r =e= log(x);

eq2.. r =e= log2(x);

eq3.. r =e= log10(x);

• SIN / COS / TAN constraint:

eq1.. r =e= sin(x);

eq2.. r =e= cos(x);

eq3.. r =e= tan(x);

• NORM constraint:

eq1_1.. r =e= sum(i, abs(x(i)));

eq1_2.. r =e= abs(x1) + abs(x2) + abs(x3) + abs(x4);

eq2_1.. r =e= edist(x1,x2,x3,...);

eq2_2.. r =e= sqrt(sum(i, sqr(x(i))));

eq2_3.. r =e= sqrt(sqr(x1) + sqr(x2) + sqr(x3) + sqr(x4));

eq3_1.. r =e= smax(i, abs(x(i)));

eq3_2.. r =e= max(abs(x1), abs(x2), abs(x3), abs(x4));

Note that a 2-norm constraint can lead to a non-convex quadratic model which is much harder to
solve than a convex quadratic or linear model.

• POLY constraint:

eq.. r =e= poly(x, a0, a1, a2, ...);

• SIGMOID constraint:

eq1.. r =e= sigmoid(x);

eq2.. r =e= 1 / (1 + exp(-x));

Note

If nlreform is disabled, nonlinear constraints must perfectly match one of the above forms. The
model is then directly passed to Gurobi without reformulation. If the constraint doesn't match one
of the above forms, GAMS/Gurobi will raise a capability error. For example, it is not possible to
interchange left-hand-side and right-hand-side of the above constraints. For more flexibility, enable
nlreform.

Attention

When reformulating the model using nlreform, the nonlinear constraint is split into multiple smaller
constraints. Therefore, the termination tolerances, in particular feasibilitytol, are applied differently.
As a result, the solution returned to GAMS may not satisfy the requested tolerances.

5.17.3.4 Feasible Relaxation

The Infeasibility Finder identifies the causes of infeasibility by means of inconsistent set of constraints
(IIS). However, you may want to go beyond diagnosis to perform automatic correction of your model
and then proceed with delivering a solution. One approach for doing so is to build your model with
explicit slack variables and other modeling constructs, so that an infeasible outcome is never a possibility.
An automated approach offered in GAMS/Gurobi is known as FeasOpt (for Feasible Optimization) and
turned on by parameter FeasOpt in a GAMS/Gurobi option file.

5.17 Gurobi 2021

With the FeasOpt option GAMS/Gurobi accepts an infeasible model and selectively relaxes the bounds
and constraints in a way that minimizes a weighted penalty function. In essence, the feasible relaxation
tries to suggest the least change that would achieve feasibility. It returns an infeasible solution to GAMS
and marks the relaxations of bounds and constraints with the INFES marker in the solution section of the
listing file.

By default all equations are candidates for relaxation and weighted equally but none of the variables
can be relaxed. This default behavior can be modified by assigning relaxation preferences to variable
bounds and constraints. These preferences can be conveniently specified with the .feaspref option. The
input value denotes the users willingness to relax a constraint or bound. The larger the preference, the
more likely it will be that a given bound or constraint will be relaxed. More precisely, the reciprocal of
the specified value is used to weight the relaxation of that constraint or bound. The user may specify a
preference value less than or equal to 0 (zero), which denotes that the corresponding constraint or bound
must not be relaxed. It is not necessary to specify a unique preference for each bound or range. In fact, it
is conventional to use only the values 0 (zero) and 1 (one) except when your knowledge of the problem
suggests assigning explicit preferences.

Preferences can be specified through a GAMS/Gurobi solver option file using dot options. The syntax is:

(variable or equation).feaspref(value)

For example, suppose we have a GAMS declaration:

Set i /i1*i5/;

Set j /j2*j4/;

variable v(i,j); equation e(i,j);

Then, the relaxation preference in the gurobi.opt file can be specified by:

feasopt 1

v.feaspref 1

v.feaspref(’i1’,*) 2

v.feaspref(’i1’,’j2’) 0

e.feaspref(*,’j1’) 0

e.feaspref(’i5’,’j4’) 2

First we turn the feasible relaxtion on. Futhermore, we specify that all variables v(i,j) have preference of
1, except variables over set element i1, which have a preference of 2. The variable over set element i1 and
j2 has preference 0. Note that preferences are assigned in a procedural fashion so that preferences assigned
later overwrite previous preferences. The same syntax applies for assigning preferences to equations
as demonstrated above. If you want to assign a preference to all variables or equations in a model,
use the keywords variables or equations instead of the individual variable and equations names (e.g.
variables.feaspref 1).

The parameter FeasOptMode allows different strategies in finding feasible relaxation in one or two phases.
In its first phase, it attempts to minimize its relaxation of the infeasible model. That is, it attempts to find
a feasible solution that requires minimal change. In its second phase, it finds an optimal solution (using
the original objective) among those that require only as much relaxation as it found necessary in the first
phase. Values of the parameter FeasOptMode indicate two aspects: (1) whether to stop in phase one or
continue to phase two and (2) how to measure the relaxation (as a sum of required relaxations; as the
number of constraints and bounds required to be relaxed; as a sum of the squares of required relaxations).
Please check description of parameter FeasOptMode for details. Also check example models feasopt∗ in
the GAMS Model library.

2022 Solver Manuals

5.17.3.5 Parameter Tuning Tool

The Gurobi Optimizer provides a wide variety of parameters that allow you to control the operation of
the optimization engines. The level of control varies from extremely coarse-grained (e.g., the Method
parameter, which allows you to choose the algorithm used to solve continuous models) to very fine-grained
(e.g., the MarkowitzTol parameter, which allows you to adjust the precise tolerances used during simplex
basis factorization). While these parameters provide a tremendous amount of user control, the immense
space of possible options can present a significant challenge when you are searching for parameter settings
that improve performance on a particular model. The purpose of the Gurobi tuning tool is to automate
this search.

The Gurobi tuning tool performs multiple solves on your model, choosing different parameter settings for
each, in a search for settings that improve runtime. The longer you let it run, the more likely it is to find
a significant improvement.

A number of tuning-related parameters allow you to control the operation of the tuning tool. The most
important is probably TuneTimeLimit, which controls the amount of time spent searching for an improving
parameter set. Other parameters include TuneTrials (which attempts to limit the impact of randomness
on the result), TuneResults (which limits the number of results that are returned), and TuneOutput
(which controls the amount of output produced by the tool).

While parameter settings can have a big performance effect for many models, they aren't going to solve
every performance issue. One reason is simply that there are many models for which even the best possible
choice of parameter settings won't produce an acceptable result. Some models are simply too large and/or
difficult to solve, while others may have numerical issues that can't be fixed with parameter changes.

Another limitation of automated tuning is that performance on a model can experience significant variations
due to random effects (particularly for MIP models). This is the nature of search. The Gurobi algorithms
often have to choose from among multiple, equally appealing alternatives. Seemingly innocuous changes to
the model (such as changing the order of the constraint or variables), or subtle changes to the algorithm
(such as modifying the random number seed) can lead to different choices. Often times, breaking a single
tie in a different way can lead to an entirely different search. We've seen cases where subtle changes in
the search produce 100X performance swings. While the tuning tool tries to limit the impact of these
effects, the final result will typically still be heavily influenced by such issues.

The bottom line is that automated performance tuning is meant to give suggestions for parameters that
could produce consistent, reliable improvements on your models. It is not meant to be a replacement for
efficient modeling or careful performance testing.

5.17.3.6 Compute Server

The Gurobi Compute Server allows you to use one or more servers to offload all of your Gurobi computations.

Gurobi compute servers support queuing and load balancing. You can set a limit on the number of
simultaneous jobs each compute server will run. When this limit has been reached, subsequent jobs will
be queued. If you have multiple compute servers, the current job load is automatically balanced among
the available servers. By default, the Gurobi job queue is serviced in a First-In, First-Out (FIFO) fashion.
However, jobs can be given different priorities. Jobs with higher priorities are then selected from the
queue before jobs with lower priorities.

Gurobi Compute Server licenses and software are not included in GAMS/Gurobi. Contact Gurobi directly
to inquire about the software and license.

5.17 Gurobi 2023

5.17.3.7 Distributed Parallel Algorithms

Gurobi Optimizer implements a number of distributed algorithms that allow you to use multiple machines
to solve a problem faster. Available distributed algorithms are:

• A distributed MIP solver, which allows you to divide the work of solving a single MIP model
among multiple machines. A manager machine passes problem data to a set of worker machines in
order to coordinate the overall solution process.

• A distributed concurrent solver, which allows you to use multiple machines to solve an LP
or MIP model. Unlike the distributed MIP solver, the concurrent solver doesn't divide the work
associated with solving the problem among the machines. Instead, each machine uses a different
strategy to solve the whole problem, with the hope that one strategy will be particularly effective
and will finish much earlier than the others. For some problems, this concurrent approach can be
more effective than attempting to divide up the work.

• Distributed parameter tuning, which automatically searches for parameter settings that improve
performance on your optimization model. Tuning solves your model with a variety of parameter
settings, measuring the performance obtained by each set, and then uses the results to identify the
settings that produce the best overall performance. The distributed version of tuning performs these
trials on multiple machines, which makes the overall tuning process run much faster.

These distributed parallel algorithms are designed to be almost entirely transparent to the user. The user
simply modifies a few parameters, and the work of distributing the computation to multiple machines is
handled behind the scenes by Gurobi.

Specifying the Worker Pool

Once you've set up a set of one or more distributed workers, you should list at least one of their names in
the WorkerPool parameter. You can provide either machine names or IP addresses, and they should be
comma-separated.

You can provide the worker access password through the WorkerPassword parameter. All servers in the
worker pool must have the same access password.

Requesting Distributed Algorithms

Once you've set up the worker pool through the appropriate parameters, the last step to use a distributed
algorithm is to set the TuneJobs, ConcurrentJobs, or DistributedMIPJobs parameter. These parameters
are used to indicate how many distinct tuning, concurrent, or distributed MIP jobs should be started on
the available workers.

If some of the workers in your worker pool are running at capacity when you launch a distributed algorithm,
the algorithm won't create queued jobs. Instead, it will launch as many jobs as it can (up to the requested
value), and it will run with these jobs.

These distributed algorithms have been designed to be nearly indistinguishable from the single machine
versions. Our hope is that, if you know how to use the single machine version, you'll find it straightforward
to use the distributed version. The distributed algorithms respect all of the usual parameters. For
distributed MIP, you can adjust strategies, adjust tolerances, set limits, etc. For concurrent MIP, you
can allow Gurobi to choose the settings for each machine automatically or specify a set of options. For
distributed tuning, you can use the usual tuning parameters, including TuneTimeLimit, TuneTrails, and
TuneOutput.

2024 Solver Manuals

There are a few things to be aware of when using distributed algorithms, though. One relates to relative
machine performance. Distributed algorithms work best if all of the workers give very similar performance.
For example, if one machine in your worker pool were much slower than the others in a distributed tuning
run, any parameter sets tested on the slower machine would appear to be less effective than if they were
run on a faster machine. Similar considerations apply for distributed MIP and distributed concurrent. We
strongly recommend that you use machines with very similar performance. Note that if your machines
have similarly performing cores but different numbers of cores, we suggest that you use the Threads
parameter to make sure that all machines use the same number of cores.

Logging for distributed MIP is very similar to the standard MIP logging. The main differences are in the
progress section. The header for the standard MIP logging looks like this:

Nodes | Current Node | Objective Bounds | Work

Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

By contrast, the distributed MIP header looks like this:

Nodes | Current Node | Objective Bounds | Work

Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | ParUtil Time

Instead of showing iterations per node, the last field in the distributed log shows parallel utilization.
Specifically, it shows the fraction of the preceding time period (the time since the previous progress log
line) that the workers spent actively processing MIP nodes.

Here is an example of a distributed MIP progress log:

Nodes | Utilization | Objective Bounds | Work

Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | ParUtil Time

H 0 157344.61033 - - 0s

H 0 40707.729144 - - 0s

H 0 28468.534497 - - 0s

H 0 18150.083886 - - 0s

H 0 14372.871258 - - 0s

H 0 13725.475382 - - 0s

0 0 10543.7611 0 19 13725.4754 10543.7611 23.2% 99% 0s

* 266 12988.468031 10543.7611 18.8% 0s

H 1503 12464.099984 10630.6187 14.7% 0s

* 2350 12367.608657 10632.7061 14.0% 1s

* 3360 12234.641804 10641.4586 13.0% 1s

H 3870 11801.185729 10641.4586 9.83% 1s

Ramp-up phase complete - continuing with instance 2 (best bd 10661)

16928 2731 10660.9626 0 12 11801.1857 10660.9635 9.66% 99% 2s

135654 57117 11226.5449 19 12 11801.1857 11042.3036 6.43% 98% 5s

388736 135228 11693.0268 23 12 11801.1857 11182.6300 5.24% 96% 10s

705289 196412 cutoff 11801.1857 11248.8963 4.68% 98% 15s

1065224 232839 11604.6587 28 10 11801.1857 11330.2111 3.99% 98% 20s

1412054 238202 11453.2202 31 12 11801.1857 11389.7119 3.49% 99% 25s

1782362 209060 cutoff 11801.1857 11437.2670 3.08% 97% 30s

2097018 158137 11773.6235 20 11 11801.1857 11476.1690 2.75% 92% 35s

2468495 11516 cutoff 11801.1857 11699.9393 0.86% 78% 40s

2481830 0 cutoff 11801.1857 11801.1857 0.00% 54% 40s

5.17 Gurobi 2025

One thing you may find in the progress section is that node counts may not increase monotonically.
Distributed MIP tries to create a single, unified view of node numbers, but with multiple machines
processing nodes independently, possibly at different rates, some inconsistencies are inevitable.

Another difference is the line that indicates that the distributed ramp-up phase is complete. At this point,
the distributed strategy transitions from a concurrent approach to a distributed approach. The log line
indicates which worker was the winner in the concurrent approach. Distributed MIP continues by dividing
the partially explored MIP search tree from this worker among all of the workers.

Another difference in the distributed log is in the summary section. The distributed MIP log includes a
breakdown of how runtime was spent:

Runtime breakdown:

Active: 37.85s (93%)

Sync: 2.43s (6%)

Comm: 0.34s (1%)

This is an aggregated view of the utilization data that is displayed in the progress log lines. In this
example, the workers spent 93% of runtime actively working on MIP nodes, 6% waiting to synchronize
with other workers, and 1% communicating data between machines.

The installation instructions for the Gurobi Remote Services can be found on Gurobi's web page
[www.gurobi.com] (http://www.gurobi.com).

Gurobi Instant Cloud

An alternative to setting up your own pool of machines is to use the Gurobi Instant Cloud. You only
need a GAMS/Gurobi link license when you solve your problems in the Gurobi Instant Cloud. The cost
for the Gurobi license is paid on a per use basis directly to Gurobi. If you follow through the steps
on the Gurobi web site, you eventually get the names of the machines Gurobi has started for you in
the cloud. In order to use these machines from GAMS/Gurobi, you need to provide a Gurobi license
with access instructions for the Gurobi Instant Cloud (detailed instructions for configuring the

client license file).

5.17.3.8 Solution Pool

While the default goal of the Gurobi Optimizer is to find one proven optimal solution to your model, with
a possible side-effect of finding other solutions along the way, the solver provides a number of parameters
that allow you to change this behavior.

By default, the Gurobi MIP solver will try to find one proven optimal solution to your model. It will
typically find multiple sub-optimal solutions along the way, which can be retrieved later. However, these
solutions aren't produced in a systematic way. The set of solutions that are found depends on the exact
path the solver takes through the MIP search. You could solve a MIP model once, obtaining a set of
interesting sub-optimal solutions, and then solve the same problem again with different parameter settings,
and find only the optimal solution.

To store (some of the) solutions found along the way, you can enable the Solution Pool feature by setting
option solnpool. If you'd like more control over how solutions are found and retained, the Gurobi Optimizer
has a number of parameters available for this. The first and simplest is PoolSolutions, which controls the
size of the solution pool. Changing this parameter won't affect the number of solutions that are found - it
simply determines how many of those are retained.

http://www.gurobi.com
https://cloud.gurobi.com
https://www.gurobi.com/documentation/9.1/remoteservices/client_license_file.html
https://www.gurobi.com/documentation/9.1/remoteservices/client_license_file.html

2026 Solver Manuals

You can use the PoolSearchMode parameter to control the approach used to find solutions. In its default
setting (0), the MIP search simply aims to find one optimal solution. Setting the parameter to 1 causes
the MIP search to expend additional effort to find more solutions, but in a non-systematic way. You
will get more solutions, but not necessarily the best solutions. Setting the parameter to 2 causes the
MIP to do a systematic search for the n best solutions. For both non-default settings, the PoolSolutions
parameter sets the target for the number of solutions to find.

If you are only interested in solutions that are within a certain gap of the best solution found, you can set
the PoolGap parameter. Solutions that are not within the specified gap are discarded.

Obtaining an OPTIMAL optimization return status when using PoolSearchMode=2 indicates that the
MIP solver succeeded in finding the desired number of best solutions, or it proved that the model doesn't
have that many distinct feasible solutions. If the solver terminated early (e.g., due to a time limit), you
PoolObjBound attribute (printed to the log) to evaluate the quality of the solutions that were found. This
attribute gives a bound on the objective of any solution that isn't already in the solution pool. The
difference between this attribute and ObjBound is that the latter gives a bound on the objective for any
solution, and which is often looser than PoolObjBound. The PoolObjBound attribute gives a bound on
the objective of undiscovered solutions. Further tree exploration won't find better solutions. You can use
this bound to get a count of how many of the n best solutions you found: any solutions whose objective
values are at least as good as PoolObjBound are among the n best.

Solution Pool Example

Let's continue with a few examples of how these parameters would be used. Imagine that you are solving a
MIP model with an optimal (minimization) objective of 100. Further imagine that, using default settings,
the MIP solver finds four solutions to this model with objectives 100, 110, 120, and 130.

If you set the PoolSolutions parameter to 3 and solve the model again, the MIP solver would discard the
worst solution and return with 3 solutions in the solution pool. If you instead set the PoolGap parameter
to value 0.2, the MIP solver would discard any solutions whose objective value is worse than 120 (which
would also leave 3 solutions in the solution pool).

If you set the PoolSearchMode parameter to 2 and the PoolSolutions parameter to 10, the MIP solver
would attempt to find the 10 best solutions to the model. An OPTIMAL return status would indicate
that either (i) it found the 10 best solutions, or (ii) it found all feasible solutions to the model, and there
were fewer than 10. If you also set the PoolGap parameter to a value of 0.1, the MIP solver would try
to find 10 solutions with objective no worse than 110. While this may appear equivalent to asking for
10 solutions and simply ignoring those with objective worse than 110, the solve will typically complete
significantly faster with this parameter set, since the solver does not have to expend effort looking for
solutions beyond the requested gap.

Solution Pool Subtleties

There are a few subtleties associated with finding multiple solutions that we'll cover now.

Continuous Variables

One subtlety arises when considering multiple solutions for models with continuous variables. Specifically,
you may have two solutions that take identical values on the integer variables but where some continuous
variables differ. By choosing different points on the line between these two solutions, you actually have
an infinite number of choices for feasible solutions to the problem. To avoid this issue, we define two
solutions as being equivalent if they take the same values on all integer variables (and on all continuous
variables that participate in SOS constraints). A solution will be discarded if it is equivalent to another
solution that is already in the pool.

5.17 Gurobi 2027

Optimality Gap

The interplay between the optimality gap (MIPGap or MIPGapAbs) and multiple solutions can be a bit
subtle. When using the default PoolSearchMode, a non-zero optimality gap indicates that you are willing
to allow the MIP solver to declare a solution optimal, even though the model may have other, better
solutions. The claim the solver makes upon termination is that no other solution would improve the
incumbent objective by more than the optimality gap. Terminating at this point is ultimately a pragmatic
choice - we'd probably rather have the true best solution, but the cost of reducing the optimality gap to
zero can often be prohibitive.

This pragmatic choice can produce a bit of confusion when finding multiple optimal solutions. Specifically,
if you ask for the n best solutions, the optimality gap plays a similar role as it does in the default case,
but the implications may be a bit harder to understand. Specifically, a non-zero optimality gap means
that you are willing to allow the solver to declare that it has found the n best solutions, even though
there may be solutions that are better than those that were returned. The claim in this case is that any
solution not among the reported n best would improve on the objective for the worst among the n best by
less than the optimality gap.

If you want to avoid this source of potential confusion, you should set the optimality gap to 0 when using
PoolSearchMode=2.

Logging

If you browse the log from a MIP solve with PoolSearchMode set to a non-default value, you may see the
lower bound on the objective exceed the upper bound. This can't happen with the default PoolSearchMode
- if you are only looking for one optimal solution, the search is done as soon as the lower bound reaches
the upper bound. However, if you are looking for the n best solutions, you have to prove that the model
has no solution better than the n-th best. The objective for that n-th solution could be much worse than
that of the incumbent. In this situation, the log file will include a line of the form:

Optimal solution found at node 123 - now completing solution pool...

Distributed MIP

One limitation that we should point out related to multiple solutions is that the distributed MIP solver
has not been extended to support non-default PoolSearchMode settings. Distributed MIP will typically
produce many more feasible solutions than non-distributed MIP, but there's no way to ask it to find the n
best solutions.

5.17.3.9 Multiple Objectives

While typical optimization models have a single objective function, real-world optimization problems often
have multiple, competing objectives. For example, in a production planning model, you may want to both
maximize profits and minimize late orders, or in a workforce scheduling application, you may want to
both minimize the number of shifts that are short-staffed while also respecting worker's shift preferences.

The main challenge you face when working with multiple, competing objectives is deciding how to manage
the tradeoffs between them. Gurobi provides tools that simplify the task: Gurobi allows you to blend
multiple objectives, to treat them hierarchically, or to combine the two approaches. In a blended approach,
you optimize a weighted combination of the individual objectives. In a hierarchical or lexicographic
approach, you set a priority for each objective, and optimize in priority order. When optimizing for
one objective, you only consider solutions that would not degrade the objective values of higher-priority
objectives. Gurobi allows you to enter and manage your objectives, to provide weights for a blended
approach, or to set priorities for a hierarchical approach. Gurobi will only solve multi-objective models
with strictly linear objectives. Moreover, for continous models, Gurobi will report a primal only solution
(not dual information).

Following the workforce application the specifications of the objectives would be done as follows:

2028 Solver Manuals

equations defObj, defNumShifts, defSumPreferences;

variables obj, numShifts, sumPreferences;

defobj.. obj =e= numShifts - 1/100*sumPreferences;

defNumShifts.. numShifts =e= ...;

defSumPreferences.. sumPreferences =e= ...;

model workforce /all/;

solve workforce minimizing obj using mip;

With the default setting GUROBI will solve the blended objective. Using the parameter MultObj GUROBI
will use a hierarchical approach. A hierarchical or lexicographic approach assigns a priority to each
objective, and optimizes for the objectives in decreasing priority order. At each step, it finds the best
solution for the current objective, but only from among those that would not degrade the solution quality
for higher-priority objectives. The priority is specified by the absolute value of the objective coefficient in
the blended objective function (defObj). In the example, the numShifts objective with coefficient 1 has
higher priority than the sumPreferences objective with absolute objective coefficient 1/100. The sign of
the objective coefficient determines the direction of the particular objective function. So here numShifts

will be minimized (same direction as on the solve statement) while sumPreferences will be maximized.
GAMS needs to identify the various objective functions, therefore the objective variables can only appear
in the blended objective functions and in the particular objective defining equation.

By default, the hierarchical approach won't allow later objectives to degrade earlier objectives. This
behavior can be relaxed through a pair of attributes: ObjNRelTol and ObjNAbsTol. By setting one of
these for a particular objective, you can indicate that later objectives are allowed to degrade this objective
by the specified relative or absolute amount, respectively. In our earlier example, if the optimal value
for numShifts is 100, and if we set ObjNAbsTol for this objective to 20, then the second optimization
step maximizing sumPreferences would find the best solution for the second objective from among all
solutions with objective 120 or better for numShifts. Note that if you modify both tolerances, later
optimizations would use the looser of the two values (i.e., the one that allows the larger degradation).

5.17.4 GAMS Options

The following GAMS options are used by GAMS/Gurobi:

Option BRatio = x;

Determines whether or not to use an advanced basis. A value of 1.0 causes GAMS to instruct
Gurobi not to use an advanced basis. A value of 0.0 causes GAMS to construct a basis from
whatever information is available. The default value of 0.25 will nearly always cause GAMS to
pass along an advanced basis if a solve statement has previously been executed. This GAMS
option is overridden by the GAMS/Gurobi option UseBasis

Option IterLim = n;

Sets the simplex iteration limit. Simplex algorithms will terminate and pass on the current
solution to GAMS. For MIP problems, if the number of the cumulative simplex iterations
exceeds the limit, Gurobi will terminate. This GAMS option is overridden by the GAMS/Gurobi
option IterationLimit

Option NodLim = x;

Maximum number of nodes to process for a MIP problem. This GAMS option is overridden
by the GAMS/Gurobi option NodeLimit.

Option OptCA = x;

5.17 Gurobi 2029

Absolute optimality criterion for a MIP problem. The OptCA option asks Gurobi to stop
when

|BP −BF | < OptCA

where BF is the objective function value of the current best integer solution while BP is the
best possible integer solution. This GAMS option is overridden by the GAMS/Gurobi option
MipGapAbs.

Option OptCR = x;

Relative optimality criterion for a MIP problem. Notice that Gurobi uses a different definition
than GAMS normally uses. The OptCR option asks Gurobi to stop when

|BP −BF | < |BF | ∗OptCR

where BF is the objective function value of the current best integer solution while BP is the
best possible integer solution. The GAMS definition is:

|BP −BF | < |BP | ∗OptCR

This GAMS option is overridden by the GAMS/Gurobi option MipGap.

Option ResLim = x;

Sets the time limit in seconds. The algorithm will terminate and pass on the current solution
to GAMS. Gurobi measures time in wall time on all platforms. Some other GAMS solvers
measure time in CPU time on some Unix systems. In case resLim assumes its default value
(1e+10) Gurobi will use its own default (infinity). This GAMS option is overridden by the
GAMS/Gurobi option TimeLimit.

Option SysOut = On;

Will echo Gurobi messages to the GAMS listing file. This option may be useful in case of a
solver failure.

ModelName.Cutoff = x;

Cutoff value. When the branch and bound search starts, the parts of the tree with an objective
worse than x are deleted. This can sometimes speed up the initial phase of the branch and
bound algorithm. This GAMS option is overridden by the GAMS/Gurobi option CutOff.

ModelName.OptFile = 1;

Instructs GAMS/Gurobi to read the option file. The name of the option file is gurobi.opt.

ModelName.PriorOpt = 1;

Instructs GAMS/Gurobi to use the priority branching information passed by GAMS through
variable suffix values variable.prior.

5.17.5 Summary of GUROBI Options

5.17.5.1 Termination options

2030 Solver Manuals

Option Description Default

bariterlimit
Barrier iteration limit infinity

bestbdstop
Best objective bound to stop maxdouble

bestobjstop
Best objective value to stop mindouble

cutoff
Objective cutoff maxdouble

iterationlimit
Simplex iteration limit infinity

memlimit
Memory limit maxdouble

nodelimit
MIP node limit maxdouble

softmemlimit
Soft memory limit maxdouble

solutionlimit
MIP feasible solution limit maxint

timelimit
Time limit GAMS reslim

worklimit
Work limit maxdouble

5.17.5.2 Tolerances options

Option Description Default

barconvtol
Barrier convergence tolerance 1e-08

barqcpconvtol
Barrier QCP convergence tolerance 1e-06

feasibilitytol
Primal feasibility tolerance 1e-06

intfeastol
Integer feasibility tolerance 1e-05

markowitztol
Threshold pivoting tolerance 0.0078125

mipgap
Relative MIP optimality gap GAMS optcr

mipgapabs
Absolute MIP optimality gap GAMS optca

optimalitytol
Dual feasibility tolerance 1e-06

psdtol
Positive semi-definite tolerance 1e-06

5.17.5.3 Simplex options

Option Description Default

lpwarmstart
Warm start usage in simplex 1

networkalg
Network simplex algorithm -1

normadjust
Simplex pricing norm -1

perturbvalue
Simplex perturbation magnitude 0.0002

quad
Quad precision computation in simplex -1

sifting
Sifting within dual simplex -1

5.17 Gurobi 2031

Option Description Default

siftmethod
LP method used to solve sifting sub-problems -1

simplexpricing
Simplex variable pricing strategy -1

5.17.5.4 Barrier options

Option Description Default

barcorrectors
Central correction limit -1

barhomogeneous
Barrier homogeneous algorithm -1

barorder
Barrier ordering algorithm -1

crossover Barrier crossover strategy -1

crossoverbasis
Crossover initial basis construction strategy -1

qcpdual
Compute dual variables for QCP models 1

5.17.5.5 Scaling options

Option Description Default

objscale
Objective scaling 0

scaleflag
Model scaling -1

5.17.5.6 MIP options

Option Description Default

branchdir
Branch direction preference 0

concurrentjobs
Enables distributed concurrent solver 0

concurrentmethod
Chooses continuous solvers to run concurrently -1

concurrentmip
Enables concurrent MIP solver 1

degenmoves
Degenerate simplex moves -1

distributedmipjobs
Enables the distributed MIP solver 0

dumpbcsol
Dump incumbents to GDX files during branch-and-cut

fixoptfile
Option file for fixed problem optimization

heuristics
Turn MIP heuristics up or down 0.05

improvestartgap
Trigger solution improvement 0

improvestartnodes
Trigger solution improvement maxdouble

improvestarttime
Trigger solution improvement maxdouble

.lazy
Lazy constraints value 0

2032 Solver Manuals

Option Description Default

lazyconstraints
Indicator to use lazy constraints 0

minrelnodes
Minimum relaxation heuristic control -1

mipfocus
Set the focus of the MIP solver 0

mipstart
Use mip starting values 0

mipstopexpr
Stop expression for branch and bound

miqcpmethod
Method used to solve MIQCP models -1

multimipstart
Use multiple (partial) mipstarts provided via gdx files

nlpheur
Controls the NLP heuristic for non-convex quadratic models 1

nodefiledir
Directory for MIP node files .

nodefilestart
Memory threshold for writing MIP tree nodes to disk maxdouble

nodemethod
Method used to solve MIP node relaxations -1

nonconvex Control how to deal with non-convex quadratic programs -1

norelheurtime
Limits the amount of time (in seconds) spent in the NoRel heuristic 0

norelheurwork
Limits the amount of work performed by the NoRel heuristic 0

obbt
Controls aggressiveness of optimality-based bound tightening -1

.partition
Variable partition value 0

partitionplace
Controls when the partition heuristic runs 15

.prior
Branching priorities 1

pumppasses Feasibility pump heuristic control -1

rins
RINS heuristic -1

solfiles
Location to store intermediate solution files

solnpool
Controls export of alternate MIP solutions

solnpoolmerge
Controls export of alternate MIP solutions for merged GDX solution
file

solnpoolnumsym
Maximum number of variable symbols when writing merged GDX
solution file

10

solnpoolprefix
First dimension of variables for merged GDX solution file or file
name prefix for GDX solution files

soln

solvefixed
Indicator for solving the fixed problem for a MIP to get a dual
solution

1

startnodelimit
Node limit for MIP start sub-MIP -1

submipnodes
Nodes explored by sub-MIP heuristics 500

symmetry
Symmetry detection -1

varbranch
Branch variable selection strategy -1

zeroobjnodes
Zero objective heuristic control -1

5.17.5.7 Presolve options

5.17 Gurobi 2033

Option Description Default

aggfill
Allowed fill during presolve aggregation -1

aggregate
Presolve aggregation control 1

dualreductions
Disables dual reductions in presolve 1

precrush
Allows presolve to translate constraints on the original model to equiv-
alent constraints on the presolved model

0

predeprow
Presolve dependent row reduction -1

predual
Presolve dualization -1

premiqcpform
Format of presolved MIQCP model -1

prepasses Presolve pass limit -1

preqlinearize
Presolve Q matrix linearization -1

Presolve
Presolve level -1

presos1bigm
Controls largest coefficient in SOS1 reformulation -1

presos1encoding
Controls SOS1 reformulation -1

presos2bigm
Controls largest coefficient in SOS2 reformulation -1

presos2encoding
Controls SOS2 reformulation -1

presparsify
Presolve sparsify reduction -1

5.17.5.8 Tuning options

Option Description Default

tunecleanup
Enables a tuning cleanup phase 0

tunecriterion
Specify tuning criterion -1

tunedynamicjobs
Enables distributed tuning using a dynamic set of workers 0

tunejobs
Enables distributed tuning using a static set of workers 0

tunemetric
Metric to aggregate results into a single measure -1

tuneoutput
Tuning output level 2

tuneresults
Number of improved parameter sets returned -1

tunetargetmipgap
A target gap to be reached 0

tunetargettime
A target runtime in seconds to be reached 0.005

tunetimelimit
Time limit for tuning maxdouble

tunetrials
Perform multiple runs on each parameter set to limit the effect of
random noise

0

5.17.5.9 Multiple Solutions options

2034 Solver Manuals

Option Description Default

poolgap
Relative gap for solutions in pool maxdouble

poolgapabs
Absolute gap for solutions in pool maxdouble

poolsearchmode
Choose the approach used to find additional solutions 0

poolsolutions
Number of solutions to keep in pool 10

5.17.5.10 MIP Cuts options

Option Description Default

bqpcuts
BQP cut generation -1

cliquecuts
Clique cut generation -1

covercuts
Cover cut generation -1

cutaggpasses
Constraint aggregation passes performed during cut generation -1

cutpasses
Root cutting plane pass limit -1

cuts
Global cut generation control -1

flowcovercuts
Flow cover cut generation -1

flowpathcuts
Flow path cut generation -1

gomorypasses Root Gomory cut pass limit -1

gubcovercuts
GUB cover cut generation -1

impliedcuts
Implied bound cut generation -1

infproofcuts
Infeasibility proof cut generation -1

liftprojectcuts
Lift-and-project cut generation -1

mipsepcuts
MIP separation cut generation -1

mircuts
MIR cut generation -1

mixingcuts
Mixing cut generation -1

modkcuts
Mod-k cut generation -1

networkcuts
Network cut generation -1

projimpliedcuts
Projected implied bound cut generation -1

psdcuts
PSD cut generation -1

relaxliftcuts
Relax-and-lift cut generation -1

rltcuts
RLT cut generation -1

strongcgcuts
Strong-CG cut generation -1

submipcuts
Sub-MIP cut generation -1

zerohalfcuts
Zero-half cut generation -1

5.17 Gurobi 2035

5.17.5.11 Distributed algorithms options

Option Description Default

workerpassword
Password for distributed worker cluster

workerpool
Distributed worker cluster

5.17.5.12 Other options

Option Description Default

disconnected
Disconnected component strategy -1

displayinterval
Frequency at which log lines are printed 5

.dofuncpieceerror
Error allowed for PWL translation of function constraints 1e-3

.dofuncpiecelength
Piece length for PWL translation of function constraints 1e-2

.dofuncpieceratio
Control whether to under- or over-estimate function values in
PWL approximation

-1

.dofuncpieces
Sets strategy for PWL function approximation 0

feasopt
Computes a minimum-cost relaxation to make an infeasible
model feasible

0

feasoptmode
Mode of FeasOpt 0

.feaspref
feasibility preference 1

feasrelaxbigm
Big-M value for feasibility relaxations 1e+06

freegamsmodel
Preserves memory by dumping the GAMS model instance rep-
resentation temporarily to disk

0

funcmaxval
Maximum value for x and y variables in function constraints 1e+06

funcnonlinear
Controls whether general function constraints are treated as
nonlinear functions or via PWL approximation

1

funcpieceerror
Error allowed for PWL translation of function constraint 0.001

funcpiecelength
Piece length for PWL translation of function constraint 0.01

funcpieceratio
Controls whether to under- or over-estimate function values in
PWL approximation

-1

funcpieces
Sets strategy for PWL function approximation 0

iis
Run the Irreducible Inconsistent Subsystem (IIS) finder if the
problem is infeasible

0

iismethod
IIS method -1

integralityfocus
Set the integrality focus 0

kappa
Display approximate condition number estimates for the optimal
simplex basis

0

kappaexact
Display exact condition number estimates for the optimal sim-
plex basis

0

method
Algorithm used to solve continuous models -1

miptrace
Filename of MIP trace file

2036 Solver Manuals

Option Description Default

miptracenode
Node interval when a trace record is written 100

miptracetime
Time interval when a trace record is written 1

multiobjmethod
Warm-start method to solve for subsequent objectives -1

multiobjpre
Initial presolve on multi-objective models -1

multobj
Controls the hierarchical optimization of multiple objectives 0

names Indicator for loading names 1

nlreform
Reform nonlinear equations to Gurobi general constraints 1

numericfocus
Set the numerical focus 0

objnabstol
Allowable absolute degradation for objective

objnreltol
Allowable relative degradation for objective

printoptions
List values of all options to GAMS listing file 0

qextractalg
quadratic extraction algorithm in GAMS interface 0

readparams
Read Gurobi parameter file

rerun Resolve without presolve in case of unbounded or infeasible -1

rngrestart
Write GAMS readable ranging information file

seed
Modify the random number seed 0

sensitivity
Provide sensitivity information 0

solutiontarget
Specify the solution target for LP -1

threads
Number of parallel threads to use GAMS threads

Tuning
Parameter Tuning

usebasis
Use basis from GAMS GAMS bratio

varhint
Guide heuristics and branching through variable hints 0

writeparams
Write Gurobi parameter file

writeprob
Save the problem instance

5.17.5.13 The GAMS/Gurobi Options File

The GAMS/Gurobi options file consists of one option or comment per line. An asterisk (∗) at the beginning
of a line causes the entire line to be ignored. Otherwise, the line will be interpreted as an option name
and value separated by any amount of white space (blanks or tabs).

Following is an example options file gurobi.opt.

simplexpricing 3

method 0

It will cause Gurobi to use quick-start steepest edge pricing and will use the primal simplex algorithm.

5.17 Gurobi 2037

5.17.6 GAMS/Gurobi Log File

Gurobi reports its progress by writing to the GAMS log file as the problem solves. Normally the GAMS
log file is directed to the computer screen.

The log file shows statistics about the presolve and continues with an iteration log.

For the simplex algorithms, each log line starts with the iteration number, followed by the objective value,
the primal and dual infeasibility values, and the elapsed wall clock time. The dual simplex uses a bigM
approach for handling infeasibility, so the objective and primal infeasibility values can both be very large
during phase I. The frequency at which log lines are printed is controlled by the DisplayInterval option.
By default, the simplex algorithms print a log line roughly every five seconds, although log lines can be
delayed when solving models with particularly expensive iterations.

The simplex screen log has the following appearance:

Presolve removed 977 rows and 1539 columns

Presolve changed 3 inequalities to equalities

Presolve time: 0.078000 sec.

Presolved: 1748 Rows, 5030 Columns, 32973 Nonzeros

Iteration Objective Primal Inf. Dual Inf. Time

0 3.8929476e+31 1.200000e+31 1.485042e-04 0s

5624 1.1486966e+05 0.000000e+00 0.000000e+00 2s

Solved in 5624 iterations and 1.69 seconds

Optimal objective 1.148696610e+05

The barrier algorithm log file starts with barrier statistics about dense columns, free variables, nonzeros
in AA' and the Cholesky factor matrix, computational operations needed for the factorization, memory
estimate and time estimate per iteration. Then it outputs the progress of the barrier algorithm in iterations
with the primal and dual objective values, the magnitude of the primal and dual infeasibilites and the
magnitude of the complementarity violation. After the barrier algorithm terminates, by default, Gurobi
will perform crossover to obtain a valid basic solution. It first prints the information about pushing the
dual and primal superbasic variables to the bounds and then the information about the simplex progress
until the completion of the optimization.

The barrier screen log has the following appearance:

Presolve removed 2394 rows and 3412 columns

Presolve time: 0.09s

Presolved: 3677 Rows, 8818 Columns, 30934 Nonzeros

Ordering time: 0.20s

Barrier statistics:

Dense cols : 10

Free vars : 3

AA’ NZ : 9.353e+04

Factor NZ : 1.139e+06 (roughly 14 MBytes of memory)

Factor Ops : 7.388e+08 (roughly 2 seconds per iteration)

Objective Residual

Iter Primal Dual Primal Dual Compl Time

0 1.11502515e+13 -3.03102251e+08 7.65e+05 9.29e+07 2.68e+09 2s

1 4.40523949e+12 -8.22101865e+09 3.10e+05 4.82e+07 1.15e+09 3s

2038 Solver Manuals

2 1.18016996e+12 -2.25095257e+10 7.39e+04 1.15e+07 3.37e+08 4s

3 2.24969338e+11 -2.09167762e+10 1.01e+04 2.16e+06 5.51e+07 5s

4 4.63336675e+10 -1.44308755e+10 8.13e+02 4.30e+05 9.09e+06 6s

5 1.25266057e+10 -4.06364070e+09 1.52e+02 8.13e+04 2.21e+06 7s

6 1.53128732e+09 -1.27023188e+09 9.52e+00 1.61e+04 3.23e+05 9s

7 5.70973983e+08 -8.11694302e+08 2.10e+00 5.99e+03 1.53e+05 10s

8 2.91659869e+08 -4.77256823e+08 5.89e-01 5.96e-08 8.36e+04 11s

9 1.22358325e+08 -1.30263121e+08 6.09e-02 7.36e-07 2.73e+04 12s

10 6.47115867e+07 -4.50505785e+07 1.96e-02 1.43e-06 1.18e+04 13s

......

26 1.12663966e+07 1.12663950e+07 1.85e-07 2.82e-06 1.74e-04 2s

27 1.12663961e+07 1.12663960e+07 3.87e-08 2.02e-07 8.46e-06 2s

Barrier solved model in 27 iterations and 1.86 seconds

Optimal objective 1.12663961e+07

Crossover log...

1592 DPushes remaining with DInf 0.0000000e+00 2s

0 DPushes remaining with DInf 2.8167333e-06 2s

180 PPushes remaining with PInf 0.0000000e+00 2s

0 PPushes remaining with PInf 0.0000000e+00 2s

Push phase complete: Pinf 0.0000000e+00, Dinf 2.8167333e-06 2s

Iteration Objective Primal Inf. Dual Inf. Time

1776 1.1266396e+07 0.000000e+00 0.000000e+00 2s

Solved in 2043 iterations and 2.00 seconds

Optimal objective 1.126639605e+07

For MIP problems, the Gurobi solver prints regular status information during the branch and bound search.
The first two output columns in each log line show the number of nodes that have been explored so far in
the search tree, followed by the number of nodes that remain unexplored. The next three columns provide
information on the most recently explored node in the tree. The solver prints the relaxation objective
value for this node, followed by its depth in the search tree, followed by the number of integer variables
with fractional values in the node relaxation solution. The next three columns provide information on the
progress of the global MIP bounds. They show the objective value for the best known integer feasible
solution, the best bound on the value of the optimal solution, and the gap between these lower and upper
bounds. Finally, the last two columns provide information on the amount of work performed so far. The
first column gives the average number of simplex iterations per explored node, and the next column gives
the elapsed wall clock time since the optimization began.

At the default value for option DisplayInterval, the MIP solver prints one log line roughly every five
seconds. Note, however, that log lines are often delayed in the MIP solver due to particularly expensive
nodes or heuristics.

Presolve removed 12 rows and 11 columns

Presolve tightened 70 bounds and modified 235 coefficients

Presolve time: 0.02s

Presolved: 114 Rows, 116 Columns, 424 Nonzeros

Objective GCD is 1

Nodes | Current Node | Objective Bounds | Work

Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

5.17 Gurobi 2039

H 0 0 -0.0000 - - - 0s

Root relaxation: 208 iterations, 0.00 seconds

0 0 29.6862 0 64 -0.0000 29.6862 - - 0s

H 0 0 8.0000 29.6862 271% - 0s

H 0 0 17.0000 29.6862 74.6% - 0s

0 2 27.4079 0 60 17.0000 27.4079 61.2% - 0s

H 27 17 18.0000 26.0300 44.6% 51.6 0s

* 87 26 45 20.0000 26.0300 30.2% 28.4 0s

* 353 71 29 21.0000 25.0000 19.0% 19.3 0s

1268 225 24.0000 28 43 21.0000 24.0000 14.3% 32.3 5s

2215 464 22.0000 43 30 21.0000 24.0000 14.3% 33.2 10s

Cutting planes:

Gomory: 175

Cover: 25

Implied bound: 87

MIR: 150

Explored 2550 nodes (84600 simplex iterations) in 11.67 seconds

Thread count was 1 (of 4 available processors)

Optimal solution found (tolerance 1.00e-01)

Best objective 2.1000000000e+01, best bound 2.3000000000e+01, gap 9.5238%

5.17.7 Detailed Descriptions of GUROBI Options

aggfill (integer): Allowed fill during presolve aggregation ←↩

Controls the amount of fill allowed during presolve aggregation. Larger values generally lead
to presolved models with fewer rows and columns, but with more constraint matrix non-zeros.

The default value chooses automatically, and usually works well.

Default: -1

aggregate (integer): Presolve aggregation control ←↩

Default: 1

barconvtol (real): Barrier convergence tolerance ←↩

The barrier solver terminates when the relative difference between the primal and dual objective
values is less than the specified tolerance.

Default: 1e-08

barcorrectors (integer): Central correction limit ←↩

The default value is chosen automatically, depending on problem characteristics.

Default: -1

barhomogeneous (integer): Barrier homogeneous algorithm ←↩

Determines whether to use the homogeneous barrier algorithm. At the default setting (-1), it
is only used when barrier solves a node relaxation for a MIP model. Setting the parameter
to 0 turns it off, and setting it to 1 forces it on. The homogeneous algorithm is useful for
recognizing infeasibility or unboundedness. It is a bit slower than the default algorithm.

Default: -1

2040 Solver Manuals

value meaning

-1 Auto

0 Homogeneous Barrier off

1 Force Homogeneous Barrier on

bariterlimit (integer): Barrier iteration limit ←↩

Default: infinity

barorder (integer): Barrier ordering algorithm ←↩

Default: -1

value meaning

-1 Auto

0 Approximate Minimum Degree ordering

1 Nested Dissection ordering

barqcpconvtol (real): Barrier QCP convergence tolerance ←↩

When solving a QCP model, the barrier solver terminates when the relative difference between
the primal and dual objective values is less than the specified tolerance. Tightening this
tolerance may lead to a more accurate solution, but it may also lead to a failure to converge.

Default: 1e-06

bestbdstop (real): Best objective bound to stop ←↩

Terminates as soon as the engine determines that the best bound on the objective value is at
least as good as the specified value.

Default: maxdouble

bestobjstop (real): Best objective value to stop ←↩

Terminate as soon as the engine finds a feasible solution whose objective value is at least as
good as the specified value.

Default: mindouble

bqpcuts (integer): BQP cut generation ←↩

Default: -1

value meaning

-1 Auto

0 Off

1 Conservative

2 Aggressive

branchdir (integer): Branch direction preference ←↩

5.17 Gurobi 2041

This option allows more control over how the branch-and-cut tree is explored. Specifically,
when a node in the MIP search is completed and two child nodes, corresponding to the down
branch and the up branch are created, this parameter allows you to determine whether the
MIP solver will explore the down branch first, the up branch first, or whether it will choose
the next node based on a heuristic determination of which sub-tree appears more promising.

Default: 0

value meaning

-1 Always explore the down branch first

0 Automatic

1 Always explore the up branch first

cliquecuts (integer): Clique cut generation ←↩

See the description of the global Cuts parameter for further information.

Default: -1

value meaning

-1 Auto

0 Off

1 Conservative

2 Aggressive

concurrentjobs (integer): Enables distributed concurrent solver ←↩

Enables distributed concurrent optimization, which can be used to solve LP or MIP models
on multiple machines. A value of n causes the solver to create n independent models, using
different parameter settings for each. Each of these models is sent to a distributed worker
for processing. Optimization terminates when the first solve completes. Use the WorkerPool
parameter to provide a list of available distributed workers.

By default, Gurobi chooses the parameter settings used for each independent solve automatically.
The intent of concurrent MIP solving is to introduce additional diversity into the MIP search.
By bringing the resources of multiple machines to bear on a single model, this approach can
sometimes solve models much faster than a single machine.

Default: 0

concurrentmethod (integer): Chooses continuous solvers to run concurrently ←↩

This parameter is only evaluated when solving an LP with a concurrent solver (Method = 3
or 4). It controls which methods are run concurrently by the concurrent solver.

Default: -1

value meaning

-1 Auto

0 barrier, dual, primal simplex

1 barrier and dual simplex

2 barrier and primal simplex

3 dual and primal simplex

2042 Solver Manuals

concurrentmip (integer): Enables concurrent MIP solver ←↩

This parameter enables the concurrent MIP solver. When the parameter is set to value n, the
MIP solver performs n independent MIP solves in parallel, with different parameter settings for
each. Optimization terminates when the first solve completes. Gurobi chooses the parameter
settings used for each independent solve automatically. The intent of concurrent MIP solving
is to introduce additional diversity into the MIP search. This approach can sometimes solve
models much faster than applying all available threads to a single MIP solve, especially on
very large parallel machines.

The concurrent MIP solver divides available threads evenly among the independent solves. For
example, if you have 6 threads available and you set ConcurrentMIP to 2, the concurrent MIP
solver will allocate 3 threads to each independent solve. Note that the number of independent
solves launched will not exceed the number of available threads.

The concurrent MIP solver produces a slightly different log from the standard MIP solver.
The log only provides periodic summary information. Each concurrent MIP log line shows
the objective for the best feasible solution found by any of the independent solves to that
point, the best objective bound proved by any of the independent solves, and the relative
gap between these two values. Gurobi also includes node counts from one of the independent
solves, as well as elapsed times, to give some indication of forward progress.

Default: 1

covercuts (integer): Cover cut generation ←↩

See the description of the global Cuts parameter for further information.

Default: -1

value meaning

-1 Auto

0 Off

1 Conservative

2 Aggressive

crossover (integer): Barrier crossover strategy ←↩

Use value 0 to disable crossover; the solver will return an interior solution. Other options
control whether the crossover algorithm tries to push primal or dual variables to bounds
first, and then which simplex algorithm is used once variable pushing is complete. Options 1
and 2 push dual variables first, then primal variables. Option 1 finishes with primal, while
option 2 finishes with dual. Options 3 and 4 push primal variables first, then dual variables.
Option 3 finishes with primal, while option 4 finishes with dual The default value of -1 chooses
automatically.

Default: -1

crossoverbasis (integer): Crossover initial basis construction strategy ←↩

Default: -1

value meaning

-1 Auto

0 Chooses an initial basis quickly

1 Can take much longer, but often produces a more numerically stable start basis

5.17 Gurobi 2043

cutaggpasses (integer): Constraint aggregation passes performed during cut generation ←↩

A non-negative value indicates the maximum number of constraint aggregation passes performed
during cut generation. See the description of the global Cuts parameter for further information.

Default: -1

cutoff (real): Objective cutoff ←↩

Optimization will terminate if the engine determines that the optimal objective value for the
model is worse than the specified cutoff. This option overwrites the GAMS cutoff option.

Default: maxdouble

cutpasses (integer): Root cutting plane pass limit ←↩

Default: -1

cuts (integer): Global cut generation control ←↩

The parameters, Cuts, CliqueCuts, CoverCuts, FlowCoverCuts, FlowPathCuts, GUBCoverCuts,
ImpliedCuts, InfProofCuts, MIPSepCuts, MIRCuts, ModKCuts, NetworkCuts, GomoryPasses,
StrongCGCuts, SubMIPCuts, CutAggPasses and ZeroHalfCuts, affect the generation of MIP
cutting planes. In all cases except GomoryPasses and CutAggPasses, a value of -1 corresponds
to an automatic setting, which allows the solver to determine the appropriate level of
aggressiveness in the cut generation. Unless otherwise noted, settings of 0, 1, and 2 correspond
to no cut generation, conservative cut generation, or aggressive cut generation, respectively.
The Cuts parameter provides global cut control, affecting the generation of all cuts. This
parameter also has a setting of 3, which corresponds to very aggressive cut generation. The
other parameters override the global Cuts parameter (so setting Cuts to 2 and CliqueCuts to
0 would generate all cut types aggressively, except clique cuts which would not be generated at
all. Setting Cuts to 0 and GomoryPasses to 10 would not generate any cuts except Gomory
cuts for 10 passes).

Default: -1

value meaning

-1 Auto

0 Off

1 Conservative

2 Aggressive

3 Very aggressive

degenmoves (integer): Degenerate simplex moves ←↩

Limits degenerate simplex moves. These moves are performed to improve the integrality of
the current relaxation solution. By default, the algorithm chooses the number of moves to
perform automatically.

Changing the value of this parameter can help performance in cases where an excessive amount
of time is spent after the initial root relaxation has been solved but before the cut generation
process or the root heuristics have started.

Default: -1

disconnected (integer): Disconnected component strategy ←↩

2044 Solver Manuals

A MIP model can sometimes be made up of multiple, completely independent sub-models.
This parameter controls how aggressively we try to exploit this structure. A value of 0 ignores
this structure entirely, while larger values try more aggressive approaches. The default value
of -1 chooses automatically. This only affects mixed integer programming (MIP) models.

Default: -1

value meaning

-1 Auto

0 Ignores structure entirely

1 Conservative

2 Aggressive

displayinterval (integer): Frequency at which log lines are printed ←↩

Default: 5

distributedmipjobs (integer): Enables the distributed MIP solver ←↩

Enables distributed MIP. A value of n causes the MIP solver to divide the work of solving a
MIP model among n machines. Use the WorkerPool parameter to provide the list of available
machines.

Default: 0

.dofuncpieceerror (real): Error allowed for PWL translation of function constraints ←↩

Default: 1e-3

.dofuncpiecelength (real): Piece length for PWL translation of function constraints ←↩

The default length behavior for piecewise-linear approximation of a function constraint is
controlled by funcPieceLength. This dot option .doFuncPieceError allows to overwrite the
default behavior by constraint. The syntax for dot options is explained in the Introduction
chapter of the Solver Manual.

Default: 1e-2

.dofuncpieceratio (real): Control whether to under- or over-estimate function values in PWL approxi-
mation ←↩

The default ratio behavior for piecewise-linear approximation of a function constraint is
controlled by funcPieceRatio. This dot option .doFuncPieceError allows to overwrite the
default behavior by constraint. The syntax for dot options is explained in the Introduction
chapter of the Solver Manual.

Default: -1

.dofuncpieces (integer): Sets strategy for PWL function approximation ←↩

The default strategy for performing a piecewise-linear approximation of a function constraint is
set by funcPieces. This dot option .doFuncPieces allows to overwrite the default strategy by
constraint. The syntax for dot options is explained in the Introduction chapter of the Solver
Manual.

dofuncpieceerror The default error behavior for piecewise-linear approximation of a function
constraint is controlled by funcPieceError. This dot option .doFuncPieceError allows to
overwrite the default behavior by constraint. The syntax for dot options is explained in the
Introduction chapter of the Solver Manual.

Default: 0

5.17 Gurobi 2045

value meaning

-2 Bounds the relative error of the approximation; the error bound is provided in
the FuncPieceError parameter

-1 Bounds the absolute error of the approximation; the error bound is provided in
the FuncPieceError parameter

0 Automatic based on relative error approach

1 Uses a fixed width for each piece; the actual width is provided in the FuncPiece-
Length parameter

>=2 Sets the number of pieces; pieces are equal width

dualreductions (boolean): Disables dual reductions in presolve ←↩

Default: 1

dumpbcsol (string): Dump incumbents to GDX files during branch-and-cut ←↩

The content of this string option is used as a file stem for GDX point files. The file name
gets completed by the solution number. So if this option has beed set to mysol then GDX
files containing the new solution with the names mysol0.gdx, mysol1.gdx, ... will be created.
The number of GDX files created depends on the number of solutions Gurobi finds during
branch-and-cut.

feasibilitytol (real): Primal feasibility tolerance ←↩

All constrains must be satisfied to a tolerance of FeasibilityTol.

Range: [1e-09, 0.01]

Default: 1e-06

feasopt (boolean): Computes a minimum-cost relaxation to make an infeasible model feasible ←↩

With Feasopt turned on, a minimum-cost relaxation of the right hand side values of constraints
or bounds on variables is computed in order to make an infeasible model feasible. It marks
the relaxed right hand side values and bounds in the solution listing.

Several options are available for the metric used to determine what constitutes a minimum-cost
relaxation which can be set by option FeasOptMode.

Feasible relaxations are available for all problem types.

Default: 0

value meaning

0 Turns Feasible Relaxation off

1 Turns Feasible Relaxation on

feasoptmode (integer): Mode of FeasOpt ←↩

The parameter FeasOptMode allows different strategies in finding feasible relaxation in one or
two phases. In its first phase, it attempts to minimize its relaxation of the infeasible model.
That is, it attempts to find a feasible solution that requires minimal change. In its second
phase, it finds an optimal solution (using the original objective) among those that require

2046 Solver Manuals

only as much relaxation as it found necessary in the first phase. Values of the parameter
FeasOptMode indicate two aspects: (1) whether to stop in phase one or continue to phase two
and (2) how to measure the minimality of the relaxation (as a sum of required relaxations;
as the number of constraints and bounds required to be relaxed; as a sum of the squares of
required relaxations).

Default: 0

value meaning

0 Minimize sum of relaxations
Minimize the sum of all required relaxations in first phase only

1 Minimize sum of relaxations and optimize
Minimize the sum of all required relaxations in first phase and execute second
phase to find optimum among minimal relaxations

2 Minimize number of relaxations
Minimize the number of constraints and bounds requiring relaxation in first phase
only

3 Minimize number of relaxations and optimize
Minimize the number of constraints and bounds requiring relaxation in first phase
and execute second phase to find optimum among minimal relaxations

4 Minimize sum of squares of relaxations
Minimize the sum of squares of required relaxations in first phase only

5 Minimize sum of squares of relaxations and optimize
Minimize the sum of squares of required relaxations in first phase and execute
second phase to find optimum among minimal relaxations

.feaspref (real): feasibility preference ←↩

You can express the costs associated with relaxing a bound or right hand side value during a
FeasOpt run through the .feaspref option. The syntax for dot options is explained in the
Introduction chapter of the Solver Manual. The input value denotes the users willingness to
relax a constraint or bound. More precisely, the reciprocal of the specified value is used to
weight the relaxation of that constraint or bound. The user may specify a preference value
less than or equal to 0 (zero), which denotes that the corresponding constraint or bound must
not be relaxed.

Default: 1

feasrelaxbigm (real): Big-M value for feasibility relaxations ←↩

When relaxing a constraint in a feasibility relaxation, it is sometimes necessary to introduce a
big-M value. This parameter determines the default magnitude of that value.

Default: 1e+06

fixoptfile (string): Option file for fixed problem optimization ←↩

flowcovercuts (integer): Flow cover cut generation ←↩

See the description of the global Cuts parameter for further information.

Default: -1

5.17 Gurobi 2047

value meaning

-1 Auto

0 Off

1 Conservative

2 Aggressive

flowpathcuts (integer): Flow path cut generation ←↩

See the description of the global Cuts parameter for further information.

Default: -1

value meaning

-1 Auto

0 Off

1 Conservative

2 Aggressive

freegamsmodel (boolean): Preserves memory by dumping the GAMS model instance representation
temporarily to disk ←↩

In order to provide the maximum amount of memory to the solver this option dumps the
internal representation of the model instance temporarily to disk and frees memory. This
option only works with SolveLink=0 and only for models without quadratic constraints.

Default: 0

funcmaxval (real): Maximum value for x and y variables in function constraints ←↩

Very large values in piecewise-linear approximations can cause numerical issues. This parameter
limits the bounds on the variables that participate in function constraints. Specifically, if x or
y participate in a function constraint, any bound larger than funcMaxVal (in absolute value)
will be truncated.

Default: 1e+06

funcnonlinear (boolean): Controls whether general function constraints are treated as nonlinear functions
or via PWL approximation ←↩

Default: 1

value meaning

0 Piecewise-linear approximations

1 Nonlinear functions

funcpieceerror (real): Error allowed for PWL translation of function constraint ←↩

If the funcPieces parameter is set to value -1 or -2, this parameter provides the maximum
allowed error (absolute for -1, relative for -2) in the piecewise-linear approximation.

Default: 0.001

funcpiecelength (real): Piece length for PWL translation of function constraint ←↩

2048 Solver Manuals

If the funcPieces parameter is set to value 1, this parameter gives the length of each piece of
the piecewise-linear approximation.

Default: 0.01

funcpieceratio (real): Controls whether to under- or over-estimate function values in PWL approximation
←↩

This option controls whether the piecewise-linear approximation of a function constraint is an
underestimate of the function, an overestimate, or somewhere in between. A value of 0 will
always underestimate, while a value of 1 will always overestimate. A value in between will
interpolate between the underestimate and the overestimate. A special value of -1 chooses
points that are on the original function.

Default: -1

funcpieces (integer): Sets strategy for PWL function approximation ←↩

Default: 0

value meaning

-2 Bounds the relative error of the approximation; the error bound is provided in
the FuncPieceError parameter

-1 Bounds the absolute error of the approximation; the error bound is provided in
the FuncPieceError parameter

0 Automatic PWL approximation

1 Uses a fixed width for each piece; the actual width is provided in the FuncPiece-
Length parameter

>=2 Sets the number of pieces; pieces are equal width

gomorypasses (integer): Root Gomory cut pass limit ←↩

A non-negative value indicates the maximum number of Gomory cut passes performed. See
the description of the global Cuts parameter for further information.

Default: -1

gubcovercuts (integer): GUB cover cut generation ←↩

See the description of the global Cuts parameter for further information.

Default: -1

value meaning

-1 Auto

0 Off

1 Conservative

2 Aggressive

heuristics (real): Turn MIP heuristics up or down ←↩

Larger values produce more and better feasible solutions, at a cost of slower progress in the
best bound.

5.17 Gurobi 2049

Range: [0, 1]

Default: 0.05

iis (integer): Run the Irreducible Inconsistent Subsystem (IIS) finder if the problem is infeasible ←↩

Default: 0

value meaning

0 No conflict analysis

1 Conflict analysis after solve if infeasible

2 Conflict analysis without previous solve

iismethod (integer): IIS method ←↩

Chooses the IIS method to use. Method 0 is often faster, while method 1 can produce a
smaller IIS. Method 2 ignores the bound constraints. Method 3 will return the IIS for the
LP relaxation of a MIP model if the relaxation is infeasible, even though the result may
not be minimal when integrality constraints are included. The default value of -1 chooses
automatically.

Default: -1

impliedcuts (integer): Implied bound cut generation ←↩

See the description of the global Cuts parameter for further information.

Default: -1

value meaning

-1 Auto

0 Off

1 Conservative

2 Aggressive

improvestartgap (real): Trigger solution improvement ←↩

The MIP solver can change parameter settings in the middle of the search in order to adopt a
strategy that gives up on moving the best bound and instead devotes all of its effort towards
finding better feasible solutions. This parameter allows you to specify an optimality gap at
which the MIP solver will switch to this strategy. For example, setting this parameter to 0.1
will cause the MIP solver to switch once the relative optimality gap is smaller than 0.1.

Default: 0

improvestartnodes (real): Trigger solution improvement ←↩

The MIP solver can change parameter settings in the middle of the search in order to adopt a
strategy that gives up on moving the best bound and instead devotes all of its effort towards
finding better feasible solutions. This parameter allows you to specify the node count at
which the MIP solver switches to a solution improvement strategy. For example, setting this
parameter to 10 will cause the MIP solver to switch strategies once the node count is larger
than 10.

Default: maxdouble

2050 Solver Manuals

improvestarttime (real): Trigger solution improvement ←↩

The MIP solver can change parameter settings in the middle of the search in order to adopt a
strategy that gives up on moving the best bound and instead devotes all of its effort towards
finding better feasible solutions. This parameter allows you to specify a time limit when the
MIP solver will switch to this strategy. For example, setting this parameter to 10 will cause
the MIP solver to switch 10 seconds after starting the optimization.

Default: maxdouble

infproofcuts (integer): Infeasibility proof cut generation ←↩

Controls infeasibility proof cut generation. Use 0 to disable these cuts, 1 for moderate cut
generation, or 2 for aggressive cut generation. The default -1 value chooses automatically.
Overrides the Cuts parameter.

Default: -1

integralityfocus (boolean): Set the integrality focus ←↩

One unfortunate reality in MIP is that integer variables don't always take exact integral values.
While this typically doesn't create significant problems, in some situations the side-effects can
be quite undesirable. The best-known example is probably a trickle flow, where a continuous
variable that is meant to be zero when an associated binary variable is zero instead takes
a non-trivial value. More precisely, given a constraint y =l= Mb, where y is a non-negative
continuous variable, b is a binary variable, and M is a constant that captures the largest
possible value of y, the constraint is intended to enforce the relationship that y must be zero if
b is zero. With the default integer feasibility tolerance, the binary variable is allowed to take a
value as large as 1e-5 while still being considered as taking value zero. If the M value is large,
then the M b upper bound on the y variable can be substantial.

Reducing the value of the intFeasTol parameter can mitigate the effects of such trickle flows,
but often at a significant cost, and often with limited success. The integralityFocus parameter
provides a better alternative. Setting this parameter to 1 requests that the solver work harder
to try to avoid solutions that exploit integrality tolerances. More precisely, the solver tries to
find solutions that are still (nearly) feasible if all integer variables are rounded to exact integral
values. We should say that the solver won't always succeed in finding such solutions, and that
this setting introduces a modest performance penalty, but the setting will significantly reduce
the frequency and magnitude of such violations.

Default: 0

value meaning

0 Disable the integrality focus

1 Enable the integrality focus

intfeastol (real): Integer feasibility tolerance ←↩

An integrality restriction on a variable is considered satisfied when the variable's value is less
than IntFeasTol from the nearest integer value.

Range: [1e-09, 0.1]

Default: 1e-05

iterationlimit (real): Simplex iteration limit ←↩

5.17 Gurobi 2051

Default: infinity

kappa (boolean): Display approximate condition number estimates for the optimal simplex basis ←↩

Default: 0

value meaning

0 Do not compute and display approximate condition number

1 Compute and display approximate condition number

kappaexact (boolean): Display exact condition number estimates for the optimal simplex basis ←↩

Default: 0

value meaning

0 Do not compute and display exact condition number

1 Compute and display exact condition number

.lazy (integer): Lazy constraints value ←↩

Determines whether a linear constraint is treated as a lazy constraint. At the beginning of
the MIP solution process, any constraint whose Lazy attribute is set to 1, 2, or 3 (the default
value is 0) is removed from the model and placed in the lazy constraint pool. Lazy constraints
remain inactive until a feasible solution is found, at which point the solution is checked against
the lazy constraint pool. If the solution violates any lazy constraint, the solution is discarded
and one or more of the violated lazy constraints are pulled into the active model.

Larger values for this attribute cause the constraint to be pulled into the model more aggressively.
With a value of 1, the constraint can be used to cut off a feasible solution, but it won't necessarily
be pulled in if another lazy constraint also cuts off the solution. With a value of 2, all lazy
constraints that are violated by a feasible solution will be pulled into the model. With a value
of 3, lazy constraints that cut off the relaxation solution are also pulled in.

Any constraint whose Lazy attribute is set to -1 is treated as a user cut; it is removed from
the model and placed in the user cut pool. User cuts may be added to the model at any node
in the branch-and-cut search tree to cut off relaxation solutions.

The main difference between user cuts and lazy constraints is that the former are not allowed
to cut off integer-feasible solutions. In other words, they are redundant for the MIP model,
and the solver is free to decide whether or not to use them to cut off relaxation solutions.
The hope is that adding them speeds up the overall solution process. Lazy constraints have
no such restrictions. They are essential to the model, and the solver is forced to apply them
whenever a solution would otherwise not satisfy them.

Only affects MIP models. Lazy constraints are only active if option LazyConstraints is enabled
and are specified through the option .lazy. The syntax for dot options is explained in the
Introduction chapter of the Solver Manual.

Default: 0

lazyconstraints (boolean): Indicator to use lazy constraints ←↩

Default: 0

liftprojectcuts (integer): Lift-and-project cut generation ←↩

2052 Solver Manuals

Controls lift-and-project cut generation. Use 0 to disable these cuts, 1 for moderate cut
generation, or 2 for aggressive cut generation. The default -1 value chooses automatically.
Overrides the Cuts parameter.

Default: -1

lpwarmstart (integer): Warm start usage in simplex ←↩

Controls whether and how Gurobi uses warm start information for an LP optimization. The
non default setting of 2 is particularly useful for communicating advanced start information
while retaining the performance benefits of presolve.

As a general rule, setting this parameter to 0 ignores any start information and solves the
model from scratch. Setting it to 1 (the default) uses the provided warm start information
to solve the original, unpresolved problem, regardless of whether presolve is enabled. Setting
it to 2 uses the start information to solve the presolved problem, assuming that presolve is
enabled. This involves mapping the solution of the original problem into an equivalent (or
sometimes nearly equivalent) crushed solution of the presolved problem. If presolve is disabled,
then setting 2 still prioritizes start vectors, while setting 1 prioritizes basis statuses. Taken
together, the LPWarmStart parameter setting, the LP algorithm specified by Gurobi's Method
parameter, and the available advanced start information determine whether Gurobi will use
basis statuses only, basis statuses augmented with information from start vectors, or a basis
obtained by applying the crossover method to the provided primal and dual start vectors to
jump start the optimization.

When Gurobi's Method parameter requests the barrier solver, primal and dual start vectors
are prioritized over basis statuses (but only if you provide both). These start vectors are
fed to the crossover procedure. This is the same crossover that is used to compute a basic
solution from the interior solution produced by the core barrier algorithm, but in this case
crossover is started from arbitrary start vectors. If you set the LPWarmStart parameter to
1, crossover will be invoked on the original model using the provided vectors. Any provided
basis information will not be used in this case. If you set LPWarmStart to 2, crossover will
be invoked on the presolved model using crushed start vectors. If you set the parameter to 2
and provide a basis but no start vectors, the basis will be used to compute the corresponding
primal and dual solutions on the original model. Those solutions will then be crushed and
used as primal and dual start vectors for the crossover, which will then construct a basis for
the presolved model. Note that for all of these settings and start combinations, no barrier
algorithm iterations are performed.

The simplex algorithms provide more warm-starting options, with a parameter value of 1,
simplex will start from a provided basis, if available. Otherwise, it uses a provided start vector
to refine the crash basis it computes.

With a value of 2, simplex will use the crushed start vector on the presolved model to refine
the crash basis. This is true regardless of whether the start is derived from start vectors or a
starting basis from the original model. The difference is that if you provide an advanced basis,
the basis will be used to compute the corresponding primal and dual solutions on the original
model from which the primal or dual start on the presolved model will be derived.

Note: Only affects linear programming (LP) models.

Default: 1

markowitztol (real): Threshold pivoting tolerance ←↩

Used to limit numerical error in the simplex algorithm. A larger value may avoid numerical
problems in rare situations, but it will also harm performance.

Range: [0.0001, 0.999]

Default: 0.0078125

5.17 Gurobi 2053

memlimit (real): Memory limit ←↩

Limits the total amount of memory (in GB, i.e., 109 bytes) available to Gurobi. If more is
needed, Gurobi will fail with an OUT OF MEMORY error.

Default: maxdouble

method (integer): Algorithm used to solve continuous models ←↩

Synonyms: lpmethod rootmethod

Algorithm used to solve continuous models or the root node of a MIP model. Options are:
-1=automatic, 0=primal simplex, 1=dual simplex, 2=barrier, 3=concurrent, 4=deterministic
concurrent, 5=deterministic concurrent simplex.

In the current release, the default Automatic (-1) setting will typically choose non-deterministic
concurrent (Method=3) for an LP, barrier (Method=2) for a QP or QCP, and dual (Method=1)
for the MIP root node. Only the simplex and barrier algorithms are available for continuous
QP models. Only primal and dual simplex are available for solving the root of an MIQP model.
Only barrier is available for continuous QCP models.

Concurrent optimizers run multiple solvers on multiple threads simultaneously, and choose
the one that finishes first. Method=3 and Method=4 will run dual simplex, barrier, and
sometimes primal simplex (depending on the number of available threads). Method=5 will
run both primal and dual simplex. The deterministic options (Method=4 and Method=5) give
the exact same result each time, while Method=3 is often faster but can produce different
optimal bases when run multiple times.

The default setting is rarely significantly slower than the best possible setting, so you generally
won't see a big gain from changing this parameter. There are classes of models where one
particular algorithm is consistently fastest, though, so you may want to experiment with
different options when confronted with a particularly difficult model.

Note that if memory is tight on an LP model, you should consider using the dual simplex
method (Method=1). The concurrent optimizer, which is typically chosen when using the
default setting, consumes a lot more memory than dual simplex alone.

Default: -1

value meaning

-1 Automatic

0 Primal simplex

1 Dual simplex

2 Barrier

3 Concurrent

4 Deterministic concurrent

5 Both primal and dual simplex

minrelnodes (integer): Minimum relaxation heuristic control ←↩

Number of nodes to explore in the minimum relaxation heuristic. Note that this heuristic is
only applied at the end of the MIP root, and only when no other root heuristic finds a feasible
solution.

This heuristic is quite expensive, and generally produces poor quality solutions. You should
generally only use it if other means, including exploration of the tree with default settings, fail
to produce a feasible solution.

2054 Solver Manuals

The default value automatically chooses whether to apply the heuristic. It will only rarely
choose to do so.

Default: -1

mipfocus (integer): Set the focus of the MIP solver ←↩

Default: 0

value meaning

0 Balance between finding good feasible solutions and proving optimality

1 Focus towards finding feasible solutions

2 Focus towards proving optimality

3 Focus on moving the best objective bound

mipgap (real): Relative MIP optimality gap ←↩

The MIP engine will terminate (with an optimal result) when the gap between the lower and
upper objective bound is less than MipGap times the upper bound.

Range: [0, ∞]

Default: GAMS optcr

mipgapabs (real): Absolute MIP optimality gap ←↩

The MIP solver will terminate (with an optimal result) when the gap between the lower and
upper objective bound is less than MIPGapAbs.

Range: [0, ∞]

Default: GAMS optca

mipsepcuts (integer): MIP separation cut generation ←↩

See the description of the global Cuts parameter for further information.

Default: -1

value meaning

-1 Auto

0 Off

1 Conservative

2 Aggressive

mipstart (boolean): Use mip starting values ←↩

Default: 0

value meaning

0 Do not use the values

1 Use the values

5.17 Gurobi 2055

mipstopexpr (string): Stop expression for branch and bound ←↩

If the provided logical expression is true, the branch-and-bound is aborted. Supported values
are: resusd, nodusd, objest, objval. Supported opertators are: +, -, ∗, /, ∧, %, !=, ==, <,
<=, >, >=, !, &&, ||, (,), abs, ceil, exp, floor, log, log10, pow, sqrt. Example:
nodusd >= 1000 && abs(objest - objval) / abs(objval) < 0.1

If multiple stop expressions are given in an option file, the algorithm stops if any of them is
true (|| concatenation).

miptrace (string): Filename of MIP trace file ←↩

More info is available in chapter Solve trace.

miptracenode (integer): Node interval when a trace record is written ←↩

Default: 100

miptracetime (real): Time interval when a trace record is written ←↩

Default: 1

miqcpmethod (integer): Method used to solve MIQCP models ←↩

Controls the method used to solve MIQCP models. Value 1 uses a linearized, outer-
approximation approach, while value 0 solves continuous QCP relaxations at each node.
The default setting (-1) chooses automatically.

Default: -1

value meaning

-1 Auto

0 Continuous QCP relaxations at each node

1 Linearized, outer-approximation approach

mircuts (integer): MIR cut generation ←↩

See the description of the global Cuts parameter for further information.

Default: -1

value meaning

-1 Auto

0 Off

1 Conservative

2 Aggressive

mixingcuts (integer): Mixing cut generation ←↩

Controls Mixing cut generation. Use 0 to disable these cuts, 1 for moderate cut generation,
or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the
Cuts parameter.

Default: -1

2056 Solver Manuals

modkcuts (integer): Mod-k cut generation ←↩

See the description of the global Cuts parameter for further information.

Default: -1

multimipstart (string): Use multiple (partial) mipstarts provided via gdx files ←↩

Specifies (multiple) GDX files with values for the variables. Each file is treated as one intial
guess for the MIP start. These MIP starts are added in addition to the initial guess provided by
the level attribute. A MIP start GDX file can be created, for example, by using the command
line option savepoint.

This option further allows to add partial MIP starts where some variable level records are not
given. GUROBI will then try to construct a full MIP start out of it. In order to not provide a
certain variable level record, simply not include that record in the GDX file or set the level
value to NA or UNDEF.

This option requires mipstart enabled.

multiobjmethod (integer): Warm-start method to solve for subsequent objectives ←↩

When solving a continuous multi-objective model using a hierarchical approach, the model is
solved once for each objective. The algorithm used to solve for the highest priority objective is
controlled by the Method parameter. This parameter determines the algorithm used to solve
for subsequent objectives. As with the Method parameters, values of 0 and 1 use primal and
dual simplex, respectively. A value of 2 indicates that warm-start information from previous
solves should be discarded, and the model should be solved from scratch (using the algorithm
indicated by the Method parameter). The default setting of -1 usually chooses primal simplex.

Default: -1

multiobjpre (integer): Initial presolve on multi-objective models ←↩

Controls the initial presolve level used for multi-objective models. Value 0 disables the initial
presolve, value 1 applies presolve conservatively, and value 2 applies presolve aggressively. The
default -1 value usually applies presolve conservatively. Aggressive presolve may increase the
chance of the objective values being slightly different than those for other options.

Default: -1

multobj (boolean): Controls the hierarchical optimization of multiple objectives ←↩

Default: 0

names (boolean): Indicator for loading names ←↩

Default: 1

value meaning

0 Do not load GAMS names into Gurobi model

1 Load GAMS names into Gurobi model

networkalg (integer): Network simplex algorithm ←↩

Default: -1

5.17 Gurobi 2057

networkcuts (integer): Network cut generation ←↩

See the description of the global Cuts parameter for further information.

Default: -1

value meaning

-1 Auto

0 Off

1 Conservative

2 Aggressive

nlpheur (boolean): Controls the NLP heuristic for non-convex quadratic models ←↩

The NLP heuristic uses a non-linear barrier solver to find feasible solutions to non-convex
quadratic models. It can often find solutions much more quickly than the alternative, but in
some cases it can consume significant runtime without producing a solution.

Note: Only affects non-convex quadratic models.

Default: 1

nlreform (boolean): Reform nonlinear equations to Gurobi general constraints ←↩

Default: 1

nodefiledir (string): Directory for MIP node files ←↩

Determines the directory into which nodes are written when node memory usage exceeds the
specified NodefileStart value.

Default: .

nodefilestart (real): Memory threshold for writing MIP tree nodes to disk ←↩

Controls the point at which MIP tree nodes are written to disk. Whenever node storage
exceeds the specified value (in GBytes), nodes are written to disk.

Default: maxdouble

nodelimit (real): MIP node limit ←↩

Default: maxdouble

nodemethod (integer): Method used to solve MIP node relaxations ←↩

Algorithm used for MIP node relaxations. Note that barrier is not an option for MIQP node
relaxations.

Default: -1

value meaning

-1 Automatic

0 Primal simplex

1 Dual simplex

2 Barrier

2058 Solver Manuals

nonconvex (integer): Control how to deal with non-convex quadratic programs ←↩

Sets the strategy for handling non-convex quadratic objectives or non-convex quadratic
constraints. With setting 0, an error is reported if the original user model contains non-
convex quadratic constructs (unless Q matrix linearization, as controlled by the PreQLinearize
parameter, removes the non-convexity). With setting 1, an error is reported if non-convex
quadratic constructs could not be discarded or linearized during presolve. With setting 2,
non-convex quadratic problems are solved by translating them into bilinear form and applying
spatial branching. The default -1 setting is currently almost equivalent to 2, except that it
takes less care to avoid presolve reductions that might transform a convex constraint into one
that can no longer be detected to be convex, and thus can sometimes perform more presolve
reductions.

Default: -1

norelheurtime (real): Limits the amount of time (in seconds) spent in the NoRel heuristic ←↩

Limits the amount of time (in seconds) spent in the NoRel heuristic. This heuristic searches
for high-quality feasible solutions before solving the root relaxation. It can be quite useful
on models where the root relaxation is particularly expensive. Note that this parameter
will introduce non-determinism - different runs may take different paths. Use norelheurwork
parameter for deterministic results.

Default: 0

norelheurwork (real): Limits the amount of work performed by the NoRel heuristic ←↩

Limits the amount of work spent in the NoRel heuristic. This heuristic searches for high-quality
feasible solutions before solving the root relaxation. It can be quite useful on models where
the root relaxation is particularly expensive. The work metric used in this parameter is tough
to define precisely. A single unit corresponds to roughly a second, but this will depend on the
machine, the core count, and in some cases the model. You may need to experiment to find a
good setting for your model.

Default: 0

normadjust (integer): Simplex pricing norm ←↩

Chooses from among multiple pricing norm variants. The default value of -1 chooses automati-
cally.

Default: -1

numericfocus (integer): Set the numerical focus ←↩

The NumericFocus parameter controls the degree to which the code attempts to detect and
manage numerical issues. The default setting makes an automatic choice, with a slight
preference for speed. Settings 1-3 increasingly shift the focus towards being more careful in
numerical computations. With higher values, the code will spend more time checking the
numerical accuracy of intermediate results, and it will employ more expensive techniques in
order to avoid potential numerical issues.

Default: 0

obbt (integer): Controls aggressiveness of optimality-based bound tightening ←↩

Default: -1

objnabstol (string): Allowable absolute degradation for objective ←↩

5.17 Gurobi 2059

This parameter is used to set the allowable degradation for an objective when doing hierar-
chical multi-objective optimization (MultObj). The syntax for this parameter is ObjNAbsTol

ObjVarName value.

Hierarchical multi-objective optimization will optimize for the different objectives in the model
one at a time, in priority order. If it achieves objective value z when it optimizes for this
objective, then subsequent steps are allowed to degrade this value by at most ObjNAbsTol.

objnreltol (string): Allowable relative degradation for objective ←↩

This parameter is used to set the allowable degradation for an objective when doing hierar-
chical multi-objective optimization (MultObj). The syntax for this parameter is ObjNRelTol

ObjVarName value.

Hierarchical multi-objective optimization will optimize for the different objectives in the model
one at a time, in priority order. If it achieves objective value z when it optimizes for this
objective, then subsequent steps are allowed to degrade this value by at most ObjNRelTol∗|z|.

objscale (real): Objective scaling ←↩

Divides the model objective by the specified value to avoid numerical errors that may result
from very large objective coefficients. The default value of 0 decides on the scaling automatically.
A value less than zero uses the maximum coefficient to the specified power as the scaling (so
ObjScale=-0.5 would scale by the square root of the largest objective coefficient).

Range: [-1, ∞]

Default: 0

optimalitytol (real): Dual feasibility tolerance ←↩

Reduced costs must all be larger than OptimalityTol in the improving direction in order for
a model to be declared optimal.

Range: [1e-09, 0.01]

Default: 1e-06

.partition (integer): Variable partition value ←↩

The MIP solver can perform a solution improvement heuristic using user-provided partition
information. The provided partition number can be positive, which indicates that the variable
should be included when the correspondingly numbered sub-MIP is solved, 0 which indicates
that the variable should be included in every sub-MIP, or -1 which indicates that the variable
should not be included in any sub-MIP. Variables that are not included in the sub-MIP are
fixed to their values in the current incumbent solution.

To give an example, imagine you are solving a model with 400 variables and you set the
partition attribute to -1 for variables 0-99, 0 for variables 100-199, 1 for variables 200-299, and
2 for variables 300-399. The heuristic would solve two sub-MIP models: sub-MIP 1 would
fix variables 0-99 and 300-399 to their values in the incumbent and solve for the rest, while
sub-MIP 2 would fix variables 0-99 and 200-299.

The parameter PartitionPlace controls the use of the heursitic. The parition numbers are
specified through the option .partition. The syntax for dot options is explained in the
Introduction chapter of the Solver Manual.

Default: 0

2060 Solver Manuals

partitionplace (integer): Controls when the partition heuristic runs ←↩

This option works in combination with the Partition number for variables. Setting this option
and providing some partitions enables the partitioning heuristic, which uses large-neighborhood
search to try to improve the current incumbent solution.

This parameter determines where that heuristic runs. Options are:

• Before the root relaxation is solved (16)

• At the start of the root cut loop (8)

• At the end of the root cut loop (4)

• At the nodes of the branch-and-cut search (2)

• When the branch-and-cut search terminates (1)

The parameter value is a bit vector, where each bit turns the heuristic on or off at that
place. The numerical values next to the options listed above indicate which bit controls the
corresponding option. Thus, for example, to enable the heuristic at the beginning and end of
the root cut loop (and nowhere else), you would set the 8 bit and the 4 bit to 1, which would
correspond to a parameter value of 12.

The recommended value is 15 which indicates that every option except the first one listed
above is enabled.

Default: 15

perturbvalue (real): Simplex perturbation magnitude ←↩

Range: [0, ∞]

Default: 0.0002

poolgap (real): Relative gap for solutions in pool ←↩

Determines how large a gap to tolerate in stored solutions. When this parameter is set to a
non-default value, solutions whose objective values exceed that of the best known solution
by more than the specified (relative) gap are discarded. For example, if the MIP solver has
found a solution at objective 100, then a setting of PoolGap=0.2 would discard solutions with
objective worse than 120 (assuming a minimization objective).

Default: maxdouble

poolgapabs (real): Absolute gap for solutions in pool ←↩

Determines how large a (absolute) gap to tolerate in stored solutions. When this parameter
is set to a non-default value, solutions whose objective values exceed that of the best known
solution by more than the specified (absolute) gap are discarded. For example, if the MIP
solver has found a solution at objective 100, then a setting of PoolGapAbs=20 would discard
solutions with objective worse than 120 (assuming a minimization objective).

Default: maxdouble

poolsearchmode (integer): Choose the approach used to find additional solutions ←↩

5.17 Gurobi 2061

With the default setting (PoolSearchMode=0), the MIP solver tries to find an optimal solution
to the model. It keeps other solutions found along the way, but those are incidental. By setting
this parameter to a non-default value, the MIP search will continue after the optimal solution
has been found in order to find additional, high-quality solutions. With a setting of 2, it will
find the n best solutions, where n is determined by the value of the PoolSolutions parameter.
With a setting of 1, it will try to find additional solutions, but with no guarantees about the
quality of those solutions. The cost of the solve will increase with increasing values of this
parameter.

Once optimization is complete, the PoolObjBound attribute (printed to the log) can be
used to evaluate the quality of the solutions that were found. For example, a value of
PoolObjBound=100 indicates that there are no other solutions with objective better 100, and
thus that any known solutions with objective better than 100 are better than any as-yet
undiscovered solutions.

Default: 0

poolsolutions (integer): Number of solutions to keep in pool ←↩

Determines how many MIP solutions are stored. For the default value of PoolSearchMode,
these are just the solutions that are found along the way in the process of exploring the MIP
search tree. For other values of PoolSearchMode, this parameter sets a target for how many
solutions to find, so larger values will impact performance.

Default: 10

precrush (boolean): Allows presolve to translate constraints on the original model to equivalent constraints
on the presolved model ←↩

Allows presolve to translate constraints on the original model to equivalent constraints on the
presolved model. This parameter is turned on when you use BCH with Gurobi.

Default: 0

predeprow (integer): Presolve dependent row reduction ←↩

Controls the presolve dependent row reduction, which eliminates linearly dependent constraints
from the constraint matrix. The default setting (-1) applies the reduction to continuous models
but not to MIP models. Setting 0 turns the reduction off for all models. Setting 1 turns it on
for all models.

Default: -1

predual (integer): Presolve dualization ←↩

Depending on the structure of the model, solving the dual can reduce overall solution time.
The default setting uses a heuristic to decide. Setting 0 forbids presolve from forming the dual,
while setting 1 forces it to take the dual. Setting 2 employs a more expensive heuristic that
forms both the presolved primal and dual models (on two threads), and heuristically chooses
one of them.

Default: -1

premiqcpform (integer): Format of presolved MIQCP model ←↩

Option 0 leaves the model in MIQCP form, so the branch-and-cut algorithm will operate
on a model with arbitrary quadratic constraints. Option 1 always transforms the model
into MISOCP form; quadratic constraints are transformed into second-order cone constraints.
Option 2 always transforms the model into disaggregated MISOCP form; quadratic constraints
are transformed into rotated cone constraints, where each rotated cone contains two terms
and involves only three variables.

Default: -1

2062 Solver Manuals

value meaning

-1 Auto

0 Always leaves the model in MIQCP form

1 Always transforms the model into MISOCP form

2 Always transforms the model into disaggregated MISOCP form

prepasses (integer): Presolve pass limit ←↩

Limits the number of passes performed by presolve. The default setting (-1) chooses the
number of passes automatically.

Default: -1

preqlinearize (integer): Presolve Q matrix linearization ←↩

Options 1 and 2 attempt to linearize quadratic constraints or a quadratic objective, potentially
transforming an MIQP or MIQCP model into an MILP. Option 1 focuses on getting a strong
LP relaxation. Option 2 aims for a compact relaxation. Option 0 always leaves Q matrices
unmodified. The default setting (-1) chooses automatically.

Default: -1

value meaning

-1 Auto

0 Linearization off

1 Force Linearization and get strong LP relaxation

2 Force Linearization and get compact relaxation

Presolve (integer): Presolve level ←↩

Default: -1

value meaning

-1 Auto

0 Off

1 Conservative

2 Aggressive

presos1bigm (real): Controls largest coefficient in SOS1 reformulation ←↩

Controls the automatic reformulation of SOS1 constraints into binary form. SOS1 constraints
are often handled more efficiently using a binary representation. The reformulation often
requires big-M values to be introduced as coefficients. This parameter specifies the largest
big-M that can be introduced by presolve when performing this reformulation. Larger values
increase the chances that an SOS1 constraint will be reformulated, but very large values (e.g.,
1e8) can lead to numerical issues.

The default value of -1 chooses a threshold automatically. You should set the parameter to 0
to shut off SOS1 reformulation entirely, or a large value to force reformulation.

Range: [-1, 1e+10]

Default: -1

5.17 Gurobi 2063

presos1encoding (integer): Controls SOS1 reformulation ←↩

Controls the automatic reformulation of SOS1 constraints. Such constraints can be handled
directly by the MIP branch-and-cut algorithm, but they are often handled more efficiently
by reformulating them using binary or integer variables. There are several diffent ways to
perform this reformulation; they differ in their size and strength. Smaller reformulations add
fewer variables and constraints to the model. Stronger reformulations reduce the number of
branch-and-cut nodes required to solve the resulting model.

Options 0 and 1 of this parameter encode an SOS1 constraint using a formulation whose size
is linear in the number of SOS members. Option 0 uses a so-called multiple choice model. It
usually produces an LP relaxation that is easier to solve. Option 1 uses an incremental model.
It often gives a stronger representation, reducing the amount of branching required to solve
harder problems.

Options 2 and 3 of this parameter encode the SOS1 using a formulation of logarithmic
size. They both only apply when all the variables in the SOS1 are non-negative. Option 3
additionally requires that the sum of the variables in the SOS1 is equal to 1. Logarithmic
formulations are often advantageous when the SOS1 constraint has a large number of members.
Option 2 focuses on a formulation whose LP relaxation is easier to solve, while option 3 has
better branching behaviour.

The default value of -1 chooses a reformulation for each SOS1 constraint automatically.

Note that the reformulation of SOS1 constraints is also influenced by the PreSOS1BigM
parameter. To shut off the reformulation entirely you should set that parameter to 0.

Default: -1

presos2bigm (real): Controls largest coefficient in SOS2 reformulation ←↩

Controls the automatic reformulation of SOS2 constraints into binary form. SOS2 constraints
are often handled more efficiently using a binary representation. The reformulation often
requires big-M values to be introduced as coefficients. This parameter specifies the largest
big-M that can be introduced by presolve when performing this reformulation. Larger values
increase the chances that an SOS2 constraint will be reformulated, but very large values (e.g.,
1e8) can lead to numerical issues.

The default value of 0 disables the reformulation. You can set the parameter to -1 to choose
an automatic approach, or a large value to force reformulation.

Range: [-1, 1e+10]

Default: -1

presos2encoding (integer): Controls SOS2 reformulation ←↩

Controls the automatic reformulation of SOS2 constraints. Such constraints can be handled
directly by the MIP branch-and-cut algorithm, but they are often handled more efficiently
by reformulating them using binary or integer variables. There are several diffent ways to
perform this reformulation; they differ in their size and strength. Smaller reformulations add
fewer variables and constraints to the model. Stronger reformulations reduce the number of
branch-and-cut nodes required to solve the resulting model.

Options 0 and 1 of this parameter encode an SOS2 constraint using a formulation whose size
is linear in the the number of SOS members. Option 0 uses a so-called multiple choice model.
It usually produces an LP relaxation that is easier to solve. Option 1 uses an incremental
model. It often gives a stronger representation, reducing the amount of branching required to
solve harder problems.

2064 Solver Manuals

Options 2 and 3 of this parameter encode the SOS2 using a formulation of logarithmic
size. They both only apply when all the variables in the SOS2 are non-negative. Option 3
additionally requires that the sum of the variables in the SOS2 is equal to 1. Logarithmic
formulations are often advantageous when the SOS2 constraint has a large number of members.
Option 2 focuses on a formulation whose LP relaxation is easier to solve, while option 3 has
better branching behaviour.

The default value of -1 chooses a reformulation for each SOS2 constraint automatically.

Note that the reformulation of SOS2 constraints is also influenced by the PreSOS2BigM
parameter. To shut off the reformulation entirely you should set that parameter to 0.

Default: -1

presparsify (integer): Presolve sparsify reduction ←↩

This reduction can sometimes significantly reduce the number of nonzero values in the presolved
model.

Default: -1

value meaning

-1 Auto

0 Disable the presolve sparsify reduction

1 Enable the presolve sparsify reduction for MIPs

2 Enable the presolve sparsify reduction for all model types

printoptions (boolean): List values of all options to GAMS listing file ←↩

Default: 0

value meaning

0 Do not list option values to GAMS listing file

1 List option values to GAMS listing file

.prior (real): Branching priorities ←↩

GAMS allows to specify priorities for discrete variables only. Gurobi can detect that continuous
variables are implied discrete variables and can utilize priorities. Such priorities can be specified
through a GAMS/Gurobi solver option file. The syntax for dot options is explained in the
Introduction chapter of the Solver Manual. The priorities are only passed on to Gurobi if the
model attribute priorOpt is turned on.

Default: 1

projimpliedcuts (integer): Projected implied bound cut generation ←↩

Default: -1

value meaning

-1 Auto

0 Off

1 Moderate

2 Aggressive

5.17 Gurobi 2065

psdcuts (integer): PSD cut generation ←↩

Default: -1

value meaning

-1 Auto

0 Off

1 Moderate

2 Aggressive

psdtol (real): Positive semi-definite tolerance ←↩

Positive semi-definite tolerance (for QP/MIQP). Sets a limit on the amount of diagonal
perturbation that the optimizer is allowed to automatically perform on the Q matrix in order
to correct minor PSD violations. If a larger perturbation is required, the optimizer will
terminate stating the problem is not PSD.

Range: [0, ∞]

Default: 1e-06

pumppasses (integer): Feasibility pump heuristic control ←↩

Note that this heuristic is only applied at the end of the MIP root.

This heuristic is quite expensive, and generally produces poor quality solutions. You should
generally only use it if other means, including exploration of the tree with default settings, fail
to produce a feasible solution.

Default: -1

qcpdual (boolean): Compute dual variables for QCP models ←↩

Determines whether dual variable values are computed for QCP models. Computing them can
add significant time to the optimization, so you should turn this parameter to 0 if you do not
need them.

Default: 1

value meaning

0 Do not compute dual for QCP problem

1 Compute dual for QCP problem

qextractalg (integer): quadratic extraction algorithm in GAMS interface ←↩

Default: 0

value meaning

0 Automatic

1 ThreePass: Uses a three-pass forward / backward / forward AD technique to
compute function / gradient / Hessian values and a hybrid scheme for storage.

2 DoubleForward: Uses forward-mode AD to compute and store function, gradient,
and Hessian values at each node or stack level as required. The gradients and
Hessians are stored in linked lists.

2066 Solver Manuals

value meaning

3 Concurrent: Uses ThreePass and DoubleForward in parallel. As soon as one
finishes, the other one stops.

quad (integer): Quad precision computation in simplex ←↩

Enables or disables quad precision computation in simplex. The -1 default setting allows the
algorithm to decide.

Default: -1

readparams (string): Read Gurobi parameter file ←↩

relaxliftcuts (integer): Relax-and-lift cut generation ←↩

Default: -1

value meaning

-1 Auto

0 Off

1 Conservative

2 Aggressive

rerun (integer): Resolve without presolve in case of unbounded or infeasible ←↩

In case Gurobi reports Model was proven to be either infeasible or unbounded, this option
decides about a resolve without presolve which will determine the exact model status. If the
option is set to auto, which is the default, and the model fits into demo limits, the problems is
resolved.

Default: -1

value meaning

-1 No

0 Auto

1 Yes

rins (integer): RINS heuristic ←↩

Default value (-1) chooses automatically. A value of 0 shuts off RINS. A positive value n
applies RINS at every n-th node of the MIP search tree.

Default: -1

rltcuts (integer): RLT cut generation ←↩

Default: -1

value meaning

-1 Auto

0 Off

1 Conservative

2 Aggressive

5.17 Gurobi 2067

rngrestart (string): Write GAMS readable ranging information file ←↩

If the extension specified is gdx, a GDX file is exported, and a GAMS file otherwise.

scaleflag (integer): Model scaling ←↩

Controls model scaling. By default, the rows and columns of the model are scaled in order to
improve the numerical properties of the constraint matrix. The scaling is removed before the
final solution is returned. Scaling typically reduces solution times, but it may lead to larger
constraint violations in the original, unscaled model. Turning off scaling ScaleFlag=0 can
sometimes produce smaller constraint violations. Choosing a more aggressive scaling option
ScaleFlag=2 can sometimes improve performance for particularly numerically difficult models.

Default: -1

seed (integer): Modify the random number seed ←↩

Modifies the random number seed. This acts as a small perturbation to the solver, and typically
leads to different solution paths.

Default: 0

sensitivity (boolean): Provide sensitivity information ←↩

Default: 0

value meaning

0 Do not provide sensitivity information

1 Provide sensitivity information

sifting (integer): Sifting within dual simplex ←↩

Enables or disables sifting within dual simplex. Sifting is often useful for LP models where the
number of variables is many times larger than the number of constraints. With a Moderate
setting, sifting will be applied to LP models and to the root node for MIP models. With an
Aggressive setting, sifting will be also applied to the nodes of a MIP. Note that this parameter
has no effect if you aren't using dual simplex. Note also that sifting will be skipped in cases
where it is obviously a worse choice, even when sifting has been selected.

Default: -1

value meaning

-1 Auto

0 Off

1 Moderate

2 Agressive

siftmethod (integer): LP method used to solve sifting sub-problems ←↩

Note that this parameter only has an effect when you are using dual simplex and sifting has
been selected (either by the automatic method, or through the Sifting parameter).

Default: -1

2068 Solver Manuals

value meaning

-1 Auto

0 Primal Simplex

1 Dual Simplex

2 Barrier

simplexpricing (integer): Simplex variable pricing strategy ←↩

Default: -1

value meaning

-1 Auto

0 Partial Pricing

1 Steepest Edge

2 Devex

3 Quick-Start Steepest Edge

softmemlimit (real): Soft memory limit ←↩

Default: maxdouble

solfiles (string): Location to store intermediate solution files ←↩

During the MIP solution process, multiple incumbent solutions are typically found on the path
to finding a proven optimal solution. Setting this parameter to a non-empty string causes
these solutions to be written to files (in .sol format) as they are found. The MIP solver will
append n.sol to the value of the parameter to form the name of the file that contains solution
number n. For example, setting the parameter to value solutions/mymodel will create files
mymodel 0.sol, mymodel 1.sol, etc., in directory solutions.

solnpool (string): Controls export of alternate MIP solutions ←↩

The GDX file specified by this option will contain a set call index that contains the names
of GDX files with the individual solutions. For details see example model dumpsol in the
GAMS Test Library. The option PoolSolutions, PoolSearchModel, and PoolGap control the
search for alternative solutions. Please also refer to the secion Solution Pool.

solnpoolmerge (string): Controls export of alternate MIP solutions for merged GDX solution file ←↩

Similar to SolnPool this option stores multiple alternative solutions to a MIP problem, but
in a single GDX file. The GDX file specified by this option will contain all variables with
an additional first index (determined through SolnPoolPrefix) as parameters. The option
PoolSolutions, PoolSearchModel, and PoolGap control the search for alternative solutions.
Please also refer to the secion Solution Pool.

solnpoolnumsym (integer): Maximum number of variable symbols when writing merged GDX solution
file ←↩

Default: 10

solnpoolprefix (string): First dimension of variables for merged GDX solution file or file name prefix for
GDX solution files ←↩

Default: soln

solutionlimit (integer): MIP feasible solution limit ←↩

Default: maxint

solutiontarget (integer): Specify the solution target for LP ←↩

Default: -1

5.17 Gurobi 2069

value meaning

-1 Auto

0 primal and dual optimal, and basic

1 primal and dual optimal

solvefixed (boolean): Indicator for solving the fixed problem for a MIP to get a dual solution ←↩

Default: 1

value meaning

0 Do not solve the fixed problem

1 Solve the fixed problem

startnodelimit (integer): Node limit for MIP start sub-MIP ←↩

This parameter limits the number of branch-and-bound nodes explored when completing a
partial MIP start. The default value of -1 uses the value of the SubMIPNodes parameter. A
value of -2 means to only check full MIP starts for feasibility and to ignore partial MIP starts.
A value of -3 shuts off MIP start processing entirely. Non-negative values are node limits.

Default: -1

strongcgcuts (integer): Strong-CG cut generation ←↩

Controls Strong Chvátal-Gomory (Strong-CG) cut generation. Use 0 to disable these cuts, 1
for moderate cut generation, or 2 for aggressive cut generation. The default -1 value chooses
automatically. Overrides the Cuts parameter.

Default: -1

submipcuts (integer): Sub-MIP cut generation ←↩

See the description of the global Cuts parameter for further information.

Default: -1

submipnodes (integer): Nodes explored by sub-MIP heuristics ←↩

Limits the number of nodes explored by the heuristics, like RINS. Exploring more nodes can
produce better solutions, but it generally takes longer.

Default: 500

symmetry (integer): Symmetry detection ←↩

Default: -1

value meaning

-1 Auto

0 Off

1 Conservative

2 Aggressive

2070 Solver Manuals

threads (integer): Number of parallel threads to use ←↩

Default number of parallel threads allowed for any solution method. Non-positive values are
interpreted as the number of cores to leave free so setting threads to 0 uses all available cores
while setting threads to -1 leaves one core free for other tasks.

Default: GAMS threads

timelimit (real): Time limit ←↩

Default: GAMS reslim

tunecleanup (real): Enables a tuning cleanup phase ←↩

Enables a cleanup phase at the end of tuning. The parameter indicates the percentage of total
tuning time to devote to this phase, with a goal of reducing the number of parameter changes
required to achieve the best tuning result.

Default: 0

tunecriterion (integer): Specify tuning criterion ←↩

Modifies the tuning criterion for the tuning tool. The primary tuning criterion is always to
minimize the runtime required to find a proven optimal solution. However, for MIP models
that don't solve to optimality within the specified time limit, a secondary criterion is needed.
Set this parameter to 1 to use the optimality gap as the secondary criterion. Choose a value of
2 to use the objective of the best feasible solution found. Choose a value of 3 to use the best
objective bound. Choose 0 to ignore the secondary criterion and focus entirely on minimizing
the time to find a proven optimal solution. The default value of -1 chooses automatically.

Default: -1

tunedynamicjobs (integer): Enables distributed tuning using a dynamic set of workers ←↩

Enables distributed parallel tuning, which can significantly increase the performance of the
tuning tool. A value of n causes the tuning tool to use a dynamic set of up to n workers
in parallel. These workers are used for a limited amount of time and afterwards potentially
released so that they are available for other remote jobs. A value of -1 allows the solver to use
an unlimited number of workers. Note that this parameter can be combined with TuneJobs to
get a static set of workers and a dynamic set of workers for distributed tuning. You can use
the WorkerPool parameter to provide a distributed worker cluster.

Note that distributed tuning is most effective when the worker machines have similar per-
formance. Distributed tuning doesn't attempt to normalize performance by server, so it can
incorrectly attribute a boost in performance to a parameter change when the associated setting
is tried on a worker that is significantly faster than the others.

Default: 0

tunejobs (integer): Enables distributed tuning using a static set of workers ←↩

Enables distributed parallel tuning, which can significantly increase the performance of the
tuning tool. A value of n causes the tuning tool to distribute tuning work among n parallel
jobs. These jobs are distributed among a set of workers. Use the WorkerPool parameter to
provide a list of available workers.

Note that distributed tuning is most effective when the workers have similar performance.
Distributed tuning doesn't attempt to normalize performance by worker, so it can incorrectly
attribute a boost in performance to a parameter change when the associated setting is tried
on a worker that is significantly faster than the others.

Default: 0

5.17 Gurobi 2071

tunemetric (integer): Metric to aggregate results into a single measure ←↩

A single tuning run typically produces multiple timing results for each candidate parameter
set, either as a result of performing multiple trials, or tuning multiple models, or both. This
parameter controls how these results are aggregated into a single measure. The default setting
(-1) chooses the aggregation automatically; setting 0 computes the average of all individual
results; setting 1 takes the maximum.

Default: -1

tuneoutput (integer): Tuning output level ←↩

Default: 2

value meaning

0 No output

1 Summary output only when a new best parameter set is found

2 Summary output for each parameter set that is tried

3 Summary output, plus detailed solver output, for each parameter set tried

tuneresults (integer): Number of improved parameter sets returned ←↩

The tuning tool often finds multiple parameter sets that improve over the baseline settings.
This parameter controls how many of these sets should be retained when tuning is complete.
A non-negative value indicates how many sets should be retained. The default value (-1)
retains the efficient frontier of parameter sets. That is, it retains the best set for one changed
parameter, the best for two changed parameters, etc. Sets that aren't on the efficient frontier
are discarded. If you interested in all the sets, use value -2 for the parameter.

Note that the first set in the results is always the set of parameters which was used for the
first solve, the baseline settings. This set serves as the base for any improvement. So if you
are interested in the best tuned set of parameters you need to request at least 2 tune results.
The first one (with index 0) will be the baseline setting and the second one (with index 1) will
be the best set found during tuning.

Default: -1

tunetargetmipgap (real): A target gap to be reached ←↩

A target gap to be reached. As soon as the tuner has found parameter settings that allow Gurobi
to reach the target gap for the given model(s), it stops trying to improve parameter settings
further. Instead, the tuner switches into the cleanup phase (see TuneCleanup parameter).

Default: 0

tunetargettime (real): A target runtime in seconds to be reached ←↩

A target runtime in seconds to be reached. As soon as the tuner has found parameter
settings that allow Gurobi to solve the model(s) within the target runtime, it stops trying to
improve parameter settings further. Instead, the tuner switches into the cleanup phase (see
TuneCleanup parameter).

Default: 0.005

tunetimelimit (real): Time limit for tuning ←↩

2072 Solver Manuals

Limits total tuning runtime (in seconds). The default setting (-1) chooses a time limit
automatically.

Default: maxdouble

tunetrials (integer): Perform multiple runs on each parameter set to limit the effect of random noise ←↩

Performance on a MIP model can sometimes experience significant variations due to random
effects. As a result, the tuning tool may return parameter sets that improve on the baseline only
due to randomness. This parameter allows you to perform multiple solves for each parameter
set, using different Seed values for each, in order to reduce the influence of randomness on
the results. The default value of 0 indicates an automatic choice that depends on model
characteristics.

Note: Only affects mixed integer programming (MIP) models

Default: 0

Tuning (string): Parameter Tuning ←↩

Invokes the Gurobi parameter tuning tool. The mandatory value following the keyword
specifies a GAMS/Gurobi option file. All options found in this option file will be used but not
modified during the tuning. A sequence of file names specifying existing problem files may
follow the option file name. The files can be in MPS, REW, LP, RLP, and ILP format created
by the WriteProb option. Gurobi will tune the parameters either for the problem provided
by GAMS (no additional problem files specified) or for the suite of problems listed after the
GAMS/Gurobi option file name without considering the problem provided by GAMS. The
result of such a run is the updated GAMS/Gurobi option file with a tuned set of parameters.
In case the option TuneResults is larger than 1, GAMS/Gurobi will create a sequence of
GAMS/Gurobi option files. The solver and model status returned to GAMS will be NORMAL

COMPLETION and NO SOLUTION. Tuning is incompatible with advanced features like FeasOpt
of GAMS/Gurobi.

usebasis (integer): Use basis from GAMS ←↩

If UseBasis is not specified, GAMS (via option BRatio) decides if the starting basis or a
primal/dual solution is given to Gurobi. If UseBasis is explicitly set in an option file then the
basis or a primal/dual solution is passed to Gurobi independent of the GAMS option BRatio.
Please note, if Gurobi uses a starting basis presolve will be skipped.

Default: GAMS bratio

value meaning

0 No basis

1 Supply basis if basis is full otherwise provide primal dual solution

2 Supply basis iff basis is full

3 Supply primal dual solution

varbranch (integer): Branch variable selection strategy ←↩

Default: -1

value meaning

-1 Auto

0 Pseudo Reduced Cost Branching

5.17 Gurobi 2073

value meaning

1 Pseudo Shadow Price Branching

2 Maximum Infeasibility Branching

3 Strong Branching

varhint (boolean): Guide heuristics and branching through variable hints ←↩

If you know that a variable is likely to take a particular value in high quality solutions of a MIP
model, you can provide this information as a hint. If VarHint option is active, GAMS/Gurobi
will pass variable levels rounded to the nearest integer as hints to Gurobi if their level is within
TryInt of an integer. The closer the level is to the rounded integer the higher your level of
confidence in this hint. Internally this is recalculated into a Gurobi variable hint priority:
[1
max(10−6,|x.l−[x.l]|)]

The Gurobi MIP solver will use these variable hints in a number of different ways. Hints will
affect the heuristics that Gurobi uses to find feasible solutions, and the branching decisions
that Gurobi makes to explore the MIP search tree. In general, high quality hints should
produce high quality MIP solutions faster. In contrast, low quality hints will lead to some
wasted effort, but shouldn't lead to dramatic performance degradations.

Variables hints and MIP starts are similar in concept, but they behave in very different ways.
If you specify a MIP start, the Gurobi MIP solver will try to build a single feasible solution
from the provided set of variable values. If you know a solution, you should use a MIP start
to provide it to the solver. In contrast, variable hints provide guidance to the MIP solver that
affects the entire solution process. If you have a general sense of the likely values for variables,
you should provide them through variable hints.

Default: 0

workerpassword (string): Password for distributed worker cluster ←↩

When using a distributed algorithm (the distributed concurrent MIP solver or distributed
tuning), this parameter allows you to specify the password for the workers listed in the
WorkerPool parameter.

workerpool (string): Distributed worker cluster ←↩

When using a distributed algorithm (distributed MIP, distributed concurrent, or distributed
tuning), this parameter allows you to specify a Remote Services cluster that will provide
distributed workers. You should also specify the access password for that cluster, if there is
one, in the WorkerPassword parameter.

You can provide a comma-separated list of machines for added robustness. If the first node in
the list is unavailable, the client will attempt to contact the second node, etc.

To give an example, if you have a Remote Services cluster that uses port 61000 on a
pair of machines named server1 and server2, you could set WorkerPool to server1:61000

server1:61000,server2:61000.

worklimit (real): Work limit ←↩

2074 Solver Manuals

Limits the total work expended (in work units).

In contrast to the TimeLimit, work limits are deterministic. This means that on the same
hardware and with the same parameter and attribute settings, a work limit will stop the
optimization of a given model at the exact same point every time. One work unit corresponds
very roughly to one second on a single thread, but this greatly depends on the hardware on
which Gurobi is running and the model that is being solved.

Note that optimization may not stop immediately upon hitting the work limit. It will stop
when the optimization is next in a deterministic state, and it will then perform the required
additional computations of the attributes associated with the terminated optimization. As
a result, the Work attribute may be larger than the specified WorkLimit upon completion,
and repeating the optimization with a WorkLimit set to the Work attribute of the stopped
optimization may result in additional computations and a larger attribute value.

Default: maxdouble

writeparams (string): Write Gurobi parameter file ←↩

writeprob (string): Save the problem instance ←↩

zerohalfcuts (integer): Zero-half cut generation ←↩

See the description of the global Cuts parameter for further information.

Default: -1

value meaning

-1 Auto

0 Off

1 Conservative

2 Aggressive

zeroobjnodes (integer): Zero objective heuristic control ←↩

Note that this heuristic is only applied at the end of the MIP root, and only when no other
root heuristic finds a feasible solution.

This heuristic is quite expensive, and generally produces poor quality solutions. You should
generally only use it if other means, including exploration of the tree with default settings, fail
to produce a feasible solution.

Default: -1

5.17.8 Setting up a GAMS/Gurobi-Link license

The GAMS/Gurobi-Link requires two licenses:

• A GAMS license with components GAMS/GUROBI-Link and GAMS/BASE (to generate models
beyond the demo limits)

5.17 Gurobi 2075

• A Gurobi license which you need to get directly from Gurobi

An attempt to use the GAMS/Gurobi solver with a GAMS/Gurobi-Link license but without a properly
set up Gurobi license will result in a licensing error with a message describing the problem. For example,
the following message is sent to the log when attempting to solve a model with dimensions beyond the
community limits:

--- Executing GUROBI (Solvelink=2): elapsed 0:00:00.047[LST:85]

Gurobi 32.2.0 rc62c018 Released Aug 26, 2020 WEI x86 64bit/MS Window

Gurobi link license.

*** Cannot initialize Gurobi environment.

*** Could be a missing or invalid license. (status=10009|10009)

Starting with GAMS distribution 24.7, even demo sized models require a license from Gurobi. An attempt
to solve a demo sized model without a Gurobi license installed results in:

--- Executing GUROBI (Solvelink=2): elapsed 0:00:00.016[LST:208]

Gurobi 32.2.0 rc62c018 Released Aug 26, 2020 WEI x86 64bit/MS Window

*** This solver runs with a demo license. No commercial use.

GAMS/Gurobi demo/community requires a Gurobi license from Gurobi Optimization.

*** Cannot initialize Gurobi environment.

*** Could be a missing or invalid license. (status=10009|10009)

To make the GAMS/Gurobi-Link work you do not need to download or install the Gurobi software but
only your Gurobi license. GAMS will use it's own Gurobi DLL/shared library, so the Gurobi license
has to be valid for the Gurobi version GAMS uses. You can download your Gurobi license from
www.gurobi.com. Log in to your Gurobi account and go to Download & Licenses –> Your Gurobi

licenses.

Now click on the license you want to download and click on Get License Details. On the license detail
page, copy the grbgetkey command on the bottom.

Paste the grbgetkey command to a command/terminal prompt. Your GAMS system directory contains
the grbgetkey program, so to make sure it is found you should open the terminal via GAMS Studio or
add your GAMS system directory to the path variable. After running the grbgetkey command, you will
be asked where you would like to save your Gurobi license.

$./grbgetkey [...]

info : grbgetkey version 9.0.3, build v9.0.3rc0

info : Contacting Gurobi key server...

info : Key for license ID [...] was successfully retrieved

info : License expires at the end of the day on 2021-08-31

info : Saving license key...

In which directory would you like to store the Gurobi license key file?

[hit Enter to store it in /opt/gurobi]: /home/nb/gurobilic

info : License [...] written to file /home/nb/gurobilic/gurobi.lic

info : You may have saved the license key to a non-default location

info : You need to set the environment variable GRB_LICENSE_FILE before you can use this license key

info : GRB_LICENSE_FILE=/home/nb/gurobilic/gurobi.lic

http://www.gurobi.com

2076 Solver Manuals

Once you have saved your gurobi.lic file, you need to make GAMS/Gurobi aware of that license via envi-
ronment variable GRB LICENSE FILE. The environmentVariables section in the GAMS configuration file
(available as of GAMS version 31.1.0) is a convenient way to set the GRB LICENSE FILE environment variable.
This can either be done by manually opening and editing the gamsconfig.yaml file which can be found
in one of the standard locations or via the corresponding GAMS Configuration Editor in GAMS Studio.
As a result, the configuration file should contain an entry for environment variable GRB LICENSE FILE

that points to the Gurobi license, e.g.

[...]

environmentVariables:

[...]

- GRB_LICENSE_FILE:

value: /home/nb/gurobilic/gurobi.lic

[...]

As an alternative you could also set GRB LICENSE FILE via the usual OS-specific ways to set environment
variables.

To test whether the license setup has been successful, you can solve a model from the GAMS Model
library, e.g. [INDUS89], where you should get the following output.

$ gamslib indus89

Copy ASCII : indus89.gms

$ gams indus89 lp gurobi

--- Job indus89 Start 09/01/20 12:41:41 32.2.0 rc62c018 LEX-LEG x86 64bit/Linux

[...]

Gurobi 32.2.0 rc62c018 Released Aug 26, 2020 LEG x86 64bit/Linux

Gurobi link license.

Gurobi library version 9.0.3

[...]

Iteration Objective Primal Inf. Dual Inf. Time

0 7.1618935e+31 2.041808e+32 7.161894e+01 0s

2990 1.1487366e+05 0.000000e+00 0.000000e+00 0s

Solved in 2990 iterations and 0.32 seconds

Optimal objective 1.148736556e+05

User-callback calls 3040, time in user-callback 0.00 sec

LP status(2): Model was solved to optimality (subject to tolerances).

--- Reading solution for model wsisn

*** Status: Normal completion

--- Job indus89.gms Stop 09/01/20 12:29:49 elapsed 0:00:00.835

Note

To install a Gurobi license key as described above, the grbgetkey program needs to be able to
communicate with the Gurobi website. If it fails to work, the grbprobe program which can also be
found in your GAMS system directory may be used to retrieve the required hardware information
which then needs to be manually submitted to the Gurobi Website (detailed instructions can be
found here).

https://www.gurobi.com/downloads/license-detail/#show_instructions

5.18 Gather-Update-Solve-Scatter (GUSS) 2077

5.18 Gather-Update-Solve-Scatter (GUSS)

5.18.1 Introduction

The purpose of this chapter is to detail an extension of the GAMS modeling system that allows collections
of models (parameterized exogenously by a set of samples or indices) to be described, instantiated, and
solved efficiently.

As a specific example, we consider the parametric optimization problem P(s) defined by:

min
x∈X(s)

f(x; s) s.t. g(x; s) ≤ 0 (5.11)

where s ∈ S = {1, . . . ,K}. Note that each scenario s represents a different problem for which the
optimization variable is x. The form of the constraint set as given above is simply for concreteness;
equality constraints and range and bound constraints are trivial extensions of the above framework.
Clearly the problems P(s) are interlinked. We intend to show how such problems can be easily specified
within GAMS, and detail one type of algorithmic extension that can exploit the nature of the linkage.
Other extensions of GAMS allow solves to be executed in parallel or by using grid computing resources.
Note that in our description we will use the terms indexed, parameterized, and scenario somewhat
interchangeably. An extended version of this chapter containing several examples is available as a paper
at http://www.gams.com/modlib/adddocs/gusspaper.pdf.

5.18.2 Design Methodology

One of the most important functions of GAMS is to build a model instance from the collection of equations
(i.e. an optimization model defined by the GAMS keyword MODEL) and corresponding data (consisting
of the content of GAMS (sub)sets and parameters). Such a model instance is constructed or generated
when the GAMS execution system executes a SOLVE statement. The generated model instance is passed
to a solver which searches for a solution of this model instance and returns status information, statistics,
and a (primal and dual) solution of the model instance. After the solver terminates, GAMS brings the
solution back into the GAMS database, i.e. it updates the level (.L) and marginal (.M) fields of variable
and equation symbols used in the model instance. Hence, the SOLVE statement can be interpreted as
a complex operator against the GAMS database. The model instance generated by a SOLVE statement
only lives during the execution of this one statement, and hence has no representation within the GAMS
language. Moreover, its structure does fit the relational data model of GAMS. A model instance consists
of vectors of bounds and right hand sides, a sparse matrix representation of the Jacobian, a representation
of the non-linear expressions that allow the efficient calculation of gradient vectors and Hessian matrices,
and so on.

This chapter is concerned with solving collections of models that have similar structure but modified data.
As an example, consider a linear program of the form:

min cTx s.t. Ax ≥ b, ` ≤ x ≤ u.

The data in this problem is (A, b, c, `, u). Omitting some details, the following code could be used within
GAMS to solve a collection of such linear programs in which each member of the collection has a different
A matrix and lower bound `:

Set i / ... /, j / ... /;

Parameter A(i,j), b(i);

Variable x(j), z, ...;

Equation e(i), ...;

e(i).. sum(j, A(i,j)*x(j)) =g= b(i);

...

http://www.gams.com/modlib/adddocs/gusspaper.pdf

2078 Solver Manuals

model mymodel /all/;

Set s / s1*s10 /

Parameter

A_s(s,i,j) ’Scenario data’

xlo_s(s,j) ’Scenario lower bound for variable x’

xl_s(s,j) ’Scenario solution for x.l’

em_s(s,i) ’Scenario solution for e.m’;

Loop(s,

A(i,j) = A_s(s,i,j);

x.lo(j)= xlo_s(s,j);

solve mymodel min z using lp;

xl_s(s,j) = x.l(j);

em_s(s,i) = e.m(i);

);

Summarizing, we solve one particular model (mymodel) in a loop over s with an unchanged model rim (i.e.
the same individual variables and equations) but with different model data and different bounds for the
variables. The change in model data for a subsequent solve statement does not depend on the previous
model solutions in the loop.

The purpose of this new Gather-Update-Solve-Scatter (GUSS) manager is to provide syntax at the GAMS
modeling level that makes an instance of a problem that provides limited access to treat that instance
as an object, and allows the modeler to update portions of it iteratively. Specifically, we provide syntax
that gives a list of data changes to an instance, and allows these changes to be applied sequentially to
the instance (which is then solved without returning to GAMS). Thus, we can simulate a limited set of
actions to be applied to the model instance object and retrieve portions of the solution of these changed
instances back in the modeling environment. Such changes can be done to any model type in GAMS,
including nonlinear problems and mixed integer models. However, the only changes we allow are to named
parameters appearing in the equations and lower and upper bounds used in the model definition.

Thus, in the above example GUSS allows us to replace lines 15-21 by

Set dict / s. scenario. ’’

A. param. A_s

x. lower. xlo_s

x. level. xl_s

e. marginal. em_s /;

solve mymodel min z using lp scenario dict;

The three dimensional set dict (you can freely choose the name of this symbol) contains mapping
information between symbols in the model (in the first position) and symbols that supply required update
data or store solution information (in the third position), and the type of update/storing (in the second
position). An exception to this rule is the tuple with label scenario in the second position. This tuple
determines the symbol (in the first position) that is used as the scenario index. This scenario symbol can
be a multidimensional set. A tuple in this set represents a single scenario. The remaining tuples in the
set dict can be grouped into input and output tuples. Input tuples determine the modifications of the
model instance prior to solving, while output tuples determine which part of the solution gets saved away.
The following keywords can be used in the second position of the set dict:

Type Keywords Description

Input: param Supplies scenario data for a parameter used in the model

lower Supplies scenario lower bounds for a variable

upper Supplies scenario upper bounds for a variable

fixed Supplies scenario fixed bounds for a variable

Output: level Stores the levels of a scenario solution of variable or equation

marginal Stores the marginals of a scenario solution of variable or equation

5.18 Gather-Update-Solve-Scatter (GUSS) 2079

Sets in the model cannot be updated. GUSS works as follows: GAMS generates the model instance for
the original data. As with regular SOLVE statements, all the model data (e.g. parameter A) needs to be
defined at this time. The model instance with the original data is also called the base case. The solution
of the base case is reported back to GAMS in the regular way and is accessible via the regular .L and
.M fields after the SOLVE statement. After solving the base case, the update data for the first scenario is
applied to the model. The tuples with lower, upper, fixed update the bounds of the variables, whereas
the tuples with param update the parameters in the model.

The scenario index s needs to be the first index in the parameters mapped in the set dict. The update
of the model parameters goes far beyond updating the coefficients of the constraint matrix/objective
function or the right hand side of an equation, as one can do with some other systems. GAMS stores
all the necessary expressions of the constraints with the model instance, so the change in the constraint
matrix coefficient is the result of an expression evaluation. For example, consider a term in the calculation
of the cost for shipping a variable amount of goods x(i,j) between cities i and j. The expression for
shipping cost is d(i,j)∗f∗x(i,j), i.e. the distance between the cities times a freight rate f times the
variable amount of goods. In order to find out the sensitivity of the solution with respect to the freight
rate f, one can solve the same model with different values for f. In a matrix representation of the model
one would need to calculate the coefficient of x(i,j) which is d(i,j)∗f, but with GUSS it is sufficient
to supply different values for f that potentially result in many modified coefficients on the matrix level.
GUSS evaluates the shipping cost term and communicates the resulting matrix coefficient to the solver
reliably behind the scenes.

After the variable bound and the model parameter updates have been applied and the resulting updates
to the model instance data structures (e.g. constraint matrix) has been determined, the modified model
instance is passed to the solver. Some solvers (e.g. Cplex, Gurobi, SoPlex, and Xpress) allow modifying a
model instance. In these cases GUSS only communicates the changes from the previous model instance
to the solver. This reduces the amount of data communicated to the solver and also, in the case of an
LP model, allows the solver to restart from an advanced basis and its factorization. In the case of an
NLP model, this provides initial values. After the solver determines the solution of a model instance,
GUSS stores the part of the solution requested by the output tuples of dict to some GAMS parameters
and continues with the next scenario. GUSS emphasizes on speed and only works with solver that allow
to communicate the model instance through memory, Hence, the following solvers cannot be used as
subsolvers of GUSS: ALPHAECP, BARON, CONVERT, DECISC, DECISM, DICOPT, EXAMINER,
GAMSCHK, JAMS, KESTREL, LOGMIP, MILES, MPSGE, NLPEC, PATHNLP, SBB.

5.18.3 GUSS Options

The execution of GUSS can be parameterized using some options. Options are not passed through a
solver option file but via another tuple in the dict set. The keyword in the second position of this tuple is
opt. A one dimensional parameter is expected in the first position (or the label ′′). This
parameter may contain some of the following labels with values:

Options Description

OptfileInit: Option file number for the first solve (default from GAMS OptFile setting)

Optfile: Option file number for subsequent solves (default 0)

LogOption: Determines amount of log output:
0 - Moderate log (default)
1 - Minimal log
2 - Detailed log

NoHotStart: Disable hot start capability in solver that supports hot starts (default 0)

NoMatchLimit: Limit of unmatched scenario records (default 0)

RestartType:: Determines restart point for the scenarios
0 - Restart from last solution (default)
1 - Restart from solution of base case
2 - Restart from input point

2080 Solver Manuals

Options Description

SkipBaseCase: Switch for solving the base case (0 solves the base case)

ReportLastScen: Switch for reporting the solution of the last scenario rather than solution of the
base case (default 0)

SolveEmpty: Limit of solved empty scenarios, afterwards empty scenarios will be skipped (default
0)

UpdateType: Scenario update mechanism:
0 - Set everything to zero and apply changes (default)
1 - Reestablish base case and apply changes
2 - Build on top of last scenario and apply changes

For the example model above the UpdateType setting would mean:

UpdateType=0: loop(s, A(i,j) = A_s(s,i,j))

UpdateType=1: loop(s, A(i,j) = A_base(i,j);

A(i,j) $= A_s(s,i,j))

UpdateType=2: loop(s, A(i,j) $= A_s(s,i,j))

The option SkipBaseCase=1 allows the user to skip the base case. This means only the scenarios are
solved and there is no solution reported back to GAMS in the traditional way. The third position in the
opt-tuple can contain a parameter for storing the scenario solution attribute information, e.g. model and
solve status, or needs to have the label ′′. The labels to store solution status information
must be known to GAMS, so one needs to declare a set with such labels. A convenient way to enter these
attributes is via System.GUSSModelAttributes:

Set ma ’GUSS Model Attributes’ / System.GUSSModelAttributes /; display ma;

---- 1 SET ma GUSS Model Attributes

ModelStat, SolveStat, NumInfes , SumInfes , IterUsd

ResUsd , ObjVal , NodUsd , ObjEst , DomUsd

RObj , MaxInfes , MeanInfes

The following example shows how to use some of the GUSS options and the use of a parameter to store
some solution status information:

Set h solution headers / System.GUSSModelAttributes /;

Parameter

o / SkipBaseCase 1, UpdateType 1, Optfile 1 /

r_s(s,h) Solution status report;

Set dict / s. scenario. ’’

o. opt. r_s

a. param. a_s

x. lower. xlo_s

x. level. xl_s

e. marginal. em_s /;

solve mymodel min z using lp scenario dict;

Please note that the domain set of the solution status report attributes (here h) must only contain model
attributes known to GUSS. If this domain (unless the domain in ∗) contains a label unknown to GUSS, a
compilation error is triggered.

5.18 Gather-Update-Solve-Scatter (GUSS) 2081

5.18.4 Implementation Details

This section describes some technical details that may provide useful insight in case of unexpected behavior.

Because GUSS changes all model parameters mentioned in the dict set to variables, a linear model can
produce some non-linear instructions (e.g. d(i,j)∗f∗x(i,j) becomes a non-linear expression since f

becomes a variable in the model instance given to GUSS). This also explains why some models compile
without complaint, but if the model is used in the context of GUSS, the compile time check of the model
will fail because a parameter that is turned into a variable can no longer be used in that way. For example,
suppose the model contains a constraint e(i).. sum(j$A(i,j), ...). If A(i,j) is a parameter in the
regular model, the compiler will not complain, but if A becomes a parameter that shows up in the first
position of a param tuple in the dict set, the GAMS compiler will turn A into a variable and complain
that an endogenous variable cannot be used in a $-condition.

The sparsity pattern of a model can be greatly affected by GUSS. In a regular model instance GAMS will
only generate and pass on non-zero matrix elements of a constraint e(i).. sum(j, A(i,j)∗x(j)) ...,
so the sparsity of A determines the sparsity of the generated model instance. GUSS allows to use this
constraint with different values for A hence GUSS cannot exclude any of the pairs (i,j) and generate
a dense matrix. The user can enforce some sparsity by explicitly restricting the (i,j) pairs: e(i)..

sum(ij(i,j), A(i,j)∗x(j)) ...

Attention

While GUSS is available for many model types quadratic models require special attention. Linear
solvers that have been extended to cover (convex) quadratic models, e.g. Cplex, Gurobi, Mosek,
Xpress, do not work properly if the modifying parameter affects the left hand side of linear equations
or any modifications of quadratic equations. Bound updates as well as changes of the right hand
side of linear constraints are okay (see the example of the quadratic support vector machine below).
Unfortunately, detecting if a quadratic model is okay or not for a given solver is at the moment
difficult to detect, so use caution with quadratic models in combination with such (linear) solvers.

The actual change of the GAMS language required for the implementation of GUSS is minimal. The only
true change is the extension of the SOLVE statement with the term SCENARIO dict. Existing language
elements have been used to store symbol mapping information, options, and model result statistics. Some
parts of the GUSS presentation look somewhat unnatural, e.g. since dict is a three dimensional set the
specification the scenario set using keyword scenario requires a third dummy label ′′.
However, this approach gives maximum flexibility for future extension, allows reliable consistency checks
at compile and execution time, and allows the user to delay the commitment for significant and permanent
syntax changes of a developing method to handle model instances at a GAMS language level.

5.18.5 Applications

5.18.5.1 Cross Validation in GAMS via GUSS

Cross validation is a statistical/machine learning technique that aims to evaluate the generalizability of a
classifier (or other decision) process. It does this by setting aside a portion of the data for testing, and
uses the remaining data entries to produce the classifier. The testing data is subsequently used to evaluate
how well the classifier works. Cross validation performs this whole process a number of times in order to
estimate the true power of the classifier.

Ten-fold cross validation is a special case, where the original data is split into ten pieces, and cross
validation is performed using each of these ten pieces as the testing set. Thus, the training process is
performed ten times, each of which uses the data obtained by deleting the testing set from the whole
dataset. We show below how to carry this out using the Gather-Update-Solve-Scatter (GUSS) facility in
GAMS.

A paper with the title ”GUSS: Solving Collections of Data Related Models within GAMS” that contains
two additional application examples for GUSS is available here.

http://www.gams.com/modlib/adddocs/gusspaper.pdf

2082 Solver Manuals

GUSS formulation in GAMS

The following example compares the two formulations for a feature-selection model under cross-validation
using data files a data.inc and b data.inc . The actual source code for both of these GAMS
formulations is available here.

Original GAMS formulation (without the GAMS/DEA interface):

$title Ten-fold cross validation example

$eolcom !

$setglobal num_folds 10

set a ’set for category 1’ /1*1505/

b ’set for category 2’ /1*957/

o ’observations’ /1*14/

p ’folds to perform’ /1*%num_folds%/

f ’maximum features to select’ /1*10/

* Read in the data from the data files

parameter a_data(a, o) /

$offlisting

$include "a_data.inc"

$onlisting

/;

parameter b_data(b, o) /

$offlisting

$include "b_data.inc"

$onlisting

/;

set a_test(p,a), b_test(p,b) ’testing sets’

a_trai(a), b_trai(b) ’training sets’;

* Define problem

scalar w_tol /1/

features /6/;

positive variables a_err(a), sla(a)

b_err(b), slb(b);

variables c,

weight(o),

gamma;

binary variable y(o);

equations w_def1(o),

w_def2(o),

y_def,

c_def,

a_def(a),

b_def(b);

w_def1(o)..

http://www.gams.com/contrib/gamsdea/a_data.inc
http://www.gams.com/contrib/gamsdea/b_data.inc
http://www.gams.com/contrib/gamsdea/dea2s.gms

5.18 Gather-Update-Solve-Scatter (GUSS) 2083

weight(o) =l= w_tol*y(o);

w_def2(o)..

weight(o) =g= -w_tol*y(o);

y_def..

sum(o, y(o)) =e= features;

c_def..

c =e= sum(a, a_err(a)) + sum(b, b_err(b));

a_def(a)..

-sum(o, a_data(a, o)*weight(o)) + gamma + 1 =l= a_err(a) + sla(a);

b_def(b)..

sum(o, b_data(b, o)*weight(o)) - gamma + 1 =l= b_err(b) + slb(b);

model train /all/;

$batinclude gentestset.inc "p,a" "p,b"

set headers ’report’ / modelstat, solvestat, objval /;

parameter rep(p,headers);

train.optfile = 0;

option limrow=0, limcol=0, solprint=silent, mip=xpress,

solvelink=%solveLink.loadLibrary%, optcr=0, optca=0;

$echo loadmipsol=1 > xpress.opt

loop(p,

a_err.up(a) = inf; a_err.up(a)$a_test(p,a) = 0;

b_err.up(b) = inf; b_err.fx(b)$b_test(p,b) = 0;

sla.fx(a) = 0; sla.up(a)$a_test(p,a) = inf;

slb.fx(b) = 0; slb.up(b)$b_test(p,b) = inf;

solve train using mip minimizing c;

train.optfile = 1; ! use mipstart for the second run

rep(p,’modelstat’) = train.modelstat;

rep(p,’solvestat’) = train.solvestat;

rep(p,’objval’) = train.objval;

);

display rep;

Options file for the original formulation: xpress.opt

loadmipsol=1

The batinclude file gentestset.inc . gives instructions for generating the testing sets. It produces
a test and b test that detail which equations are left out on solve p.

The actual model is set up to include all the data points in the equations a def and b def. To delete the
equations that correspond to the test set, we introduce nonnegative slack variables into all the equations.
We then set the upper bounds of the slack variables to zero in equations corresponding to the training set,
and to infinity in equations corresponding to the testing set. At the same time we fix the error measures
a err and b err belonging to the testing set by setting their upper bounds to zero. Thus the testing set
equations are always satisfiable by choice of the slack variables alone - essentially they are discarded from

http://www.gams.com/contrib/gamsdea/gentestset.inc

2084 Solver Manuals

the model as required. An alternative formulation could ”include” the data equations that you need in
each scenario, but the update from one scenario to the next in the defining data is much larger.

Cross validation formulated using GUSS: This model essentially mimics what the standard model does,
but the implementation of the solver loop behind the scenes is much more efficient, and the consquences
are that are clear to see if you execute both model runs. The changes are in the last 40 lines of the GAMS
code.

$title Ten-fold cross validation example

$eolcom !

$setglobal num_folds 10

set a ’set for category 1’ /1*1505/

b ’set for category 2’ /1*957/

o ’observations’ /1*14/

p ’folds to perform’ /1*%num_folds%/

f ’maximum features to select’ /1*10/

* Read in the data from the data files

parameter a_data(a, o) /

$offlisting

$include "a_data.inc"

$onlisting

/;

parameter b_data(b, o) /

$offlisting

$include "b_data.inc"

$onlisting

/;

set a_test(p,a), b_test(p,b) ’testing sets’

a_trai(a), b_trai(b) ’training sets’;

* Define problem

scalar w_tol /1/

features /6/;

positive variables a_err(a), sla(a)

b_err(b), slb(b);

variables c,

weight(o),

gamma;

binary variable y(o);

equations w_def1(o),

w_def2(o),

y_def,

c_def,

a_def(a),

b_def(b);

w_def1(o)..

weight(o) =l= w_tol*y(o);

5.18 Gather-Update-Solve-Scatter (GUSS) 2085

w_def2(o)..

weight(o) =g= -w_tol*y(o);

y_def..

sum(o, y(o)) =e= features;

c_def..

c =e= sum(a, a_err(a)) + sum(b, b_err(b));

a_def(a)..

-sum(o, a_data(a, o)*weight(o)) + gamma + 1 =l= a_err(a) + sla(a);

b_def(b)..

sum(o, b_data(b, o)*weight(o)) - gamma + 1 =l= b_err(b) + slb(b);

model train /all/;

train.optfile = 1;

$batinclude gentestset.inc "p,a" "p,b"

parameter wval(p,o), gval(p);

set headers ’report’ / modelstat, solvestat, objval /;

parameter

scenrep(p,headers)

scopt(*) / SkipBaseCase 1, Optfile 1, LogOption 2 /;

set dict / p. scenario.’’

scopt. opt. scenrep

a_err. upper. aupper

b_err. upper. bupper

sla. upper. afree

slb. upper. bfree

weight.level. wval

gamma. level. gval /

$echo loadmipsol=1 > xpress.opt

Parameter aupper(p,a), bupper(p,b), afree(p,a), bfree(p,b);

aupper(p,a)$(not a_test(p,a)) = inf;

bupper(p,b)$(not b_test(p,b)) = inf;

afree(p,a)$a_test(p,a) = inf;

bfree(p,b)$b_test(p,b) = inf;

option mip=xpress, optcr=0, optca=0;

solve train using mip minimizing c scenario dict;

display scenrep, gval;

Firstly, parameters aupper, bupper, afree and bfree are used to set the bounds on the error and slack
variables in the testing set equations respectively. The setting of the upper bounds are governed by the
syntax shown in the controlling set dict. Furthermore, the output of the classifier (w,gamma) for each fold
of the cross validation uses the dict set to place results into the parameters wval and gval respectively.
Finally, the GUSS options are used to guarantee that the subsequent solves are instructed to process solver

2086 Solver Manuals

options (Optfile 1) which instruct the solver to use the previous solution to start the branch-and-cut
process (loadmipsol=1).

The complete data and model files for this example are found in (galaxy zip archive). The data and
model for a second instance based on the Wisconsin Diagnostic Breast Cancer Database is downloadable
as (wdbc zip archive).

Quadratic Programs

GUSS is not limited to linear programs, but can be used more generally. Simple (indexed) quadratic
models can be solved using GUSS. The following example illustrates the use of GUSS for quadratic
programs. In this example, a support vector machine is used to determine a linear classifier that separates
data into two categories. We use the following model:

Minw,g,z (1/2)‖w‖22 + CeT z
subject to D(Aw − g) + z ≥ 1

z ≥ 0
(5.12)

Here, A is a matrix containing the training data (patients by features) and D is a diagonal matrix with
values +1 or −1 (each denoting one of the two classes). C is a parameter weighting the importance of
maximizing the margin between the classes (2/‖w‖2) versus minimizing the misclassification error (z).
The solution w and g are used to define a separating hyperplane {x|wTx = g} to classify (unseen) data
points.

As given, the standard linear support vector machine is not a slice model per se. It becomes a slice model
under cross-validation training, where it is solved multiple times on different pieces of data. In this case,
only the data A and D vary between solves, appropriately fitting the definition of a slice model.

The data for this example comes from the Wisconsin Diagnosis Breast Cancer Database, and is available
here . The data was converted to the GAMS file wdbc.gms , which defines A and D. The actual

source code for the following GAMS formulation is available here.

The GUSS formulation for quadratic svm:

$title Ten-fold cross validation example using GUSS

$eolcom !

$setglobal num_folds 10

set p /1*%num_folds%/; ! folds to perform

! Read in data

$include "wdbc.gms"

set test(p,i); ! testing set

! Define problem

parameter C /1/;

positive variables z(i);

variables obj, w(k), gamma, slack(i);

equations obj_def, sep_def(i);

obj_def.. obj =e= 1/2*sum(k, sqr(w(k))) + C*sum(i, z(i));

sep_def(i)..

http://www.gams.com/contrib/gamsdea/galaxy.zip
http://www.gams.com/contrib/gamsdea/wdbc.zip
http://pages.cs.wisc.edu/~olvi/uwmp/cancer.html
http://www.gams.com/contrib/gamsdea/wdbc.gms
http://www.gams.com/contrib/gamsdea/deaqp2s.gms

5.18 Gather-Update-Solve-Scatter (GUSS) 2087

D(i)*(sum(k, A(i,k)*w(k)) - gamma) + z(i) + slack(i) =g= 1;

model train /all/;

! Generate testing sets (to be deleted in each problem)

loop(p,

$batinclude gentestset2.inc "p,i"

);

set headers report / modelstat, solvestat, objval /;

parameter

scenrep(p,headers)

scopt / SkipBaseCase 1, LogOption 2 /;

set dict / p. scenario.’’

scopt.opt. scenrep

z. upper. iupper

slack.upper. ifree /;

Parameter iupper(p,i), ifree(p,i);

iupper(p,i)$(not test(p,i)) = inf;

ifree(p,i)$test(p,i) = inf;

option qcp=conopt, optcr=0, optca=0;

solve train using qcp minimizing obj scenario dict;

display scenrep;

Because the problem is quadratic, we must use a quadratic program solver. The variable values for weight
and gamma could be saved for later testing using the same method as detailed above for the linear case.

The batinclude file gentestset2.inc is very similar to gentestset.inc from the earlier cross-validation
examples. In gentestset2.inc, though, only one set is being dealt with rather than two. The complete
source GAMS code for this formulation is available in this zip archive.

5.18.5.2 DEA Modeling in GAMS via GUSS

Data Envelopment Analysis (DEA) models can be solved most efficiently in GAMS using the Gather-
Update-Solve-Scatter (GUSS) facility. This is the preferred method since release 23.7 of GAMS and hence
the GAMS/DEA solver is no longer available.

A paper with the title ”GUSS: Solving Collections of Data Related Models within GAMS” that contains
two additional application examples for GUSS is available here.

Introduction

The basic (CCR) DEA model is a collection of models indexed by k and defined by

maxu,v uTY∗,k (objective slice)
subject to vTX∗,k = 1 (slice constraint)

uTY ≤ vTX (core constraint)
u, v ≥ 0 (core constraint)

(5.13)

where X,Y are data matrices.

http://www.gams.com/contrib/gamsdea/gentestset2.inc
http://www.gams.com/contrib/gamsdea/gentestset.inc
http://www.gams.com/contrib/gamsdea/gentestset2.inc
http://www.gams.com/contrib/gamsdea/deaqp2s.zip
http://www.gams.com/modlib/adddocs/gusspaper.pdf

2088 Solver Manuals

Without using GUSS in GAMS, a model would be defined and solved in a loop over k, requiring the model
to be generated multiple times with different instances for each value of k. GUSS is an alternative (and
more efficient) way to define the individual programs and pass them to any underlying GAMS solver. In
this way, individual programs are not re-generated, but are instead defined as data modifications of each
other. This reduces overall model generation time. Further, previous solutions can be used as starting
points in later solves to speed up overall processing time.

Some DEA examples compare the two formulations. The actual source code for both of these formulations
is available here.

DEA Examples

Original GAMS formulation (without GUSS): In all these models the model setup and data are
given at the top of the file and the code of interest is in the last 10 or so lines. In this setting we loop over
the set k and change the data in the objective function and the first constraint of the model explicitly
before each solve. We only output a minimal summary of the solution.

$title Data Envelopment Analysis - DEA

$ontext

Data Envelopment Analysis (DEA) is a technique for measuring the relative

performance of organizational units where presence of multiple inputs and

outputs makes comparison difficult.

efficiency = weighted sum of output / weighted sum of input

Find weights that maximize the efficiency for one unit while ensuring

that no other units has an efficiency < 1 using these weights. A primal

and dual formulation is presented.

Dyson, Thanassoulis, and Boussofiane, A DEA Tutorial.

Warwick Business School

$offtext

Sets i ’units’ / Depot1*Depot20 /

j ’inputs and outputs’ / stock, wages, issues, receipts, reqs /

ji(j) ’inputs’ / stock, wages /

jo(j) ’outputs’ / issues, receipts, reqs /;

alias(i,k);

Table data(i,j)

stock wages issues receipts reqs

Depot1 3 5 40 55 30

Depot2 2.5 4.5 45 50 40

Depot3 4 6 55 45 30

Depot4 6 7 48 20 60

Depot5 2.3 3.5 28 50 25

Depot6 4 6.5 48 20 65

Depot7 7 10 80 65 57

Depot8 4.4 6.4 25 48 30

Depot9 3 5 45 64 42

Depot10 5 7 70 65 48

Depot11 5 7 45 65 40

http://www.gams.com/contrib/gamsdea/dea1s.gms

5.18 Gather-Update-Solve-Scatter (GUSS) 2089

Depot12 2 4 45 40 44

Depot13 5 7 65 25 35

Depot14 4 4 38 18 64

Depot15 2 3 20 50 15

Depot16 3 6 38 20 60

Depot17 7 11 68 64 54

Depot18 4 6 25 38 20

Depot19 3 4 45 67 32

Depot20 3 6 57 60 40

;

Parameter slice(j) ’slice of data’

eff_k(i) ’efficiency report’;

Positive variables v(ji) ’input weights’

u(jo) ’output weights’;

Variable eff ’efficiency’;

Equations defe ’efficiency definition - weighted output’

denom ’weighted input’

lime(i) ’output / input < 1’;

defe.. eff =e= sum(jo, u(jo)*slice(jo));

denom.. sum(ji, v(ji)*slice(ji)) =e= 1;

lime(i).. sum(jo, u(jo)*data(i,jo)) =l= sum(ji, v(ji)*data(i,ji));

model dea /defe, denom, lime /;

set headers / modelstat, solvestat, objval /;

parameter rep(k,headers) ’solution report summary’;

option limrow=0, limcol=0, solprint=silent,

solvelink=%solveLink.loadLibrary%;

loop(k,

slice(j) = data(k,j);

solve dea using lp max eff;

rep(k,’modelstat’) = dea.modelstat;

rep(k,’solvestat’) = dea.solvestat;

rep(k,’objval’) = dea.objval;

);

display rep;

The DEA problem formulated using GUSS: In this setting, the solve statement includes an extra keyword
scenario that points to a new set called dict. The contents of this set are directives to GUSS that state
the scenario index is k, the parameter slice is populated from the parameter data and the values of the
variable eff are stored into the parameter eff k for each scenario solved. More details follow below.

$title Data Envelopment Analysis - DEA

Sets i ’units’ / Depot1*Depot20 /

j ’inputs and outputs ’/ stock, wages, issues, receipts, reqs /

ji(j) ’inputs’ / stock, wages /

jo(j) ’outputs’ / issues, receipts, reqs /;

alias(i,k);

2090 Solver Manuals

Table data(i,j)

stock wages issues receipts reqs

Depot1 3 5 40 55 30

Depot2 2.5 4.5 45 50 40

Depot3 4 6 55 45 30

Depot4 6 7 48 20 60

Depot5 2.3 3.5 28 50 25

Depot6 4 6.5 48 20 65

Depot7 7 10 80 65 57

Depot8 4.4 6.4 25 48 30

Depot9 3 5 45 64 42

Depot10 5 7 70 65 48

Depot11 5 7 45 65 40

Depot12 2 4 45 40 44

Depot13 5 7 65 25 35

Depot14 4 4 38 18 64

Depot15 2 3 20 50 15

Depot16 3 6 38 20 60

Depot17 7 11 68 64 54

Depot18 4 6 25 38 20

Depot19 3 4 45 67 32

Depot20 3 6 57 60 40

;

Parameter slice(j) ’slice of data’

eff_k(i) ’efficiency report’;

Positive variables v(ji) ’input weights’

u(jo) ’output weights’;

Variable eff ’efficiency’;

Equations defe ’efficiency definition - weighted output’

denom ’weighted input’

lime(i) ’output / input < 1’;

defe.. eff =e= sum(jo, u(jo)*slice(jo));

denom.. sum(ji, v(ji)*slice(ji)) =e= 1;

lime(i).. sum(jo, u(jo)*data(i,jo)) =l= sum(ji, v(ji)*data(i,ji));

model dea /defe, denom, lime /;

set headers ’report’ / modelstat, solvestat, objval /;

parameter scenrep(k,headers) ’solution report summary’

scopt / SkipBaseCase 1 /;

set dict / k .scenario.’’

slice .param. data

eff .level. eff_k

scopt .opt. scenrep /;

slice(j) = 0; option lp=cplex;

solve dea using lp max eff scenario dict;

5.18 Gather-Update-Solve-Scatter (GUSS) 2091

display scenrep,eff_k;

In the GUSS version we indicate the collection of models to be solved using the set dict. The first element
of dict determines the set to be used for the scenario (collection) index, in this case k. The second
element of dict then details that in each scenario k, the parameter slice is instantiated using a slice of the
parameter data. Essentially, this corresponds to the GAMS statement:

slice(j) = data(k,j)

Note the scenario index k must appear as the first index of the parameter data. The third element of dict
allows the modeler to collect information from each solve and store it into a GAMS parameter. Essentially,
the third element of dict corresponds to the GAMS statement:

eff k(k) = eff.l

that gets executed immediately after the solve of scenario k.

More complex scenario models can also be formulated using GUSS, including multiple equations being
updated. This is shown by the dual of the basic DEA model, given by

minz,λ z (objective)
subject to X∗λ ≤ zX∗,k (slice constraint)

Y ∗λ ≥ Y∗,k (slice constraint)
λ ≥ 0 (core constraint)

(5.14)

The next example compares the two formulations for this model. The actual source code for both of these
formulations is available here.

Original GAMS formulation (without GUSS):

$title Data Envelopment Analysis - DEA (traditional)

sets i ’units’ / Depot1*Depot20 /

j ’inputs and outputs’ / stock, wages, issues, receipts, reqs /

ji(j) ’inputs’ / stock, wages /

jo(j) ’outputs’ / issues, receipts, reqs /;

alias(k,i);

Table data(i,j)

stock wages issues receipts reqs

Depot1 3 5 40 55 30

Depot2 2.5 4.5 45 50 40

Depot3 4 6 55 45 30

Depot4 6 7 48 20 60

Depot5 2.3 3.5 28 50 25

Depot6 4 6.5 48 20 65

Depot7 7 10 80 65 57

Depot8 4.4 6.4 25 48 30

Depot9 3 5 45 64 42

Depot10 5 7 70 65 48

Depot11 5 7 45 65 40

Depot12 2 4 45 40 44

Depot13 5 7 65 25 35

Depot14 4 4 38 18 64

Depot15 2 3 20 50 15

Depot16 3 6 38 20 60

http://www.gams.com/contrib/gamsdea/dead1s.gms

2092 Solver Manuals

Depot17 7 11 68 64 54

Depot18 4 6 25 38 20

Depot19 3 4 45 67 32

Depot20 3 6 57 60 40

;

parameter slice(j) ’slice of data’

eff_k(i) ’efficiency report’;

Variables z ’efficiency’

lam(i) ’dual weights’;

positive variables lam;

Equations dii(ji) ’input duals’

dio(jo) ’output dual’;

* dual model

dii(ji).. sum(i, lam(i)*data(i,ji)) =l= z*slice(ji);

dio(jo).. sum(i, lam(i)*data(i,jo)) =g= slice(jo);

model deadc dual with CRS / dii, dio /;

parameter rep ’summary report’;

option limrow=0, limcol=0, solprint=silent, lp=cplex,

solvelink=%solveLink.loadLibrary%;

loop(k,

slice(j) = data(k,j);

solve deadc using lp minimizing z ;

rep(k,’modelstat’) = deadc.modelstat;

rep(k,’solvestat’) = deadc.modelstat;

rep(k,’objval’) = deadc.objval;

);

display rep;

Dual (CRS) DEA model formulated using GUSS: The key modeling statements occur in the last
10 lines below.

$title Data Envelopment Analysis - DEA (dual,GUSS)

sets i ’units’ / Depot1*Depot20 /

j ’inputs and outputs’ / stock, wages, issues, receipts, reqs /

ji(j) ’inputs’ / stock, wages /

jo(j) ’outputs’ / issues, receipts, reqs /;

alias(k,i);

Table data(i,j)

stock wages issues receipts reqs

Depot1 3 5 40 55 30

Depot2 2.5 4.5 45 50 40

Depot3 4 6 55 45 30

Depot4 6 7 48 20 60

Depot5 2.3 3.5 28 50 25

5.19 HiGHS 2093

Depot6 4 6.5 48 20 65

Depot7 7 10 80 65 57

Depot8 4.4 6.4 25 48 30

Depot9 3 5 45 64 42

Depot10 5 7 70 65 48

Depot11 5 7 45 65 40

Depot12 2 4 45 40 44

Depot13 5 7 65 25 35

Depot14 4 4 38 18 64

Depot15 2 3 20 50 15

Depot16 3 6 38 20 60

Depot17 7 11 68 64 54

Depot18 4 6 25 38 20

Depot19 3 4 45 67 32

Depot20 3 6 57 60 40

;

parameter slice(j) ’slice of data’

eff_k(i) ’efficiency report’;

Variables z ’efficiency’

lam(i) ’dual weights’;

positive variables lam;

Equations dii(ji) ’input duals’

dio(jo) ’output dual’;

* dual model

dii(ji).. sum(i, lam(i)*data(i,ji)) =l= z*slice(ji);

dio(jo).. sum(i, lam(i)*data(i,jo)) =g= slice(jo);

model deadc dual with CRS / dii, dio /;

set headers ’report’ / modelstat, solvestat, objval /;

parameter scenrep(k,headers) ’solution report summary’

scopt / SkipBaseCase 1 /;

set dict / k. scenario.’’

scopt. opt. scenrep

slice. param. data

z. level. eff_k /;

slice(j) = 0; option lp=cplex;

solve deadc using lp min z scenario dict;

display scenrep,eff_k;

Extensions of these models to formulations with weighted outputs or variable returns to scale are easy to
formulate with the scenario solver within GAMS. This extended model can be downloaded here.

The DEA model in the model library is similar to the extended model, but does not make use of GUSS.

5.19 HiGHS

HiGHS is an optimization package for solving continuous and mixed-integer linear programming problems

http://www.gams.com/contrib/gamsdea/deae1s.gms
https://highs.dev/

2094 Solver Manuals

(LPs and MIPs) using simplex, interior-point, and branch-and-cut algorithms. HiGHS is developed by the
Edinburgh Research Group in Optimization.

For more detailed information on the implemented simplex method, we refer to [98].

5.19.1 Usage

The following statement can be used inside your GAMS program to specify using HiGHS

Option MIP = HIGHS; { or LP or RMIP }

The above statement should appear before the Solve statement. If HiGHS was specified as the default
solver during GAMS installation, the above statement is not necessary.

5.19.1.1 Specification of HiGHS Options

GAMS/HiGHS supports the GAMS parameters reslim, iterlim, nodlim. optca, optcr, cutoff, and threads.

Options can be specified by a HiGHS options file. A HiGHS options file consists of one option or comment
per line. A pound sign (#) at the beginning of a line causes the entire line to be ignored. Otherwise, the
line will be interpreted as an option name and value separated by an equal sign (=) and any amount of
white space (blanks or tabs).

A small example for a highs.opt file is:

solver = ipm

ipm_optimality_tolerance = 1e-6

run_crossover = false

It causes HiGHS to use an interior point solver for an LP solve, increases the optimality tolerance to 10−6,
and turns off crossover to a basis solution.

5.19.2 List of HiGHS Options

In the following, we give a detailed list of all HiGHS options.

Option Description Default

dual feasibility tolerance
Dual feasibility tolerance
Range: [1e-10, ∞]

1e-07

infinite bound
Limit on |constraint bound|: val-
ues greater than or equal to this
will be treated as infinite
Range: [1e+15, ∞]

1e+20

infinite cost
Limit on |cost coefficient|: values
greater than or equal to this will
be treated as infinite
Range: [1e+15, ∞]

1e+20

ipm iteration limit
Iteration limit for IPM solver
Range: {0, ..., ∞}

GAMS iterlim

5.19 HiGHS 2095

Option Description Default

ipm optimality tolerance
IPM optimality tolerance
Range: [1e-12, ∞]

1e-08

large matrix value
Upper limit on |matrix entries|:
values greater than or equal to
this will be treated as infinite
Range: [1, ∞]

1e+15

mip abs gap
Tolerance on absolute gap of
MIP, |ub-lb|, to determine
whether optimality has been
reached for a MIP instance
Range: [0, ∞]

GAMS optca

mip detect symmetry
Whether MIP symmetry should
be detected
Range: boolean

1

mip feasibility tolerance
MIP feasibility tolerance
Range: [1e-10, ∞]

1e-06

mip heuristic effort
Effort spent for MIP heuristics
Range: [0, 1]

0.05

mip lp age limit
Maximal age of dynamic LP rows
before they are removed from the
LP relaxation in the MIP solver
Range: {0, ..., 32767}

10

mip max improving sols
Limit on the number of improv-
ing solutions found to stop the
MIP solver prematurely
Range: {1, ..., ∞}

∞

mip max leaves
MIP solver max number of leave
nodes
Range: {0, ..., ∞}

∞

mip max nodes
MIP solver max number of nodes
Range: {0, ..., ∞}

GAMS nodlim, if > 0, ∞
otherwise

mip max stall nodes
MIP solver max number of nodes
where estimate is above cutoff
bound
Range: {0, ..., ∞}

∞

mip min cliquetable entries for parallelism
Minimal number of entries in
the MIP solver cliquetable be-
fore neighbourhood queries of
the conflict graph use parallel
processing
Range: {0, ..., ∞}

100000

mip min logging interval
MIP minimum logging interval
Range: [0, ∞]

5

mip pool age limit
Maximal age of rows in the MIP
solver cutpool before they are
deleted
Range: {0, ..., 1000}

30

mip pool soft limit
Soft limit on the number of rows
in the MIP solver cutpool for dy-
namic age adjustment
Range: {1, ..., ∞}

10000

2096 Solver Manuals

Option Description Default

mip pscost minreliable
Minimal number of observations
before MIP solver pseudo costs
are considered reliable
Range: {0, ..., ∞}

8

mip rel gap
Tolerance on relative gap, |ub-
lb|/|ub|, to determine whether
optimality has been reached for
a MIP instance
Range: [0, ∞]

GAMS optcr

mipstart
Whether to pass initial level val-
ues as starting point to MIP
solver
If the solution is not feasible,
HiGHS will solve the LP ob-
tained from fixing all discrete
variables to their initial level val-
ues.
Range: boolean

0

objective bound
Objective bound for termination
of the dual simplex solver
Range: real

GAMS cutoff

objective target
Objective target for termination
of the MIP solver
Range: real

-∞

output flag
Enables or disables solver output
Range: boolean

0, if GAMS logoption = 0,
otherwise 1

parallel
Parallel option: ”off”, ”choose”
or ”on”
Range: string

choose

presolve
Presolve option: ”off”, ”choose”
or ”on”
Range: string

choose

primal feasibility tolerance
Primal feasibility tolerance
Range: [1e-10, ∞]

1e-07

random seed
Random seed used in HiGHS
Range: {0, ..., ∞}

0

run crossover Run IPM crossover: ”off”,
”choose” or ”on”
Range: string

on

sensitivity
Whether to run sensitivity anal-
ysis after solving an LP with a
simplex method
Range: boolean

0

simplex dual edge weight strategy
Strategy for simplex dual edge
weights: Choose / Dantzig / De-
vex / Steepest Edge (-1/0/1/2)
Range: {-1, ..., 2}

-1

simplex iteration limit
Iteration limit for simplex solver
when solving LPs, but not sub-
problems in the MIP solver
Range: {0, ..., ∞}

GAMS iterlim

simplex max concurrency
Maximum level of concurrency
in parallel simplex
Range: {1, ..., 8}

8

5.19 HiGHS 2097

Option Description Default

simplex primal edge weight strategy
Strategy for simplex primal edge
weights: Choose / Dantzig / De-
vex / Steepest Edge (-1/0/1/2)
Range: {-1, ..., 2}

-1

simplex scale strategy
Simplex scaling strategy: off /
choose / equilibration / forced
equilibration / max value 0 /
max value 1 (0/1/2/3/4/5)
Range: {0, ..., 5}

1

simplex strategy
Strategy for simplex solver 0 =>
Choose; 1 => Dual (serial); 2
=> Dual (PAMI); 3 => Dual
(SIP); 4 => Primal
Range: {0, ..., 4}

1

simplex update limit
Limit on the number of simplex
UPDATE operations
Range: {0, ..., ∞}

5000

small matrix value
Lower limit on |matrix entries|:
values less than or equal to this
will be treated as zero
Range: [1e-12, ∞]

1e-09

solution file
Solution file
Range: string

<inputname>.sol

solver
LP algorithm to run: ”simplex”,
”choose”, or ”ipm”; ignored for
MIP
Range: string

choose

solvetrace
Name of file for writing solving
progress information during MIP
solve
Range: string

solvetracenodefreq
Frequency in number of nodes
for writing to solve trace file
Range: {0, ..., ∞}

100

solvetracetimefreq
Frequency in seconds for writing
to solve trace file
Range: [0, ∞]

5

threads
Number of threads used by
HiGHS (0: automatic)
Range: {0, ..., ∞}

GAMS threads

time limit
Time limit (seconds)
Range: [0, ∞]

GAMS reslim

write model file
Write model file
Range: string

<inputname>.lp

write model to file
Write the model to a file
Range: boolean

0

2098 Solver Manuals

Option Description Default

write solution style
Style of solution file (raw =
computer-readable, pretty =
human-readable): -1 => HiGHS
old raw (deprecated); 0 =>
HiGHS raw; 1 => HiGHS pretty;
2 => Glpsol raw; 3 => Glpsol
pretty; 4 => HiGHS sparse raw
Range: {-1, ..., 4}

0

write solution to file
Write the primal and dual solu-
tion to a file
Range: boolean

0

Options for expert users

allow unbounded or infeasible
whether to spend extra effort to
distinguish unboundedness and
infeasibility if necessary
Range: boolean

0

allowed cost scale factor
Largest power-of-two factor per-
mitted when scaling the costs
Range: {0, ..., 20}

0

allowed matrix scale factor
Largest power-of-two factor per-
mitted when scaling the con-
straint matrix
Range: {0, ..., 30}

20

cost scale factor
Scaling factor for costs
Range: {-20, ..., 20}

0

dual simplex cost perturbation multiplier
Dual simplex cost perturbation
multiplier: 0 => no perturba-
tion
Range: [0, ∞]

1

dual simplex pivot growth tolerance
Dual simplex pivot growth toler-
ance
Range: [1e-12, ∞]

1e-09

dual steepest edge weight error tolerance
Tolerance on dual steepest edge
weight errors
Range: [0, ∞]

∞

dual steepest edge weight log error threshold
Threshold on dual steepest edge
weight errors for Devex switch
Range: [1, ∞]

10

factor pivot threshold
Matrix factorization pivot
threshold
Range: [0.0008, 0.5]

0.1

factor pivot tolerance
Matrix factorization pivot toler-
ance
Range: [0, 1]

1e-10

highs analysis level
Analysis level in HiGHS
Range: {0, ..., 63}

0

highs debug level
Debugging level in HiGHS
Range: {0, ..., 3}

0

icrash
Run iCrash
Range: boolean

0

icrash approx iter
iCrash approximate minimiza-
tion iterations
Range: {0, ..., 100}

50

5.19 HiGHS 2099

Option Description Default

icrash breakpoints
Exact subproblem solution for
iCrash
Range: boolean

0

icrash dualize
Dualize strategy for iCrash
Range: boolean

0

icrash exact
Exact subproblem solution for
iCrash
Range: boolean

0

icrash iterations
iCrash iterations
Range: {0, ..., 200}

30

icrash starting weight
iCrash starting weight
Range: [1e-10, 1e+50]

0.001

icrash strategy
Strategy for iCrash
Range: string

ICA

ipx dualize strategy
Strategy for dualizing before
IPX
Range: {-1, ..., 3}

2

less infeasible DSE check
Check whether LP is candidate
for LiDSE
Range: boolean

1

less infeasible DSE choose row
Use LiDSE if LP has right prop-
erties
Range: boolean

1

log dev level
Output development messages:
0 => none; 1 => info; 2 =>
verbose
Range: {0, ..., 3}

0

lp presolve requires basis postsolve
Prevents LP presolve steps for
which postsolve cannot maintain
a basis
Range: boolean

1

max dual simplex cleanup level
Max level of dual simplex
cleanup
Range: {0, ..., ∞}

1

max dual simplex phase1 cleanup level
Max level of dual simplex phase
1 cleanup
Range: {0, ..., ∞}

2

mip report level
MIP solver reporting level
Range: {0, ..., 2}

1

no unnecessary rebuild refactor
No unnecessary refactorization
on simplex rebuild
Range: boolean

1

presolve pivot threshold
Matrix factorization pivot
threshold for substitutions in
presolve
Range: [0.0008, 0.5]

0.01

presolve reduction limit
Limit on number of presolve re-
ductions -1 => no limit
Range: {-1, ..., ∞}

-1

presolve rule logging
Log effectiveness of presolve
rules for LP
Range: boolean

0

2100 Solver Manuals

Option Description Default

presolve rule off
Bit mask of presolve rules that
are not allowed
Range: {0, ..., ∞}

0

presolve substitution maxfillin
Maximal fillin allowed for substi-
tutions in presolve
Range: {0, ..., ∞}

10

primal simplex bound perturbation multiplier
Primal simplex bound perturba-
tion multiplier: 0 => no pertur-
bation
Range: [0, ∞]

1

rebuild refactor solution error tolerance
Tolerance on solution error when
considering refactorization on
simplex rebuild
Range: real

1e-08

simplex crash strategy
Strategy for simplex crash: off /
LTSSF / Bixby (0/1/2)
Range: {0, ..., 9}

0

simplex dualize strategy
Strategy for dualizing before sim-
plex
Range: {-1, ..., 1}

-1

simplex initial condition check
Perform initial basis condition
check in simplex
Range: boolean

1

simplex initial condition tolerance
Tolerance on initial basis condi-
tion in simplex
Range: [1, ∞]

1e+14

simplex min concurrency
Minimum level of concurrency in
parallel simplex
Range: {1, ..., 8}

1

simplex permute strategy
Strategy for permuting before
simplex
Range: {-1, ..., 1}

-1

simplex price strategy
Strategy for PRICE in simplex
Range: {0, ..., 3}

3

simplex unscaled solution strategy
Strategy for solving unscaled LP
in simplex
Range: {0, ..., 2}

1

start crossover tolerance
Tolerance to be satisfied before
IPM crossover will start
Range: [1e-12, ∞]

1e-08

use implied bounds from presolve
Use relaxed implied bounds from
presolve
Range: boolean

0

use original HFactor logic
Use original HFactor logic for
sparse vs hyper-sparse TRANs
Range: boolean

1

5.20 IPOPT and IPOPTH

COIN-OR IPOPT (Interior Point Optimizer) is an open-source solver for large-scale nonlinear programming
(NLP). The code has been written primarily by Andreas Wächter.

https://github.com/coin-or/Ipopt

5.20 IPOPT and IPOPTH 2101

IPOPT implements an interior point line search filter method for nonlinear programming models which
functions can be nonconvex, but should be twice continuously differentiable. For more information on the
algorithm we refer to [144] [196] [195] [197] [194] and the IPOPT documentation. Most of the IPOPT
documentation in the section was taken from the IPOPT manual [104] .

5.20.1 Available linear solvers

The performance and robustness of IPOPT on larger models heavily relies on the used solver for sparse
symmetric indefinite linear systems.

GAMS/IPOPT includes the sparse solver MUMPS [8] [9] (currently the default), and MKL PARDISO
[166] [167]. The latter is not available for systems on ARM64 CPUs. In the commerically licensed
GAMS/IPOPTH version, also the Harwell Subroutine Library (HSL) solvers MA27, MA57, HSL MA86,
and HSL MA97 are available and MA27 is used by default.

MUMPS, MA57, HSL MA86, and HSL MA97 use METIS for matrix ordering [103], see also the METIS

manual . METIS is copyrighted by the regents of the University of Minnesota.

IPOPT and IPOPTH can exploit parallelization of the linear solvers MKL Pardiso, HSL MA86, and HSL
MA97 and the linear algebra routines (see next section).

The linear solver is chosen by the linear solver option. Benchmarks have shown that MA57 and
HSL MA97 are often able to outperform MA27 on larger instances. Further, PARDISO often al-
lows for performance that is better than MUMPS and similar to the HSL solvers. If IPOPT fails
to solve an instance with PARDISO, it's worth to try changing the options pardisomkl order and
pardisomkl max iterative refinement steps.

It is also possible to use the linear solver PARDISO from the PARDISO Solver Project or the HSL

routines with GAMS/IPOPT if a user provides libraries that can be loaded at runtime. PARDISO
from the PARDISO Solver Project can provide performance that exceeds the one of PARDISO from
Intel MKL. To build the HSL routines, COIN-OR project ThirdParty-HSL may be useful. See also
options linear solver, linear system scaling, nlp scaling method, pardisolib, and hsllib. Note that it is
your responsibility to ensure that you are entitled to download and use these routines!

5.20.2 The linear algebra library

On systems for AMD and Intel CPUs, the IPOPT library distributed by GAMS and most of the linear
solvers used by IPOPT use the Intel oneAPI Math Kernel Library (MKL), which provides a fast and
parallel implementation of linear algebra routines (BLAS/LAPACK) and the linear solver PARDISO.
MKL chooses an internal code path that provides the best possible performance for the used CPU type.
As a consequence, results can be different when changing from one CPU to another. By setting an
environment variable, the code path to use can be set by the user. See the Intel MKL documentation
regarding Conditional Numerical Reproducibility for more details.

Intel MKL has been optimized for use with Intel CPUs. On CPUs from other vendors, MKL may not use
an internal code path that could provide a better performance on that CPU. For example, it may not
use AVX2 instructions on an AMD CPU that provides AVX2. However, Intel recently started to add
optimized code for AMD's Zen CPUs.

To gain more insight into the use of MKL in GAMS/IPOPT, one may set the environment variable

MKL VERBOSE to 1. This will print out information about the MKL library used, functions being called,
time spend there, etc.

On the GAMS system for macOS on ARM64 CPUs, the Apple Accelerate framework is used as linear
algebra library.

https://coin-or.github.io/Ipopt/
https://github.com/KarypisLab/METIS
https://github.com/KarypisLab/METIS/raw/master/manual/manual.pdf
https://github.com/KarypisLab/METIS/raw/master/manual/manual.pdf
https://pardiso-project.org/
https://www.hsl.rl.ac.uk/ipopt/
https://www.hsl.rl.ac.uk/ipopt/
https://github.com/coin-or-tools/ThirdParty-HSL
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-linux-developer-guide/top/obtaining-numerically-reproducible-results.html
https://software.intel.com/content/www/us/en/develop/articles/verbose-mode-supported-in-intel-mkl-112.html
https://software.intel.com/content/www/us/en/develop/articles/verbose-mode-supported-in-intel-mkl-112.html

2102 Solver Manuals

5.20.3 Usage

The following statement can be used inside your GAMS program to specify using IPOPT

Option NLP = IPOPT; { or LP, RMIP, DNLP, RMINLP, QCP, RMIQCP, CNS }

The above statement should appear before the Solve statement. If IPOPT was specified as the default
solver during GAMS installation, the above statement is not necessary.

To use IPOPTH, the statement should be

Option NLP = IPOPTH; { or LP, RMIP, DNLP, RMINLP, QCP, RMIQCP, CNS }

5.20.3.1 Specification of Options

IPOPT has many options that can be adjusted for the algorithm (see Section List of IPOPT Options).
Options are all identified by a string name, and their values can be of one of three types: Number (real),
Integer, or String. Number options are used for things like tolerances, integer options are used for things
like maximum number of iterations, and string options are used for setting algorithm details, like the
NLP scaling method. Options can be set by creating a ipopt.opt file in the directory you are executing
IPOPT.

The ipopt.opt file is read line by line and each line should contain the option name, followed by whitespace,
and then the value. Comments can be included with the # symbol. For example, the following is a valid
ipopt.opt file:

This is a comment

Turn off the NLP scaling

nlp_scaling_method none

Change the initial barrier parameter

mu_init 1e-2

Set the max number of iterations

max_iter 500

GAMS/IPOPT understands currently the following GAMS parameters: reslim (time limit), iterlim
(iteration limit), domlim (domain violation limit). Further the option threads can be used to control the
number of threads used in the linear algebra routines and the linear solver. Setting threads=0 currently
does not enable multithreaded linear algebra.

5.20 IPOPT and IPOPTH 2103

5.20.3.2 Warmstarting IPOPT

As an interior point solver, it is difficult to warm start IPOPT. By default, only the level values of the
variables are passed as starting point to IPOPT. Setting the IPOPT option warm start init point to yes

enables that also dual values for variables and constraints are passed to IPOPT.

However, the expected behavior that IPOPT finishes within one iteration if optimal primal and dual values
are passed is not reached this way, yet. This is, because IPOPT by default moves any initial value that is
close to a bound into the interior. The amount on how much the initial point is moved can be controlled
by various bound push and bound frac options. To make IPOPT accept an optimal primal/dual solution
within one iteration, it should be sufficient to set the following options:

warm_start_init_point yes

warm_start_bound_push 1e-9

warm_start_bound_frac 1e-9

warm_start_slack_bound_frac 1e-9

warm_start_slack_bound_push 1e-9

warm_start_mult_bound_push 1e-9

Further, it can be useful to specify that IPOPT can use a less central path in its first iterations by reducing
the value of option mu init. This option is only used if option mu strategy is set to ”monotone”, so the
option file entries would be

mu_strategy monotone

mu_init 0.0001

Finally, IPOPT by default checks whether it should scale the problem. The computed scaling depends on
the starting point, which can be undesired when warmstarting. Thus, it may be useful to turn off scaling
via option nlp scaling method:

nlp_scaling_method none

If a modified but structually equivalent problem instance is solved, e.g., via GUSS, option
warm start init point is automatically set to ”yes” for every solve following the first one. If this
is not desired, warm start init point should explicitly be set to ”no” in an IPOPT options file.

5.20.4 Output

This section describes the standard IPOPT console output. The output is designed to provide a quick
summary of each iteration as IPOPT solves the problem.

Before IPOPT starts to solve the problem, it displays the problem statistics (number of nonzero-elements
in the matrices, number of variables, etc.). Note that if you have fixed variables (both upper and lower
bounds are equal), IPOPT may remove these variables from the problem internally and not include them
in the problem statistics.

Following the problem statistics, IPOPT will begin to solve the problem and you will see output resembling
the following,

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls

0 1.6109693e+01 1.12e+01 5.28e-01 0.0 0.00e+00 - 0.00e+00 0.00e+00 0

1 1.8029749e+01 9.90e-01 6.62e+01 0.1 2.05e+00 - 2.14e-01 1.00e+00f 1

2 1.8719906e+01 1.25e-02 9.04e+00 -2.2 5.94e-02 2.0 8.04e-01 1.00e+00h 1

2104 Solver Manuals

and the columns of output are defined as

item

The current iteration count. This includes regular iterations and iterations while in restoration
phase. If the algorithm is in the restoration phase, the letter r will be appended to the iteration
number.

objective

The unscaled objective value at the current point. During the restoration phase, this value
remains the unscaled objective value for the original problem.

inf pr

The unscaled constraint violation at the current point. This quantity is the infinity-norm
(max) of the (unscaled) constraint violation. During the restoration phase, this value remains
the constraint violation of the original problem at the current point. The option inf pr output
can be used to switch to the printing of a different quantity. During the restoration phase,
this value is the primal infeasibility of the original problem at the current point.

inf du

The scaled dual infeasibility at the current point. This quantity measure the infinity-norm
(max) of the internal dual infeasibility (Eq. (4a) in [197]), including inequality constraints
reformulated using slack variables and problem scaling. During the restoration phase, this is
the value of the dual infeasibility for the restoration phase problem.

lg(mu)

log10 of the value of the barrier parameter µ.

||d||

The infinity norm (max) of the primal step (for the original variables x and the internal slack
variables s). During the restoration phase, this value includes the values of additional variables,
p and n in Eq. (10) of [197] .

lg(rg)

log10 of the value of the regularization term for the Hessian of the Lagrangian in the augmented
system (δw in Eq. (26) of [197]). A dash (-) indicates that no regularization was done.

alpha du

The stepsize for the dual variables (αzk in Eq. (14c) of [197]).

alpha pr

The stepsize for the primal variables (αk in Eq. (14a) of [197]). The number is usually
followed by a character for additional diagnostic information regarding the step acceptance
criterion:

• f: f-type iteration in the filter method w/o second order correction

• F: f-type iteration in the filter method w/ second order correction

• h: h-type iteration in the filter method w/o second order correction

• H: h-type iteration in the filter method w/ second order correction

• k: penalty value unchanged in merit function method w/o second order correction

5.20 IPOPT and IPOPTH 2105

• K: penalty value unchanged in merit function method w/ second order correction

• n: penalty value updated in merit function method w/o second order correction

• N: penalty value updated in merit function method w/ second order correction

• R: Restoration phase just started

• w: in watchdog procedure

• s: step accepted in soft restoration phase

• t/T: tiny step accepted without line search

• r: some previous iterate restored

ls

The number of backtracking line search steps (does not include second-order correction steps).

Note that the step acceptance mechanisms in IPOPT consider the barrier objective function (Eq. (3a)
in [197]) which is usually different from the value reported in the objective column. Similarly, for the
purposes of the step acceptance, the constraint violation is measured for the internal problem formulation,
which includes slack variables for inequality constraints and potentially scaling of the constraint functions.
This value, too, is usually different from the value reported in inf pr. As a consequence, a new iterate
might have worse values both for the objective function and the constraint violation as reported in the
iteration output, seemingly contradicting globalization procedure.

When the algorithm terminates, IPOPT will output a message to the screen. The following is a list of the
possible output messages and a brief description.

Optimal Solution Found.

This message indicates that IPOPT found a (locally) optimal point within the desired tolerances.

Solved To Acceptable Level.

This indicates that the algorithm did not converge to the ''desired'' tolerances, but that it was
able to obtain a point satisfying the ''acceptable'' tolerance level as specified by acceptable-∗
options. This may happen if the desired tolerances are too small for the current problem.

Feasible point for square problem found.

This message is printed if the problem is ”square” (i.e., it has as many equality constraints as
free variables) and IPOPT found a point that is feasible w.r.t. constr viol tol. It may, however,
not be feasible w.r.t. tol.

Converged to a point of local infeasibility. Problem may be infeasible.

The restoration phase converged to a point that is a minimizer for the constraint violation (in
the `1-norm), but is not feasible for the original problem. This indicates that the problem may
be infeasible (or at least that the algorithm is stuck at a locally infeasible point). The returned
point (the minimizer of the constraint violation) might help you to find which constraint
is causing the problem. If you believe that the NLP is feasible, it might help to start the
optimization from a different point.

Search Direction is becoming Too Small.

This indicates that IPOPT is calculating very small step sizes and making very little progress.
This could happen if the problem has been solved to the best numerical accuracy possible
given the current scaling.

Iterates divering; problem might be unbounded.

2106 Solver Manuals

This message is printed if the max-norm of the iterates becomes larger than the value of the
option diverging iterates tol. This can happen if the problem is unbounded below and the
iterates are diverging.

Stopping optimization at current point as requested by user.

This message is printed if either an interrupt signal was received (e.g., Ctrl+C was pressed) or
the domain violation limit is reached.

Maximum Number of Iterations Exceeded.

This indicates that IPOPT has exceeded the maximum number of iterations as specified by
the IPOPT option max iter or the GAMS option iterlim.

Maximum wallclock time exceeded.

This indicates that IPOPT has exceeded the maximum number of wallclock seconds as specified
by the IPOPT option max wall time or the GAMS option reslim.

Maximum CPU time exceeded.

This indicates that IPOPT has exceeded the maximum number of CPU seconds as specified
by the IPOPT option max cpu time.

Restoration Failed!

This indicates that the restoration phase failed to find a feasible point that was acceptable
to the filter line search for the original problem. This could happen if the problem is highly
degenerate, does not satisfy the constraint qualification, or if an external or extrinsic function
in GAMS provides incorrect derivative information.

Error in step computation!

This messages is printed if IPOPT is unable to compute a step towards a new iterate and the
current iterate is not acceptable for the specified tolerances.

A possible reason is that a search direction could not be computed despite several attempts to
modify the iteration matrix. Usually, the value of the regularization parameter then becomes
too large.

Another reason is that the feasibility restoration phase could not be activated because the
current iterate is not infeasible. Reasons for this again include that the problem is highly
degenerate, badly scaled, or does not satisfy the constraint qualification. Before IPOPT 3.14,
this resulted in a Restoration Failed status code with message ”Restoration phase is called at
almost feasible point...”.

Problem has too few degrees of freedom.

This indicates that your problem, as specified, has too few degrees of freedom. This can
happen if you have too many equality constraints, or if you fix too many variables (IPOPT
removes fixed variables by default, see also the option fixed variable treatment).

Not enough memory.

An error occurred while trying to allocate memory. The problem may be too large for
your current memory and swap configuration. Sometimes it can help to choose a different
linear solver.

INTERNAL ERROR: Unknown SolverReturn value - Notify IPOPT Authors.

An unknown internal error has occurred. Please notify the authors of the GAMS/IPOPT link
or IPOPT (refer to support@gams.com).

mailto:support@gams.com

5.20 IPOPT and IPOPTH 2107

5.20.4.1 Diagnostic Tags for IPOPT

To print additional diagnostic tags for each iteration of IPOPT, set the options print info string to yes.
With this, a tag will appear at the end of an iteration line with the following diagnostic meaning that are
useful to flag difficulties for a particular IPOPT run. The following is a list of possible strings:

• !: Tighten resto tolerance if only slightly infeasible, see Sec. 3.3 in [197]

• A: Current iteration is acceptable (alternate termination)

• a: Perturbation for PD Singularity can't be done, assume singular, see Sec. 3.1 in [197]

• C: Second Order Correction taken, see Sec. 2.4 in [197]

• Dh: Hessian degenerate based on multiple iterations, see Sec. 3.1 in [197]

• Dhj: Hessian/Jacobian degenerate based on multiple iterations, see Sec. 3.1 in [197]

• Dj: Jacobian degenerate based on multiple iterations, see Sec. 3.1 in [197]

• dx: δx perturbation too large, see Sec. 3.1 in [197]

• e: Cutting back α due to evaluation error (in backtracking line search)

• F-: Filter should be reset, but maximal resets exceeded, see Sec. 2.3 in [197]

• F+: Resetting filter due to last few rejections of filter, see Sec. 2.3 in [197]

• L: Degenerate Jacobian, δc already perturbed, see Sec. 3.1 in [197]

• l: Degenerate Jacobian, δc perturbed, see Sec. 3.1 in [197]

• M: Magic step taken for slack variables (in backtracking line search)

• Nh: Hessian not yet degenerate, see Sec. 3.1 in [197]

• Nhj: Hessian/Jacobian not yet degenerate, see Sec. 3.1 in [197]

• Nj: Jacobian not yet degenerate, see Sec. 3.1 in [197]

• NW: Warm start initialization failed (in Warm Start Initialization)

• q: PD system possibly singular, attempt to improve solution quality, see Sec. 3.1 in [197]

• R: Solution of restoration phase, see Sec. 3.3 in [197]

• S: PD system possibly singular, accept current solution, see Sec. 3.1 in [197]

• s: PD system singular, see Sec. 3.1 in [197]

• s: Square Problem. Set multipliers to zero (default initialization routine)

• Tmax: Trial θ is larger than θmax (filter parameter, Eq. (21) in [197])

• W: Watchdog line search procedure successful, see Sec. 3.2 in [197]

• w: Watchdog line search procedure unsuccessful, stopped, see Sec. 3.2 in [197]

• Wb: Undoing most recent SR1 update, see Sec. 5.4.1 in [23]

• We: Skip Limited-Memory Update in restoration phase, see Sec. 5.4.1 in [23]

• Wp: Safeguard B0 = σI for Limited-Memory Update, see Sec. 5.4.1 in [23]

• Wr: Resetting Limited-Memory Update, see Sec. 5.4.1 in [23]

• Ws: Skip Limited-Memory Update since sT y is not positive, see Sec. 5.4.1 in [23]

• WS: Skip Limited-Memory Update since ∆x is too small, see Sec. 5.4.1 in [23]

• y: Dual infeasibility, use least square multiplier update (during IPOPT algorithm)

• z: Apply correction to bound multiplier if too large (during IPOPT algorithm)

2108 Solver Manuals

5.20.5 List of IPOPT Options

5.20.5.1 Termination

Option Description Default

acceptable compl inf tol
”Acceptance” threshold for the complementarity condi-
tions.

0.01

acceptable constr viol tol
”Acceptance” threshold for the constraint violation. 0.01

acceptable dual inf tol
”Acceptance” threshold for the dual infeasibility. 1e+10

acceptable iter
Number of ”acceptable” iterates before triggering termi-
nation.

0

acceptable obj change tol
”Acceptance” stopping criterion based on objective func-
tion change.

1e+20

acceptable tol
”Acceptable” convergence tolerance (relative). 1e-06

compl inf tol
Desired threshold for the complementarity conditions. 0.0001

constr viol tol
Desired threshold for the constraint and variable bound
violation.

1e-06

diverging iterates tol
Threshold for maximal value of primal iterates. 1e+20

dual inf tol
Desired threshold for the dual infeasibility. 1

max cpu time
Maximum number of CPU seconds. 1e+20

max iter
Maximum number of iterations. GAMS iterlim

max wall time
Maximum number of walltime clock seconds. GAMS reslim

mu target
Desired value of complementarity. 0

tol
Desired convergence tolerance (relative). 1e-08

Options for expert users

s max Scaling threshold for the NLP error. 100

5.20.5.2 Output

Option Description Default

inf pr output
Determines what value is printed in the ”inf pr” output col-
umn.

original

print eval error
Switch to enable printing information about function evalua-
tion errors into the GAMS listing file.

yes

print frequency iter
Determines at which iteration frequency the summarizing
iteration output line should be printed.

1

print frequency time
Determines at which time frequency the summarizing iteration
output line should be printed.

0

print info string
Enables printing of additional info string at end of iteration
output.

no

print level
Output verbosity level. 5

print options mode
format in which to print options documentation text

print timing statistics
Switch to print timing statistics. no

5.20 IPOPT and IPOPTH 2109

Option Description Default

report mininfeas solution
Switch to report intermediate solution with minimal constraint
violation to GAMS if the final solution is not feasible.

no

Options for expert users

print advanced options
whether to print also advanced options no

5.20.5.3 NLP

Option Description Default

bound relax factor
Factor for initial relaxation of the bounds. 1e-10

check derivatives for naninf
Indicates whether it is desired to check for Nan/Inf
in derivative matrices

no

fixed variable treatment
Determines how fixed variables should be handled. make parameter

honor original bounds
Indicates whether final points should be projected
into original bounds.

no

Options for expert users

dependency detection with rhs
Indicates if the right hand sides of the constraints
should be considered in addition to gradients dur-
ing dependency detection

no

dependency detector
Indicates which linear solver should be used to
detect linearly dependent equality constraints.

none

kappa d
Weight for linear damping term (to handle one-
sided bounds).

1e-05

5.20.5.4 NLP Scaling

Option Description Default

nlp scaling max gradient
Maximum gradient after NLP
scaling.

100

nlp scaling method
Select the technique used for scal-
ing the NLP.

gradient-based if GAMS
scaleopt is not set, otherwise

none

nlp scaling min value
Minimum value of gradient-
based scaling values.

1e-08

Options for expert users

nlp scaling constr target gradient
Target value for constraint func-
tion gradient size.

0

nlp scaling obj target gradient
Target value for objective func-
tion gradient size.

0

5.20.5.5 Initialization

Option Description Default

bound frac
Desired minimum relative distance from the initial point to
bound.

0.01

bound mult init method
Initialization method for bound multipliers constant

bound mult init val
Initial value for the bound multipliers. 1

2110 Solver Manuals

Option Description Default

bound push
Desired minimum absolute distance from the initial point to
bound.

0.01

constr mult init max
Maximum allowed least-square guess of constraint multipliers. 1000

least square init duals
Least square initialization of all dual variables no

least square init primal
Least square initialization of the primal variables no

slack bound frac
Desired minimum relative distance from the initial slack to
bound.

0.01

slack bound push
Desired minimum absolute distance from the initial slack to
bound.

0.01

5.20.5.6 Warm Start

Option Description Default

warm start bound frac
same as bound frac for the regu-
lar initializer

0.001

warm start bound push
same as bound push for the reg-
ular initializer

0.001

warm start init point
Warm-start for initial point yes, if run on modified model

instance (e.g., from GUSS),
otherwise no

warm start mult bound push
same as mult bound push for the
regular initializer

0.001

warm start mult init max
Maximum initial value for the
equality multipliers.

1e+06

warm start slack bound frac
same as slack bound frac for the
regular initializer

0.001

warm start slack bound push
same as slack bound push for
the regular initializer

0.001

Options for expert users

warm start target mu
0

5.20.5.7 Miscellaneous

Option Description Default

timing statistics
Indicates whether to measure time spend in components of Ipopt and
NLP evaluation

no

Options for expert users

replace bounds
Whether all variable bounds should be replaced by inequality constraints no

5.20.5.8 Barrier Parameter Update

Option Description Default

adaptive mu globalization
Globalization strategy for the adaptive
mu selection mode.

obj-constr-filter

barrier tol factor
Factor for mu in barrier stop test. 10

5.20 IPOPT and IPOPTH 2111

Option Description Default

fixed mu oracle
Oracle for the barrier parameter when
switching to fixed mode.

average compl

mu init
Initial value for the barrier parameter. 0.1

mu linear decrease factor
Determines linear decrease rate of barrier
parameter.

0.2

mu max Maximum value for barrier parameter. 100000

mu max fact
Factor for initialization of maximum
value for barrier parameter.

1000

mu min
Minimum value for barrier parameter. 1e-11

mu oracle
Oracle for a new barrier parameter in the
adaptive strategy.

quality-function

mu strategy
Update strategy for barrier parameter. adaptive

mu superlinear decrease power
Determines superlinear decrease rate of
barrier parameter.

1.5

quality function max section steps
Maximum number of search steps during
direct search procedure determining the
optimal centering parameter.

8

Options for expert users

adaptive mu kkt norm type
Norm used for the KKT error in the adap-
tive mu globalization strategies.

2-norm-squared

adaptive mu kkterror red fact
Sufficient decrease factor for ”kkt-error”
globalization strategy.

0.9999

adaptive mu kkterror red iters
Maximum number of iterations requiring
sufficient progress.

4

adaptive mu monotone init factor
Determines the initial value of the barrier
parameter when switching to the mono-
tone mode.

0.8

adaptive mu restore previous iterate
Indicates if the previous accepted iterate
should be restored if the monotone mode
is entered.

no

filter margin fact
Factor determining width of margin for
obj-constr-filter adaptive globalization
strategy.

1e-05

filter max margin
Maximum width of margin in obj-constr-
filter adaptive globalization strategy.

1

mu allow fast monotone decrease
Allow skipping of barrier problem if bar-
rier test is already met.

yes

quality function balancing term
The balancing term included in the qual-
ity function for centrality.

none

quality function centrality
The penalty term for centrality that is
included in quality function.

none

quality function norm type
Norm used for components of the quality
function.

2-norm-squared

quality function section qf tol
Tolerance for the golden section search
procedure determining the optimal cen-
tering parameter (in the function value
space).

0

quality function section sigma tol
Tolerance for the section search proce-
dure determining the optimal centering
parameter (in sigma space).

0.01

2112 Solver Manuals

Option Description Default

sigma max
Maximum value of the centering param-
eter.

100

sigma min
Minimum value of the centering parame-
ter.

1e-06

tau min
Lower bound on fraction-to-the-
boundary parameter tau.

0.99

5.20.5.9 Line Search

Option Description Default

accept every trial step
Always accept the first trial step. no

alpha for y
Method to determine the step size for constraint mul-
tipliers (alpha y) .

primal

alpha for y tol
Tolerance for switching to full equality multiplier
steps.

10

max soc Maximum number of second order correction trial
steps at each iteration.

4

recalc y
Tells the algorithm to recalculate the equality and
inequality multipliers as least square estimates.

no

recalc y feas tol
Feasibility threshold for recomputation of multipliers. 1e-06

soc method
Ways to apply second order correction 0

watchdog shortened iter trigger
Number of shortened iterations that trigger the watch-
dog.

10

watchdog trial iter max
Maximum number of watchdog iterations. 3

Options for expert users

accept after max steps
Accept a trial point after maximal this number of
steps even if it does not satisfy line search conditions.

-1

alpha min frac
Safety factor for the minimal step size (before switch-
ing to restoration phase).

0.05

alpha red factor
Fractional reduction of the trial step size in the back-
tracking line search.

0.5

constraint violation norm type
Norm to be used for the constraint violation in the
line search.

1-norm

corrector compl avrg red fact
Complementarity tolerance factor for accepting cor-
rector step.

1

corrector type
The type of corrector steps that should be taken. none

delta
Multiplier for constraint violation in the switching
rule.

1

eta phi
Relaxation factor in the Armijo condition. 1e-08

filter reset trigger
Number of iterations that trigger the filter reset. 5

gamma phi
Relaxation factor in the filter margin for the barrier
function.

1e-08

gamma theta
Relaxation factor in the filter margin for the constraint
violation.

1e-05

kappa sigma
Factor limiting the deviation of dual variables from
primal estimates.

1e+10

kappa soc
Factor in the sufficient reduction rule for second order
correction.

0.99

5.20 IPOPT and IPOPTH 2113

Option Description Default

line search method
Globalization method used in backtracking line search filter

max filter resets
Maximal allowed number of filter resets 5

nu inc
Increment of the penalty parameter. 0.0001

nu init
Initial value of the penalty parameter. 1e-06

obj max inc
Determines the upper bound on the acceptable in-
crease of barrier objective function.

5

rho
Value in penalty parameter update formula. 0.1

s phi
Exponent for linear barrier function model in the
switching rule.

2.3

s theta
Exponent for current constraint violation in the
switching rule.

1.1

skip corr if neg curv
Whether to skip the corrector step in negative curva-
ture iteration.

yes

skip corr in monotone mode
Whether to skip the corrector step during monotone
barrier parameter mode.

yes

slack move
Correction size for very small slacks. 1.81899e-12

theta max fact
Determines upper bound for constraint violation in
the filter.

10000

theta min fact
Determines constraint violation threshold in the
switching rule.

0.0001

tiny step tol
Tolerance for detecting numerically insignificant steps. 2.22045e-15

tiny step y tol
Tolerance for quitting because of numerically insignif-
icant steps.

0.01

5.20.5.10 Linear Solver

Option Description Default

hsllib
Name of library containing HSL rou-
tines for load at runtime

libhsl.so (Linux), libhsl.dylib
(macOS), libhsl.dll (Windows)

linear scaling on demand
Flag indicating that linear scaling is
only done if it seems required.

yes

linear solver
Linear solver used for step compu-
tations.

ma27, if IpoptH, otherwise mumps

linear system scaling
Method for scaling the linear sys-
tem.

mc19, if IpoptH, otherwise none

pardisolib
Name of library containing Pardiso
routines (from pardiso-project.org)
for load at runtime

libpardiso.so (Linux),
libpardiso.dylib (macOS),
libpardiso.dll (Windows)

5.20.5.11 Step Calculation

Option Description Default

fast step computation
Indicates if the linear system should be solved quickly. no

first hessian perturbation
Size of first x-s perturbation tried. 0.0001

2114 Solver Manuals

Option Description Default

jacobian regularization value
Size of the regularization for rank-deficient constraint
Jacobians.

1e-08

max hessian perturbation
Maximum value of regularization parameter for han-
dling negative curvature.

1e+20

max refinement steps
Maximum number of iterative refinement steps per
linear system solve.

10

mehrotra algorithm
Indicates whether to do Mehrotra's predictor-corrector
algorithm.

no

min hessian perturbation
Smallest perturbation of the Hessian block. 1e-20

min refinement steps
Minimum number of iterative refinement steps per
linear system solve.

1

neg curv test reg
Whether to do the curvature test with the primal
regularization (see Zavala and Chiang, 2014).

yes

neg curv test tol
Tolerance for heuristic to ignore wrong inertia. 0

perturb dec fact
Decrease factor for x-s perturbation. 0.333333

perturb inc fact
Increase factor for x-s perturbation. 8

perturb inc fact first
Increase factor for x-s perturbation for very first per-
turbation.

100

Options for expert users

jacobian regularization exponent
Exponent for mu in the regularization for rank-deficient
constraint Jacobians.

0.25

perturb always cd
Active permanent perturbation of constraint lineariza-
tion.

no

residual improvement factor
Minimal required reduction of residual test ratio in
iterative refinement.

1

residual ratio max
Iterative refinement tolerance 1e-10

residual ratio singular
Threshold for declaring linear system singular after
failed iterative refinement.

1e-05

5.20.5.12 Restoration Phase

Option Description Default

bound mult reset threshold
Threshold for resetting bound multipliers after the
restoration phase.

1000

constr mult reset threshold
Threshold for resetting equality and inequality mul-
tipliers after restoration phase.

0

evaluate orig obj at resto trial
Determines if the original objective function should
be evaluated at restoration phase trial points.

yes

expect infeasible problem
Enable heuristics to quickly detect an infeasible prob-
lem.

no

expect infeasible problem ctol
Threshold for disabling ”expect infeasible problem”
option.

0.001

expect infeasible problem ytol
Multiplier threshold for activating ”ex-
pect infeasible problem” option.

1e+08

required infeasibility reduction
Required reduction of infeasibility before leaving
restoration phase.

0.9

soft resto pderror reduction factor
Required reduction in primal-dual error in the soft
restoration phase.

0.9999

5.20 IPOPT and IPOPTH 2115

Option Description Default

start with resto
Whether to switch to restoration phase in first itera-
tion.

no

Options for expert users

max resto iter
Maximum number of successive iterations in restora-
tion phase.

3000000

max soft resto iters
Maximum number of iterations performed succes-
sively in soft restoration phase.

10

resto failure feasibility threshold
Threshold for primal infeasibility to declare failure
of restoration phase.

0

resto penalty parameter
Penalty parameter in the restoration phase objective
function.

1000

resto proximity weight
Weighting factor for the proximity term in restoration
phase objective.

1

5.20.5.13 Hessian Approximation

Option Description Default

hessian approximation
Indicates what Hessian information is to be
used.

exact

limited memory init val
Value for B0 in low-rank update. 1

limited memory init val max
Upper bound on value for B0 in low-rank
update.

1e+08

limited memory init val min
Lower bound on value for B0 in low-rank
update.

1e-08

limited memory initialization
Initialization strategy for the limited memory
quasi-Newton approximation.

scalar1

limited memory max history
Maximum size of the history for the limited
quasi-Newton Hessian approximation.

6

limited memory max skipping
Threshold for successive iterations where up-
date is skipped.

2

limited memory special for resto
Determines if the quasi-Newton updates
should be special during the restoration
phase.

no

limited memory update type
Quasi-Newton update formula for the limited
memory quasi-Newton approximation.

bfgs

Options for expert users

hessian approximation space
Indicates in which subspace the Hessian in-
formation is to be approximated.

nonlinear-variables

limited memory aug solver
Strategy for solving the augmented system
for low-rank Hessian.

sherman-morrison

5.20.5.14 MA27 Linear Solver

Option Description Default

ma27 la init factor
Real workspace memory for MA27. 5

ma27 liw init factor
Integer workspace memory for MA27. 5

ma27 meminc factor
Increment factor for workspace size for MA27. 2

2116 Solver Manuals

Option Description Default

ma27 pivtol
Pivot tolerance for the linear solver MA27. 1e-08

ma27 pivtolmax
Maximum pivot tolerance for the linear solver MA27. 0.0001

ma27 print level
Debug printing level for the linear solver MA27 0

Options for expert users

ma27 ignore singularity
Whether to use MA27's ability to solve a linear system even if
the matrix is singular.

no

ma27 skip inertia check
Whether to always pretend that inertia is correct. no

5.20.5.15 MA57 Linear Solver

Option Description Default

ma57 automatic scaling
Controls whether to enable automatic scaling in MA57 no

ma57 block size
Controls block size used by Level 3 BLAS in MA57BD 16

ma57 node amalgamation
Node amalgamation parameter 16

ma57 pivot order
Controls pivot order in MA57 5

ma57 pivtol
Pivot tolerance for the linear solver MA57. 1e-08

ma57 pivtolmax
Maximum pivot tolerance for the linear solver MA57. 0.0001

ma57 pre alloc
Safety factor for work space memory allocation for the linear
solver MA57.

1.05

ma57 print level
Debug printing level for the linear solver MA57 0

ma57 small pivot flag
Handling of small pivots 0

5.20.5.16 MA77 Linear Solver

Option Description Default

ma77 buffer lpage
Number of scalars per MA77 in-core buffer page in the out-of-core
solver MA77

4096

ma77 buffer npage
Number of pages that make up MA77 buffer 1600

ma77 file size
Target size of each temporary file for MA77, scalars per type 2097152

ma77 maxstore
Maximum storage size for MA77 in-core mode 0

ma77 nemin
Node Amalgamation parameter 8

ma77 order
Controls type of ordering used by MA77 metis

ma77 print level
Debug printing level for the linear solver MA77 -1

ma77 small
Zero Pivot Threshold 1e-20

ma77 static
Static Pivoting Threshold 0

ma77 u
Pivoting Threshold 1e-08

ma77 umax
Maximum Pivoting Threshold 0.0001

5.20 IPOPT and IPOPTH 2117

5.20.5.17 MA86 Linear Solver

Option Description Default

ma86 nemin
Node Amalgamation parameter 32

ma86 order
Controls type of ordering auto

ma86 print level
Debug printing level -1

ma86 scaling
Controls scaling of matrix mc64

ma86 small
Zero Pivot Threshold 1e-20

ma86 static
Static Pivoting Threshold 0

ma86 u
Pivoting Threshold 1e-08

ma86 umax
Maximum Pivoting Threshold 0.0001

5.20.5.18 MA97 Linear Solver

Option Description Default

ma97 nemin
Node Amalgamation parameter 8

ma97 order
Controls type of ordering auto

ma97 print level
Debug printing level -1

ma97 scaling
Specifies strategy for scaling dynamic

ma97 small
Zero Pivot Threshold 1e-20

ma97 u
Pivoting Threshold 1e-08

ma97 umax
Maximum Pivoting Threshold 0.0001

Options for expert users

ma97 scaling1
First scaling. mc64

ma97 scaling2
Second scaling. mc64

ma97 scaling3
Third scaling. mc64

ma97 solve blas3
Controls if blas2 or blas3 routines are used for solve no

ma97 switch1
First switch, determine when ma97 scaling1 is enabled. od hd reuse

ma97 switch2
Second switch, determine when ma97 scaling2 is enabled. never

ma97 switch3
Third switch, determine when ma97 scaling3 is enabled. never

5.20.5.19 Pardiso (pardiso-project.org) Linear Solver

Option Description Default

pardiso matching strategy
Matching strategy to be used by Pardiso complete+2x2

pardiso max iterative refinement steps
Limit on number of iterative refinement
steps.

0

2118 Solver Manuals

Option Description Default

pardiso msglvl
Pardiso message level 0

pardiso order
Controls the fill-in reduction ordering al-
gorithm for the input matrix.

metis

Options for expert users

pardiso iter coarse size
Maximum Size of Coarse Grid Matrix 5000

pardiso iter dropping factor
dropping value for incomplete factor 0.5

pardiso iter dropping schur
dropping value for sparsify schur comple-
ment factor

0.1

pardiso iter inverse norm factor
5e+06

pardiso iter max levels
Maximum Size of Grid Levels 10

pardiso iter max row fill
max fill for each row 10000000

pardiso iter relative tol
Relative Residual Convergence 1e-06

pardiso iterative
Switch for iterative solver in Pardiso li-
brary

no

pardiso max droptol corrections
Maximal number of decreases of drop tol-
erance during one solve.

4

pardiso max iter
Maximum number of Krylov-Subspace It-
eration

500

pardiso redo symbolic fact only if inertia wrong
Toggle for handling case when elements
were perturbed by Pardiso.

no

pardiso repeated perturbation means singular
Whether to assume that matrix is singular
if elements were perturbed after recent
symbolic factorization.

no

pardiso skip inertia check
Whether to pretend that inertia is correct. no

5.20.5.20 Pardiso (MKL) Linear Solver

Option Description Default

pardisomkl matching strategy
Matching strategy to be used by Pardiso complete+2x2

pardisomkl max iterative refinement steps
Limit on number of iterative refinement
steps.

1

pardisomkl msglvl
Pardiso message level 0

pardisomkl order
Controls the fill-in reduction ordering al-
gorithm for the input matrix.

metis

Options for expert users

pardisomkl redo symbolic fact only if inertia wrong
Toggle for handling case when elements
were perturbed by Pardiso.

no

pardisomkl repeated perturbation means singular
Whether to assume that matrix is singular
if elements were perturbed after recent
symbolic factorization.

no

pardisomkl skip inertia check
Whether to pretend that inertia is correct. no

5.20.5.21 Mumps Linear Solver

5.20 IPOPT and IPOPTH 2119

Option Description Default

mumps mem percent
Percentage increase in the estimated working space for
MUMPS.

1000

mumps permuting scaling
Controls permuting and scaling in MUMPS 7

mumps pivot order
Controls pivot order in MUMPS 7

mumps pivtol
Pivot tolerance for the linear solver MUMPS. 1e-06

mumps pivtolmax
Maximum pivot tolerance for the linear solver MUMPS. 0.1

mumps print level
Debug printing level for the linear solver MUMPS 0

mumps scaling
Controls scaling in MUMPS 77

Options for expert users

mumps dep tol
Threshold to consider a pivot at zero in detection of linearly
dependent constraints with MUMPS.

0

5.20.6 Detailed Options Description

accept after max steps (advanced): Accept a trial point after maximal this number of steps even if it
does not satisfy line search conditions. ←↩

Setting this to -1 disables this option.

Range: {-1, ..., ∞}

Default: -1

accept every trial step: Always accept the first trial step. ←↩

Setting this option to ”yes” essentially disables the line search and makes the algorithm take
aggressive steps, without global convergence guarantees.

Range: yes, no

Default: no

acceptable compl inf tol: ”Acceptance” threshold for the complementarity conditions. ←↩

Absolute tolerance on the complementarity. ”Acceptable” termination requires that the max-
norm of the (unscaled) complementarity is less than this threshold; see also acceptable tol.

Range: (0, ∞]

Default: 0.01

acceptable constr viol tol: ”Acceptance” threshold for the constraint violation. ←↩

Absolute tolerance on the constraint violation. ”Acceptable” termination requires that the max-
norm of the (unscaled) constraint violation is less than this threshold; see also acceptable tol.

Range: (0, ∞]

Default: 0.01

acceptable dual inf tol: ”Acceptance” threshold for the dual infeasibility. ←↩

2120 Solver Manuals

Absolute tolerance on the dual infeasibility. ”Acceptable” termination requires that the
(max-norm of the unscaled) dual infeasibility is less than this threshold; see also acceptable tol.

Range: (0, ∞]

Default: 1e+10

acceptable iter: Number of ”acceptable” iterates before triggering termination. ←↩

If the algorithm encounters this many successive ”acceptable” iterates (see ”acceptable tol”),
it terminates, assuming that the problem has been solved to best possible accuracy given
round-off. If it is set to zero, this heuristic is disabled.

Range: {0, ..., ∞}

Default: 0

acceptable obj change tol: ”Acceptance” stopping criterion based on objective function change. ←↩

If the relative change of the objective function (scaled by Max(1,|f(x)|)) is less than this value,
this part of the acceptable tolerance termination is satisfied; see also acceptable tol. This is
useful for the quasi-Newton option, which has trouble to bring down the dual infeasibility.

Range: [0, ∞]

Default: 1e+20

acceptable tol: ”Acceptable” convergence tolerance (relative). ←↩

Determines which (scaled) overall optimality error is considered to be ”acceptable”. There are
two levels of termination criteria. If the usual ”desired” tolerances (see tol, dual inf tol etc)
are satisfied at an iteration, the algorithm immediately terminates with a success message. On
the other hand, if the algorithm encounters ”acceptable iter” many iterations in a row that
are considered ”acceptable”, it will terminate before the desired convergence tolerance is met.
This is useful in cases where the algorithm might not be able to achieve the ”desired” level of
accuracy.

Range: (0, ∞]

Default: 1e-06

adaptive mu globalization: Globalization strategy for the adaptive mu selection mode. ←↩

To achieve global convergence of the adaptive version, the algorithm has to switch to the
monotone mode (Fiacco-McCormick approach) when convergence does not seem to appear.
This option sets the criterion used to decide when to do this switch. (Only used if option
”mu strategy” is chosen as ”adaptive”.)

value meaning

kkt-error nonmonotone decrease of kkt-error

obj-constr-filter 2-dim filter for objective and constraint violation

never-monotone-mode disables globalization

Default: obj-constr-filter

5.20 IPOPT and IPOPTH 2121

adaptive mu kkt norm type (advanced): Norm used for the KKT error in the adaptive mu globalization
strategies. ←↩

When computing the KKT error for the globalization strategies, the norm to be used is
specified with this option. Note, this option is also used in the QualityFunctionMuOracle.

value meaning

1-norm use the 1-norm (abs sum)

2-norm-squared use the 2-norm squared (sum of squares)

max-norm use the infinity norm (max)

2-norm use 2-norm

Default: 2-norm-squared

adaptive mu kkterror red fact (advanced): Sufficient decrease factor for ”kkt-error” globalization
strategy. ←↩

For the ”kkt-error” based globalization strategy, the error must decrease by this factor to be
deemed sufficient decrease.

Range: (0, 1)

Default: 0.9999

adaptive mu kkterror red iters (advanced): Maximum number of iterations requiring sufficient
progress. ←↩

For the ”kkt-error” based globalization strategy, sufficient progress must be made for ”adap-
tive mu kkterror red iters” iterations. If this number of iterations is exceeded, the globalization
strategy switches to the monotone mode.

Range: {0, ..., ∞}

Default: 4

adaptive mu monotone init factor (advanced): Determines the initial value of the barrier parameter
when switching to the monotone mode. ←↩

When the globalization strategy for the adaptive barrier algorithm switches to the monotone
mode and fixed mu oracle is chosen as ”average compl”, the barrier parameter is set to the
current average complementarity times the value of ”adaptive mu monotone init factor”.

Range: (0, ∞]

Default: 0.8

adaptive mu restore previous iterate (advanced): Indicates if the previous accepted iterate should
be restored if the monotone mode is entered. ←↩

When the globalization strategy for the adaptive barrier algorithm switches to the monotone
mode, it can either start from the most recent iterate (no), or from the last iterate that was
accepted (yes).

Range: yes, no

Default: no

alpha for y: Method to determine the step size for constraint multipliers (alpha y) . ←↩

2122 Solver Manuals

value meaning

primal use primal step size

bound-mult use step size for the bound multipliers (good for LPs)

min use the min of primal and bound multipliers

max use the max of primal and bound multipliers

full take a full step of size one

min-dual-infeas choose step size minimizing new dual infeasibility

safer-min-dual-infeas like ”min dual infeas”, but safeguarded by ”min” and ”max”

primal-and-full use the primal step size, and full step if delta x ≤ alpha for y tol

dual-and-full use the dual step size, and full step if delta x ≤ alpha for y tol

acceptor Call LSAcceptor to get step size for y

Default: primal

alpha for y tol: Tolerance for switching to full equality multiplier steps. ←↩
This is only relevant if ”alpha for y” is chosen ”primal-and-full” or ”dual-and-full”. The step
size for the equality constraint multipliers is taken to be one if the max-norm of the primal
step is less than this tolerance.

Range: [0, ∞]

Default: 10

alpha min frac (advanced): Safety factor for the minimal step size (before switching to restoration
phase). ←↩

This is gamma alpha in Eqn. (23) in the implementation paper.

Range: (0, 1)

Default: 0.05

alpha red factor (advanced): Fractional reduction of the trial step size in the backtracking line search.
←↩

At every step of the backtracking line search, the trial step size is reduced by this factor.

Range: (0, 1)

Default: 0.5

barrier tol factor: Factor for mu in barrier stop test. ←↩
The convergence tolerance for each barrier problem in the monotone mode is the value of
the barrier parameter times ”barrier tol factor”. This option is also used in the adaptive mu
strategy during the monotone mode. This is kappa epsilon in implementation paper.

Range: (0, ∞]

Default: 10

bound frac: Desired minimum relative distance from the initial point to bound. ←↩
Determines how much the initial point might have to be modified in order to be sufficiently inside
the bounds (together with ”bound push”). (This is kappa 2 in Section 3.6 of implementation
paper.)

Range: (0, 0.5]

Default: 0.01

bound mult init method: Initialization method for bound multipliers ←↩
This option defines how the iterates for the bound multipliers are initialized. If ”constant”
is chosen, then all bound multipliers are initialized to the value of ”bound mult init val”. If
”mu-based” is chosen, then each value is initialized to the the value of ”mu init” divided by
the corresponding slack variable. This latter option might be useful if the starting point is
close to the optimal solution.

5.20 IPOPT and IPOPTH 2123

value meaning

constant set all bound multipliers to the value of bound mult init val

mu-based initialize to mu init/x slack

Default: constant

bound mult init val: Initial value for the bound multipliers. ←↩

All dual variables corresponding to bound constraints are initialized to this value.

Range: (0, ∞]

Default: 1

bound mult reset threshold: Threshold for resetting bound multipliers after the restoration phase. ←↩

After returning from the restoration phase, the bound multipliers are updated with a Newton
step for complementarity. Here, the change in the primal variables during the entire restoration
phase is taken to be the corresponding primal Newton step. However, if after the update the
largest bound multiplier exceeds the threshold specified by this option, the multipliers are all
reset to 1.

Range: [0, ∞]

Default: 1000

bound push: Desired minimum absolute distance from the initial point to bound. ←↩

Determines how much the initial point might have to be modified in order to be sufficiently inside
the bounds (together with ”bound frac”). (This is kappa 1 in Section 3.6 of implementation
paper.)

Range: (0, ∞]

Default: 0.01

bound relax factor: Factor for initial relaxation of the bounds. ←↩

Before start of the optimization, the bounds given by the user are relaxed. This option sets the
factor for this relaxation. Additional, the constraint violation tolerance constr viol tol is used
to bound the relaxation by an absolute value. If it is set to zero, then then bounds relaxation is
disabled. See Eqn.(35) in implementation paper. Note that the constraint violation reported by
Ipopt at the end of the solution process does not include violations of the original (non-relaxed)
variable bounds. See also option honor original bounds.

Range: [0, ∞]

Default: 1e-10

check derivatives for naninf: Indicates whether it is desired to check for Nan/Inf in derivative matrices
←↩

2124 Solver Manuals

Activating this option will cause an error if an invalid number is detected in the constraint
Jacobians or the Lagrangian Hessian. If this is not activated, the test is skipped, and
the algorithm might proceed with invalid numbers and fail. If test is activated and an
invalid number is detected, the matrix is written to output with print level corresponding to
J MOREDETAILED (7); so beware of large output!

Range: yes, no

Default: no

compl inf tol: Desired threshold for the complementarity conditions. ←↩

Absolute tolerance on the complementarity. Successful termination requires that the max-norm
of the (unscaled) complementarity is less than this threshold.

Range: (0, ∞]

Default: 0.0001

constr mult init max: Maximum allowed least-square guess of constraint multipliers. ←↩

Determines how large the initial least-square guesses of the constraint multipliers are allowed
to be (in max-norm). If the guess is larger than this value, it is discarded and all constraint
multipliers are set to zero. This options is also used when initializing the restoration phase. By
default, ”resto.constr mult init max” (the one used in RestoIterateInitializer) is set to zero.

Range: [0, ∞]

Default: 1000

constr mult reset threshold: Threshold for resetting equality and inequality multipliers after restora-
tion phase. ←↩

After returning from the restoration phase, the constraint multipliers are recomputed by a least
square estimate. This option triggers when those least-square estimates should be ignored.

Range: [0, ∞]

Default: 0

constr viol tol: Desired threshold for the constraint and variable bound violation. ←↩

Absolute tolerance on the constraint and variable bound violation. Successful termination
requires that the max-norm of the (unscaled) constraint violation is less than this threshold.
If option bound relax factor is not zero 0, then Ipopt relaxes given variable bounds. The value
of constr viol tol is used to restrict the absolute amount of this bound relaxation.

Range: (0, ∞]

Default: 1e-06

constraint violation norm type (advanced): Norm to be used for the constraint violation in the line
search. ←↩

Determines which norm should be used when the algorithm computes the constraint violation
in the line search.

5.20 IPOPT and IPOPTH 2125

value meaning

1-norm use the 1-norm

2-norm use the 2-norm

max-norm use the infinity norm

Default: 1-norm

corrector compl avrg red fact (advanced): Complementarity tolerance factor for accepting corrector
step. ←↩

This option determines the factor by which complementarity is allowed to increase for a
corrector step to be accepted. Changing this option is experimental.

Range: (0, ∞]

Default: 1

corrector type (advanced): The type of corrector steps that should be taken. ←↩

If ”mu strategy” is ”adaptive”, this option determines what kind of corrector steps should be
tried. Changing this option is experimental.

value meaning

none no corrector

affine corrector step towards mu=0

primal-dual corrector step towards current mu

Default: none

delta (advanced): Multiplier for constraint violation in the switching rule. ←↩

See Eqn. (19) in the implementation paper.

Range: (0, ∞]

Default: 1

dependency detection with rhs (advanced): Indicates if the right hand sides of the constraints should
be considered in addition to gradients during dependency detection ←↩

Range: yes, no

Default: no

dependency detector (advanced): Indicates which linear solver should be used to detect linearly
dependent equality constraints. ←↩

This is experimental and does not work well.

value meaning

none don't check; no extra work at beginning

mumps use MUMPS

2126 Solver Manuals

Default: none

diverging iterates tol: Threshold for maximal value of primal iterates. ←↩

If any component of the primal iterates exceeded this value (in absolute terms), the optimization
is aborted with the exit message that the iterates seem to be diverging.

Range: (0, ∞]

Default: 1e+20

dual inf tol: Desired threshold for the dual infeasibility. ←↩

Absolute tolerance on the dual infeasibility. Successful termination requires that the max-norm
of the (unscaled) dual infeasibility is less than this threshold.

Range: (0, ∞]

Default: 1

eta phi (advanced): Relaxation factor in the Armijo condition. ←↩

See Eqn. (20) in the implementation paper.

Range: (0, 0.5)

Default: 1e-08

evaluate orig obj at resto trial: Determines if the original objective function should be evaluated at
restoration phase trial points. ←↩

Enabling this option makes the restoration phase algorithm evaluate the objective function of
the original problem at every trial point encountered during the restoration phase, even if this
value is not required. In this way, it is guaranteed that the original objective function can be
evaluated without error at all accepted iterates; otherwise the algorithm might fail at a point
where the restoration phase accepts an iterate that is good for the restoration phase problem,
but not the original problem. On the other hand, if the evaluation of the original objective is
expensive, this might be costly.

Range: yes, no

Default: yes

expect infeasible problem: Enable heuristics to quickly detect an infeasible problem. ←↩

This options is meant to activate heuristics that may speed up the infeasibility determination
if you expect that there is a good chance for the problem to be infeasible. In the filter line
search procedure, the restoration phase is called more quickly than usually, and more reduction
in the constraint violation is enforced before the restoration phase is left. If the problem is
square, this option is enabled automatically.

Range: yes, no

Default: no

expect infeasible problem ctol: Threshold for disabling ”expect infeasible problem” option. ←↩

5.20 IPOPT and IPOPTH 2127

If the constraint violation becomes smaller than this threshold, the ”expect infeasible problem”
heuristics in the filter line search are disabled. If the problem is square, this options is set to 0.

Range: [0, ∞]

Default: 0.001

expect infeasible problem ytol: Multiplier threshold for activating ”expect infeasible problem” option.
←↩

If the max norm of the constraint multipliers becomes larger than this value and ”ex-
pect infeasible problem” is chosen, then the restoration phase is entered.

Range: (0, ∞]

Default: 1e+08

fast step computation: Indicates if the linear system should be solved quickly. ←↩

If enabled, the algorithm assumes that the linear system that is solved to obtain the search
direction is solved sufficiently well. In that case, no residuals are computed to verify the
solution and the computation of the search direction is a little faster.

Range: yes, no

Default: no

filter margin fact (advanced): Factor determining width of margin for obj-constr-filter adaptive global-
ization strategy. ←↩

When using the adaptive globalization strategy, ”obj-constr-filter”, sufficient progress for a
filter entry is defined as follows: (new obj) < (filter obj) - filter margin fact∗(new constr-viol)
OR (new constr-viol) < (filter constr-viol) - filter margin fact∗(new constr-viol). For the
description of the ”kkt-error-filter” option see ”filter max margin”.

Range: (0, 1)

Default: 1e-05

filter max margin (advanced): Maximum width of margin in obj-constr-filter adaptive globalization
strategy. ←↩

Range: (0, ∞]

Default: 1

filter reset trigger (advanced): Number of iterations that trigger the filter reset. ←↩

If the filter reset heuristic is active and the number of successive iterations in which the last
rejected trial step size was rejected because of the filter, the filter is reset.

Range: {1, ..., ∞}

Default: 5

first hessian perturbation: Size of first x-s perturbation tried. ←↩

The first value tried for the x-s perturbation in the inertia correction scheme. This is delta 0
in the implementation paper.

Range: (0, ∞]

Default: 0.0001

fixed mu oracle: Oracle for the barrier parameter when switching to fixed mode. ←↩

Determines how the first value of the barrier parameter should be computed when switching
to the ”monotone mode” in the adaptive strategy. (Only considered if ”adaptive” is selected
for option ”mu strategy”.)

2128 Solver Manuals

value meaning

probing Mehrotra's probing heuristic

loqo LOQO's centrality rule

quality-function minimize a quality function

average compl base on current average complementarity

Default: average compl

fixed variable treatment: Determines how fixed variables should be handled. ←↩

The main difference between those options is that the starting point in the ”make constraint”
case still has the fixed variables at their given values, whereas in the case ”make parameter(nodual)”
the functions are always evaluated with the fixed values for those variables. Also, for ”re-
lax bounds”, the fixing bound constraints are relaxed (according to” bound relax factor”).
For all but ”make parameter nodual”, bound multipliers are computed for the fixed variables.

value meaning

make parameter Remove fixed variable from optimization variables

make parameter nodual Remove fixed variable from optimization variables and do not
compute bound multipliers for fixed variables

make constraint Add equality constraints fixing variables

relax bounds Relax fixing bound constraints

Default: make parameter

gamma phi (advanced): Relaxation factor in the filter margin for the barrier function. ←↩

See Eqn. (18a) in the implementation paper.

Range: (0, 1)

Default: 1e-08

gamma theta (advanced): Relaxation factor in the filter margin for the constraint violation. ←↩

See Eqn. (18b) in the implementation paper.

Range: (0, 1)

Default: 1e-05

hessian approximation: Indicates what Hessian information is to be used. ←↩

This determines which kind of information for the Hessian of the Lagrangian function is used
by the algorithm.

value meaning

exact Use second derivatives provided by the NLP.

limited-memory Perform a limited-memory quasi-Newton approximation

Default: exact

5.20 IPOPT and IPOPTH 2129

hessian approximation space (advanced): Indicates in which subspace the Hessian information is to
be approximated. ←↩

value meaning

nonlinear-variables only in space of nonlinear variables.

all-variables in space of all variables (without slacks)

Default: nonlinear-variables

honor original bounds: Indicates whether final points should be projected into original bounds. ←↩

Ipopt might relax the bounds during the optimization (see, e.g., option ”bound relax factor”).
This option determines whether the final point should be projected back into the user-provide
original bounds after the optimization. Note that violations of constraints and complementarity
reported by Ipopt at the end of the solution process are for the non-projected point.

Range: yes, no

Default: no

hsllib: Name of library containing HSL routines for load at runtime ←↩

Range: string

Default: libhsl.so (Linux), libhsl.dylib (macOS), libhsl.dll (Windows)

inf pr output: Determines what value is printed in the ”inf pr” output column. ←↩

Ipopt works with a reformulation of the original problem, where slacks are introduced and the
problem might have been scaled. The choice ”internal” prints out the constraint violation of
this formulation. With ”original” the true constraint violation in the original NLP is printed.

value meaning

internal max-norm of violation of internal equality constraints

original maximal constraint violation in original NLP

Default: original

jacobian regularization exponent (advanced): Exponent for mu in the regularization for rank-deficient
constraint Jacobians. ←↩

This is kappa c in the implementation paper.

Range: [0, ∞]

Default: 0.25

jacobian regularization value: Size of the regularization for rank-deficient constraint Jacobians. ←↩

This is bar delta c in the implementation paper.

Range: [0, ∞]

Default: 1e-08

2130 Solver Manuals

kappa d (advanced): Weight for linear damping term (to handle one-sided bounds). ←↩

See Section 3.7 in implementation paper.

Range: [0, ∞]

Default: 1e-05

kappa sigma (advanced): Factor limiting the deviation of dual variables from primal estimates. ←↩

If the dual variables deviate from their primal estimates, a correction is performed. See Eqn.
(16) in the implementation paper. Setting the value to less than 1 disables the correction.

Range: (0, ∞]

Default: 1e+10

kappa soc (advanced): Factor in the sufficient reduction rule for second order correction. ←↩

This option determines how much a second order correction step must reduce the constraint
violation so that further correction steps are attempted. See Step A-5.9 of Algorithm A in the
implementation paper.

Range: (0, ∞]

Default: 0.99

least square init duals: Least square initialization of all dual variables ←↩

If set to yes, Ipopt tries to compute least-square multipliers (considering ALL dual variables).
If successful, the bound multipliers are possibly corrected to be at least bound mult init val.
This might be useful if the user doesn't know anything about the starting point, or for solving
an LP or QP. This overwrites option ”bound mult init method”.

value meaning

no use bound mult init val and least-square equality constraint multipliers

yes overwrite user-provided point with least-square estimates

Default: no

least square init primal: Least square initialization of the primal variables ←↩

If set to yes, Ipopt ignores the user provided point and solves a least square problem for the
primal variables (x and s) to fit the linearized equality and inequality constraints.This might
be useful if the user doesn't know anything about the starting point, or for solving an LP or
QP.

value meaning

no take user-provided point

yes overwrite user-provided point with least-square estimates

Default: no

limited memory aug solver (advanced): Strategy for solving the augmented system for low-rank
Hessian. ←↩

5.20 IPOPT and IPOPTH 2131

value meaning

sherman-morrison use Sherman-Morrison formula

extended use an extended augmented system

Default: sherman-morrison

limited memory init val: Value for B0 in low-rank update. ←↩

The starting matrix in the low rank update, B0, is chosen to be this multiple of the identity in
the first iteration (when no updates have been performed yet), and is constantly chosen as
this value, if ”limited memory initialization” is ”constant”.

Range: (0, ∞]

Default: 1

limited memory init val max: Upper bound on value for B0 in low-rank update. ←↩

The starting matrix in the low rank update, B0, is chosen to be this multiple of the identity in
the first iteration (when no updates have been performed yet), and is constantly chosen as
this value, if ”limited memory initialization” is ”constant”.

Range: (0, ∞]

Default: 1e+08

limited memory init val min: Lower bound on value for B0 in low-rank update. ←↩

The starting matrix in the low rank update, B0, is chosen to be this multiple of the identity in
the first iteration (when no updates have been performed yet), and is constantly chosen as
this value, if ”limited memory initialization” is ”constant”.

Range: (0, ∞]

Default: 1e-08

limited memory initialization: Initialization strategy for the limited memory quasi-Newton approxi-
mation. ←↩

Determines how the diagonal Matrix B 0 as the first term in the limited memory approximation
should be computed.

value meaning

scalar1 sigma = s∧Ty/s∧Ts

scalar2 sigma = y∧Ty/s∧Ty

scalar3 arithmetic average of scalar1 and scalar2

scalar4 geometric average of scalar1 and scalar2

constant sigma = limited memory init val

Default: scalar1

limited memory max history: Maximum size of the history for the limited quasi-Newton Hessian
approximation. ←↩

2132 Solver Manuals

This option determines the number of most recent iterations that are taken into account for
the limited-memory quasi-Newton approximation.

Range: {0, ..., ∞}

Default: 6

limited memory max skipping: Threshold for successive iterations where update is skipped. ←↩

If the update is skipped more than this number of successive iterations, the quasi-Newton
approximation is reset.

Range: {1, ..., ∞}

Default: 2

limited memory special for resto: Determines if the quasi-Newton updates should be special during
the restoration phase. ←↩

Until Nov 2010, Ipopt used a special update during the restoration phase, but it turned out
that this does not work well. The new default uses the regular update procedure and it
improves results. If for some reason you want to get back to the original update, set this
option to ”yes”.

Range: yes, no

Default: no

limited memory update type: Quasi-Newton update formula for the limited memory quasi-Newton
approximation. ←↩

value meaning

bfgs BFGS update (with skipping)

sr1 SR1 (not working well)

Default: bfgs

line search method (advanced): Globalization method used in backtracking line search ←↩

Only the ”filter” choice is officially supported. But sometimes, good results might be obtained
with the other choices.

value meaning

filter Filter method

cg-penalty Chen-Goldfarb penalty function

penalty Standard penalty function

Default: filter

linear scaling on demand: Flag indicating that linear scaling is only done if it seems required. ←↩

This option is only important if a linear scaling method (e.g., mc19) is used. If you choose
”no”, then the scaling factors are computed for every linear system from the start. This can

5.20 IPOPT and IPOPTH 2133

be quite expensive. Choosing ”yes” means that the algorithm will start the scaling method
only when the solutions to the linear system seem not good, and then use it until the end.

Range: yes, no

Default: yes

linear solver: Linear solver used for step computations. ←↩

Determines which linear algebra package is to be used for the solution of the augmented linear
system (for obtaining the search directions). Note, that MA27, MA57, MA86, and MA97 are
included with a commercially supported GAMS/IpoptH license only. To use MA27, MA57,
MA86, or MA97 with GAMS/Ipopt, or to use HSL MA77, a HSL library needs to be provided
by the user. To use Pardiso from pardiso-project.org, a Pardiso library needs to be provided
by the user. ATTENTION: Before Ipopt 3.14 (GAMS 36), value pardiso specified to use
Pardiso from Intel MKL. With GAMS 36, this value has been renamed to pardisomkl. On
GAMS systems for ARM64 CPUs, option value pardisomkl is not available.

value meaning

ma27 IpoptH: use the Harwell routine MA27; Ipopt: load the Harwell routine MA27
from user-provided library

ma57 IpoptH: use the Harwell routine MA57; Ipopt: load the Harwell routine MA57
from user-provided library

ma77 load the Harwell routine HSL MA77 from user-provided library

ma86 IpoptH: use the Harwell routine HSL MA86; Ipopt: load the Harwell routine
HSL MA86 from user-provided library

ma97 IpoptH: use the Harwell routine HSL MA97; Ipopt: load the Harwell routine
HSL MA97 from user-provided library

pardiso load the Pardiso package from pardiso-project.org from user-provided library
at runtime

pardisomkl use the Pardiso package from Intel MKL

mumps use the Mumps package

Default: ma27, if IpoptH, otherwise mumps

linear system scaling: Method for scaling the linear system. ←↩

Determines the method used to compute symmetric scaling factors for the augmented system
(see also the ”linear scaling on demand” option). This scaling is independent of the NLP
problem scaling. Note, that MC19 is included with a commercially supported GAMS/IpoptH
license only. To use MC19 with GAMS/Ipopt, a HSL library needs to be provided by the user.

value meaning

none no scaling will be performed

mc19 IpoptH: use the Harwell routine MC19; Ipopt: load the Harwell routine MC19
from user-provided library

slack-based use the slack values

Default: mc19, if IpoptH, otherwise none

ma27 ignore singularity (advanced): Whether to use MA27's ability to solve a linear system even if
the matrix is singular. ←↩

2134 Solver Manuals

Setting this option to ”yes” means that Ipopt will call MA27 to compute solutions for right
hand sides, even if MA27 has detected that the matrix is singular (but is still able to solve
the linear system). In some cases this might be better than using Ipopt's heuristic of small
perturbation of the lower diagonal of the KKT matrix.

Range: yes, no

Default: no

ma27 la init factor: Real workspace memory for MA27. ←↩

The initial real workspace memory = la init factor ∗ memory required by unfactored system.
Ipopt will increase the workspace size by ma27 meminc factor if required.

Range: [1, ∞]

Default: 5

ma27 liw init factor: Integer workspace memory for MA27. ←↩

The initial integer workspace memory = liw init factor ∗ memory required by unfactored
system. Ipopt will increase the workspace size by ma27 meminc factor if required.

Range: [1, ∞]

Default: 5

ma27 meminc factor: Increment factor for workspace size for MA27. ←↩

If the integer or real workspace is not large enough, Ipopt will increase its size by this factor.

Range: [1, ∞]

Default: 2

ma27 pivtol: Pivot tolerance for the linear solver MA27. ←↩

A smaller number pivots for sparsity, a larger number pivots for stability.

Range: (0, 1)

Default: 1e-08

ma27 pivtolmax: Maximum pivot tolerance for the linear solver MA27. ←↩

Ipopt may increase pivtol as high as ma27 pivtolmax to get a more accurate solution to the
linear system.

Range: (0, 1)

Default: 0.0001

ma27 print level: Debug printing level for the linear solver MA27 ←↩

0: no printing; 1: Error messages only; 2: Error and warning messages; 3: Error and warning
messages and terse monitoring; 4: All information.

Range: {0, ..., 4}

Default: 0

5.20 IPOPT and IPOPTH 2135

ma27 skip inertia check (advanced): Whether to always pretend that inertia is correct. ←↩

Setting this option to ”yes” essentially disables inertia check. This option makes the algorithm
non-robust and easily fail, but it might give some insight into the necessity of inertia control.

Range: yes, no

Default: no

ma57 automatic scaling: Controls whether to enable automatic scaling in MA57 ←↩

For higher reliability of the MA57 solver, you may want to set this option to yes. This is
ICNTL(15) in MA57.

Range: yes, no

Default: no

ma57 block size: Controls block size used by Level 3 BLAS in MA57BD ←↩

This is ICNTL(11) in MA57.

Range: {1, ..., ∞}

Default: 16

ma57 node amalgamation: Node amalgamation parameter ←↩

This is ICNTL(12) in MA57.

Range: {1, ..., ∞}

Default: 16

ma57 pivot order: Controls pivot order in MA57 ←↩

This is ICNTL(6) in MA57.

Range: {0, ..., 5}

Default: 5

ma57 pivtol: Pivot tolerance for the linear solver MA57. ←↩

A smaller number pivots for sparsity, a larger number pivots for stability.

Range: (0, 1)

Default: 1e-08

ma57 pivtolmax: Maximum pivot tolerance for the linear solver MA57. ←↩

Ipopt may increase pivtol as high as ma57 pivtolmax to get a more accurate solution to the
linear system.

Range: (0, 1)

Default: 0.0001

ma57 pre alloc: Safety factor for work space memory allocation for the linear solver MA57. ←↩

2136 Solver Manuals

If 1 is chosen, the suggested amount of work space is used. However, choosing a larger number
might avoid reallocation if the suggest values do not suffice.

Range: [1, ∞]

Default: 1.05

ma57 print level: Debug printing level for the linear solver MA57 ←↩

0: no printing; 1: Error messages only; 2: Error and warning messages; 3: Error and warning
messages and terse monitoring; ≥4: All information.

Range: {0, ..., ∞}

Default: 0

ma57 small pivot flag: Handling of small pivots ←↩

If set to 1, then when small entries defined by CNTL(2) are detected they are removed and the
corresponding pivots placed at the end of the factorization. This can be particularly efficient
if the matrix is highly rank deficient. This is ICNTL(16) in MA57.

Range: {0, ..., 1}

Default: 0

ma77 buffer lpage: Number of scalars per MA77 in-core buffer page in the out-of-core solver MA77 ←↩

Must be at most ma77 file size.

Range: {1, ..., ∞}

Default: 4096

ma77 buffer npage: Number of pages that make up MA77 buffer ←↩

Number of pages of size buffer lpage that exist in-core for the out-of-core solver MA77.

Range: {1, ..., ∞}

Default: 1600

ma77 file size: Target size of each temporary file for MA77, scalars per type ←↩

MA77 uses many temporary files, this option controls the size of each one. It is measured in
the number of entries (int or double), NOT bytes.

Range: {1, ..., ∞}

Default: 2097152

ma77 maxstore: Maximum storage size for MA77 in-core mode ←↩

If greater than zero, the maximum size of factors stored in core before out-of-core mode is
invoked.

Range: {0, ..., ∞}

Default: 0

ma77 nemin: Node Amalgamation parameter ←↩

Two nodes in elimination tree are merged if result has fewer than ma77 nemin variables.

Range: {1, ..., ∞}

Default: 8

ma77 order: Controls type of ordering used by MA77 ←↩

5.20 IPOPT and IPOPTH 2137

value meaning

amd Use the HSL MC68 approximate minimum degree algorithm

metis Use the MeTiS nested dissection algorithm (if available)

Default: metis

ma77 print level: Debug printing level for the linear solver MA77 ←↩

<0: no printing; 0: Error and warning messages only; 1: Limited diagnostic printing; >1
Additional diagnostic printing.

Range: {-∞, ..., ∞}

Default: -1

ma77 small: Zero Pivot Threshold ←↩

Any pivot less than ma77 small is treated as zero.

Range: [0, ∞]

Default: 1e-20

ma77 static: Static Pivoting Threshold ←↩

See MA77 documentation. Either ma77 static=0.0 or ma77 static>ma77 small.
ma77 static=0.0 disables static pivoting.

Range: [0, ∞]

Default: 0

ma77 u: Pivoting Threshold ←↩

See MA77 documentation.

Range: [0, 0.5]

Default: 1e-08

ma77 umax: Maximum Pivoting Threshold ←↩

Maximum value to which u will be increased to improve quality.

Range: [0, 0.5]

Default: 0.0001

ma86 nemin: Node Amalgamation parameter ←↩

Two nodes in elimination tree are merged if result has fewer than ma86 nemin variables.

Range: {1, ..., ∞}

Default: 32

ma86 order: Controls type of ordering ←↩

2138 Solver Manuals

value meaning

auto Try both AMD and MeTiS, pick best

amd Use the HSL MC68 approximate minimum degree algorithm

metis Use the MeTiS nested dissection algorithm (if available)

Default: auto

ma86 print level: Debug printing level ←↩

<0: no printing; 0: Error and warning messages only; 1: Limited diagnostic printing; >1
Additional diagnostic printing.

Range: {-∞, ..., ∞}

Default: -1

ma86 scaling: Controls scaling of matrix ←↩

value meaning

none Do not scale the linear system matrix

mc64 Scale linear system matrix using MC64

mc77 Scale linear system matrix using MC77 [1,3,0]

Default: mc64

ma86 small: Zero Pivot Threshold ←↩
Any pivot less than ma86 small is treated as zero.

Range: [0, ∞]

Default: 1e-20

ma86 static: Static Pivoting Threshold ←↩
See MA86 documentation. Either ma86 static=0.0 or ma86 static>ma86 small.
ma86 static=0.0 disables static pivoting.

Range: [0, ∞]

Default: 0

ma86 u: Pivoting Threshold ←↩
See MA86 documentation.

Range: [0, 0.5]

Default: 1e-08

ma86 umax: Maximum Pivoting Threshold ←↩
Maximum value to which u will be increased to improve quality.

Range: [0, 0.5]

Default: 0.0001

ma97 nemin: Node Amalgamation parameter ←↩
Two nodes in elimination tree are merged if result has fewer than ma97 nemin variables.

Range: {1, ..., ∞}
Default: 8

ma97 order: Controls type of ordering ←↩

5.20 IPOPT and IPOPTH 2139

value meaning

auto Use HSL MA97 heuristic to guess best of AMD and METIS

best Try both AMD and MeTiS, pick best

amd Use the HSL MC68 approximate minimum degree algorithm

metis Use the MeTiS nested dissection algorithm

matched-auto Use the HSL MC80 matching with heuristic choice of AMD or METIS

matched-metis Use the HSL MC80 matching based ordering with METIS

matched-amd Use the HSL MC80 matching based ordering with AMD

Default: auto

ma97 print level: Debug printing level ←↩

<0: no printing; 0: Error and warning messages only; 1: Limited diagnostic printing; >1
Additional diagnostic printing.

Range: {-∞, ..., ∞}

Default: -1

ma97 scaling: Specifies strategy for scaling ←↩

value meaning

none Do not scale the linear system matrix

mc30 Scale all linear system matrices using MC30

mc64 Scale all linear system matrices using MC64

mc77 Scale all linear system matrices using MC77 [1,3,0]

dynamic Dynamically select scaling according to rules specified by ma97 scalingX and
ma97 switchX options.

Default: dynamic

ma97 scaling1 (advanced): First scaling. ←↩

If ma97 scaling=dynamic, this scaling is used according to the trigger ma97 switch1. If
ma97 switch2 is triggered it is disabled.

value meaning

none No scaling

mc30 Scale linear system matrix using MC30

mc64 Scale linear system matrix using MC64

mc77 Scale linear system matrix using MC77 [1,3,0]

Default: mc64

ma97 scaling2 (advanced): Second scaling. ←↩

If ma97 scaling=dynamic, this scaling is used according to the trigger ma97 switch2. If
ma97 switch3 is triggered it is disabled.

2140 Solver Manuals

value meaning

none No scaling

mc30 Scale linear system matrix using MC30

mc64 Scale linear system matrix using MC64

mc77 Scale linear system matrix using MC77 [1,3,0]

Default: mc64

ma97 scaling3 (advanced): Third scaling. ←↩

If ma97 scaling=dynamic, this scaling is used according to the trigger ma97 switch3.

value meaning

none No scaling

mc30 Scale linear system matrix using MC30

mc64 Scale linear system matrix using MC64

mc77 Scale linear system matrix using MC77 [1,3,0]

Default: mc64

ma97 small: Zero Pivot Threshold ←↩

Any pivot less than ma97 small is treated as zero.

Range: [0, ∞]

Default: 1e-20

ma97 solve blas3 (advanced): Controls if blas2 or blas3 routines are used for solve ←↩

value meaning

no Use BLAS2 (faster, some implementations bit incompatible)

yes Use BLAS3 (slower)

Default: no

ma97 switch1 (advanced): First switch, determine when ma97 scaling1 is enabled. ←↩

If ma97 scaling=dynamic, ma97 scaling1 is enabled according to this condition. If ma97 switch2
occurs this option is henceforth ignored.

value meaning

never Scaling is never enabled.

at start Scaling to be used from the very start.

at start reuse Scaling to be used on first iteration, then reused thereafter.

on demand Scaling to be used after Ipopt request improved solution (i.e. iterative
refinement has failed).

on demand reuse As on demand, but reuse scaling from previous itr

high delay Scaling to be used after more than 0.05∗n delays are present

5.20 IPOPT and IPOPTH 2141

value meaning

high delay reuse Scaling to be used only when previous itr created more that 0.05∗n
additional delays, otherwise reuse scaling from previous itr

od hd Combination of on demand and high delay

od hd reuse Combination of on demand reuse and high delay reuse

Default: od hd reuse

ma97 switch2 (advanced): Second switch, determine when ma97 scaling2 is enabled. ←↩

If ma97 scaling=dynamic, ma97 scaling2 is enabled according to this condition. If ma97 switch3
occurs this option is henceforth ignored.

value meaning

never Scaling is never enabled.

at start Scaling to be used from the very start.

at start reuse Scaling to be used on first iteration, then reused thereafter.

on demand Scaling to be used after Ipopt request improved solution (i.e. iterative
refinement has failed).

on demand reuse As on demand, but reuse scaling from previous itr

high delay Scaling to be used after more than 0.05∗n delays are present

high delay reuse Scaling to be used only when previous itr created more that 0.05∗n
additional delays, otherwise reuse scaling from previous itr

od hd Combination of on demand and high delay

od hd reuse Combination of on demand reuse and high delay reuse

Default: never

ma97 switch3 (advanced): Third switch, determine when ma97 scaling3 is enabled. ←↩

If ma97 scaling=dynamic, ma97 scaling3 is enabled according to this condition.

value meaning

never Scaling is never enabled.

at start Scaling to be used from the very start.

at start reuse Scaling to be used on first iteration, then reused thereafter.

on demand Scaling to be used after Ipopt request improved solution (i.e. iterative
refinement has failed).

on demand reuse As on demand, but reuse scaling from previous itr

high delay Scaling to be used after more than 0.05∗n delays are present

high delay reuse Scaling to be used only when previous itr created more that 0.05∗n
additional delays, otherwise reuse scaling from previous itr

od hd Combination of on demand and high delay

od hd reuse Combination of on demand reuse and high delay reuse

Default: never

ma97 u: Pivoting Threshold ←↩

2142 Solver Manuals

See MA97 documentation.

Range: [0, 0.5]

Default: 1e-08

ma97 umax: Maximum Pivoting Threshold ←↩

See MA97 documentation.

Range: [0, 0.5]

Default: 0.0001

max cpu time: Maximum number of CPU seconds. ←↩

A limit on CPU seconds that Ipopt can use to solve one problem. If during the convergence
check this limit is exceeded, Ipopt will terminate with a corresponding message.

Range: (0, ∞]

Default: 1e+20

max filter resets (advanced): Maximal allowed number of filter resets ←↩

A positive number enables a heuristic that resets the filter, whenever in more than ”fil-
ter reset trigger” successive iterations the last rejected trial steps size was rejected because of
the filter. This option determine the maximal number of resets that are allowed to take place.

Range: {0, ..., ∞}

Default: 5

max hessian perturbation: Maximum value of regularization parameter for handling negative curvature.
←↩

In order to guarantee that the search directions are indeed proper descent directions, Ipopt
requires that the inertia of the (augmented) linear system for the step computation has the
correct number of negative and positive eigenvalues. The idea is that this guides the algorithm
away from maximizers and makes Ipopt more likely converge to first order optimal points
that are minimizers. If the inertia is not correct, a multiple of the identity matrix is added to
the Hessian of the Lagrangian in the augmented system. This parameter gives the maximum
value of the regularization parameter. If a regularization of that size is not enough, the
algorithm skips this iteration and goes to the restoration phase. This is delta w∧max in the
implementation paper.

Range: (0, ∞]

Default: 1e+20

max iter: Maximum number of iterations. ←↩

The algorithm terminates with a message if the number of iterations exceeded this number.

Range: {0, ..., ∞}

Default: GAMS iterlim

max refinement steps: Maximum number of iterative refinement steps per linear system solve. ←↩

5.20 IPOPT and IPOPTH 2143

Iterative refinement (on the full unsymmetric system) is performed for each right hand side.
This option determines the maximum number of iterative refinement steps.

Range: {0, ..., ∞}

Default: 10

max resto iter (advanced): Maximum number of successive iterations in restoration phase. ←↩

The algorithm terminates with an error message if the number of iterations successively taken
in the restoration phase exceeds this number.

Range: {0, ..., ∞}

Default: 3000000

max soc: Maximum number of second order correction trial steps at each iteration. ←↩

Choosing 0 disables the second order corrections. This is p∧{max} of Step A-5.9 of Algorithm
A in the implementation paper.

Range: {0, ..., ∞}

Default: 4

max soft resto iters (advanced): Maximum number of iterations performed successively in soft restora-
tion phase. ←↩

If the soft restoration phase is performed for more than so many iterations in a row, the regular
restoration phase is called.

Range: {0, ..., ∞}

Default: 10

max wall time: Maximum number of walltime clock seconds. ←↩

A limit on walltime clock seconds that Ipopt can use to solve one problem. If during the
convergence check this limit is exceeded, Ipopt will terminate with a corresponding message.

Range: (0, ∞]

Default: GAMS reslim

mehrotra algorithm: Indicates whether to do Mehrotra's predictor-corrector algorithm. ←↩

If enabled, line search is disabled and the (unglobalized) adaptive mu strategy is chosen with
the ”probing” oracle, and ”corrector type=affine” is used without any safeguards; you should
not set any of those options explicitly in addition. Also, unless otherwise specified, the values
of ”bound push”, ”bound frac”, and ”bound mult init val” are set more aggressive, and sets
”alpha for y=bound mult”. The Mehrotra's predictor-corrector algorithm works usually very
well for LPs and convex QPs.

Range: yes, no

Default: no

min hessian perturbation: Smallest perturbation of the Hessian block. ←↩

2144 Solver Manuals

The size of the perturbation of the Hessian block is never selected smaller than this value,
unless no perturbation is necessary. This is delta w∧min in implementation paper.

Range: [0, ∞]

Default: 1e-20

min refinement steps: Minimum number of iterative refinement steps per linear system solve. ←↩

Iterative refinement (on the full unsymmetric system) is performed for each right hand
side. This option determines the minimum number of iterative refinements (i.e. at least
”min refinement steps” iterative refinement steps are enforced per right hand side.)

Range: {0, ..., ∞}

Default: 1

mu allow fast monotone decrease (advanced): Allow skipping of barrier problem if barrier test is
already met. ←↩

5.20 IPOPT and IPOPTH 2145

value meaning

no Take at least one iteration per barrier problem even if the barrier test is already
met for the updated barrier parameter

yes Allow fast decrease of mu if barrier test it met

Default: yes

mu init: Initial value for the barrier parameter. ←↩

This option determines the initial value for the barrier parameter (mu). It is only relevant in
the monotone, Fiacco-McCormick version of the algorithm. (i.e., if ”mu strategy” is chosen as
”monotone”)

Range: (0, ∞]

Default: 0.1

mu linear decrease factor: Determines linear decrease rate of barrier parameter. ←↩

For the Fiacco-McCormick update procedure the new barrier parameter mu is obtained by
taking the minimum of mu∗”mu linear decrease factor” and mu∧”superlinear decrease power”.
This is kappa mu in implementation paper. This option is also used in the adaptive mu
strategy during the monotone mode.

Range: (0, 1)

Default: 0.2

mu max: Maximum value for barrier parameter. ←↩

This option specifies an upper bound on the barrier parameter in the adaptive mu selection
mode. If this option is set, it overwrites the effect of mu max fact. (Only used if option
”mu strategy” is chosen as ”adaptive”.)

Range: (0, ∞]

Default: 100000

mu max fact: Factor for initialization of maximum value for barrier parameter. ←↩

This option determines the upper bound on the barrier parameter. This upper bound is
computed as the average complementarity at the initial point times the value of this option.
(Only used if option ”mu strategy” is chosen as ”adaptive”.)

Range: (0, ∞]

Default: 1000

mu min: Minimum value for barrier parameter. ←↩

This option specifies the lower bound on the barrier parameter in the adaptive mu selection
mode. By default, it is set to the minimum of 1e-11 and min(”tol”,”compl inf tol”)/(”barrier tol factor”+1),
which should be a reasonable value. (Only used if option ”mu strategy” is chosen as ”adap-
tive”.)

Range: (0, ∞]

Default: 1e-11

mu oracle: Oracle for a new barrier parameter in the adaptive strategy. ←↩

Determines how a new barrier parameter is computed in each ”free-mode” iteration of the
adaptive barrier parameter strategy. (Only considered if ”adaptive” is selected for option
”mu strategy”).

2146 Solver Manuals

value meaning

probing Mehrotra's probing heuristic

loqo LOQO's centrality rule

quality-function minimize a quality function

Default: quality-function

mu strategy: Update strategy for barrier parameter. ←↩

Determines which barrier parameter update strategy is to be used.

value meaning

monotone use the monotone (Fiacco-McCormick) strategy

adaptive use the adaptive update strategy

Default: adaptive

mu superlinear decrease power: Determines superlinear decrease rate of barrier parameter. ←↩

For the Fiacco-McCormick update procedure the new barrier parameter mu is obtained by
taking the minimum of mu∗”mu linear decrease factor” and mu∧”superlinear decrease power”.
This is theta mu in implementation paper. This option is also used in the adaptive mu strategy
during the monotone mode.

Range: (1, 2)

Default: 1.5

mu target: Desired value of complementarity. ←↩

Usually, the barrier parameter is driven to zero and the termination test for complementarity
is measured with respect to zero complementarity. However, in some cases it might be desired
to have Ipopt solve barrier problem for strictly positive value of the barrier parameter. In
this case, the value of ”mu target” specifies the final value of the barrier parameter, and the
termination tests are then defined with respect to the barrier problem for this value of the
barrier parameter.

Range: [0, ∞]

Default: 0

mumps dep tol (advanced): Threshold to consider a pivot at zero in detection of linearly dependent
constraints with MUMPS. ←↩

This is CNTL(3) in MUMPS.

Range: real

Default: 0

mumps mem percent: Percentage increase in the estimated working space for MUMPS. ←↩

5.20 IPOPT and IPOPTH 2147

When significant extra fill-in is caused by numerical pivoting, larger values of
mumps mem percent may help use the workspace more efficiently. On the other hand,
if memory requirement are too large at the very beginning of the optimization, choosing a
much smaller value for this option, such as 5, might reduce memory requirements.

Range: {0, ..., ∞}

Default: 1000

mumps permuting scaling: Controls permuting and scaling in MUMPS ←↩

This is ICNTL(6) in MUMPS.

Range: {0, ..., 7}

Default: 7

mumps pivot order: Controls pivot order in MUMPS ←↩

This is ICNTL(7) in MUMPS.

Range: {0, ..., 7}

Default: 7

mumps pivtol: Pivot tolerance for the linear solver MUMPS. ←↩

A smaller number pivots for sparsity, a larger number pivots for stability.

Range: [0, 1]

Default: 1e-06

mumps pivtolmax: Maximum pivot tolerance for the linear solver MUMPS. ←↩

Ipopt may increase pivtol as high as pivtolmax to get a more accurate solution to the linear
system.

Range: [0, 1]

Default: 0.1

mumps print level: Debug printing level for the linear solver MUMPS ←↩

0: no printing; 1: Error messages only; 2: Error, warning, and main statistic messages; 3:
Error and warning messages and terse diagnostics; ≥4: All information.

Range: {0, ..., ∞}

Default: 0

mumps scaling: Controls scaling in MUMPS ←↩

This is ICNTL(8) in MUMPS.

Range: {-2, ..., 77}

Default: 77

neg curv test reg: Whether to do the curvature test with the primal regularization (see Zavala and
Chiang, 2014). ←↩

2148 Solver Manuals

value meaning

yes use primal regularization with the inertia-free curvature test

no use original IPOPT approach, in which the primal regularization is ignored

Default: yes

neg curv test tol: Tolerance for heuristic to ignore wrong inertia. ←↩

If nonzero, incorrect inertia in the augmented system is ignored, and Ipopt tests if the direction
is a direction of positive curvature. This tolerance is alpha n in the paper by Zavala and
Chiang (2014) and it determines when the direction is considered to be sufficiently positive. A
value in the range of [1e-12, 1e-11] is recommended.

Range: [0, ∞]

Default: 0

nlp scaling constr target gradient (advanced): Target value for constraint function gradient size. ←↩

If a positive number is chosen, the scaling factors for the constraint functions are computed
so that the gradient has the max norm of the given size at the starting point. This overrides
nlp scaling max gradient for the constraint functions.

Range: [0, ∞]

Default: 0

nlp scaling max gradient: Maximum gradient after NLP scaling. ←↩

This is the gradient scaling cut-off. If the maximum gradient is above this value, then gradient
based scaling will be performed. Scaling parameters are calculated to scale the maximum
gradient back to this value. (This is g max in Section 3.8 of the implementation paper.) Note:
This option is only used if ”nlp scaling method” is chosen as ”gradient-based”.

Range: (0, ∞]

Default: 100

nlp scaling method: Select the technique used for scaling the NLP. ←↩

Selects the technique used for scaling the problem internally before it is solved. For user-scaling,
the parameters come from the NLP.

value meaning

none no problem scaling will be performed

gradient-based scale the problem so the maximum gradient at the starting point is
nlp scaling max gradient

equilibration-based scale the problem so that first derivatives are of order 1 at random
points (GAMS/Ipopt: requires user-provided library with HSL routine
MC19)

Default: gradient-based if GAMS scaleopt is not set, otherwise none

nlp scaling min value: Minimum value of gradient-based scaling values. ←↩

5.20 IPOPT and IPOPTH 2149

This is the lower bound for the scaling factors computed by gradient-based scaling method. If
some derivatives of some functions are huge, the scaling factors will otherwise become very
small, and the (unscaled) final constraint violation, for example, might then be significant.
Note: This option is only used if ”nlp scaling method” is chosen as ”gradient-based”.

Range: [0, ∞]

Default: 1e-08

nlp scaling obj target gradient (advanced): Target value for objective function gradient size. ←↩

If a positive number is chosen, the scaling factor for the objective function is computed so
that the gradient has the max norm of the given size at the starting point. This overrides
nlp scaling max gradient for the objective function.

Range: [0, ∞]

Default: 0

nu inc (advanced): Increment of the penalty parameter. ←↩

Range: (0, ∞]

Default: 0.0001

nu init (advanced): Initial value of the penalty parameter. ←↩

Range: (0, ∞]

Default: 1e-06

obj max inc (advanced): Determines the upper bound on the acceptable increase of barrier objective
function. ←↩

Trial points are rejected if they lead to an increase in the barrier objective function by more
than obj max inc orders of magnitude.

Range: (1, ∞]

Default: 5

pardiso iter coarse size (advanced): Maximum Size of Coarse Grid Matrix ←↩

DPARM(3)

Range: {1, ..., ∞}

Default: 5000

pardiso iter dropping factor (advanced): dropping value for incomplete factor ←↩

DPARM(5)

Range: (0, 1)

Default: 0.5

pardiso iter dropping schur (advanced): dropping value for sparsify schur complement factor ←↩

2150 Solver Manuals

DPARM(6)

Range: (0, 1)

Default: 0.1

pardiso iter inverse norm factor (advanced): ←↩

DPARM(8)

Range: (1, ∞]

Default: 5e+06

pardiso iter max levels (advanced): Maximum Size of Grid Levels ←↩

DPARM(4)

Range: {1, ..., ∞}

Default: 10

pardiso iter max row fill (advanced): max fill for each row ←↩

DPARM(7)

Range: {1, ..., ∞}

Default: 10000000

pardiso iter relative tol (advanced): Relative Residual Convergence ←↩

DPARM(2)

Range: (0, 1)

Default: 1e-06

pardiso iterative (advanced): Switch for iterative solver in Pardiso library ←↩

Range: yes, no

Default: no

pardiso matching strategy: Matching strategy to be used by Pardiso ←↩

This is IPAR(13) in Pardiso manual.

value meaning

complete Match complete (IPAR(13)=1)

complete+2x2 Match complete+2x2 (IPAR(13)=2)

constraints Match constraints (IPAR(13)=3)

Default: complete+2x2

5.20 IPOPT and IPOPTH 2151

pardiso max droptol corrections (advanced): Maximal number of decreases of drop tolerance during
one solve. ←↩

This is relevant only for iterative Pardiso options.

Range: {1, ..., ∞}

Default: 4

pardiso max iter (advanced): Maximum number of Krylov-Subspace Iteration ←↩

DPARM(1)

Range: {1, ..., ∞}

Default: 500

pardiso max iterative refinement steps: Limit on number of iterative refinement steps. ←↩

The solver does not perform more than the absolute value of this value steps of iterative
refinement and stops the process if a satisfactory level of accuracy of the solution in terms
of backward error is achieved. If negative, the accumulation of the residue uses extended
precision real and complex data types. Perturbed pivots result in iterative refinement. The
solver automatically performs two steps of iterative refinements when perturbed pivots are
obtained during the numerical factorization and this option is set to 0.

Range: {-∞, ..., ∞}

Default: 0

pardiso msglvl: Pardiso message level ←↩

This is MSGLVL in the Pardiso manual.

Range: {0, ..., ∞}

Default: 0

pardiso order: Controls the fill-in reduction ordering algorithm for the input matrix. ←↩

value meaning

amd minimum degree algorithm

one

metis MeTiS nested dissection algorithm

pmetis parallel (OpenMP) version of MeTiS nested dissection algorithm

four

five

Default: metis

pardiso redo symbolic fact only if inertia wrong (advanced): Toggle for handling case when ele-
ments were perturbed by Pardiso. ←↩

value meaning

no Always redo symbolic factorization when elements were perturbed

2152 Solver Manuals

value meaning

yes Only redo symbolic factorization when elements were perturbed if also the inertia
was wrong

Default: no

pardiso repeated perturbation means singular (advanced): Whether to assume that matrix is
singular if elements were perturbed after recent symbolic factorization. ←↩

Range: yes, no

Default: no

pardiso skip inertia check (advanced): Whether to pretend that inertia is correct. ←↩

Setting this option to ”yes” essentially disables inertia check. This option makes the algorithm
non-robust and easily fail, but it might give some insight into the necessity of inertia control.

Range: yes, no

Default: no

pardisolib: Name of library containing Pardiso routines (from pardiso-project.org) for load at runtime ←↩

Range: string

Default: libpardiso.so (Linux), libpardiso.dylib (macOS), libpardiso.dll (Windows)

pardisomkl matching strategy: Matching strategy to be used by Pardiso ←↩

This is IPAR(13) in Pardiso manual.

value meaning

complete Match complete (IPAR(13)=1)

complete+2x2 Match complete+2x2 (IPAR(13)=2)

constraints Match constraints (IPAR(13)=3)

Default: complete+2x2

pardisomkl max iterative refinement steps: Limit on number of iterative refinement steps. ←↩

The solver does not perform more than the absolute value of this value steps of iterative
refinement and stops the process if a satisfactory level of accuracy of the solution in terms
of backward error is achieved. If negative, the accumulation of the residue uses extended
precision real and complex data types. Perturbed pivots result in iterative refinement. The
solver automatically performs two steps of iterative refinements when perturbed pivots are
obtained during the numerical factorization and this option is set to 0.

Range: {-∞, ..., ∞}

Default: 1

pardisomkl msglvl: Pardiso message level ←↩

5.20 IPOPT and IPOPTH 2153

This is MSGLVL in the Pardiso manual.

Range: {0, ..., ∞}

Default: 0

pardisomkl order: Controls the fill-in reduction ordering algorithm for the input matrix. ←↩

value meaning

amd minimum degree algorithm

one undocumented

metis MeTiS nested dissection algorithm

pmetis parallel (OpenMP) version of MeTiS nested dissection algorithm

Default: metis

pardisomkl redo symbolic fact only if inertia wrong (advanced): Toggle for handling case when
elements were perturbed by Pardiso. ←↩

value meaning

no Always redo symbolic factorization when elements were perturbed

yes Only redo symbolic factorization when elements were perturbed if also the inertia
was wrong

Default: no

pardisomkl repeated perturbation means singular (advanced): Whether to assume that matrix is
singular if elements were perturbed after recent symbolic factorization. ←↩

Range: yes, no

Default: no

pardisomkl skip inertia check (advanced): Whether to pretend that inertia is correct. ←↩

Setting this option to ”yes” essentially disables inertia check. This option makes the algorithm
non-robust and easily fail, but it might give some insight into the necessity of inertia control.

Range: yes, no

Default: no

perturb always cd (advanced): Active permanent perturbation of constraint linearization. ←↩

Enabling this option leads to using the delta c and delta d perturbation for the computation
of every search direction. Usually, it is only used when the iteration matrix is singular.

Range: yes, no

Default: no

perturb dec fact: Decrease factor for x-s perturbation. ←↩

2154 Solver Manuals

The factor by which the perturbation is decreased when a trial value is deduced from the size
of the most recent successful perturbation. This is kappa w∧- in the implementation paper.

Range: (0, 1)

Default: 0.333333

perturb inc fact: Increase factor for x-s perturbation. ←↩

The factor by which the perturbation is increased when a trial value was not sufficient - this
value is used for the computation of all perturbations except for the first. This is kappa w∧+
in the implementation paper.

Range: (1, ∞]

Default: 8

perturb inc fact first: Increase factor for x-s perturbation for very first perturbation. ←↩

The factor by which the perturbation is increased when a trial value was not sufficient - this
value is used for the computation of the very first perturbation and allows a different value for
the first perturbation than that used for the remaining perturbations. This is bar kappa w∧+
in the implementation paper.

Range: (1, ∞]

Default: 100

print advanced options (advanced): whether to print also advanced options ←↩

Range: yes, no

Default: no

print eval error: Switch to enable printing information about function evaluation errors into the GAMS
listing file. ←↩

Range: no, yes

Default: yes

print frequency iter: Determines at which iteration frequency the summarizing iteration output line
should be printed. ←↩

Summarizing iteration output is printed every print frequency iter iterations, if at least
print frequency time seconds have passed since last output.

Range: {1, ..., ∞}

Default: 1

print frequency time: Determines at which time frequency the summarizing iteration output line
should be printed. ←↩

Summarizing iteration output is printed if at least print frequency time seconds have passed
since last output and the iteration number is a multiple of print frequency iter.

Range: [0, ∞]

Default: 0

5.20 IPOPT and IPOPTH 2155

print info string: Enables printing of additional info string at end of iteration output. ←↩

This string contains some insider information about the current iteration. For details, look for
”Diagnostic Tags” in the Ipopt documentation.

Range: yes, no

Default: no

print level: Output verbosity level. ←↩

Sets the default verbosity level for console output. The larger this value the more detailed is
the output.

Range: {0, ..., 12}

Default: 5

print options mode: format in which to print options documentation ←↩

value meaning

text Ordinary text

latex LaTeX formatted

doxygen Doxygen (markdown) formatted

Default: text

print timing statistics: Switch to print timing statistics. ←↩

If selected, the program will print the time spend for selected tasks. This implies tim-
ing statistics=yes.

Range: yes, no

Default: no

quality function balancing term (advanced): The balancing term included in the quality function for
centrality. ←↩

This determines whether a term is added to the quality function that penalizes situations
where the complementarity is much smaller than dual and primal infeasibilities. Only used if
option ”mu oracle” is set to ”quality-function”.

value meaning

none no balancing term is added

cubic Max(0,Max(dual inf,primal inf)-compl)∧3

Default: none

quality function centrality (advanced): The penalty term for centrality that is included in quality
function. ←↩

This determines whether a term is added to the quality function to penalize deviation from
centrality with respect to complementarity. The complementarity measure here is the xi in
the Loqo update rule. Only used if option ”mu oracle” is set to ”quality-function”.

2156 Solver Manuals

value meaning

none no penalty term is added

log complementarity ∗ the log of the centrality measure

reciprocal complementarity ∗ the reciprocal of the centrality measure

cubed-reciprocal complementarity ∗ the reciprocal of the centrality measure cubed

Default: none

quality function max section steps: Maximum number of search steps during direct search procedure
determining the optimal centering parameter. ←↩

The golden section search is performed for the quality function based mu oracle. Only used if
option ”mu oracle” is set to ”quality-function”.

Range: {0, ..., ∞}

Default: 8

quality function norm type (advanced): Norm used for components of the quality function. ←↩

Only used if option ”mu oracle” is set to ”quality-function”.

value meaning

1-norm use the 1-norm (abs sum)

2-norm-squared use the 2-norm squared (sum of squares)

max-norm use the infinity norm (max)

2-norm use 2-norm

Default: 2-norm-squared

quality function section qf tol (advanced): Tolerance for the golden section search procedure deter-
mining the optimal centering parameter (in the function value space). ←↩

The golden section search is performed for the quality function based mu oracle. Only used if
option ”mu oracle” is set to ”quality-function”.

Range: [0, 1)

Default: 0

quality function section sigma tol (advanced): Tolerance for the section search procedure determining
the optimal centering parameter (in sigma space). ←↩

The golden section search is performed for the quality function based mu oracle. Only used if
option ”mu oracle” is set to ”quality-function”.

Range: [0, 1)

Default: 0.01

recalc y: Tells the algorithm to recalculate the equality and inequality multipliers as least square estimates.
←↩

This asks the algorithm to recompute the multipliers, whenever the current infeasibility is less
than recalc y feas tol. Choosing yes might be helpful in the quasi-Newton option. However,
each recalculation requires an extra factorization of the linear system. If a limited memory
quasi-Newton option is chosen, this is used by default.

5.20 IPOPT and IPOPTH 2157

value meaning

no use the Newton step to update the multipliers

yes use least-square multiplier estimates

Default: no

recalc y feas tol: Feasibility threshold for recomputation of multipliers. ←↩

If recalc y is chosen and the current infeasibility is less than this value, then the multipliers
are recomputed.

Range: (0, ∞]

Default: 1e-06

replace bounds (advanced): Whether all variable bounds should be replaced by inequality constraints
←↩

This option must be set for the inexact algorithm.

Range: yes, no

Default: no

report mininfeas solution: Switch to report intermediate solution with minimal constraint violation to
GAMS if the final solution is not feasible. ←↩

This option allows to obtain the most feasible solution found by Ipopt during the iteration
process, if it stops at a (locally) infeasible solution, due to a limit (time, iterations, ...), or
with a failure in the restoration phase.

Range: no, yes

Default: no

required infeasibility reduction: Required reduction of infeasibility before leaving restoration phase.
←↩

The restoration phase algorithm is performed, until a point is found that is acceptable to the
filter and the infeasibility has been reduced by at least the fraction given by this option.

Range: [0, 1)

Default: 0.9

residual improvement factor (advanced): Minimal required reduction of residual test ratio in iterative
refinement. ←↩

If the improvement of the residual test ratio made by one iterative refinement step is not
better than this factor, iterative refinement is aborted.

Range: (0, ∞]

Default: 1

residual ratio max (advanced): Iterative refinement tolerance ←↩

2158 Solver Manuals

Iterative refinement is performed until the residual test ratio is less than this tolerance (or
until ”max refinement steps” refinement steps are performed).

Range: (0, ∞]

Default: 1e-10

residual ratio singular (advanced): Threshold for declaring linear system singular after failed iterative
refinement. ←↩

If the residual test ratio is larger than this value after failed iterative refinement, the algorithm
pretends that the linear system is singular.

Range: (0, ∞]

Default: 1e-05

resto failure feasibility threshold (advanced): Threshold for primal infeasibility to declare failure of
restoration phase. ←↩

If the restoration phase is terminated because of the ”acceptable” termination criteria and the
primal infeasibility is smaller than this value, the restoration phase is declared to have failed.
The default value is actually 1e2∗tol, where tol is the general termination tolerance.

Range: [0, ∞]

Default: 0

resto penalty parameter (advanced): Penalty parameter in the restoration phase objective function.
←↩

This is the parameter rho in equation (31a) in the Ipopt implementation paper.

Range: (0, ∞]

Default: 1000

resto proximity weight (advanced): Weighting factor for the proximity term in restoration phase
objective. ←↩

This determines how the parameter zeta in equation (29a) in the implementation paper is
computed. zeta here is resto proximity weight∗sqrt(mu), where mu is the current barrier
parameter.

Range: [0, ∞]

Default: 1

rho (advanced): Value in penalty parameter update formula. ←↩

Range: (0, 1)

Default: 0.1

s max (advanced): Scaling threshold for the NLP error. ←↩

5.20 IPOPT and IPOPTH 2159

See paragraph after Eqn. (6) in the implementation paper.

Range: (0, ∞]

Default: 100

s phi (advanced): Exponent for linear barrier function model in the switching rule. ←↩

See Eqn. (19) in the implementation paper.

Range: (1, ∞]

Default: 2.3

s theta (advanced): Exponent for current constraint violation in the switching rule. ←↩

See Eqn. (19) in the implementation paper.

Range: (1, ∞]

Default: 1.1

sigma max (advanced): Maximum value of the centering parameter. ←↩

This is the upper bound for the centering parameter chosen by the quality function based
barrier parameter update. Only used if option ”mu oracle” is set to ”quality-function”.

Range: (0, ∞]

Default: 100

sigma min (advanced): Minimum value of the centering parameter. ←↩

This is the lower bound for the centering parameter chosen by the quality function based
barrier parameter update. Only used if option ”mu oracle” is set to ”quality-function”.

Range: [0, ∞]

Default: 1e-06

skip corr if neg curv (advanced): Whether to skip the corrector step in negative curvature iteration.
←↩

The corrector step is not tried if negative curvature has been encountered during the computa-
tion of the search direction in the current iteration. This option is only used if ”mu strategy”
is ”adaptive”. Changing this option is experimental.

Range: yes, no

Default: yes

skip corr in monotone mode (advanced): Whether to skip the corrector step during monotone barrier
parameter mode. ←↩

The corrector step is not tried if the algorithm is currently in the monotone mode (see also
option ”barrier strategy”). This option is only used if ”mu strategy” is ”adaptive”. Changing
this option is experimental.

Range: yes, no

Default: yes

2160 Solver Manuals

slack bound frac: Desired minimum relative distance from the initial slack to bound. ←↩

Determines how much the initial slack variables might have to be modified in order to be
sufficiently inside the inequality bounds (together with ”slack bound push”). (This is kappa 2
in Section 3.6 of implementation paper.)

Range: (0, 0.5]

Default: 0.01

slack bound push: Desired minimum absolute distance from the initial slack to bound. ←↩

Determines how much the initial slack variables might have to be modified in order to be
sufficiently inside the inequality bounds (together with ”slack bound frac”). (This is kappa 1
in Section 3.6 of implementation paper.)

Range: (0, ∞]

Default: 0.01

slack move (advanced): Correction size for very small slacks. ←↩

Due to numerical issues or the lack of an interior, the slack variables might become very
small. If a slack becomes very small compared to machine precision, the corresponding bound
is moved slightly. This parameter determines how large the move should be. Its default
value is mach eps∧{3/4}. See also end of Section 3.5 in implementation paper - but actual
implementation might be somewhat different.

Range: [0, ∞]

Default: 1.81899e-12

soc method: Ways to apply second order correction ←↩

This option determines the way to apply second order correction, 0 is the method described in
the implementation paper. 1 is the modified way which adds alpha on the rhs of x and s rows.

Range: {0, ..., 1}

Default: 0

soft resto pderror reduction factor: Required reduction in primal-dual error in the soft restoration
phase. ←↩

The soft restoration phase attempts to reduce the primal-dual error with regular steps. If the
damped primal-dual step (damped only to satisfy the fraction-to-the-boundary rule) is not
decreasing the primal-dual error by at least this factor, then the regular restoration phase is
called. Choosing ”0” here disables the soft restoration phase.

Range: [0, ∞]

Default: 0.9999

start with resto: Whether to switch to restoration phase in first iteration. ←↩

Setting this option to ”yes” forces the algorithm to switch to the feasibility restoration phase
in the first iteration. If the initial point is feasible, the algorithm will abort with a failure.

Range: yes, no

Default: no

5.20 IPOPT and IPOPTH 2161

tau min (advanced): Lower bound on fraction-to-the-boundary parameter tau. ←↩

This is tau min in the implementation paper. This option is also used in the adaptive mu
strategy during the monotone mode.

Range: (0, 1)

Default: 0.99

theta max fact (advanced): Determines upper bound for constraint violation in the filter. ←↩

The algorithmic parameter theta max is determined as theta max fact times the maximum of
1 and the constraint violation at initial point. Any point with a constraint violation larger
than theta max is unacceptable to the filter (see Eqn. (21) in the implementation paper).

Range: (0, ∞]

Default: 10000

theta min fact (advanced): Determines constraint violation threshold in the switching rule. ←↩

The algorithmic parameter theta min is determined as theta min fact times the maximum
of 1 and the constraint violation at initial point. The switching rule treats an iteration as
an h-type iteration whenever the current constraint violation is larger than theta min (see
paragraph before Eqn. (19) in the implementation paper).

Range: (0, ∞]

Default: 0.0001

timing statistics: Indicates whether to measure time spend in components of Ipopt and NLP evaluation
←↩

The overall algorithm time is unaffected by this option.

Range: yes, no

Default: no

tiny step tol (advanced): Tolerance for detecting numerically insignificant steps. ←↩

If the search direction in the primal variables (x and s) is, in relative terms for each component,
less than this value, the algorithm accepts the full step without line search. If this happens
repeatedly, the algorithm will terminate with a corresponding exit message. The default value
is 10 times machine precision.

Range: [0, ∞]

Default: 2.22045e-15

tiny step y tol (advanced): Tolerance for quitting because of numerically insignificant steps. ←↩

If the search direction in the primal variables (x and s) is, in relative terms for each component,
repeatedly less than tiny step tol, and the step in the y variables is smaller than this threshold,
the algorithm will terminate.

Range: [0, ∞]

Default: 0.01

2162 Solver Manuals

tol: Desired convergence tolerance (relative). ←↩

Determines the convergence tolerance for the algorithm. The algorithm terminates successfully,
if the (scaled) NLP error becomes smaller than this value, and if the (absolute) criteria
according to ”dual inf tol”, ”constr viol tol”, and ”compl inf tol” are met. This is epsilon tol
in Eqn. (6) in implementation paper. See also ”acceptable tol” as a second termination
criterion. Note, some other algorithmic features also use this quantity to determine thresholds
etc.

Range: (0, ∞]

Default: 1e-08

warm start bound frac: same as bound frac for the regular initializer ←↩

Range: (0, 0.5]

Default: 0.001

warm start bound push: same as bound push for the regular initializer ←↩

Range: (0, ∞]

Default: 0.001

warm start init point: Warm-start for initial point ←↩

Indicates whether this optimization should use a warm start initialization, where values of
primal and dual variables are given (e.g., from a previous optimization of a related problem.)

value meaning

no do not use the warm start initialization

yes use the warm start initialization

Default: yes, if run on modified model instance (e.g., from GUSS), otherwise no

warm start mult bound push: same as mult bound push for the regular initializer ←↩

Range: (0, ∞]

Default: 0.001

warm start mult init max: Maximum initial value for the equality multipliers. ←↩

Range: real

Default: 1e+06

warm start slack bound frac: same as slack bound frac for the regular initializer ←↩

Range: (0, 0.5]

Default: 0.001

warm start slack bound push: same as slack bound push for the regular initializer ←↩

5.21 JAMS and LogMIP 2163

Range: (0, ∞]

Default: 0.001

warm start target mu (advanced): ←↩

Experimental!

Range: real

Default: 0

watchdog shortened iter trigger: Number of shortened iterations that trigger the watchdog. ←↩

If the number of successive iterations in which the backtracking line search did not accept the
first trial point exceeds this number, the watchdog procedure is activated. Choosing ”0” here
disables the watchdog procedure.

Range: {0, ..., ∞}

Default: 10

watchdog trial iter max: Maximum number of watchdog iterations. ←↩

This option determines the number of trial iterations allowed before the watchdog procedure
is aborted and the algorithm returns to the stored point.

Range: {1, ..., ∞}

Default: 3

5.21 JAMS and LogMIP

5.21.1 Introduction

EMP (Extended Mathematical Programming) is not a solver but an (experimental) framework for
automated mathematical programming reformulations. The idea behind EMP is that new upcoming types
of models which currently cannot be solved reliably are reformulated into models of established math
programming classes in order to use mature solver technology. At this stage, EMP supports the modeling
of Bilevel Programs, Variational Inequalities, Disjunctive Programs, Extended Nonlinear Programs and
Embedded Complementarity Systems.

Extended mathematical programs are collections of functions and variables joined together using specific
optimization and complementarity primitives. EMP annotates the existing relationships within a model
to facilitate higher level structure identification. A specific implementation of this framework is outlined
that reformulates the original GAMS model automatically using directives contained in an ”empinfo” file
into an equivalent model that can be solved using existing GAMS solvers.

The reformulation is done by the solver JAMS which currently is the only solver that is capable of handling
EMP models. Examples showing how to use the EMP framework and the solver JAMS are made available
through the GAMS EMP Library which is included in the GAMS Distribution. In order to generate a
copy of and EMPLIB model, one can use the library facility of the GAMS IDE, or execute the command
line directive emplib <modelname>, where modelname is the (stem of the) file containing the model.

EMP has been developed jointly by Michael Ferris of UW-Madison, Ignacio Grossmann of Carnegie Mellon
University, and GAMS Development Corporation. EMP and JAMS come free of charge with any licensed
GAMS system but require a subsolver to solve the generated models.

2164 Solver Manuals

5.21.2 JAMS: a reformulation tool

EMP models are currently processed by the JAMS solver. The solver JAMS creates a scalar version of
the given GAMS model. This scalar version of the model is then solved by an appropriate subsolver. By
default, there are no reformulations carried out, so the model generated is simply a GAMS scalar form of
the model the actual subsolver will process. The subsolver used is by default the currently specified solver
for the given model type.

5.21.2.1 The JAMS Option File

As with any GAMS solver, JAMS has an option file, typically called jams.opt. A JAMS option subsolver
is available to change the subsolver used for the reformulated model, along with an option to utilize a
subsolver option file (subsolveropt).

The actual scalar version of the model can also be seen by the modeler using the option filename. For
example, the option file

subsolver path

subsolveropt 1

filename mcpmod.gms

when applied to an EMP model that is a complementarity problem will create a file called mcpmod.gms in
the current directory and solve that model using the solver PATH utilizing any options for PATH that are
specified in path.opt. The scalarized model is not particularly useful to look at since all of the original
variables have been renamed into a scalar form. The mapping between original variables and the ones
used in the scalar version of the model is given in a dictionary file that can also be seen by the modeler
using the dict option. If a user simply wants to generate this scalar model, then the option terminate will
not solve the generated model.

After the scalar version of the model is solved, the solution values are mapped back into the original
namespace and returned to the modeler as usual in the listing file. The JAMS option margtol allows the
modeler to suppress reporting marginals that have (absolute) values smaller than this tolerance.

Obviously, all of the above functionality is not of much value: the key part of JAMS is to interpret
additional directives to take the original model and produce a reformulated scalar model. This is carried
out using an ”empinfo” file. The syntax and use of this file is the content of the remaining sections of this
document.

The option EMPInfoFile allows the user to specify the path and name of a file containing additional EMP
information. The syntax of this file is described by examples elsewhere in this document and in section
Empinfo file details . There is a subtlety that should be mentioned when a user writes this file in the
default location in the GAMS scratch directory of the current run specified in the gams file using:

file empinfo / ’%emp.info%’ /;

wherein certain additional formatting instructions are given. If instead, the file handle is given by:

file empinfo / ’empinfo.txt’ /;

for example, then to produce the same file the following lines must be added to the gams source file:

empinfo.pc = 8;

empinfo.pw = 255;

The following tables list all available options.

5.21.2.2 Reformulation Options

5.21 JAMS and LogMIP 2165

Option Description Default

KeepObj
Keep original objective function and variables in generated MCP model.
This option is only valid for reformulations into complementarity systems.
If KeepObj is set the generated MCP program will incorporate the original
objective function and the Karush-Kuhn-Tucker condition of the original
objective variable.

0

MargTol
Only report marginals with an absolute value above the tolerance 1e-6

ObjVarName
Name of objective variable in generated model. objvar

5.21.2.3 General Options

Option Description Default

CompModel
Complementarity model (MCP or VI) to generate for equilibrium
problems.

mcp

Dict
Generate a dictionary file that maps original variable and equation
names to the ones of the scalar JAMS model.

dict.txt

DisjBinRelax
Relax requirement that disjunction variables are binary. 0

EMPInfoFile
Path and name of file containing additional EMP information as
disjunctions, perpendiculars, bilevel characterization etc.
By default, the file is expected to exist in the GAMS scratch directory
of the current run (gams.scrdir). If this option is used, EMP searches
for the file based on the provided relative or absolute path. In case
of a given relative path, it is assumed to be relative to the working
directory.

FileName
Filename of generated scalar reformulated GAMS model. emp.gms

ImplVarModel
Reformulation model to generate for implicit variables.
Replication: Shared variables are replicated for each agent
Substitution: Shared multipliers are substituted out: assumes im-
plicit function
Switching: Switch function-variable matching to avoid replication

switching

NLConsToFunc
Stick nonlinear constraints into functional part when generating a VI
model for equilibrium problems

0

SharedEqu
Allow shared equations in equilibrium problems 0

SubSolvePar
User defined GAMS parameters for subsolve

SubSolver
Subsolver used to solve the reformulated model.
The subsolver chosen has to be suitable for the chosen reformula-
tion type. The user can also provide a solver related option file, see
SubSolverOpt.

SubSolverOpt
Optfile value to pass to the subsolver
Range: {1, ..., 999}

1

Terminate
Generate the GAMS source code of the reformulated model in a file
and terminate without solving the model.

0

UserPFFile
Filename of extra GAMS options when running the reformulated
GAMS model.

ZipDebug
Zip-file name to create if the internal GAMS model fails none

2166 Solver Manuals

5.21.3 Forming Optimality Conditions: NLP2MCP

The first nontrivial use of the JAMS solver is to automatically generate the first order conditions of a linear
or nonlinear program; essentially we reformulate the optimization problem as a mixed complementarity
problem (MCP). The ”empinfo” file to do this simply contains the following line:

modeltype mcp

Behind the scenes, JAMS forms the Lagrangian of the nonlinear program and then forms its Karush-
Kuhn-Tucker optimality conditions. To be clear, given the original nonlinear program

min
x
f(x) s.t. g(x) ≤ 0, h(x) = 0, (NLP)

the Lagrangian is:

L(x, λ, µ) = f(x)− 〈λ, g(x)〉 − 〈µ, h(x)〉.

The first order conditions are the following MCP:

0 = ∇xL(x, λ, µ) ⊥ x free

0 ≥ −∇λL(x, λ, µ) ⊥ λ ≤ 0

0 = −∇µL(x, λ, µ) ⊥ µ free

A specific example is:

min
x,y,z

−3x+ y

s.t. x+ y ≤ 1, x+ y − z = 2, x, y ≥ 0

which is found in the EMPLIB model nlp2mcp:
Positive Variables x, y;
Variables f, z;
Equations g, h, defobj;
g.. x + y =l= 1;
h.. x + y - z =e= 2;
defobj.. f =e= -3*x + y;
model comp / defobj, g, h /;
file info / ’%emp.info%’ /;
putclose info / ’modeltype mcp’;
solve comp using emp minimizing f;

The putclose line writes out the default ”empinfo” file whose location is provided in the system string
%emp.info%. Armed with this additional information, the EMP tool automatically creates the following
MCP:

0 ≤ −3− λ− µ ⊥ x ≥ 0

0 ≤ 1− λ− µ ⊥ y ≥ 0

0 = µ ⊥ z free

0 ≥ x+ y − 1 ⊥ λ ≤ 0

0 = x+ y − z − 2 ⊥ µ free.

5.21 JAMS and LogMIP 2167

5.21.4 Soft Constraints

In many cases, we wish to relax certain constraints in a model during solution (to help identify feasibility
issues for example). As an example, consider the problem

min
x1,x2,x3

exp(x1)

s.t. log(x1) = 1,

x2
2 ≤ 2,

x1/x2 = log(x3),

3x1 + x2 ≤ 5, x1 ≥ 0, x2 ≥ 0,

which can be formulated in GAMS as
$title simple example of ENLP
Variables obj, x1, x2, x3;
Equations f0, f1, f2, f3, f4;
f0.. obj =e= exp(x1);
f1.. log(x1) =e= 1;
f2.. sqr(x2) =g= 2;
f3.. x1/x2 =e= log(x3);
f4.. 3*x1 + x2 =l= 5;
x1.lo = 0; x2.lo = 0;
model enlpemp /all/;
x1.l = 1; x2.l = 1; x3.l = 1;
solve enlpemp using nlp min obj;

5.21.4.1 Reformulation as a classical NLP

Soft constraints allow us to treat certain equations in the model as ”soft” by removing the constraints
and adding a penalty term to the objective function. Explicitly, we replace the above problem by:

min
x1,x2,x3

exp(x1) + 5 ‖log(x1)− 1‖2 + 2 max(x2
2 − 2, 0)

s.t. x1/x2 = log(x3),

3x1 + x2 ≤ 5, x1 ≥ 0, x2 ≥ 0.

In this problem, we still force x1/x2 = log(x3), but apply a least squares penalty to log(x1) − 1 and a
smaller one-sided penalization to x2

2 − 2.

The above formulation is nonsmooth due to the ”max” term in the objective function; in practice we
would replace this by:

min
x1,x2,x3,w

exp(x1) + 5 (log(x1)− 1)
2

+ 2w

s.t. x1/x2 = log(x3),

3x1 + x2 ≤ 5, x1 ≥ 0, x2 ≥ 0

w ≥ x2
2 − 2, w ≥ 0

and recover a standard form NLP.

The ”empinfo” file:

modeltype NLP

adjustequ

f1 sqr 5

f2 maxz 2

coupled with replacing the last line with

solve enlpemp using emp min obj;

achieves this goal. The parameter values provide the penalty coefficients above.

2168 Solver Manuals

5.21.4.2 Reformulation as an MCP

As an alternative, we can rewrite the problem as an MCP, also dealing explicitly with the nonsmoothness.
The ”empinfo” file is given by:

modeltype NLP

adjustequ

f1 sqr 5

f2 maxz 2

and this generates the following MCP:

0 = log(x1)− 1 + y1/10 ⊥ y1 free,

0 ≤ x2
2 − 2 ⊥ y2 ≥ 0,

0 = x1/x2 − log(x3) ⊥ y3 free,

0 ≥ 3x1 + x2 − 5 ⊥ y4 ≤ 0,

0 ≤ exp(x1)− y1/x1 − y3/x2 − 3y4 ⊥ x1 ≥ 0,

0 ≤ −2y2x2 + x1y3/x
2
2 − y4 ⊥ x2 ≥ 0,

0 = y3/x3 ⊥ x3 free,

where y represent the multipliers.

A complete description of the process to derive this MCP will be given later in section
Extended Nonlinear Programs .

5.21.5 Bilevel Programs

Mathematical programs with optimization problems in their constraints have a long history in operations
research including [15] [29] [71] . New codes are being developed that exploit this structure, at least for
simple hierarchies, and attempt to define and implement algorithms for their solution.

The simplest case is that of bilevel programming, where an upper level problem depends on the solution
of a lower level optimization. For example:

min
x,y

f(x, y)

s.t. g(x, y) ≤ 0,

y solves min
y

v(x, y) s.t. h(x, y) ≥ 0.

Often, the upper level is referred to as the ”leader”, while the lower level is the ”follower”.

This problem can be reformulated as a Mathematical Program with Complementarity Constraints (MPCC)
by replacing the lower level optimization problem by its first order optimality conditions:

min
x,y

f(x, y)

s.t. g(x, y) ≤ 0,

0 = ∇yv(x, y)− λT∇yh(x, y) ⊥ x free

0 ≤ h(x, y) ⊥ λ ≥ 0.

We find a solution of the MPCC, not of the bilevel program. This approach allows the MPCC to be solved
using the NLPEC code, for example. Note that this reformulation is potentially problematic. First order

5.21 JAMS and LogMIP 2169

conditions require theoretical assumptions to be necessary and sufficient for local optimality. There may
be cases where the lower level problem has multiple local solutions, but the modeler really was interested
in the global solution. The approach here may not produce this solution, even if a global solver is used
within NLPEC.

The following example is Example 5.1.1, page 197 from [15] . Mathematically, the problem is

min
x,y

x− 4y

s.t. y solves min
y

y

s.t. x+ y ≥ 3

2x− y ≥ 0

− 2x− y ≥ −12

− 3x+ 2y ≥ −4

and the EMPLIB model bard511 contains the following code:
Positive variables x, y;
Variables objout, objin;
equations defout, defin, e1, e2, e3, e4;
defout.. objout =e= x - 4*y;
defin.. objin =e= y;
e1.. x + y =g= 3;
e2.. 2*x - y =g= 0;
e3.. -2*x - y =g= -12;
e4.. -3*x + 2*y =g= -4;
model bard / all /;
$echo bilevel x min objin y defin e1 e2 e3 e4 > "%emp.info%"
solve bard using emp minimizing objout;

Note that first the functions that form the objectives and constraints of the model are defined and the
model is assembled. The $echo line writes the ”empinfo” file and states that the lower level problem
involves the objective objin which is to be minimized by choice of variables y subject to the constraints
specified in (defin), e1, e2, e3, and e4.

Note that the variables x are declared to be variables of the upper level problem and this example has no
upper level constraints g. Having written the problem in this way, the MPCC is generated automatically,
and passed on to a solver. In the case where that solver is NLPEC, a further reformulation of the model
is carried out to convert the MPCC into an equivalent NLP or a parametric sequence of NLP's.

Further examples of bilevel models in EMPLIB are named: bard∗, ccmg74, ccmg153, flds∗, jointc1,
jointc2, mirrlees, transbp.

The EMP model type allows multiple lower level problems to be specified within the bilevel format. An
example of this is given in EMPLIB as ccmg71. The equations and objectives are specified in the normal
manner; the only change is the definition of the ”empinfo” file, shown below:
...
defh1.. h1 =e= sqr(u1-x1) + sqr(u2-x2) + sqr(u3-x3) + sqr(u4-x4);
e1.. 3*u1 + u2 + 2*u3 + u4 =e= 6;
...
$onecho > "%emp.info%"
bilevel x1 x2 x3 x4
min h1 u1 u2 u3 u4 defh1 e1
min h2 v1 v2 v3 v4 defh2 e2
$offecho

This corresponds to a bilevel program with two followers, both solving minimization problems. The first
follower minimizes the objective function h1 (defined in defh1) over the variables u1, u2, u3, and u4

subject to the constraint given in e1. The second followers problem is defined analogously next. Note that
h1 involves the variables x1, x2, x3, and x4 that are optimization variables of the leader. The constraint
in e1 could also include these variables, and also the variables v1, v2, v3, or v4 of the second follower,
but all of these would be treated as parameters by the first follower.

The actual model (ccmg71) in EMPLIB uses a shortcut notation:
...
defh1.. h1 =e= sqr(u1-x1) + sqr(u2-x2) + sqr(u3-x3) + sqr(u4-x4);

2170 Solver Manuals

e1.. 3*u1 + u2 + 2*u3 + u4 =e= 6;
...
$onecho > "%emp.info%"
bilevel x1 x2 x3 x4
min h1 * defh1 e1
min h2 * defh2 e2
$offecho

In the followers problem, the '∗' notation indicates that this agent will optimize over all the variables
used in defh1 and e1 that are not under the control of any other follower or the leader. In this case, this
means u1, u2, u3, and u4. To avoid confusion, it is recommended that the modeler explicity names all the
variables in each followers problem as shown before.

5.21.6 Variational Inequalities

A variational inequality V I(F,X) is to find x ∈ X:

〈F (x), (z − x)〉 ≥ 0, for all z ∈ X.

Here X is a closed (frequently assumed convex) set, defined for example as

X = {x | x ≥ 0, h(x) ≥ 0} .

Note that the first-order (minimum principle) conditions of a nonlinear program

min
z∈X

f(z)

are precisely of this form with F (x) = ∇f(x).

It is well known that such problems can be reformulated as complementarity problems when the set X
has the representation {x | x ≥ 0, h(x) ≥ 0} by introducing multipliers λ on the constraints h(x) ≥ 0:

0 ≤ F (x)− 〈λ,∇h(x)〉 ⊥ x ≥ 0

0 ≤ h(x) ⊥ λ ≥ 0.

If X has a different representation, this construction would be modified appropriately.

A simple two dimensional example may be useful to improve understanding. Let

F (x) =

[
x1 + 2

x1 + x2 − 3

]
, X = {x ≥ 0}x1 + x2 ≤ 1,

so that F is an affine function, but F is not the gradient of any function f : R2 → R. For this particular
data, V I(F,X) has a unique solution x = (0, 1).
Set J / 1, 2 /;
Positive Variable x(J) ’vars, perp to f(J)’;
Equations F(J), h;
F(J).. (x(’1’) + 2)$sameas(J,’1’) + (x(’1’) + x(’2’) - 3)$sameas(J,’2’) =n= 0 ;
h.. x(’1’) + x(’2’) =l= 1;
model simpleVI / F, h/;
file fx /"%emp.info%"/;
putclose fx ’vi F x h’;
solve simpleVI using emp;

Note that the first lines of this file define the F and h using standard GAMS syntax and include the
defining equations in the model simpleVI. The extension is the annotation ”empinfo” file that indicates
certain equations are to be treated differently by the EMP tool. The annotation simply says that the
model is a VI (vi) that pairs F with x and that the remaining (unpaired) equations form the constraint
set X. (Alternative notation allows the keyword vi to be replaced by vifunc.) Thus, model equations F
define a function F that is to be part of a variational inequality, while the equations h define constraints
of X. It is also acceptable in this setting to use the ”empinfo” file defined by:

5.21 JAMS and LogMIP 2171

putclose fx ’vi F x’;

In this case, by default, any equations that are given in the model statement but not included as a pair in
the vi statement are automatically used to form X. An alternative way to write this model without using
sameas is given in EMPLIB as affinevi.

Some subtleties related to VI's are demonstrated in the EMPLIB model zerofunc. In this model, the set
X is defined using variables y and z, for which z does not appear in the definition of F ≡ Fy. In this case,
the variable z is then matched with a ”0” function. The ”empinfo” file can be written in a number of
different ways:

putclose fx ’vi F_y y’;

or

putclose fx ’vi z F_y y’;

or

putclose fx ’vi z F_y y gCons’;

or

putclose fx ’vi F_z z F_y y gCons’;

where F z simply defines the zero function. To some extent, our preferred notation is the one listed third:
it explicitly includes all the variables and constraints that are present in the model and does not require
the modeler to define F z at all.

Further example models in EMPLIB are simplevi, simplevi2, simplevi3, target, traffic, traffic2,
and transvi.

Note also that the lower level problems of a bilevel program could be VI's instead of optimization problems
- these problems are called Mathematical Programs with Equilibrium Constraints (MPEC) in the literature.
Note that since MPCC is a special case of MPEC, the GAMS model type MPEC covers both. An example
demonstrating this setup is given in EMPLIB as multmpec. The actual model to solve is:

min
u,v,w,z

z

s.t. exp(z) + w = 2, z ≥ 1

(u, v) solves VI([v + w + z − 1;u− log(v)], {(u, v) | u ≥ 0, v ≥ 0})
w solves VI(w + z + 3, {w | w free})

Note that the two VI's (due to the definitional sets) correspond respectively to a complementarity problem:

0 ≤ v + w + z − 1 ⊥ u ≥ 0

0 ≤ u− log(v) ⊥ v ≥ 0

and a linear equation:
w + z + 3 = 0

2172 Solver Manuals

The actual GAMS code is as follows:
Positive Variable u;
Variables v, w, z;
Equations f1, f2, f3, h;
f1.. v + w + z =n= 1;
f2.. u =n= log(v);
f3.. w + z =n= -3;
h.. exp(z) + w =e= 2;
v.lo = 0; v.l = 1; z.lo = 1;
model mpecmod /all/;
$onecho > %emp.info%
bilevel
vi f1 u

f2 v
vi f3 w

$offecho
solve mpecmod using emp min z;

The initial level value for v (v.l = 1) is needed to protect the evaluation of log(v). The two complemen-
tarity problems are specified in the empinfo file (it is not really necessary to split these VI's apart, but
it may give information to a solver that can be exploited). It is of course possible to write the MPCC
directly in GAMS using the model type MPEC instead of EMP.

5.21.7 Embedded Complementarity Systems

A different type of embedded optimization model that arises frequently in applications is:

max
x

f(x, y)

s.t. g(x, y) ≤ 0 (⊥ p ≥ 0)

H(x, y, p) = 0 (⊥ y free)

Note the difference here: the optimization problem is over the variable x, and is parameterized by the
variable y. The choice of y is fixed by the (auxiliary) complementarity relationships depicted here by
H. Note that the H equations are not part of the optimization problem, but are essentially auxiliary
constraints to tie down remaining variables in the model.

A specific example is:
max
x

x

s.t. x+ y ≤ 1

−3x+ y = 0.5 (⊥ y free)

which is found in the EMPLIB model simpequil2:
Variables y;
Positive variables x;
Equations optcons, vicons;
optcons.. x + y =l= 1;
vicons.. -3*x + y =e= 0.5;
model comp / optcons, vicons /;
file info / ’%emp.info%’ /;
put info / ’equilibrium’;
put / ’max x optcons’;
putclose / ’vi vicons y’;
solve comp using emp;

In order that this model can be processed correctly as an EMP, the modeler provides additional annotations
to the model defining equations in an ”empinfo” file. Specifically, first it is indicated that the problem
is an equilibrium problem involving one or more agent problems. Next, the first agent is defined as an
optimizer (over x). Finally, the second agent is defined as solving a VI in y. Armed with this additional
information, the EMP tool automatically creates the following MCP:

0 ≤ −1 + p ⊥ x ≥ 0

0 ≤ 1− x− y ⊥ p ≥ 0

0 = −3x+ y − 0.5 ⊥ y free,

5.21 JAMS and LogMIP 2173

(which is formed by the steps we outline below). EMP explicitly enforces the rule that every variable and
constraint is under the control of exactly one agent. Thus a constraint or a variable cannot appear in
both the max problem and the VI problem.

The above example is slightly simpler than the general form described above in which H is a function
of x, y, and p, the multiplier on the constraint of the optimization problem. The problem is that we do
not have that variable around in the model code if we only specify the optimization problem there. This
occurs for example in the classical PIES Model due to Hogan. In this setting, the problem is described by
a linear program

minx cTx
s.t. Ax = q(p)

Bx = b
x ≥ 0

in which the quantity q is a function of p, which is a multiplier on one of the LP constraints. To do this
in EMP, we simply add the annotation:
model piesemp / defobj, dembal, cmbal, ombal, lmbal, hmbal, ruse /;
file myinfo /’%emp.info%’/;
put myinfo ’equilibrium ’;
put ’min obj c o ct ot lt ht defobj dembal cmbal ombal lmbal hmbal ruse’;
putclose ’dualvar p dembal’;
solve piesemp using emp;

where dembal is the name of the constraint for which p needs to be the multiplier. The full model is found
in the EMPLIB model pies. Two final points: the dualvar directive identifies the variable p with the
multiplier on the dembal constraint, and all variables and constraints must be owned by a single agent. In
this case, since there is only one agent (the minimizer), all constraints of the model are explicitly claimed,
along with all variables except for p. However, next, p is identified with the dembal constraint, which is
owned by the min agent, and hence p is also owned by that agent.

There are several shorthands possible here. The first is that the explicit statement of variables can be
replaced by the '∗' form:
model piesemp / defobj, dembal, cmbal, ombal, lmbal, hmbal, ruse /;
file myinfo /’%emp.info%’/;
put myinfo ’equilibrium ’;
put ’min obj * defobj dembal cmbal ombal lmbal hmbal ruse ’;

Alternatively, an even shorter version is possible since there is only one agent present in this model,
namely:
model piesemp / defobj, dembal, cmbal, ombal, lmbal, hmbal, ruse /;
file myinfo /’%emp.info%’/;
putclose myinfo ’dualvar p dembal’;
solve piesemp using emp minimizing obj;

Note that in this form, all the variables and constraints of the original model are included in the (single)
agents problem, and the original variable p is identified in the constructed MCP with the multiplier on
the dembal constraint.

In the general case where the ”empinfo” file contains all three lines:

min x optcons

vi vicons y

dualvar p optcons

namely that the function H that is defined in vicons is complementary to the variable y (and hence the
variable y is a parameter to the optimization problem), and furthermore that the dual variable associated
with the equation optcons in the optimization problem is one and the same as the variable p used to
define H, the EMP tool automatically creates the following MCP:

0 = ∇xL(x, y, p) ⊥ x free

0 ≥ −∇pL(x, y, p) ⊥ p ≤ 0

0 = H(x, y, p) ⊥ y free,

2174 Solver Manuals

where the Lagrangian is defined as

L(x, y, p) = f(x, y)− 〈p, g(x, y)〉.

Essentially, this MCP consists of the first order optimality conditions of the optimization problem, coupled
with the VI that is the second agents problem. An example that does both of these things together is
provided in EMPLIB as scarfemp-primal.

Note that since the PIES model has no y variables, this is a special case of the general form in which the
second agents (VI) problem is simply not present.

Example models are ferris43, flipper pies, scarfemp-dual, simpequil, transecs, and transeql.

5.21.8 MOPECs

MOPECs (Multiple Optimization Problems with Equilibrium Constraints) are a simple conceptual
extension of the aforementioned embedded complementarity system. Instead of having a single optimizing
agent and a variational inequality, one instead allows multiple optimizing agents coupled with an equilibrium
constraint (the variational inequality).

Perhaps the most popular use of this formulation is where competition is allowed between agents. A
standard method to deal with such cases is via the concept of Nash Games. In this setting x∗ is a Nash
Equilibrium if

x∗i ∈ arg min
xi∈Xi

`i(xi, x
∗
−i, q),∀i ∈ I,

where x−i are other players decisions and the quantities q are given exogenously, or via complementarity:

0 ≤ H(x, q) ⊥ q ≥ 0.

This mechanism is extremely popular in economics, and Nash famously won the Nobel Prize for his
contributions to this literature.

This format is again an EMP, more general than the example given above in two respects. Firstly, there
is more than one optimization problem specified in the embedded complementarity system. Secondly, the
parameters in each optimization problem consist of two types. Firstly, there are the variables q that are
tied down by the auxiliary complementarity condition and hence are treated as parameters by the ith
Nash player. Also there are the variables x−i that are treated as parameters by the ith Nash player, but
are treated as variables by a different player j.

While we do not specify the syntax here for these issues, EMPLIB provides examples that outline how
to carry out this matching within GAMS. Finally, two points of note: first it is clear that the resulting
model is a complementarity problem and can be solved using PATH, for example. Secondly, performing
the conversion from an embedded complementarity system or a Nash Game automatically is a critical
step in making such models practically useful.

We note that there is a large literature on discrete-time finite-state stochastic games: this has become a
central tool in analysis of strategic interactions among forward-looking players in dynamic environments.
The model of dynamic competition in an oligopolistic industry given in [55] is exactly in the format
described above, and has been used extensively in applications such as advertising, collusion, mergers,
technology adoption, international trade and finance. Ongoing work aims to use the EMP format to
model these problems.

5.21 JAMS and LogMIP 2175

5.21.9 Extended Nonlinear Programs

Optimization models have traditionally been of the form (NLP). Specialized codes have allowed certain
problem structures to be exploited algorithmically, for example simple bounds on variables. However, for
the most part, assumptions of smoothness of f , g and h are required for many solvers to process these
problems effectively. In a series of papers, Rockafellar and colleagues [152] [153] [154] have introduced the
notion of extended nonlinear programming, where the (primal) problem has the form:

min
x∈X

f(x) + θ(g1(x), . . . , gm(x)). (ENLP)

In this setting, X is assumed to be a nonempty polyhedral set, and the functions f, g1, . . . , gm are smooth.
The function θ can be thought of as a generalized penalty function that may well be nonsmooth. However,
when θ has the form

θ(u) = sup
y∈Y
{〈y, u〉 − k(y)}, (θ conj)

a computationally exploitable and theoretically powerful framework can be developed based on conjugate
duality. A key point for computation and modeling is that the function θ can be fully described by defining
the set Y and the function k. Furthermore, from a modeling perspective, an extended nonlinear program
can be specified simply by defining the functions f, g1, . . . , gm in the manner already provided by the
modeling system, with the additional issue of simply defining Y and k. Conceptually, this is not much
harder than what is carried out already, but leads to significant enhancements to the types of models that
are available. Once a modeler determines which constraints are treated via which choice of k and Y , the
EMP model interface automatically forms an equivalent variational inequality or complementarity problem.
As we show later, there may be alternative formulations that are computationally more appealing; such
reformulations can be generated using different options to JAMS.

5.21.9.1 Forms of theta

The EMP model type makes the problem format (ENLP) available to users in GAMS. As special cases,
we can model piecewise linear penalties, least squares, and L1 approximation problems, as well as the
notion of soft and hard constraints.

For ease of exposition, we now describe a subset of the types of functions θ that can be generated by
particular choices of Y and k. In many cases, the function θ is separable, that is

θ(u) =

m∑
i=1

θi(ui),

so we can either specify θi or θ itself.

Extended nonlinear programs include the classical nonlinear programming form (NLP) as a special case.
This follows from the observation that if K is a closed convex cone, and we let ψK denote the ”indicator
function” of K defined by:

ψK(u) =

{
0 if u ∈ K,
∞ else,

then (NLP) can be rewritten as:

min
x
f(x) + ψK((g(x), h(x)), K = Rm

− × {0}p,

where m and p are the dimensions of g and h respectively and Rm
− = {u ∈ Rm | u ≤ 0}. An elementary

calculation shows that
ψK(u) = sup

v∈K◦
〈u, v〉,

2176 Solver Manuals

where K◦ = {u | 〈u, v〉 ≤ 0,∀v ∈ K} is the polar cone of the given cone K. Thus, when θ(u) = ψK(u) we
simply take k ≡ 0 and Y = K◦. In our example, K◦ = Rm

+ ×Rp. To some extent, this is just a formalism
that allows us to claim the classical case as a specialization; however when we take the cone K to be more
general than the polyhedral cone used above, we can generate conic programs for example.

The second example involves a piecewise linear function θ: Formally, for u ∈ R,

θ(u) =

{
ρu if u ≥ 0,
σu else.

In this case, simple calculations prove that θ has the form (θ conj) for the choices

k ≡ 0 and Y = [σ, ρ].

The special case where σ = −ρ results in
θ(u) = ρ |u| .

This allows us to model nonsmooth L1 approximation problems. Another special case results from the
choice of σ = −γ, ρ = 0, whereby

θ(u) = γmax{−u, 0}.
This formulation corresponds to a soft penalization on an inequality constraint, namely if θ(−g1(x)) is
used then nothing is added to the objective function if g1(x) ≤ 0, but γg1(x) is added if the constraint
g1(x) ≤ 0 is violated. Contrast this to the classical setting above, where ∞ is added to the objective if
the inequality constraint is violated. It is interesting to see that truncating the set Y , which amounts to
bounding the multipliers, results in replacing the classical constraint by a linearized penalty.

The third example involves a more interesting choice of k. If we wish to replace the ”absolute value”
penalization given above by a quadratic penalization (as in classical least squares analysis), that is

θ(u) = γu2

then a simple calculation shows that we should take

k(y) =
1

4γ
y2 and Y = R.

By simply specifying this different choice of k and Y we can generate such models easily and quickly
within the modeling system. Note, however, that the reformulation we would use in θ(u) = ρ |u| and
θ(u) = γu2 are very different as we shall explain in the simple example below. Furthermore, in many
applications it has become popular to penalize violations using a quadratic penalty only within a certain
interval, afterwards switching to a linear penalty (chosen to make the penalty function θ continuously
differentiable - see [99]). That is:

θ(u) =

 γu− 1
2γ

2 if u ≥ γ
1
2u

2 if u ∈ [−γ, γ]
−γu− 1

2γ
2 else.

Such functions arise from quadratic k and simple bound sets Y . In particular, the somewhat more general
function

θ(u) =

 γβ2 + ρ(u− β) if u ≥ β
γu2 if u ∈ [α, β]
γα2 + σ(u− α) else

arises from the choice of

k(y) =
1

4γ
y2 and Y = [σ, ρ],

with α = σ
2γ and β = ρ

2γ .

The final example that we give is that of L∞ penalization. This example is different to the examples given
above in that θ is not separable. However, straightforward calculation can be used to show

θ(u) = max
i=1,...,m

ui

results from the choice of

k ≡ 0 and Y =

{
y ∈ Rm | y ≥ 0,

m∑
i=1

yi = 1

}
,

that is, Y is the unit simplex.

5.21 JAMS and LogMIP 2177

5.21.9.2 Underlying theory

The underlying structure of θ leads to a set of extended optimality conditions and an elegant duality
theory. This is based on an extended form of the Lagrangian:

L(x, y) = f(x) +

m∑
i=1

yigi(x)− k(y)

x ∈ X, y ∈ Y

Note that the Lagrangian L is smooth - all the nonsmoothness is captured in the θ function. The theory
is an elegant combination of calculus arguments related to gi and its derivatives, and variational analysis
for features related to θ.

It is shown in [153] that under a standard constraint qualification, the first-order conditions of (ENLP)
are precisely in the form of the following variational inequality:

VI

([
∇xL(x, y)
−∇yL(x, y)

]
, X × Y

)
. (ENLP VI)

When X and Y are simple bound sets, this is simply a complementarity problem.

Note that EMP exploits this result. In particular, if an extended nonlinear program of the form (ENLP) is
given to EMP, then the optimality conditions (ENLP VI) are formed as a variational inequality problem
and can be processed as outlined above. For a specific example, we cite the fact that if we use the
(classical) choice k ≡ 0 and Y = K◦, then the optimality conditions of (ENLP) are precisely the standard
complementarity problem given as (ENLP VI). While this is of interest, we believe that other choices of
k and Y may be more useful and lead to models that have more practical significance.

Under appropriate convexity assumptions on this Lagrangian, it can be shown that a solution of the VI
(ENLP VI) is a saddle point for the Lagrangian on X × Y . Furthermore, in this setting, the saddle point
generates solutions to the primal problem (ENLP) and its dual problem:

max
y∈Y

d(y), where d(y) = inf
x∈X
L(x, y),

with no duality gap.

Unfortunately, the perturbations y in Rockafellar's theory are precisely the negative of those used
throughout the GAMS system. Thus, we need to replace y by −y throughout in the above to recover the
same multipliers as those GAMS uses.

5.21.9.3 A simple example

As an example, consider the problem

min
x1,x2,x3

exp(x1) + 5‖log(x1)− 1‖2 + 2 max(x2
2 − 2, 0)

s.t. x1/x2 = log(x3),

3x1 + x2 ≤ 5, x1 ≥ 0, x2 ≥ 0.

In this problem, we would take

X =
{
x ∈ R3 | 3x1 + x2 ≤ 5, x1 ≥ 0, x2 ≥ 0

}
.

2178 Solver Manuals

The function θ essentially treats 3 separable pieces:

g1(x) = log(x1)− 1,

g2(x) = x2
2 − 2,

g3(x) = x1/x2 − log(x3).

A classical problem would force g1(x) = 0, g2(x) ≤ 0. and g3(x) = 0, while minimizing f(x) = exp(x1).
In our problem, we still force g3(x) = 0, but apply a (soft) least squares penalty on g1(x) and a smaller
one-sided penalization on g2(x). The above formulation is nonsmooth due to the ”max” term in the
objective function; in practice we could replace this by:

min
x1,x2,x3,w

exp(x1) + 5‖log(x1)− 1‖2 + 2w

s.t. x1/x2 = log(x3),

3x1 + x2 ≤ 5, x1 ≥ 0, x2 ≥ 0

w ≥ x2
2 − 2, w ≥ 0

and recover a standard form NLP. If the penalty on g1(x) would be replaced by a one-norm penalization
(instead of least squares), we would have to play a similar game, moving the function g1(x) into the
constraints and adding additional variable(s). To some extent, this seems unnatural - a modeler should
be able to interchange the penalization without having to reformulate the problem from scratch. The
proposed extended NLP would not be reformulated at all by the modeler, but allows all these ”generalized
constraints” to be treated in a similar manner within the modeling system. The actual formulation would
take:

θ(u) = θ1(u1) + θ2(u2) + θ3(u3)

where

θ1(u1) = 5u2
1,

θ2(u2) = 2 max(u2, 0),

θ3(u3) = ψ{0}(u3).

The discussion above allows us to see that

Y = −(R× [0, 2]×R),

k(y) =
1

20
y2

1 + 0 + 0.

The corresponding Lagrangian is the smooth function:

L(x, y) = f(x)−
3∑
i=1

yigi(x)− k(y).

The corresponding VI (ENLP VI) can almost be formulated in GAMS (except that the linear constraint
in X cannot be handled currently except by introducing a θ4(x)). Thus

g4(x) = 3x1 + x2 − 5, θ4(u) = ψR−

resulting in the following choices for Y and k:

Y = −(R× [0, 2]×R×R+),

k(y) =
1

20
y2

1 + 0 + 0 + 0.

Since X and Y are now simple bound sets, (ENLP VI) is now a complementarity problem and can
be solved for example using PATH. A simple ”empinfo” file details the choices of Y and k from the
implemented library:

Adjustequ

e1 sqr 5

e2 MaxZ 2

5.21 JAMS and LogMIP 2179

5.21.9.4 Reformulation as a classical NLP

Suppose

θ(u) = sup
y∈Y
{〈u, y〉 − 1

2
〈y,Qy〉}

for a polyhedral set Y ∈ Rm and a symmetric positive semidefinite Q ∈ Rm×m (possibly Q = 0).

Suppose further that

X = {x | Rx ≤ r } , Y =
{
y | ST y ≤ s

}
,

Q = DJ−1DT , F (x) = (g1(x), . . . , gm(x)),

where J is symmetric and positive definite (for instance J = I). Then, as outlined by [154] , the optimal
solutions x of (ENLP) are the x̄ components of the optimal solutions (x̄, z̄, w̄) to

min f(x) + 〈s, z〉+ 1
2 〈w, Jw〉

s.t. Rx ≤ r, z ≥ 0, F (x)− Sz −Dw = 0.

The multiplier on the equality constraint in the usual sense is the multiplier associated with x̄ in the
extended Lagrangian for (ENLP). (Note that a Cholesky factorization may be needed to determine D.)

It may be better to solve this reformulated NLP than to solve the VI (ENLP VI). However, it is important
that we can convey all types of nonsmooth optimization problems to a solver as smooth optimization
problems, and hence it is important to communicate the appropriate structure to the solver interface. We
believe that specifying Y and k is a theoretically sound way to do this.

5.21.10 Disjunctive Programs (LogMIP)

There are many ways that the EMP model type can be used for further extensions to the modeling capa-
bilities of a given system. In particular, the procedures outlined in [190] [73] for disjunctive programming
extensions are also implemented within the EMP model type.

The disjunctive programming procedures are also known as the LogMIP 2.0 solver for solving linear and
nonlinear disjunctive programming problems involving binary variables and disjunction definitions for
modeling discrete choices. While the modeling and solution of these disjunctive optimization problems
has not yet reached the stage of maturity and reliability as LP, MIP and NLP modeling, these problems
have a rich area of applications.

LogMIP 2.0 has been developed by Dr. Aldo Vecchietti from INGAR (Santa Fe, Argentina) and
Professor Ignacio E. Grossmann from Carnegie Mellon University (Pittsburgh, USA), and super-
sedes its previous version, LogMIP 1.0 (GAMS releases 22.6 (December 2007) to 23.6 (December
2010)). Changes in version 2.0 are at the level of language, where now the EMP syntax and mod-
eltype is used, and at the level of solvers, where Big-M and convex-hull relaxations are combined.
For more information see the website http://www.logmip.ceride.gov.ar/ and the documentation
http://www.logmip.ceride.gov.ar/files/pdfs/newUserManual.pdf.

One simple example to highlight the disjunctive programming feature is the notion of an ordering of tasks,
namely that either job i completes before job j starts or the converse, i.e., that the jobs cannot overlap.
Such a disjunction can be specified using an empinfo file containing lines:

disjunction * seq(i,j) else seq(j,i)

In such an example, one can implement a Big-M method, employ indicator constraints, or utilize a convex
hull reformulation. The convex hull reformulation is the default strategy; to utilize the Big-M formulation,
the additional option

http://www.logmip.ceride.gov.ar/
http://www.logmip.ceride.gov.ar/files/pdfs/newUserManual.pdf
http://www.logmip.ceride.gov.ar/files/pdfs/newUserManual.pdf

2180 Solver Manuals

default bigm 1000

would add binary variables and constraints to impose the disjunction using a Big-M value of 1000.
Alternatively, the option setting

default indic

writes out a model and an option file that implements a reformulation using indicator constraints, which
can be handled by the solvers CPLEX, SCIP, and XPRESS. The EMPLIB model sequence is sequencing
model that implements all of these options.

More complicated (nonlinear) examples make the utility of this approach clearer. The design of a
multiproduct batch plan with intermediate storage described in [189] and a synthesis problem involving 8
processes from [186] are also included in the EMP model library. As a final example, the gasoline emission
model outlined in [72] is precisely in the form that could exploit the features of EMP related to (nonlinear)
disjunctive programming.

5.21.11 Empinfo file details

We have explained above many of the standard vectorized ways to write an ”empinfo” file. The ”empinfo”
file has a vectorized format and a more powerful (but more complex) scalar version. We describe some of
the features of the scalar version in this section.

An example of the use of the scalar syntax is given below

file info / ’%emp.info%’ /;

put info / ’equilibrium’;

loop(h,

put / ’min’ obj(h) /;

loop(j, put x(h,j)); put /;

loop(k, put z(h,k));

put / costdef(h) /;

loop(i, put nodebal(h,i)); put /;

);

loop(a, put ’vi’,flowdef(a),f(a) /);

This is an example of a MOPEC in which the optimization agents are indexed by h and each of these agents
control variables xhj and zhk. The objective function for each h is defined in costdef, the constraints
of each minimization problem are defined in nodebal, and the equilibrium constraints that link all the
optimization problems are a VI defined by variables fa and functions within flowdef. Sometimes it is
necessary to use syntax that generates the ”tl” fields of sets, but this seems only necessary when abnormal
side conditions are needed.

The format of the empinfo file is given below:

Disjunction [chull [big eps] | bigM [big eps threshold] | indic]

[NOT] var|* [NOT] {equ} {ELSEIF [NOT] var|* [NOT] {equ}} [ELSE [NOT] {equ}]

Default [chull [big eps] | bigM [big eps threshold] | indic]

ParallelStep1 {equ|*}

AdjustEqu equ abs|sqr|maxz|... {weight}

5.22 KESTREL - Remote Solver Execution on NEOS Servers 2181

ModelType MCP|NLP|MIP|...

BiLevel {var} {MAX|MIN obj {var|*} {[-] equ}} {VI {var|*} {[-] equ var} {[-] equ}}

{DualVar {var [-] equ}}

Equilibrium {Implicit {var equ}} {VIsol {equ}}

{MAX|MIN obj {var|*} {[-] equ}} {VI {var|*} {[-] equ var} {[-] equ}}

{DualVar {var [-] equ}}

VI {var|*} {[-] equ var} {[-] equ}

DualEqu {[-] equ var}

DualVar {var [-] equ}

[] optional | exclusive { } can be repeated

5.22 KESTREL - Remote Solver Execution on NEOS Servers

5.22.1 Background

The Kestrel client/server is a way of sending your GAMS solve job to be solved via the NEOS Server from
within your usual GAMS modeling environment and receiving results that can be processed as with any
local solver. Starting with distribution 23.7 the Kestrel solver is part of the GAMS distribution. The solve
statement using the GAMS/KESTREL solver invokes a client program that sends your problem to a solver
running on one of the NEOS Server's remote computers. The results from the NEOS Server are eventually
returned through Kestrel to GAMS, where you can view and manipulate them locally in the usual way.
The introduction below covers everything you need to know to start using GAMS/KESTREL. Further
information about more advanced features and other uses of Kestrel can be found at the Kestrel page

on the NEOS Server. Please also make you familiar with the NEOS optimization service terms of

use before submitting jobs via GAMS/KESTREL.

5.22.2 Using GAMS/KESTREL

The Kestrel solver can be used to solve a GAMS model remotely. For example, consider the trnsport
model. It can be solved locally in GAMS through the following statements,

model transport /all/;

solve transport using lp minimizing z;

which specify the trnsport model and solve it with the default linear programming solver. We can add
an option statement to the code to explicitly specify the solver. For example, if we change the linear
programming solver to GAMS/MINOS, the code becomes

model transport /all/;

option lp=minos;

solve transport using lp minimizing z;

https://neos-server.org/neos/kestrel.html
https://neos-server.org/neos/kestrel.html
https://neos-server.org/neos/termofuse.html
https://neos-server.org/neos/termofuse.html

2182 Solver Manuals

To solve the same problem remotely through the NEOS Server, we simply change the linear programming
solver to Kestrel. In addition we have to provide an email address. This can be specified either in an
option file or by setting the environment variable NEOS EMAIL. In order to set this permanently, it is
recommended to add NEOS EMAIL to your gamsconfig.yaml file.

Without an option file Kestrel will submit the model instance to the NEOS server and use the default LP
solver on NEOS.

option lp=kestrel;

solve transport using lp minimizing z;

We can support a Kestrel option file and determine the solver on the NEOS server:

transport.optfile=1;

option lp=kestrel;

solve transport using lp minimizing z;

$echo email jdoe@jeangreyhigh.edu > kestrel.opt

$echo kestrel_solver minos >> kestrel.opt

The statement transport.optfile=1 specifies that an options file, called kestrel.opt, will be used.
The options file contains the email address, the remote solver name as well as any options for the remote
solver. We instruct the Kestrel solver to use GAMS/MINOS as the remote solver by writing the following
kestrel.opt file:

email jdoe@jeangreyhigh.edu

kestrel_solver minos

If you do not know what solvers are available via GAMS/KESTREL on NEOS, submitting a job with a
nonexistent solver set will return a list of enabled solvers. If you want to change the URL of the server, you
can specify the option neos server. The complete format of the parameter is protocol://host:port.

A subsequent run of the code through the GAMS interpreter results in the transport model being solved
through the NEOS Server with the GAMS/MINOS solver. Once the job is submitted to the NEOS Server,
a job number, password, and Web address are displayed to the screen, which provide information on
accessing the job and viewing the intermediate output, for example,

--- Executing KESTREL

Job has been submitted to Kestrel

Kestrel/NEOS Job number : 93478

Kestrel/NEOS Job password : utiwtxTK

Check the following URL for progress report :

https://neos-server.org/neos/cgi-bin/nph-neos-solver.cgi?admin=results&jobnumber=93478&pass=utiwtxTK

To look at the solver's output while it is running, point your browser at the URL given in the Kestrel
output as shown above, and click on View Intermediate Results in the web page that appears. This
will take you to another page that shows all of the output produced by the solver for your problem so far.
To track the solver's progress, simply update this page periodically.

If the NEOS Server or the network becomes unavailable after the submission, a particular job can be
retrieved by setting both the kestrel job and kestrel password in the options file.

kestrel_solver minos

kestrel_job 93478

kestrel_password utiwtxTK

Re-issuing the command gams trnsport with this options file will retrieve the results for the specified
job number.

By specifying neos username and neos user password in the option file, you can submit an authenticated
job using your NEOS user account. Authenticated jobs will appear in your user account on the NEOS
website.

neos_username username

neos_user_password password

5.23 KNITRO 2183

5.23 KNITRO

5.23.1 Introduction

Artelys Knitro is a software package for finding local solutions of both continuous (i.e. smooth) optimization
problems, with or without constraints, and discrete optimization problems with integer or binary variables.
Even though Knitro has been designed for solving large-scale general problems, it is efficient for solving
all of the following classes of optimization problems:

• unconstrained,

• bound constrained,

• equality constrained,

• systems of nonlinear equations,

• least squares problems,

• linear programming problems (LPs),

• quadratic programming problems (QPs),

• general (inequality) constrained problems,

• (convex) mixed integer nonlinear programs (MINLP) of moderate size.

The Knitro package provides the following features:

• Efficient and robust solution of small or large problems,

• Solvers for both continuous and discrete problems,

• Derivative-free, 1st derivative and 2nd derivative options,

• Both interior-point (barrier) and active-set optimizers,

• Both feasible and infeasible versions,

• Both iterative and direct approaches for computing steps,

The problems solved by Knitro have the form

minimize f(x) (1a)
subject to cL ≤ c(x) ≤ cU (1b)

bL ≤ x ≤ bU , (1c)

where the variables x can be continuous, binary, or integer. This allows many forms of constraints,
including bounds on the variables. Knitro requires that the functions f(x) and c(x) be smooth functions.

Knitro implements both state-of-the-art interior-point and active-set methods for solving nonlinear
optimization problems. In the interior method (also known as a barrier method), the nonlinear programming
problem is replaced by a series of barrier sub-problems controlled by a barrier parameter µ. The algorithm
uses trust regions and a merit function to promote convergence. The algorithm performs one or more
minimization steps on each barrier problem, then decreases the barrier parameter, and repeats the process
until the original problem (1) has been solved to the desired accuracy.

2184 Solver Manuals

Knitro provides two procedures for computing the steps within the interior point approach. In the version
known as Interior/CG each step is

computed using a projected conjugate gradient iteration. This approach differs from most interior methods
proposed in the literature in that it does not compute each step by solving a linear system involving the
KKT (or primal-dual) matrix. Instead, it factors a projection matrix, and uses the conjugate gradient
method, to approximately minimize a quadratic model of the barrier problem.

The second procedure for computing the steps, which we call Interior/Direct, always attempts to
compute a new iterate by solving the primal-dual KKT matrix using direct linear algebra. In the case
when this step cannot be guaranteed to be of good quality, or if negative curvature is detected, then the
new iterate is computed by the Interior/CG procedure.

Knitro also implements an active-set sequential linear-quadratic programming (SLQP) algorithm which
we call Active. This method is similar in nature to a sequential quadratic programming method but uses
linear programming sub-problems to estimate the active-set at each iteration. This active-set code may
be preferable when a good initial point can be provided, for example, when solving a sequence of related
problems.

For problems with discrete variables, Knitro provides two variants of the branch and bound algorithm.
The first is a standard implementation, while the second is specialized for convex, mixed-integer nonlinear
problems.

We encourage the user to try all algorithmic options to determine which one is more suitable for the
application at hand. For guidance on choosing the best algorithm see section Algorithm Options .

For a detailed description of the algorithm implemented in Interior/CG see [30] and for the global
convergence theory see [31] . The method implemented in Interior/Direct is described in [198] . The
Active algorithm is described in [33] and the global convergence theory for this algorithm is in [34] . An
important component of Knitro is the HSL routine MA27 [92] which is used to solve the linear systems
arising at every iteration of the algorithm. In addition, the Active Set algorithm in Knitro may make use
of the COIN-OR Clp linear programming solver module. The version used in Knitro may be downloaded
from http://www.artelys.com/tools/clp/.

5.23.2 Usage

Basic details of solver usage, including how to choose Knitro as the solver and how to use a solver-specific
option file, are part of Chapter Solver Usage.

As an NLP solver, Knitro can also be used to solve linear programs (LP), and both convex and nonconvex
quadratic programs (QCP).

5.23.3 GAMS Options

The following GAMS options are used by the GAMS/Knitro link:

• Option ResLim = x;

Sets the time limit in seconds. If this limit is exceeded the solver will terminate and pass
on the current solution to GAMS. See also reslim in section GAMS options .

• Option SysOut = On;

This option sends additional Knitro messages to the GAMS listing file. It is useful in case
of a solver failure or to get algorithmic details. See also sysout in section GAMS options

• ModelName.optCA = x;

Absolute gap stop criterion for a discrete problem. The Knitro option mip opt gap abs
takes its default from this value. See also optca in section GAMS options.

• ModelName.optCR = x;

Relative gap stop criterion for a discrete problem. The Knitro option mip opt gap rel
takes its default from this value. See also optcr in section GAMS options.

http://www.artelys.com/tools/clp/

5.23 KNITRO 2185

5.23.4 Summary of Knitro Options

The Knitro options file knitro.opt allows the user to easily set options controlling Knitro's behavior.
Options are set by specifying a keyword and a corresponding value on a line in the knitro.opt file. Lines
that begin with a # character are treated as comments and blank lines are ignored. For example, to set
the maximum allowable number of iterations to 500, one could use the following options file:
maxit 500

5.23.4.1 General options

Option Description Default

algorithm
Indicates which algorithm to use to solve the
problem

0

blasoption
Specifies the BLAS/LAPACK function li-
brary to use for basic vector and matrix
computations

1 or 4 (platform dependent)

blasoptionlib
Specifies a dynamic library name that con-
tains object code for BLAS/LAPACK func-
tions

bndrange
Specifies max limits on the magnitude of
constraint and variable bounds

1e+20

cg maxit
Determines the maximum allowable number
of inner conjugate gradient (CG) iterations
per Knitro minor iteration

-1

cg pmem Specifies the amount of nonzero elements
per column of the Hessian of the Lagrangian
which are retained when computing the in-
complete Cholesky preconditioner

10

cg precond
Specifies whether an incomplete Cholesky
preconditioner is applied during CG itera-
tions in barrier algorithms

0

cg stoptol
Specifies the relative stopping tolerance used
for the conjugate gradient (CG) subproblem
solves

0.01

convex Declare the problem as convex by setting to
1 or non-convex by setting to 0

-1

cpuplatform
This option can be used to specify the target
instruction set architecture for the machine
on which Knitro is running

-1

datacheck
Specifies whether to perform more extensive
data checks to look for errors in the problem
input to Knitro (in particular, this option
looks for errors in the sparse Jacobian and/or
sparse Hessian structure)

0

delta
Specifies the initial trust region radius scal-
ing factor used to determine the initial trust
region size

1

honorbnds
Indicates whether or not to enforce satisfac-
tion of simple variable bounds throughout
the optimization

-1

initpenalty
Specifies the initial penalty parameter used
in the Knitro merit functions

10

initvalues
Enable use of initial guess for levels and
marginals (subsequent solves)

1

2186 Solver Manuals

Option Description Default

initvalues0
Enable use of initial guess for levels and
marginals (first solve)

2

linesearch
Indicates which linesearch strategy to use
for the Interior/Direct or SQP algorithm to
search for a new acceptable iterate

0

linesearch maxtrials
Indicates the maximum allowable number of
trial points during the linesearch of the Inte-
rior/Direct or SQP algorithm before treating
the linesearch step as a failure and generat-
ing a new step

3

linsolver
Indicates which linear solver to use to solve
linear systems arising in Knitro algorithms

0

linsolver maxitref
Indicates the maximum allowable number
of iterative refinement steps applied when a
linear system is solved inside Knitro

2

linsolver nodeamalg
Controls the node amalgamation setting for
the MA57, MA86 and MA97 linear solvers

0

linsolver ooc
Indicates whether to use Intel MKL PAR-
DISO out-of-core solve of linear systems
when linsolver = mklpardiso

0

linsolver ordering
Sets the ordering method used for the linear
system solver

-1

linsolver pivottol
Specifies the initial pivot threshold used in
factorization routines

1e-08

linsolver scaling
Enables scaling for the linear system solver 0

names Enable to pass variable and equation names
to Knitro

0

ncvx qcqp init
Specifies the initialization strategy used for
non-convex QPs and QCQPs

-1

newpoint
Specifies additional action to take after every
iteration in a solve of a continuous problem,
or after every new incumbent of the NLPBB
algorithm

0

objrange
Specifies the extreme limits of the objec-
tive function for purposes of determining
unboundedness

1e+20

option file
additional option file name - read only by
KNITRO solver lib

output time
print output on where time is used 0

qextractalg
quadratic extraction algorithm in GAMS
interface

0

restarts
Specifies whether or not to enable automatic
restarts in Knitro

-1

restarts maxit
When restarts are enabled, this option can
be used to specify a maximum number of
iterations before enforcing a restart

0

scale
Specifies whether to perform problem scal-
ing of the objective function, constraint func-
tions, or possibly variables

1

scale vars
Specifies the strategy for scaling variables 0

soc Specifies whether or not to try second order
corrections (SOC)

1

5.23 KNITRO 2187

Option Description Default

strat warm start
Specifies whether or not to invoke a warm-
start strategy

0

5.23.4.2 Derivative options

Option Description Default

bfgs scaling
Specify the initial scaling to use for the BFGS or L-BFGS Hessian
approximation

0

findiff estnoise
This option can be used to enable an estimate of the noise in the model
when using finite-difference gradients

0

findiff relstepsize
Specifies the relative stepsize used for finite-difference gradients during
the optimization

0

findiff terminate
This option specifies the termination criteria when using finite-difference
gradients

1

gradopt
Specifies how to compute the gradients of the objective and constraint
functions

1

hessopt
Specifies how to compute the (approximate) Hessian of the Lagrangian 0

lmsize
Specifies the number of limited memory pairs stored when approxi-
mating the Hessian using the limited-memory quasi-Newton BFGS
option

10

5.23.4.3 Termination options

Option Description Default

feastol
Specifies the final relative stopping tolerance for the feasibility error 1e-06

feastolabs
Specifies the final absolute stopping tolerance for the feasibility error 0.001

fstopval
Used to implement a custom stopping condition based on the objective
function value

maxdouble

ftol
The optimization process will terminate if the relative change in the
objective function is less than ftol for ftol iters consecutive feasible
iterations

1e-15

ftol iters
The optimization process will terminate if the relative change in the
objective function is less than ftol for ftol iters consecutive feasible
iterations

5

infeastol
Specifies the (relative) tolerance used for declaring infeasibility of a
model

1e-08

infeastol iters
The optimization process will terminate if the relative change in the
feasibility error is less than infeastol for infeastol iters consecutive
infeasible iterations

50

maxfevals
Specifies the maximum number of function evaluations before termi-
nation

-1

maxit
Specifies the maximum number of iterations before termination GAMS iterlim

maxtime cpu
Specifies, in seconds, the maximum allowable CPU time before ter-
mination

100000000

maxtime real
Specifies, in seconds, the maximum allowable real time before termi-
nation

GAMS reslim

opttol
Specifies the final relative stopping tolerance for the KKT (optimality)
error

1e-06

2188 Solver Manuals

Option Description Default

opttolabs
Specifies the final absolute stopping tolerance for the KKT (optimal-
ity) error

0.001

xtol
The optimization process will terminate if the relative change in
all components of the solution point estimate is less than xtol for
xtol iters

1e-12

xtol iters
The optimization process will terminate if the relative change in the
solution estimate is less than xtol for xtol iters consecutive iterations

0

5.23.4.4 Presolve options

Option Description Default

presolve
Determine whether or not to use the Knitro presolver to try
to simplify the model by removing variables or constraints

1

presolveop redundant
Determine whether or not to enable the Knitro presolve
operation to detect and remove redundant constraints

1

presolveop substitution
Determine whether or not to enable the Knitro presolve
operation to substitute out variables when possible

-1

presolveop substitution tol
Tolerance for applying a substitution 0.01

presolveop tighten
Determine whether or not to enable the Knitro presolve
operation to tighten variable bounds or coefficients

-1

presolve initpt
Control whether the Knitro presolver can shift a user-supplied
initial point

-1

presolve level
Set the level of presolve operations to enable through the
Knitro presolver

-1

presolve passes
Set a maximum limit on the number of passes through the
Knitro presolve operations

10

presolve tol
Determines the tolerance used by the Knitro presolver to
remove variables and constraints from the model

1e-06

5.23.4.5 Barrier options

Option Description Default

bar conic enable
Enable special treatments for conic constraints when using the
Interior/Direct algorithm (has no affect when using the Interior/CG
algorithm)

-1

bar directinterval
Controls the maximum number of consecutive conjugate gradient
(CG) steps before Knitro will try to enforce that a step is taken
using direct linear algebra

-1

bar feasible
Specifies whether special emphasis is placed on getting and staying
feasible in the interior-point algorithms

0

bar feasmodetol
Specifies the tolerance in equation that determines whether Knitro
will force subsequent iterates to remain feasible

0.0001

bar globalize
Specifies the globalization strategy used in the interior-point algo-
rithms

2

bar initmu
Specifies the initial value for the barrier parameter µ used with the
barrier algorithms

-1

bar initpi mpec
Specifies the initial value for the MPEC penalty parameter π used
when solving problems with complementarity constraints using the
barrier algorithms

0

5.23 KNITRO 2189

Option Description Default

bar initpt
Indicates initial point strategy for x, slacks and multipliers when
using a barrier algorithm

0

bar linsys
Indicates which linear system form is used inside the Interior/Direct
algorithm for computing primal-dual steps

-1

bar linsys storage
Indicates how to store in memory the linear systems used inside
the Interior/Direct algorithm for computing primal-dual steps

-1

bar maxcorrectors
Specifies the maximum number of corrector steps allowed for primal-
dual steps

-1

bar maxcrossit
Specifies the maximum number of crossover iterations before termi-
nation

0

bar maxmu
Specifies the maximum allowable value for the barrier parameter µ
used with the barrier algorithms

1e+16

bar maxrefactor
Indicates the maximum number of refactorizations of the KKT
system per iteration of the Interior/Direct algorithm before reverting
to a CG step

-1

bar mpec heuristic
Specifies whether or not to use a heuristic approach when solving
MPEC models with the barrier algorithm

0

bar murule
Indicates which strategy to use for modifying the barrier parameter
mu in the barrier algorithms

0

bar penaltycons
Indicates whether a penalty approach is applied to the constraints -1

bar penaltyrule
Indicates which penalty parameter strategy to use for determining
whether or not to accept a trial iterate

0

bar refinement
Specifies whether to try to refine the barrier solution for better
precision

0

bar relaxcons
Indicates whether a relaxation approach is applied to the constraints 2

bar slackboundpush
Specifies the amount by which the barrier slack variables are initially
pushed inside the bounds

-1

bar switchobj
Indicates which objective function to use when the barrier algo-
rithms switch to a pure feasibility phase

1

bar switchrule
Indicates whether or not the barrier algorithms will allow switching
from an optimality phase to a pure feasibility phase

-1

bar watchdog
Specifies whether to enable watchdog heuristic for barrier algorithms 0

5.23.4.6 Active-set options

Option Description Default

act lpfeastol
Specifies the feasibility tolerance used for linear programming
subproblems solved when using the Active Set or SQP algo-
rithms

1e-08

act lppenalty
Indicates whether to use a penalty formulation for linear pro-
gramming subproblems in the Knitro Active Set or SQP algo-
rithms

1

act lppresolve
Indicates whether to apply a presolve for linear programming
subproblems in the Knitro Active Set or SQP algorithms

0

act parametric
Indicates whether to use a parametric approach when solving
linear programming (LP) subproblems when using the Knitro
Active Set or SQP algorithms

1

act qpalg
Indicates which algorithm to use to solve quadratic program-
ming (QP) subproblems when using the Knitro Active Set or
SQP algorithms

0

2190 Solver Manuals

Option Description Default

act qppenalty
Indicates whether to use a penalty formulation for quadratic
programming subproblems in the Knitro SQP algorithm

-1

mip cut flowcover
Specifies rules for adding flow cover cuts -1

mip cut probing
Specifies rules for adding probing cuts -1

mip heuristic localsearch
Specifies whether or not to enable the MIP local search heuristic -1

5.23.4.7 MIP options

Option Description Default

mip branchrule
Specifies which branching rule to use for MIP branch and
bound procedure

0

mip clique
Specifies rules for adding clique cuts -1

mip cutfactor
This value specifies a limit on the number of cuts added to
a node subproblem

1

mip cutoff
This value specifies the objective cutoff value for MIP maxdouble

mip cutting plane
Specifies when to apply the cutting plane procedure 1

mip gomory
Specifies rules for adding Gomory mixed-integer cuts -1

mip gub branch
Specifies whether or not to branch on generalized upper
bounds (GUBs)

0

mip heuristic diving
Specifies whether or not to enable the MIP diving heuristic -1

mip heuristic feaspump
Specifies whether or not to enable the MIP feasibility pump
heuristic

-1

mip heuristic lns
Specifies whether or not to enable the MIP large neighbor-
hood search (LNS) heuristics

-1

mip heuristic maxit
Specifies the maximum number of iterations to allow for
MIP heuristic, if one is enabled

100

mip heuristic misqp
Specifies whether or not to enable the MIP MISQP heuristic -1

mip heuristic mpec
Specifies whether or not to enable the MIP MPEC heuristic -1

mip heuristic strategy
Specifies the level of effort applied for the MIP heuristic
search used to try to find an initial integer feasible point

-1

mip heuristic terminate
Specifies the condition for terminating the MIP heuristic 1

mip implications
Specifies whether or not to add constraints to the MIP
derived from logical implications

1

mip integer tol
This value specifies the threshold for deciding whether or
not a variable is determined to be an integer

1e-08

mip intvar strategy
Specifies how to handle integer variables 0

mip knapsack
Specifies rules for adding MIP knapsack cuts -1

mip liftproject
Specifies rules for adding lift and project cuts -1

mip lpalg
Specifies which algorithm to use for any linear programming
(LP) subproblem solves that may occur in the MIP branch-
and-bound procedure

0

5.23 KNITRO 2191

Option Description Default

mip maxnodes
Specifies the maximum number of nodes explored (0 means
no limit)

GAMS nodlim

mip maxsolves
Specifies the maximum number of subproblem solves allowed
(0 means no limit)

0

mip maxtime cpu
Specifies the maximum allowable CPU time in seconds for
the complete MIP solution

100000000

mip maxtime real
Specifies the maximum allowable real time in seconds for
the complete MIP solution

GAMS reslim

mip method
Specifies which MIP method to use 0

mip mir
Specifies rules for adding mixed-integer rounding cuts -1

mip multistart
Use to enable MIP multi-start at the branch-and-bound
level

0

mip nodealg
Specifies which algorithm to use for standard node subprob-
lem solves in MIP (same options as algorithm user option)

0

mip numthreads
Specify the number of threads to use for MIP branch-and-
bound (when mip method = 1)

0

mip opt gap abs
The absolute optimality gap stop tolerance for MIP GAMS optca

mip opt gap rel
The relative optimality gap stop tolerance for MIP GAMS optcr

mip outinterval
Specifies node printing interval for mip outlevel when
mip outlevel > 0

0

mip outlevel
Specifies how much MIP information to print 2

mip pseudoinit
Specifies the method used to initialize pseudo-costs corre-
sponding to variables that have not yet been branched on
in the MIP method

0

mip relaxable
Specifies whether integer variables are relaxable 1

mip restart
Specifies whether to enable the MIP restart procedure 1

mip rootalg
Specifies which algorithm to use for the root node solve in
MIP (same options as algorithm user option)

0

mip rounding
Specifies the MIP rounding rule to apply -1

mip selectdir
Specifies the MIP node selection direction rule (for tiebreak-
ers) for choosing the next node in the branch-and-bound
tree

0

mip selectrule
Specifies the MIP select rule for choosing the next node in
the branch-and-bound tree

0

mip strong candlim
Specifies the maximum number of candidates to explore for
MIP strong branching

128

mip strong level
Specifies the maximum number of tree levels on which to
perform MIP strong branching

10

mip strong maxit
Specifies the maximum number of iterations to allow for
MIP strong branching solves

1000

mip terminate
Specifies conditions for terminating the MIP algorithm 0

mip zerohalf
Specifies rules for adding zero-half cuts -1

5.23.4.8 Multi-algorithm options

2192 Solver Manuals

Option Description Default

ma maxtime cpu
Specifies, in seconds, the maximum allowable CPU time before ter-
mination for the multi-algorithm (”MA”) procedure (algorithm=5)

100000000

ma maxtime real
Specifies, in seconds, the maximum allowable real time before termi-
nation for the multi-algorithm (”MA”) procedure (algorithm=5)

100000000

ma outsub
Enable writing algorithm output to files for the multi-algorithm
(algorithm=5) procedure

0

ma terminate
Define the termination condition for the multi-algorithm
(algorithm=5) procedure

1

5.23.4.9 Multi-start options

Option Description Default

ms deterministic
Indicates whether Knitro multi-start procedure will be deterministic
(when ms terminate = 0)

1

ms enable
Indicates whether Knitro will solve from multiple start points to find
a better local minimum

0

ms initpt cluster
The strategy for clustering initial points in multi-start 0

ms maxbndrange
Specifies the maximum range that an unbounded variable can take
when determining new start points

1000

ms maxsolves
Specifies how many start points to try in multi-start 0

ms maxtime cpu
Specifies, in seconds, the maximum allowable CPU time before ter-
mination

100000000

ms maxtime real
Specifies, in seconds, the maximum allowable real time before termi-
nation

100000000

ms numthreads
Specify the number of threads to use for multi-start (when ms enable
= 1)

0

ms num to save
Specifies the number of distinct feasible points to save in a file named
knitro mspoints

0

ms outsub
Enable writing algorithm output to files for the parallel multi-start
procedure

0

ms savetol
Specifies the tolerance for deciding if two feasible points are distinct 1e-06

ms seed
Seed value used to generate random initial points in multi-start;
should be a non-negative integer

0

ms startptrange
Specifies the maximum range that each variable can take when
determining new start points

1e+20

ms terminate
Specifies the condition for terminating multi-start 0

5.23.4.10 Parallelism options

Option Description Default

blas numthreads
Specify the number of threads to use for BLAS operations
when blasoption = 1

0

conic numthreads
Specify the number of threads to use for operations in the
conic algorithm (when bar conic enable = 1)

0

linsolver numthreads
Specify the number of threads to use for linear system solve
operations when linsolver = 6

0

threads
default thread count GAMS threads

5.23 KNITRO 2193

5.23.4.11 Output options

Option Description Default

outappend
Specifies whether output should be started in a new file, or appended to
existing files

0

outdir
Specifies a single directory as the location to write all output files

outlev
Controls the level of output produced by Knitro 2

outmode
Specifies where to direct the output from Knitro 0

outname
Use to specify a custom filename when output is written to a file using
outmode

out csvinfo
Controls whether or not to generates a file knitro solve 0

out csvname
Use to specify a custom csv filename when using out csvinfo

out hints
Specifies whether to print diagnostic hints (e.g. about user option settings)
after solving

1

5.23.4.12 Tuner options

Option Description Default

tuner
Indicates whether to invoke the Knitro-Tuner 0

tuner maxtime cpu
Specifies, in seconds, the maximum allowable CPU time before
terminating the Knitro-Tuner

100000000

tuner maxtime real
Specifies, in seconds, the maximum allowable real time before
terminating the Knitro-Tuner

100000000

tuner optionsfile
Can be used to specify the location of a Tuner options file

tuner outsub
Enable writing additional Tuner subproblem solve output to files
for the Knitro-Tuner procedure (tuner=1)

0

tuner terminate
Define the termination condition for the Knitro-Tuner procedure
(tuner=1)

0

5.23.5 Detailed Descriptions of Knitro Options

act lpfeastol (real): Specifies the feasibility tolerance used for linear programming subproblems solved
when using the Active Set or SQP algorithms ←↩

Range: [0, ∞]

Default: 1e-08

act lppenalty (integer): Indicates whether to use a penalty formulation for linear programming subprob-
lems in the Knitro Active Set or SQP algorithms ←↩

Default: 1

value meaning

1 (all) penalize all constraints.

2 (nonlinear) penalize only nonlinear constraints.

3 (dynamic) dynamically choose which constraints to penalize.

2194 Solver Manuals

act lppresolve (boolean): Indicates whether to apply a presolve for linear programming subproblems in
the Knitro Active Set or SQP algorithms ←↩

Default: 0

value meaning

0 (off) presolve turned off for LP subproblems.

1 (on) presolve turned on for LP subproblems.

act parametric (integer): Indicates whether to use a parametric approach when solving linear program-
ming (LP) subproblems when using the Knitro Active Set or SQP algorithms ←↩

Indicates whether to use a parametric approach when solving linear programming (LP)
subproblems when using the Knitro Active Set or SQP algorithms. A parametric approach
will solve a sequence of closely related LPs instead of one LP. It may increase the cost of an
active-set iteration, but perhaps lead to convergence in fewer iterations.

Default: 1

value meaning

0 (no) do not use a parametric solve (i.e. solve a single LP).

1 (maybe) use a parametric solve sometimes.

2 (yes) always try a parametric solve.

act qpalg (integer): Indicates which algorithm to use to solve quadratic programming (QP) subproblems
when using the Knitro Active Set or SQP algorithms ←↩

Indicates which algorithm to use to solve quadratic programming (QP) subproblems when
using the Knitro Active Set or SQP algorithms. This option has no effect on the Interior/Direct
and Interior/CG algorithms.

Default: 0

value meaning

0 (auto) let Knitro automatically choose an algorithm, based on the problem
characteristics.

1 (direct) use the Interior/Direct algorithm.

2 (cg) use the Interior/CG algorithm.

3 (active) use the Active Set algorithm.

act qppenalty (integer): Indicates whether to use a penalty formulation for quadratic programming
subproblems in the Knitro SQP algorithm ←↩

Default: -1

value meaning

-1 (auto) let Knitro automatically decide.

0 (none) do not penalize constraints in QP subproblems.

1 (all) penalize all constraints in QP subproblems.

5.23 KNITRO 2195

algorithm (integer): Indicates which algorithm to use to solve the problem ←↩

Default: 0

value meaning

0 (auto) let Knitro automatically choose an algorithm, based on the problem
characteristics.

1 (direct) use the Interior/Direct algorithm.

2 (cg) use the Interior/CG algorithm.

3 (active) use the Active Set algorithm.

4 (sqp) use the SQP algorithm.

5 (multi) run all algorithms, perhaps in parallel (see Algorithms).

bar conic enable (integer): Enable special treatments for conic constraints when using the Interior/Direct
algorithm (has no affect when using the Interior/CG algorithm) ←↩

Default: -1

value meaning

-1 (auto) Let Knitro automatically choose the strategy.

0 (none) Do not apply any special treatment for conic constraints.

1 (soc) Apply special treatments for any Second Order Cone (SOC) constraints
identified in the model.

bar directinterval (integer): Controls the maximum number of consecutive conjugate gradient (CG)
steps before Knitro will try to enforce that a step is taken using direct linear algebra ←↩

Controls the maximum number of consecutive conjugate gradient (CG) steps before Knitro
will try to enforce that a step is taken using direct linear algebra. This option is only valid
for the Interior/Direct algorithm and may be useful on problems where Knitro appears to be
taking lots of conjugate gradient steps. Setting bar directinterval to 0 will try to enforce that
only direct steps are taken which may produce better results on some problems.

Range: {-1, ..., ∞}

Default: -1

bar feasible (integer): Specifies whether special emphasis is placed on getting and staying feasible in the
interior-point algorithms ←↩

Specifies whether special emphasis is placed on getting and staying feasible in the interior-point
algorithms. Note This option can only be used with the Interior/Direct and Interior/CG
algorithms. If bar feasible = stay or bar feasible = get stay, this will activate the feasible
version of Knitro. The feasible version of Knitro will force iterates to strictly satisfy inequalities,
but does not require satisfaction of equality constraints at intermediate iterates. This option
and the honorbnds option may be useful in applications where functions are undefined outside
the region defined by inequalities. The initial point must satisfy inequalities to a sufficient
degree; if not, Knitro may generate infeasible iterates and does not switch to the feasible
version until a sufficiently feasible point is found. Sufficient satisfaction occurs at a point x if
it is true for all inequalities that cl + tol ≤ c(x) ≤ cu− tol The constant tol is determined by
the option bar feasmodetol. If bar feasible = get or bar feasible = get stay, Knitro will place
special emphasis on first trying to get feasible before trying to optimize.

Default: 0

2196 Solver Manuals

value meaning

0 (no) No special emphasis on feasibility.

1 (stay) Iterates must satisfy inequality constraints once they become sufficiently
feasible.

2 (get) Special emphasis is placed on getting feasible before trying to optimize.

3 (get stay) Implement both options 1 and 2 above.

bar feasmodetol (real): Specifies the tolerance in equation that determines whether Knitro will force
subsequent iterates to remain feasible ←↩

Specifies the tolerance in equation that determines whether Knitro will force subsequent
iterates to remain feasible. The tolerance applies to all inequality constraints in the problem.
This option only has an effect if option bar feasible = stay or bar feasible = get stay.

Range: [0, ∞]

Default: 0.0001

bar globalize (integer): Specifies the globalization strategy used in the interior-point algorithms ←↩

Default: 2

value meaning

0 (none) No globalization strategy is applied.

1 (kkt) Apply a globalization strategy based on decreasing the KKT error.

2 (filter) Apply a globalization strategy using a filter based on the objective and
constraint violation.

bar initmu (real): Specifies the initial value for the barrier parameter µ used with the barrier algorithms
←↩

Specifies the initial value for the barrier parameter µ used with the barrier algorithms. This
option has no effect on the Active Set algorithm.

Range: [-∞, ∞]

Default: -1

bar initpi mpec (real): Specifies the initial value for the MPEC penalty parameter π used when solving
problems with complementarity constraints using the barrier algorithms ←↩

Specifies the initial value for the MPEC penalty parameter π used when solving problems with
complementarity constraints using the barrier algorithms. If this value is non-positive, then
Knitro uses an internal formula to initialize the MPEC penalty parameter.

Range: [0, ∞]

Default: 0

bar initpt (integer): Indicates initial point strategy for x, slacks and multipliers when using a barrier
algorithm ←↩

Indicates initial point strategy for x, slacks and multipliers when using a barrier algorithm.
Note, this option only alters the initial x values if the user does not specify an initial x. This
option has no effect on the Active Set algorithm.

Default: 0

5.23 KNITRO 2197

value meaning

0 (auto) Let Knitro automatically choose the strategy.

1 (convex) Initialization designed for convex models.

2 (nearbnd) Initialization strategy that stays closer to the bounds.

3 (central) Initialization strategy that is more central on double-bounded variables.

bar linsys (integer): Indicates which linear system form is used inside the Interior/Direct algorithm for
computing primal-dual steps ←↩

Indicates which linear system form is used inside the Interior/Direct algorithm for computing
primal-dual steps. Eliminating more elements results in a smaller dimensional linear system
(but also one that is, perhaps, less numerically stable). The bounds option may be preferable
for very large problems with many bounded variables. The ineq option may generate significant
speedups on models where the number of variables is small, but the number of inequality
constraints is large.

Default: -1

value meaning

-1 (auto) Let Knitro automatically choose the linear system form.

0 (full) Use the full linear system.

1 (slacks) Eliminate the slack variables.

2 (bounds) Eliminate the slack variables and bounds.

3 (ineqs) Eliminate the slack variables, bounds, and some inequalities.

bar linsys storage (integer): Indicates how to store in memory the linear systems used inside the
Interior/Direct algorithm for computing primal-dual steps ←↩

Indicates how to store in memory the linear systems used inside the Interior/Direct algorithm
for computing primal-dual steps. The lowmem option uses one storage location for multiple
linear systems. As a result it may use much less memory, but also may be less efficient when
the Interior/Direct algorithm takes a lot of CG steps. The normal option uses separate storage
for different linear systems.

Default: -1

value meaning

-1 (auto) Let Knitro automatically choose the linear system storage approach.

1 (lowmem) Use common storage for multiple linear systems.

2 (normal) Use separate storage for different linear systems.

bar maxcorrectors (integer): Specifies the maximum number of corrector steps allowed for primal-dual
steps ←↩

Specifies the maximum number of corrector steps allowed for primal-dual steps. If the
value is positive and the algorithm used is Interior/Direct, then Knitro may add at most
bar maxcorrectors corrector steps to the primal-dual step to try to stay closer to the central
path. This may speedup convergence on some models (although it may make the cost per
iteration a little more expensive). If the value is negative, Knitro automatically determines
the maximum number of corrector steps to apply.

2198 Solver Manuals

Range: {-∞, ..., ∞}

Default: -1

bar maxcrossit (integer): Specifies the maximum number of crossover iterations before termination ←↩

Specifies the maximum number of crossover iterations before termination. If the value is
positive and the algorithm in operation is Interior/Direct or Interior/CG, then Knitro will
crossover to the Active Set algorithm near the solution. The Active Set algorithm will then
perform at most bar maxcrossit iterations to get a more exact solution. If the value is 0,
no Active Set crossover occurs and the interior-point solution is the final result. If Active
Set crossover is unable to improve the approximate interior-point solution, then Knitro will
restore the interior-point solution. In some cases (especially on large-scale problems or difficult
degenerate problems) the cost of the crossover procedure may be significant – for this reason,
crossover is disabled by default. Enabling crossover generally provides a more accurate solution
than Interior/Direct or Interior/CG.

Range: {0, ..., ∞}

Default: 0

bar maxmu (real): Specifies the maximum allowable value for the barrier parameter µ used with the
barrier algorithms ←↩

Range: [2.08157871384174e-07, 1e+16]

Default: 1e+16

bar maxrefactor (integer): Indicates the maximum number of refactorizations of the KKT system per
iteration of the Interior/Direct algorithm before reverting to a CG step ←↩

Indicates the maximum number of refactorizations of the KKT system per iteration of the
Interior/Direct algorithm before reverting to a CG step. If this value is set to -1, it will use a
dynamic strategy. These refactorizations are performed if negative curvature is detected in the
model. Rather than reverting to a CG step, the Hessian matrix is modified in an attempt to
make the subproblem convex and then the KKT system is refactorized. Increasing this value
will make the Interior/Direct algorithm less likely to take CG steps. If the Interior/Direct
algorithm is taking a large number of CG steps (as indicated by a positive value for ”CGits”
in the output), this may improve performance. This option has no effect on the Active Set
algorithm.

Range: {-1, ..., ∞}

Default: -1

bar mpec heuristic (boolean): Specifies whether or not to use a heuristic approach when solving MPEC
models with the barrier algorithm ←↩

Specifies whether or not to use a heuristic approach when solving MPEC models with the barrier
algorithm. In some cases enabling this heuristic can speedup the convergence to the solution
and provide a more precise solution on MPEC models (i.e., models with complementarity
constraints).

Default: 0

value meaning

0 (no) Do not enable the heuristic for MPEC models.

1 (yes) Enable the heuristic for MPEC models.

5.23 KNITRO 2199

bar murule (integer): Indicates which strategy to use for modifying the barrier parameter mu in the
barrier algorithms ←↩

Indicates which strategy to use for modifying the barrier parameter mu in the barrier algorithms.
Not all strategies are available for both barrier algorithms, as described below. This option
has no effect on the Active Set algorithm.

Default: 0

value meaning

0 (auto) Let Knitro automatically choose the strategy.

1 (monotone) Monotonically decrease the barrier parameter. Available for both
barrier algorithms.

2 (adaptive) Use an adaptive rule based on the complementarity gap to determine
the value of the barrier parameter. Available for both barrier algorithms.

3 (probing) Use a probing (affine-scaling) step to dynamically determine the barrier
parameter. Available only for the Interior/Direct algorithm.

4 (dampmpc) Use a Mehrotra predictor-corrector type rule to determine the bar-
rier parameter, with safeguards on the corrector step. Available only for the
Interior/Direct algorithm.

5 (fullmpc) Use a Mehrotra predictor-corrector type rule to determine the barrier
parameter, without safeguards on the corrector step. Available only for the
Interior/Direct algorithm.

6 (quality) Minimize a quality function at each iteration to determine the barrier
parameter. Available only for the Interior/Direct algorithm.

bar penaltycons (integer): Indicates whether a penalty approach is applied to the constraints ←↩

Indicates whether a penalty approach is applied to the constraints. Using a penalty approach
may be helpful when the problem has degenerate or difficult constraints. It may also help
to more quickly identify infeasible problems, or achieve feasibility in problems with difficult
constraints. This option has no effect on the Active Set algorithm.

Default: -1

value meaning

-1 (auto) Let Knitro automatically choose the strategy.

0 (none) No constraints are penalized.

2 (all) A penalty approach is applied to all general constraints.

3 (equalities) Apply a penalty approach to equality constraints only.

bar penaltyrule (integer): Indicates which penalty parameter strategy to use for determining whether
or not to accept a trial iterate ←↩

Indicates which penalty parameter strategy to use for determining whether or not to accept a
trial iterate. This option has no effect on the Active Set algorithm.

Default: 0

value meaning

0 (auto) Let Knitro automatically choose the strategy.

2200 Solver Manuals

value meaning

1 (single) Use a single penalty parameter in the merit function to weight feasibility
versus optimality.

2 (flex) Use a more tolerant and flexible step acceptance procedure based on a range
of penalty parameter values.

bar refinement (boolean): Specifies whether to try to refine the barrier solution for better precision ←↩

Specifies whether to try to refine the barrier solution for better precision. If enabled, once
the optimality conditions are satisfied, Knitro will apply an additional refinement/postsolve
phase to try to obtain more precision in the barrier solution. The effect is similar to the
effect of enabling bar maxcrossit, but it is usually much more efficient since it does not involve
switching to the Active Set algorithm.

Default: 0

bar relaxcons (integer): Indicates whether a relaxation approach is applied to the constraints ←↩

Indicates whether a relaxation approach is applied to the constraints. Using a relaxation
approach may be helpful when the problem has degenerate or difficult constraints. This option
has no effect on the Active Set algorithm.

Default: 2

value meaning

0 (none) No constraints are relaxed.

1 (eqs) A relaxation approach is applied to general equality constraints.

2 (ineqs) A relaxation approach is applied to general inequality constraints.

3 (all) A relaxation approach is applied to all general constraints.

bar slackboundpush (real): Specifies the amount by which the barrier slack variables are initially
pushed inside the bounds ←↩

Specifies the amount by which the barrier slack variables are initially pushed inside the bounds.
A smaller value may be preferable when warm-starting from a point close to the solution.

Range: [-∞, ∞]

Default: -1

bar switchobj (integer): Indicates which objective function to use when the barrier algorithms switch to
a pure feasibility phase ←↩

Default: 1

value meaning

0 (none) No (or zero) objective.

1 (scalarprox) Proximal point objective with scalar weighting.

2 (diagprox) Proximal point objective with diagonal weighting.

bar switchrule (integer): Indicates whether or not the barrier algorithms will allow switching from an

5.23 KNITRO 2201

optimality phase to a pure feasibility phase ←↩

Indicates whether or not the barrier algorithms will allow switching from an optimality phase
to a pure feasibility phase. This option has no effect on the Active Set algorithm.

Default: -1

value meaning

-1 (auto) Let Knitro determine the switching procedure.

0 (never) Never switch to feasibility phase.

2 (moderate) Allow switches to feasibility phase.

3 (aggressive) Use a more aggressive switching rule.

bar watchdog (boolean): Specifies whether to enable watchdog heuristic for barrier algorithms ←↩

Specifies whether to enable watchdog heuristic for barrier algorithms. In general, enabling the
watchdog heuristic makes the barrier algorithms more likely to accept trial points. Specifically,
the watchdog heuristic may occasionally accept trial points that increase the merit function,
provided that subsequent iterates decrease the merit function.

Default: 0

bfgs scaling (integer): Specify the initial scaling to use for the BFGS or L-BFGS Hessian approximation
←↩

Default: 0

value meaning

0 (dynamic) Dynamically choose which scaling to use.

1 (invhess) The scaling approximates the scale of the inverse Hessian.

2 (hess) The scaling approximates the scale of the Hessian.

blasoption (integer): Specifies the BLAS/LAPACK function library to use for basic vector and matrix
computations ←↩

Default: 1 or 4 (platform dependent)

value meaning

-1 (auto) Let Knitro automatically choose which BLAS to use.

0 (knitro) Use Knitro built-in functions.

1 (intel) Use Intel Math Kernel Library (MKL) functions on available platforms.

2 (dynamic) Use the dynamic library specified with option blasoptionlib.

3 (blis) Use BLIS functions on available platforms (currently not available on
Windows OS).

4 (apple) Use Apple Accelerate (only available on Mac with M1 processor).

blasoptionlib (string): Specifies a dynamic library name that contains object code for BLAS/LAPACK
functions ←↩

Specifies a dynamic library name that contains object code for BLAS/LAPACK functions.
The library must implement all the functions declared in the file include/blas lapack.h.

2202 Solver Manuals

blas numthreads (integer): Specify the number of threads to use for BLAS operations when blasoption
= 1 ←↩

Range: {0, ..., ∞}

Default: 0

bndrange (real): Specifies max limits on the magnitude of constraint and variable bounds ←↩

Specifies max limits on the magnitude of constraint and variable bounds. Any constraint
or variable bounds whose magnitude is greater than or equal to bndrange will be treated as
infinite by Knitro. Using very large, finite bounds is discouraged (and is generally an indication
of a poorly scaled model).

Range: [0, ∞]

Default: 1e+20

cg maxit (integer): Determines the maximum allowable number of inner conjugate gradient (CG)
iterations per Knitro minor iteration ←↩

Default: -1

value meaning

-1 Let Knitro automatically determine a value.

0 Knitro will set a maximum value based on the problem size.

n At most n>0 CG iterations may be performed during one minor iteration of
Knitro.

cg pmem (integer): Specifies the amount of nonzero elements per column of the Hessian of the Lagrangian
which are retained when computing the incomplete Cholesky preconditioner ←↩

Default: 10

value meaning

n At most n>0 nonzero elements per column.

cg precond (boolean): Specifies whether an incomplete Cholesky preconditioner is applied during CG
iterations in barrier algorithms ←↩

Default: 0

value meaning

0 (no) Not applied.

1 (chol) Preconditioner is applied.

cg stoptol (real): Specifies the relative stopping tolerance used for the conjugate gradient (CG) subproblem
solves ←↩

Range: [0, ∞]

Default: 0.01

5.23 KNITRO 2203

conic numthreads (integer): Specify the number of threads to use for operations in the conic algorithm
(when bar conic enable = 1) ←↩

Specify the number of threads to use for operations in the conic algorithm (when
bar conic enable = 1). 0 Let Knitro choose the number of threads (currently sets
conic numthreads based on numthreads). n>0 Use n threads for the conic solver.

Range: {0, ..., ∞}

Default: 0

convex (integer): Declare the problem as convex by setting to 1 or non-convex by setting to 0 ←↩

Declare the problem as convex by setting to 1 or non-convex by setting to 0. Otherwise, Knitro
will try to determine this automatically, but may only be able to do so for simple model forms
such as QPs or QCQPs. If your model is specified as (or automatically determined to be)
convex, this will cause Knitro to apply specializations and tunings that are often beneficial
for convex models to speed up the solution. Currently this option is only active for the
Interior/Direct algorithm, but may be applied to other algorithms in the future.

Range: {-1, ..., 1}

Default: -1

cpuplatform (integer): This option can be used to specify the target instruction set architecture for the
machine on which Knitro is running ←↩

This option can be used to specify the target instruction set architecture for the machine on
which Knitro is running. This can be used, for example , to try to produce more consistent
Knitro performance across various architectures (at the expense of, perhaps, slower performance
on some platforms). This option is currently only used for the Intel Math Kernel Library
(MKL) functions used inside Knitro.

Range: {-1, ..., 5}

Default: -1

datacheck (boolean): Specifies whether to perform more extensive data checks to look for errors in the
problem input to Knitro (in particular, this option looks for errors in the sparse Jacobian and/or sparse
Hessian structure) ←↩

Specifies whether to perform more extensive data checks to look for errors in the problem
input to Knitro (in particular, this option looks for errors in the sparse Jacobian and/or sparse
Hessian structure). The datacheck may have a non- trivial cost for large problems.

Default: 0

delta (real): Specifies the initial trust region radius scaling factor used to determine the initial trust
region size ←↩

Range: [1e-14, ∞]

Default: 1

feastol (real): Specifies the final relative stopping tolerance for the feasibility error ←↩

2204 Solver Manuals

Specifies the final relative stopping tolerance for the feasibility error. Smaller values of feastol
result in a higher degree of accuracy in the solution with respect to feasibility.

Range: [0, ∞]

Default: 1e-06

feastolabs (real): Specifies the final absolute stopping tolerance for the feasibility error ←↩

Synonym: feastol abs

Specifies the final absolute stopping tolerance for the feasibility error. Smaller values of
feastol abs result in a higher degree of accuracy in the solution with respect to feasibility.

Range: [0, ∞]

Default: 0.001

findiff estnoise (integer): This option can be used to enable an estimate of the noise in the model when
using finite-difference gradients ←↩

This option can be used to enable an estimate of the noise in the model when using finite-
difference gradients. This noise estimate can then be used to set a finite-difference steplength
appropriate for the estimated noise level. This can improve performance on models with noise
(e.g. noisy black-box optimization models). The cost of the noise estimation procedure is
usually a few extra function evaluations.

Default: 0

value meaning

0 (no) Do not enable any noise estimation procedure for finite-difference gradients.

1 (yes) Enable noise estimation procedure for finite-difference gradients.

2 (withcurv) Enable noise estimation and curvature factor for finite-difference
gradients.

findiff relstepsize (real): Specifies the relative stepsize used for finite-difference gradients during the
optimization ←↩

Specifies the relative stepsize used for finite-difference gradients during the optimization.
This option sets the stepsize for all variables. Note that this option has no affect on the
finite-difference derivatives computed for the derivative checker (default values are always used
here). It is only used for the finite-difference derivatives computed during the optimization.

Range: [-∞, ∞]

Default: 0

findiff terminate (boolean): This option specifies the termination criteria when using finite-difference
gradients ←↩

This option specifies the termination criteria when using finite-difference gradients. The
optimality (or KKT) conditions for nonlinear optimization depend on gradient values of the
nonlinear objective and constraint functions . When using finite-difference gradients (e.g.
gradopt > 1), there will typically be small errors in the computed gradients that will limit
the precision in the solution (and the ability to satisfy the optimality conditions). By default,

5.23 KNITRO 2205

Knitro will try to estimate these finite-difference gradient errors and terminate when it seems
that no more accuracy in the solution is possible. The solution will be treated as optimal as long
as it is feasible and the optimality conditions are satisfied either by the optimality tolerances
(opttol and opttol abs) or the error estimates. On some problems, the error estimates may
result in extra function evaluations on some iterations, but will often prevent extra iterations
that produce no significant improvement in the solution. This special termination can be
disabled by setting findiff terminate = 0 (none).

Default: 1

value meaning

0 (none) No special criteria; use the standard stopping conditions.

1 (errest) Allow termination based on estimates of the finite-difference error (when
no more significant progress is likely).

fstopval (real): Used to implement a custom stopping condition based on the objective function value ←↩

Used to implement a custom stopping condition based on the objective function value. Knitro
will stop and declare that a satisfactory solution was found if a feasible objective function
value at least as good as the value specified by fstopval is achieved. This stopping condition is
only active when the absolute value of fstopval is less than objrange.

Range: [-∞, ∞]

Default: maxdouble

ftol (real): The optimization process will terminate if the relative change in the objective function is less
than ftol for ftol iters consecutive feasible iterations ←↩

Range: [0, ∞]

Default: 1e-15

ftol iters (integer): The optimization process will terminate if the relative change in the objective function
is less than ftol for ftol iters consecutive feasible iterations ←↩

Range: {1, ..., ∞}

Default: 5

gradopt (integer): Specifies how to compute the gradients of the objective and constraint functions ←↩

Default: 1

value meaning

1 (exact) User provides a routine for computing the exact gradients.

2 (forward) Knitro computes gradients by forward finite differences.

3 (central) Knitro computes gradients by central finite differences.

hessopt (integer): Specifies how to compute the (approximate) Hessian of the Lagrangian ←↩

Default: 0

2206 Solver Manuals

value meaning

0 (auto)

1 (exact) User provides a routine for computing the exact Hessian.

2 (bfgs) Knitro computes a (dense) quasi-Newton BFGS Hessian.

3 (sr1) Knitro computes a (dense) quasi-Newton SR1 Hessian.

4 (product findiff) Knitro computes Hessian-vector products using finite-differences.

5 (product) User provides a routine to compute the Hessian-vector products.

6 (lbfgs) Knitro computes a limited-memory quasi-Newton BFGS Hessian (its size
is determined by the option lmsize).

7 (gauss newton) Knitro computes a Gauss-Newton approximation of the hessian
(available for least-squares only, and default value for least-squares)

honorbnds (integer): Indicates whether or not to enforce satisfaction of simple variable bounds throughout
the optimization ←↩

Indicates whether or not to enforce satisfaction of simple variable bounds throughout the
optimization. This option and the bar feasible option may be useful in applications where
functions are undefined outside the region defined by inequalities.

Default: -1

value meaning

-1 (auto) Knitro automatically determine the best setting.

0 (no) Knitro does not require that the bounds on the variables be satisfied at
intermediate iterates.

1 (always) Knitro enforces that the initial point and all subsequent solution estimates
satisfy the bounds on the variables.

2 (initpt) Knitro enforces that the initial point satisfies the bounds on the variables.

infeastol (real): Specifies the (relative) tolerance used for declaring infeasibility of a model ←↩

Specifies the (relative) tolerance used for declaring infeasibility of a model. Smaller values of
infeastol make it more difficult to satisfy the conditions Knitro uses for detecting infeasible
models. If you believe Knitro incorrectly declares a model to be infeasible, then you should
try a smaller value for infeastol.

Range: [0, ∞]

Default: 1e-08

infeastol iters (integer): The optimization process will terminate if the relative change in the feasibility
error is less than infeastol for infeastol iters consecutive infeasible iterations ←↩

Range: {1, ..., ∞}

Default: 50

initpenalty (real): Specifies the initial penalty parameter used in the Knitro merit functions ←↩

5.23 KNITRO 2207

Specifies the initial penalty parameter used in the Knitro merit functions. The Knitro merit
functions are used to balance improvements in the objective function versus improvements in
feasibility. A larger initial penalty value places more weight initially on feasibility in the merit
function.

Range: [0, ∞]

Default: 10

initvalues (integer): Enable use of initial guess for levels and marginals (subsequent solves) ←↩

In case of a MI(NL)P, the initial levels are added as primal initial point for the root relaxation
and as primal MIP initial guess. From the primal MIP initial guess Knitro will try to construct
a feasible solution.

Default: 1

value meaning

0 Using no initial values

1 Using all initial values

2 Using only non-default initial values

initvalues0 (integer): Enable use of initial guess for levels and marginals (first solve) ←↩

In case of a MI(NL)P, the initial levels are added as primal initial point for the root relaxation
and as primal MIP initial guess. From the primal MIP initial guess Knitro will try to construct
a feasible solution.

Default: 2

value meaning

0 Using no initial values

1 Using all initial values

2 Using only non-default initial values

linesearch (integer): Indicates which linesearch strategy to use for the Interior/Direct or SQP algorithm
to search for a new acceptable iterate ←↩

Indicates which linesearch strategy to use for the Interior/Direct or SQP algorithm to search
for a new acceptable iterate. This option has no effect on the Interior/CG or Active Set
algorithm.

Default: 0

value meaning

0 (auto) Let Knitro automatically choose the strategy.

1 (backtrack) Use a simple backtracking scheme.

2 (interpolate) Use a cubic interpolation scheme.

3 (weakwolfe) Use a linesearch that satisfies the weak Wolfe conditions (uncon-
strained only).

linesearch maxtrials (integer): Indicates the maximum allowable number of trial points during the

2208 Solver Manuals

linesearch of the Interior/Direct or SQP algorithm before treating the linesearch step as a failure and
generating a new step ←↩

Indicates the maximum allowable number of trial points during the linesearch of the Inte-
rior/Direct or SQP algorithm before treating the linesearch step as a failure and generating a
new step. This option has no effect on the Interior/CG or Active Set algorithm.

Range: {0, ..., ∞}

Default: 3

linsolver (integer): Indicates which linear solver to use to solve linear systems arising in Knitro algorithms
←↩

Default: 0

value meaning

0 (auto) Let Knitro automatically choose the linear solver.

1 (internal) Not currently used; reserved for future use. Same as auto for now.

2 (hybrid) Use a hybrid approach where the solver chosen depends on the particular
linear system which needs to be solved.

3 (qr) Use a dense QR method. This approach uses LAPACK QR routines. Since
it uses a dense method, it is only efficient for small problems. It may often be
the most efficient method for small problems with dense Jacobians or Hessian
matrices.

4 (ma27) Use the HSL MA27 sparse symmetric indefinite solver.

5 (ma57) Use the HSL MA57 sparse symmetric indefinite solver.

6 (mklpardiso) Use the Intel MKL PARDISO (parallel, deterministic) sparse sym-
metric indefinite solver.

7 (ma97) Use the HSL MA97 (parallel, deterministic) sparse symmetric indefinite
solver.

8 (ma86) Use the HSL MA86 (parallel, non-deterministic) sparse symmetric indefi-
nite solver.

linsolver maxitref (integer): Indicates the maximum allowable number of iterative refinement steps
applied when a linear system is solved inside Knitro ←↩

Indicates the maximum allowable number of iterative refinement steps applied when a linear
system is solved inside Knitro. Iterative refinement steps may be applied when there are
significant errors (e.g. large residuals) in the linear system solves. Applying more iterative
refinement steps may improve the numerical accuracy of the linear solves at extra cost.

Range: {0, ..., ∞}

Default: 2

linsolver nodeamalg (integer): Controls the node amalgamation setting for the MA57, MA86 and MA97
linear solvers ←↩

Controls the node amalgamation setting for the MA57, MA86 and MA97 linear solvers. A
value of 0 indicates that the default value should be used for the given linear solver, while
a positive value sets the node amalgamation parameter for the linear solver to that specific
value.

Range: {0, ..., ∞}

Default: 0

5.23 KNITRO 2209

linsolver numthreads (integer): Specify the number of threads to use for linear system solve operations
when linsolver = 6 ←↩

Range: {0, ..., ∞}

Default: 0

linsolver ooc (integer): Indicates whether to use Intel MKL PARDISO out-of-core solve of linear systems
when linsolver = mklpardiso ←↩

Indicates whether to use Intel MKL PARDISO out-of-core solve of linear systems when linsolver
= mklpardiso. This option is only active when linsolver = mklpardiso.

Default: 0

value meaning

0 (no) Do not use Intel MKL PARDISO out-of-core option.

1 (maybe) Maybe solve out-of-core depending on how much space is needed.

2 (yes) Solve linear systems out-of-core when using Intel MKL PARDISO.

linsolver ordering (integer): Sets the ordering method used for the linear system solver ←↩

Default: -1

value meaning

-1 (auto) Let Knitro automatically choose the ordering strategy.

0 (best) Choose the best between AMD and METIS (try both).

1 (amd) Use AMD ordering (minimum degree for MKL PARDISO).

2 (metis) Use METIS ordering.

linsolver pivottol (real): Specifies the initial pivot threshold used in factorization routines ←↩

Specifies the initial pivot threshold used in factorization routines. The value should be in the
range [0, . . . , 0.5] with higher values resulting in more pivoting (more stable factorizations).
Values less than 0 will be set to 0 and values larger than 0.5 will be set to 0.5. If linsolver pivottol
is non-positive, initially no pivoting will be performed. Smaller values may improve the speed
of the code but higher values are recommended for more stability (for example, if the problem
appears to be very ill-conditioned).

Range: [0, 0.5]

Default: 1e-08

linsolver scaling (integer): Enables scaling for the linear system solver ←↩

Enables scaling for the linear system solver. Applying scaling may allow for more accuracy in
the linear system solves, but will generally make the linear system solves more expensive.

Default: 0

value meaning

0 (none) Do not apply scaling in the linear system solves.

1 (always) Always apply scaling in the linear system solves.

2210 Solver Manuals

lmsize (integer): Specifies the number of limited memory pairs stored when approximating the Hessian
using the limited-memory quasi-Newton BFGS option ←↩

Specifies the number of limited memory pairs stored when approximating the Hessian using the
limited-memory quasi-Newton BFGS option. The value must be between 1 and 100 and is only
used with hessopt = 6. Larger values may give a more accurate, but more expensive, Hessian
approximation. Smaller values may give a less accurate, but faster, Hessian approximation.
When using the limited memory BFGS approach it is recommended to experiment with
different values of this parameter.

Range: {1, ..., 100}

Default: 10

maxfevals (integer): Specifies the maximum number of function evaluations before termination ←↩

Specifies the maximum number of function evaluations before termination. Values less than
zero imply no limit.

Range: {-∞, ..., ∞}

Default: -1

maxit (integer): Specifies the maximum number of iterations before termination ←↩

Synonym: iterlim

Default: GAMS iterlim

value meaning

0 Let Knitro automatically choose a value based on the problem type. Currently
Knitro sets this value to 10000 for LPs/NLPs and 3000 for MIP problems.

n At most n>0 iterations may be performed before terminating.

maxtime cpu (real): Specifies, in seconds, the maximum allowable CPU time before termination ←↩

Range: [0, 100000000]

Default: 100000000

maxtime real (real): Specifies, in seconds, the maximum allowable real time before termination ←↩

Synonym: reslim

Range: [0, 100000000]

Default: GAMS reslim

ma maxtime cpu (real): Specifies, in seconds, the maximum allowable CPU time before termination for
the multi-algorithm (”MA”) procedure (algorithm=5) ←↩

Range: [0, ∞]

Default: 100000000

ma maxtime real (real): Specifies, in seconds, the maximum allowable real time before termination for
the multi-algorithm (”MA”) procedure (algorithm=5) ←↩

5.23 KNITRO 2211

Range: [0, ∞]

Default: 100000000

ma outsub (boolean): Enable writing algorithm output to files for the multi-algorithm (algorithm=5)
procedure ←↩

Default: 0

2212 Solver Manuals

value meaning

0 Do not write detailed algorithm output to files.

1 Write detailed algorithm output to files named knitro ma ∗.log.

ma terminate (integer): Define the termination condition for the multi-algorithm (algorithm=5) proce-
dure ←↩

Default: 1

value meaning

0 Terminate after all algorithms have completed.

1 Terminate at first locally optimal solution.

2 Terminate at first feasible solution estimate.

3 Terminate at first solution estimate of any type.

mip branchrule (integer): Specifies which branching rule to use for MIP branch and bound procedure
←↩

Default: 0

value meaning

0 (auto) Let Knitro automatically choose the branching rule.

1 (most frac) Use most fractional (most infeasible) branching.

2 (pseudcost) Use pseudo-cost branching.

3 (strong) Use strong branching (see options mip strong candlim, mip strong level
and mip strong maxit for further control of strong branching procedure).

mip clique (integer): Specifies rules for adding clique cuts ←↩

Default: -1

value meaning

-1 (auto) Automatically determine whether to add clique cuts.

0 (none) Do not add clique cuts.

1 (root) Add clique cuts derived from the root node only.

2 (tree) Add clique cuts derived at every node depending on the solution of the
relaxation and the cut generation strategy.

mip cutfactor (real): This value specifies a limit on the number of cuts added to a node subproblem ←↩

This value specifies a limit on the number of cuts added to a node subproblem. If non-negative,
a maximum of mip cutfactor times the number of constraints is possibly appended.

Range: [0, ∞]

Default: 1

mip cutoff (real): This value specifies the objective cutoff value for MIP ←↩

5.23 KNITRO 2213

Range: [-∞, ∞]

Default: maxdouble

mip cutting plane (boolean): Specifies when to apply the cutting plane procedure ←↩

Default: 1

value meaning

0 (none) No cutting plane procedure enabled.

1 (root) Perform cutting plane procedure at the root node only.

mip cut flowcover (integer): Specifies rules for adding flow cover cuts ←↩

Default: -1

value meaning

-1 (auto) Automatically determine whether to add flow cover cuts.

0 (none) Do not add flow cover cuts.

1 (root) Add flow cover cuts derived from the root node only.

2 (tree) Add flow cover cuts derived at every node depending on the solution of the
relaxation and the cut generation strategy.

mip cut probing (integer): Specifies rules for adding probing cuts ←↩

Default: -1

value meaning

-1 (auto) Automatically determine whether to add probing cuts.

0 (none) Do not add probing cuts.

1 (root) Add probing cuts derived from the root node only.

2 (tree) Add probing cuts derived at every node depending on the solution of the
relaxation and the cut generation strategy.

mip gomory (integer): Specifies rules for adding Gomory mixed-integer cuts ←↩

Default: -1

value meaning

-1 (auto) Automatically determine whether to add Gomory cuts.

0 (none) Do not add Gomory cuts.

1 (root) Add Gomory cuts derived from the root node only.

2 (tree) Add Gomory cuts derived at every node depending on the solution of the
relaxation and the cut generation strategy.

mip gub branch (boolean): Specifies whether or not to branch on generalized upper bounds (GUBs) ←↩

Default: 0

2214 Solver Manuals

value meaning

0 (no) Do not branch on GUBs.

1 (yes) Allow branching on GUBs.

mip heuristic diving (integer): Specifies whether or not to enable the MIP diving heuristic ←↩

Specifies whether or not to enable the MIP diving heuristic. This option is a bit-valued option
where various diving heuristics can be enabled by activating the corresponding bit value as
described below. Setting this option to -1 will use an automatic setting and setting the value
to 0 will disable all diving heuristics. Otherwise, set this parameter value to the sum of the
values for the individual diving heuristics you wish to enable. For example, to enable only the
”fractional” and ”linesearch” diving heuristics, you would set this option value to 9 (summing
1 for fractional and 8 for linesearch).

Default: -1

value meaning

-1 (auto) Let Knitro determine automaticallyfrom mip heuristic strategy.

1 (bit 0) Enable fractional diving heuristic.

2 (bit 1) Enable vector length diving heuristic.

4 (bit 2) Enable coefficient diving heuristic.

8 (bit 3) Enable linesearch diving heuristic.

16 (bit 4) Enable guided diving heuristic.

mip heuristic feaspump (integer): Specifies whether or not to enable the MIP feasibility pump heuristic
←↩

Default: -1

value meaning

-1 (auto) Let Knitro determine automatically from mip heuristic strategy.

0 (off) Feasibility pump heuristic is not applied.

1 (on) Feasibility pump heuristic is enabled.

mip heuristic lns (integer): Specifies whether or not to enable the MIP large neighborhood search (LNS)
heuristics ←↩

Specifies whether or not to enable the MIP large neighborhood search (LNS) heuristics. This
option is a bit-valued option where various LNS heuristics can be enabled by activating the
corresponding bit value as described below. Setting this option to -1 will use an automatic
setting and setting the value to 0 will disable all LNS heuristics. Otherwise, set this parameter
value to the sum of the values for the individual LNS heuristics you wish to enable. For
example, to enable both the ”RENS” and ”RINS” LNS heuristics, you would set this option
value to 3 (summing 1 for RENS and 2 for RINS).

Default: -1

value meaning

-1 (auto) Let Knitro determine automatically from mip heuristic strategy.

1 (bit 0) Enable relaxation enforced neighborhood search (RENS) heuristic.

2 (bit 1) Enable relaxation induced neighborhood search (RINS) heuristic.

5.23 KNITRO 2215

mip heuristic localsearch (integer): Specifies whether or not to enable the MIP local search heuristic
←↩

Default: -1

value meaning

-1 (auto) Let Knitro determine automatically from mip heuristic strategy.

0 (off) Local search heuristic is not applied.

1 (on) Local search heuristic is enabled.

mip heuristic maxit (integer): Specifies the maximum number of iterations to allow for MIP heuristic,
if one is enabled ←↩

Range: {0, ..., ∞}

Default: 100

mip heuristic misqp (integer): Specifies whether or not to enable the MIP MISQP heuristic ←↩

Default: -1

value meaning

-1 (auto) Let Knitro determine automatically from mip heuristic strategy.

0 (off) MISQP heuristic is not applied.

1 (on) MISQP heuristic is enabled.

mip heuristic mpec (integer): Specifies whether or not to enable the MIP MPEC heuristic ←↩

Default: -1

value meaning

-1 (auto) Let Knitro determine automatically from mip heuristic strategy.

0 (off) MPEC heuristic is not applied.

1 (on) MPEC heuristic is enabled.

mip heuristic strategy (integer): Specifies the level of effort applied for the MIP heuristic search used
to try to find an initial integer feasible point ←↩

Default: -1

value meaning

-1 (auto) Let Knitro choose the heuristic strategy to apply (if any).

0 (none) No heuristic search applied.

1 (basic) Apply basic heuristics.

2 (advanced) Apply more advanced heuristics.

3 (extensive) Apply most extensive heuristics.

mip heuristic terminate (integer): Specifies the condition for terminating the MIP heuristic ←↩

2216 Solver Manuals

Default: 1

5.23 KNITRO 2217

value meaning

1 (feasible) Terminate at first feasible point or iteration limit (whichever comes
first).

2 (limit) Always run to the iteration limit.

mip implications (boolean): Specifies whether or not to add constraints to the MIP derived from logical
implications ←↩

Default: 1

value meaning

0 (no) Do not add constraints from logical implications.

1 (yes) Knitro adds constraints from logical implications.

mip integer tol (real): This value specifies the threshold for deciding whether or not a variable is
determined to be an integer ←↩

Range: [0, 1]

Default: 1e-08

mip intvar strategy (integer): Specifies how to handle integer variables ←↩

Default: 0

value meaning

0 (none) No special treatment applied.

1 (relax) Relax all integer variables.

2 (mpec) Convert all binary variables to complementarity constraints.

mip knapsack (integer): Specifies rules for adding MIP knapsack cuts ←↩

Default: -1

value meaning

-1 (auto) Automatically determine whether to add knapsack cuts.

0 (none) Do not add knapsack cuts.

1 (root) Add knapsack cuts derived from the root node only.

2 (tree) Add knapsack cuts derived at every node depending on the solution of the
relaxation and the cut generation strategy.

mip liftproject (integer): Specifies rules for adding lift and project cuts ←↩

Default: -1

value meaning

-1 (auto) Automatically determine whether to add lift and project cuts.

0 (none) Do not add lift and project cuts.

1 (root) Add lift and project cuts at the root node only.

2218 Solver Manuals

mip lpalg (integer): Specifies which algorithm to use for any linear programming (LP) subproblem solves
that may occur in the MIP branch-and-bound procedure ←↩

Specifies which algorithm to use for any linear programming (LP) subproblem solves that may
occur in the MIP branch-and-bound procedure. LP subproblems may arise if the problem is a
mixed integer linear program (MILP), or if using mip method = HQG. (Nonlinear programming
subproblems use the algorithm specified by the algorithm option.)

Default: 0

value meaning

0 (auto) Let Knitro automatically choose an algorithm, based on the problem
characteristics.

1 (direct) Use the Interior/Direct (barrier) algorithm.

2 (cg) Use the Interior/CG (barrier) algorithm.

3 (active) Use the Active Set (simplex) algorithm.

mip maxnodes (integer): Specifies the maximum number of nodes explored (0 means no limit) ←↩

Synonym: nodlim

Range: {0, ..., ∞}

Default: GAMS nodlim

mip maxsolves (integer): Specifies the maximum number of subproblem solves allowed (0 means no
limit) ←↩

Range: {0, ..., ∞}

Default: 0

mip maxtime cpu (real): Specifies the maximum allowable CPU time in seconds for the complete MIP
solution ←↩

Specifies the maximum allowable CPU time in seconds for the complete MIP solution. Use
maxtime cpu to additionally limit time spent per subproblem solve.

Range: [0, ∞]

Default: 100000000

mip maxtime real (real): Specifies the maximum allowable real time in seconds for the complete MIP
solution ←↩

Specifies the maximum allowable real time in seconds for the complete MIP solution. Use
maxtime real to additionally limit time spent per subproblem solve.

Range: [0, ∞]

Default: GAMS reslim

mip method (integer): Specifies which MIP method to use ←↩

Default: 0

5.23 KNITRO 2219

value meaning

0 (auto) Let Knitro automatically choose the method.

1 (BB) Use the standard branch-and-bound method.

2 (HQG) Use the hybrid Quesada-Grossman method (for convex, nonlinear problems
only).

3 (MISQP) Use mixed-integer SQP method (allows for non-relaxable integer vari-
ables).

mip mir (integer): Specifies rules for adding mixed-integer rounding cuts ←↩

Default: -1

value meaning

-1 (auto) Let Knitro decide whether to add mixed-integer rounding cuts.

0 (none) Do not add mixed-integer rounding cuts.

1 (root) Add mixed-integer rounding cuts derived from the root node only.

2 (tree) Add mixed-integer rounding cuts derived at every node depending on the
solution of the relaxation and the cut generation strategy.

mip multistart (boolean): Use to enable MIP multi-start at the branch-and-bound level ←↩

Default: 0

value meaning

0 (off) Do not enable MIP multi-start for branch-and-bound.

1 (on) Enable MIP multi-start for branch-and-bound.

mip nodealg (integer): Specifies which algorithm to use for standard node subproblem solves in MIP
(same options as algorithm user option) ←↩

Range: {0, ..., 5}

Default: 0

mip numthreads (integer): Specify the number of threads to use for MIP branch-and-bound (when
mip method = 1) ←↩

Specify the number of threads to use for MIP branch-and-bound (when mip method = 1). 0
Let Knitro choose the number of threads. n>0 Use n threads for the MIP branch-and-bound.

Range: {0, ..., ∞}

Default: 0

mip opt gap abs (real): The absolute optimality gap stop tolerance for MIP ←↩

Synonym: optca

Range: [-1, ∞]

Default: GAMS optca

2220 Solver Manuals

mip opt gap rel (real): The relative optimality gap stop tolerance for MIP ←↩

Synonym: optcr

Range: [-1, ∞]

Default: GAMS optcr

mip outinterval (integer): Specifies node printing interval for mip outlevel when mip outlevel > 0 ←↩

Default: 0

value meaning

0 Let Knitro decide.

1 Print output every node.

2 Print output every 2nd node.

n Print output every Nth node.

mip outlevel (integer): Specifies how much MIP information to print ←↩

Default: 2

value meaning

0 (none) Do not print any MIP node information.

1 (iters) Print one line of output for every node.

2 (iterstime) Also print accumulated time for every node.

3 (root) Also print detailed log from root node solve.

mip pseudoinit (integer): Specifies the method used to initialize pseudo-costs corresponding to variables
that have not yet been branched on in the MIP method ←↩

Default: 0

value meaning

0 Let Knitro automatically choose the method.

1 Initialize using the average value of computed pseudo-costs.

2 Initialize using strong branching.

mip relaxable (boolean): Specifies whether integer variables are relaxable ←↩

Default: 1

value meaning

0 (none) Integer variables are not relaxable.

1 (all) All integer variables are relaxable.

mip restart (boolean): Specifies whether to enable the MIP restart procedure ←↩

Default: 1

5.23 KNITRO 2221

value meaning

0 (off) Do not enable the MIP restart procedure.

1 (on) Enable the MIP restart procedure.

mip rootalg (integer): Specifies which algorithm to use for the root node solve in MIP (same options as
algorithm user option) ←↩

Range: {0, ..., 5}

Default: 0

mip rounding (integer): Specifies the MIP rounding rule to apply ←↩

Default: -1

value meaning

-1 (auto) Let Knitro choose the rounding rule.

0 (none) No rounding heuristic is used.

2 (heur only) Round using a fast heuristic only.

3 (nlp sometimes) Round and solve a subproblem if likely to succeed.

4 (nlp always) Always round and solve a subproblem.

mip selectdir (boolean): Specifies the MIP node selection direction rule (for tiebreakers) for choosing the
next node in the branch-and-bound tree ←↩

Default: 0

value meaning

0 (down) Choose the down (i.e. <=) node first.

1 (up) Choose the up (i.e. >=) node first.

mip selectrule (integer): Specifies the MIP select rule for choosing the next node in the branch-and-bound
tree ←↩

Default: 0

value meaning

0 (auto) Let Knitro choose the node selection rule.

1 (depth first) Search the tree using a depth first procedure.

2 (best bound) Select the node with the best relaxation bound.

3 (combo 1) Use depth first unless pruned, then best bound.

mip strong candlim (integer): Specifies the maximum number of candidates to explore for MIP strong
branching ←↩

Range: {-∞, ..., ∞}

Default: 128

2222 Solver Manuals

mip strong level (integer): Specifies the maximum number of tree levels on which to perform MIP
strong branching ←↩

Range: {-∞, ..., ∞}

Default: 10

mip strong maxit (integer): Specifies the maximum number of iterations to allow for MIP strong
branching solves ←↩

Range: {-∞, ..., ∞}

Default: 1000

mip terminate (integer): Specifies conditions for terminating the MIP algorithm ←↩

Default: 0

value meaning

0 (optimal) Terminate at optimum.

1 (feasible) Terminate at first integer feasible point.

mip zerohalf (integer): Specifies rules for adding zero-half cuts ←↩

Default: -1

value meaning

-1 (auto) Automatically determine whether to add zero-half cuts.

0 (none) Do not add zero-half cuts.

1 (root) Add zero-half cuts derived from the root node only.

2 (tree) Add zero-half cuts derived at every node depending on the solution of the
relaxation and the cut generation strategy.

ms deterministic (boolean): Indicates whether Knitro multi-start procedure will be deterministic (when
ms terminate = 0) ←↩

Default: 1

value meaning

0 (no) multithreaded multi-start is non-deterministic.

1 (yes) multithreaded multi-start is deterministic (when ms terminate = 0).

ms enable (boolean): Indicates whether Knitro will solve from multiple start points to find a better local
minimum ←↩

Default: 0

value meaning

0 (no) Knitro solves from a single initial point.

1 (yes) Knitro solves using multiple start points.

5.23 KNITRO 2223

ms initpt cluster (boolean): The strategy for clustering initial points in multi-start ←↩

Default: 0

value meaning

0 (none) Do not apply clustering.

1 (sl) Apply single linkage based clustering.

ms maxbndrange (real): Specifies the maximum range that an unbounded variable can take when
determining new start points ←↩

Specifies the maximum range that an unbounded variable can take when determining new
start points. If a variable is unbounded in one or both directions, then new start point
values are restricted by the option. If xi is such a variable, then all initial values satisfy
max{bLi , x0

i − ms maxbndrange/2} ≤ xi ≤ min{bUi , x0
i + ms maxbndrange/2}, where x0

i is the
initial value of xi provided by the user, and bLi and bUi are the variable bounds (possibly
infinite) on xi . This option has no effect unless ms enable = yes.

Range: [-∞, ∞]

Default: 1000

ms maxsolves (integer): Specifies how many start points to try in multi-start ←↩

Specifies how many start points to try in multi-start. This option has no effect unless ms enable
= yes.

Default: 0

value meaning

0 Let Knitro automatically choose a value based on the problem size and context.

n Try n>0 start points.

ms maxtime cpu (real): Specifies, in seconds, the maximum allowable CPU time before termination ←↩

Specifies, in seconds, the maximum allowable CPU time before termination. The limit applies
to the operation of Knitro since multi-start began; in contrast, the value of maxtime cpu
limits how long Knitro iterates from a single start point. Therefore, ms maxtime cpu should
be greater than maxtime cpu. This option has no effect unless ms enable = yes.

Range: [-∞, ∞]

Default: 100000000

ms maxtime real (real): Specifies, in seconds, the maximum allowable real time before termination ←↩

Specifies, in seconds, the maximum allowable real time before termination. The limit applies
to the operation of Knitro since multi-start began; in contrast, the value of maxtime real
limits how long Knitro iterates from a single start point. Therefore, ms maxtime real should
be greater than maxtime real. This option has no effect unless ms enable = yes.

Range: [-∞, ∞]

Default: 100000000

2224 Solver Manuals

ms numthreads (integer): Specify the number of threads to use for multi-start (when ms enable = 1)←↩

Specify the number of threads to use for multi-start (when ms enable = 1). 0 Let Knitro
choose the number of threads (currently sets ms numthreads based on numthreads). n>0 Use
n threads for the multi-start (solve n problems in parallel).

Range: {0, ..., ∞}

Default: 0

ms num to save (integer): Specifies the number of distinct feasible points to save in a file named
knitro mspoints ←↩

Specifies the number of distinct feasible points to save in a file named knitro mspoints.log.
Each point results from a Knitro solve from a different starting point, and must satisfy the
absolute and relative feasibility tolerances. The file stores points in order from best objective
to worst. Points are distinct if they differ in objective value or some component by the value
of ms savetol using a relative tolerance test. This option has no effect unless ms enable = yes.

Range: {0, ..., ∞}

Default: 0

ms outsub (boolean): Enable writing algorithm output to files for the parallel multi-start procedure ←↩

Default: 0

value meaning

0 Do not write detailed algorithm output to files.

1 Write detailed algorithm output to files named knitro ms ∗.log.

ms savetol (real): Specifies the tolerance for deciding if two feasible points are distinct ←↩

Specifies the tolerance for deciding if two feasible points are distinct. Points are distinct if
they differ in objective value or some component by the value of ms savetol using a relative
tolerance test. A large value can cause the saved feasible points in the file knitro mspoints.log
to cluster around more widely separated points. This option has no effect unless ms enable =
yes. and ms num to save is positive.

Range: [-∞, ∞]

Default: 1e-06

ms seed (integer): Seed value used to generate random initial points in multi-start; should be a non-
negative integer ←↩

Range: {0, ..., ∞}

Default: 0

ms startptrange (real): Specifies the maximum range that each variable can take when determining
new start points ←↩

5.23 KNITRO 2225

Specifies the maximum range that each variable can take when determining new start points.
If a variable has upper and lower bounds and the difference between them is less than or
equal to ms startptrange, then new start point values for the variable can be any number
between its upper and lower bounds. If the variable is unbounded in one or both directions,
or the difference between bounds is greater than ms startptrange, then new start point
values are restricted by the option. If xi is such a variable, then all initial values satisfy
max{bLi , x0

i − τ} ≤ xi ≤ min{bUi , x0
i + τ}, τ = min{ms startptrange/2, ms maxbndrange/2}

where x0
i is the initial value of xi provided by the user, and bLi and bUi are the variable bounds

(possibly infinite) on xi . This option has no effect unless ms enable = yes.

Range: [-∞, ∞]

Default: 1e+20

ms terminate (integer): Specifies the condition for terminating multi-start ←↩

Specifies the condition for terminating multi-start. This option has no effect unless ms enable
= yes.

Default: 0

value meaning

0 (maxsolves) Terminate after ms maxsolves.

1 (optimal) Terminate after the first local optimal solution is found or ms maxsolves,
whichever comes first.

2 (feasible) Terminate after the first feasible solution estimate is found or
ms maxsolves, whichever comes first.

3 (any) Terminate after the first solution estimate of any type is found or
ms maxsolves, whichever comes first.

4 (rulebased) Terminate using rules that estimate when the probability of finding
new local solutions is low.

names (boolean): Enable to pass variable and equation names to Knitro ←↩

Default: 0

ncvx qcqp init (integer): Specifies the initialization strategy used for non-convex QPs and QCQPs ←↩

Specifies the initialization strategy used for non-convex QPs and QCQPs. In particular,
these strategies may be more likely to cause Knitro to find global or better local solutions
on non-convex quadratic programs (QPs) or non-convex quadratically constrained quadratic
programs (QCQPs).

Default: -1

value meaning

-1 (auto) Knitro will automatically determine the strategy.

0 (none) No special initialization strategy is used.

1 (linear) Initialize by solving a linear relaxation.

2 (hybrid) Initialize by solving a hybrid formulation.

3 (penalty) Initialize by solving a penalty formulation.

4 (cvxquad) Initialize by solving a convex quadratic relaxation.

2226 Solver Manuals

newpoint (integer): Specifies additional action to take after every iteration in a solve of a continuous
problem, or after every new incumbent of the NLPBB algorithm ←↩

Specifies additional action to take after every iteration in a solve of a continuous problem, or
after every new incumbent of the NLPBB algorithm. For a continuous problem, an iteration
of Knitro results in a new point that is closer to a solution. The new point includes values of x
and Lagrange multipliers lambda. For the NLPBB algorithm, the new incumbent includes
values of x.

Default: 0

value meaning

0 (none) Knitro takes no additional action.

1 (saveone) Knitro writes x and lambda to the file knitro newpoint.log. Previous
contents of the file are overwritten.

2 (saveall) Knitro appends x and lambda to the file knitro newpoint.log. Warning:
this option can generate a very large file. All iterates, including the start point,
crossover points, and the final solution are saved.

objrange (real): Specifies the extreme limits of the objective function for purposes of determining
unboundedness ←↩

Specifies the extreme limits of the objective function for purposes of determining unboundedness.
If the magnitude of the objective function becomes greater than objrange for a feasible iterate,
then the problem is determined to be unbounded and Knitro proceeds no further.

Range: [0, ∞]

Default: 1e+20

option file (string): additional option file name - read only by KNITRO solver lib ←↩

opttol (real): Specifies the final relative stopping tolerance for the KKT (optimality) error ←↩

Specifies the final relative stopping tolerance for the KKT (optimality) error. Smaller values
of opttol result in a higher degree of accuracy in the solution with respect to optimality.

Range: [0, ∞]

Default: 1e-06

opttolabs (real): Specifies the final absolute stopping tolerance for the KKT (optimality) error ←↩

Synonym: opttol abs

Specifies the final absolute stopping tolerance for the KKT (optimality) error. Smaller values
of opttol abs result in a higher degree of accuracy in the solution with respect to optimality.

Range: [0, ∞]

Default: 0.001

outappend (boolean): Specifies whether output should be started in a new file, or appended to existing
files ←↩

Specifies whether output should be started in a new file, or appended to existing files. The
option affects knitro.log. It does not affect knitro newpoint.log, which is controlled by option
newpoint.

Default: 0

5.23 KNITRO 2227

value meaning

0 (no) Erase any existing files when opening for output.

1 (yes) Append output to any existing files.

outdir (string): Specifies a single directory as the location to write all output files ←↩

Specifies a single directory as the location to write all output files. The option should be a full
pathname to the directory, and the directory must already exist.

outlev (integer): Controls the level of output produced by Knitro ←↩

Default: 2

value meaning

0 (none) Printing of all output is suppressed.

1 (summary) Print only summary information.

2 (iter 10) Print basic information every 10 iterations.

3 (iter) Print basic information at each iteration.

4 (iter verbose) Print basic information and the function count at each iteration.

5 (iter x) Print all the above, and the values of the solution vector x.

6 (all) Print all the above, and the values of the constraints c at x and the Lagrange
multipliers lambda.

outmode (integer): Specifies where to direct the output from Knitro ←↩

Default: 0

value meaning

0 (screen) Output is directed to standard out (e.g., screen).

1 (file) Output is sent to a file named knitro.log.

2 (both) Output is directed to both the screen and file knitro.log.

outname (string): Use to specify a custom filename when output is written to a file using outmode ←↩

output time (boolean): print output on where time is used ←↩

Default: 0

out csvinfo (boolean): Controls whether or not to generates a file knitro solve ←↩

Controls whether or not to generates a file knitro solve.csv containing solve information in
comma separated format.

Default: 0

value meaning

0 (no) No solution information file is generated.

1 (yes) The knitro solve.csv solution file is generated.

2228 Solver Manuals

out csvname (string): Use to specify a custom csv filename when using out csvinfo ←↩

out hints (boolean): Specifies whether to print diagnostic hints (e.g. about user option settings) after
solving ←↩

Default: 1

value meaning

0 (no) Do not print any hints.

1 (yes) Print diagnostic hints on occasion.

presolve (boolean): Determine whether or not to use the Knitro presolver to try to simplify the model by
removing variables or constraints ←↩

Default: 1

value meaning

0 (no) Do not use the Knitro presolver.

1 (yes) Enable the Knitro presolver.

presolveop redundant (integer): Determine whether or not to enable the Knitro presolve operation to
detect and remove redundant constraints ←↩

Default: 1

value meaning

0 (none) Do not remove redundant constraints.

1 (dupcon) Detect and remove duplicate constraints.

2 (depcon) Detect and remove linearly dependent constraints.

presolveop substitution (integer): Determine whether or not to enable the Knitro presolve operation
to substitute out variables when possible ←↩

Default: -1

value meaning

-1 (auto) Automatically determined (may depend on the algorithm).

0 (none) Do not perform any variable substitution.

1 (simple) Enable simple substitutions involving doubleton equality constraints.

2 (all) Enable all possible variable substitutions.

presolveop substitution tol (real): Tolerance for applying a substitution ←↩

Tolerance for applying a substitution. This is a relative tolerance on coefficients involved with
the substituted variable. Higher values mean that less reductions will be applied (potentially
improving numerical focus). Zero value means all possible substitutions are applied.

Range: [0, ∞]

5.23 KNITRO 2229

Default: 0.01

presolveop tighten (integer): Determine whether or not to enable the Knitro presolve operation to
tighten variable bounds or coefficients ←↩

Default: -1

value meaning

-1 (auto) Automatically determined (may depend on the algorithm).

0 (none) Do not tighten variable bounds (unless it removes a constraint).

1 (varbnd) Enable tightening variable bounds always.

2 (coef) Enable tightening coefficients in linear constraints.

3 (all) Enable tightening variable bounds and coefficients.

presolve initpt (integer): Control whether the Knitro presolver can shift a user-supplied initial point ←↩

Default: -1

value meaning

-1 (auto) Let Knitro automatically choose whether to allow shifting.

0 (noshift) Do not allow presolver to shift user-supplied initial point.

1 (linshift) Allow presolver to shift user-supplied initial point if it only appears in
linear constraints.

2 (anyshift) Allow presolver to shift any user-supplied initial point.

presolve level (integer): Set the level of presolve operations to enable through the Knitro presolver ←↩

Set the level of presolve operations to enable through the Knitro presolver. A higher presolve
level enables more complex presolve operations.

Default: -1

value meaning

-1 (auto) Let Knitro automatically choose the presolve level.

1 (level1) Enable the most basic presolve operations.

2 (level2) Enable more advanced presolve operations.

presolve passes (integer): Set a maximum limit on the number of passes through the Knitro presolve
operations ←↩

Range: {0, ..., ∞}

Default: 10

presolve tol (real): Determines the tolerance used by the Knitro presolver to remove variables and
constraints from the model ←↩

Determines the tolerance used by the Knitro presolver to remove variables and constraints
from the model. If you believe the Knitro presolver is incorrectly modifying the model, use a
smaller value for this tolerance (or turn the presolver off).

Range: [0, ∞]

Default: 1e-06

2230 Solver Manuals

qextractalg (integer): quadratic extraction algorithm in GAMS interface ←↩

Default: 0

value meaning

0 Automatic

1 ThreePass: Uses a three-pass forward / backward / forward AD technique to
compute function / gradient / Hessian values and a hybrid scheme for storage.

2 DoubleForward: Uses forward-mode AD to compute and store function, gradient,
and Hessian values at each node or stack level as required. The gradients and
Hessians are stored in linked lists.

3 Concurrent: Uses ThreePass and DoubleForward in parallel. As soon as one
finishes, the other one stops.

restarts (integer): Specifies whether or not to enable automatic restarts in Knitro ←↩

Specifies whether or not to enable automatic restarts in Knitro. When enabled, if a Knitro
algorithm seems to be converging slowly or not converging, the algorithm will automatically
restart, which may help with convergence.

Default: -1

value meaning

0 No automatic restarts allowed.

n At most n>0 automatic restarts may be performed.

restarts maxit (integer): When restarts are enabled, this option can be used to specify a maximum
number of iterations before enforcing a restart ←↩

Default: 0

value meaning

0 No iteration limit on restarts enforced.

n At most n>0 iterations are allowed without convergence before enforcing an
automatic restart, if restarts are enabled.

scale (integer): Specifies whether to perform problem scaling of the objective function, constraint functions,
or possibly variables ←↩

Specifies whether to perform problem scaling of the objective function, constraint functions,
or possibly variables. If scaling is performed, internal computations, including some aspects
of the optimality tests, are based on the scaled values, though the feasibility error is always
computed in terms of the original, unscaled values.

Default: 1

value meaning

0 (no) No scaling is performed.

1 (user internal) User provided scaling is used if defined, otherwise Knitro internal
scaling is applied.

2 (user none) User provided scaling is used if defined, otherwise no scaling is applied.

3 (internal) Knitro internal scaling is applied.

5.23 KNITRO 2231

scale vars (boolean): Specifies the strategy for scaling variables ←↩

Specifies the strategy for scaling variables. If scaling is performed, internal computations,
including some aspects of the optimality tests, are based on the scaled values, though the
feasibility error is always computed in terms of the original, unscaled values.

Default: 0

value meaning

0 (none) No variable scaling is performed.

1 (bnds) Scaling of variables is applied based on their bound values.

soc (integer): Specifies whether or not to try second order corrections (SOC) ←↩

Specifies whether or not to try second order corrections (SOC). A second order correction may
be beneficial for problems with highly nonlinear constraints.

Default: 1

value meaning

0 (no) No second order correction steps are attempted.

1 (maybe) Second order correction steps may be attempted on some iterations.

2 (yes) Second order correction steps are always attempted if the original step is
rejected and there are nonlinear constraints.

strat warm start (boolean): Specifies whether or not to invoke a warm-start strategy ←↩

Specifies whether or not to invoke a warm-start strategy. A warm-start strategy may be
beneficial when an initial point close to the solution can be provided. For example, this
may occur when solving a sequence of closely related problems, and the solution from one
problem can be used to initialize (or warm-start) the next problem in the sequence. The
Knitro warm-start strategy will use this information to tune the algorithms to try to converge
more quickly in this case. If the initial point is not sufficiently close to the solution, or is too
infeasible, the warm-start strategy may not be helpful. This option is currently only used for
the Knitro barrier/interior-point algorithms. In this case it may also be useful to experiment
with different (smaller than default) values for the initial barrier parameter bar initmu. In
general, the closer the initial point is to the solution, the smaller this value should be (Knitro
will try by default to initialize this to a good value when applying a warm-start strategy).

Default: 0

value meaning

0 (no) No warm-start strategy is applied.

1 (yes) Knitro will apply a warm-start strategy with special tunings.

threads (integer): default thread count ←↩

Synonyms: gthreads numthreads

Controls the number of threads to use. Non-positive values are interpreted as the number of
cores to leave free so setting threads to 0 uses all available cores while setting threads to -1
leaves one core free for other tasks.

2232 Solver Manuals

By default, Knitro decides automatically how to use the threads specified. For example,
if the multi-start method is enabled, it can run in parallel threads. If the multi-algorithm
algorithm=5 is selected, the different algorithms can be run in parallel threads if threads are
allocated. In case only one algorithm is running, multiple threads can be allocated to the MKL
BLAS library or to the PARDISO linear solver via the threads option: see the blasoption,
par blasnumthreads, and par lsnumthreads options for details.

Range: {-∞, ..., ∞}

Default: GAMS threads

tuner (boolean): Indicates whether to invoke the Knitro-Tuner ←↩

Default: 0

value meaning

0 (off) Do not invoke the Knitro-Tuner.

1 (on) Invoke the Knitro-Tuner.

tuner maxtime cpu (real): Specifies, in seconds, the maximum allowable CPU time before terminating
the Knitro-Tuner ←↩

Specifies, in seconds, the maximum allowable CPU time before terminating the Knitro-Tuner.
The limit applies to the operation of Knitro since the Knitro- Tuner began. In contrast, the
value of maxtime cpu places a time limit on each individual Knitro-Tuner solve for a particular
option setting. Therefore, tuner maxtime cpu should be greater than maxtime cpu. This
option has no effect unless tuner = on.

Range: [0, ∞]

Default: 100000000

tuner maxtime real (real): Specifies, in seconds, the maximum allowable real time before terminating
the Knitro-Tuner ←↩

Specifies, in seconds, the maximum allowable real time before terminating the Knitro-Tuner.
The limit applies to the operation of Knitro since the Knitro- Tuner began. In contrast, the
value of maxtime real places a time limit on each individual Knitro-Tuner solve for a particular
option setting. Therefore, tuner maxtime real should be greater than maxtime real. This
option has no effect unless tuner = on.

Range: [0, ∞]

Default: 100000000

tuner optionsfile (string): Can be used to specify the location of a Tuner options file ←↩

tuner outsub (integer): Enable writing additional Tuner subproblem solve output to files for the
Knitro-Tuner procedure (tuner=1) ←↩

Default: 0

value meaning

0 Do not write detailed solve output to files.

1 Write summary solve output to a file named knitro tuner summary.log.

2 Write detailed individual solve output to files named knitro tuner ∗.log.

5.23 KNITRO 2233

tuner terminate (integer): Define the termination condition for the Knitro-Tuner procedure (tuner=1)
←↩

Default: 0

value meaning

0 Terminate after all solves have completed.

1 Terminate at first locally optimal solution.

2 Terminate at first feasible solution estimate.

3 Terminate at first solution estimate of any type.

xtol (real): The optimization process will terminate if the relative change in all components of the solution
point estimate is less than xtol for xtol iters ←↩

The optimization process will terminate if the relative change in all components of the solution
point estimate is less than xtol for xtol iters. consecutive iterations. If using the Interior/Direct
or Interior/CG algorithm and the barrier parameter is still large, Knitro will first try decreasing
the barrier parameter before terminating.

Range: [0, ∞]

Default: 1e-12

xtol iters (integer): The optimization process will terminate if the relative change in the solution estimate
is less than xtol for xtol iters consecutive iterations ←↩

The optimization process will terminate if the relative change in the solution estimate is less
than xtol for xtol iters consecutive iterations. If set to 0, Knitro chooses this value based on
the solver and context. Currently Knitro sets this value to 3 unless the MISQP algorithm is
being used, in which case the value is set to 1 by default.

Range: {0, ..., ∞}

Default: 0

5.23.6 Knitro Termination Test and Optimality

5.23.6.1 Continuous problems

The first-order conditions for identifying a locally optimal solution of the problem (1) are:

∇xL(x, λ) = ∇f(x) +
∑

i=1...m

λci∇ci(x) +
∑

j=1...n

λbj = 0

λci min[(ci(x)− cLi), (cUi − ci(x))] = 0, i = 1 . . .m

λbj min[(xj − bLj), (bUj − xj)] = 0, j = 1 . . . n

cLi ≤ ci(x) ≤ cUi , i = 1 . . .m

bLj ≤ xj ≤ bUj , j = 1 . . . n
λci ≥ 0, i ∈ I, cLi = −∞, cUi finite
λci ≤ 0, i ∈ I, cUi = +∞, cLi finite

λbj ≥ 0, j ∈ B, bLj = −∞, bUj finite

λbj ≤ 0, j ∈ B, bUj = +∞, bLj finite

(3)

where I and B represent the sets of indices corresponding to the general inequality constraints and
non-fixed variable bound constraints respectively, λci is the Lagrange multiplier corresponding to constraint

2234 Solver Manuals

ci(x), and λbj is the Lagrange multiplier corresponding to the simple bounds on xj . There is exactly one
Lagrange multiplier for each constraint and variable. The Lagrange multiplier may be restricted to take
on a particular sign depending on the corresponding constraint or variable bounds.

In Knitro we define the feasibility error (FeasErr) at a point xk to be the maximum violation of the
constraints of (1), i.e.,

FeasErr = max
i=1...m, j=1...n

(0, (cLi − ci(xk)), (ci(x
k)− cUi), (bLj − xkj), (xkj − bUj)),

while the optimality error (OptErr) is defined as the maximum violation of the first three conditions of (3)

OptErr = max
i=1...m, j=1...n

(‖∇xL(xk, λk)‖∞, λci min[(ci(x)− cLi), (cUi − ci(x))], λbj min[(xj − bLj), (bUj − xj)]).

The remaining conditions on the sign of the multipliers are enforced explicitly throughout the optimization.
In order to take into account problem scaling in the termination test, the following scaling factors are
defined In order to take into account problem scaling in the termination test, the following scaling factors
are defined

τ1 = max(1, (cLi − ci(x0)), (ci(x
0)− cUi), (bLj − x0

j), , (x
0
j − bUj))),

τ2 =

{
max(1, ‖∇f(xk)‖∞), for constrained problems,

max(1,min(|f(xk)|, ‖∇f(x0)‖∞)), for unconstrained problems,

where x0 represents the initial point. The special treatment for unconstraints problems is necessary, as
for these problems, ‖∇f(xk)‖∞ → 0 as a solution is approached, thus max(1, ‖∇f(xk)‖∞) would not be
effective.

Knitro stops and declares Locally optimal solution found if the following stopping conditions are
satisfied:

FeasErr ≤ max(τ1 ∗ feastol, feastolabs) (4)

OptErr ≤ max(τ2 ∗ opttol, opttolabs) (5)

where feastol, opttol, feastolabs and opttolabs are user-defined options (see section Usage).

This stopping test is designed to give the user much flexibility in deciding when the solution returned by
Knitro is accurate enough. One can use a purely scaled stopping test (which is the recommended and
default option) by setting feastolabs and opttolabs equal to 0.0e0. Likewise, an absolute stopping test
can be enforced by setting feastol and opttol equal to 0.0e0.

Unbounded problems

Since by default Knitro uses a relative/scaled stopping test it is possible for the optimality conditions to
be satisfied for an unbounded problem. For example, if τ2 →∞ while the optimality error OptErr stays
bounded, condition (5) will eventually be satisfied for some opttol>0. If you suspect that your problem
may be unbounded, using an absolute stopping test will allow Knitro to detect this.

5.23 KNITRO 2235

5.23.6.2 Discrete problems

Algorithms for solving versions of (1) where one or more of the variables are restricted to take on only
discrete values, proceed by solving a sequence of continuous relaxations, where the discrete variables are
relaxed such that they can take on any continuous value. The global solutions f(xR) of these relaxed
problems provide a lower bound on the optimal objective value for problem (1) (upper bound if maximizing).
If a feasible point is found for problem (1) that satisfies the discrete restrictions on the variables, then
this provides an upper bound on the optimal objective value of problem (1) (lower bound if maximizing).
We will refer to these feasible points as incumbent points and denote the objective value at an incumbent
point by f(xI). Assuming all the continuous subproblems have been solved to global optimality (if the
problem is convex, all local solutions are global solutions), an optimal solution of problem (1) is verified
when the lower bound and upper bound are equal.

Knitro declares optimality for a discrete problem when the gap between the best (i.e., largest) lower
bound f(xR) and the best (i.e., smallest) upper bound f(xI) is less than a threshold determined by the
user options mip opt gap abs and mip opt gap rel. Specifically, Knitro declares optimality when either

f(xI)− f(xR) ≤ mip integral gap abs

or
f(xI)− f(xR) ≤ mip integral gap rel ·max(1, |f(xI)|),

where mip opt gap abs and mip opt gap rel are typically small positive numbers. Since these termination
conditions assume that the continuous subproblems are solved to global optimality and Knitro only finds
local solutions of nonconvex, continuous optimization problems, they are only reliable when solving convex,
mixed integer problems. The integrality gap f(xI) − f(xR) should be non-negative although it may
become slightly negative from roundoff error, or if the continuous subproblems are not solved to sufficient
accuracy. If the integrality gap becomes largely negative, this may be an indication that the model is
nonconvex, in which case Knitro may not converge to the optimal solution, and will be unable to verify
optimality (even if it claims otherwise).

Note that the default values for mip opt gap abs and mip opt gap rel are taken from the GAMS options
optCA and optCR, but an explicit setting of mip opt gap abs or mip opt gap rel will override those.

5.23.7 Knitro Output

If outlev=0 then all printing of output is suppressed. The description below assumes the default output
level (outlev=2) except where indicated:

Nondefault Options:

This output lists all user options (see section Usage) which are different from their default values. If
nothing is listed in this section then all user options are set to their default values.

Problem Characteristics:

The output begins with a description of the problem characteristics.

Iteration Information - Continuous Problems:

An iteration, in the context of Knitro, is defined as a step which generates a new solution estimate (i.e., a
successful step). The columns of the iteration log are as follows:

• Iter Iteration number.

2236 Solver Manuals

• fCount The cumulative number of function evaluations, only included if (outlev>3)

• Objective Gives the value of the objective function at the current iterate.

• FeasErr Gives a measure of the feasibility violation at the current iterate.

• OptErr Gives a measure of the violation of the Karush-Kuhn-Tucker (KKT) (first-order) optimality
conditions (not including feasibility) at the current iterate.

• ||Step|| The 2-norm length of the step (i.e., the distance between the new iterate and the previous
iterate).

• CG its The number of Projected Conjugate Gradient (CG) iterations required to compute the step.

If outlev=2, information is printed every 10 major iterations. If outlev=3 information is printed at each
major iteration. If outlev>4 addition information is included in the log.

Iteration Information - Discrete Problems:

By default, the GAMS/Knitro link prints a log line at every 10'th node. This frequency can be changed
via the mip outinterval option. To turn off the node log completely, set the mip outlevel option to 0. The
columns of the iteration log for discrete models are as follows:

• Node The node number. If an integer feasible point was found at a given node, it is marked with a ∗

• Left The current number of active nodes left in the branch and bound tree.

• Iinf The current number of active nodes left in the branch and bound tree.

• Objective Gives the value of the objective function at the solution of the relaxed subproblem solved
at the current node. If the subproblem was infeasible or failed, this is indicated. Additional symbols
may be printed at some nodes if the node was pruned (pr), integer feasible (f), or an integer feasible
point was found through rounding (r).

• Best relaxatn The value of the current best relaxation (lower bound on the solution if minimizing).

• Best incumbent The value of the current best integer feasible point (upper bound on the solution
if minimizing).

Termination Message: At the end of the run a termination message is printed indicating whether or
not the optimal solution was found and if not, why the solver terminated. Below is a list of some possible
termination messages.

• EXIT: Locally optimal solution found.

Knitro found a locally optimal point which satisfies the stopping criterion (see section
Knitro Termination Test and Optimality) for more detail on

how this is defined). If the problem is convex (for example, a linear

program), then this point corresponds to a globally optimal solution.

• EXIT: Iteration limit reached.

The iteration limit was reached before being able to satisfy the required stopping criteria.

• EXIT: Convergence to an infeasible point. Problem appears to be locally infeasible.

The algorithm has converged to an infeasible point from which it cannot further decrease
the infeasibility measure. This happens when the problem is infeasible, but may also occur
on occasion for feasible problems with nonlinear constraints or badly scaled problems. It
is recommended to try various initial points. If this occurs for a variety of initial points, it
is likely the problem is infeasible.

5.23 KNITRO 2237

• EXIT: Problem appears to be unbounded.

The objective function appears to be decreasing without bound, while satisfying the
constraints.

• EXIT: Current point cannot be improved.

No more progress can be made. If the current point is feasible it is likely it may be
optimal, however the stopping tests cannot be satisfied perhaps because of degeneracy,
ill-conditioning or bad scaling).

• EXIT: Current point cannot be improved. Point appears to be optimal, but desired

accuracy could not be achieved.

No more progress can be made, but the stopping tests are close to being satisfied (within
a factor of 100) and so the current approximate solution is believed to be optimal.

• EXIT: Time limit reached.

The time limit was reached before being able to satisfy the required stopping criteria.

• EXIT: Evaluation error.

This termination value indicates that an evaluation error occurred (e.g., divide by 0, taking
the square root of a negative number), preventing the optimization from continuing.

• EXIT: Not enough memory available to solve problem.

This termination value indicates that there was not enough memory available to solve the
problem.

Final Statistics:

Following the termination message some final statistics on the run are printed. Both relative and absolute
error values are printed.

Solution Vector/Constraints:

If outlev=5, the values of the solution vector are printed after the final statistics. If outlev=6, the final
constraint values are also printed before the solution vector and the values of the Lagrange multipliers (or
dual variables) are printed next to their corresponding constraint or bound.

5.23.8 Algorithm Options

5.23.8.1 Automatic

By default, Knitro will automatically try to choose the best optimizer for the given problem based on the
problem characteristics.

5.23.8.2 Interior/Direct

If the Hessian of the Lagrangian is ill-conditioned or the problem does not have a large-dense Hessian,
it may be advisable to compute a step by directly factoring the KKT (primal-dual) matrix rather than
using an iterative approach to solve this system. Knitro offers the Interior/Direct optimizer which allows
the algorithm to take direct steps by setting algorithm=1. This option will try to take a direct step at
each iteration and will only fall back on the iterative step if the direct step is suspected to be of poor
quality, or if negative curvature is detected.

Using the Interior/Direct optimizer may result in substantial improvements over Interior/CG when the
problem is ill-conditioned (as evidenced by Interior/CG taking a large number of Conjugate Gradient
iterations). We encourage the user to try both options as it is difficult to predict in advance which one
will be more effective on a given problem. In each case, also experiment with the bar murule option, as it
is difficult to predict which update rule will work best.

NOTE: Since the Interior/Direct algorithm in Knitro requires the explicit storage of a Hessian matrix,
this version can only be used with Hessian options, hessopt=1, 2, 3 or 6. It may not be used with
Hessian options, hessopt=4 or 5, which only provide Hessian-vector products. Both the Interior/Direct
and Interior/CG methods can be used with the bar feasible option.

2238 Solver Manuals

5.23.8.3 Interior/CG

Since Knitro was designed with the idea of solving large problems, the Interior/CG optimizer in Knitro
offers an iterative Conjugate Gradient approach to compute the step at each iteration. This approach
has proven to be efficient in most cases and allows Knitro to handle problems with large, dense Hessians,
since it does not require factorization of the Hessian matrix. The Interior/CG algorithm can be chosen by
setting algorithm=2. It can use any of the Hessian options as well as the bar feasible option.

5.23.8.4 Active Set

Knitro includes an active-set Sequential Linear-Quadratic Programing (SLQP) optimizer. This optimizer
is particular advantageous when ”warm starting” (i.e., when the user can provide a good initial solution
estimate, for example, when solving a sequence of closely related problems). This algorithm is also the
preferred algorithm for detecting infeasible problems quickly. The Active Set algorithm can be chosen by
setting algorithm=3. It can use any of the Hessian options.

5.23.9 Other Knitro special features

This section describes in more detail some of the more important special features of Knitro and provides
some guidance on how use them so that Knitro runs most efficiently for the problem at hand.

5.23.9.1 Second derivative options

The default version of Knitro assumes that exact second derivatives of the objective function and constraint
functions can be computed. If this is possible and the cost of computing the second derivatives is not
overly expensive, it is highly recommended to use exact second derivatives. However, Knitro also offers
other options which are described in detail below.

(Dense) Quasi-Newton BFGS
The quasi-Newton BFGS option uses gradient information to compute a symmetric, positive-definite
approximation to the Hessian matrix. Typically this method requires more iterations to converge than the
exact Hessian version. However, since it is only computing gradients rather than Hessians, this approach
may be more efficient in many cases. This option stores a dense quasi-Newton Hessian approximation so
it is only recommended for small to medium problems (n < 1000). The quasi-Newton BFGS option can
be chosen by setting options value hessopt=2.

(Dense) Quasi-Newton SR1
As with the BFGS approach, the quasi-Newton SR1 approach builds an approximate Hessian using
gradient information. However, unlike the BFGS approximation, the SR1 Hessian approximation is
not restricted to be positive-definite. Therefore the quasi-Newton SR1 approximation may be a better
approach, compared to the BFGS method, if there is a lot of negative curvature in the problem since it
may be able to maintain a better approximation to the true Hessian in this case. The quasi-Newton SR1
approximation maintains a dense Hessian approximation and so is only recommended for small to medium
problems (n < 1000). The quasi-Newton SR1 option can be chosen by setting options value hessopt=3.

Finite-difference Hessian-vector product option
If the problem is large and gradient evaluations are not the dominate cost, then Knitro can internally
compute Hessian-vector products using finite-differences. Each Hessian-vector product in this case requires
one additional gradient evaluation. This option can be chosen by setting options value hessopt=4. This
option is generally only recommended if the exact gradients are provided.

NOTE: This option may not be used when algorithm=1.

5.23 KNITRO 2239

Exact Hessian-vector products
In some cases the problem which the user wishes to solve may have a large, dense Hessian which makes it
impractical to store or work with the Hessian directly.

The performance of this option should be nearly identical to the exact Hessian option but requires much
less storage. This option can be chosen by setting options value hessopt=5.

NOTE: This option may not be used when algorithm=1.

Limited-memory Quasi-Newton BFGS
The limited-memory quasi-Newton BFGS option is similar to the dense quasi-Newton BFGS option
described above. However, it is better suited for large-scale problems since, instead of storing a dense
Hessian approximation, it only stores a limited number of gradient vectors used to approximate the
Hessian. In general it requires more iterations to converge than the dense quasi-Newton BFGS approach
but will be much more efficient on large-scale problems. This option can be chosen by setting options
value hessopt=6.

5.23.9.2 Feasible version

Knitro offers the user the option of forcing intermediate iterates to stay feasible with respect to the
inequality constraints (it does not enforce feasibility with respect to the equality constraints however).
Given an initial point which is sufficiently feasible with respect to all inequality constraints and selecting
bar feasible = 1, forces all the iterates to strictly satisfy the inequality constraints throughout the
solution process. For the feasible mode to become active the iterate x must satisfy

cl + tol ≤ c(x) ≤ cu− tol (21)

for all inequality constraints (i.e., for cl 6= cu). The tolerance tol > 0 by which an iterate must be strictly
feasible for entering the feasible mode is determined by the parameter bar feasmodetol which is 1.0e-4
by default. If the initial point does not satisfy (21) then the default infeasible version of Knitro will run
until it obtains a point which is sufficiently feasible with respect to all the inequality constraints. At this
point it will switch to the feasible version of Knitro and all subsequent iterates will be forced to satisfy
the inequality constraints.

For a detailed description of the feasible version of Knitro see [32] .

NOTE: This option may only be used when algorithm=2.

5.23.9.3 Honor Bounds

By default Knitro does not enforce that the simple bounds on the variables (1c) are satisfied throughout
the optimization process. Rather, satisfaction of these bounds is only enforced at the solution. In some
applications, however, the user may want to enforce that the initial point and all intermediate iterates
satisfy the bounds bl ≤ x ≤ bu. This can be enforced by setting honorbnds=1.

2240 Solver Manuals

5.23.9.4 Crossover

Interior-point (or barrier) methods are a powerful tool for solving large-scale optimization problems.
However, one drawback of these methods is that they do not always provide a clear picture of which
constraints are active at the solution. In general they return a less exact solution and less exact sensitivity
information. For this reason, Knitro offers a crossover feature in which the interior-point method switches
to the Active Set method at the interior-point solution estimate, in order to ”clean up” the solution and
provide more exact sensitivity and active set information. The crossover procedure is controlled by the
bar maxcrossit option. If this option is greater than 0, then Knitro will attempt to perform bar maxcrossit
Active Set crossover iterations after the interior-point method has finished, to see if it can provide a more
exact solution. This can be viewed as a form of post-processing. If bar maxcrossit is not positive, then no
crossover iterations are attempted.

The crossover procedure will not always succeed in obtaining a more exact solution compared with the
interior-point solution. If crossover is unable to improve the solution within bar maxcrossit crossover
iterations, then it will restore the interior-point solution estimate and terminate. By default, Knitro will
then print a message indicating that it was unable to improve the solution within the iterations allowed.
In this case, you may want to increase the value of bar maxcrossit and try again. If Knitro determines
that the crossover procedure will not succeed, no matter how many iterations are tried, then a message of
the form Crossover mode unable to improve solution. will be printed.

The extra cost of performing crossover is problem dependent. In most small or medium scale problems,
the crossover cost is a small fraction of the total solve cost. In these cases it may be worth using the
crossover procedure to obtain a more exact solution. On some large scale or difficult degenerate problems,
however, the cost of performing crossover may be significant. It is recommended to experiment with this
option to see whether improvement in the exactness of the solution is worth the additional cost.

5.23.9.5 Tuner

The Knitro-Tuner can help you identify some non-default options settings that may improve performance
on a particular model or set of models. The Knitro tuner is enabled with the tuner option and controlled
via the tuner family of options. If you are unsure about what Knitro options should be tuned to try to
improve performance, you can run the default Knitro-Tuner by simply setting the option tuner=1 when
solving with Knitro. This will cause Knitro to run your model with a variety of automatically determined
option settings, and report some statistics at the end. Any Knitro options that have been set in the usual
way will remain fixed throughout the tuning procedure.

If you have some ideas about which Knitro options you want to tune, you can tell Knitro which options
you want it to tune, as well as specify the values for particular options that you want Knitro to explore.
This can be done by specifying a Tuner options file. A Tuner options file is a simple text file that is
similar to a standard Knitro options file, with some important differences:

• You can define multiple values (separated by spaces) for each option. This tells Knitro the values
you want it to explore.

• You can specify an option name without any values. This will tell Knitro to explore all possible
option values for that option. This only works for options that have a finite set of possible option
value settings.

• A Tuner options file is loaded via the tuner optionsfile option.

All possible combinations of options/values specified in a Tuner options file will be explored by Knitro,
while any Knitro options that have been set in the usual way will remain fixed throughout the tuning
procedure.

5.24 LINDO and LINDOGlobal 2241

5.23.9.6 Solving Systems of Nonlinear Equations

Knitro is quite effective at solving systems of nonlinear equations. To solve a square system of nonlinear
equations using Knitro one should specify the nonlinear equations as equality constraints (i.e., constraints
with cl = cu), and specify the objective function (1a) as zero (i.e., f(x) = 0).

5.23.9.7 Solving Least Squares Problems

There are two ways of using Knitro for solving problems in which the objective function is a sum of
squares of the form

f(x) = 1
2

∑q
j=1 rj(x)2.

If the value of the objective function at the solution is not close to zero (the large residual case), the least
squares structure of f can be ignored and the problem can be solved as any other optimization problem.
Any of the Knitro options can be used.

On the other hand, if the optimal objective function value is expected to be small (small residual case)
then Knitro can implement the Gauss-Newton or Levenberg-Marquardt methods which only require first
derivatives of the residual functions, rj(x), and yet converge rapidly. To do so, the user need only define
the Hessian of f to be

∇2f(x) = J(x)TJ(x),

where

J(x) =

[
∂rj
∂xi

]
j = 1, 2, . . . , q
i = 1, 2, . . . , n

.

The actual Hessian is given by

∇2f(x) = J(x)TJ(x) +

q∑
j=1

rj(x)∇2rj(x);

the Gauss-Newton and Levenberg-Marquardt approaches consist of ignoring the last term in the Hessian.

Knitro will behave like a Gauss-Newton method by setting algorithm=1, and will be very similar to the
classical Levenberg-Marquardt method when algorithm=2. For a discussion of these methods see, for
example, [143] .

5.24 LINDO and LINDOGlobal

Lindo Systems, Inc.

5.24.1 Introduction

GAMS/LINDO finds guaranteed globally optimal solutions to general nonlinear problems with continuous
and/or discrete variables. GAMS/LINDO supports most mathematical functions, including functions that
are nonsmooth, such as abs(x) and or even discontinuous, such as floor(x). Nonlinear solvers employing
methods like successive linear programming (SLP) or generalized reduced gradient (GRG) return a local
optimal solution to an NLP problem. However, many practical nonlinear models are non-convex and have
more than one local optimal solution. In some applications, the user may want to find a global optimal
solution.

The LINDO global optimization procedure(GOP) employs branch-and-cut methods to break an NLP
model down into a list of subproblems. Each subproblem is analyzed and either a) is shown to not have

2242 Solver Manuals

a feasible or optimal solution, or b) an optimal solution to the subproblem is found, e.g., because the
subproblem is shown to be convex, or c) the subproblem is further split into two or more subproblems
which are then placed on the list. Given appropriate tolerances, after a finite, though possibly large
number of steps a solution provably global optimal to tolerances is returned. Traditional nonlinear solvers
can get stuck at suboptimal, local solutions. This is no longer the case when using the global solver.

GAMS/LINDO can automatically linearize a number of nonlinear relationships, such as max(x,y), through
the addition of constraints and integer variables, so the transformed linearized model is mathematically
equivalent to the original nonlinear model. Keep in mind, however, that each of these strategies will
require additional computation time. Thus, formulating models, so they are convex and contain a single
extremum, is desirable. In order to decrease required computing power and time it is also possible to
disable the global solver and use GAMS/LINDO like a regular nonlinear solver.

GAMS/LINDO has a multistart feature that restarts the standard (non-global) nonlinear solver from a
number of intelligently generated points. This allows the solver to find a number of locally optimal points
and report the best one found. This alternative can be used when global optimization is costly. A user
adjustable parameter controls the maximum number of multistarts to be performed.

LINDO automatically detects problem type and uses an appropriate solver, e.g., if you submit an LP
model to LINDO, it will be solved as an LP at LP speed, regardless of what you said in the ”solve using”
statement. With the NLP parameter NLP QUADCHK turned on, LINDO can detect hidden quadratic
expressions and automatically recognize convex QCPs, as well as second-order cones (SOCP), like in
Value-at-Risk models, allowing dramatically faster solution times via the barrier solver. When such models
have integer variables, LINDO would use the barrier solver to solve all subproblems leading to significantly
improved solution times when compared to the case with the standard NLP solver.

5.24.1.1 Licensing and software requirements

In order to use GAMS/LINDOGlobal, two licenses are required: a GAMS/LINDOGlobal license and a
GAMS/CONOPT license. The additional CONOPT license requirement exists because LINDOGlobal
uses CONOPT to solve the nonlinear subproblems. The GAMS/LINDOGlobal license places upper limits
on the model size of 3,000 variables and 2,000 constraints.

To use GAMS/LINDO, only a GAMS/LINDO license is required. It imposes no upper
limit on the model size and includes the capability to solve stochastic models (see section
Stochastic Programming (SP) in GAMS/Lindo).

Neither the GAMS/LINDO nor the GAMS/LINDOGlobal license includes the Barrier solver option. The
Barrier option is enabled via a separate license for the GAMS/MOSEK barrier solver.

5.24.1.2 Running GAMS/LINDO

GAMS/LINDO is capable of solving models of the following types: EMP (stochastic), LP, MIP, RMIP,
NLP, DNLP, QCP, MIQCP, RMINLP and MINLP. If GAMS/LINDO is not specified as the default solver
for these models, it can be invoked by issuing one of the following command before the solve statement:

option xxx=lindo;

option xxx=lindoglobal;

where xxx is one of: EMP, LP, MIP, RMIP, NLP, DNLP, QCP, MIQCP, RMINLP, or MINLP.

You can also find global optima to math programs with equilibrium or complementarity constraints, type
MPEC, by using the GAMS/NLPEC translator in conjunction with LINDO. You use NLPEC to translate
complementarities into standard mathematical statements, e.g. h∗y = 0, and then use LINDO as the
DNLP(Discontinuous Nonlinear) solver to solve the translated model. The following little GAMS model
illustrates:

5.24 LINDO and LINDOGlobal 2243

$TITLE simple mpec example

variable f, x1, x2, y1, y2; positive

variable y1; y2.lo = -1; y2.up = 1;

equations cost, g, h1, h2;

cost.. f =E= x1 + x2;

g.. sqr(x1) + sqr(x2) =L= 1;

h1.. x1 =G= y1 - y2 + 1;

h2.. x2 + y2 =N= 0;

* declare h and y complementary

model example / cost, g, h1.y1, h2.y2 /;

option mpec=nlpec;

option dnlp=lindo;

solve example using mpec min f;

5.24.2 Supported nonlinear functions

GAMS/LINDO supports most nonlinear functions in global mode, including +, -, ∗, /, floor, modulo,
sign, min, max, sqr, exp, power, ln, log, sqrt, abs, cos, sin, tan, cosh, sinh, tanh, arccos, arcsin, arctan and
logic expressions AND, OR, NOT, and IF. Be aware that using highly nonconvex functions may lead to
long solve times.

5.24.3 Diagnosis of Infeasible or Unbounded Models

GAMS/LINDO offers two diagnostic tools, that can help users debug infeasible or unbounded optimization
models. These tools can be called after the solver reports an infeasible or unbounded status for the model.
When activating IIS Lindo finds an irreducible infeasible set (IIS) of constraints, whereas setting IUS,
makes Lindo find an irreducible unbounded set (IUS) of variables. An IIS is a set of constraints that
are infeasible taken together, but every strict subset is feasible. Similarly, an IUS is a set of unbounded
variables such that fixing any one of them would make the model bounded. The IIS or IUS portion of the
model will generally be much smaller than the original model. Thus, the user can track down formulation
or data entry errors quickly. By isolating the source of infeasibility or unboundedness, the user can correct
the model data such as right-hand side values, objective coefficients, senses of the constraints, and column
bounds. Note that the IUS option is available for LPs only.

5.24.3.1 Infeasible Models

GAMS/Lindo's IIS option activates the IIS finder, after a model was tried to be solved and the solver
returned a ”no feasible solution” message. For an LP, if an infeasible basis is not resident in the solver,
the IIS finder cannot initiate the process to isolate an IIS. This can occur if the infeasibility is detected in
the pre-solver before a basis is created, or the barrier solver has terminated without performing a basis
crossover. To obtain an IIS for such cases, the pre-solve option will be turned off automatically and the
model gets optimized again.

The constraints and bounds in the IIS are further classified into two disjoint sets: a necessary set and a
sufficient set. The sufficient set refers to a crucial subset of the IIS in the sense that removing any one of
its members from the entire model renders the model feasible. Note that not all infeasible models have
sufficient sets. The necessary set contains those constraints and bounds that are likely to contribute to
the overall infeasibility of the entire model. Thus, the necessary set requires a correction in at least one
member to make the original model feasible. A constraint that has been marked as sufficient has a high
probability of containing an error. In fact, if the model contains only one bad coefficient, the constraint
containing it will be marked as sufficient.

To control the level of analysis when locating an IIS, one can set the option IIS ANALYZE LEVEL.

2244 Solver Manuals

5.24.3.2 Unbounded Linear Programs

GAMS/Lindo's IUS option is similar to the IIS option, except that it is used to track down the source of
an unbounded solution in a linear program. This tool analyzes the model and isolates an ”irreducibly
unbounded set” (IUS) of variables. As in the infeasibility case, the IUS is partitioned into sufficient and
necessary sets to indicate the role of the member variables for the unboundedness of the overall model.

The variables in the sufficient set are crucial in the sense that fixing any of these variables makes the
overall model bounded. However, fixing the variables in the necessary set does not ensure that there are
no other sets of unbounded variables that cause unboundedness for the overall model.

To control the level of analysis when locating an IUS, one can set the option IUS ANALYZE LEVEL.

5.24.4 GAMS/LINDO output

The log output below is obtained for the NLP model mhw4d.gms from the GAMS model library using
LINDOs global solver.

LINDO 24Nov11 23.8.0 WIN 30200.30202 VS8 x86/MS Windows

LINDO Driver

Lindo Systems Inc, www.lindo.com

Lindo API version 7.0.1.372 built on Nov 3 2011 21:49:01

Barrier Solver Version 6.0.0.114, Nonlinear Solver Version 3.15B

Platform Windows x86

Number of constraints: 3 le: 0, ge: 0, eq: 3, rn:

0 (ne:0)

Number of variables : 5 lb: 0, ub: 0, fr: 5, bx:

0 (fx:0)

Number of nonzeroes : 8 density=0.0053(%)

Nonlinear variables : 5

Nonlinear constraints: 4

Nonlinear nonzeroes : 5+5

Starting global optimization ...

Number of nonlinear functions/operators: 3

EP_MULTIPLY EP_POWER EP_SQR

Starting GOP presolve ...

First Call Local Solver

Find local solution, objvalue = 27.871905

Pre-check unboundedness

Computing reduced bound...

Searching for a better solution...

Starting reformulation ...

Model Input Operation Atomic Convex

Number of variables : 5 6 20 20

5.24 LINDO and LINDOGlobal 2245

Number of constraints: 3 4 18 46

integer variables : 0 0 0 0

nonlinear variables : 5 5 9 0

Starting global search ...

Initial upper bound on objective: +2.931083e-002

Initial lower bound on objective: -3.167052e+022

#NODEs BOXES LOWER BOUND UPPER BOUND RGAP TIME(s)

1 1 -3.167052e+022 +2.931083e-002 1.0e+000 0 (*N)

19 17 -2.136461e+000 +2.931083e-002 1.0e+000 0 (*I)

22 20 -1.848574e-001 +2.931083e-002 2.1e-001 0 (*I)

23 21 +2.416053e-003 +2.931083e-002 2.7e-002 0 (*F)

Terminating global search ...

Global optimum found

Objective value : 0.0293108307216

Best Bound : 0.00241605257558

Factors (ok,stb) : 522 (100.00,99.81)

Simplex iterations : 2503

Barrier iterations : 0

Nonlinear iterations : 433

Box iterations : 23

Total number of boxes : 21

Max. Depth : 5

First solution time (sec.) : 0

Best solution time (sec.) : 0

Total time (sec.) : 0

After determining the different kinds of nonlinear operators LINDO tries to linearize these within the
presolving. When a feasible starting point is found the optimization starts and the log provides information
about the progress. At the end it is reported if an optimum could be found and then the results as well as
the used resources are summarized.

The following flags can be seen in the progress log:

Flag Description

(∗FP) found a new MIP solution with feasibility pump

(∗SBB) found a new MIP solution in tree reorder

(∗SE) found a new MIP solution in simple enumeration

(∗AB) found a new MIP solution in advanced branching

(∗AH) found a new MIP solution with advanced heuristics

(∗C) found a new MIP solution after cuts added

(∗T) found a new MIP solution on the top

(∗SRH) found a new MIP solution in simple rounding heuristics

(∗SB) found a new MIP solution in strong branching

(∗K) found a new MIP solution in knapsack enumerator

(∗) found a new MIP solution normal branching

(∗?-) found a new MIP solution with advanced heuristics (level$>$10)

(∗N) found a new incumbent GOP solution

2246 Solver Manuals

Flag Description

(∗I) stored a box with the incumbent solution into the GOP solution list

(∗F) determined the final GOP status

5.24.5 The GAMS/LINDO Options

GAMS/LINDO offers a diverse range of user-adjustable parameters to control the behavior of its solvers.
While the default values of these parameters work best for most purposes, there may be cases the users
prefer to work with different settings for a subset of the available parameters. This section gives a list of
available GAMS/LINDO parameters, categorized by type, along with their brief descriptions. A more
detailed description is given in the section that follows.

5.24.5.1 GAMS/LINDO Options File

In order to set GAMS/LINDO options, you need to set up an option file lindo.opt or lindoglobal.opt in
your GAMS project directory. You must indicate in the model that you want to use the option file by
inserting before the solve statement, the line:

<modelname>.optfile = 1;

where

<modelname>

is the name of the model referenced in the model statement. The option file is in plain text format
containing a single GAMS/LINDO option per line. Each option identifier is followed by its target value
with space or tab characters separating them. The lines starting with ∗ character are treated as comments.

A sample option file lindo.opt looks like below

* Use(1) or Disable(0) global optimization for NLP/MINLP models

USEGOP 0

* Enable Multistart NLP solver

NLP_SOLVER 9

* Allow a maximum of 3 multistart attempts

NLP_MAXLOCALSEARCH 3

* Set an overall time limit of 200 secs.

SOLVER_TIMLMT 200

5.24.6 Summary of GAMS/Lindo Options

5.24.6.1 General Options

5.24 LINDO and LINDOGlobal 2247

Option Description Default

DECOMPOSITION TYPE
decomposition to be performed on a linear
or mixed integer model

1

FIND BLOCK
graph partitioning method to find block
structures

0

FIND SYMMETRY LEVEL
specifies the symmetry finding level. -1

FIND SYMMETRY PRINT LEVEL
specifies print level for symmetry finding 0

INSTRUCT SUBOUT
flag to specify how to deal with fixed vari-
ables in the instruction list

-1

MULTITHREAD MODE
threading mode -1

NUM THREADS
number of parallel threads to be used GAMS Threads

PROFILER LEVEL
specifies the profiler level to break down
the total cpu time into.

0

SOLVER CONCURRENT OPTMODE
controls if simplex and interior-point op-
timizers will run concurrently

0

SOLVER CUTOFFVAL
solver will exit if optimal solution is worse
than this

0

SOLVER FEASTOL
feasibility tolerance 1e-7

SOLVER IPMSOL
basis crossover flag for barrier solver 0

SOLVER IUSOL
flag for computing basic solution for in-
feasible model

0

SOLVER METHOD
specifies the method to use when generic
solver is invoked

0

SOLVER MODE
controls some of the advanced strategies
when solving LPs

1

SOLVER OPTTOL
dual feasibility tolerance 1e-7

SOLVER PRE ELIM FILL
fill-in introduced by the eliminations dur-
ing pre-solve

1000

SOLVER RESTART
starting basis flag 0

SOLVER TIMLMT
time limit in seconds for continous solver GAMS ResLim

SOLVER USECUTOFFVAL
flag for using cutoff value 0

TUNER PRINT LEVEL
specifies the amount of print to do during
parameter tuning

1

5.24.6.2 LP Options

Option Description Default

LP AIJ ZEROTOL
coefficient matrix zero tolerance 2.22045e-16

LP BIGM
big-M for phase-I 1e6

LP BNDINF
big-M to truncate lower and upper bounds in single phase
dual-simplex

1e15

LP DPSWITCH
specifies whether LP primal-dual simplex switch is enabled
or not

1

LP DRATIO
controls the dual min-ratio strategy 1

LP DYNOBJFACT
Dynamic obj factor 0.75

2248 Solver Manuals

Option Description Default

LP DYNOBJMODE
Dynamic obj mode 0

LP ITRLMT
simplex iteration limit infinity

LP PIV BIGTOL
simplex maximum pivot tolerance 1e-5

LP PIV ZEROTOL
simplex pivot zero tolerance 1e-8

LP PPARTIAL
primal simplex partial pricing method 0

LP PRELEVEL
controls the amount and type of LP pre-solving 126

LP RATRANGE
controls the number of pivot-candidates to consider when
searching for a stable pivot in LU decomposition

4

LP SCALE
scaling flag 1

LP SPRINT COLFACT
maximum number of columns in Sprint as a factor of num-
ber of rows

10

LP SPRINT MAXPASS
maximum number of passes in Sprint method 100

LP SPRINT SUB
LP method for subproblem in Sprint method 0

PROB TO SOLVE
controls whether the explicit primal or dual form of the
given LP problem will be solved

0

SPLEX DPRICING
pricing option for dual simplex method -1

SPLEX DUAL PHASE
controls the dual simplex strategy 0

SPLEX PPRICING
pricing option for primal simplex method -1

SPLEX REFACFRQ
number of simplex iterations between two consecutive basis
re-factorizations

100

5.24.6.3 IPM Options

Option Description Default

IPM BASIS REL TOL S
maximum relative dual bound violation allowed in an opti-
mal basic solution

1e-12

IPM BASIS TOL S
maximum absolute dual bound violation in an optimal
basic solution

1e-7

IPM BASIS TOL X
maximum absolute primal bound violation allowed in an
optimal basic solution

1e-7

IPM BI LU TOL REL PIV
relative pivot tolerance used in the LU factorization in the
basis identification procedure

1e-2

IPM CHECK CONVEXITY
flag to check convexity of a quadratic program using barrier
solver

1

IPM CO TOL DFEAS
dual feasibility tolerance for Conic solver 1e-8

IPM CO TOL INFEAS
maximum bound infeasibility tolerance for Conic solver 1e-12

IPM CO TOL MU RED
optimality tolerance for Conic solver 1e-8

IPM CO TOL PFEAS
primal feasibility tolerance for Conic solver 1e-8

IPM MAX ITERATIONS
ipm iteration limit 1000

IPM NUM THREADS
number of threads to run the interiorpoint optimizer on 1

IPM OFF COL TRH
extent for detecting the offending columns in the Jacobian
of the constraint matrix

40

IPM TOL DFEAS
dual feasibility tolerance 1e-8

5.24 LINDO and LINDOGlobal 2249

Option Description Default

IPM TOL DSAFE
controls the initial dual starting point 1

IPM TOL INFEAS
infeasibility tolerance 1e-10

IPM TOL MU RED
relative complementarity gap tolerance 1e-16

IPM TOL PATH
how close to follow the central path 1e-8

IPM TOL PFEAS
primal feasibility tolerance 1e-8

IPM TOL PSAFE
controls the initial primal starting point 1

IPM TOL REL STEP
relative step size to the boundary 0.9999

5.24.6.4 MIP Options

Option Description Default

MIP ABSCUTTOL
MIP absolute cut tolerance -1.0

MIP ABSOPTTOL
MIP absolute optimality tolerance GAMS OptCA

MIP ADDCUTOBJTOL
required objective improvement to con-
tinue generating cuts

1.5625e-5

MIP ADDCUTPER
percentage of constraint cuts that can be
added

0.75

MIP ADDCUTPER TREE
percentage of constraint cuts that can be
added at child nodes

0.5

MIP AGGCUTLIM TOP
max number of constraints involved in
derivation of aggregation cut at root node

-1

MIP AGGCUTLIM TREE
max number of constraints involved in
derivation of aggregation cut at tree nodes

-1

MIP ANODES SWITCH DF
threshold on active nodes for switching to
depth-first search

50000

MIP AOPTTIMLIM
time in seconds beyond which the relative
optimality tolerance will be applied

100

MIP BIGM FOR INTTOL
threshold for which coefficient of a binary
variable would be considered as big-M

1e8

MIP BRANCHDIR
first branching direction 0

MIP BRANCHRULE
rule for choosing the variable to branch 0

MIP BRANCH LIMIT
limit on the total number of branches to
be created during branch and bound

-1

MIP BRANCH PRIO
controls how variable selection priorities
are set and used

0

MIP CONCURRENT REOPTMODE
specifies the concurrent optimization mode
with warm start

0

MIP CONCURRENT STRATEGY
controls the concurrent MIP strategy -1

MIP CONCURRENT TOPOPTMODE
specifies the concurrent optimization mode
with cold start

0

MIP CUTDEPTH
threshold value for the depth of nodes in
the branch and bound tree

8

MIP CUTFREQ
frequency of invoking cut generation at
child nodes

10

MIP CUTLEVEL TOP
combination of cut types to try at the root
node when solving a MIP

57342

2250 Solver Manuals

Option Description Default

MIP CUTLEVEL TREE
combination of cut types to try at child
nodes in the branch and bound tree when
solving a MIP

53246

MIP CUTOFFOBJ
defines limit for branch and bound 1e30

MIP CUTTIMLIM
time to be spent in cut generation -1

MIP DELTA
near-zero value used in linearizing nonlin-
ear expressions

1e-6

MIP DUAL SOLUTION
flag for computing dual solution of LP
relaxation

0

MIP FP HEU MODE
specifies the feasibility-pump (FP) heuris-
tic mode

0

MIP FP ITRLIM
iteration limit for feasibility pump heuris-
tic

500

MIP FP MODE
mode for the feasibility pump heuristic -1

MIP FP OPT METHOD
optimization and reoptimization method
for feasibility pump heuristic

0

MIP FP PROJECTION
type of objective function of LPs in projec-
tion step of the feasibility pump heuristic

0

MIP FP TIMLIM
time limit for feasibility pump heuristic 1800

MIP FP WEIGTH
weight of the objective function in the
feasibility pump

1

MIP GENERAL MODE
general strategy in solving MIPs 0

MIP HEULEVEL
specifies heuristic used to find integer so-
lution

3

MIP HEUMINTIMLIM
minimum time in seconds to be spent in
finding heuristic solutions

0

MIP HEU DROP OBJ
flag for whether to use without OBJ heuris-
tic

0

MIP HEU MODE
heuristic used in MIP solver 0

MIP INTTOL
absolute integer feasibility tolerance 1e-6

MIP ITRLIM
iteration limit for branch and bound infinity

MIP KBEST USE GOP
specifies whether to use gop solver in MIP
KBest

0

MIP KEEPINMEM
flag for keeping LP bases in memory 1

MIP LBIGM
Big-M value used in linearizing nonlinear
expressions

10000

MIP LSOLTIMLIM
time limit until finding a new integer solu-
tion

-1

MIP MAKECUT INACTIVE COUNT
threshold for times a cut could remain
active after successive reoptimization

10

MIP MAXCUTPASS TOP
number passes to generate cuts on the root
node

200

MIP MAXCUTPASS TREE
number passes to generate cuts on the
child nodes

2

MIP MAXNONIMP CUTPASS
number of passes allowed in cut-generation
that does not improve current relaxation

3

MIP MAXNUM MIP SOL STORAGE
maximum number of k-best solutions to
store

1

5.24 LINDO and LINDOGlobal 2251

Option Description Default

MIP MINABSOBJSTEP
value to update cutoff value each time a
mixed integer solution is found

0

MIP NODESELRULE
specifies the node selection rule 0

MIP NUM THREADS
number of parallel threads to use by the
parallel MIP solver

1

MIP PARA FP
flag for whether to use parallelization on
the feasibility pump heuristic

1

MIP PARA FP MODE
flag for the mode of parallel feasibility
pump

0

MIP PARA INIT NODE
number of initial nodes for MIP paralleliza-
tion

-1

MIP PARA ITR MODE
flag for iteration mode in MIP paralleliza-
tion

1

MIP PARA RND ITRLMT
iteration limit of each round in MIP par-
allelization, it is a weighted combination
of simplex and barrier iterations

2.0

MIP PARA SUB
flag for whether to use MIP parallelization
on subproblems solved in MIP preprocess-
ing

1

MIP PEROPTTOL
MIP relative optimality tolerance in effect
after MIP AOPTTIMLIM seconds

1e-5

MIP PERSPECTIVE REFORM
flag for whether to use Perspective Refor-
mulation

1

MIP POLISH ALPHA TARGET
proportion solutions in the pool to initiate
a polishing-task at the current node

0.6

MIP POLISH MAX BRANCH COUNT
maximum number of branches to polish 2000

MIP POLISH NUM BRANCH NEXT
number of branches to polish in the next
round

4000

MIP PREHEU DFE VSTLIM
limit for the variable visit in depth first
enumeration

200

MIP PREHEU LEVEL
heuristic level for the prerelax solver 0

MIP PREHEU TC ITERLIM
iteration limit for the two change heuristic 30000000

MIP PREHEU VAR SEQ
sequence of the variable considered by the
prerelax heuristic

-1

MIP PRELEVEL
controls the amount and type of MIP pre-
solving at root node

3070

MIP PRELEVEL TREE
amount and type of MIP pre-solving at
tree nodes

1214

MIP PRE ELIM FILL
controls fill-in introduced by eliminations
during pre-solve

100

MIP PSEUDOCOST RULE
specifies the rule in pseudocost computa-
tions for variable selection

0

MIP PSEUDOCOST WEIGT
weight in pseudocost computations for
variable selection

1.5625e-05

MIP REDCOSTFIX CUTOFF
cutoff value as a percentage of the reduced
costs

0.9

MIP REDCOSTFIX CUTOFF TREE
cutoff value as a percentage of the reduced
costs at tree nodes

0.9

MIP RELINTTOL
relative integer feasibility tolerance 8e-6

MIP RELOPTTOL
MIP relative optimality tolerance GAMS OptCR

2252 Solver Manuals

Option Description Default

MIP REOPT
optimization method to use when doing
reoptimization

0

MIP SCALING BOUND
maximum difference between bounds of
an integer variable for enabling scaling

10000

MIP SOLLIM
integer solution limit for MIP solver -1

MIP SOLVERTYPE
optimization method to use when solving
mixed-integer models

0

MIP STRONGBRANCHDONUM
minimum number of variables to try the
strong branching on

3

MIP STRONGBRANCHLEVEL
depth from the root in which strong
branching is used

10

MIP SWITCHFAC SIM IPM ITER
specifies the (positive) factor that multi-
plies the number of constraints to impose
an iteration limit to simplex method and
trigger a switch over to the barrier method

-1

MIP SWITCHFAC SIM IPM TIME
factor that multiplies the number of con-
straints to impose a time limit to simplex
method and trigger a switch over to the
barrier method

-1

MIP SYMMETRY MODE
specifies mip symmetry handling methods 0

MIP SYMMETRY NONZ
limit on number of nonzeros to look for
symmetries

50000

MIP TIMLIM
time limit in seconds for integer solver GAMS ResLim

MIP TOPOPT
optimization method to use when there is
no previous basis

0

MIP TREEREORDERLEVEL
tree reordering level 10

MIP TREEREORDERMODE
tree reordering mode 1

MIP USECUTOFFOBJ
flag for using branch and bound limit 1

MIP USE CUTS HEU
controls if cut generation is enabled during
MIP heuristics

-1

MIP USE ENUM HEU
frequency of enumeration heuristic 4

MIP USE INT ZERO TOL
controls if all MIP calculations would be
based on absolute integer feasibility to-
larance

0

5.24.6.5 NLP Options

Option Description Default

NLP AUTODERIV
defining type of computing derivatives 0

NLP AUTOHESS
flag for using Second Order Automatic Differ-
entiation for solving NLP

0

NLP CONIC REFORM
determines if to explore conic reformulation 1

NLP CONOPT VER
specifies the CONOPT version to be used in
NLP optimizations

3

NLP CUTOFFOBJ
as soon as any multi-start thread achieves this
value all threads stop

-1e30

NLP DERIV DIFFTYPE
flag indicating the technique used in comput-
ing derivatives with finite differences

0

5.24 LINDO and LINDOGlobal 2253

Option Description Default

NLP FEASCHK
how to report results when solution satisfies
tolerance of scaled but not original model

1

NLP FEASTOL
feasibility tolerance for nonlinear constraints 1e-6

NLP INF
numeric infinity for nonlinear models 1e30

NLP IPM2GRG
switch from IPM solver to GRG solver when
IPM fails due to numerical errors

1

NLP ITERS PER LOGLINE
number of nonlinear iterations to elapse before
next progress message

10

NLP ITRLMT
nonlinear iteration limit GAMS IterLim

NLP LINEARZ
extent to which the solver will attempt to
linearize nonlinear models

0

NLP LINEARZ WB CONSISTENT
determines if linearization process is consis-
tent with WB/excel calculation

0

NLP MAXLOCALSEARCH
maximum number of local searches 5

NLP MAXLOCALSEARCH TREE
maximum number of multistarts 1

NLP MAX RETRY
maximum number refinement retries to purify
the final NLP solution

5

NLP MSW EUCDIST THRES
euclidean distance threshold in multistart
search

0.001

NLP MSW FILTMODE
filtering mode to exclude certain domains dur-
ing sampling in multistart search

-1

NLP MSW MAXNOIMP
maximum number of consecutive populations
to generate without any improvements

-1

NLP MSW MAXPOP
maximum number of populations to generate
in multistart search

-1

NLP MSW MAXREF
maximum number of reference points to gen-
erate trial points in multistart search

-1

NLP MSW NORM
norm to measure the distance between two
points in multistart search

2

NLP MSW NUM THREADS
number of parallel threads to be used when
solving an NLP model with the multistart
solver

1

NLP MSW OVERLAP RATIO
rate of replacement in successive populations 0.1

NLP MSW POXDIST THRES
penalty function neighborhood threshold in
multistart search

0.01

NLP MSW PREPMODE
preprocessing strategies in multistart solver -1

NLP MSW RG SEED
random number generator seed for the multi-
start solver

1019

NLP MSW RMAPMODE
specifies the mode to map reference points in
the unit cube into the original space

-1

NLP MSW SOLIDX
index of the multistart solution to be loaded 0

NLP MSW XKKTRAD FACTOR
KKT solution neighborhood factor in multi-
start search

0.85

NLP MSW XNULRAD FACTOR
initial solution neighborhood factor in multi-
start search

0.5

NLP PRELEVEL
controls the amount and type of NLP pre-
solving

126

NLP PSTEP FINITEDIFF
value of the step length in computing the
derivatives using finite differences

5e-7

2254 Solver Manuals

Option Description Default

NLP QUADCHK
flag for checking if NLP is quadratic 1

NLP REDGTOL
tolerance for the gradients of nonlinear func-
tions

1e-7

NLP SOLVER
type of nonlinear solver 7

NLP SOLVE AS LP
flag indicating if the nonlinear model will be
solved as an LP

0

NLP STALL ITRLMT
iteration limit before a sequence of non-
improving NLP iterations is declared as
stalling

100

NLP STARTPOINT
flag for using initial starting solution for NLP 1

NLP SUBSOLVER
type of nonlinear subsolver 1

NLP USECUTOFFOBJ
flag to use parameter NLP CUTOFFOBJ 0

NLP USE CRASH
flag for using simple crash routines for initial
solution

0

NLP USE LINDO CRASH
flag for using advanced crash routines for ini-
tial solution

1

NLP USE SDP
flag to use SDP solver for POSD constraint 1

NLP USE SELCONEVAL
flag for using selective constraint evaluations
for solving NLP

1

NLP USE SLP
flag for using sequential linear programming
step directions for updating solution

1

NLP USE STEEPEDGE
flag for using steepest edge directions for up-
dating solution

0

5.24.6.6 Global Options

Option Description Default

GOP ABSOPTTOL
absolute optimality tolerance GAMS OptCA

GOP ALGREFORMMD
algebraic reformulation rule for a GOP 18

GOP BBSRCHMD
node selection rule in GOP branch-and-bound 1

GOP BNDLIM
max magnitude of variable bounds used in GOP convexi-
fication

1e10

GOP BOXTOL
minimal width of variable intervals 1e-6

GOP BRANCHMD
direction to branch first when branching on a variable 5

GOP BRANCH LIMIT
limit on the total number of branches to be created in
GOP tree

-1

GOP CMINLP
flag indicating if GOP exploits convex MINLP model 0

GOP CONIC REFORM
flag indicating if GOP explore conic reformulation 1

GOP CORELEVEL
strategy of GOP branch-and-bound 14

GOP DECOMPPTMD
decomposition point selection rule in GOP branch-and-
bound

1

GOP DELTATOL
delta tolerance in GOP convexification 1e-7

GOP FLTTOL
floating-point tolerance 1e-10

GOP HEU MODE
heuristic used in global solver 0

5.24 LINDO and LINDOGlobal 2255

Option Description Default

GOP ITRLIM
GOP iteration limit infinity

GOP ITRLIM IPM
total barrier iteration limit summed over all branches in
GOP

-1

GOP ITRLIM NLP
total nonlinear iteration limit summed over all branches
in GOP

-1

GOP ITRLIM SIM
total simplex iteration limit summed over all branches in
GOP

-1

GOP LIM MODE
flag indicating which heuristic limit on sub-solver in GOP
is based

1

GOP LINEARZ
flag indicating if GOP exploits linearizable model 1

GOP LSOLBRANLIM
branch limit until finding a new nonlinear solution -1

GOP MAXWIDMD
maximum width flag for the global solution 0

GOP MULTILINEAR
flag indicating if GOP exploits multi linear feature 1

GOP NUM THREADS
number of parallel threads to be used when solving a
nonlinear model with the global optimization solver

1

GOP OBJ THRESHOLD
threshold of objective value in the GOP solver -1e+30

GOP OPTCHKMD
criterion used to certify the global optimality 2

GOP OPT MODE
mode for GOP optimization 1

GOP POSTLEVEL
amount and type of GOP postsolving 6

GOP PRELEVEL
amount and type of GOP presolving 30

GOP QUADMD
flag indicating if GOP exploits quadratic feature -1

GOP QUAD METHOD
specifies if the GOP solver should solve the model as a
QP when applicable

-1

GOP RELBRNDMD
reliable rounding in the GOP branch-and-bound 0

GOP RELOPTTOL
relative optimality tolerance GAMS OptCR

GOP SOLLIM
integer solution limit for GOP branch-and-bound -1

GOP SUBOUT MODE
substituting out fixed variables 1

GOP TIMLIM
time limit in seconds for GOP branch-and-bound GAMS ResLim

GOP USEBNDLIM
max magnitude of variable bounds flag for GOP convexi-
fication

2

GOP WIDTOL
maximal width of variable intervals 1e-4

USEGOP
use global optimization 1

5.24.6.7 SP Options

Option Description Default

CORE ORDER BY STAGE
order nontemporal models or not 1

EMPINFOFILE
Path and name of file containing additional EMP-
SP information as randvar, jrandvar, stage etc.

REPORTEVSOL
solve and report the expected value solution 0

SAMP CDSINC
correlation matrix diagonal shift increment 1e-6

2256 Solver Manuals

Option Description Default

SAMP NCM CUTOBJ
objective cutoff (target) value to stop the nearest
correlation matrix (NCM) subproblem

1e-30

SAMP NCM DSTORAGE
flag to enable or disable sparse mode in NCM
computations

-1

SAMP NCM ITERLIM
iteration limit for NCM method 100

SAMP NCM METHOD
bitmask to enable methods for solving the near-
est correlation matrix (NCM) subproblem

5

SAMP NCM OPTTOL
optimality tolerance for NCM method 1e-7

SAMP NUM THREADS
specifies the number of parallel threads to be
used when sampling

0

SAMP RG BUFFER SIZE
specifies the buffer size for random number gen-
erators in running in parallel mode

0

SAMP SCALE
flag to enable scaling of raw sample data 0

STOC ABSOPTTOL
absolute optimality tolerance (w.r.t lower and
upper bounds on the true objective) to stop the
solver

GAMS OptCA

STOC ADD MPI
flag to use add-instructions mode when building
deteq

0

STOC ALD DUAL FEASTOL
dual feasibility tolerance for ALD 1e-4

STOC ALD DUAL STEPLEN
dual step length for ALD 0.9

STOC ALD INNER ITER LIM
inner loop iteration limit for ALD 1000

STOC ALD OUTER ITER LIM
outer loop iteration limit for ALD 200

STOC ALD PRIMAL FEASTOL
primal feasibility tolerance for ALD 1e-4

STOC ALD PRIMAL STEPLEN
primal step length for ALD 0.5

STOC AUTOAGGR
flag to enable or disable autoaggregation 1

STOC BENCHMARK SCEN
benchmark scenario to compare EVPI and
EVMU against

-2

STOC BIGM
big-M value for linearization and penalty func-
tions

1e7

STOC BUCKET SIZE
bucket size in Benders decomposition -1

STOC CALC EVPI
flag to enable or disable calculation of EVPI 1

STOC CORRELATION TYPE
correlation type associated with correlation ma-
trix

0

STOC DEQOPT
method to solve the DETEQ problem 0

STOC DETEQ TYPE
type of deterministic equivalent -1

STOC DS SUBFORM
subproblem formulation to use in DirectSearch -1

STOC ELIM FXVAR
flag to enable elimination of fixed variables from
deteq MPI

1

STOC INFBND
value to truncate infinite bounds at non-leaf
nodes

1e9

STOC ITER LIM
iteration limit for stochastic solver infinity

STOC MAP MPI2LP
flag to specify whether stochastic parameters in
MPI will be mapped as LP matrix elements

0

5.24 LINDO and LINDOGlobal 2257

Option Description Default

STOC MAX NUMSCENS
maximum number of scenarios before forcing
automatic sampling

40000

STOC METHOD
stochastic optimization method to solve the
model

-1

STOC NAMEDATA LEVEL
name data level 1

STOC NODELP PRELEVEL
presolve level solving node-models 0

STOC NSAMPLE PER STAGE
list of sample sizes per stage (starting at stage
2)

STOC NSAMPLE SPAR
common sample size per stochastic parameter -1

STOC NSAMPLE STAGE
common sample size per stage -1

STOC NUM THREADS
number of parallel threads 1

STOC RELOPTTOL
relative optimality tolerance (w.r.t lower and
upper bounds on the true objective) to stop the
solver

GAMS OptCR

STOC REL DSTEPTOL
dual-step tolerance 1e-7

STOC REL PSTEPTOL
primal-step tolerance 1e-8

STOC REOPT
reoptimization method to solve the node-models 0

STOC RG SEED
seed to initialize the random number generator 1031

STOC SAMP CONT ONLY
flag to restrict sampling to continuous stochastic
parameters only or not

1

STOC SBD MAXCUTS
max cuts to generate for master problem -1

STOC SBD NUMCANDID
maximum number of candidate solutions to gen-
erate at SBD root

-1

STOC SBD OBJCUTFLAG
flag to enable objective cut in SBD master prob-
lem

1

STOC SBD OBJCUTVAL
RHS value of objective cut in SBD master prob-
lem

1e-30

STOC SHARE BEGSTAGE
stage beyond which node-models are shared -1

STOC TIME LIM
time limit for stochastic solver GAMS ResLim

STOC TOPOPT
optimization method to solve the root problem 0

STOC VARCONTROL METHOD
sampling method for variance reduction 1

STOC WSBAS
warm start basis for wait-see model -1

SVR LS ANTITHETIC
Sample variance reduction map to Lindo Anti-
thetic algorithm

SVR LS LATINSQUARE
Sample variance reduction map to Lindo Latin
Square algorithm

SVR LS MONTECARLO
Sample variance reduction map to Lindo Monte-
carlo algorithm

5.24.6.8 IIS and IUS Options

Option Description Default

IIS
run the IIS finder if the problem is infeasible 0

2258 Solver Manuals

Option Description Default

IIS ANALYZE LEVEL
controls the level of analysis when locating an IIS 1

IIS GETMODE
flag that controls whether variable bounds in the IIS should be
retrieved or the integer restrictions

0

IIS INFEAS NORM
specifies the norm to measure infeasibilities in IIS search 0

IIS ITER LIMIT
the iteration limit for IIS search -1

IIS METHOD
specifies the method to use in analyzing infeasible models to
locate an IIS

0

IIS PRINT LEVEL
specifies the amount of print to do during IIS search 2

IIS REOPT
specifies which optimization method to use when starting from
a given basis

0

IIS TIME LIMIT
the time limit for IIS search -1

IIS TOPOPT
specifies which optimization method to use when there is no
previous basis

0

IIS USE EFILTER
flag that controls whether the Elastic Filter should be enabled
as the supplementary filter in analyzing infeasible models

0

IIS USE GOP
flag that controls whether the global optimizer should be en-
abled in analyzing infeasible NLP models

0

IIS USE SFILTER
flag indicating is sensitivity filter will be used during IIS search 1

IUS
run the IUS finder if the problem is unbounded 0

IUS ANALYZE LEVEL
controls the level of analysis when locating an IUS 2

5.24.6.9 Link Options

Option Description Default

CHECKRANGE
calculate feasible range for variables range.gdx

READPARAMS
read Lindo parameter file

WRITEDEMPI
write deterministic equivalent in MPI format

WRITEDEMPS
write deterministic equivalent in MPS format

WRITEMPI
write (S)MPI file of processed model

WRITEMPS
write (S)MPS file of processed model

5.24.7 Detailed Descriptions of GAMS/Lindo Options

CHECKRANGE (string): calculate feasible range for variables ←↩

If this option is set, Lindo calculates the feasible range (determined by an upper and lower
bound) for every variable in each equation while all other variables are fixed to their level. If
set, the value of this option defines the name of the GDX file where the results are written to.
For every combination of equation- and variable block there will be one symbol in the format
EquBlock VarBlock(equ Ind 1, ..., equ Ind M, var Ind 1, ..., var Ind N, directions).

Default: range.gdx

CORE ORDER BY STAGE (integer): order nontemporal models or not ←↩

5.24 LINDO and LINDOGlobal 2259

Order nontemporal models or not.

Default: 1

DECOMPOSITION TYPE (integer): decomposition to be performed on a linear or mixed integer
model ←↩

This refers to the type of decomposition to be performed on a linear or mixed integer model.

Default: 1

value meaning

0 Solver decides which type of decomposition to use

1 Solver does not perform any decompositions and uses the original model

2 Attempt total decomposition

3 Decomposed model will have dual angular structure

4 Decomposed model will have block angular structure

5 Decomposed model will have both dual and block angular structure

EMPINFOFILE (string): Path and name of file containing additional EMP-SP information as randvar,
jrandvar, stage etc. ←↩

FIND BLOCK (integer): graph partitioning method to find block structures ←↩

Specifies the graph partitioning method to find block structures.

Default: 0

value meaning

0 Use an edge-weight minimizing graph partitioning heuristic

1 Use a vertex-weight minimizing graph partitioning heuristic

FIND SYMMETRY LEVEL (integer): specifies the symmetry finding level. ←↩

Default: -1

value meaning

-1 Solver decides

0 Finding orbit only without MIP preprocessing

1 Finding orbit only with MIP preprocessing

2 Finding generators without MIP preprocessing

3 Finding generators with MIP preprocessing

4 Finding the first generator without MIP preprocessing

5 Finding the first generator with MIP preprocessing

FIND SYMMETRY PRINT LEVEL (integer): specifies print level for symmetry finding ←↩

Default: 0

2260 Solver Manuals

value meaning

0 Nothing printed

+2 General information

+4 Time information

+8 Orbit information

+16 Partition information

GOP ABSOPTTOL (real): absolute optimality tolerance ←↩

Synonym: ABSOPTTOL

This value is the GOP absolute optimality tolerance. Solutions must beat the incumbent by
at least this amount to become the new best solution.

Default: GAMS OptCA

GOP ALGREFORMMD (integer): algebraic reformulation rule for a GOP ←↩

Synonym: ALGREFORMMD

This controls the algebraic reformulation rule for a GOP. The algebraic reformulation and
analysis is very crucial in building a tight convex envelope to enclose the nonlinear/nonconvex
functions. A lower degree of overestimation on convex envelopes helps increase the convergence
rate to the global optimum.

Default: 18

value meaning

+2 Rearrange and collect terms

+4 Expand all parentheses

+8 Retain nonlinear functions

+16 Selectively expand parentheses

GOP BBSRCHMD (integer): node selection rule in GOP branch-and-bound ←↩

Synonym: BBSRCHMD

This specifies the node selection rule for choosing between all active nodes in the GOP
branch-and-bound tree when solving global optimization programs.

Default: 1

value meaning

0 Depth first search

1 Choose node with worst bound

GOP BNDLIM (real): max magnitude of variable bounds used in GOP convexification ←↩

Synonym: BNDLIM

This value specifies the maximum magnitude of variable bounds used in the GOP convexification.
Any lower bound smaller than the negative of this value will be treated as the negative of this

5.24 LINDO and LINDOGlobal 2261

value. Any upper bound greater than this value will be treated as this value. This helps the
global solver focus on more productive domains.

Default: 1e10

GOP BOXTOL (real): minimal width of variable intervals ←↩

Synonym: BOXTOL

This value specifies the minimal width of variable intervals in a box allowed to branch.

Default: 1e-6

GOP BRANCHMD (integer): direction to branch first when branching on a variable ←↩

Synonym: BRANCHMD

This specifies the direction to branch first when branching on a variable. The branch variable
is selected as the one that holds the largest magnitude in the measure.

Default: 5

value meaning

0 Absolute width

1 Locally relative width

2 Globally relative width

3 Globally relative distance from the convex minimum to the bounds

4 Absolute violation between the function and its convex envelope at the convex
minimum

5 Relative violation between the function and its convex envelope at the convex
minimum

GOP BRANCH LIMIT (integer): limit on the total number of branches to be created in GOP tree ←↩

Synonym: BRANCH LIMIT

This is the limit on the total number of branches to be created during branch-and- bound in
GOP tree. The default value is -1, which means no limit is imposed. If the branch limit is
reached and a feasible solution was found, it will be installed as the incumbent (best known)
solution.

Range: {-1, ..., ∞}

Default: -1

GOP CMINLP (integer): flag indicating if GOP exploits convex MINLP model ←↩

Default: 0

value meaning

0 Off

1 On

GOP CONIC REFORM (integer): flag indicating if GOP explore conic reformulation ←↩

2262 Solver Manuals

Default: 1

value meaning

0 Off

1 On

GOP CORELEVEL (integer): strategy of GOP branch-and-bound ←↩

Synonym: CORELEVEL

This controls the strategy of GOP branch-and-bound procedure.

Default: 14

value meaning

+2 LP convex relaxation

+4 NLP solving

+8 Box Branching

GOP DECOMPPTMD (integer): decomposition point selection rule in GOP branch-and-bound ←↩

Synonym: DECOMPPTMD

This specifies the decomposition point selection rule. In the branch step of GOP branch-and-
bound, a branch point M is selected to decompose the selected variable interval [Lb, Ub] into
two subintervals, [Lb, M] and [M, Ub].

Default: 1

value meaning

0 Mid-point

1 Local minimum or convex minimum

GOP DELTATOL (real): delta tolerance in GOP convexification ←↩
Synonym: DELTATOL

This value is the delta tolerance in the GOP convexification. It is a measure of how closely
the additional constraints added as part of convexification should be satisfied.

Default: 1e-7

GOP FLTTOL (real): floating-point tolerance ←↩
Synonym: FLTTOL

This value is the GOP floating-point tolerance. It specifies the maximum rounding errors in
the floating-point computation.

Default: 1e-10

GOP HEU MODE (integer): heuristic used in global solver ←↩
Synonym: HEU MODE

This specifies the heuristic used in the global solver to find a good solution. Typically, if a
heuristic is used, this will put more efforts in searching for good solutions, and less in bound
tightening.

Default: 0

5.24 LINDO and LINDOGlobal 2263

value meaning

0 No heuristic is used

1 A simple heuristic is used

GOP ITRLIM (real): GOP iteration limit ←↩

Synonym: ITRLIM

This is the total iteration limit (including simplex, barrier and nonlinear iteration) summed
over branches in GOP. The default value is -1, which means no iteration limit is imposed. If
this limit is reached, GOP will stop.

Range: [-1, ∞]

Default: infinity

GOP ITRLIM IPM (real): total barrier iteration limit summed over all branches in GOP ←↩

Synonym: ITRLIM IPM

This is the total barrier iteration limit summed over all branches in GOP. The default value is
-1, which means no iteration limit is imposed. If this limit is reached, GOP will stop.

Range: [-1, ∞]

Default: -1

GOP ITRLIM NLP (real): total nonlinear iteration limit summed over all branches in GOP ←↩

Synonym: ITRLIM NLP

This is the total nonlinear iteration limit summed over all branches in GOP. The default value
is -1, which means no iteration limit is imposed. If this limit is reached, GOP will stop.

Range: [-1, ∞]

Default: -1

GOP ITRLIM SIM (real): total simplex iteration limit summed over all branches in GOP ←↩

Synonym: ITRLIM SIM

This is the total simplex iteration limit summed over all branches in GOP. The default value
is -1, which means no iteration limit is imposed. If this limit is reached, GOP will stop.

Range: [-1, ∞]

Default: -1

GOP LIM MODE (integer): flag indicating which heuristic limit on sub-solver in GOP is based ←↩

Synonym: LIM MODE

This is a flag indicating which heuristic limit on sub-solver in GOP is based.

Default: 1

2264 Solver Manuals

value meaning

0 No limit

1 Time based limit

2 Iteration based limit

3 Both time and iteration based limit

GOP LINEARZ (integer): flag indicating if GOP exploits linearizable model ←↩

This is a flag indicating if GOP exploits linearizable model.

Default: 1

value meaning

0 Exploit lineariable model

1 Do not exploit lineariable model

GOP LSOLBRANLIM (integer): branch limit until finding a new nonlinear solution ←↩

Synonym: LSOLBRANLIM

This value controls the branch limit until finding a new nonlinear solution since the last
nonlinear solution is found. The default value is -1, which means no branch limit is imposed.

Range: {-1, ..., ∞}

Default: -1

GOP MAXWIDMD (integer): maximum width flag for the global solution ←↩

Synonym: MAXWIDMD

This is the maximum width flag for the global solution. The GOP branch-and-bound may
continue contracting a box with an incumbent solution until its maximum width is smaller
than GOP WIDTOL.

Default: 0

value meaning

0 The maximum width criterion is suppressed

1 The maximum width criterion is performed

GOP MULTILINEAR (integer): flag indicating if GOP exploits multi linear feature ←↩

This is a flag indicating if GOP exploits multi linear feature.

Default: 1

value meaning

0 Off

1 On

5.24 LINDO and LINDOGlobal 2265

GOP NUM THREADS (integer): number of parallel threads to be used when solving a nonlinear
model with the global optimization solver ←↩

This value specifies the number of parallel threads to be used when solving a nonlinear model
with the global optimization solver.

Default: 1

GOP OBJ THRESHOLD (real): threshold of objective value in the GOP solver ←↩

This value specifies the threshold of objective value in the GOP solver. For min problem, if
current incumbent solution is less than the threshold GOP solver will stop.

Range: [-1e+30, ∞]

Default: -1e+30

GOP OPTCHKMD (integer): criterion used to certify the global optimality ←↩

Synonym: OPTCHKMD

This specifies the criterion used to certify the global optimality. When this value is 0, the
absolute deviation of objective lower and upper bounds should be smaller than GOP ABSOPTTOL

at the global optimum. When its value is 1, the relative deviation of objective lower and
upper bounds should be smaller than GOP RELOPTTOL at the global optimum. 2 means either
absolute or relative tolerance is satisfied at global optimum.

Default: 2

GOP OPT MODE (integer): mode for GOP optimization ←↩

Synonym: OPT MODE

This specifies the mode for GOP optimization.

Default: 1

value meaning

0 Global search for a feasible solution (thus a feasibility certificate)

1 Global search for an optimal solution

2 Global search for an unboundedness certificate

GOP POSTLEVEL (integer): amount and type of GOP postsolving ←↩

Synonym: POSTLEVEL

This controls the amount and type of GOP post-solving. The default value is: 6 = 2+4
meaning to do both of the below options.

Default: 6

value meaning

+2 Apply LSgetBestBound

+4 Reoptimize variable bounds

2266 Solver Manuals

GOP PRELEVEL (integer): amount and type of GOP presolving ←↩

Synonym: PRELEVEL

This controls the amount and type of GOP pre-solving. The default value is: 30 = 2+4+8+16
meaning to do all of the below options.

Default: 30

value meaning

+2 Initial local optimization

+4 Initial linear constraint propagation

+8 Recursive linear constraint propagation

+16 Recursive nonlinear constraint propagation

GOP QUADMD (integer): flag indicating if GOP exploits quadratic feature ←↩

Default: -1

value meaning

-1 Solver decides

0 No

1 Yes

GOP QUAD METHOD (integer): specifies if the GOP solver should solve the model as a QP when
applicable ←↩

Default: -1

value meaning

-1 Solver decides

0 General GOP solver

1 Specified QP solver

GOP RELBRNDMD (integer): reliable rounding in the GOP branch-and-bound ←↩

Synonym: RELBRNDMD

This controls the reliable rounding rule in the GOP branch-and-bound. The global solver
applies many suboptimizations to estimate the lower and upper bounds on the global optimum.
A rounding error or numerical instability could unintentionally cut off a good solution. A
variety of reliable approaches are available to improve the precision.

Default: 0

value meaning

+2 Use smaller optimality or feasibility tolerances and appropriate presolving options

+4 Apply interval arithmetic to reverify the solution feasibility

GOP RELOPTTOL (real): relative optimality tolerance ←↩

5.24 LINDO and LINDOGlobal 2267

Synonyms: OPTTOL RELOPTTOL

This value is the GOP relative optimality tolerance. Solutions must beat the incumbent by at
least this amount to become the new best solution.

Default: GAMS OptCR

GOP SOLLIM (integer): integer solution limit for GOP branch-and-bound ←↩

Range: {-1, ..., ∞}

Default: -1

GOP SUBOUT MODE (integer): substituting out fixed variables ←↩

Synonym: SUBOUT MODE

This is a flag indicating whether fixed variables are substituted out of the instruction list used
in the global solver.

Default: 1

value meaning

0 Do not substitute out fixed variables

1 Substitute out fixed variables

GOP TIMLIM (integer): time limit in seconds for GOP branch-and-bound ←↩

Synonym: TIMLIM

This is the time limit in seconds for GOP branch-and-bound.

Range: {-1, ..., ∞}

Default: GAMS ResLim

GOP USEBNDLIM (integer): max magnitude of variable bounds flag for GOP convexification ←↩

Synonym: USEBNDLIM

This value is a flag for the parameter GOP BNDLIM.

Default: 2

value meaning

0 Do not use the bound limit on the variables

1 Use the bound limit right at the beginning of global optimization

2 Use the bound limit after the initial local optimization if selected

GOP WIDTOL (real): maximal width of variable intervals ←↩

Synonym: WIDTOL

This value specifies the maximal width of variable intervals for a box to be considered as an
incumbent box containing an incumbent solution. It is used when GOP MAXWIDMD is set at 1.

2268 Solver Manuals

Default: 1e-4

IIS (boolean): run the IIS finder if the problem is infeasible ←↩

Default: 0

IIS ANALYZE LEVEL (integer): controls the level of analysis when locating an IIS ←↩

Default: 1

value meaning

+1 Search for necessary rows

+2 Search for necessary columns

+4 Search for sufficient rows

+8 Search for sufficient columns

+16 Consider integrality restrictions as the potential cause of infeasibilities and include
it in the analysis

+32 Compute the underlying LTF matrix and use this as the basis of a ranking score
to guide the IIS run

+64 If the underlying matrix is totally decomposable, rank blocks w.r.t their sizes and
debug the smallest independent infeasible block

+128 Use the nonzero structure of the underlying matrix to compute a ranking score to
guide the IIS run

+256 Treat iter/time limits as intractability

IIS GETMODE (integer): flag that controls whether variable bounds in the IIS should be retrieved or
the integer restrictions ←↩

Default: 0

value meaning

0 Variable bound

1 Integer restrictions

IIS INFEAS NORM (integer): specifies the norm to measure infeasibilities in IIS search ←↩

Default: 0

value meaning

0 Solver decides

1 Use L-1 norm

2 L-infinity norm

IIS ITER LIMIT (integer): the iteration limit for IIS search ←↩

Range: {-1, ..., ∞}

Default: -1

IIS METHOD (integer): specifies the method to use in analyzing infeasible models to locate an IIS ←↩

Default: 0

5.24 LINDO and LINDOGlobal 2269

value meaning

0 Default filter

1 Standard deletion filter

2 Standard additive filter

3 Generalized-binary-search filter

4 Depth-first-binary-search filter

5 Fast-scan filter

6 Standard elastic filter

IIS PRINT LEVEL (integer): specifies the amount of print to do during IIS search ←↩

Default: 2

IIS REOPT (integer): specifies which optimization method to use when starting from a given basis ←↩

Default: 0

value meaning

0 Free

1 Primal Simplex

2 Dual Simplex

3 Barrier

4 NLP

IIS TIME LIMIT (integer): the time limit for IIS search ←↩

Range: {-1, ..., ∞}

Default: -1

IIS TOPOPT (integer): specifies which optimization method to use when there is no previous basis ←↩

Default: 0

value meaning

0 Free

1 Primal Simplex

2 Dual Simplex

3 Barrier

4 NLP

IIS USE EFILTER (integer): flag that controls whether the Elastic Filter should be enabled as the
supplementary filter in analyzing infeasible models ←↩

Default: 0

value meaning

-1 Solver decides

0 Do not use elastic filter

1 Use elastic filter

2270 Solver Manuals

IIS USE GOP (integer): flag that controls whether the global optimizer should be enabled in analyzing
infeasible NLP models ←↩

Default: 0

value meaning

-1 Solver decides

0 Do not use GOP

1 Use GOP

IIS USE SFILTER (integer): flag indicating is sensitivity filter will be used during IIS search ←↩

Default: 1

value meaning

-1 Solver decides

0 Do not use sensitivity filter

1 Use sensitivity filter

INSTRUCT SUBOUT (integer): flag to specify how to deal with fixed variables in the instruction list
←↩

This is a flag indicating whether 1) fixed variables are substituted out of the instruction list,
2) performing numerical calculation on constant numbers and replacing with the results.

Default: -1

value meaning

-1 Solver decides

0 Substitutions will not be performed

1 Substitutions will be performed

IPM BASIS REL TOL S (real): maximum relative dual bound violation allowed in an optimal basic
solution ←↩

Maximum relative dual bound violation allowed in an optimal basic solution.

Default: 1e-12

IPM BASIS TOL S (real): maximum absolute dual bound violation in an optimal basic solution ←↩

Maximum absolute dual bound violation in an optimal basic solution.

Default: 1e-7

IPM BASIS TOL X (real): maximum absolute primal bound violation allowed in an optimal basic
solution ←↩

Maximum absolute primal bound violation allowed in an optimal basic solution.

Default: 1e-7

5.24 LINDO and LINDOGlobal 2271

IPM BI LU TOL REL PIV (real): relative pivot tolerance used in the LU factorization in the basis
identification procedure ←↩

Relative pivot tolerance used in the LU factorization in the basis identification procedure.

Range: [0, 0.999999]

Default: 1e-2

IPM CHECK CONVEXITY (integer): flag to check convexity of a quadratic program using barrier
solver ←↩

This is a flag to check convexity of a quadratic program using barrier solver.

Default: 1

value meaning

-1 Check convexity only without solving the model

0 Use barrier solver to check convexity

1 Do not use barrier solver to check convexity

IPM CO TOL DFEAS (real): dual feasibility tolerance for Conic solver ←↩

Default: 1e-8

IPM CO TOL INFEAS (real): maximum bound infeasibility tolerance for Conic solver ←↩

Maximum bound infeasibility tolerance for Conic solver.

Default: 1e-12

IPM CO TOL MU RED (real): optimality tolerance for Conic solver ←↩

Default: 1e-8

IPM CO TOL PFEAS (real): primal feasibility tolerance for Conic solver ←↩

Default: 1e-8

IPM MAX ITERATIONS (integer): ipm iteration limit ←↩

Controls the maximum number of iterations allowed in the interior-point optimizer.

Default: 1000

IPM NUM THREADS (integer): number of threads to run the interiorpoint optimizer on ←↩

Number of threads to run the interiorpoint optimizer on. This value should be less than or
equal to the actual number of processors or cores on a multi-core system.

Default: 1

IPM OFF COL TRH (integer): extent for detecting the offending columns in the Jacobian of the
constraint matrix ←↩

2272 Solver Manuals

Controls the extent for detecting the offending columns in the Jacobian of the constraint
matrix. 0 means no offending columns will be detected. 1 means offending columns will be
detected. In general, increasing the parameter value beyond the default value of 40 does not
improve the result.

Default: 40

IPM TOL DFEAS (real): dual feasibility tolerance ←↩
Dual feasibility tolerance used for linear and quadratic optimization problems.

Default: 1e-8

IPM TOL DSAFE (real): controls the initial dual starting point ←↩
Controls the initial dual starting point used by the interior-point optimizer. If the interior-point
optimizer converges slowly and/or the dual variables associated with constraint or variable
bounds are very large, then it might be worthwhile to increase this value.

Range: [1e-4, ∞]

Default: 1

IPM TOL INFEAS (real): infeasibility tolerance ←↩
This is the tolerance to declare the model primal or dual infeasible using the interior-point
optimizer. A smaller number means the optimizer gets more conservative about declaring the
model infeasible.

Default: 1e-10

IPM TOL MU RED (real): relative complementarity gap tolerance ←↩
Relative complementarity gap tolerance.

Default: 1e-16

IPM TOL PATH (real): how close to follow the central path ←↩
Controls how close the interior-point optimizer follows the central path. A large value of this
parameter means the central path is followed very closely. For numerically unstable problems
it might help to increase this parameter.

Range: [0, 0.5]

Default: 1e-8

IPM TOL PFEAS (real): primal feasibility tolerance ←↩
Primal feasibility tolerance used for linear and quadratic optimization problems.

Default: 1e-8

IPM TOL PSAFE (real): controls the initial primal starting point ←↩
Controls the initial primal starting point used by the interior-point optimizer. If the interior-
point optimizer converges slowly and/or the constraint or variable bounds are very large, then
it might be worthwhile to increase this value.

Range: [1e-2, ∞]

Default: 1

IPM TOL REL STEP (real): relative step size to the boundary ←↩
Relative step size to the boundary for linear and quadratic optimization problems.

Range: [0, 0.999999]

Default: 0.9999

IUS (boolean): run the IUS finder if the problem is unbounded ←↩
Default: 0

IUS ANALYZE LEVEL (integer): controls the level of analysis when locating an IUS ←↩
Default: 2

5.24 LINDO and LINDOGlobal 2273

value meaning

+2 Search for necessary columns

+8 Search for sufficient columns

LP AIJ ZEROTOL (real): coefficient matrix zero tolerance ←↩

Default: 2.22045e-16

LP BIGM (real): big-M for phase-I ←↩

Default: 1e6

LP BNDINF (real): big-M to truncate lower and upper bounds in single phase dual-simplex ←↩

Default: 1e15

LP DPSWITCH (integer): specifies whether LP primal-dual simplex switch is enabled or not ←↩

Range: {0, ..., 1}

Default: 1

LP DRATIO (integer): controls the dual min-ratio strategy ←↩

Range: {0, ..., 2}

Default: 1

LP DYNOBJFACT (real): Dynamic obj factor ←↩

Range: [0, 1]

Default: 0.75

LP DYNOBJMODE (integer): Dynamic obj mode ←↩

Default: 0

LP ITRLMT (integer): simplex iteration limit ←↩

Synonym: SPLEX ITRLMT

Range: {-1, ..., ∞}

Default: infinity

LP PIV BIGTOL (real): simplex maximum pivot tolerance ←↩

Default: 1e-5

LP PIV ZEROTOL (real): simplex pivot zero tolerance ←↩

Default: 1e-8

LP PPARTIAL (integer): primal simplex partial pricing method ←↩

Range: {0, ..., 3}

Default: 0

LP PRELEVEL (integer): controls the amount and type of LP pre-solving ←↩

This controls the amount and type of LP pre-solving to be used.

Default: 126

2274 Solver Manuals

value meaning

+2 Simple pre-solving

+4 Probing

+8 Coefficient reduction

+16 Elimination

+32 Dual reductions

+64 Use dual information

+512 Maximum pass

LP RATRANGE (integer): controls the number of pivot-candidates to consider when searching for a
stable pivot in LU decomposition ←↩

Range: {1, ..., ∞}

Default: 4

LP SCALE (integer): scaling flag ←↩

Synonym: SPLEX SCALE

Default: 1

value meaning

0 Scaling is suppressed

1 Scaling is performed

LP SPRINT COLFACT (integer): maximum number of columns in Sprint as a factor of number of
rows ←↩

Range: {1, ..., ∞}

Default: 10

LP SPRINT MAXPASS (integer): maximum number of passes in Sprint method ←↩

Range: {1, ..., ∞}

Default: 100

LP SPRINT SUB (integer): LP method for subproblem in Sprint method ←↩

Default: 0

MIP ABSCUTTOL (real): MIP absolute cut tolerance ←↩

This is the MIP absolute cut tolerance. If the value is less than or equal to zero, it will use
the internal decided tolerace, otherwise it will use this value as the abolute tolerace for adding
cuts.

Range: [-1.0, ∞]

Default: -1.0

MIP ABSOPTTOL (real): MIP absolute optimality tolerance ←↩

5.24 LINDO and LINDOGlobal 2275

This is the MIP absolute optimality tolerance. Solutions must beat the incumbent by at least
this absolute amount to become the new, best solution.

Default: GAMS OptCA

MIP ADDCUTOBJTOL (real): required objective improvement to continue generating cuts ←↩

This specifies the minimum required improvement in the objective function for the cut
generation phase to continue generating cuts.

Default: 1.5625e-5

MIP ADDCUTPER (real): percentage of constraint cuts that can be added ←↩

This determines how many constraint cuts can be added as a percentage of the number of
original rows in an integer programming model.

Default: 0.75

MIP ADDCUTPER TREE (real): percentage of constraint cuts that can be added at child nodes ←↩

This determines how many constraint cuts can be added at child nodes as a percentage of the
number of original rows in an integer programming model.

Default: 0.5

MIP AGGCUTLIM TOP (integer): max number of constraints involved in derivation of aggregation
cut at root node ←↩

This specifies an upper limit on the number of constraints to be involved in the derivation of
an aggregation cut at the root node. The default is .1, which means that the solver will decide.

Range: {-1, ..., ∞}

Default: -1

MIP AGGCUTLIM TREE (integer): max number of constraints involved in derivation of aggregation
cut at tree nodes ←↩

This specifies an upper limit on the number of constraints to be involved in the derivation
of an aggregation cut at the tree nodes. The default is .1, which means that the solver will
decide.

Range: {-1, ..., ∞}

Default: -1

MIP ANODES SWITCH DF (integer): threshold on active nodes for switching to depth-first search
←↩

This specifies the threshold on active nodes for switching to depth-first search rule.

Default: 50000

MIP AOPTTIMLIM (integer): time in seconds beyond which the relative optimality tolerance will be
applied ←↩

This is the time in seconds beyond which the relative optimality tolerance, MIP PEROPTTOL

will be applied.

Default: 100

MIP BIGM FOR INTTOL (real): threshold for which coefficient of a binary variable would be
considered as big-M ←↩

This value specifies the threshold for which the coefficient of a binary variable would be
considered as big-M (when applicable).

Default: 1e8

MIP BRANCHDIR (integer): first branching direction ←↩

This specifies the direction to branch first when branching on a variable.

Default: 0

2276 Solver Manuals

value meaning

0 Solver decides

1 Always branch up first

2 Always branch down first

MIP BRANCHRULE (integer): rule for choosing the variable to branch ←↩

This specifies the rule for choosing the variable to branch on at the selected node.

Default: 0

value meaning

0 Solver decides

1 Basis rounding with pseudo reduced costs

2 Maximum infeasibility

3 Pseudo reduced costs only

4 Maximum coefficient only

5 Previous branching only

MIP BRANCH LIMIT (integer): limit on the total number of branches to be created during branch
and bound ←↩

This is the limit on the total number of branches to be created during branch-and- bound.
The default value is -1, which means no limit is imposed. If the branch limit is reached and a
feasible integer solution was found, it will be installed as the incumbent (best known) solution.

Range: {-1, ..., ∞}

Default: -1

MIP BRANCH PRIO (integer): controls how variable selection priorities are set and used ←↩

This controls how variable selection priorities are set and used.

Default: 0

value meaning

0 If the user has specified priorities then use them Otherwise let LINDO API decide

1 If user has specified priorities then use them Overwrite users choices if necessary

2 If user has specified priorities then use them Otherwise do not use any priorities

3 Let LINDO API set the priorities and ignore any user specified priorities

4 Binaries always have higher priority over general integers

MIP CONCURRENT REOPTMODE (integer): specifies the concurrent optimization mode with
warm start ←↩

Default: 0

value meaning

0 no concurrent runs

1 run concurrently if at least 2 threads exist

2 run concurrently

5.24 LINDO and LINDOGlobal 2277

MIP CONCURRENT STRATEGY (integer): controls the concurrent MIP strategy ←↩

Default: -1

value meaning

-1 Solver decides

1 Defines built-in priority lists for each thread

3 Defines heuristic based strategies for each thread

MIP CONCURRENT TOPOPTMODE (integer): specifies the concurrent optimization mode with
cold start ←↩

Default: 0

value meaning

0 no concurrent runs

1 run concurrently if at least 2 threads exist

2 run concurrently

MIP CUTDEPTH (integer): threshold value for the depth of nodes in the branch and bound tree ←↩

This controls a threshold value for the depth of nodes in the B&B tree, so cut generation will
be less likely at those nodes deeper than this threshold.

Default: 8

MIP CUTFREQ (integer): frequency of invoking cut generation at child nodes ←↩

This controls the frequency of invoking cut generation at child nodes. The default value is 10,
indicating that the MIP solver will try to generate cuts at every 10 nodes.

Default: 10

MIP CUTLEVEL TOP (integer): combination of cut types to try at the root node when solving a
MIP ←↩

This controls the combination of cut types to try at the root node when solving a MIP. Bit
settings are used to enable the various cut types.

Default: 57342

value meaning

+2 GUB cover

+4 Flow cover

+8 Lifting

+16 Plant location

+32 Disaggregation

+64 Knapsack cover

+128 Lattice

+256 Gomory

+512 Coefficient reduction

+1024 GCD

+2048 Obj integrality

+4096 Basis Cuts

+8192 Cardinality Cuts

+16384 Disjunk Cuts

+32768 Soft Knapsack Cuts

2278 Solver Manuals

MIP CUTLEVEL TREE (integer): combination of cut types to try at child nodes in the branch and
bound tree when solving a MIP ←↩

This controls the combination of cut types to try at child nodes in the B&B tree when solving
a MIP.

Default: 53246

value meaning

+2 GUB cover

+4 Flow cover

+8 Lifting

+16 Plant location

+32 Disaggregation

+64 Knapsack cover

+128 Lattice

+256 Gomory

+512 Coefficient reduction

+1024 GCD

+2048 Obj integrality

+4096 Basis Cuts

+8192 Cardinality Cuts

+16384 Disjunk Cuts

+32768 Soft Knapsack Cuts

MIP CUTOFFOBJ (real): defines limit for branch and bound ←↩

If this is specified, then any part of the branch-and-bound tree that has a bound worse than
this value will not be considered. This can be used to reduce the running time if a good bound
is known.

Default: 1e30

MIP CUTTIMLIM (integer): time to be spent in cut generation ←↩

This controls the total time to be spent in cut generation throughout the solution of a MIP.
The default value is -1, indicating that no time limits will be imposed when generating cuts.

Range: {-1, ..., ∞}

Default: -1

MIP DELTA (real): near-zero value used in linearizing nonlinear expressions ←↩

This refers to a near-zero value used in linearizing nonlinear expressions.

Default: 1e-6

MIP DUAL SOLUTION (integer): flag for computing dual solution of LP relaxation ←↩

This flag controls whether the dual solution to the LP relaxation that yielded the optimal
MIP solution will be computed or not.

Default: 0

5.24 LINDO and LINDOGlobal 2279

value meaning

0 Do not calculate dual solution for LP relaxation

1 Calculate dual solution for LP relaxation

MIP FP HEU MODE (integer): specifies the feasibility-pump (FP) heuristic mode ←↩

Default: 0

value meaning

0 FP is disabled

1 Solver decides

2 Enable FP if no cutoff value or initial mip solution was defined

3 Enable FP independent of cutoff values and initial mip solutions

4 Same as 2 but also enable FP on child nodes in branch-bound tree

5 Same as 3 but also enable FP on child nodes in branch-bound tree

MIP FP ITRLIM (integer): iteration limit for feasibility pump heuristic ←↩

This is the iteration limit in seconds for feasibility pump heuristic. A value of -1 means no
iteration limit is imposed.

Default: 500

MIP FP MODE (integer): mode for the feasibility pump heuristic ←↩

Controls the mode for the feasibility pump heuristic.

Default: -1

value meaning

-1 Solver decides

0 Off

1 On until the first solution

2 Try to get more than one solution

MIP FP OPT METHOD (integer): optimization and reoptimization method for feasibility pump
heuristic ←↩

This specifies optimization and reoptimization method for feasibility pump heuristic.

Default: 0

value meaning

0 Solver decides

1 Primal simplex

2 Dual simplex

3 Barrier

MIP FP PROJECTION (integer): type of objective function of LPs in projection step of the feasibility
pump heuristic ←↩

2280 Solver Manuals

Range: {0, ..., 1}

Default: 0

MIP FP TIMLIM (real): time limit for feasibility pump heuristic ←↩

This is the time limit in seconds for feasibility pump heuristic. A value of -1 implies no time
limit is imposed.

Default: 1800

MIP FP WEIGTH (real): weight of the objective function in the feasibility pump ←↩

Controls the weight of the objective function in the feasibility pump.

Range: [0, 1]

Default: 1

MIP GENERAL MODE (integer): general strategy in solving MIPs ←↩

This value specifies the general strategy in solving MIPs.

Default: 0

value meaning

0 Solver decides

+2 Disable all time-driven events for reproducibility of runs

+16 Disable cut generation before branching

MIP HEULEVEL (integer): specifies heuristic used to find integer solution ←↩

This specifies the heuristic used to find the integer solution. Possible values are: 0: No
heuristic is used. 1: A simple heuristic is used. Typically, this will find integer solutions only
on problems with a certain structure. However, it tends to be fast. 2: This is an advanced
heuristic that tries to find a ”good” integer solution fast. In general, a value of 2 seems to not
increase the total solution time and will find an integer solution fast on many problems. A
higher value may find an integer solution faster, or an integer solution where none would have
been found with a lower level. Try level 3 or 4 on ”difficult” problems where 2 does not help.
Higher values cause more time to be spent in the heuristic. The value may be set arbitrarily
high. However, >20 is probably not worthwhile. MIP HEUMINTIMLIM controls the time to be
spent in searching heuristic solutions.

Default: 3

MIP HEUMINTIMLIM (integer): minimum time in seconds to be spent in finding heuristic solutions
←↩

This specifies the minimum time in seconds to be spent in finding heuristic solutions to the
MIP model. MIP HEULEVEL controls the heuristic used to find the integer solution.

Default: 0

MIP HEU DROP OBJ (integer): flag for whether to use without OBJ heuristic ←↩

This is a flag for whether to use without OBJ heuristic.

Default: 0

5.24 LINDO and LINDOGlobal 2281

value meaning

0 Off

1 On

MIP HEU MODE (integer): heuristic used in MIP solver ←↩

This controls the MIP heuristic mode.

Default: 0

value meaning

0 Solver decides when to stop the heuristic

1 Solver uses a pre-specified time limit to stop the heuristic.

2 Solver uses a pre-specified iteration limit to stop the heuristic

MIP INTTOL (real): absolute integer feasibility tolerance ←↩

An integer variable is considered integer feasible if the absolute difference from the nearest
integer is smaller than this.

Default: 1e-6

MIP ITRLIM (real): iteration limit for branch and bound ←↩

This is the total LP iteration limit summed over all branches for branch-and-bound. Range
for The default value is -1, which means no iteration limit is imposed. If this iteration limit
is reached, branch-and-bound will stop and the best feasible integer solution found will be
installed as the incumbent (best known) solution.

Range: [-1, ∞]

Default: infinity

MIP KBEST USE GOP (integer): specifies whether to use gop solver in MIP KBest ←↩

Default: 0

value meaning

0 No

1 Yes

MIP KEEPINMEM (integer): flag for keeping LP bases in memory ←↩

If this is set to 1, the integer pre-solver will try to keep LP bases in memory. This typically
gives faster solution times, but uses more memory. Setting this parameter to 0 causes the
pre-solver to erase bases from memory.

Default: 1

value meaning

0 Do not keep LP bases in memory

1 Keep LP bases in memory

2282 Solver Manuals

MIP LBIGM (real): Big-M value used in linearizing nonlinear expressions ←↩

This refers to the Big-M value used in linearizing nonlinear expressions.

Default: 10000

MIP LSOLTIMLIM (integer): time limit until finding a new integer solution ←↩

Range: {-1, ..., ∞}

Default: -1

MIP MAKECUT INACTIVE COUNT (integer): threshold for times a cut could remain active
after successive reoptimization ←↩

This value specifies the threshold for the times a cut could remain active after successive
reoptimization during branch-and-bound. If the count is larger than the specified level the
solver will inactive the cut.

Default: 10

MIP MAXCUTPASS TOP (integer): number passes to generate cuts on the root node ←↩

This controls the number passes to generate cuts on the root node. Each of these passes will
be followed by a reoptimization and a new batch of cuts will be generated at the new solution.

Default: 200

MIP MAXCUTPASS TREE (integer): number passes to generate cuts on the child nodes ←↩

This controls the number passes to generate cuts on the child nodes. Each of these passes will
be followed by a reoptimization and a new batch of cuts will be generated at the new solution.

Default: 2

MIP MAXNONIMP CUTPASS (integer): number of passes allowed in cut-generation that does not
improve current relaxation ←↩

This controls the maximum number of passes allowed in cut-generation that does not improve
the current relaxation.

Default: 3

MIP MAXNUM MIP SOL STORAGE (integer): maximum number of k-best solutions to store ←↩

This specifies the maximum number of k-best solutions to store. Possible values are positive
integers.

Default: 1

MIP MINABSOBJSTEP (real): value to update cutoff value each time a mixed integer solution is
found ←↩

This specifies the value to update the cutoff value each time a mixed integer solution is found.

Default: 0

MIP NODESELRULE (integer): specifies the node selection rule ←↩

This specifies the node selection rule for choosing between all active nodes in the branch-and-
bound tree when solving integer programs.Possible selections are: 0: Solver decides (default).
1: Depth first search. 2: Choose node with worst bound. 3: Choose node with best bound. 4:
Start with best bound. If no improvement in the gap between best bound and best integer
solution is obtained for some time, switch to: if (number of active nodes<10000) Best estimate
node selection (5). else Worst bound node selection (2). 5: Choose the node with the best
estimate, where the new objective estimate is obtained using pseudo costs. 6: Same as (4),
but start with the best estimate.

Default: 0

5.24 LINDO and LINDOGlobal 2283

value meaning

0 Solver decides

1 Depth first search

2 Choose node with worst bound

3 Choose node with best bound

4 Start with best bound

5 Choose the node with the best estimate

6 Same as 4 but start with the best estimate

MIP NUM THREADS (integer): number of parallel threads to use by the parallel MIP solver ←↩

This parameter specifies the number of parallel threads to use by the parallel MIP solver.
Possible values are positive integers. The default is 1 implying that the parallel solver is
disabled.

Range: {1, ..., ∞}

Default: 1

MIP PARA FP (integer): flag for whether to use parallelization on the feasibility pump heuristic ←↩

This is a flag for whether to use parallelization on the feasibility pump heuristic.

Default: 1

value meaning

0 Off

1 On

MIP PARA FP MODE (integer): flag for the mode of parallel feasibility pump ←↩

This is a flag for the mode of parallel feasibility pump.

Default: 0

value meaning

0 Terminate when all threads finish

1 Terminate as soon as the master thread finishes

MIP PARA INIT NODE (real): number of initial nodes for MIP parallelization ←↩

This value specifies the number of initial nodes for MIP parallelization.

Range: [-1, ∞]

Default: -1

MIP PARA ITR MODE (integer): flag for iteration mode in MIP parallelization ←↩

This is a flag for iteration mode in MIP parallelization.

Default: 1

2284 Solver Manuals

value meaning

0 Each thread terminates as soon as arrives iteration limit

1 Each thread terminates until all threads get iteration limit

MIP PARA RND ITRLMT (real): iteration limit of each round in MIP parallelization, it is a weighted
combination of simplex and barrier iterations ←↩

This value specifies the iteration limit of each round in MIP parallelization, it is a weighted
combination of simplex and barrier iterations.

Default: 2.0

MIP PARA SUB (integer): flag for whether to use MIP parallelization on subproblems solved in MIP
preprocessing ←↩

This is a flag for whether to use MIP parallelization on subproblems solved in MIP preprocessing.

Default: 1

value meaning

0 Off

1 On

MIP PEROPTTOL (real): MIP relative optimality tolerance in effect after MIP AOPTTIMLIM
seconds ←↩

This is the MIP relative optimality tolerance that will be in effect after T seconds following
the start. The value T should be specified using the MIP AOPTTIMLIM parameter.

Default: 1e-5

MIP PERSPECTIVE REFORM (integer): flag for whether to use Perspective Reformulation ←↩

This is the flag for wether to use Persective Reformulation.

Default: 1

value meaning

0 Off

1 On

MIP POLISH ALPHA TARGET (real): proportion solutions in the pool to initiate a polishing-task
at the current node ←↩

This value specifies the proportion solutions in the pool to initiate a polishing-task at the
current node.

Range: [0.01, 0.99]

Default: 0.6

MIP POLISH MAX BRANCH COUNT (integer): maximum number of branches to polish ←↩

5.24 LINDO and LINDOGlobal 2285

This value specifies the maximum number of branches to polish.

Default: 2000

MIP POLISH NUM BRANCH NEXT (integer): number of branches to polish in the next round←↩

This value specifies the number of branches to polish in the next round.

Default: 4000

MIP PREHEU DFE VSTLIM (integer): limit for the variable visit in depth first enumeration ←↩

Limit for the variable visit in depth first enumeration.

Default: 200

MIP PREHEU LEVEL (integer): heuristic level for the prerelax solver ←↩

The heuristic level for the prerelax solver.

Default: 0

value meaning

0 Nothing

1 One-change

2 One-change and two-change

3 Depth first enumeration

MIP PREHEU TC ITERLIM (integer): iteration limit for the two change heuristic ←↩

Iteration limit for the two change heuristic.

Default: 30000000

MIP PREHEU VAR SEQ (integer): sequence of the variable considered by the prerelax heuristic ←↩

The sequence of the variable considered by the prerelax heuristic.

Default: -1

value meaning

-1 Backward

1 Forward

MIP PRELEVEL (integer): controls the amount and type of MIP pre-solving at root node ←↩

This controls the amount and type of MIP pre-solving at root node.

Default: 3070

value meaning

+2 Simple pre-solving

+4 Probing

2286 Solver Manuals

value meaning

+8 Coefficient reduction

+16 Elimination

+32 Dual reductions

+64 Use dual information

+128 Binary row presolving

+256 Row aggregation

+512 Coef Probe Lifting

+1024 Maximum pass

+2048 Similar row

MIP PRELEVEL TREE (integer): amount and type of MIP pre-solving at tree nodes ←↩

This controls the amount and type of MIP pre-solving at tree nodes.

Default: 1214

value meaning

+2 Simple pre-solving

+4 Probing

+8 Coefficient reduction

+16 Elimination

+32 Dual reductions

+64 Use dual information

+128 Binary row presolving

+256 Row aggregation

+512 Coef Probe Lifting

+1024 Maximum pass

MIP PRE ELIM FILL (integer): controls fill-in introduced by eliminations during pre-solve ←↩

This is a nonnegative value that controls the fill-in introduced by the eliminations during pre-
solve. Smaller values could help when the total nonzeros in the presolved model is significantly
more than the original model.

Default: 100

MIP PSEUDOCOST RULE (integer): specifies the rule in pseudocost computations for variable
selection ←↩

This specifies the rule in pseudocost computations for variable selection.

Default: 0

value meaning

0 Solver decides

1 Only use min pseudo cost

2 Only use max pseudo cost

3 Use quadratic score function and the pseudo cost weigth

4 Same as 3 without quadratic score

5.24 LINDO and LINDOGlobal 2287

MIP PSEUDOCOST WEIGT (real): weight in pseudocost computations for variable selection ←↩

This specifies the weight in pseudocost computations for variable selection.

Default: 1.5625e-05

MIP REDCOSTFIX CUTOFF (real): cutoff value as a percentage of the reduced costs ←↩

This specifies the cutoff value as a percentage of the reduced costs to be used in fixing variables
when using the reduced cost fixing heuristic.

Default: 0.9

MIP REDCOSTFIX CUTOFF TREE (real): cutoff value as a percentage of the reduced costs at
tree nodes ←↩

This specifies the cutoff value as a percentage of the reduced costs to be used in fixing variables
when using the reduced cost fixing heuristic at tree nodes.

Default: 0.9

MIP RELINTTOL (real): relative integer feasibility tolerance ←↩

An integer variable is considered integer feasible if the difference between its value and the
nearest integer value divided by the value of the nearest integer is less than this.

Default: 8e-6

MIP RELOPTTOL (real): MIP relative optimality tolerance ←↩

This is the MIP relative optimality tolerance. Solutions must beat the incumbent by at least
this relative amount to become the new, best solution.

Default: GAMS OptCR

MIP REOPT (integer): optimization method to use when doing reoptimization ←↩

This specifies which optimization method to use when doing reoptimization from a given basis.

Default: 0

value meaning

0 Solver decides

1 Use primal method

2 Use dual simplex

3 Use barrier solver

MIP SCALING BOUND (integer): maximum difference between bounds of an integer variable for
enabling scaling ←↩

This controls the maximum difference between the upper and lower bounds of an integer
variable that will enable the scaling in the simplex solver when solving a subproblem in the
branch-and-bound tree.

Default: 10000

2288 Solver Manuals

MIP SOLLIM (integer): integer solution limit for MIP solver ←↩

Range: {-1, ..., ∞}

Default: -1

MIP SOLVERTYPE (integer): optimization method to use when solving mixed-integer models ←↩

This specifies the optimization method to use when solving mixed-integer models.

Default: 0

value meaning

0 Solver decides

1 Use Branch and Bound only

2 Use Enumeration and Knapsack solver only

MIP STRONGBRANCHDONUM (integer): minimum number of variables to try the strong branch-
ing on ←↩

This value specifies the minimum number of variables, among all the candidates, to try the
strong branching on.

Default: 3

MIP STRONGBRANCHLEVEL (integer): depth from the root in which strong branching is used ←↩

This specifies the depth from the root in which strong branching is used. The default value of
10 means that strong branching is used on a level of 1 to 10 measured from the root. Strong
branching finds the real bound for branching on a given variable, which, in most cases, requires
a solution of a linear program and may therefore also be quite expensive in computing time.
However, if used on nodes close to the root node of the tree, it also gives a much better bound
for that part of the tree and can therefore reduce the size of the branch-and-bound tree.

Default: 10

MIP SWITCHFAC SIM IPM ITER (integer): specifies the (positive) factor that multiplies the
number of constraints to impose an iteration limit to simplex method and trigger a switch over to the
barrier method ←↩

Range: {-1, ..., ∞}

Default: -1

MIP SWITCHFAC SIM IPM TIME (real): factor that multiplies the number of constraints to
impose a time limit to simplex method and trigger a switch over to the barrier method ←↩

This specifies the (positive) factor that multiplies the number of constraints to impose a time
limit to simplex method and trigger a switch over to the barrier method. A value of -1.0 means
that no time limit is imposed.

Range: [-1, ∞]

Default: -1

MIP SYMMETRY MODE (integer): specifies mip symmetry handling methods ←↩

Default: 0

5.24 LINDO and LINDOGlobal 2289

value meaning

0 Do not use symmetries

1 Adding symmetry breaking cuts

2 Orbital fixing

MIP SYMMETRY NONZ (integer): limit on number of nonzeros to look for symmetries ←↩

Range: {0, ..., ∞}

Default: 50000

MIP TIMLIM (integer): time limit in seconds for integer solver ←↩

This is the time limit in seconds for branch-and-bound. The default value is -1, which means
no time limit is imposed. However, the value of SOLVER TIMLMT will be applied to each
continuous subproblem solve. If the value of this parameter is greater than 0, then the value
of SOLVER TIMLMT will be disregarded. If this time limit is reached and a feasible integer
solution was found, it will be installed as the incumbent (best known) solution.

Range: {-1, ..., ∞}

Default: GAMS ResLim

MIP TOPOPT (integer): optimization method to use when there is no previous basis ←↩

This specifies which optimization method to use when there is no previous basis.

Default: 0

value meaning

0 Solver decides

1 Use primal method

2 Use dual simplex

3 Use barrier solver

MIP TREEREORDERLEVEL (integer): tree reordering level ←↩

This specifies the tree reordering level.

Default: 10

MIP TREEREORDERMODE (integer): tree reordering mode ←↩

This specifies the tree reordering mode.

Default: 1

value meaning

1 Use tree reordering only for subproblems

2 Use tree reordering for subproblems and the main bnb loop only when LP status
is infeasible

3 Not use tree reordering

4 Use tree reordering based on MIP TREEREORDERLEVEL

2290 Solver Manuals

MIP USECUTOFFOBJ (integer): flag for using branch and bound limit ←↩

This is a flag for the parameter MIP CUTOFFOBJ. If you do not want to lose the value of the
parameter MIP CUTOFFOBJ, this provides an alternative to disabling the cutoff objective.

Default: 1

value meaning

0 Do not use current cutoff value

1 Use current cutoff value

MIP USE CUTS HEU (integer): controls if cut generation is enabled during MIP heuristics ←↩

This flag controls if cut generation is enabled during MIP heuristics. The default is -1 (i.e.
the solver decides).

Default: -1

value meaning

-1 Solver decides

0 Do not use cut heuristic

1 Use cut heuristic

MIP USE ENUM HEU (integer): frequency of enumeration heuristic ←↩

This specifies the frequency of enumeration heuristic.

Default: 4

value meaning

0 Off

1 Only at top (root) node without cuts

2 Both at top (root) and tree nodes without cuts

3 Same as 1 with cuts

4 Same as 2 with cuts

MIP USE INT ZERO TOL (integer): controls if all MIP calculations would be based on absolute
integer feasibility tolarance ←↩

This flag controls if all MIP calculations would be based on the integrality tolarance specified
by MIP INTTOL.

Default: 0

value meaning

0 Do not base MIP calculations on MIP INTTOL

1 Base MIP calculations on MIP INTTOL

MULTITHREAD MODE (integer): threading mode ←↩

This parameter controls the threading mode for solvers with multithreading support.

5.24 LINDO and LINDOGlobal 2291

Default: -1

2292 Solver Manuals

value meaning

-1 Solver decides

1 Try parallel mode but if it is not available try concurrent mode

2 Try parallel mode only

3 Try concurrent mode but if it is not available try parallel mode

4 Try concurrent mode only

NLP AUTODERIV (integer): defining type of computing derivatives ←↩

This is a flag to indicate if automatic differentiation is the method of choice for computing
derivatives and select the type of differentiation.

Default: 0

value meaning

0 Finite Differences approach will be used

1 Forward type of Automatic Differentiation will be used

2 Backward type of Automatic Differentiation will be used

NLP AUTOHESS (integer): flag for using Second Order Automatic Differentiation for solving NLP ←↩

This is a flag to indicate if Second Order Automatic Differentiation will be performed in solving
a nonlinear model. The second order derivatives provide an exact/precise Hessian matrix to
the SQP algorithm, which may lead to less iterations and better solutions, but may also be
quite expensive in computing time for some cases.

Default: 0

value meaning

0 Do not use Second Order Automatic Differentiation

1 Use Second Order Automatic Differentiation

NLP CONIC REFORM (integer): determines if to explore conic reformulation ←↩

Default: 1

value meaning

0 No

1 Yes

NLP CONOPT VER (integer): specifies the CONOPT version to be used in NLP optimizations ←↩

Range: {3, ..., 4}

Default: 3

NLP CUTOFFOBJ (real): as soon as any multi-start thread achieves this value all threads stop ←↩

If the current best objective of the NLP being solved in a multistart run is better than this
value, the solver will terminate early without exhausting the maximum number of multistarts.
This is a way of saving computer time if the current best solution is sufficiently attractive.

5.24 LINDO and LINDOGlobal 2293

Range: [-1e30, ∞]

Default: -1e30

NLP DERIV DIFFTYPE (integer): flag indicating the technique used in computing derivatives with
finite differences ←↩

This is a flag indicating the technique used in computing derivatives with Finite Differences.

Default: 0

value meaning

0 The solver decides

1 Use forward differencing method

2 Use backward differencing method

3 Use center differencing method

NLP FEASCHK (integer): how to report results when solution satisfies tolerance of scaled but not
original model ←↩

This input parameter specifies how the NLP solver reports the results when an optimal or
local-optimal solution satisfies the feasibililty tolerance (NLP FEASTOL) of the scaled model
but not the original (descaled) one.

Default: 1

value meaning

0 Perform no action accept the final solution

1 Declare the model status as FEASIBLE if maximum violation in the unscaled
model is not higher than 10 times NLP FEASTOL

2 Declare the model status as UNKNOWN if maximum violation in the unscaled
model is higher than NLP FEASTOL

NLP FEASTOL (real): feasibility tolerance for nonlinear constraints ←↩

This is the feasibility tolerance for nonlinear constraints. A constraint is considered violated
if the artificial, slack, or surplus variable associated with the constraint violates its lower or
upper bounds by the feasibility tolerance.

Default: 1e-6

NLP INF (real): numeric infinity for nonlinear models ←↩

Specifies the numeric infinity for nonlinear models. Possible values are positive real numbers.
Smaller values could cause numerical problems.

nlp ipm2grg This is a flag to switch from IPM solver to the standard NLP (GRG) solver when
IPM fails due to numerical errors.

Default: 1e30

NLP IPM2GRG (integer): switch from IPM solver to GRG solver when IPM fails due to numerical
errors ←↩

Default: 1

2294 Solver Manuals

value meaning

0 Do not switch

1 Switch

NLP ITERS PER LOGLINE (integer): number of nonlinear iterations to elapse before next progress
message ←↩

Number of nonlinear iterations to elapse before next progress message.

Range: {1, ..., ∞}

Default: 10

NLP ITRLMT (integer): nonlinear iteration limit ←↩

This controls the iteration limit on the number of nonlinear iterations performed.

Range: {-1, ..., ∞}

Default: GAMS IterLim

NLP LINEARZ (integer): extent to which the solver will attempt to linearize nonlinear models ←↩

This determines the extent to which the solver will attempt to linearize nonlinear models.

Default: 0

value meaning

0 Solver decides

1 No linearization occurs

2 Linearize ABS MAX and MIN functions

3 Same as option 2 plus IF AND OR NOT and all logical operators are linearized

NLP LINEARZ WB CONSISTENT (integer): determines if linearization process is consistent with
WB/excel calculation ←↩

Default: 0

value meaning

0 No

1 Yes

NLP MAXLOCALSEARCH (integer): maximum number of local searches ←↩

This controls the maximum number of local searches (multistarts) when solving a NLP using
the multistart solver.

Default: 5

NLP MAXLOCALSEARCH TREE (integer): maximum number of multistarts ←↩

Maximum number of multistarts (at tree nodes)

Default: 1

5.24 LINDO and LINDOGlobal 2295

NLP MAX RETRY (integer): maximum number refinement retries to purify the final NLP solution ←↩

Maximum number refinement retries to purify the final NLP solution.

Range: {-1, ..., ∞}

Default: 5

NLP MSW EUCDIST THRES (real): euclidean distance threshold in multistart search ←↩

Euclidean distance threshold in multistart search

Default: 0.001

NLP MSW FILTMODE (integer): filtering mode to exclude certain domains during sampling in
multistart search ←↩

Filtering mode to exclude certain domains during sampling in multistart search.

Default: -1

value meaning

-1 Solver decides

+1 Filter-out the points around known KKT or feasible points previously visited

+2 Filter-out the points whose p are in the vicinity of p(x)

+4 Filter-out the points in the vicinity of x where x are initial points of all previous
local optimizations

+8 Filter-out the points whose p(.) values are below a dynamic threshold tolerance

NLP MSW MAXNOIMP (integer): maximum number of consecutive populations to generate without
any improvements ←↩

Maximum number of consecutive populations to generate without any improvements.

Range: {-1, ..., ∞}

Default: -1

NLP MSW MAXPOP (integer): maximum number of populations to generate in multistart search ←↩

Maximum number of populations to generate in multistart search.

Range: {-1, ..., ∞}

Default: -1

NLP MSW MAXREF (integer): maximum number of reference points to generate trial points in
multistart search ←↩

Maximum number of reference points in the solution space to generate trial points in multistart
search.

Range: {-1, ..., ∞}

Default: -1

2296 Solver Manuals

NLP MSW NORM (integer): norm to measure the distance between two points in multistart search←↩

Norm to measure the distance between two points in multistart search.

Range: {-1, ..., ∞}

Default: 2

NLP MSW NUM THREADS (integer): number of parallel threads to be used when solving an NLP
model with the multistart solver ←↩

This value specifies the number of parallel threads to be used when solving an NLP model
with the multistart solver.

Default: 1

NLP MSW OVERLAP RATIO (real): rate of replacement in successive populations ←↩

This value specifies the rate of replacement in successive populations. Higher values favors
survival of points in the parent population.

Range: [0.0, 1.0]

Default: 0.1

NLP MSW POXDIST THRES (real): penalty function neighborhood threshold in multistart search
←↩

Penalty function neighborhood threshold in multistart search

Default: 0.01

NLP MSW PREPMODE (integer): preprocessing strategies in multistart solver ←↩

This value specifies the preprocessing strategies in multistart solver.

Default: -1

value meaning

-1 Solver decides

+1 Truncate free variables

+2 Scale reference points to origin

+4 Enable expansive scaling of radius[k] by hit[k]

+8 Skewed sampling allowing values in the vicinity of origin.

+16 Get best bounds by presolver

+32 Get best bounds using GOP

+64 Enable sampling of free variables (not recommended)

+128 Collect sufficiently many trial points prior to local solves

+256 Enable power solver, trying several different local strategies

NLP MSW RG SEED (integer): random number generator seed for the multistart solver ←↩

This value specified the random number generator seed for the multistart solver.

Default: 1019

5.24 LINDO and LINDOGlobal 2297

NLP MSW RMAPMODE (integer): specifies the mode to map reference points in the unit cube into
the original space ←↩

Default: -1

value meaning

-1 Solver decides

0 Use original variable bounds

1 Use min-max values over all sample points per each dimension

2 Use min-max values over all sample points over all dimensions

NLP MSW SOLIDX (integer): index of the multistart solution to be loaded ←↩

Index of the multistart solution to be loaded main solution structures.

Default: 0

NLP MSW XKKTRAD FACTOR (real): KKT solution neighborhood factor in multistart search ←↩

KKT solution neighborhood factor in multistart search

Default: 0.85

NLP MSW XNULRAD FACTOR (real): initial solution neighborhood factor in multistart search ←↩

Initial solution neighborhood factor in multistart search

Default: 0.5

NLP PRELEVEL (integer): controls the amount and type of NLP pre-solving ←↩

This controls the amount and type of NLP pre-solving.

Default: 126

value meaning

+2 Simple pre-solving

+4 Probing

+8 Coefficient reduction

+16 Elimination

+32 Dual reductions

+64 Use dual information

+512 Maximum pass

NLP PSTEP FINITEDIFF (real): value of the step length in computing the derivatives using finite
differences ←↩

This controls the value of the step length in computing the derivatives using finite differences.

Default: 5e-7

NLP QUADCHK (integer): flag for checking if NLP is quadratic ←↩

2298 Solver Manuals

This is a flag indicating if the nonlinear model should be examined to check if it is a quadratic
model.

Default: 1

5.24 LINDO and LINDOGlobal 2299

value meaning

0 Do not check if NLP is quadratic

1 Check if NLP is quadratic

NLP REDGTOL (real): tolerance for the gradients of nonlinear functions ←↩

This is the tolerance for the gradients of nonlinear functions. The (projected) gradient of a
function is considered to be the zero-vector if its norm is below this tolerance.

Default: 1e-7

NLP SOLVER (integer): type of nonlinear solver ←↩

This value determines the type of nonlinear solver.

Default: 7

value meaning

4 Solver decides

5 Uses Levenberg-Marquardt method to solve nonlinear least-squares problem

6 Uses Barrier solver for convex QCP models

7 Uses CONOPTs reduced gradient solver

8 Uses SLP solver

9 Uses CONOPT with multistart feature enabled

NLP SOLVE AS LP (integer): flag indicating if the nonlinear model will be solved as an LP ←↩

This is a flag indicating if the nonlinear model will be solved as an LP. 1 means that an
LP using first order approximations of the nonlinear terms in the model will be used when
optimizing the model with the LSoptimize() function.

Default: 0

value meaning

0 NLP will not be solved as LP

1 NLP will be solved as LP

NLP STALL ITRLMT (integer): iteration limit before a sequence of non-improving NLP iterations is
declared as stalling ←↩

This specifies the iteration limit before a sequence of non-improving NLP iterations is declared
as stalling, thus causing the solver to terminate.

Default: 100

NLP STARTPOINT (integer): flag for using initial starting solution for NLP ←↩

This is a flag indicating if the nonlinear solver should accept initial starting solutions.

Default: 1

2300 Solver Manuals

value meaning

0 Do not use initial starting solution for NLP

1 Use initial starting solution for NLP

NLP SUBSOLVER (integer): type of nonlinear subsolver ←↩

This controls the type of linear solver to be used for solving linear subproblems when solving
nonlinear models.

Default: 1

value meaning

1 Primal simplex method

2 Dual simplex method

3 Barrier solver with or without crossover

NLP USECUTOFFOBJ (integer): flag to use parameter NLP CUTOFFOBJ ←↩

This is a flag for the parameter NLP CUTOFFOBJ. The value of 0 means NLP CUTOFFOBJ
will be ignored, else it will be used as specified.

Default: 0

value meaning

-1 Solver decides

0 No

1 Yes

NLP USE CRASH (integer): flag for using simple crash routines for initial solution ←↩

This is a flag indicating if an initial solution will be computed using simple crash routines.

Default: 0

value meaning

0 Do not use simple crash routines

1 Use simple crash routines

NLP USE LINDO CRASH (integer): flag for using advanced crash routines for initial solution ←↩

This is a flag indicating if an initial solution will be computed using advanced crash routines.

Default: 1

value meaning

0 Do not use advanced crash routines

1 Use advanced crash routines

NLP USE SDP (integer): flag to use SDP solver for POSD constraint ←↩

5.24 LINDO and LINDOGlobal 2301

Default: 1

value meaning

0 No

1 Yes

NLP USE SELCONEVAL (integer): flag for using selective constraint evaluations for solving NLP ←↩

This is a flag indicating if selective constraint evaluations will be performed in solving a
nonlinear model.

Default: 1

value meaning

0 Do not use selective constraint evaluations

1 Use selective constraint evaluations

NLP USE SLP (integer): flag for using sequential linear programming step directions for updating
solution ←↩

This is a flag indicating if sequential linear programming step directions should be used in
updating the solution.

Default: 1

value meaning

-1 Solver decides

0 Do not use sequential linear programming step directions

1 Use sequential linear programming step directions

NLP USE STEEPEDGE (integer): flag for using steepest edge directions for updating solution ←↩

This is a flag indicating if steepest edge directions should be used in updating the solution.

Default: 0

value meaning

0 Do not use steepest edge directions

1 Use steepest edge directions

NUM THREADS (integer): number of parallel threads to be used ←↩

Synonym: gthreads

Number of threads to use in the solver routine to be called. It is a solver-independent parameter
which internally sets solver-specific threading parameters automatically. If the GAMS threads

parameter is set to 0, the Lindo default will be used, which is 1.

Range: {1, ..., ∞}

Default: GAMS Threads

2302 Solver Manuals

PROB TO SOLVE (integer): controls whether the explicit primal or dual form of the given LP problem
will be solved ←↩

This flag controls whether the explicit primal or dual form of the given LP problem will be
solved.

Default: 0

value meaning

0 Solver decides

1 Explicit primal form

2 Explicit dual form

PROFILER LEVEL (integer): specifies the profiler level to break down the total cpu time into. ←↩

Specifies the profiler level to break down the total cpu time into.

Default: 0

value meaning

0 Profiler is off

+1 Enable for simplex solver

+2 Enable for integer solver

+4 Enable for multistart solver

+8 Enable for global solver

READPARAMS (string): read Lindo parameter file ←↩

REPORTEVSOL (no value): solve and report the expected value solution ←↩

Default: 0

SAMP CDSINC (real): correlation matrix diagonal shift increment ←↩

Correlation matrix diagonal shift increment.

Default: 1e-6

SAMP NCM CUTOBJ (real): objective cutoff (target) value to stop the nearest correlation matrix
(NCM) subproblem ←↩

Objective cutoff (target) value to stop the nearest correlation matrix (NCM) subproblem.

Default: 1e-30

SAMP NCM DSTORAGE (integer): flag to enable or disable sparse mode in NCM computations ←↩

Flag to enable/disable sparse mode in NCM computations.

Range: {-1, ..., ∞}

Default: -1

5.24 LINDO and LINDOGlobal 2303

SAMP NCM ITERLIM (integer): iteration limit for NCM method ←↩

Iteration limit for NCM method.

Default: 100

SAMP NCM METHOD (integer): bitmask to enable methods for solving the nearest correlation
matrix (NCM) subproblem ←↩

Bitmask to enable methods for solving the nearest correlation matrix (NCM) subproblem.

Default: 5

SAMP NCM OPTTOL (real): optimality tolerance for NCM method ←↩

Optimality tolerance for NCM method.

Default: 1e-7

SAMP NUM THREADS (integer): specifies the number of parallel threads to be used when sampling
←↩

Default: 0

SAMP RG BUFFER SIZE (integer): specifies the buffer size for random number generators in running
in parallel mode ←↩

Default: 0

SAMP SCALE (integer): flag to enable scaling of raw sample data ←↩

Flag to enable scaling of raw sample data.

Default: 0

SOLVER CONCURRENT OPTMODE (integer): controls if simplex and interior-point optimizers
will run concurrently ←↩

Controls if simplex and interior-point optimizers will run concurrently, 0 means no concurrent
runs will be performed, 1 means both optimizers will run concurrently if at least two threads
exist in system, 2 means both optimizers will run concurrently.

Default: 0

value meaning

0 no concurrent runs

1 run concurrently if at least 2 threads exist

2 run concurrently

SOLVER CUTOFFVAL (real): solver will exit if optimal solution is worse than this ←↩

If the optimal objective value of the LP being solved is shown to be worse than this (e.g., if
the dual simplex method is being used), then the solver will exit without finding a feasible
solution. This is a way of saving computer time if there is no sufficiently attractive solution.
SOLVER USECUTOFFVAL needs to be set to 1 to activate this value.

Default: 0

2304 Solver Manuals

SOLVER FEASTOL (real): feasibility tolerance ←↩

This is the feasibility tolerance. A constraint is considered violated if the artificial, slack,
or surplus variable associated with the constraint violates its lower or upper bounds by the
feasibility tolerance.

Default: 1e-7

SOLVER IPMSOL (integer): basis crossover flag for barrier solver ←↩

This flag controls whether a basis crossover will be performed when solving LPs with the
barrier solver. A value of 0 indicates that a crossover to a basic solution will be performed. If
the value is 1, then the barrier solution will be left intact. For example, if alternate optima
exist, the barrier method will return a solution that is, loosely speaking, the average of all
alternate optima.

Default: 0

value meaning

0 Perform crossover to basis solution

1 Leave barrier solution intact

SOLVER IUSOL (integer): flag for computing basic solution for infeasible model ←↩

This is a flag that, when set to 1, will force the solver to compute a basic solution to an
infeasible model that minimizes the sum of infeasibilities and a basic feasible solution to an
unbounded problem from which an extreme direction originates. When set to the default of 0,
the solver will return with an appopriate status flag as soon as infeasibility or unboundedness
is detected. If infeasibility or unboundedness is declared with presolver's determination, no
solution will be computed.

Default: 0

value meaning

0 Return appropriate status if infeasibility is encountered

1 Force the solver to compute a basic solution to an infeasible model

SOLVER METHOD (integer): specifies the method to use when generic solver is invoked ←↩

Default: 0

value meaning

0 FREE

1 PSIMPLEX

2 DSIMPLEX

3 BARRIER

4 NLP

5 MIP

6 MULTIS

7 GOP

8 IIS

9 IUS

10 SBD

11 SPRINT

12 GA

5.24 LINDO and LINDOGlobal 2305

SOLVER MODE (integer): controls some of the advanced strategies when solving LPs ←↩

Default: 1

value meaning

+1 add distinct basic solutions to the pool of alternate optimal solutions

+2 add edge/nonbasic solutions to the pool of alternate optimal solutions

+4 favor basic solutions with integer values when choosing solutions to add to the
pool of alternate optimal solutions

SOLVER OPTTOL (real): dual feasibility tolerance ←↩

This is the optimality tolerance. It is also referred to as the dual feasibility tolerance. A dual
slack (reduced cost) is considered violated if it violates its lower bound by the optimality
tolerance.

Default: 1e-7

SOLVER PRE ELIM FILL (integer): fill-in introduced by the eliminations during pre-solve ←↩

This is a nonnegative value that controls the fill-in introduced by the eliminations during pre-
solve. Smaller values could help when the total nonzeros in the presolved model is significantly
more than the original model.

Default: 1000

SOLVER RESTART (integer): starting basis flag ←↩

This is the starting basis flag. 1 means LINDO API will perform warm starts using any basis
currently in memory. 0 means LINDO API will perform cold starts discarding any basis in
memory and starting from scratch.

Default: 0

value meaning

0 Perform cold start

1 Perform warm start

SOLVER TIMLMT (integer): time limit in seconds for continous solver ←↩

This is a time limit in seconds for the LP solver. The default value of -1 imposes no time limit.

Range: {-1, ..., ∞}

Default: GAMS ResLim

SOLVER USECUTOFFVAL (integer): flag for using cutoff value ←↩

This is a flag for the parameter SOLVER CUTOFFVAL

Default: 0

value meaning

0 Do not use cutoff value

1 Use cutoff value

2306 Solver Manuals

SPLEX DPRICING (integer): pricing option for dual simplex method ←↩

This is the pricing option to be used by the dual simplex method.

Default: -1

value meaning

-1 Solver decides the dual pricing method

0 Partial pricing

1 Steepest edge

SPLEX DUAL PHASE (integer): controls the dual simplex strategy ←↩

This controls the dual simplex strategy, single-phase versus two-phase.

Default: 0

value meaning

0 Solver decides

1 Single-phase

2 Two-phase

SPLEX PPRICING (integer): pricing option for primal simplex method ←↩

This is the pricing option to be used by the primal simplex method.

Default: -1

value meaning

-1 Solver decides the primal pricing method

0 Partial pricing

1 Devex

SPLEX REFACFRQ (integer): number of simplex iterations between two consecutive basis re-
factorizations ←↩

This is a positive integer scalar referring to the simplex iterations between two consecutive
basis re-factorizations. For numerically unstable models, setting this parameter to smaller
values may help.

Default: 100

STOC ABSOPTTOL (real): absolute optimality tolerance (w.r.t lower and upper bounds on the true
objective) to stop the solver ←↩

Absolute optimality tolerance (w.r.t lower and upper bounds on the true objective) to stop
the solver. . Possible values are reals in (0,1) interval.

Default: GAMS OptCA

STOC ADD MPI (integer): flag to use add-instructions mode when building deteq ←↩

5.24 LINDO and LINDOGlobal 2307

Flag to use add-instructions mode when building deteq.

Default: 0

STOC ALD DUAL FEASTOL (real): dual feasibility tolerance for ALD ←↩

Dual feasibility tolerance for ALD.

Default: 1e-4

STOC ALD DUAL STEPLEN (real): dual step length for ALD ←↩

Dual step length for ALD.

Default: 0.9

STOC ALD INNER ITER LIM (integer): inner loop iteration limit for ALD ←↩

Inner loop iteration limit for ALD.

Default: 1000

STOC ALD OUTER ITER LIM (integer): outer loop iteration limit for ALD ←↩

Outer loop iteration limit for ALD.

Default: 200

STOC ALD PRIMAL FEASTOL (real): primal feasibility tolerance for ALD ←↩

Primal feasibility tolerance for ALD.

Default: 1e-4

STOC ALD PRIMAL STEPLEN (real): primal step length for ALD ←↩

Primal step length for ALD.

Default: 0.5

STOC AUTOAGGR (integer): flag to enable or disable autoaggregation ←↩

Flag to enable or disable autoaggregation.

Default: 1

STOC BENCHMARK SCEN (integer): benchmark scenario to compare EVPI and EVMU against
←↩

Benchmark scenario to compare EVPI and EVMU against.

Range: {-2, ..., ∞}

Default: -2

STOC BIGM (real): big-M value for linearization and penalty functions ←↩

Big-M value for linearization and penalty functions.

Default: 1e7

STOC BUCKET SIZE (integer): bucket size in Benders decomposition ←↩

Bucket size in Benders decomposition. Possible values are positive integers or (-1) for solver
decides.

Range: {-1, ..., ∞}

Default: -1

STOC CALC EVPI (integer): flag to enable or disable calculation of EVPI ←↩

Flag to enable/disable calculation of lower bounds on EVPI.

Default: 1

2308 Solver Manuals

value meaning

0 disable

1 enable

STOC CORRELATION TYPE (integer): correlation type associated with correlation matrix ←↩

Correlation type associated with the correlation matrix.

Default: 0

value meaning

-1 Target correlation

0 Pearson correlation

1 Kendall correlation

2 Spearman correlation

STOC DEQOPT (integer): method to solve the DETEQ problem ←↩

This specifies the method to use when solving the deterministic equivalent.

Default: 0

value meaning

0 Solver decides

10 Use simple Benders Decomposition

STOC DETEQ TYPE (integer): type of deterministic equivalent ←↩

Type of deterministic equivalent to be used by the solver. Implicit determinisitc equivalent is
valid for linear and integer models only.

Default: -1

value meaning

-1 Solver decides

0 Implicit determinisitc equivalent

1 Explicit determinisitc equivalent

STOC DS SUBFORM (integer): subproblem formulation to use in DirectSearch ←↩

This parameter specifies the type of subproblem formulation to be used in heuristic search.

Default: -1

value meaning

-1 Solver decides

0 Perform heuristic search in the original solution space

1 Perform heuristic search in the space of discrete variables coupled with optimiza-
tions in the linear space

5.24 LINDO and LINDOGlobal 2309

STOC ELIM FXVAR (integer): flag to enable elimination of fixed variables from deteq MPI ←↩

Flag to enable elimination of fixed variables from deteq MPI.

Default: 1

STOC INFBND (real): value to truncate infinite bounds at non-leaf nodes ←↩

Value to truncate infinite bounds at nonleaf nodes.

Default: 1e9

STOC ITER LIM (integer): iteration limit for stochastic solver ←↩

Iteration limit for stochastic solver. Possible values are positive integers or (-1) no limit.

Range: {-1, ..., ∞}

Default: infinity

STOC MAP MPI2LP (integer): flag to specify whether stochastic parameters in MPI will be mapped
as LP matrix elements ←↩

Flag to specify whether stochastic parameters in MPI will be mapped as LP matrix elements.

Default: 0

STOC MAX NUMSCENS (integer): maximum number of scenarios before forcing automatic sampling
←↩

Maximum number of scenarios before forcing automatic sampling. Possible values are positive
integers.

Default: 40000

STOC METHOD (integer): stochastic optimization method to solve the model ←↩

Stochastic optimization method to solve the model.

Default: -1

value meaning

-1 Solve with the method chosen by the solver

0 Solve the deterministic equivalent (DETEQ)

1 Solve with the Nested Benders Decomposition (NBD) method

STOC NAMEDATA LEVEL (integer): name data level ←↩

Name data level.

Default: 1

STOC NODELP PRELEVEL (integer): presolve level solving node-models ←↩

Presolve level solving node-models.

Default: 0

2310 Solver Manuals

value meaning

+2 Simple pre-solving

+4 Probing

+8 Coefficient reduction

+16 Elimination

+32 Dual reductions

+64 Use dual information

+512 Maximum pass

STOC NSAMPLE PER STAGE (string): list of sample sizes per stage (starting at stage 2) ←↩

Comma separated list of sample sizes per stage. The sample size of stage 1 is assumed to be 1
so that this list starts with stage stage 2.

STOC NSAMPLE SPAR (integer): common sample size per stochastic parameter ←↩

Common sample size per stochastic parameter. Possible values are positive integers.

Range: {-1, ..., ∞}

Default: -1

STOC NSAMPLE STAGE (integer): common sample size per stage ←↩

Common sample size per stage.

Range: {-1, ..., ∞}

Default: -1

STOC NUM THREADS (integer): number of parallel threads ←↩

This value specifies the number of parallel threads to be used when solving a stochastic
programming model.

Default: 1

STOC RELOPTTOL (real): relative optimality tolerance (w.r.t lower and upper bounds on the true
objective) to stop the solver ←↩

Relative optimality tolerance (w.r.t lower and upper bounds on the true objective) to stop the
solver. Possible values are reals in (0,1) interval.

Default: GAMS OptCR

STOC REL DSTEPTOL (real): dual-step tolerance ←↩

This value specifies the dual-step tolerance in decomposition based algorithms.

Default: 1e-7

STOC REL PSTEPTOL (real): primal-step tolerance ←↩

This value specifies the primal-step tolerance in decomposition based algorithms.

Default: 1e-8

STOC REOPT (integer): reoptimization method to solve the node-models ←↩

Reoptimization method to solve the node-models.

Default: 0

5.24 LINDO and LINDOGlobal 2311

value meaning

0 Solver decides

1 Use primal method

2 Use dual simplex

3 Use barrier solver

4 Use NLP solver

STOC RG SEED (integer): seed to initialize the random number generator ←↩

Seed to initialize the random number generator. Possible values are positive integers.

Default: 1031

STOC SAMP CONT ONLY (integer): flag to restrict sampling to continuous stochastic parameters
only or not ←↩

Flag to restrict sampling to continuous stochastic parameters only or not.

Default: 1

value meaning

0 disable

1 enable

STOC SBD MAXCUTS (integer): max cuts to generate for master problem ←↩

Max cuts to generate for master problem.

Range: {-1, ..., ∞}

Default: -1

STOC SBD NUMCANDID (integer): maximum number of candidate solutions to generate at SBD
root ←↩

Maximum number of candidate solutions to generate at SBD root.

Range: {-1, ..., ∞}

Default: -1

STOC SBD OBJCUTFLAG (integer): flag to enable objective cut in SBD master problem ←↩

Flag to enable objective cut in SBD master problem.

Default: 1

STOC SBD OBJCUTVAL (real): RHS value of objective cut in SBD master problem ←↩

RHS value of objective cut in SBD master problem.

Default: 1e-30

STOC SHARE BEGSTAGE (integer): stage beyond which node-models are shared ←↩

2312 Solver Manuals

Stage beyond which node-models share the same model structure. Possible values are positive
integers less than or equal to number of stages in the model or (-1) for solver decides.

Range: {-1, ..., ∞}

Default: -1

STOC TIME LIM (real): time limit for stochastic solver ←↩

Time limit for stochastic solver. Possible values are nonnegative real numbers or -1 for solver
decides.

Range: [-1, ∞]

Default: GAMS ResLim

STOC TOPOPT (integer): optimization method to solve the root problem ←↩

Optimization method to solve the root problem.

Default: 0

value meaning

0 Solver decides

1 Use primal method

2 Use dual simplex

3 Use barrier solver

4 Use NLP solver

6 Use multi-start solver

7 Use global solver

STOC VARCONTROL METHOD (integer): sampling method for variance reduction ←↩

Sampling method for variance reduction.

Default: 1

value meaning

0 Montecarlo sampling

1 Latinsquare sampling

2 Antithetic sampling

STOC WSBAS (integer): warm start basis for wait-see model ←↩

Warm start basis for wait-see model .

Range: {-1, ..., ∞}

Default: -1

SVR LS ANTITHETIC (string): Sample variance reduction map to Lindo Antithetic algorithm ←↩

5.24 LINDO and LINDOGlobal 2313

SVR LS LATINSQUARE (string): Sample variance reduction map to Lindo Latin Square algorithm
←↩

SVR LS MONTECARLO (string): Sample variance reduction map to Lindo Montecarlo algorithm ←↩

TUNER PRINT LEVEL (integer): specifies the amount of print to do during parameter tuning ←↩

Default: 1

value meaning

0 Do not print anything default

>0 Print more information

USEGOP (integer): use global optimization ←↩

This value determines whether the global optimization will be used.

Default: 1

value meaning

0 Do not use global optimization

1 Use global optimization

WRITEDEMPI (string): write deterministic equivalent in MPI format ←↩

WRITEDEMPS (string): write deterministic equivalent in MPS format ←↩

WRITEMPI (string): write (S)MPI file of processed model ←↩

If this option is set, Lindo write an MPI file of processed model. If set, the value of this option
defines the name of the MPI file.

WRITEMPS (string): write (S)MPS file of processed model ←↩

5.24.8 Stochastic Programming (SP) in GAMS/Lindo

GAMS/Lindo can also solve stochastic programming models. The syntax to set up an SP problem
in GAMS is explained in the chapter Stochastic Programming (SP) with EMP. The options to control
LINDOs stochastic solver are described in the subsection SP Options.

2314 Solver Manuals

5.25 MILES

Thomas F. Rutherford, University of Colorado

5.25.1 Abstract

MILES is a solver for nonlinear complementarity problems and nonlinear systems of equations. The solver
can be accessed through GAMS to solve MPSGE or MCP models. This paper documents the solution
algorithm, user options, and solver output. The purpose of the paper is to provide users of MILES an
overview of how the solver works so that they can use it effectively.

5.25.2 Introduction

MILES is a Fortran-based solver for nonlinear complementarity problems and nonlinear systems of
equations. The solution procedure is a generalized Newton method with a backtracking line search. This
code is based on an algorithm investigated by Mathiesen (1985) who proposed a modeling format and
sequential method for solving economic equilibrium models. The method is closely related to algorithms
proposed by Robinson (1975), Hogan (1977), Eaves (1978) and Josephy (1979). In this implementation,
subproblems are solved as linear complementarity problems (LCPs), using an extension of Lemke's
almost-complementary pivoting scheme in which upper and lower bounds are represented implicitly. The
linear solver employs the basis factorization package LUSOL, developed by Gill et al. (1991).

The class of problems for which MILES may be applied are referred to as ”generalized” or ”mixed”
complementarity problems, which is defined as follows:

Given: F : Rn → Rn , `, u ∈ Rn

Find: z, w, v ∈ Rn

such that F (z) = w − v
` ≤ z ≤ u, w ≥ 0, v ≥ 0
wT (z − `) = 0 , vT (u− z) = 0.

When ` = −∞ and u =∞ MCP reduces to a nonlinear system of equations. When ` = 0 and u = +∞,
the MCP is a nonlinear complementarity problem. Finite dimensional variational inequalities are also
MCP. MCP includes inequality-constrained linear, quadratic and nonlinear programs as special cases,
although for these problems standard optimization methods may be preferred. MCP models which are not
optimization problems encompass a large class of interesting mathematical programs. Specific examples
of MCP formulations are not provided here. See Rutherford (1992a) for MCP formulations arising in
economics. Other examples are provided by Harker and Pang (1990) and Dirkse (1993).

There are two types of GAMS models which can be presented to MILES:

1. MILES may be used to solve computable general equilibrium models generated by MPSGE as a
GAMS subsystem. In the MPSGE language, a model-builder specifies classes of nonlinear functions
using a specialized tabular input format embedded within a GAMS program. Using benchmark
quantities and prices, MPSGE automatically calibrates function coefficients and generates nonlinear
equations and Jacobian matrices. Large, complicated systems of nonlinear equations may be
implemented and analyzed very easily using this interface to MILES. An introduction to general
equilibrium modeling with GAMS/MPSGE is provided by Rutherford (1992a).

5.25 MILES 2315

2. MILES may be accessed as a GAMS solver for mixed complementarity problems (MCP). If more
than one MCP solver is available 3, the statement OPTION MCP = MILES; tells GAMS to use MILES
as the MCP solution system. When problems are presented to MILES using the MCP format, the
user specifies nonlinear functions using GAMS matrix algebra and the GAMS compiler automatically
generates the Jacobian functions. An introduction to the GAMS/MCP modeling format is provided
by Rutherford (1992b).

The purpose of this document is to provide users of MILES with an overview of how the solver works so
that they can use the program more effectively. Section The Newton Algorithm introduces the Newton
algorithm. Section Lemke's Method with Implicit Bounds describes the implementation of Lemke's algo-
rithm which is used to solve linear subproblems. Section The Options File defines switches and tolerances
which may be specified using the options file. Section Log File Output interprets the run-time log file
which is normally directed to the screen. Section Status File Output interprets the status file and the
detailed iteration reports which may be generated. Section Termination Messages lists and suggests
remedies for abnormal termination conditions.

5.25.3 The Newton Algorithm

The iterative procedure applied within MILES to solve nonlinear complementarity problems is closely
related to the classical Newton algorithm for nonlinear equations. This first part of this section reviews
the classical procedure. A thorough introduction to these ideas is provided by Dennis and Schnabel (1983).
For a practical perspective, see Press et al. (1986).

Newton algorithms for nonlinear equations begin with a local (Taylor series) approximation of the system
of nonlinear equations. For a point z in the neighborhood of ẑ, the system of nonlinear functions is
linearized:

LF (z) = F (z̄) +∇F (z̄)(z − z̄).

Solving the linear system LF (z) = 0 provides the Newton direction from z̄ which is given by d =
−∇F−1 F (z̄).

Newton iteration k begins at point zk. First, the linear model formed at zk is solved to determine
the associated ”Newton direction”, dk. Second, a line search in direction dk determines the scalar
steplength and the subsequent iterate: zk+1 = zk + λdk. An Armijo or ”back-tracking” line search
initially considers λ = 1. If ‖F (zz + λdk)‖ ≤ ‖F (zk)‖, the step size λ is adopted,otherwise is
multiplied by a positive factor α, α < 1, and the convergence test is reapplied. This procedure is
repeated until either an improvement results or λ < λ. When λ = 0, a positive step is taken provided that 4

d

dλ
‖F (zk + λdk)‖ < 0.

Convergence theory for this algorithm is quite well developed. See, for example, Ortega and Rheinbolt
(1970) or Dennis and Schnabel (1983). The most attractive aspect of the Newton scheme with the
backtracking line search is that in the neighborhood of a well-behaved fixed point, λ = 1 is the optimal
step length and the rate of convergence can be quadratic. If this method finds a solution, it does so very
quickly.

The application of Newton methods to nonlinear complementarity problems involves a modification of the
search direction. Here, d solves a linear complementarity problem (LCP) rather than a linear system of
equations. For iteration k, d solves:

3There is one other MCP solver available through GAMS: PATH (Ferris and Dirkse,1992)
4α and λ correspond to user-specified tolerances ‘DMPFAC‘ and ‘MINSTP‘, respectively

2316 Solver Manuals

F (zk) +∇F (zk)d− w + v = 0

` ≤ d+ zk ≤ u, w ≥ 0, v ≥ 0

wT (d+ zk − `) = vT (u− d− zk) = 0.

Conceptually, we are solving for d, but in practice MILES solves the linear problem in terms of the original
variables z = zk + d:

F (zk)−∇F (zk)zk +∇F (zk)z = w − v

` ≤ z ≤ u, w ≥ 0, v ≥ 0

wT (z − `) = 0 , vT (u− z) = 0.

After computing the solution z, MILES sets dk = z − zk.

The linear subproblem incorporates upper and lower bounds on any or all of the variables, assuring that
the iterative sequence always remains within the bounds: (` ≤ zk ≤ u). This can be helpful when, as is
often the case, F () is undefined for some z ∈ Rn .

Convergence of the Newton algorithm applied to MCP hinges on three questions:

1. Does the linearized problem always have a solution?

2. If the linearized problem has a solution, does Lemke's algorithm find it?

3. Is it possible to show that the computed direction dk will provide an ”improvement” in the solution?

Only for a limited class of functions F () can all three questions be answered in the affirmative. For a
much larger class of functions, the algorithm converges in practice but convergence is not ”provable” 5

The answer to question 3. depends on the choice of a norm by which an improvement is measured. The
introduction of bounds and complementarity conditions makes the calculation of an error index more
complicated. In MILES, the deviation associated with a candidate solution z, ε(z), is based on a measure of
the extent to which z, w and v violate applicable upper and lower bounds and complementarity conditions.

5Kaneko (1978) provides some convergence theory for the linearized subproblem

5.25 MILES 2317

5.25.3.1 Evaluating Convergence

Let δLi and δUi be indicator variables for whether zi is off its lower or upper bound. These are defined as 6

δLi = min(1, (zi − `i)+) and δUi = min(1, (ui − zi)+).

Given z, MILES uses the value of F (z) to implicitly define the slack variables w and v:

wi = Fi(z)
+ , vi =

(
−Fi(z)

)+

.

There are two components to the error term associated with index i, one corresponding to zi's violation of
upper and lower bounds:

εBi = (zi − ui)+ + (`i − zi)+

and another corresponding to violations of complementarity conditions:

εCi = δLi wi + δUi vi.

The error assigned to point z is then taken:

ε(z) = ‖εB(z) + εC(z)‖p

for a pre-specified value of p = 1, 2 or +∞. 7

5.25.4 Lemke's Method with Implicit Bounds

A mixed linear complementarity problem has the form:

Given: M ∈ Rn×n, q, `, u ∈ Rn

Find: z, w, v ∈ Rn

such that Mz + q = w − v,
` ≤ z ≤ u, w ≥ 0, v ≥ 0,
wT (z − `) = 0 , vT (u− z) = 0.

In the Newton subproblem at iteration k, the LCP data are given by q = F (zk) − ∇F (zk)zk and
M = ∇F (zk).

6In the following x+ = max(x, 0)
7Parameter p may be selected with input parameter ‘NORM‘. The default value for p is +∞.

2318 Solver Manuals

5.25.4.1 The Working Tableau

In MILES, the pivoting scheme for solving the linear problem works with a re-labeled linear system of the
form:

\f[B x^B + N x^N = q , \f]

where xB ∈ Rn, xN ∈ R2n , and the tableau [B|N] is a conformal ”complementary permutation” of
[−M | I | − I]. That is, every column i in B must either be the ith column of M, I or −I, while the
corresponding columns i and i+ n in N must be the two columns which were not selected for B.

To move from the problem defined in terms of z, w and v to the problem defined in terms of xB and xN ,
we assign upper and lower bounds for the xB variables as follows:

xBi =

{
`i, if xBi = zi
0, if xBi = wi or vi,

xBi =

{
ui, if xBi = zi
∞, if xBi = wi or vi

The values of the non-basic variables xNi and xNi+n are determined by the assignment of xBi :

xBi =

zi ⇒
{
xNi = wi = 0
xNi+n = vi = 0

wi ⇒
{
xNi = zi = `i
xNi+n = vi = 0

vi ⇒
{
xNi = wi = 0
xNi+n = zi = ui.

In words: if zi is basic then both wi and vi equal zero. If zi is non-basic at its lower bound, then wi is
possibly non-zero and vi is non-basic at zero. If zi is non-basic at its upper bound, then vi is possibly
non-zero and wi is non-basic at zero.

Conceptually, we could solve the LCP by evaluating 3n linear systems of the form:

xB = B−1

(
q −NxN

)
.

Lemke's pivoting algorithm provides a procedure for finding a solution by sequentially evaluating some
(hopefully small) subset of these 3n alternative linear systems.

5.25 MILES 2319

5.25.4.2 Initialization

Let B0 denote the initial basis matrix 8 The initial values for basic variables are then:

x̂B = (B0)−1(q −N x̂N).

If xB ≤ x̂B ≤ x̄B , then the initial basis is feasible and the complementarity problem is solved 9 Otherwise,
MILES introduces an artificial variable z0 and an artificial column h. Basic variables are then expressed
as follows:

xB = x̂B − h̃z0,

where h̃ is the ”transformed artificial column” (the untransformed column is h = B0h̃). The coefficients
of h̃ are selected so that:

1. The values of ”feasible” basis variables are unaffected by z0: (xBi ≤ xBi ≤ x̄Bi =⇒ h̃i = 0).

2. The ”most infeasible” basic variable (i = p) is driven to its upper or lower bound when z0 = 1:

h̃p =

x̂Bp − x̄Bp , if x̃Bp > x̄Bp

x̂Bp − xBp , if x̃Bp < xBp .

3. All other infeasible basic variables assume values between their upper and lower bounds when z0

increases to 1:

xBi =

1 + xBi , if xBi > −∞, x̄Bi = +∞

x̄Bi +xBi
2 , if xBi > −∞, x̄Bi < +∞

x̄Bi − 1, if xBi = −∞, x̄Bi < +∞ .

5.25.4.3 Pivoting Rules

When z0 enters the basis, it assumes a value of unity, and at this point (barring degeneracy), the subsequent
pivot sequence is entirely determined. The entering variable in one iteration is determined by the exiting
basic variable in the previous iteration. For example, if zi were in B0 and introducing z0 caused zi to
move onto its lower bound, then the subsequent iteration introduces wi. Conversely, if wi were in B0 and
z0 caused wi to fall to zero, the subsequent iteration increases zi from `i. Finally, if vi were in B0 and
z0's introduction caused vi to fall to zero, the subsequent iteration decreases zi from ui.

Table 1 Pivot Sequence Rules for Lemke's Algorithm with Implicit Bounds

N Exiting Variable Entering Variable Change in Non-basic Values

I zi at lower bound wi increases from 0 xNi = zi = `i

II zi at upper bound vi increases from 0 xNi+n = zi = ui

III wi at 0 zi increases from `i xNi = xNi+n = 0

IV vi at 0 zi decreases from ui xNi = xNi+n = 0

8In Miles, B0 is chosen using the initially assigned values for z. When zi ≤ `i, then xBi = wi; when zi ≥ ui, then xBi = vi;

otherwise xBi = zi.
9The present version of the code simply sets B0 = −I and xB = w when the user-specified basis is singular. A subsequent

version of the code will incorporate the algorithm described by Anstreicher, Lee, and Rutherford [1992] for coping with
singularity.

2320 Solver Manuals

The full set of pivoting rules is displayed in Table 1. One difference between this algorithm and the
original Lemke (type III) pivoting scheme (see Lemke (1965), Garcia and Zangwill (1981), or Cottle and
Pang (1992)) is that structural variables (zi's) may enter or exit the basis at their upper bound values.
The algorithm, therefore, must distinguish between pivots in which the entering variable increases from a
lower bound and those in which the entering variable decreases from an upper bound.

Another difference with the ”usual” Lemke pivot procedure is that an entering structural variable may
move from one bound to another. When this occurs, the subsequent pivot introduces the corresponding
slack variable. For example, if zi is increased from `i to ui without driving a basic variable infeasible, then
zi becomes non-basic at ui, and the subsequent pivot introduces vi. This type of pivot may be interpreted
as zi entering and exiting the basis in a single step 10

In theory it is convenient to ignore degeneracy, while in practice degeneracy is unavoidable. The present
algorithm does not incorporate a lexicographic scheme to avoid cycling, but it does implement a ratio test
procedure which assures that when there is more than one candidate, priority is given to the most stable
pivot. The admissible set of pivots is determined on both an absolute pivot tolerance (ZTOLPV) and a
relative pivot tolerance (ZTOLRP). No pivot with absolute value smaller than min (ZTOLPV, ZTOLRP ‖V ‖)
is considered, where ‖V ‖ is the norm of the incoming column.

5.25.4.4 Termination on a Secondary Ray

Lemke's algorithm terminates normally when the introduction of a new variable drives z0 to zero. This is
the desired outcome, but it does not always happen. The algorithm may be interrupted prematurely when
no basic variable ”blocks” an incoming variable, a condition known as ”termination on a secondary ray”.
In anticipation of such outcomes, MILES maintains a record of the value of z0 for successive iterations,
and it saves basis information associated with the smallest observed value, z∗0 . (In Lemke's algorithm, the
pivot sequence is determined without regard for the effect on z0, and the value of the artificial variable
may follow an erratic (non-monotone) path from its initial value of one to the final value of zero.)

When MILES encounters a secondary ray, a restart procedure is invoked in which the set of basic variables
associated with z∗0 are reinstalled. This basis (augmented with one column from the non-basic triplet to
replace z0) serves as B0, and the algorithm is restarted. In some cases this procedure permits the pivot
sequence to continue smoothly to a solution, while in other cases may only lead to another secondary ray.

5.25.5 The Options File

The standard GAMS options (e.g. iterlim, reslim) can be used to control MILES. For more details, see
section Controlling a Solver via GAMS Options.

In addition, MILES-specific options can be specified by using a solver option file. While the content of an
option file is solver-specific, the details of how to create an option file and instruct the solver to use it are
not. This topic is covered in section The Solver Options File.

The following is a typical MILES options file:

ITLIMT = 50

CONTOL = 1.0E-8

LUSIZE = 16

In the remainder of this section we describe the MILES options and give their default values.

10If all structural variables are subject to finite upper and lower bounds, then no zi variables may be part of a homogeneous
solution adjacent to a secondary ray. This does not imply, however, that secondary rays are impossible when all zi variables
are bounded, as a ray may then be comprised of wi and vi variables.

5.25 MILES 2321

Option Description Default

contol
convergence tolerance
Whenever an iterate is encountered for which epsilon(z) < CONTOL, the
algorithm terminates. This corresponds to the GAMS/MINOS parameter
”Row tolerance”.

1e-6

dens1
LUSOL: density to start searching maxcol columns
The density at which the Markowitz strategy should search maxcol

columns and no rows.
Range: [0, 1]

0.3

dens2
LUSOL: density to start searching 1 column
The density at which the Markowitz strategy should search only 1 column
or (preferably) use a dense LU for all the remaining rows and columns.
Range: [0, 1]

0.6

dmpfac
damping factor in backtracking linesearch 0.5

elmax1
LUSOL: max multiplier allowed in L during factor 10

elmax2
LUSOL: max multiplier allowed in L during update 10

factim
basis reinversion time
Indicates the maximum number of CPU seconds between recalculation of
the basis factors.

120

invfrq
basis reinversion frequency
Determines the maximum number of Lemke iterations between recal-
culation of the basis factors. This corresponds to the GAMS/MINOS
parameter ”Factorization frequency”.

200

invlog
toggle Lemke inversion logging
A switch which requests LUSOL to generate a report with basis statistics
following each refactorization.

1

itch
iteration refinement frequency
Indicates the frequency with which the factorization is checked. The
number refers to the number of basis replacement operations between
refinements. This corresponds to the GAMS/MINOS parameter ”Check
frequency”.

25

iterlim
minor (Lemke) iterations limit
Can also be set with the GAMS IterLim option, and takes its default
from that. This corresponds to the GAMS/MINOS parameter ”Iterations
Limit”.

GAMS IterLim

itlimt
major (Newton) iterations limit
An upper bound on the number of Newton iterations. This corresponds
to the GAMS/MINOS parameter ”Major iterations”.
Range: {0, ..., 1000}

100

lcpdmp
LCP dump (post-scaling)
A switch to generate a printout of the LCP data after scaling.

0

lcpech
LCP echo print (pre-scaling)
A switch to generate a printout of the LCP data before scaling, as
evaluated.

0

levout
set output level
Sets the level of debug output written to the log and status files. The
lowest meaningful value is -1 and the highest is 3. This corresponds,
roughly, to the GAMS/MINOS parameter ”Print level”.

1

2322 Solver Manuals

Option Description Default

lprint
LUSOL: print level
Controls the amount of logging from the LUSOL routines.
<0: suppresses output
0: gives error messages
1: gives debug output from some of the routines in LUSOL
>=2: gives the pivot row and column and the no. of rows and columns
involved at each elimination step in lu1fac

0

lusize
LUSOL: multiplier for estimating memory requirements
Used to estimate the number of LU nonzeros which will be stored, as a
multiple of the number of nonzeros in the Jacobian matrix.
Range: {3, ..., ∞}

5

maxcol
LUSOL: max cols to search for pivot element
Sets the maximum number of columns to search in a Markowitz-type
search for the next pivot element. For some of the factorization, the
number of rows searched is maxrow = maxcol - 1.

5

minstp
minimum step length in backtracking linesearch 0.01

norm norm to use in measuring deviation
Defines the vector norm to be used for evaluating epsilon(z). Acceptable
values are 1, 2 or 3 which correspond to p = 1, 2 and +INF.

1

nrsmax restart limit
Sets an upper bound on the number of restarts which the linear subproblem
solver will undertake before giving up.

1

pivlog
toggle Lemke pivot logging
A switch to generate a status file listing of the Lemke pivot sequence.

0

plinfy
infinity used by the solver
The value assigned for ”plus infinity” (”+INF” in GAMS notation).

1e20

scale
turn on scaling at every iteration
Invokes row and column scaling of the LCP tableau in every iteration. This
corresponds, roughly, to the GAMS/MINOS switch ”scale all variables”.

1

small
LUSOL: absolute zero tolerance
The absolute tolerance for treating reals as zero.

3.0e-13

uspace LUSOL: factor limiting waste space in U
The row or column lists are compressed if their length exceeds this value
times the length of either file after the last compression.
Range: [1, ∞]

3

utol1
LUSOL: absolute tolerance U diagonal
The absolute tol for flagging small diagonals of U.

3.64e-11

utol2
LUSOL: relative tolerance U diagonal
The relative tol for flagging small diagonals of U.

3.64e-11

ztolda
zero tolerance on matrix coefficients, default: sqrt(machEps) 1.48e-08

ztolpv
absolute zero tolerance on pivots, default: machEps∗∗(2/3)
The absolute pivot tolerance. This corresponds, roughly, to the
GAMS/MINOS parameter ”Pivot tolerance” as it applies for nonlinear
problems.

3.64e-11

ztolrp
relative zero tolerance on pivots, default: machEps∗∗(2/3)
The relative pivot tolerance. This corresponds, roughly, to the
GAMS/MINOS parameter ”Pivot tolerance” as it applies for nonlinear
problems.

3.64e-11

ztolz0
absolute tolerance for installing covering vector elements 1e-6

5.25 MILES 2323

Option Description Default

ztolze
feasibility tolerance
Used in the subproblem solution to determine when any variable has
exceeded an upper or lower bound. This corresponds to GAMS/MINOS
parameter ”Feasibility tolerance”.

1e-6

5.25.6 Log File Output

The log file is intended for display on the screen in order to permit monitoring progress. Relatively little
output is generated.

A sample iteration log is displayed in Table 2. This output is from two cases solved in succession. This
and subsequent output comes from program TRNSP.FOR which calls the MILES library directly. (When
MILES is invoked from within GAMS, at most one case is processed at a time.)

The first line of the log output gives the MILES program date and version information. This information
is important for bug reports.

The line beginning ”Work space...” reports the amount of memory which has been allocated to solve the
model - 10K for this example. Thereafter is reported the initial deviation together with the name of the
variable associated with the largest imbalance (εBi + εCi). The next line reports the convergence tolerance.

The lines beginning 0 and 1 are the major iteration reports for those iterations. the number following the
iteration number is the current deviation, and the third number is the Armijo step length. The name of
the variable complementary to the equation with the largest associated deviation is reported in parenthesis
at the end of the line.

Following the final iteration is a summary of iterations, refactorizations, amd final deviation. The final
message reports the solution status. In this case, the model has been successfully processed (”Solved.”).

Table 2 Sample Iteration Log

MILES (July 1993) Ver:225-386-02

Thomas F. Rutherford

Department of Economics

University of Colorado

Technical support available only by Email: TOM@GAMS.COM

Work space allocated -- 0.01 Mb

Initial deviation 3.250E+02 P_01

Convergence tolerance 1.000E-06

0 3.25E+02 1.00E+00 (P_01)

1 1.14E-13 1.00E+00 (W_02)

Major iterations 1

Lemke pivots 10

Refactorizations 2

Deviation 1.137E-13

Solved.

2324 Solver Manuals

Work space allocated -- 0.01 Mb

Initial deviation 5.750E+02 W_02

Convergence tolerance 1.000E-06

0 5.75E+02 1.00E+00 (W_02)

1 2.51E+01 1.00E+00 (P_01)

2 4.53E+00 1.00E+00 (P_01)

3 1.16E+00 1.00E+00 (P_01)

4 3.05E-01 1.00E+00 (P_01)

5 8.08E-02 1.00E+00 (P_01)

6 2.14E-02 1.00E+00 (P_01)

7 5.68E-03 1.00E+00 (P_01)

8 1.51E-03 1.00E+00 (P_01)

9 4.00E-04 1.00E+00 (P_01)

10 1.06E-04 1.00E+00 (P_01)

11 2.82E-05 1.00E+00 (P_01)

12 7.47E-06 1.00E+00 (P_01)

13 1.98E-06 1.00E+00 (P_01)

14 5.26E-07 1.00E+00 (P_01)

Major iterations 14

Lemke pivots 23

Refactorizations 15

Deviation 5.262E-07

Solved.

5.25.7 Status File Output

The status file reports more details regarding the solution process than are provided in the log file.
Typically, this file is written to disk and examined only if a problem arises. Within GAMS, the status file
appears in the listing only following the GAMS statement OPTION SYSOUT=ON;.

The level of output to the status file is determined by the options passed to the solver. In the default
configuration, the status file receives all information written to the log file together with a detailed listing
of all switches and tolerances and a report of basis factorization statistics.

When output levels are increased from their default values using the options file, the status file can receive
considerably more output to assist in debugging. Table 3 - Table 6 present a status file generated with
LEVOUT=3 (maximum), PIVLOG=T, and LCPECH=T.

The status file begins with the same header as the log file. Thereafter is a complete echo-print of the
user-supplied option file when one is provided. Following the core allocation report is a full echo-print of
control parameters, switches and tolerance as specified for the current run.

Table 4 continues the status file. The iteration-by- iteration report of variable and function values is
produced whenever LEVOUT >= 2. Table 4 also contains an LCP echo-print. This report has two sections:
$ROWS and $COLUMNS. The four columns of numbers in the $ROWS section are the constant vector (
q), the current estimate of level values for the associated variables (z), and the lower and upper bounds
vectors (` and u). The letters L and U which appear between the ROW and Z columns are used to
identify variables which are non-basic at their lower and upper bounds, respectively. In this example, all
upper bounds equal +∞ , so no variables are non-basic at their upper bound.

By convention, only variable (and not equation names) appear in the status file. An equation is identified
by the corresponding variable. We therefore see in the $COLUMNS: section of the matrix echo-print, the
row names correspond to the names of z variables. The names assigned to variables zi, wi and vi are

5.25 MILES 2325

z− <name i >, w− <name i >, and v− <name i >, as shown in the $COLUMNS section. The nonzeros
for w− <> and v− <> variables are not shown because they are assumed to be −/+ I.

The status file output continues on Table 5 where the first half of the table reports output from the
matrix scaling procedure, and the second half reports the messages associated with initiation of Lemke's
procedure.

The ”lu6chk warning” is a LUSOL report. Thereafter are two factorization reports. Two factorizations
are undertaken here because the first basis was singular, so the program installs all the lower bound slacks
in place of the matrix defined by the initial values, z.

Following the second factorization report, at the bottom of Table 5 is a summary of the initial pivot.
”Infeasible in 3 rows.” indicates that h̃ contains 3 nonzero elements. ”Maximum infeasibility” reports the
largest amount by which a structural variable violates an upper or lower bound. ”Artificial column with 3
elements.” indicates that the vector h = B0h̃ contains 3 elements (note that in this case B0 = −I because
the initial basis was singular, hence the equivalence between the number of nonzeros in h̃ and h.).

Table 6 displays the final section of the status file. At the top of the table is the Lemke iteration log. The
columns are interpreted as follows:

• ITER is the iteration index beginning with 0.

• STATUS is a statistic representing the efficiency of the Lemke path. Formally, status is the ratio
of the minimum number of pivots from B0 to the current basis divided by the actual number of
pivots. When the status is 1, Lemke's algorithm is performing virtually as efficiently as a direct
factorization (apart from the overhead of basis factor updates.)

• Z% indicates the percentage of columns in the basis are ”structural” (z's).

• Z0 indicates the value of the artificial variable. Notice that in this example, the artificial variable
declines monotonically from its initial value of unity.

• ERROR is a column in which the factorization error is reported, when it is computed. For this run,
ITCH=30 and hence no factorization errors are computed.

• INFEAS is a column in which the magnitude of the infeasibility introduced by the artificial column
(defined using the box-norm) is reported. (In MILES the cover vector h contains many different
nonzero values, not just 1's; so there may be a large difference between the magnitude of the artificial
variable and the magnitude of the induced infeasibility.

• PIVOTS reports the pivot magnitude in both absolute terms (the first number) and relative terms
(the second number). The relative pivot size is the ratio of the pivot element to the norm of the
incoming column.

• IN/OUT report the indices (not names) of the incoming and outgoing columns for every iteration.
Notice that Lemke's iteration log concludes with variable z0 exiting the basis.

The convergence report for iteration 1 is no different from the report written to the log file, and following
this is a second report of variable and function values. We see here that a solution has been obtained
following a single subproblem. This is because the underlying problem is, in fact, linear.

The status file (for this case) concludes with an iteration summary identical to the log file report and a
summary of how much CPU time was employed overall and within various subtasks. (Don't be alarmed if
the sum of the last five numbers does not add up to the first number - some cycles are not monitored
precisely.)

Table 3 Status File with Debugging Output (page 1 of 4)

2326 Solver Manuals

MILES (July 1993) Ver:225-386-02

Thomas F. Rutherford

Department of Economics

University of Colorado

Technical support available only by Email: TOM@GAMS.COM

User supplied option file:

>BEGIN

> PIVLOG = .TRUE.

> LCPECH = .TRUE.

> LEVOUT = 3

>END

Work space allocated -- 0.01 Mb

NEWTON algorithm control parameters:

Major iteration limit ..(ITLIMT). 25

Damping factor(DMPFAC). 5.000E-01

Minimum step length(MINSTP). 1.000E-02

Norm for deviation(NORM)... 3

Convergence tolerance ..(CONTOL). 1.000E-06

LEMKE algorithm control parameters:

Iteration limit(ITERLIM). 1000

Factorization frequency (INVFRQ). 200

Feasibility tolerance ..(ZTOLZE). 1.000E-06

Coefficient tolerance ..(ZTOLDA). 1.483E-08

Abs. pivot tolerance ...(ZTOLPV). 3.644E-11

Rel. pivot tolerance ...(ZTOLRP). 3.644E-11

Cover vector tolerance .(ZTOLZ0). 1.000E-06

Scale every iteration ...(SCALE). T

Restart limit(NRSMAX). 1

Output control switches:

LCP echo print(LCPECH). F

LCP dump(LCPDMP). T

Lemke inversion log(INVLOG). T

Lemke pivot log (PIVLOG). T

Initial deviation 3.250E+02 P_01

Convergence tolerance 1.000E-06

================================

Convergence Report, Iteration 0

===

ITER DEVIATION STEP

0 3.25E+02 1.00E+00 (P_01)

===

5.25 MILES 2327

Table 4 Status File with Debugging Output (page 2 of 4)

Iteration 0 values.

ROW Z F

-------- ------------ ------------

X_01_01 L 0.00000E+00 -7.75000E-01

X_01_02 L 0.00000E+00 -8.47000E-01

X_01_03 L 0.00000E+00 -8.38000E-01

X_02_01 L 0.00000E+00 -7.75000E-01

X_02_02 L 0.00000E+00 -8.38000E-01

X_02_03 L 0.00000E+00 -8.74000E-01

W_01 L 0.00000E+00 3.25000E+02

W_02 L 0.00000E+00 5.75000E+02

P_01 1.00000E+00 -3.25000E+02

P_02 1.00000E+00 -3.00000E+02

P_03 1.00000E+00 -2.75000E+02

==================================

Function Evaluation, Iteration: 0

==================================

$ROWS:

X_01_01 -2.25000000E-01 0.00000000E+00 0.00000000E+00 1.00000000E+20

X_01_02 -1.53000004E-01 0.00000000E+00 0.00000000E+00 1.00000000E+20

X_01_03 -1.61999996E-01 0.00000000E+00 0.00000000E+00 1.00000000E+20

X_02_01 -2.25000000E-01 0.00000000E+00 0.00000000E+00 1.00000000E+20

X_02_02 -1.61999996E-01 0.00000000E+00 0.00000000E+00 1.00000000E+20

X_02_03 -1.25999998E-01 0.00000000E+00 0.00000000E+00 1.00000000E+20

W_01 -3.25000000E+02 0.00000000E+00 0.00000000E+00 1.00000000E+00

W_02 -5.75000000E+02 0.00000000E+00 0.00000000E+00 1.00000000E+00

P_01 3.25000000E+02 1.00000000E+00 0.00000000E+00 1.00000000E+20

P_02 3.00000000E+02 1.00000000E+00 0.00000000E+00 1.00000000E+20

P_03 2.75000000E+02 1.00000000E+00 0.00000000E+00 1.00000000E+20

... 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00

$COLUMNS:

Z-X_01_01 W_01 -1.00000000E+00

P_01 1.00000000E+00

Z-X_01_02 W_01 -1.00000000E+00

P_02 1.00000000E+00

Z-X_01_03 W_01 -1.00000000E+00

P_03 1.00000000E+00

Z-X_02_01 W_02 -1.00000000E+00

P_01 1.00000000E+00

Z-X_02_02 W_02 -1.00000000E+00

P_02 1.00000000E+00

Z-X_02_03 W_02 -1.00000000E+00

P_03 1.00000000E+00

Z-W_01 X_01_01 1.00000000E+00

X_01_02 1.00000000E+00

X_01_03 1.00000000E+00

Z-W_02 X_02_01 1.00000000E+00

X_02_02 1.00000000E+00

X_02_03 1.00000000E+00

Z-P_01 X_01_01 -1.00000000E+00

X_02_01 -1.00000000E+00

Z-P_02 X_01_02 -1.00000000E+00

X_02_02 -1.00000000E+00

Z-P_03 X_01_03 -1.00000000E+00

X_02_03 -1.00000000E+00

... ... 0.00000000E+00

2328 Solver Manuals

Table 5 Status File with Debugging Output (page 3 of 4)

SCALING LCP DATA

MIN ELEM MAX ELEM MAX COL RATIO

AFTER 0 1.00E+00 1.00E+00 1.00

AFTER 1 1.00E+00 1.00E+00 1.00

AFTER 2 1.00E+00 1.00E+00 1.00

AFTER 3 1.00E+00 1.00E+00 1.00

SCALING RESULTS:

A(I,J) <= A(I,J) * R(I) / C(J)

ROW ROW Z COLUMN W COLUMN V COLUMN

1 1.0000 1.0000 1.0000 1.0000

2 1.0000 1.0000 1.0000 1.0000

3 1.0000 1.0000 1.0000 1.0000

4 1.0000 1.0000 1.0000 1.0000

5 1.0000 1.0000 1.0000 1.0000

6 1.0000 1.0000 1.0000 1.0000

7 1.0000 1.0000 1.0000 1.0000

8 1.0000 1.0000 1.0000 1.0000

9 1.0000 1.0000 1.0000 1.0000

10 1.0000 1.0000 1.0000 1.0000

11 1.0000 1.0000 1.0000 1.0000

lu6chk warning. The matrix appears to be singular.

nrank = 8 rank of U

n - nrank = 3 rank deficiency

nsing = 3 singularities

jsing = 10 last singular column

dumax = 1.00E+00 largest triangular diag

dumin = 1.00E+00 smallest triangular diag

LUSOL 5.4 FACTORIZATION STATISTICS

Compressns 0 Merit 0.00 LenL 0 LenU 14

Increase 0.00 M 11 UT 11 D1 0

Lmax 0.0E+00 Bmax 1.0E+00 Umax 1.0E+00 Umin 1.0E+00

Growth 1.0E+00 LT 0 BP 0 D2 0

LUSOL 5.4 FACTORIZATION STATISTICS

Compressns 0 Merit 0.00 LenL 0 LenU 11

Increase 0.00 M 11 UT 11 D1 0

Lmax 0.0E+00 Bmax 1.0E+00 Umax 1.0E+00 Umin 1.0E+00

Growth 1.0E+00 LT 0 BP 0 D2 0

CONSTRUCTING ARTIFICIAL COLUMN

--- Infeasible in 3 rows.

--- Maximum infeasibility: 3.250E+02

--- Artificial column with 3 elements.

--- Pivoting in row: 9 to replace column 20

--- Pivot element: -3.250E+02

Table 6 Status File with Debugging Output (page 4 of 4)

LEMKE PIVOT STEPS

5.25 MILES 2329

=================

ITER STATUS Z% Z0 ERROR INFEAS. ---- PIVOTS ---- IN OUT

1 1.00 0 1.000 3.E+02 1.E+00 1 Z0 W 9

2 1.00 9 1.000 1.E+00 1.E+00 2 Z 9 W 1

3 1.00 18 0.997 9.E-01 9.E-01 1 Z 1 W 10

4 1.00 27 0.997 1.E+00 1.E+00 1 Z 10 W 2

5 1.00 36 0.996 9.E-01 4.E-01 1 Z 2 W 11

6 1.00 45 0.996 1.E+00 1.E+00 1 Z 11 W 6

7 1.00 55 0.479 2.E+00 1.E+00 1 Z 6 W 7

8 1.00 64 0.479 1.E+00 1.E+00 1 Z 7 W 4

9 1.00 73 0.000 1.E+00 1.E+00 2 Z 4 W 8

10 1.00 73 0.000 1.E-03 2.E-03 1 V 8 Z0

================================

Convergence Report, Iteration 1

===

ITER DEVIATION STEP

0 3.25E+02 1.00E+00

1 1.14E-13 1.00E+00 (W_02)

===

Iteration 1 values.

ROW Z F

-------- ------------ ------------

X_01_01 2.50000E+01 -8.32667E-17

X_01_02 3.00000E+02 -5.55112E-17

X_01_03 L 0.00000E+00 3.60000E-02

X_02_01 3.00000E+02 -8.32667E-17

X_02_02 L 0.00000E+00 8.99999E-03

X_02_03 2.75000E+02 2.77556E-17

W_01 1.00000E+00 -1.13687E-13

W_02 1.00000E+00 1.13687E-13

P_01 1.22500E+00 0.00000E+00

P_02 1.15300E+00 0.00000E+00

P_03 1.12600E+00 0.00000E+00

Major iterations 1

Lemke pivots 10

Refactorizations 2

Deviation 1.137E-13

Solved.

Total solution time .: 0.6 sec.

Function & Jacobian..: 0.2 sec.

LCP solution: 0.2 sec.

Refactorizations: 0.1 sec.

FTRAN: 0.0 sec.

Update: 0.1 sec.

5.25.8 Termination Messages

Basis factorization error in INVERT. An unexpected error code returned by LUSOL. This should
normally not occur. Examine the status file for a message from LUSOL 11 .

11Within GAMS, insert the line ”OPTION SYSOUT=ON;” prior to the solve statement and resubmit the program in
order to pass the MILES solver status file through to the listing.

2330 Solver Manuals

Failure to converge. Two successive iterates are identical - the Newton search direction is not defined.
This should normally not occur.

Inconsistent parameters ZTOLZ0, ZTOLZE. ZTOLZ0 determines the smallest value loaded into the cover
vector h, whereas ZTOLZE is the feasibility tolerance employed in the Harris pivot selection procedure. If
ZTOLZ0 < -ZTOLZE, Lemke's algorithm cannot be executed because the initial basis is infeasible.

Insufficient space for linearization. Available memory is inadequate for holding the nonzeros in the
Jacobian. More memory needs to be allocated. If there is insufficient space for the {Jacobi} matrix, there
is far too little memory for holding the LU factors of the same matrix.

Insufficient space to invert. More memory needs to be allocated for basis factors. Increase the value
of LUSIZE in the options file, or assign a larger value to <model>.workspace.

Iteration limit exceeded. This can result from either exceeding the major (Newton) or minor (Lemke)
iterations limit. When MILES is invoked from GAMS, the cumulative Lemke iteration limit can be set
with the statement <model>.iterlim = xx};. The Newton iteration limit is 100 by default, and it can
be modified only through the ITLIMT option.

Resource interrupt. Elapsed CPU time exceeds options parameter RESLIM. To increase this limit, either
add RESLIM = xxx in the options file or add a GAMS statement <model>.RESLIM = xxx;.

Singular matrix encountered. Lemke's algorithm has been interrupted due to a singularity arising in
the basis factorization, either during a column replacement or during a refactorization. For some reason,
a restart is not possible.

Termination on a secondary ray. Lemke's algorithm terminated on a secondary ray. For some reason,
a restart is not possible.

Unknown termination status. The termination status flag has not been set, but the code has
interrupted. Look in the status file for a previous message. This termination code should not happen
often.

5.25.9 References

K.J. Anstreicher, J. Lee and T.F. Rutherford ”Crashing a Maximum Weight Complementary Basis”,
Mathematical Programming. (1992)

A. Brooke, D. Kendrick, and A. Meeraus ”GAMS: A User's Guide”, Scientific Press, (1987).

R.W. Cottle and J.S. Pang ”The Linear Complementarity Problem”, Academic Press, (1992).

J.E. Dennis and R.B. Schnabel ”Numerical Methods for Unconstrained Optimization and Nonlinear
Equations”, Prentice-Hall (1983).

S. Dirkse ”Robust solution of mixed complementarity problems”, Computer Sciences Department, Univer-
sity of Wisconsin (1992).

B.C. Eaves, ”A locally quadratically convergent algorithm for computing stationary points,” Tech. Rep.,
Department of Operations Research, Stanford University, Stanford, CA (1978).

P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright ”Maintaining LU factors of a general sparse
matrix”, Linear Algebra and its Applications 88/89, 239-270 (1991).

C.B. Garcia and W.I. Zangwill ”Pathways to Solutions, Fixed Points, and Equilibria”, Prentice-Hall
(1981)

5.25 MILES 2331

P. Harker and J.S. Pang ”Finite-dimensional variational inequality and nonlinear complementarity problems:
a survey of theory, algorithms and applications”, Mathematical Programming 48, pp. 161-220 (1990).

W.W. Hogan, ”Energy policy models for project independence,” Computation and Operations Research 2
(1975) 251-271.

N.H. Josephy, ”Newton's method for generalized equations”, Technical Summary Report #1965, Mathe-
matical Research Center, University of Wisconsin - Madison (1979).

I. Kaneko, ”A linear complementarity problem with an n by 2n 'P'- matrix”, Mathematical Programming
Study 7, pp. 120-141, (1978).

C.E. Lemke ”Bimatrix equilibrium points and mathematical programming”, Management Science 11, pp.
681-689, (1965).

L. Mathiesen, ”Computation of economic equilibria by a sequence of linear complementarity problems”,
Mathematical Programming Study 23 (1985).

P.V. Preckel, ”NCPLU Version 2.0 User's Guide”, Working Paper, Department of Agricultural Economics,
Purdue University, (1987).

W.H. Press, B.P.Flannery, S.A. Teukolsky, W.T. Vetterling ”Numerical Recipes: The Art of Scientific
Computing”, Cambridge University Press (1986).

J.M. Ortega and W.C. Rheinboldt, ”Iterative Solution of Nonlinear Equations in Several Variables”,
Academic Press (1970).

S.M. Robinson, ”A quadratically-convergent algorithm for general nonlinear programming problems”,
Mathematical Programming Study 3 (1975).

T.F. Rutherford ”Extensions of GAMS for variational and complementarity problems with applications in
economic equilibrium analysis”, Working Paper 92-7, Department of Economics, University of Colorado
(1992a).

T.F. Rutherford ”Applied general equilibrium modeling using MPS/GE as a GAMS subsystem”, Working
Paper 92-15, Department of Economics, University of Colorado (1992b).

2332 Solver Manuals

Table 7 Transport Model in GAMS/MCP (page 1 of 2)
∗==>TRNSP.GMS
option mcp=miles;

$TITLE LP TRANSPORTATION PROBLEM FORMULATED AS A ECONOMIC EQUILIBRIUM

* ===

* In this file, Dantzig’s original transportation model is

* reformulated as a linear complementarity problem. We first

* solve the model with fixed demand and supply quantities, and

* then we incorporate price-responsiveness on both sides of the

* market.

*

* T.Rutherford 3/91 (revised 5/91)

* ===

* This problem finds a least cost shipping schedule that meets

* requirements at markets and supplies at factories

*

* References:

* Dantzig, G B., Linear Programming and Extensions

* Princeton University Press, Princeton, New Jersey, 1963,

* Chapter 3-3.

*

* This formulation is described in detail in Chapter 2

* (by Richard E. Rosenthal) of GAMS: A Users’ Guide.

* (A Brooke, D Kendrick and A Meeraus, The Scientific Press,

* Redwood City, California, 1988.

*

SETS

I canning plants / SEATTLE, SAN-DIEGO /

J markets / NEW-YORK, CHICAGO, TOPEKA / ;

PARAMETERS

A(I) capacity of plant i in cases (when prices are unity)

/ SEATTLE 325

SAN-DIEGO 575 /,

B(J) demand at market j in cases (when prices equal unity)

/ NEW-YORK 325

CHICAGO 300

TOPEKA 275 /,

ESUB(J) Price elasticity of demand (at prices equal to unity)

/ NEW-YORK 1.5

CHICAGO 1.2

TOPEKA 2.0 /;

TABLE D(I,J) distance in thousands of miles

NEW-YORK CHICAGO TOPEKA

SEATTLE 2.5 1.7 1.8

SAN-DIEGO 2.5 1.8 1.4 ;

SCALAR F freight in dollars per case per thousand miles /90/ ;

PARAMETER C(I,J) transport cost in thousands of dollars per case ;

C(I,J) = F * D(I,J) / 1000 ;

PARAMETER PBAR(J) Reference price at demand node J;

5.25 MILES 2333

Table 8 Transport Model in GAMS/MCP (page 2 of 2)

POSITIVE VARIABLES

W(I) shadow price at supply node i,

P(J) shadow price at demand node j,

X(I,J) shipment quantities in cases;

EQUATIONS

SUPPLY(I) supply limit at plant i,

FXDEMAND(J) fixed demand at market j,

PRDEMAND(J) price-responsive demand at market j,

PROFIT(I,J) zero profit conditions;

PROFIT(I,J).. W(I) + C(I,J) =G= P(J);

SUPPLY(I).. A(I) =G= SUM(J, X(I,J));

FXDEMAND(J).. SUM(I, X(I,J)) =G= B(J);

PRDEMAND(J).. SUM(I, X(I,J)) =G= B(J) * (PBAR(J)/P(J))**ESUB(J);

* Declare models including specification of equation-variable association:

MODEL FIXEDQTY / PROFIT.X, SUPPLY.W, FXDEMAND.P/ ;

MODEL EQUILQTY / PROFIT.X, SUPPLY.W, PRDEMAND.P/ ;

* Initial estimate:

P.L(J) = 1; W.L(I) = 1;

PARAMETER REPORT(*,*,*) Summary report;

SOLVE FIXEDQTY USING MCP;

REPORT("FIXED",I,J) = X.L(I,J); REPORT("FIXED","Price",J) = P.L(J);

REPORT("FIXED",I,"Price") = W.L(I);

* Calibrate the demand functions:

PBAR(J) = P.L(J);

* Replicate the fixed demand equilibrium:

SOLVE EQUILQTY USING MCP;

REPORT("EQUIL",I,J) = X.L(I,J); REPORT("EQUIL","Price",J) = P.L(J);

REPORT("EQUIL",I,"Price") = W.L(I);

DISPLAY "BENCHMARK CALIBRATION", REPORT;

* Compute a counter-factual equilibrium:

C("SEATTLE","CHICAGO") = 0.5 * C("SEATTLE","CHICAGO");

SOLVE FIXEDQTY USING MCP;

REPORT("FIXED",I,J) = X.L(I,J); REPORT("FIXED","Price",J) = P.L(J);

REPORT("FIXED",I,"Price") = W.L(I);

* Replicate the fixed demand equilibrium:

2334 Solver Manuals

SOLVE EQUILQTY USING MCP;

REPORT("EQUIL",I,J) = X.L(I,J); REPORT("EQUIL","Price",J) = P.L(J);

REPORT("EQUIL",I,"Price") = W.L(I);

DISPLAY "Reduced Seattle-Chicago transport cost:", REPORT;

5.26 MINOS and QUADMINOS

Bruce A. Murtagh; Graduate School of Management, Macquarie University, Sydney, Aus-
tralia

Michael A. Saunders, Walter Murray; Department of EESOR, Stanford University, CA

Philip E. Gill; Department of Mathematics, University of California, San Diego, La Jolla,
CA

5.26.1 Introduction

This document describes the GAMS interface to MINOS which is a general purpose nonlinear programming
solver. For a quad-precision MINOS, see quadMINOS.

GAMS/MINOS is a specially adapted version of the solver that is used for solving linear and nonlinear
programming problems in a GAMS environment.

GAMS/MINOS is designed to find solutions that are locally optimal. The nonlinear functions in a problem
must be smooth (i.e., their first derivatives must exist).The functions need not be separable. Integer
restrictions cannot be imposed directly.

A certain region is defined by the linear constraints in a problem and by the bounds on the variables.
If the nonlinear objective and constraint functions are convex within this region, any optimal solution
obtained will be a global optimum. Otherwise there may be several local optima, and some of these may
not be global. In such cases the chances of finding a global optimum are usually increased by choosing a
staring point that is ”sufficiently close”, but there is no general procedure for determining what ”close”
means, or for verifying that a given local optimum is indeed global.

Linearly constrained models are solved with a very efficient and reliable reduced gradient technique that
takes advantage of the sparsity of the model. Models with nonlinear constraints are solved with a method
that iteratively solves subproblems with linearized constraints and an augmented Lagrangian objective
function. This iterative scheme implies that only the final, optimal solution is sure to be feasible w.r.t the
nonlinear constraints. This is in contrast to the feasible path method used by some other NLP solvers, e.g.,
CONOPT. MINOS and CONOPT are very complementary to each other as they employ very different
algorithms. See MINOS vs CONOPT for a comparison of the two solvers.

GAMS allows you to specify values for many parameters that control GAMS/MINOS, and with careful
experimentation you may be able to influence the solution process in a helpful way. All MINOS options
available through GAMS/MINOS are summarized at the end of this document.

5.26 MINOS and QUADMINOS 2335

5.26.2 How to Run a Model with GAMS/MINOS

MINOS is capable of solving many types of models, including LP, NLP, DNLP and QCP. If MINOS is not
specified as the default solver for the desired model type (e.g. NLP), then the following statement can be
used in your GAMS model to select MINOS:

option nlp=minos;

The option statement should appear before the solve statement.

To be complete, we mention that the solver can be also specified on the command line, as in:

> gams camcge nlp=minos

This will override the global default, but if an algorithm option has been specified inside the model, then
that specification takes precedence.

5.26.3 Overview of GAMS/MINOS

GAMS/MINOS is a system designed to solve large-scale optimization problems expressed in the following
form:

NLP : minimize F (x) + cTx+ dT y (1)

subject to f(x) +A1y ∼ b1 (2)
A2x+A3y ∼ b2 (3)

` ≤
(
x
y

)
≤ u (4)

where the vectors c, d, b1, b2, `, u and the matrices A1, A2, A3 are constant, F (x) is a smooth scalar
function, and f(x) is a vector of smooth functions. The ∼ signs mean that individual constraints may be
defined using ≤, = or ≥ corresponding to the GAMS constructs =L= , =E= and =G=.

The components of x are called the nonlinear variables, and the components of y are the linear variables.
Similarly, the equations in (2) are called the nonlinear constraints, and the equations in (3) are the linear
constraints. Equations (2) and (3) together are called the general constraints.

Let m1 and n1 denote the number of nonlinear constraints and variables, and let m and n denote the
total number of (general) constraints and variables. Thus, A3 has m −m1 rows and n − n1 columns.
The constraints (4) specify upper and lower bounds on all variables. These are fundamental to many
problem formulations and are treated specially by the solution algorithms in GAMS/MINOS. Some of the
components of ` and u may be −∞ or +∞ respectively, in accordance with the GAMS use of -INF and
+INF.

The vectors b1 and b2 are called the right-hand side, and together are denoted by b.

2336 Solver Manuals

5.26.3.1 Linear Programming

If the functions F (x) and f(x) are absent, the problem becomes a linear program. Since there is no need
to distinguish between linear and nonlinear variables, we use x rather than y. GAMS/MINOS converts all
general constraints into equalities, and the only remaining inequalities are simple bounds on the variables.
Thus, we write linear programs in the form

LP : minimize cTx

subject to Ax+ Is = 0

` ≤
(
x
s

)
≤ u

where the elements of x are your own GAMS variables, and s is a set of slack variables: one for each
general constraint. For computational reasons, the right-hand side b is incorporated into the bounds on s.

In the expression Ax+ Is = 0 we write the identity matrix explicitly if we are concerned with columns of
the associated matrix

(
A I

)
. Otherwise we will use the equivalent notation Ax+ s = 0.

GAMS/MINOS solves linear programs using a reliable implementation of the primal simplex method [41] ,
in which the constraints Ax+ Is = 0 are partitioned into the form

BxB +NxN = 0,

where the basis matrix is square and nonsingular. The elements of xB and xN are called the basic or
nonbasic variables respectively. Together they are a permutation of the vector(

x
s

)
.

Normally, each nonbasic variable is equal to one of its bounds, and the basic variables take on whatever
values are needed to satisfy the general constraints. (The basic variables may be computed by solving the
linear equations BxB = NxN .) It can be shown that if an optimal solution to a linear program exists,
then it has this form.

The simplex method reaches such a solution by performing a sequence of iterations, in which one column
of B is replaced by one column of N (and vice versa), until no such interchange can be found that will
reduce the value of cTx.

As indicated nonbasic variables usually satisfy their upper and lower bounds. If any components of xB lie
significantly outside their bounds, we say that the current point is infeasible. In this case, the simplex
method uses a Phase 1 procedure to reduce the sum of infeasibilities to zero. This is similar to the
subsequent Phase 2 procedure that optimizes the true objective function cTx.

If the solution procedures are interrupted, some of the nonbasic variables may lie strictly between their
bounds `j < xj < uj . In addition, at a ”feasible” or ”optimal” solution, some of the basic variables may
lie slightly outside their bounds: `j − δ < xj < `j or uj < xj < uj + δ where δ is a feasibility tolerance
(typically 10−6). In rare cases, even nonbasic variables might lie outside their bounds by as much as δ.

GAMS/MINOS maintains a sparse LU factorization of the basis matrix B, using a Markowitz ordering
scheme and Bartels-Golub updates, as implemented in the Fortran package LUSOL [82] (see [16] [17]
[147] [148]). The basis factorization is central to the efficient handling of sparse linear and nonlinear
constraints.

5.26 MINOS and QUADMINOS 2337

5.26.3.2 Problems with a Nonlinear Objective

When nonlinearities are confined to the term F (x) in the objective function, the problem is a linearly
constrained nonlinear program. GAMS/MINOS solves such problems using a reduced-gradient algorithm
[203] combined with a quasi-Newton algorithm that is described in [139] . In the reduced-gradient method,
the constraints Ax+ Is = 0 are partitioned into the form

BxB + SxS +NxN = 0

where xs is a set of superbasic variables. At a solution, the basic and superbasic variables will lie somewhere
between their bounds (to within the feasibility tolerance δ, while nonbasic variables will normally be equal
to one of their bounds, as before. Let the number of superbasic variables be s, the number of columns in
S. (The context will always distinguish s from the vector of slack variables.) At a solution, s will be no
more than n1, the number of nonlinear variables. In many practical cases we have found that s remains
reasonably small, say 200 or less, even if n1 is large.

In the reduced-gradient algorithm, xs is regarded as a set of ”independent variables” or ”free variables”
that are allowed to move in any desirable direction, namely one that will improve the value of the objective
function (or reduce the sum of infeasibilities). The basic variables can then be adjusted in order to
continue satisfying the linear constraints.

If it appears that no improvement can be made with the current definition of B, S and N , some of the
nonbasic variables are selected to be added to S, and the process is repeated with an increased value of s.
At all stages, if a basic or superbasic variable encounters one of its bounds, the variable is made nonbasic
and the value of s is reduced by one.

A step of the reduced-gradient method is called a minor iteration. For linear problems, we may interpret
the simplex method as being the same as the reduced-gradient method, with the number of superbasic
variable oscillating between 0 and 1.

A certain matrix Z is needed now for descriptive purposes. It takes the form−B−1S
I
0

though it is never computed explicitly. Given an LU factorization of the basis matrix B, it is possible to
compute products of the form Zq and ZT g by solving linear equations involving B or BT . This in turn
allows optimization to be performed on the superbasic variables, while the basic variables are adjusted to
satisfy the general linear constraints.

An important feature of GAMS/MINOS is a stable implementation of a quasi-Newton algorithm for
optimizing the superbasic variables. This can achieve superlinear convergence during any sequence of
iterations for which the B, S, N partition remains constant. A search direction q for the superbasic
variables is obtained by solving a system of the form

RTRq = −ZT g

where g is a gradient of F (x), ZT g is the reduced gradient, and R is a dense upper triangular matrix.
GAMS computes the gradient vector g analytically, using automatic differentiation. The matrix R is
updated in various ways in order to approximate the reduced Hessian according to RTR ≈ ZTHZ where
H is the matrix of second derivatives of F (x) (the Hessian).

Once q is available, the search direction for all variables is defined by p = Zq. A ine search is then
performed to find an approximate solution to the one-dimensional (w.r.t. α) problem

minimize F (x+ αp)

subject to 0 < α < β

2338 Solver Manuals

where β is determined by the bounds on the variables. Another important piece in GAMS/MINOS is
a step-length procedure used in the linesearch to determine the step-length α (see [80]). The number
of nonlinear function evaluations required may be influenced by setting the Linesearch tolerance, as
discussed in Section Detailed Description of MINOS Options .

As in a linear programming solver, an equation BTπ = gB is solved to obtain the dual variables or shadow
prices π where gB is the gradient of the objective function associated with basic variables. It follows
that gB − BTπ = 0. The analogous quantity for superbasic variables is the reduced-gradient vector
ZT g = gs− sTπ; this should also be zero at an optimal solution. (In practice its components will be of
order r||π|| where r is the optimality tolerance, typically 10−6, and ||π|| is a measure of the size of the
elements of π.)

5.26.3.3 Problems with Nonlinear Constraints

If any of the constraints are nonlinear, GAMS/MINOS employs a project Lagrangian algorithm, based on
a method due to [150] , see [140] . This involves a sequence of major iterations, each of which requires
the solution of a linearly constrained subproblem. Each subproblem contains linearized versions of the
nonlinear constraints, as well as the original linear constraints and bounds.

At the start of the kth major iteration, let xk be an estimate of the nonlinear variables, and let λk be an
estimate of the Lagrange multipliers (or dual variables) associated with the nonlinear constraints. The
constraints are linearized by changing f(x) in equation (2) to its linear approximation:

f '(x, xk) = f(xk) + J(xk)(x− xk)

or more briefly
f ' = fk + Jk(x− xk)

where J(xk) is the Jacobian matrix evaluated at xk. (The i-th row of the Jacobian is the gradient vector
of the i-th nonlinear constraint function. As with the objective gradient, GAMS calculates the Jacobian
using automatic differentiation).

The subproblem to be solved during the k-th major iteration is then

minimize F (x) + cTx+ dT y − λTk (f − f ') + 0.5ρ(f − f ')T (f − f ') (5)

subject to f ' +A1y ∼ b1 (6)
A2x+A3y ∼ b2 (7)

` ≤
(
x
y

)
≤ u (8)

The objective function (5) is called an augmented Lagrangian. The scalar ρ is a penalty parameter, and
the term involving ρ is a modified quadratic penalty function.

GAMS/MINOS uses the reduced-gradient algorithm to minimize (5) subject to (6) – (8). As before, slack
variables are introduced and b1 and b2 are incorporated into the bounds on the slacks. The linearized
constraints take the form (

Jk A1

A2 A3

)(
x
y

)
+

(
I 0
0 I

)(
s1

s2

)
=

(
Jkxk − fk

0

)
This system will be referred to as Ax+ Is = 0 as in the linear case. The Jacobian Jk is treated as a sparse
matrix, the same as the matrices A1, A2, and A3.

In the output from GAMS/MINOS, the term Feasible subproblem indicates that the linearized constraints
have been satisfied. In general, the nonlinear constraints are satisfied only in the limit, so that feasibility
and optimality occur at essentially the same time. The nonlinear constraint violation is printed every
major iteration. Even if it is zero early on (say at the initial point), it may increase and perhaps fluctuate
before tending to zero. On ”well behaved problems”, the constraint violation will decrease quadratically
(i.e., very quickly) during the final few major iterations.

5.26 MINOS and QUADMINOS 2339

5.26.4 Modeling Issues

Formulating nonlinear models requires that the modeler pays attention to some details that play no role
when dealing with linear models.

5.26.4.1 Starting Points

The first issue is specifying a starting point. It is advised to specify a good starting point for as many
nonlinear variables as possible. The GAMS default of zero is often a very poor choice, making this even
more important.

As an (artificial) example consider the problem where we want to find the smallest circle that contains a
number of points (xi, yi):

Example : minimize r

subject to (xi − a)2 + (yi − b)2 ≤ r2, r ≥ 0.

This problem can be modeled in GAMS as follows.

set i ’points’ /p1*p10/;

parameters

x(i) ’x coordinates’,

y(i) ’y coordinates’;

* fill with random data

x(i) = uniform(1,10);

y(i) = uniform(1,10);

variables

a ’x coordinate of center of circle’

b ’y coordinate of center of circle’

r ’radius’;

equations

e(i) ’points must be inside circle’;

e(i).. sqr(x(i)-a) + sqr(y(i)-b) =l= sqr(r);

r.lo = 0;

model m /all/;

option nlp=minos;

solve m using nlp minimizing r;

Without help, MINOS will not be able to find an optimal solution. The problem will be declared infeasible.
In this case, providing a good starting point is very easy. If we define

xmin = min
i
xi,

ymin = min
i
yi,

xmax = max
i
xi,

ymax = max
i
yi,

2340 Solver Manuals

then good estimates are

a = (xmin + xmax)/2,

b = (ymin + ymax)/2,

r =
√

(a− xmin)2 + (b− ymin)2.

Thus we include in our model:

parameters xmin,ymin,xmax,ymax;

xmin = smin(i, x(i));

ymin = smin(i, y(i));

xmax = smax(i, x(i));

ymax = smax(i, y(i));

* set starting point

a.l = (xmin+xmax)/2;

b.l = (ymin+ymax)/2;

r.l = sqrt(sqr(a.l-xmin) + sqr(b.l-ymin));

and now the model solves very easily.

Level values can also be set away from zero implicitly as a result of assigning bounds. When a variable is
bounded away from zero, for instance by the statement Y.LO = 1;, the implicit projection of variable
levels onto their bounds that occurs when a model is solved will initialize Y away from zero.

5.26.4.2 Bounds

Setting appropriate bounds can be very important to steer the algorithm away from uninteresting areas,
and to prevent function evaluation errors from happening.

If your model contains a real power of the form x∗∗y it is important to add a bound x > 0.001, as real
exponentation is evaluated in GAMS as exp(y log(x)). In some cases one cannot write a bound directly,
e.g. if the equation is z = xf(y). In that case it is advised to introduce an extra variable and equation:

z = xϑ

ϑ = f(y)

ϑ ≥ ε

(Note that the functions SQR(x) and POWER(x,k) are integer powers and do not require x to be positive).

If the model produces function evaluation errors adding bounds is prefered to raising the DOMLIM limit.

Bounds in GAMS are specified using X.LO(i)=0.001 and X.UP(i) = 1000.

5.26.4.3 Scaling

Although MINOS has some facilities to scale the problem before starting to optimize it, it remains an
important task for the modeler to provide a well-scaled model. This is especially the case for nonlinear
models. GAMS has special syntax features to specify row and column scales that allow the modeler to
keep the equations in a most natural form. For more information consult the GAMS User's Guide.

5.26 MINOS and QUADMINOS 2341

5.26.4.4 The Objective Function

The first step GAMS/MINOS performs is to try to reconstruct the objective function. In GAMS,
optimization models minimize or maximize an objective variable. MINOS however works with an objective
function. One way of dealing with this is to add a dummy linear function with just the objective variable.
Consider the following GAMS fragment:

obj.. z =e= sum(i, sqr(resid(i)));

model m /all/;

solve m using nlp minimizing z;

This can be cast in form NLP (equations (1)− (4)) by saying minimize z subject to z =
∑
i resid

2
i and

the other constraints in the model. Although simple, this approach is not always preferable. Especially
when all constraints are linear it is important to minimize

∑
i resid

2
i directly. This can be achieved by a

simple reformulation: z can be substituted out. The substitution mechanism carries out the formulation if
all of the following conditions hold:

• the objective variable z is a free continuous variable (no bounds are defined on z),

• z appears linearly in the objective function,

• the objective function is formulated as an equality constraint,

• z is only present in the objective function and not in other constraints.

For many models it is very important that the nonlinear objective function be used by MINOS. For
instance the model [CHEM] from the model library solves in 21 iterations. When we add the bound

energy.lo = 0;

to the objective variable energy and thus prevent it from being substituted out, MINOS will not be able
to find a feasible point for the given starting point.

This reformulation mechanism has been extended for substitutions along the diagonal. For example, the
GAMS model

Variables x,y,z;

Equations e1,e2;

e1..z =e= y;

e2..y =e= sqr(1+x);

model m /all/;

option nlp=minos;

solve m using nlp minimizing z;

will be reformulated as an unconstrained optimization problem

minimize f(x) = (1 + x)2.

These additional reformulations can be turned off by using the statement option reform = 0; (see
Section GAMS Options).

2342 Solver Manuals

5.26.5 GAMS Options

The standard GAMS options (e.g. iterlim, domlim) can be used to control GAMS/MINOS. For more
details, see section Controlling a Solver via GAMS Options. We highlight some of the details of this usage
below for cases of special interest.

iterlim

Sets the minor iteration limit. MINOS will stop as soon as the number of minor iterations
exceeds the iteration limit and report the current solution.

domlim

Sets the domain error limit. Domain errors are evaluation errors in the nonlinear functions.
An example of a domain error is trying to evaluate

√
x for x < 0. Other examples include

taking logs of negative numbers, and evaluating the real power xy for x < ε (xy is evaluated as
exp(y log x)). When such an error occurs the count of domain errors is incremented: MINOS
will stop if this count exceeds the limit. If the limit has not been reached, reasonable estimates
for the function (and derivatives, if requested) are returned and MINOS continues. For example,
in the case of

√
x, x < 0 a zero is passed back for the function value and a large value for the

derivative. In many cases MINOS will be able to recover from these domain errors, especially
when they happen at some intermediate point. Nevertheless it is best to add appropriate
bounds or linear constraints to ensure that these domain errors don't occur. For example,
when an expression log(x) is present in the model, add a statement like x.lo = 0.001;.

bratio

Ratio used in basis acceptance test. When a previous solution or solution estimate exists,
GAMS automatically passes this solution to MINOS so that it can reconstruct an advanced
basis. When too many new (i.e. uninitialized with level and/or marginal values) variables or
constraints enter the model, it may be better not to use existing basis information, but to
instead crash a new basis. The bratio determines how quickly an existing basis is discarded.
A value of 1.0 will discard any basis, while a value of 0.0 will retain any basis.

workfactor

By default, GAMS/MINOS computes an estimate of the amount of workspace needed by
MINOS, and passes this workspace on to MINOS for use in solving the model. This estimate
is based on the model statistics: number of (nonlinear) equations, number of (nonlinear)
variables, number of (nonlinear) nonzeroes, etc. In most cases this is sufficient to solve the
model. In some rare cases MINOS may need more memory, and the user can provide this by
specifying a value of workfactor greater than 1. The computed memory estimate is multiplied
by the workfactor to determine the amount of workspace made available to MINOS for the
solve.

workspace

The workspace option is deprecated: use the workfactor option instead. The workspace

option specifies the amount of memory, in MB, that MINOS will use.

reform

This option controls the objective reformulation mechanism described in Section
The Objective Function The default value of 100 will cause GAMS/MINOS to try fur-
ther substitutions along the diagonal after the objective variable has been removed. Any other
value will disable this diagonal procedure.

5.26 MINOS and QUADMINOS 2343

5.26.6 Summary of MINOS Options

The performance of GAMS/MINOS is controlled by a number of parameters or ”options.” Each option
has a default value that should be appropriate for most problems. For special situations it is possible
to specify non-standard values for some or all of the options through the MINOS option file. While the
content of an option file is solver-specific, the details of how to create an option file and instruct the solver
to use it are not. This topic is covered in section The Solver Options File.

Note that the option file is not case sensitive. Examples for using the option file can be found at the end
of this section. The tables below contain summary information about the MINOS options, default values,
and links to more detailed explanations.

5.26.6.1 Output related options

Option Description Default

debug level
Controls amount of debug information written 0

log frequency
Controls iteration logging to listing file 100

print level
Controls amount of information printed during optimization 0

scale print
Print scaling factors

solution
Prints MINOS solution NO

summary frequency
Controls iteration logging to summary (log file) 100

5.26.6.2 Tolerances

Option Description Default

crash tolerance
Allow crash procedure to ignore small elements in eligible
columns

0.1

feasibility tolerance
Feasibility tolerance for linear constraints 1.0e-6

linesearch tolerance
Controls accuracy of steplength selected 0.1

LU density tolerance
When to use dense factorization 0.5

LU factor tolerance
Trade-off between stability and sparsity in basis factorization 100.0

LU singularity tolerance
Protection against ill-conditioned basis matrices 1.0e-11

LU update tolerance
Trade-off between stability and sparsity in basis updating 10.0

optimality tolerance
Reduced gradient optimality check 1.0e-6

row tolerance
Accuracy requirement for nonlinear rows 1.0e-6

scale print tolerance
Scale print flag and set tolerance 0.9

scale tolerance
Scale tolerance 0.9

subspace tolerance
Determines when nonbasics becomes superbasic 0.5

5.26.6.3 Limits

2344 Solver Manuals

Option Description Default

hessian dimension
Size of Hessian matrix 1

iterations limit
Minor iteration limit GAMS iterlim

major iterations
Max number of major iterations 50

minor iterations
Max number of minor iterations between linearizations
of nonlinear constraints

40

superbasics limit
Maximum number of superbasics 1

unbounded objective value
Determines when a problem is called unbounded 1.0e20

unbounded step size
Determines when a problem is called unbounded 1.0e10

5.26.6.4 Other algorithmic options

Option Description Default

check frequency
Controls frequency of linear constraint satisfaction test 60

completion
Completion level for subproblems (full/partial) FULL

crash option
Controls the basis crash algorithm 3

expand frequency
Setting for anti-cycling mechanism 10000

factorization frequency
Number of iterations between basis factorizations 100

lagrangian
Determines form of objection function in the linearized
subproblems

YES

LU complete pivoting
LUSOL pivoting strategy

LU partial pivoting
LUSOL pivoting strategy

LU rook pivoting
LUSOL pivoting strategy

major damping parameter
Prevents large relative changes between subproblem solu-
tions

2.0

minor damping parameter
Limit change in x during linesearch 2.0

multiple price
Multiple pricing 1

partial price
Number of segments in partial pricing strategy 10

penalty parameter
Used in modified augmented Lagrangian automatic

radius of convergence
controls final reduction of penalty parameter 0.01

scale all variables
Synonym to scale option 2

scale linear variables
Synonym to scale option 1

scale no
Synonym to scale option 0

scale nonlinear variables
Synonym to scale option 2

scale option
Scaling 1

scale yes
Synonym to scale option 1

start assigned nonlinears
Starting strategy when there is no basis SUPERBASIC

5.26 MINOS and QUADMINOS 2345

Option Description Default

verify constraint gradients
Synonym to verify level 2

verify gradients
Synonym to verify level 3

verify level
Controls verification of gradients 0

verify no
Synonym to verify level 0

verify objective gradients
Synonym to verify level 1

verify yes
Synonym to verify level 3

weight on linear objective
Composite objective weight 0.0

5.26.6.5 Examples of GAMS/MINOS Option File

The following example illustrates the use of certain options that might be helpful for ”difficult” models
involving nonlinear constraints. Experimentation may be necessary with the values specified, particularly
if the sequence of major iterations does not converge using default values.

* These options might be relevant for very nonlinear models.

Major damping parameter 0.2 * may prevent divergence.

Minor damping parameter 0.2 * if there are singularities

* in the nonlinear functions.

Penalty parameter 10.0 * or 100.0 perhaps-a value

* higher than the default.

Scale linear variables * (This is the default.)

Conversely, nonlinearly constrained models that are very nearly linear may optimize more efficiently if
some of the cautious defaults are relaxed:

* Suggestions for models with MILDLY nonlinear constraints

Completion Full

Penalty parameter 0.0 * or 0.1 perhaps-a value

* smaller than the default.

* Scale one of the following

Scale all variables * if starting point is VERY GOOD.

Scale linear variables * if they need it.

Scale No * otherwise.

Most of the options should be left at their default values for any given model. If experimentation is
necessary, we recommend changing just one option at a time.

5.26.7 Special Notes

5.26.7.1 Modeling Hints

Unfortunately, there is no guarantee that the algorithm just described will converge from an arbitrary
starting point. The concerned modeler can influence the likelihood of convergence as follows:

2346 Solver Manuals

• Specify initial activity levels for the nonlinear variables as carefully as possible (using the GAMS
suffix .L).

• Include sensible upper and lower bounds on all variables.

• Specify a Major damping parameter that is lower than the default value, if the problem is suspected
of being highly nonlinear

• Specify a Penalty parameter ρ that is higher than the default value, again if the problem is highly
nonlinear.

In rare cases it may be safe to request the values λk = 0 and ρ = 0 for all subproblems, by specifying
Lagrangian=No. However, convergence is much more likely with the default setting, Lagrangian=Yes.
The initial estimate of the Lagrange multipliers is then λ0 = 0, but for later subproblems λk is taken to be
the Lagrange multipliers associated with the (linearized) nonlinear constraints at the end of the previous
major iteration.

For the first subproblem, the default value for the penalty parameter is ρ = 100.0/m1 where m1 is the
number of nonlinear constraints. For later subproblems, ρ is reduced in stages when it appears that the
sequence {xk, λk} is converging. In many cases it is safe to specify λ = 0, particularly if the problem is
only mildly nonlinear. This may improve the overall efficiency.

5.26.7.2 Storage

GAMS/MINOS uses one large array of memory for most of its workspace. The implementation places no
fixed limit on the size of a problem or on its shape (many constraints and relatively few variables, or vice
versa). In general, the limiting factor will be the amount of physical memory available on a particular
machine, and the amount of computation time one is willing to spend.

Some detailed knowledge of a particular model will usually indicate whether the solution procedure is
likely to be efficient. An important quantity is m, the total number of general constraints in (2) and
(3). The amount of workspace required by GAMS/MINOS is roughly 100m doubles, or 800m bytes for
workspace. A further 300K bytes, approximately, are needed for the program itself, along with buffer
space for several files. Very roughly, then, a model with m general constraints requires about (m+ 300) K
bytes of memory.

Another important quantity is n, the total number of variables in x and y. The above comments assume
that n is not much larger than m, the number of constraints. A typical ratio for n/m is 2 or 3.

If there are many nonlinear variables (i.e., if n1 is large), much depends on whether the objective function
or the constraints are highly nonlinear or not. The degree of nonlinearity affects s, the number of
superbasic variables. Recall that s is zero for purely linear problems. We know that s need never be larger
than n1 + 1. In practice, s is often very much less than this upper limit.

In the quasi-Newton algorithm, the dense triangular matrix R has dimension s and requires about s2/2
words of storage. If it seems likely that s will be very large, some aggregation or reformulation of the
problem should be considered.

5.26.8 The GAMS/MINOS Log File

MINOS writes different logs for LPs, NLPs with linear constraints, and NLPs with non-linear constraints.
In this section, a sample log file is shown for each case, and the messages that appear are explained.

5.26 MINOS and QUADMINOS 2347

5.26.8.1 Linear Programs

MINOS uses a standard two-phase simplex method for LPs. In the first phase, the sum of the infeasibilities
at each iteration is minimized. Once feasibility is attained, MINOS switches to phase 2 where it minimizes
(or maximizes) the original objective function. The different objective functions are called the phase 1
and phase 2 objectives. Notice that the marginals in phase 1 are with respect to the phase 1 objective.
This means that if MINOS interrupts in phase 1, the marginals are ”wrong” in the sense that they do not
reflect the original objective.

The log for the problem TURKPOW is as follows:

GAMS Rev 235 Copyright (C) 1987-2010 GAMS Development. All rights reserved

--- Starting compilation

--- turkpow.gms(230) 3 Mb

--- Starting execution: elapsed 0:00:00.009

--- turkpow.gms(202) 4 Mb

--- Generating LP model turkey

--- turkpow.gms(205) 4 Mb

--- 350 rows 949 columns 5,872 non-zeroes

--- Executing MINOS: elapsed 0:00:00.025

GAMS/MINOS Aug 18, 2010 23.5.2 WIN 19143.19383 VS8 x86/MS Windows

M I N O S 5.51 (Jun 2004)

GAMS/MINOS 5.51, Large Scale Nonlinear Solver

B. A. Murtagh, University of New South Wales

P. E. Gill, University of California at San Diego,

W. Murray, M. A. Saunders, and M. H. Wright,

Systems Optimization Laboratory, Stanford University

Work space allocated -- 1.60 Mb

Reading Rows...

Reading Columns...

Itn ninf sinf objective

100 3 2.283E-01 -2.51821463E+04

200 0 0.000E+00 2.02819284E+04

300 0 0.000E+00 1.54107277E+04

400 0 0.000E+00 1.40211808E+04

500 0 0.000E+00 1.33804183E+04

600 0 0.000E+00 1.27082709E+04

EXIT - Optimal Solution found, objective: 12657.77

--- Restarting execution

--- turkpow.gms(205) 0 Mb

--- Reading solution for model turkey

--- turkpow.gms(230) 3 Mb

*** Status: Normal completion

The first line that is written by MINOS is the version string: GAMS/MINOS Aug 18, 2010 23.5.2 WIN

19143.19383 VS8 x86/MS Windows This line identifies which version of the MINOS libraries and links
you are using, and is only to be deciphered by GAMS support personnel.

After some advertisement text we see the amount of work space (i.e. memory) that is allocated: 1.60
Mb. When MINOS is loaded, the amount of memory needed is first estimated. This estimate is based on

2348 Solver Manuals

statistics like the number of rows, columns and non-zeros. This amount of memory is then allocated and
the problem loaded into MINOS.

The columns have the following meaning:

Itn

Iteration number.

ninf

Number of infeasibilities. If nonzero the current iterate is still infeasible.

sinf

The sum of the infeasibilities. This number is minimized during Phase I. Once the model is
feasible this number is zero.

objective

The value of the objective function: z =
∑
cixi. In phase II this number is maximized or

minimized. In phase I it may move in the wrong direction.

The final line indicates the exit status of MINOS.

5.26.8.2 Linearly Constrained NLP's

The log is basically the same as for linear models. The only difference is that not only matrix rows and
columns need to be loaded, but also instructions for evaluating functions and gradients.

The log for the problem WEAPONS is as follows:

GAMS Rev 235 Copyright (C) 1987-2010 GAMS Development. All rights reserved

--- Starting compilation

--- weapons.gms(77) 3 Mb

--- Starting execution: elapsed 0:00:00.005

--- weapons.gms(66) 4 Mb

--- Generating NLP model war

--- weapons.gms(68) 6 Mb

--- 13 rows 66 columns 156 non-zeroes

--- 706 nl-code 65 nl-non-zeroes

--- weapons.gms(68) 4 Mb

--- Executing MINOS: elapsed 0:00:00.013

GAMS/MINOS Aug 18, 2010 23.5.2 WIN 19143.19383 VS8 x86/MS Windows

M I N O S 5.51 (Jun 2004)

GAMS/MINOS 5.51, Large Scale Nonlinear Solver

B. A. Murtagh, University of New South Wales

P. E. Gill, University of California at San Diego,

W. Murray, M. A. Saunders, and M. H. Wright,

Systems Optimization Laboratory, Stanford University

Work space allocated -- 0.82 Mb

Reading Rows...

5.26 MINOS and QUADMINOS 2349

Reading Columns...

Reading Instructions...

Itn ninf sinf objective

100 0 0.000E+00 1.71416714E+03

200 0 0.000E+00 1.73483184E+03

EXIT - Optimal Solution found, objective: 1735.570

--- Restarting execution

--- weapons.gms(68) 0 Mb

--- Reading solution for model war

--- weapons.gms(77) 3 Mb

*** Status: Normal completion

5.26.8.3 NLP's with Nonlinear Constraints

For models with nonlinear constraints the log is more complicated. The library model [CAMCGE]
from the model library is such an example: the log output resulting from running it is shown below.

GAMS Rev 235 Copyright (C) 1987-2010 GAMS Development. All rights reserved

--- Starting compilation

--- camcge.gms(450) 3 Mb

--- Starting execution: elapsed 0:00:00.010

--- camcge.gms(441) 4 Mb

--- Generating NLP model camcge

--- camcge.gms(450) 6 Mb

--- 243 rows 280 columns 1,356 non-zeroes

--- 5,524 nl-code 850 nl-non-zeroes

--- camcge.gms(450) 4 Mb

--- Executing MINOS: elapsed 0:00:00.023

GAMS/MINOS Aug 18, 2010 23.5.2 WIN 19143.19383 VS8 x86/MS Windows

M I N O S 5.51 (Jun 2004)

GAMS/MINOS 5.51, Large Scale Nonlinear Solver

B. A. Murtagh, University of New South Wales

P. E. Gill, University of California at San Diego,

W. Murray, M. A. Saunders, and M. H. Wright,

Systems Optimization Laboratory, Stanford University

Work space allocated -- 1.48 Mb

Reading Rows...

Reading Columns...

Reading Instructions...

Major minor step objective Feasible Optimal nsb ncon penalty BSswp

1 2T 0.0E+00 1.91724E+02 1.8E+02 2.0E-01 0 1 1.0E+00 0

2 90 1.0E+00 1.91735E+02 1.5E-03 7.6E+00 0 3 1.0E+00 0

3 0 1.0E+00 1.91735E+02 1.3E-09 5.5E-06 0 4 1.0E+00 0

4 0 1.0E+00 1.91735E+02 1.1E-12 2.8E-13 0 5 1.0E-01 0

EXIT - Optimal Solution found, objective: 191.7346

--- Restarting execution

2350 Solver Manuals

--- camcge.gms(450) 0 Mb

--- Reading solution for model camcge

*** Status: Normal completion

Two sets of iterations, major and minor, are now reported. A description of the various columns present
in this log file follows:

Major

A major iteration involves linearizing the nonlinear constraints and performing a number
of minor iterations on the resulting subproblem. The objective for the subproblem is an
augmented Lagrangian, not the true objective function.

minor

The number of minor iterations performed on the linearized subproblem. If it is a simple
number like 90, then the subproblem was solved to optimality. Here, 2T means that the
subproblem was terminated. In general the T is not something to worry about. Other possible
flags are I and U , which mean that the subproblem was infeasible or unbounded. MINOS
may have difficulty if these keep occurring.

step

The step size taken towards the solution suggested by the last major iteration. Ideally this
should be 1.0, especially near an optimum. If the subproblem solutions are widely different,
MINOS may reduce the step size under control of the Major Damping parameter.

objective

The objective function for the original nonlinear program.

Feasible

Primal infeasibility, indicating the maximum non-linear constraint violation.

Optimal

The maximum dual infeasibility, measured as the maximum departure from complementarity. If
we call dj the reduced cost of variable xj , then the dual infeasibility of xj is dj×min{xj−`j , 1}
or −dj ×min{uj − xj , 1} depending on the sign of dj .

nsb

Number of superbasics. If the model is feasible this number cannot exceed the superbasic limit,
which may need to be reset to a larger number if the numbers in this column become larger.

ncon

The number of times MINOS has evaluated the nonlinear constraints and their derivatives.

penalty

The current value of the penalty parameter in the augmented Lagrangian (the objective for
the subproblems). If the major iterations appear to be converging, MINOS will decrease the
penalty parameter. If there appears to be difficulty, such as unbounded subproblems, the
penalty parameter will be increased.

BSswp

Number of basis swaps: the number of
(
B S

)
(i.e. basic vs. superbasic) changes.

Note: The CAMCGE model (like many CGE models or other almost square systems) can better be
solved with the MINOS option Start Assigned Nonlinears Basic.

5.26 MINOS and QUADMINOS 2351

5.26.9 Detailed Description of MINOS Options

The following is an alphabetical list of the keywords that may appear in the GAMS/MINOS options file,
and a description of their effect. Options not specified will take the default values shown.

check frequency (integer): Controls frequency of linear constraint satisfaction test ←↩

Every ith iteration after the most recent basis factorization, a numerical test is made to see if
the current solution x satisfies the general linear constraints (including linearized nonlinear
constraints, if any). The constraints are of the form Ax+s = 0 where s is the set of slack
variables. To perform the numerical test, the residual vector r = Ax + s is computed. If the
largest component of r is judged to be too large, the current basis is refactorized and the basic
variables are recomputed to satisfy the general constraints more accurately.

Range: {1, ..., ∞}

Default: 60

completion (string): Completion level for subproblems (full/partial) ←↩

When there are nonlinear constraints, this determines whether subproblems should be solved to
moderate accuracy (partial completion) or to full accuracy (full completion). GAMS/MINOS
implements the option by using two sets of convergence tolerances for the subproblems.
Use of partial completion may reduce the work during early major iterations, unless the Minor
iterations limit is active. The optimal set of basic and superbasic variables will probably be
determined for any given subproblem, but the reduced gradient may be larger than it would
have been with full completion. An automatic switch to full completion occurs when it appears
that the sequence of major iterations is converging. The switch is made when the nonlinear
constraint error is reduced below 100 ∗ (Row tolerance), the relative change in Lambdak is 0.1
or less, and the previous subproblem was solved to optimality. Full completion tends to give
better Langrange-multiplier estimates. It may lead to fewer major iterations, but may result
in more minor iterations.

Default: FULL

value meaning

FULL Solve subproblems to full accuracy

PARTIAL Solve subproblems to moderate accuracy

crash option (integer): Controls the basis crash algorithm ←↩

If a restart is not being performed, an initial basis will be selected from certain columns of
the constraint matrix (A I). The value of the parameter i determines which columns of A are
eligible. Columns of I are used to fill gaps where necessary. If i > 0, three passes are made
through the relevant columns of A, searching for a basis matrix that is essentially triangular. A
column is assigned to pivot on a particular row if the column contains a suitably large element
in a row that has not yet been assigned. (The pivot elements ultimately form the diagonals of
the triangular basis). Pass 1 selects pivots from free columns (corresponding to variables with
no upper and lower bounds). Pass 2 requires pivots to be in rows associated with equality
(=E=) constraints. Pass 3 allows the pivots to be in inequality rows. For remaining (unassigned)
rows, the associated slack variables are inserted to complete the basis.

Default: 3

value meaning

0 Initial basis will be a slack basis

2352 Solver Manuals

value meaning

1 All columns are eligible

2 Only linear columns are eligible

3 Columns appearing nonlinearly in the objective are not eligible

4 Columns appearing nonlinearly in the constraints are not eligible

crash tolerance (real): Allow crash procedure to ignore small elements in eligible columns ←↩

The Crash tolerance r allows the starting procedure CRASH to ignore certain small nonzeros
in each column of A. If amax is the largest element in column j, other nonzeros aij in the
column are ignored if |aij| < amax ∗ r. To be meaningful, the parameter r should be in the
range 0 <= r < 1. When r > 0.0 the basis obtained by CRASH may not be strictly triangular,
but it is likely to be nonsingular and almost triangular. The intention is to obtain a starting
basis containing more columns of A and fewer (arbitrary) slacks. A feasible solution may be
reached sooner on some problems. For example, suppose the first m columns of A are the
matrix shown under LU factor tolerance; i.e., a tridiagonal matrix with entries -1, 4, -1. To
help CRASH choose all m columns for the initial basis, we could specify Crash tolerance r for
some value of r > 0.25.

Range: [0, 1.0]

Default: 0.1

debug level (integer): Controls amount of debug information written ←↩

This causes various amounts of information to be output. Most debug levels will not be helpful
to GAMS users, but they are listed here for completeness. Note that you will need to use the
GAMS statement OPTION SYSOUT=on; to echo the MINOS listing to the GAMS listing file.

• debug level 0
No debug output.

• debug level 2(or more)
Output from M5SETX showing the maximum residual after a row check.

• debug level 40
Output from LU8RPC (which updates the LU factors of the basis matrix), showing the
position of the last nonzero in the transformed incoming column.

• debug level 50
Output from LU1MAR (which updates the LU factors each refactorization), showing each
pivot row and column and the dimensions of the dense matrix involved in the associated
elimination.

• debug level 100
Output from M2BFAC and M5LOG listing the basic and superbasic variables and their
values at every iteration.

Default: 0

expand frequency (integer): Setting for anti-cycling mechanism ←↩

This option is part of an anti-cycling procedure designed to guarantee progress even on highly
degenerate problems. For linear models, the strategy is to force a positive step at every
iteration, at the expense of violating the bounds on the variables by a small amount. Suppose
the specified feasibility tolerance is delta and the expand frequency is k. Over a period of k
iterations, the tolerance actually used by GAMS/MINOS increases from 0.5∗delta to delta (in
steps 0.5∗delta/k). For nonlinear models, the same procedure is used for iterations in which
there is only one superbasic variable. (Cycling can occur only when the current solution is

5.26 MINOS and QUADMINOS 2353

at a vertex of the feasible region.) Thus, zero steps are allowed if there is more than one
superbasic variable, but otherwise positive steps are enforced. At least every k iterations, a
resetting procedure eliminates any infeasible nonbasic variables. Increasing k helps to reduce
the number of these slightly infeasible nonbasic variables. However, it also diminishes the
freedom to choose a large pivot element (see Pivot tolerance).

Range: {1, ..., ∞}

Default: 10000

factorization frequency (integer): Number of iterations between basis factorizations ←↩

At most i basis updates will occur between factorizations of the basis matrix. With linear
programs, basis updates usually occur at every iteration. The default i is reasonable for typical
problems. Higher values up to i = 200 (say) may be more efficient on problems that are
extremely sparse and well scaled. When the objective function is nonlinear, fewer basis updates
will occur as an optimum is approached. The number of iterations between basis factorizations
will therefore increase. During these iterations a test is made regularly (according to the Check
frequency) to ensure that the general constraints are satisfied. If necessary the basis will be
re-factorized before the limit of i updates is reached. When the constraints are nonlinear, the
Minor iterations limit will probably preempt i.

Range: {1, ..., ∞}

Default: 100

feasibility tolerance (real): Feasibility tolerance for linear constraints ←↩

When the constraints are linear, a feasible solution is one in which all variables, including
slacks, satisfy their upper and lower bounds to within the absolute tolerance r. (Since
slacks are included, this means that the general linear constraints are also satisfied within r.)
GAMS/MINOS attempts to find a feasible solution before optimizing the objective function.
If the sum of infeasibilities cannot be reduced to zero, the problem is declared infeasible. Let
SINF be the corresponding sum of infeasibilities. If SINF is quite small, it may be appropriate
to raise r by a factor of 10 or 100. Otherwise, some error in the data should be suspected.
If SINF is not small, there may be other points that have a significantly smaller sum of
infeasibilities. GAMS/MINOS does not attempt to find a solution that minimizes the sum.
If Scale option = 1 or 2, feasibility is defined in terms of the scaled problem (since it is then
more likely to be meaningful). A nonlinear objective function F(x) will be evaluated only at
feasible points. If there are regions where F(x) is undefined, every attempt should be made to
eliminate these regions from the problem. For example, for a function F(x) = sqrt(x1)+log(x2),
it should be essential to place lower bounds on both variables. If Feasibility tolerance = 10-6,
the bounds x1 > 10-5 and x2 > 10-4 might be appropriate. (The log singularity is more serious;
in general, keep variables as far away from singularities as possible.) If the constraints are
nonlinear, the above comments apply to each major iteration. A feasible solution satisfies the
current linearization of the constraints to within the tolerance r. The associated subproblem
is said to be feasible. As for the objective function, bounds should be used to keep x more
than r away from singularities in the constraint functions f(x). At the start of major iteration
k, the constraint functions f(xk) are evaluated at a certain point xk. This point always satisfies
the relevant bounds (l < xk < u), but may not satisfy the general linear constraints. During
the associated minor iterations, F(x) and f(x) will be evaluated only at points x that satisfy
the bound and the general linear constraints (as well as the linearized nonlinear constraints).
If a subproblem is infeasible, the bounds on the linearized constraints are relaxed temporarily,
in several stages. Feasibility with respect to the nonlinear constraints themselves is measured
against the Row tolerance (not against r). The relevant test is made at the start of a major
iteration.

Default: 1.0e-6

2354 Solver Manuals

hessian dimension (integer): Size of Hessian matrix ←↩

This specifies that an r∗r triangular matrix R is to be available for use by the quasi-Newton
algorithm. The matrix R approximates the reduced Hessian in that RTR approximates ZTHZ.
Suppose there are s superbasic variables at a particular iteration. Whenever possible, r should
be greater than s. If r > s, the first s columns of R will be used to approximate the reduced
Hessian in the normal manner. If there are no further changes to the set of superbasic variables,
the rate of convergence will ultimately be superlinear. If r < s, a matrix of the form

R = diag(Rr, D)

will be used to approximate the reduced Hessian, where Rr is an r ∗ r upper triangular matrix
and D is a diagonal matrix of order s - r. The rate of convergence will no longer be superlinear
(and may be arbitrarily slow). The storage required is of the order sqr(r)/2, i.e. quadratic in
r. In general, r should be a slight over-estimate of the final number of superbasic variables,
whenever storage permits. It need never be larger than n1 + 1, where n1 is the number of
nonlinear variables. For many problems it can be much smaller than n1. If Superbasics limit s
is specified, the default value of r is the same number, s (and conversely). This is a safeguard
to ensure super-linear convergence wherever possible. If neither r nor s is specified, GAMS
chooses values for both, using certain characteristics of the problem.

Range: {1, ..., ∞}

Default: 1

iterations limit (integer): Minor iteration limit ←↩

The maximum number of minor iterations allowed (i.e., iterations of the simplex method or
the reduced-gradient method). This option, if set, overrides the GAMS ITERLIM specification.
If i = 0, no minor iterations are performed, but the starting point is tested for both feasibility
and optimality.

Default: GAMS iterlim

lagrangian (string): Determines form of objection function in the linearized subproblems ←↩

This determines the form of the objective function used for the linearized subproblems. The
default value yes is highly recommended. The Penalty parameter value is then also relevant.
If No is specified, the nonlinear constraint functions will be evaluated only twice per major
iteration. Hence this option may be useful if the nonlinear constraints are very expensive to
evaluate. However, in general there is a great risk that convergence may not occur.

Default: YES

value meaning

NO Nondefault value (not recommended)

YES Default value (recommended)

linesearch tolerance (real): Controls accuracy of steplength selected ←↩

For nonlinear problems, this controls the accuracy with which a steplength alpha is located in
the one-dimensional problem

minimize F(x+alpha∗p)
subject to 0 < alpha <= beta

5.26 MINOS and QUADMINOS 2355

A linesearch occurs on most minor iterations for which x is feasible. (If the constraints are
nonlinear, the function being minimized is the augmented Lagrangian.) r must be a real value
in the range 0.0 < r < 1.0. The default value r = 0.1 requests a moderately accurate search.
It should be satisfactory in most cases. If the nonlinear functions are cheap to evaluate, a
more accurate search may be appropriate: try r = 0.01 or r = 0.001. The number of iterations
should decrease, and this will reduce total run time if there are many linear or nonlinear
constraints. If the nonlinear function are expensive to evaluate, a less accurate search may be
appropriate; try r = 0.5 or perhaps r = 0.9. (The number of iterations will probably increase
but the total number of function evaluations may decrease enough to compensate.)

Range: [0, 1.0]

Default: 0.1

log frequency (integer): Controls iteration logging to listing file ←↩

In general, one line of the iteration log is printed every ith minor iteration. A heading labels the
printed items, which include the current iteration number, the number and sum of feasibilities
(if any), the subproblem objective value (if feasible), and the number of evaluations of the
nonlinear functions. A value such as i = 10, 100 or larger is suggested for those interested
only in the final solution. Log frequency 0 may be used as shorthand for Log frequency 99999.
If Print level > 0, the default value of i is 1. If Print level = 0, the default value of i is 100.
If Print level = 0 and the constraints are nonlinear, the minor iteration log is not printed
(and the Log frequency is ignored). Instead, one line is printed at the beginning of each major
iteration.

Range: {1, ..., ∞}

Default: 100

LU complete pivoting (no value): LUSOL pivoting strategy ←↩

The LUSOL factorization implements a Markowitz-style search for pivots that locally minimize
fill-in subject to a threshold pivoting stability criterion. The rook and complete pivoting options
are more expensive than partial pivoting but are more stable and better at revealing rank, as
long as the LU factor tolerance is not too large (say < 2.0).

LU density tolerance (real): When to use dense factorization ←↩

The density tolerance is used during LUSOL's basis factorization B=LU. Columns of L and
rows of U are formed one at a time, and the remaining rows and columns of the basis are altered
appropriately. At any stage, if the density of the remaining matrix exceeds this tolerance, the
Markowitz strategy for choosing pivots is terminated and the remaining matrix is factored by
a dense LU procedure. Raising the tolerance towards 1.0 may give slightly sparser factors,
with a slight increase in factorization time.

Range: [0, 1.0]

Default: 0.5

LU factor tolerance (real): Trade-off between stability and sparsity in basis factorization ←↩

This tolerance affects the stability and sparsity of the basis factorization B = LU during
factorization. The value r specified must satisfy r >= 1.0.

• The default value r = 100.0 usually strikes a good compromise between stability and
sparsity.

2356 Solver Manuals

• For large and relatively dense problems, a larger value may give a useful improvement in
sparsity without impairing stability to a serious degree.

• For certain very regular structures (e.g., band matrices) it may be necessary to set r to a
value smaller than the default in order to achieve stability.

Range: [1.0, ∞]

Default: 100.0

LU partial pivoting (no value): LUSOL pivoting strategy ←↩

The LUSOL factorization implements a Markowitz-style search for pivots that locally minimize
fill-in subject to a threshold pivoting stability criterion. The rook and complete pivoting options
are more expensive than partial pivoting but are more stable and better at revealing rank, as
long as the LU factor tolerance is not too large (say < 2.0).

LU rook pivoting (no value): LUSOL pivoting strategy ←↩

The LUSOL factorization implements a Markowitz-style search for pivots that locally minimize
fill-in subject to a threshold pivoting stability criterion. The rook and complete pivoting options
are more expensive than partial pivoting but are more stable and better at revealing rank, as
long as the LU factor tolerance is not too large (say < 2.0).

LU singularity tolerance (real): Protection against ill-conditioned basis matrices ←↩

When the basis is refactorized, the diagonal elements of U are tested as follows: if |Ujj| <= r or
|Ujj| < r ∗ maxi |Uii|, the jth column of the basis is replaced by the corresponding slack variable.
(This is most likely to occur after a restart, or at the start of a major iteration.) In some cases,
the Jacobian matrix may converge to values that make the basis very ill-conditioned, causing
the optimization to progress very slowly (if at all). Setting r = 1.0-5, say, may help cause a
judicious change of basis.

Default: 1.0e-11

LU update tolerance (real): Trade-off between stability and sparsity in basis updating ←↩

This tolerance affects the stability and sparsity of the basis factorization B = LU during
updates. The value r specified must satisfy r >= 1.0.

• The default value r = 10.0 usually strikes a good compromise between stability and
sparsity.

• For large and relatively dense problems, r = 25.0 (say) may give a useful improvement in
sparsity without impairing stability to a serious degree.

• For certain very regular structures (e.g., band matrices) it may be necessary to set r to a
value smaller than the default in order to achieve stability.

Range: [1.0, ∞]

Default: 10.0

major damping parameter (real): Prevents large relative changes between subproblem solutions ←↩

5.26 MINOS and QUADMINOS 2357

The parameter may assist convergence on problems that have highly nonlinear constraints. It
is intended to prevent large relative changes between subproblem solutions (xk, lambdak) and
(xk+1, lambdak+1). For example, the default value 2.0 prevents the relative change in either
xk or lambdak from exceeding 200 percent. It will not be active on well behaved problems.
The parameter is used to interpolate between the solutions at the beginning and end of each
major iteration. Thus xk+1 and lambdak+1 are changed to xk + sigma∗(xk+1 - xk) and lambdak

+ sigma∗(lambdak+1 - lambdak) for some step-length sigma < 1. In the case of nonlinear
equations (where the number of constraints is the same as the number of variables) this gives
a damped Newton method. This is a very crude control. If the sequence of major iterations
does not appear to be converging, one should first re-run the problem with a higher Penalty
parameter (say 10 or 100 times the default rho). (Skip this re-run in the case of nonlinear
equations: there are no degrees of freedom and the value of rho is irrelevant.) If the subproblem
solutions continue to change violently, try reducing r to 0.2 or 0.1 (say). For implementation
reasons, the shortened step to sigma applies to the nonlinear variables x, but not to the linear
variables y or the slack variables s. This may reduce the efficiency of the control.

Default: 2.0

major iterations (integer): Max number of major iterations ←↩

The maximum number of major iterations allowed. It is intended to guard against an excessive
number of linearizations of the nonlinear constraints, since in some cases the sequence of major
iterations may not converge. The progress of the major iterations can be best monitored using
Print level 0 (the default).

Default: 50

minor damping parameter (real): Limit change in x during linesearch ←↩

This parameter limits the change in x during a linesearch. It applies to all nonlinear problems,
once a feasible solution or feasible subproblem has been found. A linesearch of the form

minimizealpha F(x + alpha∗p)

is performed over the range 0 < alpha <= beta, where beta is the step to the nearest upper or
lower bound on x. Normally, the first step length tried is a1 = min(1, beta). In some cases,
such as F(x) = aebx or F(x) = axb, even a moderate change in the components of x can lead
to floating-point overflow. The parameter r is therefore used to define a limit

beta2 = r(1 + ||x||)/||p||

and the first evaluation of F(x) is at the potentially smaller steplength alpha1 = min(1, beta,
beta2). Wherever possible, upper and lower bounds on x should be used to prevent evaluation
of nonlinear functions at meaningless points. The Minor damping parameter provides an
additional safeguard. The default value r = 2.0 should not affect progress on well behaved
problems, but setting r = 0.1 or 0.01 may be helpful when rapidly varying functions are
present. A good starting point may be required. An important application is to the class of
nonlinear least squares problems. In cases where several local optima exist, specifying a small
value for r may help locate an optimum near the starting point.

Default: 2.0

minor iterations (integer): Max number of minor iterations between linearizations of nonlinear constraints
←↩

2358 Solver Manuals

The the maximum number of feasible minor iterations allowed between successive linearizations
of the nonlinear constraints. A moderate value (e.g., 20 <= i <= 50) prevents excessive
efforts being expended on early major iterations, but allows later subproblems to be solved
to completion. The limit applies to both infeasible and feasible iterations. In some cases,
a large number of iterations (say K) might be required to obtain a feasible subproblem. If
good starting values are supplied for variables appearing nonlinearly in the constraints, it
may be sensible to specify a limit > K, to allow the first major iteration to terminate at a
feasible (and perhaps optimal) subproblem solution. If a good initial subproblem is arbitrarily
interrupted by a small limit, the subsequent linearization may be less favorable than the first.
In general it is unsafe to specify a value as small as i = 1 or 2. Even when an optimal solution
has been reached, a few minor iterations may be needed for the corresponding subproblem
to be recognized as optimal. The Iteration limit provides an independent limit on the total
minor iterations (across all subproblems). If the constraints are linear, only the Iteration limit
applies: the minor iterations value is ignored.

Default: 40

multiple price (integer): Multiple pricing ←↩

Pricing refers to a scan of the current non-basic variables to determine which, if any, are
eligible to become (super)basic. The multiple pricing parameter k controls the number of
entering variables to choose: the k best non-basic variables are selected for admission to the
set of (super)basic variables. The default k = 1 is best for linear programs, since an optimal
solution will have zero superbasic variables. Warning : If k > 1, GAMS/MINOS will use the
reduced-gradient method rather than the simplex method, even on purely linear problems.
The subsequent iterations do not correspond to the efficient minor iterations carried out by
commercial linear programming systems using multiple pricing. (In the latter systems, the
classical simplex method is applied to a tableau involving k dense columns of dimension m, and
k is therefore limited for storage reasons typically to the range 2 <= k <= 7.) GAMS/MINOS
varies all superbasic variables simultaneously. For linear problems its storage requirements
are essentially independent of k. Larger values of k are therefore practical, but in general the
iterations and time required when k > 1 are greater than when the simplex method is used
(k = 1). On large nonlinear problems it may be important to set k > 1 if the starting point
does not contain many superbasic variables. For example, if a problem has 3000 variables and
500 of them are nonlinear, the optimal solution may well have 200 variables superbasic. If the
problem is solved in several runs, it may be beneficial to use k = 10 (say) for early runs, until
it seems that the number of superbasics has leveled off. If Multiple price k is specified, it is
also necessary to specify Superbasic limit s for some s > k.

Range: {1, ..., ∞}

Default: 1

optimality tolerance (real): Reduced gradient optimality check ←↩

This is used to judge the size of the reduced gradients dj = gj - piT aj, where gj is the gradient
of the objective function corresponding to the jth variable, aj is the associated column of
the constraint matrix (or Jacobian), and pi is the set of dual variables. By construction,
the reduced gradients for basic variables are always zero. Optimality will be declared if the
reduced gradients for nonbasic variables at their lower or upper bounds satisfy dj/||pi|| >=
-r or dj/||pi|| <= r respectively, and if dj/||pi|| <= r for superbasic variables. The ||pi|| is a
measure of the size of the dual variables. It is included to make the tests independent of a
scale factor on the objective function. The quantity actually used is defined by

sigma = sum(i, abs(pi(i))), ||pi|| = max{sigma/sqrt(m),1}

so that only large scale factors are compensated for. As the objective scale decreases, the
optimality test tends to become an absolute (instead of a relative) test.

Default: 1.0e-6

5.26 MINOS and QUADMINOS 2359

partial price (integer): Number of segments in partial pricing strategy ←↩

This parameter is recommended for large problems that have significantly more variables than
constraints. It reduces the work required for each pricing operation (when a nonbasic variable
is selected to become basic or superbasic). When i = 1, all columns of the constraints matrix
(A I) are searched. Otherwise, Aj and I are partitioned to give i roughly equal segments Aj,
Ij (j = 1 to i). If the previous search was successful on Aj-1, Ij-1, the next search begins on
the segments Aj, Ij. (All subscripts here are modulo i.) If a reduced gradient is found that
is larger than some dynamic tolerance, the variable with the largest such reduced gradient
(of appropriate sign) is selected to become superbasic. (Several may be selected if multiple
pricing has been specified.) If nothing is found, the search continues on the next segments
Aj+1, Ij+1 and so on. Partial price t (or t/2 or t/3) may be appropriate for time-stage models
having t time periods

Range: {1, ..., ∞}

Default: 10

penalty parameter (real): Used in modified augmented Lagrangian ←↩

This specifies the value of rho in the modified augmented Lagrangian. It is used only
when Lagrangian = yes (the default setting). For early runs on a problem with unknown
characteristics, the default value should be acceptable. If the problem is known to be highly
nonlinear, specify a large value, such as 10 times the default. In general, a positive value of
rho may be necessary to ensure convergence, even for convex programs. On the other hand,
if rho is too large, the rate of convergence may be unnecessarily slow. If the functions are
not highly nonlinear or a good starting point is known, it will often be safe to specify penalty
parameter 0.0. When solving a sequence of related problems, initially, use a moderate value
for rho (such as the default) and a reasonably low Iterations and/or major iterations limit. If
successive major iterations appear to be terminating with radically different solutions, the
penalty parameter should be increased. (See also the Major damping parameter.) If there
appears to be little progress between major iterations, it may help to reduce the penalty
parameter.

Default: automatic

print level (integer): Controls amount of information printed during optimization ←↩

This varies the amount of information that will be output during optimization. Print level 0
sets the default log and summary frequencies to 100. It is then easy to monitor the progress
of the run. Print level 1 (or more) sets the default log and summary frequencies to 1, giving
a line of output for every minor iteration. Print level 1 also produces basis statistics, i.e.,
information relating to LU factors of the basis matrix whenever the basis is re-factorized. For
problems with nonlinear constraints, certain quantities are printed at the start of each major
iteration. The option value is best thought of as a binary number of the form

Print level JFLXB

where each letter stands for a digit that is either 0 or 1. The quantities referred to are:

• B Basis statistics, as mentioned above

• X xk, the nonlinear variables involved in the objective function or the constraints.

• L lambdak, the Lagrange-multiplier estimates for the nonlinear constraints. (Suppressed
if Lagrangian=No, since then lambdak = 0.)

• F f(xk), the values of the nonlinear constraint functions.

• J J(xk), the Jacobian matrix.

2360 Solver Manuals

To obtain output of any item, set the corresponding digit to 1, otherwise to 0. For example,
Print level 10 sets X = 1 and the other digits equal to zero; the nonlinear variables will be
printed each major iteration. If J = 1, the Jacobian matrix will be output column-wise at the
start of each major iteration. Column j will be preceded by the value of the corresponding
variable xj and a key to indicate whether the variable is basic, superbasic or nonbasic. (Hence
if J = 1, there is no reason to specify X = 1 unless the objective contains more nonlinear
variables than the Jacobian.) A typical line of output is

3 1.250000D+01 BS 1 1.00000D+00 4 2.00000D+00

which would mean that x3 is basic at value 12.5, and the third column of the Jacobian has
elements of 1.0 and 2.0 in rows 1 and 4. (Note: the GAMS/MINOS row numbers are usually
different from the GAMS row numbers; see the Solution option.)

Default: 0

radius of convergence (real): controls final reduction of penalty parameter ←↩

This determines when the penalty parameter rho will be reduced, assuming rho was initially
positive. Both the nonlinear constraint violation (see ROWERR below) and the relative
change in consecutive Lagrange multiplier estimates must be less than r at the start of a major
iteration before rho is reduced or set to zero. A few major iterations later, full completion
will be requested if not already set, and the remaining sequence of major iterations should
converge quadratically to an optimum.

Default: 0.01

row tolerance (real): Accuracy requirement for nonlinear rows ←↩

This specifies how accurately the nonlinear constraints should be satisfied at a solution. The
default value is usually small enough, since model data is often specified to about this accuracy.
Let ROWERR be the maximum component of the residual vector f(x) + A1y - b1, normalized
by the size of the solution. Thus

ROWERR = ||f(x) + A1y - b1||inf/(1 + XNORM)

where XNORM is a measure of the size of the current solution (x, y). The solution is considered
to be feasible if ROWERR <= r. If the problem functions involve data that is known to be of
low accuracy, a larger Row tolerance may be appropriate.

Default: 1.0e-6

scale all variables (no value): Synonym to scale option 2 ←↩

scale linear variables (no value): Synonym to scale option 1 ←↩

scale no (no value): Synonym to scale option 0 ←↩

scale nonlinear variables (no value): Synonym to scale option 2 ←↩

scale option (integer): Scaling ←↩

Scale Yes sets the default. (Caution: If all variables are nonlinear, Scale Yes unexpectedly does
nothing, because there are no linear variables to scale). Scale No suppresses scaling (equivalent
to Scale Option 0). If nonlinear constraints are present, Scale option 1 or 0 should generally
be tried at first. Scale option 2 gives scales that depend on the initial Jacobian, and should
therefore be used only if (a) a good starting point is provided, and (b) the problem is not
highly nonlinear.

Default: 1

5.26 MINOS and QUADMINOS 2361

value meaning

0 No scaling
If storage is at a premium, this option should be used.

1 Scale linear variables
Linear constraints and variables are scaled by an iterative procedure that attempts
to make the matrix coefficients as close as possible to 1.0 (see [5]). This will
sometimes improve the performance of the solution procedures. Scale linear
variables is an equivalent option.

2 Scale linear + nonlinear variables
All constraints and variables are scaled by the iterative procedure. Also, a certain
additional scaling is performed that may be helpful if the right-hand side b or the
solution x is large. This takes into account columns of (A I) that are fixed or
have positive lower bounds or negative upper bounds. Scale nonlinear variables
or Scale all variables are equivalent options.

scale print (no value): Print scaling factors ←↩

This causes the row-scales r(i) and column-scales c(j) to be printed. The scaled matrix
coefficients are âij = aijc(j)/r(i). The scaled bounds on the variables and slacks are l◦j =
lj/c(j) and ûj = uj/c(j), where c(j) = r(j - n) if j > n. If a Scale option has not already been
specified, Scale print sets the default scaling.

scale print tolerance (real): Scale print flag and set tolerance ←↩

See Scale Tolerance. This option also turns on printing of the scale factors.

Range: [0, 1.0]

Default: 0.9

scale tolerance (real): Scale tolerance ←↩

All forms except Scale option may specify a tolerance r where 0 < r < 1 (for example: Scale
Print Tolerance = 0.99). This affects how many passes might be needed through the constraint
matrix. On each pass, the scaling procedure computes the ratio of the largest and smallest
nonzero coefficients in each column:

rhoj = maxi |aij|/mini |aij| (aij 6= 0)

If maxj rhoj is less than r times its previous value, another scaling pass is performed to adjust
the row and column scales. Raising r from 0.9 to 0.99 (say) usually increases the number of
scaling passes through A. At most 10 passes are made. If a Scale option has not already been
specified, Scale tolerance sets the default scaling.

Range: [0, 1.0]

Default: 0.9

scale yes (no value): Synonym to scale option 1 ←↩

solution (string): Prints MINOS solution ←↩

This controls whether or not GAMS/MINOS prints the final solution obtained. There is one
line of output for each constraint and variable. The lines are in the same order as in the GAMS
solution, but the constraints and variables labeled with internal GAMS/MINOS numbers
rather than GAMS names. (The numbers at the left of each line are GAMS/MINOS column
numbers, and those at the right of each line in the rows section are GAMS/MINOS slacks.)
The GAMS/MINOS solution may be useful occasionally to interpret certain messages that
occur during the optimization, and to determine the final status of certain variables (basic,
superbasic or nonbasic).

Default: NO

2362 Solver Manuals

value meaning

NO Turn off printing of solution

YES Turn on printing of solution

start assigned nonlinears (string): Starting strategy when there is no basis ←↩

This option affects the starting strategy when there is no basis (i.e., for the first solve or when
the GAMS statement option bratio = 1 is used to reject an existing basis.) This option applies
to all nonlinear variables that have been assigned nondefault initial values and are strictly
between their bounds. Free variables at their default value of zero are excluded. Let K denote
the number of such assigned nonlinear variables.

Default: SUPERBASIC

value meaning

SUPERBASIC Default
Specify superbasic for highly nonlinear models, as long as K is not
too large (say K < 100) and the initial values are good.

BASIC Good for square systems
Specify basic for models that are essentially square (i.e., if there
are about as many general constraints as variables).

NONBASIC Specify nonbasic if K is large.

ELIGIBLE FOR CRASH Specify Eligible for Crash for linear or nearly linear models. The
nonlinear variables will be treated in the manner described under
Crash option.

subspace tolerance (real): Determines when nonbasics becomes superbasic ←↩

This controls the extent to which optimization is confined to the current set of basic and
superbasic variables (Phase 4 iterations), before one or more nonbasic variables are added to
the superbasic set (Phase 3). The parameter r must be a real number in the range 0 < r <=
1. When a nonbasic variable xj is made superbasic, the resulting norm of the reduced-gradient
vector (for all superbasics) is recorded. Let this be ||ZT g0||. (In fact, the norm will be |dj|
, the size of the reduced gradient for the new superbasic variable xj. Subsequent Phase 4
iterations will continue at least until the norm of the reduced-gradient vector satisfies ||ZT

g0|| <= r||ZT g0|| is the size of the largest reduced-gradient component among the superbasic
variables.) A smaller value of r is likely to increase the total number of iterations, but may
reduce the number of basic changes. A larger value such as r = 0.9 may sometimes lead to
improved overall efficiency, if the number of superbasic variables has to increase substantially
between the starting point and an optimal solution. Other convergence tests on the change in
the function being minimized and the change in the variables may prolong Phase 4 iterations.
This helps to make the overall performance insensitive to larger values of r.

Range: [0, 1.0]

Default: 0.5

summary frequency (integer): Controls iteration logging to summary (log file) ←↩

A brief form of the iteration log is output to the MINOS summary file (i.e. the GAMS log
file). In general, one line is output every ith minor iteration. In an interactive environment,
the output normally appears at the terminal and allows a run to be monitored. If something
looks wrong, the run can be manually terminated. The summary frequency controls summary
output in the same way as the log frequency controls output to the print file. A value such as

5.26 MINOS and QUADMINOS 2363

Summary Frequency = 10 or 100 is often adequate to determine if the solve is making progress.
If Print level = 0, the default value of Summary Frequency is 100. If Print level > 0, the
default value of Summary Frequency is 1. If Print level = 0 and the constraints are nonlinear,
the Summary Frequency is ignored. Instead, one line is printed at the beginning of each major
iteration.

Range: {1, ..., ∞}

Default: 100

superbasics limit (integer): Maximum number of superbasics ←↩

This places a limit on the storage allocated for superbasic variables. Ideally, the parameter i
should be set slightly larger than the number of degrees of freedom expected at an optimal
solution. For linear problems, an optimum is normally a basic solution with no degrees of
freedom. (The number of variables lying strictly between their bounds is not more than m, the
number of general constraints.) The default value of i is therefore 1. For nonlinear problems,
the number of degrees of freedom is often called the number of independent variables. Normally,
i need not be greater than n1 + 1, where n1 is the number of nonlinear variables. For many
problems, i may be considerably smaller than n1. This will save storage if n1 is very large.
This parameter also sets the Hessian dimension, unless the latter is specified explicitly (and
conversely). If neither parameter is specified, GAMS chooses values for both, using certain
characteristics of the problem.

Range: {1, ..., ∞}

Default: 1

unbounded objective value (real): Determines when a problem is called unbounded ←↩

This parameter is intended to detect unboundedness in nonlinear problems. During a line
search of the form

minimizealpha F(x + alpha∗p)

If |F| exceeds the parameter r or if alpha exceeds the unbounded stepsize, iterations are ter-
minated with the exit message PROBLEM IS UNBOUNDED (OR BADLY SCALED). If singularities
are present, unboundedness in F(x) may be manifested by a floating-point overflow (during
the evaluation of F(x + alpha∗p), before the test against r can be made. Unboundedness is
best avoided by placing finite upper and lower bounds on the variables. See also the Minor
damping parameter.

Default: 1.0e20

unbounded step size (real): Determines when a problem is called unbounded ←↩

This parameter is intended to detect unboundedness in nonlinear problems. During a line
search of the form

minimizealpha F(x + alpha∗p)

If alpha exceeds the parameter r or if |F| exceeds the unbounded objective value, iterations are
terminated with the exit message PROBLEM IS UNBOUNDED (OR BADLY SCALED). If singulari-
ties are present, unboundedness in F(x) may be manifested by a floating-point overflow (during
the evaluation of F(x + alpha∗p), before the test against r can be made. Unboundedness is
best avoided by placing finite upper and lower bounds on the variables. See also the Minor
damping parameter.

Default: 1.0e10

2364 Solver Manuals

verify constraint gradients (no value): Synonym to verify level 2 ←↩

verify gradients (no value): Synonym to verify level 3 ←↩

verify level (integer): Controls verification of gradients ←↩

This option controls the finite-difference check performed by MINOS on the gradients (first
derivatives) computed by GAMS for each nonlinear function. GAMS computes gradients
analytically, and the values obtained should normally be taken as correct.

Default: 0

value meaning

0 Cheap test
Only a cheap test is performed, requiring three evaluations of the nonlinear
objective and two evaluations of the nonlinear constraints. Verify No is an
equivalent option.

1 Check objective
A more reliable check is made on each component of the objective gradient. Verify
objective gradients is an equivalent option.

2 Check Jacobian
A check is made on each column of the Jacobian matrix associated with the
nonlinear constraints. Verify constraint gradients is an equivalent option.

3 Check objective and Jacobian
A detailed check is made on both the objective and the Jacobian. Verify, Verify
gradients, and Verify Yes are equivalent options.

-1 No check

verify no (no value): Synonym to verify level 0 ←↩

verify objective gradients (no value): Synonym to verify level 1 ←↩

verify yes (no value): Synonym to verify level 3 ←↩

weight on linear objective (real): Composite objective weight ←↩
This option controls the so-called composite objective technique. If the first solution obtained
is infeasible, and if the objective function contains linear terms, and the objective weight w is
positive, this technique is used. While trying to reduce the sum of infeasibilities, the method
also attempts to optimize the linear portion of the objective. At each infeasible iteration, the
objective function is defined to be

minimizex sigma∗w(cTx) + (sum of infeasibilities)

where sigma = 1 for minimization and sigma = -1 for maximization and c is the linear portion
of the objective. If an optimal solution is reached while still infeasible, w is reduced by a factor
of 10. This helps to allow for the possibility that the initial w is too large. It also provides
dynamic allowance for the fact the sum of infeasibilities is tending towards zero. The effect
of w is disabled after five such reductions, or if a feasible solution is obtained. This option is
intended mainly for linear programs. It is unlikely to be helpful if the objective function is
nonlinear.

Default: 0.0

5.26 MINOS and QUADMINOS 2365

5.26.10 Exit Conditions

This section discusses the exit codes printed by MINOS at the end of the optimization run.

EXIT – Optimal solution found

This is the message we all hope to see! It is certainly preferable to every other message. Of
course it is quite possible that there are model formulation errors, which will (hopefully) lead
to unexpected objective values and solutions. The reported optimum may be a local, and
other much better optima may exist.

EXIT – The problem is infeasible

When the constraints are linear, this message can probably be trusted. Feasibility is measured
with respect to the upper and lower bounds on the variables (the bounds on the slack variables
correspond to the GAMS constraints). The message tells us that among all the points satisfying
the general constraints Ax+ s = 0, there is apparently no point that satisfies the bounds on
x and s. Violations as small as the FEASIBILITY TOLERANCE are ignored, but at least one
component of x or s violates a bound by more than the tolerance.

Note: Although the objective function is the sum of the infeasibilities, this sum will usually
not have been minimized when MINOS recognizes the situation and exits. There may exist
other points that have significantly lower sum of infeasibilities.

When nonlinear constraints are present, infeasibility is much harder to recognize correctly.
Even if a feasible solution exists, the current linearization of the constraints may not contain
a feasible point. In an attempt to deal with this situation MINOS may relax the bounds on
the slacks associated with nonlinear rows. This perturbation is allowed a fixed number of
times. Normally a feasible point will be obtained relative to the perturbed constraints, and
optimization can continue on the subproblem. However, if several consecutive subproblems
require such perturbation, the problem is terminated and declared INFEASIBLE. Clearly this is
an ad-hoc procedure. Wherever possible, nonlinear constraints should be defined in such a
way that feasible points are known to exist when the constraints are linearized.

EXIT – The problem is unbounded (or badly scaled)

For linear problems, unboundedness is detected by the simplex method when a nonbasic
variable can apparently be increased by an arbitrary amount without causing a basic variable
to violate a bound. A simple way to diagnose such a model is to add an appropriate bound on
the objective variable.

Very rarely, the scaling of the problem could be so poor that numerical error will give an
erroneous indication of unboundedness. Consider using the SCALE option.

For nonlinear problems, MINOS monitors both the size of the current objective function and
the size of the change in the variables at each step. If either of these is very large (as judged
by the UNBOUNDED parameter), the problem is terminated and declared UNBOUNDED. To avoid
large function values, it may be necessary to impose bounds on some of the variables in order
to keep them away from singularities in the nonlinear functions.

EXIT – User Interrupt

This exit code is a result of interrupting the optimization process by hitting Ctrl-C. Inside the
IDE this is accomplished by hitting the Interrupt button. The solver will finish its current
iteration, and return the current solution. This solution can be still intermediate infeasible or
intermediate non-optimal.

EXIT – Too many iterations

2366 Solver Manuals

The iteration limit was hit. Either the ITERLIM, or in some cases the ITERATIONS LIMIT

or MAJOR ITERATION LIMIT was too small to solve the problem. In most cases increasing
the GAMS ITERLIM option will resolve the problem. In other cases you will need to create
a MINOS option file and set a MAJOR ITERATION LIMIT. The listing file will give more
information regarding what limit was hit.

The GAMS iteration limit is displayed in the listing file under the section SOLVE SUMMARY. If
the ITERLIM was hit, the message will look like:

ITERATION COUNT, LIMIT 10001 10000

EXIT – Resource Interrupt

The solver hit the RESLIM resource limit, which is a time limit. It returned the solution at
that time, which may be still intermediate infeasible or intermediate non-optimal.

The GAMS resource limit is displayed in the listing file under the section SOLVE SUMMARY. If
the GAMS RESLIM was hit, the message will look like:

RESOURCE USAGE, LIMIT 1001.570 1000.000

EXIT – The objective has not changed for many iterations

This is an emergency measure for the rare occasions when the solution procedure appears to
be cycling. Suppose that a zero step is taken for several consecutive iterations, with a basis
change occurring each time. It is theoretically possible for the set of basic variables to become
the same as they were one or more iterations earlier. The same sequence of iterations would
then occur ad infinitum.

EXIT – The Superbasics Limit is too small

The problem appears to be more non-linear than anticipated. The current set of basic and
superbasic variables have been optimized as much as possible and an increase in the number
of superbasics is needed. You can use the option SUPERBASICS LIMIT to increase the limit.
See also option HESSIAN DIMENSION.

EXIT – Constraint and objective function could not be calculated

The function or gradient could not be evaluated. For example, this can occur when MINOS
attempts to take a log or a square root of a negative number, when evaluating the expression
xy with x ≤ 0, or when evaluating exp(x) for large x and the result is too large to store.
The listing file will contain details about where and why evaluation errors occur. To fix this
problem, add bounds so that all functions can be properly evaluated. E.g. if you have an
expression xy, add a lower bound X.LO=0.001 to your model.

In many cases the algorithm can recover from function evaluation errors, for instance if they
happen in the line search while evaluating trial points. The message above appears in cases
where the algorithm can not recover, and requires a reliable function or gradient evaluation.

EXIT – Function evaluation error limit

5.27 MOSEK 2367

The limit of allowed function evaluation errors DOMLIM has been exceeded.

Function evaluation errors occur when MINOS attempts to evaluate the objective and/or
constraints at points where these functions or their derivatives are not defined or where
overflows occur. Some examples are given above. The listing file contains details about these
errors.

The quick and dirty way to solve this is to increase the GAMS DOMLIM setting, but in general
it is better to add bounds. E.g. if you have an expression xy, then add a bound X.LO=0.001

to your model.

EXIT – The current point can not be improved

The line search failed. This can happen if the model is very nonlinear or if the functions are
nonsmooth (using a DNLP model type).

If the model is non-smooth, consider a smooth approximation. It may be useful to check the
scaling of the model and think more carefully about choosing a good starting point. Sometimes
it can help to restart the model with full scaling turned on:

option nlp=minos;

solve m minimizing z using nlp; // this one gives "current point cannot be improved"

file fopt /minos.opt/; // write option file

putclose fopt "scale all variables"/;

m.optfile=1;

solve m minimizing z using nlp; // solve with "scale all variables"

EXIT – Numerical error in trying to satisfy the linear constraints (or the linearized con-
straints)
The basis is very ill-conditioned.

This is often a scaling problem. Try the full scaling option scale all variables or, better yet,
rescale the model in GAMS via the .scale suffix or by choosing more appropriate units for
variables and RHS values.

EXIT – Not enough storage to solve the model

The amount of workspace allocated for MINOS to solve the model is insufficient. Consider
increasing the GAMS option workfactor to increase the workspace allocated for MINOS to
use. The listing file and log file (screen) will contain information about the current workspace
allocation. Increasing the workfactor by 50% is a reasonable strategy.

EXIT– Systems error

This is a catch all return for other serious problems. Check the listing file for more messages.
If needed rerun the model with OPTION SYSOUT=ON;.

5.27 MOSEK

MOSEK ApS, C/O Symbion Science Park, Fruebjergvej 3, Box 16, 2100 Copenhagen Ø,
Denmark

http://www.mosek.com

2368 Solver Manuals

5.27.1 Introduction

MOSEK is a software package for the solution of linear, mixed-integer linear, quadratic, mixed-integer
quadratic, quadratically constraint, conic, and semidefinite mathematical optimization problems. MOSEK
is particularly well suited for solving large-scale linear, convex quadratically constraint, and conic programs
using an extremely efficient interior point algorithm.

These problem classes can be solved using an appropriate optimizer built into MOSEK. All the optimizers
available in MOSEK are built for the solution of large-scale sparse problems. Current optimizers include:

• Interior-point optimizers for continuous and conic problems

• Simplex optimizer for linear problems

• Branch-and-cut optimizer for mixed-integer linear, quadratic, and conic problems

5.27.1.1 Licensing

Licensing of GAMS/MOSEK is similar to other GAMS solvers. MOSEK is licensed in two different ways:

• GAMS/MOSEK:
All model types.

• GAMS/MOSEK Solver Link:
Users must have a separate, licensed MOSEK system. For users who wish to use MOSEK within
GAMS and also in other environments.

Attention

The free bare-bone link mode (previously GAMS/OSIMOSEK) that allowed to solve LP and MIP
when the user had a separate MOSEK license installed has been removed. If you relied on using
this bare-bone link option, then do not hesitate to contact sales@mosek.com to arrange for a
GAMS/MOSEK Solver Link license.

For information regarding MOSEK standalone or interfacing MOSEK with other applications contact
sales@mosek.com.

5.27.1.2 Solving Problems in Parallel

MOSEK can exploit multiple CPUs (or a CPU with multiple cores) to solve an optimization problem
when using the interior-point or the mixed-integer optimizers.

This implies that whenever the MOSEK interior-point optimizer should solve an optimization problem,
then it will try to divide the work so each CPU gets a share of the work. The user decides how many
CPUs MOSEK should exploit. Unfortunately, it is not always easy to divide the work. Also some of the
coordination work must occur in sequential. Therefore, the speed-up obtained when using multiple CPUs
is highly problem dependent. However, as a rule of thumb, if the problem solves very quickly, i.e., in less
than 60 seconds, then there is no advantage in using the parallel option.

The parameter MSK IPAR NUM THREADS sets the number of threads (and therefore the number of
CPU's) that the optimizer will use.

mailto:sales@mosek.com
mailto:sales@mosek.com
mailto:sales@mosek.com

5.27 MOSEK 2369

5.27.1.3 Infeasible/Unbounded Models

Farkas Certificates

MOSEK determines if either the primal or the dual problem is infeasible by means of a Farkas certificate.
In such a case MOSEK returns a certificate indicating primal or dual infeasibility.

The primal infeasibility certificate indicates a primal infeasible model. For a minimization problem

minimize 〈c, x〉
subject to Ax = b,

x ≥ 0,

the primal infeasibility certificate is the solution y satisfying A' y ≤ 0 and 〈b, y〉 > 0.

A primal infeasibility certificate is reported in the marginal records of the variables and equations. As
no primal solution is available in this case, the level values for variables and equations and the objective
function value are set to 0 (setting them to NA would be more appropriate, but GAMS does not support
this well). At the moment, primal infeasibility certificate are not available for conic programs.

Since GAMS reports all model statuses in the primal space, the notion of dual infeasibility does not
exist and GAMS reports a status of unboundedness, which assumes that the primal problem is feasible.
Although GAMS reports the primal as unbounded, there is the possibility that both the primal and dual
problem are infeasible. To check if this is the case, the user can set appropriate lower and upper bounds
on the objective variable, using the (variable).LO and (variable).UP suffixes and resolve.

The dual infeasibility certificate is reported in the level values for the variables. As no dual solution exists,
the marginal values for both variables and equations are set to NA.

For more details on primal and dual infeasibility certificates see the MOSEK Modeling Cookbook.

Infeasibility Report

MOSEK has some facilities for diagnosing the cause of a primal or dual infeasibility. They can be turned
on using the parameter setting MSK IPAR INFEAS REPORT AUTO. This causes MOSEK to print
a report about an infeasible subset of the constraints, when an infeasibility is encountered. Moreover,
the parameter MSK IPAR INFEAS REPORT LEVEL controls the amount of information presented in
the infeasibility report. We will use the TRNSPORT example from the GAMS Model Library
with increased demand (b(j)← 1.6 b(j)) to make the model infeasible. MOSEK produces the following
infeasibility report:

MOSEK PRIMAL INFEASIBILITY REPORT.

Problem status: The problem is primal infeasible

The following constraints are involved in the primal infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper

1 supply(seattle) none 3.500000e+002 0.000000e+000 1.000000e+000

2 supply(san-diego) none 6.000000e+002 0.000000e+000 1.000000e+000

3 demand(new-york) 5.200000e+002 none 1.000000e+000 0.000000e+000

4 demand(chicago) 4.800000e+002 none 1.000000e+000 0.000000e+000

5 demand(topeka) 4.400000e+002 none 1.000000e+000 0.000000e+000

The following bound constraints are involved in the infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper

http://docs.mosek.com/modeling-cookbook/index.html

2370 Solver Manuals

The report indicates which constraints and bounds are causing the infeasibility. In this case, the constraints
causing infeasibility are supply and demand. The values in the columns Dual lower and Dual upper are
also useful, because if the dual lower value is different from zero for a constraint, then it implies that
the lower bound on the constraint is important for the infeasibility. Similarly, if the dual upper value is
different from zero on a constraint, then this implies the upper bound on the constraint is important for
infeasibility.

5.27.1.4 Conic Programming

MOSEK is well suited for solving generalized linear programs involving certain conic constraints.

For an overview of quadratic conic programming and how these conic constraints are implemented in
GAMS, see the Section Conic Programming in the GAMS User's Guide. Note, that for Mosek no variable
can appear in more than one conic constraint.

Additionally, the primal power cone, defined as

xα0x
(1−α)
1 ≥

√√√√ n∑
i=2

x2
i , x0, x1 ≥ 0,

with α ∈ (0, 1), and the primal exponential cone, defined as

x0 ≥ x1 exp(x2/x1), x0, x1 ≥ 0,

are available.

Since GAMS does not offer capabilities to directly restrict a variable to one of these cones, the
GAMS/MOSEK link tries to detect the above algebra from a general nonlinear equation. For example,
the following GAMS code should work with MOSEK:

Set i / 0*10 /;

Variable x(i);

Equations e1, e2;

Scalar alpha;

e1.. x(’0’)**alpha * x(’1’)**(1-alpha) =G= sqrt(sum(i$(ord(i)>2), sqr(x(i))));

e2.. x(’0’) =G= x(’1’) * exp(x(’2’) / x(’1’));

x.lo(’0’) = 0;

x.lo(’1’) = 0;

See also testlib models powercone1, powercone2, and expcone1.

5.27.2 Solver Options

MOSEK works like other GAMS solvers, and many options can be set in the GAMS model (see
GAMS Options). The most relevant GAMS options are reslim, nodlim, iterlim (iteration limit for
simplex and interior point algorithms), optca, optcr, and optfile. A description of all available GAMS
options can be found in GAMS Options and Solver related options.

We remark that MOSEK contains many complex solver options, many of which require a deep un-
derstanding of the algorithms used. For information on how to use a GAMS/Mosek options file, see
The Solver Option File. For example, an option file

MSK_IPAR_INTPNT_MAX_ITERATIONS 20

MSK_IPAR_INTPNT_SCALING MSK_SCALING_NONE

limits the number of interior-point iterations to 20 and disables scaling.

In the following, we summarize the MOSEK options that are available through the GAMS/MOSEK
interface. For details, see Detailed Descriptions of MOSEK Options.

5.27.2.1 General

5.27 MOSEK 2371

Option Description Default

MSK DPAR OPTIMIZER MAX TIME
Maximum amount of time the opti-
mizer is allowed to spent on the opti-
mization.

GAMS ResLim

MSK DPAR SEMIDEFINITE TOL APPROX
Tolerance to define a matrix to be pos-
itive semidefinite.

1e-10

MSK IPAR AUTO SORT A BEFORE OPT
Controls whether the elements in each
column of the coefficient matrix are
sorted before an optimization is per-
formed.

MSK OFF

MSK IPAR NUM THREADS
Controls the number of threads em-
ployed by the optimizer.

GAMS Threads

MSK IPAR OPTIMIZER
The parameter controls which opti-
mizer is used to optimize the task.

MSK OPTIMIZER FREE

MSK IPAR TIMING LEVEL
Controls the amount of timing per-
formed inside MOSEK.

1

MSK SPAR PARAM READ FILE NAME
Modifications to the parameter
database is read from this file.

5.27.2.2 Problem Data

Option Description Default

MSK DPAR CHECK CONVEXITY REL TOL
Not in use. 1e-10

MSK DPAR DATA SYM MAT TOL
Absolute zero tolerance for elements in in
symmetric matrices.

1e-12

MSK DPAR DATA SYM MAT TOL HUGE
An element in a symmetric matrix which is
larger than this value in absolute size causes
an error.

1e+20

MSK DPAR DATA SYM MAT TOL LARGE
An element in a symmetric matrix which is
larger than this value in absolute size causes
a warning message to be printed.

1e+10

MSK DPAR DATA TOL AIJ HUGE
An element in the constraint matrix which is
larger than this value in absolute size causes
an error.

1e+20

MSK DPAR DATA TOL AIJ LARGE
An element in the constraint matrix which is
larger than this value in absolute size causes
a warning message.

1e+10

MSK DPAR DATA TOL BOUND INF
Any bound which in absolute value is greater
than this parameter is considered infinite.

1e+16

MSK DPAR DATA TOL BOUND WRN
If a bound value is larger than this value
in absolute size, then a warning message is
issued.

1e+08

MSK DPAR DATA TOL CJ LARGE
A coefficient in the objective function which
is larger than this value in absolute terms
causes a warning message.

1e+08

MSK DPAR DATA TOL C HUGE
A coefficient in the objective function which
is larger than the value in absolute terms
is considered to be huge and generates an
error.

1e+16

MSK DPAR DATA TOL QIJ
Absolute zero tolerance for coefficients of
quadratic terms.

1e-16

2372 Solver Manuals

Option Description Default

MSK DPAR DATA TOL X
Zero tolerance for constraints and variables
i.e. if the distance between the lower and
upper bound is less than this value, then
the lower and upper bound is considered
identical.

1e-08

MSK DPAR LOWER OBJ CUT
Lower objective limit. -1e+30

MSK DPAR LOWER OBJ CUT FINITE TRH
Lower objective limit threshold. -5e+29

MSK DPAR QCQO REFORMULATE REL DROP TOL
This parameter determines when columns
are dropped in incomplete Cholesky factor-
ization during reformulation of quadratic
problems.

1e-15

MSK DPAR UPPER OBJ CUT
Upper objective limit. 1e+30

MSK DPAR UPPER OBJ CUT FINITE TRH
Upper objective limit threshold. 5e+29

QEXTRACTALG
Switch to choose extraction algorithm for
quadratic equations in GAMS interface.

0

SDPCHECKVARS
Switch to disable checking that for every
entry of a PSD matrix variable also a corre-
sponding GAMS variable is present.

1

5.27.2.3 Presolving

Option Description Default

MSK DPAR PRESOLVE TOL ABS LINDEP
Absolute tolerance employed by the
linear dependency checker.

1e-06

MSK DPAR PRESOLVE TOL AIJ
Absolute zero tolerance employed
for constraint coefficients in pre-
solve.

1e-12

MSK DPAR PRESOLVE TOL PRIMAL INFEAS PERTURBATION
The presolve is allowed to perturb
a bound on a constraint or variable
by this amount if it removes an in-
feasibility.

1e-06

MSK DPAR PRESOLVE TOL REL LINDEP
Relative tolerance employed by the
linear dependency checker.

1e-10

MSK DPAR PRESOLVE TOL S
Absolute zero tolerance employed
for dual variables in presolve.

1e-08

MSK DPAR PRESOLVE TOL X
Absolute zero tolerance employed
for primal variables in presolve.

1e-08

MSK IPAR PRESOLVE ELIMINATOR MAX FILL
Controls the maximum amount of
fill-in that can be created by one
pivot in the elimination phase of
presolve.

-1

MSK IPAR PRESOLVE ELIMINATOR MAX NUM TRIES
Control the maximum number of
times the eliminator is tried.

-1

MSK IPAR PRESOLVE LINDEP ABS WORK TRH
Controls the linear dependency
check, which is potentially compu-
tationally expensive.

100

MSK IPAR PRESOLVE LINDEP NEW
Controls whether a new experimen-
tal linear dependency checker is em-
ployed.

MSK OFF

5.27 MOSEK 2373

Option Description Default

MSK IPAR PRESOLVE LINDEP REL WORK TRH
Controls the linear dependency
check, which is potentially compu-
tationally expensive.

100

MSK IPAR PRESOLVE LINDEP USE
Controls whether the linear con-
straints are checked for linear de-
pendencies.

MSK ON

MSK IPAR PRESOLVE MAX NUM PASS
Control the maximum number of
times presolve passes over the prob-
lem.

-1

MSK IPAR PRESOLVE MAX NUM REDUCTIONS
Controls the maximum number of
reductions performed by the pre-
solve.

-1

MSK IPAR PRESOLVE USE
Controls whether the presolve is ap-
plied to a problem before it is opti-
mized.

MSK PRESOLVE MODE FREE

5.27.2.4 Simplex Optimizer

Option Description Default

MSK DPAR BASIS REL TOL S
Maximum relative dual bound
violation allowed in an optimal
basic solution.

1e-12

MSK DPAR BASIS TOL S
Maximum absolute dual bound
violation in an optimal basic so-
lution.

1e-06

MSK DPAR BASIS TOL X
Maximum absolute primal
bound violation allowed in an
optimal basic solution.

1e-06

MSK DPAR SIMPLEX ABS TOL PIV
Absolute pivot tolerance em-
ployed by the simplex optimiz-
ers.

1e-07

MSK DPAR SIM LU TOL REL PIV
Relative pivot tolerance for LU
factorization in simplex optimiz-
ers and basis identification.

0.01

MSK IPAR SIM BASIS FACTOR USE
Controls whether an LU factor-
ization of the basis is used in a
hot-start.

MSK ON

MSK IPAR SIM DEGEN
Controls how aggressively degen-
eration is handled.

MSK SIM DEGEN FREE

MSK IPAR SIM DUAL CRASH
Controls whether crashing is per-
formed in the dual simplex opti-
mizer.

90

MSK IPAR SIM DUAL RESTRICT SELECTION
Controls how aggressively a re-
stricted selection/pricing strat-
egy is used to choose the outgo-
ing variable in the dual simplex.

50

MSK IPAR SIM DUAL SELECTION
Controls the choice of the incom-
ing variable, known as the selec-
tion strategy, in the dual simplex
optimizer.

MSK SIM SELECTION FREE

MSK IPAR SIM EXPLOIT DUPVEC
Controls if the simplex optimiz-
ers are allowed to exploit dupli-
cated columns.

MSK SIM EXPLOIT DUPVEC OFF

2374 Solver Manuals

Option Description Default

MSK IPAR SIM HOTSTART
Controls the type of hot-start
that the simplex optimizer per-
form.

MSK SIM HOTSTART FREE

MSK IPAR SIM HOTSTART LU
Determines if the simplex opti-
mizer should exploit the initial
factorization.

MSK ON

MSK IPAR SIM MAX ITERATIONS
Maximum number of iterations
that can be used by a simplex
optimizer.

GAMS IterLim

MSK IPAR SIM MAX NUM SETBACKS
Controls how many set-backs are
allowed within a simplex opti-
mizer.

250

MSK IPAR SIM NON SINGULAR
Controls if the simplex optimizer
ensures a non-singular basis, if
possible.

MSK ON

MSK IPAR SIM PRIMAL CRASH
Controls whether crashing is per-
formed in the primal simplex op-
timizer.

90

MSK IPAR SIM PRIMAL RESTRICT SELECTION
Controls how aggressively a re-
stricted selection/pricing strat-
egy is used to choose the outgo-
ing variable in the primal sim-
plex.

50

MSK IPAR SIM PRIMAL SELECTION
Controls the choice of the incom-
ing variable, known as the selec-
tion strategy, in the primal sim-
plex optimizer.

MSK SIM SELECTION FREE

MSK IPAR SIM REFORMULATION
Controls if the simplex optimiz-
ers are allowed to reformulate
the problem.

MSK SIM REFORMULATION OFF

MSK IPAR SIM SAVE LU
Controls if the LU factorization
stored should be replaced with
the LU factorization correspond-
ing to the initial basis.

MSK OFF

MSK IPAR SIM SCALING
Controls how much effort is used
in scaling the problem before a
simplex optimizer is used.

MSK SCALING FREE

MSK IPAR SIM SCALING METHOD
Controls how the problem is
scaled before a simplex optimizer
is used.

MSK SCALING METHOD POW2

MSK IPAR SIM SEED
Sets the random seed used for
randomization in the simplex op-
timizers.

23456

MSK IPAR SIM SOLVE FORM
Controls whether the primal or
the dual problem is solved by the
primal-/dual-simplex optimizer.

MSK SOLVE FREE

MSK IPAR SIM STABILITY PRIORITY
Controls how high priority the
numerical stability should be
given.

50

MSK IPAR SIM SWITCH OPTIMIZER
Controls the simplex behavior. MSK OFF

5.27.2.5 Interior Point Optimizer and Basis Identification

5.27 MOSEK 2375

Option Description Default

MSK DPAR INTPNT CO TOL DFEAS
Dual feasibility tolerance used by
the interior-point optimizer for
conic problems.

1e-08

MSK DPAR INTPNT CO TOL INFEAS
Infeasibility tolerance used by the
interior-point optimizer for conic
problems.

1e-12

MSK DPAR INTPNT CO TOL MU RED
Relative complementarity gap tol-
erance used by the interior-point
optimizer for conic problems.

1e-08

MSK DPAR INTPNT CO TOL NEAR REL
Termination tolerance multiplier
that is used if no accurate solution
can be found.

1

MSK DPAR INTPNT CO TOL PFEAS
Primal feasibility tolerance used
by the interior-point optimizer for
conic problems.

1e-08

MSK DPAR INTPNT CO TOL REL GAP
Relative gap termination tolerance
used by the interior-point optimizer
for conic problems.

1e-08

MSK DPAR INTPNT QO TOL DFEAS
Dual feasibility tolerance used
when the interior-point optimizer
is applied to a quadratic optimiza-
tion problem.

1e-08

MSK DPAR INTPNT QO TOL INFEAS
Infeasibility tolerance used by
the interior-point optimizer for
quadratic problems.

1e-12

MSK DPAR INTPNT QO TOL MU RED
Relative complementarity gap tol-
erance used by the interior-point
optimizer for quadratic problems.

1e-08

MSK DPAR INTPNT QO TOL NEAR REL
Termination tolerance multiplier
that is used if no accurate solution
can be found.

1

MSK DPAR INTPNT QO TOL PFEAS
Primal feasibility tolerance used
by the interior-point optimizer for
quadratic problems.

1e-08

MSK DPAR INTPNT QO TOL REL GAP
Relative gap termination tolerance
used by the interior-point optimizer
for quadratic problems.

1e-08

MSK DPAR INTPNT TOL DFEAS
Dual feasibility tolerance used by
the interior-point optimizer for lin-
ear problems.

1e-08

MSK DPAR INTPNT TOL DSAFE
Controls the initial dual starting
point used by the interior-point op-
timizer.

1

MSK DPAR INTPNT TOL INFEAS
Infeasibility tolerance used by the
interior-point optimizer for linear
problems.

1e-10

MSK DPAR INTPNT TOL MU RED
Relative complementarity gap tol-
erance used by the interior-point
optimizer for linear problems.

1e-16

MSK DPAR INTPNT TOL PATH
Controls how close the interior-
point optimizer follows the central
path.

1e-08

2376 Solver Manuals

Option Description Default

MSK DPAR INTPNT TOL PFEAS
Primal feasibility tolerance used by
the interior-point optimizer for lin-
ear problems.

1e-08

MSK DPAR INTPNT TOL PSAFE
Controls the initial primal starting
point used by the interior-point op-
timizer.

1

MSK DPAR INTPNT TOL REL GAP
Relative gap termination tolerance
used by the interior-point optimizer
for linear problems.

1e-08

MSK DPAR INTPNT TOL REL STEP
Relative step size to the boundary
for linear and quadratic optimiza-
tion problems.

0.9999

MSK DPAR INTPNT TOL STEP SIZE
Step size tolerance. 1e-06

MSK IPAR BI CLEAN OPTIMIZER
Controls which simplex optimizer
is used in the clean-up phase.

MSK OPTIMIZER FREE

MSK IPAR BI IGNORE MAX ITER
Controls if basis identification is
performed under certain conditions.

MSK OFF

MSK IPAR BI IGNORE NUM ERROR
Turns on basis identification if
interior-point optimizer is termi-
nated due to a numerical problem.

MSK ON

MSK IPAR BI MAX ITERATIONS
Controls the maximum number of
simplex iterations allowed to opti-
mize a basis after the basis identifi-
cation.

1000000

MSK IPAR INTPNT BASIS
Controls whether the interior-point
optimizer also computes an optimal
basis.

MSK BI ALWAYS

MSK IPAR INTPNT DIFF STEP
Controls whether different step
sizes are allowed in the primal and
dual space.

MSK ON

MSK IPAR INTPNT MAX ITERATIONS
Controls the maximum number of
iterations allowed in the interior-
point optimizer.

GAMS IterLim

MSK IPAR INTPNT MAX NUM COR
Controls the maximum number of
correctors allowed by the multiple
corrector procedure.

-1

MSK IPAR INTPNT MAX NUM REFINEMENT STEPS
Maximum number of steps to be
used by the iterative refinement of
the search direction.

-1

MSK IPAR INTPNT OFF COL TRH
Controls how aggressively offending
columns are detected in the Jaco-
bian of the constraint matrix.

40

MSK IPAR INTPNT ORDER GP NUM SEEDS
The GP ordering is dependent on
a random seed.

0

MSK IPAR INTPNT ORDER METHOD
Controls the ordering strategy used
by the interior-point optimizer
when factorizing the Newton equa-
tion system.

MSK ORDER METHOD FREE

MSK IPAR INTPNT REGULARIZATION USE
Controls whether regularization is
allowed.

MSK ON

MSK IPAR INTPNT SCALING
Controls how the problem is scaled
before the interior-point optimizer
is used.

MSK SCALING FREE

5.27 MOSEK 2377

Option Description Default

MSK IPAR INTPNT SOLVE FORM
Controls whether the primal or the
dual problem is solved.

MSK SOLVE FREE

MSK IPAR INTPNT STARTING POINT
Starting point used by the interior-
point optimizer.

MSK STARTING POINT FREE

5.27.2.6 Mixed Integer Optimizer

Option Description Default

FIXOPTFILE
Name of option file which is read
just before solving the fixed prob-
lem.

MSK DPAR MIO MAX TIME
This parameter limits the max-
imum time spent by the mixed-
integer optimizer.

-1

MSK DPAR MIO REL GAP CONST
This value is used to compute the
relative gap for the solution to
an integer optimization problem.

1e-10

MSK DPAR MIO TOL ABS GAP
Absolute optimality tolerance
employed by the mixed-integer
optimizer.

GAMS OptCA

MSK DPAR MIO TOL ABS RELAX INT
Absolute relaxation tolerance of
the integer constraints.

1e-05

MSK DPAR MIO TOL FEAS
Feasibility tolerance for mixed
integer solver.

1e-06

MSK DPAR MIO TOL REL DUAL BOUND IMPROVEMENT
If the relative improvement of
the dual bound is smaller than
this value, the solver will termi-
nate the root cut generation.

0

MSK DPAR MIO TOL REL GAP
Relative optimality tolerance em-
ployed by the mixed-integer op-
timizer.

GAMS OptCR

MSK IPAR MIO BRANCH DIR
Controls whether the mixed-
integer optimizer is branching up
or down by default.

MSK BRANCH DIR FREE

MSK IPAR MIO CONIC OUTER APPROXIMATION
If this option is turned on outer
approximation is used when solv-
ing relaxations of conic problems;
otherwise interior point is used.

MSK OFF

MSK IPAR MIO CONSTRUCT SOL
Whether to construct an initial
solution from starting point

MSK OFF

MSK IPAR MIO CUT CLIQUE
Controls whether clique cuts
should be generated.

MSK ON

MSK IPAR MIO CUT CMIR
Controls whether mixed integer
rounding cuts should be gener-
ated.

MSK ON

MSK IPAR MIO CUT GMI
Controls whether GMI cuts
should be generated.

MSK ON

MSK IPAR MIO CUT IMPLIED BOUND
Controls whether implied bound
cuts should be generated.

MSK ON

MSK IPAR MIO CUT KNAPSACK COVER
Controls whether knapsack cover
cuts should be generated.

MSK ON

2378 Solver Manuals

Option Description Default

MSK IPAR MIO CUT LIPRO
Controls whether lift-and-
project cuts should be gener-
ated.

MSK OFF

MSK IPAR MIO CUT SELECTION LEVEL
Controls how aggressively gener-
ated cuts are selected to be in-
cluded in the relaxation.

-1

MSK IPAR MIO DATA PERMUTATION METHOD
Controls what problem data per-
mutation method is appplied to
mixed-integer problems.

MSK MIO DATA PERMUTATION METHOD NONE

MSK IPAR MIO DUAL RAY ANALYSIS LEVEL
Controls the amount of symme-
try detection and handling em-
ployed by the mixed-integer op-
timizer in presolve.

-1

MSK IPAR MIO FEASPUMP LEVEL
Controls the way the Feasibility
Pump heuristic is employed by
the mixed-integer optimizer.

-1

MSK IPAR MIO HEURISTIC LEVEL
Controls the heuristic employed
by the mixed-integer optimizer
to locate an initial good integer
feasible solution.

-1

MSK IPAR MIO MAX NUM BRANCHES
Maximum number of branches
allowed during the branch and
bound search.

-1

MSK IPAR MIO MAX NUM RELAXS
Maximum number of relaxations
allowed during the branch and
bound search.

GAMS NodLim

MSK IPAR MIO MAX NUM RESTARTS
Maximum number of restarts al-
lowed during the branch and
bound search.

0

MSK IPAR MIO MAX NUM ROOT CUT ROUNDS
Maximum number of cut separa-
tion rounds at the root node.

100

MSK IPAR MIO MAX NUM SOLUTIONS
The mixed-integer optimizer can
be terminated after a certain
number of different feasible so-
lutions has been located.

-1

MSK IPAR MIO MEMORY EMPHASIS LEVEL
Controls how much emphasis is
put on reducing memory usage.

0

MSK IPAR MIO MIN REL
Number of times a variable must
have been branched on for its
pseudocost to be considered reli-
able.

5

MSK IPAR MIO NODE OPTIMIZER
Controls which optimizer is em-
ployed at the non-root nodes in
the mixed-integer optimizer.

MSK OPTIMIZER FREE

MSK IPAR MIO NODE SELECTION
Controls the node selection strat-
egy employed by the mixed-
integer optimizer.

MSK MIO NODE SELECTION FREE

MSK IPAR MIO NUMERICAL EMPHASIS LEVEL
Controls how much emphasis is
put on reducing numerical prob-
lems possibly at the expense of
solution speed.

0

MSK IPAR MIO PERSPECTIVE REFORMULATE
Enables or disables perspective
reformulation in presolve.

MSK ON

MSK IPAR MIO PRESOLVE AGGREGATOR USE
Controls if the aggregator should
be used.

MSK ON

5.27 MOSEK 2379

Option Description Default

MSK IPAR MIO PROBING LEVEL
Controls the amount of probing
employed by the mixed-integer
optimizer in presolve.

-1

MSK IPAR MIO PROPAGATE OBJECTIVE CONSTRAINT
Use objective domain propaga-
tion.

MSK OFF

MSK IPAR MIO QCQO REFORMULATION METHOD
Controls what reformulation
method is applied to mixed-
integer quadratic problems.

MSK MIO QCQO REFORMULATION METHOD FREE

MSK IPAR MIO RINS MAX NODES
Controls the maximum number
of nodes allowed in each call to
the RINS heuristic.

-1

MSK IPAR MIO ROOT OPTIMIZER
Controls which optimizer is em-
ployed at the root node in the
mixed-integer optimizer.

MSK OPTIMIZER FREE

MSK IPAR MIO ROOT REPEAT PRESOLVE LEVEL
Controls whether presolve can be
repeated at root node.

-1

MSK IPAR MIO SEED
Sets the random seed used for
randomization in the mixed inte-
ger optimizer.

42

MSK IPAR MIO SYMMETRY LEVEL
Controls the amount of symme-
try detection and handling em-
ployed by the mixed-integer op-
timizer in presolve.

-1

MSK IPAR MIO VAR SELECTION
Controls the variable selection
strategy employed by the mixed-
integer optimizer.

MSK MIO VAR SELECTION FREE

MSK IPAR MIO VB DETECTION LEVEL
Controls how much effort is put
into detecting variable bounds.

-1

SOLVEFINAL
Switch to resolve the problem
with fixed discrete variables after
the MOSEK optimizer finished.

1

5.27.2.7 Infeasibility Analyser for Continuous Problems

Option Description Default

MSK DPAR ANA SOL INFEAS TOL
If a constraint violates its bound with an
amount larger than this value, the constraint
name, index and violation will be printed
by the solution analyzer.

1e-06

MSK IPAR INFEAS PREFER PRIMAL
If both certificates of primal and dual infea-
sibility are supplied then only the primal is
used when this option is turned on.

MSK ON

MSK IPAR INFEAS REPORT AUTO
Controls whether an infeasibility report is
automatically produced after the optimiza-
tion if the problem is primal or dual infeasi-
ble.

MSK OFF

MSK IPAR INFEAS REPORT LEVEL
Controls the amount of information pre-
sented in an infeasibility report.

1

5.27.2.8 Output

2380 Solver Manuals

Option Description Default

MSK IPAR LOG
Controls the amount of log informa-
tion.

10

MSK IPAR LOG BI
Controls the amount of output
printed by the basis identification
procedure.

1

MSK IPAR LOG BI FREQ
Controls logging frequency of the
basis identification

2500

MSK IPAR LOG FEAS REPAIR
Controls the amount of output
printed when performing feasibility
repair.

1

MSK IPAR LOG INFEAS ANA
Controls amount of output printed
by the infeasibility analyzer proce-
dures.

1

MSK IPAR LOG INTPNT
Controls amount of output printed
by the interior-point optimizer.

1

MSK IPAR LOG MIO
Controls the log level for the mixed-
integer optimizer.

4

MSK IPAR LOG MIO FREQ
Controls how frequent the mixed-
integer optimizer prints the log line.

10

MSK IPAR LOG ORDER
If turned on, then factor lines are
added to the log.

1

MSK IPAR LOG PRESOLVE
Controls amount of output printed
by the presolve procedure.

1

MSK IPAR LOG RESPONSE
Controls amount of output printed
when response codes are reported.

0

MSK IPAR LOG SIM
Controls amount of output printed
by the simplex optimizer.

4

MSK IPAR LOG SIM FREQ
Controls simplex optimizer logging
frequency.

1000

MSK IPAR LOG STORAGE
When turned on, MOSEK prints
messages regarding the storage us-
age and allocation.

0

MSK IPAR OPF WRITE HEADER
Write a text header with date and
MOSEK version in an OPF file.

MSK ON

MSK IPAR OPF WRITE HINTS
Write a hint section with problem
dimensions in the beginning of an
OPF file.

MSK ON

MSK IPAR OPF WRITE LINE LENGTH
Aim to keep lines in OPF files not
much longer than this.

80

MSK IPAR OPF WRITE PARAMETERS
Write a parameter section in an OPF
file.

MSK OFF

MSK IPAR OPF WRITE PROBLEM
Write objective, constraints, bounds
etc.

MSK ON

MSK IPAR OPF WRITE SOLUTIONS
Enable inclusion of solutions in the
OPF files.

MSK OFF

MSK IPAR OPF WRITE SOL BAS
Whether to include basic solution in
OPF files.

MSK ON

MSK IPAR OPF WRITE SOL ITG
Whether to include integer solution
in OPF files.

MSK ON

MSK IPAR OPF WRITE SOL ITR
Whether to include interior solution
in OPF files.

MSK ON

MSK IPAR PTF WRITE PARAMETERS
If enabled, then the parameters sec-
tion is written.

MSK OFF

5.27 MOSEK 2381

Option Description Default

MSK IPAR PTF WRITE SOLUTIONS
If enabled, then the solution sec-
tion is written if any solutions are
available, otherwise solution section
is not written even if solutions are
available.

MSK OFF

MSK IPAR PTF WRITE TRANSFORM
If enabled, then constraint blocks
with identifiable conic slacks are
transformed into conic constraints
and the slacks are eliminated.

MSK ON

MSK IPAR WRITE COMPRESSION
Controls whether the data file is
compressed while it is written.

9

MSK IPAR WRITE DATA PARAM
If this option is turned on the pa-
rameter settings are written to the
data file as parameters.

MSK OFF

MSK IPAR WRITE GENERIC NAMES
Controls whether generic names
should be used instead of user-
defined names when writing to the
data file.

MSK ON

MSK IPAR WRITE GENERIC NAMES IO
Index origin used in generic names. 1

MSK IPAR WRITE IGNORE INCOMPATIBLE ITEMS
Controls if the writer ignores incom-
patible problem items when writing
files.

MSK OFF

MSK IPAR WRITE JSON INDENTATION
When set, the JSON task and solu-
tion files are written with indenta-
tion for better readability.

MSK OFF

MSK IPAR WRITE LP FULL OBJ
Write all variables, including the
ones with 0-coefficients, in the ob-
jective.

MSK ON

MSK IPAR WRITE LP LINE WIDTH
Maximum width of line in an LP file
written by MOSEK.

80

MSK IPAR WRITE MPS FORMAT
Controls in which format the MPS
is written.

MSK MPS FORMAT FREE

MSK IPAR WRITE MPS INT
Controls if marker records are writ-
ten to the MPS file to indicate
whether variables are integer re-
stricted.

MSK ON

MSK IPAR WRITE TASK INC SOL
Controls whether the solutions are
stored in the task file too.

MSK ON

MSK IPAR WRITE XML MODE
Controls if linear coefficients should
be written by row or column when
writing in the XML file format.

MSK WRITE XML MODE ROW

MSK SPAR DATA FILE NAME
If set, problem data is written to
this file. File extension determines
format.

MSK SPAR PARAM WRITE FILE NAME
The parameter database is written
to this file.

MSK SPAR WRITE LP GEN VAR NAME
Sometimes when an LP file is writ-
ten additional variables must be in-
serted.

"xmskgen"

SDPSOLUFILE
Name of GDX file to write primal
solution of all PSD matrix vari-
ables and dual solution for PSD con-
straints.

2382 Solver Manuals

5.27.3 The MOSEK Log File

The MOSEK log output gives much useful information about the current solver progress and individual
phases.

5.27.3.1 Log Using the Interior Point Optimizer

The following is a MOSEK log output from running the TRNSPORT model from the GAMS Model
Library:

Optimizer started.

Interior-point optimizer started.

Presolve started.

Linear dependency checker started.

Linear dependency checker terminated.

Eliminator - tries : 0 time : 0.00

Lin. dep. - tries : 1 time : 0.00

Lin. dep. - number : 0

Presolve terminated. Time: 0.00

Optimizer - threads : 1

Optimizer - solved problem : the primal

Optimizer - Constraints : 5

Optimizer - Cones : 0

Optimizer - Scalar variables : 11 conic : 0

Optimizer - Semi-definite variables: 0 scalarized : 0

Factor - setup time : 0.00 dense det. time : 0.00

Factor - ML order time : 0.00 GP order time : 0.00

Factor - nonzeros before factor : 11 after factor : 12

Factor - dense dim. : 0 flops : 1.80e+02

The first part gives information about the presolve (if used). The main log follows:

ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME

0 6.0e+02 1.0e+02 1.0e+02 1.00e+02 1.053000000e+00 0.000000000e+00 1.0e+02 0.00

1 5.9e+02 1.3e+02 2.6e+02 0.00e+00 3.063797526e+00 2.650041612e+02 2.4e+02 0.00

2 4.6e+01 1.0e+01 2.0e+01 -9.59e-01 3.650704301e+01 2.594816940e+02 1.9e+01 0.00

3 3.9e-01 8.7e-02 1.7e-01 -4.39e-01 1.604589379e+02 2.276036163e+02 1.6e-01 0.00

4 2.7e-02 6.0e-03 1.2e-02 9.62e-01 1.627664502e+02 1.676438787e+02 1.1e-02 0.00

5 2.2e-03 4.9e-04 9.7e-04 1.04e+00 1.585004810e+02 1.591499235e+02 8.9e-04 0.00

6 3.1e-04 6.9e-05 1.4e-04 1.01e+00 1.546312243e+02 1.547272945e+02 1.2e-04 0.00

7 2.9e-05 6.5e-06 1.3e-05 1.01e+00 1.536906429e+02 1.536999628e+02 1.2e-05 0.00

8 7.6e-08 1.7e-08 3.4e-08 1.00e+00 1.536751995e+02 1.536752387e+02 3.1e-08 0.00

9 7.5e-12 1.7e-12 3.4e-12 1.00e+00 1.536750000e+02 1.536750000e+02 3.1e-12 0.00

Basis identification started.

Primal basis identification phase started.

ITER TIME

1 0.00

Primal basis identification phase terminated. Time: 0.00

Dual basis identification phase started.

ITER TIME

0 0.00

Dual basis identification phase terminated. Time: 0.00

Basis identification terminated. Time: 0.00

Interior-point optimizer terminated. Time: 0.00.

5.27 MOSEK 2383

Optimizer terminated. Time: 0.00

Interior-point solution summary

Problem status : PRIMAL_AND_DUAL_FEASIBLE

Solution status : OPTIMAL

Primal. obj: 1.5367500002e+02 nrm: 6e+02 Viol. con: 3e-10 var: 0e+00

Dual. obj: 1.5367500002e+02 nrm: 2e-01 Viol. con: 0e+00 var: 6e-11

Basic solution summary

Problem status : PRIMAL_AND_DUAL_FEASIBLE

Solution status : OPTIMAL

Primal. obj: 1.5367500000e+02 nrm: 6e+02 Viol. con: 0e+00 var: 0e+00

Dual. obj: 1.5367500002e+02 nrm: 2e-01 Viol. con: 0e+00 var: 5e-11

Return code - 0 [MSK_RES_OK]: No error occurred.

The last section gives details about the model and solver status, primal and dual feasibilities, as well as
solver resource times. Furthermore, the log gives information about the basis identification phase. Some
of this information is listed in the GAMS solve summary in the model listing (.LST) file as well.

The fields in the main MOSEK log output are:

Field Description

ITE The number of the current iteration.

PFEAS Primal feasibility.

DFEAS Dual feasibility.

GFEAS The numbers in this column should converge monotonically toward to zero but may stall
at low level due to rounding errors.

PRSTATUS This number converges to 1 if the problem has an optimal solution whereas it converges to
-1 if that is not the case.

POBJ Current objective function value of primal problem.

DOBJ Current objective function value of dual problem.

MU Relative complementary gap.

TIME Current elapsed solving time in seconds.

5.27.3.2 Log Using the Simplex Optimizer

Below is a log output running the TRNSPORT model from the GAMS Model Library using the MOSEK
simplex optimizer.

Reading parameter(s) from "mosek.opt"

>> MSK_IPAR_OPTIMIZER MSK_OPTIMIZER_DUAL_SIMPLEX

Finished reading from "mosek.opt"

Optimizer started.

Simplex optimizer started.

Presolve started.

Linear dependency checker started.

Linear dependency checker terminated.

Eliminator - tries : 0 time : 0.00

Lin. dep. - tries : 1 time : 0.00

Lin. dep. - number : 0

2384 Solver Manuals

Presolve terminated. Time: 0.00

Dual simplex optimizer started.

Dual simplex optimizer setup started.

Dual simplex optimizer setup terminated.

Optimizer - solved problem : the primal

Optimizer - Constraints : 5

Optimizer - Scalar variables : 6 conic : 0

Optimizer - hotstart : no

ITER DEGITER(%) PFEAS DFEAS POBJ DOBJ TIME TOTTIME

0 0.00 NA 0.00e+00 NA 0.0000000000e+00 0.00 0.00

4 20.00 NA 0.00e+00 NA 1.5367501014e+02 0.00 0.00

Dual simplex optimizer terminated.

Simplex optimizer terminated. Time: 0.00.

Optimizer terminated. Time: 0.00

Basic solution summary

Problem status : PRIMAL_AND_DUAL_FEASIBLE

Solution status : OPTIMAL

Primal. obj: 1.5367500000e+02 nrm: 6e+02 Viol. con: 0e+00 var: 0e+00

Dual. obj: 1.5367500000e+02 nrm: 2e-01 Viol. con: 0e+00 var: 0e+00

Return code - 0 [MSK_RES_OK]: No error occurred.

The fields in the main MOSEK log output are:

Field Description

ITER Current number of iterations.

DEGITER(%) Current percentage of degenerate iterations.

P/DFEAS Current primal and dual infeasibility.

P/DOBJ Current primal and dual objective value.

TIME Current elapsed solving time in seconds.

TOTTIME Total elapsed solving time in seconds.

5.27.3.3 Log Using the Mixed Integer Optimizer

Below is a log output running the model CUBE from the GAMS model library using the MOSEK
mixed-integer optimizer.

Optimizer started.

Mixed integer optimizer started.

Threads used: 1

Presolve started.

Presolve terminated. Time = 0.00

Presolved problem: 76 variables, 99 constraints, 419 non-zeros

Presolved problem: 0 general integer, 27 binary, 49 continuous

Clique table size: 0

BRANCHES RELAXS ACT_NDS DEPTH BEST_INT_OBJ BEST_RELAX_OBJ REL_GAP(%) TIME

0 1 0 0 NA 0.0000000000e+00 NA 0.0

0 1 0 0 6.0000000000e+00 0.0000000000e+00 100.00 0.0

Cut generation started.

0 2 0 0 6.0000000000e+00 0.0000000000e+00 100.00 0.0

Cut generation terminated. Time = 0.00

5.27 MOSEK 2385

15 18 1 0 6.0000000000e+00 0.0000000000e+00 100.00 0.0

31 34 1 0 4.0000000000e+00 0.0000000000e+00 100.00 0.0

53 56 1 0 4.0000000000e+00 0.0000000000e+00 100.00 0.0

83 86 1 0 4.0000000000e+00 0.0000000000e+00 100.00 0.0

98 101 16 8 4.0000000000e+00 0.0000000000e+00 100.00 0.0

114 117 28 9 4.0000000000e+00 0.0000000000e+00 100.00 0.0

142 145 44 6 4.0000000000e+00 0.0000000000e+00 100.00 0.1

175 177 63 7 4.0000000000e+00 0.0000000000e+00 100.00 0.1

208 210 84 12 4.0000000000e+00 0.0000000000e+00 100.00 0.1

245 247 103 4 4.0000000000e+00 0.0000000000e+00 100.00 0.1

278 279 124 5 4.0000000000e+00 0.0000000000e+00 100.00 0.1

309 310 147 14 4.0000000000e+00 0.0000000000e+00 100.00 0.1

347 345 165 10 4.0000000000e+00 3.3333333333e-01 91.67 0.1

A near optimal solution satisfying the absolute gap tolerance of 0.00e+00 has been located.

Objective of best integer solution : 4.000000000000e+00

Best objective bound : 3.333333333333e-01

Construct solution objective : Not employed

Construct solution # roundings : 0

User objective cut value : 0

Number of cuts generated : 3

Number of Gomory cuts : 3

Number of branches : 347

Number of relaxations solved : 345

Number of interior point iterations: 6

Number of simplex iterations : 3460

Time spend presolving the root : 0.00

Time spend in the heuristic : 0.00

Time spend in the sub optimizers : 0.00

Time spend optimizing the root : 0.00

Mixed integer optimizer terminated. Time: 0.12

Optimizer terminated. Time: 0.12

Integer solution solution summary

Problem status : PRIMAL_FEASIBLE

Solution status : NEAR_INTEGER_OPTIMAL

Primal. obj: 4.0000000000e+00 nrm: 1e+01 Viol. con: 1e+01 var: 1e+00 itg: 3e-16

Return code - 10004 [MSK_RES_TRM_MIO_NEAR_ABS_GAP]: The mixed-integer optimizer terminated because the near optimal absolute gap tolerance was satisfied.

The fields in the main MOSEK log output are:

Field Description

BRANCHES Current number of branches in tree.

RELAXS Current number of nodes in branch and bound tree.

ACT NDS Current number of active nodes.

BEST INT OBJ Current best integer solution (primal bound).

BEST RELAX OBJ Current best relaxed solution (dual bound).

REL GAP(%) Relative gap between current BEST INT OBJ and BEST RELAX OBJ.

TIME Current elapsed solving time in seconds.

The log then gives information about solving the model with discrete variables fixed in order to determine
marginals. Option SOLVEFINAL can be used to disable this step. The fixed problem is solved as a

2386 Solver Manuals

regular LP with warm start information. So the log looks identical to the MOSEK simplex optimizer for
linear programs:

Solving fixed problem...

[...]

Optimizer started.

Simplex optimizer started.

Presolve started.

Eliminator - tries : 0 time : 0.00

Lin. dep. - tries : 0 time : 0.00

Lin. dep. - number : 0

Presolve terminated. Time: 0.00

Simplex optimizer terminated. Time: 0.00.

Optimizer terminated. Time: 0.00

Basic solution summary

Problem status : PRIMAL_AND_DUAL_FEASIBLE

Solution status : OPTIMAL

Primal. obj: 4.0000000000e+00 nrm: 1e+01 Viol. con: 4e-16 var: 0e+00

Dual. obj: 4.0000000000e+00 nrm: 5e+00 Viol. con: 0e+00 var: 0e+00

Return code - 0 [MSK_RES_OK]: No error occurred.

MIP Solution: 4.000000 (3466 iterations, 347 nodes)

Final Solve: 4.000000 (0 iterations)

Best possible: 0.333333

Absolute gap: 3.666667

Relative gap: 0.916667

5.27.4 Semidefinite Programming with GAMS/MOSEK (experimental)

With Version 7, MOSEK introduced a semidefinite programming (SDP) solver into their portfolio. The
following introduction is taken from the Mosek Documentation.

Semidefinite programming is a generalization of quadratic conic programming, allowing the use of matrix
variables belonging to the convex cone of positive semidefinite matrices

S+
r =

{
X ∈ Sr : zTXz ≥ 0, ∀z ∈ Rr

}
,

where Sr is the set of r × r real-valued symmetric matrices. MOSEK can solve semidefinite optimization
problems of the form

minimize

n−1∑
j=0

cjxj +

p−1∑
j=0

〈
Cj , Xj

〉
+ cf

subject to lci ≤
n−1∑
j=0

aijxj +

p−1∑
j=0

〈
Aij , Xj

〉
≤ uci , i = 0, . . . ,m− 1,

lxj ≤ xj ≤ uxj , j = 0, . . . , n− 1,

x ∈ C, Xj ∈ S+
rj , j = 0, . . . , p− 1,

(SDP)

where the problem has p symmetric positive semidefinite (PSD) variables Xj ∈ S+
rj of dimension rj with

symmetric coefficient matrices Cj ∈ Srj and Ai,j ∈ Srj . We use the standard notation for the matrix
inner product, i.e., for A,B ∈ Rm×n we have

〈A,B〉 :=

m−1∑
i=0

n−1∑
j=0

AijBij .

http://docs.mosek.com/7.1/capi/Semidefinite_optimization.html

5.27 MOSEK 2387

5.27.4.1 Example

An example for a mixed semidefinite and conic quadratic programming problem with a 3-dimensional
PSD matrix variable is the following:

minimize

〈2 1 0
1 2 1
0 1 2

 , X̄〉+ x0

subject to

〈1 0 0
0 1 0
0 0 1

 , X̄〉+ x0 = 1

〈1 1 1
1 1 1
1 1 1

 , X̄〉+ x1 + x2 =
1

2

x0 ≥
√
x2

1 + x2
2

X̄ � 0

The GAMS/MOSEK interface offers an experimental interface to MOSEK's SDP solver. It allows to
state SDP's of the form (SDP) in GAMS language. For instance, the example problem from above can be
formulated as follows (sdp01 in the GAMS Test Library):
Set i / 0 * 2 /;
alias(i, ip);
Variables barX(i,i) PSDMATRIX

x(i) simple vars
z objective var

;
x.lo(’0’) = 0;
Parameters barAobj(i,i) coefficients of barX in objective

barAe1(i,i) coefficients of barX in e1
barAe2(i,i) coefficients of barX in e2

;
Table barAobj(i,i)

0 1 2
0 2.0 1.0 0.0
1 1.0 2.0 1.0
2 0.0 1.0 2.0
;

identity matrix
barAe1(i,i) = 1.0;

all-one matrix
barAe2(i,ip) = 1.0;
Equations obj, e1, e2, e3;
obj.. z =e= sum((i,ip), barAobj(i,ip) * barX(i,ip)) + x(’0’);
e1.. 1 =e= sum((i,ip), barAe1(i,ip) * barX(i,ip)) + x(’0’);
e2.. 0.5 =e= sum((i,ip), barAe2(i,ip) * barX(i,ip)) + x(’1’) + x(’2’);
e3.. - sqr(x(’0’)) + sqr(x(’1’)) + sqr(x(’2’)) =l= 0;
Model m / all /;

We see that the matrix X̄ is defined via the 2-dimensional GAMS variable barX. Additionally, the keyword
PSDMATRIX at the beginning of the descriptive text (!) of the variable is used to indicate that the variables
belonging to symbol barX are to be interpreted as a matrix variable with PSD constraint.

The Model shown above can be solved with MOSEK via the statements
option qcp = mosek;
Solve m minimizing z using QCP;

As GAMS has no native support for conic programming, the modeltype is specified as QCP.

The solve statement produces the following log output (see also Log Using the Interior Point Optimizer):

2388 Solver Manuals

M O S E K version 7.0.0.75 (Build date: 2013-7-1 19:28:43)

Copyright (C) MOSEK ApS, Fruebjergvej 3, Box 16

DK-2100 Copenhagen, Denmark

http://www.mosek.com

Recognizing SDP variables for symbols barX (1)

Recognized 1 quadratic equation as conic constraint.

Optimizer started.

Conic interior-point optimizer started.

Presolve started.

Linear dependency checker started.

Linear dependency checker terminated.

Eliminator - tries : 0 time : 0.00

Eliminator - elim’s : 0

Lin. dep. - tries : 1 time : 0.00

Lin. dep. - number : 0

Presolve terminated. Time: 0.00

Optimizer - threads : 1

Optimizer - solved problem : the primal

Optimizer - Constraints : 2

Optimizer - Cones : 1

Optimizer - Scalar variables : 3 conic : 3

Optimizer - Semi-definite variables: 1 scalarized : 6

Factor - setup time : 0.00 dense det. time : 0.00

Factor - ML order time : 0.00 GP order time : 0.00

Factor - nonzeros before factor : 3 after factor : 3

Factor - dense dim. : 0 flops : 2.88e+02

ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME

0 3.0e+00 1.0e+00 8.0e+00 0.00e+00 7.000000000e+00 0.000000000e+00 1.0e+00 0.00

1 4.3e-01 1.4e-01 1.2e+00 1.67e-01 1.601234178e+00 3.103213067e-01 1.4e-01 0.00

2 6.6e-02 2.2e-02 1.8e-01 1.21e+00 8.534948745e-01 6.725260078e-01 2.2e-02 0.00

3 4.9e-03 1.6e-03 1.3e-02 1.02e+00 7.158760069e-01 7.026959645e-01 1.6e-03 0.00

4 2.8e-04 9.4e-05 7.5e-04 1.00e+00 7.063055286e-01 7.055481573e-01 9.4e-05 0.00

5 1.6e-05 5.2e-06 4.1e-05 1.00e+00 7.057440915e-01 7.057021878e-01 5.2e-06 0.00

6 8.9e-07 3.0e-07 2.4e-06 1.00e+00 7.057124546e-01 7.057100494e-01 3.0e-07 0.00

7 1.6e-08 5.4e-09 4.3e-08 1.00e+00 7.057105296e-01 7.057104862e-01 5.4e-09 0.00

Interior-point optimizer terminated. Time: 0.00.

Optimizer terminated. Time: 0.00

Interior-point solution summary

Problem status : PRIMAL_AND_DUAL_FEASIBLE

Solution status : OPTIMAL

Primal. obj: 7.0571052965e-01 Viol. con: 2e-08 var: 0e+00 barvar: 0e+00 cones: 0e+00

Dual. obj: 7.0571048621e-01 Viol. con: 0e+00 var: 1e-16 barvar: 0e+00 cones: 0e+00

Return code - 0 [MSK_RES_OK]: No error occurred.

Finally, the optimal value for the matrix X̄ and the dual values associated with bound constraints on
entries of the matrix X̄ can be displayed in GAMS as usual: display X.l, X.m;
---- 53 VARIABLE barX.L PSDMATRIX

0 1 2
0 0.217 -0.260 0.217
1 -0.260 0.311 -0.260
2 0.217 -0.260 0.217
---- 53 VARIABLE barX.M PSDMATRIX

0 1 2
0 EPS EPS EPS
1 EPS EPS EPS
2 EPS EPS EPS

5.27 MOSEK 2389

5.27.4.2 Usage

The general syntax for defining a symmetric matrix or an (indexed) set of symmetric matrices with PSD
constraints in GAMS is

Variable X(a,b,c,...,i1,..,ik,i1,...,ik) "PSDMATRIX_k <explanatory text>";

The number k>0 specifies the number of indices that define the row/column dimension of the matrix.
Specifying only the term PSDMATRIX is equivalent to PSDMATRIX 1. For a given k, the 2k-last indices are
used to index the rows and columns of the matrix. The dimensions a, b, c, ... are optional and can be
used to index a set of matrices. In the GAMS/MOSEK output, a number in parenthesis is used to indicate
the number of PSD matrices that have been found for one symbol. For example, the code
Set i / a,b /;
Set j / s01 * s42 /;
Variables z, X(j,i,i) PSDMATRIX;

generates the output

Recognizing SDP variables for symbols X (42)

if all matrices X(j,.,.) also occur in a model instantiation.

Note

The current syntax for declaring PSD matrix variables via the explanatory text a variable is a
temporary solution that will hopefully be replaced by a GAMS language feature in the future.

Variables that were tagged as belonging to a PSD matrix can only occur in linear constraints. Within
these constraints, the coefficient matrix for a PSD matrix needs to be specified in symmetric form. That
is, if the parameter matrix barAobj in the example above is equivalently specified as
Table barAobj(i,i)

0 1 2
0 2.0 0.0 0.0
1 2.0 2.0 0.0
2 0.0 2.0 2.0
;

the GAMS/MOSEK interface will quit with the error message

SDP coefficient matrix not symmetric: defObj_z: 2*barX(1,0) != 0*barX(0,1)

Bounds on entries in a PSD matrix variable can be specified as usual with .lo and .up attributes. These
bound constraints are translated into linear constraints by the interface. If different bounds are given
to symmetric entries of a PSD matrix variable (X̄i,j vs. X̄j,i), the stronger bounds are used, which is
equivalent to adding constraints for each of the matrix entries. For nonpositive lower bounds on diagonal
entries, no extra constraints are added, as they are implied by the PSD constraint.

2390 Solver Manuals

5.27.4.3 GAMS variables vs. PSD matrix entries

As GAMS is not aware that a indexed variable will be interpreted as PSD matrix variable, it may not
generate variables for all matrix entries when instantiating a model. This is especially critical if the
modeler specified bounds on matrix entries that do not appear in any of the model equations, as these
bounds would not be visible to the GAMS/MOSEK interface.

As an example, consider the SDP relaxation max{−〈W, X̄〉 : Xi,i = 1 ∀i,X � 0} corresponding to the
Goemans-Williamson Randomized Approximation Algorithm for MaxCut:
Parameter W(i,i) edge weights;
Variable X(i,j) PSDMATRIX

sdpobjvar objective var;
Equation sdpobj objective function;
sdpobj.. sum((i,j), -W(i,j)*(X(i,j) + X(j,i))) =e= sdpobjvar;
X.fx(i,i) = 1.0;
model maxcutsdp / all /;

As W(i,i)=0, GAMS will not create any variables for X(i,i) when instantiating the model in a solve
statement. As a consequence, the constraints X(i,i)=1 will not be visible to GAMS/MOSEK. However,
as MOSEK will compute values for the full matrix X, it will also compute values for the diagonal entries
of X.

Further, the GAMS/MOSEK interface can pass primal solution values only for those entries of a PSD
matrix variable that have a corresponding GAMS variable. This may make a solution matrix appear not
to be PSD in GAMS, because not all entries have been passed back.

To be aware of such problems, the GAMS/MOSEK interface checks that it has a GAMS variable available
for every entry of a PSD matrix variable. If not, it will report an error like

ERROR: Have 1600 GAMS variables for entries of 400 x 400 PSD Variable X(,), expected 160000 many.

This check can be disabled by setting the option SDPCHECKVARS to 0. Note, that the check is not
able to alarm the user in situations where no GAMS variables were created for all entries of a row and
corresponding column.

A simple workaround for this issue is to force all variables to be generated when a model is instantiated.
This can be done by adding something like eps∗sum((i,j),X(i,j)) to one of the equations. Note, that
eps is numerically equal to a 0.0 in GAMS, but has the effect that the term sum((i,j),X(i,j)) is passed
to the solver with 0.0-coefficient.

5.27.4.4 Dual Values for PSD constraints

The PSD constraint on a matrix variable X̄ is associated with a dual PSD matrix variable Ȳ . As GAMS
is not aware of the PSD constraints, it is also not aware of the corresponding dual variables. Thus, there
is no native way to pass the duals for the PSD constraints back to GAMS. (Recall, that the marginals for
a PSDMATRIX variable X are used to store the dual values associated with the bound constraints on
matrix entries.)

To work around this issue, the GAMS/MOSEK interface offers the option SDPSOLUFILE. This option
allows to specify the name of a GDX file that stores primal values for all entries of a matrix variable and
dual values of the corresponding PSD constraint. For a variable X(i,j), the GDX file stores the primal
matrix value for all entries (i, j) (i.e., not just the ones for which GAMS variables were created, therefor
offering another workaround for the issue discussed in the previous section) as level values of variable X

and the dual matrix for the PSD constraint as marginal values.

5.27 MOSEK 2391

5.27.4.5 Infeasible and Unbounded SDPs

The GAMS/Mosek link currently does not pass on certificates for primal or dual infeasibility from Mosek
to GAMS if PSD variables are present.

5.27.5 Detailed Descriptions of MOSEK Options

FIXOPTFILE (string): Name of option file which is read just before solving the fixed problem. ←↩

MSK DPAR ANA SOL INFEAS TOL (real): If a constraint violates its bound with an amount
larger than this value, the constraint name, index and violation will be printed by the solution analyzer.
←↩

Default: 1e-06

MSK DPAR BASIS REL TOL S (real): Maximum relative dual bound violation allowed in an
optimal basic solution. ←↩

Default: 1e-12

MSK DPAR BASIS TOL S (real): Maximum absolute dual bound violation in an optimal basic
solution. ←↩

Range: [1e-09, ∞]

Default: 1e-06

MSK DPAR BASIS TOL X (real): Maximum absolute primal bound violation allowed in an optimal
basic solution. ←↩

Range: [1e-09, ∞]

Default: 1e-06

MSK DPAR CHECK CONVEXITY REL TOL (real): Not in use. ←↩

Default: 1e-10

MSK DPAR DATA SYM MAT TOL (real): Absolute zero tolerance for elements in in symmetric
matrices. ←↩

If any value in a symmetric matrix is smaller than this parameter in absolute terms MOSEK
will treat the values as zero and generate a warning.

Range: [1e-16, 1e-06]

Default: 1e-12

MSK DPAR DATA SYM MAT TOL HUGE (real): An element in a symmetric matrix which is
larger than this value in absolute size causes an error. ←↩

Default: 1e+20

MSK DPAR DATA SYM MAT TOL LARGE (real): An element in a symmetric matrix which is
larger than this value in absolute size causes a warning message to be printed. ←↩

2392 Solver Manuals

Default: 1e+10

MSK DPAR DATA TOL AIJ HUGE (real): An element in the constraint matrix which is larger
than this value in absolute size causes an error. ←↩

Default: 1e+20

MSK DPAR DATA TOL AIJ LARGE (real): An element in the constraint matrix which is larger
than this value in absolute size causes a warning message. ←↩

Default: 1e+10

MSK DPAR DATA TOL BOUND INF (real): Any bound which in absolute value is greater than
this parameter is considered infinite. ←↩

Default: 1e+16

MSK DPAR DATA TOL BOUND WRN (real): If a bound value is larger than this value in absolute
size, then a warning message is issued. ←↩

Default: 1e+08

MSK DPAR DATA TOL CJ LARGE (real): A coefficient in the objective function which is larger
than this value in absolute terms causes a warning message. ←↩

Default: 1e+08

MSK DPAR DATA TOL C HUGE (real): A coefficient in the objective function which is larger
than the value in absolute terms is considered to be huge and generates an error. ←↩

Default: 1e+16

MSK DPAR DATA TOL QIJ (real): Absolute zero tolerance for coefficients of quadratic terms. ←↩

Default: 1e-16

MSK DPAR DATA TOL X (real): Zero tolerance for constraints and variables i.e. if the distance
between the lower and upper bound is less than this value, then the lower and upper bound is considered
identical. ←↩

Default: 1e-08

MSK DPAR INTPNT CO TOL DFEAS (real): Dual feasibility tolerance used by the interior-point
optimizer for conic problems. ←↩

Range: [0, 1]

Default: 1e-08

See also: MSK DPAR INTPNT CO TOL NEAR REL.

MSK DPAR INTPNT CO TOL INFEAS (real): Infeasibility tolerance used by the interior-point
optimizer for conic problems. ←↩

Controls when the interior-point optimizer declares the model primal or dual infeasible. A
small number means the optimizer gets more conservative about declaring the model infeasible.

Range: [0, 1]

Default: 1e-12

5.27 MOSEK 2393

MSK DPAR INTPNT CO TOL MU RED (real): Relative complementarity gap tolerance used by
the interior-point optimizer for conic problems. ←↩

Range: [0, 1]

Default: 1e-08

MSK DPAR INTPNT CO TOL NEAR REL (real): Termination tolerance multiplier that is used
if no accurate solution can be found. ←↩

If MOSEK cannot compute a solution that has the prescribed accuracy, then it will multiply
the termination tolerances with value of this parameter. If the solution then satisfies the
termination criteria, then the solution is denoted near optimal, near feasible and so forth.

Range: [1, ∞]

Default: 1

MSK DPAR INTPNT CO TOL PFEAS (real): Primal feasibility tolerance used by the interior-
point optimizer for conic problems. ←↩

Range: [0, 1]

Default: 1e-08

See also: MSK DPAR INTPNT CO TOL NEAR REL.

MSK DPAR INTPNT CO TOL REL GAP (real): Relative gap termination tolerance used by the
interior-point optimizer for conic problems. ←↩

Range: [0, 1]

Default: 1e-08

See also: MSK DPAR INTPNT CO TOL NEAR REL.

MSK DPAR INTPNT QO TOL DFEAS (real): Dual feasibility tolerance used when the interior-
point optimizer is applied to a quadratic optimization problem. ←↩

Range: [0, 1]

Default: 1e-08

See also: MSK DPAR INTPNT QO TOL NEAR REL.

MSK DPAR INTPNT QO TOL INFEAS (real): Infeasibility tolerance used by the interior-point
optimizer for quadratic problems. ←↩

Controls when the interior-point optimizer declares the model primal or dual infeasible. A
small number means the optimizer gets more conservative about declaring the model infeasible.

Range: [0, 1]

Default: 1e-12

MSK DPAR INTPNT QO TOL MU RED (real): Relative complementarity gap tolerance used by
the interior-point optimizer for quadratic problems. ←↩

2394 Solver Manuals

Range: [0, 1]

Default: 1e-08

MSK DPAR INTPNT QO TOL NEAR REL (real): Termination tolerance multiplier that is used
if no accurate solution can be found. ←↩

If MOSEK cannot compute a solution that has the prescribed accuracy, then it will multiply
the termination tolerances with value of this parameter. If the solution then satisfies the
termination criteria, then the solution is denoted near optimal, near feasible and so forth.

Range: [1, ∞]

Default: 1

MSK DPAR INTPNT QO TOL PFEAS (real): Primal feasibility tolerance used by the interior-
point optimizer for quadratic problems. ←↩

Range: [0, 1]

Default: 1e-08

See also: MSK DPAR INTPNT QO TOL NEAR REL.

MSK DPAR INTPNT QO TOL REL GAP (real): Relative gap termination tolerance used by the
interior-point optimizer for quadratic problems. ←↩

Range: [0, 1]

Default: 1e-08

See also: MSK DPAR INTPNT QO TOL NEAR REL.

MSK DPAR INTPNT TOL DFEAS (real): Dual feasibility tolerance used by the interior-point
optimizer for linear problems. ←↩

Range: [0, 1]

Default: 1e-08

MSK DPAR INTPNT TOL DSAFE (real): Controls the initial dual starting point used by the
interior-point optimizer. ←↩

If the interior-point optimizer converges slowly and/or the constraint or variable bounds are
very large, then it might be worthwhile to increase this value.

Range: [0.0001, ∞]

Default: 1

MSK DPAR INTPNT TOL INFEAS (real): Infeasibility tolerance used by the interior-point opti-
mizer for linear problems. ←↩

Controls when the interior-point optimizer declares the model primal or dual infeasible. A
small number means the optimizer gets more conservative about declaring the model infeasible.

Range: [0, 1]

Default: 1e-10

5.27 MOSEK 2395

MSK DPAR INTPNT TOL MU RED (real): Relative complementarity gap tolerance used by the
interior-point optimizer for linear problems. ←↩

Range: [0, 1]

Default: 1e-16

MSK DPAR INTPNT TOL PATH (real): Controls how close the interior-point optimizer follows
the central path. ←↩

A large value of this parameter means the central path is followed very closely. On numerically
unstable problems it may be worthwhile to increase this parameter.

Range: [0, 0.9999]

Default: 1e-08

MSK DPAR INTPNT TOL PFEAS (real): Primal feasibility tolerance used by the interior-point
optimizer for linear problems. ←↩

Range: [0, 1]

Default: 1e-08

MSK DPAR INTPNT TOL PSAFE (real): Controls the initial primal starting point used by the
interior-point optimizer. ←↩

If the interior-point optimizer converges slowly and/or the constraint or variable bounds are
very large, then it may be worthwhile to increase this value.

Range: [0.0001, ∞]

Default: 1

MSK DPAR INTPNT TOL REL GAP (real): Relative gap termination tolerance used by the
interior-point optimizer for linear problems. ←↩

Range: [1e-14, ∞]

Default: 1e-08

MSK DPAR INTPNT TOL REL STEP (real): Relative step size to the boundary for linear and
quadratic optimization problems. ←↩

Range: [0.0001, 0.999999]

Default: 0.9999

MSK DPAR INTPNT TOL STEP SIZE (real): Step size tolerance. ←↩

If the step size falls below the value of this parameter, then the interior-point optimizer assumes
it is stalled. In other words the interior-point optimizer does not make any progress and
therefore it is better stop.

Range: [0, 1]

Default: 1e-06

MSK DPAR LOWER OBJ CUT (real): Lower objective limit. ←↩

2396 Solver Manuals

If either a primal or dual feasible solution is found proving that the optimal objective value
is outside, the interval (MSK DPAR LOWER OBJ CUT, MSK DPAR UPPER OBJ CUT), then MOSEK is
terminated.

Range: [-∞, ∞]

Default: -1e+30

See also: MSK DPAR LOWER OBJ CUT FINITE TRH.

MSK DPAR LOWER OBJ CUT FINITE TRH (real): Lower objective limit threshold. ←↩

If the lower objective cut (MSK DPAR LOWER OBJ CUT) is less than this value, then it is
treated as infinity.

Range: [-∞, ∞]

Default: -5e+29

MSK DPAR MIO MAX TIME (real): This parameter limits the maximum time spent by the
mixed-integer optimizer. ←↩

A negative number means infinity.

Range: [-∞, ∞]

Default: -1

MSK DPAR MIO REL GAP CONST (real): This value is used to compute the relative gap for the
solution to an integer optimization problem. ←↩

Range: [1e-15, ∞]

Default: 1e-10

MSK DPAR MIO TOL ABS GAP (real): Absolute optimality tolerance employed by the mixed-
integer optimizer. ←↩

Default: GAMS OptCA

MSK DPAR MIO TOL ABS RELAX INT (real): Absolute relaxation tolerance of the integer
constraints. ←↩

That means if the fractional part of a discrete variable (min(|x| − bxc, dxe − |x|)) is less than
the tolerance, then the integer restriction is assumed to be satisfied.

Range: [1e-09, ∞]

Default: 1e-05

MSK DPAR MIO TOL FEAS (real): Feasibility tolerance for mixed integer solver. ←↩

Range: [1e-09, 0.001]

Default: 1e-06

MSK DPAR MIO TOL REL DUAL BOUND IMPROVEMENT (real): If the relative improve-
ment of the dual bound is smaller than this value, the solver will terminate the root cut generation.
←↩

5.27 MOSEK 2397

A value of 0.0 means that the value is selected automatically.

Range: [0, 1]

Default: 0

MSK DPAR MIO TOL REL GAP (real): Relative optimality tolerance employed by the mixed-
integer optimizer. ←↩

Default: GAMS OptCR

MSK DPAR OPTIMIZER MAX TIME (real): Maximum amount of time the optimizer is allowed
to spent on the optimization. ←↩

A negative number means infinity.

Range: [-∞, ∞]

Default: GAMS ResLim

MSK DPAR PRESOLVE TOL ABS LINDEP (real): Absolute tolerance employed by the linear
dependency checker. ←↩

Default: 1e-06

MSK DPAR PRESOLVE TOL AIJ (real): Absolute zero tolerance employed for constraint coeffi-
cients in presolve. ←↩

Range: [1e-15, ∞]

Default: 1e-12

MSK DPAR PRESOLVE TOL PRIMAL INFEAS PERTURBATION (real): The presolve is
allowed to perturb a bound on a constraint or variable by this amount if it removes an infeasibility. ←↩

Default: 1e-06

MSK DPAR PRESOLVE TOL REL LINDEP (real): Relative tolerance employed by the linear
dependency checker. ←↩

Default: 1e-10

MSK DPAR PRESOLVE TOL S (real): Absolute zero tolerance employed for dual variables in
presolve. ←↩

Default: 1e-08

MSK DPAR PRESOLVE TOL X (real): Absolute zero tolerance employed for primal variables in
presolve. ←↩

Default: 1e-08

MSK DPAR QCQO REFORMULATE REL DROP TOL (real): This parameter determines when
columns are dropped in incomplete Cholesky factorization during reformulation of quadratic problems. ←↩

Default: 1e-15

MSK DPAR SEMIDEFINITE TOL APPROX (real): Tolerance to define a matrix to be positive
semidefinite. ←↩

2398 Solver Manuals

Range: [1e-15, ∞]

Default: 1e-10

MSK DPAR SIMPLEX ABS TOL PIV (real): Absolute pivot tolerance employed by the simplex
optimizers. ←↩

Range: [1e-12, ∞]

Default: 1e-07

MSK DPAR SIM LU TOL REL PIV (real): Relative pivot tolerance for LU factorization in simplex
optimizers and basis identification. ←↩

A value closer to 1.0 generally improves numerical stability but typically also implies an
increase in the computational work.

Range: [1e-06, 0.999999]

Default: 0.01

MSK DPAR UPPER OBJ CUT (real): Upper objective limit. ←↩

If either a primal or dual feasible solution is found proving that the optimal objective value
is outside the interval (MSK DPAR LOWER OBJ CUT, MSK DPAR UPPER OBJ CUT), then MOSEK is
terminated.

Range: [-∞, ∞]

Default: 1e+30

See also: MSK DPAR UPPER OBJ CUT FINITE TRH.

MSK DPAR UPPER OBJ CUT FINITE TRH (real): Upper objective limit threshold. ←↩

If the upper objective cut MSK DPAR UPPER OBJ CUT is greater than this value, then it
is treated as infinity.

Range: [-∞, ∞]

Default: 5e+29

MSK IPAR AUTO SORT A BEFORE OPT (string): Controls whether the elements in each
column of the coefficient matrix are sorted before an optimization is performed. ←↩

This is not required but makes the optimization insusceptible to reorderings of variables.

Default: MSK OFF

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR BI CLEAN OPTIMIZER (string): Controls which simplex optimizer is used in the
clean-up phase. ←↩

5.27 MOSEK 2399

Anything else than primal or dual simplex is equivalent to free simplex.

Default: MSK OPTIMIZER FREE

value meaning

MSK OPTIMIZER FREE The optimizer is chosen automatically.

MSK OPTIMIZER PRIMAL SIMPLEX The primal simplex optimizer is used.

MSK OPTIMIZER DUAL SIMPLEX The dual simplex optimizer is used.

MSK OPTIMIZER FREE SIMPLEX One of the simplex optimizers is used.

MSK IPAR BI IGNORE MAX ITER (string): Controls if basis identification is performed under
certain conditions. ←↩

If the parameter MSK IPAR INTPNT BASIS has the value MSK BI NO ERROR and the interior-
point optimizer has terminated due to maximum number of iterations, then basis identification
is performed if this parameter has the value MSK ON.

Default: MSK OFF

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR BI IGNORE NUM ERROR (string): Turns on basis identification if interior-point
optimizer is terminated due to a numerical problem. ←↩

If the parameter MSK IPAR INTPNT BASIS has the value MSK BI NO ERROR and the interior-point
optimizer has terminated due to a numerical problem, then basis identification is performed if
this parameter has the value MSK ON.

Default: MSK ON

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR BI MAX ITERATIONS (integer): Controls the maximum number of simplex iterations
allowed to optimize a basis after the basis identification. ←↩

Default: 1000000

MSK IPAR INFEAS PREFER PRIMAL (string): If both certificates of primal and dual infeasibility
are supplied then only the primal is used when this option is turned on. ←↩

Default: MSK ON

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR INFEAS REPORT AUTO (string): Controls whether an infeasibility report is auto-

2400 Solver Manuals

matically produced after the optimization if the problem is primal or dual infeasible. ←↩

Default: MSK OFF

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR INFEAS REPORT LEVEL (integer): Controls the amount of information presented in
an infeasibility report. ←↩

Higher values imply more information.

Default: 1

MSK IPAR INTPNT BASIS (string): Controls whether the interior-point optimizer also computes
an optimal basis. ←↩

Default: MSK BI ALWAYS

value meaning

MSK BI NEVER Never do basis identification.

MSK BI ALWAYS Basis identification is always performed even if the interior-point
optimizer terminates abnormally.

MSK BI NO ERROR Basis identification is performed if the interior-point optimizer ter-
minates without an error.

MSK BI IF FEASIBLE Basis identification is not performed if the interior-point optimizer
terminates with a problem status saying that the problem is primal
or dual infeasible.

See also: MSK IPAR BI CLEAN OPTIMIZER, MSK IPAR BI IGNORE MAX ITER,
MSK IPAR BI IGNORE NUM ERROR, MSK IPAR BI MAX ITERATIONS.

MSK IPAR INTPNT DIFF STEP (string): Controls whether different step sizes are allowed in the
primal and dual space. ←↩

Default: MSK ON

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR INTPNT MAX ITERATIONS (integer): Controls the maximum number of iterations
allowed in the interior-point optimizer. ←↩

Default: GAMS IterLim

MSK IPAR INTPNT MAX NUM COR (integer): Controls the maximum number of correctors
allowed by the multiple corrector procedure. ←↩

A negative value means that MOSEK is making the choice.

Range: {-1, ..., ∞}

Default: -1

5.27 MOSEK 2401

MSK IPAR INTPNT MAX NUM REFINEMENT STEPS (integer): Maximum number of steps
to be used by the iterative refinement of the search direction. ←↩

A negative value implies that the optimizer chooses the maximum number of iterative refinement
steps.

Range: {-∞, ..., ∞}

Default: -1

MSK IPAR INTPNT OFF COL TRH (integer): Controls how aggressively offending columns are
detected in the Jacobian of the constraint matrix. ←↩

0 means no detection, 1 means aggressive detection, and higher values mean less aggressive
detection.

Default: 40

MSK IPAR INTPNT ORDER GP NUM SEEDS (integer): The GP ordering is dependent on a
random seed. ←↩

Therefore, trying several random seeds may lead to a better ordering. This parameter controls
the number of random seeds tried. A value of 0 means that MOSEK makes the choice.

Default: 0

MSK IPAR INTPNT ORDER METHOD (string): Controls the ordering strategy used by the
interior-point optimizer when factorizing the Newton equation system. ←↩

Default: MSK ORDER METHOD FREE

value meaning

MSK ORDER METHOD FREE The ordering method is chosen automatically.

MSK ORDER METHOD APPMINLOC Approximate minimum local fill-in ordering is em-
ployed.

MSK ORDER METHOD TRY GRAPHPAR Always try the graph partitioning based ordering.

MSK ORDER METHOD FORCE GRAPHPAR Always use the graph partitioning based ordering
even if it is worse than the approximate minimum
local fill ordering.

MSK ORDER METHOD NONE No ordering is used.
Note using this value almost always leads to a sig-
nificantly slow down.

MSK IPAR INTPNT REGULARIZATION USE (string): Controls whether regularization is
allowed. ←↩

Default: MSK ON

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR INTPNT SCALING (string): Controls how the problem is scaled before the interior-point
optimizer is used. ←↩

2402 Solver Manuals

Default: MSK SCALING FREE

value meaning

MSK SCALING FREE The optimizer chooses the scaling heuristic.

MSK SCALING NONE No scaling is performed.

MSK IPAR INTPNT SOLVE FORM (string): Controls whether the primal or the dual problem is
solved. ←↩

Default: MSK SOLVE FREE

value meaning

MSK SOLVE FREE The optimizer is free to solve either the primal or the dual problem.

MSK SOLVE PRIMAL The optimizer should solve the primal problem.

MSK SOLVE DUAL The optimizer should solve the dual problem.

MSK IPAR INTPNT STARTING POINT (string): Starting point used by the interior-point
optimizer. ←↩

Default: MSK STARTING POINT FREE

value meaning

MSK STARTING POINT FREE The starting point is chosen automatically.

MSK STARTING POINT GUESS The optimizer guesses a starting point.

MSK STARTING POINT CONSTANT The optimizer constructs a starting point by assigning a
constant value to all primal and dual variables.
This starting point is normally robust.

MSK IPAR LOG (integer): Controls the amount of log information. ←↩

The value 0 implies that all log information is suppressed. A higher level implies that more
information is logged.

Default: 10

MSK IPAR LOG BI (integer): Controls the amount of output printed by the basis identification
procedure. ←↩

A higher level implies that more information is logged.

Default: 1

MSK IPAR LOG BI FREQ (integer): Controls logging frequency of the basis identification ←↩

Default: 2500

MSK IPAR LOG FEAS REPAIR (integer): Controls the amount of output printed when performing
feasibility repair. ←↩

Default: 1

MSK IPAR LOG INFEAS ANA (integer): Controls amount of output printed by the infeasibility
analyzer procedures. ←↩

5.27 MOSEK 2403

A higher level implies that more information is logged.

Default: 1

MSK IPAR LOG INTPNT (integer): Controls amount of output printed by the interior-point
optimizer. ←↩

A higher level implies that more information is logged.

Default: 1

MSK IPAR LOG MIO (integer): Controls the log level for the mixed-integer optimizer. ←↩

A higher level implies that more information is logged.

Default: 4

MSK IPAR LOG MIO FREQ (integer): Controls how frequent the mixed-integer optimizer prints
the log line. ←↩

It will print a line every time MSK INTPAR LOG MIO FREQ relaxations have been solved.

Range: {-∞, ..., ∞}

Default: 10

MSK IPAR LOG ORDER (integer): If turned on, then factor lines are added to the log. ←↩

Default: 1

MSK IPAR LOG PRESOLVE (integer): Controls amount of output printed by the presolve procedure.
←↩

A higher level implies that more information is logged.

Default: 1

MSK IPAR LOG RESPONSE (integer): Controls amount of output printed when response codes are
reported. ←↩

A higher level implies that more information is logged.

Default: 0

MSK IPAR LOG SIM (integer): Controls amount of output printed by the simplex optimizer. ←↩

A higher level implies that more information is logged.

Default: 4

MSK IPAR LOG SIM FREQ (integer): Controls simplex optimizer logging frequency. ←↩

Default: 1000

MSK IPAR LOG STORAGE (integer): When turned on, MOSEK prints messages regarding the
storage usage and allocation. ←↩

Default: 0

MSK IPAR MIO BRANCH DIR (string): Controls whether the mixed-integer optimizer is branching
up or down by default. ←↩

Default: MSK BRANCH DIR FREE

2404 Solver Manuals

value meaning

MSK BRANCH DIR FREE The mixed-integer optimizer decides which branch to
choose.

MSK BRANCH DIR UP The mixed-integer optimizer always chooses the up branch
first.

MSK BRANCH DIR DOWN The mixed-integer optimizer always chooses the down
branch first.

MSK BRANCH DIR NEAR Branch in direction nearest to selected fractional variable.

MSK BRANCH DIR FAR Branch in direction farthest from selected fractional vari-
able.

MSK BRANCH DIR ROOT LP Chose direction based on root lp value of selected variable.

MSK BRANCH DIR GUIDED Branch in direction of current incumbent.

MSK BRANCH DIR PSEUDOCOST Branch based on the pseudocost of the variable.

MSK IPAR MIO CONIC OUTER APPROXIMATION (string): If this option is turned on outer
approximation is used when solving relaxations of conic problems; otherwise interior point is used. ←↩

Default: MSK OFF

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR MIO CONSTRUCT SOL (string): Whether to construct an initial solution from starting
point ←↩

If enabled and all integer variables have been given a value for which a feasible mixed integer
solution exists, then MOSEK generates an initial solution to the mixed integer problem by
fixing all integer values and solving the remaining problem.

Default: MSK OFF

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR MIO CUT CLIQUE (string): Controls whether clique cuts should be generated. ←↩

Default: MSK ON

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR MIO CUT CMIR (string): Controls whether mixed integer rounding cuts should be
generated. ←↩

Default: MSK ON

value meaning

MSK ON Switch the option on.

5.27 MOSEK 2405

value meaning

MSK OFF Switch the option off.

MSK IPAR MIO CUT GMI (string): Controls whether GMI cuts should be generated. ←↩

Default: MSK ON

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR MIO CUT IMPLIED BOUND (string): Controls whether implied bound cuts should
be generated. ←↩

Default: MSK ON

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR MIO CUT KNAPSACK COVER (string): Controls whether knapsack cover cuts
should be generated. ←↩

Default: MSK ON

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR MIO CUT LIPRO (string): Controls whether lift-and-project cuts should be generated.
←↩

Default: MSK OFF

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR MIO CUT SELECTION LEVEL (integer): Controls how aggressively generated cuts
are selected to be included in the relaxation. ←↩

Default: -1

value meaning

-1 The optimizer chooses the level of cut selection.

0 Generated cuts less likely to be added to the relaxation.

1 Cuts are more aggressively selected to be included in the relaxation.

2406 Solver Manuals

MSK IPAR MIO DATA PERMUTATION METHOD (string): Controls what problem data
permutation method is appplied to mixed-integer problems. ←↩

Default: MSK MIO DATA PERMUTATION METHOD NONE

value meaning

MSK MIO DATA PERMUTATION METHOD NONE No problem data permutation is applied.

MSK MIO DATA PERMUTATION METHOD CYCLIC SHIFTA random cyclic shift is applied to permute
the problem data.

MSK MIO DATA PERMUTATION METHOD RANDOM A random permutation is applied to the prob-
lem data.

MSK IPAR MIO DUAL RAY ANALYSIS LEVEL (string): Controls the amount of symmetry
detection and handling employed by the mixed-integer optimizer in presolve. ←↩

Default: -1

value meaning

-1 The optimizer chooses the level of dual ray analysis employed.

0 Dual ray analysis is disabled.

1 A lower amount of dual ray analysis is employed.

2 A higher amount of dual ray analysis is employed.

MSK IPAR MIO FEASPUMP LEVEL (string): Controls the way the Feasibility Pump heuristic is
employed by the mixed-integer optimizer. ←↩

Default: -1

value meaning

-1 The optimizer chooses how the Feasibility Pump is used.

0 The Feasibility Pump is disabled.

1 The Feasibility Pump is enabled with an effort to improve solution quality.

2 The Feasibility Pump is enabled with an effort to reach feasibility early.

MSK IPAR MIO HEURISTIC LEVEL (integer): Controls the heuristic employed by the mixed-
integer optimizer to locate an initial good integer feasible solution. ←↩

A value of zero means the heuristic is not used at all. A larger value than 0 means that a
gradually more sophisticated heuristic is used which is computationally more expensive. A
negative value implies that the optimizer chooses the heuristic. Normally a value around 3 to
5 should be optimal.

Range: {-∞, ..., ∞}

Default: -1

MSK IPAR MIO MAX NUM BRANCHES (integer): Maximum number of branches allowed
during the branch and bound search. ←↩

A negative value means infinite.

Range: {-∞, ..., ∞}

Default: -1

5.27 MOSEK 2407

MSK IPAR MIO MAX NUM RELAXS (integer): Maximum number of relaxations allowed during
the branch and bound search. ←↩

A negative value means infinite.

Range: {-∞, ..., ∞}

Default: GAMS NodLim

MSK IPAR MIO MAX NUM RESTARTS (integer): Maximum number of restarts allowed during
the branch and bound search. ←↩

Default: 0

MSK IPAR MIO MAX NUM ROOT CUT ROUNDS (integer): Maximum number of cut separa-
tion rounds at the root node. ←↩

Default: 100

MSK IPAR MIO MAX NUM SOLUTIONS (integer): The mixed-integer optimizer can be termi-
nated after a certain number of different feasible solutions has been located. ←↩

If this parameter has the value n > 0, then the mixed-integer optimizer will be terminated
when n feasible solutions have been located.

Range: {-∞, ..., ∞}

Default: -1

MSK IPAR MIO MEMORY EMPHASIS LEVEL (string): Controls how much emphasis is put
on reducing memory usage. ←↩

Being more conservative about memory usage may come at the cost of decreased solution
speed.

Default: 0

value meaning

0 The optimizer chooses.

1 More emphasis is put on reducing memory usage and less on speed.

MSK IPAR MIO MIN REL (integer): Number of times a variable must have been branched on for
its pseudocost to be considered reliable. ←↩

Default: 5

MSK IPAR MIO NODE OPTIMIZER (string): Controls which optimizer is employed at the
non-root nodes in the mixed-integer optimizer. ←↩

Default: MSK OPTIMIZER FREE

value meaning

MSK OPTIMIZER FREE The optimizer is chosen automatically.

MSK OPTIMIZER INTPNT The interior-point optimizer is used.

MSK OPTIMIZER CONIC The optimizer for problems having conic constraints.

2408 Solver Manuals

value meaning

MSK OPTIMIZER PRIMAL SIMPLEX The primal simplex optimizer is used.

MSK OPTIMIZER DUAL SIMPLEX The dual simplex optimizer is used.

MSK OPTIMIZER FREE SIMPLEX One of the simplex optimizers is used.

MSK OPTIMIZER MIXED INT The mixed-integer optimizer.

MSK IPAR MIO NODE SELECTION (string): Controls the node selection strategy employed by
the mixed-integer optimizer. ←↩

Default: MSK MIO NODE SELECTION FREE

value meaning

MSK MIO NODE SELECTION FREE The optimizer decides the node selection strategy.

MSK MIO NODE SELECTION FIRST The optimizer employs a depth first node selection
strategy.

MSK MIO NODE SELECTION BEST The optimizer employs a best bound node selection
strategy.

MSK MIO NODE SELECTION PSEUDO The optimizer employs selects the node based on a
pseudo cost estimate.

MSK IPAR MIO NUMERICAL EMPHASIS LEVEL (string): Controls how much emphasis is
put on reducing numerical problems possibly at the expense of solution speed. ←↩

Default: 0

value meaning

0 The optimizer chooses.

1 More emphasis is put on reducing numerical problems.

2 Even more emphasis.

MSK IPAR MIO PERSPECTIVE REFORMULATE (string): Enables or disables perspective
reformulation in presolve. ←↩

Default: MSK ON

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR MIO PRESOLVE AGGREGATOR USE (string): Controls if the aggregator should
be used. ←↩

Default: MSK ON

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR MIO PROBING LEVEL (integer): Controls the amount of probing employed by the

5.27 MOSEK 2409

mixed-integer optimizer in presolve. ←↩

Default: -1

value meaning

-1 The optimizer chooses the level of probing employed

0 Probing is disabled

1 A low amount of probing is employed

2 A medium amount of probing is employed

3 A high amount of probing is employed

MSK IPAR MIO PROPAGATE OBJECTIVE CONSTRAINT (string): Use objective domain
propagation. ←↩

Default: MSK OFF

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR MIO QCQO REFORMULATION METHOD (string): Controls what reformulation
method is applied to mixed-integer quadratic problems. ←↩

Default: MSK MIO QCQO REFORMULATION METHOD FREE

value meaning

MSK MIO QCQO REFORMULATION METHOD FREE The mixed-integer optimizer decides which
reformulation method to apply.

MSK MIO QCQO REFORMULATION METHOD NONE No reformulation method is applied.

MSK MIO QCQO REFORMULATION METHOD LINEARIZATIONA reformulation via linearization is applied.

MSK MIO QCQO REFORMULATION METHOD EIGEN VAL METHODThe eigenvalue method is applied.

MSK MIO QCQO REFORMULATION METHOD DIAG SDPA perturbation of matrix diagonals via the
solution of SDPs is applied.

MSK MIO QCQO REFORMULATION METHOD RELAX SDPA Reformulation based on the solution of an
SDP-relaxation of the problem is applied.

MSK IPAR MIO RINS MAX NODES (integer): Controls the maximum number of nodes allowed
in each call to the RINS heuristic. ←↩

The default value of -1 means that the value is determined automatically. A value of zero
turns off the heuristic.

Range: {-1, ..., ∞}

Default: -1

MSK IPAR MIO ROOT OPTIMIZER (string): Controls which optimizer is employed at the root
node in the mixed-integer optimizer. ←↩

Default: MSK OPTIMIZER FREE

2410 Solver Manuals

value meaning

MSK OPTIMIZER FREE The optimizer is chosen automatically.

MSK OPTIMIZER INTPNT The interior-point optimizer is used.

MSK OPTIMIZER CONIC The optimizer for problems having conic constraints.

MSK OPTIMIZER PRIMAL SIMPLEX The primal simplex optimizer is used.

MSK OPTIMIZER DUAL SIMPLEX The dual simplex optimizer is used.

MSK OPTIMIZER FREE SIMPLEX One of the simplex optimizers is used.

MSK IPAR MIO ROOT REPEAT PRESOLVE LEVEL (integer): Controls whether presolve can
be repeated at root node. ←↩

Default: -1

value meaning

-1 The optimizer chooses whether presolve is repeated.

0 Never repeat presolve.

1 Always repeat presolve.

MSK IPAR MIO SEED (integer): Sets the random seed used for randomization in the mixed integer
optimizer. ←↩

Selecting a different seed can change the path the optimizer takes to the optimal solution.

Default: 42

MSK IPAR MIO SYMMETRY LEVEL (string): Controls the amount of symmetry detection and
handling employed by the mixed-integer optimizer in presolve. ←↩

Default: -1

value meaning

-1 The optimizer chooses the level of symmetry detection and handling employed.

0 Symmetry detection and handling is disabled.

1 A low amount of symmetry detection and handling is employed.

2 A medium amount of symmetry detection and handling is employed.

3 A high amount of symmetry detection and handling is employed .

4 An extremely high amount of symmetry detection and handling is employed.

MSK IPAR MIO VAR SELECTION (string): Controls the variable selection strategy employed by
the mixed-integer optimizer. ←↩

Default: MSK MIO VAR SELECTION FREE

value meaning

MSK MIO VAR SELECTION FREE The optimizer decides the variable selection strat-
egy.

MSK MIO VAR SELECTION PSEUDOCOST The optimizer employs pseudocost variable selec-
tion.

MSK MIO VAR SELECTION STRONG The optimizer employs strong branching variable
selection.

5.27 MOSEK 2411

MSK IPAR MIO VB DETECTION LEVEL (integer): Controls how much effort is put into detect-
ing variable bounds. ←↩

Default: -1

value meaning

-1 The optimizer chooses.

0 No variable bounds are detected.

1 Only detect variable bounds that are directly represented in the problem.

2 Detect variable bounds in probing.

MSK IPAR NUM THREADS (integer): Controls the number of threads employed by the optimizer.
←↩

If set to 0 the number of threads used will be equal to the number of cores detected on the
machine.

Default: GAMS Threads

MSK IPAR OPF WRITE HEADER (string): Write a text header with date and MOSEK version
in an OPF file. ←↩

Default: MSK ON

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR OPF WRITE HINTS (string): Write a hint section with problem dimensions in the
beginning of an OPF file. ←↩

Default: MSK ON

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR OPF WRITE LINE LENGTH (integer): Aim to keep lines in OPF files not much
longer than this. ←↩

Default: 80

MSK IPAR OPF WRITE PARAMETERS (string): Write a parameter section in an OPF file. ←↩

Default: MSK OFF

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR OPF WRITE PROBLEM (string): Write objective, constraints, bounds etc. ←↩

2412 Solver Manuals

to an OPF file.

Default: MSK ON

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR OPF WRITE SOLUTIONS (string): Enable inclusion of solutions in the OPF files. ←↩

Default: MSK OFF

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR OPF WRITE SOL BAS (string): Whether to include basic solution in OPF files. ←↩

If MSK IPAR OPF WRITE SOLUTIONS is MSK ON and a basic solution is defined, include
the basic solution in OPF files.

Default: MSK ON

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR OPF WRITE SOL ITG (string): Whether to include integer solution in OPF files. ←↩

If MSK IPAR OPF WRITE SOLUTIONS is MSK ON and an integer solution is defined, write
the integer solution to OPF files.

Default: MSK ON

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR OPF WRITE SOL ITR (string): Whether to include interior solution in OPF files. ←↩

If MSK IPAR OPF WRITE SOLUTIONS is MSK ON and an interior solution is defined, write
the interior solution to OPF files.

Default: MSK ON

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR OPTIMIZER (string): The parameter controls which optimizer is used to optimize the

5.27 MOSEK 2413

task. ←↩

Default: MSK OPTIMIZER FREE

value meaning

MSK OPTIMIZER FREE The optimizer is chosen automatically.

MSK OPTIMIZER INTPNT The interior-point optimizer is used.

MSK OPTIMIZER CONIC The optimizer for problems having conic constraints.

MSK OPTIMIZER PRIMAL SIMPLEX The primal simplex optimizer is used.

MSK OPTIMIZER DUAL SIMPLEX The dual simplex optimizer is used.

MSK OPTIMIZER FREE SIMPLEX One of the simplex optimizers is used.

MSK OPTIMIZER MIXED INT The mixed-integer optimizer.

MSK IPAR PRESOLVE ELIMINATOR MAX FILL (integer): Controls the maximum amount of
fill-in that can be created by one pivot in the elimination phase of presolve. ←↩

A negative value means the parameter value is selected automatically.

Range: {-∞, ..., ∞}

Default: -1

MSK IPAR PRESOLVE ELIMINATOR MAX NUM TRIES (integer): Control the maximum
number of times the eliminator is tried. ←↩

A negative value implies MOSEK decides.

Range: {-∞, ..., ∞}

Default: -1

MSK IPAR PRESOLVE LINDEP ABS WORK TRH (integer): Controls the linear dependency
check, which is potentially computationally expensive. ←↩

Range: {-∞, ..., ∞}

Default: 100

MSK IPAR PRESOLVE LINDEP NEW (string): Controls whether a new experimental linear
dependency checker is employed. ←↩

Default: MSK OFF

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR PRESOLVE LINDEP REL WORK TRH (integer): Controls the linear dependency
check, which is potentially computationally expensive. ←↩

Range: {-∞, ..., ∞}

Default: 100

2414 Solver Manuals

MSK IPAR PRESOLVE LINDEP USE (string): Controls whether the linear constraints are checked
for linear dependencies. ←↩

Default: MSK ON

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR PRESOLVE MAX NUM PASS (integer): Control the maximum number of times
presolve passes over the problem. ←↩

A negative value implies MOSEK decides.

Range: {-∞, ..., ∞}

Default: -1

MSK IPAR PRESOLVE MAX NUM REDUCTIONS (integer): Controls the maximum number
of reductions performed by the presolve. ←↩

The value of the parameter is normally only changed in connection with debugging. A negative
value implies that an infinite number of reductions are allowed.

Range: {-∞, ..., ∞}

Default: -1

MSK IPAR PRESOLVE USE (string): Controls whether the presolve is applied to a problem before
it is optimized. ←↩

Default: MSK PRESOLVE MODE FREE

value meaning

MSK PRESOLVE MODE OFF The problem is not presolved before it is optimized.

MSK PRESOLVE MODE ON The problem is presolved before it is optimized.

MSK PRESOLVE MODE FREE It is decided automatically whether to presolve before the
problem is optimized.

MSK IPAR PTF WRITE PARAMETERS (string): If enabled, then the parameters section is
written. ←↩

Default: MSK OFF

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR PTF WRITE SOLUTIONS (string): If enabled, then the solution section is written if
any solutions are available, otherwise solution section is not written even if solutions are available. ←↩

Default: MSK OFF

5.27 MOSEK 2415

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR PTF WRITE TRANSFORM (string): If enabled, then constraint blocks with identifi-
able conic slacks are transformed into conic constraints and the slacks are eliminated. ←↩

Default: MSK ON

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR SIM BASIS FACTOR USE (string): Controls whether an LU factorization of the basis
is used in a hot-start. ←↩

Forcing a refactorization sometimes improves the stability of the simplex optimizers, but in
most cases there is a performance penalty.

Default: MSK ON

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR SIM DEGEN (string): Controls how aggressively degeneration is handled. ←↩

Default: MSK SIM DEGEN FREE

value meaning

MSK SIM DEGEN NONE The simplex optimizer should use no degeneration strategy.

MSK SIM DEGEN FREE The simplex optimizer chooses the degeneration strategy.

MSK SIM DEGEN AGGRESSIVE The simplex optimizer should use an aggressive degeneration
strategy.

MSK SIM DEGEN MODERATE The simplex optimizer should use a moderate degeneration
strategy.

MSK SIM DEGEN MINIMUM The simplex optimizer should use a minimum degeneration
strategy.

MSK IPAR SIM DUAL CRASH (integer): Controls whether crashing is performed in the dual
simplex optimizer. ←↩

In general if a basis consists of more than (100∗MSK IPAR SIM DUAL CRASH) percent fixed
variables, then a crash will be performed.

Default: 90

MSK IPAR SIM DUAL RESTRICT SELECTION (integer): Controls how aggressively a re-
stricted selection/pricing strategy is used to choose the outgoing variable in the dual simplex. ←↩

2416 Solver Manuals

The dual simplex optimizer can use a so-called restricted selection/pricing strategy to chooses
the outgoing variable. Hence, if restricted selection is applied, then the dual simplex optimizer
first choose a subset of all the potential outgoing variables. Next, for some time it will choose
the outgoing variable only among the subset. From time to time the subset is redefined.
A larger value of this parameter implies that the optimizer will be more aggressive in its
restriction strategy, i.e. a value of 0 implies that the restriction strategy is not applied at all.

Range: {0, ..., 100}

Default: 50

MSK IPAR SIM DUAL SELECTION (string): Controls the choice of the incoming variable, known
as the selection strategy, in the dual simplex optimizer. ←↩

Default: MSK SIM SELECTION FREE

value meaning

MSK SIM SELECTION FREE The optimizer chooses the pricing strategy.

MSK SIM SELECTION FULL The optimizer uses full pricing.

MSK SIM SELECTION ASE The optimizer uses approximate steepest-edge pricing.

MSK SIM SELECTION DEVEX The optimizer uses devex steepest-edge pricing.
If it is not available an approximate steep-edge selection is
chosen.

MSK SIM SELECTION SE The optimizer uses steepest-edge selection.
If it is not available an approximate steep-edge selection is
chosen.

MSK SIM SELECTION PARTIAL The optimizer uses a partial selection approach.
The approach is usually beneficial if the number of variables
is much larger than the number of constraints.

MSK IPAR SIM EXPLOIT DUPVEC (string): Controls if the simplex optimizers are allowed to
exploit duplicated columns. ←↩

Default: MSK SIM EXPLOIT DUPVEC OFF

value meaning

MSK SIM EXPLOIT DUPVEC ON Allow the simplex optimizer to exploit duplicated
columns.

MSK SIM EXPLOIT DUPVEC OFF Disallow the simplex optimizer to exploit duplicated
columns.

MSK SIM EXPLOIT DUPVEC FREE The simplex optimizer can choose freely.

MSK IPAR SIM HOTSTART (string): Controls the type of hot-start that the simplex optimizer
perform. ←↩

Default: MSK SIM HOTSTART FREE

value meaning

MSK SIM HOTSTART NONE The simplex optimizer performs a coldstart.

MSK SIM HOTSTART FREE The simplex optimize chooses the hot-start type.

MSK SIM HOTSTART STATUS KEYS Only the status keys of the constraints and variables
are used to choose the type of hot-start.

5.27 MOSEK 2417

MSK IPAR SIM HOTSTART LU (string): Determines if the simplex optimizer should exploit the
initial factorization. ←↩

Default: MSK ON

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR SIM MAX ITERATIONS (integer): Maximum number of iterations that can be used
by a simplex optimizer. ←↩

Default: GAMS IterLim

MSK IPAR SIM MAX NUM SETBACKS (integer): Controls how many set-backs are allowed
within a simplex optimizer. ←↩

A set-back is an event where the optimizer moves in the wrong direction. This is impossible in
theory but may happen due to numerical problems.

Default: 250

MSK IPAR SIM NON SINGULAR (string): Controls if the simplex optimizer ensures a non-singular
basis, if possible. ←↩

Default: MSK ON

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR SIM PRIMAL CRASH (integer): Controls whether crashing is performed in the primal
simplex optimizer. ←↩

In general if a basis consists of more than (100∗MSK IPAR SIM PRIMAL CRASH) percent fixed
variables, then a crash will be performed.

Default: 90

MSK IPAR SIM PRIMAL RESTRICT SELECTION (integer): Controls how aggressively a
restricted selection/pricing strategy is used to choose the outgoing variable in the primal simplex. ←↩

The primal simplex optimizer can use a so-called restricted selection/pricing strategy to
chooses the outgoing variable. Hence, if restricted selection is applied, then the primal simplex
optimizer first choose a subset of all the potential incoming variables. Next, for some time
it will choose the incoming variable only among the subset. From time to time the subset is
redefined. A larger value of this parameter implies that the optimizer will be more aggressive
in its restriction strategy, i.e. a value of 0 implies that the restriction strategy is not applied
at all.

Range: {0, ..., 100}

Default: 50

MSK IPAR SIM PRIMAL SELECTION (string): Controls the choice of the incoming variable,
known as the selection strategy, in the primal simplex optimizer. ←↩

Default: MSK SIM SELECTION FREE

2418 Solver Manuals

value meaning

MSK SIM SELECTION FREE The optimizer chooses the pricing strategy.

MSK SIM SELECTION FULL The optimizer uses full pricing.

MSK SIM SELECTION ASE The optimizer uses approximate steepest-edge pricing.

MSK SIM SELECTION DEVEX The optimizer uses devex steepest-edge pricing.
If it is not available an approximate steep-edge selection is
chosen.

MSK SIM SELECTION SE The optimizer uses steepest-edge selection.
If it is not available an approximate steep-edge selection is
chosen.

MSK SIM SELECTION PARTIAL The optimizer uses a partial selection approach.
The approach is usually beneficial if the number of variables
is much larger than the number of constraints.

MSK IPAR SIM REFORMULATION (string): Controls if the simplex optimizers are allowed to
reformulate the problem. ←↩

Default: MSK SIM REFORMULATION OFF

value meaning

MSK SIM REFORMULATION ON Allow the simplex optimizer to reformulate the
problem.

MSK SIM REFORMULATION OFF Disallow the simplex optimizer to reformulate the
problem.

MSK SIM REFORMULATION FREE The simplex optimizer can choose freely.

MSK SIM REFORMULATION AGGRESSIVE The simplex optimizer should use an aggressive
reformulation strategy.

MSK IPAR SIM SAVE LU (string): Controls if the LU factorization stored should be replaced with
the LU factorization corresponding to the initial basis. ←↩

Default: MSK OFF

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR SIM SCALING (string): Controls how much effort is used in scaling the problem before
a simplex optimizer is used. ←↩

Default: MSK SCALING FREE

value meaning

MSK SCALING FREE The optimizer chooses the scaling heuristic.

MSK SCALING NONE No scaling is performed.

MSK IPAR SIM SCALING METHOD (string): Controls how the problem is scaled before a simplex
optimizer is used. ←↩

Default: MSK SCALING METHOD POW2

5.27 MOSEK 2419

value meaning

MSK SCALING METHOD POW2 Scales only with power of 2 leaving the mantissa untouched.

MSK SCALING METHOD FREE The optimizer chooses the scaling heuristic.

MSK IPAR SIM SEED (integer): Sets the random seed used for randomization in the simplex
optimizers. ←↩

Range: {0, ..., 32749}

Default: 23456

MSK IPAR SIM SOLVE FORM (string): Controls whether the primal or the dual problem is solved
by the primal-/dual-simplex optimizer. ←↩

Default: MSK SOLVE FREE

value meaning

MSK SOLVE FREE The optimizer is free to solve either the primal or the dual problem.

MSK SOLVE PRIMAL The optimizer should solve the primal problem.

MSK SOLVE DUAL The optimizer should solve the dual problem.

MSK IPAR SIM STABILITY PRIORITY (integer): Controls how high priority the numerical
stability should be given. ←↩

Range: {0, ..., 100}

Default: 50

MSK IPAR SIM SWITCH OPTIMIZER (string): Controls the simplex behavior. ←↩

The simplex optimizer sometimes chooses to solve the dual problem instead of the primal
problem. This implies that if you have chosen to use the dual simplex optimizer and the
problem is dualized, then it actually makes sense to use the primal simplex optimizer instead.
If this parameter is on and the problem is dualized and furthermore the simplex optimizer is
chosen to be the primal (dual) one, then it is switched to the dual (primal).

Default: MSK OFF

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR TIMING LEVEL (integer): Controls the amount of timing performed inside MOSEK. ←↩

Default: 1

MSK IPAR WRITE COMPRESSION (integer): Controls whether the data file is compressed while
it is written. ←↩

0 means no compression while higher values mean more compression.

Default: 9

2420 Solver Manuals

MSK IPAR WRITE DATA PARAM (string): If this option is turned on the parameter settings are
written to the data file as parameters. ←↩

Default: MSK OFF

5.27 MOSEK 2421

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR WRITE GENERIC NAMES (string): Controls whether generic names should be used
instead of user-defined names when writing to the data file. ←↩

Default: MSK ON

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR WRITE GENERIC NAMES IO (integer): Index origin used in generic names. ←↩

Default: 1

MSK IPAR WRITE IGNORE INCOMPATIBLE ITEMS (string): Controls if the writer ignores
incompatible problem items when writing files. ←↩

Default: MSK OFF

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR WRITE JSON INDENTATION (string): When set, the JSON task and solution files
are written with indentation for better readability. ←↩

Default: MSK OFF

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR WRITE LP FULL OBJ (string): Write all variables, including the ones with 0-
coefficients, in the objective. ←↩

Default: MSK ON

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR WRITE LP LINE WIDTH (integer): Maximum width of line in an LP file written by
MOSEK. ←↩

Range: {40, ..., ∞}

Default: 80

2422 Solver Manuals

MSK IPAR WRITE MPS FORMAT (string): Controls in which format the MPS is written. ←↩

Default: MSK MPS FORMAT FREE

value meaning

MSK MPS FORMAT STRICT It is assumed that the input file satisfies the MPS format
strictly.

MSK MPS FORMAT RELAXED It is assumed that the input file satisfies a slightly relaxed
version of the MPS format.

MSK MPS FORMAT FREE It is assumed that the input file satisfies the free MPS format.
This implies that spaces are not allowed in names. Otherwise
the format is free.

MSK MPS FORMAT CPLEX The CPLEX compatible version of the MPS format is employed.

MSK IPAR WRITE MPS INT (string): Controls if marker records are written to the MPS file to
indicate whether variables are integer restricted. ←↩

Default: MSK ON

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR WRITE TASK INC SOL (string): Controls whether the solutions are stored in the task
file too. ←↩

Default: MSK ON

value meaning

MSK ON Switch the option on.

MSK OFF Switch the option off.

MSK IPAR WRITE XML MODE (string): Controls if linear coefficients should be written by row
or column when writing in the XML file format. ←↩

Default: MSK WRITE XML MODE ROW

value meaning

MSK WRITE XML MODE ROW Write in row order.

MSK WRITE XML MODE COL Write in column order.

MSK SPAR DATA FILE NAME (string): If set, problem data is written to this file. File extension
determines format. ←↩

Synonym: writeprob

MSK SPAR PARAM READ FILE NAME (string): Modifications to the parameter database is
read from this file. ←↩

5.27 MOSEK 2423

MSK SPAR PARAM WRITE FILE NAME (string): The parameter database is written to this
file. ←↩

MSK SPAR WRITE LP GEN VAR NAME (string): Sometimes when an LP file is written addi-
tional variables must be inserted. ←↩

They will have the prefix denoted by this parameter.

Default: "xmskgen"

QEXTRACTALG (integer): Switch to choose extraction algorithm for quadratic equations in GAMS
interface. ←↩

Default: 0

value meaning

0 Choose automatically.

1 ThreePass: uses a three-pass forward / backward / forward AD technique to
compute function / gradient / Hessian values and a hybrid scheme for storage

2 DoubleForward: uses forward-mode AD to compute and store function, gradient,
and Hessian values at each node or stack level as required.
The gradients and Hessians are stored in linked lists.

3 Concurrent: Uses ThreePass and DoubleForward in parallel.
As soon as one finishes, the other one stops.

SDPCHECKVARS (boolean): Switch to disable checking that for every entry of a PSD matrix variable
also a corresponding GAMS variable is present. ←↩

Default: 1

SDPSOLUFILE (string): Name of GDX file to write primal solution of all PSD matrix variables and
dual solution for PSD constraints. ←↩

SOLVEFINAL (boolean): Switch to resolve the problem with fixed discrete variables after the MOSEK
optimizer finished. ←↩

Default: 1

value meaning

0 Do not solve the fixed problem.

1 Solve the fixed problem and return duals.

5.27.6 Setting up a GAMS/MOSEK-Link license

To use the GAMS/MOSEK solver with a GAMS/MOSEK-Link license you have save a MOSEK standalone
license and point to the MOSEK license file via environment variable MOSEKLM LICENSE FILE.

2424 Solver Manuals

5.28 NLPEC

5.28.1 Introduction

The GAMS/NLPEC solver, developed jointly by Michael Ferris of UW-Madison and GAMS Development,
solves MPEC and MCP models via reformulation of the complementarity constraints. The resulting
sequence of NLP models are parameterized by a scalar µ and solved by existing NLP solvers. The resulting
solutions are used to recover an MPEC or MCP solution.

GAMS/NLPEC serves a number of purposes. In many cases, it is an effective tool for solving MPEC
models, the first such tool available within GAMS. It also serves as a way to experiment with the many
reformulation strategies proposed for solving MPEC and MCP models. Without something like NLPEC
(and a library of models to test with) a comprehensive and thorough test and comparison of the various
reformulation strategies would not be possible. To better serve these purposes, NLPEC has an open
architecture. The model reformulations are written out as GAMS source for solution via an NLP solver,
so it is possible to view this source and modify it if desired.

A brief note about notation is in order. The GAMS keyword positive is used to indicate nonnegative
variables. The same holds for nonpositive variables and the GAMS keyword negative.

5.28.2 Usage

GAMS/NLPEC can solve models of two types: MPEC and MCP. If you did not specify NLPEC as
the default MPEC or MCP solver, use the following statement in your GAMS model before the solve
statement:

option MPEC=nlpec; { or MCP }

You can also make NLPEC the default solver via the command line:

gams nash MPEC=nlpec MCP=nlpec

You can use NLPEC with its default strategy and formulation, but most users will want to use an
options file (Section Options) after reading about the different types of reformulations possible (Section
Reformulation). In addition, an understanding of the architecture of NLPEC (Section Open Architecture)
will be helpful in understanding how GAMS options are treated. Although NLPEC doesn't use the GAMS
options workspace, workfactor, optcr, optca, reslim, iterlim, and domlim directly, it passes these
options on in the reformulated model so they are available to the NLP subsolver.

5.28.3 Reformulation

In this section we describe the different ways that the NLPEC solver can reformulate an MPEC as an NLP.
The description also applies to MCP models: just consider MCP to be an MPEC with a constant objective.
The choice of reformulation, and the subsidiary choices each reformulation entails, are controlled by the
options described in the section on Setting the Reformulation Options and referenced throughout this
section.

The original MPEC model is given as:

min
x∈Rn,y∈Rm

f(x, y) (1)

5.28 NLPEC 2425

subject to the constraints

g(x, y) ≤ 0 (2)

and

y solves MCP(h(x, ·),B). (3)

In most of the reformulations, the objective function (1) is included in the reformulated model without
change. In some cases, it may be augmented with a penalty function. The variables x are typically called
upper level variables (because they are associated with the upper level optimization problem) whereas the
variables y are sometimes termed lower level variables.

The constraints (2) are standard nonlinear programming constraints specified in GAMS in the standard
fashion. In particular, these constraints may be less than inequalities as shown above, or equalities or
greater than inequalities. The constraints will be unaltered by all our reformulations. These constraints
may involve both x and y, or just x or just y, or may not be present at all in the problem.

The constraints of interest are the equilibrium constraints (3), where (3) signifies that y ∈ Rm is a solution
to the mixed complementarity problem (MCP) defined by the function h(x, ·) and the box B containing
(possibly infinite) simple bounds on the variables y. A point y with ai ≤ yi ≤ bi solves (3) if for each i at
least one of the following holds:

hi(x, y) = 0
hi(x, y) ≥ 0, yi = ai;
hi(x, y) ≤ 0, yi = bi.

(4)

As a special case of (4), consider the case where a = 0 and b = +∞. Since yi can never be +∞ at a
solution, (4) simplifies to the nonlinear complementarity problem (NCP):

0 ≤ hi(x, y), 0 ≤ yi and yihi(x, y) = 0, i = 1, . . . ,m (5)

namely that h and y are nonnegative vectors with h perpendicular to y. This motivates our shorthand for
(4), the ”perp to” symbol ⊥:

hi(x, y) ⊥ yi ∈ [ai, bi] (6)

The different ways to force (6) to hold using (smooth) NLP constraints are the basis of the NLPEC solver.

We introduce a simple example now that we will use throughout this document for expositional purposes:

min
x1,x2,y1,y2

x1 + x2

subject to x2
1 + x2

2 ≤ 1
y1 − y2 + 1 ≤ x1 ⊥ y1 ≥ 0
x2 + y2 ⊥ y2 ∈ [−1, 1]

This problem has the unique solution x1 = 0, x2 = −1, y1 = 0, y2 = 1. Note that f(x, y) = x1 + x2 and
g(x, y) = x2

1 + x2
2 − 1 are the objective function and the standard nonlinear programming constraints for

this problem. The function h(x, y) is given by:

h(x, y) =

[
x1 − y1 + y2 − 1

x2 + y2

]
and

a =

[
0
−1

]
, b =

[
∞
1

]
.

This example is written very succinctly in GAMS notation as:

2426 Solver Manuals

$TITLE simple mpec example

variable f, x1, x2, y1, y2;

positive variable y1;

y2.lo = -1;

y2.up = 1;

equations cost, g, h1, h2;

cost.. f =E= x1 + x2;

g.. sqr(x1) + sqr(x2) =L= 1;

h1.. x1 =G= y1 - y2 + 1;

h2.. x2 + y2 =N= 0;

model example / cost, g, h1.y1, h2.y2 /;

solve example using mpec min f;

Note that the equation cost is used to define f , the constraint g defines the function g, and h is defined
by h1 and h2. The complementarity constraints utilize the standard GAMS convention of specifying the
orthogonality relationship between h and y in the model statement. The interpretation of the ”.” relies
on the bounds a and b that are specified using positive, negative, or lo and up keywords in GAMS.
Note that since h2 really specifies a function h2 and not a constraint h2(x, y) = 0, we use the GAMS
syntax =N= to ensure this is clear here. Since the relationships satisfied by h1 and h2 are determined by
the bounds, =G= could also be replaced by =N= in h1.

In describing the various reformulations for (6), it is convenient to partition the y variables into free F ,
lower bounded L, upper bounded U and doubly bounded B variables respectively, that is:

B := {y = (yF , yL, yU , yB) : aL ≤ yL, yU ≤ bU , aB ≤ yB ≤ bB} .

We will assume (without loss of generality) that aB < bB. If ai = bi then (6) holds trivially for the index
i and we can remove the constraint hi and its corresponding (fixed) variable yi from the model. The
complementarity condition for variables in yi ∈ F is simply the equality hi(x, y) = 0 so these equality
constraints are moved directly into the NLP constraints g of the original model as equalities. Thus,
NLPEC needs only to treat the singly-bounded variables in L and U and the doubly-bounded variables in
B. In the above example, L = {1}, U = ∅ and B = {2}.

5.28.3.1 Product reformulations

Product reformulations all involve products of yi with hi, or products of yi with some auxiliary or slack
variables that are set equal to hi. The underlying point is that the constraints (3) are entirely equivalent
to the following system of equalities and inequalities:

wL = hL(x, y), aL ≤ yL, wL ≥ 0 and (yL − aL)TwL = 0
vU = −hU (x, y), yU ≤ bU , vU ≥ 0 and (bU − yU)T vU = 0
wB − vB = hB(x, y), aB ≤ yB ≤ bB, wB ≥ 0, vB ≥ 0

(yB − aB)TwB = 0, (bB − yB)T vB = 0.

(7)

Note that each inner product is a summation of products of nonnegative terms: a slack variable and the
difference between a variable and its bound. In each of these products, either the slack variable or its
complement must be zero in order to have a solution. Complementarity is forced by the multiplication of
these two terms. The above reformulation is specified using option reftype mult.

There are a number of variations on this theme, all of which can be specified via an options file. All of the
inner products could be put into the same equation, left as in (7) above, or broken out into individual
products (one for each i ∈ L ∪ U , two for each i ∈ B). For example, the complementarity constraints

5.28 NLPEC 2427

associated with lower bounded variables involve nonnegativity of wL, yL ≥ aL and either of the following
alternatives:

(yL − aL)TwL =
∑

(i ∈ L(yi − ai)wi = 0

or
(yi − ai)wi = 0, i = 1, . . . ,m

These different levels of aggregation are chosen using option aggregate none|partial|full.

Since all of the inner products in (7) involve nonnegative terms, we can set the inner products equal
to zero or set them ≤ 0 without changing the feasible set. To choose one or the other, use the option
constraint equality|inequality.

As a concrete example, consider the option file

reftype mult

aggregate none

constraint inequality

applied to the simple example given above. Such an option file generates the nonlinear programming
model:

min
x1,x2,y1,y2,w1,w2,v2

x1 + x2

subject to x2
1 + x2

2 ≤ 1
w1 = x1 − y1 + y2 − 1, w1 ≥ 0, y1 ≥ 0

w1y1 ≤ µ
w2 − v2 = x2 + y2, w2, v2 ≥ 0, y2 ∈ [−1, 1]

(y2 + 1)w2 ≤ µ, (1− y2)v2 ≤ µ

(8)

By default, a single model is generated with the value µ set to 0. There are many examples (e.g. interior
point codes, many LP and NLP packages, published results on reformulation approaches to MPEC) that
illustrate the value of starting with a ”nearly-complementary” solution and pushing the complementarity
gap down to zero. For this reason, the inner products in (7) above are always set equal to (or ≤) a scalar
µ instead of zero. By default µ is zero, but options exist to start µ at a positive value (e.g. InitMu 1e-2),
to decrease it by a constant factor in a series of looped solves (e.g. NumSolves 4, UpdateFac 0.1), and
to solve one last time with a final value for µ (e.g. FinalMu 0). If the following lines are added to the
option file

initmu 1.0

numsolves 4

then five consecutive solves of the nonlinear program (8) are performed, the first one using µ = 1 and
each subsequent solve dividing µ by 10 (and starting the NLP solver at the solution of the previous model
in this sequence).

As a final example, we use a combination of these options to generate a sequence of nonlinear programs
whose solutions attempt to trace out the ”central path” favored by interior point and barrier algorithms:

reftype mult

constraint equality

initmu 1.0

numsolves 4

updatefac 0.1

finalmu 1e-6

produces 6 nonlinear programs of the form

min
x1,x2,y1,y2,w1,w2,v2

x1 + x2

subject to x2
1 + x2

2 ≤ 1
w1 = x1 − y1 + y2 − 1, w1 ≥ 0, y1 ≥ 0

w1y1 = µ
w2 − v2 = x2 + y2, w2, v2 ≥ 0, y2 ∈ [−1, 1], (y2 + 1)w2 = µ, (y2 − 1)v2 = µ

for values of µ = 1, 0.1, 0.01, 0.001, 0.0001 and 1e− 6.

2428 Solver Manuals

Slacks and doubly bounded variables

Slack variables can be used to reduce the number of times a complex nonlinear expression appears in
the nonlinear programming model, as was carried out in (7). For a simpler illustrative example the NCP
constraints (5) are equivalent to the constraints:

wi = hi(x, y), 0 ≤ wi, 0 ≤ yi and yiwi = 0, i = 1, . . . ,m

This reformulation has an additional equality constraint, and additional variables w, but the expression
hi only appears once. There are cases when this formulation will be preferable, and the simple option
slack none|positive controls the use of the w variables.

When there are doubly bounded variables present, these two slack options work slightly differently. For
the positive case, the reformulation introduces two nonnegative variables wi and vi that take on the
positive and negative parts of hi at the solution as shown in (7). Since this is the default value of the
option slack, the example (8) shows what ensues to both singly and doubly bounded variables under this
setting.

For the case slack none, Scholtes proposed a way to use a multiplication to force complementarity that
requires no slack variables:

hi ⊥ ai ≤ yi ≤ bi ⇐⇒ ai ≤ yi ≤ bi, (yi − ai)hi ≤ µ, (yi − bi)hi ≤ µ (9)

Note that unlike the inner products in Section Reformulation, we can expect that one of the inequalities in
(9) is unlikely to be binding at a solution (i.e. when hi is nonzero). Therefore, we cannot use an equality
in this reformulation, and furthermore the products must not be aggregated. Thus, if you use this option,
the reformulation automatically enforces the additional options constraint inequality and aggregate

none on the doubly bounded variables, even if the user specifies a conflicting option. Thus the option file

reftype mult

slack none

results in the model

min
x1,x2,y1,y2

x1 + x2

subject to x2
1 + x2

2 ≤ 1
x1 − y1 + y2 − 1 ≥ 0, y1 ≥ 0

(x1 − y1 + y2 − 1)y1 = µ
y2 ∈ [−1, 1], (y2 + 1)(x2 + y2) ≤ µ, (y2 − 1)(x2 + y2) ≤ µ

Note that the complementarity constraint associated with y1 is an equality (the default) while the
constraints associated with y2 are inequalities for the reasons outlined above.

In the case of doubly bounded variables, a third option is available for the slack variables, namely slack

one. In this case, only one slack is introduced, and this slack removes the need to write the function hi
twice in the reformulated model as follows:

hi(x, y) ⊥ ai ≤ yi ≤ bi ⇐⇒ ai ≤ yi ≤ bi, wi = hi(x, y), (yi − ai)wi ≤ µ, (yi − bi)wi ≤ µ

Note that the slack variable w that is introduced is a free variable. It is not known before solving the
problem whether wi will be positive or negative at the solution.

We take this opportunity to introduce a simple extension to our option mechanism, namely the ability to
set the options for singly and doubly bounded variables differently. For example, the option file

reftype mult

slack positive one

5.28 NLPEC 2429

sets the option slack positive for the singly bounded variables and the option slack one for the doubly
bounded variables resulting in the model

min
x1,x2,y1,y2,w1,w2

x1 + x2

subject to x2
1 + x2

2 ≤ 1
w1 = x1 − y1 + y2 − 1, w1 ≥ 0, y1 ≥ 0

w1y1 = µ1

w2 = x2 + y2, y2 ∈ [−1, 1], (y2 + 1)w2 ≤ µ2, (y2 − 1)w2 ≤ µ2

Additional options such as

initmu 1.0 3.0

numsolves 2

updatefac 0.1 0.2

allow the values of µ for the singly and doubly bounded variables to be controlled separately. In this
case µ1 takes on values of 1, 0.1 and 0.01, while µ2 takes on values 3.0, 0.6 and 0.12 in each of the three
nonlinear programming models generated.

5.28.3.2 NCP functions

An NCP-function is a function φ(r, s) with the following property:

φ(r, s) = 0⇐⇒ r ≥ 0, s ≥ 0, rs = 0

Clearly, finding a zero of an NCP-function solves a complementarity problem in (r, s). We can replace
the inner products of nonnegative vectors in (7) with a vector of NCP functions whose arguments are
complementary pairs, e.g. (yL − aL)TwL = 0 becomes φ(yi − ai, wi) = 0, i ∈ L and arrive at another
way to treat the complementarity conditions. Note that an NCP function forces both nonnegativity and
complementarity, so constraints to explicitly force nonnegativity are not required, though they can be
included.

Examples of NCP functions include the min function, min(r,s), and the Fischer-Burmeister function

φ(r, s) =
√
r2 + s2 − r − s

There is no requirement that an NCP function be nonnegative everywhere (it may be strictly negative at
some points), so there is little point in setting the option constraint; it will automatically take on the
value constraint equality. NCP functions cannot be aggregated, so the aggregate option will always
be set to none.

Since the arguments to the NCP functions are going to be nonnegative at solution, we cannot use the
functions hi directly in the case of doubly-bounded variables. We must use slacks w − v = hi to separate
hi into its positive and negative parts (but see Section Doubly bounded variables below). The slacks can
be positive or free, since the NCP function will force positivity at solution. For the singly-bounded
variables, slacks are optional, and can also be positive or free.

Both of the NCP functions mentioned above suffer from being non-differentiable at the origin (and at
points where r = s for the min function). Various smoothed NCP-functions have been proposed that
are differentiable. These smooth functions are parameterized by µ, and approach the true NCP-function
as the smoothing parameter approaches zero. For example, the Fischer-Burmeister function includes a
perturbation µ that guarantees differentiability:

φFB(r, s) :=
√
r2 + s2 + 2µ− (r + s). (10)

You can choose these particular NCP functions using option RefType min|FB|fFB. The difference between
the last two is that RefType FB writes out GAMS code to compute the function φFB, while RefType

fFB makes use of the GAMS intrinsic function NCPFB(r,s,mu) that computes φFB internally. In general,
using the GAMS intrinsic function should work better since the intrinsic can guard against overflow, scale
the arguments before computing the function, and use alternative formulas that give more accurate results
for certain input ranges.

As an example, the option file

2430 Solver Manuals

reftype fFB

slack free

initmu 1e-2

generates the reformulation

min
x1,x2,y1,y2,w1,w2,v2

x1 + x2

subject to x2
1 + x2

2 ≤ 1
w1 = x1 − y1 + y2 − 1
φFB(w1, y1, µ) = 0
w2 − v2 = x2 + y2

φFB(y2 + 1, w2, µ) = 0, φFB(1− y2, v2, µ) = 0

with a value of µ = 0.01. Following a path of solutions for decreasing values of µ is possible using the
options discussed above.

Each of the two arguments to the NCP function will be nonnegative at solution, but for each argument we
have the option of including a nonnegativity constraint explicitly as well. This results in the 4 values for
the option NCPBounds none|all|function|variable. When no slacks are present, this option controls
whether to bound the function hi as well as including it in the NCP function, e.g. hi ≥ 0, φ(hi, yi−ai) = 0.
When slacks are present, we require that the slack setting be consistent with the bound setting for the
function argument to the NCP function, where NCPBounds none|variable is consistent with free slack
variables and NCPBounds all|function is consistent with positive slack variables.

Thus, the option file

reftype min

slack positive

NCPBounds function

generates the reformulation

min
x1,x2,y1,y2,w1,w2,v2

x1 + x2

subject to x2
1 + x2

2 ≤ 1
w1 = x1 − y1 + y2 − 1, w1 ≥ 0

min(w1, y1) = µ
w2 − v2 = x2 + y2, w2, v2 ≥ 0

min(y2 + 1, w2) = µ, min(1− y2, v2) = µ

The NCPBounds function option means that the variable argument to the NCP function (in this case
y) does not have its bounds explicitly enforced. It should be noted that this nonlinear program has
nondifferentiable constraints for every value of µ. For this reason, the model is constructed as a dnlp

model (instead of an nlp model) in GAMS.

A smoothed version of the min function was proposed by Chen & Mangasarian:

φCM (r, s) := r − µ log(1 + exp((r − s)/µ)). (11)

This function is not symmetric in its two arguments, so φCM (r, s) 6= φCM (s, r). For this reason, we
distinguish between the two cases. Unlike the Fischer-Burmeister function φFB , φCM is not defined in the
limit (i.e. for µ = 0) if you use GAMS code to compute it. However, the GAMS intrinsic NCPCM(r,s,mu)
handles this limit case internally. The option RefType CMxf|CMfx|fCMxf|fCMfx chooses a reformulation
based on the function φCM . Again, the last two choices use the GAMS intrinsic function.

5.28 NLPEC 2431

Doubly bounded variables

Like the mult reformulation (7), reformulations using NCP functions are appropriate as long as we split
the function hi matching a doubly-bounded variable into its positive and negative parts wi − vi = hi. To
avoid this, Billups has proposed using a composition of NCP functions to treat the doubly-bounded case:

hi ⊥ ai ≤ yi ≤ bi ⇐⇒ φFB(yi − ai, φFB(bi − yi,−hi)) = 0 (12)

Use option RefType Bill|fBill to choose such a reformulation for the doubly-bounded variables. The
first option value writes out the function in explicit GAMS code, while the second writes it out using the
GAMS intrinsic function NCPFB.

5.28.3.3 Penalty functions

All of the reformulations discussed so far have reformulated the complementarity conditions as constraints.
It is also possible to treat these by moving them into the objective function with a penalty parameter 1/µ:
as µ goes to zero, the relative weight placed on complementarity increases. Ignoring the NLP constraints,
we can rewrite the original MPEC problem as

min
x∈Rn,y∈Rm

f(x, y) +
1

µ
((yL − aL)TwL + (bU − yU)T vU + (yB − aB)TwB + (bB − yB)T vB) (13)

subject to the constraints

g(x, y) ≤ 0
wL = hL(x, y), aL ≤ yL, wL ≥ 0
vU = −hU (x, y), yU ≤ bU , vU ≥ 0

wB − vB = hB(x, y) aB ≤ yB ≤ bB, wB ≥ 0, vB ≥ 0

(14)

Choose this treatment using option refType penalty. The options aggregate and constraint are
ignored, since the inner products here are all aggregated and there are no relevant constraints. It is
possible to do a similar reformulation without using slacks, so the options slack none|positive can be
used in conjunction with this reformulation type.

The following option file shows the use of the penalty reformulation, but also indicates how to use a
different reformulation for the singly and doubly bounded variables:

reftype penalty mult

slack none *

initmu 1.0

numsolves 2

updatefac 0.1 0.2

The ”∗” value allows the slack option to take on its existing value, in this case positive. Applied to our
simple example given above, such an option file generates the nonlinear programming model:

min
x1,x2,y1,y2,w2,v2

x1 + x2 + 1
µ1
y1(x1 − y1 + y2 − 1)

subject to x2
1 + x2

2 ≤ 1
x1 − y1 + y2 − 1 ≥ 0, y1 ≥ 0

w2 − v2 = x2 + y2, w2, v2 ≥ 0, y2 ∈ [−1, 1]
(y2 + 1)w2 ≤ µ2, (1− y2)v2 ≤ µ2

The penalty parameter µ1 is controlled separately from the doubly bounded constraint parameter µ2.
For consistency with other options, the penalty parameter in the objective is 1/µ meaning that as µ1

tends to zero, the penalty increases. The option initmu has only one value, so both the singly and doubly
bounded µ values are initialized to 1. In the above example, three solves are performed with µ1 = 1, 0.1
and 0.01 and µ2 = 1, 0.2 and 0.04.

2432 Solver Manuals

5.28.3.4 Testing for complementarity

In some cases a solution to the reformulated model may not satisfy the complementarity constraints of the
original MPEC, e.g. if a large penalty parameter is used in the reformulation. It can also happen that the
solution tolerances used in the NLP solver allow solutions with small error in the NLP model but large
error in the original MPEC. For example if x = f(x) = .001 then the NLP constraint xf(x) = 0 may satisfy
the NLP feasibility tolerance but it's not so easy to claim that either x or f(x) is zero. The NLPEC solver
includes a check that the proposed solution does in fact satisfy the complementarity constraints. The
complementarity gap is computed using the definition common to all GAMS MCP solvers in computing
the objval model attribute for an MCP model. The tolerance used for this complementarity gap can be
adjusted using the testtol option.

5.28.4 Options

For details on how to create and use an option file, see the introductory chapter on solver usage.

For most GAMS solvers, the use of an options file is discouraged, at least for those unfamiliar with the
solver. For NLPEC, however, we expect that most users will want to use an options file from the very
beginning. NLPEC is as much a tool for experimentation as it is a solver, and as such use of the options
file is encouraged.

Option values can take many different types (e.g. strings, integers, or reals). Perhaps the most important
option to remember is one with no value at all: the help option. Help prints a list of the available options,
along with their possible values and some helpful text. The options file is read sequentially, so in case an
option value is set twice, the latter value takes precedence. However, any consistency checks performed
on the options values (e.g. RefType fBill cannot be used with aggregate full) are made after the
entire options file is read in, so the order in which different options appear is not important, provided the
options are not specified twice.

5.28.4.1 Setting the Reformulation Options

While NLPEC has many options, there is a small set of five options that, taken together, serve to define the
type of reformulation used. Listed in order of importance (highest priority items first), these reformulation
options are the RefType, slack, constraint, aggregate and NCPBounds options. In some cases, setting
the highest-priority option RefType is enough to completely define a reformulation (e.g. RefType penalty

in the case of doubly-bounded variables). In most cases though, the lower-priority options play a role in
defining or modifying a reformulation. It's useful to consider the reformulation options in priority order
when creating option files to define reformulations.

Some of the combinations of the reformulation options don't make sense. For example, the use of an
NCP function to force complementarity between its two input arguments requires a separate function
for each complementary pair, so setting both RefType min and aggregate full is inconsistent. NLPEC
implements consistency checks on the reformulation options using the priority order: Given a consistent
setting of the higher priority options, the next-highest priority option is checked and, if necessary, reset to
be consistent with the items of higher priority. The end result is a set of consistent options that will result
in a working reformulation. NLPEC prints out the pre- and post-checked sets of reformulation options, as
well as warning messages about changes made. In case you want to use an option that NLPEC doesn't
think is consistent, you can use the NoCheck option: this supresses the consistency checks.

Each of the reformulation options in the table below takes two values - one for the singly-bounded variables
in L ∪ U and another for the doubly-bounded variables in B. If one option value appears, it sets both
option values. When setting both option values, use an asterisk ”∗” to indicate no change. So for example,
an option file

RefType fCMxf

RefType * fBill

first sets the RefType to fCMxf for all variable types, and then resets the RefType to fBill for doubly-
bounded variables.

5.28 NLPEC 2433

5.28.4.2 Reformulation Options

Option Description Default

aggregate
controls constraint aggregation
Determines if certain constraints are aggregated or not. E.g. to force w >=
0 and y >= 0 to be complementary we can write either w∧T y <= 0 or
w i∧T y i <= 0, for all i.
none: use no aggregation
partial: aggregate doubly-bounded variables separately from others
full: use maximum aggregation possible

none

constraint
controls use of equality/inequality
Determines if certain constraints are written down using equalities or
inequalities. E.g. to force w >= 0 and y >= 0 to be complementary we
can write either w∧T y <= 0 or w∧T y = 0. This option only plays a role
when bounding a quantity whose sign cannot be both positive and negative
and which must be 0 at a solution.
equality: use =E= constraints
inequality: use =L= constraints

equality

NCPBounds
sets explicit bounds on arguments of NCP functions
Determines which of the two arguments to an NCP function Phi(r,s) are
explicitly constrained to be nonnegative. The explicit constraints are in
addition to those imposed by the constraint Phi(r,s) = 0, which implies
nonnegativity of r and s.
none: no explicit bounds
function: explicit bound on function/slack argument
variable: explicit bound on variable argument
all: explicit bound on both function and variable arguments

none

refType
reformulation type
Determines the type of reformulation used. Our notation and descriptions
are taken from a special case of the MPEC, the NCP: find x >= 0, f(x)

>= 0, x∧T f(x) = 0.
mult: inner product <x,f> = 0
min: NCP function min(x,f)
CMxf: Chen-Mangasarian NCP function, explicit
CMfx: Chen-Mangasarian NCP function, explicit
fCMxf: Chen-Mangasarian NCP function, intrinsic
fCMfx: Chen-Mangasarian NCP function, intrinsic
FB: Fischer-Burmeister NCP function, explicit
fFB: Fischer-Burmeister NCP function, intrinsic
FB neg: Fischer-Burmeister NCP function negated, explicit
fFB neg: Fischer-Burmeister NCP function negated, intrinsic
Bill: Billups function for doubly-bounded variables, explicit
fBill: Billups function for doubly-bounded variables, intrinsic
penalty: weighted penalization of non-complementarity in objective
median: median function for doubly-bounded variables, explicit
fVUsin: Veelken-Ulbrich NCP function (smoothed min), intrinsic
fVUpow: Veelken-Ulbrich NCP function (smoothed min), intrinsic

mult

slack
control use of slacks for function values
Determines if slacks are used to treat the functions h i. For single-bounded
variables, we use at most one slack (either free or positive) for each h i.
For doubly-bounded variables, we can have no slacks, one slack (necessarily
free), or two slacks (either free or positive) for each h i.
none: no slacks will be used
free: free slacks will be used
positive: non-negative slacks will be used
one: one free slack will be used for each h i in the doubly bounded case

positive

2434 Solver Manuals

5.28.4.3 General Options

Option Description Default

allSolves
do all solves in a loop regardless of previous failure
In case multiple (looped) solves are specified, the default is to skip subse-
quent solves when any solve terminates without getting a solution. Setting
this flag removes the check and all solves are done, regardless of previous
failures.

0

dotGams
name of gams source file for scalar model auto

dumpValid
dump valid reformulation options to a GDX file and exit 0

equReform
outdated and deprecated
Range: {0, ..., 33}

0

finalMu
final value of parameter mu
If specified, an extra solve is carried out with mu set to this value. Can be
set independently for singly and doubly bounded variables.

none

initMu
initial value of parameter mu
A single solve of the nonlinear program is carried out for this value. Note
that mu must be positive for some settings of reftype, e.g. penalty. Can
be set independently for singly and doubly bounded variables.

0

initSLo
lower bound for artificials added to the problem
Range: [-∞, ∞]

0

initSUp
upper bound for artificials added to the problem
Range: [-∞, ∞]

+inf

noCheck
do not check consistency of reformulation options 0

numSolves
number of looped solves
This should be set in conjunction with the updateFac option, so that the
mu values are lowered successively.

0

parmFile
extra GAMS options for running scalar model

subSolver
controls what subsolver to run
If this option is not specified, the usual GAMS rules for selecting the solver
to run are used.

auto

subSolverOpt
optfile value to pass to the subsolver 0

terminate
terminate after generating scalar GAMS source code 0

testTol
tolerance for complementarity check in MPEC/MCP 1e-005

updateFac
update factor for mu
The factor that multiplies mu before each of the extra solves triggered by
the numsolves option. Can be set independently for singly and doubly
bounded variables.
Range: [1e-280, 1.0]

1e-1

5.28.4.4 The Outdated equreform Option

In the early versions of NLPEC the only way to set the reform type was via the equreform op-
tion. Each valid equreform value represented a preselected combination of the options from Section
Setting the Reformulation Options. This made it difficult to experiment with combinations not prese-
lected, so the options in Section Setting the Reformulation Options were added. Be default, the equreform
option has value 0 and is not used. To get the old behavior, set equreform to a positive value - this
will force the options in Section Setting the Reformulation Options to be ignored. The general options
in Section General Options are used no matter how the reformulation type is selected - via RefType or
equreform.

5.28 NLPEC 2435

Option Description Default

equreform Old way to set the type of reformulation used. 0

The values allowed for equreform and their implications are given by the following table.

5.28.5 Open Architecture

In this section we describe the architecture of the NLPEC solver, i.e. the way the solver is put together.
This should be useful to anybody using NLPEC for experiments or to those wanting to know the details
of how NLPEC works.

The foundation for the NLPEC solver is the software library (also used in the GAMS/CONVERT solver)
that allows us to write out a scalar GAMS model that is mathematically equivalent to the original, or

2436 Solver Manuals

to write out selected pieces of such a model. Using this software, NLPEC creates a GAMS NLP model
using one of the reformulation strategies from Section Reformulation. This model may contain many new
variables and/or equations, but it will surely contain the (non)linear expressions defining the original
model as well. Once the scalar model has been created, NLPEC calls GAMS to solve this model, using
the current NLP solver. The option parmFile can be used to pass on additional options to this GAMS
job. After the model has solved, NLPEC reads the NLP solution, extracts the MPEC solution from it,
and passes this MPEC solution back to GAMS as it terminates.

There are a number of advantages to this architecture. First, its openness makes it easy to see exactly
what reformulation is being done. The intermediate scalar GAMS NLP model can be made available
after the run by either saving the scratch directory (i.e. run with keep=1) or using the dotGams option
to select an alternate file name. This intermediate model contains all the details of the reformulation.
It can be used for debugging in case things didn't work out as expected. It is also possible to modify
this file to do some quick and dirty experiments with similar reformulation strategies. Another advantage
is the variety of NLP solvers that can be plugged in to solve the reformulated model. There is no need
to program (and debug) an interface to an NLP package to run experiments with an NLP solver - the
existing GAMS link is all that is needed. It is also easy to experiment with non-default solver options
that may be more appropriate for reformulated MPEC models or for a particular choice of reformulation.

5.29 ODHCPLEX

5.29.1 Introduction

GAMS/ODHCPLEX is a solver from Optimization Direct Inc. that implements a set of heuristic methods
(named ODHeuristics) for finding feasible solutions to Mixed Integer Programming (MIP and MIQCP)
models that uses IBM CPLEX as its underlying solver engine. It is designed for large-scale models which
a MIP solver would find intractable: either by it being unable to find feasible solutions at all or; more
usually, by being unable to find feasible solutions of adequate quality in the time available to its user.

It is intended for users who are familiar with MIP modelling and have some knowledge of using the
GAMS/CPLEX solver. GAMS/ODHCPLEX does not demand expert specialism in this field.

ODHCPLEX can be used in two ways: it is implemented as a stand-alone ODHeuristic engine, which can
be used on its own (ODHeuristicMethod=STANDALONE); and also within the CPLEX optimizer, within
which it can supply and receive solutions from the main CPLEX caller (ODHeuristicMethod=ODH-CPLEX
(default)) thereby accelerating optimization compared with GAMS/CPLEX run on its own.

The ODHeuristic engine has a heuristic method for finding an initial feasible solution that it designed to
complement, those of CPLEX. Since its main algorithmic procedure works by improving an incumbent
feasible solution, getting an initial one is important and may consume a significant part of its total
runtime. When used on its own (i.e. ODHeuristicMethod=STANDALONE), users should experiment
to discover whether ODHeuristics' or CPLEX's initial feasible solution methods work best, but within
ODH-CPLEX (i.e. ODHeuristicMethod=ODH-CPLEX) both methods are run in parallel and the winner
is chosen automatically.

ODHeuristics' principal algorithm works by solving a sequence of sub-models. An innovative aspect of
this process is its ability to use the model's symbolic structure to achieve the sub-model decomposition.
It does this by analyzing the symbolic names that the user gives to the decision variables and careful
specification of how this should be done this is worthwhile. ODHCPLEX can work without this analysis,
but it usually takes about twice as much runtime.

5.29 ODHCPLEX 2437

5.29.2 Specifying Model Structure

The ODHeuristic method needs to break the model down into sub-models. It can do this in one of three
ways:

1. Automatically using its decomposition heuristic;

2. Using information specified by the user in the IndexKey parameter;

3. By simply assigning each variable to a different block (or key); or

4. By using the dot option notatation with the option .key.

By default, the program will use information specified by the IndexKey parameter if it is set and its
automatic decomposition heuristic otherwise. This may be overridden by the Decomposition parameter.
If it is set to 0 (zero), option 3 above is selected. If it is set to 1, its automatic decomposition method is
used, and if it is set to 2, option 4 above is selected.

Whilst the automatic decomposition method often works well, there may be an advantage to specifying
decomposition through the IndexKey parameter. After performing the decomposition in whatever way,
the program analyses the decomposition and displays statistics showing the maximum and minimum
number of variables in each key or block and showing a percentage score to the decomposition as a whole.
A typical display is of the form:

Variables/key 205.58 (+/-304.79), max/min variables/key 933(32) / 60(113).

There are 227 keys (4149 keys were dropped) with 46872 values.

Decomposition score 13.66%, graph score 2074/3135232.

Other things (such as the distribution of variables in keys and the number of keys) being equal, the smaller
the percentage decomposition score, the better the decomposition is and the more effective the program
will be.

5.29.2.1 Using the IndexKey parameter

The program needs to associate sets of variables with distinct values of a single index. The user can specify
this association with a pattern to which some or all of the variables conform. The pattern is in standard
C scanf format (see, for example, Kernighan and Ritchie's 2nd edition of The C Programming Language,
section B1.3 Formatted Input). Currently allowable index values must be non-negative integers, so the
pattern must include d. For example, if we have variables x whose first index names starts with a number
of letters then an underscore followed by a numeric index value (like x(firstone 1), x(another 1),
x(firstone 2), x(another 2), ..) the pattern

x(%*[a-z]_%d)

associates those variables whose name ends in 1 with index value 1, those whose name ends in 2 with
index value 2 and so on. The pattern is called an index key referred to by the program as the option
parameter IndexKey, for example

IndexKey=%*[xy](t_%d)

2438 Solver Manuals

It may, however, be desirable to consider variables whose names are, say, x(t 2) and y(t 2), to belong
to different index values, i.e. to belong to different groups. One way of doing this is to identify them
with separate index keys. These can be supplied to IndexKey as two fields separated by a semi-colon, for
example

IndexKey=x(t_%d);y(t_%d)

Up to 10 fields can be specified in this way.

On the other hand, it may be desirable to consider such variables as having the same index key and their
nomenclature may not permit their identification by a single key field. For example, suppose there are
variables john(t 1), john(t 2),.., jane(t 1), jane(t 2),.. and johnny(t 1), johnny(t 2),.. and we
want to associate john(t x) and jane(t x) as belonging to key value x, but want to ignore johnny(t x).

Two key fields can be used to do this by

INDEXKEY=john(t_%d);jane(t_%d)

By default john(t 2) and jane(t 2) would not share the same index value, but if the option parameter
KeyType, is set to 1, the heuristic will group them together so as to share the same index.

If IndexKey is not specified, the program uses a default decomposition.

The program divides the model up into parts associated with different values of the IndexKey (if specified),
using an integer interval divisor. Initially this is a number not less than 2 and it is increased as the
search progresses. When no improved solution is found after a number, MaxRepeat, of attempts with
the maximum interval divisor, MaxInterDiv, the program terminates. Default values are provided for
MaxRepeat and MaxInterDiv, so these do not have to be specified by the user.

5.29.3 Heuristic Parameters

There are a number of other parameters which control the behaviour of the heuristic program. These
may be left at their default values or specified on the GAMS/ODHCPLEX option file. In addition, many
GAMS/CPLEX options can be supplied in the GAMS/ODHCPLEX option file to tweak the CPLEX
behavior, see tables below. Note however that - although they can be technically set - these GAMS/CPLEX
options may not have any influence on a GAMS/ODHCPLEX solve. For detailed descriptions of the
GAMS/CPLEX options, see Detailed Descriptions of CPLEX Options.

Parameter names and their meanings are summarized in the table below.

5.29.3.1 GAMS/ODHCPLEX: General Options

Option Description Default

addcuts
Indicator for adding cuts from CPLEX master solve 2

cpxpresolve
Applies CPLEX presolve to full model 0

decompdensity
Matrix density above which automatic decomposition assigns
each variable to a separate key

0.3

decomposition
Model decomposition method. -1

deterministic
Specifies whether the solution improvement heuristic is run in
deterministic or opportunistic (i.e. non-deterministic) mode

1

5.29 ODHCPLEX 2439

Option Description Default

divisor
Initial divisor for sub models automatic

dynamicsearch
Search strategy for CPLEX caller and sub-model solves -1

extracplexlog
Write addition CPLEX output to log 0

feastol
Feasibility tolerance 1e-6

firstfeas
Use first feasible heuristic for finding an initial feasible solution -1

firstfeascontinue
Whether first feasible heuristic continues when it achieves feasi-
bility

0

firstfeaseffort
Effort limit on first feasible heuristic -500

firstfeaslpitlim
Limit on number of relaxed re-solves in first feasible heuristic 10

firstfeasrelaxcrit
Smallest sum of infeasibilites/row where relaxed solution used 0.01

firstfeasshift
First feasible heuristic variable shifting in found solutions 0

globalbounds
Use of global bounds from CPLEX caller 2

ignoresetslvrparams
Flag to control whether solver parameters can be dynamically
altered by ODH

0

indexkey
Pattern used to match variable names for grouping into sub-
models discussed above

integeronly
Variables to include in INDEXKEY -1

integertol
Integrality tolerance for variable values 1e-5

interdiv
Initial divisor value 4

.key
Variable block or key number 0

keypartition
Use of solver partition information 0

keysminimum
Minimum number of keys that the automatic decomposition
method attempts to find

512

keytype
Treatment of multiple INDEXKEYs 0

localsearch
Indicator for local search heuristic 1

loosefeastol
Loose feasibility tolerance 1e-5

maxbacktrack
The maximum number of backtracks permitted in sub-model
solves

-1

maxbound
The largest(smallest) non infinite bound value ODH will accept
for upper(lower) bounds

1e+9

maxinfrepeat
Maximum divisor value when solution is infeasible 0

maxinterdiv
Maximum divisor value 0

maxrepeat
Maximum number of sub-model repeat solves for each divisor
value

0

objtarget
Target objective value 0

objthreshold
Threshold for absolute value of objective coefficients 1e99

odheuristicmethod
ODHeuristic method section ODH-CPLEX

odhfeasopt
Optimization method for sub-models in phaseI 0

2440 Solver Manuals

Option Description Default

odhthreads
The number of heuristic threads used by ODH-CPLEX or STAN-
DALONE

-1

odhtimelimit
Elapsed time limit in seconds GAMS ResLim

penalty
The objective function coefficient value for penalties -1

penperturb
Perturbation tolerance for penalties coefficients 0

phase12
Specifies whether to use a phaseI/phaseII method to remove
infeasibilities

1

processorlock
Thread allocation 0

quickfirstsolve
Accelerate initial CPLEX solve 0

recurse Recurse using heuristic to solve sub-models when a feasible
solution has been obtained

0

recursedecomp
Recursed model decomposition method 0

recurseiterlim
Recursed heuristic iteration limit for sub-solves 40

recurselog
Write thread log files for recursed sub-solves 0

recurseminiterlim
Recursed heuristic minimum iterations before a solution is found
in sub-solves

10

recursesoliterlim
Recursed heuristic sub-solves quit after these iterations if a
solution is found

maxint

rejectinfsol
Reject infeasible solutions to sub-models 2

relaxsos2
Treatment of SOS2 members 1

seed
Initial random number seed 12345

sosfind
Automatic detection of Special Ordered Sets (SOSs) 0

sosinkey
Assign each SOS to its own sub-model component (key) 0

sosmember
Automatically detect SOSs whose variable member names match
this pattern

sosovar Automatically detect SOSs whose output variable name matches
this pattern

sosselect
Select sub-set of SOS members

sosselect16
Select sub-set of SOS members for sets with 16 or fewer members
only

soswvar Automatically detect SOSs whose input(weight) variable name
matches this pattern

strategy
ODH-Cplex Strategy 1

strictdeterministic
Terminate ODH deterministically when improvement heuristic
finishes

0

subcheckfreq
Frequency with which sub-model LPs are interrupted for mutual
communication

10

subnodelimit
Node limit for submodel searches -1

suborder
Use of priority order in sub-solves 1

sub cpx threads
Threads availble for the solves within ODHeuristic 1

syncfreq
Thread synchronization frequency in deterministic parallel mode 1

5.29 ODHCPLEX 2441

Option Description Default

threadlog
Write thread log files 0

threadzerosync
Which CPLEX threads to use for synchronization 0

tightenprebounds
Level of bound tightening in ODH presolved model 1

trialbound
Trial bound heuristic 0

trialboundfile
The trial bound file

trialboundsetsize
Size adjustment to automatically generated trial bound sets 0

usehistory
Use of past sub-model selections in current selection -1

varcleanlpmethod
Method used to solve variable cleaning LPs -1

variableclean
Clean variable values from sub-models 1

zerotol
Zero tolerance for variable values 1e-9

5.29.3.2 GAMS/CPLEX: Preprocessing and General Options

Option Description Default

advind
advanced basis use 1

aggfill
aggregator fill parameter 10

aggind
aggregator on/off -1

calcqcpduals
calculate the dual values of a quadratically constrained problem 1

clocktype
clock type for computation time 2

coeredind
coefficient reduction on/off -1

cpumask
switch and mask to bind threads to processors (Linux only) auto

cutoff
GMO cutoff 0.0

datacheck
controls data consistency checking and modeling assistance 0

depind
dependency checker on/off -1

dettilim
deterministic time limit 1.0e+75

domlim
domain violation number 0

eprelax
relaxation for feasOpt 1.0e-06

feasoptmode
mode of FeasOpt 0

fixoptfile
name of option file which is read just before solving the fixed
problem

folding
LP folding will be attempted during the preprocessing phase -1

freegamsmodel
preserves memory by dumping the GAMS model instance represen-
tation temporarily to disk

0

indicoptstrict
abort in case of an error in indicator constraint in solver option file 1

lpmethod
algorithm to be used for LP problems 0

2442 Solver Manuals

Option Description Default

memoryemphasis
reduces use of memory 0

multobjdisplay
level of display during multiobjective optimization 1

names load GAMS names into Cplex 1

numericalemphasis
emphasizes precision in numerically unstable or difficult problems 0

optimalitytarget
type of optimality that Cplex targets 0

parallelmode
parallel optimization mode 0

paramdisplay
display the nondefault parameters before optimization 1

predual
give dual problem to the optimizer 0

preind
turn presolver on/off 1

prelinear
linear reduction indicator 1

prepass number of presolve applications to perform -1

prereform
set presolve reformulations 3

printoptions
list values of all options to GAMS listing file 0

qextractalg
quadratic extraction algorithm in GAMS interface 0

qpmethod
algorithm to be used for QP problems 0

qtolin
linearization of the quadratic terms in the objective function of a
QP or MIQP model

-1

randomseed
sets the random seed differently for diversity of solutions 202009243

record
Records invocations of Callable Library routines 0

reduce
primal and dual reduction type 3

relaxfixedinfeas
accept small infeasibilties in the solve of the fixed problem 0

relaxpreind
presolve for initial relaxation on/off -1

rerun rerun problem if presolve infeasible or unbounded nono

scaind
matrix scaling on/off 0

solutiontype
type of solution (basic or non basic) for an LP or QP 0

threads
global default thread count 0

tilim
overrides the GAMS ResLim option 1.0e+75

tryint
GMO tryint 0.0

tuningdettilim
tuning deterministic time limit per model or suite 1.0e+75

tuningdisplay
level of information reported by the tuning tool 1

tuningmeasure
measure for evaluating progress for a suite of models 1

tuningrepeat
number of times tuning is to be repeated on perturbed versions 1

tuningtilim
tuning time limit per model or suite 1.0e+75

usebasis
GMO usebasis 0

5.29 ODHCPLEX 2443

Option Description Default

warninglimit
determines how many times warnings of a specific type (dat-
acheck=2) will be displayed

10

workdir
directory for working files .

workmem
memory available for working storage 2048.0

5.29.3.3 GAMS/CPLEX: Simplex Algorithmic Options

Option Description Default

conflictalg
algorithm CPLEX uses in the conflict refiner to discover a minimal set of
conflicting constraints in an infeasible model

0

conflictdisplay
decides how much information CPLEX reports when the conflict refiner
is working

1

craind
crash strategy (used to obtain starting basis) 1

dpriind
dual simplex pricing 0

dynamicrows
switch for dynamic management of rows -1

epper perturbation constant 1.0e-06

netfind
attempt network extraction 2

netppriind
network simplex pricing 0

perind
force initial perturbation 0

perlim
number of stalled iterations before perturbation 0

ppriind
primal simplex pricing 0

pricelim
pricing candidate list 0

reinv
refactorization frequency 0

sifting
switch for sifting from simplex optimization 1

5.29.3.4 GAMS/CPLEX: Simplex Limit Options

Option Description Default

itlim
iteration limit 2147483647

netitlim
iteration limit for network simplex 2147483647

objllim
objective function lower limit -1.0e+75

objulim
objective function upper limit 1.0e+75

singlim
limit on singularity repairs 10

5.29.3.5 GAMS/CPLEX: Simplex Tolerance Options

2444 Solver Manuals

Option Description Default

epmrk
Markowitz pivot tolerance 0.01

epopt
optimality tolerance 1.0e-06

eprhs
feasibility tolerance 1.0e-06

netepopt
optimality tolerance for the network simplex method 1.0e-06

neteprhs
feasibility tolerance for the network simplex method 1.0e-06

5.29.3.6 GAMS/CPLEX: Barrier Specific Options

Option Description Default

baralg
algorithm selection 0

barcolnz
dense column handling 0

barcrossalg
barrier crossover method 0

barepcomp
convergence tolerance 1.0e-08

bargrowth
unbounded face detection 1.0e+12

baritlim
iteration limit 2147483647

barmaxcor
maximum correction limit -1

barobjrng
maximum objective function 1.0e+20

barorder
row ordering algorithm selection 0

barqcpepcomp
convergence tolerance for the barrier optimizer for QCPs 1.0e-07

barstartalg
barrier starting point algorithm 1

5.29.3.7 GAMS/CPLEX: Sifting Specific Options

Option Description Default

siftalg
sifting subproblem algorithm 0

siftitlim
limit on sifting iterations 2147483647

5.29.3.8 GAMS/CPLEX: MIP Algorithmic Options

Option Description Default

bbinterval
best bound interval 7

bendersstrategy
Benders decomposition algorithm as a strategy 0

bndstrenind
bound strengthening -1

bqpcuts
boolean quadric polytope cuts for nonconvex QP or MIQP solved to
global optimality

0

5.29 ODHCPLEX 2445

Option Description Default

brdir
set branching direction 0

bttol
backtracking limit 1.0

cliques
clique cut generation 0

covers cover cut generation 0

cutlo
lower cutoff for tree search -1.0e+75

cuts
default cut generation 0

cutsfactor
cut limit -1.0

cutup
upper cutoff for tree search 1.0e+75

disjcuts
disjunctive cuts generation 0

divetype
MIP dive strategy 0

eachcutlim
sets a limit for each type of cut 2100000000

flowcovers
flow cover cut generation 0

flowpaths
flow path cut generation 0

fpheur
feasibility pump heuristic 0

fraccuts
Gomory fractional cut generation 0

gubcovers
GUB cover cut generation 0

heurfreq
heuristic frequency 0

heuristiceffort
the effort that CPLEX spends on heuristics during a MIP solve 1.0

implbd
implied bound cut generation 0

.lazy
Lazy constraints activation 0

lazyconstraints
Indicator to use lazy constraints 0

lbheur
local branching heuristic 0

liftprojcuts
lift-and-project cuts 0

localimplied
generation of locally valid implied bound cuts 0

mcfcuts
multi-commodity flow cut generation 0

mipemphasis
MIP solution tactics 0

mipkappastats
MIP kappa computation 0

mipordind
priority list on/off 1

mipordtype
priority order generation 0

mipsearch
search strategy for mixed integer programs 0

mipstart
use mip starting values 0

miqcpstrat
MIQCP relaxation choice 0

mircuts
mixed integer rounding cut generation 0

2446 Solver Manuals

Option Description Default

multimipstart
use multiple mipstarts provided via gdx files

nodecuts
decide whether or not cutting planes are separated at the nodes of
the branch-and-bound tree

0

nodefileind
node storage file indicator 1

nodesel
node selection strategy 1

preslvnd
node presolve selector 0

probe
perform probing before solving a MIP 0

qpmakepsdind
adjust MIQP formulation to make the quadratic matrix positive-
semi-definite

1

repeatpresolve
reapply presolve at root after preprocessing -1

rinsheur
relaxation induced neighborhood search frequency 0

rltcuts
Reformulation Linearization Technique (RLT) cuts 0

solvefinal
switch to solve the problem with fixed discrete variables 1

sos1reform
automatic logarithmic reformulation of special ordered sets of type 1
(SOS1)

0

sos2reform
automatic logarithmic reformulation of special ordered sets of type 2
(SOS2)

0

startalg
MIP starting algorithm 0

strongcandlim
size of the candidates list for strong branching 10

strongitlim
limit on iterations per branch for strong branching 0

subalg
algorithm for subproblems 0

submipnodelim
limit on number of nodes in an RINS subMIP 500

submipscale
scale the problem matrix when CPLEX solves a subMIP during MIP
optimization

0

submipstartalg
starting algorithm for a subMIP of a MIP 0

submipsubalg
algorithm for subproblems of a subMIP of a MIP 0

symmetry
symmetry breaking cuts -1

varsel
variable selection strategy at each node 0

workeralgorithm
set method for optimizing benders subproblems 0

zerohalfcuts
zero-half cuts 0

5.29.3.9 GAMS/CPLEX: MIP Limit Options

Option Description Default

aggcutlim
aggregation limit for cut generation 3

auxrootthreads
number of threads for auxiliary tasks at the root node 0

cutpass
maximum number of cutting plane passes 0

5.29 ODHCPLEX 2447

Option Description Default

fraccand
candidate limit for generating Gomory fractional cuts 200

fracpass
maximum number of passes for generating Gomory fractional cuts 0

intsollim
maximum number of integer solutions 2147483647

nodelim
maximum number of nodes to solve 2147483647

polishafterdettime
deterministic time before starting to polish a feasible solution 1.0e+75

polishafterepagap
absolute MIP gap before starting to polish a feasible solution 0.0

polishafterepgap
relative MIP gap before starting to polish a solution 0.0

polishafterintsol
MIP integer solutions to find before starting to polish a feasible
solution

2147483647

polishafternode
nodes to process before starting to polish a feasible solution 2147483647

polishaftertime
time before starting to polish a feasible solution 1.0e+75

probedettime
deterministic time spent probing 1.0e+75

probetime
time spent probing 1.0e+75

repairtries
try to repair infeasible MIP start 0

trelim
maximum space in memory for tree 1.0e+75

5.29.3.10 GAMS/CPLEX: MIP Solution Pool Options

Option Description Default

.divflt
solution pool range filter coefficients 0

divfltlo
lower bound on diversity mindouble

divfltup
upper bound on diversity maxdouble

populatelim
limit of solutions generated for the solution pool by populate method 20

readflt
reads Cplex solution pool filter file

solnpool
solution pool file name

solnpoolagap
absolute tolerance for the solutions in the solution pool 1.0e+75

solnpoolcapacity
limits of solutions kept in the solution pool 2100000000

solnpoolgap
relative tolerance for the solutions in the solution pool 1.0e+75

solnpoolintensity
solution pool intensity for ability to produce multiple solutions 0

solnpoolmerge
solution pool file name for merged solutions

solnpoolnumsym
maximum number of variable symbols when writing merged solutions 10

solnpoolprefix
file name prefix for GDX solution files soln

solnpoolreplace
strategy for replacing a solution in the solution pool 0

2448 Solver Manuals

5.29.3.11 GAMS/CPLEX: MIP Tolerance Options

Option Description Default

bendersfeascuttol
Tolerance for whether a feasibility cut has been violated in Benders
decomposition

1.0e-06

bendersoptcuttol
Tolerance for optimality cuts in Benders decomposition 1.0e-06

epagap absolute stopping tolerance 1.0e-06

epgap relative stopping tolerance 1.0e-04

epint
integrality tolerance 1.0e-05

eplin
degree of tolerance used in linearization 0.001

objdif
overrides GAMS Cheat parameter 0.0

relobjdif
relative cheat parameter 0.0

5.29.3.12 GAMS/CPLEX: Output Options

Option Description Default

bardisplay
progress display level 1

clonelog
enable clone logs 0

mipdisplay
progress display level 2

mipinterval
progress display interval 0

mpslongnum
MPS file format precision of numeric output 1

netdisplay
network display level 2

quality
write solution quality statistics 0

siftdisplay
sifting display level 1

simdisplay
simplex display level 1

writeannotation
produce a Cplex annotation file

writebas
produce a Cplex basis file

writeflt
produce a Cplex solution pool filter file

writelp
produce a Cplex LP file

writemps
produce a Cplex MPS file

writemst
produce a Cplex mst file

writeord
produce a Cplex ord file

writeparam
produce a Cplex parameter file with all active options

writepre
produce a Cplex LP/MPS/SAV file of the presolved problem

writeprob
produce a Cplex problem file and inferrs the type from the extension

writesav
produce a Cplex binary problem file

5.29 ODHCPLEX 2449

5.29.4 Parallel execution using multiple threads

Both ODHeuristicMethods STANDALONE and ODH-CPLEX can use multiple simultaneous threads. ODH-CPLEX
must use separate threads for the main CPLEX solve and for the ODHeuristics engine. The STANDALONE

just uses the ODHeuristics engine which may use multiple simultaneous threads. Thus the processing
capability of multi-core hardware can be exploited effectively.

GAMS/ODHCPLEX will ignore the GAMS threads parameter and use its own default. The default
ODHeuristic method (i.e. ODH-CPLEX) requires multiple threads to works and with the GAMS threads
default of 1 this will not work.

Whilst there are good defaults for allocating available threads, it may be worthwhile to give some attention
to the allocation of threads between the main CPLEX solver and the ODHeuristics engine for ODH-CPLEX
and STANDALONE.

If the option ODHThreads is set to n, n threads are allocated in total, otherwise the total number of
threads allocated for both ODH-CPLEX and STANDALONE is set to the number of physical processors
available on the computer. If the ODHThreads option is set to a number greater than the number of
available processors, multiple threads will have to share the same processor, which may severely degrade
performance.

In general, the more threads allocated to the main CPLEX solver, the faster it will run, and similarly, the
more allocated to the ODHeuristics engine, the faster it will run. The best balance depends on the model
being solved and whether it is intended to run to optimality or to an optimality gap of (say) 0.05 or 0.1.
If the GAMS/Cplex Threads is not set, ODH-CPLEX defaults to allocating a quarter of the threads to
the ODHeuristics engine and the remainder to the main CPLEX solve. Otherwise it allocates the specified
number of threads to the main CPLEX solver and the remainder to the ODHeuristics engine.

Within the ODHeuristics engine, the principal heuristic algorithm can run in parallel on multiple threads.
Each algorithmic thread uses CPLEX to solve sub-models and each such instance of CPLEX can itself run
on multiple threads. So some attention needs to be given to the allocation of threads between them. If
SUB CPX THREADS is not set, the CPLEX solver will use one thread for each available logical processor
to solve the sub-models. This means that only one thread will be available for the solution improvement
heuristic. If the option SUB CPX THREADS is set, then by default the heuristic engine sets its number
of algorithmic threads to

number_of_available_processors / SUB_CPX_THREADS

where number of available processors is: the number of logical processors for STANDALONE; and for
ODH-CPLEX it is this number less those allocated to the main CPLEX solver.

Many Intel and compatible processors support hyperthreading (where this is enabled on the computer
and operating system) and if so there will be two logical processors for every physical core. Using them
can severely degrade performance, so if they are enabled it is often a good idea to set ODHThreads to
the number of physical processors. Note that on machines with a large number of processors (cores), the
principal bottleneck for large scale optimization is usually memory access. In practice it is often better to
use only about half of the available cores on (say) a 24 core Intel Xeon system. This is model dependent
and some experimentation is worthwhile.

Although the operating system's scheduler usually allocates threads to logical processors so that they
run on separate physical cores where possible, it will have more threads to manage than those of the
heuristic or CPLEX and so will change this allocation as the heuristic and CPLEX run so as to balance
its workload effectively. There is a performance penalty to doing this from the perspective of the heuristic
run time. For the ODHeuristics STANDALONE, this can be avoided by locking the heuristic threads to
specific processors by setting the heuristic option parameter ProcessorLock to 1. It is not supported for
ODH-CPLEX. Under Windows, beware that the threads need to be locked at an above normal priority so
this may have a negative impact on other programs concurrently running on the machine.

2450 Solver Manuals

5.29.5 Determinism

Many users require that repeated runs of their applications under the same conditions give the same
results, albeit in slightly variable times. The heuristic runs in this way by default. However, there is a
performance penalty that has to be paid for synchronizing the threads. On average, performance can be
considerably improved performance at the expense of non-repeatable execution by setting the heuristic
option parameter Deterministic to 0. This is often preferred by users with particularly large and difficult
models.

5.29.6 Detailed Descriptions of ODHCLPEX Options

addcuts (integer): Indicator for adding cuts from CPLEX master solve ←↩

Default: 2

value meaning

0 Do not add cuts

1 Add cuts from CPLEX master solve at root

2 Add cuts from CPLEX master solve at root and in tree

advind (integer): advanced basis use ←↩

Default: 1

aggcutlim (integer): aggregation limit for cut generation ←↩

Default: 3

aggfill (integer): aggregator fill parameter ←↩

Default: 10

aggind (integer): aggregator on/off ←↩

Default: -1

auxrootthreads (integer): number of threads for auxiliary tasks at the root node ←↩

Default: 0

baralg (integer): algorithm selection ←↩

Default: 0

barcolnz (integer): dense column handling ←↩

Default: 0

barcrossalg (integer): barrier crossover method ←↩

Default: 0

bardisplay (integer): progress display level ←↩

Default: 1

5.29 ODHCPLEX 2451

barepcomp (real): convergence tolerance ←↩

Default: 1.0e-08

bargrowth (real): unbounded face detection ←↩

Default: 1.0e+12

baritlim (integer): iteration limit ←↩

Default: 2147483647

barmaxcor (integer): maximum correction limit ←↩

Default: -1

barobjrng (real): maximum objective function ←↩

Default: 1.0e+20

barorder (integer): row ordering algorithm selection ←↩

Default: 0

barqcpepcomp (real): convergence tolerance for the barrier optimizer for QCPs ←↩

Default: 1.0e-07

barstartalg (integer): barrier starting point algorithm ←↩

Default: 1

bbinterval (integer): best bound interval ←↩

Default: 7

bendersfeascuttol (real): Tolerance for whether a feasibility cut has been violated in Benders decompo-
sition ←↩

Default: 1.0e-06

bendersoptcuttol (real): Tolerance for optimality cuts in Benders decomposition ←↩

Default: 1.0e-06

bendersstrategy (integer): Benders decomposition algorithm as a strategy ←↩

Default: 0

bndstrenind (integer): bound strengthening ←↩

Default: -1

bqpcuts (integer): boolean quadric polytope cuts for nonconvex QP or MIQP solved to global optimality
←↩

Default: 0

brdir (integer): set branching direction ←↩

2452 Solver Manuals

Default: 0

bttol (real): backtracking limit ←↩

Default: 1.0

calcqcpduals (integer): calculate the dual values of a quadratically constrained problem ←↩

Default: 1

cliques (integer): clique cut generation ←↩

Default: 0

clocktype (integer): clock type for computation time ←↩

Default: 2

clonelog (integer): enable clone logs ←↩

Default: 0

coeredind (integer): coefficient reduction on/off ←↩

Default: -1

conflictalg (integer): algorithm CPLEX uses in the conflict refiner to discover a minimal set of conflicting
constraints in an infeasible model ←↩

Default: 0

conflictdisplay (integer): decides how much information CPLEX reports when the conflict refiner is
working ←↩

Default: 1

covers (integer): cover cut generation ←↩

Default: 0

cpumask (string): switch and mask to bind threads to processors (Linux only) ←↩

Default: auto

cpxpresolve (integer): Applies CPLEX presolve to full model ←↩

Default: 0

value meaning

-1 Apply only for first feasible heuristic

-2 Do not apply at all

0 Automatically determined

1 Always applied

craind (integer): crash strategy (used to obtain starting basis) ←↩

5.29 ODHCPLEX 2453

Default: 1

cutlo (real): lower cutoff for tree search ←↩

Default: -1.0e+75

cutoff (real): GMO cutoff ←↩

Default: 0.0

cutpass (integer): maximum number of cutting plane passes ←↩

Default: 0

cuts (string): default cut generation ←↩

Default: 0

cutsfactor (real): cut limit ←↩

Default: -1.0

cutup (real): upper cutoff for tree search ←↩

Default: 1.0e+75

datacheck (integer): controls data consistency checking and modeling assistance ←↩

Default: 0

decompdensity (real): Matrix density above which automatic decomposition assigns each variable to a
separate key ←↩

Default: 0.3

decomposition (integer): Model decomposition method. ←↩

Default: -1

value meaning

-1 Automatically determined

0 Assign each variable to a separate key

1 Use automatic decomosition method

2 Use decomposition based on dot option .key

depind (integer): dependency checker on/off ←↩

Default: -1

deterministic (boolean): Specifies whether the solution improvement heuristic is run in deterministic or
opportunistic (i.e. non-deterministic) mode ←↩

Default: 1

2454 Solver Manuals

value meaning

0 Opportunistic

1 Deterministic

dettilim (real): deterministic time limit ←↩

Default: 1.0e+75

disjcuts (integer): disjunctive cuts generation ←↩

Default: 0

divetype (integer): MIP dive strategy ←↩

Default: 0

.divflt (real): solution pool range filter coefficients ←↩

Default: 0

divfltlo (real): lower bound on diversity ←↩

Default: mindouble

divfltup (real): upper bound on diversity ←↩

Default: maxdouble

divisor (integer): Initial divisor for sub models ←↩

Initial sub model size is model size times 1 over Divisor. Ignored if InterDiv is set.

Default: automatic

domlim (integer): domain violation number ←↩

Default: 0

dpriind (integer): dual simplex pricing ←↩

Default: 0

dynamicrows (integer): switch for dynamic management of rows ←↩

Default: -1

dynamicsearch (integer): Search strategy for CPLEX caller and sub-model solves ←↩

Default: -1

value meaning

-1 Automatically determined

0 Use traditional branch & cut

1 Use dynamic search

5.29 ODHCPLEX 2455

eachcutlim (integer): sets a limit for each type of cut ←↩

Default: 2100000000

epagap (real): absolute stopping tolerance ←↩

Synonym: optca

Default: 1.0e-06

epgap (real): relative stopping tolerance ←↩

Synonym: optcr

Default: 1.0e-04

epint (real): integrality tolerance ←↩

Default: 1.0e-05

eplin (real): degree of tolerance used in linearization ←↩

Default: 0.001

epmrk (real): Markowitz pivot tolerance ←↩

Default: 0.01

epopt (real): optimality tolerance ←↩

Default: 1.0e-06

epper (real): perturbation constant ←↩

Default: 1.0e-06

eprelax (real): relaxation for feasOpt ←↩

Default: 1.0e-06

eprhs (real): feasibility tolerance ←↩

Default: 1.0e-06

extracplexlog (boolean): Write addition CPLEX output to log ←↩

Default: 0

value meaning

0 Do not write extra CPLEX informtion

1 Write extra CPLEX information

feasoptmode (integer): mode of FeasOpt ←↩

Default: 0

2456 Solver Manuals

feastol (real): Feasibility tolerance ←↩

Range: [0, 1.0]

Default: 1e-6

firstfeas (integer): Use first feasible heuristic for finding an initial feasible solution ←↩

The default for ODH-CPLEX is 1 while for the heuristic engine the default is -1.

Default: -1

value meaning

-1 Do not use

0 Use if no solution found during initial presolve

1 Always use

firstfeascontinue (integer): Whether first feasible heuristic continues when it achieves feasibility ←↩

Default: 0

value meaning

0 Do not continue

1 Continue

2 Use in sub-model solves

firstfeaseffort (integer): Effort limit on first feasible heuristic ←↩

If the option value is positive the exact value is used as the level of effort. If the value is
negative no more than the absolute value of the option is used as the level of effort. The larger
the effort level, the more effort is expended before giving up.

Default: -500

value meaning

>0 Use this level of effort

<0 Use no more than -firstfeaseffort effort

firstfeaslpitlim (integer): Limit on number of relaxed re-solves in first feasible heuristic ←↩

Default: 10

value meaning

-1 No limit

0 No relaxed re-solves

>0 Limit

firstfeasrelaxcrit (real): Smallest sum of infeasibilites/row where relaxed solution used ←↩

Default: 0.01

firstfeasshift (integer): First feasible heuristic variable shifting in found solutions ←↩

5.29 ODHCPLEX 2457

Default: 0

2458 Solver Manuals

value meaning

0 Do not shift

1 Moderate shifting

2 Aggressive shifting

fixoptfile (string): name of option file which is read just before solving the fixed problem ←↩

flowcovers (integer): flow cover cut generation ←↩

Default: 0

flowpaths (integer): flow path cut generation ←↩

Default: 0

folding (integer): LP folding will be attempted during the preprocessing phase ←↩

Default: -1

fpheur (integer): feasibility pump heuristic ←↩

Default: 0

fraccand (integer): candidate limit for generating Gomory fractional cuts ←↩

Default: 200

fraccuts (integer): Gomory fractional cut generation ←↩

Default: 0

fracpass (integer): maximum number of passes for generating Gomory fractional cuts ←↩

Default: 0

freegamsmodel (boolean): preserves memory by dumping the GAMS model instance representation
temporarily to disk ←↩

Default: 0

globalbounds (integer): Use of global bounds from CPLEX caller ←↩

Default: 2

value meaning

0 Never use

5 Always use

1-4 Intensity of use

gubcovers (integer): GUB cover cut generation ←↩

Default: 0

5.29 ODHCPLEX 2459

heurfreq (integer): heuristic frequency ←↩

Default: 0

heuristiceffort (real): the effort that CPLEX spends on heuristics during a MIP solve ←↩

Default: 1.0

ignoresetslvrparams (boolean): Flag to control whether solver parameters can be dynamically altered
by ODH ←↩

Default: 0

implbd (integer): implied bound cut generation ←↩

Default: 0

indexkey (string): Pattern used to match variable names for grouping into sub-models discussed above
←↩

indicoptstrict (boolean): abort in case of an error in indicator constraint in solver option file ←↩

Default: 1

integeronly (integer): Variables to include in INDEXKEY ←↩

Default: -1

value meaning

-1 Automatically determined

0 All variables

1 Only non-continuous variables

integertol (real): Integrality tolerance for variable values ←↩

Default: 1e-5

interdiv (integer): Initial divisor value ←↩

Default: 4

intsollim (integer): maximum number of integer solutions ←↩

Default: 2147483647

itlim (integer): iteration limit ←↩

Synonym: iterlim

Default: 2147483647

.key (integer): Variable block or key number ←↩

Default: 0

keypartition (integer): Use of solver partition information ←↩

Default: 0

2460 Solver Manuals

value meaning

0 Do not use

1 Use solver partition information to generate keys

2 Use keys to generate sub-solver partition information

keysminimum (integer): Minimum number of keys that the automatic decomposition method attempts
to find ←↩

Default: 512

keytype (boolean): Treatment of multiple INDEXKEYs ←↩

Default: 0

value meaning

0 Considered separately e.g. INDEXKEY=x d;y d means x 2 and y 2 belong to
separate groups

1 Considered together e.g. INDEXKEY=x d;y d means x 2 and y 2 belong to the
same group

.lazy (boolean): Lazy constraints activation ←↩

Default: 0

lazyconstraints (boolean): Indicator to use lazy constraints ←↩

Default: 0

lbheur (boolean): local branching heuristic ←↩

Default: 0

liftprojcuts (integer): lift-and-project cuts ←↩

Default: 0

localimplied (integer): generation of locally valid implied bound cuts ←↩

Default: 0

localsearch (boolean): Indicator for local search heuristic ←↩

Default: 1

loosefeastol (real): Loose feasibility tolerance ←↩

Default: 1e-5

lpmethod (integer): algorithm to be used for LP problems ←↩

Default: 0

maxbacktrack (integer): The maximum number of backtracks permitted in sub-model solves ←↩

Default: -1

5.29 ODHCPLEX 2461

value meaning

-1 Automatically determined

0 Infinite

>0 Use this value if a better solution is available

maxbound (real): The largest(smallest) non infinite bound value ODH will accept for upper(lower)
bounds ←↩

If this value is positive, bounds exceeding MAXBOUND are reduced to MAXBOUND; if this
value is negative, bounds exceeding -MAXBOUND are ignored.

Default: 1e+9

maxinfrepeat (integer): Maximum divisor value when solution is infeasible ←↩

Default: 0

value meaning

0 Automatically determined

>0 Use this value

maxinterdiv (integer): Maximum divisor value ←↩

Default: 0

maxrepeat (integer): Maximum number of sub-model repeat solves for each divisor value ←↩

Default: 0

value meaning

0 Automatically determined

>0 Use this value

mcfcuts (integer): multi-commodity flow cut generation ←↩

Default: 0

memoryemphasis (boolean): reduces use of memory ←↩

Default: 0

mipdisplay (integer): progress display level ←↩

Default: 2

mipemphasis (integer): MIP solution tactics ←↩

Default: 0

mipinterval (integer): progress display interval ←↩

Default: 0

2462 Solver Manuals

mipkappastats (integer): MIP kappa computation ←↩

Default: 0

mipordind (boolean): priority list on/off ←↩

Synonym: prioropt

Default: 1

mipordtype (integer): priority order generation ←↩

Default: 0

mipsearch (integer): search strategy for mixed integer programs ←↩

Default: 0

mipstart (integer): use mip starting values ←↩

Default: 0

miqcpstrat (integer): MIQCP relaxation choice ←↩

Default: 0

mircuts (integer): mixed integer rounding cut generation ←↩

Default: 0

mpslongnum (boolean): MPS file format precision of numeric output ←↩

Default: 1

multimipstart (string): use multiple mipstarts provided via gdx files ←↩

multobjdisplay (integer): level of display during multiobjective optimization ←↩

Default: 1

names (boolean): load GAMS names into Cplex ←↩

Default: 1

netdisplay (integer): network display level ←↩

Default: 2

netepopt (real): optimality tolerance for the network simplex method ←↩

Default: 1.0e-06

neteprhs (real): feasibility tolerance for the network simplex method ←↩

Default: 1.0e-06

netfind (integer): attempt network extraction ←↩

5.29 ODHCPLEX 2463

Default: 2

netitlim (integer): iteration limit for network simplex ←↩

Default: 2147483647

netppriind (integer): network simplex pricing ←↩

Default: 0

nodecuts (integer): decide whether or not cutting planes are separated at the nodes of the branch-and-
bound tree ←↩

Default: 0

nodefileind (integer): node storage file indicator ←↩

Default: 1

nodelim (integer): maximum number of nodes to solve ←↩

Synonym: nodlim

Default: 2147483647

nodesel (integer): node selection strategy ←↩

Default: 1

numericalemphasis (boolean): emphasizes precision in numerically unstable or difficult problems ←↩

Default: 0

objdif (real): overrides GAMS Cheat parameter ←↩

Synonym: cheat

Default: 0.0

objllim (real): objective function lower limit ←↩

Default: -1.0e+75

objtarget (real): Target objective value ←↩

ODHeuristics terminates when this value is reached. Defaults to -infinity for minimization or
+infinity for maximization models.

Default: 0

objthreshold (real): Threshold for absolute value of objective coefficients ←↩

Variables with coefficients greater than this value are always considered for optimization.

Default: 1e99

objulim (real): objective function upper limit ←↩

Default: 1.0e+75

odheuristicmethod (string): ODHeuristic method section ←↩

Default: ODH-CPLEX

2464 Solver Manuals

value meaning

ODH-CPLEX ODHeuristic within the CPLEX optimizer

STANDALONE Stand-alone ODHeuristic engine

odhfeasopt (boolean): Optimization method for sub-models in phaseI ←↩

Default: 0

odhthreads (integer): The number of heuristic threads used by ODH-CPLEX or STANDALONE ←↩

Default: -1

value meaning

-1 Automatically determined

0 Run in serial mode

>0 Use the specified number of threads

odhtimelimit (real): Elapsed time limit in seconds ←↩

Synonym: reslim

Default: GAMS ResLim

optimalitytarget (integer): type of optimality that Cplex targets ←↩

Default: 0

parallelmode (integer): parallel optimization mode ←↩

Default: 0

paramdisplay (boolean): display the nondefault parameters before optimization ←↩

Default: 1

penalty (real): The objective function coefficient value for penalties ←↩

The objective function coefficient value for the penalties introduced to deal with infeasibilities
in the solution improvement heuristic. It is set by default when required and if not specified.

Default: -1

penperturb (real): Perturbation tolerance for penalties coefficients ←↩

Default: 0

perind (boolean): force initial perturbation ←↩

Default: 0

perlim (integer): number of stalled iterations before perturbation ←↩

Default: 0

phase12 (boolean): Specifies whether to use a phaseI/phaseII method to remove infeasibilities ←↩

Default: 1

5.29 ODHCPLEX 2465

value meaning

0 Use composite objective method

1 Use phaseI/phaseII method

polishafterdettime (real): deterministic time before starting to polish a feasible solution ←↩

Default: 1.0e+75

polishafterepagap (real): absolute MIP gap before starting to polish a feasible solution ←↩

Default: 0.0

polishafterepgap (real): relative MIP gap before starting to polish a solution ←↩

Default: 0.0

polishafterintsol (integer): MIP integer solutions to find before starting to polish a feasible solution ←↩

Default: 2147483647

polishafternode (integer): nodes to process before starting to polish a feasible solution ←↩

Default: 2147483647

polishaftertime (real): time before starting to polish a feasible solution ←↩

Default: 1.0e+75

populatelim (integer): limit of solutions generated for the solution pool by populate method ←↩

Default: 20

ppriind (integer): primal simplex pricing ←↩

Default: 0

predual (integer): give dual problem to the optimizer ←↩

Default: 0

preind (boolean): turn presolver on/off ←↩

Default: 1

prelinear (boolean): linear reduction indicator ←↩

Default: 1

prepass (integer): number of presolve applications to perform ←↩

Default: -1

prereform (integer): set presolve reformulations ←↩

Default: 3

preslvnd (integer): node presolve selector ←↩

2466 Solver Manuals

Default: 0

pricelim (integer): pricing candidate list ←↩

Default: 0

printoptions (boolean): list values of all options to GAMS listing file ←↩

Default: 0

probe (integer): perform probing before solving a MIP ←↩

Default: 0

probedettime (real): deterministic time spent probing ←↩

Default: 1.0e+75

probetime (real): time spent probing ←↩

Default: 1.0e+75

processorlock (boolean): Thread allocation ←↩

Default: 0

value meaning

0 Do not lock threads to processors

1 Lock threads to processors

qextractalg (integer): quadratic extraction algorithm in GAMS interface ←↩

Default: 0

qpmakepsdind (boolean): adjust MIQP formulation to make the quadratic matrix positive-semi-definite
←↩

Default: 1

qpmethod (integer): algorithm to be used for QP problems ←↩

Default: 0

qtolin (integer): linearization of the quadratic terms in the objective function of a QP or MIQP model ←↩

Default: -1

quality (boolean): write solution quality statistics ←↩

Default: 0

quickfirstsolve (boolean): Accelerate initial CPLEX solve ←↩

Default: 0

5.29 ODHCPLEX 2467

value meaning

0 Do not unless presolve applied to full model

1 Use existing presolved model

randomseed (integer): sets the random seed differently for diversity of solutions ←↩

Default: 202009243

readflt (string): reads Cplex solution pool filter file ←↩

record (boolean): Records invocations of Callable Library routines ←↩

Default: 0

recurse (integer): Recurse using heuristic to solve sub-models when a feasible solution has been obtained
←↩

Default: 0

value meaning

0 Do not recurse

1 Recurse thread 0 only

2 Recurse odd numbered threads

3 Recurse all threads

<0 Recurse when working with an infeasible solution. values are negated (e.g. -3 =
recursion of all threads)

recursedecomp (integer): Recursed model decomposition method ←↩

Default: 0

value meaning

-1 Use initial model decomposition

0 Assign each variable to a separate key

1 Use automatic decomposition method

recurseiterlim (integer): Recursed heuristic iteration limit for sub-solves ←↩

Default: 40

recurselog (boolean): Write thread log files for recursed sub-solves ←↩

Default: 0

recurseminiterlim (integer): Recursed heuristic minimum iterations before a solution is found in
sub-solves ←↩

Default: 10

recursesoliterlim (integer): Recursed heuristic sub-solves quit after these iterations if a solution is found
←↩

2468 Solver Manuals

Default: maxint

reduce (integer): primal and dual reduction type ←↩

Default: 3

reinv (integer): refactorization frequency ←↩

Default: 0

rejectinfsol (integer): Reject infeasible solutions to sub-models ←↩

Default: 2

value meaning

0 Do not check feasibility or reject

1 Check feasibility and warn if infeasible, but accept

2 Check feasibility and reject if infeasible

relaxfixedinfeas (boolean): accept small infeasibilties in the solve of the fixed problem ←↩

Default: 0

relaxpreind (integer): presolve for initial relaxation on/off ←↩

Default: -1

relaxsos2 (integer): Treatment of SOS2 members ←↩

Default: 1

value meaning

0 Aggressive use in reducing sub-model size

1 Moderate use in reducing sub-model size

2 Ignored in sub-model creation

relobjdif (real): relative cheat parameter ←↩

Default: 0.0

repairtries (integer): try to repair infeasible MIP start ←↩

Default: 0

repeatpresolve (integer): reapply presolve at root after preprocessing ←↩

Default: -1

rerun (string): rerun problem if presolve infeasible or unbounded ←↩

Default: nono

rinsheur (integer): relaxation induced neighborhood search frequency ←↩

5.29 ODHCPLEX 2469

Default: 0

rltcuts (integer): Reformulation Linearization Technique (RLT) cuts ←↩

Default: 0

scaind (integer): matrix scaling on/off ←↩

Default: 0

seed (integer): Initial random number seed ←↩

Default: 12345

siftalg (integer): sifting subproblem algorithm ←↩

Default: 0

siftdisplay (integer): sifting display level ←↩

Default: 1

sifting (boolean): switch for sifting from simplex optimization ←↩

Default: 1

siftitlim (integer): limit on sifting iterations ←↩

Default: 2147483647

simdisplay (integer): simplex display level ←↩

Default: 1

singlim (integer): limit on singularity repairs ←↩

Default: 10

solnpool (string): solution pool file name ←↩

solnpoolagap (real): absolute tolerance for the solutions in the solution pool ←↩

Default: 1.0e+75

solnpoolcapacity (integer): limits of solutions kept in the solution pool ←↩

Default: 2100000000

solnpoolgap (real): relative tolerance for the solutions in the solution pool ←↩

Default: 1.0e+75

solnpoolintensity (integer): solution pool intensity for ability to produce multiple solutions ←↩

Default: 0

solnpoolmerge (string): solution pool file name for merged solutions ←↩

2470 Solver Manuals

solnpoolnumsym (integer): maximum number of variable symbols when writing merged solutions ←↩

Default: 10

solnpoolprefix (string): file name prefix for GDX solution files ←↩

Default: soln

solnpoolreplace (integer): strategy for replacing a solution in the solution pool ←↩

Default: 0

solutiontype (integer): type of solution (basic or non basic) for an LP or QP ←↩

Default: 0

solvefinal (boolean): switch to solve the problem with fixed discrete variables ←↩

Default: 1

sos1reform (integer): automatic logarithmic reformulation of special ordered sets of type 1 (SOS1) ←↩

Default: 0

sos2reform (integer): automatic logarithmic reformulation of special ordered sets of type 2 (SOS2) ←↩

Default: 0

sosfind (boolean): Automatic detection of Special Ordered Sets (SOSs) ←↩

Default: 0

sosinkey (integer): Assign each SOS to its own sub-model component (key) ←↩

Default: 0

value meaning

0 Treat SOS members as normal i.e. in keys iff declared non-continuous or
integeronly =0;

1 SOS members always in keys

2 SOS members always in keys and members of each SOS to their own key

sosmember (string): Automatically detect SOSs whose variable member names match this pattern ←↩

sosovar (string): Automatically detect SOSs whose output variable name matches this pattern ←↩

sosselect (string): Select sub-set of SOS members ←↩

5.29 ODHCPLEX 2471

sosselect16 (string): Select sub-set of SOS members for sets with 16 or fewer members only ←↩

soswvar (string): Automatically detect SOSs whose input(weight) variable name matches this pattern ←↩

startalg (integer): MIP starting algorithm ←↩

Default: 0

strategy (integer): ODH-Cplex Strategy ←↩

The aggressive setting attempt to make more progress with each sub-model solve at the cost
of more expensive sub solves. Amongst other changes, it sets InterDiv, MaxInterDiv and
MaxRepeat if they are not explicitly set by the user.

Default: 1

value meaning

0 Conservative

1 Normal

2 Aggressiv

strictdeterministic (integer): Terminate ODH deterministically when improvement heuristic finishes ←↩

Default: 0

value meaning

0 Terminate ODH as soon as possible which can violate determinism

1 Terminate ODH deterministically

strongcandlim (integer): size of the candidates list for strong branching ←↩

Default: 10

strongitlim (integer): limit on iterations per branch for strong branching ←↩

Default: 0

subalg (integer): algorithm for subproblems ←↩

Default: 0

subcheckfreq (integer): Frequency with which sub-model LPs are interrupted for mutual communication
←↩

Default: 10

value meaning

0 Do not interrupt sub-model LPs

>0 Interrupt sub-model LPs. The smaller this value then more often they are
interrupted.

2472 Solver Manuals

submipnodelim (integer): limit on number of nodes in an RINS subMIP ←↩

Default: 500

submipscale (integer): scale the problem matrix when CPLEX solves a subMIP during MIP optimization
←↩

Default: 0

submipstartalg (integer): starting algorithm for a subMIP of a MIP ←↩

Default: 0

submipsubalg (integer): algorithm for subproblems of a subMIP of a MIP ←↩

Default: 0

subnodelimit (integer): Node limit for submodel searches ←↩

Default: -1

value meaning

-1 Automatically determined

>0 Set node limit to this value

suborder (integer): Use of priority order in sub-solves ←↩

Default: 1

value meaning

0 Do not use any supplied priority order information in sub-solves

1 Use any supplied priority order information in sub-solves

sub cpx threads (integer): Threads availble for the solves within ODHeuristic ←↩

Default: 1

symmetry (integer): symmetry breaking cuts ←↩

Default: -1

syncfreq (integer): Thread synchronization frequency in deterministic parallel mode ←↩

Default: 1

value meaning

0 Low frequency

1 High frequency

threadlog (boolean): Write thread log files ←↩

Default: 0

5.29 ODHCPLEX 2473

threads (integer): global default thread count ←↩

Synonym: gthreads

Default: 0

threadzerosync (integer): Which CPLEX threads to use for synchronization ←↩

Default: 0

value meaning

0 Synchronize with multiple CPLEX threads

1 Only synchronize with CPLEX thread 0

tightenprebounds (integer): Level of bound tightening in ODH presolved model ←↩

Default: 1

value meaning

0 Do not tighten bounds

1 Least aggressive

2 Moderate aggressive

3 Most aggressive

tilim (real): overrides the GAMS ResLim option ←↩

Default: 1.0e+75

trelim (real): maximum space in memory for tree ←↩

Default: 1.0e+75

trialbound (integer): Trial bound heuristic ←↩

Default: 0

value meaning

-1 As option 1 plus retain trial bounds for whole optimization

-2 As option 2 plus retain trial bounds for whole optimization

0 Read trial bounds from trialboundfile if it is specified

1 Read trial bounds from trialboundfile

2 Auto generate trial bounds and write them to trialboundfile if it is specified

trialboundfile (string): The trial bound file ←↩

Bounds are used to attempt finding an initial feasible solution

trialboundsetsize (integer): Size adjustment to automatically generated trial bound sets ←↩

Default: 0

2474 Solver Manuals

value meaning

0 Do not adjust set size

>0 Use no more than this number of set members

<0 Decrease set size by this value

tryint (real): GMO tryint ←↩

Default: 0.0

tuningdettilim (real): tuning deterministic time limit per model or suite ←↩

Default: 1.0e+75

tuningdisplay (integer): level of information reported by the tuning tool ←↩

Default: 1

tuningmeasure (integer): measure for evaluating progress for a suite of models ←↩

Default: 1

tuningrepeat (integer): number of times tuning is to be repeated on perturbed versions ←↩

Default: 1

tuningtilim (real): tuning time limit per model or suite ←↩

Default: 1.0e+75

usebasis (boolean): GMO usebasis ←↩

Default: 0

usehistory (integer): Use of past sub-model selections in current selection ←↩

Default: -1

value meaning

-1 Automatically determined

0 Never use historical information

1 Always use historical information

varcleanlpmethod (integer): Method used to solve variable cleaning LPs ←↩

Default: -1

value meaning

-1 Automatically determined by solver

0 Primal simplex

1 Dual simplex

2 Barrier

5.29 ODHCPLEX 2475

variableclean (integer): Clean variable values from sub-models ←↩

Default: 1

value meaning

0 No cleaning

1 Quick cleaning and allow feasible uncleaned solutions if unable to clean

2 Quick cleaning and disallow uncleaned solutions

3 Thorough cleaning

varsel (integer): variable selection strategy at each node ←↩

Default: 0

warninglimit (integer): determines how many times warnings of a specific type (datacheck=2) will be
displayed ←↩

Default: 10

workdir (string): directory for working files ←↩

Default: .

workeralgorithm (integer): set method for optimizing benders subproblems ←↩

Default: 0

workmem (real): memory available for working storage ←↩

Default: 2048.0

writeannotation (string): produce a Cplex annotation file ←↩

writebas (string): produce a Cplex basis file ←↩

writeflt (string): produce a Cplex solution pool filter file ←↩

writelp (string): produce a Cplex LP file ←↩

writemps (string): produce a Cplex MPS file ←↩

writemst (string): produce a Cplex mst file ←↩

writeord (string): produce a Cplex ord file ←↩

2476 Solver Manuals

writeparam (string): produce a Cplex parameter file with all active options ←↩

writepre (string): produce a Cplex LP/MPS/SAV file of the presolved problem ←↩

writeprob (string): produce a Cplex problem file and inferrs the type from the extension ←↩

writesav (string): produce a Cplex binary problem file ←↩

zerohalfcuts (integer): zero-half cuts ←↩

Default: 0

zerotol (real): Zero tolerance for variable values ←↩

Default: 1e-9

5.30 PATHNLP

5.30.1 Introduction

This document describes the GAMS/PATHNLP solver for non-linear programs and the options unique to
this solver.

PATHNLP solves an NLP by internally constructing the Karush-Kuhn-Tucker (KKT) system of first-
order optimality conditions associated with the NLP and solving this system using the PATH solver for
complementarity problems. The solution to the original NLP is extracted from the KKT solution and
returned to GAMS. All of this takes place automatically - no special syntax or user reformulation is
required.

Typically, PATHNLP works very well for convex models. It also has a comparative advantage on models
whose solution via reduced gradient methods results in a large number of superbasic variables, since the
PATH solver won't construct a dense reduced Hessian in the space of the superbasic variables as reduced
gradient solvers do. For nonconvex models, however, PATHNLP is not as robust as the reduced gradient
methods.

The theory relating NLP to their KKT systems is well-known: assuming differentiability without convexity,
and assuming a constraint qualification holds, then a solution to the NLP must also be a solution to the
KKT system. If we also assume convexity, then a solution to the KKT system is also a solution to the
NLP - no further constraint qualification is required.

In case PATH fails to find a solution to the KKT system for the NLP, a phase I / phase II method is used
in which the phase I objective is simply the feasibility error and the original objective is ignored. If a
feasible point is found in phase I then phase II, an attempt to solve the KKT system for the NLP using
the current feasible point, is entered.

PATHNLP is installed automatically with your GAMS system. With a demo or community license, it will
solve small models only). If your GAMS license includes PATH, this size restriction is removed.

5.30 PATHNLP 2477

5.30.2 Usage

If you have installed the system and configured PATHNLP as the default NLP solver, all NLP models
without a specific solver option will be solved with PATHNLP. If you installed another solver as the
default, you can explicitly request that a particular model be solved using PATHNLP by inserting the
statement
option NLP = pathnlp;

somewhere before the solve statement. Similar comments hold for the other model types (LP, RMINLP,
QCP, etc.) PATHNLP can handle.

The standard GAMS model options iterlim and reslim can be used to control PATHNLP. A description
of these options can be found in the GAMS Options section of the chapter on basic solver usage. In
general this is enough to use PATHNLP effectively. In some cases, however, you may want to use some of
the PATH or PATHNLP options to gain further performance improvements or for other reasons. The rules
for using an option file are described in the chapter on basic solver usage. The options used to control
PATH can also be used to control PATHNLP. There are also some options unique to PATHNLP.

5.30.3 Options

The tables that follow describe the options unique to PATHNLP as well as the options shared with the
PATH solver for MCP models.

5.30.3.1 General options

Option Description Default

chen lambda
lambda parameter for Chen-Chen-Kanzow residual
Range: [0, 1]

0.8

convergence tolerance
stopping criterion 1e-6

crash iteration limit
maximum iterations allowed in crash 50

crash merit function
merit function used in crash method
normal: Use the normal map
fischer: Use the Fischer function

fischer

crash method
pnewton or none
pnewton: Use projected Newton method
none

pnewton

crash minimum dimension
minimum problem dimension to perform crash 1

crash nbchange limit
number of changes to the basis allowed 1

crash perturb
perturb the problem using pnewton crash 1

crash searchtype
search type to use in the crash method
line: Use a linesearch
arc: Use an arcsearch

line

cumulative iteration limit
maximum minor iterations allowed 10000

gradient searchtype
search type to use on a gradient step
line: Use a linesearch
arc: Use an arcsearch

arc

gradient step limit
gradient steps allowed before restarting 5

interrupt limit
ctrl-C's required before killing job
Range: {1, ..., ∞}

5

2478 Solver Manuals

Option Description Default

major iteration limit
maximum major iterations allowed 500

merit function
merit function to use (normal or fischer)
normal: Use the normal map
fischer: Use the Fischer function

fischer

minor iteration limit
minor iterations allowed in each major iteration 1000

nms allow line searching, watch-dogging, and nonmonotone
descent

1

nms initial reference factor
controls size of initial reference value 20

nms maximum watchdogs
maximum number of watchdog steps allowed 5

nms memory size
number of reference values kept 10

nms mstep frequency
frequency at which m-steps are performed 10

nms searchtype
search type to use
line: Use a linesearch
arc: Use an arcsearch

line

option file
option file name for PATHLIB to read

preprocess turns preprocessing on/off 1

proximal perturbation
initial perturbation 0

time limit
number of seconds algorithm is allowed to run

lemke rank deficiency iterations
number of attempts made to fix rank-deficient basis
during Lemke start

10

lemke start
frequency of lemke starts
always: Use a Lemke start for each LCP subproblem
automatic: Determined by algorithm
first: Use a Lemke start for the first LCP subproblem

automatic

lemke start type
type of lemke start
advanced: Start Lemke method using an advanced
basis
slack: Start Lemke method using and all-slack basis

slack

5.30.3.2 NLP-specific options

Option Description Default

allow reform
substitute out objective var and equ when possible
Many models have an objective variable and equation that can be
substituted out of the model, e.g. f(x) =E= z; If this option is true,
PATHNLP will substitute out the objective variable and equation where
possible.

1

gmo hess factor
maximum multiples of Jacobian size to allow Hessian storage: 0=no
limit

0

nlp lambda
linesearch factor when using the NLP objective
If nlp objective is true and nlp lambda is positive, the PATH line-
search will be altered to take the objective function into account.

0

nlp objective
treat NLP objective differently in PATH linesearch 0

output memory
output breakdown of where memory is used 0

5.30 PATHNLP 2479

Option Description Default

skip kkt
go right to Phase I / Phase II method
If true, PATHNLP will skip the initial attempt to solve the KKT system
for the NLP and go directly into a Phase I / Phase II method that first
attempts to get feasible and then attempts to solve the KKT system
starting from the feasible point found in Phase I.

0

5.30.3.3 Output options

Option Description Default

output crash iterations
output information on crash iterations 1

output crash iterations frequency
frequency at which crash iteration log is printed
Range: {1, ..., ∞}

1

output errors
output error messages 1

output final degeneracy statistics
print information regarding degeneracy at the solu-
tion

0

output final point
output final point returned from PATH 0

output final point statistics
output information about the point, function, and
Jacobian at the final point

1

output final scaling statistics
display matrix norms on the Jacobian at the final
point

0

output final statistics
output evaluation of available merit functions at the
final point

1

output final summary
output summary information 1

output initial point
output initial point given to PATH 0

output initial point statistics
output information about the point, function, and
Jacobian at the initial point

1

output initial scaling statistics
display matrix norms on the Jacobian at the initial
point

1

output initial statistics
output evaluation of available merit functions at the
initial point

0

output linear model
output linear model at each major iteration 0

output major iterations
output information on major iterations 1

output major iterations frequency
frequency at which major iteration log is printed
Range: {1, ..., ∞}

1

output maximum zero listing
limits zero columns reported to listing file 1000

output maximum zero log
limits zero columns reported to log file 10

output minor iterations
output information on minor iterations 1

output minor iterations frequency
frequency at which minor iteration log is printed
Range: {1, ..., ∞}

500

output options
output all options and their values 0

output
no turns all output off 1

output preprocess level
control output of preprocessing information 1

output restart log
output options during restarts 1

2480 Solver Manuals

Option Description Default

output time
output breakdown of where time is spent 0

output warnings
output warning messages 0

5.31 PATH

Author

Michael C. Ferris

Todd S. Munson

5.31.1 Complementarity

A fundamental problem of mathematics is to find a solution to a square system of nonlinear equations.
Two generalizations of nonlinear equations have been developed, a constrained nonlinear system which
incorporates bounds on the variables, and the complementarity problem (MCP). This document is
primarily concerned with the complementarity problem.

The PATH solver for MCP models is a Newton-based solver that combines a number of the most effective
variations, extensions, and enhancements of this powerful technique. See PATH vs MILES for a comparison
with MILES. Algorithmic details can also be found in papers and technical reports by Dirkse, Ferris, and
Munson on Ferris' Home Page.

The complementarity problem adds a combinatorial twist to the classic square system of nonlinear equations,
thus enabling a broader range of situations to be modeled. In its simplest form, the combinatorial problem
is to choose from 2n inequalities a subset of n that will be satisfied as equations. These problems arise
in a variety of disciplines including engineering and economics [60] where we might want to compute
Wardropian and Walrasian equilibria, and optimization where we can model the first order optimality
conditions for nonlinear programs [102] [114] . Other examples, such as bimatrix games [117] and options
pricing [97] , abound.

Our development of complementarity is done by example. We begin by looking at the optimality conditions
for a transportation problem and some extensions leading to the nonlinear complementarity problem. We
then discuss a Walrasian equilibrium model and use it to motivate the more general mixed complementarity
problem. We conclude this chapter with information on solving the models using the PATH solver and
interpreting the results.

5.31.1.1 Transportation Problem

The transportation model is a linear program where demand for a single commodity must be satisfied
by suppliers at minimal transportation cost. The underlying transportation network is given as a set A
of arcs, where (i, j) ∈ A means that there is a route from supplier i to demand center j. The problem
variables are the quantities xi,j shipped over each arc (i, j) ∈ A. The linear program can be written
mathematically as

minx≥0

∑
(i,j)∈A ci,jxi,j

subject to
∑
j:(i,j)∈A xi,j ≤ si, ∀i∑
i:(i,j)∈A xi,j ≥ dj , ∀j.

(1)

where ci,j is the unit shipment cost on the arc (i, j), si is the available supply at i, and dj is the demand
at j.

http://www.cs.wisc.edu/~ferris/

5.31 PATH 2481

The derivation of the optimality conditions for this linear program begins by associating with each
constraint a multiplier, alternatively termed a dual variable or shadow price. These multipliers represent
the marginal price on changes to the corresponding constraint. We label the prices on the supply constraint
ps and those on the demand constraint pd. Intuitively, for each supply node i

0 ≤ psi , si ≥
∑

j:(i,j)∈A

xi,j .

Consider the case when si >
∑
j:(i,j)∈A xi,j , that is there is excess supply at i. Then, in a competitive

marketplace, no rational person is willing to pay for more supply at node i; it is already over-supplied.
Therefore, psi = 0. Alternatively, when si =

∑
j:(i,j)∈A xi,j , that is node i clears, we might be willing to

pay for additional supply of the good. Therefore, psi ≥ 0. We write these two conditions succinctly as:

0 ≤ psi ⊥ si ≥
∑
j:(i,j)∈A xi,j , ∀i

where the ⊥ notation is understood to mean that at least one of the adjacent inequalities must be satisfied
as an equality. For example, either 0 = psi , the first case, or si =

∑
j:(i,j)∈A xi,j , the second case.

Similarly, at each node j, the demand must be satisfied in any feasible solution, that is∑
i:(i,j)∈A

xi,j ≥ dj .

Furthermore, the model assumes all prices are nonnegative, 0 ≤ pdj . If there is too much of the commodity

supplied,
∑
i:(i,j)∈A xi,j > dj , then, in a competitive marketplace, the price pdj will be driven down to 0.

Summing these relationships gives the following complementarity condition:

0 ≤ pdj ⊥
∑
i:(i,j)∈A xi,j ≥ dj , ∀j.

The supply price at i plus the transportation cost ci,j from i to j must exceed the market price at j.
That is, psi + ci,j ≥ pdj . Otherwise, in a competitive marketplace, another producer will replicate supplier
i increasing the supply of the good in question which drives down the market price. This chain would
repeat until the inequality is satisfied. Furthermore, if the cost of delivery strictly exceeds the market
price, that is psi + ci,j > pdj , then nothing is shipped from i to j because doing so would incur a loss and
xi,j = 0. Therefore,

0 ≤ xi,j ⊥ psi + ci,j ≥ pdj , ∀(i, j) ∈ A.

We combine the three conditions into a single problem,

0 ≤ psi ⊥ si ≥
∑
j:(i,j)∈A xi,j , ∀i

0 ≤ pdj ⊥
∑
i:(i,j)∈A xi,j ≥ dj , ∀j

0 ≤ xi,j ⊥ psi + ci,j ≥ pdj , ∀(i, j) ∈ A.
(2)

This model defines a linear complementarity problem that is easily recognized as the complementary
slackness conditions [37] of the linear program (1). For linear programs the complementary slackness
conditions are both necessary and sufficient for x to be an optimal solution of the problem (1). Furthermore,
the conditions (2) are also the necessary and sufficient optimality conditions for a related problem in the
variables (ps, pd)

maxps,pd≥0

∑
j djp

d
j −

∑
i sip

s
i

subject to ci,j ≥ pdj − psi , ∀(i, j) ∈ A

termed the dual linear program (hence the nomenclature ”dual variables”).

Looking at (2) a bit more closely we can gain further insight into complementarity problems. A solution
of (2) tells us the arcs used to transport goods. A priori we do not need to specify which arcs to use,
the solution itself indicates them. This property represents the key contribution of a complementarity
problem over a system of equations. If we know what arcs to send flow down, we can just solve a simple
system of linear equations. However, the key to the modeling power of complementarity is that it chooses
which of the inequalities in (2) to satisfy as equations. In economics we can use this property to generate
a model with different regimes and let the solution determine which ones are active. A regime shift could,
for example, be a back stop technology like windmills that become profitable if a CO2 tax is increased.

2482 Solver Manuals

GAMS Code

The GAMS code for the complementarity version of the transportation problem is given in Figure 1; the
actual data for the model is assumed to be given in the file transmcp.dat. Note that the model written
corresponds very closely to (2). In GAMS, the ⊥ sign is replaced in the model statement with a ”.”. It is
precisely at this point that the pairing of variables and equations shown in (2) occurs in the GAMS code.
For example, the function defined by rational is complementary to the variable x. To inform a solver of
the bounds, the standard GAMS statements on the variables can be used, namely (for a declared variable
z(i)):

z.lo(i) = 0;

or alternatively

positive variable z;

Further information on the GAMS syntax can be found in [155]. Note that GAMS requires the modeler
to write F(z) =g= 0 whenever the complementary variable is lower bounded, and does not allow the
alternative form 0 =l= F(z).

Figure 1: A simple MCP model in GAMS, transmcp.gms

sets i canning plants,

j markets ;

parameter

s(i) capacity of plant i in cases,

d(j) demand at market j in cases,

c(i,j) transport cost in thousands of dollars per case ;

$include transmcp.dat

positive variables

x(i,j) shipment quantities in cases

p_demand(j) price at market j

p_supply(i) price at plant i;

equations

supply(i) observe supply limit at plant i

demand(j) satisfy demand at market j

rational(i,j);

supply(i) .. s(i) =g= sum(j, x(i,j)) ;

demand(j) .. sum(i, x(i,j)) =g= d(j) ;

rational(i,j) .. p_supply(i) + c(i,j) =g= p_demand(j) ;

model transport / rational.x, demand.p_demand, supply.p_supply /;

solve transport using mcp;

5.31 PATH 2483

Extension: Model Generalization

While many interior point methods for linear programming exploit this complementarity framework
(so-called primal-dual methods [205]), the real power of this modeling format is the new problem instances
it enables a modeler to create. We now show some examples of how to extend the simple model (2) to
investigate other issues and facets of the problem at hand.

Demand in the model of Figure 1 is independent of the prices p. Since the prices p are variables in the
complementarity problem (2), we can easily replace the constant demand d with a function d(p) in the
complementarity setting. Clearly, any algebraic function of p that can be expressed in GAMS can now be
added to the model given in Figure 1. For example, a linear demand function could be expressed using∑

i:(i,j)∈A

xi,j ≥ dj(1− pdj), ∀j.

Note that the demand is rather strange if pdj exceeds 1. Other more reasonable examples for d(p) are
easily derived from Cobb-Douglas or CES utilities. For those examples, the resulting complementarity
problem becomes nonlinear in the variables p. Details of complementarity for more general transportation
models can be found in [48] , [62] .

Another feature that can be added to this model are tariffs or taxes. In the case where a tax is applied at
the supply point, the third general inequality in (2) is replaced by

psi (1 + ti) + ci,j ≥ pdj , ∀(i, j) ∈ A.

The taxes can be made endogenous to the model, details are found in [155] .

The key point is that with either of the above modifications, the complementarity problem is not just the
optimality conditions of a linear program. In many cases, there is no optimization problem corresponding
to the complementarity conditions.

Nonlinear Complementarity Problem

We now abstract from the particular example to describe more carefully the complementarity problem
in its mathematical form. All the above examples can be cast as nonlinear complementarity problems
(NCPs) defined as follows:

(NCP) Given a function F : Rn → Rn, find z ∈ Rn such that

0 ≤ z ⊥ F (z) ≥ 0.

Recall that the ⊥ sign signifies that one of the inequalities is satisfied as an equality, so that componentwise,
ziFi(z) = 0. We frequently refer to this property as zi is complementary to Fi. A special case of the NCP
that has received much attention is when F is a linear function, the linear complementarity problem [40] .

5.31.1.2 Walrasian Equilibrium

A Walrasian equilibrium can also be formulated as a complementarity problem (see [132]). In this case,
we want to find a price p ∈ Rm and an activity level y ∈ Rn such that

0 ≤ y ⊥ L(p) := −AT p ≥ 0
0 ≤ p ⊥ S(p, y) := b+Ay − d(p) ≥ 0

(3)

where S(p, y) represents the excess supply function and L(p) represents the loss function. Complementarity
allows us to choose the activities yj to run (i.e. only those that do not make a loss). The second set of
inequalities state that the price of a commodity can only be positive if there is no excess supply. These
conditions indeed correspond to the standard exposition of Walras' law which states that supply equals
demand if we assume all prices p will be positive at a solution. Formulations of equilibria as systems
of equations do not allow the model to choose the activities present, but typically make an a priori
assumption on this matter.

2484 Solver Manuals

GAMS Code

A GAMS implementation of (3) is given in Figure 2. Many large scale models of this nature have been
developed. An interested modeler could, for example, see how a large scale complementarity problem was
used to quantify the effects of the Uruguay round of talks [95] .

Figure 2: Walrasian equilibrium as an NCP, walras1.gms

$include walras.dat

positive variables p(i), y(j);

equations S(i), L(j);

S(i).. b(i) + sum(j, A(i,j)*y(j)) - c(i)*sum(k, g(k)*p(k)) / p(i)

=g= 0;

L(j).. -sum(i, p(i)*A(i,j)) =g= 0;

model walras / S.p, L.y /;

solve walras using mcp;

Extension: Intermediate Variables

In many modeling situations, a key tool for clarification is the use of intermediate variables. As an example,
the modeler may wish to define a variable corresponding to the demand function d(p) in the Walrasian
equilibrium (3). The syntax for carrying this out is shown in Figure 3 where we use the variables d to
store the demand function referred to in the excess supply equation. The model walras now contains
a mixture of equations and complementarity constraints. Since constructs of this type are prevalent in
many practical models, the GAMS syntax allows such formulations.

Figure 3: Walrasian equilibrium as an MCP, walras2.gms

$include walras.dat

positive variables p(i), y(j);

variables d(i);

equations S(i), L(j), demand(i);

demand(i)..

d(i) =e= c(i)*sum(k, g(k)*p(k)) / p(i) ;

S(i).. b(i) + sum(j, A(i,j)*y(j)) - d(i) =g= 0 ;

L(j).. -sum(i, p(i)*A(i,j)) =g= 0 ;

model walras / demand.d, S.p, L.y /;

solve walras using mcp;

Note that positive variables are paired with inequalities, while free variables are paired with equations.
A crucial point misunderstood by many modelers (new and experienced alike) is that the bounds on the
variable determine the relationships satisfied by the function F . Thus in Figure 3, d is a free variable and
therefore its paired equation demand is an equality. Similarly, since p is nonnegative, its paired relationship
S is a (greater-than) inequality. See the MCP definition below for details.

A simplification is allowed to the model statement in Figure 3. It is not required to match free variables
explicitly to equations; we only require that there are the same number of free columns (i.e. single variables)
as unmatched rows (i.e. single equations). Thus, in the example of Figure 3, the model statement could
be replaced by

5.31 PATH 2485

model walras / demand, S.p, L.y /;

This extension allows existing GAMS models consisting of a square system of nonlinear equations to be
easily recast as a complementarity problem - the model statement is unchanged. GAMS generates a list of
all variables appearing in the equations found in the model statement, performs explicitly defined pairings
and then checks that the number of remaining equality rows equals the number of remaining free columns.
However, if an explicit match is given, the PATH solver can frequently exploit the information for better
solution. Note that all variables that are not free and all inequalities must be explicitly matched.

Mixed Complementarity Problem

A mixed complementarity problem (MCP) is specified by three pieces of data, namely the lower bounds `,
the upper bounds u and the function F .

(MCP) Given lower bounds ` ∈ {R∪{−∞}}n, upper bounds u ∈ {R∪{∞}}n and a function F : Rn → Rn,
find z ∈ Rn such that precisely one of the following holds for each i ∈ {1, . . . , n}:

Fi(z) = 0 and `i ≤ zi ≤ ui
Fi(z) > 0 and zi = `i
Fi(z) < 0 and zi = ui.

These relationships define a general MCP (sometimes termed a rectangular variational inequality [94]).
We will write these conditions compactly as

` ≤ x ≤ u ⊥ F (x).

As the MCP model type as defined above is the one used in GAMS, there are some consequences of the
definition worth emphasizing here. Firstly, the bounds on the variable determine the relationships satisfied
by the function F : the constraint type (e.g. =G=, =L=) chosen plays no role in defining the problem. This
being the case, it is acceptable (and perhaps advisable!) to use an =N= in the definition of all equations
used in complementarity models to highlight the dependence on the variable bounds in defining the MCP.
This is not required, however. The constraint types =G=, =L= and =E= are also allowed. If the variable
bounds are inconsistent with the constraint type chosen, GAMS will either reject the model (e.g. an =L=

row matched with a lower-bounded variable) or silently and temporarily ignore the issue (e.g. an =E=

row matched with a lower-bounded variable). In the latter case, if equality does not hold at solution
(allowable if the variable is at lower bound) the is marked in the listing file with a redef.

Secondly, note the contrast between complementarity conditions like g(z) ≤ 0, z ≥ 0 and a complementarity
problem like F (x) ⊥ 0 ≤ x ≤ ∞. The former requires a trivial transformation in order to fit into the
MCP framework: −g(z) ⊥ 0 ≤ z ≤ ∞. This simple issue is a frequent source of problems and worth
looking out for.

The nonlinear complementarity problem of Nonlinear Complementarity Problem is a special case of the
MCP. For example, to formulate an NCP in the GAMS/MCP format we set

z.lo(I) = 0;

or declare

positive variable z;

2486 Solver Manuals

Another special case is a square system of nonlinear equations

(NE) Given a function F : Rn → Rn find z ∈ Rn such that

F (z) = 0.

In order to formulate this in the GAMS/MCP format we just declare

free variable z;

In both the above cases, we must not modify the lower and upper bounds on the variables later (unless we
wish to drastically change the problem under consideration).

An advantage of the extended formulation described above is the pairing between ”fixed” variables (ones
with equal upper and lower bounds) and a component of F . If a variable zi is fixed, then Fi(z) is
unrestricted since precisely one of the three conditions in the MCP definition automatically holds when
zi = `i = ui. Thus if a variable is fixed in a GAMS model, the paired equation is completely dropped from
the model. This convenient modeling trick can be used to remove particular constraints from a model at
generation time. As an example, in economics, fixing a level of production will remove the zero-profit
condition for that activity.

Simple bounds on the variables are a convenient modeling tool that translates into efficient mathematical
programming tools. For example, specialized codes exist for the bound constrained optimization problem

min f(x) subject to ` ≤ x ≤ u.

The first order optimality conditions for this problem class are precisely MCP(∇f(x), [`, u]). We can
easily see this condition in a one dimensional setting. If we are at an unconstrained stationary point, then
∇f(x) = 0. Otherwise, if x is at its lower bound, then the function must be increasing as x increases, so
∇f(x) ≥ 0. Conversely, if x is at its upper bound, then the function must be increasing as x decreases, so
that ∇f(x) ≤ 0. The MCP allows such problems to be easily and efficiently processed.

Upper bounds can be used to extend the utility of existing models. For example, in Figure 3 it may be
necessary to have an upper bound on the activity level y. In this case, we simply add an upper bound to
y in the model statement, and we can replace the loss equation with the following definition:

y.up(j) = 10;

L(j).. -sum(i, p(i)*A(i,j)) =e= 0 ;

Here, for bounded variables, we do not know beforehand if the constraint will be satisfied as an equation,
less-than inequality or greater-than inequality, since this determination depends on the values of the
solution variables. However, let us interpret the relationships that the above change generates. If yj = 0,
the loss function can be positive since we are not producing in the jth sector. If yj is strictly between its
bounds, then the loss function must be zero by the definition of complementarity; this is the competitive
assumption. Finally, if yj is at its upper bound, then the loss function can be negative. Of course, if the
market does not allow free entry, some firms may operate at a profit (negative loss). For more examples
of problems, the interested reader is referred to [45] , [59] , [60] .

5.31 PATH 2487

5.31.1.3 Solution

We will assume that a file named transmcp.gms has been created using the GAMS syntax which defines
an MCP model transport as developed in Transportation Problem . The modeler has a choice of the
complementarity solver to use. We are going to further assume that the modeler wants to use PATH.

There are two ways to ensure that PATH is used as opposed to any other GAMS/MCP solver. These are
as follows:

1. Add the following line to the transmcp.gms file prior to the solve statement

option mcp = path;

PATH will then be used instead of the default solver provided.

2. Choose PATH as the default solver for MCP (via the IDE on Windows or elsewhere by rerunning
gamsinst from the GAMS system directory).

To solve the problem, the modeler executes the command:

gams transmcp

where transmcp can be replaced by any filename containing a GAMS model. Many other command line
options for GAMS exist; the reader is referred to List of Command Line Parameters for further details.

At this stage, control is handed over to the solver which creates a log providing information on what the
solver is doing as time elapses. See Section PATH for details about the log file. After the solver terminates,
a listing file is generated containing the solution to the problem. We now describe the listing file output
specifically related to complementarity problems.

Listing File

The listing file is the standard GAMS mechanism for reporting model results. This file contains information
regarding the compilation process, the form of the generated equations in the model, and a report from
the solver regarding the solution process.

We now detail the last part of this output, an example of which is given in Figure 4 . We use ”...” to
indicate where we have omitted continuing similar output.

Figure 4: Listing File for solving transmcp.gms

S O L V E S U M M A R Y

MODEL TRANSPORT

TYPE MCP

SOLVER PATH FROM LINE 45

**** SOLVER STATUS 1 NORMAL COMPLETION

**** MODEL STATUS 1 OPTIMAL

RESOURCE USAGE, LIMIT 0.057 1000.000

ITERATION COUNT, LIMIT 31 10000

EVALUATION ERRORS 0 0

2488 Solver Manuals

Work space allocated -- 0.06 Mb

---- EQU RATIONAL

LOWER LEVEL UPPER MARGINAL

seattle .new-york -0.225 -0.225 +INF 50.000

seattle .chicago -0.153 -0.153 +INF 300.000

seattle .topeka -0.162 -0.126 +INF .

...

---- VAR X shipment quantities in cases

LOWER LEVEL UPPER MARGINAL

seattle .new-york . 50.000 +INF .

seattle .chicago . 300.000 +INF .

...

**** REPORT SUMMARY : 0 NONOPT

0 INFEASIBLE

0 UNBOUNDED

0 REDEFINED

0 ERRORS

After a summary line indicating the model name and type and the solver name, the listing file shows
a solver status and a model status. Table 1 and Table 2 display the relevant codes that are returned
under different circumstances. A modeler can access these codes within the transmcp.gms file using
transport.solveStat and transport.modelStat respectively.

Table 1: Solver Status Codes

Code String Meaning

1 Normal completion Solver finished normally

2 Iteration interrupt Solver reached the iterations limit

3 Resource interrupt Solver reached the time limit

4 Terminated by solver Solver reached an unspecified limit

8 User interrupt The user interrupted the solution process

Table 2: Model Status Codes

Code String Meaning

1 Optimal Solver found a solution of the problem

6 Intermediate infeasible Solver failed to solve the problem

After this, a listing of the time and iterations used is given, along with a count on the number of evaluation
errors encountered. If the number of evaluation errors is greater than zero, further information can
typically be found later in the listing file, prefaced by ”∗∗∗∗”. Information provided by the solver is then
displayed.

Next comes the solution listing, starting with each of the equations in the model. For each equation
passed to the solver, four columns are reported, namely the lower bound, level, upper bound and marginal.

5.31 PATH 2489

GAMS moves all parts of a constraint involving variables to the left hand side, and accumulates the
constants on the right hand side. The lower and upper bounds correspond to the constants that GAMS
generates. For equations, these should be equal, whereas for inequalities one of them should be infinite.
The level value of the equation (an evaluation of the left hand side of the constraint at the current point)
should be between these bounds, otherwise the solution is infeasible and the equation is marked as follows:

seattle .chicago -0.153 -2.000 +INF 300.000 INFES

The marginal column in the equation contains the value of the variable that was matched with this
equation.

For the variable listing, the lower, level and upper columns indicate the lower and upper bounds on the
variables and the solution value. The level value returned by PATH will always be between these bounds.
The marginal column contains the value of the slack on the equation that was paired with this variable.
If a variable appears in one of the constraints in the model statement but is not explicitly paired to a
constraint, the slack reported here contains the internally matched constraint slack. The definition of this
slack is the minimum of equ.l - equ.lower and equ.l - equ.upper, where equ is the paired equation.

Finally, a summary report is given that indicates how many errors were found. Figure 4 is nicely-solved
case; when the model has infeasibilities, these can be found by searching for the string ”INFES” as
described above.

Redefined Equations

Unfortunately, this is not the end of the story. Some equations may have the following form:

LOWER LEVEL UPPER MARGINAL

new-york 325.000 350.000 325.000 0.225 REDEF

This should be construed as a warning from GAMS, as opposed to an error. In principle, the REDEF

should only occur if the paired variable to the constraint has a finite lower and/or upper bound and
the variable is at one of those bounds. In this case, at the solution of the complementarity problem
the sense of the constraint (e.g. =E=) may not be satisfied. This occurs when GAMS constraints are
used to define the function F . The bounds on each component of the function F are derived from the
bounds on the matching variable component, and these bounds may be inconsistent with those implied
by the constraint type used. GAMS warns the user via the REDEF label when the solution found leads
to a violated ”constraint”. To avoid REDEF warnings the =N= can be used to define all complementarity
functions.

Note that a REDEF is not an error, just a warning. The solver has solved the complementarity problem
specified. GAMS gives this report to ensure that the modeler understands that the complementarity
problem derives the relationships on the equations from the variable bounds, not from the equation
definition.

2490 Solver Manuals

5.31.1.4 Pitfalls

As indicated above, the ordering of an equation is important in the specification of an MCP. Since the
data of the MCP is the function F and the bounds ` and u, it is important for the modeler to pass the
solver the function F and not −F .

For example, if we have the optimization problem,

min
x∈[0,2]

(x− 1)2

then the first order optimality conditions are

0 ≤ x ≤ 2 ⊥ 2(x− 1)

which has a unique solution, x = 1. Figure 5 provides correct GAMS code for this problem.

Figure 5: First order conditions as an MCP, first.gms

variables x;

equations d_f;

x.lo = 0;

x.up = 2;

d_f.. 2*(x - 1) =e= 0;

model first / d_f.x /;

solve first using mcp;

However, if we accidentally write the valid equation

d_f.. 0 =e= 2*(x - 1);

the problem given to the solver is

0 ≤ x ≤ 2 ⊥ −2(x− 1)

which has three solutions, x = 0, x = 1, and x = 2. This problem is in fact the stationary conditions for
the nonconvex quadratic problem,

max
x∈[0,2]

(x− 1)2,

not the problem we intended to solve.

Continuing with the example, when x is a free variable, we might conclude that the ordering of the
equation is irrelevant because we always have the equation, 2(x− 1) = 0, which does not change under
multiplication by −1. In most cases, the ordering of equations (which are complementary to free variables)
does not make a difference since the equation is internally ”substituted out” of the model. In particular,
for defining equations, such as that presented in Figure 3, the choice appears to be arbitrary.

However, in difficult (singular or near singular) cases, the substitution cannot be performed, and instead a
perturbation is applied to F , in the hope of ”(strongly) convexifying” the problem. If the perturbation
happens to be in the wrong direction because F was specified incorrectly, the perturbation actually makes
the problem less convex, and hence less likely to solve. Note that determining which of the above orderings
of the equations makes most sense is typically tricky. One rule of thumb is to check whether if you replace
the ”=e=” by ”=g=”, and then increase ”x”, is the inequality intuitively more likely to be satisfied. If so,
you probably have it the right way round, if not, reorder.

5.31 PATH 2491

Furthermore, underlying model convexity is important. For example, if we have the linear program

minx cTx
subject to Ax = b, x ≥ 0

we can write the first order optimality conditions as either

0 ≤ x ⊥ −ATµ+ c
µ free ⊥ Ax− b

or, equivalently,
0 ≤ x ⊥ −ATµ+ c
µ free ⊥ b−Ax

because we have an equation. The former is a linear complementarity problem with a positive semidefinite
matrix, while the latter is almost certainly indefinite. Also, if we need to perturb the problem because
of numerical problems, the former system will become positive definite, while the later becomes highly
nonconvex and unlikely to solve. The rule of thumb here is to consider what happens when the dual
multiplier µ is made non-negative in the KKT system. In the former system, the constraint becomes
Ax ≥ b, which is consistent with a minimization and a positive multiplier. In the latter system, we get
Ax ≤ b, which is backwards.

Finally, users are strongly encouraged to match equations and free variables when the matching makes
sense for their application. Structure and convexity can be destroyed if it is left to the solver to perform
the matching. For example, in the above example, we could lose the positive semidefinite matrix with an
arbitrary matching of the free variables.

5.31.2 PATH

Newton's method, perhaps the most famous solution technique, has been extensively used in practice
to solve square systems of nonlinear equations. The basic idea is to construct a local approximation of
the nonlinear equations around a given point, xk, solve the approximation to find the Newton point, xN ,
update the iterate, xk+1 = xN , and repeat until we find a solution to the nonlinear system. This method
works extremely well close to a solution, but can fail to make progress when started far from a solution.
To guarantee progress is made, a line search between xk and xN is used to enforce sufficient decrease on
an appropriately defined merit function. Typically, 1

2‖F (x)‖2 is used.

PATH uses a generalization of this method on a nonsmooth reformulation of the complementarity problem.
To construct the Newton direction, we use the normal map [151] representation

F (π(x)) + x− π(x)

associated with the MCP, where π(x) represents the projection of x onto [`, u] in the Euclidean norm. We
note that if x is a zero of the normal map, then π(x) solves the MCP. At each iteration, a linearization
of the normal map, a linear complementarity problem, is solved using a pivotal code related to Lemke's
method.

Versions of PATH prior to 4.x are based entirely on this formulation using the residual of the normal map

‖F (π(x)) + x− π(x)‖

as a merit function. However, the residual of the normal map is not differentiable, meaning that if a
subproblem is not solvable then a ”steepest descent” step on this function cannot be taken. PATH 4.x
considers an alternative nonsmooth system [63] , Φ(x) = 0, where Φi(x) = φ(xi, Fi(x)) and φ(a, b) :=√
a2 + b2 − a− b. The merit function, ‖Φ(x)‖2, in this case is differentiable, and is used for globalization

purposes. When the subproblem solver fails, a projected gradient direction for this merit function is
searched. It is shown in [61] that this provides descent and a new feasible point to continue PATH, and
convergence to stationary points and/or solutions of the MCP is provided under appropriate conditions.

The remainder of this chapter details the interpretation of output from PATH and ways to modify the
behavior of the code. To this end, we will assume that the modeler has created a file named transmcp.gms

which defines an MCP model transport as described in Section Transportation Problem and is using
PATH 4.x to solve it. See Section Solution for information on changing the solver.

2492 Solver Manuals

5.31.2.1 Log File

We will now describe the behavior of the PATH algorithm in terms of the output typically produced. An
example of the log for a particular run is given in Figure 6 and Figure 7.

Figure 6: Log File from PATH for solving transmcp.gms

--- Starting compilation

--- trnsmcp.gms(46) 1 Mb

--- Starting execution

--- trnsmcp.gms(27) 1 Mb

--- Generating model transport

--- trnsmcp.gms(45) 1 Mb

--- 11 rows, 11 columns, and 24 non-zeroes.

--- Executing PATH

Work space allocated -- 0.06 Mb

Reading the matrix.

Reading the dictionary.

Path v4.3: GAMS Link ver037, SPARC/SOLARIS

11 row/cols, 35 non-zeros, 28.93% dense.

Path 4.3 (Sat Feb 26 09:38:08 2000)

Written by Todd Munson, Steven Dirkse, and Michael Ferris

INITIAL POINT STATISTICS

Maximum of X. -0.0000e+00 var: (x.seattle.new-york)

Maximum of F. 6.0000e+02 eqn: (supply.san-diego)

Maximum of Grad F 1.0000e+00 eqn: (demand.new-york)

var: (x.seattle.new-york)

INITIAL JACOBIAN NORM STATISTICS

Maximum Row Norm. 3.0000e+00 eqn: (supply.seattle)

Minimum Row Norm. 2.0000e+00 eqn: (rational.seattle.new-york)

Maximum Column Norm 3.0000e+00 var: (p_supply.seattle)

Minimum Column Norm 2.0000e+00 var: (x.seattle.new-york)

Crash Log

major func diff size residual step prox (label)

0 0 1.0416e+03 0.0e+00 (demand.new-york)

1 1 3 3 1.0029e+03 1.0e+00 1.0e+01 (demand.new-york)

pn_search terminated: no basis change.

Figure 7: Log File from PATH for solving transmcp.gms (continued)

Major Iteration Log

major minor func grad residual step type prox inorm (label)

0 0 2 2 1.0029e+03 I 9.0e+00 6.2e+02 (demand.new-york)

1 1 3 3 8.3096e+02 1.0e+00 SO 3.6e+00 4.5e+02 (demand.new-york)

...

15 2 17 17 1.3972e-09 1.0e+00 SO 4.8e-06 1.3e-09 (demand.chicago)

FINAL STATISTICS

Inf-Norm of Complementarity . . 1.4607e-08 eqn: (rational.seattle.chicago)

Inf-Norm of Normal Map. 1.3247e-09 eqn: (demand.chicago)

5.31 PATH 2493

Inf-Norm of Minimum Map 1.3247e-09 eqn: (demand.chicago)

Inf-Norm of Fischer Function. . 1.3247e-09 eqn: (demand.chicago)

Inf-Norm of Grad Fischer Fcn. . 1.3247e-09 eqn: (rational.seattle.chicago)

FINAL POINT STATISTICS

Maximum of X. 3.0000e+02 var: (x.seattle.chicago)

Maximum of F. 5.0000e+01 eqn: (supply.san-diego)

Maximum of Grad F 1.0000e+00 eqn: (demand.new-york)

var: (x.seattle.new-york)

** EXIT - solution found.

Major Iterations. . . . 15

Minor Iterations. . . . 31

Restarts. 0

Crash Iterations. . . . 1

Gradient Steps. 0

Function Evaluations. . 17

Gradient Evaluations. . 17

Total Time. 0.020000

Residual. 1.397183e-09

--- Restarting execution

The first few lines on this log file are printed by GAMS during its compilation and generation phases. The
model is then passed off to PATH at the stage where the ”Executing PATH” line is written out. After
some basic memory allocation and problem checking, the PATH solver checks if the modeler required an
option file to be read. In the example this is not the case. If PATH is directed to read an option file (see
PATH Options below), then the following output is generated after the PATH banner.

Reading options file PATH.OPT

> output_linear_model yes;

Options: Read: Line 2 invalid: hi_there;

Read of options file complete.

If the option reader encounters an invalid option (as above), it reports this but carries on executing the
algorithm. Following this, the algorithm starts working on the problem.

Diagnostic Information

Some diagnostic information is initially generated by the solver at the starting point. Included is
information about the initial point and function evaluation. The log file here tells the value of the largest
element of the starting point and the variable where it occurs. Similarly, the maximum function value is
displayed along with the row producing it. The maximum element in the gradient is also presented with
the equation and variable where it is located.

The second block provides more information about the Jacobian at the starting point. This information
can be used to help scale the model. See Section Advanced Topics for complete details.

Crash Log

The first phase of the code is a crash procedure attempting to quickly determine which of the inequalities
should be active. This procedure is documented fully in [47] , and an example of the Crash Log can be
seen in Figure 6. The first column of the crash log is just a label indicating the current iteration number,

2494 Solver Manuals

the second gives an indication of how many function evaluations have been performed so far. Note that
precisely one Jacobian (gradient) evaluation is performed per crash iteration. The number of changes
to the active set between iterations of the crash procedure is shown under the ”diff” column. The crash
procedure terminates if this becomes small. Each iteration of this procedure involves a factorization of a
matrix whose size is shown in the next column. The residual is a measure of how far the current iterate is
from satisfying the complementarity conditions (MCP); it is zero at a solution. See Merit Functions for
further information. The column ”step” corresponds to the steplength taken in this iteration - ideally this
should be 1. If the factorization fails, then the matrix is perturbed by an identity matrix scaled by the
value indicated in the ”prox” column. The ”label” column indicates which row in the model is furthest
away from satisfying the conditions (MCP). Typically, relatively few crash iterations are performed.
Section PATH Options gives mechanisms to affect the behavior of these steps.

Major Iteration Log

After the crash is completed, the main algorithm starts as indicated by the ”Major Iteration Log” flag (see
Figure 7). The columns that have the same labels as in the crash log have precisely the same meaning
described above. However, there are some new columns that we now explain. Each major iteration
attempts to solve a linear mixed complementarity problem using a pivotal method that is a generalization
of Lemke's method [117] . The number of pivots performed per major iteration is given in the ”minor”
column.

The ”grad” column gives the cumulative number of Jacobian evaluations used; typically one evaluation
is performed per iteration. The ”inorm” column gives the value of the error in satisfying the equation
indicated in the ”label” column.

At each iteration of the algorithm, several different step types can be taken, due to the use of nonmonotone
searches [46] , [56] which are used to improve robustness. In order to help the PATH user, we have added
two code letters indicating the return code from the linear solver and the step type to the log file. Table 3
explains the return codes for the linear solver and Table 4 explains the meaning of each step type. The
ideal output in this column is ”SO”; ”SD” and ”SB” also indicate reasonable progress. Codes different
from these are not catastrophic, but typically indicate the solver is having difficulties due to numerical
issues or nonconvexities in the model.

Table 3: Linear Solver Codes

Code Meaning

C A cycle was detected.

E An error occurred in the linear solve.

I The minor iteration limit was reached.

N The basis became singular.

R An unbounded ray was encountered.

S The linear subproblem was solved.

T Failed to remain within tolerance after factorization was performed.

Table 4: Step Type Codes

Code Meaning

B A Backtracking search was performed from the current iterate to the Newton point in order
to obtain sufficient decrease in the merit function.

D The step was accepted because the Distance between the current iterate and the Newton
point was small.

G A gradient step was performed.

I Initial information concerning the problem is displayed.

5.31 PATH 2495

Code Meaning

M The step was accepted because the Merit function value is smaller than the nonmonotone
reference value.

O A step that satisfies both the distance and merit function tests.

R A Restart was carried out.

W A Watchdog step was performed in which we returned to the last point encountered with
a better merit function value than the nonmonotone reference value (M, O, or B step),
regenerated the Newton point, andperformed a backtracking search.

Minor Iteration Log

If more than 500 pivots are performed, a minor log is output that gives more details of the status of these
pivots. A listing from transmcp model follows, where we have set the output minor iteration frequency

option to 1.

Minor Iteration Log

minor t z w v art ckpts enter leave

1 4.2538e-01 8 2 0 0 0 t[0] z[11]

2 9.0823e-01 8 2 0 0 0 w[11] w[10]

3 1.0000e+00 9 2 0 0 0 z[10] t[0]

t is a parameter that goes from zero to 1 for normal starts in the pivotal code. When the parameter
reaches 1, we are at a solution to the subproblem. The t column gives the current value for this parameter.
The next columns report the current number of problem variables z and slacks corresponding to variables
at lower bound w and at upper bound v. Artificial variables are also noted in the minor log, see [57] for
further details. Checkpoints are times where the basis matrix is refactorized. The number of checkpoints is
indicated in the ckpts column. Finally, the minor iteration log displays the entering and leaving variables
during the pivot sequence.

Restart Log

The PATH code attempts to fully utilize the resources provided by the modeler to solve the problem.
Versions of PATH after 3.0 have been much more aggressive in determining that a stationary point of
the residual function has been encountered. When it is determined that no progress is being made, the
problem is restarted from the initial point supplied in the GAMS file with a different set of options. These
restarts give the flexibility to change the algorithm in the hopes that the modified algorithm leads to a
solution. The ordering and nature of the restarts were determined by empirical evidence based upon tests
performed on real-world problems.

The exact options set during the restart are given in the restart log, part of which is reproduced below.

Restart Log

proximal_perturbation 0

crash_method none

crash_perturb yes

nms_initial_reference_factor 2

proximal_perturbation 1.0000e-01

If a particular problem solves under a restart, a modeler can circumvent the wasted computation by
setting the appropriate options as shown in the log. Note that sometimes an option is repeated in this log.
In this case, it is the last option that is used.

2496 Solver Manuals

Solution Log

A solution report is now given by the algorithm for the point returned. The first component is an
evaluation of several different merit functions. Next, a display of some statistics concerning the final point
is given. This report can be used detect problems with the model and solution as detailed in Section
Advanced Topics .

At the end of the log file, summary information regarding the algorithm's performance is given. The
string ”∗∗ EXIT - solution found”. is an indication that PATH solved the problem. Any other EXIT
string indicates a termination at a point that may not be a solution. These strings give an indication of
what modelStat and solveStat will be returned to GAMS. After this, the ”Restarting execution” flag
indicates that GAMS has been restarted and is processing the results passed back by PATH.

5.31.2.2 Status File

If for some reason the PATH solver exits without writing a solution, or the sysout flag is turned on, the
status file generated by the PATH solver will be reported in the listing file. The status file is similar to the
log file, but provides more detailed information. The modeler is typically not interested in this output.

5.31.2.3 User Interrupts

A user interrupt can be effected by typing Ctrl-C. We only check for interrupts every major iteration. If a
more immediate response is wanted, repeatedly typing Ctrl-C will eventually kill the job. The number
needed is controlled by the interrupt limit option. In this latter case, when a kill is performed, no
solution is written and an execution error will be generated in GAMS.

5.31.2.4 Preprocessing

The purpose of a preprocessor is to reduce the size and complexity of a model to achieve improved
performance by the main algorithm. Another benefit of the analysis performed is the detection of some
provably unsolvable problems. A comprehensive preprocessor has been incorporated into PATH as
developed in [58] .

The preprocessor reports its finding with some additional output to the log file. This output occurs before
the initial point statistics. An example of the preprocessing on the forcebsm model is presented below.

Zero: 0 Single: 112 Double: 0 Forced: 0

Preprocessed size: 72

The preprocessor looks for special polyhedral structure and eliminates variables using this structure. These
are indicated with the above line of text. Other special structure is also detected and reported.

On exit from the algorithm, we must generate a solution for the original problem. This is done during the
postsolve. Following the postsolve, the residual using the original model is reported.

Postsolved residual: 1.0518e-10

This number should be approximately the same as the final residual reported on the presolved model.

5.31 PATH 2497

Constrained Nonlinear System

Modelers typically add bounds to their variables when attempting to solve nonlinear problems in order to
restrict the domain of interest. For example, many square nonlinear systems are formulated as

F (z) = 0, ` ≤ z ≤ u,

where typically, the bounds on z are inactive at the solution. This is not an MCP, but is an example
of a ”constrained nonlinear system” (CNS). It is important to note the distinction between MCP and
CNS. The MCP uses the bounds to infer relationships on the function F . If a finite bound is active at a
solution, the corresponding component of F is only constrained to be nonnegative or nonpositive in the
MCP, whereas in CNS it must be zero. Thus there may be many solutions of MCP that do not satisfy
F (z) = 0. Only if z∗ is a solution of MCP with ` < z∗ < u is it guaranteed that F (z∗) = 0.

Internally, PATH reformulates a constrained nonlinear system of equations to an equivalent complemen-
tarity problem. The reformulation adds variables, y, with the resulting problem written as:

` ≤ x ≤ u ⊥ −y
y free ⊥ F (x).

This is the MCP model passed on to the PATH solver.

5.31.3 PATH Options

The default options of PATH should be sufficient for most models. If desired, PATH-specific options can
be specified by using a solver option file. While the content of an option file is solver-specific, the details
of how to create an option file and instruct the solver to use it are not. This topic is covered in section
The Solver Options File.

We give a list of the available PATH options along with their defaults and meaning below. Note that only
the first three characters of every word are significant.

5.31.3.1 General options

Option Description Default

chen lambda
lambda parameter for Chen-Chen-Kanzow residual
Range: [0, 1]

0.8

convergence tolerance
stopping criterion
When the residual error is within this tolerance,
convergence is declared.

1e-6

crash iteration limit
maximum iterations allowed in basis crash 50

crash merit function
merit function used in crash method
normal: Use the normal map
fischer: Use the Fischer function

fischer

crash method
pnewton or none
pnewton: Use projected Newton method
none

pnewton

crash minimum dimension
minimum problem dimension to perform crash 1

crash nbchange limit
limit on crash iterations without basis change
The basis crashing procedure is stopped if this
many successive stagnant iterations occur.

1

crash perturb
perturb the problem using pnewton crash 1

2498 Solver Manuals

Option Description Default

crash searchtype
search type to use in the crash method
line: Use a linesearch
arc: Use an arcsearch

line

cumulative iteration limit
maximum minor iterations allowed GAMS iterlim

factorization library name
name of factorization library

factorization method
basis package to use
lusol

blu lusol

umfpack

lusol

gradient searchtype
search type to use on a gradient step
line: Use a linesearch
arc: Use an arcsearch

arc

gradient step limit
gradient steps allowed before restarting 5

interrupt limit
ctrl-C's required before a hard kill of the solver
Range: {1, ..., ∞}

5

major iteration limit
maximum major iterations allowed 500

merit function
merit function to use (normal or fischer)
normal: Use the normal map
fischer: Use the Fischer function

fischer

minor iteration limit
minor iterations allowed in each major iteration:
default MIN(2n,iterlim)

auto

nms allow line searching, watch-dogging, and nonmono-
tone descent

1

nms initial reference factor
controls size of initial reference value 20

nms maximum watchdogs
maximum number of watchdog steps allowed 5

nms memory size
number of reference values kept 10

nms mstep frequency
frequency at which m-steps are performed 10

nms searchtype
search type to use
line: Use a linesearch
arc: Use an arcsearch

line

option file
name of option file for PATHLIB to read
If specified, the PATH optimizer will read this file
using its internal reader, after the usual options
processing is done.

none

preprocess turns preprocessing on/off 1

proximal perturbation
initial perturbation 0

time limit
number of seconds algorithm is allowed to run GAMS reslim

lemke rank deficiency iterations
number of attempts made to fix rank-deficient
basis during Lemke start

10

lemke start
frequency of lemke starts
always: Use a Lemke start for each LCP subprob-
lem
automatic: Determined by algorithm
first: Use a Lemke start for the first LCP sub-
problem

automatic

5.31 PATH 2499

Option Description Default

lemke start type
type of lemke start
advanced: Start Lemke method using an advanced
basis
slack: Start Lemke method using an all-slack
basis

slack

5.31.3.2 Output options

Option Description Default

output crash iterations
output information on crash iterations 1

output crash iterations frequency
frequency at which crash iteration log is printed
Range: {1, ..., ∞}

1

output errors
output error messages 1

output final degeneracy statistics
print information regarding degeneracy at the solu-
tion

0

output final point
output final point returned from PATH 0

output final point statistics
output information about the point, function, and
Jacobian at the final point

1

output final scaling statistics
display matrix norms on the Jacobian at the final
point

0

output final statistics
output evaluation of available merit functions at the
final point

1

output final summary
output summary information 1

output initial point
output initial point given to PATH 0

output initial point statistics
output information about the point, function, and
Jacobian at the initial point

1

output initial scaling statistics
display matrix norms on the Jacobian at the initial
point

1

output initial statistics
output evaluation of available merit functions at the
initial point

0

output linear model
output linear model at each major iteration 0

output major iterations
output information on major iterations 1

output major iterations frequency
frequency at which major iteration log is printed
Range: {1, ..., ∞}

1

output maximum zero listing
limits zero columns reported to listing file 1000

output maximum zero log
limits zero columns reported to log file 10

output minor iterations
output information on minor iterations 1

output minor iterations frequency
frequency at which minor iteration log is printed
Range: {1, ..., ∞}

500

output options
output all options and their values 0

output
turns all output off or on
If output is first turned off, selected parts can be
turned back on using specific output options.

1

output preprocess level
control output of preprocessing information
Range: {-1, ..., ∞}

1

2500 Solver Manuals

Option Description Default

output restart log
output options during restarts 1

output time
output breakdown of where time is spent 0

output warnings
output warning messages 0

GAMS controls the total number of pivots allowed via the iterlim option. If more pivots are needed for
a particular model then either of the following lines should be added to the transmcp.gms file before the
solve statement

option iterlim = 2000;

transport.iterlim = 2000;

Problems with a singular basis matrix can be overcome by using the proximal perturbation option [26]
, and linearly dependent columns can be output with the output factorization singularities option.
For more information on singularities, we refer the reader to Section Advanced Topics.

As a special case, PATH can emulate Lemke's method [39] , [117] for LCP with the following options:

crash_method none

crash_perturb no

major_iteration_limit 1

lemke_start first

nms no

If instead, PATH is to imitate the Successive Linear Complementarity method (SLCP, often called the
Josephy Newton method) [101] , [132] , [131] for MCP with an Armijo style linesearch on the normal map
residual, then the options to use are:

crash_method none

crash_perturb no

lemke_start always

nms_initial_reference_factor 1

nms_memory size 1

nms_mstep_frequency 1

nms_searchtype line

merit_function normal

Note that nms memory size 1 and nms initial reference factor 1 turn off the nonmonotone linesearch,
while nms mstep frequency 1 turns off watchdogging [35] . nms searchtype line forces PATH to search
the line segment between the initial point and the solution to the linear model, while merit function

normal tell PATH to use the normal map for calculating the residual.

5.31.4 Advanced Topics

This chapter discusses some of the difficulties encountered when dealing with complementarity problems.
We start off with a very formal definition of a complementarity problem (similar to the one given previously)
which is used in later sections on merit functions and ill-defined, poorly-scaled, and singular models.

5.31 PATH 2501

5.31.4.1 Formal Definition of MCP

The mixed complementarity problem is defined by a function, F : D → Rn where D ⊆ Rn is the domain
of F , and possibly infinite lower and upper bounds, ` and u. Let C := {x ∈ Rn | ` ≤ x ≤ u}, a Cartesian
product of closed (possibly infinite) intervals. The problem is given as

MCP : find x ∈ C ∩D s.t. 〈F (x), y − x〉 ≥ 0, ∀y ∈ C.

This formulation is a special case of the variational inequality problem defined by F and a (nonempty,
closed, convex) set C. Special choices of ` and u lead to the familiar cases of a system of nonlinear
equations

F (x) = 0

(generated by ` ≡ −∞, u ≡ +∞) and the nonlinear complementarity problem

0 ≤ x ⊥ F (x) ≥ 0

(generated using ` ≡ 0, u ≡ +∞).

5.31.4.2 Algorithmic Features

We now describe some of the features of the PATH algorithm and the options affecting each.

Merit Functions

A solver for complementarity problems typically employs a merit function to indicate the closeness of the
current iterate to the solution set. The merit function is zero at a solution to the original problem and
strictly positive otherwise. Numerically, an algorithm terminates when the merit function is approximately
equal to zero, thus possibly introducing spurious ”solutions”.

The modeler needs to be able to determine with some reasonable degree of accuracy whether the algorithm
terminated at solution or if it simply obtained a point satisfying the desired tolerances that is not close
to the solution set. For complementarity problems, we can provide several indicators with different
characteristics to help make such a determination. If one of the indicators is not close to zero, then there
is some evidence that the algorithm has not found a solution. We note that if all of the indicators are close
to zero, we are reasonably sure we have found a solution. However, the modeler has the final responsibility
to evaluate the ”solution” and check that it makes sense for their application.

For the NCP, a standard merit function is

‖(−x)+, (−F (x))+, [(xi)+(Fi(x))+]i‖

with the first two terms measuring the infeasibility of the current point and the last term indicating the
complementarity error. In this expression, we use (·)+ to represent the Euclidean projection of x onto
the nonnegative orthant, that is (x)+ = max(x, 0). For the more general MCP, we can define a similar
function: ∥∥∥∥∥x− π(x),

[(
xi − `i
‖`i‖+ 1

)
+

(Fi(x))+

]
i

,

[(
ui − xi
‖ui‖+ 1

)
+

(−Fi(x))+

]
i

∥∥∥∥∥
where π(x) represents the Euclidean projection of x onto C. We can see that if we have an NCP, the
function is exactly the one previously given and for nonlinear systems of equations, this becomes ‖F (x)‖.

There are several reformulations of the MCP as a system of nonlinear (nonsmooth) equations for which
the corresponding residual is a natural merit function. Some of these are as follows:

2502 Solver Manuals

• Generalized Minimum Map: x− π(x− F (x))

• Normal Map: F (π(y)) + y − π(y)

• Fischer Function: Φ(x), where Φi(x) := φ(xi, Fi(x)) with

φ(a, b) :=
√
a2 + b2 − a− b.

Note that φ(a, b) = 0 if and only if 0 ≤ a ⊥ b ≥ 0. A straightforward extension of Φ to the
MCP format is given for example in [61] .

In the context of nonlinear complementarity problems the generalized minimum map corresponds to the
classic minimum map min(x, F (x)). Furthermore, for NCPs the minimum map and the Fischer function
are both local error bounds and were shown to be equivalent in [185] . Figure 10 in the subsequent section
plots all of these merit functions for the ill-defined example discussed therein and highlights the differences
between them.

The squared norm of Φ, namely Ψ(x) := 1
2

∑
φ(xi, Fi)

2, is continuously differentiable on Rn provided
F itself is. Therefore, the first order optimality conditions for the unconstrained minimization of Ψ(x),
namely ∇Ψ(x) = 0 give another indication as to whether the point under consideration is a solution of
MCP.

The merit functions and the information PATH provides at the solution can be useful for diagnostic
purposes. By default, PATH 4.x returns the best point with respect to the merit function because this
iterate likely provides better information to the modeler. As detailed in Section PATH Options, the
default merit function in PATH 4.x is the Fischer function. To change this behavior the merit function

option can be used.

Crashing Method

The crashing technique [47] is used to quickly identify an active set from the user-supplied starting point.
At this time, a proximal perturbation scheme [24] , [25] is used to overcome problems with a singular
basis matrix. The proximal perturbation is introduced in the crash method, when the matrix factored is
determined to be singular. The value of the perturbation is based on the current merit function value.

Even if the crash method is turned off, for example via the option crash method none, perturbation
can be added. This is determined by factoring the matrix that crash would have initially formed. This
behavior is extremely useful for introducing a perturbation for singular models. It can be turned off by
issuing the option crash perturb no.

Nonmontone Searches

The first line of defense against convergence to stationary points is the use of a nonmonotone linesearch
[90] , [91] , [56] . In this case we define a reference value, Rk, and we use this value to test for sufficient
decrease:

Ψ(xk + tkd
k) ≤ Rk + tk∇Ψ(xk)T dk.

Depending upon the choice of the reference value, this allows the merit function to increase from one
iteration to the next. This strategy can not only improve convergence, but can also avoid local minimizers
by allowing such increases.

We now need to detail our choice of the reference value. We begin by letting {M1, . . . ,Mm} be a finite set of
values initialized to κΨ(x0), where κ is used to determine the initial set of acceptable merit function values.
The value of κ defaults to 1 in the code and can be modified with the nms initial reference factor

option; κ = 1 indicates that we are not going to allow the merit function to increase beyond its initial
value.

5.31 PATH 2503

Having defined the values of {M1, . . . ,Mm} (where the code by default uses m = 10), we can now calculate
a reference value. We must be careful when we allow gradient steps in the code. Assuming that dk is
the Newton direction, we define i0 = argmax Mi and Rk = Mi0 . After the nonmonotone linesearch rule
above finds tk, we update the memory so that Mi0 = Ψ(xk + tkd

k), i.e. we remove an element from the
memory having the largest merit function value.

When we decide to use a gradient step, it is beneficial to let xk = xbest where xbest is the point with the
absolute best merit function value encountered so far. We then recalculate dk = −∇Ψ(xk) using the best
point and let Rk = Ψ(xk). That is to say that we force decrease from the best iterate found whenever a
gradient step is performed. After a successful step we set Mi = Ψ(xk + tkd

k) for all i ∈ [1, . . . ,m]. This
prevents future iterates from returning to the same problem area.

A watchdog strategy [35] is also available for use in the code.The method employed allows steps to
be accepted when they are ”close” to the current iterate. Nonmonotonic decrease is enforced every m
iterations, where m is set by the nms mstep frequency option.

Linear Complementarity Problems

PATH solves a linear complementarity problem at each major iteration. Let M ∈ <n×n, q ∈ <n, and
B = [l, u] be given. (z̄, w̄, v̄) solves the linear mixed complementarity problem defined by M , q, and B if
and only if it satisfies the following constrained system of equations:

Mz − w + v + q = 0 (4)

wT (z − l) = 0 (5)

vT (u− z) = 0 (6)

z ∈ B,w ∈ <n+, v ∈ <n+ (7)

where x+∞ =∞ for all x ∈ < and 0 · ∞ = 0 by convention. A triple, (ẑ, ŵ, v̂), satisfying equations (4) -
(6) is called a complementary triple.

The objective of the linear model solver is to construct a path from a given complementary triple (ẑ, ŵ, v̂)
to a solution (z̄, w̄, v̄). The algorithm used to solve the linear problem is identical to that given in [44] ;
however, artificial variables are incorporated into the model. The augmented system is then:

Mz − w + v +Da+
(1− t)
s

(sr) + q = 0 (8)

wT (z − l) = 0 (9)

vT (u− z) = 0 (10)

z ∈ B,w ∈ <n+, v ∈ <n+, a ≡ 0, t ∈ [0, 1] (11)

where r is the residual, t is the path parameter, and a is a vector of artificial variables. The residual is
scaled by s to improve numerical stability.

The addition of artificial variables enables us to construct an initial invertible basis consistent with the
given starting point even under rank deficiency. The procedure consists of two parts: constructing an
initial guess as to the basis and then recovering from rank deficiency to obtain an invertible basis. The
crash technique gives a good approximation to the active set. The first phase of the algorithm uses this
information to construct a basis by partitioning the variables into three sets:

2504 Solver Manuals

1. W = {i ∈ {1, . . . , n} | ẑi = li and ŵi > 0}

2. V = {i ∈ {1, . . . , n} | ẑi = ui and v̂i > 0}

3. Z = {1, . . . , n} \W ∪ V

Since (ẑ, ŵ, v̂) is a complementary triple, Z ∩W ∩ V = ∅ and Z ∪W ∪ V = {1, . . . , n}. Using the above
guess, we can recover an invertible basis consistent with the starting point by defining D appropriately.
The technique relies upon the factorization to indicate the linearly dependent rows and columns of the
basis matrix. Some of the variables may be nonbasic, but not at their bounds. For such variables, the
corresponding artificial will be basic.

We use a modified version of EXPAND [83] to perform the ratio test. Variables are prioritized as follows:

1. t leaving at its upper bound.

2. Any artificial variable.

3. Any z, w, or v variable.

If a choice as to the leaving variable can be made while maintaining numerical stability and sparsity, we
choose the variable with the highest priority (lowest number above).

When an artificial variable leaves the basis and a z-type variable enters, we have the choice of either
increasing or decreasing that entering variable because it is nonbasic but not at a bound. The determination
is made such that t increases and stability is preserved.

If the code is forced to use a ray start at each iteration (lemke start always), then the code carries
out Lemke's method, which is known [39] not to cycle. However,by default, we use a regular start to
guarantee that the generated path emanates from the current iterate. Under appropriate conditions, this
guarantees a decrease in the nonlinear residual. However, it is then possible for the pivot sequence in the
linear model to cycle. To prevent this undesirable outcome, we attempt to detect the formation of a cycle
with the heuristic that if a variable enters the basis more that a given number of times, we are cycling.
The number of times the variable has entered is reset whenever t increases beyond its previous maximum
or an artificial variable leaves the basis. If cycling is detected, we terminate the linear solver at the largest
value of t and return this point.

Another heuristic is added when the linear code terminates on a ray. The returned point in this case is
not the base of the ray. We move a slight distance up the ray and return this new point. If we fail to solve
the linear subproblem five times in a row, a Lemke ray start will be performed in an attempt to solve the
linear subproblem. Computational experience has shown this to be an effective heuristic and generally
results in solving the linear model. Using a Lemke ray start is not the default mode, since typically many
more pivots are required.

For times when a Lemke start is actually used in the code, an advanced ray can be used. We basically
choose the ”closest” extreme point of the polytope and choose a ray in the interior of the normal cone at
this point. This helps to reduce the number of pivots required. However, this can fail when the basis
corresponding to the cell is not invertible. We then revert to the Lemke start.

Since the EXPAND pivot rules are used, some of the variables may be nonbasic, but slightly infeasible,
as the solution. Whenever the linear code finishes, the nonbasic variables are put at their bounds and
the basic variables are recomputed using the current factorization. This procedure helps to find the best
possible solution to the linear system.

The resulting linear solver as modified above is robust and has the desired property that we start from
(ẑ, ŵ, v̂) and construct a path to a solution.

5.31 PATH 2505

Other Features

Some other heuristics are incorporated into the code. During the first iteration, if the linear solver fails to
find a Newton point, a Lemke start is used. Furthermore, under repeated failures during the linear solve,
a Lemke start will be attempted. A gradient step can also be used when we fail repeatedly.

The proximal perturbation is reduced at each major iteration. However, when numerical difficulties are
encountered, it will be increased to a fraction of the current merit function value. These are determined
when the linear solver returns a Reset or Singular status.

Spacer steps are taken every major iteration, in which the iterate is chosen to be the best point for the
normal map. The corresponding basis passed into the Lemke code is also updated.

Scaling is done based on the diagonal of the matrix passed into the linear solver.

We finally note, that if the merit function fails to show sufficient decrease over the last 100 iterates, a
restart will be performed, as this indicates we are close to a stationary point.

5.31.4.3 Difficult Models

Ill-Defined Models

A problem can be ill-defined for several different reasons. We concentrate on the following particular cases.
We will call F well-defined at x̄ ∈ C if x̄ ∈ D and ill-defined at x̄ otherwise. Furthermore, we define F to
be well-defined near x̄ ∈ C if there exists an open neighborhood of x̄, N (x̄), such that C ∩N (x̄) ⊆ D. By
saying the function is well-defined near x̄, we are simply stating that F is defined for all x ∈ C sufficiently
close to x̄. A function not well-defined near x̄ is termed ill-defined near x̄.

We will say that F has a well-defined Jacobian at x̄ ∈ C if there exists an open neighborhood of x̄,
N (x̄), such that N (x̄) ⊆ D and F is continuously differentiable on N (x̄). Otherwise the function has
an ill-defined Jacobian at x̄. We note that a well-defined Jacobian at x̄ implies that the MCP has a
well-defined function near x̄, but the converse is not true.

PATH uses both function and Jacobian information in its attempt to solve the MCP. Therefore, both of
these definitions are relevant. We discuss cases where the function and Jacobian are ill-defined in the next
two subsections. We illustrate uses for the merit function information and final point statistics within the
context of these problems.

Function Undefined We begin with a one-dimensional problem for which F is ill-defined at x = 0 as
follows:

0 ≤ x ⊥ 1
x ≥ 0.

Here x must be strictly positive because 1
x is undefined at x = 0. This condition implies that F (x) must

be equal to zero. Since F (x) is strictly positive for all x strictly positive, this problem has no solution.

We are able to perform this analysis because the dimension of the problem is small. Preprocessing linear
problems can be done by the solver in an attempt to detect obviously inconsistent problems, reduce
problem size, and identify active components at the solution. Similar processing can be done for nonlinear
models, but the analysis becomes more difficult to perform. Currently, PATH only checks the consistency
of the bounds and removes fixed variables and the corresponding complementary equations from the
model.

A modeler would likely not know a priori that a problem has no solution and would thus attempt to
formulate and solve it. GAMS code for the model above is provided in Figure 8. We must specify an
initial value for x in the code. If we were to not provide one, GAMS would use x = 0 as the default
value, notice that F is undefined at the initial point, and terminate before giving the problem to PATH.
The error message indicates that the function 1

x is ill-defined at x = 0, but does not imply that the
corresponding MCP problem has no solution.

Figure 8: GAMS Code for Ill-Defined Function

2506 Solver Manuals

positive variable x;

equations F;

F.. 1 / x =g= 0;

model simple / F.x /;

x.l = 1e-6;

solve simple using mcp;

After setting the starting point, GAMS generates the model, and PATH proceeds to ”solve” it. A
portion of the output relating statistics about the solution is given in Figure 9 PATH uses the Fischer
Function indicator as its termination criteria by default, but evaluates all of the merit functions given in
Section Merit Functions at the final point. The Normal Map merit function, and to a lesser extent, the
complementarity error, indicate that the ”solution” found does not necessarily solve the MCP.

Figure 9: PATH Output for Ill-Defined Function

FINAL STATISTICS

Inf-Norm of Complementarity . . 1.0000e+00 eqn: (F)

Inf-Norm of Normal Map. 1.1181e+16 eqn: (F)

Inf-Norm of Minimum Map 8.9441e-17 eqn: (F)

Inf-Norm of Fischer Function. . 8.9441e-17 eqn: (F)

Inf-Norm of Grad Fischer Fcn. . 8.9441e-17 eqn: (F)

FINAL POINT STATISTICS

Maximum of X. 8.9441e-17 var: (X)

Maximum of F. 1.1181e+16 eqn: (F)

Maximum of Grad F 1.2501e+32 eqn: (F)

var: (X)

To indicate the difference between the merit functions, Figure 10 plots them all for this simple example.
We note that as x approaches positive infinity, numerically, we are at a solution to the problem with
respect to all of the merit functions except for the complementarity error, which remains equal to one. As
x approaches zero, the merit functions diverge, also indicating that x = 0 is not a solution.

The natural residual and Fischer function tend toward 0 as x ↓ 0. From these measures, we might think
x = 0 is the solution. However, as previously remarked F is ill-defined at x = 0. F and ∇F become very
large, indicating that the function (and Jacobian) might not be well-defined. We might be tempted to
conclude that if one of the merit function indicators is not close to zero, then we have not found a solution.
This conclusion is not always warranted. When one of the indicators is non-zero, we have reservations
about the solution, but we cannot eliminate the possibility that we are actually close to a solution. If we
slightly perturb the original problem to

0 ≤ x ⊥ 1
x+ε ≥ 0

for a fixed ε > 0, the function is well-defined over C = Rn
+ and has a unique solution at x = 0. In this case,

by starting at x > 0 and sufficiently small, all of the merit functions, with the exception of the Normal
Map, indicate that we have solved the problem as is shown by the output in Figure 11 for ε = 1 ∗ 10−6

and x = 1 ∗ 10−20.

Figure 11: PATH Output for Well-Defined Function

5.31 PATH 2507

Figure 10: Merit Function Plot

FINAL STATISTICS

Inf-Norm of Complementarity . . 1.0000e-14 eqn: (G)

Inf-Norm of Normal Map. 1.0000e+06 eqn: (G)

Inf-Norm of Minimum Map 1.0000e-20 eqn: (G)

Inf-Norm of Fischer Function. . 1.0000e-20 eqn: (G)

Inf-Norm of Grad Fischer Fcn. . 1.0000e-20 eqn: (G)

FINAL POINT STATISTICS

Maximum of X. 1.0000e-20 var: (X)

Maximum of F. 1.0000e+06 eqn: (G)

Maximum of Grad F 1.0000e+12 eqn: (G)

var: (X)

In this case, the Normal Map is quite large and we might think that the function and Jacobian are
undefined. When only the normal map is non-zero, we may have just mis-identified the optimal basis. By
setting the merit function normal option, we can resolve the problem, identify the correct basis, and
solve the problem with all indicators being close to zero. This example illustrates the point that all of
these tests are not infallible. The modeler still needs to do some detective work to determine if they have
found a solution or if the algorithm is converging to a point where the function is ill-defined.

Jacobian Undefined Since PATH uses a Newton-like method to solve the problem, it also needs the
Jacobian of F to be well-defined. One model for which the function is well-defined over C, but for which
the Jacobian is undefined at the solution is: 0 ≤ x ⊥ −

√
x ≥ 0. This model has a unique solution at

x = 0.

Using PATH and starting from the point x = 1 ∗ 10−14, PATH generates the output given in Figure 12 .

Figure 12: PATH Output for Ill-Defined Jacobian

2508 Solver Manuals

FINAL STATISTICS

Inf-Norm of Complementarity . . 1.0000e-07 eqn: (F)

Inf-Norm of Normal Map. 1.0000e-07 eqn: (F)

Inf-Norm of Minimum Map 1.0000e-07 eqn: (F)

Inf-Norm of Fischer Function. . 2.0000e-07 eqn: (F)

Inf-Norm of Grad FB Function. . 2.0000e+00 eqn: (F)

FINAL POINT STATISTICS

Maximum of X. 1.0000e-14 var: (X)

Maximum of F. 1.0000e-07 eqn: (F)

Maximum of Grad F 5.0000e+06 eqn: (F)

var: (X)

We can see that the gradient of the Fischer Function is nonzero and the Jacobian is beginning to become
large. These conditions indicate that the Jacobian is undefined at the solution. It is therefore important
for a modeler to inspect the given output to guard against such problems.

If we start from x = 0, PATH correctly informs us that we are at the solution. The large value reported
for the Jacobian is an indication that the Jacobian is undefined.

Poorly Scaled Models

Well-defined problems can still have various numerical problems that impede the algorithm's convergence.
One particular problem is a badly scaled Jacobian. In such cases, we can obtain a poor ”Newton” direction
because of numerical problems introduced in the linear algebra performed. This problem can also lead the
code to a point from which it cannot recover.

The final model given to the solver should be scaled such that we avoid numerical difficulties in the linear
algebra. The output provided by PATH can be used to iteratively refine the model so that we eventually
end up with a well-scaled problem. We note that we only calculate our scaling statistics at the starting
point provided. For nonlinear problems these statistics may not be indicative of the overall scaling of the
model. Model specific knowledge is very important when we have a nonlinear problem because it can be
used to appropriately scale the model to achieve a desired result.

We look at the titan.gms model in MCPLIB, that has some scaling problems. The relevant output from
PATH for the original code is given in Figure 13.

Figure 13: PATH Output - Poorly Scaled Model

INITIAL POINT STATISTICS

Maximum of X. 4.1279e+06 var: (w.29)

Maximum of F. 2.2516e+00 eqn: (a1.33)

Maximum of Grad F 6.7753e+06 eqn: (a1.29)

var: (x1.29)

INITIAL JACOBIAN NORM STATISTICS

Maximum Row Norm. 9.4504e+06 eqn: (a2.29)

Minimum Row Norm. 2.7680e-03 eqn: (g.10)

Maximum Column Norm 9.4504e+06 var: (x2.29)

Minimum Column Norm 1.3840e-03 var: (w.10)

5.31 PATH 2509

The maximum row norm is defined as

max
1≤i≤n

∑
1≤j≤n

| (∇F (x))ij |

and the minimum row norm is

min
1≤i≤n

∑
1≤j≤n

| (∇F (x))ij | .

Similar definitions are used for the column norm. The norm numbers for this particular example are not
extremely large, but we can nevertheless improve the scaling. We first decided to reduce the magnitude
of the a1 block of equations as indicated by PATH. Using the GAMS modeling language, we can scale
particular equations and variables using the .scale attribute. To turn the scaling on for the model we use
the .scaleopt model attribute. After scaling the a1 block, we re-ran PATH and found an additional block
of equations that also needed scaling, a2. We also scaled some of the variables, g and w. The code added
to the model follows:

titan.scaleopt = 1;

a1.scale(i) = 1000;

a2.scale(i) = 1000;

g.scale(i) = 1/1000;

w.scale(i) = 100000;

By scaling these equation and variable blocks, we have improved the model scaling. The statistics for the
manually scaled model are given in Figure 14.

Figure 14: PATH Output - Well-Scaled Model

INITIAL POINT STATISTICS

Maximum of X. 1.0750e+03 var: (x1.49)

Maximum of F. 3.9829e-01 eqn: (g.10)

Maximum of Grad F 6.7753e+03 eqn: (a1.29)

var: (x1.29)

INITIAL JACOBIAN NORM STATISTICS

Maximum Row Norm. 9.4524e+03 eqn: (a2.29)

Minimum Row Norm. 2.7680e+00 eqn: (g.10)

Maximum Column Norm 9.4904e+03 var: (x2.29)

Minimum Column Norm 1.3840e-01 var: (w.10)

For this particular problem PATH cannot solve the unscaled model, while it can find a solution to the
scaled model. Using the scaling features of the GAMS language and the information provided by PATH
we are able to remove some of the problem's difficulty and obtain better performance from PATH.

It is possible to get even more information on initial point scaling by inspecting the GAMS listing file.
The equation row listing gives the values of all the entries of the Jacobian at the starting point. The row
norms generated by PATH give good pointers for starting to use the row listing.

Not all of the numerical problems are directly attributable to poorly scaled models. Problems for which
the Jacobian of the active constraints is singular or nearly singular can also cause numerical difficulty as
illustrated next.

2510 Solver Manuals

Singular Models

Assuming that the problem is well-defined and properly scaled, we can still have a Jacobian for which the
active constraints are singular or nearly singular (i.e. it is ill-conditioned). When problems are singular
or nearly singular, we are also likely to have numerical problems. As a result the ”Newton” direction
obtained from the linear problem solver can be very bad. In PATH, we can use proximal perturbation or
add artificial variables to attempt to remove the singularity problems from the model. However, it is most
often beneficial for solver robustness to remove singularities if possible.

The easiest problems to detect are those for which the Jacobian has zero rows and columns. A simple
problem for which we have zero rows and columns is:

−2 ≤ x ≤ 2 ⊥ −x2 + 1.

Note that the Jacobian, −2x, is non-singular at all three solutions, but singular at the point x = 0. Output
from PATH on this model starting at x = 0 is given in Figure 15.

Figure 15: PATH Output - Zero Rows and Columns

INITIAL POINT STATISTICS

Zero column of order. 0.0000e+00 var: (X)

Zero row of order 0.0000e+00 eqn: (F)

Total zero columns. 1

Total zero rows 1

Maximum of F. 1.0000e+00 eqn: (F)

Maximum of Grad F 0.0000e+00 eqn: (F)

var: (X)

We display in the code the variables and equations for which the row/column in the Jacobian is close to
zero. These situations are problematic and for nonlinear problems likely stem from the modeler providing
an inappropriate starting point or fixing some variables resulting in some equations becoming constant.
We note that the solver may perform well in the presence of zero rows and/or columns, but the modeler
should make sure that these are what was intended.

Singularities in the model can also be detected by the linear solver. This in itself is a hard problem and
prone to error. For matrices which are poorly scaled, we can incorrectly identify ”linearly dependent” rows
because of numerical problems. Setting output factorization singularities yes in an options file
will inform the user which equations the linear solver thinks are linearly dependent. Typically, singularity
does not cause a lot of problems and the algorithm can handle the situation appropriately. However, an
excessive number of singularities are cause for concern. A further indication of possible singularities at
the solution is a lack of quadratic convergence to the solution.

5.31.5 Case Study: Von Thunen Land Model

We now turn our attention towards using the diagnostic information provided by PATH to improve an
actual model. The Von Thunen land model is a problem recognized in the mathematical programming
literature for its computational difficulty. We attempt to understand more carefully the facets of the
problem that make it difficult to solve. This will enable us to outline and identify these problems and
furthermore to extend the model to a more realistic and computationally more tractable form.

5.31 PATH 2511

5.31.5.1 Classical Model

The problem is cast in the Arrow-Debreu framework as an equilibrium problem.The basic model is a
closed economy consisting of three economic agents, a landowner, a worker and a porter. There is a
central market, around which concentric regions of land are located. Since the produced goods have to
be delivered to the market, this is an example of a spatial price equilibrium. The key variables of the
model are the prices of commodities, land, labour and transport. Given these prices, it is assumed that
the agents demand certain amounts of the commodities, which are supplied so as to maximize profit in
each sector. Walras' law is then a consequence of the assumed competitive paradigm, namely that supply
will equal demand in the equilibrium state.

We now describe the problems that the consumers and the producers face. We first look at consumption
and derive a demand function for each of the consumer agents in the economy. Each of these agents has a
utility function, that they wish to maximize subject to their budgetary constraints. As is typical in such
problems, the utility function is assumed to be Cobb-Douglas:

ua(d) =
∏
c

dαc,ac , αc,a ≥ 0,
∑
c

αc,a = 1,

where the αc,a are given parameters dependent only on the agent. For each agent a, the variables dc
represent quantities of the desired commodities c. In the Von Thunen model, the goods are wheat, rice,
corn and barley. The agent's endowments determine their budgetary constraint as follows. Given current
market prices, an agent's wealth is the value of the initial endowment of goods at those prices. The agent's
problem is therefore

max
d

ua(d) subject to 〈p, d〉 ≤ 〈p, ea〉, d ≥ 0,

where ea is the endowment bundle for agent a. A closed form solution, corresponding to demand from
agent a for commodity c is thus

dc,a(p) :=
αc,a〈p, ea〉

pc
.

Note that this assumes the prices of the commodities pc are positive.

The supply side of the economy is similar. The worker earns a wage wL for his labour input. The land is
distributed around the market in rings with a rental rate wr associated with each ring r of land. The
area of land ar in each ring is an increasing function of r. The model assumes that labour and land are
substitutable via a constant elasticities of substitution (CES) function.

Consider the production xc,r of commodity c in region r. In order to maximize profit (or minimize costs),
the labour yL and land use yr solve

minwLyL + wryr subject to φcy
βc
L y

1−βc
r ≥ xc,r, yL, yr ≥ 0, (12)

where φc is a given cost function scale parameter, and βc ∈ [0, 1] is the share parameter. The technology
constraint is precisely the CES function allowing a suitable mix of labour and land use. Again, a closed
form solution can be calculated. For example, the demand for labour in order to produce xc,r of commodity
c in region r is given by

xc,r
βc

(
wL
βc

)βc (
wr

1−βc

)1−βc

φcwL
.

Considering all such demands, this clearly assumes the prices of inputs wL, wr are positive. A key point
to note is that input commodity (factor) demands to produce xc,r can be determined by first solving (12)
for unit demand xc,r ≡ 1 and then multiplying these factor demands by the actual amount desired. Let
ȳL and ȳr denote the optimal solutions of (12) with xc,r ≡ 1. Using this fact, the unit production cost
γc,r for commodity c in region r can be calculated as follows:

2512 Solver Manuals

γc,r = wLȳL + wrȳr

= wL
βc

(
wL
βc

)βc (
wr

1−βc

)1−βc

φcwL
+ wr

(1− βc)
(
wL
βc

)βc (
wr

1−βc

)1−βc

φcwr

=
1

φc

(
wL
βc

)βc (wr
1− βc

)1−βc
.

Transportation is provided by a porter, earning a wage wp. If we denote the unit cost for transportation
of commodity c by tc, then unit transportation cost to market is

Tc,r(wp) := tcdrwp,

where dr is the distance of region r to the market. Spatial price equilibrium arises from the consideration:

0 ≤ xc,r ⊥ γc,r(wL, wr) + Tc,r(wp) ≥ pc.

This is intuitively clear; it states that commodity c will be produced in region r only if the combined cost
of production and transportation equals the market price.

The above derivations assumed that the producers and consumers acted as price takers. Walras' law is
now invoked to determine the prices so that markets clear. The resulting complementarity problem is:

γc,r =
1

φc

(
wL
βc

)βc (wr
1− βc

)1−βc
(13)

0 ≤ xc,r ⊥ γc,r + Tc,r(wp) ≥ pc (14)

0 ≤ wL ⊥ eL ≥
∑
r,c

xc,r
βcγc,r
wL

(15)

0 ≤ wr ⊥ ar ≥
∑
c

xc,r(1− βc)γc,r
wr

(16)

0 ≤ wp ⊥ eP ≥
∑
r,c

tcdrxc,r (17)

0 ≤ pc ⊥
∑
r

xc,r ≥
αc,P ePwp + αc,LeLwL + αc,O

∑
r wrar

pc
(18)

Note that in (15), (16) and (17), the amounts of labour, land and transport are bounded from above, and
hence the prices on these inputs are determined as multipliers (or shadow prices) on the corresponding
constraints. The final relationship (18) in the above complementarity problem corresponds to market
clearance; prices are nonnegative and can only be positive if supply equals demand. (Some modelers
multiply the last inequality throughout by pc. This removes problems where pc becomes zero, but can
also introduce spurious solutions.)

The Arrow-Debreu theory guarantees that the problem is homogeneous in prices; (x, λw, λp) is also a
solution whenever (x,w, p) solves the above. Typically this singularity in the model is removed by fixing a
numeraire, that is fixing a price (for example wL = 1) and dropping the corresponding complementary
relationship.

5.31 PATH 2513

Unfortunately, in this formulation even after fixing a numeraire, some of the variables p and w may go to
zero, resulting in an ill-defined problem. In the case of the Von Thunen land model, the rental price of
land wr decreases as the distance to market increases, and for remote rings of land, it becomes zero. A
standard modeling fix is to put artificial lower bounds on these variables. Even with this fix, the problem
typically remains very hard to solve. More importantly, the homogeneity property of the prices used
above to fix a numeraire no longer holds, and the corresponding complementary relationship (which was
dropped from the problem) may fail to be satisfied. It therefore matters which numeriare is fixed, and
many modelers run into difficulty since in many cases the solution found by a solver is invalid for the
originally posed model.

In order to test our diagnostic information, we implemented a version of the above model in GAMS. The
model corresponds closely to the MCPLIB model pgvon105.gms except we added more regions to make
the problem even more difficult. The model file has been documented more fully, and the data rounded to
improve clarity.

Our first trial was to solve the model without fixing a numeraire. In this case, PATH 4.x failed to find
a solution. At the starting point, the indicators described in Sectiion Ill-Defined Models are reasonable,
and there are no zero rows/columns in the Jacobian. At the best point found, all indicators are still
reasonable. However, the listing file indicates a large number of division by zero problems occurring in
(16). We also note that a nonzero proximal perturbation is used in the first iteration of the crash method.
This is an indication of singularities. We therefore added an option to output factorization singularities,
and singularities appeared in the first iteration. At this point, we decided to fix a numeraire to see if this
alleviated the problem.

We chose to fix the labour wage rate to 1. After increasing the iterations allowed to 100,000, PATH 4.x
solved the problem. The statistics at the solution are cause for concern. In particular, the gradient of the
Fischer function is 7 orders of magnitude larger than all the other residuals. Furthermore, the Jacobian is
very large at the solution point. Looking further in the listing file, a large number of division by zero
problems occur in (16).

To track down the problem further, we added an artificial lower bound on the variables wr of 10−5, that
would not be active at the aforementioned solution. Resolving gave the same ”solution”, but resulted in
the domain errors disappearing.

Although the problem is solved, there is concern on two fronts. Firstly, the gradient of the Fischer function
should go to zero at the solution. Secondly, if a modeler happens to make the artificial lower bounds on
the variables a bit larger, then they become active at the solution, and hence the constraint that has been
dropped by fixing the price of labour at 1 is violated at this point. Of course, the algorithm is unable to
detect this problem, since it is not part of the model that is passed to it, and the corresponding output
looks satisfactory.

We are therefore led to the conclusion that the model as postulated is ill-defined. The remainder of this
section outlines two possible modeling techniques to overcome the difficulties with ill-defined problems of
this type.

5.31.5.2 Intervention Pricing

The principal difficulty is the fact that the rental prices on land go to zero as proximity to the market
decreases, and become zero for sufficiently remote rings. Such a property is unlikely to hold in a practical
setting. Typically, a landowner has a minimum rental price (for example, land in fallow increases in value).
As outlined above, a fixed lower bound on the rental price violates the well-established homogeneity
property. A suggestion postulated by Professor Thomas Rutherford is to allow the landowner to intervene
and ”purchase-back” his land whenever the rental cost gets smaller than a certain fraction of the labour
wage.

The new model adds a (homogeneous in price) constraint

0 ≤ ir ⊥ wr ≥ 0.0001 ∗ wL

2514 Solver Manuals

and modifies (16) and (18) as follows:

0 ≤ wr ⊥ ar − ir ≥
∑
c

xc,r(1− βc)γc,r
wr

0 ≤ pc ⊥
∑
r

xc,r ≥
αc,P ePwp + αc,LeLwL + αc,O

∑
r wr(ar − ir)

pc
. (19)

Given the intervention purchase, we can now add a lower bound on wr to avoid division by zero errors.
In our model we chose 10−5 since this will never be active at the solution and therefore will not affect
the positive homogeneity. After this reformulation, PATH 4.x solves the problem. Furthermore, the
gradient of the Fischer function, although slightly larger than the other residuals, is quite small, and can
be made even smaller by reducing the convergence tolerance of PATH. Inspecting the listing file, the
only difficulties mentioned are division by zero errors in the market clearance condition (19), that can be
avoided a posteori by imposing an artificial (inactive) lower bound on these prices. We chose not to do
this however.

5.31.5.3 Nested Production and Maintenance

Another observation that can be used to overcome the land price going to zero is the fact that land
typically requires some maintenance labour input to keep it usable for crop growth. Traditionally, in
economics, this is carried out by providing a nested CES function as technology input to the model. The
idea is that commodity c in region r is made from labour and an intermediate good, which is ”maintained
land”. Essentially, the following production problem replaces (12):

minyM ,yL,yr,g wL(yM + yL) + wryr
subject to yr ≥ (1− βc − ε)g

yM ≥ εg
φcy

βc
L g

1−βc ≥ 1,
yM , yL, yr, g ≥ 0.

Note that the variable yM represents ”maintenance labour” and g represents the amount of ”maintained
land” produced, an intermediate good. The process of generating maintained land uses a Leontieff
production function, namely

min(λryr, λMyM) ≥ g.

Here λM = 1
ε , ε small, corresponds to small amounts of maintenance labour, while λr = 1

1−βc−ε is chosen
to calibrate the model correctly. A simple calculus exercise then generates appropriate demand and cost
expressions. The resulting complementarity problem comprises (14), (17), (18) and

γc,r =
wβcL
φc

(
wLε+ wr(1− βc − ε)

1− βc

)1−βc

0 ≤ wL ⊥ eL ≥
∑
r,c

xc,rγc,r

(
βc
wL

+
ε(1− βc)

wLε+ wr(1− βc − ε)

)
0 ≤ wr ⊥ ar ≥

∑
c

xc,rγc,r(1− βc)(1− βc − ε)
wLε+ wr(1− βc − ε)

After making the appropriate modifications to the model file, PATH 4.x solved the problem on defaults
without any difficulties. All indicators showed the problem and solution found to be well-posed.

5.32 quadMINOS 2515

5.32 quadMINOS

For LP (and RMIP) models that cause difficulty for the standard solvers, quadMINOS provides considerably
greater reliability and accuracy than MINOS by using quadruple-precision floating-point arithmetic.
Although it is slower by a factor of 20 or 30 for cold-start runs, you can use standard MINOS or another
LP solver first and let them do their best. Warm-starts with quadMINOS may give greatly improved
solutions at moderate cost.

To take advantage of quadMINOS, the main requirement is to set a few runtime options to non-default
values in order to request higher accuracy. For example, it is reasonable to set

Feasibility tolerance 1e-15

Optimality tolerance 1e-15

because IEEE Quad floating-point has nearly 34 digits of precision. For an example of using Double and
Quad MINOS together, see [DQQ] in the GAMS model library.

Note

GAMS/quadMINOS can only solve LPs and RMIPs at the moment because GAMS does not provide
function evaluations in quad-precision.

The documentation of MINOS also refers to quadMINOS.

5.33 SBB

5.33.1 Introduction

SBB is a GAMS solver for Mixed Integer Nonlinear Programming (MINLP) models. It is based on
a combination of the standard Branch and Bound (B&B) method known from Mixed Integer Linear
Programming and some of the standard NLP solvers already supported by GAMS. SBB can use all GAMS
NLP solvers as subsolvers but it works best with NLP solvers that can utilize a near optimal point as a
starting point like Conopt, Minos, and Snopt.

SBB supports all types of discrete variables supported by GAMS, including Binary, Integer, Semicont,
Semiint, Sos1, and Sos2.

5.33.2 The Branch and Bound Algorithm

The Relaxed Mixed Integer Nonlinear Programming (RMINLP) model is initially solved using the starting
point provided by the modeler. SBB will stop immediately if the RMINLP model is unbounded or
infeasible, or if it fails (see option infeasseq and failseq below for an exception). If all discrete variables
in the RMINLP model are integer, SBB will return this solution as the optimal integer solution. Otherwise,
the current solution is stored and the Branch and Bound procedure will start.

During the Branch and Bound process, the feasible region for the discrete variables is subdivided, and
bounds on discrete variables are tightened to new integer values to cut off the current non-integer solutions.
Each time a bound is tightened, a new, tighter NLP submodel is solved starting from the optimal solution
to the previous looser submodel. The objective function values from the NLP submodel is assumed to
be lower bounds on the objective in the restricted feasible space (assuming minimization), even though
the local optimum found by the NLP solver may not be a global optimum. If the NLP solver returns a
Locally Infeasible status for a submodel, it is usually assumed that there is no feasible solution to the
submodel, even though the infeasibility only has been determined locally (see option infeasseq below for
an exception). If the model is convex, these assumptions will be satisfied and SBB will provide correct
bounds. If the model is not convex, the objective bounds may not be correct and better solutions may
exist in other, unexplored parts of the search space.

2516 Solver Manuals

5.33.3 SBB with Pseudo Costs

Over the last decades quite a number of search strategies have been successfully introduced for mixed
integer linear programming (for details see e.g. J.T. Linderoth and M.W.P. Savelsbergh, A Computational
Study of Search Strategies for Mixed Integer Programming, INFORMS Journal on Computing, 11(2),
1999). Pseudo costs are key elements of sophisticated search strategies. Using pseudo costs, we can
estimate the degradation of the objective function if we move a fractional variable to a close integer
value. Naturally, the variable selection can be based on pseudo costs (see SBB option varsel). Node
selection can also make use of pseudo cost: If we can estimate the change of the objective for moving
one fractional variable to the closed integer value, we can then aggregate this change for all fractional
variables, to estimate the objective of the best integer solution reachable from a particular node (see SBB
option nodesel).

Unfortunately, the computation of pseudo cost can be a substantial part of the overall computation.
Models with a large number of fractional variables in the root node are not good candidates for search
strategies which require pseudo costs (varsel 3, nodesel 3,5,6). The impact (positive or negative) of
using pseudo cost depends significantly on the particular model. At this stage, general statements are
difficult to make.

Selecting pseudo cost related search strategies (varsel 3, nodesel 3,5,6) may use computation time
which sometimes does not pay off. However, we encourage the user to try these options for difficult models
which require a large number of branch-and-bound nodes to solve.

5.33.4 The SBB Options

SBB works like other GAMS solvers, and many options can be set in the GAMS model. The most
relevant GAMS options are IterLim, ResLim, NodLim, OptCA, OptCR, OptfFile, Cheat, and CutOff. A
description of all available GAMS options can be found in the GAMS User's Guide Solver related options.
GAMS options PriorOpt and TryInt are also accepted by SBB.

SBB uses the var.prior information to select the fractional variable with the smallest priority during
the variable selection process. SBB uses the TryInt information to set the branching direction in the B&B
algorithm. At the beginning, SBB looks at the levels of the discrete variables provided by the user and if
Abs(Round(x.l)-x.l) < m.TryInt, SBB will branch on that variable in the direction of Round(x.l). For
example, x.l=0.9 and m.TryInt=0.2. We have Abs(Round(0.9)-0.9)=0.1 < 0.2, so when SBB decides to
branch on this variable (because it is fractional, lets say with value 0.5), the node explored next will have
the additional constraint x ≥ 1 (the node with x ≤ 0 will be explored later). If everything goes well (there
is the chance that we end up in a different local optima in the subsolves for non-convex problems), SBB
should reproduce a preset incumbent solution in a couple of nodes.

If you specify <modelname>.OptFile = 1; before the Solve statement in your GAMS model, SBB will
then look for and read an option file with the name sbb.opt (see The Solver Option File for general use
of solver option files). Unless explicitly specified in the SBB option file, the NLP subsolvers will not read
an option file. The syntax for the SBB option file is

optname value

with one option on each line.

For example,

rootsolver conopt.1

subsolver snopt

loginterval 10

The first two lines determine the NLP subsolvers for the Branch and Bound procedure. CONOPT with
the option file conopt.opt will be used for solving the root node. SNOPT with no option file will be used
for the remaining nodes. The last option determines the frequency for log line printing. Every 10th node,
and each node with a new integer solution, causes a log line to be printed. The following options are
implemented:

5.33 SBB 2517

Option Description Default

acceptnonopt
accepts feasible solution from subsolver 0

avgresmult
average resource multiplicator 5

dfsstay
keeps DFS node selection after solution has been found 0

epint
integer feasibility tolerance 1.0e-5

failseq
solver sequence for failed nodes

infeasseq
solver sequence for infeasible nodes

intsollim
maximum number of integer solutions 2100000000

loginterval
progress display interval 1

loglevel
level of solver display 1

memnodes
maximum number of nodes in memory 10000

miptrace
filename of MIP trace file

miptracenode
node interval when a trace record is written 100

miptracetime
time interval when a trace record is written 5.0

nodesel
node selection strategy 0

printbbinfo
prints additional node info 0

rootsolver
solver for the root node GAMS NLP solver

solvelink
Solvelink for GAMS NLP solver 5

subiter
iteration limit for the subsolve GAMS iterlim

subres
resource limit for the subsolve GAMS reslim

subsolver
solver for the subproblems GAMS NLP solver

usercallparmfile
Command-line parameter include file used in GAMS command-
line calls triggered by BCH

usergdxname
the name of the GDX file exported from the solver with the
solution at the node

bchout.gdx

usergdxnameinc
the name of the GDX file exported from the solver with the
incumbent solution

bchout i.gdx

userheurcall
the GAMS command line to call the heuristic

userheurfirst
calls the cut generator for the first n nodes 10

userheurfreq
determines the frequency of the cut generator model calls 10

userheurinterval
determines the interval when to apply the multiplier for the
frequency of the cut generator model calls

100

userheurmult
determines the multiplier for the frequency of the cut generator
model calls

2

userheurnewint
calls the heuristic if the solver found a new integer feasible
solution

0

userheurobjfirst
Similar to UserHeurFirst but only calls the heuristic if the
relaxed objective promises an improvement

50

varsel
variable selection strategy at each node 0

2518 Solver Manuals

acceptnonopt (boolean): accepts feasible solution from subsolver ←↩

If this option is set to 1 and the subsolver terminates with solver status Terminated by Solver
and model status Intermediate Nonoptimal SBB takes this as a good solution and keeps
on going. In default mode such a return is treated as a subsolver failure and the failseq is
consulted.

Default: 0

avgresmult (integer): average resource multiplicator ←↩

Similar to subres, this option allows the user to control the time limit spend in a node. SBB
keeps track of how much time is spent in the nodes, and builds an average over time. This
average multiplied by the factor avgresmult is set as a time limit for solving a node in the B&B
tree. If the NLP solver exceeds this limit it is handled like a failure: the node is ignored or the
solvers in the failseq are called. The default multiplier avgresmult is 5. Setting avgresmult

to 0 will disable the automatic time limit feature. A multiplier is not very useful for very
small node solution times; therefore, independent of each node, SBB grants the solver at
least 5 seconds to solve the node. The competing option subres overwrites the automatically
generated resource limit.

Default: 5

dfsstay (integer): keeps DFS node selection after solution has been found ←↩

If the node selection is a B∗/DFS mix, SBB switches frequently to DFS node selection mode.
It switches back into B∗ node selection mode, if no subnodes were created (new int, pruned,
infeasible, fail). It can be advantageous to search the neighborhood of the last node also in a
DFS manner. Setting dfsstay to n instructs SBB to stay in DFS mode for another n nodes.

Default: 0

epint (real): integer feasibility tolerance ←↩

The integer infeasibility tolerance.

Range: [1e-9, 1]

Default: 1.0e-5

failseq (string): solver sequence for failed nodes ←↩

solver1[.n1] solver2[.n2] ... where solver1 is the name of a GAMS NLP solver to be
used if the default solver fails, i.e., if it was not stopped by an iteration, resource, or domain
limit and does not return a locally optimal or locally infeasible solution. n1 is the value of
optfile passed to the alternative NLP solver. If .n1 is left blank it is interpreted as zero.
Similarly, solver2 is the name of a GAMS NLP solver that is used if solver1 fails, and n2

is the value of optfile passed to the second NLP solver. If you have a difficult model where
solver failures are not unlikely, you may add more solver.n pairs. You can use the same
solver several times with different options files. failseq conopt conopt.2 conopt.3 means
to try CONOPT with no options file. If this approach also fails, try CONOPT with options
file conopt.op2, and if it again fails, try CONOPT with options file conopt.op3. If all solver
and options file combinations fail the node will be labeled ignored and the node will not be
explored further. The default is to try only one solver (the rootsolver or subsolver) and
to ignore nodes with a solver failure.

infeasseq (string): solver sequence for infeasible nodes ←↩

5.33 SBB 2519

level solver1[.n1] solver2[.n2] ... The purpose of infeasseq is to avoid cutting parts
of the search tree that appear to be infeasible but really are feasible. If the NLP solver labels
a node Locally Infeasible and the model is not convex a feasible solution may actually exist.
If SBB is high in the search tree it can be very drastic to prune the node immediately. SBB
is therefore directed to try the solver/option combinations in the list as long as the depth in
the search tree is less than the integer value level. If the list is exhausted without finding a
feasible solution, the node is assumed to be infeasible. The default is to trust that Locally
Infeasible nodes are indeed infeasible and to remove them from further consideration.

intsollim (integer): maximum number of integer solutions ←↩

Maximum number of integer solutions. If this number is exceeded, SBB will terminate and
return the best solution found so far.

Default: 2100000000

loginterval (integer): progress display interval ←↩

The interval (number of nodes) for which log lines are written.

Default: 1

loglevel (integer): level of solver display ←↩

The level of log output.

Default: 1

value meaning

0 only SBB log lines with one line every loginterval nodes

1 NLP solver log for the root node plus SBB loglines as 0

2 NLP solver log for all nodes plus SBB log lines as 0

memnodes (integer): maximum number of nodes in memory ←↩

The maximum number of nodes SBB can have in memory. If this number is exceeded, SBB
will terminate and return the best solution found so far.

Default: 10000

miptrace (string): filename of MIP trace file ←↩

More info is available in chapter Solve trace

miptracenode (integer): node interval when a trace record is written ←↩

More info is available in chapter Solve trace

Default: 100

miptracetime (real): time interval when a trace record is written ←↩

More info is available in chapter Solve trace

Default: 5.0

nodesel (integer): node selection strategy ←↩

Node selection scheme.

Default: 0

2520 Solver Manuals

value meaning

0 automatic

1 Depth First Search (DFS)

2 Best Bound (BB)

3 Best Estimate (BE)

4 DFS/BB mix

5 DFS/BE mix

6 DFS/BB/BE mix

printbbinfo (integer): prints additional node info ←↩

Additional info of log output.

Default: 0

value meaning

0 print no additional info

1 print variable selection letter
The node and variable selection for the current node are indicated by a two letter
code at the end of the log line. The first letter represents the node selection: D
for DFS, B for Best Bound, and E for Best Estimate. The second letter represents
the variable selection: X for maximum infeasibility, N for minimum infeasibility,
and P for pseudo cost.

2 print best estimate

rootsolver (string): solver for the root node ←↩

solver[.n] Solver is the name of the GAMS NLP solver that should be used in the root node,
and n is the integer corresponding to optfile for the root node. If .n is missing, the optfile
treated as zero i.e. the NLP solver will not look for an options file. This SBB option can
be used to overwrite the default that uses the NLP solver specified with an Option NLP =

solver; statement or the default GAMS solver for NLP.

Default: GAMS NLP solver

solvelink (integer): Solvelink for GAMS NLP solver ←↩

Default: 5

value meaning

1 Call GAMS NLP solver via script

2 Call GAMS NLP solver via module

5 Call GAMS NLP solver in memory

subiter (integer): iteration limit for the subsolve ←↩

The default for subiter passed on through iterlim. Similar to subres but sets the iteration
limit for solving a node in the B&B tree.

Default: GAMS iterlim

5.33 SBB 2521

subres (real): resource limit for the subsolve ←↩
The default for subres passed on through reslim. Sets the time limit in seconds for solving a
node in the B&B tree. If the NLP solver exceeds this limit it is handled like a failure and the
node is ignored, or the solvers in the failseq are called.

Default: GAMS reslim

subsolver (string): solver for the subproblems ←↩
solver[.n] Similar to rootsolver but applied to the subnodes.

Default: GAMS NLP solver

usercallparmfile (string): Command-line parameter include file used in GAMS command-line calls
triggered by BCH ←↩

usergdxname (string): the name of the GDX file exported from the solver with the solution at the node
←↩

More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

Default: bchout.gdx

usergdxnameinc (string): the name of the GDX file exported from the solver with the incumbent
solution ←↩

More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

Default: bchout i.gdx

userheurcall (string): the GAMS command line to call the heuristic ←↩
More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

userheurfirst (integer): calls the cut generator for the first n nodes ←↩
More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

Default: 10

userheurfreq (integer): determines the frequency of the cut generator model calls ←↩
More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

Default: 10

userheurinterval (integer): determines the interval when to apply the multiplier for the frequency of the
cut generator model calls ←↩

More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

Default: 100

userheurmult (integer): determines the multiplier for the frequency of the cut generator model calls ←↩
More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

Default: 2

userheurnewint (boolean): calls the heuristic if the solver found a new integer feasible solution ←↩
More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

Default: 0

userheurobjfirst (integer): Similar to UserHeurFirst but only calls the heuristic if the relaxed objective
promises an improvement ←↩

More info is available in chapter The GAMS Branch-and-Cut-and-Heuristic Facility.

Default: 50

varsel (integer): variable selection strategy at each node ←↩
Variable selection scheme.

Default: 0

2522 Solver Manuals

value meaning

0 automatic

1 maximum integer infeasibility

2 minimum integer infeasibility

3 pseudo costs

5.33.5 The SBB Log File

The SBB Log file (usually directed to the screen) can be controlled with the loginterval and loglevel

options in SBB. It will by default first show the iteration output from the NLP solver that solves the root
node. This is followed by output from SBB describing the search tree. An example of this search tree
output follows:

Root node solved locally optimal.

Node Act. Lev. Objective IInf Best Int. Best Bound Gap (2 secs)

0 0 0 8457.6878 3 - 8457.6878 -

1 1 1 8491.2869 2 - 8457.6878 -

2 2 2 8518.1779 1 - 8457.6878 -

* 3 3 3 9338.1020 0 9338.1020 8457.6878 0.1041

4 2 1 pruned - 9338.1020 8491.2869 0.0997

Solution satisfies optcr

Statistics:

Iterations : 90

NLP Seconds : 0.110000

B&B nodes : 3

MIP solution : 9338.101979 found in node 3

Best possible : 8491.286941

Absolute gap : 846.815039 optca : 0.000000

Relative gap : 0.099728 optcr : 0.100000

Model Status : 8

Solver Status : 1

NLP Solver Statistics

Total Number of NLP solves : 7

Total Number of NLP failures: 0

Details: conopt

execs 7

failures 0

Terminating.

The fields in the log are:

Field Description

Node The number of the current node. The root node is node 0.

Act The number of active nodes defined as the number of subnodes that have not yet been
solved.

Lev The level in the search tree, i.e., the number of branches needed to reach this node.

Objective The objective function value for the node. A numerical value indicates that the node
was solved and the objective was good enough for the node to not be ignored. ”pruned”
indicates that the objective value was worse than the Best Integer value, ”infeasible”
indicates that the node was Infeasible or Locally Infeasible, and ”ignored” indicates
that the node could not be solved (see under failseq above).

5.33 SBB 2523

Field Description

IInf The number of integer infeasibilities, i.e. the number of variables that are supposed to
be binary or integer that do not satisfy the integrality requirement. Semi continuous
variables and SOS variables may also contribute to IInf.

Best Int The value of the best integer solution found so far. A dash (-) indicates that an integer
solution has not yet been found. A star (∗) in column one indicates that the node is
integer and that the solution is better than the best yet found.

Best Bound The minimum value of ”Objective” for the subnodes that have not been solved yet
(maximum for maximization models). For convex models, Best Bound will increase
monotonically. For nonconvex models, Best Bound may decrease, indicating that the
Objective value for a node was not a valid lower bound for that node.

Gap The relative gap between the Best Integer solution and the Best Bound.

The remaining part of the Log file displays various solution statistics similar to those provided by the
MIP solvers. This information can also be found in the Solver Status area of the GAMS listing file.

The following Log file shows cases where the NLP solver fails to solve a subnode. The text ”ignored” in
the Objective field shows the failure, and the values in parenthesis following the Gap field are the Solve
and Model status returned by the NLP solver:

Root node solved locally optimal.

Node Act. Lev. Objective IInf Best Int. Best Bound Gap (2 secs)

0 0 0 6046.0186 12 - 6046.0186 -

1 1 1 infeasible - - 6046.0186 -

2 0 1 6042.0995 10 - 6042.0995 -

3 1 2 ignored - - 6042.0995 - (4,6)

4 0 2 5804.5856 8 - 5804.5856 -

5 1 3 ignored - - 5804.5856 - (4,7)

The next Log file shows the effect of the infeasseq and failseq options on the model above. CONOPT
with options file conopt.opt (the default solver and options file pair for this model) considers the first
subnode to be locally infeasible. CONOPT, MINOS, and SNOPT, all with no options file, are therefore
tried in sequence. In this case, they all declare the node infeasible and it is considered to be infeasible.

In node 3, CONOPT with option file fails but CONOPT without option file finds a Locally Optimal
solution, and this solution is then used for further search. The SBB option file for the following run would
be:

rootsolver conopt.1

subsolver conopt.1

failseq conopt

infeasseq 100 conopt minos snopt

The log looks as follows:

Root node solved locally optimal.

Node Act. Lev. Objective IInf Best Int. Best Bound Gap (2 secs)

0 0 0 6046.0186 12 - 6046.0186 -

conopt.1 reports locally infeasible

Executing conopt

conopt reports locally infeasible

Executing minos

minos reports locally infeasible

2524 Solver Manuals

Executing snopt

1 1 1 infeasible - - 6046.0186 -

2 0 1 6042.0995 10 - 6042.0995 -

conopt.1 failed. 4 TERMINATED BY SOLVER, 7 FEASIBLE SOLUTION

Executing conopt

3 1 2 4790.2373 8 - 6042.0995 -

4 2 3 4481.4156 6 - 6042.0995 -

conopt.1 reports locally infeasible

Executing conopt

conopt reports locally infeasible

Executing minos

minos failed. 4 TERMINATED BY SOLVER, 6 INTERMEDIATE INFEASIBLE

Executing snopt

5 3 4 infeasible - - 6042.0995 -

6 2 4 4480.3778 4 - 6042.0995 -

The Log file shows a solver statistic at the end, summarizing how many times an NLP was executed and
how often it failed:

NLP Solver Statistics

Total Number of NLP solves : 45

Total Number of NLP failures: 13

Details: conopt minos snopt

execs 34 3 8

failures 4 3 6

The solutions found by the NLP solver to the subproblems in the Branch and Bound may not be the
global optima. Therefore, the objective can improve even though we restrict the problem by tightening
some bounds. These jumps of the objective in the wrong direction which might also have an impact on
the best bound/possible are reported in a separate statistic:

Non convex model!

jumps in best bound : 2

Maximum jump in best bound : 20.626587 in node 13

jumps to better objective : 2

Maximum jump in objective : 20.626587 in node 13

5.33.6 Comparison of SBB and other MINLP Solvers

GAMS offers a variety of MINLP solvers including local and global MINLP solver. They implement
different algorithms and it is usually unclear which solver performs best. Here we give a brief comparison
between SBB and the well known solver DICOPT.

DICOPT is based on the outer approximation method. Initially, the RMINLP model is solved just as
in SBB. The model is then linearized around this point and a linear MIP model is solved. The discrete
variables are then fixed at the optimal values from the MIP model, and the resulting NLP model is solved.
If the NLP model is feasible, we have an integer feasible solution.

The model is linearized again and a new MIP model with both the old and new linearized constraints is
solved. The discrete variables are again fixed at the optimal values, and a new NLP model is solved.

The process stops when the MIP model becomes infeasible, when the NLP solution becomes worse, or, in
some cases, when bounds derived from the MIP model indicate that it is safe to stop.

5.34 SCIP 2525

DICOPT is based on the assumption that MIP models can be solved efficiently while NLP models can be
expensive and difficult to solve. The MIP models try to approximate the NLP model over a large area
and solve it using much cheaper linear technology. Ideally, only a few NLPs must be solved.

DICOPT can experience difficulties solving models, if many or all the NLP submodels are infeasible.
DICOPT can also have problems if the linearizations used for the MIP model create ill-conditioned models.
The MIP models may become very difficult to solve, and the results from the MIP models may be poor as
initial values for the NLP models. The linearized constraint used by DICOPT may also exclude certain
areas of the feasible space from consideration.

SBB uses different assumptions and works very differently. Most of the work in SBB involves solving NLP
models. Since the NLP submodels differ only in one or a few bounds, the assumption is that the NLP
models can be solved quickly using a good restart procedure. Since the NLP models differ very little
and good initial values are available, the solution process will be fairly reliable compared to the solution
process in DICOPT, where initial values of good quality seldom are available. Because search space is
reduced based on very different grounds than in DICOPT, other solutions may therefore be explored.

Overall, DICOPT should perform better on models that have a significant and difficult combinatorial
part, while SBB may perform better on models that have fewer discrete variables but more difficult
nonlinearities (and possibly also on models that are fairly non convex).

5.34 SCIP

SCIP (Solving Constraint Integer Programs) is a framework for Constraint Integer Programming oriented
towards the needs of Mathematical Programming experts who want to have total control of the solution
process and access detailed information down to the guts of the solver. SCIP can also be used as a pure
MIP or MINLP solver or as a framework for branch-cut-and-price. Within GAMS, the MIP and MINLP
solving facilities of SCIP are available.

For more detailed information, we refer to [4] [1] [2] [21] [20] [74] [127] [88] [89] [75] [22] [192] [191] [204]
and the SCIP web site.

GAMS/SCIP uses CPLEX, if licensed, and otherwise SOPLEX [206] as LP solver, the COIN-OR Interior
Point Optimizer IPOPT [197] as nonlinear solver, and CppAD to compute derivatives of nonlinear
functions.

SCIP supports continuous, binary, integer, semi-continuous, semi-integer variables, indicator constraints,
special ordered sets, and branching priorities for discrete variables.

5.34.1 Usage

The following statement can be used inside your GAMS program to specify using SCIP

Option MIP = SCIP; { or QCP or NLP or MIQCP or MINLP or ... }

The above statement should appear before the Solve statement. If SCIP was specified as the default solver
during GAMS installation, the above statement is not necessary.

https://www.scipopt.org
https://www.scipopt.org

2526 Solver Manuals

5.34.1.1 Specification of SCIP Options

GAMS/SCIP supports the GAMS parameters reslim, iterlim, nodlim, optca, optcr, and workspace.
Further, the option threads can be used to control the number of threads used in the MILP presolver, the
linear algebra routines (e.g., in IPOPT), and for solving LPs if CPLEX' barrier solver is used. Setting
threads to 0 (the default) will enable the automatic choice of the number of threads in the MILP presolver
and LP solver, but does not enable multithreading for linear algebra routines at the moment.

Options can be specified by a SCIP options file. A SCIP options file consists of one option or comment
per line. A pound sign (#) at the beginning of a line causes the entire line to be ignored. Otherwise, the
line will be interpreted as an option name and value separated by an equal sign (=) and any amount of
white space (blanks or tabs). Further, string values have to be enclosed in quotation marks.

A small example for a scip.opt file is:

propagating/probing/maxprerounds = 0

separating/maxrounds = 0

separating/maxroundsroot = 0

It causes GAMS/SCIP to disable probing during presolve and to turn off all cut generators.

5.34.1.2 Specification of Indicators

Indicators are a modeling tool to specify that certain equations in a model must only be satisfied if certain
binary variables take a specified value. Indicators are not supported by the GAMS language, but can be
passed to SCIP via a separate file, see Indicator Constraints for more details on its syntax. The name of
that file is specified via the option gams/indicatorfile in a SCIP option file. Currently, indicators can only
be used for linear equations.

5.34.2 Special Features

5.34.2.1 SCIP interactive shell

The interactive shell in SCIP is a powerful tool that allows the user to display various information (e.g.,
branching statistics, presolved model), load emphasis settings, interrupt a solve to change parameters or
trigger a restart, write the model in various file formats, start SCIPs solution counter, and many more
things.

When setting the option gams/interactive to a nonempty string, the GAMS/SCIP interface opens the
interactive shell of SCIP after having load the GAMS problem and parameters and passes the value of the
gams/interactive parameter to the SCIP interactive shell.

By default, SCIP behaves as if gams/interactive has been set to "optimize write gamssol quit",
that is, SCIP is requested to solve the problem, then to pass the solution back to GAMS, and to quit.

An example use of the SCIP interactive shell feature via GAMS is to add the following line to your SCIP
options file:

gams/interactive = "write prob orig.lp presolve write transprob presol.mps opt write gamssol quit"

This instructs SCIP to write the original problem to the file orig.lp in LP format, to presolve the
instance, to write the presolved problem to the file presolved.mps in MPS format, to solve the instance,
to write the solution out to GAMS, and to finish.

By omitting the quit command, SCIPs interactive shell remains open and awaits user input. The
command help prints a list of available commands. Note, that on Windows, GAMS need to be called
with the option interactivesolver enabled to allow user input for the solver process.

A tutorial on using the SCIP shell is available at https://www.scipopt.org/doc/html/SHELL.php.

https://www.scipopt.org/doc/html/SHELL.php

5.34 SCIP 2527

5.34.2.2 Emphasis Settings

SCIP includes various emphasis settings, which are predefined values for a set of SCIP parameters.
Such predefined settings are available for setting the effort that SCIP should spend for, e.g., presolving,
separation, or heuristics.

The emphasis settings are not available as single parameters, but can be set via SCIPs interactive shell.
E.g., writing set heuristics emphasis in the shell displays the available emphasis settings for heuristics
(aggressive, fast, off) and expects the user to input which setting to use. Further, general emphasis
settings are available in the set emphasis menu, some of them giving predefined settings similar to the
CPLEX option mipemphasis.

Via the gams/interactive option, c.f. Section SCIP interactive shell, emphasis settings can be activated
via a SCIP options file. For example, adding the option

gams/interactive = "set emphasis feasibility set loadgams optimize write gamssol quit"

instructs SCIP to load the emphasis setting feasibility prior to optimizing the model and passing
the solution back to GAMS. Note, that setting one of the emphasis settings feasibility, hardlp, and
optimality resets all previously set parameters to their default values, which includes the ones that are
set by the GAMS/SCIP interface or which were loaded from a SCIP options file. Therefore, the command
set loadgams has been used above to restore these parameter settings.

The following emphasis settings are available in SCIP:

shell command purpose

set emphasis easycip use for easy problems

set emphasis feasibility emphasize finding a feasible solution

set emphasis hardlp use for problems with a hard LP

set emphasis optimality emphasize proving optimality

set emphasis numerics increase numerical stability

set emphasis cpsolver setup a constraint programming like search

set heuristic emphasis aggressive use primal heuristics aggressively

set heuristic emphasis fast use only fast primal heuristics

set heuristic emphasis off disable all primal heuristics

set presolving emphasis aggressive do aggressive presolving

set presolving emphasis fast use only fast presolving steps

set presolving emphasis off disable presolving

set separating emphasis aggressive use cutting plane separators aggressively

set separating emphasis fast use only fast cutting plane separators

set separating emphasis off disable all cutting plane separators

5.34.2.3 Starting point

Using the completesol heuristic, SCIP can try to find a feasible solution based on values given by the user
for all or some of the variables. The values need to be specified as variable levels in the GAMS model. The
heuristic solves a copy of the problem where variables for which values have been provided are restricted
to be close to that value. When an integral value is specified for a binary or integer variable, the variable
is fixed to that value. See also Section 2.3.2 in [127] for a more detailed description of the heuristic.

For which variables the level values are passed from GAMS to SCIP is controlled by the parameter
gams/mipstart. The parameter values have the following meaning:

2528 Solver Manuals

• 0: do not pass any variable values to SCIP, the heuristic will not run

• 1: pass values for all binary and integer variables to SCIP and let SCIP try to find a feasible solution
in its neighborhood by using the completesol heuristic

• 2 (default): pass values for all variables to SCIP and let SCIP check feasibility of the given solution,
the heuristic will not run

• 3: pass values for all variables to SCIP and let SCIP try to find a feasible solution in the neighborhood
by using the completesol heuristic

• 4: pass values for all binary and integer variables to SCIP which fractionality is at most the value of
GAMS option tryint (thus, with default tryint=0, only for variables with integral values, the value
is passed to SCIP) and let SCIP try to find a feasible solution in the neighborhood by using the
completesol heuristic

Note, that the completesol heuristic will not run if there are too many variables with unknown values.
This behavior can be adjusted by setting parameter heuristics/completesol/maxunknownrate.

5.34.2.4 Decomposition Information

SCIP potentially can make use of a user-provided problem decomposition, e.g., in primal heuristics
PADM or GINS. Note, that SCIP's Benders Decomposition is not available with GAMS at the moment.
A GAMS user can inform SCIP about such a decomposition by using the .stage variable suffix.

In an attempt to following the same convention on interpreting the .stage variable suffix as the
GAMS/CPLEX link, variables which .stage suffix is set to an integral value greater than 0 are as-
signed to a block with this number. Variables which .stage suffix is set to a fractional value or a value
smaller than 1 are assigned to no block.

Note, that the default value for the .stage suffix is 1. Therefore, GAMS/SCIP only passes decomposition
information to SCIP if at least one variable has its .stage suffix set to a value different than 1. Moreover,
in order to receive the .stage values, scaleOpt and priorOpt must be left at their default of 0.

5.34.2.5 Solution Pool

When SCIP solves a problem, it may find several solutions, whereof only the best one is available to
the GAMS user via the variable level values in the GAMS model. If the option gams/dumpsolutions is
specified, then all alternative solutions found by SCIP are written into GDX files and an index file with
the name given by the this option is written. If the option gams/dumpsolutionsmerged is specified, then
all alternative solutions found by SCIP are written into a single GDX file, which name is given by the this
option.

The GAMS testlib model dumpsol shows an example use for this option.

5.34.2.6 Solving process tracing

The option gams/solvetrace/file can be used to specify the name of a file where information about the
progress of the branch-and-bound tree search in SCIP is stored. The file is created and updated during
the solution process, so it may also be used to monitor the progress of SCIP while it still solves the model.

New entries are written periodically, depending on how many nodes have been processed or how much
time has been elapsed since the last entry was written. Each entry contains information on the current
primal and dual bound.

https://www.scipopt.org/doc/html/DECOMP.php

5.34 SCIP 2529

5.34.2.7 Notes on solving MINLPs

SCIP includes capabilities to handle nonlinear functions that are specified via algebraic expressions.
Therefore, neither external/extrinsic functions nor all GAMS mathematical functions are supported.

Nonconvex MINLPs are solved via a spatial branch-and-bound algorithm using linear relaxations. The
tightness of this relaxation depends heavily on the variable bounds, thus tight bounds for the nonlinear
variables are crucial for SCIP.

Convex MINLPs are much easier to solve for SCIP, provided it recognizes the convexity of the model. The
convexity check implemented in SCIP may not give a conclusive answer in all cases. However, setting the
option constraints/nonlinear/assumeconvex to TRUE can be used to tell SCIP that it should assume all
nonlinear constraints to be of convex type. This may help to improve solving times for convex MINLPs
considerably in some cases. However, it can also deteriorate performance as it prevents the use of certain
extended formulations.

Another feature that can be especially useful for convex MINLPs is to enable the generation of cuts
in feasible solutions, since these supporting hyperplanes can be strong. At the moment, this is only
enabled for purely continuous nonlinear programs (QCPs and NLPs), but can be adjusted by pa-
rameter constraints/nonlinear/linearizeheursol. In this connection, it may also be beneficial to set
separating/poolfreq to 1.

5.34.3 Components

In the following, we list components that are available in SCIP together with some common properties.
Many of these properties can be modified with corresponding parameters.

5.34.3.1 Branching Rules

branching rule priority maxdepth maxbounddist description

relpscost 10000 -1 100 reliability branching on pseudo
cost values

pscost 2000 -1 100 branching on pseudo cost values

inference 1000 -1 100 inference history branching

mostinf 100 -1 100 most infeasible branching

leastinf 50 -1 100 least infeasible branching

distribution 0 -1 100 branching rule based on variable
influence on cumulative normal
distribution of row activities

fullstrong 0 -1 100 full strong branching

cloud 0 -1 100 branching rule that considers sev-
eral alternative LP optima

lookahead 0 -1 100 full strong branching over multi-
ple levels

multaggr 0 -1 100 fullstrong branching on fractional
and multi-aggregated variables

allfullstrong -1000 -1 100 all variables full strong branching

vanillafullstrong -2000 -1 100 vanilla full strong branching

random -100000 -1 100 random variable branching

nodereopt -9000000 -1 100 branching rule for node reopti-
mization

2530 Solver Manuals

See https://www.scipopt.org/doc/html/BRANCH.php for a detailed description of the branching rule
properties.

5.34.3.2 Conflict Handler

conflict handler priority description

logicor 800000 conflict handler creating logic or constraints

setppc 700000 conflict handler creating set covering constraints

indicatorconflict 200000 replace slack variables and generate logicor constraints

linear -1000000 conflict handler creating linear constraints

bounddisjunction -3000000 conflict handler creating bound disjunction constraints

5.34.3.3 Constraint Handler

con-
straint
handler

check-
prio

enfo-
prio

sepa-
prio

sepa-
freq propfreq

eager-
freq

presol-
vetim-
ings

de-
scrip-
tion

integral 0 0 0 -1 -1 -1 always integrality
con-
straint

SOS1 -10 100 1000 10 1 100 medium SOS1
con-
straint
handler

SOS2 -10 100 10 0 1 100 fast SOS2
con-
straint
handler

varbound -500000 -500000 900000 0 1 100 fast
medium

variable
bounds
lhs <=
x + c∗y
<= rhs,
x non-
binary,
y non-
continuous

knapsack -600000 -600000 600000 0 1 100 always knapsack
con-
straint
of the
form
a∧T x
<= b, x
binary
and a
>= 0

setppc -700000 -700000 700000 0 1 100 always set parti-
tioning
/ pack-
ing /
covering
con-
straints

https://www.scipopt.org/doc/html/BRANCH.php

5.34 SCIP 2531

con-
straint
handler

check-
prio

enfo-
prio

sepa-
prio

sepa-
freq propfreq

eager-
freq

presol-
vetim-
ings

de-
scrip-
tion

or -850000 -850000 850000 0 1 100 medium constraint
handler
for or
con-
straints:
r =
or(x1, ...,
xn)

and -850100 -850100 850100 1 1 100 fast ex-
haustive

constraint
handler
for AND-
constraints:
r =
and(x1,
..., xn)

xor -850200 -850200 850200 0 1 100 always constraint
handler
for xor
con-
straints:
r =
xor(x1,
..., xn)

linear -1000000 -1000000 100000 0 1 100 fast ex-
haustive

linear
con-
straints
of the
form lhs
<= a∧T
x <=
rhs

orbisack -1005200 -1005200 40100 5 5 -1 exhaustive symmetry
breaking
con-
straint
handler
for orbi-
sacks

orbitope -1005200 -1005200 40100 -1 1 -1 medium symmetry
breaking
con-
straint
handler
relying
on (par-
tition-
ing/packing)
or-
bitopes

2532 Solver Manuals

con-
straint
handler

check-
prio

enfo-
prio

sepa-
prio

sepa-
freq propfreq

eager-
freq

presol-
vetim-
ings

de-
scrip-
tion

symresack -1005200 -1005200 40100 5 5 -1 exhaustive symmetry
breaking
con-
straint
handler
relying
on sym-
resacks

logicor -2000000 -2000000 10000 0 1 100 always logic
or con-
straints

bounddisjunction-3000000 -3000000 0 -1 1 100 fast bound
disjunc-
tion
con-
straints

nonlinear -4000010 -60 10 1 1 100 always handler
for non-
linear
con-
straints
specified
by al-
gebraic
expres-
sions

indicator -6000000 -100 10 10 1 100 fast indicator
con-
straint
handler

components-9999999 0 0 -1 1 -1 independent
compo-
nents
con-
straint
handler

See https://www.scipopt.org/doc/html/CONS.php for a detailed description of the constraint handler
properties.

5.34.3.4 Display Columns

display col-
umn

header position width priority status description

solfound 0 1 80000 auto letter that indi-
cates the heuris-
tic which found
the solution

time time 50 5 4000 auto total solution
time

nnodes node 100 7 100000 auto number of pro-
cessed nodes

https://www.scipopt.org/doc/html/CONS.php

5.34 SCIP 2533

display col-
umn

header position width priority status description

nodesleft left 200 7 90000 auto number of unpro-
cessed nodes

nrank1nodes rank1 500 7 40000 off current number
of rank1 nodes
left

nnodesbelowinc nbInc 550 6 40000 off current number
of nodes with an
estimate better
than the current
incumbent

lpiterations LP iter 1000 7 30000 auto number of sim-
plex iterations

lpavgiterations LP it/n 1400 7 25000 auto average number
of LP iterations
since the last
output line

lpcond LP cond 1450 7 0 auto estimate on con-
dition number of
LP solution

memused umem 1500 5 0 auto total number of
bytes used in
block memory

memtotal mem/heur 1500 8 20000 auto total number
of bytes in
block memory
or the creator
name when a
new incumbent
solution was
found

depth depth 2000 5 500 auto depth of current
node

maxdepth mdpt 2100 5 5000 auto maximal depth
of all processed
nodes

plungedepth pdpt 2200 5 10 auto current plunging
depth

nfrac frac 2500 5 700 auto number of frac-
tional variables
in the current so-
lution

nexternbranchcandsextbr 2600 5 650 auto number of extern
branching vari-
ables in the cur-
rent node

vars vars 3000 5 3000 auto number of vari-
ables in the prob-
lem

conss cons 3100 5 3100 auto number of glob-
ally valid con-
straints in the
problem

curconss ccons 3200 5 600 auto number of en-
abled constraints
in current node

2534 Solver Manuals

display col-
umn

header position width priority status description

curcols cols 3300 5 800 auto number of LP
columns in cur-
rent node

currows rows 3400 5 900 auto number of LP
rows in current
node

cuts cuts 3500 5 2100 auto total number of
cuts applied to
the LPs

separounds sepa 3600 4 100 auto number of sep-
aration rounds
performed at the
current node

poolsize pool 3700 5 50 auto number of LP
rows in the cut
pool

conflicts confs 4000 5 2000 auto total number of
conflicts found in
conflict analysis

strongbranchs strbr 5000 5 1000 auto total number of
strong branching
calls

pseudoobj pseudoobj 6000 14 300 auto current pseudo
objective value

lpobj lpobj 6500 14 300 auto current LP ob-
jective value

curdualbound curdualbound 7000 14 400 auto dual bound of
current node

estimate estimate 7500 14 200 auto estimated value
of feasible solu-
tion in current
node

avgdualbound avgdualbound 8000 14 40 auto average dual
bound of all
unprocessed
nodes

dualbound dualbound 9000 14 70000 auto current global
dual bound

primalbound primalbound 10000 14 80000 auto current primal
bound

cutoffbound cutoffbound 10100 14 10 auto current cutoff
bound

gap gap 20000 8 60000 auto current (rel-
ative) gap
using |primal-
dual|/MIN(|dual|,|primal|)

primalgap primgap 21000 8 20000 off current (rel-
ative) gap
using |primal-
dual|/|primal|

nsols nsols 30000 5 0 auto current number
of solutions
found

5.34 SCIP 2535

display col-
umn

header position width priority status description

completed compl. 30100 8 110000 auto completion of
search in percent
(based on tree
size estimation)

nobjleaves objleav 31000 7 0 auto current number
of encountered
objective limit
leaves

ninfeasleaves infleav 32000 7 0 auto number of en-
countered infea-
sible leaves

sols sols 100000 7 110000 off number of de-
tected feasible
solutions

feasST feasST 110000 6 110000 off number of de-
tected non triv-
ial feasible sub-
trees

See https://www.scipopt.org/doc/html/DISP.php for a detailed description of the display column
properties.

5.34.3.5 Nonlinear Handler

nonlinear handler enabled detect priority enforce priority description

default 1 0 0 default handler for
expressions

convex 1 50 50 handler that iden-
tifies and estimates
convex expressions

concave 1 40 40 handler that iden-
tifies and estimates
concave expressions

bilinear 1 -10 -10 bilinear handler for
expressions

perspective 1 -20 125 perspective handler
for expressions

quadratic 1 1 100 handler for quadratic
expressions

quotient 1 20 20 nonlinear handler for
quotient expressions

soc 1 100 100 nonlinear handler for
second-order cone
structures

5.34.3.6 Node Selectors

node selector standard priority memsave priority description

estimate 200000 100 best estimate search

https://www.scipopt.org/doc/html/DISP.php

2536 Solver Manuals

node selector standard priority memsave priority description

bfs 100000 0 best first search

hybridestim 50000 50 hybrid best estimate / best bound
search

restartdfs 10000 50000 depth first search with periodical
selection of the best node

uct 10 0 node selector which balances explo-
ration and exploitation

dfs 0 100000 depth first search

breadthfirst -10000 -1000000 breadth first search

See https://www.scipopt.org/doc/html/NODESEL.php for a detailed description of the node selector
properties.

5.34.3.7 Presolvers

presolver priority timing maxrounds description

milp 9999999 medium -1 MILP specific presolving methods

trivial 9000000 fast -1 round fractional bounds on integers, fix
variables with equal bounds

boundshift 7900000 fast 0 converts variables with domain [a,b] to
variables with domain [0,b-a]

inttobinary 7000000 fast -1 converts integer variables with domain
[a,a+1] to binaries

convertinttobin 6000000 fast 0 converts integer variables to binaries

gateextraction 1000000 exhaustive -1 presolver extracting gate(and)-constraints

qpkktref -1 medium 0 adds KKT conditions to (mixed-binary)
quadratic programs

dualcomp -50 exhaustive -1 compensate single up-/downlocks by sin-
gleton continuous variables

stuffing -100 exhaustive 0 fix redundant singleton continuous vari-
ables

domcol -1000 exhaustive -1 dominated column presolver

tworowbnd -2000 exhaustive 0 do bound tigthening by using two rows

dualinfer -3000 exhaustive 0 exploit dual information for fixings and
side changes

implics -10000 medium -1 implication graph aggregator

dualagg -12000 exhaustive 0 aggregate variables by dual arguments

sparsify -24000 exhaustive -1 eliminate non-zero coefficients

dualsparsify -240000 exhaustive -1 eliminate non-zero coefficients

redvub -9000000 exhaustive 0 detect redundant variable bound con-
straints

See https://www.scipopt.org/doc/html/PRESOL.php for a detailed description of the presolver prop-
erties.

5.34.3.8 Primal Heuristics

https://www.scipopt.org/doc/html/NODESEL.php
https://www.scipopt.org/doc/html/PRESOL.php

5.34 SCIP 2537

primal heuristic type priority freq freqoffset description

actconsdiving d -1003700 -1 5 LP diving heuristic that chooses fix-
ings w.r.t. the active constraints

adaptivediving d -70000 5 3 diving heuristic that selects adap-
tively between the existing, public
divesets

bound p -1107000 -1 0 heuristic which fixes all integer vari-
ables to a bound and solves the re-
maining LP

clique p 5000 0 0 LNS heuristic using a clique parti-
tion to restrict the search neighbor-
hood

coefdiving d -1001000 -1 1 LP diving heuristic that chooses fix-
ings w.r.t. the matrix coefficients

completesol L 0 0 0 primal heuristic trying to complete
given partial solutions

conflictdiving d -1000100 10 0 LP diving heuristic that chooses fix-
ings w.r.t. conflict locks

crossover L -1104000 30 0 LNS heuristic that fixes all variables
that are identic in a couple of solu-
tions

dins L -1105000 -1 0 distance induced neighborhood
search by Ghosh

distributiondiving d -1003300 10 3 Diving heuristic that chooses fixings
w.r.t. changes in the solution density

dps L 75000 -1 0 primal heuristic for decomposable
MIPs

dualval L -10 -1 0 primal heuristic using dual values

farkasdiving d -900000 10 0 LP diving heuristic that tries to con-
struct a Farkas-proof

feaspump o -1000000 20 0 objective feasibility pump 2.0

fixandinfer p -500000 -1 0 iteratively fixes variables and propa-
gates inferences

fracdiving d -1003000 10 3 LP diving heuristic that chooses fix-
ings w.r.t. the fractionalities

gins L -1103000 20 8 gins works on k-neighborhood in a
variable-constraint graph

guideddiving d -1007000 10 7 LP diving heuristic that chooses fix-
ings in direction of incumbent solu-
tions

zeroobj L 100 -1 0 heuristic trying to solve the problem
without objective

indicator L -20200 1 0 indicator heuristic to create feasible
solutions from values for indicator
variables

intdiving d -1003500 -1 9 LP diving heuristic that fixes binary
variables with large LP value to one

intshifting r -10000 10 0 LP rounding heuristic with infeasi-
bility recovering and final LP solving

linesearchdiving d -1006000 10 6 LP diving heuristic that chooses fix-
ings following the line from root so-
lution to current solution

localbranching L -1102000 -1 0 local branching heuristic by Fis-
chetti and Lodi

2538 Solver Manuals

primal heuristic type priority freq freqoffset description

locks p 3000 0 0 heuristic that fixes variables based
on their rounding locks

lpface L -1104010 15 0 LNS heuristic that searches the op-
timal LP face inside a sub-MIP

alns L -1100500 20 0 Large neighborhood search heuristic
that orchestrates the popular neigh-
borhoods Local Branching, RINS,
RENS, DINS etc.

nlpdiving d -1003010 10 3 NLP diving heuristic that chooses
fixings w.r.t. the fractionalities

mutation L -1103010 -1 8 mutation heuristic randomly fixing
variables

multistart L -2100000 0 0 multistart heuristic for convex and
nonconvex MINLPs

mpec d -2050000 50 0 regularization heuristic for convex
and nonconvex MINLPs

objpscostdiving o -1004000 20 4 LP diving heuristic that changes
variable's objective values instead of
bounds, using pseudo costs as guide

octane r -1008000 -1 0 octane primal heuristic for pure
{0;1}-problems based on Balas et al.

ofins L 60000 0 0 primal heuristic for reoptimization,
objective function induced neighbor-
hood search

oneopt i -20000 1 0 1-opt heuristic which tries to im-
prove setting of single integer vari-
ables

padm L 70000 0 0 penalty alternating direction
method primal heuristic

proximity L -2000000 -1 0 heuristic trying to improve the in-
cumbent by an auxiliary proximity
objective function

pscostdiving d -1002000 10 2 LP diving heuristic that chooses fix-
ings w.r.t. the pseudo cost values

randrounding r -200 20 0 fast LP rounding heuristic

rens L -1100000 0 0 LNS exploring fractional neighbor-
hood of relaxation's optimum

reoptsols p 40000 0 0 primal heuristic updating solutions
found in a previous optimization
round

repair L -20 -1 0 tries to repair a primal infeasible so-
lution

rins L -1101000 25 0 relaxation induced neighborhood
search by Danna, Rothberg, and Le
Pape

rootsoldiving o -1005000 20 5 LP diving heuristic that changes
variable's objective values using root
LP solution as guide

rounding r -1000 1 0 LP rounding heuristic with infeasi-
bility recovering

shiftandpropagate p 1000 0 0 Pre-root heuristic to expand an aux-
iliary branch-and-bound tree and ap-
ply propagation techniques

5.34 SCIP 2539

primal heuristic type priority freq freqoffset description

shifting r -5000 10 0 LP rounding heuristic with infeasibil-
ity recovering also using continuous
variables

simplerounding r -30 1 0 simple and fast LP rounding heuris-
tic

subnlp L -2000010 1 0 primal heuristic that performs a lo-
cal search in an NLP after fixing
integer variables and presolving

trivial t 10000 0 0 start heuristic which tries some triv-
ial solutions

trivialnegation p 39990 0 0 negate solution entries if an objec-
tive coefficient changes the sign, en-
ters or leaves the objective.

trustregion L -1102010 -1 0 LNS heuristic for Benders' decompo-
sition based on trust region methods

trysol t -3000010 1 0 try solution heuristic

twoopt i -20100 -1 0 primal heuristic to improve incum-
bent solution by flipping pairs of
variables

undercover L -1110000 0 0 solves a sub-CIP determined by a
set covering approach

vbounds p 2500 0 0 LNS heuristic uses the variable lower
and upper bounds to determine the
search neighborhood

veclendiving d -1003100 10 4 LP diving heuristic that rounds vari-
ables with long column vectors

zirounding r -500 1 0 LP rounding heuristic as suggested
by C. Wallace taking row slacks and
bounds into account

See https://www.scipopt.org/doc/html/HEUR.php for a detailed description of the primal heuristic
properties.

5.34.3.9 Propagators

propagator propprio freq presolveprio presolvetiming description

rootredcost 10000000 1 0 always reduced cost strength-
ening using root node
reduced costs and the
cutoff bound

dualfix 8000000 0 8000000 fast roundable variables
dual fixing

genvbounds 3000000 1 -2000000 fast generalized variable
bounds propagator

vbounds 3000000 1 -90000 medium exhaustive propagates variable
upper and lower
bounds

pseudoobj 3000000 1 6000000 fast pseudo objective func-
tion propagator

redcost 1000000 1 0 always reduced cost strength-
ening propagator

https://www.scipopt.org/doc/html/HEUR.php

2540 Solver Manuals

propagator propprio freq presolveprio presolvetiming description

probing -100000d -1 -100000 exhaustive probing propagator
on binary variables

symmetry -1000000 1 -10000000 exhaustive propagator for han-
dling symmetry

obbt -1000000d 0 0 always optimization-based
bound tightening
propagator

nlobbt -1100000d -1 0 always propagator template

See https://www.scipopt.org/doc/html/PROP.php for a detailed description of the propagator prop-
erties.

5.34.3.10 Separators

separator priority freq bounddist description

closecuts 1000000 -1 1 closecuts meta separator

rlt 10 0 1 reformulation-linearization-technique separator

disjunctive 10d 0 0 disjunctive cut separator

gauge 0 -1 1 gauge separator

interminor 0 -1 1 intersection cuts separator to ensure that 2x2
minors of X (= xx') have determinant 0

convexproj 0d -1 1 separate at projection of point onto convex region

minor 0 10 1 separator to ensure that 2x2 principal minors of
X - xx' are positive semi-definite

impliedbounds -50 10 1 implied bounds separator

mixing -50 10 1 mixing inequality separator

intobj -100 -1 0 integer objective value separator

gomory -1000 10 1 separator for Gomory mixed-integer and strong
CG cuts from LP tableau rows

cgmip -1000 -1 0 Chvatal-Gomory cuts via MIPs separator

aggregation -3000 10 1 aggregation heuristic for complemented mixed
integer rounding cuts and flowcover cuts

clique -5000 0 0 clique separator of stable set relaxation

zerohalf -6000 10 1 {0,1/2}-cuts separator

mcf -10000 0 0 multi-commodity-flow network cut separator

eccuts -13000 -1 1 separator for edge-concave functions

oddcycle -15000 -1 1 odd cycle separator

strongcg -100000 10 0 separator for strong CG cuts

gomorymi -100000 10 0 separator for Gomory mixed-integer cuts

knapsackcover -100000 10 0 separator for knapsack cover cuts

flowcover -100000 10 0 separator for flowcover cuts

cmir -100000 10 0 separator for cmir cuts

rapidlearning -1200000 5 1 rapid learning heuristic and separator

See https://www.scipopt.org/doc/html/SEPA.php for a detailed description of the separator proper-
ties.

https://www.scipopt.org/doc/html/PROP.php
https://www.scipopt.org/doc/html/SEPA.php

5.34 SCIP 2541

5.34.4 List of SCIP Options

SCIP supports a large set of options. In the following, we give a detailed list of all SCIP options.

5.34.4.1 gams

Option Description Default

gams/dumpsolutions
name of solutions index gdx file for writing all alternate
solutions
Range: string

gams/dumpsolutionsmerged
name of gdx file for writing all alternate solutions into a
single file
Range: string

gams/indicatorfile
name of GAMS options file that contains definitions on
indicators
Range: string

gams/infbound
value to use for variable bounds that are missing or exceed
numerics/infinity
Range: [0, ∞]

∞

gams/interactive
command to be issued to the SCIP shell instead of issuing
a solve command
Range: string

gams/mipstart
how to handle initial variable levels, see also section
Starting point
Range: {0, ..., 4}

2

5.34.4.2 gams/solvetrace

Option Description Default

gams/solvetrace/file
name of file where to write branch-and-bound trace informa-
tion too
Range: string

gams/solvetrace/nodefreq
frequency in number of nodes when to write branch-and-bound
trace information, 0 to disable
Range: {0, ..., ∞}

100

gams/solvetrace/timefreq
frequency in seconds when to write branch-and-bound trace
information, 0.0 to disable
Range: [0, ∞]

5

5.34.4.3 branching

Option Description Default

branching/clamp
minimal relative distance of branching point to bounds
when branching on a continuous variable
Range: [0, 0.5]

0.2

branching/delaypscostupdate
should updating pseudo costs for continuous variables be
delayed to the time after separation?
Range: boolean

1

2542 Solver Manuals

Option Description Default

branching/divingpscost
should pseudo costs be updated also in diving and probing
mode?
Range: boolean

1

branching/lpgainnormalize
strategy for normalization of LP gain when updating pseu-
docosts of continuous variables (divide by movement of
'l'p value, reduction in 'd'omain width, or reduction in
domain width of 's'ibling)
Range: d, l, s

s

branching/midpull
fraction by which to move branching point of a continuous
variable towards the middle of the domain; a value of 1.0
leads to branching always in the middle of the domain
Range: [0, 1]

0.75

branching/midpullreldomtrig
multiply midpull by relative domain width if the latter is
below this value
Range: [0, 1]

0.5

branching/preferbinary
should branching on binary variables be preferred?
Range: boolean

0

Options for expert users

branching/checksol
should LP solutions during strong branching with propa-
gation be checked for feasibility?
Range: boolean

1

branching/firstsbchild
child node to be regarded first during strong branching
(only with propagation): 'u'p child, 'd'own child, 'h'istory-
based, or 'a'utomatic
Range: a, d, u, h

a

branching/forceallchildren
should all strong branching children be regarded even if
one is detected to be infeasible? (only with propagation)
Range: boolean

0

branching/roundsbsol
should LP solutions during strong branching with propa-
gation be rounded? (only when checksbsol=TRUE)
Range: boolean

1

branching/scorefac
branching score factor to weigh downward and upward
gain prediction in sum score function
Range: [0, 1]

0.167

branching/scorefunc
branching score function ('s'um, 'p'roduct, 'q'uotient)
Range: s, p, q

p

branching/sumadjustscore
score adjustment near zero by adding epsilon (TRUE) or
using maximum (FALSE)
Range: boolean

0

5.34.4.4 branching/allfullstrong

Option Description Default

branching/allfullstrong/maxbounddist
maximal relative distance from current node's
dual bound to primal bound compared to best
node's dual bound for applying branching rule
(0.0: only on current best node, 1.0: on all nodes)
Range: [0, 1]

1

branching/allfullstrong/maxdepth
maximal depth level, up to which branching rule
<allfullstrong> should be used (-1 for no limit)
Range: {-1, ..., 65534}

-1

5.34 SCIP 2543

Option Description Default

branching/allfullstrong/priority
priority of branching rule <allfullstrong>
Range: {-536870912, ..., 536870911}

-1000

5.34.4.5 branching/cloud

Option Description Default

branching/cloud/maxbounddist
maximal relative distance from current node's dual
bound to primal bound compared to best node's dual
bound for applying branching rule (0.0: only on cur-
rent best node, 1.0: on all nodes)
Range: [0, 1]

1

branching/cloud/maxdepth
maximal depth level, up to which branching rule
<cloud> should be used (-1 for no limit)
Range: {-1, ..., 65534}

-1

branching/cloud/maxdepthunion
maximum depth for the union
Range: {0, ..., 65000}

65000

branching/cloud/maxpoints
maximum number of points for the cloud (-1 means
no limit)
Range: {-1, ..., ∞}

-1

branching/cloud/minsuccessrate
minimum success rate for the cloud
Range: [0, 1]

0

branching/cloud/minsuccessunion
minimum success rate for the union
Range: [0, 1]

0

branching/cloud/onlyF2
should only F2 be used?
Range: boolean

0

branching/cloud/priority
priority of branching rule <cloud>
Range: {-536870912, ..., 536870911}

0

branching/cloud/usecloud
should a cloud of points be used?
Range: boolean

1

branching/cloud/useunion
should the union of candidates be used?
Range: boolean

0

5.34.4.6 branching/distribution

Option Description Default

branching/distribution/maxbounddist
maximal relative distance from current node's
dual bound to primal bound compared to best
node's dual bound for applying branching rule
(0.0: only on current best node, 1.0: on all nodes)
Range: [0, 1]

1

branching/distribution/maxdepth
maximal depth level, up to which branching rule
<distribution> should be used (-1 for no limit)
Range: {-1, ..., 65534}

-1

branching/distribution/priority
priority of branching rule <distribution>
Range: {-536870912, ..., 536870911}

0

Options for expert users

branching/distribution/onlyactiverows
should only rows which are active at the current
node be considered?
Range: boolean

0

2544 Solver Manuals

Option Description Default

branching/distribution/scoreparam
the score;largest 'd'ifference, 'l'owest cumulative
probability,'h'ighest c.p., 'v'otes lowest c.p., votes
highest c.p.('w')
Range: d, h, l, v, w

v

branching/distribution/weightedscore
should the branching score weigh up- and down-
scores of a variable
Range: boolean

0

5.34.4.7 branching/fullstrong

Option Description Default

branching/fullstrong/maxbounddist
maximal relative distance from current node's
dual bound to primal bound compared to best
node's dual bound for applying branching rule
(0.0: only on current best node, 1.0: on all
nodes)
Range: [0, 1]

1

branching/fullstrong/maxdepth
maximal depth level, up to which branching rule
<fullstrong> should be used (-1 for no limit)
Range: {-1, ..., 65534}

-1

branching/fullstrong/priority
priority of branching rule <fullstrong>
Range: {-536870912, ..., 536870911}

0

Options for expert users

branching/fullstrong/forcestrongbranch
should strong branching be applied even if there
is just a single candidate?
Range: boolean

0

branching/fullstrong/maxproprounds
maximum number of propagation rounds to be
performed during strong branching before solv-
ing the LP (-1: no limit, -2: parameter settings)
Range: {-3, ..., ∞}

-2

branching/fullstrong/probingbounds
should valid bounds be identified in a probing-
like fashion during strong branching (only with
propagation)?
Range: boolean

1

branching/fullstrong/reevalage
number of intermediate LPs solved to trigger
reevaluation of strong branching value for a vari-
able that was already evaluated at the current
node
Range: {0, ..., ∞}

10

5.34.4.8 branching/inference

Option Description Default

branching/inference/conflictprio
priority value for using conflict weights in lex. or-
der
Range: {0, ..., ∞}

1

branching/inference/cutoffprio
priority value for using cutoff weights in lex. order
Range: {0, ..., ∞}

1

5.34 SCIP 2545

Option Description Default

branching/inference/maxbounddist
maximal relative distance from current node's dual
bound to primal bound compared to best node's
dual bound for applying branching rule (0.0: only
on current best node, 1.0: on all nodes)
Range: [0, 1]

1

branching/inference/maxdepth
maximal depth level, up to which branching rule
<inference> should be used (-1 for no limit)
Range: {-1, ..., 65534}

-1

branching/inference/priority
priority of branching rule <inference>
Range: {-536870912, ..., 536870911}

1000

branching/inference/useweightedsum
should a weighted sum of inference, conflict and
cutoff weights be used?
Range: boolean

1

Options for expert users

branching/inference/conflictweight
weight in score calculations for conflict score
Range: [0, ∞]

1000

branching/inference/cutoffweight
weight in score calculations for cutoff score
Range: [0, ∞]

1

branching/inference/fractionals
should branching on LP solution be restricted to
the fractional variables?
Range: boolean

1

branching/inference/inferenceweight
weight in score calculations for inference score
Range: real

1

branching/inference/reliablescore
weight in score calculations for conflict score
Range: [0, ∞]

0.001

5.34.4.9 branching/leastinf

Option Description Default

branching/leastinf/maxbounddist
maximal relative distance from current node's dual
bound to primal bound compared to best node's dual
bound for applying branching rule (0.0: only on cur-
rent best node, 1.0: on all nodes)
Range: [0, 1]

1

branching/leastinf/maxdepth
maximal depth level, up to which branching rule
<leastinf> should be used (-1 for no limit)
Range: {-1, ..., 65534}

-1

branching/leastinf/priority
priority of branching rule <leastinf>
Range: {-536870912, ..., 536870911}

50

5.34.4.10 branching/lookahead

Option Description Default

branching/lookahead/maxbounddist
maximal relative distance from current
node's dual bound to primal bound com-
pared to best node's dual bound for apply-
ing branching rule (0.0: only on current best
node, 1.0: on all nodes)
Range: [0, 1]

1

2546 Solver Manuals

Option Description Default

branching/lookahead/maxdepth
maximal depth level, up to which branching
rule <lookahead> should be used (-1 for no
limit)
Range: {-1, ..., 65534}

-1

branching/lookahead/priority
priority of branching rule <lookahead>
Range: {-536870912, ..., 536870911}

0

Options for expert users

branching/lookahead/abbreviated
toggles the abbreviated LAB.
Range: boolean

1

branching/lookahead/abbrevpseudo
if abbreviated: Use pseudo costs to estimate
the score of a candidate.
Range: boolean

0

branching/lookahead/addbinconsrow
should binary constraints be added as rows
to the base LP? (0: no, 1: separate, 2: as
initial rows)
Range: {0, ..., 2}

0

branching/lookahead/addclique
add binary constraints with two variables
found at the root node also as a clique
Range: boolean

0

branching/lookahead/addnonviocons
should binary constraints, that are not vi-
olated by the base LP, be collected and
added?
Range: boolean

0

branching/lookahead/applychildbounds
should bounds known for child nodes be
applied?
Range: boolean

0

branching/lookahead/deeperscoringfunction
scoring function to be used at deeper levels
Range: d, f, s, w, l, c, r, x

x

branching/lookahead/enforcemaxdomreds
should the maximum number of domain re-
ductions maxnviolateddomreds be enforced?
Range: boolean

0

branching/lookahead/filterbymaxgain
should lookahead branching only be applied
if the max gain in level 1 is not uniquely
that of the best candidate?
Range: boolean

0

branching/lookahead/level2avgscore
should the average score be used for unini-
tialized scores in level 2?
Range: boolean

0

branching/lookahead/level2zeroscore
should uninitialized scores in level 2 be set
to 0?
Range: boolean

0

branching/lookahead/maxncands
if abbreviated: The max number of candi-
dates to consider at the node.
Range: {1, ..., ∞}

4

branching/lookahead/maxndeepercands
if abbreviated: The max number of candi-
dates to consider per deeper node.
Range: {0, ..., ∞}

2

branching/lookahead/maxnviolatedbincons
how many binary constraints that are vi-
olated by the base lp solution should be
gathered until the rule is stopped and they
are added? [0 for unrestricted]
Range: {0, ..., ∞}

0

5.34 SCIP 2547

Option Description Default

branching/lookahead/maxnviolatedcons
how many constraints that are violated by
the base lp solution should be gathered until
the rule is stopped and they are added? [0
for unrestricted]
Range: {0, ..., ∞}

1

branching/lookahead/maxnviolateddomreds
how many domain reductions that are vi-
olated by the base lp solution should be
gathered until the rule is stopped and they
are added? [0 for unrestricted]
Range: {0, ..., ∞}

1

branching/lookahead/maxproprounds
maximum number of propagation rounds to
perform at each temporary node (-1: unlim-
ited, 0: SCIP default)
Range: {-1, ..., ∞}

0

branching/lookahead/mergedomainreductions
should domain reductions of feasible siblings
should be merged?
Range: boolean

0

branching/lookahead/minweight
if scoringfunction is 's', this value is used
to weight the min of the gains of two child
problems in the convex combination
Range: [0, ∞]

0.8

branching/lookahead/onlyvioldomreds
should only domain reductions that violate
the LP solution be applied?
Range: boolean

0

branching/lookahead/prefersimplebounds
should domain reductions only be applied if
there are simple bound changes?
Range: boolean

0

branching/lookahead/propagate
should domain propagation be executed be-
fore each temporary node is solved?
Range: boolean

1

branching/lookahead/recursiondepth
the max depth of LAB.
Range: {1, ..., ∞}

2

branching/lookahead/reevalage
max number of LPs solved after which a
previous prob branching results are recalcu-
lated
Range: {0, ..., ∞}

10

branching/lookahead/reevalagefsb
max number of LPs solved after which a
previous FSB scoring results are recalculated
Range: {0, ..., ∞}

10

branching/lookahead/reusebasis
if abbreviated: Should the information gath-
ered to obtain the best candidates be reused?
Range: boolean

1

branching/lookahead/scoringfunction
scoring function to be used at the base level
Range: d, f, s, w, p, l, c, r, a

a

branching/lookahead/scoringscoringfunction
scoring function to be used during FSB scor-
ing
Range: d, f, s, w, l, c, r

d

branching/lookahead/storeunviolatedsol
if only non violating constraints are added,
should the branching decision be stored till
the next call?
Range: boolean

1

2548 Solver Manuals

Option Description Default

branching/lookahead/updatebranchingresults
should branching results (and scores) be up-
dated w.r.t. proven dual bounds?
Range: boolean

0

branching/lookahead/usedomainreduction
should domain reductions be collected and
applied?
Range: boolean

1

branching/lookahead/useimpliedbincons
should binary constraints be collected and
applied?
Range: boolean

0

branching/lookahead/uselevel2data
should branching data generated at depth
level 2 be stored for re-using it?
Range: boolean

1

branching/lookahead/worsefactor
if the FSB score is of a candidate is worse
than the best by this factor, skip this candi-
date (-1: disable)
Range: [-1, ∞]

-1

5.34.4.11 branching/mostinf

Option Description Default

branching/mostinf/maxbounddist
maximal relative distance from current node's dual
bound to primal bound compared to best node's dual
bound for applying branching rule (0.0: only on cur-
rent best node, 1.0: on all nodes)
Range: [0, 1]

1

branching/mostinf/maxdepth
maximal depth level, up to which branching rule
<mostinf> should be used (-1 for no limit)
Range: {-1, ..., 65534}

-1

branching/mostinf/priority
priority of branching rule <mostinf>
Range: {-536870912, ..., 536870911}

100

5.34.4.12 branching/multaggr

Option Description Default

branching/multaggr/maxbounddist
maximal relative distance from current node's dual
bound to primal bound compared to best node's
dual bound for applying branching rule (0.0: only
on current best node, 1.0: on all nodes)
Range: [0, 1]

1

branching/multaggr/maxdepth
maximal depth level, up to which branching rule
<multaggr> should be used (-1 for no limit)
Range: {-1, ..., 65534}

-1

branching/multaggr/priority
priority of branching rule <multaggr>
Range: {-536870912, ..., 536870911}

0

Options for expert users

branching/multaggr/maxproprounds
maximum number of propagation rounds to be per-
formed during multaggr branching before solving
the LP (-1: no limit, -2: parameter settings)
Range: {-2, ..., ∞}

0

5.34 SCIP 2549

Option Description Default

branching/multaggr/probingbounds
should valid bounds be identified in a probing-
like fashion during multaggr branching (only with
propagation)?
Range: boolean

1

branching/multaggr/reevalage
number of intermediate LPs solved to trigger reeval-
uation of strong branching value for a variable that
was already evaluated at the current node
Range: {0, ..., ∞}

0

5.34.4.13 branching/nodereopt

Option Description Default

branching/nodereopt/maxbounddist
maximal relative distance from current node's dual
bound to primal bound compared to best node's
dual bound for applying branching rule (0.0: only
on current best node, 1.0: on all nodes)
Range: [0, 1]

1

branching/nodereopt/maxdepth
maximal depth level, up to which branching rule
<nodereopt> should be used (-1 for no limit)
Range: {-1, ..., 65534}

-1

branching/nodereopt/priority
priority of branching rule <nodereopt>
Range: {-536870912, ..., 536870911}

-9000000

5.34.4.14 branching/pscost

Option Description Default

branching/pscost/maxbounddist
maximal relative distance from current node's dual
bound to primal bound compared to best node's
dual bound for applying branching rule (0.0: only on
current best node, 1.0: on all nodes)
Range: [0, 1]

1

branching/pscost/maxdepth
maximal depth level, up to which branching rule
<pscost> should be used (-1 for no limit)
Range: {-1, ..., 65534}

-1

branching/pscost/narymaxdepth
maximal depth where to do n-ary branching, -1 to
turn off
Range: {-1, ..., ∞}

-1

branching/pscost/naryminwidth
minimal domain width in children when doing n-ary
branching, relative to global bounds
Range: [0, 1]

0.001

branching/pscost/narywidthfactor
factor of domain width in n-ary branching when cre-
ating nodes with increasing distance from branching
value
Range: [1, ∞]

2

branching/pscost/nchildren
number of children to create in n-ary branching
Range: {2, ..., ∞}

2

branching/pscost/priority
priority of branching rule <pscost>
Range: {-536870912, ..., 536870911}

2000

2550 Solver Manuals

Option Description Default

branching/pscost/strategy
strategy for utilizing pseudo-costs of external branch-
ing candidates (multiply as in pseudo costs 'u'pdate
rule, or by 'd'omain reduction, or by domain reduc-
tion of 's'ibling, or by 'v'ariable score)
Range: d, s, u, v

u

Options for expert users

branching/pscost/maxscoreweight
weight for maximum of scores of a branching candi-
date when building weighted sum of min/max/sum
of scores
Range: real

1.3

branching/pscost/minscoreweight
weight for minimum of scores of a branching candi-
date when building weighted sum of min/max/sum
of scores
Range: real

0.8

branching/pscost/sumscoreweight
weight for sum of scores of a branching candidate
when building weighted sum of min/max/sum of
scores
Range: real

0.1

5.34.4.15 branching/random

Option Description Default

branching/random/maxbounddist
maximal relative distance from current node's dual
bound to primal bound compared to best node's
dual bound for applying branching rule (0.0: only on
current best node, 1.0: on all nodes)
Range: [0, 1]

1

branching/random/maxdepth
maximal depth level, up to which branching rule
<random> should be used (-1 for no limit)
Range: {-1, ..., 65534}

-1

branching/random/priority
priority of branching rule <random>
Range: {-536870912, ..., 536870911}

-100000

branching/random/seed
initial random seed value
Range: {0, ..., ∞}

41

5.34.4.16 branching/relpscost

Option Description Default

branching/relpscost/initcand
maximal number of candidates initialized
with strong branching per node
Range: {0, ..., ∞}

100

branching/relpscost/inititer
iteration limit for strong branching initial-
izations of pseudo cost entries (0: auto)
Range: {0, ..., ∞}

0

branching/relpscost/maxbounddist
maximal relative distance from current
node's dual bound to primal bound com-
pared to best node's dual bound for apply-
ing branching rule (0.0: only on current best
node, 1.0: on all nodes)
Range: [0, 1]

1

5.34 SCIP 2551

Option Description Default

branching/relpscost/maxdepth
maximal depth level, up to which branching
rule <relpscost> should be used (-1 for no
limit)
Range: {-1, ..., 65534}

-1

branching/relpscost/priority
priority of branching rule <relpscost>
Range: {-536870912, ..., 536870911}

10000

branching/relpscost/sbiterofs
additional number of allowed strong branch-
ing LP iterations
Range: {0, ..., ∞}

100000

branching/relpscost/sbiterquot
maximal fraction of strong branching LP
iterations compared to node relaxation LP
iterations
Range: [0, ∞]

0.5

Options for expert users

branching/relpscost/confidencelevel
the confidence level for statistical methods,
between 0 (Min) and 4 (Max).
Range: {0, ..., 4}

2

branching/relpscost/conflictlengthweight
weight in score calculations for conflict
length score
Range: real

0

branching/relpscost/conflictweight
weight in score calculations for conflict score
Range: real

0.01

branching/relpscost/cutoffweight
weight in score calculations for cutoff score
Range: real

0.0001

branching/relpscost/degeneracyaware
should degeneracy be taken into account to
update weights and skip strong branching?
(0: off, 1: after root, 2: always)
Range: {0, ..., 2}

1

branching/relpscost/dynamicweights
should the weights of the branching rule be
adjusted dynamically during solving based
on objective and infeasible leaf counters?
Range: boolean

1

branching/relpscost/filtercandssym
Use symmetry to filter branching candi-
dates?
Range: boolean

0

branching/relpscost/higherrortol
high relative error tolerance for reliability
Range: [0, ∞]

1

branching/relpscost/inferenceweight
weight in score calculations for inference
score
Range: real

0.0001

branching/relpscost/lowerrortol
low relative error tolerance for reliability
Range: [0, ∞]

0.05

branching/relpscost/maxbdchgs
maximal number of bound tightenings be-
fore the node is reevaluated (-1: unlimited)
Range: {-1, ..., ∞}

5

branching/relpscost/maxlookahead
maximal number of further variables evalu-
ated without better score
Range: {1, ..., ∞}

9

branching/relpscost/maxproprounds
maximum number of propagation rounds to
be performed during strong branching before
solving the LP (-1: no limit, -2: parameter
settings)
Range: {-2, ..., ∞}

-2

2552 Solver Manuals

Option Description Default

branching/relpscost/maxreliable
maximal value for minimum pseudo cost size
to regard pseudo cost value as reliable
Range: [0, ∞]

5

branching/relpscost/minreliable
minimal value for minimum pseudo cost size
to regard pseudo cost value as reliable
Range: [0, ∞]

1

branching/relpscost/nlscoreweight
weight in score calculations for nlcount score
Range: real

0.1

branching/relpscost/probingbounds
should valid bounds be identified in a
probing-like fashion during strong branching
(only with propagation)?
Range: boolean

1

branching/relpscost/pscostweight
weight in score calculations for pseudo cost
score
Range: real

1

branching/relpscost/randinitorder
should candidates be initialized in random-
ized order?
Range: boolean

0

branching/relpscost/skipbadinitcands
should branching rule skip candidates that
have a low probability to be better than the
best strong-branching or pseudo-candidate?
Range: boolean

1

branching/relpscost/startrandseed
start seed for random number generation
Range: {0, ..., ∞}

5

branching/relpscost/storesemiinitcosts
should strong branching result be considered
for pseudo costs if the other direction was
infeasible?
Range: boolean

0

branching/relpscost/transsympscost
Transfer pscost information to symmetric
variables?
Range: boolean

0

branching/relpscost/usedynamicconfidence
should the confidence level be adjusted dy-
namically?
Range: boolean

0

branching/relpscost/usehyptestforreliability
should the strong branching decision be
based on a hypothesis test?
Range: boolean

0

branching/relpscost/userelerrorreliability
should reliability be based on relative errors?
Range: boolean

0

branching/relpscost/usesblocalinfo
should the scoring function use only local
cutoff and inference information obtained
for strong branching candidates?
Range: boolean

0

branching/relpscost/usesmallweightsitlim
should smaller weights be used for pseudo
cost updates after hitting the LP iteration
limit?
Range: boolean

0

5.34.4.17 branching/treemodel

5.34 SCIP 2553

Option Description Default

branching/treemodel/enable
should candidate branching variables be scored
using the Treemodel branching rules?
Range: boolean

0

branching/treemodel/height
estimated tree height at which we switch from
using the low rule to the high rule
Range: {0, ..., ∞}

10

branching/treemodel/highrule
scoring function to use at nodes predicted to be
high in the tree ('d'efault, 's'vts, 'r'atio, 't'ree
sample)
Range: d, s, r, t

r

branching/treemodel/lowrule
scoring function to use at nodes predicted to be low
in the tree ('d'efault, 's'vts, 'r'atio, 't'ree sample)
Range: d, s, r, t

r

Options for expert users

branching/treemodel/fallbackinf
which method should be used as a fallback if the
tree size estimates are infinite? ('d'efault, 'r'atio)
Range: d, r

r

branching/treemodel/fallbacknoprim
which method should be used as a fallback if there
is no primal bound available? ('d'efault, 'r'atio)
Range: d, r

r

branching/treemodel/filterhigh
should dominated candidates be filtered before
using the high scoring function? ('a'uto, 't'rue,
'f'alse)
Range: a, t, f

a

branching/treemodel/filterlow
should dominated candidates be filtered before
using the low scoring function? ('a'uto, 't'rue,
'f'alse)
Range: a, t, f

a

branching/treemodel/maxfpiter
maximum number of fixed-point iterations when
computing the ratio
Range: {1, ..., ∞}

24

branching/treemodel/maxsvtsheight
maximum height to compute the SVTS score ex-
actly before approximating
Range: {0, ..., ∞}

100

branching/treemodel/smallpscost
threshold at which pseudocosts are considered
small, making hybrid scores more likely to be the
deciding factor in branching
Range: [0, ∞]

0.1

5.34.4.18 branching/vanillafullstrong

Option Description Default

branching/vanillafullstrong/idempotent
should strong branching side-effects be pre-
vented (e.g., domain changes, stat updates
etc.)?
Range: boolean

0

branching/vanillafullstrong/integralcands
should integral variables in the current LP
solution be considered as branching candi-
dates?
Range: boolean

0

2554 Solver Manuals

Option Description Default

branching/vanillafullstrong/maxbounddist
maximal relative distance from current
node's dual bound to primal bound com-
pared to best node's dual bound for apply-
ing branching rule (0.0: only on current best
node, 1.0: on all nodes)
Range: [0, 1]

1

branching/vanillafullstrong/maxdepth
maximal depth level, up to which branching
rule <vanillafullstrong> should be used (-1
for no limit)
Range: {-1, ..., 65534}

-1

branching/vanillafullstrong/priority
priority of branching rule
<vanillafullstrong>
Range: {-536870912, ..., 536870911}

-2000

Options for expert users

branching/vanillafullstrong/collectscores
should strong branching scores be collected?
Range: boolean

0

branching/vanillafullstrong/donotbranch
should candidates only be scored, but no
branching be performed?
Range: boolean

0

branching/vanillafullstrong/scoreall
should strong branching scores be computed
for all candidates, or can we early stop when
a variable has infinite score?
Range: boolean

0

5.34.4.19 conflict

Option Description Default

conflict/conflictgraphweight
the weight the VSIDS score is weight by updating
the VSIDS for a variable if it is part of a conflict
graph
Range: [0, 1]

1

conflict/conflictweight
the weight the VSIDS score is weight by updating
the VSIDS for a variable if it is part of a conflict
Range: [0, 1]

0

conflict/enable
should conflict analysis be enabled?
Range: boolean

1

conflict/preferbinary
should binary conflicts be preferred?
Range: boolean

0

conflict/restartfac
factor to increase restartnum with after each
restart
Range: [0, ∞]

1.5

conflict/restartnum
number of successful conflict analysis calls that
trigger a restart (0: disable conflict restarts)
Range: {0, ..., ∞}

0

conflict/sepaaltproofs
apply cut generating functions to construct alter-
native proofs
Range: boolean

0

conflict/useboundlp
should bound exceeding LP conflict analysis be
used? ('o'ff, 'c'onflict graph, 'd'ual ray, 'b'oth
conflict graph and dual ray)
Range: o, c, d, b

b

5.34 SCIP 2555

Option Description Default

conflict/useinflp
should infeasible LP conflict analysis be used?
('o'ff, 'c'onflict graph, 'd'ual ray, 'b'oth conflict
graph and dual ray)
Range: o, c, d, b

b

conflict/useprop
should propagation conflict analysis be used?
Range: boolean

1

conflict/usepseudo
should pseudo solution conflict analysis be used?
Range: boolean

1

conflict/usesb
should infeasible/bound exceeding strong branch-
ing conflict analysis be used?
Range: boolean

1

Options for expert users

conflict/allowlocal
should conflict constraints be generated that are
only valid locally?
Range: boolean

1

conflict/cleanboundexceedings
should conflicts based on an old cutoff bound be
removed from the conflict pool after improving
the primal bound?
Range: boolean

1

conflict/downlockscorefac
score factor for down locks in bound relaxation
heuristic
Range: real

0

conflict/dynamic
should the conflict constraints be subject to aging?
Range: boolean

1

conflict/fuiplevels
number of depth levels up to which first UIP's
are used in conflict analysis (-1: use All-FirstUIP
rule)
Range: {-1, ..., ∞}

-1

conflict/fullshortenconflict
try to shorten the whole conflict set or terminate
early (depending on the 'maxvarsdetectimplied-
bounds' parameter)
Range: boolean

1

conflict/ignorerelaxedbd
should relaxed bounds be ignored?
Range: boolean

0

conflict/interconss
maximal number of intermediate conflict con-
straints generated in conflict graph (-1: use every
intermediate constraint)
Range: {-1, ..., ∞}

-1

conflict/keepreprop
should constraints be kept for repropagation even
if they are too long?
Range: boolean

1

conflict/lpiterations
maximal number of LP iterations in each LP re-
solving loop (-1: no limit)
Range: {-1, ..., ∞}

10

conflict/maxconss
maximal number of conflict constraints accepted
at an infeasible node (-1: use all generated conflict
constraints)
Range: {-1, ..., ∞}

10

conflict/maxlploops
maximal number of LP resolving loops during
conflict analysis (-1: no limit)
Range: {-1, ..., ∞}

2

2556 Solver Manuals

Option Description Default

conflict/maxstoresize
maximal size of conflict store (-1: auto, 0: disable
storage)
Range: {-1, ..., ∞}

10000

conflict/maxvarsdetectimpliedbounds
maximal number of variables to try to detect
global bound implications and shorten the whole
conflict set (0: disabled)
Range: {0, ..., ∞}

250

conflict/maxvarsfac
maximal fraction of variables involved in a conflict
constraint
Range: [0, ∞]

0.15

conflict/minimprove
minimal improvement of primal bound to remove
conflicts based on a previous incumbent
Range: [0, 1]

0.05

conflict/minmaxvars
minimal absolute maximum of variables involved
in a conflict constraint
Range: {0, ..., ∞}

0

conflict/prefinfproof
prefer infeasibility proof to boundexceeding proof
Range: boolean

1

conflict/proofscorefac
score factor for impact on acticity in bound relax-
ation heuristic
Range: real

1

conflict/reconvlevels
number of depth levels up to which UIP recon-
vergence constraints are generated (-1: generate
reconvergence constraints in all depth levels)
Range: {-1, ..., ∞}

-1

conflict/removable
should the conflict's relaxations be subject to LP
aging and cleanup?
Range: boolean

1

conflict/repropagate
should earlier nodes be repropagated in order to
replace branching decisions by deductions?
Range: boolean

1

conflict/scorefac
factor to decrease importance of variables' earlier
conflict scores
Range: [1e-06, 1]

0.98

conflict/separate
should the conflict constraints be separated?
Range: boolean

1

conflict/settlelocal
should conflict constraints be attached only to the
local subtree where they can be useful?
Range: boolean

0

conflict/uplockscorefac
score factor for up locks in bound relaxation heuris-
tic
Range: real

0

conflict/uselocalrows
use local rows to construct infeasibility proofs
Range: boolean

1

conflict/weightrepropdepth
weight of the repropagation depth of a conflict
used in score calculation
Range: [0, 1]

0.1

conflict/weightsize
weight of the size of a conflict used in score calcu-
lation
Range: [0, 1]

0.001

conflict/weightvaliddepth
weight of the valid depth of a conflict used in score
calculation
Range: [0, 1]

1

5.34 SCIP 2557

Option Description Default

5.34.4.20 conflict/bounddisjunction

Option Description Default

conflict/bounddisjunction/continuousfrac
maximal percantage of continuous variables
within a conflict
Range: [0, 1]

0.4

Options for expert users

conflict/bounddisjunction/priority
priority of conflict handler
<bounddisjunction>
Range: {-2147483648, ..., ∞}

-3000000

5.34.4.21 conflict/graph

Option Description Default

Options for expert users

conflict/graph/depthscorefac
score factor for depth level in bound relaxation heuristic
Range: real

1

5.34.4.22 conflict/indicatorconflict

Option Description Default

Options for expert users

conflict/indicatorconflict/priority
priority of conflict handler <indicatorconflict>
Range: {-2147483648, ..., ∞}

200000

5.34.4.23 conflict/linear

Option Description Default

Options for expert users

conflict/linear/priority
priority of conflict handler <linear>
Range: {-2147483648, ..., ∞}

-1000000

5.34.4.24 conflict/logicor

Option Description Default

Options for expert users

conflict/logicor/priority
priority of conflict handler <logicor>
Range: {-2147483648, ..., ∞}

800000

5.34.4.25 conflict/setppc

2558 Solver Manuals

Option Description Default

Options for expert users

conflict/setppc/priority
priority of conflict handler <setppc>
Range: {-2147483648, ..., ∞}

700000

5.34.4.26 constraints

Option Description Default

Options for expert users

constraints/agelimit
maximum age an unnecessary constraint can reach before it is
deleted (0: dynamic, -1: keep all constraints)
Range: {-1, ..., ∞}

0

constraints/disableenfops
should enforcement of pseudo solution be disabled?
Range: boolean

0

constraints/obsoleteage
age of a constraint after which it is marked obsolete (0: dy-
namic, -1 do not mark constraints obsolete)
Range: {-1, ..., ∞}

-1

5.34.4.27 constraints/SOS1

Option Description Default

constraints/SOS1/branchnonzeros
Branch on SOS constraint with most number of
nonzeros?
Range: boolean

0

constraints/SOS1/branchsos
Use SOS1 branching in enforcing (otherwise
leave decision to branching rules)? This value
can only be set to false if all SOS1 variables are
binary
Range: boolean

1

constraints/SOS1/branchweight
Branch on SOS cons. with highest nonzero-
variable weight for branching (needs branch-
nonzeros = false)?
Range: boolean

0

constraints/SOS1/propfreq
frequency for propagating domains (-1: never,
0: only in root node)
Range: {-1, ..., 65534}

1

constraints/SOS1/sepafreq
frequency for separating cuts (-1: never, 0: only
in root node)
Range: {-1, ..., 65534}

10

Options for expert users

constraints/SOS1/addbdsfeas
minimal feasibility value for bound inequalities
in order to be added to the branching node
Range: real

1

constraints/SOS1/addcomps
if TRUE then add complementarity constraints
to the branching nodes (can be used in combina-
tion with neighborhood or bipartite branching)
Range: boolean

0

constraints/SOS1/addcompsdepth
only add complementarity constraints to branch-
ing nodes for predefined depth (-1: no limit)
Range: {-1, ..., ∞}

30

5.34 SCIP 2559

Option Description Default

constraints/SOS1/addcompsfeas
minimal feasibility value for complementarity
constraints in order to be added to the branching
node
Range: real

-0.6

constraints/SOS1/addextendedbds
should added complementarity constraints be ex-
tended to SOS1 constraints to get tighter bound
inequalities
Range: boolean

1

constraints/SOS1/autocutsfromsos1
if TRUE then automatically switch to separat-
ing initial SOS1 constraints if the SOS1 con-
straints do not overlap
Range: boolean

1

constraints/SOS1/autosos1branch
if TRUE then automatically switch to SOS1
branching if the SOS1 constraints do not overlap
Range: boolean

1

constraints/SOS1/boundcutsdepth
node depth of separating bound cuts (-1: no
limit)
Range: {-1, ..., ∞}

40

constraints/SOS1/boundcutsfreq
frequency for separating bound cuts; zero means
to separate only in the root node
Range: {-1, ..., 65534}

10

constraints/SOS1/boundcutsfromgraph
if TRUE separate bound inequalities from the
conflict graph
Range: boolean

1

constraints/SOS1/boundcutsfromsos1
if TRUE separate bound inequalities from initial
SOS1 constraints
Range: boolean

0

constraints/SOS1/branchingrule
which branching rule should be applied ? ('n':
neighborhood, 'b': bipartite, 's': SOS1/clique)
(note: in some cases an automatic switching to
SOS1 branching is possible)
Range: n, b, s

n

constraints/SOS1/conflictprop
whether to use conflict graph propagation
Range: boolean

1

constraints/SOS1/delayprop
should propagation method be delayed, if other
propagators found reductions?
Range: boolean

0

constraints/SOS1/delaysepa
should separation method be delayed, if other
separators found cuts?
Range: boolean

0

constraints/SOS1/depthimplanalysis
number of recursive calls of implication graph
analysis (-1: no limit)
Range: {-1, ..., ∞}

-1

constraints/SOS1/eagerfreq
frequency for using all instead of only the useful
constraints in separation, propagation and en-
forcement (-1: never, 0: only in first evaluation)
Range: {-1, ..., 65534}

100

constraints/SOS1/fixnonzero
if neighborhood branching is used, then fix the
branching variable (if positive in sign) to the
value of the feasibility tolerance
Range: boolean

0

2560 Solver Manuals

Option Description Default

constraints/SOS1/implcutsdepth
node depth of separating implied bound cuts
(-1: no limit)
Range: {-1, ..., ∞}

40

constraints/SOS1/implcutsfreq
frequency for separating implied bound cuts;
zero means to separate only in the root node
Range: {-1, ..., 65534}

0

constraints/SOS1/implprop
whether to use implication graph propagation
Range: boolean

1

constraints/SOS1/maxaddcomps
maximal number of complementarity constraints
added per branching node (-1: no limit)
Range: {-1, ..., ∞}

-1

constraints/SOS1/maxboundcuts
maximal number of bound cuts separated per
branching node
Range: {0, ..., ∞}

50

constraints/SOS1/maxboundcutsroot
maximal number of bound cuts separated per
iteration in the root node
Range: {0, ..., ∞}

150

constraints/SOS1/maxextensions
maximal number of extensions that will be com-
puted for each SOS1 constraint (-1: no limit)
Range: {-1, ..., ∞}

1

constraints/SOS1/maximplcuts
maximal number of implied bound cuts sepa-
rated per branching node
Range: {0, ..., ∞}

50

constraints/SOS1/maximplcutsroot
maximal number of implied bound cuts sepa-
rated per iteration in the root node
Range: {0, ..., ∞}

150

constraints/SOS1/maxprerounds
maximal number of presolving rounds the con-
straint handler participates in (-1: no limit)
Range: {-1, ..., ∞}

-1

constraints/SOS1/maxsosadjacency
do not create an adjacency matrix if number of
SOS1 variables is larger than predefined value
(-1: no limit)
Range: {-1, ..., ∞}

10000

constraints/SOS1/maxtightenbds
maximal number of bound tightening rounds
per presolving round (-1: no limit)
Range: {-1, ..., ∞}

5

constraints/SOS1/nstrongiter
maximal number LP iterations to perform for
each strong branching round (-2: auto, -1: no
limit)
Range: {-2, ..., ∞}

10000

constraints/SOS1/nstrongrounds
maximal number of strong branching rounds to
perform for each node (-1: auto); only available
for neighborhood and bipartite branching
Range: {-1, ..., ∞}

0

constraints/SOS1/perfimplanalysis
if TRUE then perform implication graph analy-
sis (might add additional SOS1 constraints)
Range: boolean

0

constraints/SOS1/presoltiming
timing mask of the constraint handler's presolv-
ing method (4:FAST, 8:MEDIUM, 16:EXHAUS-
TIVE, 32:FINAL)
Range: {4, ..., 60}

8

5.34 SCIP 2561

Option Description Default

constraints/SOS1/proptiming
timing when constraint propagation should
be called (1:BEFORELP, 2:DURINGLPLOOP,
4:AFTERLPLOOP, 15:ALWAYS)
Range: {1, ..., 15}

1

constraints/SOS1/sosconsprop
whether to use SOS1 constraint propagation
Range: boolean

0

constraints/SOS1/strthenboundcuts
if TRUE then bound cuts are strengthened in
case bound variables are available
Range: boolean

1

5.34.4.28 constraints/SOS2

Option Description Default

constraints/SOS2/propfreq
frequency for propagating domains (-1: never, 0: only
in root node)
Range: {-1, ..., 65534}

1

constraints/SOS2/sepafreq
frequency for separating cuts (-1: never, 0: only in
root node)
Range: {-1, ..., 65534}

0

Options for expert users

constraints/SOS2/delayprop
should propagation method be delayed, if other propa-
gators found reductions?
Range: boolean

0

constraints/SOS2/delaysepa
should separation method be delayed, if other separa-
tors found cuts?
Range: boolean

0

constraints/SOS2/eagerfreq
frequency for using all instead of only the useful con-
straints in separation, propagation and enforcement
(-1: never, 0: only in first evaluation)
Range: {-1, ..., 65534}

100

constraints/SOS2/maxprerounds
maximal number of presolving rounds the constraint
handler participates in (-1: no limit)
Range: {-1, ..., ∞}

-1

constraints/SOS2/presoltiming
timing mask of the constraint handler's presolving
method (4:FAST, 8:MEDIUM, 16:EXHAUSTIVE,
32:FINAL)
Range: {4, ..., 60}

4

constraints/SOS2/proptiming
timing when constraint propagation should be
called (1:BEFORELP, 2:DURINGLPLOOP, 4:AF-
TERLPLOOP, 15:ALWAYS)
Range: {1, ..., 15}

1

5.34.4.29 constraints/and

Option Description Default

constraints/and/propfreq
frequency for propagating domains (-1: never, 0: only
in root node)
Range: {-1, ..., 65534}

1

2562 Solver Manuals

Option Description Default

constraints/and/sepafreq
frequency for separating cuts (-1: never, 0: only in
root node)
Range: {-1, ..., 65534}

1

Options for expert users

constraints/and/aggrlinearization
should an aggregated linearization be used?
Range: boolean

0

constraints/and/delayprop
should propagation method be delayed, if other prop-
agators found reductions?
Range: boolean

0

constraints/and/delaysepa
should separation method be delayed, if other separa-
tors found cuts?
Range: boolean

0

constraints/and/dualpresolving
should dual presolving be performed?
Range: boolean

1

constraints/and/eagerfreq
frequency for using all instead of only the useful con-
straints in separation, propagation and enforcement
(-1: never, 0: only in first evaluation)
Range: {-1, ..., 65534}

100

constraints/and/enforcecuts
should cuts be separated during LP enforcing?
Range: boolean

1

constraints/and/linearize
should the AND-constraint get linearized and removed
(in presolving)?
Range: boolean

0

constraints/and/maxprerounds
maximal number of presolving rounds the constraint
handler participates in (-1: no limit)
Range: {-1, ..., ∞}

-1

constraints/and/presolpairwise
should pairwise constraint comparison be performed
in presolving?
Range: boolean

1

constraints/and/presoltiming
timing mask of the constraint handler's presolving
method (4:FAST, 8:MEDIUM, 16:EXHAUSTIVE,
32:FINAL)
Range: {4, ..., 60}

20

constraints/and/presolusehashing
should hash table be used for detecting redundant
constraints in advance
Range: boolean

1

constraints/and/proptiming
timing when constraint propagation should be
called (1:BEFORELP, 2:DURINGLPLOOP, 4:AF-
TERLPLOOP, 15:ALWAYS)
Range: {1, ..., 15}

1

constraints/and/upgraderesultant
should all binary resultant variables be upgraded to
implicit binary variables?
Range: boolean

1

5.34.4.30 constraints/bounddisjunction

Option Description Default

constraints/bounddisjunction/propfreq
frequency for propagating domains (-1:
never, 0: only in root node)
Range: {-1, ..., 65534}

1

5.34 SCIP 2563

Option Description Default

constraints/bounddisjunction/sepafreq
frequency for separating cuts (-1: never, 0:
only in root node)
Range: {-1, ..., 65534}

-1

Options for expert users

constraints/bounddisjunction/delayprop
should propagation method be delayed, if
other propagators found reductions?
Range: boolean

0

constraints/bounddisjunction/delaysepa
should separation method be delayed, if
other separators found cuts?
Range: boolean

0

constraints/bounddisjunction/eagerfreq
frequency for using all instead of only the
useful constraints in separation, propagation
and enforcement (-1: never, 0: only in first
evaluation)
Range: {-1, ..., 65534}

100

constraints/bounddisjunction/maxprerounds
maximal number of presolving rounds the
constraint handler participates in (-1: no
limit)
Range: {-1, ..., ∞}

-1

constraints/bounddisjunction/presoltiming
timing mask of the constraint handler's
presolving method (4:FAST, 8:MEDIUM,
16:EXHAUSTIVE, 32:FINAL)
Range: {4, ..., 60}

4

constraints/bounddisjunction/proptiming
timing when constraint propagation
should be called (1:BEFORELP, 2:DUR-
INGLPLOOP, 4:AFTERLPLOOP, 15:AL-
WAYS)
Range: {1, ..., 15}

1

5.34.4.31 constraints/components

Option Description Default

constraints/components/intfactor
the weight of an integer variable compared to
binary variables
Range: [0, ∞]

1

constraints/components/maxdepth
maximum depth of a node to run components
detection (-1: disable component detection dur-
ing solving)
Range: {-1, ..., ∞}

-1

constraints/components/nodelimit
maximum number of nodes to be solved in sub-
problems during presolving
Range: {-1, ..., ∞}

10000

constraints/components/propfreq
frequency for propagating domains (-1: never,
0: only in root node)
Range: {-1, ..., 65534}

1

constraints/components/sepafreq
frequency for separating cuts (-1: never, 0: only
in root node)
Range: {-1, ..., 65534}

-1

Options for expert users

constraints/components/delayprop
should propagation method be delayed, if other
propagators found reductions?
Range: boolean

1

2564 Solver Manuals

Option Description Default

constraints/components/delaysepa
should separation method be delayed, if other
separators found cuts?
Range: boolean

0

constraints/components/eagerfreq
frequency for using all instead of only the useful
constraints in separation, propagation and en-
forcement (-1: never, 0: only in first evaluation)
Range: {-1, ..., 65534}

-1

constraints/components/feastolfactor
factor to increase the feasibility tolerance of the
main SCIP in all sub-SCIPs, default value 1.0
Range: [0, 1e+06]

1

constraints/components/maxintvars
maximum number of integer (or binary) vari-
ables to solve a subproblem during presolving
(-1: unlimited)
Range: {-1, ..., ∞}

500

constraints/components/maxprerounds
maximal number of presolving rounds the con-
straint handler participates in (-1: no limit)
Range: {-1, ..., ∞}

-1

constraints/components/minrelsize
minimum relative size (in terms of variables) to
solve a component individually during branch-
and-bound
Range: [0, 1]

0.1

constraints/components/minsize
minimum absolute size (in terms of variables) to
solve a component individually during branch-
and-bound
Range: {0, ..., ∞}

50

constraints/components/presoltiming
timing mask of the constraint handler's presolv-
ing method (4:FAST, 8:MEDIUM, 16:EXHAUS-
TIVE, 32:FINAL)
Range: {4, ..., 60}

32

constraints/components/proptiming
timing when constraint propagation should
be called (1:BEFORELP, 2:DURINGLPLOOP,
4:AFTERLPLOOP, 15:ALWAYS)
Range: {1, ..., 15}

1

5.34.4.32 constraints/indicator

Option Description Default

constraints/indicator/maxsepacuts
maximal number of cuts separated per sep-
aration round
Range: {0, ..., ∞}

100

constraints/indicator/maxsepacutsroot
maximal number of cuts separated per sep-
aration round in the root node
Range: {0, ..., ∞}

2000

constraints/indicator/maxsepanonviolated
maximal number of separated non violated
IISs, before separation is stopped
Range: {0, ..., ∞}

3

constraints/indicator/propfreq
frequency for propagating domains (-1:
never, 0: only in root node)
Range: {-1, ..., 65534}

1

constraints/indicator/sepafreq
frequency for separating cuts (-1: never, 0:
only in root node)
Range: {-1, ..., 65534}

10

5.34 SCIP 2565

Option Description Default

Options for expert users

constraints/indicator/addcoupling
Add coupling constraints or rows if big-M is
small enough?
Range: boolean

1

constraints/indicator/addcouplingcons
Add initial variable upper bound constraints,
if 'addcoupling' is true?
Range: boolean

0

constraints/indicator/addopposite
Add opposite inequality in nodes in which
the binary variable has been fixed to 0?
Range: boolean

0

constraints/indicator/branchindicators
Branch on indicator constraints in enforc-
ing?
Range: boolean

0

constraints/indicator/conflictsupgrade
Try to upgrade bounddisjunction conflicts
by replacing slack variables?
Range: boolean

0

constraints/indicator/delayprop
should propagation method be delayed, if
other propagators found reductions?
Range: boolean

0

constraints/indicator/delaysepa
should separation method be delayed, if
other separators found cuts?
Range: boolean

0

constraints/indicator/dualreductions
Should dual reduction steps be performed?
Range: boolean

1

constraints/indicator/eagerfreq
frequency for using all instead of only the
useful constraints in separation, propagation
and enforcement (-1: never, 0: only in first
evaluation)
Range: {-1, ..., 65534}

100

constraints/indicator/enforcecuts
In enforcing try to generate cuts (only if
sepaalternativelp is true)?
Range: boolean

0

constraints/indicator/forcerestart
Force restart if absolute gap is 1 or enough
binary variables have been fixed?
Range: boolean

0

constraints/indicator/generatebilinear
Do not generate indicator constraint, but a
bilinear constraint instead?
Range: boolean

0

constraints/indicator/genlogicor
Generate logicor constraints instead of cuts?
Range: boolean

0

constraints/indicator/maxconditionaltlp
maximum estimated condition of the solu-
tion basis matrix of the alternative LP to
be trustworthy (0.0 to disable check)
Range: [0, ∞]

0

constraints/indicator/maxcouplingvalue
maximum coefficient for binary variable in
coupling constraint
Range: [0, 1e+09]

10000

constraints/indicator/maxprerounds
maximal number of presolving rounds the
constraint handler participates in (-1: no
limit)
Range: {-1, ..., ∞}

-1

2566 Solver Manuals

Option Description Default

constraints/indicator/nolinconscont
Decompose problem (do not generate linear
constraint if all variables are continuous)?
Range: boolean

0

constraints/indicator/presoltiming
timing mask of the constraint handler's
presolving method (4:FAST, 8:MEDIUM,
16:EXHAUSTIVE, 32:FINAL)
Range: {4, ..., 60}

4

constraints/indicator/proptiming
timing when constraint propagation
should be called (1:BEFORELP, 2:DUR-
INGLPLOOP, 4:AFTERLPLOOP, 15:AL-
WAYS)
Range: {1, ..., 15}

1

constraints/indicator/removeindicators
Remove indicator constraint if correspond-
ing variable bound constraint has been
added?
Range: boolean

0

constraints/indicator/restartfrac
fraction of binary variables that need to be
fixed before restart occurs (in forcerestart)
Range: [0, 1]

0.9

constraints/indicator/scaleslackvar
Scale slack variable coefficient at construc-
tion time?
Range: boolean

0

constraints/indicator/sepaalternativelp
Separate using the alternative LP?
Range: boolean

0

constraints/indicator/sepacouplingcuts
Should the coupling inequalities be sepa-
rated dynamically?
Range: boolean

1

constraints/indicator/sepacouplinglocal
Allow to use local bounds in order to sepa-
rate coupling inequalities?
Range: boolean

0

constraints/indicator/sepacouplingvalue
maximum coefficient for binary variable in
separated coupling constraint
Range: [0, 1e+09]

10000

constraints/indicator/sepaperspective
Separate cuts based on perspective formula-
tion?
Range: boolean

0

constraints/indicator/sepapersplocal
Allow to use local bounds in order to sepa-
rate perspective cuts?
Range: boolean

1

constraints/indicator/trysolfromcover
Try to construct a feasible solution from a
cover?
Range: boolean

0

constraints/indicator/trysolutions
Try to make solutions feasible by setting
indicator variables?
Range: boolean

1

constraints/indicator/updatebounds
Update bounds of original variables for sep-
aration?
Range: boolean

0

constraints/indicator/upgradelinear
Try to upgrade linear constraints to indica-
tor constraints?
Range: boolean

0

5.34 SCIP 2567

Option Description Default

constraints/indicator/useobjectivecut
Use objective cut with current best solution
to alternative LP?
Range: boolean

0

constraints/indicator/useotherconss
Collect other constraints to alternative LP?
Range: boolean

0

5.34.4.33 constraints/integral

Option Description Default

constraints/integral/propfreq
frequency for propagating domains (-1: never, 0:
only in root node)
Range: {-1, ..., 65534}

-1

constraints/integral/sepafreq
frequency for separating cuts (-1: never, 0: only in
root node)
Range: {-1, ..., 65534}

-1

Options for expert users

constraints/integral/delayprop
should propagation method be delayed, if other prop-
agators found reductions?
Range: boolean

0

constraints/integral/delaysepa
should separation method be delayed, if other sepa-
rators found cuts?
Range: boolean

0

constraints/integral/eagerfreq
frequency for using all instead of only the useful con-
straints in separation, propagation and enforcement
(-1: never, 0: only in first evaluation)
Range: {-1, ..., 65534}

-1

constraints/integral/maxprerounds
maximal number of presolving rounds the constraint
handler participates in (-1: no limit)
Range: {-1, ..., ∞}

0

constraints/integral/presoltiming
timing mask of the constraint handler's presolving
method (4:FAST, 8:MEDIUM, 16:EXHAUSTIVE,
32:FINAL)
Range: {4, ..., 60}

28

constraints/integral/proptiming
timing when constraint propagation should be
called (1:BEFORELP, 2:DURINGLPLOOP, 4:AF-
TERLPLOOP, 15:ALWAYS)
Range: {1, ..., 15}

1

5.34.4.34 constraints/knapsack

Option Description Default

constraints/knapsack/maxrounds
maximal number of separation rounds per
node (-1: unlimited)
Range: {-1, ..., ∞}

5

constraints/knapsack/maxroundsroot
maximal number of separation rounds per
node in the root node (-1: unlimited)
Range: {-1, ..., ∞}

-1

constraints/knapsack/maxsepacuts
maximal number of cuts separated per sep-
aration round
Range: {0, ..., ∞}

50

2568 Solver Manuals

Option Description Default

constraints/knapsack/maxsepacutsroot
maximal number of cuts separated per sep-
aration round in the root node
Range: {0, ..., ∞}

200

constraints/knapsack/propfreq
frequency for propagating domains (-1:
never, 0: only in root node)
Range: {-1, ..., 65534}

1

constraints/knapsack/sepafreq
frequency for separating cuts (-1: never, 0:
only in root node)
Range: {-1, ..., 65534}

0

Options for expert users

constraints/knapsack/cliqueextractfactor
lower clique size limit for greedy clique ex-
traction algorithm (relative to largest clique)
Range: [0, 1]

0.5

constraints/knapsack/clqpartupdatefac
factor on the growth of global cliques
to decide when to update a previous
(negated) clique partition (used only if up-
datecliquepartitions is set to TRUE)
Range: [1, 10]

1.5

constraints/knapsack/delayprop
should propagation method be delayed, if
other propagators found reductions?
Range: boolean

0

constraints/knapsack/delaysepa
should separation method be delayed, if
other separators found cuts?
Range: boolean

0

constraints/knapsack/detectcutoffbound
should presolving try to detect constraints
parallel to the objective function defining an
upper bound and prevent these constraints
from entering the LP?
Range: boolean

1

constraints/knapsack/detectlowerbound
should presolving try to detect constraints
parallel to the objective function defining a
lower bound and prevent these constraints
from entering the LP?
Range: boolean

1

constraints/knapsack/disaggregation
should disaggregation of knapsack con-
straints be allowed in preprocessing?
Range: boolean

1

constraints/knapsack/dualpresolving
should dual presolving steps be performed?
Range: boolean

1

constraints/knapsack/eagerfreq
frequency for using all instead of only the
useful constraints in separation, propagation
and enforcement (-1: never, 0: only in first
evaluation)
Range: {-1, ..., 65534}

100

constraints/knapsack/maxcardbounddist
maximal relative distance from current
node's dual bound to primal bound com-
pared to best node's dual bound for separat-
ing knapsack cuts
Range: [0, 1]

0

constraints/knapsack/maxprerounds
maximal number of presolving rounds the
constraint handler participates in (-1: no
limit)
Range: {-1, ..., ∞}

-1

5.34 SCIP 2569

Option Description Default

constraints/knapsack/negatedclique
should negated clique information be used
in solving process
Range: boolean

1

constraints/knapsack/presolpairwise
should pairwise constraint comparison be
performed in presolving?
Range: boolean

1

constraints/knapsack/presoltiming
timing mask of the constraint handler's
presolving method (4:FAST, 8:MEDIUM,
16:EXHAUSTIVE, 32:FINAL)
Range: {4, ..., 60}

28

constraints/knapsack/presolusehashing
should hash table be used for detecting re-
dundant constraints in advance
Range: boolean

1

constraints/knapsack/proptiming
timing when constraint propagation
should be called (1:BEFORELP, 2:DUR-
INGLPLOOP, 4:AFTERLPLOOP, 15:AL-
WAYS)
Range: {1, ..., 15}

1

constraints/knapsack/sepacardfreq
multiplier on separation frequency, how of-
ten knapsack cuts are separated (-1: never,
0: only at root)
Range: {-1, ..., 65534}

1

constraints/knapsack/simplifyinequalities
should presolving try to simplify knapsacks
Range: boolean

1

constraints/knapsack/updatecliquepartitions
should clique partition information be up-
dated when old partition seems outdated?
Range: boolean

0

constraints/knapsack/usegubs
should GUB information be used for sepa-
ration?
Range: boolean

0

5.34.4.35 constraints/linear

Option Description Default

constraints/linear/maxrounds
maximal number of separation rounds per
node (-1: unlimited)
Range: {-1, ..., ∞}

5

constraints/linear/maxroundsroot
maximal number of separation rounds per
node in the root node (-1: unlimited)
Range: {-1, ..., ∞}

-1

constraints/linear/maxsepacuts
maximal number of cuts separated per sep-
aration round
Range: {0, ..., ∞}

50

constraints/linear/maxsepacutsroot
maximal number of cuts separated per sep-
aration round in the root node
Range: {0, ..., ∞}

200

constraints/linear/propfreq
frequency for propagating domains (-1:
never, 0: only in root node)
Range: {-1, ..., 65534}

1

constraints/linear/sepafreq
frequency for separating cuts (-1: never, 0:
only in root node)
Range: {-1, ..., 65534}

0

2570 Solver Manuals

Option Description Default

constraints/linear/separateall
should all constraints be subject to cardinal-
ity cut generation instead of only the ones
with non-zero dual value?
Range: boolean

0

Options for expert users

constraints/linear/aggregatevariables
should presolving search for aggregations in
equations
Range: boolean

1

constraints/linear/checkrelmaxabs
should the violation for a constraint with
side 0.0 be checked relative to 1.0 (FALSE)
or to the maximum absolute value in the
activity (TRUE)?
Range: boolean

0

constraints/linear/delayprop
should propagation method be delayed, if
other propagators found reductions?
Range: boolean

0

constraints/linear/delaysepa
should separation method be delayed, if
other separators found cuts?
Range: boolean

0

constraints/linear/detectcutoffbound
should presolving try to detect constraints
parallel to the objective function defining an
upper bound and prevent these constraints
from entering the LP?
Range: boolean

1

constraints/linear/detectlowerbound
should presolving try to detect constraints
parallel to the objective function defining a
lower bound and prevent these constraints
from entering the LP?
Range: boolean

1

constraints/linear/detectpartialobjective
should presolving try to detect subsets of
constraints parallel to the objective func-
tion?
Range: boolean

1

constraints/linear/dualpresolving
should dual presolving steps be performed?
Range: boolean

1

constraints/linear/eagerfreq
frequency for using all instead of only the
useful constraints in separation, propagation
and enforcement (-1: never, 0: only in first
evaluation)
Range: {-1, ..., 65534}

100

constraints/linear/extractcliques
should Cliques be extracted?
Range: boolean

1

constraints/linear/maxaggrnormscale
maximal allowed relative gain in maximum
norm for constraint aggregation (0.0: disable
constraint aggregation)
Range: [0, ∞]

0

constraints/linear/maxcardbounddist
maximal relative distance from current
node's dual bound to primal bound com-
pared to best node's dual bound for separat-
ing knapsack cardinality cuts
Range: [0, 1]

0

constraints/linear/maxdualmultaggrquot
maximum coefficient dynamism (ie. maxab-
sval / minabsval) for dual multiaggregation
Range: [1, ∞]

∞

5.34 SCIP 2571

Option Description Default

constraints/linear/maxeasyactivitydelta
maximum activity delta to run easy propa-
gation on linear constraint (faster, but nu-
merically less stable)
Range: [0, ∞]

1e+06

constraints/linear/maxmultaggrquot
maximum coefficient dynamism (ie. maxab-
sval / minabsval) for primal multiaggrega-
tion
Range: [1, ∞]

1000

constraints/linear/maxprerounds
maximal number of presolving rounds the
constraint handler participates in (-1: no
limit)
Range: {-1, ..., ∞}

-1

constraints/linear/mingainpernmincomparisons
minimal gain per minimal pairwise presolve
comparisons to repeat pairwise comparison
round
Range: [0, 1]

1e-06

constraints/linear/multaggrremove
should multi-aggregations only be performed
if the constraint can be removed afterwards?
Range: boolean

0

constraints/linear/nmincomparisons
number for minimal pairwise presolve com-
parisons
Range: {1, ..., ∞}

200000

constraints/linear/presolpairwise
should pairwise constraint comparison be
performed in presolving?
Range: boolean

1

constraints/linear/presoltiming
timing mask of the constraint handler's
presolving method (4:FAST, 8:MEDIUM,
16:EXHAUSTIVE, 32:FINAL)
Range: {4, ..., 60}

20

constraints/linear/presolusehashing
should hash table be used for detecting re-
dundant constraints in advance
Range: boolean

1

constraints/linear/proptiming
timing when constraint propagation
should be called (1:BEFORELP, 2:DUR-
INGLPLOOP, 4:AFTERLPLOOP, 15:AL-
WAYS)
Range: {1, ..., 15}

1

constraints/linear/rangedrowartcons
should presolving and propagation extract
sub-constraints from ranged rows and equa-
tions?
Range: boolean

1

constraints/linear/rangedrowfreq
frequency for applying ranged row propaga-
tion
Range: {1, ..., 65534}

1

constraints/linear/rangedrowmaxdepth
maximum depth to apply ranged row prop-
agation
Range: {0, ..., ∞}

∞

constraints/linear/rangedrowpropagation
should presolving and propagation try to
improve bounds, detect infeasibility, and ex-
tract sub-constraints from ranged rows and
equations?
Range: boolean

1

constraints/linear/simplifyinequalities
should presolving try to simplify inequalities
Range: boolean

1

2572 Solver Manuals

Option Description Default

constraints/linear/singletonstuffing
should stuffing of singleton continuous vari-
ables be performed?
Range: boolean

1

constraints/linear/singlevarstuffing
should single variable stuffing be performed,
which tries to fulfill constraints using the
cheapest variable?
Range: boolean

0

constraints/linear/sortvars
apply binaries sorting in decr. order of coeff
abs value?
Range: boolean

1

constraints/linear/tightenboundsfreq
multiplier on propagation frequency, how
often the bounds are tightened (-1: never,
0: only at root)
Range: {-1, ..., 65534}

1

5.34.4.36 constraints/linear/upgrade

Option Description Default

constraints/linear/upgrade/indicator
enable linear upgrading for constraint handler
<indicator>
Range: boolean

1

constraints/linear/upgrade/knapsack
enable linear upgrading for constraint handler
<knapsack>
Range: boolean

1

constraints/linear/upgrade/logicor
enable linear upgrading for constraint handler
<logicor>
Range: boolean

1

constraints/linear/upgrade/setppc
enable linear upgrading for constraint handler
<setppc>
Range: boolean

1

constraints/linear/upgrade/varbound
enable linear upgrading for constraint handler
<varbound>
Range: boolean

1

constraints/linear/upgrade/xor
enable linear upgrading for constraint handler
<xor>
Range: boolean

1

5.34.4.37 constraints/logicor

Option Description Default

constraints/logicor/propfreq
frequency for propagating domains (-1: never, 0:
only in root node)
Range: {-1, ..., 65534}

1

constraints/logicor/sepafreq
frequency for separating cuts (-1: never, 0: only in
root node)
Range: {-1, ..., 65534}

0

Options for expert users

constraints/logicor/delayprop
should propagation method be delayed, if other
propagators found reductions?
Range: boolean

0

5.34 SCIP 2573

Option Description Default

constraints/logicor/delaysepa
should separation method be delayed, if other sep-
arators found cuts?
Range: boolean

0

constraints/logicor/dualpresolving
should dual presolving steps be performed?
Range: boolean

1

constraints/logicor/eagerfreq
frequency for using all instead of only the useful
constraints in separation, propagation and enforce-
ment (-1: never, 0: only in first evaluation)
Range: {-1, ..., 65534}

100

constraints/logicor/implications
should implications/cliques be used in presolving
Range: boolean

1

constraints/logicor/maxprerounds
maximal number of presolving rounds the con-
straint handler participates in (-1: no limit)
Range: {-1, ..., ∞}

-1

constraints/logicor/negatedclique
should negated clique information be used in pre-
solving
Range: boolean

1

constraints/logicor/presolpairwise
should pairwise constraint comparison be per-
formed in presolving?
Range: boolean

1

constraints/logicor/presoltiming
timing mask of the constraint handler's presolving
method (4:FAST, 8:MEDIUM, 16:EXHAUSTIVE,
32:FINAL)
Range: {4, ..., 60}

28

constraints/logicor/presolusehashing
should hash table be used for detecting redundant
constraints in advance
Range: boolean

1

constraints/logicor/proptiming
timing when constraint propagation should be
called (1:BEFORELP, 2:DURINGLPLOOP, 4:AF-
TERLPLOOP, 15:ALWAYS)
Range: {1, ..., 15}

1

constraints/logicor/strengthen
should pairwise constraint comparison try to
strengthen constraints by removing superflous non-
zeros?
Range: boolean

1

5.34.4.38 constraints/nonlinear

Option Description Default

constraints/nonlinear/assumeconvex
whether to assume that any con-
straint is convex
Range: boolean

0

constraints/nonlinear/bilinmaxnauxexprs
maximal number of auxiliary ex-
pressions per bilinear term
Range: {0, ..., ∞}

10

constraints/nonlinear/linearizeheursol
whether tight linearizations of
nonlinear constraints should be
added to cutpool when some
heuristics finds a new solution
('o'ff, on new 'i'ncumbents, on
'e'very solution)
Range: o, i, e

i if QCP or NLP, o otherwise

2574 Solver Manuals

Option Description Default

constraints/nonlinear/maxproprounds
limit on number of propagation
rounds for a set of constraints
within one round of SCIP propa-
gation
Range: {0, ..., ∞}

10

constraints/nonlinear/propfreq
frequency for propagating do-
mains (-1: never, 0: only in root
node)
Range: {-1, ..., 65534}

1

constraints/nonlinear/reformbinprods
whether to reformulate products
of binary variables during pre-
solving
Range: boolean

1

constraints/nonlinear/reformbinprodsand
whether to use the AND con-
straint handler for reformulating
binary products
Range: boolean

1

constraints/nonlinear/reformbinprodsfac
minimum number of terms to re-
formulate bilinear binary prod-
ucts by factorizing variables (≤
1: disabled)
Range: {1, ..., ∞}

50

constraints/nonlinear/sepafreq
frequency for separating cuts (-1:
never, 0: only in root node)
Range: {-1, ..., 65534}

1

Options for expert users

constraints/nonlinear/checkvarlocks
whether variables contained in
a single constraint should be
forced to be at their lower or
upper bounds ('d'isable, change
't'ype, add 'b'ound disjunction)
Range: b, d, t

t

constraints/nonlinear/conssiderelaxamount
by how much to relax constraint
sides during bound tightening
Range: [0, 1]

1e-09

constraints/nonlinear/delayprop
should propagation method be
delayed, if other propagators
found reductions?
Range: boolean

0

constraints/nonlinear/delaysepa
should separation method be de-
layed, if other separators found
cuts?
Range: boolean

0

constraints/nonlinear/eagerfreq
frequency for using all instead
of only the useful constraints in
separation, propagation and en-
forcement (-1: never, 0: only in
first evaluation)
Range: {-1, ..., 65534}

100

constraints/nonlinear/enfoauxviolfactor
an expression will be enforced
if the ”auxiliary” violation is at
least this factor times the ”origi-
nal” violation
Range: [0, 1]

0.01

5.34 SCIP 2575

Option Description Default

constraints/nonlinear/forbidmultaggrnlvar
whether to forbid multiaggrega-
tion of nonlinear variables
Range: boolean

1

constraints/nonlinear/forcestrongcut
whether to force ”strong” cuts in
enforcement
Range: boolean

0

constraints/nonlinear/maxprerounds
maximal number of presolving
rounds the constraint handler
participates in (-1: no limit)
Range: {-1, ..., ∞}

-1

constraints/nonlinear/presoltiming
timing mask of the constraint
handler's presolving method
(4:FAST, 8:MEDIUM, 16:EX-
HAUSTIVE, 32:FINAL)
Range: {4, ..., 60}

28

constraints/nonlinear/propauxvars
whether to check bounds of all
auxiliary variable to seed reverse
propagation
Range: boolean

1

constraints/nonlinear/propinenforce
whether to (re)run propagation
in enforcement
Range: boolean

0

constraints/nonlinear/proptiming
timing when constraint propa-
gation should be called (1:BE-
FORELP, 2:DURINGLPLOOP,
4:AFTERLPLOOP, 15:AL-
WAYS)
Range: {1, ..., 15}

1

constraints/nonlinear/rownotremovable
whether to make rows to be
non-removable in the node
where they are added (can pre-
vent some cycling): 'o'ff, in
'e'nforcement only, 'a'lways
Range: o, e, a

o

constraints/nonlinear/strongcutefficacy
consider efficacy requirement
when deciding whether a cut is
”strong”
Range: boolean

0

constraints/nonlinear/strongcutmaxcoef
”strong” cuts will be scaled
to have their maximal coef in
[1/strongcutmaxcoef,strongcutmaxcoef]
Range: [1, ∞]

1000

constraints/nonlinear/tightenlpfeastol
whether to tighten LP feasibility
tolerance during enforcement, if
it seems useful
Range: boolean

1

constraints/nonlinear/varboundrelax
strategy on how to relax variable
bounds during bound tightening:
relax (n)ot, relax by (a)bsolute
value, relax always by a(b)solute
value, relax by (r)relative value
Range: n, a, b, r

r

2576 Solver Manuals

Option Description Default

constraints/nonlinear/varboundrelaxamount
by how much to relax variable
bounds during bound tightening
if strategy 'a', 'b', or 'r'
Range: [0, 1]

1e-09

constraints/nonlinear/violscale
method how to scale viola-
tions to make them comparable
(not used for feasibility check):
(n)one, (a)ctivity and side, norm
of (g)radient
Range: n, a, g

n

constraints/nonlinear/vpadjfacetthresh
adjust computed facet of enve-
lope of vertex-polyhedral func-
tion up to a violation of this
value times LP feasibility toler-
ance
Range: [0, ∞]

10

constraints/nonlinear/vpdualsimplex
whether to use dual simplex in-
stead of primal simplex for LP
that computes facet of vertex-
polyhedral function
Range: boolean

1

constraints/nonlinear/vpmaxperturb
maximal relative perturbation
of reference point when comput-
ing facet of envelope of vertex-
polyhedral function (dim>2)
Range: [0, 1]

0.001

constraints/nonlinear/weakcutminviolfactor
retry enfo of constraint with
weak cuts if violation is least this
factor of maximal violated con-
straints
Range: [0, 2]

0.5

constraints/nonlinear/weakcutthreshold
threshold for when to regard a
cut from an estimator as weak
(lower values allow more weak
cuts)
Range: [0, 1]

0.2

5.34.4.39 constraints/nonlinear/branching

Option Description Default

constraints/nonlinear/branching/aux
from which depth on in the tree to allow
branching on auxiliary variables (variables
added for extended formulation)
Range: {0, ..., ∞}

∞

constraints/nonlinear/branching/domainweight
weight by how much to consider the domain
width in branching score
Range: [0, ∞]

0

constraints/nonlinear/branching/dualweight
weight by how much to consider the dual
values of rows that contain a variable for its
branching score
Range: [0, ∞]

0

constraints/nonlinear/branching/external
whether to use external branching candi-
dates and branching rules for branching
Range: boolean

0

5.34 SCIP 2577

Option Description Default

constraints/nonlinear/branching/highscorefactor
consider a variable branching score high if
its branching score ≥ this factor ∗ maximal
branching score among all variables
Range: [0, 1]

0.9

constraints/nonlinear/branching/highviolfactor
consider a constraint highly violated if its
violation is ≥ this factor ∗ maximal violation
among all constraints
Range: [0, 1]

0

constraints/nonlinear/branching/pscostreliable
minimum pseudo-cost update count required
to consider pseudo-costs reliable
Range: [0, ∞]

2

constraints/nonlinear/branching/pscostweight
weight by how much to consider the pseudo
cost of a variable for its branching score
Range: [0, ∞]

1

constraints/nonlinear/branching/scoreagg
how to aggregate several branching scores
given for the same expression: 'a'verage,
'm'aximum, 's'um
Range: a, m, s

s

constraints/nonlinear/branching/vartypeweight
weight by how much to consider variable
type (continuous: 0, binary: 1, integer: 0.1,
impl-integer: 0.01) in branching score
Range: [0, ∞]

0.5

constraints/nonlinear/branching/violsplit
method used to split violation in expression
onto variables: 'u'niform, 'm'idness of solu-
tion, 'd'omain width, 'l'ogarithmic domain
width
Range: u, m, d, l

m

constraints/nonlinear/branching/violweight
weight by how much to consider the violation
assigned to a variable for its branching score
Range: [0, ∞]

1

5.34.4.40 constraints/nonlinear/upgrade

Option Description Default

constraints/nonlinear/upgrade/linear
enable nonlinear upgrading for constraint handler
<linear>
Range: boolean

1

constraints/nonlinear/upgrade/setppc
enable nonlinear upgrading for constraint handler
<setppc>
Range: boolean

1

5.34.4.41 constraints/or

Option Description Default

constraints/or/propfreq
frequency for propagating domains (-1: never, 0: only in
root node)
Range: {-1, ..., 65534}

1

constraints/or/sepafreq
frequency for separating cuts (-1: never, 0: only in root
node)
Range: {-1, ..., 65534}

0

2578 Solver Manuals

Option Description Default

Options for expert users

constraints/or/delayprop
should propagation method be delayed, if other propaga-
tors found reductions?
Range: boolean

0

constraints/or/delaysepa
should separation method be delayed, if other separators
found cuts?
Range: boolean

0

constraints/or/eagerfreq
frequency for using all instead of only the useful constraints
in separation, propagation and enforcement (-1: never, 0:
only in first evaluation)
Range: {-1, ..., 65534}

100

constraints/or/maxprerounds
maximal number of presolving rounds the constraint han-
dler participates in (-1: no limit)
Range: {-1, ..., ∞}

-1

constraints/or/presoltiming
timing mask of the constraint handler's presolving method
(4:FAST, 8:MEDIUM, 16:EXHAUSTIVE, 32:FINAL)
Range: {4, ..., 60}

8

constraints/or/proptiming
timing when constraint propagation should be called
(1:BEFORELP, 2:DURINGLPLOOP, 4:AFTERLPLOOP,
15:ALWAYS)
Range: {1, ..., 15}

1

5.34.4.42 constraints/orbisack

Option Description Default

constraints/orbisack/propfreq
frequency for propagating domains (-1: never, 0:
only in root node)
Range: {-1, ..., 65534}

5

constraints/orbisack/sepafreq
frequency for separating cuts (-1: never, 0: only
in root node)
Range: {-1, ..., 65534}

5

Options for expert users

constraints/orbisack/checkpporbisack
Upgrade orbisack constraints to pack-
ing/partioning orbisacks?
Range: boolean

1

constraints/orbisack/coeffbound
Maximum size of coefficients for orbisack inequal-
ities
Range: [0, ∞]

1e+06

constraints/orbisack/coverseparation
Separate cover inequalities for orbisacks?
Range: boolean

1

constraints/orbisack/delayprop
should propagation method be delayed, if other
propagators found reductions?
Range: boolean

0

constraints/orbisack/delaysepa
should separation method be delayed, if other
separators found cuts?
Range: boolean

0

constraints/orbisack/eagerfreq
frequency for using all instead of only the useful
constraints in separation, propagation and enforce-
ment (-1: never, 0: only in first evaluation)
Range: {-1, ..., 65534}

-1

5.34 SCIP 2579

Option Description Default

constraints/orbisack/forceconscopy
Whether orbisack constraints should be forced to
be copied to sub SCIPs.
Range: boolean

0

constraints/orbisack/maxprerounds
maximal number of presolving rounds the con-
straint handler participates in (-1: no limit)
Range: {-1, ..., ∞}

-1

constraints/orbisack/orbiSeparation
Separate orbisack inequalities?
Range: boolean

0

constraints/orbisack/presoltiming
timing mask of the constraint handler's presolving
method (4:FAST, 8:MEDIUM, 16:EXHAUSTIVE,
32:FINAL)
Range: {4, ..., 60}

16

constraints/orbisack/proptiming
timing when constraint propagation should be
called (1:BEFORELP, 2:DURINGLPLOOP, 4:AF-
TERLPLOOP, 15:ALWAYS)
Range: {1, ..., 15}

1

5.34.4.43 constraints/orbitope

Option Description Default

constraints/orbitope/propfreq
frequency for propagating domains (-1: never, 0:
only in root node)
Range: {-1, ..., 65534}

1

constraints/orbitope/sepafreq
frequency for separating cuts (-1: never, 0: only
in root node)
Range: {-1, ..., 65534}

-1

Options for expert users

constraints/orbitope/checkpporbitope
Strengthen orbitope constraints to pack-
ing/partioning orbitopes?
Range: boolean

1

constraints/orbitope/delayprop
should propagation method be delayed, if other
propagators found reductions?
Range: boolean

0

constraints/orbitope/delaysepa
should separation method be delayed, if other
separators found cuts?
Range: boolean

0

constraints/orbitope/eagerfreq
frequency for using all instead of only the useful
constraints in separation, propagation and en-
forcement (-1: never, 0: only in first evaluation)
Range: {-1, ..., 65534}

-1

constraints/orbitope/forceconscopy
Whether orbitope constraints should be forced to
be copied to sub SCIPs.
Range: boolean

0

constraints/orbitope/maxprerounds
maximal number of presolving rounds the con-
straint handler participates in (-1: no limit)
Range: {-1, ..., ∞}

-1

constraints/orbitope/presoltiming
timing mask of the constraint handler's presolv-
ing method (4:FAST, 8:MEDIUM, 16:EXHAUS-
TIVE, 32:FINAL)
Range: {4, ..., 60}

8

2580 Solver Manuals

Option Description Default

constraints/orbitope/proptiming
timing when constraint propagation should
be called (1:BEFORELP, 2:DURINGLPLOOP,
4:AFTERLPLOOP, 15:ALWAYS)
Range: {1, ..., 15}

1

constraints/orbitope/sepafullorbitope
Whether we separate inequalities for full or-
bitopes?
Range: boolean

0

5.34.4.44 constraints/setppc

Option Description Default

constraints/setppc/propfreq
frequency for propagating domains (-1:
never, 0: only in root node)
Range: {-1, ..., 65534}

1

constraints/setppc/sepafreq
frequency for separating cuts (-1: never, 0:
only in root node)
Range: {-1, ..., 65534}

0

Options for expert users

constraints/setppc/addvariablesascliques
should we try to generate extra cliques out
of all binary variables to maybe fasten re-
dundant constraint detection
Range: boolean

0

constraints/setppc/cliquelifting
should we try to lift variables into other
clique constraints, fix variables, aggregate
them, and also shrink the amount of vari-
ables in clique constraints
Range: boolean

0

constraints/setppc/cliqueshrinking
should we try to shrink the number of vari-
ables in a clique constraints, by replacing
more than one variable by only one
Range: boolean

1

constraints/setppc/delayprop
should propagation method be delayed, if
other propagators found reductions?
Range: boolean

0

constraints/setppc/delaysepa
should separation method be delayed, if
other separators found cuts?
Range: boolean

0

constraints/setppc/dualpresolving
should dual presolving steps be performed?
Range: boolean

1

constraints/setppc/eagerfreq
frequency for using all instead of only the
useful constraints in separation, propagation
and enforcement (-1: never, 0: only in first
evaluation)
Range: {-1, ..., 65534}

100

constraints/setppc/maxprerounds
maximal number of presolving rounds the
constraint handler participates in (-1: no
limit)
Range: {-1, ..., ∞}

-1

constraints/setppc/npseudobranches
number of children created in pseudo branch-
ing (0: disable pseudo branching)
Range: {0, ..., ∞}

2

5.34 SCIP 2581

Option Description Default

constraints/setppc/presolpairwise
should pairwise constraint comparison be
performed in presolving?
Range: boolean

1

constraints/setppc/presoltiming
timing mask of the constraint handler's
presolving method (4:FAST, 8:MEDIUM,
16:EXHAUSTIVE, 32:FINAL)
Range: {4, ..., 60}

28

constraints/setppc/presolusehashing
should hash table be used for detecting re-
dundant constraints in advance
Range: boolean

1

constraints/setppc/proptiming
timing when constraint propagation
should be called (1:BEFORELP, 2:DUR-
INGLPLOOP, 4:AFTERLPLOOP, 15:AL-
WAYS)
Range: {1, ..., 15}

1

5.34.4.45 constraints/symresack

Option Description Default

constraints/symresack/propfreq
frequency for propagating domains (-1:
never, 0: only in root node)
Range: {-1, ..., 65534}

5

constraints/symresack/sepafreq
frequency for separating cuts (-1: never, 0:
only in root node)
Range: {-1, ..., 65534}

5

Options for expert users

constraints/symresack/checkmonotonicity
Check whether permutation is monotone
when upgrading to packing/partioning sym-
resacks?
Range: boolean

1

constraints/symresack/delayprop
should propagation method be delayed, if
other propagators found reductions?
Range: boolean

0

constraints/symresack/delaysepa
should separation method be delayed, if
other separators found cuts?
Range: boolean

0

constraints/symresack/eagerfreq
frequency for using all instead of only the
useful constraints in separation, propagation
and enforcement (-1: never, 0: only in first
evaluation)
Range: {-1, ..., 65534}

-1

constraints/symresack/forceconscopy
Whether symresack constraints should be
forced to be copied to sub SCIPs.
Range: boolean

0

constraints/symresack/maxprerounds
maximal number of presolving rounds the
constraint handler participates in (-1: no
limit)
Range: {-1, ..., ∞}

-1

constraints/symresack/ppsymresack
Upgrade symresack constraints to pack-
ing/partioning symresacks?
Range: boolean

1

2582 Solver Manuals

Option Description Default

constraints/symresack/presoltiming
timing mask of the constraint handler's
presolving method (4:FAST, 8:MEDIUM,
16:EXHAUSTIVE, 32:FINAL)
Range: {4, ..., 60}

16

constraints/symresack/proptiming
timing when constraint propagation
should be called (1:BEFORELP, 2:DUR-
INGLPLOOP, 4:AFTERLPLOOP, 15:AL-
WAYS)
Range: {1, ..., 15}

1

5.34.4.46 constraints/varbound

Option Description Default

constraints/varbound/propfreq
frequency for propagating domains (-1: never, 0:
only in root node)
Range: {-1, ..., 65534}

1

constraints/varbound/sepafreq
frequency for separating cuts (-1: never, 0: only
in root node)
Range: {-1, ..., 65534}

0

constraints/varbound/usebdwidening
should bound widening be used in conflict analy-
sis?
Range: boolean

1

Options for expert users

constraints/varbound/delayprop
should propagation method be delayed, if other
propagators found reductions?
Range: boolean

0

constraints/varbound/delaysepa
should separation method be delayed, if other
separators found cuts?
Range: boolean

0

constraints/varbound/eagerfreq
frequency for using all instead of only the useful
constraints in separation, propagation and enforce-
ment (-1: never, 0: only in first evaluation)
Range: {-1, ..., 65534}

100

constraints/varbound/maxlpcoef
maximum coefficient in varbound constraint to be
added as a row into LP
Range: [0, ∞]

1e+09

constraints/varbound/maxprerounds
maximal number of presolving rounds the con-
straint handler participates in (-1: no limit)
Range: {-1, ..., ∞}

-1

constraints/varbound/presolpairwise
should pairwise constraint comparison be per-
formed in presolving?
Range: boolean

1

constraints/varbound/presoltiming
timing mask of the constraint handler's presolving
method (4:FAST, 8:MEDIUM, 16:EXHAUSTIVE,
32:FINAL)
Range: {4, ..., 60}

12

constraints/varbound/proptiming
timing when constraint propagation should be
called (1:BEFORELP, 2:DURINGLPLOOP, 4:AF-
TERLPLOOP, 15:ALWAYS)
Range: {1, ..., 15}

1

5.34 SCIP 2583

5.34.4.47 constraints/xor

Option Description Default

constraints/xor/propfreq
frequency for propagating domains (-1: never, 0: only
in root node)
Range: {-1, ..., 65534}

1

constraints/xor/sepafreq
frequency for separating cuts (-1: never, 0: only in
root node)
Range: {-1, ..., 65534}

0

Options for expert users

constraints/xor/addextendedform
should the extended formulation be added in presolv-
ing?
Range: boolean

0

constraints/xor/addflowextended
should the extended flow formulation be added (non-
symmetric formulation otherwise)?
Range: boolean

0

constraints/xor/delayprop
should propagation method be delayed, if other prop-
agators found reductions?
Range: boolean

0

constraints/xor/delaysepa
should separation method be delayed, if other separa-
tors found cuts?
Range: boolean

0

constraints/xor/eagerfreq
frequency for using all instead of only the useful con-
straints in separation, propagation and enforcement
(-1: never, 0: only in first evaluation)
Range: {-1, ..., 65534}

100

constraints/xor/gausspropfreq
frequency for applying the Gauss propagator
Range: {-1, ..., 65534}

5

constraints/xor/maxprerounds
maximal number of presolving rounds the constraint
handler participates in (-1: no limit)
Range: {-1, ..., ∞}

-1

constraints/xor/presolpairwise
should pairwise constraint comparison be performed
in presolving?
Range: boolean

1

constraints/xor/presoltiming
timing mask of the constraint handler's presolving
method (4:FAST, 8:MEDIUM, 16:EXHAUSTIVE,
32:FINAL)
Range: {4, ..., 60}

28

constraints/xor/presolusehashing
should hash table be used for detecting redundant
constraints in advance?
Range: boolean

1

constraints/xor/proptiming
timing when constraint propagation should be
called (1:BEFORELP, 2:DURINGLPLOOP, 4:AF-
TERLPLOOP, 15:ALWAYS)
Range: {1, ..., 15}

1

constraints/xor/separateparity
should parity inequalities be separated?
Range: boolean

0

5.34.4.48 cutselection/hybrid

2584 Solver Manuals

Option Description Default

cutselection/hybrid/dircutoffdistweight
weight of directed cutoff distance in cut score
calculation
Range: [0, ∞]

0

cutselection/hybrid/efficacyweight
weight of efficacy in cut score calculation
Range: [0, ∞]

1

cutselection/hybrid/intsupportweight
weight of integral support in cut score calculation
Range: [0, ∞]

0.1

cutselection/hybrid/minortho
minimal orthogonality for a cut to enter the LP
Range: [0, 1]

0.9

cutselection/hybrid/minorthoroot
minimal orthogonality for a cut to enter the LP
in the root node
Range: [0, 1]

0.9

cutselection/hybrid/objparalweight
weight of objective parallelism in cut score cal-
culation
Range: [0, ∞]

0.1

cutselection/hybrid/priority
priority of cut selection rule <hybrid>
Range: {-536870912, ..., 1073741823}

8000

5.34.4.49 decomposition

Option Description Default

decomposition/disablemeasures
disable expensive measures
Range: boolean

0

decomposition/maxgraphedge
maximum number of edges in block graph computation
(-1: no limit, 0: disable block graph computation)
Range: {-1, ..., ∞}

10000

5.34.4.50 display

Option Description Default

display/allviols
display all violations for a given start
solution / the best solution after the
solving process?
Range: boolean

0

display/freq
frequency for displaying node informa-
tion lines
Range: {-1, ..., ∞}

100

display/headerfreq
frequency for displaying header lines
(every n'th node information line)
Range: {-1, ..., ∞}

15

display/lpinfo
should the LP solver display status
messages?
Range: boolean

0

display/relevantstats
should the relevant statistics be dis-
played at the end of solving?
Range: boolean

1

display/statistics
whether to print statistics on a solve
and a provided decomposition
Range: boolean

0

5.34 SCIP 2585

Option Description Default

display/verblevel
verbosity level of output
Range: {0, ..., 5}

4

display/width
maximal number of characters in a
node information line
Range: {0, ..., ∞}

143 (80 for Windows without IDE)

5.34.4.51 display/avgdualbound

Option Description Default

display/avgdualbound/active
display activation status of display column
<avgdualbound> (0: off, 1: auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.52 display/completed

Option Description Default

display/completed/active
display activation status of display column <completed> (0:
off, 1: auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.53 display/concdualbound

Option Description Default

display/concdualbound/active
display activation status of display column
<concdualbound> (0: off, 1: auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.54 display/concgap

Option Description Default

display/concgap/active
display activation status of display column <concgap> (0: off,
1: auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.55 display/concmemused

Option Description Default

display/concmemused/active
display activation status of display column
<concmemused> (0: off, 1: auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.56 display/concprimalbound

2586 Solver Manuals

Option Description Default

display/concprimalbound/active
display activation status of display column
<concprimalbound> (0: off, 1: auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.57 display/concsolfound

Option Description Default

display/concsolfound/active
display activation status of display column <concsolfound>
(0: off, 1: auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.58 display/conflicts

Option Description Default

display/conflicts/active
display activation status of display column <conflicts> (0: off,
1: auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.59 display/conss

Option Description Default

display/conss/active
display activation status of display column <conss> (0: off, 1: auto,
2:on)
Range: {0, ..., 2}

1

5.34.4.60 display/curcols

Option Description Default

display/curcols/active
display activation status of display column <curcols> (0: off, 1:
auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.61 display/curconss

Option Description Default

display/curconss/active
display activation status of display column <curconss> (0: off,
1: auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.62 display/curdualbound

5.34 SCIP 2587

Option Description Default

display/curdualbound/active
display activation status of display column
<curdualbound> (0: off, 1: auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.63 display/currows

Option Description Default

display/currows/active
display activation status of display column <currows> (0: off, 1:
auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.64 display/cutoffbound

Option Description Default

display/cutoffbound/active
display activation status of display column <cutoffbound>
(0: off, 1: auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.65 display/cuts

Option Description Default

display/cuts/active
display activation status of display column <cuts> (0: off, 1: auto,
2:on)
Range: {0, ..., 2}

1

5.34.4.66 display/depth

Option Description Default

display/depth/active
display activation status of display column <depth> (0: off, 1:
auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.67 display/dualbound

Option Description Default

display/dualbound/active
display activation status of display column <dualbound> (0:
off, 1: auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.68 display/estimate

2588 Solver Manuals

Option Description Default

display/estimate/active
display activation status of display column <estimate> (0: off,
1: auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.69 display/feasST

Option Description Default

display/feasST/active
display activation status of display column <feasST> (0: off, 1:
auto, 2:on)
Range: {0, ..., 2}

0

5.34.4.70 display/gap

Option Description Default

display/gap/active
display activation status of display column <gap> (0: off, 1: auto,
2:on)
Range: {0, ..., 2}

1

5.34.4.71 display/lpavgiterations

Option Description Default

display/lpavgiterations/active
display activation status of dis-
play column <lpavgiterations>
(0: off, 1: auto, 2:on)
Range: {0, ..., 2}

1 (0 for Windows without IDE)

5.34.4.72 display/lpcond

Option Description Default

display/lpcond/active
display activation status of display column <lpcond> (0: off, 1:
auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.73 display/lpiterations

Option Description Default

display/lpiterations/active
display activation status of display column <lpiterations>
(0: off, 1: auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.74 display/lpobj

5.34 SCIP 2589

Option Description Default

display/lpobj/active
display activation status of display column <lpobj> (0: off, 1: auto,
2:on)
Range: {0, ..., 2}

1

5.34.4.75 display/maxdepth

Option Description Default

display/maxdepth/active
display activation status of display col-
umn <maxdepth> (0: off, 1: auto,
2:on)
Range: {0, ..., 2}

1 (0 for Windows without IDE)

5.34.4.76 display/memtotal

Option Description Default

display/memtotal/active
display activation status of display column <memtotal> (0:
off, 1: auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.77 display/memused

Option Description Default

display/memused/active
display activation status of display column <memused> (0: off,
1: auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.78 display/nexternbranchcands

Option Description Default

display/nexternbranchcands/active
display activation status of display column
<nexternbranchcands> (0: off, 1: auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.79 display/nfrac

Option Description Default

display/nfrac/active
display activation status of display column <nfrac> (0: off, 1: auto,
2:on)
Range: {0, ..., 2}

1

5.34.4.80 display/ninfeasleaves

2590 Solver Manuals

Option Description Default

display/ninfeasleaves/active
display activation status of display column <ninfeasleaves>
(0: off, 1: auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.81 display/nnodes

Option Description Default

display/nnodes/active
display activation status of display column <nnodes> (0: off, 1:
auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.82 display/nnodesbelowinc

Option Description Default

display/nnodesbelowinc/active
display activation status of display column
<nnodesbelowinc> (0: off, 1: auto, 2:on)
Range: {0, ..., 2}

0

5.34.4.83 display/nobjleaves

Option Description Default

display/nobjleaves/active
display activation status of display column <nobjleaves> (0:
off, 1: auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.84 display/nodesleft

Option Description Default

display/nodesleft/active
display activation status of display column <nodesleft> (0: off,
1: auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.85 display/nrank1nodes

Option Description Default

display/nrank1nodes/active
display activation status of display column <nrank1nodes>
(0: off, 1: auto, 2:on)
Range: {0, ..., 2}

0

5.34.4.86 display/nsols

5.34 SCIP 2591

Option Description Default

display/nsols/active
display activation status of display column <nsols> (0: off, 1: auto,
2:on)
Range: {0, ..., 2}

1

5.34.4.87 display/plungedepth

Option Description Default

display/plungedepth/active
display activation status of display column <plungedepth>
(0: off, 1: auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.88 display/poolsize

Option Description Default

display/poolsize/active
display activation status of display column <poolsize> (0: off,
1: auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.89 display/primalbound

Option Description Default

display/primalbound/active
display activation status of display column <primalbound>
(0: off, 1: auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.90 display/primalgap

Option Description Default

display/primalgap/active
display activation status of display column <primalgap> (0:
off, 1: auto, 2:on)
Range: {0, ..., 2}

0

5.34.4.91 display/pseudoobj

Option Description Default

display/pseudoobj/active
display activation status of display column <pseudoobj> (0:
off, 1: auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.92 display/separounds

2592 Solver Manuals

Option Description Default

display/separounds/active
display activation status of display column <separounds> (0:
off, 1: auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.93 display/solfound

Option Description Default

display/solfound/active
display activation status of display column <solfound> (0: off,
1: auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.94 display/sols

Option Description Default

display/sols/active
display activation status of display column <sols> (0: off, 1: auto,
2:on)
Range: {0, ..., 2}

0

5.34.4.95 display/strongbranchs

Option Description Default

display/strongbranchs/active
display activation status of display column
<strongbranchs> (0: off, 1: auto, 2:on)
Range: {0, ..., 2}

1

5.34.4.96 display/time

Option Description Default

display/time/active
display activation status of display column
<time> (0: off, 1: auto, 2:on)
Range: {0, ..., 2}

1 (2 for Windows without IDE)

5.34.4.97 display/vars

Option Description Default

display/vars/active
display activation status of display column <vars> (0: off, 1: auto,
2:on)
Range: {0, ..., 2}

1

5.34.4.98 estimation

5.34 SCIP 2593

Option Description Default

estimation/coefmonossg
coefficient of 1 - SSG in monotone approximation of search
completion
Range: [0, 1]

0.6333

estimation/coefmonoweight
coefficient of tree weight in monotone approximation of
search completion
Range: [0, 1]

0.3667

estimation/completiontype
approximation of search tree completion: (a)uto, (g)ap,
tree (w)eight, (m)onotone regression, (r)egression forest,
(s)sg
Range: a, g, m, r, s, w

a

estimation/method
tree size estimation method: (c)ompletion, (e)nsemble, time
series forecasts on either (g)ap, (l)eaf frequency, (o)open
nodes, tree (w)eight, (s)sg, or (t)ree profile or w(b)e
Range: b, c, e, g, l, o, s, t, w

w

estimation/regforestfilename
user regression forest in RFCSV format
Range: string

-

Options for expert users

estimation/reportfreq
report frequency on estimation: -1: never, 0:always, k ≥ 1:
k times evenly during search
Range: {-1, ..., 1073741823}

-1

estimation/showstats
should statistics be shown at the end?
Range: boolean

0

estimation/useleafts
use leaf nodes as basic observations for time series, or all
nodes?
Range: boolean

1

5.34.4.99 estimation/restarts

Option Description Default

estimation/restarts/countonlyleaves
should only leaves count for the minnodes parame-
ter?
Range: boolean

0

estimation/restarts/hitcounterlim
limit on the number of successive samples to really
trigger a restart
Range: {1, ..., ∞}

50

estimation/restarts/minnodes
minimum number of nodes before restart
Range: {-1, ..., ∞}

1000

estimation/restarts/restartactpricers
whether to apply a restart when active pricers are
used
Range: boolean

0

estimation/restarts/restartfactor
factor by which the estimated number of nodes
should exceed the current number of nodes
Range: [1, ∞]

50

estimation/restarts/restartlimit
restart limit
Range: {-1, ..., ∞}

1

estimation/restarts/restartnonlinear
whether to apply a restart when nonlinear con-
straints are present
Range: boolean

0

estimation/restarts/restartpolicy
restart policy: (a)lways, (c)ompletion,
(e)stimation, (n)ever
Range: a, c, e, n

e

2594 Solver Manuals

5.34.4.100 estimation/ssg

Option Description Default

estimation/ssg/nmaxsubtrees
the maximum number of individual SSG subtrees; -1:
no limit
Range: {-1, ..., 1073741823}

-1

estimation/ssg/nminnodeslastsplit
minimum number of nodes to process between two
consecutive SSG splits
Range: {0, ..., ∞}

0

5.34.4.101 estimation/treeprofile

Option Description Default

estimation/treeprofile/enabled
should the event handler collect data?
Range: boolean

0

estimation/treeprofile/minnodesperdepth
minimum average number of nodes at each
depth before producing estimations
Range: [1, ∞]

20

5.34.4.102 expr/log

Option Description Default

expr/log/minzerodistance
minimal distance from zero to enforce for child in bound
tightening
Range: [0, 1]

1e-09

5.34.4.103 expr/pow

Option Description Default

expr/pow/minzerodistance
minimal distance from zero to enforce for child in bound
tightening
Range: [0, 1]

1e-09

5.34.4.104 heuristics

Option Description Default

Options for expert users

heuristics/useuctsubscip
should setting of common subscip parameters include the acti-
vation of the UCT node selector?
Range: boolean

0

5.34.4.105 heuristics/actconsdiving

5.34 SCIP 2595

Option Description Default

heuristics/actconsdiving/backtrack
use one level of backtracking if infeasibility
is encountered?
Range: boolean

1

heuristics/actconsdiving/freq
frequency for calling primal heuristic
<actconsdiving> (-1: never, 0: only at
depth freqofs)
Range: {-1, ..., 65534}

-1

heuristics/actconsdiving/freqofs
frequency offset for calling primal heuristic
<actconsdiving>
Range: {0, ..., 65534}

5

heuristics/actconsdiving/lpresolvedomchgquot
percentage of immediate domain changes
during probing to trigger LP resolve
Range: [0, ∞]

0.15

heuristics/actconsdiving/lpsolvefreq
LP solve frequency for diving heuristics (0:
only after enough domain changes have been
found)
Range: {0, ..., ∞}

0

heuristics/actconsdiving/maxlpiterofs
additional number of allowed LP iterations
Range: {0, ..., ∞}

1000

heuristics/actconsdiving/maxlpiterquot
maximal fraction of diving LP iterations
compared to node LP iterations
Range: [0, ∞]

0.05

heuristics/actconsdiving/onlylpbranchcands
should only LP branching candidates be con-
sidered instead of the slower but more gen-
eral constraint handler diving variable selec-
tion?
Range: boolean

1

Options for expert users

heuristics/actconsdiving/maxdepth
maximal depth level to call primal heuristic
<actconsdiving> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/actconsdiving/maxdiveavgquot
maximal quotient (curlowerbound - lower-
bound)/(avglowerbound - lowerbound)
where diving is performed (0.0: no limit)
Range: [0, ∞]

0

heuristics/actconsdiving/maxdiveavgquotnosol
maximal AVGQUOT when no solution was
found yet (0.0: no limit)
Range: [0, ∞]

1

heuristics/actconsdiving/maxdiveubquot
maximal quotient (curlowerbound - lower-
bound)/(cutoffbound - lowerbound) where
diving is performed (0.0: no limit)
Range: [0, 1]

0.8

heuristics/actconsdiving/maxdiveubquotnosol
maximal UBQUOT when no solution was
found yet (0.0: no limit)
Range: [0, 1]

1

heuristics/actconsdiving/maxreldepth
maximal relative depth to start diving
Range: [0, 1]

1

heuristics/actconsdiving/minreldepth
minimal relative depth to start diving
Range: [0, 1]

0

heuristics/actconsdiving/priority
priority of heuristic <actconsdiving>
Range: {-536870912, ..., 536870911}

-1003700

2596 Solver Manuals

5.34.4.106 heuristics/adaptivediving

Option Description Default

heuristics/adaptivediving/bestsolweight
weight of incumbent solutions compared to
other solutions in computation of LP itera-
tion limit
Range: [0, ∞]

10

heuristics/adaptivediving/epsilon
parameter that increases probability of ex-
ploration among divesets (only active if sel-
type is 'e')
Range: [0, ∞]

1

heuristics/adaptivediving/freq
frequency for calling primal heuristic
<adaptivediving> (-1: never, 0: only at
depth freqofs)
Range: {-1, ..., 65534}

5

heuristics/adaptivediving/freqofs
frequency offset for calling primal heuristic
<adaptivediving>
Range: {0, ..., 65534}

3

heuristics/adaptivediving/maxlpiterofs
additional number of allowed LP iterations
Range: {0, ..., ∞}

1500

heuristics/adaptivediving/maxlpiterquot
maximal fraction of diving LP iterations
compared to node LP iterations
Range: [0, ∞]

0.1

heuristics/adaptivediving/scoretype
score parameter for selection: min-
imize either average 'n'odes, LP
'i'terations,backtrack/'c'onflict ratio,
'd'epth, 1 / 's'olutions, or 1 / solu-
tions'u'ccess
Range: c, d, i, n, s, u

c

heuristics/adaptivediving/selconfidencecoeff
coefficient c to decrease initial confidence
(calls + 1.0) / (calls + c) in scores
Range: [1, 2.14748e+09]

10

heuristics/adaptivediving/seltype
selection strategy: (e)psilon-greedy,
(w)eighted distribution, (n)ext diving
Range: e, n, w

w

Options for expert users

heuristics/adaptivediving/maxdepth
maximal depth level to call primal heuristic
<adaptivediving> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/adaptivediving/priority
priority of heuristic <adaptivediving>
Range: {-536870912, ..., 536870911}

-70000

heuristics/adaptivediving/useadaptivecontext
should the heuristic use its own statistics,
or shared statistics?
Range: boolean

0

5.34.4.107 heuristics/alns

Option Description Default

heuristics/alns/freq
frequency for calling primal heuristic <alns> (-1:
never, 0: only at depth freqofs)
Range: {-1, ..., 65534}

20

5.34 SCIP 2597

Option Description Default

heuristics/alns/freqofs
frequency offset for calling primal heuristic <alns>
Range: {0, ..., 65534}

0

heuristics/alns/nodesofs
offset added to the nodes budget
Range: {0, ..., ∞}

500

heuristics/alns/nodesquot
fraction of nodes compared to the main SCIP for
budget computation
Range: [0, 1]

0.1

heuristics/alns/nodesquotmin
lower bound fraction of nodes compared to the main
SCIP for budget computation
Range: [0, 1]

0

heuristics/alns/nsolslim
limit on the number of improving solutions in a sub-
SCIP call
Range: {-1, ..., ∞}

3

heuristics/alns/seed
initial random seed for bandit algorithms and random
decisions by neighborhoods
Range: {0, ..., ∞}

113

Options for expert users

heuristics/alns/adjustfixingrate
should the heuristic adjust the target fixing rate based
on the success?
Range: boolean

1

heuristics/alns/adjustminimprove
should the factor by which the minimum improvement
is bound be dynamically updated?
Range: boolean

0

heuristics/alns/adjusttargetnodes
should the target nodes be dynamically adjusted?
Range: boolean

1

heuristics/alns/alpha
parameter to increase the confidence width in UCB
Range: [0, 100]

0.0016

heuristics/alns/banditalgo
the bandit algorithm: (u)pper confidence bounds,
(e)xp.3, epsilon (g)reedy
Range: u, e, g

u

heuristics/alns/beta
reward offset between 0 and 1 at every observation
for Exp.3
Range: [0, 1]

0

heuristics/alns/copycuts
should cutting planes be copied to the sub-SCIP?
Range: boolean

0

heuristics/alns/domorefixings
should the ALNS heuristic do more fixings by itself
based on variable prioritization until the target fixing
rate is reached?
Range: boolean

1

heuristics/alns/eps
increase exploration in epsilon-greedy bandit algo-
rithm
Range: [0, 1]

0.468584

heuristics/alns/fixtol
tolerance by which the fixing rate may be missed
without generic fixing
Range: [0, 1]

0.1

heuristics/alns/gamma
weight between uniform (gamma ∼ 1) and weight
driven (gamma ∼ 0) probability distribution for exp3
Range: [0, 1]

0.0704146

heuristics/alns/initduringroot
should the heuristic be executed multiple times during
the root node?
Range: boolean

0

2598 Solver Manuals

Option Description Default

heuristics/alns/maxcallssamesol
number of allowed executions of the heuristic on the
same incumbent solution (-1: no limit, 0: number of
active neighborhoods)
Range: {-1, ..., 100}

-1

heuristics/alns/maxdepth
maximal depth level to call primal heuristic <alns>
(-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/alns/maxnodes
maximum number of nodes to regard in the subprob-
lem
Range: {0, ..., ∞}

5000

heuristics/alns/minimprovehigh
upper bound for the minimal improvement over the
incumbent
Range: [0, 1]

0.01

heuristics/alns/minimprovelow
lower threshold for the minimal improvement over
the incumbent
Range: [0, 1]

0.01

heuristics/alns/minnodes
minimum number of nodes required to start a sub-
SCIP
Range: {0, ..., ∞}

50

heuristics/alns/priority
priority of heuristic <alns>
Range: {-536870912, ..., 536870911}

-1100500

heuristics/alns/resetweights
should the bandit algorithms be reset when a new
problem is read?
Range: boolean

1

heuristics/alns/rewardbaseline
the reward baseline to separate successful and failed
calls
Range: [0, 0.99]

0.5

heuristics/alns/rewardcontrol
reward control to increase the weight of the simple
solution indicator and decrease the weight of the
closed gap reward
Range: [0, 1]

0.8

heuristics/alns/rewardfilename
file name to store all rewards and the selection of the
bandit
Range: string

-

heuristics/alns/scalebyeffort
should the reward be scaled by the effort?
Range: boolean

1

heuristics/alns/shownbstats
show statistics on neighborhoods?
Range: boolean

0

heuristics/alns/startminimprove
initial factor by which ALNS should at least improve
the incumbent
Range: [0, 1]

0.01

heuristics/alns/subsciprandseeds
should random seeds of sub-SCIPs be altered to in-
crease diversification?
Range: boolean

0

heuristics/alns/targetnodefactor
factor by which target node number is eventually
increased
Range: [1, 100000]

1.05

heuristics/alns/unfixtol
tolerance by which the fixing rate may be exceeded
without generic unfixing
Range: [0, 1]

0.1

heuristics/alns/usedistances
distances from fixed variables be used for variable
prioritization
Range: boolean

1

5.34 SCIP 2599

Option Description Default

heuristics/alns/uselocalredcost
should local reduced costs be used for generic
(un)fixing?
Range: boolean

0

heuristics/alns/usepscost
should pseudo cost scores be used for variable prior-
ization?
Range: boolean

1

heuristics/alns/useredcost
should reduced cost scores be used for variable priori-
tization?
Range: boolean

1

heuristics/alns/usesubscipheurs
should the heuristic activate other sub-SCIP heuris-
tics during its search?
Range: boolean

0

heuristics/alns/waitingnodes
number of nodes since last incumbent solution that
the heuristic should wait
Range: {0, ..., ∞}

25

5.34.4.108 heuristics/alns/crossover

Option Description Default

Options for expert users

heuristics/alns/crossover/active
is this neighborhood active?
Range: boolean

1

heuristics/alns/crossover/maxfixingrate
maximum fixing rate for this neighborhood
Range: [0, 1]

0.9

heuristics/alns/crossover/minfixingrate
minimum fixing rate for this neighborhood
Range: [0, 1]

0.3

heuristics/alns/crossover/nsols
the number of solutions that crossover should
combine
Range: {2, ..., 10}

2

heuristics/alns/crossover/priority
positive call priority to initialize bandit algo-
rithms
Range: [0.01, 1]

1

5.34.4.109 heuristics/alns/dins

Option Description Default

Options for expert users

heuristics/alns/dins/active
is this neighborhood active?
Range: boolean

1

heuristics/alns/dins/maxfixingrate
maximum fixing rate for this neighborhood
Range: [0, 1]

0.9

heuristics/alns/dins/minfixingrate
minimum fixing rate for this neighborhood
Range: [0, 1]

0.3

heuristics/alns/dins/npoolsols
number of pool solutions where binary solution values
must agree
Range: {1, ..., 100}

5

heuristics/alns/dins/priority
positive call priority to initialize bandit algorithms
Range: [0.01, 1]

1

2600 Solver Manuals

5.34.4.110 heuristics/alns/localbranching

Option Description Default

Options for expert users

heuristics/alns/localbranching/active
is this neighborhood active?
Range: boolean

1

heuristics/alns/localbranching/maxfixingrate
maximum fixing rate for this neighborhood
Range: [0, 1]

0.9

heuristics/alns/localbranching/minfixingrate
minimum fixing rate for this neighborhood
Range: [0, 1]

0.3

heuristics/alns/localbranching/priority
positive call priority to initialize bandit al-
gorithms
Range: [0.01, 1]

1

5.34.4.111 heuristics/alns/mutation

Option Description Default

Options for expert users

heuristics/alns/mutation/active
is this neighborhood active?
Range: boolean

1

heuristics/alns/mutation/maxfixingrate
maximum fixing rate for this neighborhood
Range: [0, 1]

0.9

heuristics/alns/mutation/minfixingrate
minimum fixing rate for this neighborhood
Range: [0, 1]

0.3

heuristics/alns/mutation/priority
positive call priority to initialize bandit algo-
rithms
Range: [0.01, 1]

1

5.34.4.112 heuristics/alns/proximity

Option Description Default

Options for expert users

heuristics/alns/proximity/active
is this neighborhood active?
Range: boolean

1

heuristics/alns/proximity/maxfixingrate
maximum fixing rate for this neighborhood
Range: [0, 1]

0.9

heuristics/alns/proximity/minfixingrate
minimum fixing rate for this neighborhood
Range: [0, 1]

0.3

heuristics/alns/proximity/priority
positive call priority to initialize bandit al-
gorithms
Range: [0.01, 1]

1

5.34.4.113 heuristics/alns/rens

Option Description Default

Options for expert users

heuristics/alns/rens/active
is this neighborhood active?
Range: boolean

1

5.34 SCIP 2601

Option Description Default

heuristics/alns/rens/maxfixingrate
maximum fixing rate for this neighborhood
Range: [0, 1]

0.9

heuristics/alns/rens/minfixingrate
minimum fixing rate for this neighborhood
Range: [0, 1]

0.3

heuristics/alns/rens/priority
positive call priority to initialize bandit algorithms
Range: [0.01, 1]

1

5.34.4.114 heuristics/alns/rins

Option Description Default

Options for expert users

heuristics/alns/rins/active
is this neighborhood active?
Range: boolean

1

heuristics/alns/rins/maxfixingrate
maximum fixing rate for this neighborhood
Range: [0, 1]

0.9

heuristics/alns/rins/minfixingrate
minimum fixing rate for this neighborhood
Range: [0, 1]

0.3

heuristics/alns/rins/priority
positive call priority to initialize bandit algorithms
Range: [0.01, 1]

1

5.34.4.115 heuristics/alns/trustregion

Option Description Default

heuristics/alns/trustregion/violpenalty
the penalty for each change in the binary
variables from the candidate solution
Range: [0, ∞]

100

Options for expert users

heuristics/alns/trustregion/active
is this neighborhood active?
Range: boolean

0

heuristics/alns/trustregion/maxfixingrate
maximum fixing rate for this neighborhood
Range: [0, 1]

0.9

heuristics/alns/trustregion/minfixingrate
minimum fixing rate for this neighborhood
Range: [0, 1]

0.3

heuristics/alns/trustregion/priority
positive call priority to initialize bandit al-
gorithms
Range: [0.01, 1]

1

5.34.4.116 heuristics/alns/zeroobjective

Option Description Default

Options for expert users

heuristics/alns/zeroobjective/active
is this neighborhood active?
Range: boolean

1

heuristics/alns/zeroobjective/maxfixingrate
maximum fixing rate for this neighborhood
Range: [0, 1]

0.9

heuristics/alns/zeroobjective/minfixingrate
minimum fixing rate for this neighborhood
Range: [0, 1]

0.3

2602 Solver Manuals

Option Description Default

heuristics/alns/zeroobjective/priority
positive call priority to initialize bandit al-
gorithms
Range: [0.01, 1]

1

5.34.4.117 heuristics/bound

Option Description Default

heuristics/bound/bound
to which bound should integer variables be fixed?
('l'ower, 'u'pper, or 'b'oth)
Range: l, u, b

l

heuristics/bound/freq
frequency for calling primal heuristic <bound> (-1:
never, 0: only at depth freqofs)
Range: {-1, ..., 65534}

-1

heuristics/bound/freqofs
frequency offset for calling primal heuristic <bound>
Range: {0, ..., 65534}

0

Options for expert users

heuristics/bound/maxdepth
maximal depth level to call primal heuristic <bound>
(-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/bound/maxproprounds
maximum number of propagation rounds during prob-
ing (-1 infinity, -2 parameter settings)
Range: {-1, ..., 536870911}

0

heuristics/bound/onlywithoutsol
Should heuristic only be executed if no primal solution
was found, yet?
Range: boolean

1

heuristics/bound/priority
priority of heuristic <bound>
Range: {-536870912, ..., 536870911}

-1107000

5.34.4.118 heuristics/clique

Option Description Default

heuristics/clique/freq
frequency for calling primal heuristic <clique> (-1:
never, 0: only at depth freqofs)
Range: {-1, ..., 65534}

0

heuristics/clique/freqofs
frequency offset for calling primal heuristic <clique>
Range: {0, ..., 65534}

0

heuristics/clique/minintfixingrate
minimum percentage of integer variables that have
to be fixable
Range: [0, 1]

0.65

heuristics/clique/minmipfixingrate
minimum percentage of fixed variables in the sub-
MIP
Range: [0, 1]

0.65

heuristics/clique/nodesofs
number of nodes added to the contingent of the total
nodes
Range: {0, ..., ∞}

500

heuristics/clique/nodesquot
contingent of sub problem nodes in relation to the
number of nodes of the original problem
Range: [0, 1]

0.1

Options for expert users

5.34 SCIP 2603

Option Description Default

heuristics/clique/copycuts
should all active cuts from cutpool be copied to
constraints in subproblem?
Range: boolean

1

heuristics/clique/maxbacktracks
maximum number of backtracks during the fixing
process
Range: {-1, ..., 536870911}

10

heuristics/clique/maxdepth
maximal depth level to call primal heuristic <clique>
(-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/clique/maxnodes
maximum number of nodes to regard in the subprob-
lem
Range: {0, ..., ∞}

5000

heuristics/clique/maxproprounds
maximum number of propagation rounds during prob-
ing (-1 infinity)
Range: {-1, ..., 536870911}

2

heuristics/clique/minimprove
factor by which clique heuristic should at least im-
prove the incumbent
Range: [0, 1]

0.01

heuristics/clique/minnodes
minimum number of nodes required to start the
subproblem
Range: {0, ..., ∞}

500

heuristics/clique/priority
priority of heuristic <clique>
Range: {-536870912, ..., 536870911}

5000

heuristics/clique/uselockfixings
should more variables be fixed based on variable locks
if the fixing rate was not reached?
Range: boolean

0

5.34.4.119 heuristics/coefdiving

Option Description Default

heuristics/coefdiving/backtrack
use one level of backtracking if infeasibility
is encountered?
Range: boolean

1

heuristics/coefdiving/freq
frequency for calling primal heuristic
<coefdiving> (-1: never, 0: only at depth
freqofs)
Range: {-1, ..., 65534}

-1

heuristics/coefdiving/freqofs
frequency offset for calling primal heuristic
<coefdiving>
Range: {0, ..., 65534}

1

heuristics/coefdiving/lpresolvedomchgquot
percentage of immediate domain changes
during probing to trigger LP resolve
Range: [0, ∞]

0.15

heuristics/coefdiving/lpsolvefreq
LP solve frequency for diving heuristics (0:
only after enough domain changes have been
found)
Range: {0, ..., ∞}

0

heuristics/coefdiving/maxlpiterofs
additional number of allowed LP iterations
Range: {0, ..., ∞}

1000

heuristics/coefdiving/maxlpiterquot
maximal fraction of diving LP iterations
compared to node LP iterations
Range: [0, ∞]

0.05

2604 Solver Manuals

Option Description Default

heuristics/coefdiving/onlylpbranchcands
should only LP branching candidates be con-
sidered instead of the slower but more gen-
eral constraint handler diving variable selec-
tion?
Range: boolean

0

Options for expert users

heuristics/coefdiving/maxdepth
maximal depth level to call primal heuristic
<coefdiving> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/coefdiving/maxdiveavgquot
maximal quotient (curlowerbound - lower-
bound)/(avglowerbound - lowerbound)
where diving is performed (0.0: no limit)
Range: [0, ∞]

0

heuristics/coefdiving/maxdiveavgquotnosol
maximal AVGQUOT when no solution was
found yet (0.0: no limit)
Range: [0, ∞]

0

heuristics/coefdiving/maxdiveubquot
maximal quotient (curlowerbound - lower-
bound)/(cutoffbound - lowerbound) where
diving is performed (0.0: no limit)
Range: [0, 1]

0.8

heuristics/coefdiving/maxdiveubquotnosol
maximal UBQUOT when no solution was
found yet (0.0: no limit)
Range: [0, 1]

0.1

heuristics/coefdiving/maxreldepth
maximal relative depth to start diving
Range: [0, 1]

1

heuristics/coefdiving/minreldepth
minimal relative depth to start diving
Range: [0, 1]

0

heuristics/coefdiving/priority
priority of heuristic <coefdiving>
Range: {-536870912, ..., 536870911}

-1001000

5.34.4.120 heuristics/completesol

Option Description Default

heuristics/completesol/beforepresol
should the heuristic run before presolving?
Range: boolean

1

heuristics/completesol/freq
frequency for calling primal heuristic
<completesol> (-1: never, 0: only at depth
freqofs)
Range: {-1, ..., 65534}

0

heuristics/completesol/freqofs
frequency offset for calling primal heuristic
<completesol>
Range: {0, ..., 65534}

0

heuristics/completesol/ignorecont
should number of continuous variables be
ignored?
Range: boolean

0

heuristics/completesol/maxcontvars
maximal number of continuous variables af-
ter presolving
Range: {-1, ..., ∞}

-1

heuristics/completesol/maxlpiter
maximal number of LP iterations (-1: no
limit)
Range: {-1, ..., ∞}

-1

5.34 SCIP 2605

Option Description Default

heuristics/completesol/maxproprounds
maximal number of iterations in propagation
(-1: no limit)
Range: {-1, ..., ∞}

10

heuristics/completesol/maxunknownrate
maximal rate of unknown solution values
Range: [0, 1]

0.85

heuristics/completesol/nodesofs
number of nodes added to the contingent of
the total nodes
Range: {0, ..., ∞}

500

heuristics/completesol/nodesquot
contingent of sub problem nodes in relation
to the number of nodes of the original prob-
lem
Range: [0, 1]

0.1

heuristics/completesol/solutions
heuristic stops, if the given number of im-
proving solutions were found (-1: no limit)
Range: {-1, ..., ∞}

5

Options for expert users

heuristics/completesol/addallsols
should all subproblem solutions be added to
the original SCIP?
Range: boolean

0

heuristics/completesol/boundwidening
bound widening factor applied to continuous
variables (0: fix variables to given solution
values, 1: relax to global bounds)
Range: [0, 1]

0.1

heuristics/completesol/lplimfac
factor by which the limit on the number of
LP depends on the node limit
Range: [1, ∞]

2

heuristics/completesol/maxdepth
maximal depth level to call primal heuristic
<completesol> (-1: no limit)
Range: {-1, ..., 65534}

0

heuristics/completesol/maxnodes
maximum number of nodes to regard in the
subproblem
Range: {0, ..., ∞}

5000

heuristics/completesol/minimprove
factor by which the incumbent should be
improved at least
Range: [0, 1]

0.01

heuristics/completesol/minnodes
minimum number of nodes required to start
the subproblem
Range: {0, ..., ∞}

50

heuristics/completesol/objweight
weight of the original objective function (1:
only original objective)
Range: [0.001, 1]

1

heuristics/completesol/priority
priority of heuristic <completesol>
Range: {-536870912, ..., 536870911}

0

5.34.4.121 heuristics/conflictdiving

Option Description Default

heuristics/conflictdiving/backtrack
use one level of backtracking if infeasibility
is encountered?
Range: boolean

1

2606 Solver Manuals

Option Description Default

heuristics/conflictdiving/freq
frequency for calling primal heuristic
<conflictdiving> (-1: never, 0: only at
depth freqofs)
Range: {-1, ..., 65534}

10

heuristics/conflictdiving/freqofs
frequency offset for calling primal heuristic
<conflictdiving>
Range: {0, ..., 65534}

0

heuristics/conflictdiving/lpresolvedomchgquot
percentage of immediate domain changes
during probing to trigger LP resolve
Range: [0, ∞]

0.15

heuristics/conflictdiving/lpsolvefreq
LP solve frequency for diving heuristics (0:
only after enough domain changes have been
found)
Range: {0, ..., ∞}

0

heuristics/conflictdiving/maxlpiterofs
additional number of allowed LP iterations
Range: {0, ..., ∞}

1000

heuristics/conflictdiving/maxlpiterquot
maximal fraction of diving LP iterations
compared to node LP iterations
Range: [0, ∞]

0.15

heuristics/conflictdiving/onlylpbranchcands
should only LP branching candidates be con-
sidered instead of the slower but more gen-
eral constraint handler diving variable selec-
tion?
Range: boolean

0

Options for expert users

heuristics/conflictdiving/likecoef
perform rounding like coefficient diving
Range: boolean

0

heuristics/conflictdiving/lockweight
weight used in a convex combination of con-
flict and variable locks
Range: [0, 1]

0.75

heuristics/conflictdiving/maxdepth
maximal depth level to call primal heuristic
<conflictdiving> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/conflictdiving/maxdiveavgquot
maximal quotient (curlowerbound - lower-
bound)/(avglowerbound - lowerbound)
where diving is performed (0.0: no limit)
Range: [0, ∞]

0

heuristics/conflictdiving/maxdiveavgquotnosol
maximal AVGQUOT when no solution was
found yet (0.0: no limit)
Range: [0, ∞]

0

heuristics/conflictdiving/maxdiveubquot
maximal quotient (curlowerbound - lower-
bound)/(cutoffbound - lowerbound) where
diving is performed (0.0: no limit)
Range: [0, 1]

0.8

heuristics/conflictdiving/maxdiveubquotnosol
maximal UBQUOT when no solution was
found yet (0.0: no limit)
Range: [0, 1]

0.1

heuristics/conflictdiving/maxreldepth
maximal relative depth to start diving
Range: [0, 1]

1

heuristics/conflictdiving/maxviol
try to maximize the violation
Range: boolean

1

heuristics/conflictdiving/minconflictlocks
minimal number of conflict locks per variable
Range: {0, ..., ∞}

5

5.34 SCIP 2607

Option Description Default

heuristics/conflictdiving/minreldepth
minimal relative depth to start diving
Range: [0, 1]

0

heuristics/conflictdiving/priority
priority of heuristic <conflictdiving>
Range: {-536870912, ..., 536870911}

-1000100

5.34.4.122 heuristics/crossover

Option Description Default

heuristics/crossover/bestsollimit
limit on number of improving incumbent solutions
in sub-CIP
Range: {-1, ..., ∞}

-1

heuristics/crossover/freq
frequency for calling primal heuristic <crossover>
(-1: never, 0: only at depth freqofs)
Range: {-1, ..., 65534}

30

heuristics/crossover/freqofs
frequency offset for calling primal heuristic
<crossover>
Range: {0, ..., 65534}

0

heuristics/crossover/minfixingrate
minimum percentage of integer variables that have
to be fixed
Range: [0, 1]

0.666

heuristics/crossover/nodesofs
number of nodes added to the contingent of the
total nodes
Range: {0, ..., ∞}

500

heuristics/crossover/nodesquot
contingent of sub problem nodes in relation to the
number of nodes of the original problem
Range: [0, 1]

0.1

heuristics/crossover/nusedsols
number of solutions to be taken into account
Range: {2, ..., ∞}

3

Options for expert users

heuristics/crossover/copycuts
if uselprows == FALSE, should all active cuts from
cutpool be copied to constraints in subproblem?
Range: boolean

1

heuristics/crossover/dontwaitatroot
should the nwaitingnodes parameter be ignored at
the root node?
Range: boolean

0

heuristics/crossover/lplimfac
factor by which the limit on the number of LP
depends on the node limit
Range: [1, ∞]

2

heuristics/crossover/maxdepth
maximal depth level to call primal heuristic
<crossover> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/crossover/maxnodes
maximum number of nodes to regard in the sub-
problem
Range: {0, ..., ∞}

5000

heuristics/crossover/minimprove
factor by which Crossover should at least improve
the incumbent
Range: [0, 1]

0.01

heuristics/crossover/minnodes
minimum number of nodes required to start the
subproblem
Range: {0, ..., ∞}

50

2608 Solver Manuals

Option Description Default

heuristics/crossover/nwaitingnodes
number of nodes without incumbent change that
heuristic should wait
Range: {0, ..., ∞}

200

heuristics/crossover/permute
should the subproblem be permuted to increase
diversification?
Range: boolean

0

heuristics/crossover/priority
priority of heuristic <crossover>
Range: {-536870912, ..., 536870911}

-1104000

heuristics/crossover/randomization
should the choice which sols to take be randomized?
Range: boolean

1

heuristics/crossover/uselprows
should subproblem be created out of the rows in
the LP rows?
Range: boolean

0

heuristics/crossover/useuct
should uct node selection be used at the beginning
of the search?
Range: boolean

0

5.34.4.123 heuristics/dins

Option Description Default

heuristics/dins/bestsollimit
limit on number of improving incumbent solutions in
sub-CIP
Range: {-1, ..., ∞}

3

heuristics/dins/freq
frequency for calling primal heuristic <dins> (-1:
never, 0: only at depth freqofs)
Range: {-1, ..., 65534}

-1

heuristics/dins/freqofs
frequency offset for calling primal heuristic <dins>
Range: {0, ..., 65534}

0

heuristics/dins/minfixingrate
minimum percentage of integer variables that have to
be fixable
Range: [0, 1]

0.3

heuristics/dins/minnodes
minimum number of nodes required to start the sub-
problem
Range: {0, ..., ∞}

50

heuristics/dins/neighborhoodsize
radius (using Manhattan metric) of the incumbent's
neighborhood to be searched
Range: {1, ..., ∞}

18

heuristics/dins/nodesofs
number of nodes added to the contingent of the total
nodes
Range: {0, ..., ∞}

5000

heuristics/dins/nodesquot
contingent of sub problem nodes in relation to the
number of nodes of the original problem
Range: [0, 1]

0.05

heuristics/dins/solnum
number of pool-solutions to be checked for flag array
update (for hard fixing of binary variables)
Range: {1, ..., ∞}

5

Options for expert users

heuristics/dins/copycuts
if uselprows == FALSE, should all active cuts from
cutpool be copied to constraints in subproblem?
Range: boolean

1

5.34 SCIP 2609

Option Description Default

heuristics/dins/lplimfac
factor by which the limit on the number of LP depends
on the node limit
Range: [1, ∞]

1.5

heuristics/dins/maxdepth
maximal depth level to call primal heuristic <dins>
(-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/dins/maxnodes
maximum number of nodes to regard in the subproblem
Range: {0, ..., ∞}

5000

heuristics/dins/minimprove
factor by which dins should at least improve the in-
cumbent
Range: [0, 1]

0.01

heuristics/dins/nwaitingnodes
number of nodes without incumbent change that
heuristic should wait
Range: {0, ..., ∞}

200

heuristics/dins/priority
priority of heuristic <dins>
Range: {-536870912, ..., 536870911}

-1105000

heuristics/dins/uselprows
should subproblem be created out of the rows in the
LP rows?
Range: boolean

0

heuristics/dins/useuct
should uct node selection be used at the beginning of
the search?
Range: boolean

0

5.34.4.124 heuristics/distributiondiving

Option Description Default

heuristics/distributiondiving/backtrack
use one level of backtracking if infeasibility
is encountered?
Range: boolean

1

heuristics/distributiondiving/freq
frequency for calling primal heuristic
<distributiondiving> (-1: never, 0: only
at depth freqofs)
Range: {-1, ..., 65534}

10

heuristics/distributiondiving/freqofs
frequency offset for calling primal heuristic
<distributiondiving>
Range: {0, ..., 65534}

3

heuristics/distributiondiving/lpresolvedomchgquot
percentage of immediate domain changes
during probing to trigger LP resolve
Range: [0, ∞]

0.15

heuristics/distributiondiving/lpsolvefreq
LP solve frequency for diving heuristics (0:
only after enough domain changes have been
found)
Range: {0, ..., ∞}

0

heuristics/distributiondiving/maxlpiterofs
additional number of allowed LP iterations
Range: {0, ..., ∞}

1000

heuristics/distributiondiving/maxlpiterquot
maximal fraction of diving LP iterations
compared to node LP iterations
Range: [0, ∞]

0.05

2610 Solver Manuals

Option Description Default

heuristics/distributiondiving/onlylpbranchcands
should only LP branching candidates be con-
sidered instead of the slower but more gen-
eral constraint handler diving variable selec-
tion?
Range: boolean

1

Options for expert users

heuristics/distributiondiving/maxdepth
maximal depth level to call primal heuristic
<distributiondiving> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/distributiondiving/maxdiveavgquot
maximal quotient (curlowerbound - lower-
bound)/(avglowerbound - lowerbound)
where diving is performed (0.0: no limit)
Range: [0, ∞]

0

heuristics/distributiondiving/maxdiveavgquotnosol
maximal AVGQUOT when no solution was
found yet (0.0: no limit)
Range: [0, ∞]

0

heuristics/distributiondiving/maxdiveubquot
maximal quotient (curlowerbound - lower-
bound)/(cutoffbound - lowerbound) where
diving is performed (0.0: no limit)
Range: [0, 1]

0.8

heuristics/distributiondiving/maxdiveubquotnosol
maximal UBQUOT when no solution was
found yet (0.0: no limit)
Range: [0, 1]

0.1

heuristics/distributiondiving/maxreldepth
maximal relative depth to start diving
Range: [0, 1]

1

heuristics/distributiondiving/minreldepth
minimal relative depth to start diving
Range: [0, 1]

0

heuristics/distributiondiving/priority
priority of heuristic <distributiondiving>
Range: {-536870912, ..., 536870911}

-1003300

heuristics/distributiondiving/scoreparam
the score;largest 'd'ifference, 'l'owest cumula-
tive probability,'h'ighest c.p., 'v'otes lowest
c.p., votes highest c.p.('w'), 'r'evolving
Range: l, v, d, h, w, r

r

5.34.4.125 heuristics/dps

Option Description Default

heuristics/dps/freq
frequency for calling primal heuristic <dps> (-1: never, 0:
only at depth freqofs)
Range: {-1, ..., 65534}

-1

heuristics/dps/freqofs
frequency offset for calling primal heuristic <dps>
Range: {0, ..., 65534}

0

heuristics/dps/maxiterations
maximal number of iterations
Range: {1, ..., ∞}

50

heuristics/dps/maxlinkscore
maximal linking score of used decomposition (equivalent
to percentage of linking constraints)
Range: [0, 1]

1

heuristics/dps/penalty
multiplier for absolute increase of penalty parameters (0:
no increase)
Range: [0, ∞]

100

5.34 SCIP 2611

Option Description Default

heuristics/dps/reoptimize
should the problem get reoptimized with the original ob-
jective function?
Range: boolean

0

heuristics/dps/reuse
should solutions get reused in subproblems?
Range: boolean

0

Options for expert users

heuristics/dps/maxdepth
maximal depth level to call primal heuristic <dps> (-1:
no limit)
Range: {-1, ..., 65534}

-1

heuristics/dps/priority
priority of heuristic <dps>
Range: {-536870912, ..., 536870911}

75000

5.34.4.126 heuristics/dualval

Option Description Default

heuristics/dualval/dynamicdepth
says if and how the recursion depth is computed
at runtime
Range: {0, ..., 1}

0

heuristics/dualval/freq
frequency for calling primal heuristic <dualval>
(-1: never, 0: only at depth freqofs)
Range: {-1, ..., 65534}

-1

heuristics/dualval/freqofs
frequency offset for calling primal heuristic
<dualval>
Range: {0, ..., 65534}

0

heuristics/dualval/heurverblevel
verblevel of the heuristic, default is 0 to display
nothing
Range: {0, ..., 4}

0

heuristics/dualval/lambdaobj
scaling factor for the objective function
Range: [0, 1]

0

heuristics/dualval/lambdaslack
value added to objective of slack variables, must
not be zero
Range: [0.1, ∞]

1

heuristics/dualval/maxcalls
maximal number of recursive calls of the heuristic
(if dynamicdepth is off)
Range: {0, ..., ∞}

25

heuristics/dualval/maxequalranks
maximal number of variables that may have maxi-
mal rank, quit if there are more, turn off by setting
-1
Range: {-1, ..., ∞}

50

heuristics/dualval/mingap
minimal gap for which we still run the heuristic,
if gap is less we return without doing anything
Range: [0, 100]

5

heuristics/dualval/nlpverblevel
verblevel of the nlp solver, can be 0 or 1
Range: {0, ..., 1}

0

heuristics/dualval/onlyleaves
disable the heuristic if it was not called at a leaf
of the B&B tree
Range: boolean

0

heuristics/dualval/rankvalue
number of ranks that should be displayed when
the heuristic is called
Range: {0, ..., ∞}

10

2612 Solver Manuals

Option Description Default

heuristics/dualval/relaxcontvars
relax the continous variables
Range: boolean

0

heuristics/dualval/relaxindicators
relax the indicator variables by introducing con-
tinuous copies
Range: boolean

0

Options for expert users

heuristics/dualval/forceimprovements
exit if objective doesn't improve
Range: boolean

0

heuristics/dualval/maxdepth
maximal depth level to call primal heuristic
<dualval> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/dualval/onlycheaper
add constraint to ensure that discrete vars are
improving
Range: boolean

1

heuristics/dualval/priority
priority of heuristic <dualval>
Range: {-536870912, ..., 536870911}

-10

5.34.4.127 heuristics/farkasdiving

Option Description Default

heuristics/farkasdiving/backtrack
use one level of backtracking if infeasibility
is encountered?
Range: boolean

1

heuristics/farkasdiving/freq
frequency for calling primal heuristic
<farkasdiving> (-1: never, 0: only at depth
freqofs)
Range: {-1, ..., 65534}

10

heuristics/farkasdiving/freqofs
frequency offset for calling primal heuristic
<farkasdiving>
Range: {0, ..., 65534}

0

heuristics/farkasdiving/lpresolvedomchgquot
percentage of immediate domain changes
during probing to trigger LP resolve
Range: [0, ∞]

0.15

heuristics/farkasdiving/lpsolvefreq
LP solve frequency for diving heuristics (0:
only after enough domain changes have been
found)
Range: {0, ..., ∞}

1

heuristics/farkasdiving/maxlpiterofs
additional number of allowed LP iterations
Range: {0, ..., ∞}

1000

heuristics/farkasdiving/maxlpiterquot
maximal fraction of diving LP iterations
compared to node LP iterations
Range: [0, ∞]

0.05

heuristics/farkasdiving/onlylpbranchcands
should only LP branching candidates be con-
sidered instead of the slower but more gen-
eral constraint handler diving variable selec-
tion?
Range: boolean

0

Options for expert users

heuristics/farkasdiving/checkcands
should diving candidates be checked before
running?
Range: boolean

0

5.34 SCIP 2613

Option Description Default

heuristics/farkasdiving/maxdepth
maximal depth level to call primal heuristic
<farkasdiving> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/farkasdiving/maxdiveavgquot
maximal quotient (curlowerbound - lower-
bound)/(avglowerbound - lowerbound)
where diving is performed (0.0: no limit)
Range: [0, ∞]

0

heuristics/farkasdiving/maxdiveavgquotnosol
maximal AVGQUOT when no solution was
found yet (0.0: no limit)
Range: [0, ∞]

0

heuristics/farkasdiving/maxdiveubquot
maximal quotient (curlowerbound - lower-
bound)/(cutoffbound - lowerbound) where
diving is performed (0.0: no limit)
Range: [0, 1]

0.8

heuristics/farkasdiving/maxdiveubquotnosol
maximal UBQUOT when no solution was
found yet (0.0: no limit)
Range: [0, 1]

0.1

heuristics/farkasdiving/maxobjocc
maximal occurance factor of an objective
coefficient
Range: [0, 1]

1

heuristics/farkasdiving/maxreldepth
maximal relative depth to start diving
Range: [0, 1]

1

heuristics/farkasdiving/minreldepth
minimal relative depth to start diving
Range: [0, 1]

0

heuristics/farkasdiving/objdynamism
minimal objective dynamism (log) to run
Range: [0, ∞]

0.0001

heuristics/farkasdiving/priority
priority of heuristic <farkasdiving>
Range: {-536870912, ..., 536870911}

-900000

heuristics/farkasdiving/rootsuccess
should the heuristic only run within the tree
if at least one solution was found at the root
node?
Range: boolean

1

heuristics/farkasdiving/scalescore
should the score be scaled?
Range: boolean

1

heuristics/farkasdiving/scaletype
scale score by [f]ractionality or [i]mpact on
farkasproof
Range: f, i

i

5.34.4.128 heuristics/feaspump

Option Description Default

heuristics/feaspump/alpha
initial weight of the objective function in the
convex combination
Range: [0, 1]

1

heuristics/feaspump/alphadiff
threshold difference for the convex parameter to
perform perturbation
Range: [0, 1]

1

heuristics/feaspump/beforecuts
should the feasibility pump be called at root node
before cut separation?
Range: boolean

1

2614 Solver Manuals

Option Description Default

heuristics/feaspump/freq
frequency for calling primal heuristic
<feaspump> (-1: never, 0: only at depth
freqofs)
Range: {-1, ..., 65534}

20

heuristics/feaspump/freqofs
frequency offset for calling primal heuristic
<feaspump>
Range: {0, ..., 65534}

0

heuristics/feaspump/maxlpiterofs
additional number of allowed LP iterations
Range: {0, ..., ∞}

1000

heuristics/feaspump/maxlpiterquot
maximal fraction of diving LP iterations com-
pared to node LP iterations
Range: [0, ∞]

0.01

heuristics/feaspump/neighborhoodsize
radius (using Manhattan metric) of the neighbor-
hood to be searched in stage 3
Range: {1, ..., ∞}

18

heuristics/feaspump/objfactor
factor by which the regard of the objective is
decreased in each round, 1.0 for dynamic
Range: [0, 1]

0.1

heuristics/feaspump/pertsolfound
should a random perturbation be performed if a
feasible solution was found?
Range: boolean

1

heuristics/feaspump/stage3
should we solve a local branching sub-MIP if no
solution could be found?
Range: boolean

0

heuristics/feaspump/usefp20
should an iterative round-and-propagate scheme
be used to find the integral points?
Range: boolean

0

Options for expert users

heuristics/feaspump/copycuts
should all active cuts from cutpool be copied to
constraints in subproblem?
Range: boolean

1

heuristics/feaspump/cyclelength
maximum length of cycles to be checked explicitly
in each round
Range: {1, ..., 100}

3

heuristics/feaspump/maxdepth
maximal depth level to call primal heuristic
<feaspump> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/feaspump/maxloops
maximal number of pumping loops (-1: no limit)
Range: {-1, ..., ∞}

10000

heuristics/feaspump/maxsols
total number of feasible solutions found up to
which heuristic is called (-1: no limit)
Range: {-1, ..., ∞}

10

heuristics/feaspump/maxstallloops
maximal number of pumping rounds without frac-
tionality improvement (-1: no limit)
Range: {-1, ..., ∞}

10

heuristics/feaspump/minflips
minimum number of random variables to flip, if
a 1-cycle is encountered
Range: {1, ..., ∞}

10

heuristics/feaspump/perturbfreq
number of iterations until a random perturbation
is forced
Range: {1, ..., ∞}

100

5.34 SCIP 2615

Option Description Default

heuristics/feaspump/priority
priority of heuristic <feaspump>
Range: {-536870912, ..., 536870911}

-1000000

5.34.4.129 heuristics/fixandinfer

Option Description Default

heuristics/fixandinfer/freq
frequency for calling primal heuristic <fixandinfer>
(-1: never, 0: only at depth freqofs)
Range: {-1, ..., 65534}

-1

heuristics/fixandinfer/freqofs
frequency offset for calling primal heuristic
<fixandinfer>
Range: {0, ..., 65534}

0

Options for expert users

heuristics/fixandinfer/maxdepth
maximal depth level to call primal heuristic
<fixandinfer> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/fixandinfer/minfixings
minimal number of fixings to apply before dive may
be aborted
Range: {0, ..., ∞}

100

heuristics/fixandinfer/priority
priority of heuristic <fixandinfer>
Range: {-536870912, ..., 536870911}

-500000

heuristics/fixandinfer/proprounds
maximal number of propagation rounds in probing
subproblems (-1: no limit, 0: auto)
Range: {-1, ..., ∞}

0

5.34.4.130 heuristics/fracdiving

Option Description Default

heuristics/fracdiving/backtrack
use one level of backtracking if infeasibility
is encountered?
Range: boolean

1

heuristics/fracdiving/freq
frequency for calling primal heuristic
<fracdiving> (-1: never, 0: only at depth
freqofs)
Range: {-1, ..., 65534}

10

heuristics/fracdiving/freqofs
frequency offset for calling primal heuristic
<fracdiving>
Range: {0, ..., 65534}

3

heuristics/fracdiving/lpresolvedomchgquot
percentage of immediate domain changes
during probing to trigger LP resolve
Range: [0, ∞]

0.15

heuristics/fracdiving/lpsolvefreq
LP solve frequency for diving heuristics (0:
only after enough domain changes have been
found)
Range: {0, ..., ∞}

0

heuristics/fracdiving/maxlpiterofs
additional number of allowed LP iterations
Range: {0, ..., ∞}

1000

heuristics/fracdiving/maxlpiterquot
maximal fraction of diving LP iterations
compared to node LP iterations
Range: [0, ∞]

0.05

2616 Solver Manuals

Option Description Default

heuristics/fracdiving/onlylpbranchcands
should only LP branching candidates be con-
sidered instead of the slower but more gen-
eral constraint handler diving variable selec-
tion?
Range: boolean

0

Options for expert users

heuristics/fracdiving/maxdepth
maximal depth level to call primal heuristic
<fracdiving> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/fracdiving/maxdiveavgquot
maximal quotient (curlowerbound - lower-
bound)/(avglowerbound - lowerbound)
where diving is performed (0.0: no limit)
Range: [0, ∞]

0

heuristics/fracdiving/maxdiveavgquotnosol
maximal AVGQUOT when no solution was
found yet (0.0: no limit)
Range: [0, ∞]

0

heuristics/fracdiving/maxdiveubquot
maximal quotient (curlowerbound - lower-
bound)/(cutoffbound - lowerbound) where
diving is performed (0.0: no limit)
Range: [0, 1]

0.8

heuristics/fracdiving/maxdiveubquotnosol
maximal UBQUOT when no solution was
found yet (0.0: no limit)
Range: [0, 1]

0.1

heuristics/fracdiving/maxreldepth
maximal relative depth to start diving
Range: [0, 1]

1

heuristics/fracdiving/minreldepth
minimal relative depth to start diving
Range: [0, 1]

0

heuristics/fracdiving/priority
priority of heuristic <fracdiving>
Range: {-536870912, ..., 536870911}

-1003000

5.34.4.131 heuristics/gins

Option Description Default

heuristics/gins/bestsollimit
limit on number of improving incumbent solutions
in sub-CIP
Range: {-1, ..., ∞}

3

heuristics/gins/freq
frequency for calling primal heuristic <gins> (-1:
never, 0: only at depth freqofs)
Range: {-1, ..., 65534}

20

heuristics/gins/freqofs
frequency offset for calling primal heuristic <gins>
Range: {0, ..., 65534}

8

heuristics/gins/maxdistance
maximum distance to selected variable to enter
the subproblem, or -1 to select the distance that
best approximates the minimum fixing rate from
below
Range: {-1, ..., ∞}

3

heuristics/gins/minfixingrate
percentage of integer variables that have to be
fixed
Range: [1e-06, 0.999999]

0.66

heuristics/gins/nodesofs
number of nodes added to the contingent of the
total nodes
Range: {0, ..., ∞}

500

5.34 SCIP 2617

Option Description Default

heuristics/gins/nodesquot
contingent of sub problem nodes in relation to the
number of nodes of the original problem
Range: [0, 1]

0.15

Options for expert users

heuristics/gins/consecutiveblocks
should blocks be treated consecutively (sorted by
ascending label?)
Range: boolean

1

heuristics/gins/copycuts
if uselprows == FALSE, should all active cuts
from cutpool be copied to constraints in subprob-
lem?
Range: boolean

1

heuristics/gins/fixcontvars
should continuous variables outside the neighbor-
hoods be fixed?
Range: boolean

0

heuristics/gins/maxdepth
maximal depth level to call primal heuristic
<gins> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/gins/maxnodes
maximum number of nodes to regard in the sub-
problem
Range: {0, ..., ∞}

5000

heuristics/gins/minimprove
factor by which gins should at least improve the
incumbent
Range: [0, 1]

0.01

heuristics/gins/minnodes
minimum number of nodes required to start the
subproblem
Range: {0, ..., ∞}

50

heuristics/gins/nwaitingnodes
number of nodes without incumbent change that
heuristic should wait
Range: {0, ..., ∞}

100

heuristics/gins/overlap
overlap of blocks between runs - 0.0: no overlap,
1.0: shift by only 1 block
Range: [0, 1]

0

heuristics/gins/potential
the reference point to compute the neighborhood
potential: (r)oot, (l)ocal lp, or (p)seudo solution
Range: l, p, r

r

heuristics/gins/priority
priority of heuristic <gins>
Range: {-536870912, ..., 536870911}

-1103000

heuristics/gins/relaxdenseconss
should dense constraints (at least as dense as 1 -
minfixingrate) be ignored by connectivity graph?
Range: boolean

0

heuristics/gins/rollhorizonlimfac
limiting percentage for variables already used in
sub-SCIPs to terminate rolling horizon approach
Range: [0, 1]

0.4

heuristics/gins/usedecomp
should user decompositions be considered, if avail-
able?
Range: boolean

1

heuristics/gins/usedecomprollhorizon
should user decompositions be considered for ini-
tial selection in rolling horizon, if available?
Range: boolean

0

heuristics/gins/uselprows
should subproblem be created out of the rows in
the LP rows?
Range: boolean

0

2618 Solver Manuals

Option Description Default

heuristics/gins/userollinghorizon
should the heuristic solve a sequence of sub-MIP's
around the first selected variable
Range: boolean

1

heuristics/gins/useselfallback
should random initial variable selection be used if
decomposition was not successful?
Range: boolean

1

5.34.4.132 heuristics/guideddiving

Option Description Default

heuristics/guideddiving/backtrack
use one level of backtracking if infeasibility
is encountered?
Range: boolean

1

heuristics/guideddiving/freq
frequency for calling primal heuristic
<guideddiving> (-1: never, 0: only at depth
freqofs)
Range: {-1, ..., 65534}

10

heuristics/guideddiving/freqofs
frequency offset for calling primal heuristic
<guideddiving>
Range: {0, ..., 65534}

7

heuristics/guideddiving/lpresolvedomchgquot
percentage of immediate domain changes
during probing to trigger LP resolve
Range: [0, ∞]

0.15

heuristics/guideddiving/lpsolvefreq
LP solve frequency for diving heuristics (0:
only after enough domain changes have been
found)
Range: {0, ..., ∞}

0

heuristics/guideddiving/maxlpiterofs
additional number of allowed LP iterations
Range: {0, ..., ∞}

1000

heuristics/guideddiving/maxlpiterquot
maximal fraction of diving LP iterations
compared to node LP iterations
Range: [0, ∞]

0.05

heuristics/guideddiving/onlylpbranchcands
should only LP branching candidates be con-
sidered instead of the slower but more gen-
eral constraint handler diving variable selec-
tion?
Range: boolean

0

Options for expert users

heuristics/guideddiving/maxdepth
maximal depth level to call primal heuristic
<guideddiving> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/guideddiving/maxdiveavgquot
maximal quotient (curlowerbound - lower-
bound)/(avglowerbound - lowerbound)
where diving is performed (0.0: no limit)
Range: [0, ∞]

0

heuristics/guideddiving/maxdiveavgquotnosol
maximal AVGQUOT when no solution was
found yet (0.0: no limit)
Range: [0, ∞]

1

heuristics/guideddiving/maxdiveubquot
maximal quotient (curlowerbound - lower-
bound)/(cutoffbound - lowerbound) where
diving is performed (0.0: no limit)
Range: [0, 1]

0.8

5.34 SCIP 2619

Option Description Default

heuristics/guideddiving/maxdiveubquotnosol
maximal UBQUOT when no solution was
found yet (0.0: no limit)
Range: [0, 1]

1

heuristics/guideddiving/maxreldepth
maximal relative depth to start diving
Range: [0, 1]

1

heuristics/guideddiving/minreldepth
minimal relative depth to start diving
Range: [0, 1]

0

heuristics/guideddiving/priority
priority of heuristic <guideddiving>
Range: {-536870912, ..., 536870911}

-1007000

5.34.4.133 heuristics/indicator

Option Description Default

heuristics/indicator/freq
frequency for calling primal heuristic <indicator> (-1:
never, 0: only at depth freqofs)
Range: {-1, ..., 65534}

1

heuristics/indicator/freqofs
frequency offset for calling primal heuristic <indicator>
Range: {0, ..., 65534}

0

Options for expert users

heuristics/indicator/improvesols
Try to improve other solutions by one-opt?
Range: boolean

0

heuristics/indicator/maxdepth
maximal depth level to call primal heuristic
<indicator> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/indicator/oneopt
whether the one-opt heuristic should be started
Range: boolean

0

heuristics/indicator/priority
priority of heuristic <indicator>
Range: {-536870912, ..., 536870911}

-20200

5.34.4.134 heuristics/intdiving

Option Description Default

heuristics/intdiving/backtrack
use one level of backtracking if infeasibility
is encountered?
Range: boolean

1

heuristics/intdiving/freq
frequency for calling primal heuristic
<intdiving> (-1: never, 0: only at depth
freqofs)
Range: {-1, ..., 65534}

-1

heuristics/intdiving/freqofs
frequency offset for calling primal heuristic
<intdiving>
Range: {0, ..., 65534}

9

heuristics/intdiving/maxlpiterofs
additional number of allowed LP iterations
Range: {0, ..., ∞}

1000

heuristics/intdiving/maxlpiterquot
maximal fraction of diving LP iterations
compared to node LP iterations
Range: [0, ∞]

0.05

Options for expert users

2620 Solver Manuals

Option Description Default

heuristics/intdiving/maxdepth
maximal depth level to call primal heuristic
<intdiving> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/intdiving/maxdiveavgquot
maximal quotient (curlowerbound - lower-
bound)/(avglowerbound - lowerbound)
where diving is performed (0.0: no limit)
Range: [0, ∞]

0

heuristics/intdiving/maxdiveavgquotnosol
maximal AVGQUOT when no solution was
found yet (0.0: no limit)
Range: [0, ∞]

0

heuristics/intdiving/maxdiveubquot
maximal quotient (curlowerbound - lower-
bound)/(cutoffbound - lowerbound) where
diving is performed (0.0: no limit)
Range: [0, 1]

0.8

heuristics/intdiving/maxdiveubquotnosol
maximal UBQUOT when no solution was
found yet (0.0: no limit)
Range: [0, 1]

0.1

heuristics/intdiving/maxreldepth
maximal relative depth to start diving
Range: [0, 1]

1

heuristics/intdiving/minreldepth
minimal relative depth to start diving
Range: [0, 1]

0

heuristics/intdiving/priority
priority of heuristic <intdiving>
Range: {-536870912, ..., 536870911}

-1003500

5.34.4.135 heuristics/intshifting

Option Description Default

heuristics/intshifting/freq
frequency for calling primal heuristic <intshifting> (-1:
never, 0: only at depth freqofs)
Range: {-1, ..., 65534}

10

heuristics/intshifting/freqofs
frequency offset for calling primal heuristic
<intshifting>
Range: {0, ..., 65534}

0

Options for expert users

heuristics/intshifting/maxdepth
maximal depth level to call primal heuristic
<intshifting> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/intshifting/priority
priority of heuristic <intshifting>
Range: {-536870912, ..., 536870911}

-10000

5.34.4.136 heuristics/linesearchdiving

Option Description Default

heuristics/linesearchdiving/backtrack
use one level of backtracking if infeasibility
is encountered?
Range: boolean

1

heuristics/linesearchdiving/freq
frequency for calling primal heuristic
<linesearchdiving> (-1: never, 0: only at
depth freqofs)
Range: {-1, ..., 65534}

10

5.34 SCIP 2621

Option Description Default

heuristics/linesearchdiving/freqofs
frequency offset for calling primal heuristic
<linesearchdiving>
Range: {0, ..., 65534}

6

heuristics/linesearchdiving/lpresolvedomchgquot
percentage of immediate domain changes
during probing to trigger LP resolve
Range: [0, ∞]

0.15

heuristics/linesearchdiving/lpsolvefreq
LP solve frequency for diving heuristics (0:
only after enough domain changes have been
found)
Range: {0, ..., ∞}

0

heuristics/linesearchdiving/maxlpiterofs
additional number of allowed LP iterations
Range: {0, ..., ∞}

1000

heuristics/linesearchdiving/maxlpiterquot
maximal fraction of diving LP iterations
compared to node LP iterations
Range: [0, ∞]

0.05

heuristics/linesearchdiving/onlylpbranchcands
should only LP branching candidates be con-
sidered instead of the slower but more gen-
eral constraint handler diving variable selec-
tion?
Range: boolean

0

Options for expert users

heuristics/linesearchdiving/maxdepth
maximal depth level to call primal heuristic
<linesearchdiving> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/linesearchdiving/maxdiveavgquot
maximal quotient (curlowerbound - lower-
bound)/(avglowerbound - lowerbound)
where diving is performed (0.0: no limit)
Range: [0, ∞]

0

heuristics/linesearchdiving/maxdiveavgquotnosol
maximal AVGQUOT when no solution was
found yet (0.0: no limit)
Range: [0, ∞]

0

heuristics/linesearchdiving/maxdiveubquot
maximal quotient (curlowerbound - lower-
bound)/(cutoffbound - lowerbound) where
diving is performed (0.0: no limit)
Range: [0, 1]

0.8

heuristics/linesearchdiving/maxdiveubquotnosol
maximal UBQUOT when no solution was
found yet (0.0: no limit)
Range: [0, 1]

0.1

heuristics/linesearchdiving/maxreldepth
maximal relative depth to start diving
Range: [0, 1]

1

heuristics/linesearchdiving/minreldepth
minimal relative depth to start diving
Range: [0, 1]

0

heuristics/linesearchdiving/priority
priority of heuristic <linesearchdiving>
Range: {-536870912, ..., 536870911}

-1006000

5.34.4.137 heuristics/localbranching

Option Description Default

heuristics/localbranching/bestsollimit
limit on number of improving incumbent
solutions in sub-CIP
Range: {-1, ..., ∞}

3

2622 Solver Manuals

Option Description Default

heuristics/localbranching/freq
frequency for calling primal heuristic
<localbranching> (-1: never, 0: only at
depth freqofs)
Range: {-1, ..., 65534}

-1

heuristics/localbranching/freqofs
frequency offset for calling primal heuristic
<localbranching>
Range: {0, ..., 65534}

0

heuristics/localbranching/neighborhoodsize
radius (using Manhattan metric) of the in-
cumbent's neighborhood to be searched
Range: {1, ..., ∞}

18

heuristics/localbranching/nodesofs
number of nodes added to the contingent of
the total nodes
Range: {0, ..., ∞}

1000

heuristics/localbranching/nodesquot
contingent of sub problem nodes in relation
to the number of nodes of the original prob-
lem
Range: [0, 1]

0.05

Options for expert users

heuristics/localbranching/copycuts
if uselprows == FALSE, should all active
cuts from cutpool be copied to constraints
in subproblem?
Range: boolean

1

heuristics/localbranching/lplimfac
factor by which the limit on the number of
LP depends on the node limit
Range: [1, ∞]

1.5

heuristics/localbranching/maxdepth
maximal depth level to call primal heuristic
<localbranching> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/localbranching/maxnodes
maximum number of nodes to regard in the
subproblem
Range: {0, ..., ∞}

10000

heuristics/localbranching/minimprove
factor by which localbranching should at
least improve the incumbent
Range: [0, 1]

0.01

heuristics/localbranching/minnodes
minimum number of nodes required to start
the subproblem
Range: {0, ..., ∞}

1000

heuristics/localbranching/nwaitingnodes
number of nodes without incumbent change
that heuristic should wait
Range: {0, ..., ∞}

200

heuristics/localbranching/priority
priority of heuristic <localbranching>
Range: {-536870912, ..., 536870911}

-1102000

heuristics/localbranching/uselprows
should subproblem be created out of the
rows in the LP rows?
Range: boolean

0

5.34.4.138 heuristics/locks

Option Description Default

heuristics/locks/freq
frequency for calling primal heuristic <locks> (-1:
never, 0: only at depth freqofs)
Range: {-1, ..., 65534}

0

5.34 SCIP 2623

Option Description Default

heuristics/locks/freqofs
frequency offset for calling primal heuristic <locks>
Range: {0, ..., 65534}

0

heuristics/locks/minfixingrate
minimum percentage of integer variables that have
to be fixable
Range: [0, 1]

0.65

heuristics/locks/nodesofs
number of nodes added to the contingent of the
total nodes
Range: {0, ..., ∞}

500

heuristics/locks/nodesquot
contingent of sub problem nodes in relation to the
number of nodes of the original problem
Range: [0, 1]

0.1

heuristics/locks/roundupprobability
probability for rounding a variable up in case of
ties
Range: [0, 1]

0.67

Options for expert users

heuristics/locks/copycuts
should all active cuts from cutpool be copied to
constraints in subproblem?
Range: boolean

1

heuristics/locks/maxdepth
maximal depth level to call primal heuristic
<locks> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/locks/maxnodes
maximum number of nodes to regard in the sub-
problem
Range: {0, ..., ∞}

5000

heuristics/locks/maxproprounds
maximum number of propagation rounds to be per-
formed in each propagation call (-1: no limit, -2:
parameter settings)
Range: {-2, ..., ∞}

2

heuristics/locks/minfixingratelp
minimum fixing rate over all variables (including
continuous) to solve LP
Range: [0, 1]

0

heuristics/locks/minimprove
factor by which locks heuristic should at least im-
prove the incumbent
Range: [0, 1]

0.01

heuristics/locks/minnodes
minimum number of nodes required to start the
subproblem
Range: {0, ..., ∞}

500

heuristics/locks/priority
priority of heuristic <locks>
Range: {-536870912, ..., 536870911}

3000

heuristics/locks/updatelocks
should the locks be updated based on LP rows?
Range: boolean

1

heuristics/locks/usefinalsubmip
should a final sub-MIP be solved to costruct a
feasible solution if the LP was not roundable?
Range: boolean

1

5.34.4.139 heuristics/lpface

Option Description Default

heuristics/lpface/freq
frequency for calling primal heuristic <lpface> (-1:
never, 0: only at depth freqofs)
Range: {-1, ..., 65534}

15

2624 Solver Manuals

Option Description Default

heuristics/lpface/freqofs
frequency offset for calling primal heuristic
<lpface>
Range: {0, ..., 65534}

0

heuristics/lpface/minfixingrate
required percentage of fixed integer variables in
sub-MIP to run
Range: [0, 1]

0.1

heuristics/lpface/nodesofs
number of nodes added to the contingent of the
total nodes
Range: {0, ..., ∞}

200

heuristics/lpface/nodesquot
contingent of sub problem nodes in relation to the
number of nodes of the original problem
Range: [0, 1]

0.1

Options for expert users

heuristics/lpface/copycuts
if uselprows == FALSE, should all active cuts from
cutpool be copied to constraints in subproblem?
Range: boolean

1

heuristics/lpface/dualbasisequations
should dually nonbasic rows be turned into equa-
tions?
Range: boolean

0

heuristics/lpface/keepsubscip
should the heuristic continue solving the same sub-
SCIP?
Range: boolean

0

heuristics/lpface/lplimfac
factor by which the limit on the number of LP
depends on the node limit
Range: [1, ∞]

2

heuristics/lpface/maxdepth
maximal depth level to call primal heuristic
<lpface> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/lpface/maxnodes
maximum number of nodes to regard in the sub-
problem
Range: {0, ..., ∞}

5000

heuristics/lpface/minnodes
minimum number of nodes required to start the
subproblem
Range: {0, ..., ∞}

50

heuristics/lpface/minpathlen
the minimum active search tree path length along
which lower bound hasn't changed before heuristic
becomes active
Range: {0, ..., 65531}

5

heuristics/lpface/priority
priority of heuristic <lpface>
Range: {-536870912, ..., 536870911}

-1104010

heuristics/lpface/subscipobjective
objective function in the sub-SCIP: (z)ero, (r)oot-
LP-difference, (i)nference, LP (f)ractionality,
(o)riginal
Range: f, o, r, z, i

z

heuristics/lpface/uselprows
should subproblem be created out of the rows in
the LP rows?
Range: boolean

1

5.34.4.140 heuristics/mpec

5.34 SCIP 2625

Option Description Default

heuristics/mpec/freq
frequency for calling primal heuristic <mpec> (-1: never,
0: only at depth freqofs)
Range: {-1, ..., 65534}

50

heuristics/mpec/freqofs
frequency offset for calling primal heuristic <mpec>
Range: {0, ..., 65534}

0

heuristics/mpec/inittheta
initial regularization right-hand side value
Range: [0, 0.25]

0.125

heuristics/mpec/maxiter
maximum number of iterations of the MPEC loop
Range: {0, ..., ∞}

100

heuristics/mpec/maxnlpcost
maximum cost available for solving NLPs per call of the
heuristic
Range: [0, ∞]

1e+08

heuristics/mpec/maxnlpiter
maximum number of NLP iterations per solve
Range: {0, ..., ∞}

500

heuristics/mpec/maxnunsucc
maximum number of consecutive calls for which the
heuristic did not find an improving solution
Range: {0, ..., ∞}

10

heuristics/mpec/mingapleft
minimum amount of gap left in order to call the heuristic
Range: [0, ∞]

0.05

heuristics/mpec/minimprove
factor by which heuristic should at least improve the
incumbent
Range: [0, 1]

0.01

heuristics/mpec/sigma
regularization update factor
Range: [0, 1]

0.5

heuristics/mpec/subnlptrigger
maximum number of NLP iterations per solve
Range: [0, 1]

0.001

Options for expert users

heuristics/mpec/maxdepth
maximal depth level to call primal heuristic <mpec> (-1:
no limit)
Range: {-1, ..., 65534}

-1

heuristics/mpec/priority
priority of heuristic <mpec>
Range: {-536870912, ..., 536870911}

-2050000

5.34.4.141 heuristics/multistart

Option Description Default

heuristics/multistart/freq
frequency for calling primal heuristic <multistart>
(-1: never, 0: only at depth freqofs)
Range: {-1, ..., 65534}

0

heuristics/multistart/freqofs
frequency offset for calling primal heuristic
<multistart>
Range: {0, ..., 65534}

0

heuristics/multistart/gradlimit
limit for gradient computations for all improve-
Point() calls (0 for no limit)
Range: [0, ∞]

5e+06

heuristics/multistart/maxboundsize
maximum variable domain size for unbounded vari-
ables
Range: [0, ∞]

20000

heuristics/multistart/maxiter
number of iterations to reduce the maximum viola-
tion of a point
Range: {0, ..., ∞}

300

2626 Solver Manuals

Option Description Default

heuristics/multistart/maxncluster
maximum number of considered clusters per heuris-
tic call
Range: {0, ..., ∞}

3

heuristics/multistart/maxreldist
maximum distance between two points in the same
cluster
Range: [0, ∞]

0.15

heuristics/multistart/minimprfac
minimum required improving factor to proceed in
improvement of a single point
Range: real

0.05

heuristics/multistart/minimpriter
number of iteration when checking the minimum
improvement
Range: {1, ..., ∞}

10

heuristics/multistart/nrndpoints
number of random points generated per execution
call
Range: {0, ..., ∞}

100

heuristics/multistart/onlynlps
should the heuristic run only on continuous prob-
lems?
Range: boolean

1

Options for expert users

heuristics/multistart/maxdepth
maximal depth level to call primal heuristic
<multistart> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/multistart/priority
priority of heuristic <multistart>
Range: {-536870912, ..., 536870911}

-2100000

5.34.4.142 heuristics/mutation

Option Description Default

heuristics/mutation/bestsollimit
limit on number of improving incumbent solutions
in sub-CIP
Range: {-1, ..., ∞}

-1

heuristics/mutation/freq
frequency for calling primal heuristic <mutation>
(-1: never, 0: only at depth freqofs)
Range: {-1, ..., 65534}

-1

heuristics/mutation/freqofs
frequency offset for calling primal heuristic
<mutation>
Range: {0, ..., 65534}

8

heuristics/mutation/minfixingrate
percentage of integer variables that have to be fixed
Range: [1e-06, 0.999999]

0.8

heuristics/mutation/nodesofs
number of nodes added to the contingent of the total
nodes
Range: {0, ..., ∞}

500

heuristics/mutation/nodesquot
contingent of sub problem nodes in relation to the
number of nodes of the original problem
Range: [0, 1]

0.1

Options for expert users

heuristics/mutation/copycuts
if uselprows == FALSE, should all active cuts from
cutpool be copied to constraints in subproblem?
Range: boolean

1

heuristics/mutation/maxdepth
maximal depth level to call primal heuristic
<mutation> (-1: no limit)
Range: {-1, ..., 65534}

-1

5.34 SCIP 2627

Option Description Default

heuristics/mutation/maxnodes
maximum number of nodes to regard in the subprob-
lem
Range: {0, ..., ∞}

5000

heuristics/mutation/minimprove
factor by which mutation should at least improve
the incumbent
Range: [0, 1]

0.01

heuristics/mutation/minnodes
minimum number of nodes required to start the
subproblem
Range: {0, ..., ∞}

500

heuristics/mutation/nwaitingnodes
number of nodes without incumbent change that
heuristic should wait
Range: {0, ..., ∞}

200

heuristics/mutation/priority
priority of heuristic <mutation>
Range: {-536870912, ..., 536870911}

-1103010

heuristics/mutation/uselprows
should subproblem be created out of the rows in the
LP rows?
Range: boolean

0

heuristics/mutation/useuct
should uct node selection be used at the beginning
of the search?
Range: boolean

0

5.34.4.143 heuristics/nlpdiving

Option Description Default

heuristics/nlpdiving/backtrack
use one level of backtracking if infeasibility
is encountered?
Range: boolean

1

heuristics/nlpdiving/fixquot
percentage of fractional variables that
should be fixed before the next NLP solve
Range: [0, 1]

0.2

heuristics/nlpdiving/freq
frequency for calling primal heuristic
<nlpdiving> (-1: never, 0: only at depth
freqofs)
Range: {-1, ..., 65534}

10

heuristics/nlpdiving/freqofs
frequency offset for calling primal heuristic
<nlpdiving>
Range: {0, ..., 65534}

3

heuristics/nlpdiving/maxfeasnlps
maximal number of NLPs with feasible so-
lution to solve during one dive
Range: {1, ..., ∞}

10

heuristics/nlpdiving/maxnlpiterabs
minimial absolute number of allowed NLP
iterations
Range: {0, ..., ∞}

200

heuristics/nlpdiving/maxnlpiterrel
additional allowed number of NLP iterations
relative to successfully found solutions
Range: {0, ..., ∞}

10

heuristics/nlpdiving/minsuccquot
heuristic will not run if less then this per-
centage of calls succeeded (0.0: no limit)
Range: [0, 1]

0.1

heuristics/nlpdiving/nlpfastfail
should the NLP solver stop early if it con-
verges slow?
Range: boolean

1

2628 Solver Manuals

Option Description Default

heuristics/nlpdiving/prefercover
should variables in a minimal cover be pre-
ferred?
Range: boolean

1

heuristics/nlpdiving/solvesubmip
should a sub-MIP be solved if all cover vari-
ables are fixed?
Range: boolean

0

heuristics/nlpdiving/varselrule
which variable selection should be used?
('f'ractionality, 'c'oefficient, 'p'seudocost,
'g'uided, 'd'ouble, 'v'eclen)
Range: f, c, p, g, d, v

d

Options for expert users

heuristics/nlpdiving/lp
should the LP relaxation be solved before
the NLP relaxation?
Range: boolean

0

heuristics/nlpdiving/maxdepth
maximal depth level to call primal heuristic
<nlpdiving> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/nlpdiving/maxdiveavgquot
maximal quotient (curlowerbound - lower-
bound)/(avglowerbound - lowerbound)
where diving is performed (0.0: no limit)
Range: [0, ∞]

0

heuristics/nlpdiving/maxdiveavgquotnosol
maximal AVGQUOT when no solution was
found yet (0.0: no limit)
Range: [0, ∞]

0

heuristics/nlpdiving/maxdiveubquot
maximal quotient (curlowerbound - lower-
bound)/(cutoffbound - lowerbound) where
diving is performed (0.0: no limit)
Range: [0, 1]

0.8

heuristics/nlpdiving/maxdiveubquotnosol
maximal UBQUOT when no solution was
found yet (0.0: no limit)
Range: [0, 1]

0.1

heuristics/nlpdiving/maxreldepth
maximal relative depth to start diving
Range: [0, 1]

1

heuristics/nlpdiving/minreldepth
minimal relative depth to start diving
Range: [0, 1]

0

heuristics/nlpdiving/nlpstart
which point should be used as starting point
for the NLP solver? ('n'one, last 'f'easible,
from dive's'tart)
Range: f, n, s

s

heuristics/nlpdiving/preferlpfracs
prefer variables that are also fractional in
LP solution?
Range: boolean

0

heuristics/nlpdiving/priority
priority of heuristic <nlpdiving>
Range: {-536870912, ..., 536870911}

-1003010

5.34.4.144 heuristics/objpscostdiving

Option Description Default

heuristics/objpscostdiving/freq
frequency for calling primal heuristic
<objpscostdiving> (-1: never, 0: only at
depth freqofs)
Range: {-1, ..., 65534}

20

5.34 SCIP 2629

Option Description Default

heuristics/objpscostdiving/freqofs
frequency offset for calling primal heuristic
<objpscostdiving>
Range: {0, ..., 65534}

4

heuristics/objpscostdiving/maxlpiterofs
additional number of allowed LP iterations
Range: {0, ..., ∞}

1000

heuristics/objpscostdiving/maxlpiterquot
maximal fraction of diving LP iterations
compared to total iteration number
Range: [0, 1]

0.01

Options for expert users

heuristics/objpscostdiving/depthfac
maximal diving depth: number of bi-
nary/integer variables times depthfac
Range: [0, ∞]

0.5

heuristics/objpscostdiving/depthfacnosol
maximal diving depth factor if no feasible
solution was found yet
Range: [0, ∞]

2

heuristics/objpscostdiving/maxdepth
maximal depth level to call primal heuristic
<objpscostdiving> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/objpscostdiving/maxreldepth
maximal relative depth to start diving
Range: [0, 1]

1

heuristics/objpscostdiving/maxsols
total number of feasible solutions found up
to which heuristic is called (-1: no limit)
Range: {-1, ..., ∞}

-1

heuristics/objpscostdiving/minreldepth
minimal relative depth to start diving
Range: [0, 1]

0

heuristics/objpscostdiving/priority
priority of heuristic <objpscostdiving>
Range: {-536870912, ..., 536870911}

-1004000

5.34.4.145 heuristics/octane

Option Description Default

heuristics/octane/freq
frequency for calling primal heuristic <octane> (-1:
never, 0: only at depth freqofs)
Range: {-1, ..., 65534}

-1

heuristics/octane/freqofs
frequency offset for calling primal heuristic <octane>
Range: {0, ..., 65534}

0

Options for expert users

heuristics/octane/ffirst
number of 0-1-points to be tested at first whether they
violate a common row
Range: {1, ..., ∞}

10

heuristics/octane/fmax
number of 0-1-points to be tested as possible solutions
by OCTANE
Range: {1, ..., ∞}

100

heuristics/octane/maxdepth
maximal depth level to call primal heuristic <octane>
(-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/octane/priority
priority of heuristic <octane>
Range: {-536870912, ..., 536870911}

-1008000

heuristics/octane/useavgnbray
should the weighted average of the nonbasic cone be
used as one ray direction?
Range: boolean

1

2630 Solver Manuals

Option Description Default

heuristics/octane/useavgray
should the average of the basic cone be used as one ray
direction?
Range: boolean

1

heuristics/octane/useavgwgtray
should the weighted average of the basic cone be used
as one ray direction?
Range: boolean

1

heuristics/octane/usediffray
should the difference between the root solution and the
current LP solution be used as one ray direction?
Range: boolean

0

heuristics/octane/usefracspace
execute OCTANE only in the space of fractional vari-
ables (TRUE) or in the full space?
Range: boolean

1

heuristics/octane/useobjray
should the inner normal of the objective be used as one
ray direction?
Range: boolean

1

5.34.4.146 heuristics/ofins

Option Description Default

heuristics/ofins/freq
frequency for calling primal heuristic <ofins> (-1: never,
0: only at depth freqofs)
Range: {-1, ..., 65534}

0

heuristics/ofins/freqofs
frequency offset for calling primal heuristic <ofins>
Range: {0, ..., 65534}

0

heuristics/ofins/maxchange
maximal rate of change per coefficient to get fixed
Range: [0, 1]

0.04

heuristics/ofins/maxchangerate
maximal rate of changed coefficients
Range: [0, 1]

0.5

heuristics/ofins/nodesofs
number of nodes added to the contingent of the total
nodes
Range: {0, ..., ∞}

500

heuristics/ofins/nodesquot
contingent of sub problem nodes in relation to the num-
ber of nodes of the original problem
Range: [0, 1]

0.1

Options for expert users

heuristics/ofins/addallsols
should all subproblem solutions be added to the original
SCIP?
Range: boolean

0

heuristics/ofins/copycuts
should all active cuts from cutpool be copied to con-
straints in subproblem?
Range: boolean

1

heuristics/ofins/lplimfac
factor by which the limit on the number of LP depends
on the node limit
Range: [1, ∞]

2

heuristics/ofins/maxdepth
maximal depth level to call primal heuristic <ofins> (-1:
no limit)
Range: {-1, ..., 65534}

0

heuristics/ofins/maxnodes
maximum number of nodes to regard in the subproblem
Range: {0, ..., ∞}

5000

heuristics/ofins/minimprove
factor by which RENS should at least improve the in-
cumbent
Range: [0, 1]

0.01

5.34 SCIP 2631

Option Description Default

heuristics/ofins/minnodes
minimum number of nodes required to start the sub-
problem
Range: {0, ..., ∞}

50

heuristics/ofins/priority
priority of heuristic <ofins>
Range: {-536870912, ..., 536870911}

60000

5.34.4.147 heuristics/oneopt

Option Description Default

heuristics/oneopt/freq
frequency for calling primal heuristic <oneopt>
(-1: never, 0: only at depth freqofs)
Range: {-1, ..., 65534}

1

heuristics/oneopt/freqofs
frequency offset for calling primal heuristic
<oneopt>
Range: {0, ..., 65534}

0

Options for expert users

heuristics/oneopt/beforepresol
should the heuristic be called before presolving?
Range: boolean

0

heuristics/oneopt/duringroot
should the heuristic be called before and during
the root node?
Range: boolean

1

heuristics/oneopt/forcelpconstruction
should the construction of the LP be forced even
if LP solving is deactivated?
Range: boolean

0

heuristics/oneopt/maxdepth
maximal depth level to call primal heuristic
<oneopt> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/oneopt/priority
priority of heuristic <oneopt>
Range: {-536870912, ..., 536870911}

-20000

heuristics/oneopt/useloop
should the heuristic continue to run as long as
improvements are found?
Range: boolean

1

heuristics/oneopt/weightedobj
should the objective be weighted with the po-
tential shifting value when sorting the shifting
candidates?
Range: boolean

1

5.34.4.148 heuristics/padm

Option Description Default

heuristics/padm/assignlinking
should linking constraints be assigned?
Range: boolean

1

heuristics/padm/freq
frequency for calling primal heuristic <padm> (-1:
never, 0: only at depth freqofs)
Range: {-1, ..., 65534}

0

heuristics/padm/freqofs
frequency offset for calling primal heuristic <padm>
Range: {0, ..., 65534}

0

heuristics/padm/reoptimize
should the problem get reoptimized with the original
objective function?
Range: boolean

1

2632 Solver Manuals

Option Description Default

heuristics/padm/timing
should the heuristic run before or after the processing
of the node? (0: before, 1: after, 2: both)
Range: {0, ..., 2}

0

Options for expert users

heuristics/padm/admiterations
maximal number of ADM iterations in each penalty
loop
Range: {1, ..., 100}

4

heuristics/padm/gap
mipgap at start
Range: [0, 16]

2

heuristics/padm/maxdepth
maximal depth level to call primal heuristic <padm>
(-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/padm/maxnodes
maximum number of nodes to regard in all subprob-
lems
Range: {0, ..., ∞}

5000

heuristics/padm/minnodes
minimum number of nodes to regard in one subprob-
lem
Range: {0, ..., ∞}

50

heuristics/padm/nodefac
factor to control nodelimits of subproblems
Range: [0, 0.99]

0.8

heuristics/padm/original
should the original problem be used? This is only for
testing and not recommended!
Range: boolean

0

heuristics/padm/penaltyiterations
maximal number of penalty iterations
Range: {1, ..., 100000}

100

heuristics/padm/priority
priority of heuristic <padm>
Range: {-536870912, ..., 536870911}

70000

heuristics/padm/scaling
enable sigmoid rescaling of penalty parameters
Range: boolean

1

5.34.4.149 heuristics/proximity

Option Description Default

heuristics/proximity/freq
frequency for calling primal heuristic <proximity>
(-1: never, 0: only at depth freqofs)
Range: {-1, ..., 65534}

-1

heuristics/proximity/freqofs
frequency offset for calling primal heuristic
<proximity>
Range: {0, ..., 65534}

0

Options for expert users

heuristics/proximity/binvarquot
threshold for percentage of binary variables required
to start
Range: [0, 1]

0.1

heuristics/proximity/lpitersquot
quotient of sub-MIP LP iterations with respect to
LP iterations so far
Range: [0, 1]

0.2

heuristics/proximity/maxdepth
maximal depth level to call primal heuristic
<proximity> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/proximity/maxlpiters
maximum number of LP iterations to be performed
in the subproblem
Range: {-1, ..., ∞}

100000

5.34 SCIP 2633

Option Description Default

heuristics/proximity/maxnodes
maximum number of nodes to regard in the subprob-
lem
Range: {0, ..., ∞}

10000

heuristics/proximity/mingap
minimum primal-dual gap for which the heuristic is
executed
Range: [0, ∞]

0.01

heuristics/proximity/minimprove
factor by which proximity should at least improve
the incumbent
Range: [0, 1]

0.02

heuristics/proximity/minlpiters
minimum number of LP iterations performed in sub-
problem
Range: {0, ..., ∞}

200

heuristics/proximity/minnodes
minimum number of nodes required to start the sub-
problem
Range: {0, ..., ∞}

1

heuristics/proximity/nodesofs
number of nodes added to the contingent of the total
nodes
Range: {0, ..., ∞}

50

heuristics/proximity/nodesquot
sub-MIP node limit w.r.t number of original nodes
Range: [0, ∞]

0.1

heuristics/proximity/priority
priority of heuristic <proximity>
Range: {-536870912, ..., 536870911}

-2000000

heuristics/proximity/restart
should the heuristic immediately run again on its
newly found solution?
Range: boolean

1

heuristics/proximity/usefinallp
should the heuristic solve a final LP in case of con-
tinuous objective variables?
Range: boolean

0

heuristics/proximity/uselprows
should subproblem be constructed based on LP row
information?
Range: boolean

0

heuristics/proximity/useuct
should uct node selection be used at the beginning
of the search?
Range: boolean

0

heuristics/proximity/waitingnodes
waiting nodes since last incumbent before heuristic
is executed
Range: {0, ..., ∞}

100

5.34.4.150 heuristics/pscostdiving

Option Description Default

heuristics/pscostdiving/backtrack
use one level of backtracking if infeasibility
is encountered?
Range: boolean

1

heuristics/pscostdiving/freq
frequency for calling primal heuristic
<pscostdiving> (-1: never, 0: only at depth
freqofs)
Range: {-1, ..., 65534}

10

heuristics/pscostdiving/freqofs
frequency offset for calling primal heuristic
<pscostdiving>
Range: {0, ..., 65534}

2

2634 Solver Manuals

Option Description Default

heuristics/pscostdiving/lpresolvedomchgquot
percentage of immediate domain changes
during probing to trigger LP resolve
Range: [0, ∞]

0.15

heuristics/pscostdiving/lpsolvefreq
LP solve frequency for diving heuristics (0:
only after enough domain changes have been
found)
Range: {0, ..., ∞}

0

heuristics/pscostdiving/maxlpiterofs
additional number of allowed LP iterations
Range: {0, ..., ∞}

1000

heuristics/pscostdiving/maxlpiterquot
maximal fraction of diving LP iterations
compared to node LP iterations
Range: [0, ∞]

0.05

heuristics/pscostdiving/onlylpbranchcands
should only LP branching candidates be con-
sidered instead of the slower but more gen-
eral constraint handler diving variable selec-
tion?
Range: boolean

1

Options for expert users

heuristics/pscostdiving/maxdepth
maximal depth level to call primal heuristic
<pscostdiving> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/pscostdiving/maxdiveavgquot
maximal quotient (curlowerbound - lower-
bound)/(avglowerbound - lowerbound)
where diving is performed (0.0: no limit)
Range: [0, ∞]

0

heuristics/pscostdiving/maxdiveavgquotnosol
maximal AVGQUOT when no solution was
found yet (0.0: no limit)
Range: [0, ∞]

0

heuristics/pscostdiving/maxdiveubquot
maximal quotient (curlowerbound - lower-
bound)/(cutoffbound - lowerbound) where
diving is performed (0.0: no limit)
Range: [0, 1]

0.8

heuristics/pscostdiving/maxdiveubquotnosol
maximal UBQUOT when no solution was
found yet (0.0: no limit)
Range: [0, 1]

0.1

heuristics/pscostdiving/maxreldepth
maximal relative depth to start diving
Range: [0, 1]

1

heuristics/pscostdiving/minreldepth
minimal relative depth to start diving
Range: [0, 1]

0

heuristics/pscostdiving/priority
priority of heuristic <pscostdiving>
Range: {-536870912, ..., 536870911}

-1002000

5.34.4.151 heuristics/randrounding

Option Description Default

heuristics/randrounding/freq
frequency for calling primal heuristic
<randrounding> (-1: never, 0: only at
depth freqofs)
Range: {-1, ..., 65534}

20

heuristics/randrounding/freqofs
frequency offset for calling primal heuristic
<randrounding>
Range: {0, ..., 65534}

0

5.34 SCIP 2635

Option Description Default

Options for expert users

heuristics/randrounding/maxdepth
maximal depth level to call primal heuristic
<randrounding> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/randrounding/maxproprounds
limit of rounds for each propagation call
Range: {-1, ..., ∞}

1

heuristics/randrounding/oncepernode
should the heuristic only be called once per
node?
Range: boolean

0

heuristics/randrounding/priority
priority of heuristic <randrounding>
Range: {-536870912, ..., 536870911}

-200

heuristics/randrounding/propagateonlyroot
should the probing part of the heuristic be
applied exclusively at the root node?
Range: boolean

1

heuristics/randrounding/usesimplerounding
should the heuristic apply the variable lock
strategy of simple rounding, if possible?
Range: boolean

0

5.34.4.152 heuristics/rens

Option Description Default

heuristics/rens/bestsollimit
limit on number of improving incumbent solutions in sub-
CIP
Range: {-1, ..., ∞}

-1

heuristics/rens/freq
frequency for calling primal heuristic <rens> (-1: never,
0: only at depth freqofs)
Range: {-1, ..., 65534}

0

heuristics/rens/freqofs
frequency offset for calling primal heuristic <rens>
Range: {0, ..., 65534}

0

heuristics/rens/minfixingrate
minimum percentage of integer variables that have to be
fixable
Range: [0, 1]

0.5

heuristics/rens/nodesofs
number of nodes added to the contingent of the total
nodes
Range: {0, ..., ∞}

500

heuristics/rens/nodesquot
contingent of sub problem nodes in relation to the number
of nodes of the original problem
Range: [0, 1]

0.1

heuristics/rens/startsol
solution that is used for fixing values ('l'p relaxation, 'n'lp
relaxation)
Range: n, l

l

Options for expert users

heuristics/rens/addallsols
should all subproblem solutions be added to the original
SCIP?
Range: boolean

0

heuristics/rens/binarybounds
should general integers get binary bounds [floor(.),ceil(.)]
?
Range: boolean

1

heuristics/rens/copycuts
if uselprows == FALSE, should all active cuts from cut-
pool be copied to constraints in subproblem?
Range: boolean

1

2636 Solver Manuals

Option Description Default

heuristics/rens/extratime
should the RENS sub-CIP get its own full time limit?
This is only for testing and not recommended!
Range: boolean

0

heuristics/rens/fullscale
should the RENS sub-CIP be solved with cuts, conflicts,
strong branching,... This is only for testing and not rec-
ommended!
Range: boolean

0

heuristics/rens/lplimfac
factor by which the limit on the number of LP depends
on the node limit
Range: [1, ∞]

2

heuristics/rens/maxdepth
maximal depth level to call primal heuristic <rens> (-1:
no limit)
Range: {-1, ..., 65534}

-1

heuristics/rens/maxnodes
maximum number of nodes to regard in the subproblem
Range: {0, ..., ∞}

5000

heuristics/rens/minimprove
factor by which RENS should at least improve the incum-
bent
Range: [0, 1]

0.01

heuristics/rens/minnodes
minimum number of nodes required to start the subprob-
lem
Range: {0, ..., ∞}

50

heuristics/rens/priority
priority of heuristic <rens>
Range: {-536870912, ..., 536870911}

-1100000

heuristics/rens/uselprows
should subproblem be created out of the rows in the LP
rows?
Range: boolean

0

heuristics/rens/useuct
should uct node selection be used at the beginning of the
search?
Range: boolean

0

5.34.4.153 heuristics/reoptsols

Option Description Default

heuristics/reoptsols/freq
frequency for calling primal heuristic <reoptsols> (-1:
never, 0: only at depth freqofs)
Range: {-1, ..., 65534}

0

heuristics/reoptsols/freqofs
frequency offset for calling primal heuristic <reoptsols>
Range: {0, ..., 65534}

0

Options for expert users

heuristics/reoptsols/maxdepth
maximal depth level to call primal heuristic <reoptsols>
(-1: no limit)
Range: {-1, ..., 65534}

0

heuristics/reoptsols/maxruns
check solutions of the last k runs. (-1: all)
Range: {-1, ..., ∞}

-1

heuristics/reoptsols/maxsols
maximal number solutions which should be checked. (-1:
all)
Range: {-1, ..., ∞}

1000

heuristics/reoptsols/priority
priority of heuristic <reoptsols>
Range: {-536870912, ..., 536870911}

40000

5.34 SCIP 2637

5.34.4.154 heuristics/repair

Option Description Default

heuristics/repair/filename
file name of a solution to be used as infeasible starting
point, [-] if not available
Range: string

-

heuristics/repair/freq
frequency for calling primal heuristic <repair> (-1:
never, 0: only at depth freqofs)
Range: {-1, ..., 65534}

-1

heuristics/repair/freqofs
frequency offset for calling primal heuristic <repair>
Range: {0, ..., 65534}

0

heuristics/repair/minfixingrate
minimum percentage of integer variables that have to be
fixed
Range: [0, 1]

0.3

heuristics/repair/nodesofs
number of nodes added to the contingent of the total
nodes
Range: {0, ..., ∞}

500

heuristics/repair/nodesquot
contingent of sub problem nodes in relation to the num-
ber of nodes of the original problem
Range: [0, 1]

0.1

heuristics/repair/roundit
True : fractional variables which are not fractional in
the given solution are rounded, FALSE : solving process
of this heuristic is stopped.
Range: boolean

1

heuristics/repair/useobjfactor
should a scaled objective function for original variables
be used in repair subproblem?
Range: boolean

0

heuristics/repair/useslackvars
should slack variables be used in repair subproblem?
Range: boolean

0

heuristics/repair/usevarfix
should variable fixings be used in repair subproblem?
Range: boolean

1

Options for expert users

heuristics/repair/alpha
factor for the potential of var fixings
Range: [0, 100]

2

heuristics/repair/maxdepth
maximal depth level to call primal heuristic <repair>
(-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/repair/maxnodes
maximum number of nodes to regard in the subproblem
Range: {0, ..., ∞}

5000

heuristics/repair/minnodes
minimum number of nodes required to start the subprob-
lem
Range: {0, ..., ∞}

50

heuristics/repair/priority
priority of heuristic <repair>
Range: {-536870912, ..., 536870911}

-20

5.34.4.155 heuristics/rins

Option Description Default

heuristics/rins/freq
frequency for calling primal heuristic <rins> (-1: never,
0: only at depth freqofs)
Range: {-1, ..., 65534}

25

2638 Solver Manuals

Option Description Default

heuristics/rins/freqofs
frequency offset for calling primal heuristic <rins>
Range: {0, ..., 65534}

0

heuristics/rins/minfixingrate
minimum percentage of integer variables that have to be
fixed
Range: [0, 1]

0.3

heuristics/rins/nodesofs
number of nodes added to the contingent of the total
nodes
Range: {0, ..., ∞}

500

heuristics/rins/nodesquot
contingent of sub problem nodes in relation to the number
of nodes of the original problem
Range: [0, 1]

0.3

Options for expert users

heuristics/rins/copycuts
if uselprows == FALSE, should all active cuts from cut-
pool be copied to constraints in subproblem?
Range: boolean

1

heuristics/rins/lplimfac
factor by which the limit on the number of LP depends
on the node limit
Range: [1, ∞]

2

heuristics/rins/maxdepth
maximal depth level to call primal heuristic <rins> (-1:
no limit)
Range: {-1, ..., 65534}

-1

heuristics/rins/maxnodes
maximum number of nodes to regard in the subproblem
Range: {0, ..., ∞}

5000

heuristics/rins/minimprove
factor by which rins should at least improve the incumbent
Range: [0, 1]

0.01

heuristics/rins/minnodes
minimum number of nodes required to start the subprob-
lem
Range: {0, ..., ∞}

50

heuristics/rins/nwaitingnodes
number of nodes without incumbent change that heuristic
should wait
Range: {0, ..., ∞}

200

heuristics/rins/priority
priority of heuristic <rins>
Range: {-536870912, ..., 536870911}

-1101000

heuristics/rins/uselprows
should subproblem be created out of the rows in the LP
rows?
Range: boolean

0

heuristics/rins/useuct
should uct node selection be used at the beginning of the
search?
Range: boolean

0

5.34.4.156 heuristics/rootsoldiving

Option Description Default

heuristics/rootsoldiving/freq
frequency for calling primal heuristic
<rootsoldiving> (-1: never, 0: only at
depth freqofs)
Range: {-1, ..., 65534}

20

heuristics/rootsoldiving/freqofs
frequency offset for calling primal heuristic
<rootsoldiving>
Range: {0, ..., 65534}

5

5.34 SCIP 2639

Option Description Default

heuristics/rootsoldiving/maxlpiterofs
additional number of allowed LP iterations
Range: {0, ..., ∞}

1000

heuristics/rootsoldiving/maxlpiterquot
maximal fraction of diving LP iterations com-
pared to node LP iterations
Range: [0, ∞]

0.01

Options for expert users

heuristics/rootsoldiving/alpha
soft rounding factor to fade out objective coeffi-
cients
Range: [0, 1]

0.9

heuristics/rootsoldiving/depthfac
maximal diving depth: number of binary/integer
variables times depthfac
Range: [0, ∞]

0.5

heuristics/rootsoldiving/depthfacnosol
maximal diving depth factor if no feasible solu-
tion was found yet
Range: [0, ∞]

2

heuristics/rootsoldiving/maxdepth
maximal depth level to call primal heuristic
<rootsoldiving> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/rootsoldiving/maxreldepth
maximal relative depth to start diving
Range: [0, 1]

1

heuristics/rootsoldiving/maxsols
total number of feasible solutions found up to
which heuristic is called (-1: no limit)
Range: {-1, ..., ∞}

-1

heuristics/rootsoldiving/minreldepth
minimal relative depth to start diving
Range: [0, 1]

0

heuristics/rootsoldiving/priority
priority of heuristic <rootsoldiving>
Range: {-536870912, ..., 536870911}

-1005000

5.34.4.157 heuristics/rounding

Option Description Default

heuristics/rounding/freq
frequency for calling primal heuristic <rounding> (-1:
never, 0: only at depth freqofs)
Range: {-1, ..., 65534}

1

heuristics/rounding/freqofs
frequency offset for calling primal heuristic
<rounding>
Range: {0, ..., 65534}

0

Options for expert users

heuristics/rounding/maxdepth
maximal depth level to call primal heuristic
<rounding> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/rounding/oncepernode
should the heuristic only be called once per node?
Range: boolean

0

heuristics/rounding/priority
priority of heuristic <rounding>
Range: {-536870912, ..., 536870911}

-1000

heuristics/rounding/successfactor
number of calls per found solution that are considered
as standard success, a higher factor causes the heuris-
tic to be called more often
Range: {-1, ..., ∞}

100

2640 Solver Manuals

5.34.4.158 heuristics/shiftandpropagate

Option Description Default

heuristics/shiftandpropagate/freq
frequency for calling primal heuristic
<shiftandpropagate> (-1: never, 0: only
at depth freqofs)
Range: {-1, ..., 65534}

0

heuristics/shiftandpropagate/freqofs
frequency offset for calling primal heuristic
<shiftandpropagate>
Range: {0, ..., 65534}

0

Options for expert users

heuristics/shiftandpropagate/binlocksfirst
should binary variables with no locks be
preferred in the ordering?
Range: boolean

0

heuristics/shiftandpropagate/collectstats
should variable statistics be collected during
probing?
Range: boolean

1

heuristics/shiftandpropagate/cutoffbreaker
The number of cutoffs before heuristic stops
Range: {-1, ..., 1000000}

15

heuristics/shiftandpropagate/fixbinlocks
should binary variables with no locks in one
direction be fixed to that direction?
Range: boolean

1

heuristics/shiftandpropagate/impliscontinuous
should implicit integer variables be treated
as continuous variables?
Range: boolean

1

heuristics/shiftandpropagate/maxcutoffquot
maximum percentage of allowed cutoffs be-
fore stopping the heuristic
Range: [0, 2]

0

heuristics/shiftandpropagate/maxdepth
maximal depth level to call primal heuristic
<shiftandpropagate> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/shiftandpropagate/minfixingratelp
minimum fixing rate over all variables (in-
cluding continuous) to solve LP
Range: [0, 1]

0

heuristics/shiftandpropagate/normalize
should coefficients and left/right hand sides
be normalized by max row coeff?
Range: boolean

1

heuristics/shiftandpropagate/nozerofixing
should variables with a zero shifting value
be delayed instead of being fixed?
Range: boolean

0

heuristics/shiftandpropagate/nproprounds
The number of propagation rounds used for
each propagation
Range: {-1, ..., 1000}

10

heuristics/shiftandpropagate/onlywithoutsol
Should heuristic only be executed if no pri-
mal solution was found, yet?
Range: boolean

1

heuristics/shiftandpropagate/preferbinaries
Should binary variables be shifted first?
Range: boolean

1

heuristics/shiftandpropagate/priority
priority of heuristic <shiftandpropagate>
Range: {-536870912, ..., 536870911}

1000

heuristics/shiftandpropagate/probing
Should domains be reduced by probing?
Range: boolean

1

5.34 SCIP 2641

Option Description Default

heuristics/shiftandpropagate/relax
Should continuous variables be relaxed?
Range: boolean

1

heuristics/shiftandpropagate/selectbest
should the heuristic choose the best candi-
date in every round? (set to FALSE for
static order)?
Range: boolean

0

heuristics/shiftandpropagate/sortkey
the key for variable sorting: (n)orms down,
norms (u)p, (v)iolations down, viola(t)ions
up, or (r)andom
Range: n, r, t, u, v

v

heuristics/shiftandpropagate/sortvars
Should variables be sorted for the heuristic?
Range: boolean

1

heuristics/shiftandpropagate/stopafterfeasible
Should the heuristic stop calculating optimal
shift values when no more rows are violated?
Range: boolean

1

heuristics/shiftandpropagate/updateweights
should row weight be increased every time
the row is violated?
Range: boolean

0

5.34.4.159 heuristics/shifting

Option Description Default

heuristics/shifting/freq
frequency for calling primal heuristic<shifting> (-1: never,
0: only at depth freqofs)
Range: {-1, ..., 65534}

10

heuristics/shifting/freqofs
frequency offset for calling primal heuristic <shifting>
Range: {0, ..., 65534}

0

Options for expert users

heuristics/shifting/maxdepth
maximal depth level to call primal heuristic <shifting>
(-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/shifting/priority
priority of heuristic <shifting>
Range: {-536870912, ..., 536870911}

-5000

5.34.4.160 heuristics/simplerounding

Option Description Default

heuristics/simplerounding/freq
frequency for calling primal heuristic
<simplerounding> (-1: never, 0: only at
depth freqofs)
Range: {-1, ..., 65534}

1

heuristics/simplerounding/freqofs
frequency offset for calling primal heuristic
<simplerounding>
Range: {0, ..., 65534}

0

Options for expert users

heuristics/simplerounding/maxdepth
maximal depth level to call primal heuristic
<simplerounding> (-1: no limit)
Range: {-1, ..., 65534}

-1

2642 Solver Manuals

Option Description Default

heuristics/simplerounding/oncepernode
should the heuristic only be called once per
node?
Range: boolean

0

heuristics/simplerounding/priority
priority of heuristic <simplerounding>
Range: {-536870912, ..., 536870911}

-30

5.34.4.161 heuristics/subnlp

Option Description Default

heuristics/subnlp/expectinfeas
percentage of NLP solves with infeasible status
required to tell NLP solver to expect an infeasible
NLP
Range: [0, 1]

0

heuristics/subnlp/feastolfactor
factor on SCIP feasibility tolerance for NLP solves
if resolving when NLP solution not feasible in CIP
Range: [0, 1]

0.1

heuristics/subnlp/forbidfixings
whether to add constraints that forbid specific
fixings that turned out to be infeasible
Range: boolean

0

heuristics/subnlp/freq
frequency for calling primal heuristic <subnlp>
(-1: never, 0: only at depth freqofs)
Range: {-1, ..., 65534}

1

heuristics/subnlp/freqofs
frequency offset for calling primal heuristic
<subnlp>
Range: {0, ..., 65534}

0

heuristics/subnlp/iterinit
number of iterations used for initial NLP solves
Range: {0, ..., ∞}

300

heuristics/subnlp/itermin
minimal number of iterations for NLP solves
Range: {0, ..., ∞}

20

heuristics/subnlp/maxpresolverounds
limit on number of presolve rounds in sub-SCIP
(-1 for unlimited, 0 for no presolve)
Range: {-1, ..., ∞}

-1

heuristics/subnlp/ninitsolves
number of successful NLP solves until switching
to iterlimit guess and using success rate
Range: {0, ..., ∞}

2

heuristics/subnlp/nlpverblevel
verbosity level of NLP solver
Range: {0, ..., 65535}

0

heuristics/subnlp/nodesfactor
factor on number of nodes in SCIP (plus nodesoff-
set) to compute itercontingent (higher value runs
heuristics more frequently)
Range: [0, ∞]

0.3

heuristics/subnlp/nodesoffset
number of nodes added to the current number
of nodes when computing itercontingent (higher
value runs heuristic more often in early search)
Range: {0, ..., ∞}

1600

heuristics/subnlp/presolveemphasis
presolve emphasis in sub-SCIP (0: default, 1: ag-
gressive, 2: fast, 3: off)
Range: {0, ..., 3}

2

heuristics/subnlp/setcutoff
whether to set cutoff in sub-SCIP to current primal
bound
Range: boolean

1

5.34 SCIP 2643

Option Description Default

heuristics/subnlp/successrateexp
exponent for power of success rate to be multiplied
with itercontingent (lower value decreases impact
of success rate)
Range: [0, ∞]

1

Options for expert users

heuristics/subnlp/keepcopy
whether to keep SCIP copy or to create new copy
each time heuristic is applied
Range: boolean

1

heuristics/subnlp/maxdepth
maximal depth level to call primal heuristic
<subnlp> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/subnlp/opttol
absolute optimality tolerance to use for NLP solves
Range: [0, 1]

1e-07

heuristics/subnlp/priority
priority of heuristic <subnlp>
Range: {-536870912, ..., 536870911}

-2000010

5.34.4.162 heuristics/trivial

Option Description Default

heuristics/trivial/freq
frequency for calling primal heuristic <trivial> (-1: never,
0: only at depth freqofs)
Range: {-1, ..., 65534}

0

heuristics/trivial/freqofs
frequency offset for calling primal heuristic <trivial>
Range: {0, ..., 65534}

0

Options for expert users

heuristics/trivial/maxdepth
maximal depth level to call primal heuristic <trivial> (-1:
no limit)
Range: {-1, ..., 65534}

-1

heuristics/trivial/priority
priority of heuristic <trivial>
Range: {-536870912, ..., 536870911}

10000

5.34.4.163 heuristics/trivialnegation

Option Description Default

heuristics/trivialnegation/freq
frequency for calling primal heuristic
<trivialnegation> (-1: never, 0: only at depth
freqofs)
Range: {-1, ..., 65534}

0

heuristics/trivialnegation/freqofs
frequency offset for calling primal heuristic
<trivialnegation>
Range: {0, ..., 65534}

0

Options for expert users

heuristics/trivialnegation/maxdepth
maximal depth level to call primal heuristic
<trivialnegation> (-1: no limit)
Range: {-1, ..., 65534}

0

heuristics/trivialnegation/priority
priority of heuristic <trivialnegation>
Range: {-536870912, ..., 536870911}

39990

2644 Solver Manuals

5.34.4.164 heuristics/trustregion

Option Description Default

heuristics/trustregion/bestsollimit
limit on number of improving incumbent solutions
in sub-CIP
Range: {-1, ..., ∞}

3

heuristics/trustregion/freq
frequency for calling primal heuristic
<trustregion> (-1: never, 0: only at depth
freqofs)
Range: {-1, ..., 65534}

-1

heuristics/trustregion/freqofs
frequency offset for calling primal heuristic
<trustregion>
Range: {0, ..., 65534}

0

heuristics/trustregion/minbinvars
the number of binary variables necessary to run
the heuristic
Range: {1, ..., ∞}

10

heuristics/trustregion/nodesofs
number of nodes added to the contingent of the
total nodes
Range: {0, ..., ∞}

1000

heuristics/trustregion/nodesquot
contingent of sub problem nodes in relation to
the number of nodes of the original problem
Range: [0, 1]

0.05

heuristics/trustregion/objminimprove
the minimum absolute improvement in the objec-
tive function value
Range: [0, ∞]

0.01

heuristics/trustregion/violpenalty
the penalty for each change in the binary variables
from the candidate solution
Range: [0, ∞]

100

Options for expert users

heuristics/trustregion/copycuts
if uselprows == FALSE, should all active cuts
from cutpool be copied to constraints in subprob-
lem?
Range: boolean

1

heuristics/trustregion/lplimfac
factor by which the limit on the number of LP
depends on the node limit
Range: [1, ∞]

1.5

heuristics/trustregion/maxdepth
maximal depth level to call primal heuristic
<trustregion> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/trustregion/maxnodes
maximum number of nodes to regard in the sub-
problem
Range: {0, ..., ∞}

10000

heuristics/trustregion/minnodes
minimum number of nodes required to start the
subproblem
Range: {0, ..., ∞}

100

heuristics/trustregion/nwaitingnodes
number of nodes without incumbent change that
heuristic should wait
Range: {0, ..., ∞}

1

heuristics/trustregion/priority
priority of heuristic <trustregion>
Range: {-536870912, ..., 536870911}

-1102010

heuristics/trustregion/uselprows
should subproblem be created out of the rows in
the LP rows?
Range: boolean

0

5.34 SCIP 2645

5.34.4.165 heuristics/trysol

Option Description Default

heuristics/trysol/freq
frequency for calling primal heuristic <trysol> (-1: never,
0: only at depth freqofs)
Range: {-1, ..., 65534}

1

heuristics/trysol/freqofs
frequency offset for calling primal heuristic <trysol>
Range: {0, ..., 65534}

0

Options for expert users

heuristics/trysol/maxdepth
maximal depth level to call primal heuristic <trysol> (-1:
no limit)
Range: {-1, ..., 65534}

-1

heuristics/trysol/priority
priority of heuristic <trysol>
Range: {-536870912, ..., 536870911}

-3000010

5.34.4.166 heuristics/twoopt

Option Description Default

heuristics/twoopt/freq
frequency for calling primal heuristic <twoopt> (-1:
never, 0: only at depth freqofs)
Range: {-1, ..., 65534}

-1

heuristics/twoopt/freqofs
frequency offset for calling primal heuristic <twoopt>
Range: {0, ..., 65534}

0

Options for expert users

heuristics/twoopt/intopt
Should Integer-2-Optimization be applied or not?
Range: boolean

0

heuristics/twoopt/matchingrate
parameter to determine the percentage of rows two
variables have to share before they are considered equal
Range: [0, 1]

0.5

heuristics/twoopt/maxdepth
maximal depth level to call primal heuristic <twoopt>
(-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/twoopt/maxnslaves
maximum number of slaves for one master variable
Range: {-1, ..., 1000000}

199

heuristics/twoopt/priority
priority of heuristic <twoopt>
Range: {-536870912, ..., 536870911}

-20100

heuristics/twoopt/waitingnodes
user parameter to determine number of nodes to wait
after last best solution before calling heuristic
Range: {0, ..., 10000}

0

5.34.4.167 heuristics/undercover

Option Description Default

heuristics/undercover/fixingalts
prioritized sequence of fixing values used
('l'p relaxation, 'n'lp relaxation, 'i'ncumbent
solution)
Range: string

li

2646 Solver Manuals

Option Description Default

heuristics/undercover/freq
frequency for calling primal heuristic
<undercover> (-1: never, 0: only at depth
freqofs)
Range: {-1, ..., 65534}

0

heuristics/undercover/freqofs
frequency offset for calling primal heuristic
<undercover>
Range: {0, ..., 65534}

0

heuristics/undercover/nodesofs
number of nodes added to the contingent of
the total nodes
Range: {0, ..., ∞}

500

heuristics/undercover/nodesquot
contingent of sub problem nodes in relation
to the number of nodes of the original prob-
lem
Range: [0, 1]

0.1

heuristics/undercover/onlyconvexify
should we only fix variables in order to ob-
tain a convex problem?
Range: boolean

0

heuristics/undercover/postnlp
should the NLP heuristic be called to polish
a feasible solution?
Range: boolean

1

Options for expert users

heuristics/undercover/beforecuts
should the heuristic be called at root node
before cut separation?
Range: boolean

1

heuristics/undercover/conflictweight
weight for conflict score in fixing order
Range: real

1000

heuristics/undercover/copycuts
should all active cuts from cutpool be copied
to constraints in subproblem?
Range: boolean

1

heuristics/undercover/coverbd
should bounddisjunction constraints be cov-
ered (or just copied)?
Range: boolean

0

heuristics/undercover/coveringobj
objective function of the covering problem
(influenced nonlinear 'c'onstraints/'t'erms,
'd'omain size, 'l'ocks, 'm'in of up/down locks,
'u'nit penalties)
Range: c, d, l, m, t, u

u

heuristics/undercover/cutoffweight
weight for cutoff score in fixing order
Range: [0, ∞]

1

heuristics/undercover/fixingorder
order in which variables should be fixed (in-
creasing 'C'onflict score, decreasing 'c'onflict
score, increasing 'V'ariable index, decreas-
ing 'v'ariable index
Range: C, c, V, v

v

heuristics/undercover/fixintfirst
should integer variables in the cover be fixed
first?
Range: boolean

0

heuristics/undercover/inferenceweight
weight for inference score in fixing order
Range: real

1

heuristics/undercover/locksrounding
shall LP values for integer vars be rounded
according to locks?
Range: boolean

1

5.34 SCIP 2647

Option Description Default

heuristics/undercover/maxbacktracks
maximum number of backtracks in fix-and-
propagate
Range: {0, ..., ∞}

6

heuristics/undercover/maxcoversizeconss
maximum coversize (as ratio to the percent-
age of non-affected constraints)
Range: [0, ∞]

∞

heuristics/undercover/maxcoversizevars
maximum coversize (as fraction of total num-
ber of variables)
Range: [0, 1]

1

heuristics/undercover/maxdepth
maximal depth level to call primal heuristic
<undercover> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/undercover/maxnodes
maximum number of nodes to regard in the
subproblem
Range: {0, ..., ∞}

500

heuristics/undercover/maxrecovers
maximum number of recoverings
Range: {0, ..., ∞}

0

heuristics/undercover/maxreorders
maximum number of reorderings of the fix-
ing order
Range: {0, ..., ∞}

1

heuristics/undercover/mincoveredabs
minimum number of nonlinear constraints
in the original problem
Range: {0, ..., ∞}

5

heuristics/undercover/mincoveredrel
minimum percentage of nonlinear con-
straints in the original problem
Range: [0, 1]

0.15

heuristics/undercover/minimprove
factor by which the heuristic should at least
improve the incumbent
Range: [-1, 1]

0

heuristics/undercover/minnodes
minimum number of nodes required to start
the subproblem
Range: {0, ..., ∞}

500

heuristics/undercover/priority
priority of heuristic <undercover>
Range: {-536870912, ..., 536870911}

-1110000

heuristics/undercover/recoverdiv
fraction of covering variables in the last cover
which need to change their value when re-
covering
Range: [0, 1]

0.9

heuristics/undercover/reusecover
shall the cover be reused if a conflict was
added after an infeasible subproblem?
Range: boolean

0

5.34.4.168 heuristics/vbounds

Option Description Default

heuristics/vbounds/freq
frequency for calling primal heuristic <vbounds>
(-1: never, 0: only at depth freqofs)
Range: {-1, ..., 65534}

0

heuristics/vbounds/freqofs
frequency offset for calling primal heuristic
<vbounds>
Range: {0, ..., 65534}

0

2648 Solver Manuals

Option Description Default

heuristics/vbounds/minintfixingrate
minimum percentage of integer variables that have
to be fixed
Range: [0, 1]

0.65

heuristics/vbounds/minmipfixingrate
minimum percentage of variables that have to be
fixed within sub-SCIP (integer and continuous)
Range: [0, 1]

0.65

heuristics/vbounds/nodesofs
number of nodes added to the contingent of the
total nodes
Range: {0, ..., ∞}

500

heuristics/vbounds/nodesquot
contingent of sub problem nodes in relation to the
number of nodes of the original problem
Range: [0, 1]

0.1

Options for expert users

heuristics/vbounds/copycuts
should all active cuts from cutpool be copied to
constraints in subproblem?
Range: boolean

1

heuristics/vbounds/feasvariant
which variants of the vbounds heuristic that try
to stay feasible should be called? (0: off, 1: w/o
looking at obj, 2: only fix to best bound, 4: only
fix to worst bound
Range: {0, ..., 7}

6

heuristics/vbounds/maxbacktracks
maximum number of backtracks during the fixing
process
Range: {-1, ..., 536870911}

10

heuristics/vbounds/maxdepth
maximal depth level to call primal heuristic
<vbounds> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/vbounds/maxnodes
maximum number of nodes to regard in the sub-
problem
Range: {0, ..., ∞}

5000

heuristics/vbounds/maxproprounds
maximum number of propagation rounds during
probing (-1 infinity)
Range: {-1, ..., 536870911}

2

heuristics/vbounds/minimprove
factor by which vbounds heuristic should at least
improve the incumbent
Range: [0, 1]

0.01

heuristics/vbounds/minnodes
minimum number of nodes required to start the
subproblem
Range: {0, ..., ∞}

500

heuristics/vbounds/priority
priority of heuristic <vbounds>
Range: {-536870912, ..., 536870911}

2500

heuristics/vbounds/tightenvariant
which tightening variants of the vbounds heuristic
should be called? (0: off, 1: w/o looking at obj, 2:
only fix to best bound, 4: only fix to worst bound
Range: {0, ..., 7}

7

heuristics/vbounds/uselockfixings
should more variables be fixed based on variable
locks if the fixing rate was not reached?
Range: boolean

0

5.34.4.169 heuristics/veclendiving

5.34 SCIP 2649

Option Description Default

heuristics/veclendiving/backtrack
use one level of backtracking if infeasibility
is encountered?
Range: boolean

1

heuristics/veclendiving/freq
frequency for calling primal heuristic
<veclendiving> (-1: never, 0: only at depth
freqofs)
Range: {-1, ..., 65534}

10

heuristics/veclendiving/freqofs
frequency offset for calling primal heuristic
<veclendiving>
Range: {0, ..., 65534}

4

heuristics/veclendiving/lpresolvedomchgquot
percentage of immediate domain changes
during probing to trigger LP resolve
Range: [0, ∞]

0.15

heuristics/veclendiving/lpsolvefreq
LP solve frequency for diving heuristics (0:
only after enough domain changes have been
found)
Range: {0, ..., ∞}

0

heuristics/veclendiving/maxlpiterofs
additional number of allowed LP iterations
Range: {0, ..., ∞}

1000

heuristics/veclendiving/maxlpiterquot
maximal fraction of diving LP iterations
compared to node LP iterations
Range: [0, ∞]

0.05

heuristics/veclendiving/onlylpbranchcands
should only LP branching candidates be con-
sidered instead of the slower but more gen-
eral constraint handler diving variable selec-
tion?
Range: boolean

0

Options for expert users

heuristics/veclendiving/maxdepth
maximal depth level to call primal heuristic
<veclendiving> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/veclendiving/maxdiveavgquot
maximal quotient (curlowerbound - lower-
bound)/(avglowerbound - lowerbound)
where diving is performed (0.0: no limit)
Range: [0, ∞]

0

heuristics/veclendiving/maxdiveavgquotnosol
maximal AVGQUOT when no solution was
found yet (0.0: no limit)
Range: [0, ∞]

0

heuristics/veclendiving/maxdiveubquot
maximal quotient (curlowerbound - lower-
bound)/(cutoffbound - lowerbound) where
diving is performed (0.0: no limit)
Range: [0, 1]

0.8

heuristics/veclendiving/maxdiveubquotnosol
maximal UBQUOT when no solution was
found yet (0.0: no limit)
Range: [0, 1]

0.1

heuristics/veclendiving/maxreldepth
maximal relative depth to start diving
Range: [0, 1]

1

heuristics/veclendiving/minreldepth
minimal relative depth to start diving
Range: [0, 1]

0

heuristics/veclendiving/priority
priority of heuristic <veclendiving>
Range: {-536870912, ..., 536870911}

-1003100

2650 Solver Manuals

5.34.4.170 heuristics/zeroobj

Option Description Default

heuristics/zeroobj/freq
frequency for calling primal heuristic <zeroobj> (-1:
never, 0: only at depth freqofs)
Range: {-1, ..., 65534}

-1

heuristics/zeroobj/freqofs
frequency offset for calling primal heuristic <zeroobj>
Range: {0, ..., 65534}

0

heuristics/zeroobj/nodesofs
number of nodes added to the contingent of the total
nodes
Range: {0, ..., ∞}

100

heuristics/zeroobj/nodesquot
contingent of sub problem nodes in relation to the
number of nodes of the original problem
Range: [0, 1]

0.1

Options for expert users

heuristics/zeroobj/addallsols
should all subproblem solutions be added to the orig-
inal SCIP?
Range: boolean

0

heuristics/zeroobj/maxdepth
maximal depth level to call primal heuristic
<zeroobj> (-1: no limit)
Range: {-1, ..., 65534}

0

heuristics/zeroobj/maxlpiters
maximum number of LP iterations to be performed
in the subproblem
Range: {-1, ..., ∞}

5000

heuristics/zeroobj/maxnodes
maximum number of nodes to regard in the subprob-
lem
Range: {0, ..., ∞}

1000

heuristics/zeroobj/minimprove
factor by which zeroobj should at least improve the
incumbent
Range: [0, 1]

0.01

heuristics/zeroobj/minnodes
minimum number of nodes required to start the sub-
problem
Range: {0, ..., ∞}

100

heuristics/zeroobj/onlywithoutsol
should heuristic only be executed if no primal solution
was found, yet?
Range: boolean

1

heuristics/zeroobj/priority
priority of heuristic <zeroobj>
Range: {-536870912, ..., 536870911}

100

heuristics/zeroobj/useuct
should uct node selection be used at the beginning of
the search?
Range: boolean

0

5.34.4.171 heuristics/zirounding

Option Description Default

heuristics/zirounding/freq
frequency for calling primal heuristic
<zirounding> (-1: never, 0: only at depth
freqofs)
Range: {-1, ..., 65534}

1

heuristics/zirounding/freqofs
frequency offset for calling primal heuristic
<zirounding>
Range: {0, ..., 65534}

0

5.34 SCIP 2651

Option Description Default

Options for expert users

heuristics/zirounding/maxdepth
maximal depth level to call primal heuristic
<zirounding> (-1: no limit)
Range: {-1, ..., 65534}

-1

heuristics/zirounding/maxroundingloops
determines maximum number of rounding
loops
Range: {-1, ..., ∞}

2

heuristics/zirounding/minstopncalls
determines the minimum number of calls
before percentage-based deactivation of
Zirounding is applied
Range: {1, ..., ∞}

1000

heuristics/zirounding/priority
priority of heuristic <zirounding>
Range: {-536870912, ..., 536870911}

-500

heuristics/zirounding/stoppercentage
if percentage of found solutions falls below
this parameter, Zirounding will be deacti-
vated
Range: [0, 1]

0.02

heuristics/zirounding/stopziround
flag to determine if Zirounding is deactivated
after a certain percentage of unsuccessful
calls
Range: boolean

1

5.34.4.172 history

Option Description Default

history/allowmerge
should variable histories be merged from sub-SCIPs whenever
possible?
Range: boolean

0

history/allowtransfer
should variable histories be transferred to initialize SCIP copies?
Range: boolean

0

history/valuebased
should statistics be collected for variable domain value pairs?
Range: boolean

0

5.34.4.173 limits

Option Description Default

limits/absgap
solving stops, if the absolute gap =
|primalbound - dualbound| is below
the given value
Range: [0, ∞]

GAMS optca

limits/autorestartnodes
if solve exceeds this number of nodes
for the first time, an automatic
restart is triggered (-1: no automatic
restart)
Range: {-1, ..., ∞}

-1

limits/bestsol
solving stops, if the given number of
solution improvements were found (-
1: no limit)
Range: {-1, ..., ∞}

-1

2652 Solver Manuals

Option Description Default

limits/gap
solving stops, if the relative gap =
|primal - dual|/MIN(|dual|,|primal|)
is below the given value, the gap is
'Infinity', if primal and dual bound
have opposite signs
Range: [0, ∞]

GAMS optcr

limits/maxorigsol
maximal number of solutions candi-
dates to store in the solution storage
of the original problem
Range: {0, ..., ∞}

10

limits/maxsol
maximal number of solutions to store
in the solution storage
Range: {1, ..., ∞}

100

limits/memory
maximal memory usage in MB; re-
ported memory usage is lower than
real memory usage!
Range: [0, 8.79609e+12]

GAMS workspace

limits/nodes
maximal number of nodes to process
(-1: no limit)
Range: {-1, ..., ∞}

GAMS nodlim, if > 0, otherwise -1

limits/restarts
solving stops, if the given number of
restarts was triggered (-1: no limit)
Range: {-1, ..., ∞}

-1

limits/softtime
soft time limit which should be ap-
plied after first solution was found
(-1.0: disabled)
Range: [-1, ∞]

-1

limits/solutions
solving stops, if the given number of
solutions were found; this limit is first
checked in presolving (-1: no limit)
Range: {-1, ..., ∞}

-1

limits/stallnodes
solving stops, if the given number of
nodes was processed since the last
improvement of the primal solution
value (-1: no limit)
Range: {-1, ..., ∞}

-1

limits/time
maximal time in seconds to run
Range: [0, ∞]

GAMS reslim

limits/totalnodes
maximal number of total nodes (incl.
restarts) to process (-1: no limit)
Range: {-1, ..., ∞}

-1

5.34.4.174 lp

Option Description Default

lp/alwaysgetduals
should the Farkas duals always be
collected when an LP is found to be
infeasible?
Range: boolean

0

5.34 SCIP 2653

Option Description Default

lp/initalgorithm
LP algorithm for solving initial
LP relaxations (automatic 's'implex,
'p'rimal simplex, 'd'ual simplex,
'b'arrier, barrier with 'c'rossover)
Range: s, p, d, b, c

s

lp/pricing
LP pricing strategy ('l'pi default,
'a'uto, 'f'ull pricing, 'p'artial,
's'teepest edge pricing, 'q'uickstart
steepest edge pricing, 'd'evex pric-
ing)
Range: l, a, f, p, s, q, d

l

lp/resolvealgorithm
LP algorithm for resolving LP relax-
ations if a starting basis exists (au-
tomatic 's'implex, 'p'rimal simplex,
'd'ual simplex, 'b'arrier, barrier with
'c'rossover)
Range: s, p, d, b, c

s

lp/solvedepth
maximal depth for solving LP at the
nodes (-1: no depth limit)
Range: {-1, ..., 65534}

-1

lp/solvefreq
frequency for solving LP at the nodes
(-1: never; 0: only root LP)
Range: {-1, ..., 65534}

1

lp/solver
LP solver to use (clp, cplex, soplex)
Range: string

cplex, if licensed, otherwise soplex

Options for expert users

lp/checkdualfeas
should LP solutions be checked for
dual feasibility, resolving LP when
numerical troubles occur?
Range: boolean

1

lp/checkfarkas
should infeasibility proofs from the
LP be checked?
Range: boolean

1

lp/checkprimfeas
should LP solutions be checked for
primal feasibility, resolving LP when
numerical troubles occur?
Range: boolean

1

lp/checkstability
should LP solver's return status be
checked for stability?
Range: boolean

1

lp/cleanupcols
should new non-basic columns be re-
moved after LP solving?
Range: boolean

0

lp/cleanupcolsroot
should new non-basic columns be re-
moved after root LP solving?
Range: boolean

0

lp/cleanuprows
should new basic rows be removed
after LP solving?
Range: boolean

1

lp/cleanuprowsroot
should new basic rows be removed
after root LP solving?
Range: boolean

1

2654 Solver Manuals

Option Description Default

lp/clearinitialprobinglp
should lp state be cleared at the end
of probing mode when lp was initially
unsolved, e.g., when called right after
presolving?
Range: boolean

1

lp/colagelimit
maximum age a dynamic column can
reach before it is deleted from the
LP (-1: don't delete columns due to
aging)
Range: {-1, ..., ∞}

10

lp/conditionlimit
maximum condition number of LP
basis counted as stable (-1.0: no
limit)
Range: [-1, ∞]

-1

lp/disablecutoff
disable the cutoff bound in the LP
solver? (0: enabled, 1: disabled, 2:
auto)
Range: {0, ..., 2}

2

lp/fastmip
which FASTMIP setting of LP solver
should be used? 0: off, 1: low
Range: {0, ..., 1}

1

lp/freesolvalbuffers
should the buffers for storing LP so-
lution values during diving be freed
at end of diving?
Range: boolean

0

lp/iterlim
iteration limit for each single LP solve
(-1: no limit)
Range: {-1, ..., ∞}

-1

lp/lexdualalgo
should the lexicographic dual algo-
rithm be used?
Range: boolean

0

lp/lexdualbasic
choose fractional basic variables in
lexicographic dual algorithm?
Range: boolean

0

lp/lexdualmaxrounds
maximum number of rounds in the
lexicographic dual algorithm (-1: un-
bounded)
Range: {-1, ..., ∞}

2

lp/lexdualrootonly
should the lexicographic dual algo-
rithm be applied only at the root
node
Range: boolean

1

lp/lexdualstalling
turn on the lex dual algorithm only
when stalling?
Range: boolean

1

lp/minmarkowitz
minimal Markowitz threshold to con-
trol sparsity/stability in LU factor-
ization
Range: [0.0001, 0.9999]

0.01

lp/presolving
should presolving of LP solver be
used?
Range: boolean

1

lp/refactorinterval
LP refactorization interval (0: auto)
Range: {0, ..., ∞}

0

5.34 SCIP 2655

Option Description Default

lp/resolveiterfac
factor of average LP iterations that
is used as LP iteration limit for LP
resolve (-1: unlimited)
Range: [-1, ∞]

-1

lp/resolveitermin
minimum number of iterations that
are allowed for LP resolve
Range: {1, ..., ∞}

1000

lp/resolverestore
should the LP be resolved to restore
the state at start of diving (if FALSE
we buffer the solution values)?
Range: boolean

0

lp/rootiterlim
iteration limit for initial root LP solve
(-1: no limit)
Range: {-1, ..., ∞}

-1

lp/rowagelimit
maximum age a dynamic row can
reach before it is deleted from the
LP (-1: don't delete rows due to ag-
ing)
Range: {-1, ..., ∞}

10

lp/rowrepswitch
simplex algorithm shall use row rep-
resentation of the basis if number of
rows divided by number of columns
exceeds this value (-1.0 to disable row
representation)
Range: [-1, ∞]

1.2

lp/scaling
LP scaling (0: none, 1: normal, 2:
aggressive)
Range: {0, ..., 2}

1

lp/solutionpolishing
LP solution polishing method (0: dis-
abled, 1: only root, 2: always, 3:
auto)
Range: {0, ..., 3}

3

lp/threads
number of threads used for solving
the LP (0: automatic)
Range: {0, ..., 64}

GAMS threads

5.34.4.175 memory

Option Description Default

memory/savefac
fraction of maximal memory usage resulting in switch to memory
saving mode
Range: [0, 1]

0.8

Options for expert users

memory/arraygrowfac
memory growing factor for dynamically allocated arrays
Range: [1, 10]

1.2

memory/arraygrowinit
initial size of dynamically allocated arrays
Range: {0, ..., ∞}

4

memory/pathgrowfac
memory growing factor for path array
Range: [1, 10]

2

memory/pathgrowinit
initial size of path array
Range: {0, ..., ∞}

256

2656 Solver Manuals

Option Description Default

memory/treegrowfac
memory growing factor for tree array
Range: [1, 10]

2

memory/treegrowinit
initial size of tree array
Range: {0, ..., ∞}

65536

5.34.4.176 misc

Option Description Default

misc/allowstrongdualreds
should strong dual reductions be allowed in propagation and
presolving?
Range: boolean

1

misc/allowweakdualreds
should weak dual reductions be allowed in propagation and
presolving?
Range: boolean

1

misc/avoidmemout
try to avoid running into memory limit by restricting plugins
like heuristics?
Range: boolean

1

misc/calcintegral
should SCIP calculate the primal dual integral value?
Range: boolean

1

misc/catchctrlc
should the CTRL-C interrupt be caught by SCIP?
Range: boolean

1

misc/estimexternmem
should the usage of external memory be estimated?
Range: boolean

1

misc/finitesolutionstore
should SCIP try to remove infinite fixings from solutions copied
to the solution store?
Range: boolean

0

misc/improvingsols
should only solutions be checked which improve the primal
bound
Range: boolean

0

misc/outputorigsol
should the best solution be transformed to the orignal space
and be output in command line run?
Range: boolean

1

misc/printreason
should the reason be printed if a given start solution is infea-
sible
Range: boolean

0

misc/referencevalue
objective value for reference purposes
Range: real

∞

misc/resetstat
should the statistics be reset if the transformed problem is
freed (in case of a Benders' decomposition this parameter
should be set to FALSE)
Range: boolean

1

misc/scaleobj
should the objective function be scaled so that it is always
integer?
Range: boolean

1

misc/showdivingstats
should detailed statistics for diving heuristics be shown?
Range: boolean

0

misc/transorigsols
should SCIP try to transfer original solutions to the trans-
formed space (after presolving)?
Range: boolean

1

misc/transsolsorig
should SCIP try to transfer transformed solutions to the
original space (after solving)?
Range: boolean

1

5.34 SCIP 2657

Option Description Default

misc/useconstable
should a hashtable be used to map from constraint names to
constraints?
Range: boolean

1

misc/usesmalltables
should smaller hashtables be used? yields better performance
for small problems with about 100 variables
Range: boolean

0

misc/usesymmetry
bitset describing used symmetry handling technique (0: off; 1:
polyhedral (orbitopes and/or symresacks); 2: orbital fixing; 3:
orbitopes and orbital fixing; 4: Schreier Sims cuts; 5: Schreier
Sims cuts and orbitopes); 6: Schreier Sims cuts and orbital
fixing; 7: Schreier Sims cuts, orbitopes, and orbital fixing
Range: {0, ..., 7}

7

misc/usevartable
should a hashtable be used to map from variable names to
variables?
Range: boolean

1

5.34.4.177 nlhdlr/bilinear

Option Description Default

nlhdlr/bilinear/enabled
should this nonlinear handler be used
Range: boolean

1

nlhdlr/bilinear/maxsepadepth
maximum depth to apply separation
Range: {0, ..., ∞}

∞

nlhdlr/bilinear/maxseparounds
maximum number of separation rounds in a local
node
Range: {0, ..., ∞}

1

nlhdlr/bilinear/maxseparoundsroot
maximum number of separation rounds in the root
node
Range: {0, ..., ∞}

10

nlhdlr/bilinear/useinteval
whether to use the interval evaluation callback of
the nlhdlr
Range: boolean

1

nlhdlr/bilinear/usereverseprop
whether to use the reverse propagation callback of
the nlhdlr
Range: boolean

1

5.34.4.178 nlhdlr/concave

Option Description Default

nlhdlr/concave/detectsum
whether to run convexity detection when the root of an
expression is a sum
Range: boolean

0

nlhdlr/concave/enabled
should this nonlinear handler be used
Range: boolean

1

Options for expert users

nlhdlr/concave/cvxprodcomp
whether to use convexity check on product composition
f(h)∗h
Range: boolean

1

nlhdlr/concave/cvxquadratic
whether to use convexity check on quadratics
Range: boolean

0

2658 Solver Manuals

Option Description Default

nlhdlr/concave/cvxsignomial
whether to use convexity check on signomials
Range: boolean

1

nlhdlr/concave/handletrivial
whether to also handle trivial convex expressions
Range: boolean

0

5.34.4.179 nlhdlr/convex

Option Description Default

nlhdlr/convex/detectsum
whether to run convexity detection when the root of an
expression is a non-quadratic sum
Range: boolean

0

nlhdlr/convex/enabled
should this nonlinear handler be used
Range: boolean

1

nlhdlr/convex/extendedform
whether to create extended formulations instead of looking
for maximal convex expressions
Range: boolean

1

Options for expert users

nlhdlr/convex/cvxprodcomp
whether to use convexity check on product composition
f(h)∗h
Range: boolean

1

nlhdlr/convex/cvxquadratic
whether to use convexity check on quadratics
Range: boolean

1

nlhdlr/convex/cvxsignomial
whether to use convexity check on signomials
Range: boolean

1

nlhdlr/convex/handletrivial
whether to also handle trivial convex expressions
Range: boolean

0

5.34.4.180 nlhdlr/default

Option Description Default

nlhdlr/default/enabled
should this nonlinear handler be used
Range: boolean

1

5.34.4.181 nlhdlr/perspective

Option Description Default

nlhdlr/perspective/adjrefpoint
whether to adjust the reference point
Range: boolean

1

nlhdlr/perspective/convexonly
whether perspective cuts are added only for con-
vex expressions
Range: boolean

0

nlhdlr/perspective/enabled
should this nonlinear handler be used
Range: boolean

1

nlhdlr/perspective/maxproprounds
maximal number of propagation rounds in probing
Range: {-1, ..., ∞}

1

nlhdlr/perspective/mindomreduction
minimal relative reduction in a variable's domain
for applying probing
Range: [0, 1]

0.1

5.34 SCIP 2659

Option Description Default

nlhdlr/perspective/minviolprobing
minimal violation w.r.t. auxiliary variables for
applying probing
Range: [0, ∞]

1e-05

nlhdlr/perspective/probingfreq
probing frequency (-1 - no probing, 0 - root node
only)
Range: {-1, ..., ∞}

1

nlhdlr/perspective/probingonlyinsepa
whether to do probing only in separation
Range: boolean

1

nlhdlr/perspective/tightenbounds
whether variable semicontinuity is used to tighten
variable bounds
Range: boolean

1

5.34.4.182 nlhdlr/quadratic

Option Description Default

nlhdlr/quadratic/atwhichnodes
determines at which nodes cut is used (if
it's -1, it's used only at the root node, if it's
n ≥ 0, it's used at every multiple of n
Range: {-1, ..., ∞}

1

nlhdlr/quadratic/enabled
should this nonlinear handler be used
Range: boolean

1

nlhdlr/quadratic/ignorebadrayrestriction
should cut be generated even with bad nu-
merics when restricting to ray?
Range: boolean

1

nlhdlr/quadratic/ignorenhighre
should cut be added even when range / effi-
cacy is large?
Range: boolean

1

nlhdlr/quadratic/maxrank
maximal rank a slackvar can have
Range: {0, ..., ∞}

∞

nlhdlr/quadratic/mincutviolation
minimal cut violation the generated cuts
must fulfill to be added to the LP
Range: [0, ∞]

0.0001

nlhdlr/quadratic/minviolation
minimal violation the constraint must fulfill
such that a cut is generated
Range: [0, ∞]

0.0001

nlhdlr/quadratic/ncutslimit
limit for number of cuts generated consecu-
tively
Range: {0, ..., ∞}

2

nlhdlr/quadratic/ncutslimitroot
limit for number of cuts generated at root
node
Range: {0, ..., ∞}

20

nlhdlr/quadratic/nstrengthlimit
limit for number of rays we do the strength-
ening for
Range: {0, ..., ∞}

∞

nlhdlr/quadratic/useboundsasrays
use bounds of variables in quadratic as rays
for intersection cuts
Range: boolean

0

nlhdlr/quadratic/useintersectioncuts
whether to use intersection cuts for
quadratic constraints to separate
Range: boolean

0

nlhdlr/quadratic/usestrengthening
whether the strengthening should be used
Range: boolean

0

2660 Solver Manuals

5.34.4.183 nlhdlr/quotient

Option Description Default

nlhdlr/quotient/enabled
should this nonlinear handler be used
Range: boolean

1

5.34.4.184 nlhdlr/soc

Option Description Default

nlhdlr/soc/compeigenvalues
Should Eigenvalue computations be done to detect complex
cases in quadratic constraints?
Range: boolean

1

nlhdlr/soc/enabled
should this nonlinear handler be used
Range: boolean

1

nlhdlr/soc/mincutefficacy
Minimum efficacy which a cut needs in order to be added.
Range: [0, ∞]

1e-05

5.34.4.185 nlp

Option Description Default

nlp/disable
should the NLP relaxation be always disabled (also for NLPs/MINLPs)?
Range: boolean

0

5.34.4.186 nlpi/ipopt

Option Description Default

nlpi/ipopt/hessian approximation
Indicates what Hessian informa-
tion is to be used. Valid val-
ues if not empty: exact limited-
memory
Range: string

nlpi/ipopt/hsllib
Name of library containing HSL
routines for load at runtime
Range: string

nlpi/ipopt/linear solver
Linear solver used for step com-
putations. Valid values if not
empty: ma27 ma57 ma77 ma86
ma97 pardiso pardisomkl mumps
custom
Range: string

ma27, if IpoptH licensed,
mumps otherwise

nlpi/ipopt/linear system scaling
Method for scaling the linear sys-
tem. Valid values if not empty:
none mc19 slack-based
Range: string

mc19, if IpoptH licensed, empty
otherwise

nlpi/ipopt/mu strategy
Update strategy for barrier pa-
rameter. Valid values if not
empty: monotone adaptive
Range: string

5.34 SCIP 2661

Option Description Default

nlpi/ipopt/nlp scaling method
Select the technique used for
scaling the NLP. Valid values
if not empty: none user-scaling
gradient-based equilibration-
based
Range: string

nlpi/ipopt/optfile
name of Ipopt options file
Range: string

nlpi/ipopt/pardisolib
Name of library containing Par-
diso routines (from pardiso-
project.org) for load at runtime
Range: string

nlpi/ipopt/print level
Output verbosity level. -1 to use
NLPI or Ipopt default.
Range: {-1, ..., 12}

-1

nlpi/ipopt/priority
priority of NLPI <ipopt>
Range: {-536870912, ...,
536870911}

1000

nlpi/ipopt/warm start push
amount (relative and absolute)
by which starting point is moved
away from bounds in warmstarts
Range: [0, 1]

1e-09

5.34.4.187 nodeselection

Option Description Default

nodeselection/childsel
child selection rule ('d'own, 'u'p, 'p'seudo costs, 'i'nference, 'l'p
value, 'r'oot LP value difference, 'h'ybrid inference/root LP value
difference)
Range: d, u, p, i, l, r, h

h

5.34.4.188 nodeselection/bfs

Option Description Default

nodeselection/bfs/stdpriority
priority of node selection rule <bfs> in standard
mode
Range: {-536870912, ..., 1073741823}

100000

Options for expert users

nodeselection/bfs/maxplungedepth
maximal plunging depth, before new best node is
forced to be selected (-1 for dynamic setting)
Range: {-1, ..., ∞}

-1

nodeselection/bfs/maxplungequot
maximal quotient (curlowerbound - lower-
bound)/(cutoffbound - lowerbound) where plunging
is performed
Range: [0, ∞]

0.25

nodeselection/bfs/memsavepriority
priority of node selection rule <bfs> in memory
saving mode
Range: {-536870912, ..., 536870911}

0

nodeselection/bfs/minplungedepth
minimal plunging depth, before new best node may
be selected (-1 for dynamic setting)
Range: {-1, ..., ∞}

-1

2662 Solver Manuals

5.34.4.189 nodeselection/breadthfirst

Option Description Default

nodeselection/breadthfirst/stdpriority
priority of node selection rule
<breadthfirst> in standard mode
Range: {-536870912, ..., 1073741823}

-10000

Options for expert users

nodeselection/breadthfirst/memsavepriority
priority of node selection rule
<breadthfirst> in memory saving mode
Range: {-536870912, ..., 536870911}

-1000000

5.34.4.190 nodeselection/dfs

Option Description Default

nodeselection/dfs/stdpriority
priority of node selection rule <dfs> in standard
mode
Range: {-536870912, ..., 1073741823}

0

Options for expert users

nodeselection/dfs/memsavepriority
priority of node selection rule <dfs> in memory
saving mode
Range: {-536870912, ..., 536870911}

100000

5.34.4.191 nodeselection/estimate

Option Description Default

nodeselection/estimate/bestnodefreq
frequency at which the best node instead of
the best estimate is selected (0: never)
Range: {0, ..., ∞}

10

nodeselection/estimate/breadthfirstdepth
depth until breadth-first search is applied
Range: {-1, ..., ∞}

-1

nodeselection/estimate/plungeoffset
number of nodes before doing plunging the
first time
Range: {0, ..., ∞}

0

nodeselection/estimate/stdpriority
priority of node selection rule <estimate>
in standard mode
Range: {-536870912, ..., 1073741823}

200000

Options for expert users

nodeselection/estimate/maxplungedepth
maximal plunging depth, before new best
node is forced to be selected (-1 for dynamic
setting)
Range: {-1, ..., ∞}

-1

nodeselection/estimate/maxplungequot
maximal quotient (estimate - lower-
bound)/(cutoffbound - lowerbound) where
plunging is performed
Range: [0, ∞]

0.25

nodeselection/estimate/memsavepriority
priority of node selection rule <estimate>
in memory saving mode
Range: {-536870912, ..., 536870911}

100

5.34 SCIP 2663

Option Description Default

nodeselection/estimate/minplungedepth
minimal plunging depth, before new best
node may be selected (-1 for dynamic set-
ting)
Range: {-1, ..., ∞}

-1

5.34.4.192 nodeselection/hybridestim

Option Description Default

nodeselection/hybridestim/bestnodefreq
frequency at which the best node instead
of the hybrid best estimate / best bound is
selected (0: never)
Range: {0, ..., ∞}

1000

nodeselection/hybridestim/stdpriority
priority of node selection rule
<hybridestim> in standard mode
Range: {-536870912, ..., 1073741823}

50000

Options for expert users

nodeselection/hybridestim/estimweight
weight of estimate value in node selection
score (0: pure best bound search, 1: pure
best estimate search)
Range: [0, 1]

0.1

nodeselection/hybridestim/maxplungedepth
maximal plunging depth, before new best
node is forced to be selected (-1 for dynamic
setting)
Range: {-1, ..., ∞}

-1

nodeselection/hybridestim/maxplungequot
maximal quotient (estimate - lower-
bound)/(cutoffbound - lowerbound) where
plunging is performed
Range: [0, ∞]

0.25

nodeselection/hybridestim/memsavepriority
priority of node selection rule
<hybridestim> in memory saving mode
Range: {-536870912, ..., 536870911}

50

nodeselection/hybridestim/minplungedepth
minimal plunging depth, before new best
node may be selected (-1 for dynamic set-
ting)
Range: {-1, ..., ∞}

-1

5.34.4.193 nodeselection/restartdfs

Option Description Default

nodeselection/restartdfs/countonlyleaves
count only leaf nodes (otherwise all nodes)?
Range: boolean

1

nodeselection/restartdfs/selectbestfreq
frequency for selecting the best node instead
of the deepest one
Range: {0, ..., ∞}

100

nodeselection/restartdfs/stdpriority
priority of node selection rule <restartdfs>
in standard mode
Range: {-536870912, ..., 1073741823}

10000

Options for expert users

2664 Solver Manuals

Option Description Default

nodeselection/restartdfs/memsavepriority
priority of node selection rule <restartdfs>
in memory saving mode
Range: {-536870912, ..., 536870911}

50000

5.34.4.194 nodeselection/uct

Option Description Default

nodeselection/uct/stdpriority
priority of node selection rule <uct> in standard
mode
Range: {-536870912, ..., 1073741823}

10

Options for expert users

nodeselection/uct/memsavepriority
priority of node selection rule <uct> in memory
saving mode
Range: {-536870912, ..., 536870911}

0

nodeselection/uct/nodelimit
maximum number of nodes before switching to de-
fault rule
Range: {0, ..., 1000000}

31

nodeselection/uct/useestimate
should the estimate (TRUE) or lower bound of a
node be used for UCT score?
Range: boolean

0

nodeselection/uct/weight
weight for visit quotient of node selection rule
Range: [0, 1]

0.1

5.34.4.195 numerics

Option Description Default

numerics/checkfeastolfac
feasibility tolerance factor; for checking the feasibility of the
best solution
Range: [0, ∞]

1

numerics/dualfeastol
feasibility tolerance for reduced costs in LP solution
Range: [1e-17, 0.001]

1e-07

numerics/epsilon
absolute values smaller than this are considered zero
Range: [1e-20, 0.001]

1e-09

numerics/feastol
feasibility tolerance for constraints
Range: [1e-17, 0.001]

1e-06

numerics/lpfeastolfactor
factor w.r.t. primal feasibility tolerance that determines de-
fault (and maximal) primal feasibility tolerance of LP solver
Range: [1e-06, 1]

1

numerics/sumepsilon
absolute values of sums smaller than this are considered zero
Range: [1e-17, 0.001]

1e-06

Options for expert users

numerics/barrierconvtol
LP convergence tolerance used in barrier algorithm
Range: [1e-17, 0.001]

1e-10

numerics/boundstreps
minimal relative improve for strengthening bounds
Range: [1e-17, ∞]

0.05

numerics/hugeval
values larger than this are considered huge and should be
handled separately (e.g., in activity computation)
Range: [0, ∞]

1e+15

5.34 SCIP 2665

Option Description Default

numerics/pseudocostdelta
minimal objective distance value to use for branching pseudo
cost updates
Range: [0, ∞]

0.0001

numerics/pseudocosteps
minimal variable distance value to use for branching pseudo
cost updates
Range: [1e-17, 1]

0.1

numerics/recomputefac
minimal decrease factor that causes the recomputation of a
value (e.g., pseudo objective) instead of an update
Range: [0, ∞]

1e+07

5.34.4.196 presolving

Option Description Default

presolving/maxrestarts
maximal number of restarts (-1: unlimited)
Range: {-1, ..., ∞}

-1

presolving/maxrounds
maximal number of presolving rounds (-1: unlimited, 0: off)
Range: {-1, ..., ∞}

-1

Options for expert users

presolving/abortfac
abort presolve, if at most this fraction of the problem was
changed in last presolve round
Range: [0, 1]

0.0008

presolving/clqtablefac
limit on number of entries in clique table relative to number
of problem nonzeros
Range: [0, ∞]

2

presolving/donotaggr
should aggregation of variables be forbidden?
Range: boolean

0

presolving/donotmultaggr
should multi-aggregation of variables be forbidden?
Range: boolean

0

presolving/immrestartfac
fraction of integer variables that were fixed in the root node
triggering an immediate restart with preprocessing
Range: [0, 1]

0.1

presolving/restartfac
fraction of integer variables that were fixed in the root node
triggering a restart with preprocessing after root node evalu-
ation
Range: [0, 1]

0.025

presolving/restartminred
minimal fraction of integer variables removed after restart to
allow for an additional restart
Range: [0, 1]

0.1

presolving/subrestartfac
fraction of integer variables that were globally fixed during
the solving process triggering a restart with preprocessing
Range: [0, 1]

1

5.34.4.197 presolving/boundshift

Option Description Default

presolving/boundshift/maxrounds
maximal number of presolving rounds the presolver
participates in (-1: no limit)
Range: {-1, ..., ∞}

0

Options for expert users

2666 Solver Manuals

Option Description Default

presolving/boundshift/flipping
is flipping allowed (multiplying with -1)?
Range: boolean

1

presolving/boundshift/integer
shift only integer ranges?
Range: boolean

1

presolving/boundshift/maxshift
absolute value of maximum shift
Range: {0, ..., ∞}

∞

presolving/boundshift/priority
priority of presolver <boundshift>
Range: {-536870912, ..., 536870911}

7900000

presolving/boundshift/timing
timing mask of presolver <boundshift> (4:FAST,
8:MEDIUM, 16:EXHAUSTIVE, 32:FINAL)
Range: {4, ..., 60}

4

5.34.4.198 presolving/convertinttobin

Option Description Default

presolving/convertinttobin/maxrounds
maximal number of presolving rounds the
presolver participates in (-1: no limit)
Range: {-1, ..., ∞}

0

Options for expert users

presolving/convertinttobin/maxdomainsize
absolute value of maximum domain size for
converting an integer variable to binaries
variables
Range: {0, ..., ∞}

∞

presolving/convertinttobin/onlypoweroftwo
should only integer variables with a domain
size of 2∧p - 1 be converted(, there we don't
need an knapsack-constraint for restricting
the sum of the binaries)
Range: boolean

0

presolving/convertinttobin/priority
priority of presolver <convertinttobin>
Range: {-536870912, ..., 536870911}

6000000

presolving/convertinttobin/samelocksinbothdirections
should only integer variables with uplocks
equals downlocks be converted
Range: boolean

0

presolving/convertinttobin/timing
timing mask of presolver <convertinttobin>
(4:FAST, 8:MEDIUM, 16:EXHAUSTIVE,
32:FINAL)
Range: {4, ..., 60}

4

5.34.4.199 presolving/domcol

Option Description Default

presolving/domcol/continuousred
should reductions for continuous variables be per-
formed?
Range: boolean

1

presolving/domcol/maxrounds
maximal number of presolving rounds the presolver
participates in (-1: no limit)
Range: {-1, ..., ∞}

-1

presolving/domcol/nummaxpairs
maximal number of pair comparisons
Range: {1024, ..., 1000000000}

1048576

5.34 SCIP 2667

Option Description Default

presolving/domcol/numminpairs
minimal number of pair comparisons
Range: {100, ..., 1048576}

1024

presolving/domcol/predbndstr
should predictive bound strengthening be applied?
Range: boolean

0

Options for expert users

presolving/domcol/priority
priority of presolver <domcol>
Range: {-536870912, ..., 536870911}

-1000

presolving/domcol/timing
timing mask of presolver <domcol> (4:FAST,
8:MEDIUM, 16:EXHAUSTIVE, 32:FINAL)
Range: {4, ..., 60}

16

5.34.4.200 presolving/dualagg

Option Description Default

presolving/dualagg/maxrounds
maximal number of presolving rounds the presolver par-
ticipates in (-1: no limit)
Range: {-1, ..., ∞}

0

Options for expert users

presolving/dualagg/priority
priority of presolver <dualagg>
Range: {-536870912, ..., 536870911}

-12000

presolving/dualagg/timing
timing mask of presolver <dualagg> (4:FAST,
8:MEDIUM, 16:EXHAUSTIVE, 32:FINAL)
Range: {4, ..., 60}

16

5.34.4.201 presolving/dualcomp

Option Description Default

presolving/dualcomp/componlydisvars
should only discrete variables be compensated?
Range: boolean

0

presolving/dualcomp/maxrounds
maximal number of presolving rounds the pre-
solver participates in (-1: no limit)
Range: {-1, ..., ∞}

-1

Options for expert users

presolving/dualcomp/priority
priority of presolver <dualcomp>
Range: {-536870912, ..., 536870911}

-50

presolving/dualcomp/timing
timing mask of presolver <dualcomp> (4:FAST,
8:MEDIUM, 16:EXHAUSTIVE, 32:FINAL)
Range: {4, ..., 60}

16

5.34.4.202 presolving/dualinfer

Option Description Default

presolving/dualinfer/maxdualbndloops
maximal number of dual bound strengthen-
ing loops
Range: {-1, ..., ∞}

12

presolving/dualinfer/maxrounds
maximal number of presolving rounds the
presolver participates in (-1: no limit)
Range: {-1, ..., ∞}

0

2668 Solver Manuals

Option Description Default

presolving/dualinfer/maxrowsupport
Maximum number of row's non-zeros for
changing inequality to equality
Range: {2, ..., ∞}

3

presolving/dualinfer/twocolcombine
use convex combination of columns for de-
termining dual bounds
Range: boolean

1

Options for expert users

presolving/dualinfer/maxcombinefails
maximal number of consecutive useless col-
umn combines
Range: {-1, ..., ∞}

1000

presolving/dualinfer/maxconsiderednonzeros
maximal number of considered non-zeros
within one column (-1: no limit)
Range: {-1, ..., ∞}

100

presolving/dualinfer/maxhashfac
Maximum number of hashlist entries as mul-
tiple of number of columns in the problem
(-1: no limit)
Range: {-1, ..., ∞}

10

presolving/dualinfer/maxpairfac
Maximum number of processed column pairs
as multiple of the number of columns in the
problem (-1: no limit)
Range: {-1, ..., ∞}

1

presolving/dualinfer/maxretrievefails
maximal number of consecutive useless
hashtable retrieves
Range: {-1, ..., ∞}

1000

presolving/dualinfer/priority
priority of presolver <dualinfer>
Range: {-536870912, ..., 536870911}

-3000

presolving/dualinfer/timing
timing mask of presolver <dualinfer>
(4:FAST, 8:MEDIUM, 16:EXHAUSTIVE,
32:FINAL)
Range: {4, ..., 60}

16

5.34.4.203 presolving/dualsparsify

Option Description Default

presolving/dualsparsify/maxbinfillin
maximal fillin for binary variables (-1: un-
limited)
Range: {-1, ..., ∞}

1

presolving/dualsparsify/maxcontfillin
maximal fillin for continuous variables (-1:
unlimited)
Range: {-1, ..., ∞}

1

presolving/dualsparsify/maxintfillin
maximal fillin for integer variables including
binaries (-1: unlimited)
Range: {-1, ..., ∞}

1

presolving/dualsparsify/maxrounds
maximal number of presolving rounds the
presolver participates in (-1: no limit)
Range: {-1, ..., ∞}

-1

presolving/dualsparsify/mineliminatednonzeros
minimal eliminated nonzeros within one col-
umn if we need to add a constraint to the
problem
Range: {0, ..., ∞}

100

Options for expert users

5.34 SCIP 2669

Option Description Default

presolving/dualsparsify/enablecopy
should dualsparsify presolver be copied to
sub-SCIPs?
Range: boolean

1

presolving/dualsparsify/maxconsiderednonzeros
maximal number of considered nonzeros
within one column (-1: no limit)
Range: {-1, ..., ∞}

70

presolving/dualsparsify/maxretrievefac
limit on the number of useless vs. useful
hashtable retrieves as a multiple of the num-
ber of constraints
Range: [0, ∞]

100

presolving/dualsparsify/preservegoodlocks
should we preserve good locked properties of
variables (at most one lock in one direction)?
Range: boolean

0

presolving/dualsparsify/preserveintcoefs
should we forbid cancellations that destroy
integer coefficients?
Range: boolean

0

presolving/dualsparsify/priority
priority of presolver <dualsparsify>
Range: {-536870912, ..., 536870911}

-240000

presolving/dualsparsify/timing
timing mask of presolver <dualsparsify>
(4:FAST, 8:MEDIUM, 16:EXHAUSTIVE,
32:FINAL)
Range: {4, ..., 60}

16

presolving/dualsparsify/waitingfac
number of calls to wait until next execution
as a multiple of the number of useless calls
Range: [0, ∞]

2

5.34.4.204 presolving/gateextraction

Option Description Default

presolving/gateextraction/maxrounds
maximal number of presolving rounds the
presolver participates in (-1: no limit)
Range: {-1, ..., ∞}

-1

Options for expert users

presolving/gateextraction/onlysetpart
should we only try to extract set-
partitioning constraints and no and-
constraints
Range: boolean

0

presolving/gateextraction/priority
priority of presolver <gateextraction>
Range: {-536870912, ..., 536870911}

1000000

presolving/gateextraction/searchequations
should we try to extract set-partitioning con-
straint out of one logicor and one correspond-
ing set-packing constraint
Range: boolean

1

presolving/gateextraction/sorting
order logicor contraints to extract big-gates
before smaller ones (-1), do not order them
(0) or order them to extract smaller gates at
first (1)
Range: {-1, ..., 1}

1

presolving/gateextraction/timing
timing mask of presolver <gateextraction>
(4:FAST, 8:MEDIUM, 16:EXHAUSTIVE,
32:FINAL)
Range: {4, ..., 60}

16

2670 Solver Manuals

5.34.4.205 presolving/implics

Option Description Default

presolving/implics/maxrounds
maximal number of presolving rounds the presolver par-
ticipates in (-1: no limit)
Range: {-1, ..., ∞}

-1

Options for expert users

presolving/implics/priority
priority of presolver <implics>
Range: {-536870912, ..., 536870911}

-10000

presolving/implics/timing
timing mask of presolver <implics> (4:FAST,
8:MEDIUM, 16:EXHAUSTIVE, 32:FINAL)
Range: {4, ..., 60}

8

5.34.4.206 presolving/inttobinary

Option Description Default

presolving/inttobinary/maxrounds
maximal number of presolving rounds the presolver
participates in (-1: no limit)
Range: {-1, ..., ∞}

-1

Options for expert users

presolving/inttobinary/priority
priority of presolver <inttobinary>
Range: {-536870912, ..., 536870911}

7000000

presolving/inttobinary/timing
timing mask of presolver <inttobinary> (4:FAST,
8:MEDIUM, 16:EXHAUSTIVE, 32:FINAL)
Range: {4, ..., 60}

4

5.34.4.207 presolving/milp

Option Description Default

presolving/milp/hugebound
absolute bound value that is considered
too huge for activitity based calculations
Range: [0, ∞]

1e+08

presolving/milp/markowitztolerance
the markowitz tolerance used for substi-
tutions
Range: [0, 1]

0.01

presolving/milp/maxbadgesizepar
maximal badge size in Probing in PaPILO
if PaPILO is executed in parallel mode
Range: {-1, ..., ∞}

-1

presolving/milp/maxbadgesizeseq
maximal badge size in Probing in PaPILO
if PaPILO is executed in sequential mode
Range: {-1, ..., ∞}

15000

presolving/milp/maxfillinpersubstitution
maximal possible fillin for substitutions
to be considered
Range: {-2147483648, ..., ∞}

3

presolving/milp/maxrounds
maximal number of presolving rounds the
presolver participates in (-1: no limit)
Range: {-1, ..., ∞}

-1

5.34 SCIP 2671

Option Description Default

presolving/milp/modifyconsfac
modify SCIP constraints when the num-
ber of nonzeros or rows is at most this
factor times the number of nonzeros or
rows before presolving
Range: [0, 1]

0.8

presolving/milp/randomseed
the random seed used for randomization
of tie breaking
Range: {-2147483648, ..., ∞}

0

presolving/milp/threads
maximum number of threads presolving
may use (0: automatic)
Range: {0, ..., ∞}

GAMS threads

Options for expert users

presolving/milp/enabledomcol
should the dominated column presolver
be enabled within the presolve library?
Range: boolean

1

presolving/milp/enabledualinfer
should the dualinfer presolver be enabled
within the presolve library?
Range: boolean

1

presolving/milp/enablemultiaggr
should the multi-aggregation presolver be
enabled within the presolve library?
Range: boolean

1

presolving/milp/enableparallelrows
should the parallel rows presolver be en-
abled within the presolve library?
Range: boolean

1

presolving/milp/enableprobing
should the probing presolver be enabled
within the presolve library?
Range: boolean

1

presolving/milp/enablesparsify
should the sparsify presolver be enabled
within the presolve library?
Range: boolean

0

presolving/milp/maxshiftperrow
maximal amount of nonzeros allowed to
be shifted to make space for substitutions
Range: {0, ..., ∞}

10

presolving/milp/priority
priority of presolver <milp>
Range: {-536870912, ..., 536870911}

9999999

presolving/milp/probfilename
filename to store the problem before
MILP presolving starts
Range: string

-

presolving/milp/timing
timing mask of presolver <milp>
(4:FAST, 8:MEDIUM, 16:EXHAUSTIVE,
32:FINAL)
Range: {4, ..., 60}

8

5.34.4.208 presolving/qpkktref

Option Description Default

presolving/qpkktref/maxrounds
maximal number of presolving rounds the
presolver participates in (-1: no limit)
Range: {-1, ..., ∞}

0

Options for expert users

2672 Solver Manuals

Option Description Default

presolving/qpkktref/addkktbinary
if TRUE then allow binary variables for
KKT update
Range: boolean

0

presolving/qpkktref/priority
priority of presolver <qpkktref>
Range: {-536870912, ..., 536870911}

-1

presolving/qpkktref/timing
timing mask of presolver <qpkktref>
(4:FAST, 8:MEDIUM, 16:EXHAUSTIVE,
32:FINAL)
Range: {4, ..., 60}

8

presolving/qpkktref/updatequadbounded
if TRUE then only apply the update to QPs
with bounded variables; if the variables are
not bounded then a finite optimal solution
might not exist and the KKT conditions
would then be invalid
Range: boolean

1

presolving/qpkktref/updatequadindef
if TRUE then apply quadratic constraint up-
date even if the quadratic constraint matrix
is known to be indefinite
Range: boolean

0

5.34.4.209 presolving/redvub

Option Description Default

presolving/redvub/maxrounds
maximal number of presolving rounds the presolver par-
ticipates in (-1: no limit)
Range: {-1, ..., ∞}

0

Options for expert users

presolving/redvub/priority
priority of presolver <redvub>
Range: {-536870912, ..., 536870911}

-9000000

presolving/redvub/timing
timing mask of presolver <redvub> (4:FAST,
8:MEDIUM, 16:EXHAUSTIVE, 32:FINAL)
Range: {4, ..., 60}

16

5.34.4.210 presolving/sparsify

Option Description Default

presolving/sparsify/maxbinfillin
maximal fillin for binary variables (-1: un-
limited)
Range: {-1, ..., ∞}

0

presolving/sparsify/maxcontfillin
maximal fillin for continuous variables (-1:
unlimited)
Range: {-1, ..., ∞}

0

presolving/sparsify/maxintfillin
maximal fillin for integer variables including
binaries (-1: unlimited)
Range: {-1, ..., ∞}

0

presolving/sparsify/maxrounds
maximal number of presolving rounds the
presolver participates in (-1: no limit)
Range: {-1, ..., ∞}

-1

Options for expert users

5.34 SCIP 2673

Option Description Default

presolving/sparsify/cancellinear
should we cancel nonzeros in constraints of
the linear constraint handler?
Range: boolean

1

presolving/sparsify/enablecopy
should sparsify presolver be copied to sub-
SCIPs?
Range: boolean

1

presolving/sparsify/maxconsiderednonzeros
maximal number of considered non-zeros
within one row (-1: no limit)
Range: {-1, ..., ∞}

70

presolving/sparsify/maxnonzeros
maximal support of one equality to be used
for cancelling (-1: no limit)
Range: {-1, ..., ∞}

-1

presolving/sparsify/maxretrievefac
limit on the number of useless vs. useful
hashtable retrieves as a multiple of the num-
ber of constraints
Range: [0, ∞]

100

presolving/sparsify/preserveintcoefs
should we forbid cancellations that destroy
integer coefficients?
Range: boolean

1

presolving/sparsify/priority
priority of presolver <sparsify>
Range: {-536870912, ..., 536870911}

-24000

presolving/sparsify/rowsort
order in which to process inequalities ('n'o
sorting, 'i'ncreasing nonzeros, 'd'ecreasing
nonzeros)
Range: n, i, d

d

presolving/sparsify/timing
timing mask of presolver <sparsify>
(4:FAST, 8:MEDIUM, 16:EXHAUSTIVE,
32:FINAL)
Range: {4, ..., 60}

16

presolving/sparsify/waitingfac
number of calls to wait until next execution
as a multiple of the number of useless calls
Range: [0, ∞]

2

5.34.4.211 presolving/stuffing

Option Description Default

presolving/stuffing/maxrounds
maximal number of presolving rounds the presolver par-
ticipates in (-1: no limit)
Range: {-1, ..., ∞}

0

Options for expert users

presolving/stuffing/priority
priority of presolver <stuffing>
Range: {-536870912, ..., 536870911}

-100

presolving/stuffing/timing
timing mask of presolver <stuffing> (4:FAST,
8:MEDIUM, 16:EXHAUSTIVE, 32:FINAL)
Range: {4, ..., 60}

16

5.34.4.212 presolving/trivial

2674 Solver Manuals

Option Description Default

presolving/trivial/maxrounds
maximal number of presolving rounds the presolver par-
ticipates in (-1: no limit)
Range: {-1, ..., ∞}

-1

Options for expert users

presolving/trivial/priority
priority of presolver <trivial>
Range: {-536870912, ..., 536870911}

9000000

presolving/trivial/timing
timing mask of presolver <trivial> (4:FAST, 8:MEDIUM,
16:EXHAUSTIVE, 32:FINAL)
Range: {4, ..., 60}

4

5.34.4.213 presolving/tworowbnd

Option Description Default

presolving/tworowbnd/maxcombinefails
maximal number of consecutive useless row
combines
Range: {-1, ..., ∞}

1000

presolving/tworowbnd/maxconsiderednonzeros
maximal number of considered non-zeros
within one row (-1: no limit)
Range: {-1, ..., ∞}

100

presolving/tworowbnd/maxhashfac
Maximum number of hashlist entries as mul-
tiple of number of rows in the problem (-1:
no limit)
Range: {-1, ..., ∞}

10

presolving/tworowbnd/maxpairfac
Maximum number of processed row pairs
as multiple of the number of rows in the
problem (-1: no limit)
Range: {-1, ..., ∞}

1

presolving/tworowbnd/maxretrievefails
maximal number of consecutive useless
hashtable retrieves
Range: {-1, ..., ∞}

1000

presolving/tworowbnd/maxrounds
maximal number of presolving rounds the
presolver participates in (-1: no limit)
Range: {-1, ..., ∞}

0

Options for expert users

presolving/tworowbnd/enablecopy
should tworowbnd presolver be copied to
sub-SCIPs?
Range: boolean

1

presolving/tworowbnd/priority
priority of presolver <tworowbnd>
Range: {-536870912, ..., 536870911}

-2000

presolving/tworowbnd/timing
timing mask of presolver <tworowbnd>
(4:FAST, 8:MEDIUM, 16:EXHAUSTIVE,
32:FINAL)
Range: {4, ..., 60}

16

5.34.4.214 propagating

5.34 SCIP 2675

Option Description Default

propagating/abortoncutoff
should propagation be aborted immediately? setting this to
FALSE could help conflict analysis to produce more conflict
constraints
Range: boolean

1

propagating/maxrounds
maximal number of propagation rounds per node (-1: un-
limited)
Range: {-1, ..., ∞}

100

propagating/maxroundsroot
maximal number of propagation rounds in the root node
(-1: unlimited)
Range: {-1, ..., ∞}

1000

5.34.4.215 propagating/dualfix

Option Description Default

propagating/dualfix/freq
frequency for calling propagator <dualfix> (-1:
never, 0: only in root node)
Range: {-1, ..., 65534}

0

propagating/dualfix/maxprerounds
maximal number of presolving rounds the propaga-
tor participates in (-1: no limit)
Range: {-1, ..., ∞}

-1

Options for expert users

propagating/dualfix/delay
should propagator be delayed, if other propagators
found reductions?
Range: boolean

0

propagating/dualfix/presolpriority
presolving priority of propagator <dualfix>
Range: {-536870912, ..., 536870911}

8000000

propagating/dualfix/presoltiming
timing mask of the presolving method of propaga-
tor <dualfix> (4:FAST, 8:MEDIUM, 16:EXHAUS-
TIVE, 32:FINAL)
Range: {2, ..., 60}

4

propagating/dualfix/priority
priority of propagator <dualfix>
Range: {-536870912, ..., 536870911}

8000000

propagating/dualfix/timingmask
timing when propagator should be called (1:BE-
FORELP, 2:DURINGLPLOOP, 4:AFTERLPLOOP,
15:ALWAYS))
Range: {1, ..., 15}

1

5.34.4.216 propagating/genvbounds

Option Description Default

propagating/genvbounds/freq
frequency for calling propagator
<genvbounds> (-1: never, 0: only in
root node)
Range: {-1, ..., 65534}

1

propagating/genvbounds/maxprerounds
maximal number of presolving rounds the
propagator participates in (-1: no limit)
Range: {-1, ..., ∞}

-1

Options for expert users

2676 Solver Manuals

Option Description Default

propagating/genvbounds/delay
should propagator be delayed, if other prop-
agators found reductions?
Range: boolean

0

propagating/genvbounds/global
apply global propagation?
Range: boolean

1

propagating/genvbounds/presolpriority
presolving priority of propagator
<genvbounds>
Range: {-536870912, ..., 536870911}

-2000000

propagating/genvbounds/presoltiming
timing mask of the presolving method
of propagator <genvbounds> (4:FAST,
8:MEDIUM, 16:EXHAUSTIVE, 32:FINAL)
Range: {2, ..., 60}

4

propagating/genvbounds/priority
priority of propagator <genvbounds>
Range: {-536870912, ..., 536870911}

3000000

propagating/genvbounds/propasconss
should genvbounds be transformed to (lin-
ear) constraints?
Range: boolean

0

propagating/genvbounds/propinrootnode
apply genvbounds in root node if no new
incumbent was found?
Range: boolean

1

propagating/genvbounds/sort
sort genvbounds and wait for bound change
events?
Range: boolean

1

propagating/genvbounds/timingmask
timing when propagator should be called
(1:BEFORELP, 2:DURINGLPLOOP, 4:AF-
TERLPLOOP, 15:ALWAYS))
Range: {1, ..., 15}

15

5.34.4.217 propagating/nlobbt

Option Description Default

propagating/nlobbt/addlprows
should non-initial LP rows be used?
Range: boolean

1

propagating/nlobbt/freq
frequency for calling propagator <nlobbt> (-1:
never, 0: only in root node)
Range: {-1, ..., 65534}

-1

propagating/nlobbt/maxprerounds
maximal number of presolving rounds the prop-
agator participates in (-1: no limit)
Range: {-1, ..., ∞}

-1

Options for expert users

propagating/nlobbt/delay
should propagator be delayed, if other propaga-
tors found reductions?
Range: boolean

1

propagating/nlobbt/feastolfac
factor for NLP feasibility tolerance
Range: [0, 1]

0.01

propagating/nlobbt/itlimitfactor
LP iteration limit for nlobbt will be this factor
times total LP iterations in root node
Range: [0, ∞]

2

propagating/nlobbt/minlinearfrac
minimum (convex nlrows)/(linear nlrows) thresh-
old to apply propagator
Range: [0, ∞]

0.02

5.34 SCIP 2677

Option Description Default

propagating/nlobbt/minnonconvexfrac
(convex nlrows)/(nonconvex nlrows) threshold
to apply propagator
Range: [0, ∞]

0.2

propagating/nlobbt/nlpiterlimit
iteration limit of NLP solver; 0 for no limit
Range: {0, ..., ∞}

500

propagating/nlobbt/nlptimelimit
time limit of NLP solver; 0.0 for no limit
Range: [0, ∞]

0

propagating/nlobbt/nlpverblevel
verbosity level of NLP solver
Range: {0, ..., 5}

0

propagating/nlobbt/presolpriority
presolving priority of propagator <nlobbt>
Range: {-536870912, ..., 536870911}

0

propagating/nlobbt/presoltiming
timing mask of the presolving method of propa-
gator <nlobbt> (4:FAST, 8:MEDIUM, 16:EX-
HAUSTIVE, 32:FINAL)
Range: {2, ..., 60}

28

propagating/nlobbt/priority
priority of propagator <nlobbt>
Range: {-536870912, ..., 536870911}

-1100000

propagating/nlobbt/relobjtolfac
factor for NLP relative objective tolerance
Range: [0, 1]

0.01

propagating/nlobbt/timingmask
timing when propagator should be called
(1:BEFORELP, 2:DURINGLPLOOP, 4:AF-
TERLPLOOP, 15:ALWAYS))
Range: {1, ..., 15}

4

5.34.4.218 propagating/obbt

Option Description Default

propagating/obbt/boundstreps
minimal relative improve for strengthening
bounds
Range: [0, 1]

0.001

propagating/obbt/conditionlimit
maximum condition limit used in LP solver
(-1.0: no limit)
Range: [-1, ∞]

-1

propagating/obbt/dualfeastol
feasibility tolerance for reduced costs used
in obbt; this value is used if SCIP's dual
feastol is greater
Range: [0, ∞]

1e-09

propagating/obbt/freq
frequency for calling propagator <obbt> (-
1: never, 0: only in root node)
Range: {-1, ..., 65534}

0

propagating/obbt/itlimitfactor
multiple of root node LP iterations used as
total LP iteration limit for obbt (≤ 0: no
limit)
Range: real

10

propagating/obbt/itlimitfactorbilin
multiple of OBBT LP limit used as total LP
iteration limit for solving bilinear inequality
LPs (< 0 for no limit)
Range: real

3

propagating/obbt/maxprerounds
maximal number of presolving rounds the
propagator participates in (-1: no limit)
Range: {-1, ..., ∞}

-1

2678 Solver Manuals

Option Description Default

propagating/obbt/minitlimit
minimum LP iteration limit
Range: {0, ..., ∞}

5000

propagating/obbt/minnonconvexity
minimum absolute value of nonconvex eigen-
values for a bilinear term
Range: [0, ∞]

0.1

Options for expert users

propagating/obbt/applyfilterrounds
try to filter bounds in so-called filter rounds
by solving auxiliary LPs?
Range: boolean

0

propagating/obbt/applytrivialfilter
try to filter bounds with the LP solution
after each solve?
Range: boolean

1

propagating/obbt/createbilinineqs
solve auxiliary LPs in order to find valid
inequalities for bilinear terms?
Range: boolean

1

propagating/obbt/creategenvbounds
should obbt try to provide genvbounds if
possible?
Range: boolean

1

propagating/obbt/createlincons
create linear constraints from inequalities
for bilinear terms?
Range: boolean

0

propagating/obbt/delay
should propagator be delayed, if other prop-
agators found reductions?
Range: boolean

1

propagating/obbt/genvbdsduringfilter
should we try to generate genvbounds during
trivial and aggressive filtering?
Range: boolean

1

propagating/obbt/genvbdsduringsepa
try to create genvbounds during separation
process?
Range: boolean

1

propagating/obbt/minfilter
minimal number of filtered bounds to apply
another filter round
Range: {1, ..., ∞}

2

propagating/obbt/normalize
should coefficients in filtering be normalized
w.r.t. the domains sizes?
Range: boolean

1

propagating/obbt/onlynonconvexvars
only apply obbt on non-convex variables
Range: boolean

1

propagating/obbt/orderingalgo
select the type of ordering algorithm which
should be used (0: no special ordering, 1:
greedy, 2: greedy reverse)
Range: {0, ..., 2}

1

propagating/obbt/presolpriority
presolving priority of propagator <obbt>
Range: {-536870912, ..., 536870911}

0

propagating/obbt/presoltiming
timing mask of the presolving method of
propagator <obbt> (4:FAST, 8:MEDIUM,
16:EXHAUSTIVE, 32:FINAL)
Range: {2, ..., 60}

28

propagating/obbt/priority
priority of propagator <obbt>
Range: {-536870912, ..., 536870911}

-1000000

propagating/obbt/propagatefreq
trigger a propagation round after that many
bound tightenings (0: no propagation)
Range: {0, ..., ∞}

0

5.34 SCIP 2679

Option Description Default

propagating/obbt/sepamaxiter
maximum number of iteration spend to sep-
arate an obbt LP solution
Range: {0, ..., ∞}

10

propagating/obbt/sepaminiter
minimum number of iteration spend to sep-
arate an obbt LP solution
Range: {0, ..., ∞}

0

propagating/obbt/separatesol
should the obbt LP solution be separated?
Range: boolean

0

propagating/obbt/tightcontboundsprobing
should continuous bounds be tightened dur-
ing the probing mode?
Range: boolean

0

propagating/obbt/tightintboundsprobing
should integral bounds be tightened during
the probing mode?
Range: boolean

1

propagating/obbt/timingmask
timing when propagator should be called
(1:BEFORELP, 2:DURINGLPLOOP, 4:AF-
TERLPLOOP, 15:ALWAYS))
Range: {1, ..., 15}

4

5.34.4.219 propagating/probing

Option Description Default

propagating/probing/freq
frequency for calling propagator <probing> (-1:
never, 0: only in root node)
Range: {-1, ..., 65534}

-1

propagating/probing/maxprerounds
maximal number of presolving rounds the propa-
gator participates in (-1: no limit)
Range: {-1, ..., ∞}

-1

propagating/probing/maxruns
maximal number of runs, probing participates in
(-1: no limit)
Range: {-1, ..., ∞}

1

Options for expert users

propagating/probing/delay
should propagator be delayed, if other propagators
found reductions?
Range: boolean

1

propagating/probing/maxdepth
maximal depth until propagation is executed(-1:
no limit)
Range: {-1, ..., ∞}

-1

propagating/probing/maxfixings
maximal number of fixings found, until probing
is interrupted (0: don't iterrupt)
Range: {0, ..., ∞}

25

propagating/probing/maxsumuseless
maximal number of probings without fixings, until
probing is aborted (0: don't abort)
Range: {0, ..., ∞}

0

propagating/probing/maxtotaluseless
maximal number of successive probings without
fixings, bound changes, and implications, until
probing is aborted (0: don't abort)
Range: {0, ..., ∞}

50

propagating/probing/maxuseless
maximal number of successive probings without
fixings, until probing is aborted (0: don't abort)
Range: {0, ..., ∞}

1000

2680 Solver Manuals

Option Description Default

propagating/probing/presolpriority
presolving priority of propagator <probing>
Range: {-536870912, ..., 536870911}

-100000

propagating/probing/presoltiming
timing mask of the presolving method of propa-
gator <probing> (4:FAST, 8:MEDIUM, 16:EX-
HAUSTIVE, 32:FINAL)
Range: {2, ..., 60}

16

propagating/probing/priority
priority of propagator <probing>
Range: {-536870912, ..., 536870911}

-100000

propagating/probing/proprounds
maximal number of propagation rounds in probing
subproblems (-1: no limit, 0: auto)
Range: {-1, ..., ∞}

-1

propagating/probing/timingmask
timing when propagator should be called
(1:BEFORELP, 2:DURINGLPLOOP, 4:AF-
TERLPLOOP, 15:ALWAYS))
Range: {1, ..., 15}

4

5.34.4.220 propagating/pseudoobj

Option Description Default

propagating/pseudoobj/freq
frequency for calling propagator
<pseudoobj> (-1: never, 0: only in
root node)
Range: {-1, ..., 65534}

1

propagating/pseudoobj/maxprerounds
maximal number of presolving rounds the
propagator participates in (-1: no limit)
Range: {-1, ..., ∞}

-1

Options for expert users

propagating/pseudoobj/delay
should propagator be delayed, if other prop-
agators found reductions?
Range: boolean

0

propagating/pseudoobj/force
should the propagator be forced even if ac-
tive pricer are present?
Range: boolean

0

propagating/pseudoobj/maximplvars
maximum number of binary variables the
implications are used if turned on (-1: un-
limited)?
Range: {-1, ..., ∞}

50000

propagating/pseudoobj/maxnewvars
number of variables added after the propa-
gator is reinitialized?
Range: {0, ..., ∞}

1000

propagating/pseudoobj/maxvarsfrac
maximal fraction of non-binary variables
with non-zero objective without a bound
reduction before aborted
Range: [0, 1]

0.1

propagating/pseudoobj/minuseless
minimal number of successive non-binary
variable propagations without a bound re-
duction before aborted
Range: {0, ..., ∞}

100

propagating/pseudoobj/presolpriority
presolving priority of propagator
<pseudoobj>
Range: {-536870912, ..., 536870911}

6000000

5.34 SCIP 2681

Option Description Default

propagating/pseudoobj/presoltiming
timing mask of the presolving method
of propagator <pseudoobj> (4:FAST,
8:MEDIUM, 16:EXHAUSTIVE, 32:FINAL)
Range: {2, ..., 60}

4

propagating/pseudoobj/priority
priority of propagator <pseudoobj>
Range: {-536870912, ..., 536870911}

3000000

propagating/pseudoobj/propcutoffbound
propagate new cutoff bound directly globally
Range: boolean

1

propagating/pseudoobj/propfullinroot
whether to propagate all non-binary vari-
ables when we are propagating the root node
Range: boolean

1

propagating/pseudoobj/propuseimplics
use implications to strengthen the propaga-
tion of binary variable (increasing the objec-
tive change)?
Range: boolean

1

propagating/pseudoobj/respropuseimplics
use implications to strengthen the resolve
propagation of binary variable (increasing
the objective change)?
Range: boolean

1

propagating/pseudoobj/timingmask
timing when propagator should be called
(1:BEFORELP, 2:DURINGLPLOOP, 4:AF-
TERLPLOOP, 15:ALWAYS))
Range: {1, ..., 15}

7

5.34.4.221 propagating/redcost

Option Description Default

propagating/redcost/continuous
should reduced cost fixing be also applied to contin-
uous variables?
Range: boolean

0

propagating/redcost/freq
frequency for calling propagator <redcost> (-1:
never, 0: only in root node)
Range: {-1, ..., 65534}

1

propagating/redcost/maxprerounds
maximal number of presolving rounds the propaga-
tor participates in (-1: no limit)
Range: {-1, ..., ∞}

-1

propagating/redcost/useimplics
should implications be used to strength the reduced
cost for binary variables?
Range: boolean

0

Options for expert users

propagating/redcost/delay
should propagator be delayed, if other propagators
found reductions?
Range: boolean

0

propagating/redcost/force
should the propagator be forced even if active pricer
are present?
Range: boolean

0

propagating/redcost/presolpriority
presolving priority of propagator <redcost>
Range: {-536870912, ..., 536870911}

0

propagating/redcost/presoltiming
timing mask of the presolving method of propaga-
tor <redcost> (4:FAST, 8:MEDIUM, 16:EXHAUS-
TIVE, 32:FINAL)
Range: {2, ..., 60}

28

2682 Solver Manuals

Option Description Default

propagating/redcost/priority
priority of propagator <redcost>
Range: {-536870912, ..., 536870911}

1000000

propagating/redcost/timingmask
timing when propagator should be called
(1:BEFORELP, 2:DURINGLPLOOP, 4:AF-
TERLPLOOP, 15:ALWAYS))
Range: {1, ..., 15}

6

5.34.4.222 propagating/rootredcost

Option Description Default

propagating/rootredcost/freq
frequency for calling propagator
<rootredcost> (-1: never, 0: only in
root node)
Range: {-1, ..., 65534}

1

propagating/rootredcost/maxprerounds
maximal number of presolving rounds the
propagator participates in (-1: no limit)
Range: {-1, ..., ∞}

-1

Options for expert users

propagating/rootredcost/delay
should propagator be delayed, if other prop-
agators found reductions?
Range: boolean

0

propagating/rootredcost/force
should the propagator be forced even if ac-
tive pricer are present?
Range: boolean

0

propagating/rootredcost/onlybinary
should only binary variables be propagated?
Range: boolean

0

propagating/rootredcost/presolpriority
presolving priority of propagator
<rootredcost>
Range: {-536870912, ..., 536870911}

0

propagating/rootredcost/presoltiming
timing mask of the presolving method
of propagator <rootredcost> (4:FAST,
8:MEDIUM, 16:EXHAUSTIVE, 32:FINAL)
Range: {2, ..., 60}

28

propagating/rootredcost/priority
priority of propagator <rootredcost>
Range: {-536870912, ..., 536870911}

10000000

propagating/rootredcost/timingmask
timing when propagator should be called
(1:BEFORELP, 2:DURINGLPLOOP, 4:AF-
TERLPLOOP, 15:ALWAYS))
Range: {1, ..., 15}

5

5.34.4.223 propagating/symmetry

Option Description Default

propagating/symmetry/freq
frequency for calling propagator
<symmetry> (-1: never, 0: only in
root node)
Range: {-1, ..., 65534}

1

propagating/symmetry/maxprerounds
maximal number of presolving rounds the
propagator participates in (-1: no limit)
Range: {-1, ..., ∞}

-1

5.34 SCIP 2683

Option Description Default

Options for expert users

propagating/symmetry/addconflictcuts
Should Schreier Sims constraints be added
if we use a conflict based rule?
Range: boolean

1

propagating/symmetry/addconsstiming
timing of adding constraints (0 = before
presolving, 1 = during presolving, 2 = after
presolving)
Range: {0, ..., 2}

2

propagating/symmetry/addstrongsbcs
Should strong SBCs for enclosing orbit of
symmetric subgroups be added if orbitopes
are not used?
Range: boolean

0

propagating/symmetry/addsymresacks
Add inequalities for symresacks for each gen-
erator?
Range: boolean

0

propagating/symmetry/addweaksbcs
Should we add weak SBCs for enclosing
orbit of symmetric subgroups?
Range: boolean

1

propagating/symmetry/checksymmetries
Should all symmetries be checked after com-
putation?
Range: boolean

0

propagating/symmetry/compresssymmetries
Should non-affected variables be removed
from permutation to save memory?
Range: boolean

1

propagating/symmetry/compressthreshold
Compression is used if percentage of moved
vars is at most the threshold.
Range: [0, 1]

0.5

propagating/symmetry/conssaddlp
Should the symmetry breaking constraints
be added to the LP?
Range: boolean

1

propagating/symmetry/delay
should propagator be delayed, if other prop-
agators found reductions?
Range: boolean

0

propagating/symmetry/detectorbitopes
Should we check whether the components
of the symmetry group can be handled by
orbitopes?
Range: boolean

1

propagating/symmetry/detectsubgroups
Should we try to detect symmetric sub-
groups of the symmetry group on binary
variables?
Range: boolean

1

propagating/symmetry/displaynorbitvars
Should the number of variables affected by
some symmetry be displayed?
Range: boolean

0

propagating/symmetry/doubleequations
Double equations to positive/negative ver-
sion?
Range: boolean

0

propagating/symmetry/maxgenerators
limit on the number of generators that
should be produced within symmetry de-
tection (0 = no limit)
Range: {0, ..., ∞}

1500

2684 Solver Manuals

Option Description Default

propagating/symmetry/maxnconsssubgroup
maximum number of constraints up to
which subgroup structures are detected
Range: {0, ..., ∞}

500000

propagating/symmetry/ofsymcomptiming
timing of symmetry computation for orbital
fixing (0 = before presolving, 1 = during
presolving, 2 = at first call)
Range: {0, ..., 2}

2

propagating/symmetry/onlybinarysymmetry
Is only symmetry on binary variables used?
Range: boolean

1

propagating/symmetry/performpresolving
run orbital fixing during presolving?
Range: boolean

0

propagating/symmetry/preferlessrows
Shall orbitopes with less rows be preferred
in detection?
Range: boolean

1

propagating/symmetry/presolpriority
presolving priority of propagator
<symmetry>
Range: {-536870912, ..., 536870911}

-10000000

propagating/symmetry/presoltiming
timing mask of the presolving method
of propagator <symmetry> (4:FAST,
8:MEDIUM, 16:EXHAUSTIVE, 32:FINAL)
Range: {2, ..., 60}

16

propagating/symmetry/priority
priority of propagator <symmetry>
Range: {-536870912, ..., 536870911}

-1000000

propagating/symmetry/recomputerestart
recompute symmetries after a restart has
occured? (0 = never)
Range: {0, ..., 0}

0

propagating/symmetry/sstaddcuts
Should Schreier Sims constraints be added?
Range: boolean

1

propagating/symmetry/sstleaderrule
rule to select the leader in an orbit (0: first
var; 1: last var; 2: var having most con-
flicting vars in orbit; 3: var having most
conflicting vars in problem)
Range: {0, ..., 3}

0

propagating/symmetry/sstleadervartype
bitset encoding which variable types can be
leaders (1: binary; 2: integer; 4: impl. int;
8: continuous);if multiple types are allowed,
take the one with most affected vars
Range: {1, ..., 15}

14

propagating/symmetry/sstmixedcomponents
Should Schreier Sims constraints be added
if a symmetry component contains variables
of different types?
Range: boolean

1

propagating/symmetry/ssttiebreakrule
rule to select the orbit in Schreier Sims in-
equalities (variable in 0: minimum size orbit;
1: maximum size orbit; 2: orbit with most
variables in conflict with leader)
Range: {0, ..., 2}

1

propagating/symmetry/symfixnonbinaryvars
Whether all non-binary variables shall be
not affected by symmetries if OF is active?
Range: boolean

0

5.34 SCIP 2685

Option Description Default

propagating/symmetry/timingmask
timing when propagator should be called
(1:BEFORELP, 2:DURINGLPLOOP, 4:AF-
TERLPLOOP, 15:ALWAYS))
Range: {1, ..., 15}

1

propagating/symmetry/usecolumnsparsity
Should the number of conss a variable is
contained in be exploited in symmetry de-
tection?
Range: boolean

0

propagating/symmetry/usedynamicprop
whether dynamic propagation should be
used for full orbitopes
Range: boolean

1

5.34.4.224 propagating/vbounds

Option Description Default

propagating/vbounds/detectcycles
should cycles in the variable bound graph
be identified?
Range: boolean

0

propagating/vbounds/dotoposort
should the bounds be topologically sorted
in advance?
Range: boolean

1

propagating/vbounds/freq
frequency for calling propagator<vbounds>
(-1: never, 0: only in root node)
Range: {-1, ..., 65534}

1

propagating/vbounds/maxcliquesexhaustive
maximum number of cliques per variable
to run clique table analysis in exhaustive
presolving
Range: [0, ∞]

100

propagating/vbounds/maxcliquesmedium
maximum number of cliques per variable to
run clique table analysis in medium presolv-
ing
Range: [0, ∞]

50

propagating/vbounds/maxprerounds
maximal number of presolving rounds the
propagator participates in (-1: no limit)
Range: {-1, ..., ∞}

-1

propagating/vbounds/minnewcliques
minimum percentage of new cliques to trig-
ger another clique table analysis
Range: [0, 1]

0.1

propagating/vbounds/usebdwidening
should bound widening be used to initialize
conflict analysis?
Range: boolean

1

Options for expert users

propagating/vbounds/delay
should propagator be delayed, if other prop-
agators found reductions?
Range: boolean

0

propagating/vbounds/presolpriority
presolving priority of propagator
<vbounds>
Range: {-536870912, ..., 536870911}

-90000

propagating/vbounds/presoltiming
timing mask of the presolving method
of propagator <vbounds> (4:FAST,
8:MEDIUM, 16:EXHAUSTIVE, 32:FINAL)
Range: {2, ..., 60}

24

2686 Solver Manuals

Option Description Default

propagating/vbounds/priority
priority of propagator <vbounds>
Range: {-536870912, ..., 536870911}

3000000

propagating/vbounds/sortcliques
should cliques be regarded for the topologi-
cal sort?
Range: boolean

0

propagating/vbounds/timingmask
timing when propagator should be called
(1:BEFORELP, 2:DURINGLPLOOP, 4:AF-
TERLPLOOP, 15:ALWAYS))
Range: {1, ..., 15}

5

propagating/vbounds/usecliques
should cliques be propagated?
Range: boolean

0

propagating/vbounds/useimplics
should implications be propagated?
Range: boolean

0

propagating/vbounds/usevbounds
should vbounds be propagated?
Range: boolean

1

5.34.4.225 randomization

Option Description Default

randomization/lpseed
random seed for LP solver, e.g. for perturbations in
the simplex (0: LP default)
Range: {0, ..., ∞}

0

randomization/permutationseed
seed value for permuting the problem after read-
ing/transformation (0: no permutation)
Range: {0, ..., ∞}

0

randomization/randomseedshift
global shift of all random seeds in the plugins and the
LP random seed
Range: {0, ..., ∞}

0

Options for expert users

randomization/permuteconss
should order of constraints be permuted (depends on
permutationseed)?
Range: boolean

1

randomization/permutevars
should order of variables be permuted (depends on
permutationseed)?
Range: boolean

0

5.34.4.226 separating

Option Description Default

separating/maxbounddist
maximal relative distance from current node's dual
bound to primal bound compared to best node's
dual bound for applying separation (0.0: only on
current best node, 1.0: on all nodes)
Range: [0, 1]

1

separating/maxcoefratio
maximal ratio between coefficients in strongcg, cmir,
and flowcover cuts
Range: [1, ∞]

10000

separating/maxcoefratiofacrowprep
maximal ratio between coefficients (as factor of
1/feastol) to ensure in rowprep cleanup
Range: [0, ∞]

10

5.34 SCIP 2687

Option Description Default

separating/maxcuts
maximal number of cuts separated per separation
round (0: disable local separation)
Range: {0, ..., ∞}

100

separating/maxcutsroot
maximal number of separated cuts at the root node
(0: disable root node separation)
Range: {0, ..., ∞}

2000

separating/maxlocalbounddist
maximal relative distance from current node's dual
bound to primal bound compared to best node's
dual bound for applying local separation (0.0: only
on current best node, 1.0: on all nodes)
Range: [0, 1]

0

separating/maxrounds
maximal number of separation rounds per node (-1:
unlimited)
Range: {-1, ..., ∞}

-1

separating/maxroundsroot
maximal number of separation rounds in the root
node (-1: unlimited)
Range: {-1, ..., ∞}

-1

separating/maxstallrounds
maximal number of consecutive separation rounds
without objective or integrality improvement in local
nodes (-1: no additional restriction)
Range: {-1, ..., ∞}

1

separating/maxstallroundsroot
maximal number of consecutive separation rounds
without objective or integrality improvement in the
root node (-1: no additional restriction)
Range: {-1, ..., ∞}

10

separating/minactivityquot
minimum cut activity quotient to convert cuts into
constraints during a restart (0.0: all cuts are con-
verted)
Range: [0, 1]

0.8

separating/minefficacy
minimal efficacy for a cut to enter the LP
Range: [0, ∞]

0.0001

separating/minefficacyroot
minimal efficacy for a cut to enter the LP in the
root node
Range: [0, ∞]

0.0001

separating/poolfreq
separation frequency for the global cut pool (-1:
disable global cut pool, 0: only separate pool at the
root)
Range: {-1, ..., 65534}

10

Options for expert users

separating/cutagelimit
maximum age a cut can reach before it is deleted
from the global cut pool, or -1 to keep all cuts
Range: {-1, ..., ∞}

80

separating/cutselrestart
cut selection during restart ('a'ge, activity
'q'uotient)
Range: a, q

a

separating/cutselsubscip
cut selection for sub SCIPs ('a'ge, activity 'q'uotient)
Range: a, q

a

separating/efficacynorm
row norm to use for efficacy calculation ('e'uclidean,
'm'aximum, 's'um, 'd'iscrete)
Range: e, m, s, d

e

separating/filtercutpoolrel
should cutpool separate only cuts with high relative
efficacy?
Range: boolean

1

2688 Solver Manuals

Option Description Default

separating/maxaddrounds
maximal additional number of separation rounds in
subsequent price-and-cut loops (-1: no additional
restriction)
Range: {-1, ..., ∞}

1

separating/maxroundsrootsubrun
maximal number of separation rounds in the root
node of a subsequent run (-1: unlimited)
Range: {-1, ..., ∞}

-1

separating/maxruns
maximal number of runs for which separation is
enabled (-1: unlimited)
Range: {-1, ..., ∞}

-1

separating/orthofunc
function used for calc. scalar prod. in orthogonality
test ('e'uclidean, 'd'iscrete)
Range: e, d

e

5.34.4.227 separating/aggregation

Option Description Default

separating/aggregation/dynamiccuts
should generated cuts be removed from the
LP if they are no longer tight?
Range: boolean

1

separating/aggregation/freq
frequency for calling separator
<aggregation> (-1: never, 0: only in
root node)
Range: {-1, ..., 65534}

10

separating/aggregation/maxrounds
maximal number of cmir separation rounds
per node (-1: unlimited)
Range: {-1, ..., ∞}

-1

separating/aggregation/maxroundsroot
maximal number of cmir separation rounds
in the root node (-1: unlimited)
Range: {-1, ..., ∞}

-1

separating/aggregation/maxsepacuts
maximal number of cmir cuts separated per
separation round
Range: {0, ..., ∞}

100

separating/aggregation/maxsepacutsroot
maximal number of cmir cuts separated per
separation round in the root node
Range: {0, ..., ∞}

500

Options for expert users

separating/aggregation/aggrtol
tolerance for bound distances used to select
continuous variable in current aggregated
constraint to be eliminated
Range: [0, ∞]

0.01

separating/aggregation/delay
should separator be delayed, if other separa-
tors found cuts?
Range: boolean

0

separating/aggregation/densityoffset
additional number of variables allowed in
row on top of density
Range: {0, ..., ∞}

100

separating/aggregation/densityscore
weight of row density in the aggregation
scoring of the rows
Range: [0, ∞]

0.0001

5.34 SCIP 2689

Option Description Default

separating/aggregation/expbackoff
base for exponential increase of frequency
at which separator <aggregation> is called
(1: call at each multiple of frequency)
Range: {1, ..., 100}

4

separating/aggregation/fixintegralrhs
should an additional variable be comple-
mented if f0 = 0?
Range: boolean

1

separating/aggregation/maxaggdensity
maximal density of aggregated row
Range: [0, 1]

0.2

separating/aggregation/maxaggrs
maximal number of aggregations for each
row per separation round
Range: {0, ..., ∞}

3

separating/aggregation/maxaggrsroot
maximal number of aggregations for each
row per separation round in the root node
Range: {0, ..., ∞}

6

separating/aggregation/maxbounddist
maximal relative distance from current
node's dual bound to primal bound com-
pared to best node's dual bound for apply-
ing separator <aggregation> (0.0: only on
current best node, 1.0: on all nodes)
Range: [0, 1]

1

separating/aggregation/maxfails
maximal number of consecutive unsuccessful
aggregation tries (-1: unlimited)
Range: {-1, ..., ∞}

20

separating/aggregation/maxfailsroot
maximal number of consecutive unsuccess-
ful aggregation tries in the root node (-1:
unlimited)
Range: {-1, ..., ∞}

100

separating/aggregation/maxrowdensity
maximal density of row to be used in aggre-
gation
Range: [0, 1]

0.05

separating/aggregation/maxrowfac
maximal row aggregation factor
Range: [0, ∞]

10000

separating/aggregation/maxslack
maximal slack of rows to be used in aggre-
gation
Range: [0, ∞]

0

separating/aggregation/maxslackroot
maximal slack of rows to be used in aggre-
gation in the root node
Range: [0, ∞]

0.1

separating/aggregation/maxtestdelta
maximal number of different deltas to try
(-1: unlimited)
Range: {-1, ..., ∞}

-1

separating/aggregation/maxtries
maximal number of rows to start aggrega-
tion with per separation round (-1: unlim-
ited)
Range: {-1, ..., ∞}

200

separating/aggregation/maxtriesroot
maximal number of rows to start aggrega-
tion with per separation round in the root
node (-1: unlimited)
Range: {-1, ..., ∞}

-1

separating/aggregation/priority
priority of separator <aggregation>
Range: {-536870912, ..., 536870911}

-3000

2690 Solver Manuals

Option Description Default

separating/aggregation/slackscore
weight of slack in the aggregation scoring of
the rows
Range: [0, ∞]

0.001

separating/aggregation/trynegscaling
should negative values also be tested in scal-
ing?
Range: boolean

1

5.34.4.228 separating/cgmip

Option Description Default

separating/cgmip/addviolationcons
add constraint to subscip that only allows violated
cuts (otherwise add obj. limit)?
Range: boolean

0

separating/cgmip/addviolconshdlr
add constraint handler to filter out violated cuts?
Range: boolean

0

separating/cgmip/cmirownbounds
tell CMIR-generator which bounds to used in round-
ing?
Range: boolean

0

separating/cgmip/conshdlrusenorm
should the violation constraint handler use the norm
of a cut to check for feasibility?
Range: boolean

1

separating/cgmip/contconvert
Convert some integral variables to be continuous to
reduce the size of the sub-MIP?
Range: boolean

0

separating/cgmip/contconvfrac
fraction of integral variables converted to be contin-
uous (if contconvert)
Range: [0, 1]

0.1

separating/cgmip/contconvmin
minimum number of integral variables before some
are converted to be continuous
Range: {-1, ..., ∞}

100

separating/cgmip/decisiontree
Use decision tree to turn separation on/off?
Range: boolean

0

separating/cgmip/dynamiccuts
should generated cuts be removed from the LP if
they are no longer tight?
Range: boolean

1

separating/cgmip/earlyterm
terminate separation if a violated (but possibly sub-
optimal) cut has been found?
Range: boolean

1

separating/cgmip/freq
frequency for calling separator <cgmip> (-1: never,
0: only in root node)
Range: {-1, ..., 65534}

-1

separating/cgmip/genprimalsols
Try to generate primal solutions from Gomory cuts?
Range: boolean

0

separating/cgmip/intconvert
Convert some integral variables attaining fractional
values to have integral value?
Range: boolean

0

separating/cgmip/intconvfrac
fraction of frac. integral variables converted to have
integral value (if intconvert)
Range: [0, 1]

0.1

separating/cgmip/intconvmin
minimum number of integral variables before some
are converted to have integral value
Range: {-1, ..., ∞}

100

5.34 SCIP 2691

Option Description Default

separating/cgmip/maxdepth
maximal depth at which the separator is applied
(-1: unlimited)
Range: {-1, ..., ∞}

-1

separating/cgmip/maxnodelimit
maximum number of nodes considered for sub-MIP
(-1: unlimited)
Range: {-1, ..., ∞}

5000

separating/cgmip/maxrounds
maximal number of cgmip separation rounds per
node (-1: unlimited)
Range: {-1, ..., ∞}

5

separating/cgmip/maxroundsroot
maximal number of cgmip separation rounds in the
root node (-1: unlimited)
Range: {-1, ..., ∞}

50

separating/cgmip/maxrowage
maximal age of rows to consider if onlyactiverows is
false
Range: {-1, ..., ∞}

-1

separating/cgmip/minnodelimit
minimum number of nodes considered for sub-MIP
(-1: unlimited)
Range: {-1, ..., ∞}

500

separating/cgmip/objlone
Should the objective of the sub-MIP minimize the
l1-norm of the multipliers?
Range: boolean

0

separating/cgmip/objweightsize
Weight each row by its size?
Range: boolean

1

separating/cgmip/onlyactiverows
Use only active rows to generate cuts?
Range: boolean

0

separating/cgmip/onlyintvars
Generate cuts for problems with only integer vari-
ables?
Range: boolean

0

separating/cgmip/onlyrankone
Separate only rank 1 inequalities w.r.t. CG-MIP
separator?
Range: boolean

0

separating/cgmip/output
Should information about the sub-MIP and cuts be
displayed?
Range: boolean

0

separating/cgmip/primalseparation
only separate cuts that are tight for the best feasible
solution?
Range: boolean

1

separating/cgmip/skipmultbounds
Skip the upper bounds on the multipliers in the
sub-MIP?
Range: boolean

1

separating/cgmip/subscipfast
Should the settings for the sub-MIP be optimized
for speed?
Range: boolean

1

separating/cgmip/usecmir
use CMIR-generator (otherwise add cut directly)?
Range: boolean

1

separating/cgmip/usecutpool
use cutpool to store CG-cuts even if the are not
efficient?
Range: boolean

1

separating/cgmip/useobjlb
Use lower bound on objective function (via primal
solution)?
Range: boolean

0

2692 Solver Manuals

Option Description Default

separating/cgmip/useobjub
Use upper bound on objective function (via primal
solution)?
Range: boolean

0

separating/cgmip/usestrongcg
use strong CG-function to strengthen cut?
Range: boolean

0

Options for expert users

separating/cgmip/cutcoefbnd
bounds on the values of the coefficients in the CG-
cut
Range: [0, ∞]

1000

separating/cgmip/delay
should separator be delayed, if other separators
found cuts?
Range: boolean

0

separating/cgmip/expbackoff
base for exponential increase of frequency at which
separator <cgmip> is called (1: call at each multiple
of frequency)
Range: {1, ..., 100}

4

separating/cgmip/maxbounddist
maximal relative distance from current node's dual
bound to primal bound compared to best node's
dual bound for applying separator <cgmip> (0.0:
only on current best node, 1.0: on all nodes)
Range: [0, 1]

0

separating/cgmip/memorylimit
memory limit for sub-MIP
Range: [0, ∞]

∞

separating/cgmip/objweight
weight used for the row combination coefficient in
the sub-MIP objective
Range: [0, ∞]

0.001

separating/cgmip/priority
priority of separator <cgmip>
Range: {-536870912, ..., 536870911}

-1000

separating/cgmip/timelimit
time limit for sub-MIP
Range: [0, ∞]

∞

5.34.4.229 separating/clique

Option Description Default

separating/clique/freq
frequency for calling separator <clique> (-1:
never, 0: only in root node)
Range: {-1, ..., 65534}

0

separating/clique/maxsepacuts
maximal number of clique cuts separated per sep-
aration round (-1: no limit)
Range: {-1, ..., ∞}

10

Options for expert users

separating/clique/backtrackfreq
frequency for premature backtracking up to tree
level 1 (0: no backtracking)
Range: {0, ..., ∞}

1000

separating/clique/cliquedensity
minimal density of cliques to use a dense clique
table
Range: [0, 1]

0

separating/clique/cliquetablemem
maximal memory size of dense clique table (in kb)
Range: [0, 2.09715e+06]

20000

separating/clique/delay
should separator be delayed, if other separators
found cuts?
Range: boolean

0

5.34 SCIP 2693

Option Description Default

separating/clique/expbackoff
base for exponential increase of frequency at which
separator <clique> is called (1: call at each mul-
tiple of frequency)
Range: {1, ..., 100}

4

separating/clique/maxbounddist
maximal relative distance from current node's dual
bound to primal bound compared to best node's
dual bound for applying separator <clique> (0.0:
only on current best node, 1.0: on all nodes)
Range: [0, 1]

0

separating/clique/maxtreenodes
maximal number of nodes in branch and bound
tree (-1: no limit)
Range: {-1, ..., ∞}

10000

separating/clique/maxzeroextensions
maximal number of zero-valued variables extend-
ing the clique (-1: no limit)
Range: {-1, ..., ∞}

1000

separating/clique/priority
priority of separator <clique>
Range: {-536870912, ..., 536870911}

-5000

separating/clique/scaleval
factor for scaling weights
Range: [1, ∞]

1000

5.34.4.230 separating/closecuts

Option Description Default

separating/closecuts/freq
frequency for calling separator <closecuts> (-1:
never, 0: only in root node)
Range: {-1, ..., 65534}

-1

Options for expert users

separating/closecuts/closethres
threshold on number of generated cuts below
which the ordinary separation is started
Range: {-1, ..., ∞}

50

separating/closecuts/delay
should separator be delayed, if other separators
found cuts?
Range: boolean

0

separating/closecuts/expbackoff
base for exponential increase of frequency at
which separator <closecuts> is called (1: call
at each multiple of frequency)
Range: {1, ..., 100}

4

separating/closecuts/inclobjcutoff
include an objective cutoff when computing the
relative interior?
Range: boolean

0

separating/closecuts/maxbounddist
maximal relative distance from current node's
dual bound to primal bound compared to
best node's dual bound for applying separator
<closecuts> (0.0: only on current best node, 1.0:
on all nodes)
Range: [0, 1]

1

separating/closecuts/maxlpiterfactor
factor for maximal LP iterations in relative inte-
rior computation compared to node LP iterations
(negative for no limit)
Range: [-1, ∞]

10

separating/closecuts/maxunsuccessful
turn off separation in current node after unsuc-
cessful calls (-1 never turn off)
Range: {-1, ..., ∞}

0

2694 Solver Manuals

Option Description Default

separating/closecuts/priority
priority of separator <closecuts>
Range: {-536870912, ..., 536870911}

1000000

separating/closecuts/recomputerelint
recompute relative interior point in each separa-
tion call?
Range: boolean

0

separating/closecuts/sepacombvalue
convex combination value for close cuts
Range: [0, 1]

0.3

separating/closecuts/separelint
generate close cuts w.r.t. relative interior point
(best solution otherwise)?
Range: boolean

1

5.34.4.231 separating/cmir

Option Description Default

separating/cmir/freq
frequency for calling separator <cmir> (-1: never, 0:
only in root node)
Range: {-1, ..., 65534}

10

Options for expert users

separating/cmir/delay
should separator be delayed, if other separators found
cuts?
Range: boolean

0

separating/cmir/expbackoff
base for exponential increase of frequency at which sep-
arator <cmir> is called (1: call at each multiple of
frequency)
Range: {1, ..., 100}

4

separating/cmir/maxbounddist
maximal relative distance from current node's dual
bound to primal bound compared to best node's dual
bound for applying separator <cmir> (0.0: only on cur-
rent best node, 1.0: on all nodes)
Range: [0, 1]

0

separating/cmir/priority
priority of separator <cmir>
Range: {-536870912, ..., 536870911}

-100000

5.34.4.232 separating/convexproj

Option Description Default

separating/convexproj/freq
frequency for calling separator <convexproj> (-1:
never, 0: only in root node)
Range: {-1, ..., 65534}

-1

separating/convexproj/maxdepth
maximal depth at which the separator is applied
(-1: unlimited)
Range: {-1, ..., ∞}

-1

Options for expert users

separating/convexproj/delay
should separator be delayed, if other separators
found cuts?
Range: boolean

1

separating/convexproj/expbackoff
base for exponential increase of frequency at which
separator <convexproj> is called (1: call at each
multiple of frequency)
Range: {1, ..., 100}

4

5.34 SCIP 2695

Option Description Default

separating/convexproj/maxbounddist
maximal relative distance from current node's
dual bound to primal bound compared to
best node's dual bound for applying separator
<convexproj> (0.0: only on current best node,
1.0: on all nodes)
Range: [0, 1]

1

separating/convexproj/nlpiterlimit
iteration limit of NLP solver; 0 for no limit
Range: {0, ..., ∞}

250

separating/convexproj/priority
priority of separator <convexproj>
Range: {-536870912, ..., 536870911}

0

5.34.4.233 separating/disjunctive

Option Description Default

separating/disjunctive/freq
frequency for calling separator
<disjunctive> (-1: never, 0: only in
root node)
Range: {-1, ..., 65534}

0

separating/disjunctive/maxrank
maximal rank of a disj. cut that could not be
scaled to integral coefficients (-1: unlimited)
Range: {-1, ..., ∞}

20

separating/disjunctive/maxrankintegral
maximal rank of a disj. cut that could be
scaled to integral coefficients (-1: unlimited)
Range: {-1, ..., ∞}

-1

Options for expert users

separating/disjunctive/delay
should separator be delayed, if other separa-
tors found cuts?
Range: boolean

1

separating/disjunctive/expbackoff
base for exponential increase of frequency
at which separator <disjunctive> is called
(1: call at each multiple of frequency)
Range: {1, ..., 100}

4

separating/disjunctive/maxbounddist
maximal relative distance from current
node's dual bound to primal bound com-
pared to best node's dual bound for apply-
ing separator <disjunctive> (0.0: only on
current best node, 1.0: on all nodes)
Range: [0, 1]

0

separating/disjunctive/maxconfsdelay
delay separation if number of conflict graph
edges is larger than predefined value (-1: no
limit)
Range: {-1, ..., ∞}

100000

separating/disjunctive/maxdepth
node depth of separating bipartite disjunc-
tive cuts (-1: no limit)
Range: {-1, ..., ∞}

-1

separating/disjunctive/maxinvcuts
maximal number of cuts investigated per
iteration in a branching node
Range: {0, ..., ∞}

50

separating/disjunctive/maxinvcutsroot
maximal number of cuts investigated per
iteration in the root node
Range: {0, ..., ∞}

250

2696 Solver Manuals

Option Description Default

separating/disjunctive/maxrounds
maximal number of separation rounds per
iteration in a branching node (-1: no limit)
Range: {-1, ..., ∞}

25

separating/disjunctive/maxroundsroot
maximal number of separation rounds in the
root node (-1: no limit)
Range: {-1, ..., ∞}

100

separating/disjunctive/maxweightrange
maximal valid range
max(|weights|)/min(|weights|) of row
weights
Range: [1, ∞]

1000

separating/disjunctive/priority
priority of separator <disjunctive>
Range: {-536870912, ..., 536870911}

10

separating/disjunctive/strengthen
strengthen cut if integer variables are
present.
Range: boolean

1

5.34.4.234 separating/eccuts

Option Description Default

separating/eccuts/cutmaxrange
maximal coef. range of a cut (max coef. divided by
min coef.) in order to be added to LP relaxation
Range: [0, ∞]

1e+07

separating/eccuts/dynamiccuts
should generated cuts be removed from the LP if
they are no longer tight?
Range: boolean

1

separating/eccuts/freq
frequency for calling separator <eccuts> (-1: never,
0: only in root node)
Range: {-1, ..., 65534}

-1

separating/eccuts/maxdepth
maximal depth at which the separator is applied
(-1: unlimited)
Range: {-1, ..., ∞}

-1

separating/eccuts/maxrounds
maximal number of eccuts separation rounds per
node (-1: unlimited)
Range: {-1, ..., ∞}

10

separating/eccuts/maxroundsroot
maximal number of eccuts separation rounds in the
root node (-1: unlimited)
Range: {-1, ..., ∞}

250

separating/eccuts/maxsepacuts
maximal number of edge-concave cuts separated per
separation round
Range: {0, ..., ∞}

10

separating/eccuts/maxsepacutsroot
maximal number of edge-concave cuts separated per
separation round in the root node
Range: {0, ..., ∞}

50

separating/eccuts/minviolation
minimal violation of an edge-concave cut to be sep-
arated
Range: [0, 0.5]

0.3

Options for expert users

separating/eccuts/delay
should separator be delayed, if other separators
found cuts?
Range: boolean

0

5.34 SCIP 2697

Option Description Default

separating/eccuts/expbackoff
base for exponential increase of frequency at which
separator<eccuts> is called (1: call at each multiple
of frequency)
Range: {1, ..., 100}

4

separating/eccuts/maxaggrsize
search for edge-concave aggregations of at most this
size
Range: {3, ..., 5}

4

separating/eccuts/maxbilinterms
maximum number of bilinear terms allowed to be
in a quadratic constraint
Range: {0, ..., ∞}

500

separating/eccuts/maxbounddist
maximal relative distance from current node's dual
bound to primal bound compared to best node's
dual bound for applying separator <eccuts> (0.0:
only on current best node, 1.0: on all nodes)
Range: [0, 1]

1

separating/eccuts/maxstallrounds
maximum number of unsuccessful rounds in the
edge-concave aggregation search
Range: {0, ..., ∞}

5

separating/eccuts/minaggrsize
search for edge-concave aggregations of at least this
size
Range: {3, ..., 5}

3

separating/eccuts/priority
priority of separator <eccuts>
Range: {-536870912, ..., 536870911}

-13000

5.34.4.235 separating/flowcover

Option Description Default

separating/flowcover/freq
frequency for calling separator <flowcover> (-1:
never, 0: only in root node)
Range: {-1, ..., 65534}

10

Options for expert users

separating/flowcover/delay
should separator be delayed, if other separators
found cuts?
Range: boolean

0

separating/flowcover/expbackoff
base for exponential increase of frequency at which
separator <flowcover> is called (1: call at each
multiple of frequency)
Range: {1, ..., 100}

4

separating/flowcover/maxbounddist
maximal relative distance from current node's dual
bound to primal bound compared to best node's
dual bound for applying separator <flowcover>
(0.0: only on current best node, 1.0: on all nodes)
Range: [0, 1]

0

separating/flowcover/priority
priority of separator <flowcover>
Range: {-536870912, ..., 536870911}

-100000

5.34.4.236 separating/gauge

2698 Solver Manuals

Option Description Default

separating/gauge/freq
frequency for calling separator <gauge> (-1: never, 0:
only in root node)
Range: {-1, ..., 65534}

-1

Options for expert users

separating/gauge/delay
should separator be delayed, if other separators found
cuts?
Range: boolean

0

separating/gauge/expbackoff
base for exponential increase of frequency at which
separator <gauge> is called (1: call at each multiple
of frequency)
Range: {1, ..., 100}

4

separating/gauge/maxbounddist
maximal relative distance from current node's dual
bound to primal bound compared to best node's dual
bound for applying separator <gauge> (0.0: only on
current best node, 1.0: on all nodes)
Range: [0, 1]

1

separating/gauge/nlpiterlimit
iteration limit of NLP solver; 0 for no limit
Range: {0, ..., ∞}

1000

separating/gauge/priority
priority of separator <gauge>
Range: {-536870912, ..., 536870911}

0

5.34.4.237 separating/gomory

Option Description Default

separating/gomory/away
minimal integrality violation of a basis variable in
order to try Gomory cut
Range: [0.0001, 0.5]

0.01

separating/gomory/dynamiccuts
should generated cuts be removed from the LP if
they are no longer tight?
Range: boolean

1

separating/gomory/freq
frequency for calling separator <gomory> (-1:
never, 0: only in root node)
Range: {-1, ..., 65534}

10

separating/gomory/maxrank
maximal rank of a gomory cut that could not be
scaled to integral coefficients (-1: unlimited)
Range: {-1, ..., ∞}

-1

separating/gomory/maxrankintegral
maximal rank of a gomory cut that could be scaled
to integral coefficients (-1: unlimited)
Range: {-1, ..., ∞}

-1

separating/gomory/maxrounds
maximal number of gomory separation rounds per
node (-1: unlimited)
Range: {-1, ..., ∞}

5

separating/gomory/maxroundsroot
maximal number of gomory separation rounds in
the root node (-1: unlimited)
Range: {-1, ..., ∞}

10

separating/gomory/maxsepacuts
maximal number of gomory cuts separated per
separation round
Range: {0, ..., ∞}

50

separating/gomory/maxsepacutsroot
maximal number of gomory cuts separated per
separation round in the root node
Range: {0, ..., ∞}

200

5.34 SCIP 2699

Option Description Default

Options for expert users

separating/gomory/delay
should separator be delayed, if other separators
found cuts?
Range: boolean

0

separating/gomory/delayedcuts
should cuts be added to the delayed cut pool?
Range: boolean

0

separating/gomory/expbackoff
base for exponential increase of frequency at which
separator <gomory> is called (1: call at each
multiple of frequency)
Range: {1, ..., 100}

4

separating/gomory/forcecuts
if conversion to integral coefficients failed still con-
sider the cut
Range: boolean

1

separating/gomory/genbothgomscg
Should both Gomory and strong CG cuts be gen-
erated (otherwise take best)?
Range: boolean

1

separating/gomory/makeintegral
try to scale cuts to integral coefficients
Range: boolean

0

separating/gomory/maxbounddist
maximal relative distance from current node's dual
bound to primal bound compared to best node's
dual bound for applying separator <gomory> (0.0:
only on current best node, 1.0: on all nodes)
Range: [0, 1]

1

separating/gomory/priority
priority of separator <gomory>
Range: {-536870912, ..., 536870911}

-1000

separating/gomory/separaterows
separate rows with integral slack
Range: boolean

1

separating/gomory/sidetypebasis
choose side types of row (lhs/rhs) based on basis
information?
Range: boolean

1

separating/gomory/trystrongcg
try to generate strengthened Chvatal-Gomory
cuts?
Range: boolean

1

5.34.4.238 separating/gomorymi

Option Description Default

separating/gomorymi/freq
frequency for calling separator <gomorymi> (-1:
never, 0: only in root node)
Range: {-1, ..., 65534}

10

Options for expert users

separating/gomorymi/delay
should separator be delayed, if other separators
found cuts?
Range: boolean

0

separating/gomorymi/expbackoff
base for exponential increase of frequency at which
separator <gomorymi> is called (1: call at each
multiple of frequency)
Range: {1, ..., 100}

4

2700 Solver Manuals

Option Description Default

separating/gomorymi/maxbounddist
maximal relative distance from current node's dual
bound to primal bound compared to best node's
dual bound for applying separator <gomorymi>
(0.0: only on current best node, 1.0: on all nodes)
Range: [0, 1]

0

separating/gomorymi/priority
priority of separator <gomorymi>
Range: {-536870912, ..., 536870911}

-100000

5.34.4.239 separating/impliedbounds

Option Description Default

separating/impliedbounds/freq
frequency for calling separator
<impliedbounds> (-1: never, 0: only
in root node)
Range: {-1, ..., 65534}

10

Options for expert users

separating/impliedbounds/delay
should separator be delayed, if other separa-
tors found cuts?
Range: boolean

0

separating/impliedbounds/expbackoff
base for exponential increase of frequency at
which separator <impliedbounds> is called
(1: call at each multiple of frequency)
Range: {1, ..., 100}

4

separating/impliedbounds/maxbounddist
maximal relative distance from current
node's dual bound to primal bound com-
pared to best node's dual bound for apply-
ing separator <impliedbounds> (0.0: only
on current best node, 1.0: on all nodes)
Range: [0, 1]

1

separating/impliedbounds/priority
priority of separator <impliedbounds>
Range: {-536870912, ..., 536870911}

-50

separating/impliedbounds/usetwosizecliques
should violated inequalities for cliques with
2 variables be separated?
Range: boolean

1

5.34.4.240 separating/interminor

Option Description Default

separating/interminor/freq
frequency for calling separator
<interminor> (-1: never, 0: only in
root node)
Range: {-1, ..., 65534}

-1

separating/interminor/maxrounds
maximal number of separation rounds per
node (-1: unlimited)
Range: {-1, ..., ∞}

10

separating/interminor/maxroundsroot
maximal number of separation rounds in the
root node (-1: unlimited)
Range: {-1, ..., ∞}

-1

separating/interminor/mincutviol
minimum required violation of a cut
Range: [0, ∞]

0.0001

5.34 SCIP 2701

Option Description Default

separating/interminor/usebounds
whether to also enforce nonegativity bounds
of principle minors
Range: boolean

0

separating/interminor/usestrengthening
whether to use strengthened intersection
cuts to separate minors
Range: boolean

0

Options for expert users

separating/interminor/delay
should separator be delayed, if other separa-
tors found cuts?
Range: boolean

0

separating/interminor/expbackoff
base for exponential increase of frequency
at which separator <interminor> is called
(1: call at each multiple of frequency)
Range: {1, ..., 100}

4

separating/interminor/maxbounddist
maximal relative distance from current
node's dual bound to primal bound com-
pared to best node's dual bound for apply-
ing separator <interminor> (0.0: only on
current best node, 1.0: on all nodes)
Range: [0, 1]

1

separating/interminor/priority
priority of separator <interminor>
Range: {-536870912, ..., 536870911}

0

5.34.4.241 separating/intobj

Option Description Default

separating/intobj/freq
frequency for calling separator <intobj> (-1: never, 0:
only in root node)
Range: {-1, ..., 65534}

-1

Options for expert users

separating/intobj/delay
should separator be delayed, if other separators found
cuts?
Range: boolean

0

separating/intobj/expbackoff
base for exponential increase of frequency at which
separator <intobj> is called (1: call at each multiple
of frequency)
Range: {1, ..., 100}

4

separating/intobj/maxbounddist
maximal relative distance from current node's dual
bound to primal bound compared to best node's dual
bound for applying separator <intobj> (0.0: only on
current best node, 1.0: on all nodes)
Range: [0, 1]

0

separating/intobj/priority
priority of separator <intobj>
Range: {-536870912, ..., 536870911}

-100

5.34.4.242 separating/knapsackcover

2702 Solver Manuals

Option Description Default

separating/knapsackcover/freq
frequency for calling separator
<knapsackcover> (-1: never, 0: only
in root node)
Range: {-1, ..., 65534}

10

Options for expert users

separating/knapsackcover/delay
should separator be delayed, if other separa-
tors found cuts?
Range: boolean

0

separating/knapsackcover/expbackoff
base for exponential increase of frequency at
which separator <knapsackcover> is called
(1: call at each multiple of frequency)
Range: {1, ..., 100}

4

separating/knapsackcover/maxbounddist
maximal relative distance from current
node's dual bound to primal bound com-
pared to best node's dual bound for apply-
ing separator <knapsackcover> (0.0: only
on current best node, 1.0: on all nodes)
Range: [0, 1]

0

separating/knapsackcover/priority
priority of separator <knapsackcover>
Range: {-536870912, ..., 536870911}

-100000

5.34.4.243 separating/mcf

Option Description Default

separating/mcf/dynamiccuts
should generated cuts be removed from the
LP if they are no longer tight?
Range: boolean

1

separating/mcf/freq
frequency for calling separator <mcf> (-1:
never, 0: only in root node)
Range: {-1, ..., 65534}

0

separating/mcf/maxsepacuts
maximal number of mcf cuts separated per
separation round
Range: {-1, ..., ∞}

100

separating/mcf/maxsepacutsroot
maximal number of mcf cuts separated per
separation round in the root node – default
separation
Range: {-1, ..., ∞}

200

Options for expert users

separating/mcf/checkcutshoreconnectivity
should we separate only if the cuts shores
are connected?
Range: boolean

1

separating/mcf/delay
should separator be delayed, if other separa-
tors found cuts?
Range: boolean

0

separating/mcf/expbackoff
base for exponential increase of frequency
at which separator <mcf> is called (1: call
at each multiple of frequency)
Range: {1, ..., 100}

4

separating/mcf/fixintegralrhs
should an additional variable be comple-
mented if f0 = 0?
Range: boolean

1

5.34 SCIP 2703

Option Description Default

separating/mcf/maxarcinconsistencyratio
maximum inconsistency ratio of arcs not to
be deleted
Range: [0, ∞]

0.5

separating/mcf/maxbounddist
maximal relative distance from current
node's dual bound to primal bound com-
pared to best node's dual bound for apply-
ing separator <mcf> (0.0: only on current
best node, 1.0: on all nodes)
Range: [0, 1]

0

separating/mcf/maxinconsistencyratio
maximum inconsistency ratio for separation
at all
Range: [0, ∞]

0.02

separating/mcf/maxtestdelta
maximal number of different deltas to try
(-1: unlimited) – default separation
Range: {-1, ..., ∞}

20

separating/mcf/maxweightrange
maximal valid range
max(|weights|)/min(|weights|) of row
weights
Range: [1, ∞]

1e+06

separating/mcf/modeltype
model type of network (0: auto, 1:directed,
2:undirected)
Range: {0, ..., 2}

0

separating/mcf/nclusters
number of clusters to generate in the
shrunken network – default separation
Range: {2, ..., 32}

5

separating/mcf/priority
priority of separator <mcf>
Range: {-536870912, ..., 536870911}

-10000

separating/mcf/separateflowcutset
should we separate flowcutset inequalities
on the network cuts?
Range: boolean

1

separating/mcf/separateknapsack
should we separate knapsack cover inequali-
ties on the network cuts?
Range: boolean

1

separating/mcf/separatesinglenodecuts
should we separate inequalities based on
single-node cuts?
Range: boolean

1

separating/mcf/trynegscaling
should negative values also be tested in scal-
ing?
Range: boolean

0

5.34.4.244 separating/minor

Option Description Default

separating/minor/freq
frequency for calling separator <minor> (-1:
never, 0: only in root node)
Range: {-1, ..., 65534}

10

separating/minor/ignorepackingconss
whether to ignore circle packing constraints during
minor detection
Range: boolean

1

separating/minor/maxminorsconst
constant for the maximum number of minors, i.e.,
max(const, fac ∗ # quadratic terms)
Range: {0, ..., ∞}

3000

2704 Solver Manuals

Option Description Default

separating/minor/maxminorsfac
factor for the maximum number of minors, i.e.,
max(const, fac ∗ # quadratic terms)
Range: [0, ∞]

10

separating/minor/maxrounds
maximal number of separation rounds per node
(-1: unlimited)
Range: {-1, ..., ∞}

10

separating/minor/maxroundsroot
maximal number of separation rounds in the root
node (-1: unlimited)
Range: {-1, ..., ∞}

-1

separating/minor/mincutviol
minimum required violation of a cut
Range: [0, ∞]

0.0001

Options for expert users

separating/minor/delay
should separator be delayed, if other separators
found cuts?
Range: boolean

0

separating/minor/expbackoff
base for exponential increase of frequency at which
separator <minor> is called (1: call at each mul-
tiple of frequency)
Range: {1, ..., 100}

4

separating/minor/maxbounddist
maximal relative distance from current node's dual
bound to primal bound compared to best node's
dual bound for applying separator <minor> (0.0:
only on current best node, 1.0: on all nodes)
Range: [0, 1]

1

separating/minor/priority
priority of separator <minor>
Range: {-536870912, ..., 536870911}

0

5.34.4.245 separating/mixing

Option Description Default

separating/mixing/freq
frequency for calling separator <mixing> (-1:
never, 0: only in root node)
Range: {-1, ..., 65534}

10

separating/mixing/maxnunsuccessful
maximal number of consecutive unsuccessful iter-
ations
Range: {-1, ..., ∞}

10

separating/mixing/maxrounds
maximal number of mixing separation rounds per
node (-1: unlimited)
Range: {-1, ..., ∞}

-1

separating/mixing/maxroundsroot
maximal number of mixing separation rounds in
the root node (-1: unlimited)
Range: {-1, ..., ∞}

-1

Options for expert users

separating/mixing/delay
should separator be delayed, if other separators
found cuts?
Range: boolean

0

separating/mixing/expbackoff
base for exponential increase of frequency at which
separator <mixing> is called (1: call at each mul-
tiple of frequency)
Range: {1, ..., 100}

4

5.34 SCIP 2705

Option Description Default

separating/mixing/iscutsonints
Should general integer variables be used to gener-
ate cuts?
Range: boolean

0

separating/mixing/maxbounddist
maximal relative distance from current node's dual
bound to primal bound compared to best node's
dual bound for applying separator <mixing> (0.0:
only on current best node, 1.0: on all nodes)
Range: [0, 1]

1

separating/mixing/priority
priority of separator <mixing>
Range: {-536870912, ..., 536870911}

-50

separating/mixing/uselocalbounds
Should local bounds be used?
Range: boolean

0

5.34.4.246 separating/oddcycle

Option Description Default

separating/oddcycle/freq
frequency for calling separator <oddcycle> (-1:
never, 0: only in root node)
Range: {-1, ..., 65534}

-1

separating/oddcycle/liftoddcycles
Should odd cycle cuts be lifted?
Range: boolean

0

separating/oddcycle/maxrounds
maximal number of oddcycle separation rounds
per node (-1: unlimited)
Range: {-1, ..., ∞}

10

separating/oddcycle/maxroundsroot
maximal number of oddcycle separation rounds
in the root node (-1: unlimited)
Range: {-1, ..., ∞}

10

separating/oddcycle/maxsepacuts
maximal number of oddcycle cuts separated per
separation round
Range: {0, ..., ∞}

5000

separating/oddcycle/maxsepacutsroot
maximal number of oddcycle cuts separated per
separation round in the root node
Range: {0, ..., ∞}

5000

separating/oddcycle/usegls
Should the search method by Groetschel, Lovasz,
Schrijver be used? Otherwise use levelgraph
method by Hoffman, Padberg.
Range: boolean

1

Options for expert users

separating/oddcycle/addselfarcs
add links between a variable and its negated
Range: boolean

1

separating/oddcycle/allowmultiplecuts
Even if a variable is already covered by a cut,
still allow another cut to cover it too?
Range: boolean

1

separating/oddcycle/cutthreshold
maximal number of other cuts s.t. separation is
applied (-1 for direct call)
Range: {-1, ..., ∞}

-1

separating/oddcycle/delay
should separator be delayed, if other separators
found cuts?
Range: boolean

0

2706 Solver Manuals

Option Description Default

separating/oddcycle/expbackoff
base for exponential increase of frequency at
which separator <oddcycle> is called (1: call at
each multiple of frequency)
Range: {1, ..., 100}

4

separating/oddcycle/includetriangles
separate triangles found as 3-cycles or repaired
larger cycles
Range: boolean

1

separating/oddcycle/lpliftcoef
Choose lifting candidate by coef∗lpvalue or only
by coef?
Range: boolean

0

separating/oddcycle/maxbounddist
maximal relative distance from current node's
dual bound to primal bound compared to
best node's dual bound for applying separator
<oddcycle> (0.0: only on current best node, 1.0:
on all nodes)
Range: [0, 1]

1

separating/oddcycle/maxcutslevel
maximal number of oddcycle cuts generated in
every level of the level graph
Range: {0, ..., ∞}

50

separating/oddcycle/maxcutsroot
maximal number of oddcycle cuts generated per
chosen variable as root of the level graph
Range: {0, ..., ∞}

1

separating/oddcycle/maxnlevels
maximal number of levels in level graph
Range: {0, ..., ∞}

20

separating/oddcycle/maxpernodeslevel
percentage of nodes allowed in the same level of
the level graph [0-100]
Range: {0, ..., 100}

100

separating/oddcycle/maxreference
minimal weight on an edge (in level graph or
bipartite graph)
Range: {0, ..., ∞}

0

separating/oddcycle/maxunsucessfull
number of unsuccessful calls at current node
Range: {0, ..., ∞}

3

separating/oddcycle/multiplecuts
Even if a variable is already covered by a cut,
still try it as start node for a cycle search?
Range: boolean

0

separating/oddcycle/offsetnodeslevel
offset of nodes allowed in the same level of the
level graph (additional to the percentage of lev-
elnodes)
Range: {0, ..., ∞}

10

separating/oddcycle/offsettestvars
offset of variables to try the chosen method on
(additional to the percentage of testvars)
Range: {0, ..., ∞}

100

separating/oddcycle/percenttestvars
percentage of variables to try the chosen method
on [0-100]
Range: {0, ..., 100}

0

separating/oddcycle/priority
priority of separator <oddcycle>
Range: {-536870912, ..., 536870911}

-15000

separating/oddcycle/recalcliftcoef
Calculate lifting coefficient of every candidate in
every step (or only if its chosen)?
Range: boolean

1

separating/oddcycle/repaircycles
try to repair violated cycles with double appear-
ance of a variable
Range: boolean

1

5.34 SCIP 2707

Option Description Default

separating/oddcycle/scalingfactor
factor for scaling of the arc-weights
Range: {1, ..., ∞}

1000

separating/oddcycle/sortrootneighbors
sort level of the root neighbors by fractionality
(maxfrac)
Range: boolean

1

separating/oddcycle/sortswitch
use sorted variable array (unsorted(0), maxlp(1),
minlp(2), maxfrac(3), minfrac(4))
Range: {0, ..., 4}

3

5.34.4.247 separating/rapidlearning

Option Description Default

separating/rapidlearning/freq
frequency for calling separator
<rapidlearning> (-1: never, 0: only
in root node)
Range: {-1, ..., 65534}

5

Options for expert users

separating/rapidlearning/applybdchgs
should the found global bound deductions
be applied in the original SCIP?
Range: boolean

1

separating/rapidlearning/applyconflicts
should the found conflicts be applied in the
original SCIP?
Range: boolean

1

separating/rapidlearning/applyinfervals
should the inference values be used as ini-
tialization in the original SCIP?
Range: boolean

1

separating/rapidlearning/applyprimalsol
should the incumbent solution be copied to
the original SCIP?
Range: boolean

1

separating/rapidlearning/applysolved
should a solved status be copied to the orig-
inal SCIP?
Range: boolean

1

separating/rapidlearning/checkdegeneracy
should local LP degeneracy be checked?
Range: boolean

1

separating/rapidlearning/checkdualbound
should the progress on the dual bound be
checked?
Range: boolean

0

separating/rapidlearning/checkexec
check whether rapid learning should be exe-
cuted
Range: boolean

1

separating/rapidlearning/checkleaves
should the ratio of leaves proven to be in-
feasible and exceeding the cutoff bound be
checked?
Range: boolean

0

separating/rapidlearning/checknsols
should the number of solutions found so far
be checked?
Range: boolean

1

separating/rapidlearning/checkobj
should the (local) objective function be
checked?
Range: boolean

0

separating/rapidlearning/contvars
should rapid learning be applied when there
are continuous variables?
Range: boolean

0

2708 Solver Manuals

Option Description Default

separating/rapidlearning/contvarsquot
maximal portion of continuous variables to
apply rapid learning
Range: [0, 1]

0.3

separating/rapidlearning/copycuts
should all active cuts from cutpool be copied
to constraints in subproblem?
Range: boolean

1

separating/rapidlearning/delay
should separator be delayed, if other separa-
tors found cuts?
Range: boolean

0

separating/rapidlearning/expbackoff
base for exponential increase of frequency at
which separator <rapidlearning> is called
(1: call at each multiple of frequency)
Range: {1, ..., 100}

4

separating/rapidlearning/lpiterquot
maximal fraction of LP iterations compared
to node LP iterations
Range: [0, ∞]

0.2

separating/rapidlearning/maxbounddist
maximal relative distance from current
node's dual bound to primal bound com-
pared to best node's dual bound for apply-
ing separator <rapidlearning> (0.0: only on
current best node, 1.0: on all nodes)
Range: [0, 1]

1

separating/rapidlearning/maxcalls
maximum number of overall calls
Range: {0, ..., ∞}

100

separating/rapidlearning/maxnconss
maximum problem size (constraints) for
which rapid learning will be called
Range: {0, ..., ∞}

10000

separating/rapidlearning/maxnodes
maximum number of nodes considered in
rapid learning run
Range: {0, ..., ∞}

5000

separating/rapidlearning/maxnvars
maximum problem size (variables) for which
rapid learning will be called
Range: {0, ..., ∞}

10000

separating/rapidlearning/mindegeneracy
minimal degeneracy threshold to allow local
rapid learning
Range: [0, 1]

0.7

separating/rapidlearning/mininflpratio
minimal threshold of inf/obj leaves to allow
local rapid learning
Range: [0, ∞]

10

separating/rapidlearning/minnodes
minimum number of nodes considered in
rapid learning run
Range: {0, ..., ∞}

500

separating/rapidlearning/minvarconsratio
minimal ratio of unfixed variables in relation
to basis size to allow local rapid learning
Range: [1, ∞]

2

separating/rapidlearning/nwaitingnodes
number of nodes that should be processed
before rapid learning is executed locally
based on the progress of the dualbound
Range: {0, ..., ∞}

100

separating/rapidlearning/priority
priority of separator <rapidlearning>
Range: {-536870912, ..., 536870911}

-1200000

5.34 SCIP 2709

Option Description Default

separating/rapidlearning/reducedinfer
should the inference values only be used
when rapidlearning found other reductions?
Range: boolean

0

5.34.4.248 separating/rlt

Option Description Default

separating/rlt/addtopool
if set to true, globally valid RLT cuts are added to
the global cut pool
Range: boolean

1

separating/rlt/detecthidden
if set to true, hidden products are detected and sepa-
rated by McCormick cuts
Range: boolean

0

separating/rlt/freq
frequency for calling separator <rlt> (-1: never, 0:
only in root node)
Range: {-1, ..., 65534}

0

separating/rlt/hiddenrlt
whether RLT cuts (TRUE) or only McCormick in-
equalities (FALSE) should be added for hidden prod-
ucts
Range: boolean

0

separating/rlt/maxncuts
maximal number of rlt-cuts that are added per round
(-1: unlimited)
Range: {-1, ..., ∞}

-1

separating/rlt/maxrounds
maximal number of separation rounds per node (-1:
unlimited)
Range: {-1, ..., ∞}

1

separating/rlt/maxroundsroot
maximal number of separation rounds in the root
node (-1: unlimited)
Range: {-1, ..., ∞}

10

separating/rlt/maxunknownterms
maximal number of unknown bilinear terms a row is
still used with (-1: unlimited)
Range: {-1, ..., ∞}

0

separating/rlt/maxusedvars
maximal number of variables used to compute rlt cuts
(-1: unlimited)
Range: {-1, ..., ∞}

100

separating/rlt/onlycontrows
if set to true, only continuous rows are used for rlt
cuts
Range: boolean

0

separating/rlt/onlyeqrows
if set to true, only equality rows are used for rlt cuts
Range: boolean

0

separating/rlt/onlyoriginal
if set to true, only original rows and variables are
used
Range: boolean

1

separating/rlt/useinsubscip
if set to true, rlt is also used in sub-scips
Range: boolean

0

separating/rlt/useprojection
if set to true, projected rows are checked first
Range: boolean

0

Options for expert users

separating/rlt/badscore
threshold for score of cut relative to best score to be
discarded
Range: [0, 1]

0.5

2710 Solver Manuals

Option Description Default

separating/rlt/delay
should separator be delayed, if other separators found
cuts?
Range: boolean

0

separating/rlt/dircutoffdistweight
weight of directed cutoff distance in cut score calcula-
tion
Range: [0, 1]

0

separating/rlt/efficacyweight
weight of efficacy in cut score calculation
Range: [0, 1]

1

separating/rlt/expbackoff
base for exponential increase of frequency at which
separator <rlt> is called (1: call at each multiple of
frequency)
Range: {1, ..., 100}

4

separating/rlt/goodmaxparall
maximum parallelism for good cuts
Range: [0, 1]

0.1

separating/rlt/goodscore
threshold for score of cut relative to best score to be
considered good, so that less strict filtering is applied
Range: [0, 1]

1

separating/rlt/maxbounddist
maximal relative distance from current node's dual
bound to primal bound compared to best node's dual
bound for applying separator <rlt> (0.0: only on
current best node, 1.0: on all nodes)
Range: [0, 1]

1

separating/rlt/maxparall
maximum parallelism for non-good cuts
Range: [0, 1]

0.1

separating/rlt/objparalweight
weight of objective parallelism in cut score calculation
Range: [0, 1]

0

separating/rlt/priority
priority of separator <rlt>
Range: {-536870912, ..., 536870911}

10

5.34.4.249 separating/strongcg

Option Description Default

separating/strongcg/freq
frequency for calling separator <strongcg> (-1:
never, 0: only in root node)
Range: {-1, ..., 65534}

10

Options for expert users

separating/strongcg/delay
should separator be delayed, if other separators
found cuts?
Range: boolean

0

separating/strongcg/expbackoff
base for exponential increase of frequency at which
separator <strongcg> is called (1: call at each mul-
tiple of frequency)
Range: {1, ..., 100}

4

separating/strongcg/maxbounddist
maximal relative distance from current node's dual
bound to primal bound compared to best node's
dual bound for applying separator <strongcg> (0.0:
only on current best node, 1.0: on all nodes)
Range: [0, 1]

0

separating/strongcg/priority
priority of separator <strongcg>
Range: {-536870912, ..., 536870911}

-100000

5.34 SCIP 2711

5.34.4.250 separating/zerohalf

Option Description Default

separating/zerohalf/dynamiccuts
should generated cuts be removed from the LP
if they are no longer tight?
Range: boolean

1

separating/zerohalf/freq
frequency for calling separator <zerohalf> (-1:
never, 0: only in root node)
Range: {-1, ..., 65534}

10

separating/zerohalf/initseed
initial seed used for random tie-breaking in cut
selection
Range: {0, ..., ∞}

24301

separating/zerohalf/maxcutcands
maximal number of zerohalf cuts considered per
separation round
Range: {0, ..., ∞}

2000

separating/zerohalf/maxrounds
maximal number of zerohalf separation rounds
per node (-1: unlimited)
Range: {-1, ..., ∞}

5

separating/zerohalf/maxroundsroot
maximal number of zerohalf separation rounds
in the root node (-1: unlimited)
Range: {-1, ..., ∞}

20

separating/zerohalf/maxsepacuts
maximal number of zerohalf cuts separated per
separation round
Range: {0, ..., ∞}

20

separating/zerohalf/maxsepacutsroot
maximal number of zerohalf cuts separated per
separation round in the root node
Range: {0, ..., ∞}

100

Options for expert users

separating/zerohalf/badscore
threshold for score of cut relative to best score
to be discarded
Range: [0, 1]

0.5

separating/zerohalf/delay
should separator be delayed, if other separators
found cuts?
Range: boolean

0

separating/zerohalf/densityoffset
additional number of variables allowed in row
on top of density
Range: {0, ..., ∞}

100

separating/zerohalf/dircutoffdistweight
weight of directed cutoff distance in cut score
calculation
Range: [0, 1]

0

separating/zerohalf/efficacyweight
weight of efficacy in cut score calculation
Range: [0, 1]

1

separating/zerohalf/expbackoff
base for exponential increase of frequency at
which separator <zerohalf> is called (1: call at
each multiple of frequency)
Range: {1, ..., 100}

4

separating/zerohalf/goodmaxparall
maximum parallelism for good cuts
Range: [0, 1]

0.1

separating/zerohalf/goodscore
threshold for score of cut relative to best score
to be considered good, so that less strict filtering
is applied
Range: [0, 1]

1

2712 Solver Manuals

Option Description Default

separating/zerohalf/maxbounddist
maximal relative distance from current node's
dual bound to primal bound compared to
best node's dual bound for applying separator
<zerohalf> (0.0: only on current best node, 1.0:
on all nodes)
Range: [0, 1]

1

separating/zerohalf/maxparall
maximum parallelism for non-good cuts
Range: [0, 1]

0.1

separating/zerohalf/maxrowdensity
maximal density of row to be used in aggregation
Range: [0, 1]

0.05

separating/zerohalf/maxslack
maximal slack of rows to be used in aggregation
Range: [0, ∞]

0

separating/zerohalf/maxslackroot
maximal slack of rows to be used in aggregation
in the root node
Range: [0, ∞]

0

separating/zerohalf/minviol
minimal violation to generate zerohalfcut for
Range: [0, ∞]

0.1

separating/zerohalf/objparalweight
weight of objective parallelism in cut score cal-
culation
Range: [0, 1]

0

separating/zerohalf/priority
priority of separator <zerohalf>
Range: {-536870912, ..., 536870911}

-6000

5.34.4.251 solvingphases

Option Description Default

solvingphases/enabled
should the event handler adapt the solver behavior?
Range: boolean

0

solvingphases/fallback
should the event handler fall back from optimal phase?
Range: boolean

0

solvingphases/feassetname
settings file for feasibility phase – precedence over em-
phasis settings
Range: string

-

solvingphases/improvesetname
settings file for improvement phase – precedence over
emphasis settings
Range: string

-

solvingphases/interruptoptimal
should the event handler interrupt the solving process
after optimal solution was found?
Range: boolean

0

solvingphases/nodeoffset
node offset for rank-1 and estimate transitions
Range: {1, ..., ∞}

50

solvingphases/optimalvalue
optimal solution value for problem
Range: real

∞

solvingphases/proofsetname
settings file for proof phase – precedence over emphasis
settings
Range: string

-

solvingphases/testmode
should the event handler test all phase transitions?
Range: boolean

0

solvingphases/transitionmethod
transition method: Possible options are
'e'stimate,'l'ogarithmic regression,'o'ptimal-value
based,'r'ank-1
Range: e, l, o, r

r

5.34 SCIP 2713

Option Description Default

solvingphases/useemphsettings
should emphasis settings for the solving phases be used,
or settings files?
Range: boolean

1

solvingphases/userestart1to2
should a restart be applied between the feasibility and
improvement phase?
Range: boolean

0

solvingphases/userestart2to3
should a restart be applied between the improvement
and the proof phase?
Range: boolean

0

solvingphases/xtype
x-type for logarithmic regression - (t)ime, (n)odes, (l)p
iterations
Range: l, n, t

n

5.34.4.252 table/branchrules

Option Description Default

table/branchrules/active
is statistics table <branchrules> active
Range: boolean

1

5.34.4.253 table/compression

Option Description Default

table/compression/active
is statistics table <compression> active
Range: boolean

1

5.34.4.254 table/concurrentsolver

Option Description Default

table/concurrentsolver/active
is statistics table <concurrentsolver> active
Range: boolean

1

5.34.4.255 table/conflict

Option Description Default

table/conflict/active
is statistics table <conflict> active
Range: boolean

1

5.34.4.256 table/cons nonlinear

Option Description Default

table/cons nonlinear/active
is statistics table <cons nonlinear> active
Range: boolean

0

5.34.4.257 table/constiming

2714 Solver Manuals

Option Description Default

table/constiming/active
is statistics table <constiming> active
Range: boolean

1

5.34.4.258 table/constraint

Option Description Default

table/constraint/active
is statistics table <constraint> active
Range: boolean

1

5.34.4.259 table/cutsel

Option Description Default

table/cutsel/active
is statistics table <cutsel> active
Range: boolean

1

5.34.4.260 table/estim

Option Description Default

table/estim/active
is statistics table <estim> active
Range: boolean

1

5.34.4.261 table/exprhdlr

Option Description Default

table/exprhdlr/active
is statistics table <exprhdlr> active
Range: boolean

1

5.34.4.262 table/heuristics

Option Description Default

table/heuristics/active
is statistics table <heuristics> active
Range: boolean

1

5.34.4.263 table/lp

Option Description Default

table/lp/active
is statistics table <lp> active
Range: boolean

1

5.34.4.264 table/neighborhood

5.34 SCIP 2715

Option Description Default

table/neighborhood/active
is statistics table <neighborhood> active
Range: boolean

1

5.34.4.265 table/nlhdlr

Option Description Default

table/nlhdlr/active
is statistics table <nlhdlr> active
Range: boolean

1

5.34.4.266 table/nlhdlr bilinear

Option Description Default

table/nlhdlr bilinear/active
is statistics table <nlhdlr bilinear> active
Range: boolean

0

5.34.4.267 table/nlhdlr quadratic

Option Description Default

table/nlhdlr quadratic/active
is statistics table <nlhdlr quadratic> active
Range: boolean

0

5.34.4.268 table/nlp

Option Description Default

table/nlp/active
is statistics table <nlp> active
Range: boolean

1

5.34.4.269 table/nlpi

Option Description Default

table/nlpi/active
is statistics table <nlpi> active
Range: boolean

1

5.34.4.270 table/orbitalfixing

Option Description Default

table/orbitalfixing/active
is statistics table <orbitalfixing> active
Range: boolean

1

5.34.4.271 table/origprob

2716 Solver Manuals

Option Description Default

table/origprob/active
is statistics table <origprob> active
Range: boolean

1

5.34.4.272 table/presolvedprob

Option Description Default

table/presolvedprob/active
is statistics table <presolvedprob> active
Range: boolean

1

5.34.4.273 table/presolver

Option Description Default

table/presolver/active
is statistics table <presolver> active
Range: boolean

1

5.34.4.274 table/pricer

Option Description Default

table/pricer/active
is statistics table <pricer> active
Range: boolean

1

5.34.4.275 table/propagator

Option Description Default

table/propagator/active
is statistics table <propagator> active
Range: boolean

1

5.34.4.276 table/relaxator

Option Description Default

table/relaxator/active
is statistics table <relaxator> active
Range: boolean

1

5.34.4.277 table/root

Option Description Default

table/root/active
is statistics table <root> active
Range: boolean

1

5.34.4.278 table/separator

5.34 SCIP 2717

Option Description Default

table/separator/active
is statistics table <separator> active
Range: boolean

1

5.34.4.279 table/solution

Option Description Default

table/solution/active
is statistics table <solution> active
Range: boolean

1

5.34.4.280 table/status

Option Description Default

table/status/active
is statistics table <status> active
Range: boolean

1

5.34.4.281 table/timing

Option Description Default

table/timing/active
is statistics table <timing> active
Range: boolean

1

5.34.4.282 table/tree

Option Description Default

table/tree/active
is statistics table <tree> active
Range: boolean

1

5.34.4.283 timing

Option Description Default

timing/clocktype
default clock type (1: CPU user seconds, 2: wall clock time)
Range: {1, ..., 2}

2

timing/enabled
is timing enabled?
Range: boolean

1

timing/nlpieval
should time for evaluation in NLP solves be measured?
Range: boolean

0

timing/rareclockcheck
should clock checks of solving time be performed less frequently
(note: time limit could be exceeded slightly)
Range: boolean

0

timing/reading
belongs reading time to solving time?
Range: boolean

0

timing/statistictiming
should timing for statistic output be performed?
Range: boolean

1

2718 Solver Manuals

5.35 SHOT

SHOT (Supporting Hyperplane Optimization Toolkit) is a deterministic solver for mixed-integer nonlinear
programming problems (MINLPs).

Originally, SHOT was intended for convex MINLP problems only, but now also has functionality to solve
nonconvex MINLP problems as a heuristic method without providing any guarantees of global optimality.
SHOT can solve certain nonconvex problem types to global optimality as well.

SHOT has mainly been developed by Andreas Lundell (Åbo Akademi University, Finland) and Jan
Kronqvist (Imperial College London, UK). For more details, see [126] [122] [112] [113] [121].

SHOT supports GAMS equations that use the following intrinsic functions: abs, cos, cvPower, div, exp,
log, log10, log2, pi, power, rPower, sin, sqr, sqrt, vcPower.

5.35.1 Algorithm

SHOT is based on iteratively creating a tighter polyhedral approximation of the nonlinear feasible set by
generating supporting hyperplanes or cutting planes. These linearized problems are then solved with a
mixed-integer linear programming (MIP) solver. GAMS/SHOT uses CPLEX, if a GAMS/CPLEX license
is available, and otherwise CBC. Users with a license from Gurobi can also select Gurobi as MIP solver. If
CPLEX or Gurobi is used, the subproblems can also include quadratic and bilinear nonlinearities directly.

The solution to the outer approximation problem provides a dual bound (i.e., a lower bound when solving
a minimization problem) to the optimal value of the original problem if it is convex. If the problem is
nonconvex, convergence to the global optimal solution cannot be guaranteed (but might be achieved for
certain classes of problems, cf. [122]).

To get a primal bound (i.e., an upper bound when solving a minimization problem) on the optimal value,
SHOT utilizes the following heuristics:

• Solving nonlinear programming (NLP) problems where the integer variables have been fixed to valid
values. This is done by calling an NLP solver, which is either Ipopt, one of the GAMS NLP solvers,
or SHOT itself.

• By checking solutions from the MIP solver's solution pool for points that fulfill also the nonlinear
constraints in the original MINLP problem.

• By performing root searches.

When a termination criterion like a tolerance on the relative or absolute objective gap or a time limit is
fulfilled, SHOT terminates and returns the current primal solution to GAMS. If the original problem is
convex and SHOT could close the objective gap, then this is a global optimal solution to the problem. If
it is nonconvex, then there is normally no guarantee that such a solution can be found. However, SHOT
will always, in addition to a primal solution, return a valid dual bound on the solution in model attribute
objest, unless Model.Convexity.AssumeConvex has been enabled.

5.35.2 Usage

The following statement can be used inside your GAMS program to specify using SHOT

Option MINLP = SHOT; { or MIQCP }

The above statement should appear before the Solve statement. If SHOT was specified as the default
MINLP or MIQCP solver during GAMS installation, the above statement is not necessary.

https://shotsolver.dev/

5.35 SHOT 2719

5.35.2.1 Specification of SHOT Options

GAMS/SHOT supports the GAMS parameters reslim, iterlim, nodlim, optcr, optca, cutoff, and threads.

Options can be specified by a SHOT options file. A SHOT options file consists of one option or comment
per line. An asterik (∗) at the beginning of a line causes the entire line to be ignored. Otherwise, the line
will be interpreted as an option name and value separated by an equal sign (=) and any amount of white
space (blanks or tabs).

A small example for a shot.opt file is:

Dual.CutStrategy = 1

Dual.MIP.Solver = 2

Output.Console.DualSolver.Show = true

It causes GAMS/SHOT to use the Extended Cutting Plane (ECP) method instead of the Extended
Supporting Hyperplane (EHP) method, changes the MIP solver to CBC, and enables showing the output
of the solver that computes dual bounds (typically the MIP solver).

Attention

SHOT requires options to be specified using exactly the names as specified in the documentation.
That is, also casing matters.

5.35.3 List of SHOT Options

In the following, we give a detailed list of all SHOT options.

5.35.3.1 Solver output

These settings control how much and what output is shown to the user from the solver.

Option Description Default

Output.Debug.Path
The folder where to save the debug information
Range: string

Output.GAMS.AlternateSolutionsFile
Name of GAMS GDX file to write alternative
solutions to
Range: string

Output.Console.Iteration.Detail
When should the fixed strategy be used
0: Full
1: On objective gap update
2: On objective gap update and all primal NLP
calls

1

Output.Console.LogLevel
Log level for console output
0: Trace
1: Debug
2: Info
3: Warning
4: Error
5: Critical
6: Off

2

Output.Console.DualSolver.Show
Show output from dual solver on console
Range: boolean

0

Output.Console.PrimalSolver.Show
Show output from primal solver on console
Range: boolean

0

Output.Debug.Enable
Use debug functionality
Range: boolean

0

2720 Solver Manuals

5.35.3.2 Subsolver functionality

These settings allow for more direct control of the different subsolvers utilized in SHOT.

Option Description Default

Subsolver.Cplex.WorkDirectory
Directory for swap file
Range: string

Subsolver.GAMS.NLP.OptionsFilename
Options file for the NLP solver in GAMS
Range: string

Subsolver.GAMS.NLP.Solver
NLP solver to use in GAMS (auto: SHOT
chooses)
Range: string

auto

Subsolver.Cbc.NodeStrategy
Node strategy
0: depth
1: downdepth
2: downfewest
3: fewest
4: hybrid
5: updepth
6: upfewest

4

Subsolver.Cbc.Scaling
Whether to scale problem
0: automatic
1: dynamic
2: equilibrium
3: geometric
4: off
5: rowsonly

4

Subsolver.Cbc.Strategy
This turns on newer features
0: easy problems
1: default
2: aggressive

1

Subsolver.Cplex.FeasOptMode
Strategy to use for the feasibility repair
0: Minimize the sum of all required relax-
ations in first phase only
1: Minimize the sum of all required relax-
ations in first phase and execute second
phase to find optimum among minimal re-
laxations
2: Minimize the number of constraints and
bounds requiring relaxation in first phase
only
3: Minimize the sum of squares of required
relaxations in first phase only
4: Minimize the sum of squares of required
relaxations in first phase and execute sec-
ond phase to find optimum among minimal
relaxations

0

Subsolver.Cplex.MIPEmphasis
Sets the MIP emphasis
0: Balanced
1: Feasibility
2: Optimality
3: Best bound
4: Hidden feasible

1

Subsolver.Cplex.MemoryEmphasis
Try to conserve memory when possible
Range: {0, ..., 1}

0

5.35 SHOT 2721

Option Description Default

Subsolver.Cplex.NodeFile
Where to store the node file
0: No file
1: Compressed in memory
2: On disk
3: Compressed on disk

1

Subsolver.Cplex.NumericalEmphasis
Emphasis on numerical stability
Range: {0, ..., 1}

1

Subsolver.Cplex.OptimalityTarget
Specifies how CPLEX treats nonconvex
quadratics
0: Automatic
1: Searches for a globally optimal solution
to a convex model
2: Searches for a solution that satisfies first-
order optimality conditions, but is not nec-
essarily globally optimal
3: Searches for a globally optimal solution
to a nonconvex model

0

Subsolver.Cplex.ParallelMode
Controls how much time and memory should
be used when filling the solution pool
-1: Opportunistic
0: Automatic
1: Deterministic

0

Subsolver.Cplex.Probe
Sets the MIP probing level
-1: No probing
0: Automatic
1: Moderate
2: Aggressive
3: Very aggressive

0

Subsolver.Cplex.SolutionPoolIntensity
Controls how much time and memory should
be used when filling the solution pool
0: Automatic
1: Mild
2: Moderate
3: Aggressive
4: Very aggressive

0

Subsolver.Cplex.SolutionPoolReplace
How to replace solutions in the solution pool
when full
0: Replace oldest
1: Replace worst
2: Find diverse

0

Subsolver.Gurobi.MIPFocus
MIP focus
0: Automatic
1: Feasibility
2: Optimality
3: Best bound

0

Subsolver.Gurobi.NumericFocus
MIP focus
0: Automatic
1: Mild
2: Moderate
3: Aggressive

1

Subsolver.Gurobi.PoolSearchMode
Finds extra solutions
0: No extra effort
1: Try to find solutions
2: Find n best solutions

0

2722 Solver Manuals

Option Description Default

Subsolver.Gurobi.PoolSolutions
Determines how many MIP solutions are
stored
Range: {1, ..., 2000000000}

10

Subsolver.Gurobi.ScaleFlag
Controls model scaling
-1: Automatic
0: Off
1: Mild
2: Moderate
3: Aggressive

-1

Subsolver.Ipopt.LinearSolver
Ipopt linear subsolver
0: Default
1: MA27
2: MA57
3: MA86
4: MA97
5: MUMPS

5

Subsolver.Ipopt.MaxIterations
Maximum number of iterations
Range: {0, ..., ∞}

1000

Subsolver.Rootsearch.MaxIterations
Maximal root search iterations
Range: {0, ..., ∞}

100

Subsolver.Rootsearch.Method
Root search method to use
0: TOMS748
1: Bisection

0

Subsolver.Cplex.SolutionPoolGap
Sets the relative gap filter on objective val-
ues in the solution pool
Range: [0, 1e+75]

1e+75

Subsolver.Cplex.WorkMemory
Memory limit for when to start swapping to
disk
Range: [0, 1e+75]

0

Subsolver.Gurobi.Heuristics
The relative amount of time spent in MIP
heuristics.
Range: [0, 1]

0.05

Subsolver.Ipopt.ConstraintViolationTolerance
Constraint violation tolerance in Ipopt
Range: real

1e-08

Subsolver.Ipopt.RelativeConvergenceTolerance
Relative convergence tolerance
Range: real

1e-08

Subsolver.Rootsearch.ActiveConstraintTolerance
Epsilon constraint tolerance for root search
Range: [0, ∞]

0

Subsolver.Rootsearch.TerminationTolerance
Epsilon lambda tolerance for root search
Range: [0, ∞]

1e-16

Subsolver.SHOT.ReuseHyperplanes.Fraction
The fraction of generated hyperplanes to
reuse.
Range: [0, 1]

0.1

Subsolver.Cbc.AutoScale
Whether to scale objective, rhs and bounds
of problem if they look odd (experimental)
Range: boolean

0

Subsolver.Cbc.DeterministicParallelMode
Run Cbc with multiple threads in determin-
istic mode
Range: boolean

0

Subsolver.Cplex.AddRelaxedLazyConstraintsAsLocal
Whether to add lazy constraints generated
in relaxed points as local or global
Range: boolean

0

5.35 SHOT 2723

Option Description Default

Subsolver.Cplex.UseGenericCallback
Use the new generic callback in the single-
tree strategy
Range: boolean

0

Subsolver.SHOT.ReuseHyperplanes.Use
Reuse valid generated hyperplanes in main
dual model.
Range: boolean

1

Subsolver.SHOT.UseFBBT
Do FBBT on NLP problem.
Range: boolean

1

5.35.3.3 Dual strategy

These settings control the various functionality of the dual strategy in SHOT, i.e., the polyhedral outer
approximation utilizing the ESH or ECP algorithms.

Option Description Default

Dual.CutStrategy
Dual cut strategy
0: ESH
1: ECP

0

Dual.ESH.InteriorPoint.CuttingPlane.IterationLimit
Iteration limit for minimax cut-
ting plane solver
Range: {1, ..., ∞}

100

Dual.ESH.InteriorPoint.CuttingPlane.IterationLimitSubsolver
Iteration limit for minimization
subsolver
Range: {0, ..., ∞}

100

Dual.ESH.InteriorPoint.UsePrimalSolution
Utilize primal solution as interior
point
0: No
1: Add as new
2: Replace old
3: Use avarage

1

Dual.HyperplaneCuts.MaxPerIteration
Maximal number of hyperplanes
to add per iteration
Range: {0, ..., ∞}

200

Dual.HyperplaneCuts.ObjectiveRootSearch
When to use the objective root
search
0: Always
1: IfConvex
2: Never

1

Dual.MIP.InfeasibilityRepair.IterationLimit
Max number of infeasible prob-
lems repaired without primal ob-
jective value improvement
Range: {0, ..., ∞}

100

Dual.MIP.NumberOfThreads
Number of threads to use in MIP
solver: 0: Automatic
Range: {0, ..., 999}

GAMS threads

Dual.MIP.Presolve.Frequency
When to call the MIP presolve
0: Never
1: Once
2: Always

1

Dual.MIP.SolutionLimit.ForceOptimal.Iteration
Iterations without dual bound
updates for forcing optimal MIP
solution
Range: {0, ..., ∞}

10000

2724 Solver Manuals

Option Description Default

Dual.MIP.SolutionLimit.IncreaseIterations
Max number of iterations be-
tween MIP solution limit in-
creases
Range: {0, ..., ∞}

50

Dual.MIP.SolutionLimit.Initial
Initial MIP solution limit
Range: {1, ..., ∞}

1

Dual.MIP.SolutionPool.Capacity
The maximum number of solu-
tions in the solution pool
Range: {0, ..., ∞}

100

Dual.MIP.Solver
Which MIP solver to use
0: Cplex
1: Gurobi
2: Cbc

Cplex, if licensed, otherwise Cbc

Dual.ReductionCut.MaxIterations
Max number of primal cut re-
duction without primal improve-
ment
Range: {0, ..., ∞}

5

Dual.Relaxation.Frequency
The frequency to solve an LP
problem: 0: Disable
Range: {0, ..., ∞}

0

Dual.Relaxation.IterationLimit
The max number of relaxed LP
problems to solve initially
Range: {0, ..., ∞}

200

Dual.Relaxation.MaxLazyConstraints
Max number of lazy constraints
to add in relaxed solutions in
single-tree strategy
Range: {0, ..., ∞}

0

Dual.TreeStrategy
The main strategy to use
0: Multi-tree
1: Single-tree

1

Dual.ESH.InteriorPoint.CuttingPlane.ConstraintSelectionFactor
The fraction of violated con-
straints to generate cutting
planes for
Range: [0, 1]

0.25

Dual.ESH.InteriorPoint.CuttingPlane.TerminationToleranceAbs
Absolute termination tolerance
between LP and linesearch ob-
jective
Range: [0, ∞]

1

Dual.ESH.InteriorPoint.CuttingPlane.TerminationToleranceRel
Relative termination tolerance
between LP and linesearch ob-
jective
Range: [0, ∞]

1

Dual.ESH.InteriorPoint.CuttingPlane.TimeLimit
Time limit for minimax solver
Range: [0, ∞]

10

Dual.ESH.InteriorPoint.MinimaxObjectiveLowerBound
Lower bound for minimax objec-
tive variable
Range: [-∞, 0]

-1e+12

Dual.ESH.InteriorPoint.MinimaxObjectiveUpperBound
Upper bound for minimax objec-
tive variable
Range: real

0.1

5.35 SHOT 2725

Option Description Default

Dual.ESH.Rootsearch.ConstraintTolerance
Constraint tolerance for when
not to add individual hyper-
planes
Range: [0, ∞]

1e-08

Dual.HyperplaneCuts.ConstraintSelectionFactor
The fraction of violated con-
straints to generate supporting
hyperplanes / cutting planes for
Range: [0, 1]

0.5

Dual.HyperplaneCuts.MaxConstraintFactor
Rootsearch performed on con-
straints with values larger than
this factor times the maximum
value
Range: [1e-06, 1]

0.1

Dual.MIP.CutOff.InitialValue
Initial cutoff value to use
Range: real

GAMS cutoff

Dual.MIP.CutOff.Tolerance
An extra tolerance for the ob-
jective cutoff value (to prevent
infeasible subproblems)
Range: real

1e-05

Dual.MIP.InfeasibilityRepair.TimeLimit
Time limit when reparing infea-
sible problem
Range: [0, ∞]

10

Dual.MIP.NodeLimit
Node limit to use for MIP solver
in single-tree strategy
Range: [0, ∞]

GAMS nodlim

Dual.MIP.OptimalityTolerance
The reduced-cost tolerance for
optimality in the MIP solver
Range: [1e-09, 0.01]

1e-06

Dual.MIP.SolutionLimit.ForceOptimal.Time
Time (s) without dual bound up-
dates for forcing optimal MIP
solution
Range: [0, ∞]

1000

Dual.MIP.SolutionLimit.UpdateTolerance
The constraint tolerance for
when to update MIP solution
limit
Range: [0, ∞]

0.001

Dual.ReductionCut.ReductionFactor
The factor used to reduce the
cutoff value
Range: [0, 1]

0.001

Dual.Relaxation.TerminationTolerance
Time limit (s) when solving LP
problems initially
Range: real

0.5

Dual.Relaxation.TimeLimit
Time limit (s) when solving LP
problems initially
Range: [0, ∞]

30

Dual.ESH.InteriorPoint.CuttingPlane.Reuse
Reuse valid cutting planes in
main dual model
Range: boolean

0

Dual.ESH.Rootsearch.UniqueConstraints
Allow only one hyperplane per
constraint per iteration
Range: boolean

0

2726 Solver Manuals

Option Description Default

Dual.ESH.Rootsearch.UseMaxFunction
Perform rootsearch on max func-
tion, otherwise on individual con-
straints
Range: boolean

0

Dual.HyperplaneCuts.Delay
Add hyperplane cuts to model
only after optimal MIP solution
Range: boolean

1

Dual.HyperplaneCuts.SaveHyperplanePoints
Whether to save the points in
the generated hyperplanes list
Range: boolean

0

Dual.HyperplaneCuts.UseIntegerCuts
Add integer cuts for infeasible
integer-combinations for binary
problems
Range: boolean

0

Dual.MIP.CutOff.UseInitialValue
Use the initial cutoff value
Range: boolean

1, if cutoff is set

Dual.MIP.InfeasibilityRepair.IntegerCuts
Allow feasibility repair of integer
cuts
Range: boolean

1

Dual.MIP.InfeasibilityRepair.Use
Enable the infeasibility repair
strategy for nonconvex problems
Range: boolean

1

Dual.MIP.Presolve.RemoveRedundantConstraints
Remove redundant constraints
(as determined by presolve)
Range: boolean

0

Dual.MIP.Presolve.UpdateObtainedBounds
Update bounds (from presolve)
to the MIP model
Range: boolean

1

Dual.MIP.UpdateObjectiveBounds
Update nonlinear objective vari-
able bounds to primal/dual
bounds
Range: boolean

0

Dual.ReductionCut.Use
Enable the dual reduction cut
strategy for nonconvex problems
Range: boolean

1

Dual.Relaxation.Use
Initially solve continuous dual re-
laxations
Range: boolean

1

5.35.3.4 Optimization model

These settings control various aspects of SHOT's representation for and handling of the provided opti-
mization model.

Option Description Default

Model.BoundTightening.FeasibilityBased.MaxIterations
Maximal number of bound tightening itera-
tions
Range: {0, ..., ∞}

5

Model.BoundTightening.InitialPOA.CutStrategy
Dual cut strategy
0: ESH
1: ECP

1

Model.BoundTightening.InitialPOA.IterationLimit
Iteration limit for POA
Range: {0, ..., ∞}

50

5.35 SHOT 2727

Option Description Default

Model.BoundTightening.InitialPOA.StagnationIterationLimit
Limit for iterations without significant
progress
Range: {0, ..., ∞}

5

Model.Reformulation.Bilinear.IntegerFormulation
Reformulate integer bilinear terms
0: No
1: No if nonconvex quadratic terms allowed
by MIP solver
2: Yes

1

Model.Reformulation.Bilinear.IntegerFormulation.MaxDomain
Do not reformulate integer variables in bi-
linear terms which can assume more than
this number of discrete values
Range: {2, ..., ∞}

100

Model.Reformulation.Constraint.PartitionNonlinearTerms
When to partition nonlinear sums in con-
straints
0: Always
1: If result is convex
2: Never

1

Model.Reformulation.Constraint.PartitionQuadraticTerms
When to partition quadratic sums in con-
straints
0: Always
1: If result is convex
2: Never

1

Model.Reformulation.Monomials.Formulation
How to reformulate binary monomials
0: None
1: Simple
2: Costa and Liberti

1

Model.Reformulation.ObjectiveFunction.PartitionNonlinearTerms
When to partition nonlinear sums in objec-
tive function
0: Always
1: If result is convex
2: Never

1

Model.Reformulation.ObjectiveFunction.PartitionQuadraticTerms
When to partition quadratic sums in objec-
tive function
0: Always
1: If result is convex
2: Never

1

Model.Reformulation.Quadratics.EigenValueDecomposition.Formulation
Which formulation to use in eigenvalue de-
composition
0: Term coefficient is included in reformula-
tion
1: Term coefficient remains

0

Model.Reformulation.Quadratics.ExtractStrategy
How to extract quadratic terms from non-
linear expressions
0: Do not extract
1: Extract to same objective or constraint
2: Extract to quadratic equality constraint
if nonconvex
3: Extract to quadratic equality constraint
even if convex

1

Model.Reformulation.Quadratics.Strategy
How to treat quadratic functions
0: All nonlinear
1: Use quadratic objective
2: Use convex quadratic objective and con-
straints
3: Use nonconvex quadratic objective and
constraints

2

2728 Solver Manuals

Option Description Default

Model.BoundTightening.FeasibilityBased.TimeLimit
Time limit for bound tightening
Range: [0, ∞]

2

Model.BoundTightening.InitialPOA.ConstraintTolerance
Constraint termination tolerance
Range: real

0.1

Model.BoundTightening.InitialPOA.ObjectiveConstraintTolerance
Objective constraint termination tolerance
Range: real

0.001

Model.BoundTightening.InitialPOA.ObjectiveGapAbsolute
Absolute objective gap termination level
Range: real

0.1

Model.BoundTightening.InitialPOA.ObjectiveGapRelative
Relative objective gap termination level
Range: real

0.1

Model.BoundTightening.InitialPOA.StagnationConstraintTolerance
Tolerance factor for when no progress is
made
Range: real

0.01

Model.BoundTightening.InitialPOA.TimeLimit
Time limit for initial POA
Range: real

5

Model.Convexity.Quadratics.EigenValueTolerance
Convexity tolerance for the eigenvalues of
the Hessian matrix for quadratic terms
Range: [0, ∞]

1e-05

Model.Reformulation.Quadratics.EigenValueDecomposition.Tolerance
Variables with eigenvalues smaller than this
value will be ignored
Range: [0, ∞]

1e-06

Model.Variables.Continuous.MaximumUpperBound
Maximum upper bound for continuous vari-
ables
Range: real

1e+50

Model.Variables.Continuous.MinimumLowerBound
Minimum lower bound for continuous vari-
ables
Range: real

-1e+50

Model.Variables.Integer.MaximumUpperBound
Maximum upper bound for integer variables
Range: real

2e+09

Model.Variables.Integer.MinimumLowerBound
Minimum lower bound for integer variables
Range: real

-2e+09

Model.Variables.NonlinearObjectiveVariable.Bound
Max absolute bound for the auxiliary non-
linear objective variable
Range: real

1e+12

Model.BoundTightening.FeasibilityBased.Use
Peform feasibility-based bound tightening
Range: boolean

1

Model.BoundTightening.FeasibilityBased.UseNonlinear
Peform feasibility-based bound tightening
on nonlinear expressions
Range: boolean

1

Model.BoundTightening.InitialPOA.Use
Create an initial polyhedral outer approxi-
mation
Range: boolean

0

Model.Convexity.AssumeConvex
Assume that the problem is convex
Range: boolean

0

Model.Reformulation.Bilinear.AddConvexEnvelope
Add convex envelopes (subject to original
bounds) to bilinear terms
Range: boolean

0

Model.Reformulation.Monomials.Extract
Extract monomial terms from nonlinear ex-
pressions
Range: boolean

1

Model.Reformulation.ObjectiveFunction.Epigraph.Use
Reformulates a nonlinear objective as an
auxiliary constraint
Range: boolean

0

5.35 SHOT 2729

Option Description Default

Model.Reformulation.Quadratics.EigenValueDecomposition.Method
Whether to use the eigen value decomposi-
tion of convex quadratic functions
Range: boolean

0

Model.Reformulation.Quadratics.EigenValueDecomposition.Use
Whether to use the eigenvalue decomposi-
tion of convex quadratic functions
Range: boolean

0

Model.Reformulation.Signomials.Extract
Extract signomial terms from nonlinear ex-
pressions
Range: boolean

1

5.35.3.5 Modeling system

These settings control functionality used in the interfaces to different modeling environments.

Option Description Default

ModelingSystem.GAMS.QExtractAlg
Extraction algorithm for quadratic equations in
GAMS interface
0: automatic
1: threepass
2: doubleforward
3: concurrent

0

5.35.3.6 Primal heuristics

These settings control the primal heuristics used in SHOT.

Option Description Default

Primal.FixedInteger.CallStrategy
When should the fixed strategy be used
0: Use each iteration
1: Based on iteration or time
2: Based on iteration or time, and for all
feasible MIP solutions

2

Primal.FixedInteger.Frequency.Iteration
Max number of iterations between calls
Range: {0, ..., ∞}

10

Primal.FixedInteger.IterationLimit
Max number of iterations per call
Range: {0, ..., ∞}

10000000

Primal.FixedInteger.Solver
NLP solver to use
0: Ipopt
1: GAMS
2: SHOT

1

Primal.FixedInteger.Source
Source of fixed MIP solution point
0: All
1: First
2: All feasible
3: First and all feasible
4: With smallest constraint deviation

3

Primal.FixedInteger.SourceProblem
Which problem formulation to use for NLP
problem
0: Original problem
1: Reformulated problem
2: Both

0

2730 Solver Manuals

Option Description Default

Primal.FixedInteger.DualPointGap.Relative
If the objective gap between the MIP point
and dual solution is less than this the fixed
strategy is activated
Range: [0, ∞]

0.001

Primal.FixedInteger.Frequency.Time
Max duration (s) between calls
Range: [0, ∞]

5

Primal.FixedInteger.TimeLimit
Time limit (s) per NLP problem
Range: [0, ∞]

10

Primal.Tolerance.Integer
Integer tolerance for accepting primal solu-
tions
Range: real

1e-05

Primal.Tolerance.LinearConstraint
Linear constraint tolerance for accepting pri-
mal solutions
Range: real

1e-06

Primal.Tolerance.NonlinearConstraint
Nonlinear constraint tolerance for accepting
primal solutions
Range: real

1e-05

Primal.FixedInteger.CreateInfeasibilityCut
Create a cut from an infeasible solution
point
Range: boolean

0

Primal.FixedInteger.Frequency.Dynamic
Dynamically update the call frequency based
on success
Range: boolean

1

Primal.FixedInteger.OnlyUniqueIntegerCombinations
Whether to resolve with the same integer
combination, e.g. for nonconvex problems
with different continuous variable starting
points
Range: boolean

1

Primal.FixedInteger.Use
Use the fixed integer primal strategy
Range: boolean

1

Primal.FixedInteger.Warmstart
Warm start the NLP solver
Range: boolean

1

Primal.Rootsearch.Use
Use a rootsearch to find primal solutions
Range: boolean

1

Primal.Tolerance.TrustLinearConstraintValues
Trust that subsolvers (NLP, MIP) give pri-
mal solutions that respect linear constraints
Range: boolean

1

5.35.3.7 Termination

These settings control when SHOT will terminate the solution process.

Option Description Default

Termination.DualStagnation.IterationLimit
Max number of iterations without signifi-
cant dual objective value improvement
Range: {0, ..., ∞}

∞

Termination.IterationLimit
Iteration limit for main strategy
Range: {1, ..., ∞}

GAMS iterlim

Termination.PrimalStagnation.IterationLimit
Max number of iterations without signifi-
cant primal objective value improvement
Range: {0, ..., ∞}

50

5.36 SNOPT 2731

Option Description Default

Termination.ConstraintTolerance
Termination tolerance for nonlinear con-
straints
Range: [0, ∞]

1e-08

Termination.DualStagnation.ConstraintTolerance
Min absolute difference between max non-
linear constraint errors in subsequent it-
erations for termination
Range: [0, ∞]

1e-06

Termination.ObjectiveConstraintTolerance
Termination tolerance for the nonlinear
objective constraint
Range: [0, ∞]

1e-08

Termination.ObjectiveGap.Absolute
Absolute gap termination tolerance for
objective function
Range: [0, ∞]

GAMS optca

Termination.ObjectiveGap.Relative
Relative gap termination tolerance for ob-
jective function
Range: [0, ∞]

GAMS optcr

Termination.TimeLimit
Time limit (s) for solver
Range: [0, ∞]

GAMS reslim

5.35.3.8 Strategy

Overall strategy parameters used in SHOT.

Option Description Default

Strategy.UseRecommendedSettings
Modifies some settings to their recommended values
based on the strategy
Range: boolean

1

5.36 SNOPT

Author

Philip E. Gill; Department of Mathematics, University of California, San Diego, La Jolla, CA

Walter Murray, Michael A. Saunders; Department of EESOR, Stanford University, Stanford, CA

5.36.1 Introduction

This section describes the GAMS interface to the general-purpose NLP solver SNOPT, (Sparse Nonlinear
Optimizer) which implements a sequential quadratic programming (SQP) method for solving constrained
optimization problems with smooth nonlinear functions in the objective and constraints. The optimization
problem is assumed to be stated in the form

NP : minimize or maximize f0(x)

subject to
f(x) ∼ b1
ALx ∼ b2
l ≤ x ≤ u,

(1)

2732 Solver Manuals

where x ∈ <n, f0(x) is a linear or nonlinear smooth objective function, l and u are constant lower and
upper bounds, f(x) is a set of nonlinear constraint functions, AL is a sparse matrix, ∼ is a vector of
relational operators (≤, ≥ or =), and b1 and b2 are right-hand side constants. f(x) ∼ b1s are the nonlinear
constraints of the model and ALx ∼ b2 form the linear constraints.

The gradients of f0 and fi are automatically provided by GAMS, using its automatic differentiation
engine.

The bounds may include special values -INF or +INF to indicate lj = −∞ or uj = +∞ for appropriate j.
Free variables have both bounds infinite and fixed variables have lj = uj .

SNOPT uses a sequential quadratic programming (SQP) algorithm that obtains search directions from a
sequence of quadratic programming subproblems. Each QP subproblem minimizes a quadratic model of a
certain Lagrangian function subject to a linearization of the constraints. An augmented Lagrangian merit
function is reduced along each search direction to ensure convergence from any starting point.

SNOPT is most efficient if only some of the variables enter nonlinearly, or if the number of active
constraints (including simple bounds) is nearly as large as the number of variables. SNOPT requires
relatively few evaluations of the problem functions.

5.36.1.1 Problem Types

If the nonlinear functions are absent, the problem is a linear program (LP) and SNOPT applies the primal
simplex method [41] . Sparse basis factors are maintained by LUSOL [82] as in MINOS [141] .

If only the objective is nonlinear, the problem is linearly constrained (LC) and tends to solve more easily
than the general case with nonlinear constraints (NC). Note that GAMS models have an objective variable
instead of an objective function. The GAMS/SNOPT link will try to substitute out the objective variable
and reformulate the model such that SNOPT will see a true objective function.

For both linearly and nonlinearly constrained problems SNOPT applies a sparse sequential quadratic
programming (SQP) method [85] using limited-memory quasi-Newton approximations to the Hessian of
the Lagrangian. The merit function for steplength control is an augmented Lagrangian, as in the dense
SQP solver NPSOL [81] [84] .

In general, SNOPT requires less matrix computation than NPSOL and fewer evaluations of the functions
than the nonlinear algorithms in MINOS [139] [140] . It is suitable for nonlinear problems with thousands
of constraints and variables, and is most efficient if only some of the variables enter nonlinearly, or there
are relatively few degrees of freedom at a solution (i.e., many constraints are active). However, unlike
previous versions of SNOPT, there is no limit on the number of degrees of freedom.

5.36.1.2 Selecting the SNOPT Solver

If SNOPT is not specified as the default solver for the desired model type (e.g. NLP), then the following
statement can be used in your GAMS model to select SNOPT:

option nlp=SNOPT;

The option statement should appear before the solve statement. To be complete, we mention that the
solver can be also specified on the command line, as in:

> gams camcge nlp=snopt

This will override the global default, but if an algorithm option has been specified inside the model, then
that specification takes precedence.

If the model contains non-smooth functions like abs (x), or max(x, y) you can try to get it solved by
SNOPT using

option dnlp=SNOPT;

These models have discontinuous derivatives however, and SNOPT was not designed for solving such
models. Discontinuities in the gradients can sometimes be tolerated if they appear away from an optimum.

5.36 SNOPT 2733

5.36.2 Description of the method

Here we briefly describe the main features of the SQP algorithm used in SNOPT and introduce some
terminology. The SQP algorithm is fully described by by Gill, Murray and Saunders [86] .

5.36.2.1 Objective function reconstruction

The first step GAMS/SNOPT performs is to try to reconstruct the objective function. In GAMS,
optimization models minimize or maximize an objective variable. SNOPT however works with an objective
function. One way of dealing with this is to add a dummy linear function with just the objective variable.
Consider the following GAMS fragment:

obj.. z =e= sum(i, sqr[r(i)]);

model m /all/;

solve m using nlp minimizing z;

This can be cast in form (1) by saying minimize z subject to z =
∑
i r

2
i and the other constraints in the

model. Although simple, this approach is not always preferable. Especially when all constraints are linear
it is important to minimize the nonlinear expression

∑
i r

2
i directly. This can be achieved by a simple

reformulation: z can be substituted out. The substitution mechanism carries out the formulation if all of
the following conditions hold:

• the objective variable z is a free continuous variable (no bounds are defined on z),

• z appears linearly in the objective function,

• the objective function is formulated as an equality constraint,

• z is only present in the objective function and not in other constraints.

For many models it is very important that the nonlinear objective function be used by SNOPT. For
instance the model chem.gms from the model library solves in 16 iterations. When we add the bound

energy.lo = 0;

on the objective variable energy and thus preventing it from being substituted out, SNOPT will not be
able to find a feasible point for the given starting point.

This reformulation mechanism has been extended for substitutions along the diagonal. For example, the
GAMS model

variables x,y,z;

equations e1,e2;

e1..z =e= y;

e2..y =e= sqr(1+x);

model m /all/;

option nlp=snopt;

solve m using nlp minimizing z;

will be reformulated as an unconstrained optimization problem

min f(x) = (1 + x)2.

2734 Solver Manuals

5.36.2.2 Constraints and slack variables

Problem (1) contains n variables in x. Let m be the number of components of f(x) and ALx combined.
The upper and lower bounds on those terms define the general constraints of the problem. SNOPT
converts the general constraints to equalities by introducing a set of slack variables s = (s1, s2, ..., sm)T .
For example, the linear constraint 5 ≤ 2x1 + 3x2 ≤ +∞ is replaced by 2x1 + 3x2 − s1 = 0 together with
the bounded slack 5 ≤ s1 ≤ +∞. Problem (1) can be written in the equivalent form

minimize f0(x)

subject to

(
f(x)
ALx

)
− s = 0, l ≤

(
x
s

)
≤ u.

where a maximization problem is cast into a minimization by multiplying the objective function by −1.

The linear and nonlinear general constraints become equalities of the form f(x)−sN = 0 and ALx−sL = 0,
where sL and sN are known as the linear and nonlinear slacks.

5.36.2.3 Major iterations

The basic structure of SNOPT's solution algorithm involves major and minor iterations. The major
iterations generate a sequence of iterates (xk) that satisfy the linear constraints and converge to a point
that satisfies the first-order conditions for optimality. At each iterate {xk} a QP subproblem is used
to generate a search direction towards the next iterate {xk+1}. The constraints of the subproblem are
formed from the linear constraints ALx− sL = 0 and the nonlinear constraint linearization

f(xk) + f '(xk)(x− xk)− sN = 0,

where f '(xk) denotes the Jacobian: a matrix whose rows are the first derivatives of f(x) evaluated at xk.
The QP constraints therefore comprise the m linear constraints

f '(xk)x −sN = −f(xk) + f '(xk)xk,

ALx −sL = 0,

where x and s are bounded by l and u as before. If the m× n matrix A and m-vector b are defined as

A =

(
f '(xk)
AL

)
and b =

(
−f(xk) + f '(xk)xk

0

)
,

then the QP subproblem can be written as

QPk : min
x,s

q(x, xk) = gTk (x− xk) +
1

2
(x− xk)THk(x− xk)

subject to Ax− s = b, l ≤
(
x
s

)
≤ u,

(2)

where q(x, xk) is a quadratic approximation to a modified Lagrangian function [85] . The matrix Hk is
a quasi-Newton approximation to the Hessian of the Lagrangian. A BFGS update is applied after each
major iteration. If some of the variables enter the Lagrangian linearly the Hessian will have some zero
rows and columns. If the nonlinear variables appear first, then only the leading n1 rows and columns of
the Hessian need be approximated, where n1 is the number of nonlinear variables.

5.36 SNOPT 2735

5.36.2.4 Minor iterations

Solving the QP subproblem is itself an iterative procedure. Here, the iterations of the QP solver SQOPT
[87] form the minor iterations of the SQP method.

SQOPT uses a reduced-Hessian active-set method implemented as a reduced-gradient method similar to
that in MINOS [139] .

At each minor iteration, the constraints Ax− s = b are partitioned into the form

BxB + SxS +NxN = b,

where the basis matrix B is square and nonsingular and the matrices S, N are the remaining columns of
(A−I). The vectors xB, xS , xN are the associated basic, superbasic, and nonbasic components of the
variables (x, s).

The term active-set method arises because the nonbasic variables xN are temporarily frozen at their upper
or lower bounds, and their bounds are considered to be active. Since the general constraints are satisfied
also, the set of active constraints takes the form

(
B S N

I

)xBxS
xN

 =

(
b
xN

)
,

where xN represents the current values of the nonbasic variables. (In practice, nonbasic variables are
sometimes frozen at values strictly between their bounds.) The reduced-gradient method chooses to move
the superbasic variables in a direction that will improve the objective function. The basic variables ”tag
along” to keep Ax − s = b satisfied, and the nonbasic variables remain unaltered until one of them is
chosen to become superbasic.

At a nonoptimal feasible point (x, s) we seek a search direction p such that (x, s) + p remains on the set
of active constraints yet improves the QP objective. If the new point is to be feasible, we must have
BpB + SpS + NpN = 0 and pN = 0. Once pS is specified, pB is uniquely determined from the system
BpB = −SpS . It follows that the superbasic variables may be regarded as independent variables that are
free to move in any desired direction. The number of superbasic variables (nS say) therefore indicates the
number of degrees of freedom remaining after the constraints have been satisfied. In broad terms, nS is a
measure of how nonlinear the problem is. In particular, nS need not be more than one for linear problems.

5.36.2.5 The reduced Hessian and reduced gradient

The dependence of p on pS may be expressed compactly as p = ZpS , where Z is a matrix that spans the
null space of the active constraints:

Z = P

−B−1S
I
0

 (3)

where P permutes the columns of (A−I) into the order (B S N). Minimizing q(x, xk) with respect to pS
now involves a quadratic function of pS :

gTZpS +
1

2
pTSZ

THZpS , (4)

where g and H are expanded forms of gk and Hk defined for all variables (x, s). This is a quadratic with
Hessian ZTHZ (the reduced Hessian) and constant vector ZT g (the reduced gradient). If the reduced
Hessian is nonsingular, pS is computed from the system

ZTHZpS = −ZT g. (5)

2736 Solver Manuals

The matrix Z is used only as an operator, i.e., it is not stored explicitly. Products of the form Zv or ZT g
are obtained by solving with B or BT . The package LUSOL [82] is used to maintain sparse LU factors
of B as the BSN partition changes. From the definition of Z, we see that the reduced gradient can be
computed from

BTπ = gB , Z
T g = gS − STπ,

where π is an estimate of the dual variables associated with the m equality constraints Ax− s = b, and
gB is the basic part of g.

By analogy with the elements of ZT g, we define a vector of reduced gradients (or reduced costs) for all
variables in (x, s):

d = g −
(
AT

−I

)
π, so that dS = ZT g.

At a feasible point, the reduced gradients for the slacks s are the dual variables π.

The optimality conditions for subproblem QP k (2) may be written in terms of d. The current point is
optimal if dj ≥ 0 for all nonbasic variables at their lower bounds, dj ≤ 0 for all nonbasic variables at
their upper bounds, and dj = 0 for all superbasic variables (dS = 0). In practice, SNOPT requests an
approximate QP solution (x̂k, ŝk, π̂k) with slightly relaxed conditions on dj .

If dS = 0, no improvement can be made with the current BSN partition, and a nonbasic variable with
non-optimal reduced gradient is selected to be added to S. The iteration is then repeated with nS
increased by one. At all stages, if the step (x, s) + p would cause a basic or superbasic variable to violate
one of its bounds, a shorter step (x, s) + αp is taken, one of the variables is made nonbasic, and nS is
decreased by one.

The process of computing and testing reduced gradients dN is known as pricing (a term introduced in
the context of the simplex method for linear programming). Pricing the jth variable means computing
dj = gj − aTj π, where aj is the jth column of (A−I). If there are significantly more variables than general
constraints (i.e., n� m), pricing can be computationally expensive. In this case, a strategy known as
partial pricing can be used to compute and test only a subset of dN .

Solving the reduced Hessian system (5) is sometimes expensive. With the option QPSolver Cholesky,
an upper-triangular matrix R is maintained satisfying RTR = ZTHZ. Normally, R is computed from
ZTHZ at the start of phase 2 and is then updated as the BSN sets change. For efficiency the dimension
of R should not be excessive (say, nS ≤ 1000). This is guaranteed if the number of nonlinear variables is
”moderate”. Other QPSolver options are available for problems with many degrees of freedom.

5.36.2.6 The merit function

After a QP subproblem has been solved, new estimates of the NLP solution are computed using a linesearch
on the augmented Lagrangian merit function

M(x, s, π) = f(x)− πT
(
F (x)− sN

)
+

1

2

(
F (x)− sN

)T
D
(
F (x)− sN

)
, (6)

where D is a diagonal matrix of penalty parameters. If (xk, sk, πk) denotes the current solution estimate
and (x̂k, ŝk, π̂k) denotes the optimal QP solution, the linesearch determines a step αk (0 < αk ≤ 1) such
that the new point

xk+1

sk+1

πk+1

 =

xksk
πk

+ αk

x̂k − xkŝk − sk
π̂k − πk

 (7)

gives a sufficient decrease in the merit function. When necessary, the penalties in D are increased by the
minimum-norm perturbation that ensures descent for M [84] . As in NPSOL, sN is adjusted to minimize
the merit function as a function of s prior to the solution of the QP subproblem. For more details, see
[81] [54] .

5.36 SNOPT 2737

5.36.2.7 Treatment of constraint infeasibilities

SNOPT makes explicit allowance for infeasible constraints. Infeasible linear constraints are detected first
by solving a problem of the form

FLP : minimize eT (v + w)

subject to ` ≤
(

x
ALx− v + w

)
≤ u, v ≥ 0, w ≥ 0,

where e is a vector of ones. This is equivalent to minimizing the sum of the general linear constraint
violations subject to the simple bounds. (In the linear programming literature, the approach is often
called elastic programming. We also describe it as minimizing the `1 norm of the infeasibilities.)

If the linear constraints are infeasible (v 6= 0 or w 6= 0), SNOPT terminates without computing the
nonlinear functions.

If the linear constraints are feasible, all subsequent iterates satisfy the linear constraints. (Such a strategy
allows linear constraints to be used to define a region in which the functions can be safely evaluated.)
SNOPT proceeds to solve NP (1) as given, using search directions obtained from a sequence of quadratic
programming subproblems (2).

If a QP subproblem proves to be infeasible or unbounded (or if the dual variables π for the nonlinear
constraints become large), SNOPT enters ”elastic” mode and solves the problem

NP(γ) : minimize f0(x) + γeT (v + w)

subject to ` ≤

 x
f(x)− v + w

ALx

 ≤ u, v ≥ 0, w ≥ 0,

where γ is a nonnegative parameter (the elastic weight), and f(x) + γeT (v + w) is called a composite
objective. If γ is sufficiently large, this is equivalent to minimizing the sum of the nonlinear constraint
violations subject to the linear constraints and bounds. A similar `1 formulation of NP is fundamental to
the S `1QP algorithm of Fletcher [64] . See also Conn [38] .

The initial value of γ is controlled by the optional parameter elastic weight.

5.36.3 Starting points and advanced bases

A good starting point may be essential for solving nonlinear models. We show how such a starting point
can be specified in a GAMS environment, and how SNOPT will use this information.

A related issue is the use of ”restart” information in case a number of related models are solved in a row.
Starting from an optimal point of a previous solve statement is in such situations often beneficial. In a
GAMS environment this means reusing primal and dual information, which is stored in the .L and .M

fields of variables and equations.

2738 Solver Manuals

5.36.3.1 Starting points

To specify a starting point for SNOPT use the .L level values in GAMS. For example, to set all variables
xi,j := 1 use x.l(i,j)=1;. The default values for level values are zero.

Setting a good starting point can be crucial for getting good results. As an (artificial) example consider
the problem where we want to find the smallest circle that contains a number of points (xi, yi):

Example : minimize r

subject to (xi − a)2 + (yi − b)2 ≤ r2, r ≥ 0.

This problem can be modeled in GAMS as follows.

set i points /p1*p10/;

parameters

x(i) x coordinates,

y(i) y coordinates;

* fill with random data

x(i) = uniform(1,10);

y(i) = uniform(1,10);

variables

a x coordinate of center of circle

b y coordinate of center of circle

r radius;

equations

e(i) points must be inside circle;

e(i).. sqr(x(i)-a) + sqr(y(i)-b) =l= sqr(r);

r.lo = 0;

model m /all/;

option nlp=snopt;

solve m using nlp minimizing r;

Without help, SNOPT will not be able to find an optimal solution. The problem will be declared infeasible.
In this case, providing a good starting point is very easy. If we define

xmin = min
i
xi,

ymin = min
i
yi,

xmax = max
i
xi,

ymax = max
i
yi,

then good estimates are

a = (xmin + xmax)/2,

b = (ymin + ymax)/2,

r =
√

(a− xmin)2 + (b− ymin)2.

Thus we include in our model:

5.36 SNOPT 2739

parameters xmin,ymin,xmax,ymax;

xmin = smin(i, x(i));

ymin = smin(i, x(i));

xmax = smax(i, x(i));

ymax = smax(i, y(i));

* set starting point

a.l = (xmin+xmax)/2;

b.l = (ymin+ymax)/2;

r.l = sqrt(sqr(a.l-xmin) + sqr(b.l-ymin));

and now the model solves very easily.

Level values can also be set implicitly as a result of assigning bounds, since GAMS will project variable
levels onto their bounds as part of executing a solve statement. For example, when a variable is bounded
away from zero by a statement like Y.LO = 1; and Y is at its default level of zero, the SOLVE statement
will set the level Y.L to 1.

Note: another way to formulate the model would be to minimize r2 instead of r. This allows SNOPT to
solve the problem even with the default starting point.

5.36.3.2 Advanced basis

GAMS automatically passes on level values and basis information from one solve to the next. Thus, when
we have two solve statements in a row, with just a few changes in between SNOPT will typically need
very few iterations to find an optimal solution in the second solve. For instance, when we add a second
solve to the fawley.gms model from the model library:

Model exxon /all/;

...

Solve exxon maximizing profit using lp;

Solve exxon maximizing profit using lp;

we observe the following iteration counts:

S O L V E S U M M A R Y

MODEL exxon OBJECTIVE profit

TYPE LP DIRECTION MAXIMIZE

SOLVER SNOPT FROM LINE 278

**** SOLVER STATUS 1 NORMAL COMPLETION

**** MODEL STATUS 1 OPTIMAL

**** OBJECTIVE VALUE 2899.2528

RESOURCE USAGE, LIMIT 0.016 1000.000

ITERATION COUNT, LIMIT 24 10000

.....

S O L V E S U M M A R Y

MODEL exxon OBJECTIVE profit

TYPE LP DIRECTION MAXIMIZE

2740 Solver Manuals

SOLVER SNOPT FROM LINE 279

**** SOLVER STATUS 1 NORMAL COMPLETION

**** MODEL STATUS 1 OPTIMAL

**** OBJECTIVE VALUE 2899.2528

RESOURCE USAGE, LIMIT 0.000 1000.000

ITERATION COUNT, LIMIT 0 10000

The first solve takes 24 iterations, while the second solve needs exactly zero iterations.

Basis information is passed on using the marginals of the variables and equations. In general the rule is:

• X.M = 0: basic

• X.M 6= 0: nonbasic if level value is at bound, superbasic otherwise

A marginal value of EPS means that the numerical value of the marginal is zero, but that the status is
nonbasic or superbasic. The user can specify a basis by assigning zero or nonzero values to the .M values.
It is further noted that if too many .M values are zero, the basis is rejected. This happens for instance
when two subsequent models are too different. This decision is made based on the value of the GAMS
bratio option.

5.36.4 GAMS Options

The usual GAMS options (e.g. reslim, sysout) can be used to control GAMS/SNOPT. For more details,
see section Controlling a Solver via GAMS Options. We highlight some of the details of this usage below
for cases of special interest.

iterlim

Sets the minor iteration limit. SNOPT will stop as soon as the number of minor iterations
exceeds the iteration limit, in which case the current solution will be reported.

domlim

Sets the domain error limit. Domain errors are evaluation errors in the nonlinear functions.
An example of a domain error is trying to evaluate

√
x for x < 0. Other examples include

taking logs of negative numbers, and evaluating the real power xy for x < ε (xy is evaluated as
exp(y log x)). When such an error occurs the count of domain errors is incremented: SNOPT
will stop if this count exceeds the limit. If the limit has not been reached, reasonable estimates
for the function (and derivatives, if requested) are returned and SNOPT continues. For
example, in the case of

√
x, x < 0 a zero is passed back for the function value and a large

value for the derivative. In many cases SNOPT will be able to recover from these domain
errors, especially when they happen at some intermediate point. Nevertheless it is best to
add appropriate bounds or linear constraints to ensure that these domain errors don't occur.
For example, when an expression log(x) is present in the model, add a statement like x.lo =

0.001;.

bratio

Ratio used in basis acceptance test. When a previous solution or solution estimate exists,
GAMS automatically passes this solution to SNOPT so that it can reconstruct an advanced
basis. When too many new (i.e. uninitialized with level and/or marginal values) variables or
constraints enter the model, it may be better not to use existing basis information, but to
instead crash a new basis. The bratio determines how quickly an existing basis is discarded.
A value of 1.0 will discard any basis, while a value of 0.0 will retain any basis.

5.36 SNOPT 2741

workfactor

By default, GAMS/SNOPT computes an estimate of the amount of workspace needed by
SNOPT, and passes this workspace on to SNOPT for use in solving the model. This estimate
is based on the model statistics: number of (nonlinear) equations, number of (nonlinear)
variables, number of (nonlinear) nonzeroes, etc. In most cases this is sufficient to solve the
model. In some rare cases SNOPT may need more memory, and the user can provide this by
specifying a value of workfactor greater than 1. The computed memory estimate is multiplied
by the workfactor to determine the amount of workspace made available to SNOPT for the
solve.

5.36.5 SNOPT Options

The performance of GAMS/SNOPT is controlled by a number of parameters or ”options.” Each option
has a default value that should be appropriate for most problems. For special situations it is possible to
specify non-default values for some or all of the options via the SNOPT option file. While the content of
an option file is solver-specific, the details of how to create an option file and instruct the solver to use it
are not. This topic is covered in section The Solver Options File.

Note that the option file is not case sensitive. The tables below contain summary information about the
SNOPT options, default values, and links to more detailed explanations.

5.36.5.1 Printing

Option Description Default

major print level
Amount of information printed during optimization (listing file) 1

minor print level
Amount of information printed during optimization (listing file) 1

print frequency
Number of iterations between each log line (listing file) 100

solution
Prints SNOPT solution (listing file) NO

summary frequency
Number of iterations between each log line (log file) 100

suppress parameters
Suppress printing of parameters (listing file)

system information
Provides additional information on the progress of the iterations
(listing file)

NO

timing level
Amount of timing information (listing file) 3

5.36.5.2 Problem specification

Option Description Default

feasible point
Ignore objective function and find a feasible point

infinite bound
Bounds larger than this number are considered Infinity 1.0e20

5.36.5.3 Convergence tolerances

2742 Solver Manuals

Option Description Default

major feasibility tolerance
Feasibility tolerance for nonlinear constraints 1.0e-6

major optimality tolerance
Specifies the final accuracy of the dual variables 1.0e-6

minor feasibility tolerance
Feasibility tolerance for all variables and linear constraints 1.0e-6

5.36.5.4 Derivative checking

Option Description Default

verify level
Finite-difference checks on the derivatives -1

5.36.5.5 Scaling

Option Description Default

scale option
Controls problem scaling auto

scale print
Print scaling factors (listing file)

scale tolerance
Scale tolerance 0.9

5.36.5.6 Other tolerances

Option Description Default

crash tolerance
Allow crash procedure to ignore small elements in eligible columns 0.1

linesearch tolerance
Controls accuracy of steplength selected 0.9

pivot tolerance
Used to keep the basis non-singular 3.67e-11

5.36.5.7 QP subproblems

Option Description Default

crash option
Controls the basis crash algorithm auto: 0 or 3

elastic weight
Control for elastic mode 1.0e4

iterations limit
Minor iteration limit GAMS iterlim

partial price
Number of segments in partial pricing strategy auto

qpsolver
Controls method used for QP subproblems Cholesky

5.36.5.8 SQP method

Option Description Default

central difference interval
Not applicable: GAMS provides analytic derivatives 6.0e-6

5.36 SNOPT 2743

Option Description Default

cold start
Ignore advanced basis and use CRASH procedure

derivative linesearch
Linesearch method (safeguarded cubic interpolation)
with use of derivatives

difference interval
Not applicable: GAMS provides analytic derivatives 1.5e-8

function precision
Relative accuracy with which the nonlinear functions
are evaluated

3.00e-13

major iterations limit
Max number of major iterations GAMS iterlim

major step limit
Limits the change in x during a linesearch 2.0

minor iterations limit
Max number of minor iterations between linearizations
of nonlinear constraints

500

new superbasics limit
Limit on new superbasics when a QP subproblem is
solved

99

nonderivative linesearch
Linesearch method (safeguarded quadratic interpola-
tion) without use of derivatives

penalty parameter
Initial penalty parameter 0

proximal point method
Controls promimal point method used for solving linear
constraints

1

reduced hessian dimension
Size of Hessian matrix auto

superbasics limit
Maximum number of superbasics 1

unbounded objective value
Determines when a problem is called unbounded 1.0e15

unbounded step size
Determines when a problem is called unbounded 1.0e18

violation limit
Limit on maximum constraint violation after the line-
search

10

warm start
Use advanced basis provided by GAMS

5.36.5.9 Hessian approximation

Option Description Default

hessian frequency
How often the full Hessian is reset to the identity matrix 999999

hessian full memory
Approximate Hessian is treated as a dense matrix

hessian limited memory
Limited-memory procedure is used to update a diagonal Hessian
approximation

hessian updates
How often the limited memory Hessian is reset 10

5.36.5.10 Frequencies

Option Description Default

check frequency
Controls frequency of linear constraint satisfaction test 60

expand frequency
Setting for anti-cycling mechanism 10000

factorization frequency
Number of iterations between basis factorizations auto: 100 or 50

2744 Solver Manuals

5.36.5.11 LUSOL options

Option Description Default

LU complete pivoting
LUSOL pivoting strategy

LU density tolerance
Controls when to move to a dense factorization 0.6

LU factor tolerance
Trade-off between stability and sparsity in basis factorization auto

LU partial pivoting
LUSOL pivoting strategy yes

LU rook pivoting
LUSOL pivoting strategy

LU singularity tolerance
Protection against ill-conditioned basis matrices 3.2e-11

LU update tolerance
Trade-off between stability and sparsity in basis factorization auto

central difference interval (real): Not applicable: GAMS provides analytic derivatives ←↩

Default: 6.0e-6

check frequency (integer): Controls frequency of linear constraint satisfaction test ←↩

Every ith minor iteration after the most recent basis factorization, a numerical test is made
to see if the current solution x satisfies the general linear constraints (including linearized
nonlinear constraints, if any). The constraints are of the form Ax− s = b, where s is the set of
slack variables. To perform the numerical test, the residual vector r = b−Ax+ s is computed.
If the largest component of r is judged to be too large, the current basis is refactorized and
the basic variables are recomputed to satisfy the general constraints more accurately.

Check frequency 1 is useful for debugging purposes, but otherwise this option should not be
needed.

Range: {1, ..., ∞}

Default: 60

cold start (no value): Ignore advanced basis and use CRASH procedure ←↩

Requests that the CRASH procedure be used to choose an initial basis. This option takes
precedence over the GAMS bratio option.

crash option (integer): Controls the basis crash algorithm ←↩

Except on restarts, a CRASH procedure is used to select an initial basis from certain rows
and columns of the constraint matrix (A − I). The Crash option i determines which rows
and columns of A are eligible initially, and how many times CRASH is called. Columns of −I
are used to pad the basis where necessary.

If i ≥ 1, certain slacks on inequality rows are selected for the basis first. (If i ≥ 2, numerical
values are used to exclude slacks that are close to a bound.) CRASH then makes several passes
through the columns of A, searching for a basis matrix that is essentially triangular. A column
is assigned to ”pivot” on a particular row if the column contains a suitably large element in a
row that has not yet been assigned. (The pivot elements ultimately form the diagonals of the
triangular basis.) For the remaining unassigned rows, slack variables are inserted to complete
the basis.

By default, crash option 3 is used for linearly constrained problems and crash option 0

for problems with nonlinear constraints.

Default: auto: 0 or 3

5.36 SNOPT 2745

value meaning

0 Initial basis will be a slack basis.
The initial basis contains only slack variables: B = I.

1 One phase CRASH.
CRASH is called once, looking for a triangular basis in all rows and columns of
the matrix A.

2 Two phase CRASH.
CRASH is called twice (if there are nonlinear constraints). The first call looks
for a triangular basis in linear rows, and the iteration proceeds with simplex
iterations until the linear constraints are satisfied. The Jacobian is then evaluated
for the first major iteration and CRASH is called again to find a triangular basis
in the nonlinear rows (retaining the current basis for linear rows).

3 Three phase CRASH.
CRASH is called up to three times (if there are nonlinear constraints). The first
two calls treat linear equalities and linear inequalities separately. As before, the
last call treats nonlinear rows before the first major iteration.

crash tolerance (real): Allow crash procedure to ignore small elements in eligible columns ←↩

The Crash tolerance r allows the starting procedure CRASH to ignore certain small nonzeros
in each column of A. If amax is the largest element in column j, other nonzeros aij in the
column are ignored if |aij | ≤ amax× r. (To be meaningful, r should be in the range 0 ≤ r < 1.)

When r > 0.0, the basis obtained by CRASH may not be strictly triangular, but it is likely to
be nonsingular and almost triangular. The intention is to obtain a starting basis containing
more columns of A and fewer (arbitrary) slacks. A feasible solution may be reached sooner on
some problems.

For example, suppose the first m columns of A are the matrix shown under LU factor tolerance,
i.e. a tridiagonal matrix with entries −1, 2,−1. To help CRASH choose all m columns for the
initial basis, we would specify Crash tolerance r for some value of r > 0.5.

Range: [0, 1]

Default: 0.1

derivative linesearch (no value): Linesearch method (safeguarded cubic interpolation) with use of
derivatives ←↩

At each major iteration a linesearch is used to improve the merit function. A Derivative

linesearch uses safeguarded cubic interpolation and requires both function and gradient
values to compute estimates of the step size αk.

difference interval (real): Not applicable: GAMS provides analytic derivatives ←↩

This alters the interval h1 that is used to estimate gradients by forward differences in the
following circumstances:

• In the initial (”cheap”) phase of verifying the problem derivatives.

• For verifying the problem derivatives.

• For estimating missing derivatives.

2746 Solver Manuals

In all cases, a derivative with respect to xj is estimated by perturbing that component of x to
the value xj + h1(1 + |xj |), and then evaluating f0(x) or f(x) at the perturbed point. The
resulting gradient estimates should be accurate to O(h1) unless the functions are badly scaled.
Judicious alteration of h1 may sometimes lead to greater accuracy. This option has limited
use in a GAMS environment as GAMS provides analytical gradients.

Default: 1.5e-8

elastic weight (real): Control for elastic mode ←↩

The elastic weight ω determines the initial weight γ associated with problem NP(γ).

At any given major iteration k, elastic mode is started if the QP subproblem is infeasible or if
the QP dual variables are larger in magnitude than ω(1 + ‖g(xk)‖2), where g is the objective
gradient. In either case, the QP is re-solved in elastic mode with γ = ω(1 + ‖g(xk)‖2).

Thereafter, γ is increased (subject to a maximum allowable value) at any point that is optimal
for problem NP(γ), but not feasible for NP. After the rth such increase, γ = ω10r(1+‖g(xk1)‖2),
where xk1 is the iterate at which γ was first needed.

Default: 1.0e4

expand frequency (integer): Setting for anti-cycling mechanism ←↩

This option is part of the EXPAND anti-cycling procedure [83] designed to make progress
even on highly degenerate problems.

For linear models, the strategy is to force a positive step at every iteration, at the ex-
pense of violating the bounds on the variables by a small amount. Suppose that the
minor feasibility tolerance is δ and the expand frequency is k. Over a period of k iterations,
the tolerance actually used by SNOPT increases from 0.5δ to δ (in steps of 0.5δ/k).

For nonlinear models, the same procedure is used for iterations in which there is only one
superbasic variable. (Cycling can occur only when the current solution is at a vertex of the
feasible region.) Thus, zero steps are allowed if there is more than one superbasic variable, but
otherwise positive steps are enforced.

At least every k iterations, a resetting procedure eliminates any infeasible nonbasic variables.
Increasing k helps to reduce the number of these slightly infeasible nonbasic variables. However,
it also diminishes the freedom to choose a large pivot element (see pivot tolerance).

Range: {1, ..., ∞}

Default: 10000

factorization frequency (integer): Number of iterations between basis factorizations ←↩

At most k basis changes will occur between factorizations of the basis matrix.

• With linear programs, the basis factors are usually updated every iteration. The default
k is reasonable for typical problems. Smaller values (say k = 75 or k = 50) may be more
efficient on problems that are rather dense or poorly scaled.

• When the problem is nonlinear, fewer basis updates will occur as an optimum is approached.
The number of iterations between basis factorizations will therefore increase. During
these iterations a test is made regularly (according to the check frequency) to ensure that
the general constraints are satisfied. If necessary the basis will be refactorized before the
limit of k updates is reached.

5.36 SNOPT 2747

By default, the frequency is set to 100 for linear models and 50 otherwise.

Range: {1, ..., ∞}

Default: auto: 100 or 50

feasible point (no value): Ignore objective function and find a feasible point ←↩

The keyword feasible point means ”Ignore the objective function” while finding a feasible
point for the linear and nonlinear constraints. It can be used to check that the nonlinear
constraints are feasible.

Default: turned off.

function precision (real): Relative accuracy with which the nonlinear functions are evaluated ←↩

The relative function precision εR is intended to be a measure of the relative accuracy with
which the nonlinear functions can be computed. For example, if f(x) is computed as 1000.56789
for some relevant x and if the first 6 significant digits are known to be correct, the appropriate
value for εR would be 1.0e-6.

(Ideally the functions f0(x) or fi(x) should have magnitude of order 1. If all functions are
substantially less than 1 in magnitude, εR should be the absolute precision. For example,
if f(x) = 1.23456789e-4 at some point and if the first 6 significant digits are known to be
correct, the appropriate value for εR would be 1.0e-10.)

• The default value of εR is appropriate for simple analytic functions.

• In some cases the function values will be the result of extensive computation, possibly
involving an iterative procedure that can provide rather few digits of precision at reasonable
cost. Specifying an appropriate Function precision may lead to savings, by allowing
the linesearch procedure to terminate when the difference between function values along
the search direction becomes as small as the absolute error in the values.

Default: 3.00e-13

hessian frequency (integer): How often the full Hessian is reset to the identity matrix ←↩

This option sets the frequency i for resetting the full memory Hessian. For example, if
hessian full memory is selected and i BFGS updates have already been carried out, the
Hessian approximation is reset to the identity matrix. (For certain problems, occasional resets
may improve convergence, but in general they should not be necessary.)

Hessian Full Memory and Hessian Frequency = 20 have a similar effect to Hessian

Limited Memory and Hessian Updates = 20, except that the latter retains the current diag-
onal during resets.

Default: 999999

hessian full memory (no value): Approximate Hessian is treated as a dense matrix ←↩

This option selects the full storage method for storing and updating the approximate Hessian.
(SNOPT uses a quasi-Newton approximation to the Hessian of the Lagrangian. A BFGS
update is applied after each major iteration.)

If Hessian Full Memory is specified, the approximate Hessian is treated as a dense matrix
and the BFGS updates are applied explicitly. This option is most efficient when the number
of nonlinear variables n1 is not too large. In this case, the storage requirement is fixed and
one can expect Q-superlinear convergence to the solution.

By default, this storage method is chosen when the number of nonlinear variables n1 ≤ 75.

2748 Solver Manuals

hessian limited memory (no value): Limited-memory procedure is used to update a diagonal Hessian
approximation ←↩

This option selects the limited memory storage method for storing and updating the approxi-
mate Hessian. (SNOPT uses a quasi-Newton approximation to the Hessian of the Lagrangian.
A BFGS update is applied after each major iteration.)

Hessian Limited Memory should be used on problems where the number of nonlinear variables
n1 is large. In this case a limited-memory procedure is used to update a diagonal Hessian
approximation $H r$ a limited number of times. (Updates are accumulated as a list of vector
pairs. They are discarded at regular intervals after Hr has been reset to their diagonal.)

By default, this storage method is chosen when the number of nonlinear variables n1 > 75.

hessian updates (integer): How often the limited memory Hessian is reset ←↩

If hessian limited memory is selected and i BFGS updates have already been carried out, all
but the diagonal elements of the accumulated updates are discarded and the updating process
starts again.

Broadly speaking, the more updates stored, the better the quality of the approximate Hessian.
However, the cost of each QP iteration also increases with the number of updates. The default
value is likely to give a robust algorithm without significant expense, but faster convergence
can sometimes be obtained with significantly fewer updates (e.g., i = 5).

Default: 10

infinite bound (real): Bounds larger than this number are considered Infinity ←↩

If r > 0, r defines the ”infinite” bound infBnd in the definition of the problem constraints. Any
upper bound greater than or equal to infBnd will be regarded as plus infinity (and similarly
for a lower bound less than or equal to -infBnd). If r ≤ 0, the default value is used.

Default: 1.0e20

iterations limit (integer): Minor iteration limit ←↩

The maximum number of minor iterations allowed (i.e., iterations of the simplex method or
the QP algorithm), summed over all major iterations. This option, if set, overrides the GAMS
iterlim specification.

Default: GAMS iterlim

linesearch tolerance (real): Controls accuracy of steplength selected ←↩

This controls the accuracy with which a steplength will be located along the direction of search
at each iteration. At the start of each linesearch a target directional derivative for the merit
function is identified. The linesearch tolerance t determines the accuracy to which this
target value is approximated.

• Larger values like t = 0.9 request just moderate accuracy in the linesearch.

• If the nonlinear functions are cheap to evaluate, as is usually the case for GAMS models,
a more accurate search may be appropriate; try t = 0.1, 0.01 or 0.001. The number of
major iterations might decrease.

• If the nonlinear functions are expensive to evaluate, a less accurate search may be
appropriate. In the case of running under GAMS where all gradients are known, try
t = 0.99. The number of major iterations might increase, but the total number of function
evaluations may decrease enough to compensate.

5.36 SNOPT 2749

Range: [0, 1]

Default: 0.9

LU complete pivoting (no value): LUSOL pivoting strategy ←↩

See LU partial pivoting.

LU density tolerance (real): Controls when to move to a dense factorization ←↩

The density tolerance r1 is used during LUSOL’s basis factorization B = LU . Columns of L
and rows of U are formed one at a time, and the remaining rows and columns of the basis
are altered appropriately. At any stage, if the density of the remaining matrix exceeds r1, the
Markowitz strategy for choosing pivots is terminated and the remaining matrix is factored by
a dense LU procedure. Raising the density tolerance towards 1.0 may give slightly sparser LU
factors, with a slight increase in factorization time.

See also LU singularity tolerance.

Range: [0, 1]

Default: 0.6

LU factor tolerance (real): Trade-off between stability and sparsity in basis factorization ←↩

LU factor tolerance r1

LU update tolerance r2

These tolerances affect the stability and sparsity of the basis factorization B = LU during
refactorization and updating, respectively. They must satisfy r1, r2 ≥ 1.0. The matrix L is a
product of matrices of the form (

1
µ 1

)
,

where the multipliers µ satisfy |µ| ≤ ri. Smaller values of ri favor stability, while larger values
favor sparsity.

• For large and relatively dense problems, smaller values of r1 (e.g. r1 = 3.0) may give a
useful improvement in stability without impairing sparsity to a serious degree.

• For certain very regular structures (e.g., band matrices) it may be necessary to reduce
r1 and/or r2 in order to achieve stability. For example, if the columns of A include a
submatrix of the form

2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2

,

both r1 and r2 should be in the range 1.0 ≤ ri < 2.0.

For linear models, the defaults are r1 = 100 and r2 = 10, while for nonlinear models both
tolerances default to 3.99.

See also LU update tolerance.

Range: [1, ∞]

Default: auto

2750 Solver Manuals

LU partial pivoting (no value): LUSOL pivoting strategy ←↩

The LUSOL factorization implements a Markowitz-type search for pivots that locally minimizes
fill-in subject to a threshold pivoting stability criterion. The rook pivoting and complete

pivoting options are more expensive than partial pivoting but are more stable and better
at revealing rank, as long as the LU factor tolerance is not too large (say r1 < 2.0).

When numerical difficulties are encountered, SNOPT automatically reduces the LU tolerances
toward 1.0 and switches (if necessary) to rook or complete pivoting before reverting to the
default or specified options at the next refactorization. (With sysout on and system information
enabled, relevant messages are output to the listing file.)

Default: yes

LU rook pivoting (no value): LUSOL pivoting strategy ←↩

See LU partial pivoting.

LU singularity tolerance (real): Protection against ill-conditioned basis matrices ←↩

The singularity tolerance r2 helps guard against ill-conditioned basis matrices. After B
is refactorized, the diagonal elements of U are tested as follows: if |Ujj | ≤ r2 or |Ujj | <
r2 maxi |Uij |, the jth column of the basis is replaced by the corresponding slack variable. (This
is most likely to occur after a restart.)

See also LU density tolerance.

Default: 3.2e-11

LU update tolerance (real): Trade-off between stability and sparsity in basis factorization ←↩

See LU factor tolerance for details.

Range: [1, ∞]

Default: auto

major feasibility tolerance (real): Feasibility tolerance for nonlinear constraints ←↩

This tolerance εr specifies how accurately the nonlinear constraints should be satisfied. The
default value of 1.0e-6 is appropriate when the constraints are expected to have at least that
accuracy.

Let rowerr be the maximum nonlinear constraint violation, normalized by the size of the
solution. It is required to satisfy

rowerr = max
i

violi/‖x‖ ≤ εr, (8)

where violi is the violation of the ith nonlinear constraint.

In the GAMS/SNOPT iteration log, rowerr appears as the quantity labeled "Feasibl". If
some of the problem functions are known to be of low accuracy, a larger Major feasibility

tolerance may be appropriate.

Default: 1.0e-6

major iterations limit (integer): Max number of major iterations ←↩

5.36 SNOPT 2751

This is the maximum number of major iterations allowed. It is intended to guard against an
excessive number of linearizations of the constraints. By default it is set to max(1000,m).

Default: GAMS iterlim

major optimality tolerance (real): Specifies the final accuracy of the dual variables ←↩

This tolerance εd specifies the final accuracy of the dual variables. On successful termination,
SNOPT will have computed a solution (x, s, π) such that

maxComp = max
j

Compj/‖π‖ ≤ εd, (9)

where Compj is an estimate of the complementarity slackness for variable j. The values

Compj are computed from the final QP solution using the reduced gradients dj = gj − πTaj
(where gj is the jth component of the objective gradient, aj is the associated column of the
constraint matrix (A − I) and π is the set of QP dual variables):

Compj =

{
dj min{xj − lj , 1} if dj ≥ 0;

−dj min{uj − xj , 1} if dj < 0.

In the GAMS/SNOPT iteration log, maxComp appears as the quantity labeled "Optimal".

Default: 1.0e-6

major print level (integer): Amount of information printed during optimization (listing file) ←↩

This controls the amount of output to the GAMS listing file at each major iteration. This
output is only visible if the sysout option is turned on. Major print level 1 gives normal
output for linear and nonlinear problems, and Major print level 11 gives additional details
of the Jacobian factorization that commences each major iteration. In general, the value
specified may be thought of as a binary number of the form

Major print level JFDXbs

where each letter stands for a digit that is either 0 or 1 as follows:

• s single line that gives a summary of each major iteration. (This entry in JFDXbs is not
strictly binary since the summary line is printed whenever JFDXbs ≥ 1).

• b BASIS statistics, i.e., information relating to the basis matrix whenever it is refactorized.
(This output is always provided if JFDXbs ≥ 10).

• X xk, the nonlinear variables involved in the objective function or the constraints.

• D πk, the dual variables for the nonlinear constraints.

• F F (xk), the values of the nonlinear constraint functions.

• J J(xk), the Jacobian.

To obtain output of any items JFDXbs, set the corresponding digit to 1, otherwise to 0.

If J=1, the Jacobian will be output column-wise at the start of each major iteration. Column
j will be preceded by the value of the corresponding variable xj and a key to indicate whether
the variable is basic, superbasic or nonbasic. (Hence if J=1, there is no reason to specify X=1

unless the objective contains more nonlinear variables than the Jacobian.) A typical line of
output is

3 1.250000D+01 BS 1 1.00000E+00 4 2.00000E+00

2752 Solver Manuals

which would mean that x3 is basic at value 12.5, and the third column of the Jacobian has
elements of 1.0 and 2.0 in rows 1 and 4.

Major print level 0 suppresses most output, except for error messages.

Default: 1

major step limit (real): Limits the change in x during a linesearch ←↩

This parameter r limits the change in x during a linesearch. It applies to all nonlinear problems,
once a ”feasible solution” or ”feasible subproblem” has been found.

1. A linesearch determines a step α over the range 0 < α ≤ β, where β is 1 if there are
nonlinear constraints, or the step to the nearest upper or lower bound on x if all the
constraints are linear. Normally, the first steplength tried is α1 = min(1, β).

2. In some cases, such as f(x) = aebx or f(x) = axb, even a moderate change in the
components of x can lead to floating-point overflow. The parameter r is therefore used to
define a limit β̄ = r(1+‖x‖)/‖p‖ (where p is the search direction), and the first evaluation
of f(x) is at the potentially smaller steplength α1 = min(1, β̄, β).

3. Wherever possible, upper and lower bounds on x should be used to prevent evaluation of
nonlinear functions at meaningless points. The Major step limit provides an additional
safeguard. The default value r = 2.0 should not affect progress on well behaved problems,
but setting r = 0.1 or 0.01 may be helpful when rapidly varying functions are present.
A ”good” starting point may be required. An important application is to the class of
nonlinear least-squares problems.

4. In cases where several local optima exist, specifying a small value for r may help locate
an optimum near the starting point.

Default: 2.0

minor feasibility tolerance (real): Feasibility tolerance for all variables and linear constraints ←↩

SNOPT tries to ensure that all variables eventually satisfy their upper and lower bounds to
within this tolerance t. This includes slack variables, so general linear constraints should also
be satisfied to within t.

Feasibility with respect to nonlinear constraints is judged by the major feasibility tolerance.

• If the bounds and linear constraints cannot be satisfied to within t, the problem is declared
infeasible. Let sInf be the corresponding sum of infeasibilities. If sInf is quite small,
it may be appropriate to raise t by a factor of 10 or 100. Otherwise, some error in the
data should be suspected.

• Nonlinear functions will be evaluated only at points that satisfy the bounds and linear
constraints. If there are regions where a function is undefined, every attempt should be
made to eliminate these regions from the problem. For example, if f(x) =

√
x1 +log x2, it

is essential to place lower bounds on both variables. If t = 1.0e−6, the bounds x1 ≥ 10−5

and x2 ≥ 10−4 might be appropriate. (The log singularity is more serious. In general,
keep x as far away from singularities as possible.)

• If the model is scaled (see scale option), feasibility is defined in terms of the scaled

problem.

• In reality, SNOPT uses t as a feasibility tolerance for satisfying the bounds on x and s
in each QP subproblem. If the sum of infeasibilities cannot be reduced to zero, the QP
subproblem is declared infeasible. SNOPT is then in elastic mode thereafter (with only
the linearized nonlinear constraints defined to be elastic). See elastic weight for details.

Default: 1.0e-6

5.36 SNOPT 2753

minor iterations limit (integer): Max number of minor iterations between linearizations of nonlinear
constraints ←↩

Minor iterations limit k. If the number of minor iterations for the optimality phase of the QP
subproblem exceeds k, then all nonbasic QP variables that have not yet moved are frozen at
their current values and the reduced QP is solved to optimality. Note that more than k minor
iterations may be necessary to solve the reduced QP to optimality. These extra iterations
are necessary to ensure that the terminated point gives a suitable direction for the linesearch.
In the major iteration log, a t at the end of a line indicates that the corresponding QP was
artificially terminated using the limit k. Note that iterations limit defines an independent
absolute limit on the total number of minor iterations (summed over all QP subproblems).

Default: 500

minor print level (integer): Amount of information printed during optimization (listing file) ←↩

This controls the amount of output to the GAMS listing file during solution of the QP
subproblems. It is only useful if the GAMS sysout option is turned on. The value of k has the
following effect:

• 0 No minor iteration output except error messages.

• ≥ 1 A single line of output each minor iteration (controlled by print frequency).

• ≥ 10 Basis factorization statistics generated during the periodic refactorization of the
basis (see factorization frequency). Statistics for the first factorization of each major
iteration are controlled by the major print level.

Default: 1

new superbasics limit (integer): Limit on new superbasics when a QP subproblem is solved ←↩

This option causes early termination of the QP subproblems if the number of free variables
has increased significantly since the first feasible point. If the number of new superbasics is
greater than new superbasics limit the nonbasic variables that have not yet moved are
frozen and the resulting smaller QP is solved to optimality. In the major iteration log, a "T"

at the end of a line indicates that the QP was terminated early in this way.

Default: 99

nonderivative linesearch (no value): Linesearch method (safeguarded quadratic interpolation) without
use of derivatives ←↩

A nonderivative linesearch can be slightly less robust on difficult problems, and it is
recommended that the default derivative linesearch be used if the functions and derivatives
can be computed at approximately the same cost. If the gradients are very expensive relative
to the functions, a nonderivative linesearch may give a significant decrease in computation
time. In a GAMS environment derivative linesearch (the default) is more appropriate.

partial price (integer): Number of segments in partial pricing strategy ←↩

This parameter sets the number of segments k using in partial pricing and is recommended for
large problems that have significantly more variables than constraints. It reduces the work
required for each ”pricing” operation (i.e. when a nonbasic variable is selected to become
superbasic).

• When k = 1, all columns of the constraint matrix (A − I) are searched.

2754 Solver Manuals

• Otherwise, A and I are partitioned to give k roughly equal segments Aj , Ij (j = 1 to
k). If the previous pricing search was successful on Aj , Ij , the next search begins on the
segments Aj+1, Ij+1. (All subscripts here are modulo k.)

• If a reduced gradient is found that is larger than some dynamic tolerance, the variable with
the largest such reduced gradient (of appropriate sign) is selected to become superbasic.
If nothing is found, the search continues on the next segments Aj+2, Ij+2, and so on.

• Partial price t (or t/2 or t/3) may be appropriate for time-stage models having t time
periods.

The default is 10 for linear models and 1 for nonlinear models.

Range: {1, ..., ∞}

Default: auto

penalty parameter (real): Initial penalty parameter ←↩

After a QP subproblem has been solved, new estimates of the NLP solution are computed using
a linesearch on the augmented Lagrangian merit function. This functions contains penalty
parameters, which may be increased to ensure descent.

Default: 0

pivot tolerance (real): Used to keep the basis non-singular ←↩

During solution of QP subproblems, the pivot tolerance r is used to prevent columns entering
the basis if they would cause the basis to become almost singular.

• When x changes to x+ αp for some search direction p, a ratio test is used to determine
which component of x reaches an upper or lower bound first. The corresponding element
of p is called the pivot element.

• Elements of p are ignored (and therefore cannot be pivot elements) if they are smaller
than the pivot tolerance r.

• It is common for two or more variables to reach a bound at essentially the same time.
In such cases, the minor feasibility tolerance (say t) provides some freedom to maximize
the pivot element and thereby improve numerical stability. Excessively small values of t
should therefore not be specified.

• To a lesser extent, the expand frequency (say f) also provides some freedom to maximize
the pivot element. Excessively large values of f should therefore not be specified.

Default: 3.67e-11

print frequency (integer): Number of iterations between each log line (listing file) ←↩

Synonym: log frequency

When sysout is turned on and minor print level is positive, a line of the QP iteration log will
be printed on the listing file every kth minor iteration.

Range: {1, ..., ∞}

Default: 100

proximal point method (integer): Controls promimal point method used for solving linear constraints
←↩

Once the linear constraints are satisfied, the proximal point method chooses a linear feasible
point that is closest to x0, the initial point for the nonlinear variables. The idea is to both
satisfy the linear constraints and stay close to the starting values provided for the nonlinear
variables. This option is used to disable the proximal point method or to select the norm used.

Default: 1

5.36 SNOPT 2755

value meaning

0 disable PPM
Do not use the proximal point method.

| 1 | one-norm
Minimize the one-norm ||x− x0||1.| | 2 | two-norm
Minimize the two-norm 1

2 ||x− x0||22.|

qpsolver (string): Controls method used for QP subproblems ←↩

This specifies the method used to solve system (5) for the search directions in phase 2 of the
QP subproblem.

• The Cholesky QP solver is the most robust, but may require a significant amount of
computation if the number of superbasics is large.

• The quasi-Newton QP solver does not require the computation of the R at the start of
each QP subproblem. It may be appropriate when the number of superbasics is large but
relatively few major iterations are needed to reach a solution (e.g., if SNOPT is called
with a warm start).

• The conjugate-gradient QP solver is appropriate for problems with many degrees of
freedom (say, more than 2000 superbasics).

Default: Cholesky

value meaning

Cholesky full Cholesky factor
QPSolver Cholesky holds the full Cholesky factor R of the reduced Hessian
ZTHZ. As the minor iterations proceed, the dimension of R changes with the
number of superbasic variables. If the number of superbasic variables needs to
increase beyond the value of reduced hessian dimension, the reduced Hessian
cannot be stored and the solver switches to QPSolver CG. The Cholesky solver
is reactivated if the number of superbasics stabilizes at a value less than the
reduced hessian dimension.

QN quasi-Newton method
QPSolver QN solves the QP using a quasi-Newton method similar to that of
MINOS. In this case, R is the factor of a quasi-Newton approximate Hessian.

CG conjugate-gradient method
QPSolver CG uses an active-set method similar to QPSolver QN, but uses the
conjugate-gradient method to solve all systems involving the reduced Hessian.

reduced hessian dimension (integer): Size of Hessian matrix ←↩

Synonym: hessian dimension

This specifies that an i × i triangular matrix R is to be available for use by the QPSolver

Cholesky option (to define the reduced Hessian according to RTR = ZTHZ). The value
of i affects when QPSolver CG is activated. The default is computed internally by SNOPT,
currently as min{2000, n1 + 1}.

Range: {1, ..., ∞}

Default: auto

scale option (integer): Controls problem scaling ←↩

2756 Solver Manuals

Three scale options are available. By default, option 2 is used for linear models and option 1
for nonlinear models. See also scale tolerance and scale print.

Default: auto

value meaning

0 No scaling
This is recommended if it is known that x and the constraint matrix and Jacobian
never have very large elements (say, larger than 100).

1 Scale linear variables
Linear constraints and variables are scaled by an iterative procedure that attempts
to make the matrix coefficients as close as possible to 1.0 (see Fourer [69]). This
will sometimes improve the performance of the solution procedures.

2 Scale linear + nonlinear variables
All constraints and variables are scaled by the iterative procedure. Also, an
additional scaling is performed that takes into account columns of (A − I) that
are fixed or have positive lower bounds or negative upper bounds. If nonlinear
constraints are present, the scales depend on the Jacobian at the first point that
satisfies the linear constraints. Scale option 2 should therefore be used only if
(a) a good starting point is provided, and (b) the problem is not highly nonlinear.

scale print (no value): Print scaling factors (listing file) ←↩

Scale print causes the row-scales r(i) and column-scales c(j) to be printed. The scaled
matrix coefficients are āij = aijc(j)/r(i), and the scaled bounds on the variables and slacks
are l̄j = lj/c(j), ūj = uj/c(j), where c(j) ≡ r(j − n) if j > n.

The listing file will only show these values if the sysout option is turned on. See also scale option
and scale tolerance.

scale tolerance (real): Scale tolerance ←↩

The scale tolerance t affects how many passes might be needed through the constraint matrix.
On each pass, the scaling procedure computes the ratio of the largest and smallest nonzero
coefficients in each column:

ρj = max
i
|aij |/min

i
|aij | (aij 6= 0).

If maxj ρj is less than r times its previous value, another scaling pass is performed to adjust
the row and column scales. Raising r from 0.9 to 0.99 (say) usually increases the number of
scaling passes through A. At most 10 passes are made.

See also scale option and scale print.

Range: [0, 1]

Default: 0.9

solution (string): Prints SNOPT solution (listing file) ←↩

This option causes the SNOPT solution file to be printed to the GAMS listing file, provided
the sysout option is also turned on.

Default: turned off.

Default: NO

5.36 SNOPT 2757

value meaning

NO Turn off printing of solution

YES Turn on printing of solution

summary frequency (integer): Number of iterations between each log line (log file) ←↩

If minor print level is positive, a line of the QP iteration log is output every kth minor iteration.

Range: {1, ..., ∞}

Default: 100

superbasics limit (integer): Maximum number of superbasics ←↩

This places a limit on the storage allocated for superbasic variables. Ideally, i should be set
slightly larger than the number of degrees of freedom expected at an optimal solution.

For linear programs, an optimum is normally a basic solution with no degrees of freedom. The
default value of i is therefore 1. For nonlinear problems, the number of degrees of freedom is
often called the ”number of independent variables”.

Normally, i need not be greater than n1 + 1, where n1 is the number of nonlinear variables.
For many problems, i may be considerably smaller than n1. This will save storage if n1 is very
large.

This parameter also sets the reduced hessian dimension, unless the latter is specified explicitly
(and conversely). If neither parameter is specified, GAMS chooses values for both, based on
problem characteristics.

Range: {1, ..., ∞}

Default: 1

suppress parameters (no value): Suppress printing of parameters (listing file) ←↩

Normally SNOPT prints the option file as it is being read, and then prints a complete list of
the available keywords and their final values. The suppress parameters option tells SNOPT
not to print the full list. Used in conjunction with the sysout option.

system information (string): Provides additional information on the progress of the iterations (listing
file) ←↩

The Yes option provides additional information on the progress of the iterations, including basis
repair details when ill-conditioned bases are encountered and the LU factorization parameters
are strengthened.

Default: NO

value meaning

NO Turn off additional printing of information on progress of algorithm

YES Turn on additional printing of information on progress of algorithm

timing level (integer): Amount of timing information (listing file) ←↩

2758 Solver Manuals

Amount of timing information written to the listing file. Used in conjunction with the sysout
option.

Range: {0, ..., 3}

Default: 3

unbounded objective value (real): Determines when a problem is called unbounded ←↩

This parameter sets the value fmax intended to detect unboundedness in nonlinear problems.
See unbounded step size for the setting of αmax.

During a line search, f0 is evaluated at points of the form x + αp, where x and p are fixed
and α varies. If |f0| exceeds fmax or α exceeds αmax, iterations are terminated with the exit
message Problem is unbounded (or badly scaled).

Unboundedness in x is best avoided by placing finite upper and lower bounds on the variables.

Default: 1.0e15

unbounded step size (real): Determines when a problem is called unbounded ←↩

This parameter sets the value αmax used in the unboundedness test: see unbounded objective value
for details.

Default: 1.0e18

verify level (integer): Finite-difference checks on the derivatives ←↩

This option refers to finite-difference checks on the derivatives computed by the user-provided
routines. Derivatives are checked at the first point that satisfies all bounds and linear
constraints.

This option has limited use in a GAMS environment.

Default: -1

value meaning

0 Cheap test

1 Check individual gradients

2 Check individual columns of the Jacobian

3 Combines verify level 1 and 2

-1 Derivative checking is disabled

violation limit (integer): Limit on maximum constraint violation after the linesearch ←↩

This parameter τ is used to define an absolute limit on the magnitude of the maximum
constraint violation after the line search. On completion of the line search, the new iterate
xk+1 satisfies the condition

vi(xk+1) ≤ τ max{1, vi(x0)},

where x0 is the point at which the nonlinear constraints are first evaluated and vi(x) is the ith
nonlinear constraint violation vi(x) = max(0, li − Fi(x), Fi(x)− ui).

The effect of this violation limit is to restrict the iterates to lie in an expanded feasible region
whose size depends on the magnitude of τ . This makes it possible to keep the iterates within a

5.36 SNOPT 2759

region where the objective is expected to be well-defined and bounded below. If the objective
is bounded below for all values of the variables, then τ may be any large positive value.

Default: 10

warm start (no value): Use advanced basis provided by GAMS ←↩

Use an advanced basis provided by GAMS. This option takes precedence over the GAMS
bratio option.

5.36.6 The SNOPT log

When GAMS/SNOPT solves a linearly constrained problem the following log is visible on the screen:

==============================

S N O P T 7.7.6 (Jan 2021)

==============================

SNMEMA EXIT 100 -- finished successfully

SNMEMA INFO 104 -- memory requirements estimated

Nonlinear constraints 0 Linear constraints 5

Nonlinear variables 11 Linear variables 0

Jacobian variables 0 Objective variables 11

Total constraints 5 Total variables 11

The user has defined 11 out of 11 first derivatives

Major Minors Step nObj Feasible Optimal Objective nS

0 4 1 4.3E-02 -4.7361869E+01 4 r

1 3 1.0E+00 2 2.1E-02 -4.7526522E+01 4 r

2 2 1.0E+00 3 3.4E-02 -4.7586643E+01 5 s

3 2 1.0E+00 4 1.1E-02 -4.7662724E+01 6

4 2 1.0E+00 5 4.8E-03 -4.7678618E+01 5

5 1 1.0E+00 6 1.3E-02 -4.7701147E+01 5

6 2 1.0E+00 7 5.2E-03 -4.7704100E+01 6

7 2 1.0E+00 8 3.5E-04 -4.7705775E+01 5

8 2 1.0E+00 9 5.1E-03 -4.7706132E+01 6

9 1 1.0E+00 10 6.1E-05 -4.7706500E+01 6

Major Minors Step nObj Feasible Optimal Objective nS

10 1 1.0E+00 11 6.1E-05 -4.7706513E+01 6

11 1 1.0E+00 12 5.0E-05 -4.7706515E+01 6

12 1 1.0E+00 13 1.6E-05 -4.7706515E+01 6

13 1 1.0E+00 14 2.0E-06 -4.7706515E+01 6

14 1 1.0E+00 15 (7.1E-07)-4.7706515E+01 6

SNOPTA EXIT 0 -- finished successfully

SNOPTA INFO 1 -- optimality conditions satisfied

Problem name mixer

No. of iterations 30 Objective -4.7706514831E+01

No. of major iterations 14 Linear obj. term 0.0000000000E+00

Nonlinear obj. term -4.7706514831E+01

User function calls (total) 15

No. of superbasics 6 No. of basic nonlinears 4

No. of degenerate steps 0 Percentage 0.00

Max x 11 1.6E+00 Max pi 3 1.5E+01

Max Primal infeas 0 0.0E+00 Max Dual infeas 4 6.1E-05

2760 Solver Manuals

Solution not printed

Time for MPS input 0.00 seconds

Time for solving problem 0.00 seconds

Time for solution output 0.00 seconds

Time for constraint functions 0.00 seconds

Time for objective function 0.00 seconds

For a nonlinearly constrained problem, the log is somewhat different:

==============================

S N O P T 7.7.6 (Jan 2021)

==============================

SNMEMA EXIT 100 -- finished successfully

SNMEMA INFO 104 -- memory requirements estimated

Nonlinear constraints 23 Linear constraints 16

Nonlinear variables 35 Linear variables 8

Jacobian variables 35 Objective variables 0

Total constraints 39 Total variables 43

The user has defined 56 out of 56 first derivatives

Major Minors Step nCon Feasible Optimal MeritFunction nS Penalty

0 22 1 1.9E+00 1.0E+00 6.0000000E+02 3 r i

1 3 5.0E-03 2 1.9E+00 1.0E+00 -5.8415017E+04 3 7.6E-01 rli

2 1 5.0E-03 4 1.9E+00 1.0E+00 -2.1089442E+05 3 2.8E+00 rli

3 19 1.0E+00 6 7.9E-01 1.7E+00 -3.1110693E+04 3 2.8E+00 sM

4 6 1.0E+00 8 4.1E-01 4.4E+00 -3.1423080E+04 4 3.2E+00 m

5 4 1.0E+00 9 2.1E-01 3.9E+01 -1.3134062E+04 5 3.2E+00

6 1 1.0E+00 11 1.3E-03 2.3E+02 5.1483376E+02 5 3.2E+00 m

7 1 1.0E+00 13 1.4E-05 2.1E+00 5.1732760E+02 5 3.2E+00 m

8 2 1.0E+00 15 1.4E-03 3.5E+01 5.3714297E+02 4 3.2E+00 m

9 1 1.0E+00 16 1.9E-03 4.0E+01 5.5832995E+02 4 3.2E+00

Major Minors Step nCon Feasible Optimal MeritFunction nS Penalty

10 4 1.0E+00 17 1.5E-04 1.4E+01 5.6904902E+02 5 3.2E+00

11 1 3.2E-01 20 4.9E-03 7.4E+01 5.9984627E+02 5 3.2E+00

12 1 5.7E-01 22 7.1E-03 6.5E+01 6.3671070E+02 5 3.2E+00

13 2 1.0E+00 23 2.6E-03 1.3E+02 6.9523972E+02 4 3.2E+00

14 2 3.6E-01 26 5.8E-03 1.5E+02 7.3043319E+02 5 3.2E+00

[...]

85 2 1.0E+00 281 2.6E-04 6.2E+00 1.0588496E+03 1 3.2E+00

86 2 1.0E+00 282 2.1E-04 5.1E+00 1.0588957E+03 2 3.2E+00

87 1 1.0E+00 283 4.9E-05 1.2E+00 1.0589180E+03 2 3.2E+00

88 1 1.0E+00 284 5.4E-06 1.3E-01 1.0589196E+03 2 3.2E+00

89 1 1.0E+00 285 (5.0E-07) 1.2E-02 1.0589199E+03 2 3.2E+00

Major Minors Step nCon Feasible Optimal MeritFunction nS Penalty

90 1 1.0E+00 286 (7.5E-10)(1.9E-07) 1.0589199E+03 2 3.2E+00

SNOPTA EXIT 0 -- finished successfully

SNOPTA INFO 1 -- optimality conditions satisfied

Problem name chenrad

No. of iterations 171 Objective 1.0589198561E+03

No. of major iterations 90 Linear obj. term 1.0589198561E+03

Penalty parameter 3.188E+00 Nonlinear obj. term 0.0000000000E+00

User function calls (total) 286

5.36 SNOPT 2761

No. of superbasics 2 No. of basic nonlinears 29

No. of degenerate steps 9 Percentage 5.26

Max x 4 6.4E+02 Max pi 11 2.6E+03

Max Primal infeas 48 4.8E-07 Max Dual infeas 21 9.9E-04

Nonlinear constraint violn 4.8E-07

Solution not printed

Time for MPS input 0.00 seconds

Time for solving problem 0.02 seconds

Time for solution output 0.00 seconds

Time for constraint functions 0.01 seconds

Time for objective function 0.00 seconds

The SNOPT log shows the following columns:

Major

The current major iteration number.

Minors

The number of iterations required by both the feasibility and optimality phases of the
QP subproblem. Generally, Minor will be 1 in the later iterations, since theoretical anal-
ysis predicts that the correct active set will be identified near the solution (see Section
Description of the method)

Step

The step length α taken along the current search direction p. The variables x have just been
changed to x+ αp. On reasonably well-behaved problems, the unit step will be taken as the
solution is approached.

nObj

The number of times the nonlinear objective function has been evaluated. nObj is printed as a
guide to the amount of work required for the linesearch.

nCon

The number of times SNOPT evaluated the nonlinear constraint functions.

MeritFunction

The value of the augmented Lagrangian merit function (6). This function will decrease
at each iteration unless it was necessary to increase the penalty parameters (see Section
Description of the method). As the solution is approached, Merit will converge to the value
of the objective at the solution.

In elastic mode, the merit function is a composite function involving the constraint violations
weighted by the elastic weight.

If the constraints are linear, this item is labeled Objective, the value of the objective function.
It will decrease monotonically to its optimal value.

Feasible

2762 Solver Manuals

The value of rowerr, the maximum component of the scaled nonlinear constraint
residual. The solution is regarded as acceptably feasible if Feasible is less than the
Major feasibility tolerance.

If the constraints are linear, all iterates are feasible and this entry is not printed.

Optimal

The value of maxgap, the maximum complementarity gap. It is an estimate of the degree of
nonoptimality of the reduced costs. The solution is considered to be optimal if Optimal is less
than the major optimality tolerance.

nS

The current number of superbasic variables.

Penalty

The Euclidean norm of the vector of penalty parameters used in the augmented Lagrangian
merit function (not printed if the constraints are linear).

The summary line may include additional code characters that indicate what happened during the course
of the iteration.

c Central differences have been used to compute the unknown components of the objective
and constraint gradients. This should not happen in a GAMS environment.

d During the linesearch it was necessary to decrease the step in order to obtain a maximum
constraint violation conforming to the value of violation limit.

l The norm-wise change in the variables was limited by the value of the major step limit. If
this output occurs repeatedly during later iterations, it may be worthwhile increasing the value
of major step limit.

i If SNOPT is not in elastic mode, an ”i” signifies that the QP subproblem is infeasible. This
event triggers the start of nonlinear elastic mode, which remains in effect for all subsequent
iterations. Once in elastic mode, the QP subproblems are associated with the elastic problem
NP(γ).

If SNOPT is already in elastic mode, an ”i” indicates that the minimizer of the elastic
subproblem does not satisfy the linearized constraints. (In this case, a feasible point for the
usual QP subproblem may or may not exist.)

M An extra evaluation of the problem functions was needed to define an acceptable positive-
definite quasi-Newton update to the Lagrangian Hessian. This modification is only done when
there are nonlinear constraints.

m This is the same as ”M” except that it was also necessary to modify the update to include
an augmented Lagrangian term.

n No positive-definite BFGS update could be found. The approximate Hessian is unchanged
from the previous iteration.

R The approximate Hessian has been reset by discarding all but the diagonal elements.
This reset will be forced periodically by the hessian frequency and hessian updates keywords.
However, it may also be necessary to reset an ill-conditioned Hessian from time to time.

5.36 SNOPT 2763

r The approximate Hessian was reset after ten consecutive major iterations in which no BFGS
update could be made. The diagonals of the approximate Hessian are retained if at least one
update has been done since the last reset. Otherwise, the approximate Hessian is reset to the
identity matrix.

s A self-scaled BFGS update was performed. This update is always used when the Hessian
approximation is diagonal, and hence always follows a Hessian reset.

S This is the same as a ”s” except that it was necessary to modify the self-scaled update to
maintain positive definiteness.

t The minor iterations were terminated at the minor iterations limit.

T The minor iterations were terminated at the new superbasics limit.

u The QP subproblem was unbounded.

w A weak solution of the QP subproblem was found.

z The superbasics limit was reached.

Finally SNOPT prints an exit message. See Section EXIT conditions.

5.36.6.1 EXIT conditions

When the solution procedure terminates, an SNOPTA EXIT and SNOPTA INFO message is printed to
summarize the final result. Here we describe each message and suggest possible courses of action.

1 -- optimality conditions satisfied

The final point seems to be a solution. This means that x is feasible (it satisfies the constraints
to the accuracy requested), the reduced gradient is negligible, the reduced costs are optimal,
and R is nonsingular. In all cases, some caution should be exercised. For example, if the
objective value is much better than expected, SNOPT may have obtained an optimal solution
to the wrong problem! Almost any item of data could have that effect if it has the wrong
value. Verifying that the problem has been defined correctly is one of the more difficult tasks
for a model builder.

If nonlinearities exist, one must always ask the question: could there be more than one local
optimum? When the constraints are linear and the objective is known to be convex (e.g., a
sum of squares) then all will be well if we are minimizing the objective: a local minimum
is a global minimum in the sense that no other point has a lower function value. (However,
many points could have the same objective value, particularly if the objective is largely linear.)
Conversely, if we are maximizing a convex function, a local maximum cannot be expected to
be global, unless there are sufficient constraints to confine the feasible region.

Similar statements could be made about nonlinear constraints defining convex or concave
regions. However, the functions of a problem are more likely to be neither convex nor concave.
Our advice is always to specify a starting point that is as good an estimate as possible, and to
include reasonable upper and lower bounds on all variables, in order to confine the solution to
the specific region of interest. We expect modelers to know something about their problem,
and to make use of that knowledge as they themselves know best.

One other caution about the ”Optimal solution” message. Some of the variables or slacks may
lie outside their bounds more than desired, especially if scaling was requested. If sysout is on,
the listing file will contain several indicators of potential issues. Max Primal infeas indicates
the largest bound infeasibility and which variable is involved. If it is too large, consider
restarting with a smaller minor feasibility tolerance (say 10 times smaller) and perhaps a
scale option of 0.

Similarly, Max Dual infeas indicates which variable is most likely to be at a non-optimal
value. Broadly speaking, if

2764 Solver Manuals

Max Dual infeas/Norm of pi = 10−d,

then the objective function would probably change in the dth significant digit if optimiza-
tion could be continued. If d seems too large, consider restarting with smaller values of
major feasibility tolerance and minor feasibility tolerance.

Finally, Nonlinear constraint violn shows the maximum infeasibility for nonlinear rows.
If it seems too large, consider restarting with a smaller major feasibility tolerance.

2 -- feasible point found

Occurs only if feasible point is enabled.

3 -- requested accuracy could not be achieved

If the requested accuracy could not be achieved, a feasible solution has been found, but the
requested accuracy in the dual infeasibilities could not be achieved. An abnormal termination
has occurred, but SNOPT is within 10−2 of satisfying the major optimality tolerance. Check
that the major optimality tolerance is not too small.

11 -- infeasible linear constraints

12 -- infeasible linear equality constraints

When the constraints are linear, the output messages are based on a relatively reliable indicator
of infeasibility. Feasibility is measured with respect to the upper and lower bounds on the
variables and slacks. Among all the points satisfying the general constraints Ax − s = 0,
there is apparently no point that satisfies the bounds on x and s. Violations as small as the
minor feasibility tolerance are ignored, but at least one component of x or s violates a bound
by more than the tolerance.

13 -- nonlinear infeasibilities minimized

14 -- linear infeasibilities minimized

15 -- infeasible linear constraints in QP subproblem

16 -- infeasible nonelastic constraints

When nonlinear constraints are present, infeasibility is much harder to recognize correctly.
Even if a feasible solution exists, the current linearization of the constraints may not contain a
feasible point. In an attempt to deal with this situation, when solving each QP subproblem,
SNOPT is prepared to relax the bounds on the slacks associated with nonlinear rows.

If a QP subproblem proves to be infeasible or unbounded (or if the Lagrange multiplier estimates
for the nonlinear constraints become large), SNOPT enters so-called ”nonlinear elastic” mode.
The subproblem includes the original QP objective and the sum of the infeasibilities—suitably
weighted using the elastic weight parameter. In elastic mode, the nonlinear rows are made
”elastic”—i.e., they are allowed to violate their specified bounds. Variables subject to elastic
bounds are known as elastic variables. An elastic variable is free to violate one or both of
its original upper or lower bounds. If the original problem has a feasible solution and the
elastic weight is sufficiently large, a feasible point eventually will be obtained for the perturbed
constraints, and optimization can continue on the subproblem. If the nonlinear problem has
no feasible solution, SNOPT will tend to determine a ”good” infeasible point if the elastic
weight is sufficiently large. (If the elastic weight were infinite, SNOPT would locally minimize
the nonlinear constraint violations subject to the linear constraints and bounds.)

Unfortunately, even though SNOPT locally minimizes the nonlinear constraint violations,
there may still exist other regions in which the nonlinear constraints are satisfied. Wherever
possible, nonlinear constraints should be defined in such a way that feasible points are known
to exist when the constraints are linearized.

5.36 SNOPT 2765

21 -- unbounded objective

22 -- constraint violation limit reached

For linear problems, unboundedness is detected by the simplex method when a nonbasic
variable can apparently be increased or decreased by an arbitrary amount without causing a
basic variable to violate a bound. Adding a bound on the objective will allow SNOPT to find
a solution, and inspection of this solution will show the variables that can become too large
due to missing restrictions.

Very rarely, the scaling of the problem could be so poor that numerical error will give an
erroneous indication of unboundedness. Consider using the scale option.

For nonlinear problems, SNOPT monitors both the size of the current objective function
and the size of the change in the variables at each step. If either of these is very large (see
unbounded step size and unbounded objective value), the problem is terminated and declared
UNBOUNDED. To avoid large function values, it may be necessary to impose bounds on some
of the variables in order to keep them away from singularities in the nonlinear functions.

The second message indicates an abnormal termination while enforcing the limit on the
constraint violations. This exit implies that the objective is not bounded below in the feasible
region defined by expanding the bounds by the value of the violation limit.

31 -- iteration limit reached

An iteration limit was reached. Most often this is cured by increasing the GAMS iterlim
option. If an SNOPT option file was used, also the iterations limit may have been set too
small.

Check the iteration log to be sure that progress was being made. If so, repeat the run with
higher limits. If not, consider specifying new initial values for some of the nonlinear variables.

32 -- major iteration limit reached

This indicates SNOPT was running out the limit on major iterations. This can be changed
using the major iterations limit.

33 -- the superbasics limit is too small

The problem appears to be more nonlinear than anticipated. The current set of basic and
superbasic variables have been optimized as much as possible and a PRICE operation is
necessary to continue, but there are already as many superbasics as allowed (and no room for
any more).

When increasing the superbasics limit, be aware that this also increases the reduced hessian dimension
unless both options are set explicitly. This may increase the amount of memory required by
SNOPT dramatically. Consider also increasing the amount memory available to SNOPT via
the workfactor option, or setting a more moderate value for the reduced hessian dimension
option and possibly getting slower convergence.

34 -- time limit reached

A time limit was hit. Increase the GAMS reslim option.

41 -- current point cannot be improved

The algorithm could not find a better solution although optimality was not achieved within
the optimality tolerance. Possibly scaling can lead to better function values and derivatives.
Raising the major optimality tolerance will probably make this message go away. Try better
scaling, better bounds or a better starting point.

2766 Solver Manuals

42 -- singular basis

The first factorization attempt found the basis to be structurally or numerically singular.
(Some diagonals of the triangular matrix U were deemed too small.) The associated variables
were replaced by slacks and the modified basis refactorized, but singularity persisted. Try
better scaling, better bounds or a better starting point.

43 -- cannot satisfy the general constraints

The basic variables xB have been recomputed, given the present values of the superbasic and
nonbasic variables. A step of ”iterative refinement” has also been applied to increase the
accuracy of xB , but a row check has revealed that the resulting solution does not satisfy the
QP constraints Ax − s = b sufficiently well. Try better scaling, better bounds or a better
starting point.

44 -- ill-conditioned null-space basis

During computation of the reduced Hessian ZTHZ, some column(s) of Z continued to contain
very large values. Try better scaling, better bounds or a better starting point.

51 -- incorrect objective derivatives

52 -- incorrect constraint derivatives

The derivatives are not deemed to be correct. This message should not occur using a GAMS
model without external equations.

53 -- irregular or badly scaled problem functions

The problem function can be badly scaled in case of DNLPs (which SNOPT was not designed
for) or because of evaluations at singular points.

61 -- undefined function at the first feasible point

62 -- undefined function at the initial point

SNOPT was unable to proceed because the functions are undefined at the initial point or the
first feasible point. Try to add better bounds or linear equations such that non-linear functions
can be evaluated or use a better starting point.

63 -- unable to proceed into undefined region

Repeated attempts to move into a region where the functions are not defined resulted in the
change in variables being unacceptably small. At the final point, it appears that the only way
to decrease the merit function is to move into a region where the problem functions are not
defined.

Try to add better bounds or linear equations such that non-linear functions can be evaluated
or use a better starting point.

71 -- terminated during function evaluation

72 -- terminated from monitor routine

These messages indicate trouble evaluating the non-linear functions or derivatives. Usually
these errors show a ”Function evaluation error limit” message.

81 -- work arrays must have at least 500 elements

82 -- not enough character storage

83 -- not enough integer storage

84 -- not enough real storage

Increase the memory allocation by using workfactor > 1.

5.37 SoPlex 2767

5.37 SoPlex

SoPlex (Sequential object-oriented simPlex) is an optimization package for solving linear programming
problems (LPs) based on an advanced implementation of the primal and dual revised simplex algorithm.
SoPlex is developed at the Zuse-Institute Berlin.

For more detailed information, we refer to [74] [127] [88] [89] [75] [206] and the SoPlex web site.

5.37.1 Usage

The following statement can be used inside your GAMS program to specify using SOPLEX

Option LP = SOPLEX; { or RMIP }

The above statement should appear before the Solve statement. If SoPlex was specified as the default
solver during GAMS installation, the above statement is not necessary.

5.37.1.1 Specification of SoPlex Options

GAMS/SoPlex supports the GAMS parameters reslim and iterlim.

To allow to run without an iteration limit (SoPlex default), the GAMS/SoPlex link does not pass on a
setting of GAMS option iterlim to 2147483647.

Setting the GAMS option integer1 to a nonzero value enables writing of detailed solution statistics to the
log.

Setting the GAMS option integer3 to a nonzero value leads to writing the model instance to a file in LP
or MPS format before starting the solution process (integer3=1 writes an MPS file, integer3=2 writes
an LP files, integer3=4 writes SoPlex state files (.mps, .bas, .set); sum these values to write several
files). The name of the output file is chosen to be the name of the GAMS model file with the extension
.gms replaced. Setting the GAMS option integer2 to a nonzero value makes variable and equation names
available when writing the LP or MPS files. These options may be useful for debugging purposes.

Options can be specified by a SoPlex options file. A SoPlex options file consists of one option or comment
per line. A pound sign (#) at the beginning of a line causes the entire line to be ignored. Otherwise, the
line will be interpreted as an option name and value separated by an equal sign (=) and any amount of
white space (blanks or tabs).

A small example for a soplex.opt file is:

bool:rowboundflips = true

int:algorithm = 0

real:feastol = 1e-5

It causes GAMS/SoPlex to use bound flipping also for row representations, use the primal simplex, and
use a primal feasibility tolerance of 1e-5.

5.37.2 List of SoPlex Options

In the following, we give a detailed list of all SoPlex options.

http://soplex.zib.de
http://soplex.zib.de

2768 Solver Manuals

Option Description Default

bool:acceptcycling
should cycling solutions be ac-
cepted during iterative refine-
ment?
Range: boolean

0

bool:computedegen
should the degeneracy be com-
puted for each basis?
Range: boolean

0

bool:decompositiondualsimplex
should the decomposition based
dual simplex be used to solve the
LP?
Range: boolean

0

bool:ensureray
re-optimize the original problem
to get a proof (ray) of infeasibil-
ity/unboundedness?
Range: boolean

0

bool:explicitviol
Should violations of the original
problem be explicitly computed
in the decomposition simplex?
Range: boolean

0

bool:forcebasic
try to enforce that the optimal
solution is a basic solution
Range: boolean

0

bool:fullperturbation
should perturbation be applied
to the entire problem?
Range: boolean

0

bool:lifting
should lifting be used to reduce
range of nonzero matrix coeffi-
cients?
Range: boolean

0

bool:persistentscaling
should persistent scaling be
used?
Range: boolean

1

bool:powerscaling
round scaling factors for iterative
refinement to powers of two?
Range: boolean

1

bool:ratfacjump
continue iterative refinement
with exact basic solution if not
optimal?
Range: boolean

0

bool:rowboundflips
use bound flipping also for row
representation?
Range: boolean

0

bool:testdualinf
should dual infeasibility be
tested in order to try to return
a dual solution even if primal in-
feasible?
Range: boolean

0

bool:usecompdual
should the dual of the comple-
mentary problem be used in the
decomposition simplex?
Range: boolean

0

5.37 SoPlex 2769

Option Description Default

int:algorithm
type of algorithm (0 - primal, 1 -
dual)
Range: {0, ..., 1}

1

int:decomp displayfreq
the frequency that the decompo-
sition based simplex status out-
put is displayed.
Range: {1, ..., ∞}

50

int:decomp iterlimit
the number of iterations before
the decomposition simplex ini-
tialisation solve is terminated
Range: {1, ..., ∞}

100

int:decomp maxaddedrows
maximum number of rows that
are added to the reduced prob-
lem when using the decomposi-
tion based simplex
Range: {1, ..., ∞}

500

int:decomp verbosity
the verbosity of decomposition
based simplex (0 - error, 1 - warn-
ing, 2 - debug, 3 - normal, 4 -
high, 5 - full).
Range: {1, ..., 5}

0

int:displayfreq
display frequency
Range: {1, ..., ∞}

200

int:factor update max
maximum number of LU updates
without fresh factorization (0 -
auto)
Range: {0, ..., ∞}

0

int:factor update type
type of LU update (0 - eta up-
date, 1 - Forrest-Tomlin update)
Range: {0, ..., 1}

1

int:hyperpricing
mode for hyper sparse pricing (0
- off, 1 - auto, 2 - always)
Range: {0, ..., 2}

1

int:iterlimit
iteration limit (-1 - no limit)
Range: {-1, ..., ∞}

GAMS iterlim

int:leastsq maxrounds
maximum number of conju-
gate gradient iterations in least
square scaling
Range: {0, ..., ∞}

50

int:pricer
pricing method (0 - auto, 1 -
dantzig, 2 - parmult, 3 - devex,
4 - quicksteep, 5 - steep)
Range: {0, ..., 5}

0

int:printbasismetric
print basis metric during the
solve (-1 - off, 0 - condition esti-
mate , 1 - trace, 2 - determinant,
3 - condition)
Range: {-1, ..., 3}

-1

int:ratiotester
method for ratio test (0 - text-
book, 1 - harris, 2 - fast, 3 -
boundflipping)
Range: {0, ..., 3}

3

2770 Solver Manuals

Option Description Default

int:reflimit
refinement limit (-1 - no limit)
Range: {-1, ..., ∞}

-1

int:representation
type of computational form (0 -
auto, 1 - column representation,
2 - row representation)
Range: {0, ..., 2}

0

int:scaler
scaling (0 - off, 1 - uni-
equilibrium, 2 - bi-equilibrium,
3 - geometric, 4 - iterated ge-
ometric, 5 - least squares, 6 -
geometric-equilibrium)
Range: {0, ..., 6}

2

int:simplifier
simplifier (0 - off, 1 - auto, 2 -
PaPILO, 3 - internal)
Range: {0, ..., 3}

3

int:stallreflimit
stalling refinement limit (-1 - no
limit)
Range: {-1, ..., ∞}

-1

int:starter
crash basis generated when start-
ing from scratch (0 - none, 1 -
weight, 2 - sum, 3 - vector)
Range: {0, ..., 3}

0

int:stattimer
measure for statistics, e.g. fac-
torization time (0 - off, 1 - user
time, 2 - wallclock time)
Range: {0, ..., 2}

1

int:timer
type of timer (1 - cputime, aka.
usertime, 2 - wallclock time, 0 -
no timing)
Range: {0, ..., 2}

2

int:verbosity
verbosity level (0 - error, 1 -
warning, 2 - debug, 3 - normal,
4 - high, 5 - full)
Range: {0, ..., 5}

3

real:epsilon factorization
zero tolerance used in factoriza-
tion
Range: [0, 1]

1e-20

real:epsilon pivot
pivot zero tolerance used in fac-
torization
Range: [0, 1]

1e-10

real:epsilon update
zero tolerance used in update of
the factorization
Range: [0, 1]

1e-16

real:epsilon zero
general zero tolerance
Range: [0, 1]

1e-16

real:feastol
primal feasibility tolerance
Range: [0, 1]

1e-06

real:fpfeastol
working tolerance for feasibility
in floating-point solver during it-
erative refinement
Range: [1e-12, 1]

1e-09

5.37 SoPlex 2771

Option Description Default

real:fpopttol
working tolerance for optimality
in floating-point solver during it-
erative refinement
Range: [1e-12, 1]

1e-09

real:infty
infinity threshold
Range: [1e+10, ∞]

∞

real:leastsq acrcy
accuracy of conjugate gradient
method in least squares scaling
(higher value leads to more iter-
ations)
Range: [1, ∞]

1000

real:liftmaxval
lower threshold in lifting
(nonzero matrix coefficients with
smaller absolute value will be
reformulated)
Range: [10, ∞]

1024

real:liftminval
lower threshold in lifting
(nonzero matrix coefficients with
smaller absolute value will be
reformulated)
Range: [0, 0.1]

0.000976562

real:maxscaleincr
maximum increase of scaling fac-
tors between refinements
Range: [1, ∞]

1e+25

real:min markowitz
minimal Markowitz threshold in
LU factorization
Range: [0.0001, 0.9999]

0.01

real:minred
minimal reduction (sum of re-
moved rows/cols) to continue
simplification
Range: [0, 1]

0.0001

real:objlimit lower
lower limit on objective value
Range: real

GAMS cutoff, if maximizing,
else -∞

real:objlimit upper
upper limit on objective value
Range: real

GAMS cutoff, if minimizing,
else +∞

real:opttol
dual feasibility tolerance
Range: [0, 1]

1e-06

real:refac basis nnz
refactor threshold for nonzeros in
last factorized basis matrix com-
pared to updated basis matrix
Range: [1, 100]

10

real:refac mem factor
refactor threshold for memory
growth in factorization since last
refactorization
Range: [1, 10]

1.5

real:refac update fill
refactor threshold for fill-in in
current factor update compared
to fill-in in last factorization
Range: [1, 100]

5

2772 Solver Manuals

Option Description Default

real:representation switch
threshold on number of rows vs.
number of columns for switching
from column to row representa-
tions in auto mode
Range: [0, ∞]

1.2

real:simplifier modifyrowfac
modify constraints when the
number of nonzeros or rows is at
most this factor times the num-
ber of nonzeros or rows before
presolving
Range: [0, 1]

1

real:sparsity threshold
sparse pricing threshold (vio-
lations < dimension ∗ SPAR-
SITY THRESHOLD activates
sparse pricing)
Range: [0, 1]

0.6

real:timelimit
time limit in seconds
Range: [0, ∞]

GAMS reslim

5.38 XPRESS

5.38.1 Introduction

The GAMS/XPRESS solver is based on the XPRESS Optimization Subroutine Library, and runs only in
conjunction with the GAMS modeling system. GAMS/XPRESS (also simply referred to as XPRESS) is a
versatile, high-performance optimization system. The system integrates:

• a powerful simplex-based LP solver.

• a MIP module with cut generation for integer programming problems.

• a barrier module implementing a state-of-the-art interior point algorithm for very large LP problems.

• a sequential linear programming solver (SLP) for (mixed-integer) nonlinear programs NLP, CNS
and MINLP.

The GAMS/XPRESS solver is installed automatically with your GAMS system. There are different license
options:

• GAMS/XPRESS:
Continuous and discrete linear and convex quadratic models.

• GAMS/XPRESS-NLP:
Continuous linear, quadratic and nonlinear models. In order to use GAMS Knitro, a GAMS/KNITRO
license must be included.

• GAMS/XPRESS-MINLP:
All model types. In order to use GAMS Knitro, a GAMS/KNITRO license must be included.

• GAMS/XPRESS Link:
Users must have a separate, licensed XPRESS system. For users who wish to use XPRESS within
GAMS and also in other environments. All model types, if XPRESS license enables it. In order to
use GAMS Knitro, the user's Xpress license must enable it.

• demo:
Like GAMS/XPRESS but with demo limits (small models only).

5.38 XPRESS 2773

Attention

The free bare-bone link mode (previously GAMS/OSIXPRESS) that allowed to solve LP and MIP
when the user had a separate XPRESS license installed has been removed. If you relied on using
this bare-bone link option, then do not hesitate to contact sales@gams.com to arrange for a
GAMS/XPRESS Link license.

5.38.2 Usage

To explicitly request that a model be solved with XPRESS, insert the statement

option LP = xpress; { or MIP, RMIP, NLP, CNS, DNLP, RMINLP, MINLP, QCP, MIQCP, or RMIQCP }

somewhere before the solve statement. If XPRESS has been selected as the default solver (e.g. during
GAMS installation) for the model type in question, the above statement is not necessary.

The standard GAMS options (e.g. iterlim, optcr) can be used to control XPRESS. For more details, see
section Controlling a Solver via GAMS Options. Please note however that - apart from reslim - these are
only used for linear and quadratic programs and not the nonlinear solves. Termination conditions for
XPRESS SLP can be set in SLP Termination Options.

In addition, XPRESS-specific options can be specified by using a solver option file. While the content of
an option file is solver-specific, the details of how to create an option file and instruct the solver to use it
are not. This topic is covered in section The Solver Options File.

An example of a valid XPRESS option file is:

* sample XPRESS options file

algorithm simplex

presolve 0

IterLim 50000

In general this is enough knowledge to solve your models. In some cases you may want to use some of the
XPRESS options to gain further performance improvements or for other reasons.

5.38.2.1 Linear and Quadratic Programming

The options advBasis, lpFlags, defaultAlg, basisOut, mpsOutputFile, reform, reRun, and reslim control
the behavior of the GAMS/XPRESS link. The options crash, lpIterlimit, presolve, scaling, threads,
and trace set XPRESS library control variables, and can be used to fine-tune XPRESS. See section
General LP / MIP / QP Options for more details of XPRESS general options.

LP

See section LP Options for more details of XPRESS library control variables which can be used to fine-tune
the XPRESS LP solver.

mailto:sales@gams.com

2774 Solver Manuals

MIP

In some cases, the branch-and-bound MIP algorithm will stop with a proven optimal solution or when
unboundedness or (integer) infeasibility is detected. In most cases, however, the global search is stopped
through one of the generic GAMS options:

1. iterlim (on the cumulative pivot count) or reslim (in seconds of CPU time),

2. optca & optcr (stopping criteria based on gap between best integer solution found and best possible)
or

3. nodlim (on the total number of nodes allowed in the B&B tree).

It is also possible to set the maxNode and maxMipSol options to stop the global search: see section
MIP Options for XPRESS control variables for MIP. The options loadMipSol, mipCleanup, mipTrace,
mipTraceNode, and mipTraceTime control the behavior of the GAMS/XPRESS link on MIP models. The
other options in section MIP Options set XPRESS library control variables, and can be used to fine-tune
the XPRESS MIP solver.

MIP Solution Pool

Typically, XPRESS finds a number of integer feasible points during its global search, but only the final
solution is available. The MIP solution pool capability makes it possible to store multiple integer feasible
points (aka solutions) for later processing. The MIP solution pool operates in one of two modes: by
default (solnpoolPop = 1) the global search is not altered, but with (solnpoolPop = 2) a selected set
(potentially all) of the integer feasible solutions are enumerated.

The MIP enumeration proceeds until all MIP solutions are enumerated or cut off, or until a user-defined
limit is reached. Whenever a new solution is generated by the enumerator, it is presented to the solution
pool manager. If there is room in the pool, the new solution is added. If the pool is full, a cull round is
performed to select a number of solutions to be thrown out - these solutions can be those stored in the
pool and/or the new solution. Solutions can be selected for culling based on their MIP objective value
and/or the overall diversity of the solutions in the pool. If neither is chosen, a default choice is made to
throw out one solution based on objective values. Whenever a solution is thrown out based on its MIP
objective, the enumeration space is pruned based on the cutoff defined by this objective value.

By default, the capacity of the pool is set very large, as is the number of cull rounds to perform, so
selecting only solnpoolPop = 2 will result in full enumeration. However, many different strategies can
be executed by setting the solution pool options. For example, to choose the N -best solutions, simply set
the solution pool capacity to N . When the pool is full, new solutions will force a cull round, and the
default is to reject one solution based on its objective and update the cutoff accordingly. To generate all
solutions with an objective as good as X, leave the pool capacity set at a high level but set the cutoff to X
using the mipabscutoff option. To return the N -first solutions, set the solution pool capacity to N and
solnpoolCullRounds = 0: as soon as the pool is full the enumeration will stop on the cull round limit.

A number of other strategies for controlling the solution pool behavior are possible by combining different
options. Several working examples are provided in the GAMS Test Library in models xpress03.gms,
xpress04.gms, and xpress05.gms.

See section MIP Solution Pool Options for XPRESS control variables for MIP Solution Pool.

5.38 XPRESS 2775

Newton-Barrier

The barrier method is invoked by default for quadratic problems, and can be selected for linear models by
using one of the options

algorithm barrier

defaultalg 4

The barrier method is likely to use more memory than the simplex method. No warm start is done, so if
an advanced basis exists, you may not wish to use the barrier solver.

See section Newton-barrier Options for XPRESS control variables for the Newton-Barrier method.

5.38.2.2 Nonlinear Programming

XPRESS can solve nonlinear programs of type NLP, CNS and MINLP (and its relaxed version) using
the sequential linear programming solver XPRESS SLP or the interior-point / sequential quadratic
programming solver XPRESS Knitro. Convexity is not required, but for non-convex programs XPRESS
will in general find local optimal solutions only. The XPRESS multistart can be used to increase the
likelihood of finding a good solution by starting from many different initial points.

XPRESS SLP solves nonlinear programs by successive linearization of the nonlinearities. These lineariza-
tions, which can be controlled by the options in NLP Augmentation and Linearization Options, are solved
by the LP or QCP solver. Therefore, XPRESS user options for LP or QCP are also relevant when solving
nonlinear programs. Note, that the NLP Presolve is independent from the LP presolve that is executed
in each XPRESS SLP iteration.

Termination

In most cases it is sufficient to control the termination of XPRESS SLP by xslp iterLimit, reslim,
xslp validationTarget k and xslp ValidationTarget r as the latter two automatically control the other
XPRESS SLP convergence measures on default. More experienced users may want to modify the other
convergence measures, which group into:

• Strict convergence: Describes the numerical behaviour of convergence in the formal, mathematical
sense. User options: xslp cTol, xslp aTol a, xslp aTol r.

• Extended convergence: Measures the quality of the linearization, including the effect of changes to
the nonlinear terms that contribute to a variable in the linearization: User options: xslp mTol a,
xslp mTol r, xslp iTol a, xslp iTol r, xslp sTol a, xslp sTol r.

When each variable has converged in one of the above cases, XPRESS SLP terminates based on the
following stopping criteria:

• Baseline static objective convergence measure that compares changes in the objective over a given
number of iterations relative to the average objective value. User options: xslp vCount, xslp vLimit,
xslp vTol a, xslp vTol r.

• Static objective convergence measure that is applied when there are no unconverged variables in
active constraints. User options: slpOCount, xslp oTol a, xslp oTol r.

• Static objective convergence measure that is applied when a pratical solution (all variables have
converged and there are no active step bounds) has been found. User options: xslp xCount,
xslp xLimit, xslp xTol a, xslp xTol r.

• Extended convergence continuation that is applied when a practical solution has been found. It
checks if it is worth continuing. User options: xslp wCount, xslp wTol a, xslp wTol r.

The user option slpConvergenceOps enables/disables the different convergence measures and stopping
conditions.

2776 Solver Manuals

Output

The output or logging can be controlled by the NLP Log Options. The default XPRESS SLP iteration
output shows:

• It: Iteration number.

• LP: The LP status of the linearization (O: optimal; I: infeasible; U: unbounded; X: interrupted)

• NetObj: The net objective of the SLP iteration.

• ValObj: The original objective function value.

• ErrorSum: Sum of the error delta variables. A measure of infeasibility.

• ErrorCost: The value of the weighted error delta variables in the objective. A measure of the effort
needed to push the model towards feasibility.

• Validate: Relative feasibility measure (calculated only if convergence is likely)

• KKT: Relative optimality measure (calculated only if convergence is likely)

• Unconv: The number of SLP variables that are not converged.

• Ext: The number of SLP variables that are converged, but only by extended criteria.

• Action: Special actions (0: failed line search; B: enforcing step bounds; E: some infeasible rows
were enforced; G: global variables were fixed; P: solution needed polishing, postsolve instability; P!:
solution polishing failed; R: penalty error vectors removed; V: feasibility validation induces further
iterations; K: optimality validation induces further iterations)

• T: Time.

XPRESS Knitro

Nonlinear programs can also be solved by XPRESS Knitro using the option xslp solver. In this case, the
nonlinear program is passed to Knitro after the NLP Presolve. Setting xslp solver to auto will enable
XPRESS to choose XPRESS SLP or XPRESS Knitro automatically based on the problem instance.
XPRESS Knitro options can be specified in a Knitro solver option file, which needs to be selected in
knitroOptFile. Note, that XPRESS Knitro does not support all Knitro options. Specified but unsupported
options trigger a warning and are then ignored.

For more information about this nonlinear programming solver, see the GAMS/Knitro documentation.

5.38.3 Summary of XPRESS Options

5.38.3.1 General LP / MIP / QP Options

Option Description Default

advBasis
Use advanced basis provided by GAMS auto

algorithm
Choose between simplex and barrier algorithm simplex

basisOut
Directs optimizer to output an MPS basis file none

clamping
Allows for the adjustment of returned solution values
such that they are always within bounds

0

5.38 XPRESS 2777

Option Description Default

clamping dual
Adjust primal slack values to always be within constraint
bounds

0

clamping primal
Adjust primal solution to always be within primal
bounds

0

clamping rdj
Adjust reduced costs to always be within dual bounds
implied by the primal solution

0

clamping slacks
Adjust dual solution to always be within the dual bounds
implied by the slacks

0

cpuTime
How time should be measured when timings are reported
in the log and when checking against time limits

0

globalBoundingBox
If a nonlinear problem cannot be solved due to appearing
unbounded, it can automatically be regularized by the
application of a bounding box on the variables

1e+06

inputTol
Tolerance on input values elements 0

ioTimeout
Maximum number of seconds to wait for an I/O opera-
tion before it is cancelled

30

lpIterLimit
Maximum number of iterations that will be performed by
primal simplex or dual simplex before the optimization
process terminates

maxint

lpRefineIterLimit
Simplex iteration limit the solution refiner can spend in
attempting to increase the accuracy of an LP solution

auto

maxScaleFactor
Determines the maximum scaling factor that can be
applied during scaling

64

mpsNameLength
Maximum length of MPS names in characters 0

mpsOutputFile
Name of MPS output file none

numericalEmphasis
How much emphasis to place on numerical stability
instead of solve speed

auto

outputControls
Toggles the printing of all control settings at the begin-
ning of the search

1

outputLog
Controls the level of output produced by the Optimizer
during optimization

1

outputTol
Zero tolerance on print values 1e-05

qextractalg
quadratic extraction algorithm in GAMS interface 0

randomSeed
Sets the initial seed to use for the pseudo-random num-
ber generator in the Optimizer

1

refineOps
Specifies when the solution refiner should be executed
to reduce solution infeasibilities

19

refineOps iterativeRefiner
Apply the iterative refiner to refine the solution 0

refineOps lpOptimal
Run the solution refiner on an optimal solution of a
continuous problem

1

refineOps lpPresolve
Run the solution refiner on an optimal solution before
postsolve on a continuous problem

1

refineOps mipFixGlobals
Refine MIP solutions such that rounding them keeps
the problem feasible when reoptimized

0

refineOps mipFixGlobalsTarget
Attempt to refine MIP solutions such that rounding
them keeps the problem feasible when reoptimized, but
accept integers solutions even if refinement fails

0

refineOps mipNodeLp
Run the solution refiner on each node of the MIP search 0

2778 Solver Manuals

Option Description Default

refineOps mipSolution
Run the solution refiner when a new solution is found
during a tree search

1

refineOps refinerPrecision
Use higher precision in the iterative refinement 0

refineOps refinerUseDual
If set, the iterative refiner will use the dual simplex
algorithm

0

refineOps refinerUsePrimal
If set, the iterative refiner will use the primal simplex
algorithm

0

reform
Substitute out objective var and equ when possible 1

reRun
Rerun with primal simplex when not optimal/feasible 0

reslim
Overrides GAMS reslim option

solTimeLimit
Maximum time in seconds that the Optimizer will run
a MIP solve before it terminates, given that a solution
has been found

1e+20

timeLimit
Maximum time in seconds that the Optimizer will run
before it terminates, including the problem setup time
and solution time

1e+20

trace
Display the infeasibility diagnosis during presolve 0

writePrtSol
Directs optimizer to output a ”printsol” file 0

5.38.3.2 Hardware Related Options

Option Description Default

barCores
If set to a positive integer it determines the number of physical
CPU cores assumed to be present in the system by the barrier
algorithm

auto

barOrderThreads
If set to a positive integer it determines the number of con-
current threads for the sparse matrix ordering algorithm in
the Newton-barrier method

auto

barThreads
If set to a positive integer it determines the number of threads
implemented to run the Newton-barrier algorithm

auto

concurrentThreads
Determines the number of threads used by the concurrent
solver

auto

coresPerCpu
Used to override the detected value of the number of cores
on a CPU

auto

cpuPlatform
Newton Barrier: Selects the AMD, Intel x86 or ARM vec-
torization instruction set that Barrier should run optimized
code for

-1

crossoverThreads
Determines the maximum number of threads that parallel
crossover is allowed to use

auto

dualThreads
Determines the maximum number of threads that dual sim-
plex is allowed to use

auto

heurThreads
Branch and Bound: Number of threads to dedicate to running
heuristics on the root node

0

maxMemoryHard
Sets the maximum amount of memory in megabytes the
optimizer should allocate

unlimited

maxMemorySoft
When resourceStrategy is enabled, this control sets the max-
imum amount of memory in megabytes the optimizer targets
to allocate

unlimited

mipThreads
If set to a positive integer it determines the number of threads
implemented to run the parallel MIP code

auto

5.38 XPRESS 2779

Option Description Default

relaxTreeMemoryLimit
When the memory used by the branch and bound search tree
exceeds the target specified by the treeMemoryLimit control,
the optimizer will try to reduce this by writing nodes to the
tree file

0.1

resourceStrategy
Controls whether the optimizer is allowed to make nondeter-
ministic decisions if memory is running low in an effort to
preserve memory and finish the solve

0

threads
Default number of threads used during optimization 1

treeCompression
When writing nodes to the global file, the optimizer can try
to use data-compression techniques to reduce the size of the
tree file on disk

2

treeMemoryLimit
Soft limit, in megabytes, for the amount of memory to use
in storing the branch and bound search tree

auto

treeMemorySavingTarget
When the memory used by the branch-and-bound search tree
exceeds the limit specified by the treeMemoryLimit control,
the optimizer will try to save memory by writing lower-rated
sections of the tree to the tree file

0.4

5.38.3.3 Presolve Options

Option Description Default

barPresolveOps
Newton barrier: Controls the Newton-Barrier spe-
cific presolve operations

0

barPresolveOps extra
Extra effort is spent in barrier specific presolve 0

barPresolveOps full
Do full matrix eliminations (reduce matrix size) 0

barPresolveOps standard
Use standard presolve 0

dualize
Whether presolve should form the dual of the
problem

auto

dualizeOps
Bit-vector control for adjusting the behavior when
a problem is dualized

1

elimFillin
Amount of fill-in allowed when performing an elim-
ination in presolve

10

elimTol
Markowitz tolerance for the elimination phase of
the presolve

0.001

indLinBigM
During presolve, indicator constraints will be lin-
earized using a BigM coefficient whenever that
BigM coefficient is small enough

100000

indPreLinBigM
During presolve, indicator constraints will be lin-
earized using a BigM coefficient whenever that
BigM coefficient is small enough

100

lpFolding
Simplex and barrier: Whether to fold an LP prob-
lem before solving it

auto

maxImpliedBound
Presolve: When tighter bounds are calculated
during MIP preprocessing, only bounds whose
absolute value are smaller than maxImpliedBound
will be applied to the problem

1e+08

mipPresolve
Branch and Bound: Type of integer processing to
be performed

-1

mipPresolve allowChangeBounds
If node preprocessing is allowed to change bounds
on continuous columns

1

2780 Solver Manuals

Option Description Default

mipPresolve allowTreeRestart
[Unused] This bit is no longer used to control
restarts

1

mipPresolve dualReductions
Dual reductions will be performed at each node 1

mipPresolve globalCoefTightening
Allow global (non-bound) tightening of the prob-
lem during the tree search

1

mipPresolve logicPreprocessing
Primal reductions will be performed at each node 1

mipPresolve objBasedReductions
Objective function will be used to find reductions
at each node

1

mipPresolve reducedCostFixing
Reduced cost fixing will be performed at each node 1

mipPresolve symmetryReductions
Allow that symmetry is used to presolve the node
problem

1

preAnalyticCenter
Determines if analytic centers should be computed
and used for variable fixing and the generation
of alternative reduced costs (-1: Auto 0: Off, 1:
Fixing, 2: Redcost, 3: Both)

auto

preBasisRed
Determines if a lattice basis reduction algorithm
should be attempted as part of presolve

0

preBndRedCone
Determines if second order cone constraints should
be used for inferring bound reductions on variables
when solving a MIP

auto

preBndRedQuad
Determines if convex quadratic contraints should
be used for inferring bound reductions on variables
when solving a MIP

auto

preCliqueStrategy
Determines how much effort to spend on clique
covers in presolve

-1

preCoefElim
Presolve: Specifies whether the optimizer should
attempt to recombine constraints in order to re-
duce the number of non zero coefficients when
presolving a mixed integer problem

2

preComponents
Presolve: Determines whether small independent
components should be detected and solved as in-
dividual subproblems during root node processing

auto

preComponentsEffort
Presolve: Adjusts the overall effort for the inde-
pendent component presolver

1

preConeDecomp
Presolve: Decompose regular and rotated cones
with more than two elements and apply Outer
Approximation on the resulting components

auto

preConfiguration
MIP Presolve: Determines whether binary rows
with only few repeating coefficients should be re-
formulated

auto

preConvertSeparable
Presolve: Reformulate problem with non-diagonal
quadratic objective and/or constraints as diagonal
quadratic or second-order conic constraints

auto

preDomCol
Presolve: Determines the level of dominated col-
umn removal reductions to perform when presolv-
ing a mixed integer problem

auto

preDomRow
Presolve: Determines the level of dominated row
removal reductions to perform when presolving a
problem

auto

preDupRow
Presolve: Determines the type of duplicate rows to
look for and eliminate when presolving a problem

auto

5.38 XPRESS 2781

Option Description Default

preElimQuad
Presolve: Allows for elimination of quadratic vari-
ables via doubleton rows

auto

preFolding
Presolve: Determines if a folding procedure should
be used to aggregate continuous columns in an
equitable partition

auto

preImplications
Presolve: Determines whether to use implication
structures to remove redundant rows

auto

preLinDep
Presolve: Determines whether to check for and
remove linearly dependent equality constraints
when presolving a problem

auto

preObjCutDetect
Presolve: Determines whether to check for con-
straints that are parallel or near parallel to a lin-
ear objective function, and which can safely be
removed

1

preProbing
Presolve: Amount of probing to perform on binary
variables during presolve

auto

presolve
Determines whether presolving should be per-
formed prior to starting the main algorithm

1

presolveMaxGrow
Limit on how much the number of non-zero coeffi-
cients is allowed to grow during presolve, specified
as a ratio of the number of non-zero coefficients
in the original problem

0.1

presolveOps
Specifies the operations which are performed dur-
ing the presolve

511

presolveOps dualReductions
Dual reductions 1

presolveOps duplicateColRemoval
Duplicate column removal 1

presolveOps duplicateRowRemoval
Duplicate row removal 1

presolveOps forcingRowRemoval
Forcing row removal 1

presolveOps linDependRowRemoval
Linearly dependant row removal 0

presolveOps noAdvIpReductions
No advanced IP reductions 0

presolveOps noGlobalDomainChange
No semi-continuous variable detection 0

presolveOps noIntVarAndSosDetect
No integer variable and SOS detection 0

presolveOps noIntVarEliminations
No eliminations on integers 0

presolveOps noIpReductions
No IP reductions 0

presolveOps redundantRowRemoval
Redundant row removal 1

presolveOps singletonColRemoval
Singleton column removal 1

presolveOps singletonRowRemoval
Singleton row removal 1

presolveOps strongDualReductions
Strong dual reductions 1

presolveOps variableEliminations
Variable eliminations 1

presolvePasses
Number of reduction rounds to be performed in
presolve

1

2782 Solver Manuals

Option Description Default

rootPresolve
Determines if presolving should be performed on
the problem after the tree search has finished with
root cutting and heuristics

auto

siftPresolveOps
Determines the presolve operations for solving the
subproblems during the sifting algorithm

-1

5.38.3.4 Scaling Options

Option Description Default

autoScaling
Whether the Optimizer should automatically select
between different scaling algorithms

auto

barFreeScale
Defines how the barrier algorithm scales free variables 1e-06

barObjScale
Defines how the barrier scales the objective auto

barRhsScale
Defines how the barrier scales the right hand side auto

objScaleFactor
Custom objective scaling factor, expressed as a power
of 2

0

scaling
Determines how the Optimizer will rescale a model
internally before optimization

163

scaling beforePresolve
Scale before presolve 0

scaling bigM
Treat big-M rows as normal rows 0

scaling byMaxElemNotGeoMean
0: scale by geometric mean 1

scaling colScaling
Column scaling 1

scaling curtisReid
Curtis-Reid 0

scaling disableGlobalObjScaling
Do not apply automatic objective scaling 0

scaling ignoreQuadRowPart
Exclude the quadratic part of constraint when calcu-
lating scaling factors

0

scaling maximum
Maximum 0

scaling noAggressiveQScaling
Disable aggressive quadratic scaling 0

scaling noScalingColsDown
Do not scale columns down 0

scaling noScalingRowsUp
Do not scale rows up 0

scaling rhsScaling
RHS scaling 0

scaling rowScaling
Row scaling 1

scaling rowScalingAgain
Row scaling again 0

scaling simplexObjScaling
Scale objective function for the simplex method 1

scaling slackScaling
Enable explicit linear slack scaling 0

5.38.3.5 LP Options

5.38 XPRESS 2783

Option Description Default

algAfterNetwork
Algorithm to be used for the clean up step after the network simplex
solver

auto

autoPerturb
Simplex: Indicates whether automatic perturbation is performed auto

bigM
Infeasibility penalty used if the ”Big M” method is implemented auto

bigMMethod
Simplex: Whether to use the ”Big M” method, or the standard
phase I (achieving feasibility) and phase II (achieving optimality)

1

crash
Simplex: Determines the type of crash used when the algorithm
begins

2

defaultAlg
Selects the algorithm that will be used to solve the LP auto

dualGradient
Simplex: Dual simplex pricing method auto

dualPerturb
Factor by which the problem will be perturbed prior to optimization
by dual simplex

auto

dualStrategy
Bit-vector control specifies the dual simplex strategy 1

etaTol
Tolerance on eta elements 1e-13

feasTol
Determines when a solution is treated as feasible 1e-06

feasTolPerturb
Determines how much a feasible primal basic solution is allowed to
be perturbed when performing basis changes

1e-06

feasTolTarget
Target feasibility tolerance for the solution refiner 0

forceParallelDual
Dual simplex: Specifies whether the dual simplex solver should
always use the parallel simplex algorithm

0

invertFreq
Simplex: Frequency with which the basis will be inverted auto

invertMin
Simplex: Minimum number of iterations between full inversions of
the basis matrix

3

lpFlags
Bit-vector control which defines the algorithm for solving an LP
problem or the initial LP relaxation of a MIP problem

0

lpFlags barrier
Use the barrier method 0

lpFlags dual
Use the dual simplex method 0

lpFlags network
Use the network simplex method 0

lpFlags primal
Use the primal simplex method 0

lpLog
Simplex: Frequency at which the simplex log is printed 100

lpLogDelay
Time interval between two LP log lines 1

lpLogStyle
Simplex: Style of the simplex log 1

markowitzTol
Markowitz tolerance used for the factorization of the basis matrix 0.01

matrixTol
Zero tolerance on matrix elements 1e-09

netStallLimit
Limit the number of degenerate pivots of the network simplex algo-
rithm, before switching to either primal or dual simplex, depending
on algAfterNetwork

auto

optimalityTol
Simplex: Zero tolerance for reduced costs 1e-06

optimalityTolTarget
Target optimality tolerance for the solution refiner 0

2784 Solver Manuals

Option Description Default

penalty
Minimum absolute penalty variable coefficient auto

pivotTol
Simplex: Zero tolerance for matrix elements 1e-09

ppFactor
Partial pricing candidate list sizing parameter 1

pricingAlg
Simplex: Determines the primal simplex pricing method auto

primalOps
Primal simplex: Allows fine tuning the variable selection in the
primal simplex solver

-1

primalPerturb
Factor by which the problem will be perturbed prior to optimization
by primal simplex

auto

primalUnshift
Determines whether primal is allowed to call dual to unshift 0

relPivotTol
Simplex: Minimum size of pivot element relative to largest element
in column

1e-06

sifting
Determines whether to enable sifting algorithm with the dual sim-
plex method

auto

siftPasses
Determines how quickly we allow to grow the worker problems
during the sifting algorithm

4

siftSwitch
Determines which algorithm to use for solving the subproblems
during sifting

-1

5.38.3.6 QP Options

Option Description Default

eigenvalueTol
Quadratic matrix is considered not to be positive semi-definite, if its
smallest eigenvalue is smaller than the negative of this value

1e-06

ifCheckConvexity
Determines if the convexity of the problem is checked before optimiza-
tion

1

qSimplexOps
Controls the behavior of the quadratic simplex solvers 0

quadraticUnshift
Determines whether an extra solution purification step is called after
a solution found by the quadratic simplex (either primal or dual)

auto

repairIndefInitEq
Controls if the optimizer should make indefinite quadratic matrices
positive definite when it is possible

1

5.38.3.7 Newton-barrier Options

Option Description Default

algAfterCrossover
Algorithm to be used for the final clean up step after the
crossover

auto

barAlg
Determines which barrier algorithm is to be used to solve the
problem

auto

barCrash
Newton barrier: Determines the type of crash used for the
crossover

4

barDualStop
Newton barrier: Convergence parameter, representing the tol-
erance for dual infeasibilities

auto

barFailIterLimit
Newton barrier: Maximum number of consecutive iterations
that fail to improve the solution in the barrier algorithm

auto

barGapStop
Newton barrier: Convergence parameter, representing the tol-
erance for the relative duality gap

auto

5.38 XPRESS 2785

Option Description Default

barGapTarget
Newton barrier: Target tolerance for the relative duality gap auto

barIndefLimit
Newton Barrier: Limits the number of consecutive indefinite
barrier iterations that will be performed

15

barIterLimit
Newton barrier: Maximum number of iterations 500

barKernel
Newton barrier: Defines how centrality is weighted in the barrier
algorithm

0

barObjPerturb
Defines how the barrier perturbs the objective 1e-06

barOrder
Newton barrier: Controls the Cholesky factorization in the
Newton-Barrier

auto

barOutput
Newton barrier: Level of solution output provided 1

barPerturb
Newton barrier: In numerically challenging cases it is often
advantageous to apply perturbations on the KKT system to
improve its numerical properties

0

barPrimalStop
Newton barrier: Convergence parameter, indicating the toler-
ance for primal infeasibilities

auto

barRefIter
Newton barrier: After terminating the barrier algorithm, further
refinement steps can be performed

0

barRegularize
Determines how the barrier algorithm applies regularization on
the KKT system

-1

barStart
Newton barrier: Controls the computation of the starting point
for the barrier algorithm

auto

barStepStop
Newton barrier: Convergence parameter, representing the mini-
mal step size

1e-16

choleskyAlg
Newton barrier: Type of Cholesky factorization used auto

choleskyTol
Newton barrier: Tolerance for pivot elements in the Cholesky
decomposition of the normal equations coefficient matrix, com-
puted at each iteration of the barrier algorithm

1e-15

crossover Newton barrier: Determines whether the barrier method will
cross over to the simplex method when at optimal solution has
been found, to provide an end basis and advanced sensitivity
analysis information

auto

crossoverAccuracyTol
Newton barrier: Determines how crossover adjusts the default
relative pivot tolerance

1e-06

crossoverIterLimit
Newton barrier: Maximum number of iterations that will be
performed in the crossover procedure before the optimization
process terminates

2147483647

crossoverOps
Newton barrier: Bit vector for adjusting the behavior of the
crossover procedure

0

denseColLimit
Newton barrier: Controls trigger point for special treatment of
dense columns in Cholesky factorization

auto

5.38.3.8 MIP Options

Option Description Default

backTrack
Branch and Bound: Specifies how to select the next node
to work on when a full backtrack is performed

3

backtrackTie
Branch and Bound: Specifies how to break ties when se-
lecting the next node to work on when a full backtrack is
performed

-1

2786 Solver Manuals

Option Description Default

branchChoice
Once a MIP entity has been selected for branching, this
control determines which of the branches is solved first

0

branchDisj
Branch and Bound: Determines whether the optimizer
should attempt to branch on general split disjunctions dur-
ing the branch and bound search

auto

branchStructural
Branch and Bound: Determines whether the optimizer
should search for special structure in the problem to branch
on during the branch and bound search

auto

breadthFirst
Number of nodes to include in the best-first search before
switching to the local first search (nodeSelection = 4)

11

deterministic
Selects whether to use a deterministic or opportunistic mode
when solving a problem using multiple threads

1

feasibilityPump
Branch and Bound: Decides if the Feasibility Pump heuristic
should be run at the top node

auto

fixoptfile
name of option file which is read just before solving the
fixed problem

genConsAbsTransformation
Specifies the reformulation method for absolute value general
constraints at the beginning of the search

auto

genConsDualReductions
Parameter specifies whether dual reductions should be ap-
plied to reduce the number of columns and rows added when
transforming general constraints to MIP structs

1

historyCosts
Branch and Bound: How to update the pseudo cost for a
MIP entity when a strong branch or a regular branch is
applied

auto

loadMipSol
Loads a MIP solution (the initial point) 0

localChoice
Controls when to perform a local backtrack between the
two child nodes during a dive in the branch and bound tree

auto

maxLocalBacktrack
Branch-and-Bound: How far back up the current dive path
the optimizer is allowed to look for a local backtrack candi-
date node

auto

maxMipSol
Branch and Bound: Limit on the number of integer solutions
to be found by the Optimizer

0

maxMipTasks
Branch-and-Bound: The maximum number of tasks to run
in parallel during a MIP solve

auto

maxNode
Branch and Bound: Maximum number of nodes that will
be explored

maxint

maxStallTime
Maximum time in seconds that the Optimizer will con-
tinue to search for improving solution after finding a new
incumbent

0

mipAbsCutoff
Branch and Bound: If the user knows that they are inter-
ested only in values of the objective function which are better
than some value, this can be assigned to mipAbsCutoff

auto

mipAbsStop
Branch and Bound: Absolute tolerance determining whether
the tree search will continue or not

0

mipAddCutoff
Branch and Bound: Amount to add to the objective func-
tion of the best integer solution found to give the new
CURRMIPCUTOFF

0

mipCleanup
Clean up the MIP solution (round-fix-solve) to get duals 1

mipComponents
Determines whether disconnected components in a MIP
should be solved as separate MIPs

auto

mipConcurrentNodes
Sets the node limit for when a winning solve is selected
when concurrent MIP solves are enabled

auto

5.38 XPRESS 2787

Option Description Default

mipConcurrentSolves
Selects the number of concurrent solves to start for a MIP 0

mipDualReductions
Branch and Bound: Limits operations that can reduce the
MIP solution space

1

mipFracReduce
Branch and Bound: Specifies how often the optimizer should
run a heuristic to reduce the number of fractional integer
variables in the node LP solutions

auto

mipKappaFreq
Branch and Bound: Specifies how frequently the basis con-
dition number (also known as kappa) should be calculated
during the branch-and-bound search

0

mipLog
MIP log print control -100

mipRampUp
Controls the strategy used by the parallel MIP solver during
the ramp-up phase of a branch-and-bound tree search

auto

mipRefineIterLimit
Defines an effort limit expressed as simplex iterations for
the MIP solution refiner

auto

mipRelCutoff
Branch and Bound: Percentage of the LP solution value
to be added to the value of the objective function when an
integer solution is found, to give the new value of CUR-
RMIPCUTOFF

0

mipRelStop
Branch and Bound: Determines when the branch and bound
tree search will terminate

0.0001

mipRestart
Branch and Bound: Controls strategy for in-tree restarts auto

mipRestartFactor
Branch and Bound: Fine tune initial conditions to trigger
an in-tree restart

1

mipRestartGapThreshold
Branch and Bound: Initial gap threshold to delay in-tree
restart

0.02

mipstopexpr
Stopping expression for branch and bound

mipTol
Branch and Bound: Tolerance within which a decision
variable’s value is considered to be integral

5e-06

mipToltarget
Target mipTol value used by the automatic MIP solution
refiner as defined by refineOps

0

mipTrace
Name of MIP trace file none

mipTraceNode
Node interval between MIP trace file entries 100

mipTraceTime
Time interval, in seconds, between MIP trace file entries 5

miqcpAlg
Determines which algorithm is to be used to solve mixed
integer quadratic constrained and mixed integer second
order cone problems

auto

nodeProbingEffort
Adjusts the overall level of node probing 1

nodeSelection
Branch and Bound: Determines which nodes will be consid-
ered for solution once the current node has been solved

auto

objGoodEnough
Stop once an objective this good is found none

pseudoCost
Branch and Bound: Default pseudo cost used in estimation
of the degradation associated with an unexplored node in
the tree search

0.01

qcRootAlg
Determines which algorithm is to be used to solve the root
of a mixed integer quadratic constrained or mixed integer
second order cone problem, when outer approximation is
used

auto

2788 Solver Manuals

Option Description Default

sbBest
Number of infeasible MIP entities to initialize pseudo costs
for on each node

auto

sbEffort
Adjusts the overall amount of effort when using strong
branching to select an infeasible MIP entity to branch on

1

sbEstimate
Branch and Bound: How to calculate pseudo costs from
the local node when selecting an infeasible MIP entity to
branch on

auto

sbIterLimit
Number of dual iterations to perform the strong branching
for each entity

auto

sbSelect
Size of the candidate list of MIP entities for strong branching -2

sosRefTol
Minimum relative gap between the ordering values of ele-
ments in a special ordered set

1e-06

symmetry
Adjusts the overall amount of effort for symmetry detection 1

symSelect
Adjusts the overall amount of effort for symmetry detection -1

varSelection
Branch and Bound: Determines the formula used to calcu-
late the estimate of each integer variable, and thus which
integer variable is selected to be branched on at a given
node

auto

5.38.3.9 MIP Cuts Options

Option Description Default

autoCutting
Automatically decide whether to generate cutting
planes at local nodes in the tree

auto

conflictCuts
Branch and Bound: Specifies how cautious or aggres-
sive the optimizer should be when searching for and
applying conflict cuts

auto

coverCuts
Branch and Bound: Number of rounds of lifted cover
inequalities at the top node

auto

cutDepth
Branch and Bound: Sets the maximum depth in the
tree search at which cuts will be generated

auto

cutFactor
Limit on the number of cuts and cut coefficients the
optimizer is allowed to add to the matrix during tree
search

auto

cutFreq
Branch and Bound: Frequency at which cuts are
generated in the tree search

auto

cutSelect
Bit vector providing detailed control of the cuts cre-
ated for the root node of a MIP solve

-1

cutSelect clique
Clique cuts 1

cutSelect cover
Lifted cover cuts 1

cutSelect disableCutRows
Disable cutting from cut rows 1

cutSelect farkas
Farkas cuts 1

cutSelect flowpath
Flow path cuts 1

cutSelect gomory
Strong Chvatal-Gomory cuts 1

cutSelect gubCover
Lifted GUB cover cuts 1

cutSelect implication
Implication cuts 1

5.38 XPRESS 2789

Option Description Default

cutSelect indicator
Indicator constraint cuts 1

cutSelect liftAndProject
Turn on automatic Lift-and-Project cutting strategy 1

cutSelect mir
Mixed Integer Rounding (MIR) cuts 1

cutSelect mirRowAggregation
Turn on row aggregation for MIR cuts 1

cutSelect zeroHalf
Zero-half cuts 1

cutStrategy
Branch and Bound: Cut strategy auto

gomCuts
Branch and Bound: Number of rounds of Gomory or
lift-and-project cuts at the top node

auto

lnpBest
Number of infeasible MIP entities to create lift-and-
project cuts for during each round of Gomory cuts
at the top node (see gomCuts)

50

lnpIterLimit
Number of iterations to perform in improving each
lift-and-project cut

auto

maxCutTime
Maximum amount of time allowed for generation of
cutting planes and reoptimization

0

netCuts
Determines the addition of multi-commodity network
cuts to a problem

0

qcCuts
Branch and Bound: Limit on the number of rounds of
outer approximation cuts generated for the root node,
when solving a mixed integer quadratic constrained
or mixed integer second order conic problem with
outer approximation

auto

treeCoverCuts
Branch and Bound: Number of rounds of lifted cover
inequalities generated at nodes other than the top
node in the tree

auto

treeCutSelect
Bit vector providing detailed control of the cuts cre-
ated during the tree search of a MIP solve

-1

treeCutSelect clique
Clique cuts 1

treeCutSelect cover
Lifted cover cuts 1

treeCutSelect disableCutRows
Disable cutting from cut rows 1

treeCutSelect farkas
Farkas cuts 1

treeCutSelect flowpath
Flow path cuts 1

treeCutSelect gomory
Strong Chvatal-Gomory cuts 1

treeCutSelect gubCover
Lifted GUB cover cuts 1

treeCutSelect implication
Implication cuts 1

treeCutSelect indicator
Indicator constraint cuts 1

treeCutSelect liftAndProject
Turn on automatic Lift and Project cutting strategy 1

treeCutSelect mir
Mixed Integer Rounding (MIR) cuts 1

treeCutSelect mirRowAggregation
Turn on row aggregation for MIR cuts 1

treeCutSelect zeroHalf
Zero-half cuts 1

2790 Solver Manuals

Option Description Default

treeGomCuts
Branch and Bound: Number of rounds of Gomory
cuts generated at nodes other than the first node in
the tree

auto

treeQCCuts
Branch and Bound: Limit on the number of rounds of
outer approximation cuts generated for nodes other
than the root node, when solving a mixed integer
quadratic constrained or mixed integer second order
conic problem with outer approximation

auto

5.38.3.10 MIP Heuristics Options

Option Description Default

feasibilityJump
MIP: Decides if the Feasibility Jump heuristic should be run 1

heurBeforeLp
Branch and Bound: Determines whether primal heuristics
should be run before the initial LP relaxation has been solved

auto

heurDiveIterLimit
Branch and Bound: Simplex iteration limit for reoptimizing
during the diving heuristic

auto

heurDiveRandomize
Level of randomization to apply in the diving heuristic 0

heurDiveSoftRounding
Branch and Bound: Enables a more cautious strategy for the
diving heuristic, where it tries to push binaries and integer
variables to their bounds using the objective, instead of directly
fixing them

auto

heurDiveSpeedUp
Branch and Bound: Changes the emphasis of the diving heuris-
tic from solution quality to diving speed

-1

heurDiveStrategy
Branch and Bound: Chooses the strategy for the diving heuristic auto

heurEmphasis
Branch and Bound: Specifies an emphasis for the search w.r.t.
primal heuristics and other procedures that affect the speed of
convergence of the primal-dual gap

-1

heurForceSpecialObj
Branch and Bound: Whether local search heuristics without
objective or with an auxiliary objective should always be used,
despite the automatic selection of the Optimizer

0

heurFreq
Branch and Bound: Frequency at which heuristics are used in
the tree search

-1

heurSearchEffort
Adjusts the overall level of the local search heuristics 1

heurSearchFreq
Branch and Bound: How often the local search heuristic should
be run in the tree

auto

heurSearchRootCutFreq
How frequently to run the local search heuristic during root
cutting

auto

heurSearchRootSelect
Bit vector control for selecting which local search heuristics to
apply on the root node of a MIP solve

117

heurSearchTreeSelect
Bit vector control for selecting which local search heuristics to
apply during the tree search of a MIP solve

17

5.38.3.11 MIP Solution Pool Options

Option Description Default

solnpool
Solution pool file name none

5.38 XPRESS 2791

Option Description Default

solnpoolCapacity
Limit on number of solutions to store 999999999

solnpoolCullDiversity
Cull N solutions based on solution diversity -1

solnpoolCullObj
Cull N solutions based on objective values -1

solnpoolCullRounds
Terminate solution generation after N culling rounds 999999999

solnpoolDupPolicy
Policy to use when handling storage of duplicate solutions 0

solnpoolmerge
Solution pool file name for merged solutions none

solnpoolnumsym
Maximum number of variable symbols when writing merged
solutions

10

solnpoolPop
Controls method used to populate the solution pool 1

solnpoolPrefix
File name prefix for GDX solution files soln

solnpoolVerbosity
Controls verbosity of solution pool routines 0

5.38.3.12 General NLP / MINLP Options

Option Description Default

knitroOptFile
Option file for NLP solver KNITRO

xslp algorithm
Bit map describing the SLP algorithm(s) to
be used

166

xslp algorithm cascadeBounds
Step bounds are updated to accomodate
cascaded values (otherwise cascaded values
are pushed to respect step bounds)

0

xslp algorithm clampExtendedActiveSB
Apply clamping when converged on ex-
tended criteria only with some variables hav-
ing active step bounds

0

xslp algorithm clampExtendedAll
Apply clamping when converged on ex-
tended criteria only

0

xslp algorithm dynamicDamping
Use dynamic damping 0

xslp algorithm escalatePenalties
Escalate penalties 0

xslp algorithm estimateStepBounds
Estimate step bounds from early SLP itera-
tions

1

xslp algorithm holdValues
Do not update values which are converged
within strict tolerance

0

xslp algorithm maxCostOption
Continue optimizing after penalty cost
reaches maximum

0

xslp algorithm noLPPolishing
Skip the solution polishing step if the LP
postsolve returns a slightly infeasible, but
claimed optimal solution

0

xslp algorithm noStepBounds
Do not apply step bounds 0

xslp algorithm quickConvergenceCheck
Quick convergence check 1

xslp algorithm resetDeltaZ
Reset xslp delta z to zero when converged
and continue SLP

0

xslp algorithm residualErrors
Accept a solution which has converged even
if there are still significant active penalty
error vectors

0

2792 Solver Manuals

Option Description Default

xslp algorithm retainPreviousValue
Retain previous value when cascading if de-
termining row is zero

1

xslp algorithm stepBoundsAsRequired
Apply step bounds to SLP delta vectors only
when required

1

xslp algorithm switchToPrimal
Use the primal simplex algorithm when all
error vectors become inactive

0

xslp calcThreads
Number of threads used for formula and
derivatives evaluations

auto

xslp filter
Bit map for controlling solution updates 3

xslp filterKeepBest
Retrain solution best according to the merit
function

1

xslp filterZeroLineSearch
Force minimum step sizes in line search 0

xslp filterZeroLineSearchTR
Accept the trust region step is the line search
returns a zero step size

0

xslp findIV
Option for running a heuristic to find a fea-
sible initial point

auto

xslp infinity
Value returned by a divide-by-zero in a for-
mula

1e+10

xslp primalIntegralRef
Reference solution value to take into account
when calculating the primal integral

1e+20

xslp scale
When to re-scale the SLP problem 1

xslp scaleCount
Iteration limit used in determining when to
re-scale the SLP matrix

0

xslp solver
Selects the library to use for local solves auto

xslp threads
Default number of threads to be used auto

xslp zero
Absolute tolerance 1e-15

5.38.3.13 NLP Presolve Options

Option Description Default

xslp linQuadBR
Use linear and quadratic constraints and objective func-
tion to further reduce bounds on all variables

auto

xslp postsolve
Determines whether postsolving should be performed
automatically

-1

xslp presolve
Determines whether presolving should be performed
prior to starting the main algorithm

1

xslp presolveLevel
Determines the level of changes presolve may carry out
on the problem

4

xslp presolveOps
Bitmap indicating the SLP presolve actions to be taken 2104

xslp presolveOps domain
Bound tightening based on function domains 1

xslp presolveOps eliminations
Allow eliminations on determined variables 1

xslp presolveOps fixAll
Explicitly fix all columns identified as fixed 0

xslp presolveOps fixZero
Explicitly fix columns identified as fixed to zero 0

xslp presolveOps general
Generic SLP presolve 0

5.38 XPRESS 2793

Option Description Default

xslp presolveOps intBounds
MISLP bound tightening 1

xslp presolveOps noCoefficients
Do not presolve coefficients 0

xslp presolveOps noDeltas
Do not remove delta variables 0

xslp presolveOps noDualSide
Avoid reductions that can not be dual postsolved 0

xslp presolveOps noLinear
Avoid performing linear reductions at the nlp level 0

xslp presolveOps noSimplifier
Avoid simplifying nonlinear expressions 0

xslp presolveOps setBounds
SLP bound tightening 1

xslp presolveZero
Minimum absolute value for a variable which is identified
as nonzero during SLP presolve

1e-09

xslp probing
Determines whether probing on a subset of variables
should be performed prior to starting the main algorithm

auto

5.38.3.14 NLP Augmentation and Linearization Options

Option Description Default

xslp augmentation
Bit map describing the SLP augmentation
method(s) to be used

12

xslp augmentation allErrorVectors
Penalty error vectors on all non-linear in-
equality constraints

1

xslp augmentation allRowErrorVectors
Penalty error vectors on all constraints 0

xslp augmentation aMeanWeight
Use arithmetic means to estimate penalty
weights

0

xslp augmentation equalityErrorVectors
Penalty error vectors on all non-linear equal-
ity constraints

1

xslp augmentation evenHanded
Even handed augmentation 0

xslp augmentation minimum
Minimum augmentation 0

xslp augmentation noUpdateIfOnlyIV
Intial values do not imply an SLP variable 0

xslp augmentation penaltyDeltaVectors
Penalty vectors to exceed step bounds 0

xslp augmentation sbFromAbsValues
Estimate step bounds from absolute values
of row coefficients

0

xslp augmentation sbFromValues
Estimate step bounds from values of row
coefficients

0

xslp augmentation stepBoundRows
Row-based step bounds 0

xslp delta x
Minimum absolute value of delta coefficients
to be retained

1e-06

xslp feasTolTarget
When set, this defines a target feasibility tol-
erance to which the linearizations are solved
to

not set

xslp optimalityTolTarget
When set, this defines a target optimality tol-
erance to which the linearizations are solved
to

not set

xslp unfinishedLimit
Number of consecutive SLP iterations that
may have an unfinished status before the
solve is terminated

3

2794 Solver Manuals

Option Description Default

xslp zeroCriterion
Bitmap determining the behavior of the
placeholder deletion procedure

0

xslp zeroCriterionCount
Number of consecutive times a placeholder
entry is zero before being considered for dele-
tion

0

xslp zeroCriterionStart
SLP iteration at which criteria for deletion
of placeholder entries are first activated

0

xslp zeroCriterion deltaNBDRRow
Remove placeholders in a basic delta vari-
able if the determining row for the corre-
sponding SLP variable is nonbasic

0

xslp zeroCriterion deltaNBUpdateRow
Remove placeholders in a basic delta vari-
able if its update row is nonbasic and the
corresponding SLP variable is nonbasic

0

xslp zeroCriterion nbDelta
Remove placeholders in nonbasic delta vari-
ables

0

xslp zeroCriterion nbSLPVar
Remove placeholders in nonbasic SLP vari-
ables

0

xslp zeroCriterion print
Print information about zero placeholders 0

xslp zeroCriterion slpVarNBUpdateRow
Remove placeholders in a basic SLP variable
if its update row is nonbasic

0

5.38.3.15 NLP Barrier Options

Option Description Default

xslp barCrossOverStart
Default crossover activation behaviour for barrier
start

0

xslp barLimit
Number of initial SLP iterations using the barrier
method

0

xslp barStallingLimit
Number of iterations to allow numerical failures in
barrier before switching to dual

3

xslp barStallingObjLimit
Number of iterations over which to measure the ob-
jective change for barrier iterations with no crossover

3

xslp barStallingTol
Required change in the objective when progress is
measured in barrier iterations without crossover

0.05

xslp barStartOps
Controls behaviour when the barrier is used to solve
the linearizations

-1

xslp barStartOps allowInteriorSol
If a non-vertex converged solution found by barrier
without crossover can be returned as a final solution

1

xslp barStartOps stallingNumerical
Fall back to dual simplex if too many numerical
problems are reported by the barrier

1

xslp barStartOps stallingObjective
Check objective progress when no crossover is ap-
plied

1

5.38.3.16 NLP Penalty Options

Option Description Default

xslp deltaCost
Initial penalty cost multiplier for penalty delta vectors 200

xslp deltaCostFactor
Factor for increasing cost multiplier on total penalty delta vectors 1.3

5.38 XPRESS 2795

Option Description Default

xslp deltaMaxCost
Maximum penalty cost multiplier for penalty delta vectors 1e+20

xslp enforceCostShrink
Factor by which to decrease the current penalty multiplier when
enforcing rows

1e-05

xslp enforceMaxCost
Maximum penalty cost in the objective before enforcing most
violating rows

1e+11

xslp errorCost
Initial penalty cost multiplier for penalty error vectors 200

xslp errorCostFactor
Factor for increasing cost multiplier on total penalty error vectors 1.3

xslp errorMaxCost
Maximum penalty cost multiplier for penalty error vectors 1e+20

xslp errorTol a
Absolute tolerance for error vectors 1e-05

xslp errorTol p
Absolute tolerance for printing error vectors 0.0001

xslp escalation
Factor for increasing cost multiplier on individual penalty error
vectors

1.25

xslp eTol a
Absolute tolerance on penalty vectors 0.0001

xslp eTol r
Relative tolerance on penalty vectors 0.0001

xslp evTol a
Absolute tolerance on total penalty costs -1

xslp evTol r
Relative tolerance on total penalty costs -1

xslp granularity
Base for calculating penalty costs 4

xslp maxWeight
Maximum penalty weight for delta or error vectors 100

xslp minWeight
Minimum penalty weight for delta or error vectors 0.01

xslp objToPenaltyCost
Factor to estimate initial penalty costs from objective function 0

xslp penaltyInfoStart
Iteration from which to record row penalty information 3

5.38.3.17 NLP Step Bounds Options

Option Description Default

xslp clampShrink
Shrink ratio used to impose strict convergence on variables
converged in extended criteria only

0.3

xslp clampValidationTol a
Absolute validation tolerance for applying xslp clampShrink not set

xslp clampValidationTol r
Relative validation tolerance for applying xslp clampShrink not set

xslp defaultStepBound
Minimum initial value for the step bound of an SLP variable
if none is explicitly given

16

xslp djTol
Tolerance on DJ value for determining if a variable is at its
step bound

1e-06

xslp expand
Multiplier to increase a step bound 2

xslp minSBFactor
Factor by which step bounds can be decreased beneath
xslp aTol a

1

xslp sameCount
Number of steps reaching the step bound in the same direction
before step bounds are increased

3

xslp sbStart
SLP iteration after which step bounds are first applied 8

2796 Solver Manuals

Option Description Default

xslp shrink
Multiplier to reduce a step bound 0.5

xslp shrinkBias
Defines an overwrite / adjustment of step bounds for improv-
ing iterations

not set

5.38.3.18 NLP Variable Update Options

Option Description Default

xslp damp
Damping factor for updating values of variables 1

xslp dampExpand
Multiplier to increase damping factor during dynamic damping 1

xslp dampMax
Maximum value for the damping factor of a variable during dynamic
damping

1

xslp dampMin
Minimum value for the damping factor of a variable during dynamic
damping

1

xslp dampShrink
Multiplier to decrease damping factor during dynamic damping 1

xslp dampStart
SLP iteration at which damping is activated 0

xslp lsIterLimit
Number of iterations in the line search 0

xslp lsPatternLimit
Number of iterations in the pattern search preceding the line search 0

xslp lsStart
Iteration in which to active the line search 8

xslp lsZeroLimit
Maximum number of zero length line search steps before line search
is deactivated

5

xslp meritLambda
Factor by which the net objective is taken into account in the merit
function

0

xslp sameDamp
Number of steps in same direction before damping factor is increased 3

5.38.3.19 NLP Termination Options

Option Description Default

xslp aTol a
Absolute delta convergence tolerance auto

xslp aTol r
Relative delta convergence tolerance auto

xslp convergenceOps
Bit map describing which convergence tests should
be carried out

7167

xslp convergenceOps aTol
Execute the delta tolerance checks 1

xslp convergenceOps cTol
Execute the closure tolerance checks 1

xslp convergenceOps extendedScaling
Take scaling of individual variables / rows into
account

0

xslp convergenceOps iTol
Execute the impact tolerance checks 1

xslp convergenceOps mTol
Execute the matrix tolerance checks 1

xslp convergenceOps oTol
Execute the objective range + active step bound
check

1

xslp convergenceOps sTol
Execute the slack impact tolerance checks 1

5.38 XPRESS 2797

Option Description Default

xslp convergenceOps validation
Execute the validation target convergence checks 1

xslp convergenceOps validationK
Execute the first order optimality target conver-
gence checks

1

xslp convergenceOps vTol
Execute the objective range checks 1

xslp convergenceOps wTol
Execute the convergence continuation check 1

xslp convergenceOps xTol
Execute the objective range + constraint activity
check

1

xslp cTol
Closure convergence tolerance auto

xslp ecfCheck
Check feasibility at the point of linearization for
extended convergence criteria

1

xslp ecfTol a
Absolute tolerance on testing feasibility at the
point of linearization

auto

xslp ecfTol r
Relative tolerance on testing feasibility at the
point of linearization

auto

xslp infeasLimit
Maximum number of consecutive infeasible SLP
iterations which can occur before Xpress-SLP ter-
minates

3

xslp iterLimit
Maximum number of SLP iterations auto

xslp iTol a
Absolute impact convergence tolerance auto

xslp iTol r
Relative impact convergence tolerance auto

xslp mTol a
Absolute effective matrix element convergence tol-
erance

auto

xslp mTol r
Relative effective matrix element convergence tol-
erance

auto

xslp mvTol
Marginal value tolerance for determining if a con-
straint is slack

auto

xslp oCount
Number of SLP iterations over which to measure
objective function variation for static objective
(2) convergence criterion

5

xslp oTol a
Absolute static objective (2) convergence toler-
ance

auto

xslp oTol r
Relative static objective (2) convergence tolerance auto

xslp sTol a
Absolute slack convergence tolerance auto

xslp sTol r
Relative slack convergence tolerance auto

xslp stopOutOfRange
Stop optimization and return error code if internal
function argument is out of range

0

xslp validationTarget k
Optimality target tolerance 1e-06

xslp validationTarget r
Feasiblity target tolerance 1e-06

xslp vCount
Number of SLP iterations over which to measure
static objective (3) convergence

0

xslp vLimit
Number of SLP iterations after which static ob-
jective (3) convergence testing starts

0

xslp vTol a
Absolute static objective (3) convergence toler-
ance

auto

2798 Solver Manuals

Option Description Default

xslp vTol r
Relative static objective (3) convergence tolerance auto

xslp wCount
Number of SLP iterations over which to measure
the objective for the extended convergence con-
tinuation criterion

0

xslp wTol a
Absolute extended convergence continuation tol-
erance

auto

xslp wTol r
Relative extended convergence continuation toler-
ance

auto

xslp xCount
Number of SLP iterations over which to measure
static objective (1) convergence

5

xslp xLimit
Number of SLP iterations up to which static ob-
jective (1) convergence testing starts

100

xslp xTol a
Absolute static objective function (1) tolerance auto

xslp xTol r
Relative static objective function (1) tolerance auto

5.38.3.20 NLP Multistart Options

Option Description Default

xslp msMaxBoundRange
Defines the maximum range inside which initial points are
generated by multistart presets

1000

xslp multistartPreset
Enable multistart 0

xslp multistart maxSolves
Maximum number of jobs to create during the multistart
search

unlimited

xslp multistart maxTime
Maximum total time to be spent in the mutlistart search unlimited

xslp multistart poolsize
Maximum number of problem objects allowed to pool up
before synchronization in the deterministic multistart

2

xslp multistart seed
Random seed used for the automatic generation of initial
point when loading multistart presets

0

xslp multistart threads
Maximum number of threads to be used in multistart auto

5.38.3.21 NLP Derivative Options

Option Description Default

xslp cdTol a
Absolute tolerance for deducing constant derivatives 1e-08

xslp cdTol r
Relative tolerance for deducing constant derivatives 1e-08

xslp deltaZLimit
Number of SLP iterations during which to apply xslp delta z 0

xslp delta a
Absolute perturbation of values for calculating numerical derivatives 0.001

xslp delta r
Relative perturbation of values for calculating numerical derivatives 0.001

xslp delta z
Tolerance used when calculating derivatives 1e-05

xslp delta zero
Absolute zero acceptance tolerance used when calculating derivatives -1

xslp derivatives
Bitmap describing the method of calculating derivatives 1

5.38 XPRESS 2799

Option Description Default

xslp hessian
Second order differentiation mode when using analytical derivatives -1

xslp jacobian
First order differentiation mode when using analytical derivatives -1

5.38.3.22 NLP Log Options

Option Description Default

xslp analyze
Bit map activating additional options supporting
model / solution path analyzis

0

xslp analyze extendedFinalSummary
Include an extended iteration summary 0

xslp analyze infeasibleIteration
Run infeasibility analysis on infeasible iterations 0

xslp analyze saveFile
Create an Xpress SLP save file at every
xslp autosave iterations

0

xslp analyze saveIterBasis
Write the initial basis of the linearizations to disk
at every xslp autosave iterations

0

xslp analyze saveLinearizations
Write the linearizations to disk at every
xslp autosave iterations

0

xslp autosave
Frequency with which to save the model 0

xslp log
Level of printing during SLP iterations 0

xslp slpLog
Frequency with which SLP status is printed 1

5.38.3.23 MINLP Options

Option Description Default

xslp cutStrategy
Determines whihc cuts to apply in the
MISLP search when the default SLP-in-MIP
strategy is used

0

xslp heurStrategy
Branch and Bound: MINLP heuristic strat-
egy

auto

xslp mipAlgorithm
Bitmap describing the MISLP algorithms to
be used

17

xslp mipAlgorithm finalFixSLP
Fix step bounds according to
xslp mipFixStepBounds after MIP so-
lution is found

0

xslp mipAlgorithm finalRelaxSLP
Relax step bounds according to
xslp mipRelaxStepBounds after MIP
solution is found

0

xslp mipAlgorithm initialFixSLP
Fix step bounds according to
xslp mipFixStepBounds after initial
node

0

xslp mipAlgorithm initialRelaxSLP
Relax step bounds according to
xslp mipRelaxStepBounds after initial
node

0

xslp mipAlgorithm initialSLP
Solve initial SLP to convergence 1

xslp mipAlgorithm nodeFixSLP
Fix step bounds according to
xslp mipFixStepBounds at each node

0

2800 Solver Manuals

Option Description Default

xslp mipAlgorithm nodeLimitSLP
Limit iterations at each node to
xslp mipIterLimit

0

xslp mipAlgorithm nodeRelaxSLP
Relax step bounds according to
xslp mipRelaxStepBounds at each node

1

xslp mipAlgorithm slpThenMIP
Use MIP on converged SLP solution and
then SLP on the resulting MIP solution

0

xslp mipAlgorithm withinSLP
Use MIP at each SLP iteration instead of
SLP at each node

0

xslp mipCutOffCount
Number of SLP iterations to check when
considering a node for cutting off

5

xslp mipCutOffLimit
Number of SLP iterations to check when
considering a node for cutting off

10

xslp mipCutOff a
Absolute objective function cutoff for MIP
termination

1e-05

xslp mipCutOff r
Absolute objective function cutoff for MIP
termination

1e-05

xslp mipDefaultAlgorithm
Default algorithm to be used during the tree
search in MISLP

auto

xslp mipErrorTol a
Absolute penalty error cost tolerance for
MIP cut-off

0

xslp mipErrorTol r
Relative penalty error cost tolerance for MIP
cut-off

0

xslp mipFixStepBounds
Bitmap describing the step-bound fixing
strategy during MISLP

0

xslp mipFixStepBounds coef
Fix step bounds on SLP variables appearing
in coefficients

0

xslp mipFixStepBounds coefOnly
Fix step bounds on SLP variables appearing
only in coefficients

0

xslp mipFixStepBounds structAll
Fix step bounds on all structural SLP vari-
ables

0

xslp mipFixStepBounds structNotCoef
Fix step bounds on structural SLP variables
which are not in coefficients

0

xslp mipIterLimit
Maximum number of SLP iterations at each
node

0

xslp mipLog
Frequency with which MIP status is printed 0

xslp mipOCount
Number of SLP iterations at each node over
which to measure objective function varia-
tion

5

xslp mipOTol a
Absolute objective function tolerance for
MIP termination

1e-05

xslp mipOTol r
Relative objective function tolerance for
MIP termination

1e-05

xslp mipRelaxStepBounds
Bitmap describing the step-bound relaxation
strategy during MISLP

15

xslp mipRelaxStepBounds coef
Relax step bounds on SLP variables appear-
ing in coefficients

1

xslp mipRelaxStepBounds coefOnly
Relax step bounds on SLP variables appear-
ing only in coefficients

1

xslp mipRelaxStepBounds structAll
Relax step bounds on all structural SLP
variables

1

xslp mipRelaxStepBounds structNotCoef
Relax step bounds on structural SLP vari-
ables which are not in coefficients

1

5.38 XPRESS 2801

5.38.4 Detailed Descriptions of XPRESS Options

advBasis (boolean): Use advanced basis provided by GAMS ←↩

Default: auto

algAfterCrossover (integer): Algorithm to be used for the final clean up step after the crossover ←↩

Default: auto

value meaning

1 Automatically determined.

2 Dual simplex.

3 Primal simplex.

4 Concurrent.

algAfterNetwork (integer): Algorithm to be used for the clean up step after the network simplex solver
←↩

Default: auto

value meaning

-1 Automatically determined.

2 Dual simplex.

3 Primal simplex.

algorithm (string): Choose between simplex and barrier algorithm ←↩

This option is used to select the barrier method to solve LPs. By default the barrier method
will do a crossover to find a basic solution.

Default: simplex

value meaning

barrier Use the barrier algorithm

simplex Use the simplex algorithm

autoCutting (integer): Automatically decide whether to generate cutting planes at local nodes in the
tree ←↩

If the cutFreq control is set, no automatic selection will be made and local cutting will be
enabled.

Default: auto

value meaning

-1 Automatic.

0 Disabled.

1 Enabled.

2802 Solver Manuals

autoPerturb (boolean): Simplex: Indicates whether automatic perturbation is performed ←↩

If this is set to 1, the problem will be perturbed whenever the simplex method encounters an
excessive number of degenerate pivot steps, thus preventing the Optimizer being hindered by
degeneracies.

Default: auto

value meaning

0 No perturbation performed.

1 Automatic perturbation is performed.

autoScaling (integer): Whether the Optimizer should automatically select between different scaling
algorithms ←↩

If the scaling control is set, no automatic scaling will be applied.

Default: auto

value meaning

-1 Automatic.

0 Disabled.

1 Cautious strategy. Non-standard scaling will only be selected if it appears to be
clearly superior.

2 Moderate strategy.

3 Aggressive strategy. Standard scaling will only be selected if it appears to be
clearly superior.

backTrack (integer): Branch and Bound: Specifies how to select the next node to work on when a full
backtrack is performed ←↩

Note When two nodes are rated the same according to the backTrack selection, a secondary
rating is performed using the method set by backtrackTie.

Default: 3

value meaning

-1 Automatically determined.

1 Unused.

2 Select the node with the best estimated solution.

3 Select the node with the best bound on the solution.

4 Select the deepest node in the search tree (equivalent to depth-first search).

5 Select the highest node in the search tree (equivalent to breadth-first search).

6 Select the earliest node created.

7 Select the latest node created.

8 Select a node randomly.

9 Select the node whose LP relaxation contains the fewest number of infeasible MIP
entities.

10 Combination of 2 and 9.

11 Combination of 2 and 4.

12 Combination of 3 and 4.

5.38 XPRESS 2803

backtrackTie (integer): Branch and Bound: Specifies how to break ties when selecting the next node to
work on when a full backtrack is performed ←↩

The options are the same as for the backTrack control.

Default: -1

value meaning

-1 Default selection.

1 Unused.

2 Select the node with the best estimated solution.

3 Select the node with the best bound on the solution.

4 Select the deepest node in the search tree (equivalent to depth-first search).

5 Select the highest node in the search tree (equivalent to breadth-first search).

6 Select the earliest node created.

7 Select the latest node created.

8 Select a node randomly.

9 Select the node whose LP relaxation contains the fewest number of infeasible MIP
entities.

10 Combination of 2 and 9.

11 Combination of 2 and 4.

12 Combination of 3 and 4.

barAlg (integer): Determines which barrier algorithm is to be used to solve the problem ←↩

The automatic setting uses 1 for LP and QP problems and 3 for QCQP problems. Usually
the detection of primal or dual infeasibility is more robust with settings 2 or 3, therefore, it is
advantageous to use one of these values if the model is presumably infeasible.

Default: auto

value meaning

-1 Determined automatically.

0 Unused.

1 Use the infeasible-start barrier algorithm.

2 Use the homogeneous self-dual barrier algorithm.

3 Start with 2 and optionally switch to 1 during the execution.

barCores (integer): If set to a positive integer it determines the number of physical CPU cores assumed
to be present in the system by the barrier algorithm ←↩

If the value is set to the default value (-1), Xpress will automatically detect the number of
cores.

The control is provided for cross-hardware reproducibility purposes. The count does not
include logical cores created by Hyper-Threading.

Range: {-1, ..., ∞}

Default: auto

barCrash (integer): Newton barrier: Determines the type of crash used for the crossover ←↩

2804 Solver Manuals

During the crash procedure, an initial basis is determined which attempts to speed up the
crossover. A good choice at this stage will significantly reduce the number of iterations
required to crossover to an optimal solution. The possible values increase proportionally to
their time-consumption.

Default: 4

value meaning

0 Turns off all crash procedures.

1-6 Available strategies with 1 being conservative and 6 being aggressive.

barDualStop (real): Newton barrier: Convergence parameter, representing the tolerance for dual
infeasibilities ←↩

If the difference between the constraints and their bounds in the dual problem falls below this
tolerance in absolute value, optimization will stop and the current solution will be returned.

Range: [0, ∞]

Default: auto

barFailIterLimit (integer): Newton barrier: Maximum number of consecutive iterations that fail to
improve the solution in the barrier algorithm ←↩

Default: auto

value meaning

0 Determined automatically

>0 Maximum number of consecutive barrier iterations allowed without progress.

barFreeScale (real): Defines how the barrier algorithm scales free variables ←↩

When using smaller values the barrier algorithm scales free variables more aggressively which
can improve performance but may impact numerical stability.

Range: [0, ∞]

Default: 1e-06

barGapStop (real): Newton barrier: Convergence parameter, representing the tolerance for the relative
duality gap ←↩

When the difference between the primal and dual objective function values falls below this
tolerance, the Optimizer determines that the optimal solution has been found.

Range: [0, ∞]

Default: auto

barGapTarget (real): Newton barrier: Target tolerance for the relative duality gap ←↩

5.38 XPRESS 2805

The barrier algorithm will keep iterating until either barGapTarget is satisfied or until no
further improvements are possible. In the latter case, if barGapStop is satisfied, it will declare
the problem optimal.

When a solution returned by the barrier algorithm has not converged tightly enough for an
application, for example if the dual solution is not accurate enough or crossover is taking too
long, setter barGapTarget to a small value often resolves the problem, without the risk of
the solve failing due to a complementarity level not being numerically achievable. Typical
suggested values can be between 1-10 and 1-18.

Range: [0, ∞]

Default: auto

barIndefLimit (integer): Newton Barrier: Limits the number of consecutive indefinite barrier iterations
that will be performed ←↩

The optimizer will try to minimize (resp. maximize) a QP problem even if the Q matrix is
not positive (resp. negative) semi-definite. However, the optimizer may detect that the Q
matrix is indefinite and this can result in the optimizer not converging. This control specifies
how many indefinite iterations may occur before the optimizer stops and reports that the
problem is indefinite. It is usual to specify a value greater than one, and only stop after a
series of indefinite matrices, as the problem may be found to be indefinite incorrectly on a few
iterations for numerical reasons.

Range: {1, ..., ∞}

Default: 15

barIterLimit (integer): Newton barrier: Maximum number of iterations ←↩

While the simplex method usually performs a number of iterations which is proportional
to the number of constraints (rows) in a problem, the barrier method standardly finds the
optimal solution to a given accuracy after a number of iterations which is independent of the
problem size. The penalty is rather that the time for each iteration increases with the size of
the problem. barIterLimit specifies the maximum number of iterations which will be carried
out by the barrier.

Range: {0, ..., ∞}

Default: 500

barKernel (real): Newton barrier: Defines how centrality is weighted in the barrier algorithm ←↩

Increasing this parameter may increase the number of iterations, therefore the recommended
range is [1,2] and [-2,-1].

Default: 0

value meaning

>=+1.0 Increases the emphasis on centrality when larger value is set.

<=-1.0 Selects a value adaptively in every iteration from [+1, -barKernel].

barObjPerturb (real): Defines how the barrier perturbs the objective ←↩

The perturbation scale should be set carefully with consideration to the optimality tolerance.
The parameter affects only the barrier solve.

2806 Solver Manuals

Default: 1e-06

value meaning

0 Turn off objective perturbation.

>0 Let the optimizer decide if the objective is perturbed or not and use the parameter
value as the scale of the perturbation.

<0 Always perturb the objective by the absolute value of the parameter.

barObjScale (real): Defines how the barrier scales the objective ←↩

The scaling perfromed by the barrier is applied on top of any other scaling in the problem and
only affects the barrier solve.

Default: auto

value meaning

-1 Let the optimizer decide.

0 Scale by geometric mean.

>=0 Scale such that the largest objective coefficient’s largest element does not exceed
this number. In quadratic problems, the quadratic diagonal is used as reference
valuses instead of the linear objective.

barOrder (integer): Newton barrier: Controls the Cholesky factorization in the Newton-Barrier ←↩

Default: auto

value meaning

0 Choose automatically.

1 Minimum degree method. This selects diagonal elements with the smallest number
of nonzeros in their rows or columns.

2 Minimum local fill method. This considers the adjacency graph of nonzeros in
the matrix and seeks to eliminate nodes that minimize the creation of new edges.

3 Nested dissection method. This considers the adjacency graph and recursively
seeks to separate it into non-adjacent pieces.

barOrderThreads (integer): If set to a positive integer it determines the number of concurrent threads
for the sparse matrix ordering algorithm in the Newton-barrier method ←↩

Larger values than barCores will be automatically reduced to the value of barCores.

Range: {0, ..., ∞}

Default: auto

barOutput (boolean): Newton barrier: Level of solution output provided ←↩

Output is provided either after each iteration of the algorithm, or else can be turned off
completely by this parameter.

Default: 1

5.38 XPRESS 2807

value meaning

0 No output.

1 At each iteration.

barPerturb (real): Newton barrier: In numerically challenging cases it is often advantageous to apply
perturbations on the KKT system to improve its numerical properties ←↩

barPerturb controlls how much perturbation is allowed during the barrier iterations. By default
no perturbation is allowed. Set this parameter with care as larger perturbations may lead to
less efficient iterates and the best settings are problem-dependent.

Range: [0, ∞]

Default: 0

barPresolveOps (integer): Newton barrier: Controls the Newton-Barrier specific presolve operations ←↩

Setting single boolean options will overwrite the single bits of this bit map option.

Default: 0

value meaning

bit 0 = 1 Equivalent to barPresolveOps standard.

bit 1 = 2 Equivalent to barPresolveOps extra.

bit 2 = 4 Equivalent to barPresolveOps full.

barPresolveOps extra (boolean): Extra effort is spent in barrier specific presolve ←↩

See also barPresolveOps.

Default: 0

barPresolveOps full (boolean): Do full matrix eliminations (reduce matrix size) ←↩

See also barPresolveOps.

Default: 0

barPresolveOps standard (boolean): Use standard presolve ←↩

See also barPresolveOps.

Default: 0

barPrimalStop (real): Newton barrier: Convergence parameter, indicating the tolerance for primal
infeasibilities ←↩

If the difference between the constraints and their bounds in the primal problem falls below
this tolerance in absolute value, the Optimizer will terminate and return the current solution.

Range: [0, ∞]

Default: auto

2808 Solver Manuals

barRefIter (integer): Newton barrier: After terminating the barrier algorithm, further refinement steps
can be performed ←↩

Such refinement steps are especially helpful if the solution is near to the optimum and can
improve primal feasibility and decrease the complementarity gap. It is also often advantageous
for the crossover algorithm. barRefIter specifies the maximum number of such refinement
iterations.

Range: {0, ..., ∞}

Default: 0

barRegularize (integer): Determines how the barrier algorithm applies regularization on the KKT
system ←↩

The parameter is a bit set but value -1 (the default value) is treated in a special way: if the
parameter is set to -1 then the solver will automatically select the bits it deems most useful.

Default: -1

value meaning

bit 0 = 1 Standard regularization is turned on/off.

bit 1 = 2 Reduced regularization is turned on/off. This option reduces the perturbation
effect of the standard regularization.

bit 2 = 4 Forces to keep dependent rows in the KKT system.

bit 3 = 8 Forces to preserve degenerate rows in the KKT system.

bit 4 = 16 Restrict regularization to infeasible iterates.

bit 5 = 32 Disable iterative regularizations.

bit 6 = 64 Apply iterative regularization more often.

barRhsScale (real): Defines how the barrier scales the right hand side ←↩

The scaling perfromed by the barrier is applied on top of any other scaling in the problem and
only affects the barrier solve.

Default: auto

value meaning

-1 Let the optimizer decide.

0 Scale by geometric mean.

>=0 Scale such that the largest right hand side coefficient’s largest element does not
exceed this number.

barStart (integer): Newton barrier: Controls the computation of the starting point for the barrier
algorithm ←↩

Default: auto

value meaning

-1 Uses the available solution for warm-start.

0 Determine automatically.

1 Uses simple heuristics to compute the starting point based on the magnitudes of
the matrix entries.

5.38 XPRESS 2809

value meaning

2 Uses the pseudoinverse of the constraint matrix to determine primal and dual
initial solutions. Less sensitive to scaling and numerically more robust, but in
several case less efficient than 1.

3 Uses the unit starting point for the homogeneous self-dual barrier algorithm.

barStepStop (real): Newton barrier: Convergence parameter, representing the minimal step size ←↩

On each iteration of the barrier algorithm, a step is taken along a computed search direction.
If that step size is smaller than barStepStop, the Optimizer will terminate and return the
current solution.

If the barrier method is making small improvements on barGapStop on later iterations, it
may be better to set this value higher, to return a solution after a close approximation to the
optimum has been found.

Range: [0, ∞]

Default: 1e-16

barThreads (integer): If set to a positive integer it determines the number of threads implemented to
run the Newton-barrier algorithm ←↩

If the value is set to the default value (-1), the threads control will determine the number of
threads used.

There is a practical upper limit of 50 on the number of parallel threads the optimizer will
create.

Range: {-1, ..., ∞}

Default: auto

basisOut (string): Directs optimizer to output an MPS basis file ←↩

In general this option is not used in a GAMS environment, as GAMS maintains basis information
for you automatically.

Default: none

bigM (real): Infeasibility penalty used if the ”Big M” method is implemented ←↩

Range: [0, ∞]

Default: auto

bigMMethod (boolean): Simplex: Whether to use the ”Big M” method, or the standard phase I
(achieving feasibility) and phase II (achieving optimality) ←↩

In the ”Big M” method, the objective coefficients of the variables are considered during the
feasibility phase, possibly leading to an initial feasible basis which is closer to optimal. The
side-effects involve possible round-off errors due to the presence of the ”Big M” factor in the
problem.

Default: 1

2810 Solver Manuals

value meaning

0 For phase I / phase II.

1 If ”Big M” method to be used.

branchChoice (integer): Once a MIP entity has been selected for branching, this control determines
which of the branches is solved first ←↩

Default: 0

value meaning

0 Minimum estimate branch first.

1 Maximum estimate branch first.

2 If an incumbent solution exists, solve the branch satisfied by that solution first.
Otherwise solve the minimum estimate branch first (option 0).

3 Solve first the branch that forces the value of the branching variable to move
farther away from the value it had at the root node. If the branching entity is
not a simple variable, solve the minimum estimate branch first (option 0).

branchDisj (integer): Branch and Bound: Determines whether the optimizer should attempt to branch
on general split disjunctions during the branch and bound search ←↩

Note Split disjunctions are a special form of disjunctions that can be written as
∑

j mj xj ≤
m0 v

∑
j mj xj ≥ m0+1 The split disjunctions created by the optimizer will use a combination

of binary or integer variables xj, with integer coefficients mj. Split disjunctions for branching
will always be created with a default priority value of 400 instead of the default value of 500
for regular entity branches.

Default: auto

value meaning

-1 Automatic selection of the strategy.

0 Disabled.

1 Cautious strategy. Disjunctive branches will be created only for general integers
with a wide range.

2 Moderate strategy.

3 Aggressive strategy. Disjunctive branches will be created for both binaries and
integers.

branchStructural (integer): Branch and Bound: Determines whether the optimizer should search for
special structure in the problem to branch on during the branch and bound search ←↩

Structural branches will often involve branching on more than a single MIP entity at a time.
As a result of a structural branch, a parent node could therefore end up with more than two
child nodes, unlike the standard single entity branches. Structural branches will always be
created with a default priority value of 400 instead of the default value of 500 for regular entity
branches.

Default: auto

value meaning

-1 Automatically determined.

0 Disabled.

1 Enabled.

5.38 XPRESS 2811

breadthFirst (integer): Number of nodes to include in the best-first search before switching to the local
first search (nodeSelection = 4) ←↩

Range: {0, ..., ∞}

Default: 11

choleskyAlg (integer): Newton barrier: Type of Cholesky factorization used ←↩

Default: auto

value meaning

bit 0 = 1 Matrix blocking: 0: automatic setting; 1: manual setting.

bit 1 = 2 If manual selection of matrix blocking: 0: multi-pass; 1: single-pass.

bit 2 = 4 Nonseparable QP relaxation: 0: off; 1: on.

bit 3 = 8 Corrector weight: 0: automatic setting; 1: manual setting.

bit 4 = 16 If manual selection of corrector weight: 0: off; 1: on.

bit 5 = 32 Refinement: 0: automatic setting; 1: manual setting.

bit 6 = 64 Preconditioned conjugate gradient method (PCGM): 0: PCGM off; 1:
PCGM on.

bit 7 = 128 Preconditioned quasi minimal residual (QMR) to refine solution: 0: QMR
off; 1: QMR on.

bit 8 = 256 Perform refinement on the augmented system 0: off; 1: on.

bit 9 = 512 Force highest accuracy in refinement 0: off; 1: on.

choleskyTol (real): Newton barrier: Tolerance for pivot elements in the Cholesky decomposition of the
normal equations coefficient matrix, computed at each iteration of the barrier algorithm ←↩

If the absolute value of the pivot element is less than or equal to choleskyTol, it merits special
treatment in the Cholesky decomposition process.

Range: [0, ∞]

Default: 1e-15

clamping (integer): Allows for the adjustment of returned solution values such that they are always
within bounds ←↩

Setting single boolean options will overwrite the single bits of this bit map option.

Default: 0

value meaning

-1 Determined automatically.

0 Equivalent to clamping primal.

1 Equivalent to clamping dual.

2 Equivalent to clamping slacks.

3 Equivalent to clamping rdj.

clamping dual (boolean): Adjust primal slack values to always be within constraint bounds ←↩

See also clamping.

2812 Solver Manuals

Default: 0

clamping primal (boolean): Adjust primal solution to always be within primal bounds ←↩

Slacks if provided will be adjusted accordingly.

See also clamping.

Default: 0

clamping rdj (boolean): Adjust reduced costs to always be within dual bounds implied by the primal
solution ←↩

See also clamping.

Default: 0

clamping slacks (boolean): Adjust dual solution to always be within the dual bounds implied by the
slacks ←↩

Reduced costs, if provided, will be adjusted accordingly.

See also clamping.

Default: 0

concurrentThreads (integer): Determines the number of threads used by the concurrent solver ←↩

Default: auto

value meaning

-1 Determined automatically

>0 Number of threads to use.

conflictCuts (integer): Branch and Bound: Specifies how cautious or aggressive the optimizer should be
when searching for and applying conflict cuts ←↩

Conflict cuts are in-tree cuts derived from nodes found to be infeasible or cut off, which can
be used to cut off other branches of the search tree.

Default: auto

value meaning

-1 Automatic.

0 Disable conflict cuts.

1 Cautious application of conflict cuts.

2 Medium application of conflict cuts.

3 Aggressive application of conflict cuts.

coresPerCpu (integer): Used to override the detected value of the number of cores on a CPU ←↩

The cache size (either detected or specified via the CACHESIZE control) used in Barrier
methods will be divided by this amount, and this scaled-down value will be the amount of
cache allocated to each Barrier thread.

5.38 XPRESS 2813

Range: {-1, ..., ∞}

Default: auto

coverCuts (integer): Branch and Bound: Number of rounds of lifted cover inequalities at the top node
←↩

A lifted cover inequality is an additional constraint that can be particularly effective at reducing
the size of the feasible region without removing potential integral solutions. The process of
generating these can be carried out a number of times, further reducing the feasible region,
albeit incurring a time penalty. There is usually a good payoff from generating these at the
top node, since these inequalities then apply to every subsequent node in the tree search.

Range: {-1, ..., ∞}

Default: auto

cpuPlatform (integer): Newton Barrier: Selects the AMD, Intel x86 or ARM vectorization instruction
set that Barrier should run optimized code for ←↩

On AMD / Intel x86 platforms the SSE2, AVX and AVX2 instruction sets are supported while
on ARM platforms the NEON architecture extension can be activated.

Generic code, SSE2 and AVX optimized code will all result in the same solution path. Using
AVX2 or NEON might result in a different solution path.

Default: -1

value meaning

-2 Highest supported [Generic, SSE2, AVX or AVX2].

-1 Highest supported solve path consistent code [Generic, SSE2 or AVX].

0 Use generic code compatible with all CPUs.

1 Use SSE2 / NEON optimized code.

2 Use AVX optimized code.

3 Use AVX2 optimized code.

cpuTime (integer): How time should be measured when timings are reported in the log and when
checking against time limits ←↩

Default: 0

value meaning

-1 Disable the timer.

0 Use elapsed time.

1 Use process time.

crash (integer): Simplex: Determines the type of crash used when the algorithm begins ←↩

During the crash procedure, an initial basis is determined which is as close to feasibility and
triangularity as possible. A good choice at this stage will significantly reduce the number of
iterations required to find an optimal solution. The possible values increase proportionally to
their time-consumption.

For primal simplex the non-bit-vector choices are relevant.

2814 Solver Manuals

For dual simplex the bit-vector choices are relevant.

Default: 2

value meaning

0 Turns off all crash procedures.

1 For singletons only (one pass).

2 For singletons only (multi pass).

3 Multiple passes through the matrix considering slacks.

4 Multiple (≤ 10) passes through the matrix but only doing slacks at the very
end.

bit 0 = 1 Perform standard crash.

bit 1 = 2 Perform additional numerical checks during crash.

bit 2 = 4 Extend the set of column candidates for crash.

bit 3 = 8 Extend the set of row candidates for crash.

bit 4 = 16 Force crash, i.e., consider all suitable columns/rows as candidates for crash.

n>10 As for value 4 but performing at most n - 10 passes.

crossover (integer): Newton barrier: Determines whether the barrier method will cross over to the
simplex method when at optimal solution has been found, to provide an end basis and advanced sensitivity
analysis information ←↩

The full primal and dual solution is available whether or not crossover is used. The crossover
must not be disabled if the barrier is used to reoptimize nodes of a MIP. By default crossover
will not be performed on QP and MIQP problems.

Default: auto

value meaning

-1 Determined automatically.

0 No crossover.

1 Primal crossover first.

2 Dual crossover first.

crossoverAccuracyTol (real): Newton barrier: Determines how crossover adjusts the default relative
pivot tolerance ←↩

When re-inversion is necessary, crossover will compare the recalculated working basic solution
with the assumed ones just before re-inversion took place. If the error is above this thresh-
old, crossover will adjust the relative pivot tolerance to address the build-up of numerical
inaccuracies.

The full primal and dual solution is available whether or not crossover is used. The crossover
must not be disabled if the barrier is used to reoptimize nodes of a MIP. By default crossover
will not be performed on QP and MIQP problems.

Range: [0, ∞]

Default: 1e-06

crossoverIterLimit (integer): Newton barrier: Maximum number of iterations that will be performed in
the crossover procedure before the optimization process terminates ←↩

5.38 XPRESS 2815

Range: {0, ..., ∞}

Default: 2147483647

crossoverOps (integer): Newton barrier: Bit vector for adjusting the behavior of the crossover procedure
←↩

Default: 0

value meaning

bit 0 = 1 Returned solution when the crossover terminates prematurely: 0: Return the
last basis from the crossover; 1: Return the barrier solution.

bit 1 = 2 Select the crossover stages to be performed: 0: Perform both crossover stages;
1: Skip second crossover stage.

bit 2 = 4 Set crossover behaviour: 0: Force to perform all pivots; 1: Skip pivots that
are numerically less reliable.

bit 3 = 8 Set crossover behaviour: 0: Perform standard crossover; 1: Perform a slower,
but numerically more careful crossover.

crossoverThreads (integer): Determines the maximum number of threads that parallel crossover is
allowed to use ←↩

If crossoverThreads is set to the default value (-1), the barThreads control will determine the
number of threads used.

Range: {-1, ..., ∞}

Default: auto

cutDepth (integer): Branch and Bound: Sets the maximum depth in the tree search at which cuts will
be generated ←↩

Generating cuts can take a lot of time, and is often less important at deeper levels of the tree
since tighter bounds on the variables have already reduced the feasible region. A value of 0
signifies that no cuts will be generated.

Does not affect cutting on the root node.

Range: {-1, ..., ∞}

Default: auto

cutFactor (real): Limit on the number of cuts and cut coefficients the optimizer is allowed to add to the
matrix during tree search ←↩

The cuts and cut coefficients are limited by cutFactor times the number of rows and coefficients
in the initial matrix.

A value of 0.0 prevents cuts from being added, and a value of e.g. 1.0 will allow the problem
to grow to twice the initial number of rows and coefficients.

Default: auto

value meaning

-1 Let the optimizer decide on the maximum amount of cuts based on cutStrategy.

>=0 Multiple of number of rows and coefficients to use.

2816 Solver Manuals

cutFreq (integer): Branch and Bound: Frequency at which cuts are generated in the tree search ←↩

If the depth of the node modulo cutFreq is zero, then cuts will be generated.

Range: {-1, ..., ∞}

Default: auto

cutSelect (integer): Bit vector providing detailed control of the cuts created for the root node of a MIP
solve ←↩

Use treeCutSelect to control cuts during the tree search.

The default value is -1 which enables all bits. Any bits not listed in the above table should
be left in their default ’on’ state, since the interpretation of such bits might change in future
versions of the optimizer.

Setting single boolean options will overwrite the single bits of this bit map option.

Default: -1

value meaning

bit 5 = 32 Equivalent to cutSelect clique.

bit 6 = 64 Equivalent to cutSelect mir.

bit 7 = 128 Equivalent to cutSelect cover.

bit 8 = 256 Equivalent to cutSelect mirRowAggregation.

bit 11 = 2048 Equivalent to cutSelect flowpath.

bit 12 = 4096 Equivalent to cutSelect implication.

bit 13 = 8192 Equivalent to cutSelect liftAndProject.

bit 14 = 16384 Equivalent to cutSelect disableCutRows.

bit 15 = 32768 Equivalent to cutSelect gubCover.

bit 16 = 65536 Equivalent to cutSelect zeroHalf.

bit 17 = 131072 Equivalent to cutSelect indicator.

bit 18 = 262144 Equivalent to cutSelect gomory.

bit 20 = 1048576 Equivalent to cutSelect farkas.

cutSelect clique (boolean): Clique cuts ←↩

See also cutSelect.

Default: 1

cutSelect cover (boolean): Lifted cover cuts ←↩

See also cutSelect.

Default: 1

cutSelect disableCutRows (boolean): Disable cutting from cut rows ←↩

See also cutSelect.

Default: 1

5.38 XPRESS 2817

cutSelect farkas (boolean): Farkas cuts ←↩

See also cutSelect.

Default: 1

cutSelect flowpath (boolean): Flow path cuts ←↩

See also cutSelect.

Default: 1

cutSelect gomory (boolean): Strong Chvatal-Gomory cuts ←↩

See also cutSelect.

Default: 1

cutSelect gubCover (boolean): Lifted GUB cover cuts ←↩

See also cutSelect.

Default: 1

cutSelect implication (boolean): Implication cuts ←↩

See also cutSelect.

Default: 1

cutSelect indicator (boolean): Indicator constraint cuts ←↩

See also cutSelect.

Default: 1

cutSelect liftAndProject (boolean): Turn on automatic Lift-and-Project cutting strategy ←↩

See also cutSelect.

Default: 1

cutSelect mir (boolean): Mixed Integer Rounding (MIR) cuts ←↩

See also cutSelect.

Default: 1

cutSelect mirRowAggregation (boolean): Turn on row aggregation for MIR cuts ←↩

See also cutSelect.

Default: 1

cutSelect zeroHalf (boolean): Zero-half cuts ←↩

See also cutSelect.

Default: 1

cutStrategy (integer): Branch and Bound: Cut strategy ←↩

A more aggressive cut strategy, generating a greater number of cuts, will result in fewer nodes
to be explored, but with an associated time cost in generating the cuts. The fewer cuts
generated, the less time taken, but the greater subsequent number of nodes to be explored.

Default: auto

2818 Solver Manuals

value meaning

-1 Automatic selection of the cut strategy.

0 No cuts.

1 Conservative cut strategy.

2 Moderate cut strategy.

3 Aggressive cut strategy.

defaultAlg (integer): Selects the algorithm that will be used to solve the LP ←↩

Please note that this will affect how the MIP node LP problems are solved during the global
search.

Default: auto

value meaning

1 Automatically determined.

2 Dual simplex.

3 Primal simplex.

4 Newton barrier.

denseColLimit (integer): Newton barrier: Controls trigger point for special treatment of dense columns
in Cholesky factorization ←↩

Columns with more than denseColLimit elements are considered to be dense. Such columns
will be handled specially in the Cholesky factorization of this matrix.

Range: {0, ..., ∞}

Default: auto

deterministic (integer): Selects whether to use a deterministic or opportunistic mode when solving a
problem using multiple threads ←↩

In deterministic mode thread synchronization is performed in deterministic order, which
guarantees that repeated solves of the same problems under the same starting conditions will
always produce the same outcome. This assumes that there are no non-deterministic events
affecting the solve, such as interruption due to time limits or non-deterministic interaction
through callback functions. In opportunistic mode the solver will always schedule work on any
available thread. This can produce higher CPU utilization, but will sacrifice reproducability.

Default: 1

value meaning

0 Use opportunistic mode.

1 Use deterministic mode.

2 Use deterministic mode, except allow the initial concurrent continuous solve of a
MIP to be opportunistic.

dualGradient (integer): Simplex: Dual simplex pricing method ←↩

Default: auto

5.38 XPRESS 2819

value meaning

-1 Determine automatically.

0 Devex.

1 Steepest edge.

2 Direct steepest edge.

3 Sparse Devex.

dualize (integer): Whether presolve should form the dual of the problem ←↩

Default: auto

value meaning

-1 Determine automatically.

0 Solve the primal problem.

1 Solve the dual problem.

dualizeOps (boolean): Bit-vector control for adjusting the behavior when a problem is dualized ←↩

Default: 1

value meaning

bit 0 = 1 Swap the simplex algorithm to run. If dual simplex is selected for the original
problem then primal simplex will be run on the dualized problem, and simiarly
if primal simplex is selected.

dualPerturb (real): Factor by which the problem will be perturbed prior to optimization by dual simplex
←↩

A value of 0.0 results in no perturbation prior to optimization. Note the interconnection to
the autoPerturb control. If autoPerturb is set to 1, the decision whether to perturb or not is
left to the Optimizer. When the problem is automatically perturbed in dual simplex, however,
the value of dualPerturb will be used for perturbation.

Range: [-∞, ∞]

Default: auto

dualStrategy (integer): Bit-vector control specifies the dual simplex strategy ←↩

Default: 1

value meaning

bit 0 = 1 Switch to primal when re-optimization goes dual infeasible and numerically
unstable.

bit 1 = 2 When dual intend to switch to primal, stop the solve instead of switching to
primal.

bit 2 = 4 Use more aggressive cut-off in MIP search.

bit 3 = 8 Use dual simplex to remove cost perturbations.

bit 4 = 16 Enable more aggressive dual pivoting strategy.

bit 5 = 32 Keep using dual simplex even when it’s numerically unstable.

2820 Solver Manuals

dualThreads (integer): Determines the maximum number of threads that dual simplex is allowed to use
←↩

If dualThreads is set to the default value (-1), the threads control will determine the number
of threads used.

When solving a linear MIP, the dual simplex algorithm will use multiple threads only when
solving the initial LP relaxation or when reoptimizing between rounds of cuts on the root
node. The parallel dual simplex algorithm differs from the sequential dual simplex algorithm
and might follow a different solve path. For dualThreads > 1 the solve path is independent of
the number of threads used, although the practical limit for observing performance benefits is
around dualThreads = 8.

Range: {-1, ..., ∞}

Default: auto

eigenvalueTol (real): Quadratic matrix is considered not to be positive semi-definite, if its smallest
eigenvalue is smaller than the negative of this value ←↩

Range: [0, ∞]

Default: 1e-06

elimFillin (integer): Amount of fill-in allowed when performing an elimination in presolve ←↩

Range: {0, ..., ∞}

Default: 10

elimTol (real): Markowitz tolerance for the elimination phase of the presolve ←↩

Range: [0, ∞]

Default: 0.001

etaTol (real): Tolerance on eta elements ←↩

During each iteration, the basis inverse is premultiplied by an elementary matrix, which is the
identity except for one column - the eta vector. Elements of eta vectors whose absolute value
is smaller than etaTol are taken to be zero in this step.

Range: [0, ∞]

Default: 1e-13

feasibilityJump (boolean): MIP: Decides if the Feasibility Jump heuristic should be run ←↩

Default: 1

value meaning

0 Turned off.

1 Run the heuristic.

feasibilityPump (integer): Branch and Bound: Decides if the Feasibility Pump heuristic should be run
at the top node ←↩

5.38 XPRESS 2821

Default: auto

value meaning

-1 Automatic.

0 Turned off.

1 Always try the Feasibility Pump.

2 Try the Feasibility Pump only if other heuristics have failed to find an integer
solution.

feasTol (real): Determines when a solution is treated as feasible ←↩

If the amount by which a constraint’s activity violates its right-hand side or ranged bound is
less in absolute magnitude than feasTol, then the constraint is treated as satisfied. Similarly, if
the amount by which a column violates its bounds is less in absolute magnitude than feasTol,
those bounds are also treated as satisfied.

Range: [0, ∞]

Default: 1e-06

feasTolPerturb (real): Determines how much a feasible primal basic solution is allowed to be perturbed
when performing basis changes ←↩

The tolerance feasTol is always considered as an upper limit for the perturbations, but in some
cases smaller value can be more desirable.

Range: [0, ∞]

Default: 1e-06

feasTolTarget (real): Target feasibility tolerance for the solution refiner ←↩

Zero and negative values are ignored, and the value of feasTol is used.

Use very small values like 1e-100 to state the refinement should continue as long as an
improvement is made. Use very large values like 1e+100 to disable only this aspect of the
refiner.

Refining solutions to match the feastoltarget can influence and worsen their objective value in
case the previous objective could only be achieved through slight infeasibilities.

Range: [-∞, ∞]

Default: 0

fixoptfile (string): name of option file which is read just before solving the fixed problem ←↩

forceParallelDual (boolean): Dual simplex: Specifies whether the dual simplex solver should always use
the parallel simplex algorithm ←↩

By default, when using a single thread, the dual simplex solver will execute a dedicated
sequential simplex algorithm.

Default: 0

2822 Solver Manuals

value meaning

0 Disabled.

1 Enabled. Force the dual simplex solver to use the parallel algorithm.

genConsAbsTransformation (integer): Specifies the reformulation method for absolute value general
constraints at the beginning of the search ←↩

Default: auto

value meaning

-1 Automatic.

0 Use a formulation based on indicator constraints.

1 Use a formulation based on SOS1-contraints.

genConsDualReductions (boolean): Parameter specifies whether dual reductions should be applied to
reduce the number of columns and rows added when transforming general constraints to MIP structs ←↩

Default: 1

value meaning

0 Disabled. No dual reductions, add columns and rows.

1 Enabled. Only add neccessary columns and rows, drop those implied by the
objective sense.

globalBoundingBox (real): If a nonlinear problem cannot be solved due to appearing unbounded, it
can automatically be regularized by the application of a bounding box on the variables ←↩

If this control is set to a negative value, in a second solving attempt all original variables will
be bounded by the absolute value of this control. If set to a positive value, there will be a
third solving attempt afterwards, if necessary, in which also all auxiliary variables are bounded
by this value.

Default: 1e+06

value meaning

0 Disabled. Problem will return unbounded.

n<0 Enabled. Apply lower and upper bounds of this magnitude to all original variables
if initial LP is unbounded.

n>0 Enabled. Apply lower and upper bounds of this magnitude to all original and
auxiliary variables if initial LP and first regularization are unbounded.

gomCuts (integer): Branch and Bound: Number of rounds of Gomory or lift-and-project cuts at the top
node ←↩

Range: {-1, ..., ∞}

Default: auto

heurBeforeLp (integer): Branch and Bound: Determines whether primal heuristics should be run before
the initial LP relaxation has been solved ←↩

5.38 XPRESS 2823

It is possible that a heuristic will find an optimal integer solution that will result in the
LP relaxation solution being cut off. If dedicated heuristic threads are enabled through the
heurThreads control, then the initial heuristics will be run in parallel with the LP solve, instead
of before.

Default: auto

value meaning

-1 Automatic - let the optimizer decide if heuristics should be run.

0 Disabled.

1 Enabled.

heurDiveIterLimit (real): Branch and Bound: Simplex iteration limit for reoptimizing during the diving
heuristic ←↩

Default: auto

value meaning

0 No iteration limit.

>=1 Fixed iteration limit.

<0 Automatic selection of the iteration limit based on the problem size. The absolute
value is used as a multiplier on the automatic selection.

heurDiveRandomize (real): Level of randomization to apply in the diving heuristic ←↩

The diving heuristic uses priority weights on rows and columns to determine the order in
which to e.g. round fractional columns, or the direction in which to round them. This control
determines by how large a random factor these weights should be changed.

Default: 0

value meaning

0.0-1.0 Amount of randomization (0.0=none, 1.0=full)

heurDiveSoftRounding (integer): Branch and Bound: Enables a more cautious strategy for the diving
heuristic, where it tries to push binaries and integer variables to their bounds using the objective, instead
of directly fixing them ←↩

This can be useful when the default diving heuristics fail to find any feasible solutions.

Default: auto

value meaning

-1 Automatic selection.

0 Do not use soft rounding.

1 Cautious use of the soft rounding strategy.

2 More aggressive use of the soft rounding strategy.

heurDiveSpeedUp (integer): Branch and Bound: Changes the emphasis of the diving heuristic from
solution quality to diving speed ←↩

2824 Solver Manuals

Default: -1

5.38 XPRESS 2825

value meaning

-2 Automatic selection biased towards quality

-1 Automatic selection biased towards speed.

0-4 Manual emphasis bias from emphasis on quality (0) to emphasis on speed (4).

heurDiveStrategy (integer): Branch and Bound: Chooses the strategy for the diving heuristic ←↩

Default: auto

value meaning

-1 Automatic selection of strategy.

0 Disables the diving heuristic.

1-18 Available pre-set strategies for rounding infeasible MIP entities and reoptimizing
during the heuristic dive.

heurEmphasis (integer): Branch and Bound: Specifies an emphasis for the search w.r.t. primal heuristics
and other procedures that affect the speed of convergence of the primal-dual gap ←↩

For problems where the goal is to achieve a small gap but not neccessarily solving them to
optimality, it is recommended to set heurEmphasis to 1. This setting triggers many additional
heuristic calls, aiming for reducing the gap at the beginning of the search, typically at the
expense of an increased time for proving optimality.

Default: -1

value meaning

-1 Optimizer default strategy.

0 Disables all heuristics.

1 Focus on reducing the primal-dual gap in the early part of the search.

2 Extremely aggressive search heuristics.

heurForceSpecialObj (boolean): Branch and Bound: Whether local search heuristics without objective
or with an auxiliary objective should always be used, despite the automatic selection of the Optimizer ←↩

Deactivated by default.

Default: 0

value meaning

0 Disabled.

1 Enabled. Run special objective heuristics on large problems and even if incumbent
exists.

heurFreq (integer): Branch and Bound: Frequency at which heuristics are used in the tree search ←↩

Heuristics will only be used at a node if the depth of the node is a multiple of heurFreq.

Range: {-1, ..., ∞}

Default: -1

2826 Solver Manuals

heurSearchEffort (real): Adjusts the overall level of the local search heuristics ←↩

heurSearchEffort is used as a multiplier on the default amount of work the local search
heuristics should do. A higher value means the local search heuristics will be run more often
and that they are allowed to search larger neighborhoods.

Range: [0, ∞]

Default: 1

heurSearchFreq (integer): Branch and Bound: How often the local search heuristic should be run in the
tree ←↩

Default: auto

value meaning

-1 Automatic.

0 Disabled in the tree.

n>0 Number of nodes between each run.

heurSearchRootCutFreq (integer): How frequently to run the local search heuristic during root cutting
←↩

This is given as how many cut rounds to perform between runs of the heuristic. Set to zero to
avoid applying the heuristic during root cutting. Branch and Bound: This specifies how often
the local search heuristic should be run in the tree.

Default: auto

value meaning

-1 Automatic.

0 Disabled heuristic during cutting.

n>0 Number of cutting rounds between each run.

heurSearchRootSelect (integer): Bit vector control for selecting which local search heuristics to apply
on the root node of a MIP solve ←↩

Use heurSearchTreeSelect to control local search heuristics during the tree search.

Some of the local search heuristics will benefit from having an existing incumbent solution,
but it is not required.

Default: 117

value meaning

bit 0 = 1 Local search with a large neighborhood. Potentially slow but is good for
finding solutions that differs significantly from the incumbent.

bit 1 = 2 Local search with a small neighborhood centered around a node LP solution.

bit 2 = 4 Local search with a small neighborhood centered around an integer solution.
This heuristic will often provide smaller, incremental improvements to an
incumbent solution.

bit 3 = 8 Local search with a neighborhood set up through the combination of multiple
integer solutions.

5.38 XPRESS 2827

value meaning

bit 4 = 16 Unused

bit 5 = 32 Local search without an objective function. Called seldom and only when
no feasible solution is available.

bit 6 = 64 Local search with an auxiliary objective function. Called seldom and only
when no feasible solution is available.

heurSearchTreeSelect (integer): Bit vector control for selecting which local search heuristics to apply
during the tree search of a MIP solve ←↩

Use heurSearchRootSelect to control local search heuristics on the root node.

Some of the local search heuristics will benefit from having an existing incumbent solution,
but it is not required.

Default: 17

value meaning

bit 0 = 1 Local search with a large neighborhood. Potentially slow but is good for
finding solutions that differs significantly from the incumbent.

bit 1 = 2 Local search with a small neighborhood centered around a node LP solution.

bit 2 = 4 Local search with a small neighborhood centered around an integer solution.
This heuristic will often provide smaller, incremental improvements to an
incumbent solution.

bit 3 = 8 Local search with a neighborhood set up through the combination of multiple
integer solutions.

bit 4 = 16 Unused

bit 5 = 32 Local search without an objective function. Called seldom and only when
no feasible solution is available.

bit 6 = 64 Local search with an auxiliary objective function. Called seldom and only
when no feasible solution is available.

heurThreads (integer): Branch and Bound: Number of threads to dedicate to running heuristics on the
root node ←↩

When heuristic threads are enable, the heuristics will be run in parallel with the initial LP
solve, if possible, and in parallel with the root cutting.

Default: 0

value meaning

-1 Automatically determined from the threads control.

0 Disabled. Heuristics will be run sequentially with the root LP solve and cutting.

>=1 Number of root threads to dedicate to parallel heuristics.

historyCosts (integer): Branch and Bound: How to update the pseudo cost for a MIP entity when a
strong branch or a regular branch is applied ←↩

Default: auto

value meaning

-1 Automatically determined.

2828 Solver Manuals

value meaning

0 No update.

1 Update using only regular branches from the root to the current node.

2 Same as 1, but update with strong branching results as well.

3 Update using any regular branching or strong branching information from all
nodes solves before the current node.

ifCheckConvexity (boolean): Determines if the convexity of the problem is checked before optimization
←↩

Applies to quadratic, mixed integer quadratic and quadratically constrained problems. Check-
ing convexity takes some time, thus for problems that are known to be convex it might be
reasonable to switch the checking off.

Default: 1

value meaning

0 Turn off convexity checking.

1 Turn on convexity checking.

indLinBigM (real): During presolve, indicator constraints will be linearized using a BigM coefficient
whenever that BigM coefficient is small enough ←↩

This control defines the largest BigM for which such a linearized version will be added to the
problem in addition to the original constraint. If the BigM is even smaller than indPreLinBigM,
then the original indicator constraint will additionally be dropped from the problem.

indLinBigM should always be at least as large as indPreLinBigM. For any value less or equal
to indPreLinBigM, indicator constraints will never be duplicated and only indPreLinBigM is
taken into account for linearization.

Range: [0, ∞]

Default: 100000

indPreLinBigM (real): During presolve, indicator constraints will be linearized using a BigM coefficient
whenever that BigM coefficient is small enough ←↩

This control defines the largest BigM for which the original constraint will be replaced by the
linearized version. If the BigM is larger than indPreLinBigM but smaller than indLinBigM,
the linearized row will be added but the original indicator constraint is kept as a numerically
stable way to check feasibility.

Replacing an indicator constraint with a BigM row has a side effect on tolerances. In the
indicator constraint form, the constraint part is satisfied with feasTol tolerance; while after
changing it to BigM form, the constraint also includes the binary indicator variable (with a
coefficient up to indPreLinBigM and an integrality tolerance of mipTol), therefore the constraint
part of the indicator contraint is satisfied with tolerance feasTol+mipTol∗indPreLinBigM.

Range: [0, ∞]

Default: 100

inputTol (real): Tolerance on input values elements ←↩

5.38 XPRESS 2829

If any value is less than or equal to inputTol in absolute value, it is treated as zero. For the
internal zero tolerance see matrixTol.

This control needs to be set before inputting the problem, as it has no effect afterwards.

Range: [0, ∞]

Default: 0

invertFreq (integer): Simplex: Frequency with which the basis will be inverted ←↩

The basis is maintained in a factorized form and on most simplex iterations it is incrementally
updated to reflect the step just taken. This is considerably faster than computing the full
inverted matrix at each iteration, although after a number of iterations the basis becomes less
well-conditioned and it becomes necessary to compute the full inverted matrix. The value of
invertFreq specifies the maximum number of iterations between full inversions.

Range: {-1, ..., ∞}

Default: auto

invertMin (integer): Simplex: Minimum number of iterations between full inversions of the basis matrix
←↩

See the description of invertFreq for details.

Range: {0, ..., ∞}

Default: 3

ioTimeout (integer): Maximum number of seconds to wait for an I/O operation before it is cancelled ←↩

Range: {0, ..., ∞}

Default: 30

knitroOptFile (string): Option file for NLP solver KNITRO ←↩

lnpBest (integer): Number of infeasible MIP entities to create lift-and-project cuts for during each round
of Gomory cuts at the top node (see gomCuts) ←↩

Range: {0, ..., ∞}

Default: 50

lnpIterLimit (integer): Number of iterations to perform in improving each lift-and-project cut ←↩

By setting the number to zero a Gomory cut will be created instead.

Range: {-1, ..., ∞}

Default: auto

loadMipSol (boolean): Loads a MIP solution (the initial point) ←↩

If true, the initial point provided by GAMS will be passed to the optimizer to be treated as an
integer feasible point. The optimizer uses the values for the discrete variables only: the level
values for the continuous variables are ignored and are calculated by fixing the integer variables
and reoptimizing. In some cases, loading an initial MIP solution can improve performance. In
addition, there will always be a feasible solution to return.

Default: 0

localChoice (integer): Controls when to perform a local backtrack between the two child nodes during a
dive in the branch and bound tree ←↩

Default: auto

2830 Solver Manuals

value meaning

1 Never backtrack from the first child, unless it is dropped (infeasible or cut off).

2 Always solve both child nodes before deciding which child to continue with.

3 Automatically determined.

lpFlags (integer): Bit-vector control which defines the algorithm for solving an LP problem or the initial
LP relaxation of a MIP problem ←↩

When more than one bit is set, then the LP problem will be solved with the concurrent solver.
When this control and algorithm is set at the same time, algorithm will overrule the value
of this control.

Setting single boolean options will overwrite the single bits of this bit map option.

Default: 0

value meaning

bit 0 = 1 Equivalent to lpFlags dual.

bit 1 = 2 Equivalent to lpFlags primal.

bit 2 = 4 Equivalent to lpFlags barrier.

bit 3 = 8 Equivalent to lpFlags network.

lpFlags barrier (boolean): Use the barrier method ←↩

See also lpFlags.

Default: 0

lpFlags dual (boolean): Use the dual simplex method ←↩

See also lpFlags.

Default: 0

lpFlags network (boolean): Use the network simplex method ←↩

See also lpFlags.

Default: 0

lpFlags primal (boolean): Use the primal simplex method ←↩

See also lpFlags.

Default: 0

lpFolding (integer): Simplex and barrier: Whether to fold an LP problem before solving it ←↩

Default: auto

value meaning

-1 Automatic.

0 Disable LP folding.

1 Enable LP folding. Attempt to fold all LP problems and MIP initial relaxations.

5.38 XPRESS 2831

lpIterLimit (integer): Maximum number of iterations that will be performed by primal simplex or dual
simplex before the optimization process terminates ←↩

Synonym: iterlim

For MIP problems, this is the maximum total number of iterations over all nodes explored by
the Branch and Bound method.

Range: {0, ..., ∞}

Default: maxint

lpLog (integer): Simplex: Frequency at which the simplex log is printed ←↩

This control only has an effect if lpLogStyle is set to 0.

Default: 100

value meaning

0 Log displayed at the end of the optimization only.

n<0 Detailed output every - n iterations.

n>0 Summary output every n iterations.

lpLogDelay (real): Time interval between two LP log lines ←↩

This control only has an effect if lpLogStyle is set to 1.

Range: [0, ∞]

Default: 1

lpLogStyle (boolean): Simplex: Style of the simplex log ←↩

Default: 1

value meaning

0 Simplex log is printed based on simplex iteration count, at a fixed frequency as
specified by the lpLog control.

1 Simplex Log is printed based on an estimation of elapsed time, determined by an
internal deterministic timer.

lpRefineIterLimit (integer): Simplex iteration limit the solution refiner can spend in attempting to
increase the accuracy of an LP solution ←↩

The solution refiner iteratively attempts to increase the accuracy of the solution until either both
feasTolTarget and optimalityTolTarget is satisfied, or accuracy cannot further be increased,
or the effort limit determined by lpRefineIterLimit is exhausted.

Range: {-1, ..., ∞}

Default: auto

markowitzTol (real): Markowitz tolerance used for the factorization of the basis matrix ←↩

2832 Solver Manuals

Range: [0, ∞]

Default: 0.01

matrixTol (real): Zero tolerance on matrix elements ←↩

If the value of a matrix element is less than or equal to matrixTol in absolute value, it is treated
as zero. The control applies when solving a problem, for an input tolerance see inputTol.

Range: [0, ∞]

Default: 1e-09

maxCutTime (real): Maximum amount of time allowed for generation of cutting planes and reoptimization
←↩

The limit is checked during generation and no further cuts are added once this limit has been
exceeded.

Default: 0

value meaning

0 No time limit.

>0 Stop cut generation after the given number of seconds.

maxImpliedBound (real): Presolve: When tighter bounds are calculated during MIP preprocessing,
only bounds whose absolute value are smaller than maxImpliedBound will be applied to the problem ←↩

For numerically challenging MIP problems, it can sometimes help make the solve more stable
by reducing the value of maxImpliedBound to something smaller - e.g. 1.0E+06. It is not
recommended to increase this parameter beyond the default of 1.0E+08.

Range: [0, ∞]

Default: 1e+08

maxLocalBacktrack (integer): Branch-and-Bound: How far back up the current dive path the optimizer
is allowed to look for a local backtrack candidate node ←↩

If this control is set to k, then the candidate set of nodes for a local backtrack will consist
of all active nodes in the subtree rooted at height k above the current node. For example, a
setting of 1 will result in only sibling nodes of the current node being considered.

Default: auto

value meaning

-1 Automatic.

n>0 Local backtrack limit.

maxMemoryHard (integer): Sets the maximum amount of memory in megabytes the optimizer should
allocate ←↩

If this limit is exceeded, the solve will terminate. This control is designed to make the optimizer
stop in a controlled manner, so that the problem object is valid once termination occurs.

5.38 XPRESS 2833

The solve state will be set to incomplete. This is different to an out of memory condition in
which case the optimizer returns an error. The optimizer may still allocate memory once the
limit is exceeded to be able to finsish the operations and stop in a controlled manner. When
resourceStrategy is enabled, the control also has the same effect as maxMemorySoft and will
cause the optimizer to try preserving memory when possible.

Range: {0, ..., ∞}

Default: unlimited

maxMemorySoft (integer): When resourceStrategy is enabled, this control sets the maximum amount
of memory in megabytes the optimizer targets to allocate ←↩

This may change the solving path, but will not cause the solve to terminate early. To set a
hard version of the same, please set maxMemoryHard.

Range: {0, ..., ∞}

Default: unlimited

maxMipSol (integer): Branch and Bound: Limit on the number of integer solutions to be found by the
Optimizer ←↩

It is possible that during optimization the Optimizer will find the same objective solution from
different nodes. However, maxMipSol refers to the total number of integer solutions found,
and not necessarily the number of distinct solutions.

Setting maxMipSol=1 can alter the solution path as this will put the emphasis on finding any
feasible solution by triggering additional heuristics.

Range: {0, ..., ∞}

Default: 0

maxMipTasks (integer): Branch-and-Bound: The maximum number of tasks to run in parallel during a
MIP solve ←↩

The MIP solver will create smaller tasks from individual active nodes or based on local search
heuristics. These are tasks that will be executed in parallel by the number of threads set by
mipThreads.

If maxMipTasks is set to a fixed, positive value, the branch-and-bound tree nodes will always
be solved in the same deterministic way, independent of the actual number of executing threads
implied by mipThreads. How a MIP is solved will still depend on the number of threads used
for solving the continuous relaxation and therefore on the settings for the controls barThreads,
barCores, dualThreads and concurrentThreads). To obtain a MIP solve that is completely
independent of the number of threads, it is sufficient to set maxMipTasks, forceParallelDual,
barThreads and barCores. The concurrent LP solver should be avoided in this case.

While you can set this control to large value, the implementation will limit the number of
tasks for performance reasons. This limit is currently 32 on 32bit platforms and 256 on 64 bit
platforms.

Default: auto

value meaning

-1 Task limit determined automatically from mipThreads.

>0 Fixed task limit.

2834 Solver Manuals

maxNode (integer): Branch and Bound: Maximum number of nodes that will be explored ←↩

Range: {0, ..., ∞}

Default: maxint

maxScaleFactor (integer): Determines the maximum scaling factor that can be applied during scaling
←↩

The maximum is provided as an exponent of a power of 2.

Default: 64

value meaning

0-64 The maximum is provided an exponent of a power of 2.

maxStallTime (real): Maximum time in seconds that the Optimizer will continue to search for improving
solution after finding a new incumbent ←↩

Default: 0

value meaning

0 No stall time limit.

>0 If an integer solution has been found, stop MIP search after the given number of
seconds without a new incumbent. No effect as long as no solution was found.

mipAbsCutoff (real): Branch and Bound: If the user knows that they are interested only in values of
the objective function which are better than some value, this can be assigned to mipAbsCutoff ←↩

This allows the Optimizer to ignore solving any nodes which may yield worse objective values,
saving solution time.

Range: [-∞, ∞]

Default: auto

mipAbsStop (real): Branch and Bound: Absolute tolerance determining whether the tree search will
continue or not ←↩

It will terminate if | MIPOBJVAL - BESTBOUND| ≤ mipAbsStop where MIPOBJVAL
is the value of the best solution’s objective function, and BESTBOUND is the current best
solution bound. For example, to stop the tree search when a MIP solution has been found and
the Optimizer can guarantee it is within 100 of the optimal solution, set mipAbsStop to 100.

Range: [0, ∞]

Default: 0

mipAddCutoff (real): Branch and Bound: Amount to add to the objective function of the best integer
solution found to give the new CURRMIPCUTOFF ←↩

5.38 XPRESS 2835

Once an integer solution has been found whose objective function is equal to or better
than CURRMIPCUTOFF, improvements on this value may not be interesting unless they
are better by at least a certain amount. If mipAddCutoff is nonzero, it will be added to
CURRMIPCUTOFF each time an integer solution is found which is better than this new value.
This cuts off sections of the tree whose solutions would not represent substantial improvements
in the objective function, saving processor time. The control mipAbsStop provides a similar
function but works in a different way.

Range: [-∞, ∞]

Default: 0

mipCleanup (boolean): Clean up the MIP solution (round-fix-solve) to get duals ←↩

If nonzero, clean up the integer solution obtained, i.e. round and fix the discrete variables and
re-solve as an LP to get some marginal values for the discrete vars.

Default: 1

mipComponents (integer): Determines whether disconnected components in a MIP should be solved as
separate MIPs ←↩

There can be significant performence benefits from solving disconnected components individual
instead of being part of the main branch-and-bound search.

If there are no constraints linking two variables, either directly or indirectly through other
variables, they are said to belong to two separate disconnected components. When a problem
contains disconnected components of signficant size, it can be advantageous to solve each
component as a separate MIP. When significant disconnected components are detected in
the problem, the solver will switch to a different solve mode where each component is solved
separately. This switch will happen after the root node processing has completed and when
the solve is about to enter the branch-and-bound search.

Solving disconnected components separately is not compatible with concurrent MIP solves. If
concurrent MIP solves has been turned off, disconnected components will be solved as part of
the standard branch-and-bound search in each concurrent solve.

Disabling MIP dual reductions through mipDualReductions will also disable the separate solve
of disconnected components.

Default: auto

value meaning

-1 Automatic - let the solver decide.

0 Disable solving disconnected components separately.

1 Solve disconnected components separately.

mipConcurrentNodes (integer): Sets the node limit for when a winning solve is selected when concurrent
MIP solves are enabled ←↩

When multiple MIP solves are started, they each run up to the mipConcurrentNodes node
limit and only one winning solve is selected for contuinuing the search with.

Default: auto

2836 Solver Manuals

value meaning

-1 Automatic - let the solver decide on a node limit.

>0 Number of nodes each concurrent solve should complete before a winner is selected.

mipConcurrentSolves (integer): Selects the number of concurrent solves to start for a MIP ←↩

Each solve will use a unique random seed for its random number generator, but will otherwise
apply the same user controls. The first concurrent solve to complete will have solved the MIP
and all the concurrent solves will be terminated at this point. Using concurrent solves can be
advantageous when a MIP displays a high level of performance variability.

A node limit is imposed on each concurrent solve, through mipConcurrentNodes. When a
concurrent solve reaches this node limit, it will be suspended until all concurrent solves have
reached the limit. At this point a winner will be declared, based on which solve made the
most progress towards optimality and only the winning solve will continue, using all threading
resources. If a concurrent solve completes its MIP search before reaching the node limit, all
solves will be stopped.

Default: 0

value meaning

-1 Enabled. The number of concurrent solves depends on mipThreads.

n>1 Enabled. The number of concurrent solves to start is given by n.

0, 1 Disabled

mipDualReductions (integer): Branch and Bound: Limits operations that can reduce the MIP solution
space ←↩

The mipDualReductions control, when set to a value different from 1 will adjust the values
of other controls in order to prevent MIP solver operations that can result in the removal of
dominated solutions. For example, dual reductions during preprocessing attempts to remove
dominated solutions based on objective arguments, assuming that all constraints are known
to the Optimizer. If a problem is detected to have symmetries, the solver might also remove
some symmetrical solutions from the search space. In both cases, the set of feasible MIP
solutions might be reduced. With default settings, it is only guaranteed that at least one
optimal solution remains.

When attempting to collect the n-best solutions, it is recommended to set mipDualReductions=2.
This will ensure that the only solutions missed by the enumeration are those that only differ
from an existing solution in the values of the continuous variables.

Default: 1

value meaning

0 Prevent all dual reductions.

1 Allow all dual reductions.

2 Allow dual reductions on continuous variables only.

mipFracReduce (integer): Branch and Bound: Specifies how often the optimizer should run a heuristic
to reduce the number of fractional integer variables in the node LP solutions ←↩

This heuristic is only applicable to problems that are dual degenerate. These are problems that
contain multiple solutions with identical objective function value. The more dual degenerate a
problem is, the more likely it will be for this heuristic to have an improving effect.

5.38 XPRESS 2837

Default: auto

value meaning

-1 Automatic.

0 Disabled.

1 Run before and after cutting on the root node.

2 Run also during root cutting.

3 Run also during the tree search.

mipKappaFreq (integer): Branch and Bound: Specifies how frequently the basis condition number (also
known as kappa) should be calculated during the branch-and-bound search ←↩

The condition number is calculated as the norm of the basis matrix multiplied by the norm of
its inverse. This uses the Froebenius norm.

A summary will be printed at the end of the solve, summarizing the collected condition
numbers collected:

• Nodes kappa stable: No. of stable sampled nodes (kappa < 10∧7)

• Nodes kappa suspicius: No. of suspicious sampled nodes (10∧7 ≤ kappa < 10∧10)

• Nodes kappa unstable: No. of unstable sampled nodes (10∧10 ≤ kappa < 10∧13)

• Nodes kappa ill-posed: No. of ill-posed sampled nodes (10∧13 ≤ kappa)

• Largest kappa seen: The largest condition number calculated through all sampled nodes.

• Kappa attention level: A measure of how ill-posed the problem is (between 0 and 1).

Default: 0

value meaning

0 Do not calculate condition numbers.

1 Calculate conditions numbers on every node, including after each round of root
cutting.

n>1 Calculate a condition number once per node of every n’th level of the branch-and-
bound tree.

mipLog (integer): MIP log print control ←↩

Default: -100

value meaning

0 No printout during MIP tree search.

1 Only print out summary statement at the end.

2 Print out detailed log at all solutions found.

3 Print out detailed log at each node.

-n Print out summary log at each n th node.

mipPresolve (integer): Branch and Bound: Type of integer processing to be performed ←↩

If set to 0, no processing will be performed.

Setting single boolean options will overwrite the single bits of this bit map option.

2838 Solver Manuals

Default: -1

5.38 XPRESS 2839

value meaning

bit 0 = 1 Equivalent to mipPresolve reducedCostFixing.

bit 1 = 2 Equivalent to mipPresolve logicPreprocessing.

bit 2 = 4 [Unused] This bit is no longer used to control probing. Refer to the integer
control preProbing for setting probing level during presolve.

bit 3 = 8 Equivalent to mipPresolve allowChangeBounds.

bit 4 = 16 Equivalent to mipPresolve dualReductions.

bit 5 = 32 Equivalent to mipPresolve globalCoefTightening.

bit 6 = 64 Equivalent to mipPresolve objBasedReductions.

bit 7 = 128 Equivalent to mipPresolve allowTreeRestart.

bit 8 = 256 Equivalent to mipPresolve symmetryReductions.

mipPresolve allowChangeBounds (boolean): If node preprocessing is allowed to change bounds on
continuous columns ←↩

See also mipPresolve.

Default: 1

mipPresolve allowTreeRestart (boolean): [Unused] This bit is no longer used to control restarts ←↩

Refer to the integer control mipRestart for disabling tree restarts.

See also mipPresolve.

Default: 1

mipPresolve dualReductions (boolean): Dual reductions will be performed at each node ←↩

See also mipPresolve.

Default: 1

mipPresolve globalCoefTightening (boolean): Allow global (non-bound) tightening of the problem
during the tree search ←↩

See also mipPresolve.

Default: 1

mipPresolve logicPreprocessing (boolean): Primal reductions will be performed at each node ←↩

Uses constraints of the node to tighten the range of variables, often resulting in fixing their
values. This greatly simplifies the problem and may even determine optimality or infeasibility
of the node.

See also mipPresolve.

Default: 1

mipPresolve objBasedReductions (boolean): Objective function will be used to find reductions at
each node ←↩

See also mipPresolve.

Default: 1

2840 Solver Manuals

mipPresolve reducedCostFixing (boolean): Reduced cost fixing will be performed at each node ←↩

This can simplify the node before it is solved, by deducing that certain variables’ values can
be fixed based on additional bounds imposed on other variables at this node.

See also mipPresolve.

Default: 1

mipPresolve symmetryReductions (boolean): Allow that symmetry is used to presolve the node
problem ←↩

See also mipPresolve.

Default: 1

mipRampUp (integer): Controls the strategy used by the parallel MIP solver during the ramp-up phase
of a branch-and-bound tree search ←↩

The branch-and-bound tree search starts from the single root node, and only through branching
on this root node and the resulting child nodes, are enough active nodes created to produce
sufficient tasks to keep all MIP workers busy. This is referred to as the ramp-up phase
of a parallel MIP. In a typical MIP solve, the solutions found during the initial dives will
typically provide a significant improvement over the root heuristic solutions. It can therefore
be advantageous to let these initial dives run as fast as possible, by limiting resource contention.
This can be accomplished by restricting the number of parallel tasks and thereby reducing
the memory bus contention. The mipRampUp control can be used to turn this initial task
restriction of a parallel MIP solve on or off.

Default: auto

value meaning

-1 Automatically determined.

0 No special treatment during the ramp-up phase. Always run with the maximal
number of tasks.

1 Limit the number of tasks until the initial dives have completed.

mipRefineIterLimit (integer): Defines an effort limit expressed as simplex iterations for the MIP
solution refiner ←↩

The limit is per reoptimizations in the MIP refiner.

Range: {-1, ..., ∞}

Default: auto

mipRelCutoff (real): Branch and Bound: Percentage of the LP solution value to be added to the value
of the objective function when an integer solution is found, to give the new value of CURRMIPCUTOFF
←↩

The effect is to cut off the search in parts of the tree whose best possible objective function
would not be substantially better than the current solution. The control mipRelStop provides
a similar functionality but works in a different way.

Range: [0, ∞]

Default: 0

5.38 XPRESS 2841

mipRelStop (real): Branch and Bound: Determines when the branch and bound tree search will terminate
←↩

Branch and bound tree search will stop if: | MIPOBJVAL - BESTBOUND| ≤ mipRelStop x
max(| BESTBOUND|,| MIPOBJVAL|) where MIPOBJVAL is the value of the best solution’s
objective function and BESTBOUND is the current best solution bound. For example, to stop
the tree search when a MIP solution has been found and the Optimizer can guarantee it is
within 5% of the optimal solution, set mipRelStop to 0.05.

This control is a stopping criteria only and different values of the control will not affect the
solution path before termination. Unlike other stopping criteria, like time and node count,
termination on mipRelStop will cause the final solution to be declared optimal and the problem
to be returned to its original state.

Tolerances, such as mipRelCutoff and mipAbsCutoff, determine how much the objective value
of a new MIP solution has to differ from the incumbent for it to be accepted. These controls
therefore also influence the final gap at the end of a MIP solve.

Range: [0, ∞]

Default: 0.0001

mipRestart (integer): Branch and Bound: Controls strategy for in-tree restarts ←↩

Default: auto

value meaning

-1 Determined automatically (XPRS MIPRESTART DEFAULT).

0 Disable in-tree restarts (XPRS MIPRESTART OFF).

1 Allow in-tree restarts at normal aggressiveness
(XPRS MIPRESTART MODERATE).

2 Allow in-tree restarts at higher aggressiveness (more likely to trigger a restart)
(XPRS MIPRESTART AGGRESSIVE).

mipRestartFactor (real): Branch and Bound: Fine tune initial conditions to trigger an in-tree restart
←↩

Use a value > 1 to increase the aggressiveness with which the Optimizer restarts. Use a value
< 1 to relax the aggressiveness with which the Optimizer restarts. Note that this control does
not affect the initial condition on the gap, which must be set separately.

Range: [0, ∞]

Default: 1

mipRestartGapThreshold (real): Branch and Bound: Initial gap threshold to delay in-tree restart ←↩

The restart is delayed initially if the gap, given as a fraction between 0 and 1, is below this
threshold. The optimizer adjusts the threshold every time a restart is delayed. Note that there
are other criteria that can delay or prevent a restart.

Range: [0, 1]

Default: 0.02

mipstopexpr (string): Stopping expression for branch and bound ←↩

2842 Solver Manuals

If the provided logical expression is true, the branch-and-bound is aborted. Supported values
are: resusd, nodusd, objest, objval. Supported operators are: +, -, ∗, /, ∧, %, !=, ==, <, <=,
>, >=, !, &&, ||, (,), abs, ceil, exp, floor, log, log10, pow, sqrt . Example:
nodusd >= 1000 && abs(objest - objval) / abs(objval) < 0.1

If multiple stop expressions are given in an option file, the algorithm stops if any of them is
true (|| concatenation).

mipThreads (integer): If set to a positive integer it determines the number of threads implemented to
run the parallel MIP code ←↩

If mipThreads is set to the default value (-1), the threads control will determine the number
of threads used.

Range: {-1, ..., ∞}

Default: auto

mipTol (real): Branch and Bound: Tolerance within which a decision variable’s value is considered to be
integral ←↩

Range: [0, ∞]

Default: 5e-06

mipToltarget (real): Target mipTol value used by the automatic MIP solution refiner as defined by
refineOps ←↩

Negative and zero values are ignored.

Refining solutions to match the miptoltarget can influence and worsen their objective value in
case the previous objective could only be achieved through slight infeasibilities.

Range: [-∞, ∞]

Default: 0

mipTrace (string): Name of MIP trace file ←↩

A miptrace file with the specified name will be created. This file records the best integer and
best bound values every mipTraceNode nodes and at mipTraceTime-second intervals.

Default: none

mipTraceNode (integer): Node interval between MIP trace file entries ←↩

Default: 100

mipTraceTime (real): Time interval, in seconds, between MIP trace file entries ←↩

Default: 5

miqcpAlg (integer): Determines which algorithm is to be used to solve mixed integer quadratic constrained
and mixed integer second order cone problems ←↩

Default: auto

5.38 XPRESS 2843

value meaning

-1 Determined automatically.

0 Use the barrier algorithm in the branch and bound algorithm.

1 Use outer approximations in the branch and bound algorithm.

mpsNameLength (integer): Maximum length of MPS names in characters ←↩

Internally it is rounded up to the smallest multiple of 8. MPS names are right padded with
blanks. Maximum value is 64.

Range: {0, ..., ∞}

Default: 0

mpsOutputFile (string): Name of MPS output file ←↩

If specified XPRESS-MP will generate an MPS file corresponding to the GAMS model: the
argument is the file name to be used. You can prefix the file name with an absolute or relative
path.

Default: none

netCuts (integer): Determines the addition of multi-commodity network cuts to a problem ←↩

The parameter is defined as a bit string, and values 1, 2, 4 can be summed up if the user wants
more classes of cuts to be added.

If the user wants to add both cut-set inequalities and lifted flow-cover inequalities but not
node cut-set inequalities, the value of the control should be set to 1+4=5.

Default: 0

value meaning

-1 Automatically determined.

0 Do not add these cuts.

1 Add cut-set inequalities.

2 Add node cut-set inequalities, i.e., cut-set inequalities that are based on a network
cut defined on a single network node.

4 Add lifted flow-cover inequalities.

netStallLimit (integer): Limit the number of degenerate pivots of the network simplex algorithm, before
switching to either primal or dual simplex, depending on algAfterNetwork ←↩

Default: auto

value meaning

-1 Automatically determined limit

0 No limit.

n>0 Limit to n network simplex iterations.

nodeProbingEffort (real): Adjusts the overall level of node probing ←↩

2844 Solver Manuals

nodeProbingEffort is used as a multiplier on the default amount of work node probing should
do. Setting the control to zero disables node probing.

Range: [0, ∞]

Default: 1

nodeSelection (integer): Branch and Bound: Determines which nodes will be considered for solution
once the current node has been solved ←↩

Default: auto

value meaning

1 Local first: Choose between descendant and sibling nodes if available; choose from
all outstanding nodes otherwise.

2 Best first: Choose from all outstanding nodes.

3 Local depth first: Choose between descendant and sibling nodes if available;
choose from the deepest nodes otherwise.

4 Best first, then local first: Best first is used for the first breadthFirst nodes, after
which local first is used.

5 Pure depth first: Choose from the deepest outstanding nodes.

numericalEmphasis (integer): How much emphasis to place on numerical stability instead of solve
speed ←↩

Default: auto

value meaning

-1 Automatic. The emphasis might be influenced by the setting of other controls.

0 Emphasize speed.

1 Mild emphasis on numerical stability.

2 Medium emphasis on numerical stability.

3 Strong emphasis on numerical stability.

objGoodEnough (real): Stop once an objective this good is found ←↩

Default: none

objScaleFactor (integer): Custom objective scaling factor, expressed as a power of 2 ←↩

When set, it overwrites the automatic objective scaling factor. A value of 0 means no objective
scaling. This control is applied for the full solve, and is independent of any extra scaling that
may occur specifically for the barrier or simplex solvers. As it is a power of 2, to scale by 16,
set the value of the control to 4.

Range: {0, ..., ∞}

Default: 0

optimalityTol (real): Simplex: Zero tolerance for reduced costs ←↩

5.38 XPRESS 2845

On each iteration, the simplex method searches for a variable to enter the basis which has a
negative reduced cost. The candidates are only those variables which have reduced costs less
than the negative value of optimalityTol.

Range: [0, ∞]

Default: 1e-06

optimalityTolTarget (real): Target optimality tolerance for the solution refiner ←↩

Zero and negative values are ignored, and the value of optimalityTol is used.

Use very small values like 1e-100 to state the refinement should continue as long as an
improvement is made. Use very large values like 1e+100 to disable only this aspect of the
refiner.

Refining solutions to match the optimalitytoltarget can influence and increase their infeasibility
in case the previous feasibility could only be achieved through slight dual violations.

Range: [-∞, ∞]

Default: 0

outputControls (boolean): Toggles the printing of all control settings at the beginning of the search ←↩

This includes the printing of controls that have been explicitly assigned to their default value.
All unset controls are omitted as they keep their default value.

Setting outputControls to 0 has no effect on the function XPRSdumpcontrols

Default: 1

value meaning

0 Turn off printing of user-specified control settings.

1 Print controls.

outputLog (integer): Controls the level of output produced by the Optimizer during optimization ←↩

Default: 1

value meaning

0 Turn all output off.

1 Print all messages.

3 Print error and warning messages.

4 Print error messages only.

outputTol (real): Zero tolerance on print values ←↩

Range: [0, ∞]

Default: 1e-05

penalty (real): Minimum absolute penalty variable coefficient ←↩

2846 Solver Manuals

Range: [0, ∞]

Default: auto

pivotTol (real): Simplex: Zero tolerance for matrix elements ←↩

On each iteration, the simplex method seeks a nonzero matrix element to pivot on. Any
element with absolute value less than pivotTol is treated as zero for this purpose.

Range: [0, ∞]

Default: 1e-09

ppFactor (real): Partial pricing candidate list sizing parameter ←↩

Range: [0, ∞]

Default: 1

preAnalyticCenter (integer): Determines if analytic centers should be computed and used for variable
fixing and the generation of alternative reduced costs (-1: Auto 0: Off, 1: Fixing, 2: Redcost, 3: Both) ←↩

Default: auto

value meaning

-1 Automatic.

0 Disable analytic center presolving.

1 Use analytic center for variable fixing only.

2 Use analytic center for reduced cost computation only.

3 Use analytic centers for both, variable fixing and reduced cost computation.

preBasisRed (integer): Determines if a lattice basis reduction algorithm should be attempted as part of
presolve ←↩

Default: 0

value meaning

-1 Automatic.

0 Disable basis reduction.

1 Enable basis reduction.

preBndRedCone (integer): Determines if second order cone constraints should be used for inferring
bound reductions on variables when solving a MIP ←↩

Default: auto

value meaning

-1 Automatic.

0 Disable bound reductions from second order cone constraints.

1 Enable bound reductions from second order cone constraints.

preBndRedQuad (integer): Determines if convex quadratic contraints should be used for inferring

5.38 XPRESS 2847

bound reductions on variables when solving a MIP ←↩

Default: auto

value meaning

-1 Automatic.

0 Disable bound reductions from quadratic constraints.

1 Enable bound reductions from quadratic constraints.

preCliqueStrategy (integer): Determines how much effort to spend on clique covers in presolve ←↩

Range: {-1, ..., ∞}

Default: -1

preCoefElim (integer): Presolve: Specifies whether the optimizer should attempt to recombine constraints
in order to reduce the number of non zero coefficients when presolving a mixed integer problem ←↩

Default: 2

value meaning

0 Disabled.

1 Remove as many coefficients as possible.

2 Cautious eliminations. Will not perform a reduction if it might destroy problem
structure useful to e.g. heuristics or cutting.

preComponents (integer): Presolve: Determines whether small independent components should be
detected and solved as individual subproblems during root node processing ←↩

Default: auto

value meaning

-1 Automatically determined.

0 Disable detection of independent components.

1 Enable detection of independent components.

preComponentsEffort (real): Presolve: Adjusts the overall effort for the independent component
presolver ←↩

This control affects working limits for the subproblem solving as well as thresholds when it is
called. Increase to put more emphasis on component presolving.

Range: [0, ∞]

Default: 1

preConeDecomp (integer): Presolve: Decompose regular and rotated cones with more than two elements
and apply Outer Approximation on the resulting components ←↩

Default: auto

2848 Solver Manuals

value meaning

-1 Automatically determined.

0 Disable cone decomposition.

1 Enable cone decomposition by replacing large cones with small ones in the
presolved problem.

2 Similar to 1, plus decomposition is enabled even if the cone variable is fixed.

3 Cones are decomposed within the Outer Approximation domain only, i.e., the
problem maintains the original cones.

preConfiguration (integer): MIP Presolve: Determines whether binary rows with only few repeating
coefficients should be reformulated ←↩

The reformulation enumerates the extremal feasible configurations of a row and introduces new
columns and rows to model the choice between these extremal configurations. This presolve
operation can be disabled as part of the (advanced) IP reductions presolveOps.

Default: auto

value meaning

-1 Automatically determined.

0 Disable configuration presolving.

preConvertSeparable (integer): Presolve: Reformulate problem with non-diagonal quadratic objective
and/or constraints as diagonal quadratic or second-order conic constraints ←↩

This control is only used in MIQPs and MIQCQPs, and has no effect when used on continuous
quadratic problems.

Default: auto

value meaning

-1 Automatically determined.

0 Disable reformulation.

1 Enable reformulation to diagonal quadratic constraints.

2 Similar to 1, plus reduction to second-order cones.

3 Similar to 2, plus the objective function is converted to a constraint and treated
as a quadratic constraint.

preDomCol (integer): Presolve: Determines the level of dominated column removal reductions to perform
when presolving a mixed integer problem ←↩

Only binary columns will be checked.

Default: auto

value meaning

-1 Automatically determined.

0 Disabled.

1 Cautious strategy.

2 All candidate binaries will be checked for domination.

5.38 XPRESS 2849

preDomRow (integer): Presolve: Determines the level of dominated row removal reductions to perform
when presolving a problem ←↩

Default: auto

value meaning

-1 Automatically determined.

0 Disabled.

1 Cautious strategy.

2 Medium strategy.

3 Aggressive strategy. All candidate row combinations will be considered.

preDupRow (integer): Presolve: Determines the type of duplicate rows to look for and eliminate when
presolving a problem ←↩

Duplicate rows can also be disabled by clearing the corresponding bit of the presolveOps
integer control.

Default: auto

value meaning

-1 Automatically determined.

0 Do not eliminate duplicate rows.

1 Eliminate only rows that are identical in all variables.

2 Same as option 1 plus eliminate duplicate rows with simple penalty variable
expressions. (MIP only).

3 Same as option 2 plus eliminate duplicate rows with more complex penalty variable
expressions. (MIP only).

preElimQuad (integer): Presolve: Allows for elimination of quadratic variables via doubleton rows ←↩

Default: auto

value meaning

-1 Automatically determined.

0 Do not eliminate duplicate rows.

1 Eliminate at least one quadratic variable for each doubleton row.

preFolding (integer): Presolve: Determines if a folding procedure should be used to aggregate continuous
columns in an equitable partition ←↩

Default: auto

value meaning

-1 Automatically determined.

0 Disabled.

1 Enabled.

preImplications (integer): Presolve: Determines whether to use implication structures to remove
redundant rows ←↩

2850 Solver Manuals

If implication sequences are detected, they might also be used in probing.

Default: auto

value meaning

-1 Automatically determined.

0 Do not use implications for sparsification.

1 Use implications to remove reduandant rows.

preLinDep (integer): Presolve: Determines whether to check for and remove linearly dependent equality
constraints when presolving a problem ←↩

Default: auto

value meaning

-1 Automatically determined.

0 Do not check for linearly dependent equality constraints.

1 Check for and remove linearly dependent equality constraints.

preObjCutDetect (boolean): Presolve: Determines whether to check for constraints that are parallel or
near parallel to a linear objective function, and which can safely be removed ←↩

This reduction applies to MIPs only.

Default: 1

value meaning

0 Disable check and reductions.

1 Enable check and reductions.

preProbing (integer): Presolve: Amount of probing to perform on binary variables during presolve ←↩

This is done by fixing a binary to each of its values in turn and analyzing the implications.

Default: auto

value meaning

-1 Let the optimizer decide on the amount of probing.

0 Disabled.

1 Light probing — only few implications will be examined.

2 Full probing — all implications for all binaries will be examined.

3 Full probing and repeat as long as the problem is significantly reduced.

presolve (integer): Determines whether presolving should be performed prior to starting the main
algorithm ←↩

Presolve attempts to simplify the problem by detecting and removing redundant constraints,
tightening variable bounds, etc. In some cases, infeasibility may even be determined at this
stage, or the optimal solution found.

5.38 XPRESS 2851

Memory for presolve is dynamically resized. If the Optimizer runs out of memory for presolve,
an error message (245) is produced. Presolve settings 2 and 3 can sometimes make the barrier
solves more efficient.

Default: 1

value meaning

-1 Presolve applied, but a problem will not be declared infeasible if primal infeasibil-
ities are detected. The problem will be solved by the LP optimization algorithm,
returning an infeasible solution, which can sometimes be helpful.

0 Presolve not applied.

1 Presolve applied.

2 Presolve applied, but redundant bounds are not removed. This can sometimes
increase the efficiency of the barrier algorithm.

3 Presolve is applied, and bounds detected to be redundant are always removed.

presolveMaxGrow (real): Limit on how much the number of non-zero coefficients is allowed to grow
during presolve, specified as a ratio of the number of non-zero coefficients in the original problem ←↩

Range: [0, ∞]

Default: 0.1

presolveOps (integer): Specifies the operations which are performed during the presolve ←↩

Setting single boolean options will overwrite the single bits of this bit map option.

Default: 511

value meaning

bit 0 = 1 Equivalent to presolveOps singletonColRemoval.

bit 1 = 2 Equivalent to presolveOps singletonRowRemoval.

bit 2 = 4 Equivalent to presolveOps forcingRowRemoval.

bit 3 = 8 Equivalent to presolveOps dualReductions.

bit 4 = 16 Equivalent to presolveOps redundantRowRemoval.

bit 5 = 32 Equivalent to presolveOps duplicateColRemoval.

bit 6 = 64 Equivalent to presolveOps duplicateRowRemoval.

bit 7 = 128 Equivalent to presolveOps strongDualReductions.

bit 8 = 256 Equivalent to presolveOps variableEliminations.

bit 9 = 512 Equivalent to presolveOps noIpReductions.

bit 10 = 1024 Equivalent to presolveOps noGlobalDomainChange.

bit 11 = 2048 Equivalent to presolveOps noAdvIpReductions.

bit 12 = 4096 Equivalent to presolveOps noIntVarEliminations.

bit 14 = 16384 Equivalent to presolveOps linDependRowRemoval.

bit 15 = 32768 Equivalent to presolveOps noIntVarAndSosDetect.

presolveOps dualReductions (boolean): Dual reductions ←↩

See also presolveOps.

Default: 1

2852 Solver Manuals

presolveOps duplicateColRemoval (boolean): Duplicate column removal ←↩

See also presolveOps.

Default: 1

presolveOps duplicateRowRemoval (boolean): Duplicate row removal ←↩

See also presolveOps.

Default: 1

presolveOps forcingRowRemoval (boolean): Forcing row removal ←↩

See also presolveOps.

Default: 1

presolveOps linDependRowRemoval (boolean): Linearly dependant row removal ←↩

See also presolveOps.

Default: 0

presolveOps noAdvIpReductions (boolean): No advanced IP reductions ←↩

See also presolveOps.

Default: 0

presolveOps noGlobalDomainChange (boolean): No semi-continuous variable detection ←↩

See also presolveOps.

Default: 0

presolveOps noIntVarAndSosDetect (boolean): No integer variable and SOS detection ←↩

See also presolveOps.

Default: 0

presolveOps noIntVarEliminations (boolean): No eliminations on integers ←↩

See also presolveOps.

Default: 0

presolveOps noIpReductions (boolean): No IP reductions ←↩

See also presolveOps.

Default: 0

presolveOps redundantRowRemoval (boolean): Redundant row removal ←↩

See also presolveOps.

Default: 1

5.38 XPRESS 2853

presolveOps singletonColRemoval (boolean): Singleton column removal ←↩

See also presolveOps.

Default: 1

presolveOps singletonRowRemoval (boolean): Singleton row removal ←↩

See also presolveOps.

Default: 1

presolveOps strongDualReductions (boolean): Strong dual reductions ←↩

See also presolveOps.

Default: 1

presolveOps variableEliminations (boolean): Variable eliminations ←↩

See also presolveOps.

Default: 1

presolvePasses (integer): Number of reduction rounds to be performed in presolve ←↩

Range: {0, ..., ∞}

Default: 1

pricingAlg (integer): Simplex: Determines the primal simplex pricing method ←↩

It is used to select which variable enters the basis on each iteration. In general Devex pricing
requires more time on each iteration, but may reduce the total number of iterations, whereas
partial pricing saves time on each iteration, but may result in more iterations.

Default: auto

value meaning

-1 Partial pricing.

0 Determined automatically.

1 Devex pricing.

2 Steepest edge.

3 Steepest edge with unit initial weights.

primalOps (integer): Primal simplex: Allows fine tuning the variable selection in the primal simplex
solver ←↩

If both bits 0 and 1 are both set or unset then the dj scaling strategy is determined automatically.

Default: -1

value meaning

bit 0 = 1 Use aggressive dj scaling.

2854 Solver Manuals

value meaning

bit 1 = 2 Conventional dj scaling.

bit 2 = 4 Use reluctant switching back to partial pricing.

bit 3 = 8 Use dynamic switching between cheap and expensive pricing strategies.

bit 4 = 16 Keep solving even after potential cycling is detected.

primalPerturb (real): Factor by which the problem will be perturbed prior to optimization by primal
simplex ←↩

A value of 0.0 results in no perturbation prior to optimization. Note the interconnection to the
autoPerturb control. If autoPerturb is set to 1, the decision whether to perturb or not is left
to the Optimizer. When the problem is automatically perturbed in primal simplex, however,
the value of primalPerturb will be used for perturbation.

Range: [-∞, ∞]

Default: auto

primalUnshift (boolean): Determines whether primal is allowed to call dual to unshift ←↩

Default: 0

value meaning

0 Allow the dual algorithm to be used to unshift.

1 Don’t allow the dual algorithm to be used to unshift.

pseudoCost (real): Branch and Bound: Default pseudo cost used in estimation of the degradation
associated with an unexplored node in the tree search ←↩

A pseudo cost is associated with each integer decision variable and is an estimate of the amount
by which the objective function will be worse if that variable is forced to an integral value.

Range: [0, ∞]

Default: 0.01

qcCuts (integer): Branch and Bound: Limit on the number of rounds of outer approximation cuts
generated for the root node, when solving a mixed integer quadratic constrained or mixed integer second
order conic problem with outer approximation ←↩

This control only has an effect for problems with quadratic or second order cone constraints,
and only if outer approximation has not been disabled by setting miqcpAlg to 0.

Range: {-1, ..., ∞}

Default: auto

qcRootAlg (integer): Determines which algorithm is to be used to solve the root of a mixed integer
quadratic constrained or mixed integer second order cone problem, when outer approximation is used ←↩

This control only has an effect if miqcpAlg is set to 1.

Default: auto

5.38 XPRESS 2855

value meaning

-1 Determined automatically.

0 Use the barrier algorithm.

1 Use the dual simplex on a relaxation of the problem constructed using outer
approximation.

qextractalg (integer): quadratic extraction algorithm in GAMS interface ←↩

Default: 0

value meaning

0 Automatic

1 ThreePass: Uses a three-pass forward / backward / forward AD technique to
compute function / gradient / Hessian values and a hybrid scheme for storage.

2 DoubleForward: Uses forward-mode AD to compute and store function, gradient,
and Hessian values at each node or stack level as required. The gradients and
Hessians are stored in linked lists.

3 Concurrent: Uses ThreePass and DoubleForward in parallel. As soon as one
finishes, the other one stops.

qSimplexOps (integer): Controls the behavior of the quadratic simplex solvers ←↩

Default: 0

value meaning

bit 0 = 1 Force traditional primal first phase.

bit 1 = 2 Force BigM primal first phase.

bit 2 = 4 Force traditional dual first phase.

bit 3 = 8 Force BigM dual first phase.

bit 4 = 16 Always use artificial bounds in dual.

bit 5 = 32 Use original problem basis only when warmstarting the KKT.

bit 6 = 64 Skip the primal bound flips for ranged primals (might cause more trouble
than good if the bounds are very large).

bit 7 = 128 Also do the single pivot crash.

bit 8 = 256 Do not apply aggressive perturbation in dual.

quadraticUnshift (integer): Determines whether an extra solution purification step is called after a
solution found by the quadratic simplex (either primal or dual) ←↩

Default: auto

value meaning

-1 Determined automatically.

0 No purification step.

1 Always do the purification step.

randomSeed (integer): Sets the initial seed to use for the pseudo-random number generator in the
Optimizer ←↩

2856 Solver Manuals

The sequence of random numbers is always reset using the seed when starting a new optimization
run.

Range: {-∞, ..., ∞}

Default: 1

refineOps (integer): Specifies when the solution refiner should be executed to reduce solution infeasibilities
←↩

The refiner will attempt to satisfy the target tolerances for all original linear constraints before
presolve or scaling has been applied.

If neither the 7th nor 8th bit is set, the refiner will use the primal simplex if the primal
violations are larger than the dual violations, otherwise it will use the dual simplex. If both
the 7th and 8th bit are set then the refiner will split the problem into a primal feasible and
dual feasible part, and solve the first with primal simplex and the second with dual simplex.

Setting single boolean options will overwrite the single bits of this bit map option.

Default: 19

value meaning

bit 0 = 1 Equivalent to refineOps lpOptimal.

bit 1 = 2 Equivalent to refineOps mipSolution.

bit 3 = 8 Equivalent to refineOps mipNodeLp.

bit 4 = 16 Equivalent to refineOps lpPresolve.

bit 5 = 32 Equivalent to refineOps iterativeRefiner.

bit 6 = 64 Equivalent to refineOps refinerPrecision.

bit 7 = 128 Equivalent to refineOps refinerUsePrimal.

bit 8 = 256 Equivalent to refineOps refinerUseDual.

bit 9 = 512 Equivalent to refineOps mipFixGlobals.

bit 10 = 1024 Equivalent to refineOps mipFixGlobalsTarget.

refineOps iterativeRefiner (boolean): Apply the iterative refiner to refine the solution ←↩

See also refineOps.

Default: 0

refineOps lpOptimal (boolean): Run the solution refiner on an optimal solution of a continuous problem
←↩

See also refineOps.

Default: 1

refineOps lpPresolve (boolean): Run the solution refiner on an optimal solution before postsolve on a
continuous problem ←↩

See also refineOps.

Default: 1

5.38 XPRESS 2857

refineOps mipFixGlobals (boolean): Refine MIP solutions such that rounding them keeps the problem
feasible when reoptimized ←↩

See also refineOps.

Default: 0

refineOps mipFixGlobalsTarget (boolean): Attempt to refine MIP solutions such that rounding them
keeps the problem feasible when reoptimized, but accept integers solutions even if refinement fails ←↩

See also refineOps.

Default: 0

refineOps mipNodeLp (boolean): Run the solution refiner on each node of the MIP search ←↩

See also refineOps.

Default: 0

refineOps mipSolution (boolean): Run the solution refiner when a new solution is found during a tree
search ←↩

The refiner will be applied to the presolved solution before any post-solve operations are
applied.

See also refineOps.

Default: 1

refineOps refinerPrecision (boolean): Use higher precision in the iterative refinement ←↩

See also refineOps.

Default: 0

refineOps refinerUseDual (boolean): If set, the iterative refiner will use the dual simplex algorithm ←↩

See also refineOps.

Default: 0

refineOps refinerUsePrimal (boolean): If set, the iterative refiner will use the primal simplex algorithm
←↩

See also refineOps.

Default: 0

reform (boolean): Substitute out objective var and equ when possible ←↩

Default: 1

relaxTreeMemoryLimit (real): When the memory used by the branch and bound search tree exceeds
the target specified by the treeMemoryLimit control, the optimizer will try to reduce this by writing
nodes to the tree file ←↩

2858 Solver Manuals

In rare cases, usually where the solve has many millions of very small nodes, the tree structural
data (which cannot be written to the tree file) will grow large enough to approach or exceed
the tree’s memory target. When this happens, optimizer performance can degrade greatly
as the solver makes heavy use of the tree file in preference to memory. To prevent this,
the solver will automatically relax the tree memory limit when it detects this case; the
relaxTreeMemoryLimit control specifies the proportion of the previous memory limit by which
to relax it. Set relaxTreeMemoryLimit to 0.0 to force the Xpress Optimizer to never relax the
tree memory limit in this way.

While setting higher values of relaxTreeMemoryLimit can improve performance significantly
for a small number of models in low memory situations, the user is advised to use the
treeMemoryLimit control to tune the memory usage of the branch and bound tree, according
to the solve characteristics of their problem, rather than increasing relaxTreeMemoryLimit.

Range: [0, ∞]

Default: 0.1

relPivotTol (real): Simplex: Minimum size of pivot element relative to largest element in column ←↩

At each iteration a pivot element is chosen within a given column of the matrix. The relative
pivot tolerance, relPivotTol, is the size of the element chosen relative to the largest possible
pivot element in the same column.

Range: [0, ∞]

Default: 1e-06

repairIndefInitEq (boolean): Controls if the optimizer should make indefinite quadratic matrices positive
definite when it is possible ←↩

Default: 1

value meaning

0 Repair if possible.

1 Do not repair.

reRun (boolean): Rerun with primal simplex when not optimal/feasible ←↩

Applies only in cases where presolve is turned on and the model is diagnosed as infeasible or
unbounded. If rerun is nonzero, we rerun the model using primal simplex with presolve turned
off in hopes of getting better diagnostic information. If rerun is zero, no good diagnostic
information exists, so we return no solution, only an indication of unboundedness/infeasibility.

Default: 0

reslim (real): Overrides GAMS reslim option ←↩

Sets the resource limit. When the solver has used more than this amount of CPU time (in
seconds) the system will stop the search and report the best solution found so far. timeLimit
and solTimeLimit overwrite this option.

resourceStrategy (boolean): Controls whether the optimizer is allowed to make nondeterministic decisions
if memory is running low in an effort to preserve memory and finish the solve ←↩

Available memory (or container limits) are automatically detected but can also be changed by
maxMemorySoft and maxMemoryHard.

Default: 0

5.38 XPRESS 2859

value meaning

1 Allow the optimizer to change the solve path if necessary to preserve memory
when getting close to one of the memory limits.

rootPresolve (integer): Determines if presolving should be performed on the problem after the tree
search has finished with root cutting and heuristics ←↩

Default: auto

value meaning

-1 Let the optimizer decide if the problem should be presolved again.

0 Disabled.

1 Always presolve the root problem.

sbBest (integer): Number of infeasible MIP entities to initialize pseudo costs for on each node ←↩

If sbBest is set to zero, the control historyCosts will also be treated as zero and no past
branching or strong branching information will be used in the MIP entity selection.

Default: auto

value meaning

-1 Determined automatically.

0 Disable strong branching.

n>0 Perform strong branching on up to n entities at each node.

sbEffort (real): Adjusts the overall amount of effort when using strong branching to select an infeasible
MIP entity to branch on ←↩

sbEffort is used as a multiplier on other strong branching related controls, and affects the
values used for sbBest, sbSelect and sbIterLimit when those are set to automatic.

Range: [0, ∞]

Default: 1

sbEstimate (integer): Branch and Bound: How to calculate pseudo costs from the local node when
selecting an infeasible MIP entity to branch on ←↩

These pseudo costs are used in combination with local strong branching and history costs to
select the branch candidate.

Default: auto

value meaning

-1 Automatically determined.

1-6 Different variants of local pseudo costs.

sbIterLimit (integer): Number of dual iterations to perform the strong branching for each entity ←↩
This control can be useful to increase or decrease the amount of effort (and thus time) spent
performing strong branching at each node. Setting sbIterLimit=0 will disable dual strong

2860 Solver Manuals

branch iterations. Instead, the entity at the head of the candidate list will be selected for
branching.

Range: {-1, ..., ∞}

Default: auto

sbSelect (integer): Size of the candidate list of MIP entities for strong branching ←↩

Before strong branching is applied on a node of the branch and bound tree, a list of candidates
is selected among the infeasible MIP entities. These entities are then evaluated based on
the local LP solution and prioritized. Strong branching will then be applied to the sbBest
candidates. The evaluation is potentially expensive and for some problems it might improve
performance if the size of the candidate list is reduced.

Default: -2

value meaning

-2 Automatic (low effort).

-1 Automatic (high effort).

n>=0 Include n entities in the candidate list (but always at least sbBest candidates).

scaling (integer): Determines how the Optimizer will rescale a model internally before optimization ←↩

If set to 0, no scaling will take place.

Setting scaling to 0 will preserve the current scaling of the problem. Note that the Optimizer
might automatically select a different scaling strategy, when the control autoScaling is not
disabled. However, if scaling is set to any value by the user, autoScaling will be ignored.

Setting single boolean options will overwrite the single bits of this bit map option.

Default: 163

value meaning

bit 0 = 1 Equivalent to scaling rowScaling.

bit 1 = 2 Equivalent to scaling colScaling.

bit 2 = 4 Equivalent to scaling rowScalingAgain.

bit 3 = 8 Equivalent to scaling maximum.

bit 4 = 16 Equivalent to scaling curtisReid.

bit 5 = 32 Equivalent to scaling byMaxElemNotGeoMean.

bit 6 = 64 Equivalent to scaling bigM.

bit 7 = 128 Equivalent to scaling simplexObjScaling.

bit 8 = 256 Equivalent to scaling ignoreQuadRowPart.

bit 9 = 512 Equivalent to scaling beforePresolve.

bit 10 = 1024 Equivalent to scaling noScalingRowsUp.

bit 11 = 2048 Equivalent to scaling noScalingColsDown.

bit 12 = 4096 Equivalent to scaling disableGlobalObjScaling.

bit 13 = 8192 Equivalent to scaling rhsScaling.

bit 14 = 16384 Equivalent to scaling noAggressiveQScaling.

bit 15 = 32768 Equivalent to scaling slackScaling.

5.38 XPRESS 2861

scaling beforePresolve (boolean): Scale before presolve ←↩

See also scaling.

Default: 0

scaling bigM (boolean): Treat big-M rows as normal rows ←↩

See also scaling.

Default: 0

scaling byMaxElemNotGeoMean (boolean): 0: scale by geometric mean ←↩

1: scale by maximum element.

See also scaling.

Default: 1

scaling colScaling (boolean): Column scaling ←↩

See also scaling.

Default: 1

scaling curtisReid (boolean): Curtis-Reid ←↩

See also scaling.

Default: 0

scaling disableGlobalObjScaling (boolean): Do not apply automatic objective scaling ←↩

See also scaling.

Default: 0

scaling ignoreQuadRowPart (boolean): Exclude the quadratic part of constraint when calculating
scaling factors ←↩

See also scaling.

Default: 0

scaling maximum (boolean): Maximum ←↩

See also scaling.

Default: 0

scaling noAggressiveQScaling (boolean): Disable aggressive quadratic scaling ←↩

See also scaling.

Default: 0

scaling noScalingColsDown (boolean): Do not scale columns down ←↩

2862 Solver Manuals

See also scaling.

Default: 0

scaling noScalingRowsUp (boolean): Do not scale rows up ←↩

See also scaling.

Default: 0

scaling rhsScaling (boolean): RHS scaling ←↩

See also scaling.

Default: 0

scaling rowScaling (boolean): Row scaling ←↩

See also scaling.

Default: 1

scaling rowScalingAgain (boolean): Row scaling again ←↩

See also scaling.

Default: 0

scaling simplexObjScaling (boolean): Scale objective function for the simplex method ←↩

See also scaling.

Default: 1

scaling slackScaling (boolean): Enable explicit linear slack scaling ←↩

See also scaling.

Default: 0

sifting (integer): Determines whether to enable sifting algorithm with the dual simplex method ←↩

Default: auto

value meaning

-1 Automatically determined.

0 Disable sifting.

1 Enable sifting.

siftPasses (integer): Determines how quickly we allow to grow the worker problems during the sifting
algorithm ←↩

Using larger values can increase the number of columns added to the worker problem which
often results in increased solve times for the worker problems but the number of necessary
sifting iterations may be reduced.

5.38 XPRESS 2863

Range: {0, ..., ∞}

Default: 4

siftPresolveOps (integer): Determines the presolve operations for solving the subproblems during the
sifting algorithm ←↩

Default: -1

value meaning

-1 Use the presolveOps setting specified for the original problem.

>=0 Use the value for the presolveOps parameter for solving the subproblems during
the sifting algorithm.

siftSwitch (integer): Determines which algorithm to use for solving the subproblems during sifting ←↩

Default: -1

value meaning

-1 Dual simplex.

0 Barrier.

>0 Use the barrier algorithm while the number of dual infeasibilities is larger than
this value, otherwise use dual simplex.

solnpool (string): Solution pool file name ←↩

If set, the integer feasible solutions generated during the global search will be saved to a
solution pool. A GDX file whose name is given by this option will be created and will contain
an index to separate GDX files containing the individual solutions in the solution pool.

Default: none

solnpoolCapacity (integer): Limit on number of solutions to store ←↩

Range: {1, ..., ∞}

Default: 999999999

solnpoolCullDiversity (integer): Cull N solutions based on solution diversity ←↩

When performing a round of culls due to a full solution pool, this control sets the maximum
number to cull based on the diversity of the solutions in the pool.

Range: {-1, ..., ∞}

Default: -1

solnpoolCullObj (integer): Cull N solutions based on objective values ←↩

When performing a round of culls due to a full solution pool, this control sets the maximum
number to cull based on the MIP objective function.

Range: {-1, ..., ∞}

Default: -1

solnpoolCullRounds (integer): Terminate solution generation after N culling rounds ←↩

Limits the rounds of culls performed due to a full solution pool.

Default: 999999999

solnpoolDupPolicy (integer): Policy to use when handling storage of duplicate solutions ←↩

Default: 0

2864 Solver Manuals

value meaning

0 Keep all: All solutions are kept including duplicates.

1 Continuous: All variables are compared with an exact match. Duplicate solutions
are discarded.

2 Discrete and continuous separate: Both the discrete component of a solution pair
and the continuous solution variables are compared. The continuous variables are
compared with an exact match. Duplicate solutions are discarded.

3 Discrete only: Only the discrete component of a solution pair is compared.
Duplicate solutions are discarded.

solnpoolmerge (string): Solution pool file name for merged solutions ←↩

Default: none

solnpoolnumsym (integer): Maximum number of variable symbols when writing merged solutions ←↩

Range: {1, ..., ∞}

Default: 10

solnpoolPop (integer): Controls method used to populate the solution pool ←↩

By default the MIP solution pool merely stores the incumbent solutions that are found during
the global search, without changing the behavior of the search itself. In constrast, the MIP
solution enumerator makes it possible to enumerate all or many of the feasible solutions for
the MIP, instead of searching for the best solution.

Default: 1

value meaning

1 generate solutions using the normal search algorithm

2 invoke the solution enumerator to generate solutions

solnpoolPrefix (string): File name prefix for GDX solution files ←↩

Default: soln

solnpoolVerbosity (integer): Controls verbosity of solution pool routines ←↩

Default: 0

value meaning

-1 no output

0 output only messages coming from the XPRESS libraries

1 add some messages logging the effect of solution pool options

2 debugging mode

solTimeLimit (real): Maximum time in seconds that the Optimizer will run a MIP solve before it
terminates, given that a solution has been found ←↩

As long as no solution has been found, this control will have no effect.

5.38 XPRESS 2865

This control has been newly introduced with Xpress Optimizer version 9.0 and should be used
instead of the deprecated MAXTIME control. It can be combined with the timeLimit control.

Default: 1e+20

value meaning

>0 If an integer solution has been found, stop MIP search after the given number of
seconds, otherwise continue until an integer solution is finally found.

sosRefTol (real): Minimum relative gap between the ordering values of elements in a special ordered set
←↩

The gap divided by the absolute value of the larger of the two adjacent values must be at least
sosRefTol.

This tolerance must not be set lower than 1.0E-06.

Range: [0, ∞]

Default: 1e-06

symmetry (integer): Adjusts the overall amount of effort for symmetry detection ←↩

Default: 1

value meaning

0 No symmetry detection.

1 Conservative effort.

2 Intensive symmetry search.

symSelect (integer): Adjusts the overall amount of effort for symmetry detection ←↩

Default: -1

value meaning

0 Search the whole matrix (otherwise the 0, 1 and -1 coefficients only).

1 Search all entities (otherwise binaries only).

threads (integer): Default number of threads used during optimization ←↩

Controls the number of threads to use. Positive values will be compared to the number of
available cores detected and reduced if greater than this amount. Non- positive values are
interpreted as the number of cores to leave free so setting threads to 0 uses all available cores
while setting threads to -1 leaves one core free for other tasks.

Range: {-∞, ..., ∞}

Default: 1

timeLimit (real): Maximum time in seconds that the Optimizer will run before it terminates, including
the problem setup time and solution time ←↩

2866 Solver Manuals

For MIP problems, this is the total time taken to solve all nodes.

This control has been newly introduced with Xpress Optimizer version 9.0 and should be used
instead of the deprecated MAXTIME control. Note that the meaning of positive values differs
between timeLimit and MAXTIME. When both controls are set, timeLimit takes precedence.
The functionality of positive MAXTIME values is covered by solTimeLimit.

Default: 1e+20

value meaning

>0 Stop LP or MIP search after the given number of seconds.

trace (integer): Display the infeasibility diagnosis during presolve ←↩

If non-zero, an explanation of the logical deductions made by presolve to deduce infeasibility
or unboundedness will be displayed on screen or sent to the message callback function.

Presolve is sometimes able to detect infeasibility and unboundedness in problems. The set
of deductions made by presolve can allow the user to diagnose the cause of infeasibility or
unboundedness in their problem. However, not all infeasibility or unboundedness can be
detected and diagnosed in this way.

Range: {0, ..., ∞}

Default: 0

treeCompression (integer): When writing nodes to the global file, the optimizer can try to use
data-compression techniques to reduce the size of the tree file on disk ←↩

The treeCompression control determines the strength of the data-compression algorithm used;
higher values give superior data- compression at the affect of decreasing performance, while
lower values compress quicker but not as effectively. Where treeCompression is set to 0, no
data compression will be used on the tree file.

Range: {0, ..., ∞}

Default: 2

treeCoverCuts (integer): Branch and Bound: Number of rounds of lifted cover inequalities generated at
nodes other than the top node in the tree ←↩

Compare with the description for coverCuts. A value of -1 indicates the number of rounds is
determined automatically.

Range: {-1, ..., ∞}

Default: auto

treeCutSelect (integer): Bit vector providing detailed control of the cuts created during the tree search
of a MIP solve ←↩

Use cutSelect to control cuts on the root node.

The default value is -1 which enables all bits. Any bits not listed in the above table should
be left in their default ’on’ state, since the interpretation of such bits might change in future
versions of the optimizer.

Setting single boolean options will overwrite the single bits of this bit map option.

Default: -1

5.38 XPRESS 2867

value meaning

bit 5 = 32 Equivalent to treeCutSelect clique.

bit 6 = 64 Equivalent to treeCutSelect mir.

bit 7 = 128 Equivalent to treeCutSelect cover.

bit 8 = 256 Equivalent to treeCutSelect mirRowAggregation.

bit 11 = 2048 Equivalent to treeCutSelect flowpath.

bit 12 = 4096 Equivalent to treeCutSelect implication.

bit 13 = 8192 Equivalent to treeCutSelect liftAndProject.

bit 14 = 16384 Equivalent to treeCutSelect disableCutRows.

bit 15 = 32768 Equivalent to treeCutSelect gubCover.

bit 16 = 65536 Equivalent to treeCutSelect zeroHalf.

bit 17 = 131072 Equivalent to treeCutSelect indicator.

bit 18 = 262144 Equivalent to treeCutSelect gomory.

bit 20 = 1048576 Equivalent to treeCutSelect farkas.

treeCutSelect clique (boolean): Clique cuts ←↩

See also treeCutSelect.

Default: 1

treeCutSelect cover (boolean): Lifted cover cuts ←↩

See also treeCutSelect.

Default: 1

treeCutSelect disableCutRows (boolean): Disable cutting from cut rows ←↩

See also treeCutSelect.

Default: 1

treeCutSelect farkas (boolean): Farkas cuts ←↩

See also treeCutSelect.

Default: 1

treeCutSelect flowpath (boolean): Flow path cuts ←↩

See also treeCutSelect.

Default: 1

treeCutSelect gomory (boolean): Strong Chvatal-Gomory cuts ←↩

See also treeCutSelect.

Default: 1

treeCutSelect gubCover (boolean): Lifted GUB cover cuts ←↩

2868 Solver Manuals

See also treeCutSelect.

Default: 1

treeCutSelect implication (boolean): Implication cuts ←↩

See also treeCutSelect.

Default: 1

treeCutSelect indicator (boolean): Indicator constraint cuts ←↩

See also treeCutSelect.

Default: 1

treeCutSelect liftAndProject (boolean): Turn on automatic Lift and Project cutting strategy ←↩

See also treeCutSelect.

Default: 1

treeCutSelect mir (boolean): Mixed Integer Rounding (MIR) cuts ←↩

See also treeCutSelect.

Default: 1

treeCutSelect mirRowAggregation (boolean): Turn on row aggregation for MIR cuts ←↩

See also treeCutSelect.

Default: 1

treeCutSelect zeroHalf (boolean): Zero-half cuts ←↩

See also treeCutSelect.

Default: 1

treeGomCuts (integer): Branch and Bound: Number of rounds of Gomory cuts generated at nodes
other than the first node in the tree ←↩

Compare with the description for gomCuts. A value of -1 indicates the number of rounds is
determined automatically.

Range: {-1, ..., ∞}

Default: auto

treeMemoryLimit (integer): Soft limit, in megabytes, for the amount of memory to use in storing the
branch and bound search tree ←↩

5.38 XPRESS 2869

This doesn’t include memory used for presolve, heuristics, solving the LP relaxation, etc.
When set to 0 (the default), the optimizer will calculate a limit automatically based on the
amount of free physical memory detected in the machine. When the memory used by the
branch and bound tree exceeds this limit, the optimizer will try to reduce the memory usage
by writing lower-rated sections of the tree to a file called the ”tree file”. Though the solve can
continue if it cannot bring the tree memory usage below the specified limit, performance will
be inhibited and a message will be printed to the log.

Range: {0, ..., ∞}

Default: auto

treeMemorySavingTarget (real): When the memory used by the branch-and-bound search tree exceeds
the limit specified by the treeMemoryLimit control, the optimizer will try to save memory by writing
lower-rated sections of the tree to the tree file ←↩

The target amount of memory to save will be enough to bring memory usage back below
the limit, plus enough extra to give the tree room to grow. The treeMemorySavingTarget
control specifies the extra proportion of the tree’s size to try to save; for example, if the
tree memory limit is 1000Mb and treeMemorySavingTarget is 0.1, when the tree size exceeds
1000Mb the optimizer will try to reduce the tree size to 900Mb. Reducing the value of
treeMemorySavingTarget will cause less extra nodes of the tree to be written to the tree file,
but will result in the memory saving routine being triggered more often (as the tree will
have less room in which to grow), which can reduce performance. Increasing the value of
treeMemorySavingTarget will cause additional, more highly-rated nodes, of the tree to be
written to the tree file, which can cause performance issues if these nodes are required later in
the solve.

Range: [0, ∞]

Default: 0.4

treeQCCuts (integer): Branch and Bound: Limit on the number of rounds of outer approximation cuts
generated for nodes other than the root node, when solving a mixed integer quadratic constrained or
mixed integer second order conic problem with outer approximation ←↩

This control only has an effect for problems with quadratic or second order cone constraints,
and only if outer approximation has not been disabled by setting miqcpAlg to 0.

Range: {-1, ..., ∞}

Default: auto

varSelection (integer): Branch and Bound: Determines the formula used to calculate the estimate of
each integer variable, and thus which integer variable is selected to be branched on at a given node ←↩

The variable selected to be branched on is the one with the maximum estimate.

Default: auto

value meaning

-1 Determined automatically.

1 The minimum of the ’up’ and ’down’ pseudo costs.

2 The ’up’ pseudo cost plus the ’down’ pseudo cost.

3 The maximum of the ’up’ and ’down’ pseudo costs, plus twice the minimum of
the ’up’ and ’down’ pseudo costs.

4 The maximum of the ’up’ and ’down’ pseudo costs.

5 The ’down’ pseudo cost.

6 The ’up’ pseudo cost.

7 A weighted combination of the ’up’ and ’down’ pseudo costs, where the weights
depend on how fractional the variable is.

8 The product of the ’up’ and ’down’ pseudo costs.

2870 Solver Manuals

writePrtSol (boolean): Directs optimizer to output a ”printsol” file ←↩

Default: 0

xslp algorithm (integer): Bit map describing the SLP algorithm(s) to be used ←↩

Setting single boolean options will overwrite the single bits of this bit map option.

Default: 166

value meaning

bit 0 = 1 Equivalent to xslp algorithm noStepBounds.

bit 1 = 2 Equivalent to xslp algorithm stepBoundsAsRequired.

bit 2 = 4 Equivalent to xslp algorithm estimateStepBounds.

bit 3 = 8 Equivalent to xslp algorithm dynamicDamping.

bit 4 = 16 Equivalent to xslp algorithm holdValues.

bit 5 = 32 Equivalent to xslp algorithm retainPreviousValue.

bit 6 = 64 Equivalent to xslp algorithm resetDeltaZ.

bit 7 = 128 Equivalent to xslp algorithm quickConvergenceCheck.

bit 8 = 256 Equivalent to xslp algorithm escalatePenalties.

bit 9 = 512 Equivalent to xslp algorithm switchToPrimal.

bit 11 = 2048 Equivalent to xslp algorithm maxCostOption.

bit 12 = 4096 Equivalent to xslp algorithm residualErrors.

bit 13 = 8192 Equivalent to xslp algorithm noLPPolishing.

bit 14 = 16384 Equivalent to xslp algorithm cascadeBounds.

bit 15 = 32768 Equivalent to xslp algorithm clampExtendedActiveSB.

bit 16 = 65536 Equivalent to xslp algorithm clampExtendedAll.

xslp algorithm cascadeBounds (boolean): Step bounds are updated to accomodate cascaded values
(otherwise cascaded values are pushed to respect step bounds) ←↩

Normally, cascading will respect the step bounds of the SLP variable being cascaded. However,
allowing the cascaded value to fall outside the step bounds (i.e. expanding the step bounds) can
lead to better linearizations, as cascading will set better values for the SLP variables regarding
their determining rows; note, that this later strategy might interfere with convergence of the
cascaded variables.

See also xslp algorithm.

Default: 0

xslp algorithm clampExtendedActiveSB (boolean): Apply clamping when converged on extended
criteria only with some variables having active step bounds ←↩

When clamping is applied, then in any iteration when the solution would normally be deemed
converged on extended criteria only, an extra step bound shrinking step is applied to help
imposing strict convergence. In this variant, clamping is only applied on variables that have
converged on extended criteria only and have active step bounds.

See also xslp algorithm.

Default: 0

5.38 XPRESS 2871

xslp algorithm clampExtendedAll (boolean): Apply clamping when converged on extended criteria
only ←↩

When clamping is applied, then in any iteration when the solution would normally be deemed
converged on extended criteria only, an extra step bound shrinking step is applied to help
imposing strict convergence. In this variant, clamping is applied on all variables that have
converged on extended criteria only.

See also xslp algorithm.

Default: 0

xslp algorithm dynamicDamping (boolean): Use dynamic damping ←↩

Dynamic damping is sometimes an alternative to step bounding as a means of encouraging
convergence, but it does not have the same power to force convergence as do step bounds.

See also xslp algorithm.

Default: 0

xslp algorithm escalatePenalties (boolean): Escalate penalties ←↩

Constraint penalties are increased after each SLP iteration where penalty vectors are present
in the solution. Escalation applies an additional scaling factor to the penalty costs for active
errors. This helps to prevent successive solutions becoming ”stuck” because of a particular
constraint, because its cost will be raised so that other constraints may become more attractive
to violate instead and thus open up a new region to explore.

See also xslp algorithm.

Default: 0

xslp algorithm estimateStepBounds (boolean): Estimate step bounds from early SLP iterations ←↩

If initial step bounds are not being explicitly provided, this gives a good method of calculating
reasonable values. Values will tend to be larger rather than smaller, to reduce the risk of
infeasibility caused by excessive tightness of the step bounds.

See also xslp algorithm.

Default: 1

xslp algorithm holdValues (boolean): Do not update values which are converged within strict tolerance
←↩

Models which are numerically unstable may benefit from this setting, which does not update
values which have effectively hardly changed. If a variable subsequently does move outside its
strict convergence tolerance, it will be updated as usual.

See also xslp algorithm.

Default: 0

xslp algorithm maxCostOption (boolean): Continue optimizing after penalty cost reaches maximum
←↩

2872 Solver Manuals

Normally if the penalty cost reaches its maximum (by default the value of infinity), the
optimization will terminate with an unconverged solution. If the maximum value is set to a
smaller value, then it may make sense to continue, using other means to determine when to
stop.

See also xslp algorithm.

Default: 0

xslp algorithm noLPPolishing (boolean): Skip the solution polishing step if the LP postsolve returns
a slightly infeasible, but claimed optimal solution ←↩

Due to the nature of the SLP linearizations, and in particular because of the large differences
in the objective function (model objective against penalty costs) some dual reductions in the
linear presolver might introduce numerically instable reductions that cause slight infeasibilities
to appear in postsolve. It is typically more efficient to remove these infeasibilities with an
extra call to the linear optimizer; compared to switching these reductions off, which usually
has a significant cost in performance. This bit is provided for numerically very hard problems,
when the polishing step proves to be too expensive (Xpress SLP will report these if any in the
final log summary).

See also xslp algorithm.

Default: 0

xslp algorithm noStepBounds (boolean): Do not apply step bounds ←↩

The default algorithm uses step bounds to force convergence. Step bounds may not be
appropriate if dynamic damping is used.

See also xslp algorithm.

Default: 0

xslp algorithm quickConvergenceCheck (boolean): Quick convergence check ←↩

Normally, each variable is checked against all convergence criteria until either a criterion
is found which it passes, or it is declared ”not converged”. Later (extended convergence)
criteria are more expensive to test and, once an unconverged variable has been found, the
overall convergence status of the solution has been established. The quick convergence check
carries out checks on the strict criteria, but omits checks on the extended criteria when an
unconverged variable has been found.

See also xslp algorithm.

Default: 1

xslp algorithm resetDeltaZ (boolean): Reset xslp delta z to zero when converged and continue SLP ←↩

One of the mechanisms to avoid local optima is to retain small non-zero coefficients between
delta vectors and constraints, even when the coefficient should strictly be zero. If this option
is set, then a converged solution will be continued with zero coefficients as appropriate.

See also xslp algorithm.

Default: 0

xslp algorithm residualErrors (boolean): Accept a solution which has converged even if there are still
significant active penalty error vectors ←↩

5.38 XPRESS 2873

Normally, the optimization will continue if there are active penalty vectors in the solution.
However, it may be that there is no feasible solution (and so active penalties will always be
present). Setting bit 12 means that, if other convergence criteria are met, then the solution
will be accepted as converged and the optimization will stop.

See also xslp algorithm.

Default: 0

xslp algorithm retainPreviousValue (boolean): Retain previous value when cascading if determining
row is zero ←↩

If the determining row is zero (that is, all the coefficients interacting with it are either zero or
in columns with a zero activity), then it is impossible to calculate a new value for the vector
being cascaded. The choice is to use the solution value as it is, or to revert to the assumed
value

See also xslp algorithm.

Default: 1

xslp algorithm stepBoundsAsRequired (boolean): Apply step bounds to SLP delta vectors only
when required ←↩

Step bounds can be applied to all vectors simultaneously, or applied only when oscillation of
the delta vector (change in sign between successive SLP iterations) is detected.

See also xslp algorithm.

Default: 1

xslp algorithm switchToPrimal (boolean): Use the primal simplex algorithm when all error vectors
become inactive ←↩

The primal simplex algorithm often performs better than dual during the final stages of SLP
optimization when there are relatively few basis changes between successive solutions. As it is
impossible to establish in advance when the final stages are being reached, the disappearance
of error vectors from the solution is used as a proxy.

See also xslp algorithm.

Default: 0

xslp analyze (integer): Bit map activating additional options supporting model / solution path analyzis
←↩

In most cases, the value of this control does not affect the solution process itself. However, bit
3 (extended summary) will cause SLP to do more function evaluations, and the presence of
non-deterministic user functions might cause changes in the solution process. These options
are off by default due to performance considerations.

Setting single boolean options will overwrite the single bits of this bit map option.

Default: 0

value meaning

bit 3 = 8 Equivalent to xslp analyze extendedFinalSummary.

bit 4 = 16 Equivalent to xslp analyze infeasibleIteration.

bit 6 = 64 Equivalent to xslp analyze saveLinearizations.

bit 7 = 128 Equivalent to xslp analyze saveIterBasis.

bit 8 = 256 Equivalent to xslp analyze saveFile.

2874 Solver Manuals

xslp analyze extendedFinalSummary (boolean): Include an extended iteration summary ←↩

See also xslp analyze.

Default: 0

xslp analyze infeasibleIteration (boolean): Run infeasibility analysis on infeasible iterations ←↩

See also xslp analyze.

Default: 0

xslp analyze saveFile (boolean): Create an Xpress SLP save file at every xslp autosave iterations ←↩

See also xslp analyze.

Default: 0

xslp analyze saveIterBasis (boolean): Write the initial basis of the linearizations to disk at every
xslp autosave iterations ←↩

See also xslp analyze.

Default: 0

xslp analyze saveLinearizations (boolean): Write the linearizations to disk at every xslp autosave
iterations ←↩

See also xslp analyze.

Default: 0

xslp aTol a (real): Absolute delta convergence tolerance ←↩

The absolute delta convergence criterion assesses the change in value of a variable (δX) against
the absolute delta convergence tolerance. If δX < xslp aTol a then the variable has converged
on the absolute delta convergence criterion. When the value is set to be negative, the value is
adjusted automatically by SLP, based on the feasibility target xslp validationTarget r. Good
values for the control are usually fall between 1e-3 and 1e-6.

Range: [-∞, ∞]

Default: auto

xslp aTol r (real): Relative delta convergence tolerance ←↩

The relative delta convergence criterion assesses the change in value of a variable (δX) relative
to the value of the variable (X), against the relative delta convergence tolerance. If δX <
X ∗ xslp aTol r then the variable has converged on the relative delta convergence criterion.
When the value is set to be negative, the value is adjusted automatically by SLP, based on the
feasibility target xslp validationTarget r. Good values for the control are usually fall between
1e-3 and 1e-6.

Range: [-∞, ∞]

Default: auto

xslp augmentation (integer): Bit map describing the SLP augmentation method(s) to be used ←↩

Setting single boolean options will overwrite the single bits of this bit map option.

Default: 12

5.38 XPRESS 2875

value meaning

bit 0 = 1 Equivalent to xslp augmentation minimum.

bit 1 = 2 Equivalent to xslp augmentation evenHanded.

bit 2 = 4 Equivalent to xslp augmentation equalityErrorVectors.

bit 3 = 8 Equivalent to xslp augmentation allErrorVectors.

bit 4 = 16 Equivalent to xslp augmentation penaltyDeltaVectors.

bit 5 = 32 Equivalent to xslp augmentation aMeanWeight.

bit 6 = 64 Equivalent to xslp augmentation sbFromValues.

bit 7 = 128 Equivalent to xslp augmentation sbFromAbsValues.

bit 8 = 256 Equivalent to xslp augmentation stepBoundRows.

bit 9 = 512 Equivalent to xslp augmentation allRowErrorVectors.

bit 10 = 1024 Equivalent to xslp augmentation noUpdateIfOnlyIV.

xslp augmentation allErrorVectors (boolean): Penalty error vectors on all non-linear inequality
constraints ←↩

The linearization of a nonlinear constraint is inevitably an approximation and so may not be
feasible except at the point of linearization. Adding penalty error vectors allows the linear
approximation to be violated at a cost and so ensures that the linearized constraint is feasible.

See also xslp augmentation.

Default: 1

xslp augmentation allRowErrorVectors (boolean): Penalty error vectors on all constraints ←↩

If the linear portion of the underlying model may actually be infeasible, then applying penalty
vectors to all rows may allow identification of the infeasibility and may also allow a useful
solution to be found.

See also xslp augmentation.

Default: 0

xslp augmentation aMeanWeight (boolean): Use arithmetic means to estimate penalty weights ←↩

Penalty weights are estimated from the magnitude of the elements in the constraint or
interacting rows. Geometric means are normally used, so that a few excessively large or small
values do not distort the weights significantly. Arithmetic means will value the coefficients
more equally.

See also xslp augmentation.

Default: 0

xslp augmentation equalityErrorVectors (boolean): Penalty error vectors on all non-linear equality
constraints ←↩

The linearization of a nonlinear equality constraint is inevitably an approximation and so will
not generally be feasible except at the point of linearization. Adding penalty error vectors
allows the linear approximation to be violated at a cost and so ensures that the linearized
constraint is feasible.

See also xslp augmentation.

Default: 1

2876 Solver Manuals

xslp augmentation evenHanded (boolean): Even handed augmentation ←↩

Standard augmentation treats variables which appear in non-constant coefficients in a different
way from those which contain non-constant coefficients. Even- handed augmentation treats
them all in the same way by replacing each non- constant coefficient C in a vector V by a new
coefficient C∗V in the ”equals” column (which has a fixed activity of 1) and creating delta
vectors for all types of variable in the same way.

See also xslp augmentation.

Default: 0

xslp augmentation minimum (boolean): Minimum augmentation ←↩

Standard augmentation includes delta vectors for all variables involved in nonlinear terms (in
non-constant coefficients or as vectors containing non- constant coefficients). includes delta
vectors only for variables in non- constant coefficients. This produces a smaller linearization,
but there is less control on convergence, because convergence control (for example, step
bounding) cannot be applied to variables without deltas.

See also xslp augmentation.

Default: 0

xslp augmentation noUpdateIfOnlyIV (boolean): Intial values do not imply an SLP variable ←↩

Having an initial value will not cause the augmentation to include the corresponding delta
variable; i.e. treat the variable as an SLP variable. Useful to provide initial values necessary
in the first linearization in case of a minimal augmentation, or as a convenience option when
it’s easiest to set an initial value for all variables for some reason.

See also xslp augmentation.

Default: 0

xslp augmentation penaltyDeltaVectors (boolean): Penalty vectors to exceed step bounds ←↩

Although it has rarely been found necessary or desirable in practice, Xpress-SLP allows step
bounds to be violated at a cost. This may help with feasibility but it generally slows down or
prevents convergence, so it should be used only if found absolutely necessary.

See also xslp augmentation.

Default: 0

xslp augmentation sbFromAbsValues (boolean): Estimate step bounds from absolute values of row
coefficients ←↩

If step bounds are to be imposed from the start, the best approach is to provide explicit values
for the bounds. Alternatively, Xpress-SLP can estimate the values from the largest estimated
magnitude of the coefficients in the relevant rows.

See also xslp augmentation.

Default: 0

xslp augmentation sbFromValues (boolean): Estimate step bounds from values of row coefficients ←↩

5.38 XPRESS 2877

If step bounds are to be imposed from the start, the best approach is to provide explicit values
for the bounds. Alternatively, Xpress-SLP can estimate the values from the range of estimated
coefficient sizes in the relevant rows.

See also xslp augmentation.

Default: 0

xslp augmentation stepBoundRows (boolean): Row-based step bounds ←↩

Step bounds are normally applied as bounds on the delta variables. Some applications may
find that using explicit rows to bound the delta vectors gives better results.

See also xslp augmentation.

Default: 0

xslp autosave (integer): Frequency with which to save the model ←↩

A value of zero means that the model will not automatically be saved. A positive value of n
will save model information at every nth SLP iteration as requested by xslp analyze.

Range: {0, ..., ∞}

Default: 0

xslp barCrossOverStart (integer): Default crossover activation behaviour for barrier start ←↩

When xslp barLimit is set, xslp barCrossOverStart offers an overwrite control on when
crossover is applied. A positive value indicates that crossover should be disabled in iterations
smaller than xslp barCrossOverStart and should be enabled afterwards, or when stalling is
detected as described in xslp barStartOps. A value of 0 indicates to respect the value of
crossover and only overwrite its value when stalling is detected. A value of -1 indicates to
always rely on the value of crossover.

Range: {0, ..., ∞}

Default: 0

xslp barLimit (integer): Number of initial SLP iterations using the barrier method ←↩

Particularly for larger models, using the Newton barrier method is faster in the earlier SLP
iterations. Later on, when the basis information becomes more useful, a simplex method
generally performs better. xslp barLimit sets the number of SLP iterations which will be
performed using the Newton barrier method.

Range: {0, ..., ∞}

Default: 0

xslp barStallingLimit (integer): Number of iterations to allow numerical failures in barrier before
switching to dual ←↩

On large problems, it may be beneficial to warm start progress by running a number of iterations
with the barrier solver as specified by xslp barLimit. On some numerically difficult problems,
the barrier may stop prematurely due to numerical issues. Such solves can sometimes be finished
if crossover is applied. After xslp barStallingLimit such attempts, SLP will automatically
switch to use the dual simplex.

Range: {0, ..., ∞}

Default: 3

2878 Solver Manuals

xslp barStallingObjLimit (integer): Number of iterations over which to measure the objective change
for barrier iterations with no crossover ←↩

On large problems, it may be beneficial to warm start progress by running a number of
iterations with the barrier solver without crossover by setting xslp barLimit to a positive
value and setting crossover to 0. A potential drawback is slower convergence due to the
interior point provided by the barrier solve keeping a higher number of variables active. This
may lead to stalling in progress, negating the benefit of using the barrier. When in the
last xslp barStallingObjLimit iterations no significant progress has been made, crossover is
automatically enabled.

Range: {0, ..., ∞}

Default: 3

xslp barStallingTol (real): Required change in the objective when progress is measured in barrier
iterations without crossover ←↩

Minumum objective variability change required in relation to control xslp barStallingObjLimit
for the iterations to be regarded as making progress. The net objective, error cost and error
sum are taken into account.

Range: [0, ∞]

Default: 0.05

xslp barStartOps (integer): Controls behaviour when the barrier is used to solve the linearizations ←↩

Setting single boolean options will overwrite the single bits of this bit map option.

Default: -1

value meaning

bit 0 = 1 Equivalent to xslp barStartOps stallingObjective.

bit 1 = 2 Equivalent to xslp barStartOps stallingNumerical.

bit 2 = 4 Equivalent to xslp barStartOps allowInteriorSol.

xslp barStartOps allowInteriorSol (boolean): If a non-vertex converged solution found by barrier
without crossover can be returned as a final solution ←↩

See also xslp barStartOps.

Default: 1

xslp barStartOps stallingNumerical (boolean): Fall back to dual simplex if too many numerical
problems are reported by the barrier ←↩

See also xslp barStartOps.

Default: 1

xslp barStartOps stallingObjective (boolean): Check objective progress when no crossover is applied
←↩

See also xslp barStartOps.

Default: 1

5.38 XPRESS 2879

xslp calcThreads (integer): Number of threads used for formula and derivatives evaluations ←↩
When beneficial, SLP can calculate formula values and partial derivative information in
parallel.

Range: {-1, ..., 1}
Default: auto

xslp cdTol a (real): Absolute tolerance for deducing constant derivatives ←↩
The absolute tolerance test for constant derivatives is used as follows: If the value of the
user function at point X0 is Y0 and the values at (X0-δX) and (X0+δX) are Yd and Yu
respectively, then the numerical derivatives at X0 are: ”down” derivative Dd = (Y0 - Yd) /
δX ”up” derivative Du = (Yu - Y0) / δX If abs(Dd-Du) ≤ xslp cdTol a then the derivative is
regarded as constant.

Range: [0, ∞]

Default: 1e-08

xslp cdTol r (real): Relative tolerance for deducing constant derivatives ←↩
The relative tolerance test for constant derivatives is used as follows: If the value of the
user function at point X0 is Y0 and the values at (X0-δX) and (X0+δX) are Yd and Yu
respectively, then the numerical derivatives at X0 are: ”down” derivative Dd = (Y0 - Yd) /
δX ”up” derivative Du = (Yu - Y0) / δX If abs(Dd-Du) ≤ xslp cdTol r ∗ abs(Yd+Yu)/2 then
the derivative is regarded as constant.

Range: [0, ∞]

Default: 1e-08

xslp clampShrink (real): Shrink ratio used to impose strict convergence on variables converged in
extended criteria only ←↩

If the solution has converged but there are variables converged on extended criteria only, the
xslp clampShrink acts as a shrinking ratio on the step bounds and the problem is optimized
(if necessary multiple times), with the purpose of expediting strict convergence on all variables.
xslp algorithm controls if this shrinking is applied at all, and if shrinking is applied to of
the variables converged on extended criteria only with active step bounds only, or if on all
variables.

Range: [0, 1]

Default: 0.3

xslp clampValidationTol a (real): Absolute validation tolerance for applying xslp clampShrink ←↩
If set and the absolute validation value is larger than this value, then control xslp clampShrink
is checked once the solution has converged, but there are variables converged on extended
criteria only.

Range: [0, ∞]

Default: not set

xslp clampValidationTol r (real): Relative validation tolerance for applying xslp clampShrink ←↩
If set and the relative validation value is larger than this value, then control xslp clampShrink
is checked once the solution has converged, but there are variables converged on extended
criteria only.

Range: [0, ∞]

Default: not set

xslp convergenceOps (integer): Bit map describing which convergence tests should be carried out ←↩
Provides fine tuned control (over setting the related convergence tolerances) of which conver-
gence checks are carried out.

Setting single boolean options will overwrite the single bits of this bit map option.

Default: 7167

2880 Solver Manuals

value meaning

bit 0 = 1 Equivalent to xslp convergenceOps cTol.

bit 1 = 2 Equivalent to xslp convergenceOps aTol.

bit 2 = 4 Equivalent to xslp convergenceOps mTol.

bit 3 = 8 Equivalent to xslp convergenceOps iTol.

bit 4 = 16 Equivalent to xslp convergenceOps sTol.

bit 5 = 32 Check for user provided convergence.

bit 6 = 64 Equivalent to xslp convergenceOps vTol.

bit 7 = 128 Equivalent to xslp convergenceOps xTol.

bit 8 = 256 Equivalent to xslp convergenceOps oTol.

bit 9 = 512 Equivalent to xslp convergenceOps wTol.

bit 10 = 1024 Equivalent to xslp convergenceOps extendedScaling.

bit 11 = 2048 Equivalent to xslp convergenceOps validation.

bit 12 = 4096 Equivalent to xslp convergenceOps validationK.

xslp convergenceOps aTol (boolean): Execute the delta tolerance checks ←↩

See also xslp convergenceOps.

Default: 1

xslp convergenceOps cTol (boolean): Execute the closure tolerance checks ←↩

See also xslp convergenceOps.

Default: 1

xslp convergenceOps extendedScaling (boolean): Take scaling of individual variables / rows into
account ←↩

See also xslp convergenceOps.

Default: 0

xslp convergenceOps iTol (boolean): Execute the impact tolerance checks ←↩

See also xslp convergenceOps.

Default: 1

xslp convergenceOps mTol (boolean): Execute the matrix tolerance checks ←↩

See also xslp convergenceOps.

Default: 1

xslp convergenceOps oTol (boolean): Execute the objective range + active step bound check ←↩

See also xslp convergenceOps.

Default: 1

xslp convergenceOps sTol (boolean): Execute the slack impact tolerance checks ←↩

5.38 XPRESS 2881

See also xslp convergenceOps.

Default: 1

xslp convergenceOps validation (boolean): Execute the validation target convergence checks ←↩

See also xslp convergenceOps.

Default: 1

xslp convergenceOps validationK (boolean): Execute the first order optimality target convergence
checks ←↩

See also xslp convergenceOps.

Default: 1

xslp convergenceOps vTol (boolean): Execute the objective range checks ←↩

See also xslp convergenceOps.

Default: 1

xslp convergenceOps wTol (boolean): Execute the convergence continuation check ←↩

See also xslp convergenceOps.

Default: 1

xslp convergenceOps xTol (boolean): Execute the objective range + constraint activity check ←↩

See also xslp convergenceOps.

Default: 1

xslp cTol (real): Closure convergence tolerance ←↩

The closure convergence criterion measures the change in value of a variable (δX) relative to
the value of its initial step bound (B), against the closure convergence tolerance. If δX < B ∗
xslp cTol then the variable has converged on the closure convergence criterion. If no explicit
initial step bound is provided, then the test will not be applied and the variable can never
converge on the closure criterion. When the value is set to be negative, the value is adjusted
automatically by SLP, based on the feasibility target xslp validationTarget r. Good values for
the control are usually fall between 1e-3 and 1e-6.

Range: [-∞, ∞]

Default: auto

xslp cutStrategy (integer): Determines whihc cuts to apply in the MISLP search when the default
SLP-in-MIP strategy is used ←↩

Cuts are derived from the linearizations and are local cuts in that they are valid in the
linearization and not necessarily valid for the full problem. The values mirror that of
XPRS CUTSTRATEGY.

Range: {-1, ..., 3}

Default: 0

2882 Solver Manuals

xslp damp (real): Damping factor for updating values of variables ←↩

The damping factor sets the next assumed value for a variable based on the previous assumed
value (X0) and the actual value (X1). The new assumed value is given by X1∗xslp damp +
X0∗(1-xslp damp)

Range: [0, 1]

Default: 1

xslp dampExpand (real): Multiplier to increase damping factor during dynamic damping ←↩

If dynamic damping is enabled, the damping factor for a variable will be increased if successive
changes are in the same direction. More precisely, if there are xslp sameDamp successive
changes in the same direction for a variable, then the damping factor (D) for the variable will
be reset to D∗xslp dampExpand + xslp dampMax∗(1-xslp dampExpand)

Range: [0, 1]

Default: 1

xslp dampMax (real): Maximum value for the damping factor of a variable during dynamic damping ←↩

If dynamic damping is enabled, the damping factor for a variable will be increased if successive
changes are in the same direction. More precisely, if there are xslp sameDamp successive
changes in the same direction for a variable, then the damping factor (D) for the variable will
be reset to D∗xslp dampExpand + xslp dampMax∗(1-xslp dampExpand)

Range: [0, 1]

Default: 1

xslp dampMin (real): Minimum value for the damping factor of a variable during dynamic damping ←↩

If dynamic damping is enabled, the damping factor for a variable will be decreased if successive
changes are in the opposite direction. More precisely, the damping factor (D) for the variable
will be reset to D∗xslp dampShrink + xslp dampMin∗(1-xslp dampExpand)

Range: [0, 1]

Default: 1

xslp dampShrink (real): Multiplier to decrease damping factor during dynamic damping ←↩

If dynamic damping is enabled, the damping factor for a variable will be decreased if successive
changes are in the opposite direction. More precisely, the damping factor (D) for the variable
will be reset to D∗xslp dampShrink + xslp dampMin∗(1-xslp dampExpand)

Range: [0, 1]

Default: 1

xslp dampStart (integer): SLP iteration at which damping is activated ←↩

If damping is used as part of the SLP algorithm, it can be delayed until a specified SLP
iteration. This may be appropriate when damping is used to encourage convergence after an
un-damped algorithm has failed to converge.

Range: {0, ..., ∞}

Default: 0

5.38 XPRESS 2883

xslp defaultStepBound (real): Minimum initial value for the step bound of an SLP variable if none is
explicitly given ←↩

If no initial step bound value is given for an SLP variable, this will be used as a minimum value.
If the algorithm is estimating step bounds, then the step bound actually used for a variable
may be larger than the default. A default initial step bound is ignored when testing for the
closure tolerance xslp cTol: if there is no specific value, then the test will not be applied.

Range: [0, ∞]

Default: 16

xslp deltaCost (real): Initial penalty cost multiplier for penalty delta vectors ←↩

If penalty delta vectors are used, this parameter sets the initial cost factor. If there are active
penalty delta vectors, then the penalty cost may be increased.

Range: [0, ∞]

Default: 200

xslp deltaCostFactor (real): Factor for increasing cost multiplier on total penalty delta vectors ←↩

If there are active penalty delta vectors, then the penalty cost multiplier will be increased by
a factor of xslp deltaCostFactor up to a maximum of xslp deltaMaxCost

Range: [1, ∞]

Default: 1.3

xslp deltaMaxCost (real): Maximum penalty cost multiplier for penalty delta vectors ←↩

If there are active penalty delta vectors, then the penalty cost multiplier will be increased by
a factor of xslp deltaCostFactor up to a maximum of xslp deltaMaxCost

Range: [0, ∞]

Default: 1e+20

xslp deltaZLimit (integer): Number of SLP iterations during which to apply xslp delta z ←↩

xslp delta z is used to retain small derivatives which would otherwise be regarded as zero. This
is helpful in avoiding local optima, but may make the linearized problem more difficult to solve
because of the number of small nonzero elements in the resulting matrix. xslp deltaZLimit
can be set to a nonzero value, which is then the number of iterations for which xslp delta z
will be used. After that, small derivatives will be set to zero. A negative value indicates no
automatic perturbations to the derivatives in any situation.

Range: {0, ..., ∞}

Default: 0

xslp delta a (real): Absolute perturbation of values for calculating numerical derivatives ←↩

2884 Solver Manuals

First-order derivatives are calculated by perturbing the value of each variable in turn by
a small amount. The amount is determined by the absolute and relative delta factors as
follows: xslp delta a + abs(X)∗xslp delta r where (X) is the current value of the variable. If
the perturbation takes the variable outside a bound, then the perturbation normally made
only in the opposite direction.

Range: [0, ∞]

Default: 0.001

xslp delta r (real): Relative perturbation of values for calculating numerical derivatives ←↩

First-order derivatives are calculated by perturbing the value of each variable in turn by
a small amount. The amount is determined by the absolute and relative delta factors as
follows: xslp delta a + abs(X)∗xslp delta r where (X) is the current value of the variable. If
the perturbation takes the variable outside a bound, then the perturbation normally made
only in the opposite direction.

Range: [0, ∞]

Default: 0.001

xslp delta x (real): Minimum absolute value of delta coefficients to be retained ←↩

If the value of a coefficient in a delta column is less than this value, it will be reset to zero.
Larger values of xslp delta x will result in matrices with fewer elements, which may be easier
to solve. However, there will be increased likelihood of local optima as some of the small
relationships between variables and constraints are deleted. There may also be increased
difficulties with singular bases resulting from deletion of pivot elements from the matrix.

Range: [0, ∞]

Default: 1e-06

xslp delta z (real): Tolerance used when calculating derivatives ←↩

If the absolute value of a variable is less than this value, then a value of xslp delta z will
be used instead for calculating derivatives. If a nonzero derivative is calculated for a for-
mula which always results in a matrix coefficient less than xslp delta z, then a larger value
will be substituted so that at least one of the coefficients is xslp delta z in magnitude. If
xslp deltaZLimit is set to a positive number, then when that number of iterations have passed,
values smaller than xslp delta z will be set to zero.

Range: [0, ∞]

Default: 1e-05

xslp delta zero (real): Absolute zero acceptance tolerance used when calculating derivatives ←↩

Provides an override value for the xslp delta z behavior. Derivatives smaller than
xslp delta zero will not be substituted by xslp delta z, defining a range in which deriva-
tives are deemed nonzero and are affected by xslp delta z. A negative value means that this
tolerance will not be applied.

Range: [-∞, ∞]

Default: -1

xslp derivatives (boolean): Bitmap describing the method of calculating derivatives ←↩

If no bits are set then numerical derivatives are calculated using finite differences. Analytic
derivatives cannot be used for formulae involving discontinuous functions. They may not work
well with functions which are not smooth (such as MAX), or where the derivative changes very
quickly with the value of the variable (such as LOG of small values). Both first and second
order analytic derivatives can either be calculated as symbolic formulas, or by the means of
auto-differentiation, with the exception that the second order symbolic derivatives require that
the first order derivatives are also calculated using the symbolic method.

Default: 1

5.38 XPRESS 2885

value meaning

bit 0 = 1 Analytic derivatives where possible

bit 1 = 2 Avoid embedding numerical derivatives of instantiated functions into analytic
derivatives

xslp djTol (real): Tolerance on DJ value for determining if a variable is at its step bound ←↩

If a variable is at its step bound and within the absolute delta tolerance xslp aTol a or closure
tolerance xslp cTol then the step bounds will not be further reduced. If the DJ is greater
in magnitude than xslp djTol then the step bound may be relaxed if it meets the necessary
criteria.

Range: [0, ∞]

Default: 1e-06

xslp ecfCheck (integer): Check feasibility at the point of linearization for extended convergence criteria
←↩

The extended convergence criteria measure the accuracy of the solution of the linear approx-
imation compared to the solution of the original nonlinear problem. For this to work, the
linear approximation needs to be reasonably good at the point of linearization. In particular,
it needs to be reasonably close to feasibility. xslp ecfCheck is used to determine what checking
of feasibility is carried out at the point of linearization. If the point of linearization at the
start of an SLP iteration is deemed to be infeasible, then the extended convergence criteria
are not used to decide convergence at the end of that SLP iteration. If all that is required
is to decide that the point of linearization is not feasible, then the search can stop after the
first infeasible constraint is found (parameter is set to 1). If the actual number of infeasible
constraints is required, then xslp ecfCheck should be set to 2, and all constraints will be
checked. The number of infeasible constraints found at the point of linearization is returned in
XSLP ECFCOUNT.

Default: 1

value meaning

0 No check (extended criteria are always used);

1 Check until one infeasible constraint is found;

2 Check all constraints.

xslp ecfTol a (real): Absolute tolerance on testing feasibility at the point of linearization ←↩

The extended convergence criteria test how well the linearization approximates the true
problem. They depend on the point of linearization being a reasonable approximation —
in particular, that it should be reasonably close to feasibility. Each constraint is tested at
the point of linearization, and the total positive and negative contributions to the constraint
from the columns in the problem are calculated. A feasibility tolerance is calculated as the
largest of xslp ecfTol a and max(abs(Positive), abs(Negative)) ∗ xslp ecfTol r If the calculated
infeasibility is greater than the tolerance, the point of linearization is regarded as infeasible and
the extended convergence criteria will not be applied. When the value is set to be negative, the
value is adjusted automatically by SLP, based on the feasibility target xslp validationTarget r.
Good values for the control are usually fall between 1e-1 and 1e-6.

Range: [-∞, ∞]

Default: auto

2886 Solver Manuals

xslp ecfTol r (real): Relative tolerance on testing feasibility at the point of linearization ←↩

The extended convergence criteria test how well the linearization approximates the true
problem. They depend on the point of linearization being a reasonable approximation —
in particular, that it should be reasonably close to feasibility. Each constraint is tested at
the point of linearization, and the total positive and negative contributions to the constraint
from the columns in the problem are calculated. A feasibility tolerance is calculated as the
largest of xslp ecfTol a and max(abs(Positive), abs(Negative)) ∗ xslp ecfTol r If the calculated
infeasibility is greater than the tolerance, the point of linearization is regarded as infeasible and
the extended convergence criteria will not be applied. When the value is set to be negative, the
value is adjusted automatically by SLP, based on the feasibility target xslp validationTarget r.
Good values for the control are usually fall between 1e-1 and 1e-6.

Range: [-∞, ∞]

Default: auto

xslp enforceCostShrink (real): Factor by which to decrease the current penalty multiplier when
enforcing rows ←↩

When feasiblity of a row cannot be achieved by increasing the penalty cost on its error
variable, removing the variable (fixing it to zero) can force the row to be satisfied, as set by
xslp enforceMaxCost. After the error variables have been removed (which is equivalent to
setting to row to be enforced) the penalties on the remaining error variables are rebalanced
to allow for a reduction in the size of the penalties in the objective in order to achive better
numerical behaviour.

Range: [0, 1]

Default: 1e-05

xslp enforceMaxCost (real): Maximum penalty cost in the objective before enforcing most violating
rows ←↩

When feasiblity of a row cannot be achieved by increasing the penalty cost on its error
variable, removing the variable (fixing it to zero) can force the row to be satisfied. After the
error variables have been removed (which is equivalent to setting to row to be enforced) the
penalties on the remaining error variables are rebalanced to allow for a reduction in the size
of the penalties in the objective in order to achive better numerical behaviour, controlled by
xslp enforceCostShrink.

Range: [0, ∞]

Default: 1e+11

xslp errorCost (real): Initial penalty cost multiplier for penalty error vectors ←↩

If penalty error vectors are used, this parameter sets the initial cost factor. If there are active
penalty error vectors, then the penalty cost may be increased.

Range: [0, ∞]

Default: 200

xslp errorCostFactor (real): Factor for increasing cost multiplier on total penalty error vectors ←↩

5.38 XPRESS 2887

If there are active penalty error vectors, then the penalty cost multiplier will be increased by a
factor of xslp errorCostFactor up to a maximum of xslp errorMaxCost

Range: [1, ∞]

Default: 1.3

xslp errorMaxCost (real): Maximum penalty cost multiplier for penalty error vectors ←↩

If there are active penalty error vectors, then the penalty cost multiplier will be increased by a
factor of xslp errorCostFactor up to a maximum of xslp errorMaxCost

Range: [0, ∞]

Default: 1e+20

xslp errorTol a (real): Absolute tolerance for error vectors ←↩

The solution will be regarded as having no active error vectors if one of the following applies:
every penalty error vector and penalty delta vector has an activity less than xslp errorTol a;
the sum of the cost contributions from all the penalty error and penalty delta vectors is less
than xslp evTol a; the sum of the cost contributions from all the penalty error and penalty
delta vectors is less than xslp evTol r ∗ Obj where Obj is the current objective function value.

Range: [0, ∞]

Default: 1e-05

xslp errorTol p (real): Absolute tolerance for printing error vectors ←↩

The solution log includes a print of penalty delta and penalty error vectors with an activity
greater than xslp errorTol p.

Range: [0, ∞]

Default: 0.0001

xslp escalation (real): Factor for increasing cost multiplier on individual penalty error vectors ←↩

If penalty cost escalation is activated in xslp algorithm then the penalty cost multiplier will
be increased by a factor of xslp escalation for any active error vector up to a maximum of
xslp maxWeight.

Range: [1, ∞]

Default: 1.25

xslp eTol a (real): Absolute tolerance on penalty vectors ←↩

For each penalty error vector, the contribution to its constraint is calculated, together with the
total positive and negative contributions to the constraint from other vectors. If its contribution
is less than xslp eTol a or less than Positive∗xslp eTol r or less than abs(Negative)∗xslp eTol r
then it will be regarded as insignificant and will not have its penalty increased. When the
value is set to be negative, the value is adjusted automatically by SLP, based on the feasibility
target xslp validationTarget r. Good values for the control are usually fall between 1e-3 and
1e-6.

Range: [-∞, ∞]

Default: 0.0001

2888 Solver Manuals

xslp eTol r (real): Relative tolerance on penalty vectors ←↩

For each penalty error vector, the contribution to its constraint is calculated, together with the
total positive and negative contributions to the constraint from other vectors. If its contribution
is less than xslp eTol a or less than Positive∗xslp eTol r or less than abs(Negative)∗xslp eTol r
then it will be regarded as insignificant and will not have its penalty increased. When the
value is set to be negative, the value is adjusted automatically by SLP, based on the feasibility
target xslp validationTarget r. Good values for the control are usually fall between 1e-3 and
1e-6.

Range: [-∞, ∞]

Default: 0.0001

xslp evTol a (real): Absolute tolerance on total penalty costs ←↩

The solution will be regarded as having no active error vectors if one of the following applies:
every penalty error vector and penalty delta vector has an activity less than xslp errorTol a;
the sum of the cost contributions from all the penalty error and penalty delta vectors is less
than xslp evTol a; the sum of the cost contributions from all the penalty error and penalty
delta vectors is less than xslp evTol r ∗ Obj where Obj is the current objective function value.
When the value is set to be negative, the value is adjusted automatically by SLP, based on the
feasibility target xslp validationTarget r. Good values for the control are usually fall between
1e-2 and 1e-6, but normally a magnitude larger than xslp eTol a.

Range: [-∞, ∞]

Default: -1

xslp evTol r (real): Relative tolerance on total penalty costs ←↩

The solution will be regarded as having no active error vectors if one of the following applies:
every penalty error vector and penalty delta vector has an activity less than xslp errorTol a;
the sum of the cost contributions from all the penalty error and penalty delta vectors is less
than xslp evTol a; the sum of the cost contributions from all the penalty error and penalty
delta vectors is less than xslp evTol r ∗ Obj where Obj is the current objective function value.
When the value is set to be negative, the value is adjusted automatically by SLP, based on the
feasibility target xslp validationTarget r. Good values for the control are usually fall between
1e-2 and 1e-6, but normally a magnitude larger than xslp eTol r.

Range: [-∞, ∞]

Default: -1

xslp expand (real): Multiplier to increase a step bound ←↩

If step bounding is enabled, the step bound for a variable will be increased if successive changes
are in the same direction. More precisely, if there are xslp sameCount successive changes
reaching the step bound and in the same direction for a variable, then the step bound (B) for
the variable will be reset to B∗xslp expand.

Range: [1, ∞]

Default: 2

xslp feasTolTarget (real): When set, this defines a target feasibility tolerance to which the linearizations
are solved to ←↩

5.38 XPRESS 2889

This is a soft version of XPRS FEASTOL, and will dynamically revert back to
XPRS FEASTOL if the desired accuracy could not be achieved.

Range: [0, ∞]

Default: not set

xslp filter (integer): Bit map for controlling solution updates ←↩

Bits 0 determine if XSLPgetslpsol should return the final converged solution, or the solution
which had the best value according to the merit function. If bit 1 is set, a cascaded solution
which does not improve the merit function will be rejected (Xpress SLP will revert to the
solution of the linearization). Bits 2-3 determine the strategy for when the step direction is
not improving according to the merit function.

Setting single boolean options will overwrite the single bits of this bit map option.

Default: 3

value meaning

bit 0 = 1 Equivalent to xslp filterKeepBest.

bit 1 = 2 Check cascaded solutions against improvements in the merit function.

bit 2 = 4 Equivalent to xslp filterZeroLineSearch.

bit 3 = 8 Equivalent to xslp filterZeroLineSearchTR.

xslp filterKeepBest (boolean): Retrain solution best according to the merit function ←↩

See also xslp filter.

Default: 1

xslp filterZeroLineSearch (boolean): Force minimum step sizes in line search ←↩

See also xslp filter.

Default: 0

xslp filterZeroLineSearchTR (boolean): Accept the trust region step is the line search returns a zero
step size ←↩

See also xslp filter.

Default: 0

xslp findIV (integer): Option for running a heuristic to find a feasible initial point ←↩

The procedure uses bound reduction (and, up to an extent, probing) to obtain a point in the
initial bounding box that is feasible for the bound reduction techniques. If an initial point is
already specified and is found not to violate bound reduction, then the heuristic is not run
and the given point is used as the initial solution.

Default: auto

value meaning

-1 Automatic (default).

0 Disable the heuristic.

1 Enable the heuristic.

2890 Solver Manuals

xslp granularity (real): Base for calculating penalty costs ←↩

If xslp granularity > 1, then initial penalty costs will be powers of xslp granularity.

Range: [1, ∞]

Default: 4

xslp hessian (integer): Second order differentiation mode when using analytical derivatives ←↩

Symbolic mode differentiation for the second order derivatives is only available when
xslp jacobian is also set to symbolic mode.

Default: -1

value meaning

1 Numerical derivatives (finite difference)

2 Symbolic differentiation

3 Automatic differentiation

-1,0 Automatic selection

xslp heurStrategy (integer): Branch and Bound: MINLP heuristic strategy ←↩

On some problems it is worth trying more comprehensive heuristic strategies by setting
HEURSTRATEGY to 2 or 3. Note that HEURSTRATEGY is deprecated, use heurEmphasis
instead.

Default: auto

value meaning

-1 Automatic selection of heuristic strategy.

0 No heuristics.

1 Basic heuristic strategy.

2 Enhanced heuristic strategy.

3 Extensive heuristic strategy.

4 Run all heuristics without effort limits.

xslp infeasLimit (integer): Maximum number of consecutive infeasible SLP iterations which can occur
before Xpress-SLP terminates ←↩

An infeasible solution to an SLP iteration means that is likely that Xpress-SLP will create a
poor linear approximation for the next SLP iteration. Sometimes, small infeasibilities arise
because of numerical difficulties and do not seriously affect the solution process. However,
if successive solutions remain infeasible, it is unlikely that Xpress-SLP will be able to find
a feasible converged solution. xslp infeasLimit sets the number of successive SLP iterations
which must take place before Xpress-SLP terminates with a status of ”infeasible solution”.

Range: {0, ..., ∞}

Default: 3

xslp infinity (real): Value returned by a divide-by-zero in a formula ←↩

5.38 XPRESS 2891

Range: [0, ∞]

Default: 1e+10

xslp iterLimit (integer): Maximum number of SLP iterations ←↩

If Xpress-SLP reaches xslp iterLimit without finding a converged solution, it will stop. For
MISLP, the limit is on the number of SLP iterations at each node.

Range: {-1, ..., ∞}

Default: auto

xslp iTol a (real): Absolute impact convergence tolerance ←↩

The absolute impact convergence criterion assesses the change in the effect of a coefficient in
a constraint. The effect of a coefficient is its value multiplied by the activity of the column
in which it appears. E = X ∗ C where X is the activity of the matrix column in which the
coefficient appears, and C is the value of the coefficient. The linearization approximates the
effect of the coefficient as E1 = X ∗ C0 + δX ∗ C’0 where X is as before, C0 is the value of
the coefficient C calculated using the assumed values for the variables and C’0 is the value
of ∂C ∂X calculated using the assumed values for the variables. If C1 is the value of the
coefficient C calculated using the actual values for the variables, then the error in the effect of
the coefficient is given by δE = X ∗ C1 - (X ∗ C0 + δX ∗ C’0) If δE < xslp iTol a then the
variable has passed the absolute impact convergence criterion for this coefficient. If a variable
which has not converged on strict (closure or delta) criteria passes the (relative or absolute)
impact or matrix criteria for all the coefficients in which it appears, then it is deemed to have
converged. When the value is set to be negative, the value is adjusted automatically by SLP,
based on the feasibility target xslp validationTarget r. Good values for the control are usually
fall between 1e-3 and 1e-6.

Range: [-∞, ∞]

Default: auto

xslp iTol r (real): Relative impact convergence tolerance ←↩

The relative impact convergence criterion assesses the change in the effect of a coefficient in a
constraint in relation to the magnitude of the constituents of the constraint. The effect of a
coefficient is its value multiplied by the activity of the column in which it appears. E = X ∗ C
where X is the activity of the matrix column in which the coefficient appears, and C is the
value of the coefficient. The linearization approximates the effect of the coefficient as E1 = X
∗ C0 + δX ∗ C’0 where X is as before, C0 is the value of the coefficient C calculated using the
assumed values for the variables and C’0 is the value of ∂C ∂X calculated using the assumed
values for the variables. If C1 is the value of the coefficient C calculated using the actual values
for the variables, then the error in the effect of the coefficient is given by δE = X ∗ C1 - (X ∗
C0 + δX ∗ C’0) All the elements of the constraint are examined, excluding delta and error
vectors: for each, the contribution to the constraint is evaluated as the element multiplied by
the activity of the vector in which it appears; it is then included in a total positive contribution
or total negative contribution depending on the sign of the contribution. If the predicted
effect of the coefficient is positive, it is tested against the total positive contribution; if the
effect of the coefficient is negative, it is tested against the total negative contribution. If T0 is
the total positive or total negative contribution to the constraint (as appropriate) and δE <
T0∗xslp iTol r then the variable has passed the relative impact convergence criterion for this
coefficient. If a variable which has not converged on strict (closure or delta) criteria passes the
(relative or absolute) impact or matrix criteria for all the coefficients in which it appears, then
it is deemed to have converged. When the value is set to be negative, the value is adjusted
automatically by SLP, based on the feasibility target xslp validationTarget r. Good values for
the control are usually fall between 1e-3 and 1e-6.

Range: [-∞, ∞]

Default: auto

2892 Solver Manuals

xslp jacobian (integer): First order differentiation mode when using analytical derivatives ←↩

Symbolic mode differentiation for the second order derivatives is only available when
xslp jacobian is set to symbolic mode.

Default: -1

value meaning

1 Numerical derivatives (finite difference)

2 Symbolic differentiation

3 Automatic differentiation

-1,0 Automatic selection

xslp linQuadBR (integer): Use linear and quadratic constraints and objective function to further reduce
bounds on all variables ←↩

While bound reduction is effective when performed on nonlinear, nonquadratic constraints
and objective function, it can be useful to obtain tightened bounds from linear and quadratic
constraints, as the corresponding variables may appear in other nonlinear constraints. This
option then allows for a slightly more expensive bound reduction procedure, at the benefit of
further reduction in the problem’s bounds.

Default: auto

value meaning

-1 Automatic selection

0 Disable

1 Enable

xslp log (integer): Level of printing during SLP iterations ←↩

Default: 0

value meaning

-1 None

0 Minimal

1 Normal: iteration, penalty vectors

2 Omit from convergence log any variables which have converged

3 Omit from convergence log any variables which have already converged (except
variables on step bounds)

4 Include all variables in convergence log

5 Include user function call communications in the log

xslp lsIterLimit (integer): Number of iterations in the line search ←↩

The line search attempts to refine the step size suggested by the trust region step bounds. The
line search is a local method; the control sets a maximum on the number of model evaluations
during the line search.

Range: {0, ..., ∞}

Default: 0

5.38 XPRESS 2893

xslp lsPatternLimit (integer): Number of iterations in the pattern search preceding the line search ←↩

When positive, defines the number of samples taken along the step size suggested by the trust
region step bounds before initiating the line search. Useful for highly non-convex problems.

Range: {0, ..., ∞}

Default: 0

xslp lsStart (integer): Iteration in which to active the line search ←↩

Range: {0, ..., ∞}

Default: 8

xslp lsZeroLimit (integer): Maximum number of zero length line search steps before line search is
deactivated ←↩

When the line search repeatedly returns a zero step size, counteracted by bits set on
xslp filter, the effort spent in line search is redundant, and line search will be deactivated after
xslp lsZeroLimit consecutive such iteration.

Range: {0, ..., ∞}

Default: 5

xslp maxWeight (real): Maximum penalty weight for delta or error vectors ←↩

When penalty vectors are created, or when their weight is increased by escalation, the maximum
weight that will be used is given by xslp maxWeight.

Range: [0, ∞]

Default: 100

xslp meritLambda (real): Factor by which the net objective is taken into account in the merit function
←↩

The merit function is evaluated in the original, non-augmented / linearized space of the
problem. A solution is deemed improved, if either feasibility improved, or if feasibility is not
deteriorated but the net objective is improved, or if the combination of the two is improved,
where the value of the xslp meritLambda control is used to combine the two measures. A
nonpositive value indicates that the combined effect should not be checked.

Range: [0, ∞]

Default: 0

xslp minSBFactor (real): Factor by which step bounds can be decreased beneath xslp aTol a ←↩

Normally, step bounds are not decreased beneath xslp aTol a, as such variables are treated
as converged. However, it may be beneficial to decrease step bounds further, as individual
variable value changes might affect the convergence of other variables in the model, even if the
variablke itself is deemed converged.

Range: [0, ∞]

Default: 1

2894 Solver Manuals

xslp minWeight (real): Minimum penalty weight for delta or error vectors ←↩

When penalty vectors are created, the minimum weight that will be used is given by
xslp minWeight.

Range: [0, ∞]

Default: 0.01

xslp mipAlgorithm (integer): Bitmap describing the MISLP algorithms to be used ←↩

xslp mipAlgorithm determines the strategy of XSLPnlpoptimize for solving MINLP problems.
The recommended approach is to solve the problem first without reference to the discrete
variables. This can be handled automatically by setting bit 0 of xslp mipAlgorithm; if done
manually, then optimize using the ”l” option to prevent the Optimizer presolve from changing
the problem. Some versions of the optimizer re-run the initial node as part of the tree search;
it is possible to initiate a new SLP optimization at this point by relaxing or fixing step bounds
(use bits 2 and 3). If step bounds are fixed for a class of variable, then the variables in that
class will not change their value in any child node. At each node, it is possible to relax or fix
step bounds. It is recommended that step bounds are relaxed, so that the new problem can be
solved starting from its parent, but without undue restrictions cased by step bounding (use
bit 4). Exceptionally, it may be preferable to restrict the freedom of child nodes by relaxing
fewer types of step bound or fixing the values of some classes of variable (use bit 5). When the
optimal node has been found, it is possible to fix the discrete variables and then re-optimize
with SLP. Step bounds can be relaxed or fixed for this optimization as well (use bits 7 and 8).
Although it is ultimately necessary to solve the optimal node to convergence, individual nodes
can be truncated after xslp mipIterLimit SLP iterations. Set bit 6 to activate this feature.
The normal MISLP algorithm uses SLP at each node. One alternative strategy is to use the
MIP optimizer for solving each SLP iteration. Set bit 9 to implement this strategy (”MIP
within SLP”). Another strategy is to solve the problem to convergence ignoring the nature of
the integer variables. Then, fixing the linearization, use MIP to find the optimal setting of
the discrete variables. Then, fixing the discrete variables, but varying the linearization, solve
to convergence. Set bit 10 to implement this strategy (”SLP then MIP”). For mode details
about MISLP algorithms and strategies, see the separate section.

Setting single boolean options will overwrite the single bits of this bit map option.

Default: 17

value meaning

bit 0 = 1 Equivalent to xslp mipAlgorithm initialSLP.

bit 2 = 4 Equivalent to xslp mipAlgorithm initialRelaxSLP.

bit 3 = 8 Equivalent to xslp mipAlgorithm initialFixSLP.

bit 4 = 16 Equivalent to xslp mipAlgorithm nodeRelaxSLP.

bit 5 = 32 Equivalent to xslp mipAlgorithm nodeFixSLP.

bit 6 = 64 Equivalent to xslp mipAlgorithm nodeLimitSLP.

bit 7 = 128 Equivalent to xslp mipAlgorithm finalRelaxSLP.

bit 8 = 256 Equivalent to xslp mipAlgorithm finalFixSLP.

bit 9 = 512 Equivalent to xslp mipAlgorithm withinSLP.

bit 10 = 1024 Equivalent to xslp mipAlgorithm slpThenMIP.

xslp mipAlgorithm finalFixSLP (boolean): Fix step bounds according to xslp mipFixStepBounds
after MIP solution is found ←↩

See also xslp mipAlgorithm.

5.38 XPRESS 2895

Default: 0

xslp mipAlgorithm finalRelaxSLP (boolean): Relax step bounds according to xslp mipRelaxStepBounds
after MIP solution is found ←↩

See also xslp mipAlgorithm.

Default: 0

xslp mipAlgorithm initialFixSLP (boolean): Fix step bounds according to xslp mipFixStepBounds
after initial node ←↩

See also xslp mipAlgorithm.

Default: 0

xslp mipAlgorithm initialRelaxSLP (boolean): Relax step bounds according to xslp mipRelaxStepBounds
after initial node ←↩

See also xslp mipAlgorithm.

Default: 0

xslp mipAlgorithm initialSLP (boolean): Solve initial SLP to convergence ←↩

See also xslp mipAlgorithm.

Default: 1

xslp mipAlgorithm nodeFixSLP (boolean): Fix step bounds according to xslp mipFixStepBounds at
each node ←↩

See also xslp mipAlgorithm.

Default: 0

xslp mipAlgorithm nodeLimitSLP (boolean): Limit iterations at each node to xslp mipIterLimit ←↩

See also xslp mipAlgorithm.

Default: 0

xslp mipAlgorithm nodeRelaxSLP (boolean): Relax step bounds according to xslp mipRelaxStepBounds
at each node ←↩

See also xslp mipAlgorithm.

Default: 1

xslp mipAlgorithm slpThenMIP (boolean): Use MIP on converged SLP solution and then SLP on
the resulting MIP solution ←↩

See also xslp mipAlgorithm.

Default: 0

xslp mipAlgorithm withinSLP (boolean): Use MIP at each SLP iteration instead of SLP at each node
←↩

2896 Solver Manuals

See also xslp mipAlgorithm.

Default: 0

xslp mipCutOffCount (integer): Number of SLP iterations to check when considering a node for cutting
off ←↩

If the objective function is worse by a defined amount than the best integer solution obtained
so far, then the SLP will be terminated (and the node will be cut off). The node will be cut
off at the current SLP iteration if the objective function for the last xslp mipCutOffCount
SLP iterations are all worse than the best obtained so far, and the difference is greater
than xslp mipCutOff a and OBJ ∗ xslp mipCutOff r where OBJ is the best integer solution
obtained so far. The test is not applied until at least xslp mipCutOffLimit SLP iterations
have been carried out at the current node.

Range: {0, ..., ∞}

Default: 5

xslp mipCutOffLimit (integer): Number of SLP iterations to check when considering a node for cutting
off ←↩

If the objective function is worse by a defined amount than the best integer solution obtained
so far, then the SLP will be terminated (and the node will be cut off). The node will be cut
off at the current SLP iteration if the objective function for the last xslp mipCutOffCount
SLP iterations are all worse than the best obtained so far, and the difference is greater
than xslp mipCutOff a and OBJ ∗ xslp mipCutOff r where OBJ is the best integer solution
obtained so far. The test is not applied until at least xslp mipCutOffLimit SLP iterations
have been carried out at the current node.

Range: {0, ..., ∞}

Default: 10

xslp mipCutOff a (real): Absolute objective function cutoff for MIP termination ←↩

If the objective function is worse by a defined amount than the best integer solution obtained
so far, then the SLP will be terminated (and the node will be cut off). The node will be cut
off at the current SLP iteration if the objective function for the last xslp mipCutOffCount
SLP iterations are all worse than the best obtained so far, and the difference is greater than
xslp mipCutOff a and OBJ ∗ xslp mipCutOff r where OBJ is the best integer solution obtained
so far. The MIP cutoff tests are only applied after xslp mipCutOffLimit SLP iterations at the
current node.

Range: [0, ∞]

Default: 1e-05

xslp mipCutOff r (real): Absolute objective function cutoff for MIP termination ←↩

If the objective function is worse by a defined amount than the best integer solution obtained
so far, then the SLP will be terminated (and the node will be cut off). The node will be cut
off at the current SLP iteration if the objective function for the last xslp mipCutOffCount
SLP iterations are all worse than the best obtained so far, and the difference is greater than
xslp mipCutOff a and OBJ ∗ xslp mipCutOff r where OBJ is the best integer solution obtained
so far. The MIP cutoff tests are only applied after xslp mipCutOffLimit SLP iterations at the
current node.

Range: [0, ∞]

Default: 1e-05

5.38 XPRESS 2897

xslp mipDefaultAlgorithm (integer): Default algorithm to be used during the tree search in MISLP ←↩

The default algorithm used within SLP during the MISLP optimization can be set using
xslp mipDefaultAlgorithm. It will not necessarily be the same as the one best suited to the
initial SLP optimization.

Range: {1, ..., 5}

Default: auto

xslp mipErrorTol a (real): Absolute penalty error cost tolerance for MIP cut-off ←↩

The penalty error cost test is applied at each node where there are active penalties in the
solution. If xslp mipErrorTol a is nonzero and the absolute value of the penalty costs is greater
than xslp mipErrorTol a, the node will be declared infeasible. If xslp mipErrorTol a is zero
then no test is made and the node will not be declared infeasible on this criterion.

Range: [0, ∞]

Default: 0

xslp mipErrorTol r (real): Relative penalty error cost tolerance for MIP cut-off ←↩

The penalty error cost test is applied at each node where there are active penalties in the
solution. If xslp mipErrorTol r is nonzero and the absolute value of the penalty costs is greater
than xslp mipErrorTol r ∗ abs(Obj) where Obj is the value of the objective function, then the
node will be declared infeasible. If xslp mipErrorTol r is zero then no test is made and the
node will not be declared infeasible on this criterion.

Range: [0, ∞]

Default: 0

xslp mipFixStepBounds (integer): Bitmap describing the step-bound fixing strategy during MISLP ←↩

At any node (including the initial and optimal nodes) it is possible to fix the step bounds
of classes of variables so that the variables themselves will not change. This may help with
convergence, but it does increase the chance of a local optimum because of excessive artificial
restrictions on the variables.

Setting single boolean options will overwrite the single bits of this bit map option.

Default: 0

value meaning

bit 0 = 1 Equivalent to xslp mipFixStepBounds structNotCoef.

bit 1 = 2 Equivalent to xslp mipFixStepBounds structAll.

bit 2 = 4 Equivalent to xslp mipFixStepBounds coefOnly.

bit 3 = 8 Equivalent to xslp mipFixStepBounds coef.

xslp mipFixStepBounds coef (boolean): Fix step bounds on SLP variables appearing in coefficients ←↩

See also xslp mipFixStepBounds.

Default: 0

2898 Solver Manuals

xslp mipFixStepBounds coefOnly (boolean): Fix step bounds on SLP variables appearing only in
coefficients ←↩

See also xslp mipFixStepBounds.

Default: 0

xslp mipFixStepBounds structAll (boolean): Fix step bounds on all structural SLP variables ←↩

See also xslp mipFixStepBounds.

Default: 0

xslp mipFixStepBounds structNotCoef (boolean): Fix step bounds on structural SLP variables
which are not in coefficients ←↩

See also xslp mipFixStepBounds.

Default: 0

xslp mipIterLimit (integer): Maximum number of SLP iterations at each node ←↩

If bit 6 of xslp mipAlgorithm is set, then the number of iterations at each node will be limited
to xslp mipIterLimit.

Range: {0, ..., ∞}

Default: 0

xslp mipLog (integer): Frequency with which MIP status is printed ←↩

By default (zero or negative value) the MIP status is printed after syncronization points. If
xslp mipLog is set to a positive integer, then the current MIP status (node number, best value,
best bound) is printed every xslp mipLog nodes.

Range: {0, ..., ∞}

Default: 0

xslp mipOCount (integer): Number of SLP iterations at each node over which to measure objective
function variation ←↩

The objective function test for MIP termination is applied only when step bounding has been
applied (or xslp sbStart SLP iterations have taken place if step bounding is not being used).
The node will be terminated at the current SLP iteration if the range of the objective function
values over the last xslp mipOCount SLP iterations is within xslp mipOTol a or within OBJ ∗
xslp mipOTol r where OBJ is the average value of the objective function over those iterations.

Range: {0, ..., ∞}

Default: 5

xslp mipOTol a (real): Absolute objective function tolerance for MIP termination ←↩

5.38 XPRESS 2899

The objective function test for MIP termination is applied only when step bounding has been
applied (or xslp sbStart SLP iterations have taken place if step bounding is not being used).
The node will be terminated at the current SLP iteration if the range of the objective function
values over the last xslp mipOCount SLP iterations is within xslp mipOTol a or within OBJ ∗
xslp mipOTol r where OBJ is the average value of the objective function over those iterations.

Range: [0, ∞]

Default: 1e-05

xslp mipOTol r (real): Relative objective function tolerance for MIP termination ←↩

The objective function test for MIP termination is applied only when step bounding has been
applied (or xslp sbStart SLP iterations have taken place if step bounding is not being used).
The node will be terminated at the current SLP iteration if the range of the objective function
values over the last xslp mipOCount SLP iterations is within xslp mipOTol a or within OBJ ∗
xslp mipOTol r where OBJ is the average value of the objective function over those iterations.

Range: [0, ∞]

Default: 1e-05

xslp mipRelaxStepBounds (integer): Bitmap describing the step-bound relaxation strategy during
MISLP ←↩

At any node (including the initial and optimal nodes) it is possible to relax the step bounds of
classes of variables so that the variables themselves are completely free to change. This may
help with finding a global optimum, but it may also increase the solution time, because more
SLP iterations are necessary at each node to obtain a converged solution.

Setting single boolean options will overwrite the single bits of this bit map option.

Default: 15

value meaning

bit 0 = 1 Equivalent to xslp mipRelaxStepBounds structNotCoef.

bit 1 = 2 Equivalent to xslp mipRelaxStepBounds structAll.

bit 2 = 4 Equivalent to xslp mipRelaxStepBounds coefOnly.

bit 3 = 8 Equivalent to xslp mipRelaxStepBounds coef.

xslp mipRelaxStepBounds coef (boolean): Relax step bounds on SLP variables appearing in coefficients
←↩

See also xslp mipRelaxStepBounds.

Default: 1

xslp mipRelaxStepBounds coefOnly (boolean): Relax step bounds on SLP variables appearing only
in coefficients ←↩

See also xslp mipRelaxStepBounds.

Default: 1

xslp mipRelaxStepBounds structAll (boolean): Relax step bounds on all structural SLP variables ←↩

2900 Solver Manuals

See also xslp mipRelaxStepBounds.

Default: 1

xslp mipRelaxStepBounds structNotCoef (boolean): Relax step bounds on structural SLP variables
which are not in coefficients ←↩

See also xslp mipRelaxStepBounds.

Default: 1

xslp msMaxBoundRange (real): Defines the maximum range inside which initial points are generated
by multistart presets ←↩

The is the maximum range in which initial points are generated; the actual range is expected
to be smaller as bounds are domains are also considered.

Range: [0, ∞]

Default: 1000

xslp mTol a (real): Absolute effective matrix element convergence tolerance ←↩

The absolute effective matrix element convergence criterion assesses the change in the effect of a
coefficient in a constraint. The effect of a coefficient is its value multiplied by the activity of the
column in which it appears. E = X ∗ C where X is the activity of the matrix column in which
the coefficient appears, and C is the value of the coefficient. The linearization approximates
the effect of the coefficient as E = X ∗ C0 + δX ∗ C’0 where V is as before, C0 is the value of
the coefficient C calculated using the assumed values for the variables and C’0 is the value
of ∂C ∂X calculated using the assumed values for the variables. If C1 is the value of the
coefficient C calculated using the actual values for the variables, then the error in the effect of
the coefficient is given by δE = X ∗ C1 - (X ∗ C0 + δX ∗ C’0) If δE < X ∗ xslp mTol a then
the variable has passed the absolute effective matrix element convergence criterion for this
coefficient. If a variable which has not converged on strict (closure or delta) criteria passes the
(relative or absolute) impact or matrix criteria for all the coefficients in which it appears, then
it is deemed to have converged. When the value is set to be negative, the value is adjusted
automatically by SLP, based on the feasibility target xslp validationTarget r. Good values for
the control are usually fall between 1e-3 and 1e-6.

Range: [-∞, ∞]

Default: auto

xslp mTol r (real): Relative effective matrix element convergence tolerance ←↩

The relative effective matrix element convergence criterion assesses the change in the effect of a
coefficient in a constraint relative to the magnitude of the coefficient. The effect of a coefficient
is its value multiplied by the activity of the column in which it appears. E = X ∗ C where X
is the activity of the matrix column in which the coefficient appears, and C is the value of the
coefficient. The linearization approximates the effect of the coefficient as E1 = X ∗ C0 + δX ∗
C’0 where V is as before, C0 is the value of the coefficient C calculated using the assumed
values for the variables and C’0 is the value of ∂C ∂X calculated using the assumed values for
the variables. If C1 is the value of the coefficient C calculated using the actual values for the
variables, then the error in the effect of the coefficient is given by δE = X ∗ C1 - (X ∗ C0 +
δX ∗ C’0) If δE < E1 ∗ xslp mTol r then the variable has passed the relative effective matrix
element convergence criterion for this coefficient. If a variable which has not converged on
strict (closure or delta) criteria passes the (relative or absolute) impact or matrix criteria for
all the coefficients in which it appears, then it is deemed to have converged. When the value is
set to be negative, the value is adjusted automatically by SLP, based on the feasibility target
xslp validationTarget r. Good values for the control are usually fall between 1e-3 and 1e-6.

Range: [-∞, ∞]

Default: auto

xslp multistartPreset (integer): Enable multistart ←↩

Default: 0

5.38 XPRESS 2901

value meaning

0 Disable multistart preset.

1 Generate xslp multistart maxSolves number of random base points.

2 Generate xslp multistart maxSolves number of random base points, filtered by a
merit function centred on initial feasibility.

3 Load the most typical SLP tuning settings. A maximum of
xslp multistart maxSolves jobs are loaded.

4 Load a comprehensive set of SLP tuning settings. A maximum of
xslp multistart maxSolves jobs are loaded.

xslp multistart maxSolves (integer): Maximum number of jobs to create during the multistart search
←↩

This control can be increased on the fly during the mutlistart search: for example, if a job gets
refused by a user callback, the callback may increase this limit to account for the rejected job.

Range: {-1, ..., ∞}

Default: unlimited

xslp multistart maxTime (integer): Maximum total time to be spent in the mutlistart search ←↩

XSLP MAXTIME applies on a per job instance basis. There will be some time spent even
after xslp multistart maxTime has elapsed, while the running jobs get terminated and their
results collected.

Range: {0, ..., ∞}

Default: unlimited

xslp multistart poolsize (integer): Maximum number of problem objects allowed to pool up before
synchronization in the deterministic multistart ←↩

Deterministic multistart is ensured by guaranteeing that the multistart solve results are
evaluated in the same order every time. Solves that finish too soon can be pooled until all
earlier started solves finish, allowing the system to start solving other multistart instances in
the meantime on idle threads. Larger pool sizes will provide better speedups, but will require
larger amounts of memory. Positive values are interpreted as a multiplier on the maximum
number of active threads used, while negative values are interpreted as an absolute limit (and
the absolute value is used). A value of zero will mean no result pooling.

Range: {0, ..., ∞}

Default: 2

xslp multistart seed (integer): Random seed used for the automatic generation of initial point when
loading multistart presets ←↩

Range: {-∞, ..., ∞}

Default: 0

xslp multistart threads (integer): Maximum number of threads to be used in multistart ←↩

2902 Solver Manuals

The current hard upper limit on the number of threads to be sued in multistart is 64.

Range: {-1, ..., ∞}

Default: auto

xslp mvTol (real): Marginal value tolerance for determining if a constraint is slack ←↩

If the absolute value of the marginal value of a constraint is less than xslp mvTol, then (1) the
constraint is regarded as not constraining for the purposes of the slack tolerance convergence
criteria; (2) the constraint is not regarded as an active constraint when identifying unconverged
variables in active constraints. When the value is set to be negative, the value is adjusted
automatically by SLP, based on the feasibility target xslp validationTarget r. Good values for
the control are usually fall between 1e-3 and 1e-6.

Range: [-∞, ∞]

Default: auto

xslp objToPenaltyCost (real): Factor to estimate initial penalty costs from objective function ←↩

The setting of initial penalty error costs can affect the path of the optimization and, indeed,
whether a solution is achieved at all. If the penalty costs are too low, then unbounded solutions
may result although Xpress-SLP will increase the costs in an attempt to recover. If the penalty
costs are too high, then the requirement to achieve feasibility of the linearized constraints may
be too strong to allow the system to explore the nonlinear feasible region. Low penalty costs
can result in many SLP iterations, as feasibility of the nonlinear constraints is not achieved until
the penalty costs become high enough; high penalty costs force feasibility of the linearizations,
and so tend to find local optima close to an initial feasible point. Xpress-SLP can analyze the
problem to estimate the size of penalty costs required to avoid an initial unbounded solution.
xslp objToPenaltyCost can be used in conjunction with this procedure to scale the costs and
give an appropriate initial value for balancing the requirements of feasibility and optimality.
Not all models are amenable to the Xpress-SLP analysis. As the analysis is initially concerned
with establishing a cost level to avoid unboundedness, a model which is sufficiently constrained
will never show unboundedness regardless of the cost. Also, as the analysis is done at the start
of the optimization to establish a penalty cost, significant changes in the coefficients, or a high
degree of nonlinearity, may invalidate the initial analysis. A setting for xslp objToPenaltyCost
of zero disables the analysis. A setting of 3 or 4 has proved successful for many models. If
xslp objToPenaltyCost cannot be used because of the problem structure, its effect can still be
emulated by some initial experiments to establish the cost required to avoid unboundedness,
and then manually applying a suitable factor. If the problem is initially unbounded, then the
penalty cost will be increased until either it reaches its maximum or the problem becomes
bounded.

Range: [0, ∞]

Default: 0

xslp oCount (integer): Number of SLP iterations over which to measure objective function variation for
static objective (2) convergence criterion ←↩

The static objective (2) convergence criterion does not measure convergence of individual
variables. Instead, it measures the significance of the changes in the objective function over
recent SLP iterations. It is applied when all the variables interacting with active constraints
(those that have a marginal value of at least xslp mvTol) have converged. The rationale is
that if the remaining unconverged variables are not involved in active constraints and if the
objective function is not changing significantly between iterations, then the solution is more-
or-less practical. The variation in the objective function is defined as δObj = MAXIter(Obj)
- MINIter(Obj) where Iter is the xslp oCount most recent SLP iterations and Obj is the

5.38 XPRESS 2903

corresponding objective function value. If ABS(δObj) ≤ xslp oTol a then the problem has
converged on the absolute static objective (2) convergence criterion. The static objective
function (2) test is applied only if xslp oCount is at least 2.

Range: {0, ..., ∞}

Default: 5

xslp optimalityTolTarget (real): When set, this defines a target optimality tolerance to which the
linearizations are solved to ←↩

This is a soft version of optimalityTol, and will dynamically revert back to optimalityTol if
the desired accuracy could not be achieved.

Range: [0, ∞]

Default: not set

xslp oTol a (real): Absolute static objective (2) convergence tolerance ←↩

The static objective (2) convergence criterion does not measure convergence of individual
variables. Instead, it measures the significance of the changes in the objective function over
recent SLP iterations. It is applied when all the variables interacting with active constraints
(those that have a marginal value of at least xslp mvTol) have converged. The rationale is
that if the remaining unconverged variables are not involved in active constraints and if the
objective function is not changing significantly between iterations, then the solution is more-
or-less practical. The variation in the objective function is defined as δObj = MAXIter(Obj)
- MINIter(Obj) where Iter is the xslp oCount most recent SLP iterations and Obj is the
corresponding objective function value. If ABS(δObj) ≤ xslp oTol a then the problem has
converged on the absolute static objective (2) convergence criterion. The static objective
function (2) test is applied only if xslp oCount is at least 2. When the value is set to
be negative, the value is adjusted automatically by SLP, based on the optimality target
xslp validationTarget k. Good values for the control are usually fall between 1e-3 and 1e-6.

Range: [-∞, ∞]

Default: auto

xslp oTol r (real): Relative static objective (2) convergence tolerance ←↩

The static objective (2) convergence criterion does not measure convergence of individual
variables. Instead, it measures the significance of the changes in the objective function over
recent SLP iterations. It is applied when all the variables interacting with active constraints
(those that have a marginal value of at least xslp mvTol) have converged. The rationale is
that if the remaining unconverged variables are not involved in active constraints and if the
objective function is not changing significantly between iterations, then the solution is more-
or-less practical. The variation in the objective function is defined as δObj = MAXIter(Obj)
- MINIter(Obj) where Iter is the xslp oCount most recent SLP iterations and Obj is the
corresponding objective function value. If ABS(δObj) ≤ AVGIter(Obj)∗xslp oTol r then the
problem has converged on the relative static objective (2) convergence criterion. The static
objective function (2) test is applied only if xslp oCount is at least 2. When the value is set
to be negative, the value is adjusted automatically by SLP, based on the optimality target
xslp validationTarget k. Good values for the control are usually fall between 1e-3 and 1e-6.

Range: [-∞, ∞]

Default: auto

xslp penaltyInfoStart (integer): Iteration from which to record row penalty information ←↩

2904 Solver Manuals

Information about the size (current and total) of active penalties of each row and the number
of times a penalty vector has been active is recorded starting at the SLP iteration number
given by xslp penaltyInfoStart.

Range: {0, ..., ∞}

Default: 3

xslp postsolve (integer): Determines whether postsolving should be performed automatically ←↩

Default: -1

5.38 XPRESS 2905

value meaning

-1 Postsolve if the problem could be solved to optimality/infeasibility.

0 Do not automatically postsolve.

1 Postsolve automatically.

xslp presolve (integer): Determines whether presolving should be performed prior to starting the main
algorithm ←↩

The Xpress NonLinear nonlinear presolve (which is carried out once, before augmentation) is
independent of the Optimizer presolve (which is carried out during each SLP iteration).

Default: 1

value meaning

0 Disable SLP presolve.

1 Activate SLP presolve.

2 Low memory presolve. Original problem is not restored by postsolve and dual
solution may not be completely postsolved.

xslp presolveLevel (integer): Determines the level of changes presolve may carry out on the problem ←↩

xslp presolveOps controls the operations carried out in presolve. xslp presolveLevel controls
how those operations may change the problem.

Default: 4

value meaning

1 Individual rows only presolve, no nonlinear transformations.

2 Individual rows and bounds only presolve, no nonlinear transformations.

3 Presolve allowing changing problem dimension, no nonlinear transformations.

4 Full presolve.

xslp presolveOps (integer): Bitmap indicating the SLP presolve actions to be taken ←↩

The Xpress NonLinear nonlinear presolve (which is carried out once, before augmentation)
is independent of the Optimizer presolve (which is carried out during each SLP iteration).
Linear reductions are performed according to presolveOps if bit 12 is not set.

Setting single boolean options will overwrite the single bits of this bit map option.

Default: 2104

value meaning

bit 0 = 1 Equivalent to xslp presolveOps general.

bit 1 = 2 Equivalent to xslp presolveOps fixZero.

bit 2 = 4 Equivalent to xslp presolveOps fixAll.

bit 3 = 8 Equivalent to xslp presolveOps setBounds.

bit 4 = 16 Equivalent to xslp presolveOps intBounds.

bit 5 = 32 Equivalent to xslp presolveOps domain.

bit 8 = 256 Equivalent to xslp presolveOps noCoefficients.

2906 Solver Manuals

value meaning

bit 9 = 512 Equivalent to xslp presolveOps noDeltas.

bit 10 = 1024 Equivalent to xslp presolveOps noDualSide.

bit 11 = 2048 Equivalent to xslp presolveOps eliminations.

bit 12 = 4096 Equivalent to xslp presolveOps noLinear.

bit 13 = 8192 Equivalent to xslp presolveOps noSimplifier.

xslp presolveOps domain (boolean): Bound tightening based on function domains ←↩

See also xslp presolveOps.

Default: 1

xslp presolveOps eliminations (boolean): Allow eliminations on determined variables ←↩

See also xslp presolveOps.

Default: 1

xslp presolveOps fixAll (boolean): Explicitly fix all columns identified as fixed ←↩

See also xslp presolveOps.

Default: 0

xslp presolveOps fixZero (boolean): Explicitly fix columns identified as fixed to zero ←↩

See also xslp presolveOps.

Default: 0

xslp presolveOps general (boolean): Generic SLP presolve ←↩

See also xslp presolveOps.

Default: 0

xslp presolveOps intBounds (boolean): MISLP bound tightening ←↩

See also xslp presolveOps.

Default: 1

xslp presolveOps noCoefficients (boolean): Do not presolve coefficients ←↩

See also xslp presolveOps.

Default: 0

xslp presolveOps noDeltas (boolean): Do not remove delta variables ←↩

See also xslp presolveOps.

Default: 0

xslp presolveOps noDualSide (boolean): Avoid reductions that can not be dual postsolved ←↩

5.38 XPRESS 2907

See also xslp presolveOps.

Default: 0

xslp presolveOps noLinear (boolean): Avoid performing linear reductions at the nlp level ←↩

See also xslp presolveOps.

Default: 0

xslp presolveOps noSimplifier (boolean): Avoid simplifying nonlinear expressions ←↩

See also xslp presolveOps.

Default: 0

xslp presolveOps setBounds (boolean): SLP bound tightening ←↩

See also xslp presolveOps.

Default: 1

xslp presolveZero (real): Minimum absolute value for a variable which is identified as nonzero during
SLP presolve ←↩

During the SLP (nonlinear)presolve, a variable may be identified as being nonzero (for example,
because it is used as a divisor). A bound of plus or minus xslp presolveZero will be applied to
the variable if it is identified as non-negative or non-positive.

Range: [0, ∞]

Default: 1e-09

xslp primalIntegralRef (real): Reference solution value to take into account when calculating the
primal integral ←↩

When a global optimum is known, this can used to calculate a globally valid primal integral.
It can also be used to indicate the target objective value still to be taken into account in the
integral.

Range: [-∞, ∞]

Default: 1e+20

xslp probing (integer): Determines whether probing on a subset of variables should be performed prior
to starting the main algorithm ←↩

Probing runs multiple times bound reduction in order to further tighten the bounding box.

The Xpress NonLinear nonlinear probing, which is carried out once, is independent of the
Optimizer presolve (which is carried out during each SLP iteration). The probing level allows
for probing on an expanding set of variables, allowing for probing on all variables (level 5) or
only those for which probing is more likely to be useful (binary variables).

Default: auto

2908 Solver Manuals

value meaning

-1 Automatic.

0 Disable SLP probing.

1 Activate SLP probing only on binary variables.

2 Activate SLP probing only on binary or unbounded integer variables.

3 Activate SLP probing only on binary or integer variables.

4 Activate SLP probing only on binary, integer variables, and unbounded continuous
variables.

5 Activate SLP probing on any variable.

xslp sameCount (integer): Number of steps reaching the step bound in the same direction before step
bounds are increased ←↩

If step bounding is enabled, the step bound for a variable will be increased if successive changes
are in the same direction. More precisely, if there are xslp sameCount successive changes
reaching the step bound and in the same direction for a variable, then the step bound (B) for
the variable will be reset to B∗xslp expand.

Range: {0, ..., ∞}

Default: 3

xslp sameDamp (integer): Number of steps in same direction before damping factor is increased ←↩

If dynamic damping is enabled, the damping factor for a variable will be increased if successive
changes are in the same direction. More precisely, if there are xslp sameDamp successive
changes in the same direction for a variable, then the damping factor (D) for the variable will
be reset to D∗xslp dampExpand + xslp dampMax∗(1-xslp dampExpand)

Range: {0, ..., ∞}

Default: 3

xslp sbStart (integer): SLP iteration after which step bounds are first applied ←↩

If step bounds are used, they can be applied for the whole of the SLP optimization process, or
started after a number of SLP iterations. In general, it is better not to apply step bounds
from the start unless one of the following applies: (1) the initial estimates are known to be
good, and explicit values can be provided for initial step bounds on all variables; or (2) the
problem is unbounded unless all variables are step-bounded.

Range: {0, ..., ∞}

Default: 8

xslp scale (integer): When to re-scale the SLP problem ←↩

During the SLP optimization, matrix entries can change considerably in magnitude, even when
the formulae in the coefficients are not very nonlinear. Re-scaling of the matrix can reduce
numerical errors, but may increase the time taken to achieve convergence.

Default: 1

value meaning

0 No re-scaling.

1 Re-scale every SLP iteration up to xslp scaleCount iterations after the end of
barrier optimization.

2 Re-scale every SLP iteration up to xslp scaleCount iterations in total.

3 Re-scale every SLP iteration until primal simplex is automatically invoked.

4 Re-scale every SLP iteration.

5 Re-scale every xslp scaleCount SLP iterations.

6 Re-scale every xslp scaleCount SLP iterations after the end of barrier optimization.

5.38 XPRESS 2909

xslp scaleCount (integer): Iteration limit used in determining when to re-scale the SLP matrix ←↩

If xslp scale is set to 1 or 2, then xslp scaleCount determines the number of iterations (after
the end of barrier optimization or in total) in which the matrix is automatically re-scaled.

Range: {0, ..., ∞}

Default: 0

xslp shrink (real): Multiplier to reduce a step bound ←↩

If step bounding is enabled, the step bound for a variable will be decreased if successive changes
are in opposite directions. The step bound (B) for the variable will be reset to B∗xslp shrink.
If the step bound is already below the strict (delta or closure) tolerances, it will not be reduced
further.

Range: [0, 1]

Default: 0.5

xslp shrinkBias (real): Defines an overwrite / adjustment of step bounds for improving iterations ←↩

Positive values overwrite xslp shrink only if the objective is improving. A negative value is
used to scale all step bounds in improving iterations.

Range: [-∞, ∞]

Default: not set

xslp slpLog (integer): Frequency with which SLP status is printed ←↩

If xslp log is set to zero (minimal logging) then a nonzero value for xslp slpLog defines the
frequency (in SLP iterations) when summary information is printed out.

Range: {0, ..., ∞}

Default: 1

xslp solver (integer): Selects the library to use for local solves ←↩

The presence of KNITRO is detected automatically. KNITRO can be used to solve any
problem loaded into XSLP, independently from how the problem was loaded. xslp solver is set
to automatic, Xpress SLP will be selected if any SLP specific construct has been loaded (these
are ignored if KNITRO is selected manually). When solving problems to global optimality, the
xslp solver control is used to decide which local solver to call for reoptimizing NLP- infeasible
solutions heuristically.

Default: auto

value meaning

-1 Automatic selection, based on model characteristics and solver availability

0 Use Xpress-SLP (always available)

1 Use Knitro if available

2 Use Xpress-Optimizer if possible (convex quadratic problems only)

2910 Solver Manuals

xslp sTol a (real): Absolute slack convergence tolerance ←↩

The slack convergence criterion is identical to the impact convergence criterion, except that the
tolerances used are xslp sTol a (instead of xslp iTol a) and xslp sTol r (instead of xslp iTol r).
See xslp iTol a for a description of the test. When the value is set to be negative, the value is
adjusted automatically by SLP, based on the feasibility target xslp validationTarget r. Good
values for the control are usually fall between 1e-3 and 1e-6.

Range: [-∞, ∞]

Default: auto

xslp sTol r (real): Relative slack convergence tolerance ←↩

The slack convergence criterion is identical to the impact convergence criterion, except that the
tolerances used are xslp sTol a (instead of xslp iTol a) and xslp sTol r (instead of xslp iTol r).
See xslp iTol r for a description of the test. When the value is set to be negative, the value is
adjusted automatically by SLP, based on the feasibility target xslp validationTarget r. Good
values for the control are usually fall between 1e-3 and 1e-6.

Range: [-∞, ∞]

Default: auto

xslp stopOutOfRange (boolean): Stop optimization and return error code if internal function argument
is out of range ←↩

If xslp stopOutOfRange is set to 1, then if an internal function receives an argument which is
out of its allowable range (for example, LOG of a negative number), an error code is set and
the optimization is terminated.

Default: 0

xslp threads (integer): Default number of threads to be used ←↩

Overall thread control value, used to determine the number of threads used where parallel
calculations are possible.

Range: {-1, ..., ∞}

Default: auto

xslp unfinishedLimit (integer): Number of consecutive SLP iterations that may have an unfinished
status before the solve is terminated ←↩

If the optimization of the current linear approximation terminates with an ”unfinished”
status, then first a number of strategies are applied to attempt a successful solve of the same
linearization. If this fails, then a new iteration is started to change the linearization itself.
This control limits the numner of such repeated attempts.

Range: {0, ..., ∞}

Default: 3

xslp validationTarget k (real): Optimality target tolerance ←↩

5.38 XPRESS 2911

Primary optimality control for SLP. When the relevant optimality based convergence controls
are left at their default values, SLP will adjust their value to match the target. The control
defines a target value, that may not necessarily be attainable for problem with no strong
constraint qualifications.

Range: [0, ∞]

Default: 1e-06

xslp validationTarget r (real): Feasiblity target tolerance ←↩

Primary feasiblity control for SLP. When the relevant feasibility based convergence controls
are left at their default values, SLP will adjust their value to match the target. The control
defines a target value, that may not necessarily be attainable.

Range: [0, ∞]

Default: 1e-06

xslp vCount (integer): Number of SLP iterations over which to measure static objective (3) convergence
←↩

The static objective (3) convergence criterion does not measure convergence of individual
variables, and in fact does not in any way imply that the solution has converged. However, it is
sometimes useful to be able to terminate an optimization once the objective function appears
to have stabilized. One example is where a set of possible schedules are being evaluated and
initially only a good estimate of the likely objective function value is required, to eliminate the
worst candidates. The variation in the objective function is defined as δObj = MAXIter(Obj)
- MINIter(Obj) where Iter is the xslp vCount most recent SLP iterations and Obj is the
corresponding objective function value. If ABS(δObj) ≤ xslp vTol a then the problem has
converged on the absolute static objective function (3) criterion. The static objective function
(3) test is applied only if after at least xslp vLimit + xslp sbStart SLP iterations have taken
place and only if xslp vCount is at least 2. Where step bounding is being used, this ensures
that the test is not applied until after step bounding has been introduced.

Range: {0, ..., ∞}

Default: 0

xslp vLimit (integer): Number of SLP iterations after which static objective (3) convergence testing
starts ←↩

The static objective (3) convergence criterion does not measure convergence of individual
variables, and in fact does not in any way imply that the solution has converged. However, it is
sometimes useful to be able to terminate an optimization once the objective function appears
to have stabilized. One example is where a set of possible schedules are being evaluated and
initially only a good estimate of the likely objective function value is required, to eliminate the
worst candidates. The variation in the objective function is defined as δObj = MAXIter(Obj)
- MINIter(Obj) where Iter is the xslp vCount most recent SLP iterations and Obj is the
corresponding objective function value. If ABS(δObj) ≤ xslp vTol a then the problem has
converged on the absolute static objective function (3) criterion. The static objective function
(3) test is applied only if after at least xslp vLimit + xslp sbStart SLP iterations have taken
place and only if xslp vCount is at least 2. Where step bounding is being used, this ensures
that the test is not applied until after step bounding has been introduced.

Range: {0, ..., ∞}

Default: 0

2912 Solver Manuals

xslp vTol a (real): Absolute static objective (3) convergence tolerance ←↩

The static objective (3) convergence criterion does not measure convergence of individual
variables, and in fact does not in any way imply that the solution has converged. However, it is
sometimes useful to be able to terminate an optimization once the objective function appears
to have stabilized. One example is where a set of possible schedules are being evaluated and
initially only a good estimate of the likely objective function value is required, to eliminate the
worst candidates. The variation in the objective function is defined as δObj = MAXIter(Obj)
- MINIter(Obj) where Iter is the xslp vCount most recent SLP iterations and Obj is the
corresponding objective function value. If ABS(δObj) ≤ xslp vTol a then the problem has
converged on the absolute static objective function (3) criterion. The static objective function
(3) test is applied only if after at least xslp vLimit + xslp sbStart SLP iterations have taken
place and only if xslp vCount is at least 2. Where step bounding is being used, this ensures
that the test is not applied until after step bounding has been introduced. When the value is
set to be negative, the value is adjusted automatically by SLP, based on the optimality target
xslp validationTarget k. Good values for the control are usually fall between 1e-3 and 1e-6.

Range: [-∞, ∞]

Default: auto

xslp vTol r (real): Relative static objective (3) convergence tolerance ←↩

The static objective (3) convergence criterion does not measure convergence of individual
variables, and in fact does not in any way imply that the solution has converged. However, it is
sometimes useful to be able to terminate an optimization once the objective function appears
to have stabilized. One example is where a set of possible schedules are being evaluated and
initially only a good estimate of the likely objective function value is required, to eliminate the
worst candidates. The variation in the objective function is defined as δObj = MAXIter(Obj)
- MINIter(Obj) where Iter is the xslp vCount most recent SLP iterations and Obj is the
corresponding objective function value. If ABS(δObj) ≤ AVGIter(Obj) ∗ xslp vTol r then
the problem has converged on the absolute static objective function (3) criterion. The static
objective function (3) test is applied only if after at least xslp vLimit

• xslp sbStart SLP iterations have taken place and only if xslp vCount is at least 2. Where
step bounding is being used, this ensures that the test is not applied until after step
bounding has been introduced. When the value is set to be negative, the value is adjusted
automatically by SLP, based on the optimality target xslp validationTarget k. Good
values for the control are usually fall between 1e-3 and 1e-6.

Range: [-∞, ∞]

Default: auto

xslp wCount (integer): Number of SLP iterations over which to measure the objective for the extended
convergence continuation criterion ←↩

It may happen that all the variables have converged, but some have converged on extended
criteria and at least one of these variables is at its step bound. This means that, at least in the
linearization, if the variable were to be allowed to move further the objective function would
improve. This does not necessarily imply that the same is true of the original problem, but it
is still possible that an improved result could be obtained by taking another SLP iteration.
The extended convergence continuation criterion is applied after a converged solution has been
found where at least one variable has converged on extended criteria and is at its step bound
limit. The extended convergence continuation test measures whether any improvement is being
achieved when additional SLP iterations are carried out. If not, then the last converged solution
will be restored and the optimization will stop. For a maximization problem, the improvement
in the objective function at the current iteration compared to the objective function at the last

5.38 XPRESS 2913

converged solution is given by: δObj = Obj - LastConvergedObj For a minimization problem,
the sign is reversed. If δObj > xslp wTol a and δObj > ABS(ConvergedObj) ∗ xslp wTol r
then the solution is deemed to have a significantly better objective function value than the
converged solution. When a solution is found which converges on extended criteria and with
active step bounds, the solution is saved and SLP optimization continues until one of the
following: (1) a new solution is found which converges on some other criterion, in which case
the SLP optimization stops with this new solution; (2) a new solution is found which converges
on extended criteria and with active step bounds, and which has a significantly better objective
function, in which case this is taken as the new saved solution; (3) none of the xslp wCount
most recent SLP iterations has a significantly better objective function than the saved solution,
in which case the saved solution is restored and the SLP optimization stops. If xslp wCount is
zero, then the extended convergence continuation criterion is disabled.

Range: {0, ..., ∞}

Default: 0

xslp wTol a (real): Absolute extended convergence continuation tolerance ←↩

It may happen that all the variables have converged, but some have converged on extended
criteria and at least one of these variables is at its step bound. This means that, at least in the
linearization, if the variable were to be allowed to move further the objective function would
improve. This does not necessarily imply that the same is true of the original problem, but it
is still possible that an improved result could be obtained by taking another SLP iteration.
The extended convergence continuation criterion is applied after a converged solution has been
found where at least one variable has converged on extended criteria and is at its step bound
limit. The extended convergence continuation test measures whether any improvement is being
achieved when additional SLP iterations are carried out. If not, then the last converged solution
will be restored and the optimization will stop. For a maximization problem, the improvement
in the objective function at the current iteration compared to the objective function at the last
converged solution is given by: δObj = Obj - LastConvergedObj For a minimization problem,
the sign is reversed. If δObj > xslp wTol a and δObj > ABS(ConvergedObj) ∗ xslp wTol r
then the solution is deemed to have a significantly better objective function value than the
converged solution. When a solution is found which converges on extended criteria and with
active step bounds, the solution is saved and SLP optimization continues until one of the
following: (1) a new solution is found which converges on some other criterion, in which case
the SLP optimization stops with this new solution; (2) a new solution is found which converges
on extended criteria and with active step bounds, and which has a significantly better objective
function, in which case this is taken as the new saved solution; (3) none of the xslp wCount
most recent SLP iterations has a significantly better objective function than the saved solution,
in which case the saved solution is restored and the SLP optimization stops. When the value is
set to be negative, the value is adjusted automatically by SLP, based on the optimality target
xslp validationTarget k. Good values for the control are usually fall between 1e-3 and 1e-6.

Range: [-∞, ∞]

Default: auto

xslp wTol r (real): Relative extended convergence continuation tolerance ←↩

It may happen that all the variables have converged, but some have converged on extended
criteria and at least one of these variables is at its step bound. This means that, at least in the
linearization, if the variable were to be allowed to move further the objective function would
improve. This does not necessarily imply that the same is true of the original problem, but it
is still possible that an improved result could be obtained by taking another SLP iteration.
The extended convergence continuation criterion is applied after a converged solution has been
found where at least one variable has converged on extended criteria and is at its step bound
limit. The extended convergence continuation test measures whether any improvement is being
achieved when additional SLP iterations are carried out. If not, then the last converged solution

2914 Solver Manuals

will be restored and the optimization will stop. For a maximization problem, the improvement
in the objective function at the current iteration compared to the objective function at the
last converged solution is given by: δObj = Obj - LastConvergedObj For a minimization
problem, the sign is reversed. If δObj > xslp wTol a and δObj > ABS(ConvergedObj) ∗
xslp wTol r then the solution is deemed to have a significantly better objective function value
than the converged solution. If xslp wCount is greater than zero, and a solution is found which
converges on extended criteria and with active step bounds, the solution is saved and SLP
optimization continues until one of the following: (1) a new solution is found which converges
on some other criterion, in which case the SLP optimization stops with this new solution; (2)
a new solution is found which converges on extended criteria and with active step bounds,
and which has a significantly better objective function, in which case this is taken as the new
saved solution; (3) none of the xslp wCount most recent SLP iterations has a significantly
better objective function than the saved solution, in which case the saved solution is restored
and the SLP optimization stops. When the value is set to be negative, the value is adjusted
automatically by SLP, based on the optimality target xslp validationTarget k. Good values
for the control are usually fall between 1e-4 and 1e-6.

Range: [-∞, ∞]

Default: auto

xslp xCount (integer): Number of SLP iterations over which to measure static objective (1) convergence
←↩

It may happen that all the variables have converged, but some have converged on extended
criteria and at least one of these variables is at its step bound. This means that, at least in the
linearization, if the variable were to be allowed to move further the objective function would
improve. This does not necessarily imply that the same is true of the original problem, but it
is still possible that an improved result could be obtained by taking another SLP iteration.
However, if the objective function has already been stable for several SLP iterations, then
there is less likelihood of an improved result, and the converged solution can be accepted. The
static objective function (1) test measures the significance of the changes in the objective
function over recent SLP iterations. It is applied when all the variables have converged, but
some have converged on extended criteria and at least one of these variables is at its step
bound. Because all the variables have converged, the solution is already converged but the
fact that some variables are at their step bound limit suggests that the objective function
could be improved by going further. The variation in the objective function is defined as δObj
= MAXIter(Obj) - MINIter(Obj) where Iter is the xslp xCount most recent SLP iterations
and Obj is the corresponding objective function value. If ABS(δObj) ≤ xslp xTol a then the
objective function is deemed to be static according to the absolute static objective function (1)
criterion. If ABS(δObj) ≤ AVGIter(Obj) ∗ xslp xTol r then the objective function is deemed
to be static according to the relative static objective function (1) criterion. The static objective
function (1) test is applied only until xslp xLimit SLP iterations have taken place. After that,
if all the variables have converged on strict or extended criteria, the solution is deemed to have
converged. If the objective function passes the relative or absolute static objective function (1)
test then the solution is deemed to have converged.

Range: {0, ..., ∞}

Default: 5

xslp xLimit (integer): Number of SLP iterations up to which static objective (1) convergence testing
starts ←↩

It may happen that all the variables have converged, but some have converged on extended
criteria and at least one of these variables is at its step bound. This means that, at least in the
linearization, if the variable were to be allowed to move further the objective function would
improve. This does not necessarily imply that the same is true of the original problem, but it
is still possible that an improved result could be obtained by taking another SLP iteration.

5.38 XPRESS 2915

However, if the objective function has already been stable for several SLP iterations, then
there is less likelihood of an improved result, and the converged solution can be accepted. The
static objective function (1) test measures the significance of the changes in the objective
function over recent SLP iterations. It is applied when all the variables have converged, but
some have converged on extended criteria and at least one of these variables is at its step
bound. Because all the variables have converged, the solution is already converged but the
fact that some variables are at their step bound limit suggests that the objective function
could be improved by going further. The variation in the objective function is defined as δObj
= MAXIter(Obj) - MINIter(Obj) where Iter is the xslp xCount most recent SLP iterations
and Obj is the corresponding objective function value. If ABS(δObj) ≤ xslp xTol a then the
objective function is deemed to be static according to the absolute static objective function (1)
criterion. If ABS(δObj) ≤ AVGIter(Obj) ∗ xslp xTol r then the objective function is deemed
to be static according to the relative static objective function (1) criterion. The static objective
function (1) test is applied only until xslp xLimit SLP iterations have taken place. After that,
if all the variables have converged on strict or extended criteria, the solution is deemed to have
converged. If the objective function passes the relative or absolute static objective function (1)
test then the solution is deemed to have converged.

Range: {0, ..., ∞}

Default: 100

xslp xTol a (real): Absolute static objective function (1) tolerance ←↩

It may happen that all the variables have converged, but some have converged on extended
criteria and at least one of these variables is at its step bound. This means that, at least in the
linearization, if the variable were to be allowed to move further the objective function would
improve. This does not necessarily imply that the same is true of the original problem, but it
is still possible that an improved result could be obtained by taking another SLP iteration.
However, if the objective function has already been stable for several SLP iterations, then
there is less likelihood of an improved result, and the converged solution can be accepted. The
static objective function (1) test measures the significance of the changes in the objective
function over recent SLP iterations. It is applied when all the variables have converged, but
some have converged on extended criteria and at least one of these variables is at its step
bound. Because all the variables have converged, the solution is already converged but the
fact that some variables are at their step bound limit suggests that the objective function
could be improved by going further. The variation in the objective function is defined as δObj
= MAXIter(Obj) - MINIter(Obj) where Iter is the xslp xCount most recent SLP iterations
and Obj is the corresponding objective function value. If ABS(δObj) ≤ xslp xTol a then the
objective function is deemed to be static according to the absolute static objective function (1)
criterion. If ABS(δObj) ≤ AVGIter(Obj) ∗ xslp xTol r then the objective function is deemed
to be static according to the relative static objective function (1) criterion. The static objective
function (1) test is applied only until xslp xLimit SLP iterations have taken place. After that,
if all the variables have converged on strict or extended criteria, the solution is deemed to have
converged. If the objective function passes the relative or absolute static objective function (1)
test then the solution is deemed to have converged. When the value is set to be negative, the
value is adjusted automatically by SLP, based on the optimality target xslp validationTarget k.
Good values for the control are usually fall between 1e-3 and 1e-6.

Range: [-∞, ∞]

Default: auto

xslp xTol r (real): Relative static objective function (1) tolerance ←↩

It may happen that all the variables have converged, but some have converged on extended
criteria and at least one of these variables is at its step bound. This means that, at least in the
linearization, if the variable were to be allowed to move further the objective function would
improve. This does not necessarily imply that the same is true of the original problem, but it

2916 Solver Manuals

is still possible that an improved result could be obtained by taking another SLP iteration.
However, if the objective function has already been stable for several SLP iterations, then
there is less likelihood of an improved result, and the converged solution can be accepted. The
static objective function (1) test measures the significance of the changes in the objective
function over recent SLP iterations. It is applied when all the variables have converged, but
some have converged on extended criteria and at least one of these variables is at its step
bound. Because all the variables have converged, the solution is already converged but the
fact that some variables are at their step bound limit suggests that the objective function
could be improved by going further. The variation in the objective function is defined as δObj
= MAXIter(Obj) - MINIter(Obj) where Iter is the xslp xCount most recent SLP iterations
and Obj is the corresponding objective function value. If ABS(δObj) ≤ xslp xTol a then the
objective function is deemed to be static according to the absolute static objective function (1)
criterion. If ABS(δObj) ≤ AVGIter(Obj) ∗ xslp xTol r then the objective function is deemed
to be static according to the relative static objective function (1) criterion. The static objective
function (1) test is applied only until xslp xLimit SLP iterations have taken place. After that,
if all the variables have converged on strict or extended criteria, the solution is deemed to have
converged. If the objective function passes the relative or absolute static objective function (1)
test then the solution is deemed to have converged. When the value is set to be negative, the
value is adjusted automatically by SLP, based on the optimality target xslp validationTarget k.
Good values for the control are usually fall between 1e-4 and 1e-6.

Range: [-∞, ∞]

Default: auto

xslp zero (real): Absolute tolerance ←↩

If a value is below xslp zero in magnitude, then it will be regarded as zero in certain formula
calculations: an attempt to divide by such a value will give a ”divide by zero” error; an
exponent of a negative number will produce a ”negative number, fractional exponent” error if
the exponent differs from an integer by more than xslp zero.

Range: [0, ∞]

Default: 1e-15

xslp zeroCriterion (integer): Bitmap determining the behavior of the placeholder deletion procedure ←↩

Setting single boolean options will overwrite the single bits of this bit map option.

Default: 0

value meaning

bit 0 = 1 Equivalent to xslp zeroCriterion nbSLPVar.

bit 1 = 2 Equivalent to xslp zeroCriterion nbDelta.

bit 2 = 4 Equivalent to xslp zeroCriterion slpVarNBUpdateRow.

bit 3 = 8 Equivalent to xslp zeroCriterion deltaNBUpdateRow.

bit 4 = 16 Equivalent to xslp zeroCriterion deltaNBDRRow.

bit 5 = 32 Equivalent to xslp zeroCriterion print.

xslp zeroCriterionCount (integer): Number of consecutive times a placeholder entry is zero before
being considered for deletion ←↩

Range: {0, ..., ∞}

Default: 0

5.38 XPRESS 2917

xslp zeroCriterionStart (integer): SLP iteration at which criteria for deletion of placeholder entries are
first activated ←↩

Range: {0, ..., ∞}

Default: 0

xslp zeroCriterion deltaNBDRRow (boolean): Remove placeholders in a basic delta variable if the
determining row for the corresponding SLP variable is nonbasic ←↩

See also xslp zeroCriterion.

Default: 0

xslp zeroCriterion deltaNBUpdateRow (boolean): Remove placeholders in a basic delta variable if
its update row is nonbasic and the corresponding SLP variable is nonbasic ←↩

See also xslp zeroCriterion.

Default: 0

xslp zeroCriterion nbDelta (boolean): Remove placeholders in nonbasic delta variables ←↩

See also xslp zeroCriterion.

Default: 0

xslp zeroCriterion nbSLPVar (boolean): Remove placeholders in nonbasic SLP variables ←↩

See also xslp zeroCriterion.

Default: 0

xslp zeroCriterion print (boolean): Print information about zero placeholders ←↩

See also xslp zeroCriterion.

Default: 0

xslp zeroCriterion slpVarNBUpdateRow (boolean): Remove placeholders in a basic SLP variable if
its update row is nonbasic ←↩

See also xslp zeroCriterion.

Default: 0

2918 Solver Manuals

5.38.5 Helpful Hints

The comments below should help both novice and experienced GAMS users to better understand and
make use of GAMS/XPRESS.

• Infeasible and unbounded models The fact that a model is infeasible/unbounded can be detected
at two stages: during the presolve and during the simplex or barrier algorithm. In the first case we
cannot recover a solution, nor is any information regarding the infeasible/unbounded constraint or
variable provided (at least in a way that can be returned to GAMS). In such a situation, the GAMS
link will automatically rerun the model using primal simplex with presolve turned off (this can be
avoided by setting the rerun option to 0). It is possible (but very unlikely) that the simplex method
will solve a model to optimality while the presolve claims the model is infeasible/unbounded (due to
feasibility tolerances in the simplex and barrier algorithms).

• The barrier method does not make use of iterlim. Use bariterlim in an options file instead. The
number of barrier iterations is echoed to the log and listing file. If the barrier iteration limit is
reached during the barrier algorithm, XPRESS continues with a simplex algorithm, which will obey
the iterlim setting.

• Semi-integer variables are not implemented in the link, nor are they supported by XPRESS; if
present, they trigger an error message.

• SOS1 and SOS2 variables are required by XPRESS to have lower bounds of 0 and nonnegative
upper bounds.

5.38.6 Setting up a GAMS/XPRESS-Link license

To use the GAMS/XPRESS solver with a GAMS/XPRESS-Link license you have to set up the XPRESS
portion of the licensing. To do so, copy your XPRESS license xpauth.xpr to the GAMS system directory.
As of version 24.2 GAMS already comes with a file xpauth.xpr . You might consider copying this file to
xpauth.xpr.bak or similar before overwriting it with your own XPRESS license file.

Chapter 6

Tools Manuals

A large number of tools are included in GAMS distribution. Below are a functional categorization of all tools,
an alphabetically sorted list of all tools, and a brief description of each tool with their Supported Platforms.

Note

Traditionally, GAMS tools consisted of a collection of executables with a file (mostly GDX) interface.
These tool executables will be replaced over time by GAMS Connect agents and a collection of tools
in a new GAMS tools library. For some time both ways will be supported but the executable tools
will go away, so when in doubt what tool to pick, select Connect or a GAMS tool.

6.1 Tools Category

All tools included in GAMS distribution are categorized as

6.1.1 GAMS Integrated Development Environments

There are two integrated model development environments including a general text editor with the ability
to launch and monitor the compilation and execution of GAMS models: GAMS Studio and the GAMS

IDE (deprecated).

6.1.2 GAMS Tools Library

In the GAMS Tools Library, various tools are collected to provide an easy access to complex task. The
tools in this library complement facilities of GAMS Connect and tools available as executables (e.g.
GDXXRW). Currently the library includes the following tool categories:

6.1.2.1 Algorithmic tools (alg)

Provide algorithmic functionality like sorting data: Rank.

6.1.2.2 Data tools (data)

Provide access to external data sources: ExcelDump.

gamside/contents.htm
gamside/contents.htm

2920 Tools Manuals

6.1.2.3 GDX Service (gdxservice)

Provide functionality for GDX file manipulation: GDXEncoding and GDXRename.

6.1.2.4 Linear Algebra (linalg)

Provide functionality for computational linear algebra: Cholesky, Eigenvalue, Eigenvector, Invert and
Ordinary Least Squares (OLS).

6.1.2.5 Windows Only Tools (win32)

Provide functionality specific to the Windows operating system: ShellExecute, MSAppAvail, ExcelTalk
and ExcelMerge.

There are a couple of things to note:

• A tool can be invoked directly in the model code during compile ($callTool) or execution time
(executeTool) or by using the standalone command line utility gamstool.

• When invoked from the model code the exchange of GAMS symbols is done in memory. If a tool is
called from the command line, this is not possible and hence for some tools that deal with GAMS
symbols it is necessary to specify GDX input and/or output files. Even for use inside GAMS
models the GDX file interface can be useful (e.g. for debugging) hence the specification of GDX
input/output files is optional in that case.

• Similar to the $call (compile time) and execute (execution time) commands, a GAMS tool returns a
shell code that can be checked via errorLevel. In case one expects the tools to perform without
error, it is recommended to add the suffix .checkErrorLevel. This will stop the entire execution of
GAMS if an error occurs while executing the tool.

• If a tool of the GAMS Tool library is used at execution time to populate a GAMS symbol with data
for the first time, the compiler does not know the outcome of the tool. As a result, the compiler
does not have information about any symbols that might be filled with data, and therefore cannot
reliably define these symbols at compile time. Code that later on references a corresponding symbol
would result in a compilation error 141: Symbol declared but no values have been assigned.
In order to be able to load symbols implicitly during execution time, the dollar control option
$onImplicitAssign needs to be set. There are other methods to convince the compiler that the
symbols has been defined, e.g. execute load$0 symName; which is otherwise a no-op.

• The compile time variant of a tool ($callTool [...]) is ignored while $onExternalInput is active and
IDCGDXInput is set.

• Tool arguments: All tools follow the same logic to process arguments. The list of arguments starts
with a number of positional arguments followed by named argument [-]name=val.

• For each tool there is a short and a long help available. If a tool is called without arguments or with
-h , a short description is displayed, e.g. gamstool linalg.eigenvector -h. With the argument
--help a detailed help text appears: gamstool linalg.eigenvector --help. If only the category
and not a contained tool is requested, the help text of all included tools will be displayed: gamstool
linalg or gamstool linalg --help.

For more information please refer to the individual tool manuals.

6.2 List of Tools 2921

6.1.2.6 Command Line Utility gamstool

The GAMS system directory contains the utility gamstool to run GAMS Tool instructions directly from
the command line. On Windows the utility has the callable extension .cmd which does not need to part
of the command because the shell automatically checks for the extension. This script wraps the Python
script tooldriver.py by calling the Python interpreter that ships with GAMS. gamstool is called like
this:

gamstool [toolCategory.]toolName positionalArguments [namedArguments]

6.1.3 Data Exchange

A collection of tools that provide functionality to exchange data between GAMS and other data sources.
This category contains tools for popular data sources and high-level programming environment and
like databases (GDX2ACCESS, GDX2SQLITE, MDB2GMS, SQL2GMS), Matlab (GDXMRW), and R
(GDXRRW). There are also tools for specialized systems like VEDA (GDX2VEDA).

6.1.3.1 Excel

A collection of tools that provide functionality to exchange data between GAMS and Excel. The tools in
this category are GDX2XLS, GDXXRW, XLS2GMS, and ExcelDump. Many of the tools described here
use the GAMS Data eXchange facility GAMS Data eXchange (GDX). Note that the executable tools in
this category will be or have been replaced over time by GAMS GAMS Connect agents and tools from
the GAMS Tools Library.

6.1.4 GDX Service

A collection of tools that operate directly on GAMS Data eXchange (GDX) containers to e.g. compare
(GDXDIFF), copy (GDXCOPY), merge (GDXMERGE), label rename (GDXRename) and encoding
(GDXEncoding).

6.1.5 Data Transformation

A collection of tools that perform very specific tasks that are awkward or inefficient to implement in
GAMS directly. The tools in this category are MessageReceiverWindow, Rank, SCENRED, SCENRED2
and all tools from Linear Algebra (linalg).

6.1.6 Other Tools

A collection of more exotic tools that can become handy in some some special circumstances. The tools
in this category are ASK, ENDECRYPT, FINDTHISGAMS, GAMS Posix Utilities, MODEL2TEX, and
all tools from Windows Only Tools (win32). Most notably, the collection contains the tool MODEL2TEX
to document the model algebra in LaTeX format.

6.2 List of Tools

The following table gives an alphabetically sorted list of all available tools.

2922 Tools Manuals

Tool Description

ASK The utility can be used to get input from an user interactively.

[LINALG.]CHOLESKY Calculates the cholesky decomposition of a symmetric positive
definite matrix.

CSV2GDX Reads a CSV file (comma separated values) and writes to a
GDX file.

[LINALG.]EIGENVALUE Calculates the Eigenvalues of a symmetric positive definite ma-
trix.

[LINALG.]EIGENVECTOR Calculates the Eigenvalues and Eigenvectors of a symmetric
positive definite matrix.

ENDECRYPT A tool to encrypt and decrypt text files.

[DATA.]EXCELDUMP Writes all worksheets of an Excel workbook to GAMS symbols.

[WIN32.]EXCELMERGE Merges the sheets of the source Excel workbook into the desti-
nation workbook.

[WIN32.]EXCELTALK Performs command on an Excel workbook specified by filename.

FINDTHISGAMS Windows command line tool for modifying GAMS specific reg-
istry entries created by the GAMS installer.

GAMS IDE Classic Integrated Development Environment.

GAMS STUDIO Integrated Development Environment.

GDX2ACCESS Converts GDX data to MS Access tables.

GDX2SQLITE Dumps the complete contents of a GDX file into a SQLite2
database. From Amsterdam Optimization Modeling Group.

GDX2VEDA Translates a GDX file into the VEDA format.

GDX2XLS Converts GDX data into a MS Excel spreadsheet.

GDXCOPY Converts a GDX file into different GDX formats.

GDXDIFF Compares the data of symbols with the same name, type and
dimension in two GDX files and writes the differences to a third
GDX file.

GDXDUMP Writes scalars, sets and parameters (tables) to standard output
formatted as a GAMS program with data statements.

[GDXSERVICE.]GDXENCODING Label encoding conversion.

GDXMERGE Combines multiple GDX files into one file. Symbols with the
same name, dimension and type are combined into a single
symbol of a higher dimension. The added dimension has the file
name of the combined file as its unique element.

GDXMRW A suite of utilities to import/export data between GAMS and
MATLAB and to call GAMS models from MATLAB and get

results back into MATLAB.

[GDXSERVICE.]GDXRENAME Renames labels in a GDX file.

GDXRRW An interface between GAMS and R. It includes functions to
transfer data between GDX and R and a function to call GAMS
from R.

GDXVIEWER Views and converts data contained in GDX files.

GDXXRW Preferred utility to read and write MS Excel spreadsheet data.

GMSUNZIP Decompression tool unzip with Debian patches, but re-
named to ”gmsunzip”.

GMSZIP Compression and archiving tool zip with Debian patches,
but renamed to ”gmszip”.

IDECMDS Sends commands to the GAMSIDE.

[LINALG.]INVERT Calculates the inverse of a square matrix A.

MDB2GMS Converts data from an MS Access database into a GAMS read-
able format.

gamside/contents.htm
http://support.kanors-emr.org/
http://www.mathworks.com/products/matlab/
http://www.r-project.org/
http://infozip.sourceforge.net/UnZip.html
https://packages.debian.org/sid/unzip
http://infozip.sourceforge.net/Zip.html
https://packages.debian.org/sid/zip
gamside/idecmds_utility.htm

6.3 Supported Platforms 2923

Tool Description

MESSAGE RECEIVER WINDOW A graphical tool that receives and displays Windows messages.

MODEL2TEX Translates a GAMS model into LaTeX

MPS2GMS Translates an MPS or LP file into an equivalent short generic
GAMS program using a GDX file to store data.

[WIN32.]MSAPPAVAIL Checks if a MS Office Application is available.

[LINALG.]OLS Ordinary Least Squares: Estimates the unknown parameters in
a linear regression model.

POSIX A collection of POSIX utilities which are usually available for
Windows and the different Unix systems and therefore help to
write platform independent scripts.

[ALG.]RANK Ranks one-dimensional numeric data.

SCENRED A tool for the reduction of scenarios that model random data
processes of a stochastic program. From Humboldt-University
Berlin.

SCENRED2 Scenred2 is a fundamental update of Scenred and offers a scenario
tree construction algorithm. From Humboldt-University Berlin.

[WIN32.]SHELLEXECUTE Spawns an external program.

SQL2GMS Converts data from an SQL database into a GAMS readable
format.

XLS2GMS Converts spreadsheet data from a MS Excel spreadsheet into a
GAMS readable format.

XLSDUMP Writes all worksheets of a MS Excel workbook to a GDX file.
Unlike gdxxrw, the program does not require that Excel is
installed.

6.3 Supported Platforms

x86 64bit
MS Windows

x86 64bit
Linux

x86 64bit
macOS

arm 64bit
macOS

ASK X∗
[LINALG.]CHOLESKY X X X X

CSV2GDX X X X X

[LINALG.]EIGENVALUE X X X X

[LINALG.]EIGENVECTOR X X X X

ENDECRYPT X X X X

[DATA.]EXCELDUMP X X X X

[WIN32.]EXCELMERGE X

[WIN32.]EXCELTALK X

FINDTHISGAMS X
GAMSIDE X∗
GAMSSTUDIO X X X X
GDX2ACCESS X∗
GDX2SQLITE X X X X

GDX2VEDA X X X X
GDX2XLS X∗
GDXCOPY X X X X
GDXDIFF X X X X
GDXDUMP X X X X

http://en.wikipedia.org/wiki/POSIX

2924 Tools Manuals

x86 64bit
MS Windows

x86 64bit
Linux

x86 64bit
macOS

arm 64bit
macOS

[GDXSERVICE.]GDXENCODING X X X X

GDXMERGE X X X X
GDXMRW X X X

[GDXSERVICE.]GDXRENAME X X X X

GDXRRW X X X
GDXVIEWER X∗
GDXXRW X∗
GMSUNZIP X X X X
GMSZIP X X X X
IDECMDS X∗
[LINALG.]INVERT X X X X

MDB2GMS X∗
MSGRWIN X
MODEL2TEX X X X X
MPS2GMS X X X X

[WIN32.]MSAPPAVAIL X

[LINALG.]OLS X X X X

POSIX∗∗ X∗
[ALG.]RANK X X X X

SCENRED X X X X
SCENRED2 X X X X

[WIN32.]SHELLEXECUTE X

SQL2GMS X∗
XLS2GMS X∗
XLSDUMP X∗

∗ Note that the tool is 32 bit but runs fine on 64 bit Windows.
∗∗ awk, cat, cksum, cmp, comm, cp, cut, diff, expr, fold, gdate, grep, gsort, gunzip, gzip, head, join, make,
mkdir, mv, od, paste, printf, rm, sed, sleep, tail, tar, tee, test, touch, tr, uniq, wc, xargs

6.3.1 LibInclude Tools Library

In the LibInclude Tools Library, various tools are collected to provide an easy access to complex task.
The tools are located in the inclib folder in the GAMS system directory and can be invoked using the
$libInclude command.

Note

The default library include directory inclib can be changed with the libIncDir command line
parameter. Hence, make sure you point to the correct directory when using $libInclude.

Usage:

$libInclude <library_file> [<tool_name>] [<option(s)>]

Currently the library includes the following tools:

6.4 ASK 2925

Libinclude file Description

moo Provides methods for multi-objective optimization in GAMS.

pyEmbMI Provide access to a model instance that can be modified and resolved
without regenerating the model over and over.

rank Routine for ranking one-dimensional numeric data. Unlike the GAMS
tool alg.rank, rank can handle percentile levels.

6.4 ASK

Writing a GUI (Graphical User Interface) for a GAMS application requires some serious programming,
and therefore place a burden on the knowledge and time of the modeler. In this section we show how
extremely simple user interfaces can be built using a few simple tools. The main purpose of these tools
is to allow a developer quickly put an application together such that an end-user does not have to edit
GAMS files. We assume the end-user runs a GAMS model from the GAMS-IDE.

The ASK utility can be used to get input from an end-user and the GDXViewer tool can be used to
present end-results. Together these tools allow you to build a minimalist GUI without any programming.

6.4.1 Usage

ask <options>

where the options are

T=string

where the string identifies the type of input item to go after and can be

• integer - when one wants an integer number

• float - when one wants a real number

• radiobutton - when one wants a radio button choice

• combobox - when one wants a combo (drop down choice) box

• checklistbox - when one wants a check list box

• fileopenbox - when one wants the name of a file to open

• filesavebox - when one wants the name of a file to save

Example: T=integer

M="string"

where the string is the text to in the box.
Example: M="Enter a number"

O="filename"

where the filename is the name of a file in which to place the results for subsequent
inclusion into GAMS
Example: O="file.inc"

2926 Tools Manuals

D="string 1|string 2..."

where the ”string 1|string 2|string 3|...|string n” gives the n strings to be associated
with multiple choices when using checkbox, radiobutton, combobox, or checklistbox.
The individual strings are separated by the delimiter ”|”
Example: D="Small data set|Medium data set|Large data set"

E="number 1|number 2..."

where the ”number 1|number 2|number 3|...|number n” gives the n numbers to
be returned to GAMS associated with the choices made when using checkbox,
radiobutton, combobox, or checklistbox. The individual numbers are separated by
the delimiter ”|”
Example: E="1|2|3|4|5"

I="filepath"

where filepath gives the path in which to look for the file under the fileopenbox
and filesavebox dialogues. If not specified this is the project directory
Example: I=”C:\gams\mine”

F="filemask"

where filemask gives the mask for acceptable files under the fileopenbox and
filesavebox dialogues. If not specified this is ∗.∗.
Example: I="∗.gdx"

R="string"

where the string gives a line of GAMS code to place in the include file.
This can contain a s parameter in which the information to return is substituted
Example: R=”$include '%s'” or R=”set i /1990∗%s/;”

C="string"

A title for the dialogue box being used
Example: C="Box to ask for a file"

L=number

where the number gives a lower bound on a numeric entry
Example: L=15

U=number

where the number gives an upper bound on a numeric entry
Example: U=15

@”filename”

where filename gives the name of a file of input instructions containing the options
above in this table
Example: @ask.opt

In addition a number by itself can be entered to put multiple entries into columns under the checkbox,
radiobutton, combobox, or checklistbox entries.

6.4 ASK 2927

6.4.2 Calling ASK utility from GAMS

The ASK utility is a simple tool to ask simple interactive questions to the end-user. For instance, if your
model requires a scalar to be changed regularly, instead of letting the end-user change the .gms source file,
it may be better to pop up a window, with a question text, where the required number can be entered.
The ASK tool allows you to do this. As the ASK tool generates a standard GAMS include file, this file
can then be used through a $include statement:

$call =ask T=integer M="Enter number of cities" o=n.inc

Scalar n ’number of cities’ /

$include n.inc

/;

display n;

The $call statement will invoke the ASK tool. If ASK.EXE is not located in the GAMS system directory
but placed somewhere else you may have to provide a path, as in:

$call =d:\util\ask T=integer M="Enter number of cities" o=n.inc

The parameter T=integer indicates we want to ask for an integer number (T means type). The parameter
M="text" specifies the question text. Finally O=filename sets the name of the include file that ASK
should create.

When we run this GAMS fragment from the IDE, we will see:

2928 Tools Manuals

After enter a number and hitting the OK button GAMS will continue. The listing file will demonstrate
clearly how the include file was formed:

2 scalar n ’number of cities’ /

INCLUDE D:\GAMS PROJECTS\ASK\N.INC

4 * Ask Import Filter Version 1.0, Nov. 1999

5 * Erwin Kalvelagen, GAMS Development Corp.

6 12

7 /;

8 display n;

Include File Summary

SEQ GLOBAL TYPE PARENT LOCAL FILENAME

1 1 INPUT 0 0 D:\GAMS PROJECTS\ASK\X.GMS

2 1 CALL 1 1 =ask T=integer M="Enter number of cities" o=n.inc

3 3 INCLUDE 1 3 .D:\GAMS PROJECTS\ASK\N.INC

In this case 12 was entered and the OK button was pressed. If the user pressed the CANCEL button, an
error will be generated and the listing file will show that the CANCEL button was pressed:

2 scalar n ’number of cities’ /

INCLUDE D:\GAMS PROJECTS\ASK\N.INC

4 * Ask Import Filter Version 1.0, Nov. 1999

5 * Erwin Kalvelagen, GAMS Development Corp.

6 * Cancel was pressed

7 /;

* **** $1

* **** LINE 4 INPUT D:\GAMS PROJECTS\ASK\X.GMS

* **** 1 Real number expected

8 display n;

In case you want to limit the integer that the user is allowed to enter you can specify a lower and an
upperbound as in:

$call =ask T=integer M="Give integer, between 0 and 5" L=0 U=5 O=n1.inc

Scalar n1 ’an integer 0..5’ /

$include n1.inc

/;

display n1;

This will only accept values between 0 and 5.

To allow the user to specify a floating point number, we can use T=float. An example is:

$call =ask T=float M="Give floating point number, no bounds" O=x.inc

Scalar x ’real’ /

$include x.inc

/;

display x;

The floating point popup window can be told to make sure the number entered is within certain bounds,
using the L=lowerbound and U=upperbound syntax:

6.4 ASK 2929

$call =ask T=float M="Give floating point number, between 0 and 5" L=0 U=5.0 O=x1.inc

Scalar x1 ’real’ /

$include x1.inc

/;

display x1;

Up to now, the include file generated by ASK just contained a single number. ASK can generate mode
complicated include files. Consider the example:

* import a set

$call =ask T=integer M="Give year between 1990 and 2010." C="My Title" L=1990 U=2010 R="set i /1990*%s/;" O=i.inc

$include i.inc

display i;

The parameters C="caption" and R="resultstring" are new. The caption is simple: it sets the name
of the window. The result string is a string that is returned after ASK has substituted s for the result.
I.e. if we enter 1991, then the result written to the include file is set i /1990∗1991/;.

The listing file can be used to check the correct behavior:

1 * import a set

INCLUDE D:\GAMS PROJECTS\ASK\I.INC

4 * Ask Import Filter Version 1.0, Nov. 1999

5 * Erwin Kalvelagen, GAMS Development Corp.

6 set i /1990*1991/;

2930 Tools Manuals

7 display i;

Include File Summary

SEQ GLOBAL TYPE PARENT LOCAL FILENAME

1 1 INPUT 0 0 D:\GAMS PROJECTS\ASK\X.GMS

2 2 CALL 1 2 =ask T=integer M="Give year between 1990 and 2010." C="My Title" L=1990 U=2010

R="set i /1990*%s/;" O=i.inc

3 3 INCLUDE 1 3 .D:\GAMS PROJECTS\ASK\I.INC

6.4.3 Radio Button

Radio buttons can be used through the parameter T=radiobuttons as in:

* import a number through radio buttons

$call =ask T=radiobuttons M="Choose single option" D="option 1|option 2|option 3|option 4|option 5" E="1|2|3|4|5" R="scalar n2 option /%s/;" o=n2.inc

$include n2.inc

display n2;

The parameter D="option 1|option 2|option 3|option 4|option 5" specifies the text of the options
shown. The list E="1|2|3|4|5" gives the return (exit) strings when a certain option is chosen. I.e. if the
second option os chosen in the list specified with the D parameter, then the second string in the E list is
returned. The result is again substituted in the string specified in the R parameter if it exists.

In this example the command line became rather long and difficult to handle. In addition some Windows
systems have restrictive maximum lengths for the command line. Therefore we offer the possibility to
specify the command line arguments in a separate external text file. This text file is passed using

@filename

. Assume the file ask.opt looks like:

T=radiobuttons

M=Choose single option

D=option 1|option 2|option 3|option 4|option 5|option 6|option 7|option 8|option 9|option 10

E=1|2|3|4|5|6|7|8|9|10

2

R=scalar n3 option /%s/;

O=n3.inc

6.4 ASK 2931

Every command line parameter is specified on a separate line. Notice the strange option 2; this tells ASK
to display the radio buttons in two columns. We can use this option file as follows:

* id, now 2 columns and using a parameter file

$call =ask @"ask.opt"

$include n3.inc

display n3;

The quotes around the filename are optional, and really only needed if the filename contains blanks.

If you want to keep all the logic in one place, then one can use GAMS to generate the option file. It is
noted that it is not possible to use the PUT facility for this. I.e.:

File f /asktest.opt/;

put f;

put ’T=checklistbox’/

’M=Choose multiple options’/

’D=option 1|option 2|option 3|option 4|option 5’/

’E=1|2|3|4|5’/

’R=%s checked list box choice’/

’O=k2.inc’/;

putClose;

$call =ask @asktest.opt

Set k2 /

$include k2.inc

/;

display k2;

2932 Tools Manuals

is not correct: the $call is handled at compile time, before the PUT statement has done its work. However,
one could use the following:

$echo ’T=checklistbox’ > asktest.opt

$echo ’M=Choose multiple options’ >> asktest.opt

$echo ’D=option 1|option 2|option 3|option 4|option 5’ >> asktest.opt

$echo ’E=1|2|3|4|5’ >> asktest.opt

$echo ’R=%s checked list box choice’ >> asktest.opt

$echo ’O=k2.inc’ >> asktest.opt

$call =ask @asktest.opt

Set k2 /

$include k2.inc

/;

display k2;

or better:

$onEcho > asktest.opt

T=checklistbox

M=Choose multiple options

D=option 1|option 2|option 3|option 4|option 5

E=1|2|3|4|5

R=%s checked list box choice

O=k2.inc

$offEcho

$call =ask @asktest.opt

Set k2 /

$include k2.inc

/;

display k2;

6.4.4 Combo Box

The next type is T=combobox which also allows a single selection:

* import a number through a combo box

$call =ask T=combobox M="Choose single option" D="option 1|option 2|option 3|option 4|option 5" E="1|2|3|4|5" R="scalar n4 option /%s/;" O=n4.inc

$include n4.inc

display n4;

6.4 ASK 2933

As an example consider the case where the model comes with three data sets: a small one, a medium sized
one and a large data set. Each data set is stored in a separate include file: small.inc, medium.inc and
large.inc. We want to ask the user which data set should be used and the correct include file should be
used. This can be accomplished by:

$echo ’T=combobox’ > ask.opt

$echo ’M=choose data set’ >> ask.opt

$echo ’D=Small data set|Medium data set|Large data set’ >> ask.opt

$echo ’E=small.inc|medium.inc|large.inc’ >> ask.opt

$echo ’R=$include %s’ >> ask.opt

$echo ’O=dataset.inc’ >> ask.opt

$call =ask @ask.opt

$include dataset.inc

Newer GAMS systems allow:

$onEcho > ask.opt

T=combobox

M=choose data set

D=Small data set|Medium data set|Large data set

E=small.inc|medium.inc|large.inc

R=$include %s

O=dataset.inc

$offEcho

$call =ask @ask.opt

$include dataset.inc

In this case dataset.inc will contain a single line: another include statement, which is either $include
small.inc, $include medium.inc or $include large.inc.

2934 Tools Manuals

6.4.5 List and Checklist Box

In some cases it may be useful to be able to select multiple items from a list. This can be done with
T=listbox:

* import a set through a listbox

$call =ask T=listbox M="Choose multiple options" D="option 1|option 2|option 3|option 4|option 5" E="1|2|3|4|5" R="%s list box choice" O=k.inc

Set k /

$include k.inc

/;

display k;

Selecting multiple entries involves holding down the CTRL key. Sometimes a convenient alternative is
T=checklistbox :

* import a set through a checked listbox

$call =ask T=checklistbox M="Choose multiple options" D="option 1|option 2|option 3|option 4|option 5" E="1|2|3|4|5" R="%s ’checked list box choice’" O=k2.inc

Set k2 /

$include k2.inc

/;

display k2;

6.4 ASK 2935

When we select options 1, 3 and 5, the following include file is generated:

* Ask Import Filter Version 1.1, Aug. 2002

* Erwin Kalvelagen, GAMS Development Corp.

1 ’checked list box choice’

3 ’checked list box choice’

5 ’checked list box choice’

which will populate the set k2 as follows:

1 * import a set through a checked listbox

3 set k2 /

INCLUDE D:\GAMS PROJECTS\ASK\K2.INC

5 * Ask Import Filter Version 1.1, Aug. 2002

6 * Erwin Kalvelagen, GAMS Development Corp.

7 1 ’checked list box choice’

8 3 ’checked list box choice’

9 5 ’checked list box choice’

10 /;

11 display k2;

---- 11 SET k2

1, 3, 5

The last type is the generic string type: T=string. This allows the user to enter any string, which is then
copied to an include file as is.

6.4.6 File Open Dialog Box

The type T=fileopenbox will display a file open dialog box from which the user can select a file.

2936 Tools Manuals

Related options are I=InitialDirectory and F=Filter. A complete example to ask for an include file
could be:

$call =ask T=fileopenbox I="%system.fp%" F="select*.inc" o=fln.inc R="$include ’%s’" C="Select include file"

$include fln.inc

This will open a file open dialog box with the starting directory being the GAMS project/working directory
(this is also where GAMS looks for include files by default). Only files with mask SELECT∗.INC are shown.
The file FLN.INC will contain an include statement with the file the user has selected.

A related method would be:

$call =ask T=fileopenbox I="%system.fp%" F="select*.inc" o=fln.inc R="$setglobal incfile ’%s’" C="Select include file"

$include fln.inc

$include %incfile%

where we use a $setglobal to set the macro incfile to contain the user-specified file name.

To let the user choose from a set of related GDX files, one could use something like:

$call =ask T=fileopenbox I="%system.fp%" F="myproject*.gdx" o=setgdxname.inc R="$setglobal gdxfile ’%s’" C="Select GDX file"

$include setgdxname.inc

$gdxIn %gdxfile%

$load i

$load j

In case you want to ask for a filename of a file to be written, use the type T=filesavebox. E.g.:

$call =ask T=filesavebox I="%system.fp%" o=fln.inc R="$setglobal gdxfile ’%s’" C="Specify gdx file"

$include fln.inc

Set i / a, b, c /;

execute_unload ’%gdxfile%’, i;

In case you want to ask for a directory, use the type T=selectdirectory. In this case the filter option F

is ignored. E.g.:

$call =ask T=selectdirectory I="%system.fp%" o=fln.inc R="$setglobal myInputdir ’%s’" C="Select directory"

$include fln.inc

$log Selected directory "%myInputdir%"

6.5 Cholesky

Note

This tool is part of the GAMS Tools Library. Please inspect the general information about GAMS
Tools.

This calculates the Cholesky decomposition of a symmetric positive definite matrix A: A = LLt The
matrix A is indexed over A(i,i).

6.5 Cholesky 2937

6.5.1 Usage

Command line:

gamstool [linalg.]Cholesky i A L gdxIn=fileIn.gdx gdxOut=fileOutgdx

Compile time:

$callTool [linalg.]Cholesky i A L [gdxIn=fileIn.gdx] [gdxOut=fileOutgdx]

Execution time:

executeTool ’[linalg.]Cholesky i A L [gdxIn=fileIn.gdx] [gdxOut=fileOutgdx]’;

Where:

Argument Description

i Name of set used in matrix i(∗).

A Name of two-dimensional matrix parameter A(i,i).

L Name of two-dimensional parameter containing the factor L(i,i).

The following named parameters are available:

Parameter Description

gdxIn=fileIn.gdx Name of GDX file that contains symbols i and A. Mandatory if
called from the command line, otherwise optional.

gdxOut=fileOut.gdx Name of GDX file that contains symbol L after execution. Manda-
tory if called from the command line, otherwise optional.

6.5.2 Examples

executeTool.checkErrorLevel ’linalg.cholesky n Yl L’;

* Check if Cholesky factorization is correct

Parameter Y_, Ydiff;

Y_(i,j) = sum(n, L(i,n)*L(j,n));

Ydiff(i,j) = round(Y.l(i,j) - Y_(i,j),1e-6);

option Ydiff:8:0:1;

abort$card(Ydiff) Ydiff;

2938 Tools Manuals

For the complete example, see model [Maxcut] in the GAMS Model Library.

execute_unload ’a.gdx’, i, a;

executeTool.checkErrorLevel ’linalg.cholesky i a L gdxin=a.gdx gdxout=b.gdx’;

execute_load ’b.gdx’, L;

$callTool linalg.cholesky i a L;

6.6 CSV2GDX

CSV2GDX is a tool that reads a CSV file and writes to a GDX file. There are multiple ways to read
[CSV] (https://en.wikipedia.org/wiki/Comma-separated values) files (Comma Separated Values)
inside GAMS (see Data Exchange with Text Files for instance), but a number of features available in
CSV2GDX make it possible to read a CSV file where GAMS itself cannot be used. In addition to
the syntax explanation and the basic functionalities demonstrated on some examples, this tutorial also
discusses some advantages and disadvantages of CSV2GDX compared to the GAMS internal table statement.

6.6.1 Usage

CSV2GDX is called by specifying the CSV file and several options to define how to read the data.

csv2gdx filename {options}

Filename

The input file; the .csv file extension is assumed when no extension has been specified.

Parameters can also be read from a text file; the use of an external file for parameters is
indicated by preceding the file name with a @ (at sign). When reading parameters from a text
file, lines starting with an asterisk (∗) will be ignored. See also Example 8.

https://en.wikipedia.org/wiki/Comma-separated_values

6.6 CSV2GDX 2939

Option Default Description

6.6.2 Options

The following options can be used when calling CSV2GDX:

Option Default Description

acceptBadUels N Indicate if bad UELs are accepted or result in an error return
code.

autoCol none Generate automatic UELs for each column.

autoRow none Generate automatic UELs for each row.

checkDate N Write GDX file only if the CSV file is more recent than the
GDX file.

colCount none Number of columns in the input file.

decimalSep Period Specify a decimal separator.

fieldSep Comma Specify a field separator.

id none Identifier for the symbol in the GDX file.

index none Identify columns to get UELs from.

output <CSVFilename>.gdx Optional output filename.

password none Password for an encrypted input file.

storeZero N Indicate how zero values are handled.

text none Specify the column to get explanatory text from.

trace 1 Controls the amount of information written to the log.

useHeader N Indicate if the first row is a header row.

value none Specify the column to get the values from.

valueDim N Adds an extra dimension for values.

values none Specify the columns to get the values from.

Note

• The user has to specify an identifier for the symbol in the GDX file within the parameter id,
regardless of the data structure in the CSV file.

• CSV2GDX determines the number of columns in the CSV file from the header row or from the
user defined input specified in the parameter colCount. Therefore, the user must enable the
option useHeader or has to specify the number of columns within colCount in any case.

Some more detailed remarks on the options:

acceptBadUels = boolean (default=N)

This option specifies how to proceed, when a bad UEL (e.g. too long) is encountered. If set to
N, reading is stopped, and an error is signaled. When set to Y, a valid UEL is made up and
reading is continued.

autoCol = string

2940 Tools Manuals

Generate automatic UELs for each column. The autoCol string is used as the prefix for the
column label numbers. This option overrides the use of a header row. However, if there is a
header row, one must skip the row by enabling useHeader. This option is demonstrated in
Example 3.

autoRow = string

Generate automatic UELs for each row. The autoRow string is used as the prefix for the row
label numbers. The generated unique elements will be used in the first index position shifting
other elements to the right. Using autoRow can be helpful when there are no labels that can
be used as unique elements but also to store entries that would be a duplicate entry without
an unique row label. This option is demonstrated in Example 3.

checkDate = boolean (default=N)

Write GDX file only if the CSV file is more recent than the GDX file to save resources when
running the model containing the CSV2GDX call multiple times. This option is demonstrated in
Example 5.

colCount = integer

Number of columns in the input file. This parameter is required if there is no header row, since
CSV2GDX determines the number of columns from the header row. This option is demonstrated
in Example 3. Note that the lastCol constant cannot be used for the colCount option.

decimalSep = [Period, Comma] (default=Period)

Specify a decimal separator. The decimal is normally a period, but this parameter allows
a comma as the decimal separator, too. Special values recognized are Eps, NA resp. N/A,
Inf, True, False, None, Null and Undef (case insensitive). A string that is not recognized
as a valid number will be stored as Undef. This option is demonstrated in Example 2 and
Example 6 (focusing on reading special values) for instance.

fieldSep = [Comma, SemiColon, Tab] (default=Comma)

Specify a field separator. Fields are normally separated by a comma, but this parameter allows
some additional choices. Using tabs as delimiter should be avoided, since text editors act
different on handling them. For instance, one must specify tabs in the GAMS IDE explicitly
using %system.tab%:

$onEcho > tabSeparated.csv

USA%system.tab%100

GER%system.tab%70

$offEcho

$call csv2gdx tabSeparated.csv id=x fieldSep=tab index=1 colCount=2 value=lastCol

This option is demonstrated in Example 2 and Example 3 for instance.

id = string

Identifier for the symbol in the GDX file. Additional symbols, Dim1, Dim2, ... for the domain
sets of the symbol id will be added automatically to the GDX file. Executing CSV2GDX without
specifying an identifier will fail.

index = list of columns

6.6 CSV2GDX 2941

Identify columns to get UELs from. The columns are represented as a list of integers separated
by comma. For example index=1,2,3,4 resp. index=(1,2,3,4); in this case the notation
1..4 is allowed. Brackets can only be used on Windows systems. The index option is used in
all examples.

output = filename (default=<CSVFilename>.gdx)

Optional output filename. If no output file is specified, CSV2GDX will use the input filename
and change the file extension to .gdx. If no path is specified, the output file will be created in
the current directory. This option is demonstrated in Example 2 for instance.

password = string

Password for an encrypted input file. Use ENDECRYPT to encrypt a file. This option is
demonstrated in Example 7.

storeZero = boolean (default=N)

Indicate if zero values are ignored or written as EPS; an empty field is always ignored. This
option is demonstrated in Example 6.

text = integer

Specify the column to get explanatory text from when reading a set. For example text=5.
This option is demonstrated in Example 9.

trace = integer (default=1)

Controls the amount of information written to the log. Higher values will generate more
output. Valid range is 0..3. Set trace=0 to prevent writing any information to the log. This
feature is demonstrated in Example 6.

useHeader = boolean (default=N)

Indicate if the first row is a header row. The fields in the header row of the columns specified
within the values option will be used as UELs. A header row is not needed or should be
ignored when using the colCount or autoCol option. To skip one existing header row while
using autoCol, enable useHeader. This option is demonstrated in Example 1 and Example 2
for instance.

value = integer

Specify the column to get the values from. For example value=5. This option is demonstrated
in Example 2.

valueDim = boolean (default=N)

Indicate if an extra dimension for values is added to the parameter even if there is just one
value column. This is ignored, if there is no value column. This feature is demonstrated in
Example 2.

values = list of columns

Specify the columns to get the values from. When using a list of columns for the values and
useHeader enabled, each field in the first row of the columns is used as UEL to identify the
values in those columns. See also useHeader and autoCol below. If the number of columns is
unknown, the symbolic constant lastCol can be useful: values=2..lastCol. This option is
demonstrated in Example 1 and Example 5 for instance.

2942 Tools Manuals

6.6.3 Advances and limitations

Advances

• CSV2GDX enables the user to read CSV data where the table statement cannot be used without doing
further preprocessing, e.g. in case of semicolon- or tab separated data or comma separated decimals.

• In general, CSV2GDX is a quite performant tool compared to the GAMS internal table statement.

Limitations

• Suppose we want to skip some rows while reading the data. For example, if the CSV file contains
some reference information in a specific row which we do not want to be stored in the domain sets
or in the parameter. However, skipping rows cannot be done with CSV2GDX.

• There might be CSV files with no header and varying, unknown length of rows. Since CSV2GDX

determines the number of columns based on the header row or by setting the colCount option in
advance, CSV2GDX might return incorrect results or the execution is aborted.

• Reading several parameters from a CSV file cannot be done directly within the CSV2GDX call. The
data must be split later on as demonstrated in Example 4.

• CSV2GDX cannot read CSV files containing line breaks within a (quoted) field. You will either get
an error message - ”Quoted field not terminated with closing quote” - or the result might not be
correct for unquoted fields, because the field content will be cut by the line break.

6.6.4 Getting Started

We introduce the basic functionalities of CSV2GDX on some simple examples. Note that many CSV files
can be read inside GAMS directly using a table statement, but a number of features available in CSV2GDX

enable the user to read a CSV file where the table statement cannot be used, e.g. reading files with
semicolon separated data or if the decimals are separated by comma instead of a period.

6.6.4.1 Example 1 - Reading CSV Files with CSV2GDX

The first example of this collection demonstrates the key commands of CSV2GDX. For instance, consider
the table statement of the model [trnsport] from the GAMS Model Library:

Table d(i,j) ’distance in thousands of miles’

new-york chicago topeka

seattle 2.5 1.7 1.8

san-diego 2.5 1.8 1.4;

The data can be stored in distance.csv like this:

6.6 CSV2GDX 2943

,new-york,chicago,topeka

seattle,2.5,1.7,1.8

san-diego,2.5,1.8,1.4

First of all, CSV2GDX is called now, to generate distance.gdx by processing the input file distance.csv:

csv2gdx distance.csv id=d index=1 values=2..lastCol useHeader=y

CSV2GDX generates one single parameter d and two domain sets from the input file. The name of the
parameter in the GDX file must be declared within the id option, while the domain sets for this parameter
will be labeled with Dim1 and Dim2 automatically. Column number one is specified as the first domain set
within the index option. The values option is used to specify the column numbers 2,3,4 containing the
data values. By enabling the useHeader option, the fields of the first row of the columns specified within
the values option will be handled as the second domain set. If the number of columns is unknown in
advance, one can use the lastCol constant in the values or index option.

However, to complete the declaration of the sets and parameter for the model trnsport, one must load the
data from distance.gdx:

Set

i ’canning plants’

j ’markets’;

$gdxIn distance.gdx

$load i = Dim1

$load j = Dim2

Parameter d(i,j) ’distance in thousands of miles’;

$load d

$gdxIn

display i, j, d;

This example is also part of the GAMS Data Utilities Library, see model [csv2gdx2] for reference.

2944 Tools Manuals

6.6.4.2 Example 2 - Reading Semicolon separated Data

In this example, the distances from the previous example are stored as a list. We want to read the cities
and the column containing the miles measurement. Note, that the fields are separated by semicolon and the
decimals by comma. As described in Data Exchange with Text Files the CSV file must be preprocessed
with the POSIX tools in advance to replace commas by dots and semicolons by commas to read the data
directly using a simple table statement.

i;j;miles

seattle;new-york;2,5

seattle;chicago;1,7

seattle;topeka;1,8

san-diego;new-york;2,5

san-diego;chicago;1,8

san-diego;topeka;1,4

The data will be stored as distanceOut.gdx by adding the output file option. One can specify the field
and decimal separators within the fieldSep and decimalSep option. Domain sets for the parameter to be
read are declared by index=1,2.

csv2gdx distance.csv output=distanceOut.gdx id=d fieldSep=semiColon decimalSep=comma index=1,2 useHeader=y value=3

In order to load the data from the GDX file, execute the commands from the previous example. However,
note that Dim2 does not contain the UELs from the header row this time, but the unique elements of the
second column specified in the index option. The option useHeader is enabled to indicate that there is
a header row to be skipped when reading the values. Also note, that the symbol d in the GDX file has
exactly two dimensions. It may be useful to add an additional dimension to the parameter dmod, e.g. if
different measurement units for the distances may become relevant later on and need to be calculated
(kilometer for instance).

This can be done by adding the option valueDim:

csv2gdx distance.csv output=distanceOut.gdx id=d fieldSep=semiColon decimalSep=comma index=1,2 useHeader=y value=3 valueDim=y

The option adds a third dimension to d. Now we want to add the distances in kilometer by calculating
the values inside the model:

Set m ’measurement unit’ / miles, km /;

Parameter dmod(i,j,m);

$gdxIn distanceOut.gdx

$load dmod = d

$gdxIn

display dmod;

dmod(i,j,’km’) = 1.852*dmod(i,j,’miles’);

display dmod;

Parameter d (valueDim disabled):

6.6 CSV2GDX 2945

---- 36 PARAMETER d distance in thousands of miles

new-york chicago topeka

seattle 2.500 1.700 1.800

san-diego 2.500 1.800 1.400

Parameter dmod resp. d with valueDim enabled before calculating further measurements:

---- 49 PARAMETER dmod

miles

seattle .new-york 2.500

seattle .chicago 1.700

seattle .topeka 1.800

san-diego.new-york 2.500

san-diego.chicago 1.800

san-diego.topeka 1.400

Parameter dmod with valueDim enabled after calculating the distances in kilometer inside the GAMS
model:

---- 52 PARAMETER dmod

miles km

seattle .new-york 2.500 4.630

seattle .chicago 1.700 3.148

seattle .topeka 1.800 3.334

san-diego.new-york 2.500 4.630

san-diego.chicago 1.800 3.334

san-diego.topeka 1.400 2.593

This example is also part of the GAMS Data Utilities Library, see model [csv2gdx3] for reference.

6.6.4.3 Example 3 - Dealing with missing Labels and Duplicates

Missing Labels

The file EUCData.csv contains the extracted euclidean coordinates of the first nine cities of berlin52.tsp
from [TSPLib] (http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/). You might want to
import the data to calculate a complete distance matrix inside GAMS to find an optimal traveling salesman
tour for instance.

565.0;575.0

25.0;185.0

345.0;750.0

945.0;685.0

845.0;655.0

880.0;660.0

25.0;230.0

525.0;1000.0

580.0;1175.0

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

2946 Tools Manuals

There is no header row, neither a column with labels to serve as domain sets for the coordinates of
the cities. However, CSV2GDX automatically generates UELs for columns and rows by adding ascending
numbers to an user-defined prefix specified within the autoCol and autoRow option. Also note, because of
the missing header, the number of columns in the file must be manually determined and declared within
colCount.

csv2gdx EUCData.csv id=coord fieldSep=semiColon autoCol=x autoRow=city colCount=2 values=1,2

The rows will be labeled with city1...city9, the columns with x1 and x2.

Load the parameter and sets from the GDX file to calculate the complete distance matrix. The set
Dim1 contains the UELs city1...city9 for the set i of cities, Dim2 is the set of axes/coordinates i.e.
containing the elements x1 and x2 to represent the x-axis and y-axis:

Set

i ’cities’

axes ’x1 and x2 axes’;

$gdxIn EUCData.gdx

$load i = Dim1

$load axes = Dim2

Parameter coord(i,axes) ’coordinate of city i’;

$load coord

$gdxIn

display coord;

The display statement generates the following output:

---- 43 PARAMETER coord coordinate of city i

x1 x2

city1 565.000 575.000

city2 25.000 185.000

city3 345.000 750.000

city4 945.000 685.000

city5 845.000 655.000

city6 880.000 660.000

city7 25.000 230.000

city8 525.000 1000.000

city9 580.000 1175.000

One could now easily proceed calculating a complete distance matrix:

Alias (i,j);

Parameter c(i,j) ’euclidean distance between city i and j’;

c(i,j) = eDist(coord(i,"x1") - coord(j,"x1"),coord(i,"x2") - coord(j,"x2"));

6.6 CSV2GDX 2947

Duplicates

In the previous example, using the autoCol and autoRow option had an additional benefit as we declared
the set of the cities on the fly. However, one major advantage/purpose of these options is to prevent error
messages or loss of data when reading rows with duplicate keys.

Consider the input file duplicates.csv:

red,red,1

red,red,2

red,green,3

blue,blue,4

Note the duplicate key in the first two rows. By the use of the autoRow parameter in the CSV2GDX call
unique labels are added to each row. This way a GAMS program can store all data with duplicate keys
and prepare for better error messages.

csv2gdx duplicates.csv id=data index=1,2 value=3 colCount=3 autoRow=row

Ascending numbers will be added to the 'row' prefix specified.

The data can be easily loaded into sets and parameter by executing the following lines:

Set

row ’UELs generated by autoRow’

color ’set of colors’;

$gdxIn duplicates.gdx

$load row = Dim1

$load color = Dim2

$loadm color = Dim3

Parameter data(row,color,color);

$load data

$gdxIn

display row, color, data;

Note the usage of the $loadm command to merge all colors into one set of colors. The display statement
generates the following output in the listing file:

---- 77 SET row UELs generated by autoRow

row1, row2, row3, row4

---- 77 SET color set of colors

red , blue , green

2948 Tools Manuals

---- 77 PARAMETER data

red blue green

row1.red 1.000

row2.red 2.000

row3.red 3.000

row4.blue 4.000

The complete example is also part of the GAMS Data Utilities Library, see model [csv2gdx4] for
reference.

6.6.4.4 Example 4 - Reading several Parameters from a single Input File

This example demonstrates how to read the data from a single input file into different parameters. However,
this cannot be done directly using the CSV2GDX tool, since CSV2GDX writes to a single parameter (see
section limitations). For instance, an energy supplier plans to build new transmission lines from their
power plants to some distribution stations. There are different stages for the transmissions lines. The
relevant data to be read are the plant and station identifiers, the capacity bounds per transmissions line
on a certain stage and the associated cost. The data is all stored in a single file:

plant;station;length;minCap;maxCap;stage;cost

p1;s1;100;50;100;1;1200

p1;s2;75;35;65;1;500

p1;s1;100;100;150;2;1800

p2;s1;150;50;100;1;1400

p2;s1;150;100;150;2;2000

p2;s1;150;150;200;3;2350

p2;s2;75;25;50;1;600

p2;s2;75;50;75;2;800

p3;s1;80;40;100;1;1050

Read networkData.csv with CSV2GDX by calling:

csv2gdx networkData.csv id=dataPar useHeader=y fieldSep=semiColon index=1,2,6 values=4,5,7

Note that the stage stored in column six is a domain set, too, while the length of the transmission line in
the third column is of no interest. Since CSV2GDX writes to a single parameter, one must split the data
later on into minCap, maxCap and cost for instance:

Parameter

dataPar

minCap(plant,station,stage)

maxCap(plant,station,stage)

cost(plant,station,stage);

$gdxIn networkData.gdx

$load plant = Dim1

$load station = Dim2

6.6 CSV2GDX 2949

$load stage = Dim3

$load dataPar

$gdxIn

minCap(plant,station,stage) = dataPar(plant,station,stage,’minCap’);

maxCap(plant,station,stage) = dataPar(plant,station,stage,’maxCap’);

cost(plant,station,stage) = dataPar(plant,station,stage,’cost’);

This example is also part of the GAMS Data Utilities Library, see model [csv2gdx5] for reference.

6.6.4.5 Example 5 - Reading economic Data from the World Bank Data Catalog

This example demonstrates how to read some real CSV data from the [World Bank Data Catalog] (
https://datacatalog.worldbank.org/). Suppose we want to read some time series data, e.g. GDP
growth rates. The data is structured as follows (rows shortened for presentation):

"Country Name","Country Code","Indicator Name","Indicator Code","1999","2000","2001","2002","2003","2004","2005","2006","2007","2008","2009","2010","2011","2012","2013","2014","2015","2016","2017","2018","2019","2020",

"East Asia and Pacific","EAA","GDP growth, constant 2010 USD","NYGDPMKTPKDZ","","","","","","","","","","","","","","","","","6.503564548","6.327469798","6.449458613","6.181694329","6.065321782","5.964012702",

We are not interested in the ”Country Code”, ”Indicator Name” and ”Indicator Code”. Since the annual
GDP rate per country is unique, the CSV2GDX call is quite easy despite the large number of columns.
Note that there are only a few limitations of CSV2GDX, discussed in the section Advances and limitations.
Empty fields in the data will always be ignored, causing no trouble at all if the field separators are set
correctly.

csv2gdx GDPData.csv id=GDPG index=1 values=5..lastCol useHeader=y checkDate=y

The option checkDate is enabled to save resources if you run the model multiple times, as the GDX file is
only written if the CSV file is more recent than the GDX file. To load the sets and parameter from the
GDX file, execute the following commands:

Set country, year;

$gdxIn GDPData.gdx

$load country = Dim1

$load year = Dim2

Parameter GDPRate(country,year);

$load GDPRate

$gdxIn

display country, year, GDPRate;

The display statement generates the following output in the listing file. Obviously, double quotes are
removed from the fields of the value columns, but also from the index columns:

https://datacatalog.worldbank.org/
https://datacatalog.worldbank.org/

2950 Tools Manuals

---- 12 SET country

East Asia and Pacific, Europe and Central Asia, Latin America and the Caribbean, Middle East and North Africa, South Asia, Sub-Saharan Africa, World (WBG members)

Afghanistan , Albania , Algeria , Angola , Argentina , Armenia , Azerbaijan

---- 12 SET year

2015, 2016, 2017, 2018, 2019, 2020

---- 12 PARAMETER GDPR

2015 2016 2017 2018 2019 2020

East Asia and Pacific 6.504 6.327 6.449 6.182 6.065 5.964

Europe and Central Asia 0.963 1.672 3.782 2.901 3.029 2.969

Latin America and the Caribbean -0.562 -1.526 0.902 2.044 2.586 2.701

Note that the listings have been shortened for presentation. However, there is no data for the years
1999-2014.

This example is also part of the GAMS Data Utilities Library, see model [csv2gdx6] for reference.

6.6.5 Additional Examples for extended Use

The examples in this section discuss some special features. Some topics were already mentioned briefly in
the previous section like reading compressed and encrypted files or reading the CSV2GDX options from an
external file.

6.6.5.1 Example 6 - Reading special Values

To illustrate how special values are interpreted, consider the following data:

one,two,three,four,five,six

red,red,,Undef,’3.3’,red

red,red,"4.4",5.5,Eps,green

"red",’green’,7.7e+02,8.8°,-Inf,blue
blue,blue,10,0,NA,purple

brown,blue,true,false,N/A,green

black,red,None,Null,"True",blue

Calling CSV2GDX to read the data and write to GDX:

csv2gdx data.csv id=A index=1,2,6 values=3..5 useHeader=y storeZero=y trace=3

The GAMS log reports three occurrences of undefined values. Note that the amount of information written
to the log was increased by setting the option trace=3.

6.6 CSV2GDX 2951

--- call csv2gdx specialValues.csv id=A index=1,2,6 values=3..5 useHeader=y storeZero=y trace=3

CSV2GDX 25.2.0 r67638 ALFA Released 15Aug18 WEI x86 64bit/MS Windows

Header enabled, number of columns = 6

1: one

2: two

3: three

4: four

5: five

6: six

2: |red|, |red|, ||, |Undef|, |’3.3’|, |red|

3: |red|, |red|, |4.4|, |5.5|, |Eps|, |green|

4: |red|, |’green’|, |7.7e+02|, |8.8°|, |-Inf|, |blue|

5: |blue|, |blue|, |10|, |0|, |NA|, |purple|

Undef Count = 3, No errors, CSV2GDX time = 157ms

As mentioned in decimalSep, CSV2GDX fails to recognize the number 8.8 from the string 8.8° because of
the unknown special character, while 7.7e+02 is interpreted as a number of course. Watch out if there
are quotes in the values or index columns. The number 4.4 enclosed by double quotes is interpreted as a
number, while '3.3' is not (as you can see in the log, the double quotes are eliminated, while the single
quotes remain). In the first column, the double quotes enclosing the string red are removed, while the
single quotes in the second column enclosing the string green are not removed. The zero value is stored as
EPS by setting storeZero=y. Note that no error was reported, even though some of the values stored as
Undef may cause some trouble in your model later on (use $onUndf to enable loading parameters with
undefined values).
The booleans true and false in the second last row are represented by the numericals 1 resp. 0 within
GAMS. The special values None and Null will be converted to 0. Since storeZore is enabled in this
example, the value displayed for false, None and Null is EPS.

Suppose we want to declare the parameter A as: A(color,color,color,number). We can proceed as follows:

Set color, number;

$gdxIn data.gdx

$load color = Dim1

$loadm color = Dim2

$loadm color = Dim3

$load number = Dim4

Parameter A(color,color,color,number);

$onUndf

$load A

$offUndf

$gdxIn

display A;

Loading undefined values is enabled by adding $onUndf. This example is also part of the GAMS Data
Utilities Library, see model [csv2gdx7] for reference.

6.6.5.2 Example 7 - Reading a compressed encrypted Input File

Reading a compressed input file is supported by CSV2GDX. The gzip program in the gbin sub-directory or
ENDECRYPT must be used for compression. Call gzip to compress the CSV file by running the following
command:

2952 Tools Manuals

gzip compressMe.csv -c > compressedFile.csv.gz

Gzip writes to standard output by appending -c to keep the original file unchanged. The output is then
redirected to compressedFile.csv.gz. To read the compressed file, call CSV2GDX with the same options as
for processing the uncompressed file.

csv2gdx compressedFile.csv.gz output=unCompressedGzipFile.gdx id=d index=1 useHeader=y values=2..lastCol

The data in this example is taken from Example 1.

While the main purpose of Endecrypt is about encrypting and decrypting files, it also compresses the file.
If you want to compress a file with Endecrypt, do not specify an password file:

cat compressMe.csv | endecrypt -W compressedFile.csv

The option -W encrypts standard input and writes to compressedFile.csv. Although there will be no
encryption because of the missing password file, one must set the option -W. You can read the compressed
file with CSV2GDX:

csv2gdx compressedFile.csv output=unCompressedEndycryptFile.gdx id=d index=1 useHeader=y values=2..lastCol

Note that there is no further file extension added.

By adding a password file (containing the password in the first line), Endecrypt encrypts and compresses
the input file:

cat compressMe.csv | endecrypt -W compressedEncryptedFile.csv passwordFile.txt

The password file will be deleted. Execute the following command to read the compressed and encrypted
file with CSV2GDX:

csv2gdx compressedEncryptedFile.csv output=unCompressedDecryptedFile.gdx password=Anton id=d index=1 useHeader=y values=2..lastCol

The password option is added. You must set the password directly within the option, in this case ”Anton”,
not the password file. Note that CSV2GDX does not support .gz, .7z etc. compressed files!

This example is also part of the GAMS Data Utilities Library, see model [csv2gdx8] for reference.

6.6 CSV2GDX 2953

6.6.5.3 Example 8 - Reading Options from an external File

This example demonstrates how to read the options from an external text file as already mentioned
in section Filename. The file distance.csv from the Getting Started Example 1 will be processed with
CSV2GDX while reading the options from an external text file named howToRead.txt.

csv2gdx distance.csv @howToRead.txt

Swapping the order of the CSV filename and the instructions filename inside the call statement will cause
an error. Note the leading @ (at sign) on the instructions file, containing the following options:

* These lines are interpreted as a comment

* This file specifies the options for reading distance.csv using CSV2GDX

id = d

fieldSep = semiColon

decimalSep = comma

index = 1

useHeader = y

values = 2..lastCol

This example is also part of the GAMS Data Utilities Library, see model [csv2gdx9] for reference.

6.6.5.4 Example 9 - Reading Set Elements with explanatory Text

In this example, we will demonstrate how to read explanatory text of set elements using the CSV2GDX

option text.

Consider the input file data.csv:

a1,b1,explanatory text of a1.b1,10

a1,b2,explanatory text of a1.b2,20

a2,b1,explanatory text of a2.b1,30

a2,b2,explanatory text of a2.b2,40

The set elements are stored in the first and second column, the explanatory text is stored in the third
column and there is a fourth column containing some values. Suppose we want to read a two-dimensional
set with explanatory text. By default, CSV2GDX does not read explanatory text, i.e. by running the
following command:

csv2gdx data.csv id=abOnlyUELs index=1,2 colCount=4

CSV2GDX creates a GDX file containing the two-dimensional set abOnlyUELs without explanatory text
(needless to say, we did not specify a column to get the explanatory text from). By specifying the third
column within the index option, i.e. index=1..3, the result will be a three-dimensional set (without
explanatory text, too). Using the value option is not suitable, as the data type will be a parameter instead
of a set (in addition, CSV2GDX expects numeric data, potentially leading to undefined values). We can
read the explanatory text easily by specifying column three within the text option:

csv2gdx data.csv id=abWithExpText index=1,2 text=3 colCount=4

The figure shows the set abOnlyUELs on the left without explanatory text and the set abWithExpText on
the right:

Note that the text and value(s) options cannot be used at the same time (instead, use multiple CSV2GDX

calls in scenarios when you wish to read set elements with explanatory text and parameters from a single
data set).

2954 Tools Manuals

6.7 Eigenvalue

Note

This tool is part of the GAMS Tools Library. Please inspect the general information about GAMS
Tools.

This calculates the Eigenvalues of a symmetric positive definite matrix. The matrix A is indexed over
A(i,i). AVal(i) is indexed over i.

6.7.1 Usage

Command line:

gamstool [linalg.]Eigenvalue i A AVal gdxIn=fileIn.gdx gdxOut=fileOut.gdx

Compile time:

$callTool [linalg.]Eigenvalue i A AVal [gdxIn=fileIn.gdx] [gdxOut=fileOut.gdx]

Execution time:

executeTool ’[linalg.]Eigenvalue i A AVal [gdxIn=fileIn.gdx] [gdxOut=fileOut.gdx]’;

Where:

Argument Description

i Name of set used in matrix i(∗).

A Name of two-dimensional matrix parameter A(i,i).

AVal Name of one-dimensional parameter to store the Eigenvalues AVal(i).

The following parameters are available:

Parameter Description

gdxIn=fileIn.gdx Name of GDX file that contains symbols i and A. Mandatory if
called from the command line, otherwise optional.

gdxOut=fileOut.gdx Name of GDX file that contains symbol AVal after execution.
Mandatory if called from the command line, otherwise optional.

6.8 Eigenvector 2955

6.7.2 Example

set i /i1*i3/;

alias (i,j);

table a(i,j)

i1 i2 i3

i1 9 1 1

i2 1 9 1

i3 1 1 9

;

parameter e(i) ’eigenvalues’;

execute_unload ’a.gdx’, i, a;

executeTool.checkErrorLevel ’linalg.eigenvalue i a e gdxin=a.gdx gdxout=b.gdx’;

execute_load ’b.gdx’, e;

abort$(abs(e(’i1’)-8)>1e-3 or abs(e(’i2’)-8)>1e-3 or abs(e(’i3’)-11)>1e-3) ’Wrong Eingenvalues’, e;

option clear=e;

executeTool.checkErrorLevel ’linalg.eigenvalue i a e’;

abort$(abs(e(’i1’)-8)>1e-3 or abs(e(’i2’)-8)>1e-3 or abs(e(’i3’)-11)>1e-3) ’Wrong Eingenvalues’, e;

6.8 Eigenvector

Note

This tool is part of the GAMS Tools Library. Please inspect the general information about GAMS
Tools.

This calculates the Eigenvalues and Eigenvectors of a symmetric positive definite matrix. The matrices A
and AVec are indexed over (i,i). AVal(i) is indexed over i.

6.8.1 Usage

Command line:

gamstool [linalg.]Eigenvector i A AVal AVec gdxIn=fileIn.gdx gdxOut=fileOut.gdx

Compile time:

$callTool [linalg.]Eigenvector i A AVal AVec [gdxIn=fileIn.gdx] [gdxOut=fileOut.gdx]

Execution time:

executeTool ’[linalg.]Eigenvector i A AVal AVec [gdxIn=fileIn.gdx] [gdxOut=fileOut.gdx]’;

Where:

2956 Tools Manuals

Argument Description

i Name of set used in matrix i(∗).

A Name of two-dimensional matrix parameter A(i,i).

AVal Name of one-dimensional parameter to store the Eigenvalues AVal(i).

AVec Name of two-dimensional matrix to store the Eigenvectors AVec(i,i).

The following parameters are available:

Parameter Description

gdxIn=fileIn.gdx Name of GDX file that contains symbols i and A. Mandatory if
called from the command line, otherwise optional.

gdxOut=fileOut.gdx Name of GDX file that contains symbols AVal and AVec after
execution. Mandatory if called from the command line, otherwise
optional.

6.8.2 Example

Set i / i1*i5 /;

Alias (i,j);

Table a(i,j)

i1 i2 i3 i4 i5

i1 1 2 4 7 11

i2 2 3 5 8 12

i3 4 5 6 9 13

i4 7 8 9 10 14

i5 11 12 13 14 15

;

Table expected(i,*)

val i1 i2 i3 i4 i5

i1 -8.464425 0.5550905 -0.2642556 0.2892854 0.6748602 0.2879604

i2 -1.116317 0.4820641 -0.2581518 0.2196341 -0.7349311 0.3355726

i3 -0.512109 0.2865066 0.2159261 -0.8437897 0.0411896 0.3970041

i4 -0.027481 -0.0992784 0.7711236 0.3943678 0.0055409 0.4898525

i5 45.120332 -0.6062562 -0.4714561 -0.0238286 0.0520829 0.6378888

;

Parameter

eval(i) ’Eigenvalues’

evec(i,j) ’Eigenvectors’;

execute_unload ’a.gdx’, i, a;

executeTool.checkErrorLevel ’linalg.eigenvector i a eval evec gdxin=a.gdx gdxout=b.gdx’;

6.9 ENDECRYPT 2957

execute_load ’b.gdx’, eval, evec;

evec(i,j)$(evec(’i1’,’i1’)<0) = -evec(i,j);

abort$(sum(i$(abs(eval(i)-expected(i,’val’))>1e-4),1)) ’Wrong Eigenvalue’, eval, expected;

abort$(sum((i,j)$(abs(evec(i,j)-expected(i,j))>1e-4),1)) ’Wrong Eigenvector’, evec, expected;

option clear=eval, clear=evec;

executeTool.checkErrorLevel ’linalg.eigenvector i a eval evec’;

evec(i,j)$(evec(’i1’,’i1’)<0) = -evec(i,j);

abort$(sum(i$(abs(eval(i)-expected(i,’val’))>1e-4),1)) ’Wrong Eigenvalue’, eval, expected;

abort$(sum((i,j)$(abs(evec(i,j)-expected(i,j))>1e-4),1)) ’Wrong Eigenvector’, evec, expected;

6.9 ENDECRYPT

A tool to encrypt and decrypt text files.

6.9.1 Usage

endecrypt option xfile [passwdfile]

option

-W

to encrypt standard input and write to xfile

-R

to decrypt xfile and write to standard output

xfile

Text file to encrypt or decrypt.

passwdfile (optional)

First line is used as password; will be deleted after use

6.10 ExcelDump

Note

This tool is part of the GAMS Tools Library. Please inspect the general information about GAMS
Tools.

This tool writes all worksheets of an Excel workbook to GAMS symbols.

6.10.1 Usage

Command line:

gamstool [data.]ExcelDump excelFile gdxOut=fileOut.gdx

Compile time:

$callTool [data.]ExcelDump excelFile [gdxOut=fileOut.gdx]

Execution time:

executeTool ’[data.]ExcelDump excelFile [gdxOut=fileOut.gdx]’;

Where:

2958 Tools Manuals

Argument Description

excelFile Excel workbook filename

The following named parameters are available:

Parameter Description

gdxOut=fileOut.gdx Name of GDX file that contains symbols s, r, c, w, ws, vf, vs,
and vu. Mandatory if called from the command line, otherwise
optional.

6.10.2 example

Set s ’Workbook sheets’

r ’Rows’

c ’Columns’

w ’Workbook sheets by name’

l ’Labels’

ws(s,w) ’Workbook map’

vs(s,r,c) ’Cells with explanatory text’

vu(s,r,c,l<) ’Cells with potential GAMS label’;

Parameter

vf(s,r,c) ’Cells with numerical value’;

$callTool.checkErrorLevel data.ExcelDump input.xlsx;

display ws, vs, vu, vf;

6.11 ExcelMerge

Note

This tool is part of the GAMS Tools Library. Please inspect the general information about GAMS
Tools.

Merges the sheets of the source Excel workbook into the destination workbook.

6.11.1 Usage

Command line:

gamstool [win32.]ExcelMerge source destination

Compile time:

$callTool [win32.]ExcelMerge source destination

Execution time:

executeTool ’[win32.]ExcelMerge source destination’;

6.12 ExcelTalk 2959

Argument Description

source Source workbook.

destination Destination workbook.

6.11.2 Example

A model utilitzing ExcelMerge can be found in a GAMS Connect example.

6.12 ExcelTalk

Note

This tool is part of the GAMS Tools Library. Please inspect the general information about GAMS
Tools.

Performs command on an Excel workbook specified by filename.

6.12.1 Usage

Command line:

gamstool [win32.]ExcelTalk command filename [quit=0|1]

Compile time:

$callTool [win32.]ExcelTalk [-quit=0|1] command filename

Execution time:

executeTool ’[win32.]ExcelTalk [-quit=0|1] command filename’;

The following commands are recognized:

Command Description

close Close workbook ignoring changes.

open Opens workbook.

saveAndClose Ask Excel to save & close the workbook.

2960 Tools Manuals

The following named parameter is available:

Argument Description

quit=0 or 1 Determines if Excel program should be terminated or not (default: 0).

6.12.2 Example: Save and close an Excel workbook

$callTool win32.ExcelTalk saveAndClose myFile.xlsx

6.13 FINDTHISGAMS

6.13.1 Introduction

The Windows command line tool findthisgams is used for modifying GAMS specific registry entries
created by the GAMS installer. These registry entries are primarily used for Windows file associations
for GAMS related files (∗.gms, ∗.gdx, ∗.gpr) and for the Object-oriented GAMS APIs which use the
registry key gams.location. for finding a valid GAMS system directory. This documentation uses the
following registry hive abbreviations:

• HKCU: HKEY CURRENT USER

• HKLM: HKEY LOCAL MACHINE

• HKCR: HKEY CLASSES ROOT

Attention

This tool should be used with caution and only when necessary, as it changes the state of the registry.
Reading this documentation carefully before use is advised.

6.13.2 Usage

findthisgams.exe [-q] [list | delete (HKLM|HKCU) | write (HKLM|HKCU)] [ide]

Without arguments: When findthisgams.exe is run without arguments, the tool tries to register
the current GAMS system directory by either writing to HKCU (which takes precedence over HKLM) or by
deleting entries in HKCU that hide the correct entries (current system directory) in HKLM.

-q: Run quietly. No pop-ups.

list: Print a summary of GAMS related registry entries (old and new).

delete (HKLM|HKCU): Deletes the registry entries in either HKLM or HKCU. The tool tries to delete
both the old and the new style registry entries.

write (HKLM|HKCU): Writes the registry entries for the current GAMS system directory either to
HKLM or HKCU.

ide: Per default, when findthisgams.exe writes to the registry, it uses GAMS Studio for file associations.
Specifying ide will register the GAMS IDE instead.

6.14 GAMS Studio 2961

6.13.3 Registry Keys

The registry entries created by the Windows installer have changed with GAMS 32. When running
findthisgams with command line parameter list, the registy is queried for both the old and the new
style registry keys. This gives a good overview of the current state of the registry before initiating any
actual modifications to the registry:

Old registry keys (up to GAMS 31):

[HKCR|HKCU]\.gms

[HKCR|HKCU]\.gdx

[HKCR|HKCU]\gamside.file

[HKCR|HKCU]\gamside.file\shell\open\command

[HKCR|HKCU]\.gpr

[HKCR|HKCU]\gamside.project

[HKCR|HKCU]\gamside.project\shell\open\command

[HKCR|HKCU]\gams.location

New registry keys (GAMS 32 and later):

[HKLM|HKCU]\Software\Classes\.gms

[HKLM|HKCU]\Software\Classes\.gdx

[HKLM|HKCU]\Software\Classes\gamside.file

[HKLM|HKCU]\Software\Classes\gamside.file\DefaultIcon

[HKLM|HKCU]\Software\Classes\gamside.file\shell\open\command

[HKLM|HKCU]\Software\Classes\.gpr

[HKLM|HKCU]\Software\Classes\gamside.project

[HKLM|HKCU]\Software\Classes\gamside.project\DefaultIcon

[HKLM|HKCU]\Software\Classes\gamside.project\shell\open\command

[HKLM|HKCU]\Software\Classes\gams.location

Additional registry keys (GAMS 37 and later):

[HKLM|HKCU]\Software\Classes\.gsp

[HKLM|HKCU]\Software\Classes\gamsstudio.project

[HKLM|HKCU]\Software\Classes\gamsstudio.project\DefaultIcon

[HKLM|HKCU]\Software\Classes\gamsstudio.project\shell\open\command

Note

In order to access registry entries in HKLM, findthisgams needs to be run with administrative
privileges.

6.14 GAMS Studio

GAMS Studio is a completely new integrated development environment for GAMS, which is available for
Windows, macOS, and Linux. It is based on C++ and Qt.

Note

In addition to this technical documentation, there is also a tutorial about the usage of GAMS Studio.

2962 Tools Manuals

6.14.1 Motivation

The classic GAMS IDE has been shipped with the GAMS system for the last 20 years and is still the
workhorse for many GAMS programmers. However, the existing IDE does not provide all the features we
see in modern development environments. Due to its underlying software technology, implementing new
features in the current IDE turned out to be a poor option, so work on a new development environment
started from scratch. GAMS Studio is based on C++ and Qt, which makes it fast, reliable, and platform
independent (Windows, macOS, and Linux). An overview about the differences between GAMS Studio and
the classic GAMS IDE can be seen at the end of this chapter (for long-time GAMSIDE users, especially
the difference between IDE projects and Studio projects might be interesting).

6.14.2 Central Widgets

6.14.2.1 Welcome Page

The Welcome page is the starting point of GAMS Studio. It is designed to give quick access to common
actions and to offer helpful information. It is divided into four columns.

The first two columns labeled ”Last Projects” and ”Last Files” list all projects and files that have been
opened recently in Studio with the most recent on top. A simple left click on an item in this list opens
the corresponding file. The top left of each entry shows an ”x” to remove it. The third column named
”Getting Started” offers useful actions and links for new users. The upper half contains shortcuts to
create new files in user defined locations, open the GAMS Model Library Explorer or load the Transport
example. The lower half has a link to the Studio introduction video on YouTube and two further links
that open the integrated help view showing either this Studio documentation or the page with the GAMS
tutorial overview. The rightmost column ”Further Help” contains a link to the recent changes of GAMS
Studio, the latest GAMS release notes, the GAMS World Forum for support and information about how
to contact GAMS.

Figure 6.1 Welcome page

6.14.2.2 Code Editor

The Code Editor provides common functionality for editing with GAMS specific syntax highlighting. On
the left side there is a special area displaying the line numbers and icons for links and errors generated by
the compiler.

gamside/contents.htm

6.14 GAMS Studio 2963

1. Basic Text Manipulation

Action Shortcut macOS Description

Copy Ctrl - C Command - C Copy selected text

Cut Ctrl - X Command - X Cut selected text

Paste Ctrl - V Command - V Paste text from clipboard

Select All Ctrl - A Command - A Select whole document

Switch Comment Ctrl - ∗ Command - ∗ (Un)Comment all lines in selection

Undo Ctrl - Z Command - Z Reverts the latest text change

Redo Ctrl - Y or
Ctrl - Shift - Z

Command - Shift - Z Restores a previous Undo

2. Advanced Text Manipulation

Action Shortcut macOS Description

Remove Line Shift - Del Removes the current line

Duplicate Line Ctrl - D Command - D Duplicates the current line(s)

Lowercase Alt - Shift - L Option - Shift - L Toggle selection to lower case

Uppercase Alt - Shift - U Option - Shift - U Toggle selection to upper case

Tab Tab Tab Add spaces till next tab size

Untab Shift - Tab Shift - Tab Remove spaces till previous tab size

Indent Ctrl - I Command - I Indent complete line

Outdent Ctrl - Shift - I Command - Shift - I Outdent complete line

Find Ctrl - F Command - F Open Search & Replace window, filling
search field with selected text if there is
any.

Find Next F3 F3 Jump to next search result if

Find Previous Shift - F3 Shift - F3 Jump to previous search result

3. Navigation & Selection

Action Shortcut macOS Description

Match Parentheses Ctrl - B Command - B Jump to matching
parenthesis

Select Parentheses Ctrl - Shift - B Command - Shift - B Select to matching
parenthesis

Toggle Bookmark Ctrl - M Ctrl - M Toggle bookmark

Previous Bookmark Ctrl - , Ctrl - , Go to previous book-
mark

Next Bookmark Ctrl - . Ctrl - . Go to next bookmark

Toggle Folding Alt - L Alt - L Toggles the folding
state of the current
section

Fold all Sections Alt - O Alt - O Folds all foldable sec-
tions

Fold DCO Sections Alt - I Alt - I Folds all foldable DCO
sections

Unfold all Sections Alt - Shift - O Alt - Shift - O Unfolds all foldable sec-
tions

2964 Tools Manuals

Action Shortcut macOS Description

Open Code Completer Ctrl - Space Ctrl - Space Opens the Code Com-
pleter

Jump to include Ctrl - Left Mouse
Button or
F2

Command - Left
Mouse Button or
F2

Jumps to file referenced
by $include

Scroll Up Ctrl - Up Command - Up Scroll up (keeping cur-
sor position)

Scroll Down Ctrl - Down Command - Down Scroll down (keeping
cursor position)

Scroll Page Up Ctrl - PageUp Fn - Up Scroll page up (keeping
cursor position)

Scroll Page Down Ctrl - PageDown Fn - Down Scroll page down (keep-
ing cursor position)

Start of Line Home Command - Left Go to the start of line
(or lines content)

End of Line End Command - Right Go to the end of the line

Start of Document Ctrl - Home Fn - Left Go to the start of the
document

End of Document Ctrl - End Fn - Right Go to the end of the
document

Previous Word Ctrl - Left Option - Left Go to previous start
of word (or character
class)

Next Word Ctrl - Right Option - Right Go to next start of word
(or character class)

Start/Change Block
Edit

Alt - Shift - Arrow
Key

Option - Shift - Ar-
row Key

Start/Change block
edit selection

Start/Change Block
Edit

Alt - Left Mouse But-
ton

Option - Shift - Left
Mouse Button

Draw block edit selec-
tion

Start/Change Block
Edit

Alt - Shift - Left
Mouse Button

Option - Shift - Left
Mouse Button

Span block edit selec-
tion from text cursor to
mouse click

Change Block Edit by
Page

Alt - PageUp / Page-
Down

Option - Fn -
PageUp / Page-
Down

Change block edit selec-
tion by a page step

Change Block Edit by
Word

Ctrl - Shift - Left /
Right

Command - Shift -
Left / Right

Change block edit selec-
tion by word bounds

Change Block Edit by
Word

Ctrl - Left / Right Command - Left /
Right

Change block edit po-
sition by word bounds
(skip selection)

Change Block Edit An-
chor

Shift - Arrow Key Shift - Arrow Key Change block edits an-
chor (start position)

Move Block Edit Arrow Key Arrow Key Move block edit selec-
tion

Move Lines Up or Down Ctrl - Shift - Up /
Down

Command - Shift -
Up / Down

Move line(s) up or down

The Code Editor looks for parenthesis to the right then to the left of the cursor and marks valid and invalid
nesting. Hitting Ctrl - B moves the cursor to the matching parenthesis keeping the state inside/outside.
To select the block to the matching parenthesis hit Ctrl - Shift - B.

To support navigating to files included by the gams source, place the mouse cursor over the file name
and press the Ctrl - Left Mousebutton or place the cursor at the filename an hit F2. If found, Studio

6.14 GAMS Studio 2965

will add the file to the current project and open it. Only plain text filenames can be detected this way,
symbols are not resolved.

Code Folding

The Code Editor detects several kinds of sections in the source code that can be folded. These sections
include all kinds of matching parentheses that extend over more than one line plus several $-control
options that needs to come in pairs. To toggle the folding state of a section either the fold-marker can be
clicked or the shortcut Alt - L can be pressed when the cursor is in a foldable line. To fold or unfold all
foldable sections the main menu contains entries in the View menu. Additionally the shortcuts Alt - O

to fold and Alt - Shift - O to unfold can be used.
To define individual blocks of folding the Dollar Control Options $onFold and $offFold can be added to
the source.

List of $-control options that create a fold section:

• $OnText / $OffText

• $OnEmbeddedCode[V/S] / $OffEmbeddedCode

• $OnEcho[V/S] / $OffEcho

• $OnPut[V/S] / $OffPut

• $OnExternalInput / $OffExternalInput

• $OnExternalOutput / $OffExternalOutput

• $ifThen[I/E] / $endIf

• $onFold / $offFold

Syntax Highlighting

The GAMS Studio syntax highlighter recognizes different kinds of source code like

• $control option with some special treatments (like $OffText, $OnText, etc.)

• comments, e.g. line comments and comment block

• keywords like declarations or loops

• description as descriptive text for identifiers

• data statements for identifiers or table data

• ...

To get the best highlight result it is recommended to use strict GAMS syntax.

Code Completion

GAMS Studio offers a static code completion for fixed internal keywords known by the compiler. The code
completer pops up after pressing Ctrl - Space and shows keywords that matches the current syntax and
starts with the already typed characters of the word to the left of the cursor. Moving the cursor to the
left shortens the matching pattern while moving the cursor to the right extends it. The keys up/down,
pageUp/pageDown, and home/end are processed by the results list during the completer is visible. The
selected word can be inserted with the keys tab or enter/return or by double clicking a word in the list.
To hide the completer, hit esc or click outside of the completer window. Additionally the completer hides
if there is no match for the current start of word.

2966 Tools Manuals

Automatic closing of brackets and quote characters

This feature is meant to improve convenience for users typing source code. In GAMS, as in pretty much
every other programming language, opening brackets or quote characters are followed at some point by a
closing equivalent. So when a user types one of the following characters the matching closing character
will also be inserted after the text cursor. This allows the user to easily type the content in between.
When typing the closing character which should be right after the cursor the already existing character
will be jumped over. So when a user types the closing character by force of habit the autoclose feature
does not interfere or causes syntax errors. Also possible is to make a text selection and then type a bracket
or quote character. The selected text will then be surrounded by the chosen character pair. In the GAMS
Studio under Settings > Editor > ”Auto close opening brackets and quotes” a switch is available
to turn this auto-close feature off.

List of characters that trigger insertion of a closing character:

• (

• {

• [

• ”

• '

Other editors also close the < character but in the GAMS language context it is used in a different
way, making it unnecessary to be closed automatically (e.g. as a comparison operator). In some cases
user might not like the closing character to be inserted automatically however, this is hard to predict.
Other editors - like Qt Creator - check what the next character after the cursor is. Only a limited set of
characters allows the automatic insertion of the closing character.

Following characters allow auto closing when being the next char after the text cursor:

• Whitespaces

• ,

• ;

•)

•]

• {

• }

All others will prevent the insertion of characters.

File Encoding

When opening a file Studio tries to assume the valid file-encoding. As it is not possible to safely determine
the encoding the Edit > Encoding menu assists. To reload a file using another codec the reload with
... submenu can be used. With the convert to ... submenu the current file can be converted to another
codec. A selection of encodings is preselected. This selection can be changed using the Select encoding
submenu. It opens a dialog where the active encodings can be selected. One of them is marked as the
Default encoding. Initially is is set to utf-8.

6.14 GAMS Studio 2967

Bookmarks

The Code Editor provides the ability to set temporary bookmarks in the text files opened in main tabs.
If Studio is closed they are dropped. Also if a file tab is closed the bookmarks for this file are dropped. A
bookmark is placed at the current position of the current file using the toggle bookmark key. A line in
the editor can only carry one bookmark. If this line has a bookmark already the existing one is removed.
The keys for next/previous bookmark allow to navigate through the bookmarks beyond file bounds.

6.14.2.3 Listing Viewer

The Listing Viewer is used for displaying a GAMS output or listing file (∗.lst) which is generated when
running a GAMS (.gms) file. The Listing Viewer consists of two sides. On the left side, the content of the
listing file is presented in a tree structure that allows for convenient navigation within the listing file. The
right side shows the listing file itself.

By clicking on a specific item in the tree on the left hand side, the listing file will automatically jump to
the corresponding location. Changes of the cursor position in the listing file are dynamically reflected in
the tree by selecting the item that belongs to the current section of the listing file.

Figure 6.2 Listing Viewer showing trnsport.lst generated by running trnsport.gms from the
GAMS Model Library

When the GAMS process returns with a compilation error the Listing Viewer contains links to the
source file. If the source file doesn't exist anymore the link is still shown but striked out.

Figure 6.3 Listing Viewer showing trnsport.lst generated by running a modified
trnsport.gms

2968 Tools Manuals

6.14.2.4 GDX Viewer

The GDX Viewer is used to open and inspect GDX (GAMS Data eXchange) files. A GDX file contains
GAMS symbols such as sets, parameters, variables, and equations in a binary format that serves as input
and output to GAMS. The GDX Viewer component consists of two sides. The left side displays the
symbol table of the open GDX file in a table format. Every entry represents a symbol and consists of the
following information:

• Entry: The index of the symbol

• Name: The identifier of the symbol

• Type: The type of the symbol (Alias, Equation, Parameter, Set, or Variable) including the sub
type if available

• Dim: The dimension of the symbol

• Records: The number of records of the symbol

• Text: The explanatory text of the symbol

Figure 6.4 Symbol table showing trnsport.gdx generated by running trnsport.gms from the
GAMS Model Library

A specific column can be sorted by clicking on the respective column header. Clicking again toggles
the sorting direction. The Filter facility provides dynamic filtering of the list of symbols contained in
the GDX file. By default, only the Name column is taken into account by the filter. Clicking on the
Export button will open the export dialog. The right side of the GDX Viewer displays the actual data
of the symbol that is selected in the symbol table. Data can be displayed in either the List View or the
Table View which can be toggled using the corresponding button in the upper part of the GDX Viewer.

The GDX Viewer automatically saves and restores its state on closing and as soon as data is reloaded due
to changes to the underlying GDX file. Changes to the symbol table like an applied filter or the currently

6.14 GAMS Studio 2969

selected symbol are kept. Individual symbols keep applied filters as well as the view settings (e.g. the
currently selected view (List View or Table View), preferences and the visible attributes for variables and
equations) as long as the name, type, and dimension of the symbol did not change during the update
of the GDX file. Resetting the state of a symbol can be achieved by clicking on the Reset button. For
each GDX file known by the Project Explorer the state is stored in the Settings. The context menu of
the Project Explorer provides an entry to reset the GDX Viewer state for that file. Removing the GDX
file from the project also clears its state.

Note

The GDX Viewer currently supports a maximum number of ∼107 million records to be shown for
an individual symbol. As soon as a specific symbol reaches this limit, a warning is added to the
system log and records exceeding this limit will be truncated from the view. Also a note about
truncated data is displayed in the GDX Viewer itself. Applying filters might reduce the number of
records to be displayed and as soon as filtered data is shrunk enough, the whole (filtered) data can
be displayed again and the note gets removed.

List View

The List View is the default representation when looking at data using the GDX Viewer. The data is
presented in the form of a table in which each row represents a record of the symbol. Each record consists
of key columns corresponding to the symbols dimension. The value columns vary according to symbol
type:

• Set/Alias: Column Text contains the explanatory text of a record, Y if no explanatory text is
available.

• Parameter: Column Value contains the numerical value of a record.

• Variable/Equation: Five numerical columns: (Level, Marginal, Lower, Upper, Scale).

Figure 6.5 Right side of GDX Viewer showing the parameter d from the trnsport model

The header displays the individual domains as well as the original index position using superscript notation
which is especially useful if the column order has been changed. Furthermore it allows to manipulate the
displayed data in several ways. By left clicking on a column header, the corresponding column is sorted
using a stable sort mechanism that does not change the order of equal entries. Clicking again changes the
sorting direction. Due to the Extended Range Arithmetic used by GAMS, columns containing numerical
data can contain special values. Those values are treated in a special way when being sorted:

2970 Tools Manuals

• -INF: Smallest numerical value.

• EPS: Treated as value very close but different from 0.

• +INF: Largest numerical value.

• NA: Treated as first non-numerical value (sorted as being greater than +INF).

• UNDEF: Sorted as being greater than NA.

• ACRONYMS: Sorted as being greater than UNDEF. Relative order of acronyms is by their internal
number.

The order of columns can be changed by dragging a column header and dropping it at a different position.
Dragging the border between column headers allows for resizing the widths of the involved columns. The
columns in the List View offer a filter facility which can be opened either by right clicking on the column
header or by left clicking on the filter icon. The Reset button in the top right corner can be used to reset
the view to defaults. This removes all filters, resets the applied sorting as well as the applied numerical
format and switches back to the List View in case the Table View was active.

The button Preferences opens a menu containing different settings for the current symbol. Squeeze

Defaults can be used on variables and equations in order to hide all columns that have the default
value of the respective variable or equation type. Squeeze Trailing Zeroes allows to turn on/off the
truncation of trailing zeroes. The displaying format of numerical values can be specified using the Format

drop down menu and the Precision spin box.

The available options for the Format are as follows:

• g-format: The display format is chosen automatically: f-format for numbers closer to one and
e-format otherwise. The value in the Precision spin box specifies the number of significant
digits. When precision is set to Full, the number of digits used is the least possible such that the
displayed value would convert back to the value stored in GDX. Trailing zeros do not exist when
precision=Full.

Figure 6.6 Variable mix from the prodmix model using g-format with precision=6

Figure 6.7 Variable mix from the prodmix model using g-format with precision=Full

6.14 GAMS Studio 2971

• f-format: Values are displayed in fixed format as long as appropriate. Large numbers are still
displayed in scientific format. The value in the Precision spin box specifies the number of decimals.

Figure 6.8 Variable mix from the prodmix model using f-format with precision=6

• e-format: Values are displayed in scientific format. The value in the Precision spin box specifies
the number of significant digits. When precision is set to Full, the number of digits used is the
least possible such that the displayed value would convert back to the value stored in GDX. Trailing
zeros do not exist when precision=Full.

Figure 6.9 Variable mix from the prodmix model using e-format with precision=6

The value in the Precision spin box specifies the number of decimals or the number of significant digits
depending on the chosen format:

• g-format: Significant digits [1..17, Full]

• f-format: Decimals [0..14]

• e-format: Significant digits [1..17, Full]

Next to Preferences is the Attributes button. This button opens a menu that allows to hide certain
attribute columns of variables and equations explicitly. This is especially useful when using the Table

View.

Table View

Switching to the Table View is possible for symbols that have at least two dimensions. This mode consists
of two parts: A separate header view that shows the domains and attributes of the symbol as well as
the actual data. The header view also allows to access the filter facility and highlights the positions of
specific domains by using visual separators (from left to right: rows, columns, attributes). The data itself
is reshaped into a format where the labels of the last dimension are moved into the column header while

2972 Tools Manuals

the remaining dimensions go into the row header. The entries in the table are the numerical values (or
explanatory text in case of GAMS sets) of the record with the corresponding labels of the headers. The
following image shows the List View of a GAMS Parameter on the left side and its representation in the
Table View on the right side:

Figure 6.10 Two dimensional parameter as List View and Table View

In case of GAMS variables and equations, a virtual dimension for the five numerical values (Level, Marginal,
Lower Bound, Upper Bound, Scale) is introduced and displayed in the column header. When looking at
the data of variables or equations it is most of the time useful to visualize only a specific attribute like
the variable levels. This can be achieved by using the Attributes menu in the upper part of the GDX
Viewer. The menu allows to hide specific attributes explicitly by disabling the corresponding checkboxes.

Both column and row header dimensions can be moved into different positions in order to reshape the table
view. This can be done by performing a drag-and-drop operation that starts by clicking (and holding)
the left mouse button while the mouse cursor is located on the index that should be moved. Moving the
mouse to an arbitrary location will bring up a drop indicator (in the form of a thin line) that previews
the position in which the index will be dropped as soon as the mouse button is released. In general all
index positions can be moved to arbitrary new locations, but there are a few restrictions:

• The (virtual) numerical dimension of variables and equations (Level, Marginal, Lower Bound, Upper
Bound, Scale) can not be moved and is always the last dimension in the column header.

• If a header (column or row) runs out of dimensions, a dummy header (Value, Text) is introduced
which can not be moved but can be used as a drop target for further drag-and-drop operations.

6.14 GAMS Studio 2973

Figure 6.11 The table view representation of a GAMS parameter during a drag-and-drop
operation that will move the dragged dimension into the position indicated by the drop

indicator (thin black line)

While filters that have been applied in the List View will also be applied to the Table View and vice
versa, sorting does not have any effect. The labels are sorted using the internal order which can not be
changed by the user. For large data it is recommended to reduce the amount of visible records by applying
filters in the List View and by disabling certain value columns in case of variables and equations. Once
the data has been reduced, switching to the Table View allows to look at the data in a compact format.

Filter Facility

Filters can be applied in both the List View and the Table View through the header view that contains
the domains as well as the (numerical) attributes. In the List View, the header is part of the data view
itself, while the Table View offers a separate header view above the actual data. The filter dialog can be
opened either by right clicking on the header or by left clicking on the filter icon. Depending on the type
of the column (key or value), the appropriate filter dialog for labels or numerical values is opened.

The filter dialog for a specific key column shows all occurring labels of that column in a list. Per default all
labels in all columns are visible. Shrinking the displayed data can be achieved by unchecking one or more
labels. The filter is applied by clicking the Apply button. Instead of selecting labels manually one can also
use the filter in the upper part of the filter dialog. More about the filter can be found in the Filter Section.
The filter is automatically applied to the list of labels. Matching labels will be selected while all others will
be deselected. The Hide unselected items checkbox can be used to automatically hide all deselected
labels. This is especially useful for larger amounts of labels in combination with the filter as only the
matching labels will remain in the list while typing. The Select All, Invert, and Deselect All buttons
speed up getting the desired selection. Using middle-click or Ctrl - left-click(Command - left-click
on macOS) allows to quickly select one specific label while all others are deselected. The filter gets applied
automatically and the dialog closes without the need to click the Apply button. Sometimes it is convenient
to select/deselect a range of labels. This is possible by selecting a certain label first and using Shift -

2974 Tools Manuals

left-click on another label afterwards. This will change the selection state of all labels in the specific
range to the same state. If no label has been selected in the first step, the range starts at the first label
by default.

Figure 6.12 Filter dialog on column j for variable x in trnsport.gdx

Numerical columns offer a different filter type that allows to specify an interval for values that should
be included or excluded in the view for this specific column. The Min value is the lowest and the Max

value is the largest one still included in the view. When the Exclude check box is activated, the specified
range is excluded from the view instead of included. The lower part of the filter contains check boxes for
special values like +INF or EPS. Checking/unchecking will show/hide the corresponding values in the view.
Clicking the Apply button adds the filter to the column and refreshes the view accordingly. The Reset

button removes an active filter.

Note

When a filter on a numerical column is applied, the values used for comparison are the actual values
from the GDX file. Since the displayed values are influenced by the Format and the Precision

setting, they can differ from the internal ones from the GDX file. Here is an example: Let's assume
we have a parameter p(i) with p("i1")=1.34 and p("i2")=2. With format set to g-format and
precision set to 2, the values are displayed as 1.3 and 2. When applying a filter with the bounds
(Min, Max) set to 1.33 and 2 both records are still shown even though 1.33 is greater than 1.3

(number shown in the GDX Viewer) since the internal GDX value used for comparison is actually
1.34.

6.14 GAMS Studio 2975

Figure 6.13 Filter dialog on numerical column Value for parameter c in trnsport.gdx

Search Facility

Both the List View and the Table View can be searched by adding a term into the search field which is
located above the Data View. The search behavior can be customized using the buttons on the right hand
side of the line edit. See Filter in Tables and Trees for more information. As soon as the content of the
search field changes all matches in the Data View are highlighted automatically. The Search Forward

(F3) and Search Backward (Shift - F3) buttons allow to select the next/previous element that matches
the search criteria. Search is continued at the beginning of the Data View as soon as the end is reached
and vice versa. In the List View, all cells except for the header are considered while in the table view all
cells and all header entries are considered with the exception of symbol type specific extra headers which
is Value (parameters), Text (sets/aliases), Level, Marginal, Lower, Upper, Scale (variables/equations).

2976 Tools Manuals

Figure 6.14 Searching the List View of a parameter by 'seattle'

Figure 6.15 Searching the Table View of a parameter by 'seattle'

Export Dialog

The GDX Viewer offers an export functionality that can be accessed by clicking on the Export button
above the symbol table on the left side of the GDX Viewer. The export dialog uses GAMS Connect in
order to export data from a GDX file into another data format.

6.14 GAMS Studio 2977

Figure 6.16 GDX Export dialog opened from trnsport.gdx

The Target Format drop down menu allows to select the format in which the data is exported (currently
only Excel is available as target format). The upper part of the dialog also allows to specify the Excel
output file as well as the GAMS Connect instructions file in YAML format. The Apply Filters checkbox
controls if active filters in the GDX Viewer are applied to the exported data or not. The input fields for
the representation of GAMS special values allow to customize those. A common use case is the export of
GAMS special value EPS as 0 instead of the string representation EPS (default) which can be achieved by
changing the corresponding input field to 0. Symbols can be selected for export using the checkboxes in
the Export column of the symbol table. The button Select All/Deselect All can be used in order to
select/deselect all symbols for export. The Export button generates the GAMS Connect instructions file
and executes it. Choosing Save instead will only generate the GAMS Connect instructions file but won't
run it. As long as the export process is running the dialog will be disabled. Clicking the Cancel button
closes the dialog and stops the export process that has not been finished yet.

The export mechanism uses the underlying GDX file that is opened in the GDX Viewer. If a symbol is
currently in table view mode, the order and location of individual dimensions are reflected in the Excel
output.

Summary of Actions and Shortcuts

2978 Tools Manuals

Action Shortcut macOS Description

Jump to Symbol
Search/Data View
Search

Ctrl - F Command - F Moves the focus either
to the Symbol Search in-
put field located above
the symbol table or the
Search input field of the
Data View, depending on
the current focus.

Find next F3 F3 Jumps to the next match
when searching the Data
View

Find previous Shift - F3 Shift - F3 Jumps to the previous
match when searching
the Data View

Select All Ctrl - A Command - A Selects all data (right side
only)

Copy (comma-separated) Ctrl - C Command - C Copy selection to clip-
board using comma as
separator

Copy (tab-separated) Ctrl - Shift - C Command - Shift - C Copy selection to clip-
board using tab as sep-
arator (right side only)

Copy Without Labels
(comma-separated)

context menu only context menu only Copy selection without la-
bels to clipboard using
comma as separator (Ta-
ble View only)

Copy Without Labels
(tab-separated)

context menu only context menu only Copy selection without la-
bels to clipboard using
tab as separator (Table
View only)

Auto Resize Columns Ctrl - R Command - R Resizes all columns to
content (right side only)

6.14.2.5 Reference File Viewer

The Reference File Viewer is a useful tool to navigate the source code of GAMS models via a reference
file, especially when multiple files are involved. A reference file contains all symbol references of GAMS
model and is created using the rf parameter when running the model.

Figure 6.17 Parameter to create a symbol reference file when running the model

When the model is compiled, the reference file with ”.ref” extension is created and can be opened either
using the menu: File > Open or double-clicking the ”RefFile” entry in the Process Log:

Figure 6.18 Process Log showing clickable entry for the reference file

6.14 GAMS Studio 2979

The Reference Viewer is categorized by a number of tabs:

Figure 6.19 Reference File Viewer showing tabs and reference file information

• All Symbols shows an alphabetical listing of all symbols used in the model.

• Set, Acronym, Variable, Parameter, Equation, and Model shows an alphabetical listing of
symbols of the same type. See Data Types and Definitions for more details on GAMS data types.

• File shows an alphabetical listing of all file statements used in the model.

• Function shows a list of GAMS built-in functions that has been used in the model.

• Unused shows an alphabetical listing of all symbols that have been declared in the model but are
not used anywhere.

• File used shows an alphabetical listing of all files used in the model including the full file path. A
double-click on an file entry of the table will jump to the beginning of the reference file.

The number next to the tab name indicates how many symbols in the category, where the number of
All Symbols tab sums up the number of symbols in all other tabs except Unused tab and File used tab.
A click on a symbol entry of the table in every tab (except File used tab) will show the detailed reference
list containing the reference location in the right hand side of the reference viewer. A mouse-over on an
entry of the reference list will show the tooltip of file location and position with the file that has been
referenced. A double-click on an entry of the reference list will jump to the position in the corresponding
file that has been referenced.

The reference list is organized by the following reference types:

Reference Type Description

declared Declaration of the symbol.

defined Defined using a data statement.

assigned When the symbol appears on the left side of an assignment statement.

implicitly assigned Implicit assignment like a variable in a model.

control When the set is used as a control set.

reference Referenced in a statement.

2980 Tools Manuals

The detailed description of the reference types and their shorthand symbols can be found in Reference Types
in GAMS Output.

Sort and Filter referenced symbols

• Sort : A click on a table column header in the reference table will sort the symbol in the table by
either Entry, Name, Type, Dim(ension), Domain, or Text.

• Filter : An input in the Filter box will filter the symbols in the reference table by Name. More
about the filter can be found in the Filter Section.

Summary of Actions and Shortcuts

Action Shortcut macOS Description

Symbol Filter Ctrl - F Command - F Jump to the Symbol Filter input field located
above the symbol table

Auto Resize Columns Ctrl - R Command - R Resize all columns to content (right side only)

6.14.2.6 Solver Option Editor

The Solver Option Editor is used to view and edit a solver-specific option file for controlling solver
and interpreting results. See usage of The Solver Options File in Solver Usage and how to set optFile
parameter to instruct gams to read an option file in The GAMS Call and Command Line Parameters.
The Solver Option Editor provides an editor to edit the file contents in a table form where a row entry
corresponds to a line in the solver option file. The Solver Option Editor also provides a browser of solver
option definitions which can be displayed in group or be filtered by filter-term and where the option can
be directly added into or deleted from the editor.

The Solver Option Editor consists of the contents editor in the left pane, option definition browser in the
right pane, as well as message and configuration tab in the bottom pane.

6.14 GAMS Studio 2981

• The left pane shows the contents editor of solver option file in a table form. Each row entry is either
an option entry containing the option key, option value, as well as end-of-line comment (shown if
there is definition of end-of-line comment characters for a solver option file) or a comment entry.
Below the editor shows Compact View checkbox and Open As Text button

– An option key and value are shown in green color when defined correctly according to the
definition, otherwise in red color when there is an error. An end-of-line comment (if defined)
and a comment entry are shown in grey color. (see section Toggle comment/option selection
on how to turn an option entry into a comment entry and vice versa)

– A comment row entry is shown in a merged cell as differences between option key van value
are not identified in a comment line of a solver option file.

– The Compact View checkbox enables the editor to display the file contents without comments.
Note that some editing actions are suppressed when the editor is in compact view (see section
Compact View for more details).

– The Show Messages checkbox allows to display or hide the messages log at the bottom pane.

– The Open As Text button allows to reopen the file in the text editor once contents of the file
has been saved (see Open an existing solver option file and Save a solver option file in section
Basic Operations for more details).

• The right pane shows a browser of solver option definitions.

– The lower part of the browser lists all option definitions, each contains Option Name, Synonym,
Default Value, Range, Type, and Description. The list can be sorted alphabetically in
ascending or descending order by clicking the Option Name header. A checkbox in front of an
option entry indicates whether there is an option of this definition entry defined in the left pane
editor. An entry with enumeration type (EnumStr or EnumInt) can be expanded to show all
enumerated values of the option by clicking the bullet in front of the option entry, clicking the
bullet again hides all enumerated values of the option. By double clicking the entry or dragging
the entry and dropping in the left pane editor adds the option key with the default value defined
by this option definition in the left pane editor (See section Summary of Actions and Shortcuts
on how to add or insert an option).

– Above the list of all option definitions is a group of options and a filter box. Option groups
filter the list of option definitions by group name. By default all option definitions are displayed.
Filter box with placeholder text Filter Options ... allows to filter the option definitions.
As a filter term has been typed into the filter box the results are displayed in the list of option
definitions below. More about the filter can be found in the Filter Section.

• The bottom pane shows the message log which reports the operations that have been carried out
such as the contents have been loaded and saved as well as errors resulting from editing the contents.
By default the message log is shown unless the Show Messages checkbox in the left pane has been
unmarked to hide the message log.

Basic Operations

• Create a solver option file: via either the Studio menu or the project context menu in Project
Explorer.

– From the Studio menu, choose File > New... then enter a valid solver option file name and
suffix into the file dialog. choosing Add new file by right clicking on project name in Project
Explorer brings up the same file dialog for entering a valid solver option file name and suffix
(See how to set different suffix values for solver option file from optFile parameter).

– From the project context menu, right clicking on project name in Project Explorer and choosing
Add new solver option file brings up a list of solver names. Selecting a solver name from
the list brings up a file dialog with the selected solver name as file name and the default option
file suffix name opt (See how to set different suffix values for solver option file from optFile
parameter).

2982 Tools Manuals

• Open an existing solver option file: via either the Studio menu or project context menu in
Project Explorer.

– From the Studio menu, choose File > Open... and select Option Files or All Files in
the file dialog and then select a solver option file.

– From the project context menu, right click on project name then choose Add Existing file

then choose Option Files or All Files in the open file dialog and then select a solver option
file.

– In case a solver option file is already opened with solver option editor, the file can be reopened in
text editor by choosing Reopen File As Text from the file context menu in Project Explorer.

– It is possible to open the solver option file in either solver option editor or text editor.

∗ In case a solver option file has already been opened in solver option editor, choosing Reopen

File As Text from the file context menu in Project Explorer closes the solver option
editor and reopens the file in the text editor. Note that Open As Text button in the left
pane editor performs the same function.

∗ In case a solver option file is already opened in text editor, choosing Reopen File using

Solver Option Editor from the file context menu in Project Explorer closes the text
editor and reopens the file in the solver option editor.

∗ In case a file is already listed under the project entry but not yet opened, choosing Open

File from the project context menu opens the file in the solver option editor; however,
choosing Open File As Text from the project context menu opens the file in the text
editor.

• Save a solver option file: activated by choosing either File > Save menu or Ctrl - S shortcut.
Choosing File > Save As menu or Ctrl - S shortcut brings up a file dialog to choose a file with
different name to be saved as (See also how to set different suffix values for solver option file from
optFile parameter).

Navigating the contents

When a component of the solver option editor in focus, it is possible to perform further actions (see section
Summary of Actions and Shortcuts for the list of actions and shortcuts). Clicking the component area
will bring the component into focus or in selection. In addition to using mouse to navigate the solver
option editor components, it is also possible using keyboard. Press Tab key navigates the components of
the solver option editor. For example, when left pane editor is in focus, pressing Tab navigates from the
left pane editor, to the right pane option group box, to the right pane Filter box, and to the right pane
definition browser in the describing order. When the left pane editor is in focus, press Up, Down, Left,
and Right keys to navigate the left pane editor table. When the right pane browser is in focus, press Up

and Down to navigate the definition entries, press Right to expand/show the enumerated entries of the
definition, and press Left to collapse/hide the enumerated entries of the definition.

There is a connection between an option entry in the left pane editor and a definition entry in the right
pane browser. When navigating the solver option editor, it is possible to identify this connection from
both the left pane editor and the right pane browser.

• From the left pane editor, right click on the selected entry and choose show option definition

from the context menu. The entry in the right pane browser that contains the definition of the
selected entry is highlighted and selected. When a cell or a row is already selected the shortcut Ctrl
- F1 delivers the same behavior.

6.14 GAMS Studio 2983

• From the right pane browser, click or select on an entry. All entries in the left pane editor will
be highlighted and selected if the definition has already been added. Otherwise there will be no
selection in the left pane editor.

More editing actions can be performed on both the left pane editor and the right pane browser (See
Editing the Contents for details).

Editing the Contents

The followings describe actions that can be performed when editing the contents:

Figure 6.20 actions to be performed via the left pane editor and the right pane editor

• Edit option key, value, and comment: This action performs in the left pane editor.

2984 Tools Manuals

– when the cell in the left pane editor is selected, double click on the cell or press platform-
dependent edit key (eg. F2) in order to edit option key, value, or comment (if available). A
drop-down list suggests possible option keys and option values as when possible. Press Enter

to confirm the edit and press Esc to cancel the edit.

Figure 6.21 Drop-down lists suggest possible keys (left) and values (right)

• Add new option: This action appends a new option entry as the last entry of the left pane editor.
There are several ways to add a new option entry.

– click on the plus icon in the header of the left pane editor, a new option entry with dummy
option key [KEY], option value [VALUE], and option comment [comment] (if available) is
appended as the last entry.

– it is also possible to add new option from the the right pane browser. Select the definition
entry in the right pane browser that has not been added/inserted into the left pane editor (a
solid checkbox in front of the entry is not marked), double click or right click on the selection
then choose add this option. A new option entry ith the option key and default value of
this definition will be added as the last entry in the left pane editor. and dummy option value
[VALUE] is appended as the last entry.

• Insert new option and comment: It is possible to perform this action from the left pane editor
and from the the right pane browser and there are several ways to insert a new option or a comment
entry.

– right click on the selected entry in the left pane editor and choose insert new option from
the context menu. A new option entry with dummy option key [KEY], option value [VALUE],
and option comment [comment] (if available) will be inserted before the selected entry. When
a cell or a row is already selected the shortcut Ctrl - Return delivers the same behavior.

– right click on the selected entry in left pane editor and choose insert new comment from the
context menu. A new option entry with dummy text [COMMENT] will be inserted before the
selected entry. When a cell or a row is already selected the shortcut Ctrl - Shift - Return

delivers the same behavior.

– double click on a definition entry in right pane browser.

∗ In case this definition has not yet been added/inserted (a checkbox in front of the entry
is not marked), a new option entry with the option key, default value, and comment (if
available) of this definition will be added as the last entry in the left pane editor. When
there is a selection on a cell or a row the shortcut Return delivers the same behavior.

6.14 GAMS Studio 2985

∗ In case this definition has already been added/inserted (a checkbox in front of the entry
is marked), by default the studio option editor will ask for overriding existing option if
there is an option from the same definition that has already been added/inserted into the
left pane editor. A pop-up message box appears and offers three alternatives: either to
replace existing entry, or to add new entry, or to abort. Replace existing entry
will remove all other entries of this definition key but the first entry from the left pane
editor and replace the option value of the entry by the default value defined by the
definition. Add new entry will add a new option entry with the option key and default
value of this definition into the left pane editor. Abort will cancel the action. See section
override existing option on how to suppress this default behavior.

When double clicking an enumerated value entry of the definition a new option entry will be
added with the option key of the parent entry and the selected enumerated value.

– drag a definition entry from the right pane browser and drop in the left pane editor.

∗ In case this definition has not yet been added/inserted (a checkbox in front of the entry
is not marked), a new option entry with the option key, default value, and comment (if
available) of this definition will be dropped before the position of selected entry in the left
pane editor.

∗ In case this definition has already been added/inserted (a checkbox in front of the entry
is marked), by default the studio option editor will ask for overriding existing option if
there is an option from the same definition that has already been added/inserted into the
left pane editor. A pop-up message box appears and offers three alternatives: either to
replace existing entry, or to add new entry, or to abort. Replace existing entry
will remove all other entries of this definition key but the first entry from the left pane editor
and replace the option value of the entry by the default value defined by the definition. Add
new entry will insert a new option entry with the option key and value of this definition
before the position of selected entry in the left pane editor. Abort will cancel the action.
See section override existing option on how to suppress this default behavior.

See also section Settings on how to insert a new option together with a comment from the definition.

• Toggle comment/option: This action performs in the left pane editor, turning an option entry
into a comment entry and turning a comment entry into an option entry.

– select the option entry and right click on the selection, then choose toggle comment/option

selection from the context menu. In case of an option entry this action turns the entry into
a comment entry (shown in grey color). In case of a comment entry this action turns the entry
into an option entry entry (shown in either green or red color depending on whether or not
there is an error). When a cell or a row is already selected the shortcut Ctrl - ∗ delivers
the same behavior. Clicking on the color box in front of the entry row also delivers the same
behavior, even without a selection.

• Move up and down: These two actions perform in the left pane editor, changing the order of the
option and comment entries.

– to move an entry up in the left pane editor: select the option entry and right click on the
selection, then choose move up from the context menu. The selected option entry will be moved
one position up the option entry table. When a cell or a row is already selected the shortcut
Ctrl - Up delivers the same behavior.

– to move an entry up in the left pane editor: select the option entry and right click on the
selection, then choose move down from the context menu. The selected option entry will be
moved one position down the option entry table. When a cell or a row is already selected the
shortcut Ctrl - Down delivers the same behavior.

• Deleted option: It is possible to perform this action from the left pane editor and from the the
right pane browser.

– from the left pane editor, select the option entry and right click on the selected, then choose
delete selection. The selected option entry will be deleted from the option entry table.
When there is a selection on a cell or a row the shortcut Ctrl - Delete delivers the same
behavior.

2986 Tools Manuals

– from the right pane browser, select the definition entry that has already been add/inserted into
the left pane editor (a checkbox in front of the entry is marked) and right click on the selection
then choose remove this option. All entries in the left pane editor defined by this definition
will be deleted from the option entry table. When there is already a selection on a definition
row the shortcut Delete delivers the same behavior.

• Show option definition: This action performs in the left pane editor. Right click on the left pane
of the option editor and choose Show option definition. The option definition entry on the right
pane will be highlighted. The shortcut Ctrl - F1 delivers the same behavior.

• Show all options of the same definition: This action performs in the left pane editor. Right click
on the left pane of the extended editor and choose Show all options of the same definition.
All option entries on the left pane will be highlighted. The shortcut Shift - F1 delivers the same
behavior.

Figure 6.22 All entries of the same option are highlighted

Compact View

Compact View of the solver option editor allows to view and edit solver option without comments. Com-
ments in a solver option file are not interpreted by either GAMS or the solver but used for documentation
purpose. As the contents of the solver option file grows larger with several comment lines, it can be
difficult to see which options eventually will be interpreted. To this end, the compact view becomes useful
to hide all comments and show only non-comment lines. In the right pane editor, mark Compact View

checkbox to activate the compact view and unmark the checkbox to deactivate the compact view. The
comment entry is shown again once the compact view is deactivated.

Note that the result of some actions are not visible when in compact view. For example, action toggle
comment/option selection when performed on an option row entry, turning the entry into a comment
entry and therefore hidden from the compact view. Action delete selection when performed on an
option row entry, removing the content entry and therefore no longer visible hidden from the compact
view.

Some editing actions that can change the order of the contents are suppressed. These actions are insert
new option, insert new comment, move up, and move down. Nevertheless adding or inserting
option from the right pane are allowed, but a comment that has been inserted with the option (if set)
are not visible in compact view. See also section Settings on how to insert a new option together with a
comment from the definition.

6.14 GAMS Studio 2987

Settings

The setting tab allows to configure the behavior when inserting new option from definition and deleting
option. The setting can be accessed by opening the Settings dialog (File > Settings) and switching to
the Misc. tab. These configurations are:

• Override existing option. This behavior allows Studio to override existing option when an option
entry has been added or inserted from the right pane browser. In case there are more than one entry
of the same option, Studio will pop-up a message box to offer three alternatives: either to replace

existing entry, or to add new entry, or to abort.

– Replace existing entry will remove all other entries of this definition key but the first entry
from the left pane editor and replace the option value of the entry by the default value defined
by the definition.

– Add new entry will add or insert a new option entry with the option key and default value of
this definition into the left pane editor.

– Abort will cancel the action.

By default this behavior has been set. In the Settings dialog, unmark the checkbox in front of the
text overriding existing option to suppress the behavior and mark to enable the behavior.

• Add option description as comment above. This behavior allows Studio to add option
description as additional comment entry above an option entry that has been added or inserted
from the right pane browser. The description has been taken from the option definition in the right
pane browser. By default this behavior has not been set. In the Settings dialog, mark the checkbox
in front of the text add option description as comment above to enable the behavior and unmark the
checkbox to suppress the behavior.

• add option description as end of line comment This behavior allows Studio to add option
description as additional end-of-line comment of an option entry that has been added or inserted
from the right pane browser. The end of line comment is only available when the solver defines valid
end of line characters. The end-of-line comment column will be shown in the solver option editor
only when available (there is definition of end-of-line comment characters for a solver option file).
By default this behavior has not been set. In the Settings dialog, mark the checkbox in front of
the text add option description as end of line comment to enable this behavior and unmark the
checkbox to suppress the behavior.

• delete all immediate comments above This behavior allows Studio to delete all immediate
comments (if there is any) above when deleting an option. By default this behavior has not been
set. In the Settings dialog, mark the checkbox in front of the text delete all immediate comments
above to enable this behavior and unmark the checkbox to suppress the behavior.

Summary of Actions and Shortcuts

Actions and their shortcuts that can be performed via the left pane of solver option editor are:

Action Shortcut macOS Description

Toggle option/comment
selection

Ctrl - ∗ Command - ∗ Toggle between option
and comment

Insert new option Ctrl - Return Command - Return Insert a new option

Insert new comment Ctrl - Shift - Return Ctrl - Shift - Return Insert a new comment

Delete selection Ctrl - Delete Delete the selected op-
tion/comment

Move up Ctrl - Up Command - Up Move the selected op-
tion/comment up for 1
row

2988 Tools Manuals

Action Shortcut macOS Description

Move down Ctrl - Down Command - Down Move the selected op-
tion/comment down for
1 row

Select all Ctrl - A Command - A Select all options

Show option definition Ctrl - F1 Command - F1 Show definition of this
selected option in the
right pane

Show all options of the
same definition

Shift - F1 Show all options of the
same definition defined
in the right pane

Resize columns to con-
tents

Ctrl - R Command - R Resize the columns in
the left pane to contents

Actions and their shortcuts that can be performed via the right pane of solver option editor are:

Action Shortcut macOS Description

Option Filter Ctrl - F Command - F Jump to the focus to the
Option Filter input field

Add this option Return Return Add option in the left
pane from the selected def-
inition

Remove this option Delete Remove option defined by
this definition from the
left pane

Copy option name Ctrl - C Command - C Copy option key from this
selected definition

Copy option description Shift - C Shift - C Copy option description
from this selected defini-
tion

Copy definition text Ctrl - Shift - C Command - Shift - C Copy option text from
this selected definition

Resize columns to con-
tents

Ctrl - R Command - R Resize the columns in the
right pane to contents

6.14.2.7 GAMS Configuration Editor

The GAMS Configuration Editor is used to view and edit a GAMS Configuration File in YAML Format.
The editor shows the two configuration sections: command line parameters (commandLineParameters),
and operating system environment variables (environmentVariables), in different tabs of the editor.

6.14 GAMS Studio 2989

Figure 6.23 Contents of gamsconfig.yaml shown in GAMS Configuration Editor

Note that GAMS Configuration editor does not show the contents of the third section: external solver
configuration (solverConfig) if exists. However, the contents in this section will be written out to the
file when saving the file via the editor. It is possible to use Reopen File as Text from Project Explorer
context menu to reopen and edit the file contents in text editor when the file is already opened in the
GAMS Configuration Editor and use Open File as Text from Project Explorer context menu to open
the file in text editor when the file is not yet opened in any editor. See the syntax of gamsyconfig.yaml
file from GAMS Configuration File in YAML Format.

GAMS will process a sequence of gamsconfig.yaml files from different locations (see the location of GAMS
Configruation file from The GAMS Configuration in YAML Format and the order of precedence for com-
mand line parameters from Order of Precedence for Options). Studio can create a new gamsconfig.yaml

file at the default user-specific location and open the file in the editor when the file at the location
does not exist. This can be done by choosing GAMS > Default GAMS Configuration. In case the file
already exists at the default location, choosing GAMS > Default GAMS Configuration will not override
the gamsconfig.yaml in the default user-specific location but open the file in the editor.

2990 Tools Manuals

Figure 6.24 Menu entry point to create/open gamsconfig.yaml file from default location

It is possible to save the gamsconfig.yaml file into different location using File > Save As....

6.14.2.8 Connect Editor

Connect Editor provides fundamental functionalities for creating and editing GAMS Connect file, containing
instructions in YAML syntax which will be processed by the GAMS Connect interfaces. The Connect
Editor consists of three main sections:

• the left section displays instructions from the file in tree structure. The top level entries are
Connect Agents names with option entries as its children.

• the middle section lists all available Connect Agents. Double click or drag-and-drop an agent name
from this section into the left section will add or insert instructions for the selected agent in the left
section.

• the right section shows Definition of the Connect Agents selected in the middle section. Clicking an
agent name in the middle section will display definition of the selected agent in this section.

6.14 GAMS Studio 2991

A new connect file can be created by selecting Add new file from the File menu or the project context
menu in Project Explorer. An existing connect file can be edited by selecting Open... from the File menu
or Open in Current Project... or Add existing file the project context menu in Project Explorer. In
both cases, a file dialog opens to select the project folder, choose Gams Connect Yaml File (∗.yaml)
as a type of files.

A top level entry of instructions is a connect agent name with option entries as its children. Each option

entry is represented as either a map of option key to option value or a list of either option values

or option entries depending on the definition of the agent. Only an option value can be edited. An
edited option value that does not conform to the definition (eg. wrong type or unallowed value) will be
highlighted in red and so is its agent name. By clicking Help icon next to the agent name at top level
entry, the agent name in the middle section will be selected and the definition of the agent will be shown
in the right section.

New instruction for an agent can be added by either double clicking an agent name in the middle section
or dragging an agent name in the middle section and dropping it in the left section at the desired position.
Double clicking an agent name will append instruction for the selected agent as the last agent entry in the
left section, while dragging an agent name will either append instruction in the left section as the last
agent entry or insert instruction for the selected agent below the drop position. When Only required
option when adding new agent checkbox is marked, only the required options of the agent will be
added. An option missing from the agent name entry can be inserted or appended by dragging the option
from the definition in the right section and dropping it at the desired position in the left section. Dropping
the option onto the agent name entry will append the option as the last child entry of the agent name.
The missing option can still be added even when it is not required by definition and Only required
option when adding new agent checkbox is marked.

A new child entry of a list entry can be added using the plus icon at the last child entry of the list. An
option entry and all its children can be removed, moved up, and moved down using delete icon, move
up icon, and move down icon accordingly at the end of each entry. An option entry with children can

2992 Tools Manuals

be either expanded or collapsed by clicking an icon in front of the entry. The tree structure can be
completely expanded by clicking Expand All and collapsed by clicking Collapse All.

The content of connect file can also be displayed and edited in plain yaml format using a text editor.
Switching from connect editor to text editor can be done by either clicking Open As Text button or
selecting Reopen File as Text from the context menu of the file in the Project Explorer.

• Open As Text button will be enabled once the content of the file has been saved, allowing a switch
to the text editor.

• Selecting Reopen File as Text from the context menu, when the content of the file has been
modified, will popup a dialog to report modified content and offer options to discard the content

or to save the content or to cancel the operation.

– In case of discarding the content, Studio will switch to the text editor to display the current
file content before modifying.

– In case of saving the content, Studio will save the content into a file before switching to the
text editor.

– Cancel operation will bring back to the current modifying state of connect editor.

6.14.2.9 Parameter File

To support fast switching between parameter sets, Studio contains an editor for ”GAMS Parameter Files”.
To create a Parameter File, open the context menu of a project and select ”Add New Gams Parameter
File”. The project settings contains a box to switch between different parameter files or to deselect it for
the project.

Figure 6.25 Pin View

6.14 GAMS Studio 2993

Figure 6.26 Pin View

Parameter defined in the parameter file will overlay parameters defined in the GAMS Configuration File.
The usage of the editor is equivalent to the Solver Option Editor.

6.14.2.10 Tab Browser (Deprecated)

Deprecation Notice: This feature will be removed in a future version of GAMS as it is replaced by the
Navigator.
The Tab Browser is accessible with a button next to the main tab bar or via the shortcut Ctrl - 4. It
opens a list of all open files and features a search input field. When opening the tab browser, the search
field is already focused. Typing updates the list in real time. The Enter key selects the first item in the
list and opens it. It is also possible to use arrow up/down to navigate the list and select an item with
Enter. The filter supports wildcard syntax.

6.14.2.11 Navigator

The Navigator allows users to quickly navigate between files and can be opened with the shortcut Ctrl -

K or by clicking into the Navigator input field located in the Status Bar in the bottom right. The default
view shows a list of all files from the Project Explorer with three columns. The first column contains the
file name, the second the path relative to the current project's directory. If it is the same path the field is
empty. And the third column contains additional information, by default which kind of result it is. Typing
something into the input field filters this list. Using the arrow keys a result can be selected and confirmed
with the Enter key. The filter also supports wildcards: to e.g. find all ”.gdx” files one can input ∗.gdx.
To narrow a search down even more the Navigator supports different modes which are accessed with
prefixes in front of the search term. To see a list of all available modes just type ”?” into the input field.
This allows, for example, to only show files that are currently opened in a tab (t), associated with the
current project (p), or all open log tabs (l). Additionally using the :prefix followed by a number users can
jump to a certain line in the current file. There is the possibility to jump to files that are not yet known

2994 Tools Manuals

to Studio: using the f prefix allows users to navigate the filesystem of the operating system, starting with
the current project's workspace. Also, with the quick action prefix (x) it is possible to call often used
Studio functions like ”Open Model Library Explorer”, ”Clean Scratch Directories”, ”Run Engine”, and
many more. For a complete list just input x into the Navigator.

Figure 6.27 Navigator showing some example files

6.14.2.12 Pin View

Studio provides a Pin View to carry a clone of a selected tab. This allows to have two file contents visible
at the same time. To pin a tab there are two entries in the tabbar: ”Pin right” (shortcut Ctrl - Click)
splits the edit area horizontally and opens the Pin View right to the main tabs. ”Pin below” (shortcut
Ctrl - Shift - Click) splits the edit area vertically and opens the Pin View below the main tabs. The
state and size of the Pin View is restored on restarting Studio.

6.14 GAMS Studio 2995

Figure 6.28 Pin View

The Pin View provides additional buttons. The first button switches the split orientation from right to
below and vice versa. The second button allows to activate synchronized scrolling for the two visible
editors. Synchronizing is always passed from the active editor containing the focus to the passive editor,
which means that scrolling in the passive editor with the mouse wheel isn't passed back to the active
editor allowing adjustments without switching the function off and on. The last button closes the Pin
View.

6.14.2.13 Navigation History

The Navigation History records a navigation history event each time the cursor is moved in some kind of
text file opened in the Studio central widget. This allows the user to quickly jump back (and forward
again) to text passages that were recently edited. To reduce clutter some events are set to overwrite the
previous event. This happens when the cursor is moved by only a single position in either direction, so
that when a user jumps through text or types something only the latest position will be put into the
history. The idea behind this is to make it easier and more convenient to jump to positions that actually
matter. Using the navigation history is not limited to a single file. It is easy to jump between two or
more files to go back and review recent changes. If a file was closed in the meantime it will be reopened
when navigating through the history. This includes even files that were completely removed from Studio.
When such a file is reopened through the Navigation History feature, due to technical limitations, the
affiliation of the file to its previous project is lost. Please note that after navigating back in the history all
”future” history events will be deleted and overwritten if the user creates new history events.

Action Shortcut macOS Alternative Shortcut

Go Back Alt - Left Arrow Ctrl - [Mouse Button 4

Go Forward Alt - Right Arrow Ctrl -] Mouse Button 5

2996 Tools Manuals

6.14.3 Further Studio Widgets

6.14.3.1 Project Explorer

The Project Explorer organizes the files opened in Studio into projects. Each project has its own base
directory. All files associated to the project are organized in a hierarchical tree structure of folders relative
to this base directory. A projects tooltip tells the location of the project in the file system, so it shows
the location of the project file (the .gsp file - gsp standing for GamsStudioProject) . To support faster
detection there are several icons for different file types:

• The runnable GAMS files (currently supported .gms and .inc) are listed with GAMS icon,

• the main GAMS file assigned to the project additionally contains a green play symbol,

• GDX files (.gdx) have an database icon,

• Reference files (.ref) are shown with a reference nodes on a sheet,

• editable files (e.g. .txt) contain a pen on a sheet,

• read-only files (e.g. .log) contain lines on a sheet.

The tooltip of a file or folder entry tells the location in the file system. The file location, the project
location, and the folder location can be explored using the default file system explorer via the context
menu "Open Location". Selecting "Open Terminal" opens the systems terminal in the location of the
selected file, project, or folder. The context menu of a .gdx file provides a special entry "Open in GDX

Diff" that opens the specific GDX Diff Dialog.

6.14 GAMS Studio 2997

Figure 6.29 Project Explorer and its context menu

An empty project can be created by selecting "New Project..." from the "File" menu or the context
menu in the Project Explorer. A file dialog opens to select the project file name. If a project with that
name already exists, Studio looks for a number to append until the projects name is unique. Additionally
a project is created automatically when opening a file. The projects name and location is determined by
the name and location of the opened file. It is possible to add two projects of the same name to Studio.
To help keeping them apart, a gray number is added to the project name of conflicting names.
One project may contain multiple runnable GAMS files but only one runnable GAMS file is set as the
main file, marked with a green arrow overlay. By default the first runnable GAMS file in a project is
considered the main file. The tooltip of a project also tells the location of the folder and the name of
the current main file. Additionally the name of the recently created output file (.lst) is shown after the
first run. The main file can be changed to a different runnable GAMS file in a project via the context
menu "Set as Main File". The project base directory remains unchanged if the runnable GAMS file is
changed.

The main file of the active project will be executed when pressing F9 or clicking the execute button (see how
to set GAMS parameters and execute the main file in Quick Access Toolbar and GAMS Parameter Editor).
To better recognize the active project, the current file and its project are in bold text and the icons of
other projects are slightly dimmed. After executing the main file, the generated listing file (.lst) is added
to its project and the output view (see Process Log) is opened. A clickable log line in the process log
may add the corresponding file into the project and open the file in the Central Widgets area. Users
can manually add more files to a project by right-clicking and choosing either "Add Existing File" or
"Add New File" from the context menu. Additionally Drag and Drop from the systems file explorer is
supported.

It is possible to select multiple items in the Project Explorer. A selection always contains items of one
kind, files or projects never both depending on the first selected item. Folders in this case count as
multiple file selection. The context menu then addresses all selected items.

Files can be removed from a project and projects can be removed from Project Explorer via the two actions
"Close File" and "Close Project" from the context menu. The action "Close Project" closes the
project and all files in the project if opened as well as removes all file entries and the project entry from

2998 Tools Manuals

the Project Explorer without actually touching the files on the file system. The action "Close Files in

This Folder" closes all files in this folder and it's subfolders. The action "Close File" closes the file if
opened and removes the file entry from the project. In case the closed file is the only entry in a folder, the
folder is also closed accordingly. In contrast a project can be empty during the current session but an
empty project isn't restored on Studio restart. In case there are unsaved changes a message popup will
appear, asking the user how to proceed.

Each project is stored in its unique file. Related paths are stored relatively to the location of the project
file. The relative paths allows to share the project along with its other files. You can use "Move Project

File" to rename a project or to move it to another folder. In this case the relative paths are adjusted to
reach the original referenced files. The option "Copy Project" allows to create a copy of the project file
and all of its referenced files.

Selected files can be dragged to another project. By dropping them they are moved to the destination
project. If a folder is empty after this action its representation is removed from the project. Pressing the
Ctrl key creates a copy of the file-reference in that project (no file copy). If the project already contains
a specific file it is just ignored.

Next to each project there is a cog wheel button that opens the Project options page. It contains these
actions:

• Project file: shows the location of the project file

• Name: shows the name of the project

• Base directory: defines the directory from where the folders to each file of the project are generated.
Changing this will update the visible folder structure to all files of this project

• Working directory: defines the directory where the main GAMS file associated to the project will be
executed

• Main file: informs about the current main GMS file

The changed Project Options can be applied by selecting "File > Save" or pressing Ctrl - S.

Actions like rename, move, or delete from file system are currently not supported but will be added in the
future.

Note

For long-time users of the classic GAMS IDE the section about the differences between
IDE projects and Studio projects might be of particular interest.

6.14.3.2 Process Log

After starting a GAMS process the LogViewer is opened to view the process Log. Usually the Log stays
at the bottom to keep tracking the latest log lines. The tracking can be paused by clicking on the up
arrow of the vertical scrollbar. To continue tracking drag the scrollbar to the bottom.

The Log usually contains links of different kinds:

• compilation errors (red): Links to the gms file where the error occurred. Additionally contains a
link to the listing file (.lst) at the beginning of the line (blue).

• listing links: Links to a specific line in the listing file

• file link (green): Links to a file without line numbers such as .gdx or .ref

Clicking on a link takes the focus to that file (and line). Double-clicking in the Log looks for the nearest
link to the listing file and takes the focus there. Files that were not part of the current project are added
when they are opened by link.

For general messages there is the System Log stacked together with all Process Logs. It keeps track of
Studio related messages not originated from a specific GAMS run.

gamside/contents.htm

6.14 GAMS Studio 2999

6.14.3.3 Quick Access Toolbar and GAMS Parameter Editor

The toolbar contains two parts: a quick access section and GAMS Parameter editor to customize how
GAMS is executed the model (see The GAMS Call and Command Line Parameters).

The quick access section contains icons for performing common File actions like New, Open, and Save ,
as well as accessing Settings dialog, Model Library Explorer dialog, Project Explorer view, Process Log,
and Help view.

The GAMS Parameter Editor provides a way to control and customize the execution of a GAMS model.
The editor displays the parameters of the project of the file that is currently opened in Central Widgets
(see also Project Explorer for project and its runnable files). The parameters can be typed into a combobox
and the execution of a GAMS model can be carried out using the following pre-customized execution
commands:

• Run: Choose Run or press F9 to compile and execute GAMS statements in the main runnable file.
This execution command is equivalent to running GAMS with the default parameter action=CE
(Compile and Execution).

• Run with GDX Creation: Choose Run with GDX Creation or press F10 to compile and execute
GAMS statements in the main runnable file and create a GDX file with the name of the main
runnable file and a gdx extension. This execution command is equivalent to running GAMS with
the combination of the two parameters action=CE and gdx=default.

• Run with Debugger: Choose Run with Debugger or press F11 (macOS Meta - F11) to compile
and execute GAMS statements in the main runnable file with the debugger enabled.

• Step start with Debugger: Choose Step start with Debugger or press Shift - F11 to compile
and execute GAMS statements in the main runnable file with the debugger enabled and pause the
process at the first possible line.

• Compile: Choose Compile or press Shift - F9 to compile GAMS statements in the main runnable
file. This execution command is equivalent to running GAMS with the parameter action=C
(CompileOnly).

3000 Tools Manuals

• Compile with GDX Creation: Choose Compile with GDX Creation or press Shift - F10 to
compile GAMS statements in the main runnable file and create a GDX file with the name of the
main runnable file and a gdx extension. This execution command is equivalent to running GAMS
with the combination of the two parameters action=C and gdx=default.

• Run NEOS: Choose Run NEOS to compile GAMS statements in the main runnable file locally and
pass the execution to the NEOS server.

• Run GAMS Engine: Choose Run GAMS Engine to compile GAMS statements in the main runnable
file locally and pass the execution to the GAMS Engine server.

The pre-customized execution command will operate on the main file (marked with a little green arrow
over the regular icon) of the active project (see how to manage the main file in section Project Explorer).
In case GAMS parameters have been set they will be appended to the pre-customized commands. Just
like the GAMS Terminal, when there are identical parameters with different values the last one ”wins”
and overwrites the previous ones. Thus it is possible for a user to change and override GAMS Studio
default parameters, which can possibly lead to problems if done incorrectly. In this case Studio prints out
a warning message, informing users about potential problems. To debug what Studio does the full GAMS
call parameters will be printed to the System Log. After execution, the parameters will be added into the
project history. All files in a project share one parameter history. The previous GAMS parameters can be
recalled from the project history via the drop-down menu of the combobox. Switching the file opened in
Central Widgets will activate the different project history only when the project of the newly opened file
is different from the project of the file before the switch.

The parameters curDir and workDir behave slightly differently in Studio compared to the terminal.
When using one of these parameters on the command line GAMS expects the gms file to be in the given
folder. In Studio the path to the input file is always given as an absolute one. Therefore, there is no
need to use the inputDir parameter to make the gms file accessible to GAMS if it is not in the specified
working directory.

The GAMS Parameter Editor provides a way to either interrupt or stop the currently running job when
an execution of a GAMS model is in progress (indicating with animated icon over the project folder icon
in Project Explorer) :

• Interrupt: Click the Interrupt button or press F12 to send an interrupt request to the running
job in order to perform a graceful stop and collect an incumbent result back from the execution
if the solver supports this feature. The command is enabled when there is a job that is currently
running in the project and disabled when there is no currently running job in the project.

6.14 GAMS Studio 3001

• Stop: Click the Stop button or press Shift - F12 to send a request to stop the running job
immediately. The command is enabled when there is a job that is currently running in the project
and disabled when there is no currently running job in the project.

The Extended GAMS Parameter Editor allows to configure the GAMS parameters. The extended
parameter editor is shown when the Show button next the parameter combobox is clicked or with the
shortcut Ctrl - Alt - 3. The editor can be hidden when the button is clicked again. When shown, the
GAMS parameters from the parameter combobox will appear as a list of entries in the left pane of the
extended parameter editor, each entry contains the Key and Value.

Note that the GAMS parameter combobox will be disabled when the extended parameter editor is shown
and all editing has to be done in the extended parameter editor.

Figure 6.30 Extended GAMS Parameter Editor is shown when the button next to
parameter combobox is clicked

The right pane of the extended editor displays the list of all valid parameter definitions, each contains
Parameter Name, Synonym, Default Value, Type, and Description. The parameter definition entry
with enumeration type (EnumStr or EnumInt) can be expanded to show all enumerated values of the
parameter by clicking the bullet in front of the parameter entry, clicking the bullet again will hide all
enumerated values of the parameter. Above the list of all valid parameter definitions is a filter box (with
placeholder text Filter Parameter...) to allow to filter all parameter definitions. As a filter term has
been typed into the search box the results will be displayed in the list below. More about the filter can be
found in the Filter Section.

The parameter editor displays potential parameter errors in red color both in the combobox and in the
left pane of the extended editor. When hovering a mouse over the error key or value, a tooltip with more
detailed explanation of the error appears.

Figure 6.31 Parameter key turns red with pop-up tooltip when there is a potential error

3002 Tools Manuals

Figure 6.32 Process Log reports parameter errors when running the model with an
unknown option parameter

When there are several entries of the same parameter, all other entries except the last entry will be ignored
when gams executes the model. In such case, the combobox of parameter editor displays a warning in
yellow and the icon in front of the parameter in the extended editor turns half-yellow in combination of
another color, red or green, depending of whether or not there is a potential error.

Figure 6.33 Parameter key turns yellow and the pop-up tooltip indicating a warning

See edit parameter key and value on how to edit parameter key and value that contains an error or a
warning. See show all parameters of the same definition on how to locate all entries of the same parameter.

The followings describes all editing actions that can be performed via the extended parameter editor:

6.14 GAMS Studio 3003

Figure 6.34 A number of actions that can be performed via the context menus of Extended
Parameter Editor

• Edit parameter key and value: double click on key cell to edit Key and on value cell to edit
Value of the entry. A drop-down list will suggest possible keys and values when possible. Press
Enter to confirm the edit and press Esc to cancel the edit.

Figure 6.35 GAMS Parameter editor shows a drop-down list of all possible parameters
started with 'o'

Figure 6.36 GAMS Parameter editor shows a drop-down list of all enumerated values of
parameter 'action'

3004 Tools Manuals

• Add new parameter: there are several ways to add a new parameter via extended parameter
editor.

– right click on the left pane of the parameter editor and choose add new parameter from the
pop-up context menu

– right click on the selected parameter entry of the parameter table and choose add new

parameter from the pop-up context menu

– click on the add new parameter button next to Key table header in the left pane

A new entry will be added at the end of parameter entry table with dummy parameter key [KEY]

and dummy parameter value [VALUE]. See edit parameter key and value on how to edit parameter
key and Value.

It is also possible to add a new parameter from the right pane of the parameter editor by double
clicking at the definition entry in the right pane. The selected definition entry will be added as a
new parameter entry at the end of table in the left pane. In case of double clicking an enumerated
value entry of a parameter definition the definition entry will be added as a new parameter with the
selected enumerated value. Otherwise the default value of the entry will be added.

Figure 6.37 Parameter with enumerated value added by double clicking at the selected
entry in the right pane

• Insert new parameter: right click on the selected entry and choose insert new parameter. A
new entry will be inserted before the selected entry with dummy parameter key [KEY] and dummy
parameter value [VALUE]. See edit parameter key and value on how to edit parameter key and
value.

• Move up: right click on the selected entry and choose Move Up. The selected entry will be moved
one position up the table. This action will change the order of parameters.

• Move down: right click on the selected entry and choose Move Down. The selected entry will be
moved one position down the table. This action will change the order of parameters.

• Delete selection: right click on the selected entry and choose Delete Selection. The selected
entry will be deleted from the table.

• Delete all parameters: right click on the left pane of the extended editor and choose Delete all

Parameters. All entries will be deleted from the table.

• Show parameter definition: right click on the left pane of the extended editor and choose Show

parameter definition. The parameter definition entry on the right pane will be highlighted.

• Show all parameters of the same definition: right click on the left pane of the extended editor
and choose Show all parameters of the same definition. All parameter entries on the left
pane will be highlighted.

6.14 GAMS Studio 3005

Figure 6.38 All entries of the same parameter are highlighted

• Resize columns to contents: right click on the left or right pane of the extended editor and
choose Resize columns to contents. All columns will be resized according to their contents.

• Add this parameter: right click on the right pane of the extended editor and choose Add this

parameter. The parameter with default value (if defined) of the selected definition will be added as
the last entry on the left pane of the extended parameter editor. This action in the context menu is
enabled only when there is no entry of this parameter on the left pane. Note that a double click on
the definition will also perform add this parameter action. Performing the action on the parameter
definition that has already been added will pop-up a dialog indicating that the parameter exists on
the left pane and prompting for one of the followings:

– replace existing entry If there is only one entry or replace the first entry and delete other entries
if there is more than one entry, or

– add new entry of the same definition, or

– show details of all entries of the same parameter, or

– abort the action

Figure 6.39 A pop-up dialog when adding the definition parameter that has already been
added

• Remove this parameter: right click on the right pane of the extended editor and choose Remove

this parameter. The parameter of the selected definition will be deleted from the left pane of

3006 Tools Manuals

the extended parameter editor. This action in the context menu is enabled only when there is an
entry of this parameter definition on the left pane. In case there are multiple entries of the same
parameter, all entries on the left pane will be deleted.

Press F1 on a parameter entry in the extended parameter editor will activate the The GAMS Call and Command Line Parameters
help page containing the detailed description of the GAMS parameter.

Summary of Actions and Shortcuts

Actions and their shortcuts that can be performed via Toolbar and GAMS parameter editor are:

Action Shortcut macOS Description

New Ctrl - N Command - N Open new file dialog

Open Ctrl - O Command - O Open file open dialog

Save Ctrl - S Command - S Save the current file. If the
file does not exist on disk
open the save file dialog

Settings F7 Command - , Open the Settings dialog

Model Library F6 F6 Open the
Model Library Explorer
dialog

Run F9 F9 Run main file of current
project with GAMS

Run with GDX Creation F10 F10 Run main file of current
project with GAMS and cre-
ate a GDX file

Compile Shift - F9 Shift - F9 Compile main file of current
project with GAMS with-
out execution

Compile with GDX Creation Shift - F10 Shift - F10 Compile main file of current
project with GAMS and cre-
ate a GDX file without exe-
cution

Interrupt F12 F12 (Gracefully) Interrupt cur-
rently running GAMS job

Stop Shift - F12 Shift - F12 Stop currently running
GAMS job

Show extended parameter Shift - Ctrl - 3 Control - Option - 3 Open the extended GAMS
parameter editor

Project Explorer Ctrl - 1 Command - 1 Open Project Explorer

Process Log Ctrl - 5 Command - 5 Open Process Log

Help F1 F1 Open the GAMS Help.

Actions and their shortcuts that can be performed via the left pane of the extended GAMS parameter
editor are:

Action Shortcut macOS Description

Insert new parameter Ctrl - Return Ctrl - Return Insert a new parameter

Delete selection Ctrl - Delete Delete the selected parame-
ter

Delete all parameters Alt - Delete Delete all parameters

6.14 GAMS Studio 3007

Action Shortcut macOS Description

Move up Ctrl - Up Command - Up Move the selected parameter
up for 1 row

Move down Ctrl - Down Command - Down Move the selected parameter
down for 1 row

Select all Ctrl - A Command - A Select all parameters

Show parameter definition Ctrl - F1 Show definition of this se-
lected parameter in the right
pane

Show all parameters of the same definitionShift - F1 Show all options of the same
definition defined in the right
pane

Resize columns to contents Ctrl - R Command - R Resize the columns in the left
pane to contents

Actions and their shortcuts that can be performed via the right pane of the extended GAMS parameter
editor are:

Action Shortcut macOS Description

Parameter Filter Ctrl - F Command - F Jump to the focus to the Parameter
Filter input field

Add this parameter Return Return Add option in the left pane from the
selected definition

Remove this parameter Delete Remove option defined by this definition
from the left pane

Resize columns to contents Ctrl - R Command - R Resize the columns in the right pane to
contents

6.14.3.4 Integrated Help

The Help View is designed to integrate the navigation of the GAMS documentation into GAMS Studio.
Press F1 or choose Help > GAMS Documentation or check View > Help to start the Help View and
browse the documentation. The start page of the Help View is the main document page available in the
GAMS distribution that has been used to run GAMS Studio. See Home on how to always navigate back
to the start page of the document. Alternatively, choose Help > Studio Documentation to directly
jump the to start of the GAMS Studio documenation. Click Close button or uncheck View > Help to
dismiss the Help View. GAMS Studio will remember the last viewed page along with its browsing history
until GAMS Studio is restarted.

The Help View starts in docking state for the first time and can be docked around the editor in the central
widgets area by either dragging the view to the desired location. Studio will remember last state of the
Help View before it was closed.

3008 Tools Manuals

Figure 6.40 Help View when docked to the right of Code Editor

The Help View can also be floated by double clicking the title part of the Help View. Dragging or double
clicking the title of the Help View again will dock the Help View.

Figure 6.41 Help View when floated

Note that the Help View does not offer the full browsing features of a web browser. Though the help view

6.14 GAMS Studio 3009

offers a Open this page in Default Web Browser button to use the full features of a web browser.

An overview of Help features:

• Home: Start the start help page [GAMSDir]/docs/index.html

• Back: Back to previous page

• Forward: Go to next page

• Reload: Reload the content of this page

• Stop: Stop loading the content of this page

• Bookmarks:

– Bookmark this page: Store the title of the page as the name of bookmark together with
its location. The entry of the bookmark will appear below the Organize Bookmarks section.
Click on an entry to jump to the page that has been bookmarked.

– Organize Bookmarks: Open the bookmark dialog to edit or delete a bookmark entry. Right
click on the selected entry in the bookmark table, then either load the selected bookmark in
the Help View, or delete the selected bookmark. The selected bookmark Name and Location
can be edited from the lower part of the bookmark dialog and press Enter. Press Esc to cancel
the edit. Click close button to dismiss the bookmark dialog.

3010 Tools Manuals

• Zoom In: Zoom in the page to increase the font size. Press Ctrl - +, or Ctrl - Mousewheel Up

or choose View > Zoom In menu to zoom in the page.

• Zoom Out: Zoom out the page to reduce the font size. Press Ctrl - -, or Ctrl - Mousewheel

Down or choose View > Zoom Out menu to zoom out the page.

• Reset Zoom: Reset the font size of the page to its original size. Press Ctrl - 0 or choose View >
Reset Zoom menu to reset zoom in the page.

• Help Option :

– View This Page Online : Browse the same documentation on GAMS website. This, for
example, allows to use more sophisticated search functionalities across all GAMS documentation
of version 46.2 or to browse different version of documentation, or to browse the GAMS website
from the Help View.

– Open in Default Web Browser : Browse the same document in default web browser. As
the help view does not offer the full features of a web browser, this allows to browse the
documentation using the full web browser features in default web browser.

– Copy page URL to Clipboard : Copy of the current page's URL to the clipboard. This,
for example, help to see the URL of the currently viewed page of the document.

6.14 GAMS Studio 3011

• Find in page... : Press Ctrl - F or choose Edit > Search menu to activate a search at the
bottom area of the Help View. Type in a word to be found in the page. The word found in the page
will be highlighted as it has been typed in and the number of found occurrences will be highlighted
in the scrollbar of the Help View. Click previous button to find the previous occurrence, and click
next button or press Enter to find the next occurrence. Check Case Sensitivity box to find a
word case sensitively. Highlighting the word stays as the document is navigated from page to page
until the keyword is clear or the search is dismissed or the Help View is closed or invisible. Click the
close button or press Esc to dismiss the search.

3012 Tools Manuals

Help on Specific widgets

It is possible to jump directly from directly from different widgets (Welcome Page, Code Editor,
Listing Viewer, GDX Viewer, Reference File Viewer, and Solver Option Editor) to the related part of
the document.

From Welcome Page, Listing Viewer, GDX Viewer, and Reference File Viewer, press F1 will ac-
tivate the GAMS Studio page and jump to the section corresponding to the widget. From
GAMS Parameter Editor, press F1 on a parameter entry in the extended parameter editor will
activate the The GAMS Call and Command Line Parameters help page containing the detailed descrip-
tion of the GAMS parameter. From Solver Option Editor, press F1 on an option entry in the editor will
activate the related solver page containing the detailed description of the option.

From Code Editor, it is possible to jump to the document page that describes Dollar Control Options
or to the index page that lists entries related to Data Types and Definitions and Language Items
in Code Editor, as well as from the parameter editor to the GAMS parameter described in
The GAMS Call and Command Line Parameters :

• Press F1 on a Dollar Control Option within the editor will activate the page Dollar Control Options
in the Help View and jump to the corresponding dollar control option described in
Dollar Control Options chapter.

6.14 GAMS Studio 3013

• Press F1 on a keyword in Data Types and Definitions or in Language Items within the editor to
activate the Index Page in the Help View that lists the index entries related to the keyword.

• Press F1 on a parameter entry within the extended parameter editor to activate the help page display-
ing the detailed description of the GAMS parameters in The GAMS Call and Command Line Parameters.

keyword.html?q=set

3014 Tools Manuals

Figure 6.42 Help View when press F1 on parameter entry 'output' in extended parameter
editor

Figure 6.43 Help View when press F1 on parameter definition entry 'LimRow' in extended
parameter editor

Summary of Actions and Shortcuts

Action Shortcut macOS Description

Zoom In Ctrl- + or Ctrl - Wheel
Up

Command - + or Com-
mand - Wheel Up

Zoom in the page to in-
crease the font size

Zoom Out Ctrl- - or Ctrl - Wheel
Down

Command - - or Com-
mand - Wheel Down

Zoom out the page to re-
duce the font size

6.14 GAMS Studio 3015

Action Shortcut macOS Description

Reset Zoom Ctrl - 0 Command - 0 Reset the font size of the
page to its original size

Search Ctrl - F Command - F Jump to the help search box
to search for a keyword in
the current page

6.14.4 Debugger

GAMS Studio provides a debugger to detect errors. It is started by selecting Run with Debugger or Step
start with Debugger from the GAMS menu or the Quick Access Toolbar. When pausing the process,
GAMS Studio marks the line in the source code that will be processed next, and opens a temporary GDX
file in the Pin View containing the current data state. It is possible to have more than one active debug
sessions.

To pause a debug process you can

• set a breakpoint

• use step

• use pause

Breakpoints can be set to any line in the source code, although not all lines are valid spots where the
process can be paused. GAMS can pause on lines that contains an operation. If a breakpoint is set to
another kind of line (e.g. empty line, comment, or delcaration) it will be moved to the next possible line,
or the last possible line in this file. The original line keeps a mark until the end of the debug session
hinting its new line number.

Step can be triggered initially by selecting the menu GAMS > Step start with Debugger or by using
the shortcut F11 (Meta - F11 on macOS). During the debug session step can be triggered in the debug
pane below the editor and also using the shortcut.

Pause can be triggered when a debug session is running and not paused. This is available in the debug
pane below the editor.

Figure 6.44 Debug pane and breakpoints

During a debug session the Debug Pane below the editor allows to control the flow:

3016 Tools Manuals

• Continue - continues until the next breakpoint or the end of the program is reached

• Step - continues until the next possible pause line or the end of the program is reached

• Pause - pauses the process when the next possible pause line is reached

• Stop - stops the execution of this process

• the name of the active project follows right after the buttons

6.14.4.1 Debugger Shortcuts

Action Shortcut macOS Description

Run Debugger F11 Meta - F11 Run main file of current project in debug mode

Step Run Debugger Shift - F11 Shift - F11 Run main file of current project in debug mode
and pause at the first possible line

6.14.5 MIRO

GAMS Studio can be used to develop models for GAMS MIRO. Please go to the GAMS MIRO documentation

to learn more about the features and workflow of the MIRO integration.

6.14.5.1 GAMS MIRO Shortcuts

Action Shortcut macOS Description

Run base mode F8 F8 Run main file of current project with MIRO in
Base Mode

Run configuration mode Shift - F7 Shift - F7 Run MIRO configuration mode

6.14.6 NEOS

GAMS Studio can remotely execute models on the NEOS server. The model is compiled locally before
the compilation object is send to NEOS. Note that a GDX file can be created but always has the name
out.gdx. On running a dialog pops up to enable further setup:

• ”Email” - The email to submit a job. It can be predefined by setting NEOS EMAIL in the
GAMS User Configuration or by defining the environment variable NEOS EMAIL.

• ”Create a GDX file” - Create a GDX file even if the Command line parameter is not set.

• ”Short priority” - The execution may start earlier and provides intermediate log output, but it is
limited to an execution time of five minutes.

• ”Long priority” - The execution may start later and provides no intermediate log output, but it is
not limited in execution time.

The selections of the dialog are stored to the settings. To reveal the Terms of Use after checked Don't
show Terms of Use again there is a checkbox in Settings > Misc.

The results of the remotely executed model are placed into a sub-folder named by the base name of the
model. The log output of the remote execution has a different background color which can be configured
in the settings dialog (Default Text, 3rd color). Links in the remote execution log output are replaced by
their local counterpart.

https://gams.com/miro/index.html
https://gams.com/miro/studio.html
https://neos-server.org/neos/index.html

6.14 GAMS Studio 3017

6.14.7 GAMS Engine

GAMS Studio can remotely execute models on your own GAMS Engine server. The model is compiled
locally before the compilation object is sent to GAMS Engine. Additional files can be sent to the server
by creating a file with the name of the model and the extension ”.efi” (for ”External FIles”). Each line
in this file addresses an additional file. Files defined in the EFI file that should be actualized locally by
changes from the GAMS Engine server can be marked by adding a < separated by a space.

Example: if an EFI file named trnsport.efi contains these lines:
inc/trnsport.inc

inc/data.txt <
and the model trnsport.gms is executed, both files will be transferred to GAMS Engine. After solving,
the file inc/trnsport.inc will stay untouched but inc/data.txt will be replaced by the version returned
from the server.

GAMS Studio provides an EFI editor to select the files. The context menu of a project in the
Project Explorer allows to create or open the EFI file matching the current runnable GAMS model.
With this editor files can be selected and selected files can be marked to be actualized locally. You can
switch an open EFI editor to a text editor by selecting Reopen as text after changes have been saved.
All operations (check, uncheck, select all, and clear) work on the visible files. In contrast the check state
of a directory shows the select state of all files (visible and hidden by filter).

On running a dialog pops up asking the user to log in. If already logged in before and the login is still
valid this first page is skipped. The login page offers several methods to authorize:

• Login page

– ”Url” - The URL to your GAMS Engine server

– ”Login via” - A list of available methods to authorize

∗ ”User” and ”Password” - The username and password to login

∗ ”JWT Token” - A token can be used to login

∗ ”SSO” - An authorization provider

∗ Additional predefined authorization providers (depending on the GAMS Engine installation)

While changing the URL, Studio tries directly to access the server and requests version information. On
success it gets the GAMS Engine version placed to the right and the version of the GAMS installation on
the server to the left. If the local GAMS version is newer the command line parameter ”previousWork=1”

https://gams.com/engine/

3018 Tools Manuals

will be added automatically if no ”previousWork” is already present. The entries of the dialog (excluding
the password) are stored to the settings. Further configuration can be done in the settings dialog.

To login via an authorization provider a SSO name can be entered or one of the predefined authorization
providers can be selected. After selecting the ”Login” button Studio contacts the provider and offers a
code and a link to the provider where the code can be entered to verify the identity. For convenience
the button ”Copy and Visit” copies the code to the clipboard and opens the link in the systems default
browser. Here the code can be entered using paste Ctrl + V.

Being logged in, the submit page allows to setup the remote job:

• Submit page

– ”Namespace” - The namespace to be used on the server

– ”Instance” - Allows to specify the user instance for GAMS Engine SaaS

– ”Create a GDX file” - Creates a GDX file even if the command line parameter is not set

To get back to the login page click the ”Logout” Button. The job is submitted to the GAMS Engine
server on clicking ”OK”. To always run the same setup, the ”OK, don't ask” can be selected. For this
Studio session the job is always submitted directly without showing this dialog. To see the dialog again,
use Ctrl-Click on the Engine icon, or click on ”Settings > Remote > Reactivate Dialog”.

The selection of an user instance and the information of available space and time quota is only visible on
connecting to a GAMS Engine SaaS server.

When a job is submitted, GAMS Studio continously shows the output received from the GAMS Engine
server. As this may take some time it is possible to close Studio during the remote execution. In this case
a dialog pops up asking weather the remote job should be kept or canceled. If ”keep” has been chosen,
the job token will be stored. On the next start of GAMS Studio a dialog will allow to resume to the job.
On resume all pending messages will be polled from the Engine server and the execution will be followed
until in the end the results are fetched, just like Studio hasn't been terminated in between.

The results of the remotely executed model are placed into the working directory:

• The LST and LXI files from the server are renamed to "<model>-server.lst" and
"<model>-server.lxi" to protect the local files.

• All generated files will replace existing files of the same name (like GDX, REF, and LOG files).

• All file entries from the EFI file that end with " <" will replace the local existing file.

The log output of the remote execution has a different background color which can be configured in the
settings dialog (Default Text, 3rd color). Links in the remote execution log output are replaced by their
local counterpart.

6.14 GAMS Studio 3019

6.14.8 Dialogs and Actions

6.14.8.1 GAMS Licensing

The GAMS Licensing dialog is part of the GAMS Studio Help menu. It provides information about the
used GAMS as well as available solvers, which lists the solver licenses and their capabilities. Furthermore,
the dialog can be used to install a GAMS license. To do so the steps below have to be applied.

1. Copy the GAMS license to the clipboard

2. Open GAMS Studio and click on Help > GAMS Licensing

3. A messages box shows up if a GAMS license has been found on the clipboard. If 'Yes' is clicked the
new license will be installed and presented via the GAMS Licensing dialog; otherwise the old license
is shown.

Studio will also detect a license on the clipboard when it starts. If a license is detected the same message
box will show up like if the GAMS Licensing dialog is used.

A license file can also be used as an alternative to the clipboard magic. To do so a GAMS license file
needs to be selected via the 'Install License File' button. If the selected license is valid it will be installed;
otherwise the previous license is kept.

6.14.8.2 Check for Update

Studio will check for a more recent GAMS version during startup. If a newer GAMS version has been
found a hint will be displayed. In addition to that it is possible to check for GAMS and GAMS Studio
updates at any given time. This can be done via Help > Check for Update or by opening File > Settings
> Update. In both cases the following dialog is displayed. The dialog can be used to enable/disable the
startup check and to configure the check interval.

6.14.8.3 Search and Replace

3020 Tools Manuals

Action Shortcut macOS Description

Open/Focus Search Dialog Ctrl - F Command - F Opens the search dialog or focusses
it if it is already open, if Text is
selected it will automatically be en-
tered as a search term

Find next F3 or Enter F3 or Enter Jumps to the next match that fits
all search criteria

Find previous Shift - F3 Shift - F3 Jumps to the previous match

Find All Shift - Enter Shift - Enter Starts a search, opens the page of
search results and jumps to the first
hit

Stop Search & Close Dialog Esc Esc Closes the search dialog and stops
an ongoing search. On second press
any highlights of results will be re-
moved

Pressing the Ctrl - F opens the Search and Replace window. If text is selected it will be pasted into the
search field. Users can search specific files with it and do text replacement operations. Depending on
which file type is openend in the editor, the search widget changes to visualize which actions are available.
Due to technical limitations .gdx files cannot be searched. Also, replacing in read-only file types (e.g. lst
or ref) is deactivated. For reasons of performance the search stops when reaching 50000 search results.
This is visualized in all places where the number of matches is shown by showing ”50000+” as the results
number, indicating that there might be more results.

Figure 6.45 Search window in its default configuration

In the first row of the dialog there is the Search field, which takes the search term and saves a list of recent
searches. Next to it is the ”Clear” button that removes all highlights, results and clears both text fields.
A shortcut to clear all results is to press the Esc key in the Code Editor. The next row houses items
related to the replace functionality. Most of these are deactivated for files that are opened in read-only
mode (e.g. .lst). First comes the replace input field where users can input the text which replaces the
search term. The next button is ”Replace”: On the very first click it selects the next match, without
replacing anything. On the next click it replaces the current selection with the replacement term and
jumps to the next match in the same file, selecting it. Users can use this to click through a file, replacing
words while keeping an overview over what is actually changed. Replacement actions can be undone by
pressing either the undo button or hotkey Ctrl - Z.

6.14 GAMS Studio 3021

”Replace All” replaces all matches in the currently selected scope after a pop-up is shown asking the user
whether the replacement of n occurrences of X with Y is intended. In this pop-up the user can also decide
to start a search instead, opening the results page showing all occurrences of the would-be replace action.
Then come the options to narrow down a search. ”Whole Words” excludes partial hits from matches. For
example, when searching for ”in” with this option checked only the word ”in” is found but no occurrences
in ”information”. ”Case Sensitivity” sets if the case of letters in the search term matters. Reminder: The
GAMS language is case insensitive, so this option can actually lead to incomplete results, depending on
what it is used for. ”Use Regex” actives an advanced search term interpretation mode and stands for
Regular Expressions. When activated, instead of a single search term users can specify a pattern that
matches an array of different words. Click here for further information about regular expressions.

In the next row is the scope selector. The scope of the search or replace action can be set here with five
options available:

• ”Selection” searches the text selected in the current file. The search dialog will give feedback if no
selection is present. To remove the search selection press either Esc or the ”Clear Selection” button.
Keep in mind that starting a new search moves the search selection to the currently selected text.

• ”This File” limits the search to the currently active file and is the default.

• ”This Project” searches all files that belong to the same project as the currently opened file. These
are all children of the same project in the Project Explorer.

• ”Open Tabs” searches all files currently opened in Studio (except GDX files).

• ”All Files” searches all files that appear in the Project Explorer and are searchable.

• ”Folder” searches all files in a specified folder that can be located anywhere on disk and does not
need to be opened in Studio beforehand. When opening a result the file will be added to the
Project Explorer.

Next to it are the find previous occurrence and find next occurrence buttons, labeled ”<” and ”>”
respectively. These will find and highlight the next word matching the search criteria either before or
after the current text cursor position. Next to it there is the ”Find All” button which starts a search
in the scope selected by the user. In the output pane of studio a table containing all matches will open.
Items can be double clicked to perform a jump to the result and the up and down arrow keys can be used
to select quickly select and jump to results. Information about the file, the location of the match, plus
some context information are also shown.

Depending on which scope is selected, additional elements of the search dialog will be shown:

https://www.regular-expressions.info/

3022 Tools Manuals

Figure 6.46 Search window fully expanded

The first section is the file filter section which is available for all modes except ”Selection” and ”This File”.
It gives the user the possibility to limit the search to certain files (Include Filter) but exclude others
(Exclude Filter). Filenames can be specified by using a wildcard syntax. See the tooltips for some simple
examples. The drop-down menus come with a few default options for GAMS specific file types but can
also be used to enter own patterns. Comma-seperated lists of patterns are also supported. The second
section is only available when ”Folder” scope is selected and lets users set the path to search. It is a
drop-down style textfield, so like the others it keeps a history of recent entries. Next to it is a browse
button that opens the operating systems default folder picking dialog to easily find a path. Tooltips are
available for most items in the search window and contain further information like keyboard shortcuts.

Workflow Tips

• Edit a file, hit Ctrl - F to open the search widget. The search field is focused automatically so you
can start typing your search term. Pressing the Enter key is a shortcut for Find Next. Press Enter
again or F3 to step through all matches. Press Shift - F3 to step backwards. Make changes to you
document, press Ctrl - F again to re-focus the search widget without having to pick up the mouse.

• Enter a search term, and then Shift - Enter to trigger ”Find All”. This will open a list of results.

• The Esc key will close the search widget. Pressing Esc again will clear all highlighted search results.

• Use project or file prefixes when working with projects with many files. Use search filters to only
search relevant files.

• Regular Expressions are a powerful tool and support - among other things - capture groups. This
means that you can save a part of your match using parenthesis and reference the contained
sequence in your replacement string. For example when some code references files with the naming

6.14 GAMS Studio 3023

scheme of FILENAME DD MM YYYY you could find all references using a regular expression
like (\w+) (\d\d) (\d\d) (\d\d\d\d). To convert them into a more international and sorting
friendly format you could use the following replacement string: $4-$3-$2 $1 to change these to
YYYY-MM-DD FILENAME. Each pair of parenthesis created a so-called capture group. They are
numbered counting from left to right starting with 1.

– It is also possible the reference a capture group in the search term itself. This is called a
backreference. Creating backreferences works similarly, expcept that \NUMBER is used instead
of $NUMBER. For example: (\w+)\s∗'\1' would find symbols that have just their own name as
descriptive text.

6.14.8.4 Model Library Explorer

The Model Library Explorer is used to search the different model libraries provided by GAMS and
to retrieve their models in a convenient way. It can be opened either by choosing GAMS > Model
Library Explorer from the menu, by using the shortcut F6 or by clicking the corresponding icon in the
Quick Access Toolbar.

Every library is presented in a separate tab. The search facility in the upper part of the Model Library
Explorer allows for dynamic filtering of all model libraries simultaneously. As the search string is entered,
the results are applied to the tabs representing the different libraries. If there are no more results on the
selected model library tab, the first non-empty tab is automatically selected. This is undone as soon as
the originally selected model library contains results again. The parenthesis enclosed numbers indicate
the number of models found for the specific library and the current search input. More about the filter
can be found in the Filter Section.

Figure 6.47 Searching for trns in the Model Library Explorer

Beside a short description, several models have a longer and more detailed description available. Selecting
a model and clicking on the Description button in the lower right corner opens a pop-up dialog showing
further information about the model. A model can be opened either by clicking on the Load button, by
double clicking or by selecting the model and pressing the Enter key.

3024 Tools Manuals

User Libraries

Additionally to the model libraries distributed by GAMS, it is possible to access user defined model
libraries by providing a GLB file along with the corresponding files belonging to the models in the library.
The Model Library Explorer looks into a specific location for user defined model libraries. This location
can be accessed or changed by opening the Settings dialog (File > Settings) and switching to the Misc.
tab. The Arrow button will show the location where the Model Library Explorer tries to find user defined
model libraries, the Folder button allows to change the location. Adding a new library is done by copying
the required files into a subdirectory in this location. See Creating a User Library on how to create
a custom model library. Newly added libraries require a restart of the Model Library Explorer to become
visible.

6.14.8.5 Settings

The GAMS Studio settings dialog can be accessed via the File > Settings menu entry or with the hotkey
F7. Users can change certain aspects of Studio like behavior or appearance. Settings are categorized
loosely on five tab pages.

General page

On the ”General” tab users control general settings of Studio. Some additional hints:

• ”Default GAMS Studio workspace”. This path is used as a default location for models imported
from the Model Library Explorer.

• ”Automatically save modified files before running GAMS” is an option that saves all modified files
when the user starts a GAMS run. Thereby, previously unsaved changes will be incorporated into
that GAMS execution without the need to go through all files and make sure that changes were
saved manually.

• ”Open .lst file after running GAMS” automatically puts the generated lst file into the foreground
after each GAMS run.

• ”Jump to first compilation error” is an automatism that aims to make working with Studio a little
easier. When compilation errors occur, the editor and the log both jump to the first error detected
if this option is activated. This also applies when the option Open .lst file after running GAMS is
activated. Studio then opens the lst file generated and jumps to the first error in it. If you navigate
back to the gms file, the view has also moved to the first error found.

• ”Open file in current project by default” switches the menu File > Open (Ctrl-O) to always open a
file in the current project, even if it exists in another project. The alternative open (Ctrl-Shift-O)
is changed to File > Open in new project....

• ”Open file finds or creates new project” switches the menu File > Open (Ctrl-O) to find the file in
any project and open it. If not found, a new project is created. The alternative open (Ctrl-Shift-O)
is changed to File > Open in current project....

• At the bottom of this tab there is a section to backup all settings. When pressing the Export
button a dialog pops up, asking for a filename. This name can be chosen freely and the file can than
be copied to a USB stick for sharing, or just be saved for later. This is handy if you are planning a
fresh install or want to copy your personal settings to a different machine. The button Import is
used to load a saved settings file. These settings are applied immediately and the settings dialog
will be closed automatically.

https://www.gams.com/mccarl/createlib.pdf

6.14 GAMS Studio 3025

Editor & Log page

The ”Editor & Log” tab contains many self explanatory appearance options. Most notably font settings
which is used for all monospace fonts like text editors and logs. The font size is used also to calculate the
size of proportional fonts (see Zoom Groups)

• ”Enable auto-indentation” activates smart line break behavior. When pressing the Enter key a line
break is inserted and the indentation of the line of origin is copied instead of moving the cursor to
the first column.

• ”Highlight word under cursor without selection” changes the highlighting behavior of word occur-
rences. While the default behavior highlights other occurrences of the same word when double
clicking or selecting a word, activating this option changes the behavior so that every time there is a
word under the text cursor, all of its occurrences will be highlighted. Only full words and no partial
matches are highlighted.

• ”Tab stop size” lets the user decide how many tabs will be inserted when pressing the Tab-key.
GAMS Studio always replaces inserted tabs with spaces.

• ”Fold DCO blocks on open” folds all foldable blocks of the types ”Text”, ”Echo”, ”Put”, and ”Fold”

• ”Syntax Highlight bound” stops highlighting lines with more than the given count of characters.
Highlighting long lines is a very time consuming process which can be controlled this way. It's likely
that the highlight will get out of sync for one or more lines. By placing syntax relevant characters
to the next (shorter) line this side effect can be reduced. To switch off highlighting set this value to
0. To always turn on highlighting set it to -1.

• ”Clear process log before GAMS execution” empties the log before running a gms file. If deactivated
old log output is kept but colored in a lighter gray so users are still able to identify that they are
looking at an old run instead of the most current one. One can also decide if the log should be
written to disk as well and if so, how many old versions of the same log should be kept on disk as
backup. Note, that in addition to this log file written by Studio, one can instruct GAMS itself to
write a log file using the GAMS parameter logOption, which could cause a file naming clash.

GDX Viewer

• ”Symbol View” controls if the list view or the table view is used as the default view when a symbol
is displayed for the first time.

• ”Attributes” allows to control which of the variable and equation attributes should be visible per
default.

• ”Preferences” controls different default settings for symbol data:

– ”Squeeze Defaults” affects variables and equations only and can be used in order to hide all
columns that have the default value of the respective variable or equation type.

– ”Squeeze Trailing Zeroes” allows to turn on/off the truncation of trailing zeroes.

– ”Format” is used to control the default format of numerical values. For detailed information
see the corresponding section in the GDX Viewer documentation.

– ”Precision” specifies the number of decimals or the number of significant digits depending on the
chosen format. For detailed information see the corresponding section in the GDX Viewer documentation.

• ”Decimal Separator in Copied Data” controls the decimal separator used when copying data from a
GDX symbol. Note that this setting affects the copied data only but not the diplayed data itself.
The following options are available:

– ”Use Studio default”: Per default . is used as decimal separator in copied data.

– ”Follow system language”: Use the decimal separator from the system language settings.

– ”Use custom character”: This allows to specify a custom character.

3026 Tools Manuals

Colors page

The ”Colors” tab enables you to configure several colors. Studio provides two fixed themes: the ”dark”
theme and the ”light” theme. Depending on the your operating system, this can be selected by the system
and/or manually. You can use this to set Studio to use a darker color palette for when you like to work in
the dark and don't like to get blinded by bright windows.

Figure 6.48 Studio using a dark theme

The fixed themes can't be modified, modifying a value implicitly creates a copy of the theme where the
changed value is applied. After copying a theme, the new user theme can be adapted to your needs.
Additionally these user themes can be exported and imported to a file each.

6.14 GAMS Studio 3027

Figure 6.49 Color Settings

The colors are listed in two sections:

• On the ”Syntax colors” page you can define a text color and the attributes bold and italic.

• The ”Editor colors” page allows to change the colors of text, background, and second background (for
blinking). The very first entry on this page, the ”Default Text”, is the base of the syntax colors.

Remote page

The ”Remote” tab is used to set various remote settings.

• In the MIRO section the location of your local MIRO installation can be defined.

• The checkbox ”Always agree to NEOS” allows to hide the ”Terms Of Use” in the submission dialog
of NEOS.

• In the GAMS Engine section it can be defined if a login token should be stored to the settings to
stay logged in on restarting Studio. The next line allows to define how long the login is valid.

• If the dialog has been switched invisible by clicking ”OK, don't ask”, the button ”Reactivate dialog”
switches it on again.

3028 Tools Manuals

Misc page

The ”Misc” tab contains some lesser common settings.

• ”GAMS source file extensions” allows to add own file extensions that Studio counts as runnable
GAMS. File types added here can be executed, set as main file, and are assigned to the
GAMS Syntax Highlighter. The field accepts a comma separated list of file extensions.

• ”Auto-reload extensions” Specific extensions that should be reloaded automatically can be added
here. Files of that type are reloaded into the editor if changed externally. If they also were changed
internally, a dialog asks how to proceed. The field expects a comma separated list of file extensions.

• ”User model library” shows the folder that is used to find user generated model libraries, see
User Libraries. This folder can be changed to a custom location. Up to 10 locations are stored in the
history. To remove the current entry from the history use the trash-bin button. The arrow-button
opens the file browser in the current folder.

• ”Reset History” clears the list of last projects and files used on the Welcome Page

• ”Reset Window” resets the appearance of Studio if something went wrong.

• The next group contains a list of options for the Solver Option Editor.

6.14.8.6 Delete scratch directories

GAMS creates working folders for running processes in your working directory. Normally these are
automatically removed when a run finishes. However, if a run was interrupted sometimes these working
directories remain. That in itself is not a problem as GAMS will pick a new name for the next run if the
default name for the working directory is already taken. To automatically clean up the user workspace,
Studio offers an action to do this. In the menu under GAMS > Delete scratch directories the user
has the possibility to remove unwanted, autogenerated directories. Before deleting anything, there will
be a popup asking the user for confirmation and also showing the path of the directory that will be
cleaned. If the user choses ”Yes”, all directories that start with 225 followed by one or two letters will be
deleted in the given path, which is usually the default workspace. This action is automatically triggered
when GAMS has exhausted the pool of possible scratch directory names, but not without asking the user
for confirmation first. To avoid any potential errors this action should only be triggered if there are no
running GAMS jobs at the moment.

6.14.8.7 Full Screen & Distraction Free Mode

Especially small devices suffer from sparse screen real estate. Studio comes with a few features to make
the most of the space that is available on your machine.
The Full Screen mode is activated by pressing Alt-Enter on Windows and Linux systems, while on macOS
the shortcut is Command-Control-F. This enlarges Studio over the whole screen, covering the taskbar and
other operating system specific items. The same shortcuts also exit Full Screen mode.
As an alternative, there is also the Distraction Free mode. Some users want to keep their taskbar so with
the shortcuts Ctrl-Alt-Enter on Windows and Linux or Cmd-Option-Enter on macOS hide all Studio
widgets and enlarge the central widget to the size of the studio window. You can use this to get the log-,
file- and help view out of the way and concentrate writing. Pressing the shortcut again brings everything
back. Running your GAMS modell in the Distraction Free mode will also open the log, so you are not
missing out on anything.

Action Shortcut macOS

Enter/Exit Full Screen Alt - Enter Command - Control - F

Enter/Exit Distraction Free Mode Ctrl - Alt - Enter Command - Option - Enter

6.14 GAMS Studio 3029

6.14.8.8 GDX Diff

The GDX Diff dialog serves as a graphical interface to the command line tool GDXDIFF. It compares
the data of two GDX files and writes the differences to a third GDX file. The dialog can be opened by
choosing Tools > GDX Diff from the menu.

Figure 6.50 GDX Diff dialog

The dialog consists of two parts. The upper part is used to specify the two GDX files for the comparison.
The resulting GDX difference file is determined automatically as long as no manual changes have been
applied. The default schema for the resulting GDX difference file is the location of the first input GDX
file and the file name diff.gdx. The difference file will be updated whenever the first input is modified
to an existing file. If the GDX Diff dialog gets opened and does not contain a valid first input file, the
most recently used directory is used as the location for the resulting difference file instead.

The lower part of the dialog contains different options that can be used in order to control the behavior of
the comparison:

• Eps: Absolute difference for comparisons. If the difference between two values exceeds Eps, a
difference will be reported. Default is 0.0.

• RelEps: Relative difference for comparisons. If the value of RelEps is exceeded, a difference will be
reported. Default is 0.0.

• Field To Compare: The specified subfield is the only field used for deciding if a variable or
equation is different. List of possible values:

– All: All fields

– L: Level

– M: Marginal

– Lo: Lower Bound

– Up: Upper Bound

– Prior

3030 Tools Manuals

– Scale

• Ignore Set Text: Allows to ignore explanatory text of set elements.

• Diff Only: Differences for variables and equations will be written as parameters. Each parameter
will have an additional index which is used to store the field name. Only fields that are different will
be written. This option can not be used in combination with Field Only.

• Field Only: Used in combination with Field To Compare. The variables and equations will be
written as parameters for the selected subfield. This option can not be used in combination with
Diff Only and it requires a value for Field To Compare other than All.

• Compare Defaults: Controls if default values for symbols, e.g. 0 for parameters, are reported as
differences if they are found in one file and missing in the other or not.

• Compare Domains: Controls if different domains for the same symbol are reported as a difference.

• Ignore Order: Ignore UEL order of input files. This can reduce the size of the output file.

As soon as the OK button is clicked, a validation check on the given input is performed and the two input
files are compared. If the specified difference file is already open in a GDX Viewer, the corresponding
tab remains open while the underlying GDX file is detached. As soon as the file was updated, the GDX
Viewer is reinitialized. In case the GDX file was not open already it gets opened in a new tab. The
Cancel button closes the dialog and stops a process that has not been finished yet. The dialog needs to
be kept open for longer running comparisons of large input files. The Reset button can be used to reset
the whole dialog to its default state which also enables the automatic pre-population of the difference file
path in case it has been disabled before due to a manual change.

The GDX Diff dialog also has an integration in the context menu of the Project Explorer. As soon as
either exactly one or two GDX files are selected, the context menu contains an entry for opening the GDX
Diff dialog with the file(s). If only one file is selected, the input field that is empty is populated with the
corresponding file path. If both fields are filled, the first input file path gets overwritten. In case of two
selected GDX files, both input fields get overwritten.

6.14.9 Terminal

GAMS Studio is able to open a native terminal via the main menu Tools > Terminal or the shortcut
CTRL - T. Alternatively, a terminal can be opened by right clicking on any entry of the ”Project Explorer”
and selecting Open terminal. The terminal points to the workspace of the current project. On macOS
the terminal location is always the user's home directory.

6.14.10 Command Line Options

GAMS Studio can be started with additional command line options that change the behavior or trigger
certain functionality at start up time. The syntax for starting GAMS Studio from the command line is

studio [options] [files]

While files is one or more files to be opened by GAMS Studio, the following options can be supplied:

• -?, -h, --help : Displays the help.

• -v, --version : Displays version information.

• --ignore-settings : Ignore settings files. Studio will load with default settings without writing
them.

• --reset-settings : Reset all settings to default. Studio will load with default settings and save
them.

• --reset-view : Reset studio visually without resetting settings. Useful when a widget got lost or
studio started on a disconnected monitor.

• --gams-dir path to gams : Point Studio to a specific GAMS installation.

6.14 GAMS Studio 3031

6.14.11 General Shortcuts

This section lists any shortcuts that are global to Studio. Shortcuts for more specific areas are mentioned
in their corresponding section.

6.14.11.1 Studio Workflow Shortcuts

Shortcut macOS Description

Ctrl - 1 Command - 1 Set focus to the Project Explorer. After that the
arrow keys can be used for file navigation.

Ctrl - 2 Command - 2 Set focus to main editor.

Ctrl - 3 Command - 3 Set focus to the command line option input field.

Ctrl - 4 Command - 4 Opens the tab browser which has a list of all
open tabs. Focus is on an input field that can
be used to filter tabs. Pressing Return opens the
highlighted file.

Ctrl - 5 Command - 5 Set focus to log widget.

Shift - Ctrl - 3 Control - Option - 3 Opens and closes extended command line option
editor.

Ctrl - Tab Toggles through the open tabs of the central wid-
get from left to right.

Ctrl - Shift - TAB Toggles through the open tabs of the central wid-
get from right to left.

Alt - Return Command - Control - F Full Screen

Ctrl - Shift - T Command - Shift - T Restore recently closed tab

Ctrl - Shift - W Command - Shift - W Close all tabs

Ctrl - W Command - W Close current tab. Alternatively, a tab can be
closed by clicking the middle mouse button.

Ctrl - Q Command - Q Close GAMS Studio

6.14.11.2 Studio Dialogs

Shortcut macOS Description

F1 F1 Open the GAMS Help. If the word under the cursor
is a GAMS keyword a search in the documentation
document will be started

F6 F6 Open GAMS Model Library Explorer

F7 Command - , Open Studio Settings

Ctrl - F Command - F Open search and replace widget

Ctrl - G Command - G Go to specific line number

Ctrl - N Command - N Open new file dialog

Ctrl - O Command - O Open file open dialog

Ctrl - Shift - O Command - Shift - O Open file dialog to open the file(s) in the current (a
new) project

Ctrl - P Command - P Open print dialog

Ctrl - S Command - S Save the current file. If the file does not exist on disk
open the save file dialog

Ctrl - Alt - S Command - Option - S Open save as dialog

Ctrl - Shift - S Command - Shift - S Save all open files. Open save file dialog if needed

3032 Tools Manuals

Shortcut macOS Description

Ctrl - K Command - K Open Navigator widget

Ctrl - T Command - T Open a terminal for the current project location. On
macOS the terminal points to the users home directory

6.14.11.3 Studio Recovery

Shortcut macOS Description

Ctrl - F2 Command - F2 Reset Studio to default visual settings (window position and -size,
widget position and -visibility)
Useful when a widget got lost or studio started on a disconnected
monitor.

6.14.11.4 Zoom Editor and View

All editors and views can be zoomed in and out. To avoid repeating action a zoom is applied to all
editors and views of the same group. Beneath the Integrated Help and the Welcome Page these groups
are defined:

• Text: contains all editors and views that show flowing text in monospace fonts and appear as
Central Widget, like the Code Editor and the Listing Viewer.

• Log: contains the Process Logs and the System Log.

• Table: contains all editors and viewers that show table and tree elements in proportional fonts as a
Central Widget, like the GDX Viewer and the Solver Option Editor. It additionally contains the
Command Line Option Editor.

Action Shortcut macOS Description

Zoom In Ctrl - + or
Ctrl - = or
Ctrl - Wheel Up

Command - + or
Command - = or
Command - Wheel Up

Zoom in all editors and views
of the same group

Zoom Out Ctrl - - or
Ctrl - Wheel Down

Command - - or
Command - Wheel Down

Zoom out all editors and
views of the same group

Reset Zoom Ctrl - 0 Command - 0 Reset zoom of all editors and
views

6.14.12 Usage Hints

6.14.12.1 Filter in Tables and Trees

To find relevant entries in tables and tree views Studio provides a special line edit containing up to four
buttons aligned to the right:

• Clear - clears the term in the line edit.

• Exact Match - when active, the filter accepts only rows with one cell matching exactly the term
regarding wildcard or regular expression setting

6.14 GAMS Studio 3033

• Regular Expression - when inactive, the wildcards '∗' (any amount of characters) and '?' (one
character) can be used. Otherwise the filter provides full regular expression syntax. Click here

for further information about regular expressions.

• All Columns - when inactive, the filter checks only the key column. When active, all cells of the
table/tree-view are taken into account

Figure 6.51 Filter LineEdit inactive and active

6.14.13 System Requirements

Compared to most of the GAMS system, GAMS Studio has some additional system requirements, which
depend on the platform used. Also, additional information about technical requirements are listed at the
GAMS Studio GitHub Wiki.

6.14.13.1 Linux

The Linux version of GAMS Studio is distributed as AppImage and requires glibc 2.30, glibcxx 3.4.28 as
well as FUSE to be installed.

The GAMS Studio AppImage was tested and it was verified that it worked for the following Linux
distributions (which are all under maintenance). All Linux distributions are under constant development
and updates may change the behavior of the AppImage. Please check the Studio issue page if you
encounter any issue.

• Debian 12

• Fedora 38

• Manjaro

• openSUSE Tumbleweed

• Ubuntu 22.04 LTS

Other flavors might work as well, but were not tested. If you experience problems with a particular Linux
distribution, please let us know.

In some cases the Studio AppImage might not run. If this is the case extract the AppImage by running

$./studio.AppImage --appimage-extract

via the command line and start Studio from the extracted directory.

On some Linux distributions Wayland is used, which can cause issues. If this is the case try to run Studio
as shown below.

$ QT_QPA_PLATFORM=xcb ./GAMS_Studio-1.12.1-x86_64.AppImage

https://www.regular-expressions.info/
https://github.com/GAMS-dev/studio/wiki
https://github.com/GAMS-dev/studio/wiki
https://appimage.org/
https://github.com/libfuse/libfuse
https://github.com/GAMS-dev/studio/issues

3034 Tools Manuals

6.14.13.2 macOS

macOS has some special platform requirements related to finding GAMS. Below the steps are listed which
are used to link GAMS Studio to GAMS.

• GAMS Studio is going to find GAMS in /Applications/∗∗ and /Users/username/Applications/∗∗
if it is part of a GAMS folder. It is required that GAMS Studio gets copied via Finder to its target
location. This is the case if the GAMS installer is used or if the GAMS Studio DMG is open and
GAMS Studio gets copied from there.

• If GAMS Studio could not find GAMS like described previously then it will search /Applications/∗∗
for a valid GAMS installation, i.e. a GAMS installation which has the minimum required GAMS
version or higher.

• GAMS Studio will check the $PATH to find GAMS. In almost all cases this will not work on macOS.

• In case of special needs the path to GAMS can be set explicitly by starting GAMS Studio with the
command line argument --gams-dir.

6.14.13.3 Windows

There are dependencies on certain Visual C++ libraries. These are present on most Windows systems
but are missing on some. If you get a complaint about missing libraries on startup of GAMS Studio,
please run the appropriate installer for these libraries called vcredist x64.exe, which can be found in
the GAMS installation folder at [GAMS system]\studio.

6.14.14 Comparing GAMS Studio and GAMSIDE

As mentioned above, the classic GAMS IDE has been shipped with the GAMS system for many years and
is still the workhorse for many GAMS programmers. So it is still around and an alternative to GAMS
Studio, especially since it has features, which are not available in GAMS Studio (yet), but it also lacks
some features which are available in GAMS Studio. The following table gives a compact overview about
most of the differences.

GAMSIDE only GAMS Studio only

Supported Platforms

- Windows - Windows

- Linux

- macOS

GDX Viewer

- Creating charts - Filtering (both, symbols and data, labels and
values)

- Writing to Html - Sorting by numerical value

- Heat-map functionality (aka Data Colors) - Option to change display format of numerical
values

Editor

- Fixed encoding (ISO 8859-1) - Allow change of encodings and use UTF-8 by
default

- Spell checker - Block edit

- Recognize URLs and open them in the browser - Help integration (pressing F1 on a keyword opens
the relevant index page of the documentation)

- Different set of keyboard shortcuts - Tooltips for compilation errors

gamside/contents.htm

6.14 GAMS Studio 3035

GAMSIDE only GAMS Studio only

- Navigation history

- Code Completion

- ”Smart typing”: Automatic insertion of closing
character for brackets and quotes

- Distraction Free Mode

- Code Folding

- Open $[bat/lib]include files directly from ed-
itor

Execution

- IDE Projects - Studio Projects (see below for details)

- Set default options for the IDE only - Interactive editor for the
GAMS User Configuration

- Use different GAMS versions - Interactive editor of GAMS command line pa-
rameters

- Use alternative license - Interactive editor for GAMS Connect

- Execute program based on extension - Option to run with GDX creation automatically
(F10 vs. F9)

- Solver selection menus - Integration of GAMS MIRO

- Remote execution on NEOS Server for

Optimization

- Remote execution with GAMS Engine

- Support of standard locations, e.g., to detect the
license file at a standard path

- Option to jump to first error automatically

- Option to not write log to disk

Other

- Text Diff - Welcome page

- Script recording - Project Explorer

- Email file - Navigator

- Save test files in UNIX format - Filtering in Model Library Explorer (all model
libraries at the same time)

- Link to McCarl chm - Allow to switch between light, dark or custom
themes

- Reference File Viewer allows to jump to all refer-
ences etc. and not just the first one

- 32-bit application - 64-bit application

6.14.14.1 GAMSIDE Projects vs. GAMS Studio Projects

With the GAMSIDE one always started with creating a ”Project”. This mainly defined a directory used
to execute the models added to it (so, it is used to implicitly define the workDir when starting GAMS).
When starting the IDE for the first time, one is asked to create a new project. For example, one creates
this in directory a. After adding models a/a.gms and b/b.gms both get executed in the project directory
a, meaning that data sources are expected in a (or relative to it) and also output files are generated in a,
and not necessarily at the location of the gms file.

When starting GAMS Studio for the first time, it starts with an empty Project Explorer. Opening a new
file creates a new Project per default. Studio Projects also have a ”working directory”. Initially, this is
set automatically to the location of the file that was opened to create the new project. If a model gets
executed, it gets executed in this working directory. So, if ones opens a/a.gms and b/b.gms, by default,

https://www.gams.com/miro/
https://neos-server.org/neos/
https://neos-server.org/neos/
https://www.gams.com/engine/

3036 Tools Manuals

Studio will create two projects: a and b. When a is started input files are expected in directory a and
output files get generated in a. When b is started input files are expected in directory b and output files
get generated in b. If one has structured the models so that they rely on the ”GAMSIDE way” to execute
a model, one can just change the working directory in the project options. Also, it is possible to start
with an empty project and just define the working directory explicitly in the way the GAMSIDE did it
using the entry New Project from the File menu.

It is also possible to have multiple files in one project. For example, one could add b.gms to project a by
drag'n'drop in the Project Explorer. Now, the concept of the ”main file” of projects becomes important:
While the GAMSIDE always executed the currently active .gms file, GAMS Studio always executes the
main file of the currently active project. So, in our example, you can look at a.lst and press F9 to rerun
a.gms (the GAMSIDE would not run anything in this case). After adding b.gms to project a, one would
also execute a.gms by pressing F9 while looking at b.gms. If you want to execute b.gms instead, you can
make it the main file of the project. For this, right-click in the Project Explorer at b.gms and select ”Set
as main file”. Note that the green arrow indicating the main file of a project in the Project Explorer
switches from a.gms to b.gms. As a reminder: Projects do not know a particular working directory.
Pressing F9 after switching the main file will execute b.gms in folder b.

Figure 6.52 Switching the main file

6.15 GDX2ACCESS 3037

6.15 GDX2ACCESS

6.15.1 Overview

GDX2ACCESS is a tool to dump the contents of a GDX file to an MS Access file (MDB or ACCDB format).
Every identifier gets its own table in the database.

Attention

GDX2ACCESS is deprecated (see GAMS 40 GDX2ACCESS release notes). Please use Connect agent SQLWriter
instead.

6.15.2 Usage

gdx2access inputFile {options}

The .gdx file extension of the inputFile can be omitted. Files without a full path name are assumed to
be in the current directory when using a command prompt. When using the GAMS IDE, these files are
assumed to be in the current project directory.

6.15.3 Options

Options are specified in an [INI] (https://en.wikipedia.org/wiki/INI file) file and not directly on
the command line. By default, the file gdx2access.ini located in the same directory as gdx2access.exe is
consulted. If this file is not available, the program will continue using default settings (listed in the tables
below).

It is also possible to tell the program to use a different INI file. This is done by using an extra argument
of the form @iniFile. If you want to dump the contents of myFile.gdx to an MS Access file according to
the options specified in a file called myIniFile.ini, run the following code:

gdx2access myFile.gdx @myIniFile.ini

In this case, the program will not read gdx2access.ini located in the same directory as gdx2access.exe, but
rather myIniFile.ini in the current directory.

The INI file can contain two sections: [settings] and [debug]. A complete INI file with all possible settings
looks like:

https://en.wikipedia.org/wiki/INI_file

3038 Tools Manuals

[settings]

scrdir=c:\tmp

inf=1.0e100

mininf=-1.0e100

eps=0.0

na=0.0

undf=0.0

scalarTable=1

etFlag=1

dbVersion=9

[debug]

method=5

thresholdCount=5

keepFiles=1

Note that the values above are not the default values for some options!

Section [settings]

Below some short descriptions for the options in the [settings] section:

Option Default Description

scrdir <windowstemp> Directory for temporary scratch files.

inf 1.0e100 The value used for GAMS special value +INF. See also the example
Special value mapping.

mininf -1.0e100 The value used for GAMS special value -INF. See also the example
Special value mapping.

eps 0.0 The value used for GAMS special value EPS. See also the example
Special value mapping.

na 0.0 The value used for GAMS special value NA. See also the example
Special value mapping.

undf 0.0 The value used for GAMS special value UNDEF. See also the example
Special value mapping.

scalarTable
0 Possible values: 0 or 1. When set to 1, scalars of the same type are

combined in a single table. The names for these tables are fixed:
ScalarParameter, ScalarEquation and ScalarVariable. See also
the example Special value mapping.

etFlag
0 Possible values: 0 or 1. When set to 1, include the text

strings for sets containing element texts. See also the example
Writing Explanatory Text to Database.

dbVersion
0 Specify the format of the output database. See also the example

Writing Explanatory Text to Database.
0: Create database using current default format.
9: Create a database in the Microsoft Access 2000 (.mdb) file format.
10: Create a database in the Microsoft Access 2002-2003 (.mdb) file
format.
12: Create a database in the Microsoft Office Access 2007 (.accdb)
file format.

Section [debug]

Below some short descriptions for the options in the [debug] section:

6.15 GDX2ACCESS 3039

Option Default Description

method 5 Select an algorithm to insert data into the Access database.
1: Write a CSV file and use the TransferText action to read this into
Access. This is fast, but does not always work when non-US language
settings are used.
2: Use recordset.add to add records. This is slow, but does not use
intermediate files.
3: Write a tab delimited file with a complete file specification (schema.ini)
and use the ISAM Text driver to import the data. This is fast and
should work in international settings.
4: For small data use method=2 and for larger data items use
method=1.
5: For small data use method=2 and for larger data items use method=3.

thresholdCount 5 When to change between algorithms while using method=4 or method=5.
The default is 5 records.

keepFiles 0 Possible values: 0 or 1. When set to 1, the program will not delete
intermediate scratch files.

6.15.4 Examples

6.15.4.1 Intro

Suppose we want to write the data of the [trnsport] model from the GAMS model library after solving
to an MS Access data file. First of all, we solve the model by running the following command. Note that
we will save the complete symbol table to a GDX file called trnsport.gdx by adding the command line
option gdx=trnsport.

gams trnsport gdx=trnsport lo=2

The option lo=2 causes GAMS to save the log to an external file (in this case trnsport.log), instead of
writing it to the screen. In order to get an idea about the data at this point, we use the GDXDUMP tool
to display the contents of the GDX file by running the following command:

gdxdump trnsport.gdx symbols

By adding the GDXDUMP option symbols, we will only display the table of contents (shown below) rather
than all data stored in trnsport.gdx.

* GDX dump of trnsport.gdx

* Library in use : C:\GAMS23.3

* Library version: GDX Library Nov 1, 2009 23.3.3 WIN 14596.15043 VIS x86/MS Windows

* File version : GDX Library Nov 1, 2009 23.3.3 WIN 14596.15043 VIS x86/MS Windows

* Producer : GAMS Base Module Nov 1, 2009 23.3.3 WIN 14929.15043 VIS x86/MS Windows

* File format : 7

* Compression : 0

* Symbols : 12

* Unique Elements: 5

Symbol Dim Type Explanatory text

3040 Tools Manuals

1 a 1 Par capacity of plant i in cases

2 b 1 Par demand at market j in cases

3 c 2 Par transport cost in thousands of dollars per case

4 cost 0 Equ define objective function

5 d 2 Par distance in thousands of miles

6 demand 1 Equ satisfy demand at market j

7 f 0 Par freight in dollars per case per thousand miles

8 i 1 Set canning plants

9 j 1 Set markets

10 supply 1 Equ observe supply limit at plant i

11 x 2 Var shipment quantities in cases

12 z 0 Var total transportation costs in thousands of dollars

Once we have a GDX file, we can use GDX2ACCESS to create a MDB or an ACCDB file. Versions of
MicroSoft Office prior to version 2007 use the file extension .mdb, while version 2007 and later versions
use the file extension .accdb. We write all the data stored in the GDX file trnsport.gdx to trnsport.mdb
resp. trnsport.accdb by running the following code:

gdx2access trnsport.gdx

Note that we do not referenced an INI file in the previous command in order to specify the options, i.e.
GDX2ACCESS will consult the file gdx2access.ini located in the same directory as gdx2access.exe or, if the
file does not exist, the tool will continue using the default settings (see Options). The information written
to the log is shown below, including the identifiers of the symbols which are written to trnsport.accdb and
the elapsed time per symbol and in total.

GDX Access ALFA 23Mar10 23.4.0 WIN 16693.16738 VS8 x86/MS Windows

Creating C:\GAMS support\settext\temp1.accdb with Access: 0.48 seconds

Using temp directory C:\Users\Paul\AppData\Local\Temp\

i. Insert: 0.00 seconds

j. Insert: 0.00 seconds

a. Insert: 0.00 seconds

b. Insert: 0.00 seconds

d. Dump: 0.00 seconds Load: 0.05 seconds

f. Insert: 0.00 seconds

c. Dump: 0.00 seconds Load: 0.05 seconds

x. Dump: 0.00 seconds Load: 0.03 seconds

z. Insert: 0.00 seconds

cost. Insert: 0.00 seconds

supply. Insert: 0.02 seconds

demand. Insert: 0.02 seconds

Renaming C:\GAMS support\settext\temp1.accdb -> trnsport.accdb

Total elapsed time: 0.92 seconds

The resulting ACCBD, opened with MS Access, is shown in Figure 1 (limited to the parameter c on the
left and the variable x on the right).

As can be seen, every identifier is stored in its own table. For parameters like c, the value is stored in a
column named value, while variables like x and equations have the columns level, marginal, lowerbound
and upperbound. A possible additional field (scale for NLP's, priority for MIP’s, stage for stochastic
problems) is not exported. If needed, you can assign such a quantity to a parameter in GAMS before
writing the GDX file. The complete process shown here can be automated as demonstrated in Example 1.

If no domain information is available for a symbol (like B in the code below), each index position gets a
column and will be labeled automatically with dim1, dim2, etc. If domain information is available, the
columns will use that information but keeping the names unique (like A in the code below). The small
example below shows how the index positions are made unique using the (relaxed) domain information by
adding an ascending number to the identifier.

6.15 GDX2ACCESS 3041

Set i / i1*i5 /;

Alias (i,j,k);

Parameter A(i,i,i) ’domain informations, but the column name would not be unique’;

A(i,j,k) = uniform(0,1);

Parameter B ’no domain information’ / i1.i1 1, i1.i2 2, i2.i1 3, i2.i2 4 /;

execute_unload ’AB.gdx’, A, B;

execute ’=gdx2access AB.gdx’;

The resulting database file, opened with MicroSoft Access, is shown in Figure 2 (parameter A on the left,
parameter B on the right).

6.15.4.2 Example 1 - Dumping the Contents of trnsport.gdx

This example will solve the [trnsport] model from the model library and generate a GDX file containing
the complete symbol table. This GDX file is exported to Access and MS Access is launched to inspect the
results. This is a small example that should run very quickly.

execute ’=gamslib trnsport’;

execute ’=gams trnsport lo=3 gdx=trnsport’;

execute ’=gdx2access trnsport.gdx’;

executeTool ’win32.shellExecute trnsport.accdb’;

Note: the equal signs in front of the external programs indicate we don’t go through a shell (e.g.
command.com or cmd.exe). This will improve reliability in case the external program is not found. In
such a case a proper error will be triggered. Without the '=', such errors go undetected and the GAMS
model will continue.

The command ‘executeTool 'win32.shellExecute trnsport.accdb’;` will launch Access to view the ACCDB
file. This assumes that the version of Access installed is a version as recent as version 2007. Earlier
versions will generate a database with the extension .mdb and the shellExecute command needs to be
changed as follows:

* view generated file create

executeTool ’win32.shellExecute trnsport.mdb’;

The complete example is also part of the GAMS Data Utilities Library, see model [GDX2ACCESSExample1]
for reference.

3042 Tools Manuals

6.15.4.3 Example 2 - Writing Explanatory Text to Database

In this example, we write a few sets to a GDX file; two of the sets written have explanatory text for
set elements. We use the option etFlag to get this text saved in the Access database file along with the
corresponding set elements. Without using the option, only the set tuples are saved in the database.

Running this example on a machine with Access 2007 or a later version installed will create a database
with the .accdb file extension that cannot be read by an older version of Access. We use the dbVersion
option to save the database in the MDB format. Both options must be specified in an user defined INI
file within the settings section, see howToWrite.ini in the code below.

Set

i / i1 ’one’, i2 ’two’, i3 ’three’, i4 ’four’ /

j / j1*j4 /

ij(i,j) / i1.j1 ’red’, i2.(j2,j3) ’green’, i3.(j1,j2) ’blue’ /;

$gdxOut example2.gdx

$unload i j ij

$gdxOut

$onEcho > howToWrite.ini

[settings]

etFlag=1

dbVersion=10

$offEcho

$call =gdx2access example2.gdx @howToWrite.ini%

When we open the database and inspect the table created from the set ij, we see the explanatory
texts stored along with the corresponding set elements. The column containing the explanatory text
will be labeled with SetText automatically. The column headers can be renamed as demonstrated in
Example 5 - Renaming Fields.

The complete example is also part of the GAMS Data Utilities Library, see model [GDX2ACCESSExample2]
for reference.

6.15.4.4 Example 3 - Dumping a large Table to Database

This is an artificial example where we generate a large identifier in GAMS: a parameter with a million
elements. This parameter will be dumped to an MS Access Database afterwards. Note that the GDX2ACCESS
execution will last several seconds. The resulting database file has approximately 36MB of size.

Set i / i1*i1000 /;

Alias (i,j);

Parameter p(i,j);

p(i,j) = uniform(-100,100);

execute_unload ’example3.gdx’, p;

execute ’=gdx2access example3.gdx’;

The complete example is also part of the GAMS Data Utilities Library, see model [GDX2ACCESSExample3]
for reference.

6.15 GDX2ACCESS 3043

6.15.4.5 Example 4 - Special Value Mapping

To store special values like +INF, -INF, EPS, NA and UNDF in a numeric field in the database, GDX2ACCESS
uses a mapping. This mapping can be changed by using an INI file (for the default values, see Options
resp. the comments in the second code below). We will define a scalar for each special value in GAMS in
order to demonstrate the scalarTable option in addition. By default, every scalar will be written to a new
table. By activating the scalarTable option in the INI file, all scalars will be stored together in a single
table.

$onEcho > howToWrite.ini

[settings]

inf=1

mininf=2

eps=3

na=4

undf=5

scalarTable=1

$offEcho

The usage of our previously customized INI file howToWrite.ini is indicated by the argument
@howToWrite.ini within the execute statement.

$onUndf

Scalar

pInf / inf /

mInf / -inf /

epsilon / eps /

notAvail / na /

undefined / undf /;

* save scalars in scalars.mdb in a single table named ScalarParameter using

* the scalarTable option

* special values are translated to default values:

* INF -> 1.0e100

* -INF -> -1.0e100

* EPS,NA,UNDF -> 0

execute_unload ’scalars.gdx’, pInf, mInf, epsilon, notAvail, undefined;

execute ’gdx2access scalars.gdx @howToWrite.ini’;

Note the $onUndf command in order to enter Undf values directly within the definition of the scalars.
When we view the generated GDX file in the GAMS IDE or GAMS Studio, the special values are
shown (note that the figure shows a parameter actually instead of five single scalars for a more compact
presentation):

Viewing the resulting table in Access shows how the mapping for special values was applied (i.e. the
GAMS special values have been substituted by our customized values defined in the INI file):

Note that the table will be named ScalarParameter automatically.

The complete example is also part of the GAMS Data Utilities Library, see model [GDX2ACCESSExample4]
for reference.

3044 Tools Manuals

6.15.4.6 Example 5 - Renaming Fields

GDX2ACCES will use names like i, j, dim1, dim2, value etc. for the column headers in the resulting
database file. In some cases, this may not be convenient, e.g. when more descriptive field names are
required. In the following model, we will show how a small script in VBscript[1] can handle this task.
The script will rename the columns i, j, and Value in table c to ifrom, jto, and transportcost. At
first, the data is defined and dumped to an MicroSoft Access database. The VBscript named access.vbs is
written at compile time and later executed at execution time in order to rename the column headers.

Set

i ’canning plants’ / seattle, san-diego /

j ’markets’ / new-york, chicago, topeka /;

Parameter

a(i) ’capacity of plant i in cases’

/ seattle 350

san-diego 600 /

b(j) ’demand at market j in cases’

/ new-york 325

chicago 300

topeka 275 /;

Table d(i,j) ’distance in thousands of miles’

new-york chicago topeka

seattle 2.5 1.7 1.8

san-diego 2.5 1.8 1.4;

Scalar f ’freight in dollars per case per thousand miles’ / 90 /;

Parameter c(i,j) ’transport cost in thousands of dollars per case’;

c(i,j) = f*d(i,j)/1000;

* export to gdx file.

execute_unload ’c.gdx’, c;

* move to access database

* column names are i and j

execute ’=gdx2access c.gdx’;

* rename columns

execute ’=cscript access.vbs’;

* view results

executeTool ’win32.shellExecute c.accdb’;

$onEcho > access.vbs

’this is a VBscript script

WScript.Echo "Running script: access.vbs"

set oa = CreateObject("Access.Application")

set oDAO = oa.DBEngine

Wscript.Echo "DAO Version: " & oDAO.version

Set oDB = oDAO.openDatabase("%system.fp%c.accdb")

Wscript.Echo "Opened : " & oDB.name

Set oTable = oDB.TableDefs.Item("c")

Wscript.Echo "Table : " & oTable.name

’ rename fields

6.16 GDX2SQLITE 3045

oTable.Fields.Item("i").name = "ifrom"

oTable.Fields.Item("j").name = "jto"

oTable.Fields.Item("Value").name = "transportcost"

Wscript.Echo "Renamed fields"

oDB.Close

Wscript.Echo "Done"

$offEcho

The resulting ACCBD, opened with MS Access, is shown in Figure 6 (parameter c before executing the
VBScript on the left, parameter c after renaming the column headers on the right).

The complete example is also part of the GAMS Data Utilities Library, see model [GDX2ACCESSExample5]
for reference.

6.15.5 References

1. VBScript Language Reference, https://www.vbsedit.com/html/ddfa5183-d458-41bc-a489-070296ced968.asp

2023

6.16 GDX2SQLITE

A Tool to dump GDX contents into SQLite database file.

Author

Erwin Kalvelagen

Date

November 30, 2015

Attention

GDX2SQLITE is deprecated (see GAMS 40 GDX2SQLITE release notes). Please use Connect agent SQLWriter
instead.

6.16.1 Introduction

GDX2SQLITE.EXE is a tool to dump the complete contents of a GAMS GDX file (see GAMS Data eXchange (GDX))
into a SQLite database file (the website http://www.sqlite.org/ contains a wealth of information on
SQLite).

A SQLite database is stored in a single file so it can be easily e-mailed or otherwise transmitted. The
main advantages of using SQLite over other single file database systems such as MS Access is that SQLite
is free and in the public domain and that it does not impose a 2 GB file size limit. For some large data
sets this size limit present in MS Access and DBF database files causes problems. Another useful format
is CSV files, but typically several CSV files are needed to store a data set stored in a GDX file. Many
programs support reading SQLite database files, either through a native database access driver or via a
standard ODBC interface. In summary: SQLite is a useful export format for GAMS solution data sets.

https://www.vbsedit.com/html/ddfa5183-d458-41bc-a489-070296ced968.asp
mailto:erwin@amsterdamoptimization.com
http://www.sqlite.org/

3046 Tools Manuals

6.16.2 Usage

'GDX2SQLITE' is a command line tool that is best called from within a GAMS program using the $call
or Execute statement, e.g.:

execute_unload "results.gdx", yield, price;

execute "gdx2sqlite -i results.gdx -o results.db";

The following options are available:

Options Description

-i gdxinputfile Specifies the input GDX file. Typically this is a file with a .gdx extension

-o sqloutputfile Specifies the output SQLite database. Typically this file has a .db extension.

-debug This is an optional flag that will cause gdx2sqlite to print additional debugging
information.

-expltext This optional flag will export explanatory text for set elements.

-append Don't delete the database file before processing. This will allow adding new
symbols in new tables. We will not allow adding data to existing tables.

-small Write data strings in a separate table. A user-friendly SQL VIEW is created to
hide the complexities of the joins.

-fast Try to speed up writing the data using some non-standard pragmas. Using both
-small -fast will write the data most efficiently.

-varchar String columns will have the type VARCHAR(255) instead of TEXT.

An example of explanatory text is:

Set cty / AFG ’Afghanistan’

AGO ’Angola’

ALB ’Albania’ /;

In GAMS set elements have a maximum length of 63 characters. Explanatory text has a maximum length
of 255 characters.

6.16.3 How data is stored

6.16.3.1 Gams issues

GAMS does not store zero values (or default records for variables and equations). Such non-existing
records will not be exported to the GDX file and to the database either. To force a zero to be exported,
set it to EPS in GAMS. E.g.:

p(i)$(p(i)=0) = EPS;

In case of doubt you are encouraged to inspect the GDX file.

6.16.3.2 Sets

n-dimensional sets are stored as tables with n text columns. In case the option -expltext is used, another
column may be added with explanatory text.

6.16 GDX2SQLITE 3047

GAMS SQLite

Set month / jan, feb, mar / year / 2013, 2014

/ date(year,month) /(2013,2014).(jan,feb,mar)

/;

execute unload "sets.gdx"; execute

"gdx2sqlite -i sets.gdx -o sets.db";

sqlite>select * from month; month ----------

jan feb mar

sqlite>select * from year; year ----------

2013 2014

sqlite>select * from date; year month

---------- ---------- 2013 jan 2013 feb 2013

mar 2014 jan 2014 feb 2014 mar

Set month / jan ’january’ feb ’fabruary’ mar

’march’ /;

execute unload "sets.gdx"; execute

"gdx2sqlite -i sets.gdx -o sets.db

-expltext";

sqlite>select * from month; month expltext

---------- ---------- jan january feb fabruary

mar march

6.16.3.3 Parameters

n-dimensional parameters will have n index columns plus a value column. Scalars are collected in a
separate table.

GAMS SQLite

Set i / i1*i4 /; Parameter p(i); p(i) =

uniform(0,1);

Scalar s1 / 10 / s2 / 20 /;

execute unload "data.gdx"; execute

"gdx2sqlite -i data.gdx -o data.db";

sqlite>select * from p; i value ----------

----------- i1 0.171747132 i2 0.843266708 i3

0.550375356 i4 0.301137904

sqlite>select * from scalars; name value

---------- ---------- s1 10.0 s2 20.0

6.16.3.4 Variables and Equations

n-dimensional variables and equations have besides n index columns also columns for the level, the lower
and upper-bound and the marginal. Scalars are collected in the tables scalarvariables and scalarequations.
Note that INF and -INF are mapped to 1.0e100 and -1.0e100. The special value EPS is exported as zero.
To be complete: UNDEF, NA and acronyms are exported as NULLs.

GAMS SQLite

Set i / i1*i4 /; Positive Variable x(i);

x.l(i) = uniform(0,1);

Variable z; z.m = 1;

execute unload "data.gdx"; execute

"gdx2sqlite -i data.gdx -o data.db";

sqlite>select * from x; i level lo up

marginal ---------- ----------- ----------

---------- ---------- i1 0.171747132 0.0

1.0e+100 0.0 i2 0.843266708 0.0 1.0e+100

0.0 i3 0.550375356 0.0 1.0e+100 0.0 i4

0.301137904 0.0 1.0e+100 0.0

sqlite>select * from scalarvariables; name

level lo up marginal ---------- ----------

---------- ---------- ---------- z 0.0

-1.0e+100 1.0e+100 1.0

3048 Tools Manuals

6.16.3.5 Fixing up names

A database table is not allowed to have columns with the same name. If a name clash is detected new
names may be invented.

GAMS SQLite

Set i / i1*i4 /; Parameter p(i,i); p(i,i) =

1;

execute unload "data.gdx"; execute

"gdx2sqlite -i data.gdx -o data.db";

sqlite>select * from p; i i2 value ----------

---------- ---------- i1 i1 1.0 i2 i2 1.0 i3

i3 1.0 i4 i4 1.0

6.16.3.6 Speeding up writing data

With the -small option we write data in a slightly different format. Instead of using strings for the
GAMS indices we write integers. The integers can be looked up in a separate table UEL$ were the GAMS
UELS (Unique Elements) are stored. We export an SQL view for each symbol to hide the complexities of
the joins needed to replace the integers by strings.

For more information see: http://yetanothermathprogrammingconsultant.blogspot.com/2014/06/big-data-cubes.html.

The -fast option will set some SQLite pragmas that can speed up the inserts. Basically they will give up
some consistency in case the program crashes, in which case the created database may be invalid.

For more information see: http://yetanothermathprogrammingconsultant.blogspot.com/2014/07/a-little-bit-extra-fine-tuning.html.

6.16.4 SQLite Browsers and compatible software

6.16.4.1 SQLite3.exe

From the distribution on http://www.sqlite.org/download.html a command line tool is available
that functions as shell for SQLite. An example session can look like:

C:\projects\impact3\sqlite>sqlite3.exe data.db

SQLite version 3.8.0.2 2013-09-03 17:11:13

Enter ".help" for instructions

Enter SQL statements terminated with a ";"

sqlite> .schema

CREATE TABLE [i]([i] TEXT);

CREATE TABLE [p]([i] TEXT,[i2] TEXT,[value] REAL);

sqlite> select * from p;

i1|i1|1.0

i2|i2|1.0

i3|i3|1.0

i4|i4|1.0

sqlite> .quit

C:\projects\impact3\sqlite>

6.16.4.2 SQLite Studio

A visual front-end can be downloaded from http://sqlitestudio.pl/.

http://yetanothermathprogrammingconsultant.blogspot.com/2014/06/big-data-cubes.html
http://yetanothermathprogrammingconsultant.blogspot.com/2014/07/a-little-bit-extra-fine-tuning.html
http://www.sqlite.org/download.html
http://sqlitestudio.pl/

6.16 GDX2SQLITE 3049

6.16.4.3 SQLite Database Browser

Another visual browser is available from http://sqlitebrowser.sourceforge.net/.

6.16.4.4 SQLite and R

The statistical software R can conveniently use SQLite data, and can be called from a GAMS environment
as follows:

$onText

Get data from GAMS into R via SQLite

$offText

$set IMPACTPATH c:\projects\impact3\impact_3\IMPACTv3.0

$set SCRIPT script.R

$set RPATH "C:\Program Files\R\R-3.0.2\bin\R.exe"

$set DB mapdata.db

Set cty;

$gdxIn %IMPACTPATH%\GDXs\Sets.gdx

$load cty

display cty;

Set maps / data1 ’uniform random data between 0 and 1’

data2 ’uniform random data between 0 and 2’ /;

Parameter mapdata(cty,maps);

mapdata(cty,"data1") = uniform(0,1);

mapdata(cty,"data2") = uniform(0,2);

execute_unload "mapdata.gdx";

execute "gdx2sqlite -i mapdata.gdx -o %DB% -expltext";

execute ’"%RPATH%" --vanilla < %SCRIPT%’;

$onEcho > %SCRIPT%

if (!require(RSQLite)) {

install.packages("RSQLite", repos="http://cran.r-project.org")

library(RSQLite)

}

sqlite<-dbDriver("SQLite")

db <- dbConnect(sqlite,"%DB%")

dbListTables(db)

maps<-dbGetQuery(db,"select * from maps")

maps

mapdata<-dbGetQuery(db,"select * from mapdata")

mapdata

$offEcho

http://sqlitebrowser.sourceforge.net/

3050 Tools Manuals

6.16.4.5 SQLite and Python

Python has built-in support for SQLite:

import sqlite3

db = sqlite3.connect("turkey.db")

c = db.execute("select * from yieldl")

for row in c:

print row

db.close()

6.16.4.6 SQLite ODBC Driver

ODBC is a database access layer for Windows. It allows many Windows programs that need to talk to
databases to do this in a database independent manner. The SQLite ODBC driver can be downloaded
from: http://www.ch-werner.de/sqliteodbc/.

6.16.4.7 SQLite and Excel

Excel can read SQLite database files through ODBC.

Import as Table

To import a table from a SQLite database perform the following steps:

1. Select the Data tab and choose Get External Data From Other Sources

2. Choose the Data Connection Wizard

3. Choose ODBC DSN

4. Select SQLite3 Datasource

5. Enter the name and path of the database file and press OK.

6. Choose a table from the database.

7. Give this selection a name.

8. Choose Import as Table

The result is a table:

Import as Pivot Table

The same steps can be used to import as Pivot Table. This way we can easily create summary reports,
such as:

http://www.ch-werner.de/sqliteodbc/

6.17 GDX2VEDA 3051

6.17 GDX2VEDA

Translates a GDX file into the VEDA format.

6.17.1 Usage

gdx2veda gdx vdd [run]

gdx

GAMS GDX file

vdd

VEDA Data Definition file

run

VEDA Run identifier (optional)

The VEDA data file name and run identifier are either taken from the gdx file name or specified with the
run name. Use ”token with blanks” if needed.

6.17.2 Examples

This example dumps the gdx symbols:

gdx2veda mygdx

This exmaple prints usage and example:

gdx2veda

To print more detailed help message:

gdx2veda --help

Add .csv to the run name to write in csv format

http://support.kanors-emr.org/

3052 Tools Manuals

6.17.3 Detailed Help Message

6.17.3.1 VDD file Summary

[DataBaseName]

myveda

[Dimensions] cube dimensions

long_name tuple_element1 tuple_element2 ...

[DataEntries] data for the cube

long_name gams_name tuple_element1 tuple_element2 ...

[DimensionText] for generating .vde file (only for data in [DataEntries])

gams_set tuple_element1 tuple_element2 ...

[DimensionTextAll] for generating .vde file (also for data not in [DataEntries])

gams_set tuple_element1 tuple_element2 ...

[SubSets] for generating .vds file

sub_name gams_name tuple_element1 tuple_element2 ...

[ParentDimension] defines parent-child structure

parent_tab child_tab1 child_tab2 ...

[ParentDimensionTextAll] .vde file definitions with parent-child structure

2d_gams_set parent_tab child_tab

2d_gams_set child_tab parent_tab

[ParentSubSets] .vds file definitions with parent-child structure

sub_name 2d_gams_set parent_tab child_tab

sub_name 2d_gams_set child_tab parent_tab

[Options]

TupleSeparator "string" use a different separator symbol between tuple elements

ShowAllSeparators don’t squeeze unnecessary separators

RelaxDimensionAll relax strict dimensionality checks in DimensionText(All) sections.

ValueDim n if n=2 write PV/DV value pairs for VEDA

SetsAllowed dim1 dim2 .. write SetsAllowed specification line to VEDA .vd file

Scenario scenarioSet specify the scenario set; a record with expl text goes to .vde

Format veda/csv specify the format of the data files

Not-0 attribute ... don’t write records with zero values for these attributes

[SpecialValues]

EPS "string" value to be used for EPS

INF "string" value to be used for +INF

MINF "string" value to be used for -INF

NA "string" value to be used for NA

UNDEF "string" value to be used for UNDEF

<myveda>

is usually the application name which will be displayed on the top of the VEDA splash screen.
When a new VEDA database is created, a new folder with this name will appear:

...veda\database\mayveda_date_time.

6.17 GDX2VEDA 3053

Where data and time are the creation time stamp.

<tab name>

corresponds to the tabs of your VEDA screen

Lines starting with ∗ and empty lines are ignored. Blanks, commas and tabs are delimiters, blanks before
and after delimiters are ignored. Quotes around data items are optional. The input data is NOT case
sensitive.

6.17.3.2 Veda Data Definition file

Example of a Veda Data Definition file:

* Transport model

[DataBaseName]

myveda

[Dimensions]

* tab-name indices

Plants i

Warehouses j

Links ii jj

[DataEntries]

* veda_attribute gams_name tab1 tab2 ... for gams index 1, 2, ...

"x(i,j) duals" x.m i Warehouses

Shipments x.l i j

SupplyPrice supply.m i

DemandPrice demand.m j

TransportCost c i j

Distance d ii jj

Supply a i

Demand b j

TotalCost z.l

SupplyNodes i i

DemandNodes j j

Rate f

[DimensionText]

* gams_set tab

i i

[DimensionTextAll]

* gams_set tab

j j

[SubSets]

* sub_name gams_name tab

i1 ic Plants

i1 id i

Notes:

The long name from the [Dimensions] section can be used as a macro that expands to the
tuples it defines. E.g. ”Links” is identical to ”ii jj”.

In the [DataEntries] section a literal tuple element can be defined as /element/.

When ValueDim=2, the [DataEntries] section can contain X.LM entries, indicating both .L

and .M needs to written as a pair.

3054 Tools Manuals

6.18 GDX2XLS

A Tool to convert GDX data to MS Excel spreadsheets.

Author

Erwin Kalvelagen

Date

June 10, 2005; December 6, 2006

This document describes the GDX2XLS utility which allows to convert data stored in a GDX file into Excel
spreadsheets.

6.18.1 Overview

Attention

GDX2XLS is deprecated (see GAMS 42 GDX2XLS release notes). Please use Connect agent ExcelWriter
instead.

GDX2XLS is a tool to dump the complete contents of a GDX file to an MS Excel spreadsheet file (.xlsx or
.xls file). Every identifier gets its own sheet in the .XLSX file. Excel 2007 or more recent versions will
default to an xlsx file; versions before that default to the .xls file format. For instance when we save the
results of the trnsport model from the model library:

C:\tmp>gamslib trnsport

Model trnsport.gms retrieved

C:\tmp>gams trnsport gdx=trnsport lo=2

C:\tmp>gdxdump trnsport.gdx symbols

Symbol Dim Type Records Explanatory text

1 a 1 Par 2 capacity of plant i in cases

2 b 1 Par 3 demand at market j in cases

3 c 2 Par 6 transport cost in thousands of dollars per case

4 cost 0 Equ 1 define objective function

5 d 2 Par 6 distance in thousands of miles

6 demand 1 Equ 3 satisfy demand at market j

7 f 0 Par 1 freight in dollars per case per thousand miles

8 i 1 Set 2 canning plants

9 j 1 Set 3 markets

10 supply 1 Equ 2 observe supply limit at plant i

11 x 2 Var 6 shipment quantities in cases

12 z 0 Var 1 total transportation costs in thousands of dollars

C:\tmp>

The example shows how we copy the trnsport.gms model from the model library, and then solve it. The
option gdx=filename will save the complete symbol table to a GDX file. The option lo=2 tells GAMS to
save the log to a file (in this case trnsport.log) instead of writing it to the screen. The gdxdump will
display the contents of the GDX file (the option symbols will only display the table of contents, rather
than all data)

Once we have a GDX file we can use GDX2XLS to create an .XLSX file:

mailto:erwin@gams.com

6.18 GDX2XLS 3055

C:\tmp>gdx2xls trnsport.gdx

GDX2XLS 34.1.0 r644dbd9 Released Jan 29, 2021 WEI x86 64bit/MS Window

Output file: C:\tmp\trnsport.xlsx

C:\tmp>

The resulting XLSX file, opened with MS Excel is shown in Figure 1. The first page is the Table of
Contents page with all identifiers sorted alphabetically. When clicking on variable x, the sheet shown in
Figure 2 is displayed.

The table of contents can be reached again by clicking on the TOC link in the top left corner. The complete
process shown here can be automated as is shown in section Model gdx2xls1: import trnsport.gdx. As
can be seen, every identifier is stored in its own sheet. Index positions get a column with labels showing
their domains, or dim1, dim2, etc. if domain information is not available. By default scalar quantities are
collected in a single sheet called scalar.

6.18.2 AutoFilter

By default the exported tables are organized in AutoFilter tables. This will allow you to easily make
selections and sort the results.

It is possible to set filters for different columns. Only the rows that meet the criteria will be shown. The
columns used in the filter can be recognized by having a blue arrow instead of a black one in the drop
down menu header.

Sorting can also be performed on multiple columns: e.g. first sort on one column, then sort on a second
column.

The autofilter generation can be turned off using an option in the .ini file.

6.18.3 Options

6.18.3.1 Default ini file

Options are specified in an .INI file. By default, the file gdx2xls.ini located in the same directory as
gdx2xls.exe is consulted. If this file is not available, the program will continue using default settings.

6.18.3.2 Custom ini file

It is also possible to tell the program to use a different .ini file. This is done by using an extra argument
of the form @inifile. An example would be:

C:\TMP> gdx2xls myfile.gdx @myinifile.ini

In this case the program will not read gdx2xls.ini located in the same directory as gdx2xls.exe but
rather myinifile.ini in the current directory.

The ini file can contain two sections: [settings] and [colors]. A complete ini file with all possible
settings looks like:

3056 Tools Manuals

[settings]

inf=INF

mininf=-INF

eps=EPS

na=NA

undf=INDF

scalarsheet=1

tableformatting=1

toc=1

sorttoc=1

autofilter=1

freezeheader=1

indexformat=

valueformat=

[colors]

header=17

body=19

italics=48

[xmlcolors]

link=#0000FF

header=#9999FF

body=#FFFFCC

italics=#969696

6.18.3.3 Settings section

A complete description for the [settings] section is:

[settings] Description

inf Special values may need to be mapped to numeric values so the values can be used
in formula's etc. This setting will specify the value for the GAMS INF quantity. The
default is the string INF.

mininf This is the mapped value for -INF. The default is -INF.

eps This is the mapped value to be used for EPS. The default is EPS.

na This is the mapped value to be used for NA. The default is NA.

undf This is the mapped value to be used for UNDF. The default is UNDF.

scalarsheet When this parameter is set to 1, GDX2XLS will generate a separate sheet to collect
scalar parameters, scalar equations and scalar variables. This can reduce the number
of sheets created with just a single data item. The name of the sheet is fixed: scalar.
By default this option is turned on.

tableformatting If this option is turned on, extra table formatting is used (adding colors, etc.) to
make the tables look better. If this is not needed, this option can be turned off.
Default: tableformatting=0.

toc Whether or not to add a {Table of Contents} sheet. Default is to generate such a
table.

sorttoc Whether or not to sort the table of contents alphabetically. If turned off, the table
will be displayed in the order in which the identifiers appear in the GDX file. Default
is to sort.

autofilter Automatically generate AutoFilter enabled tables in Excel.

freezeheader Keep headers fixed so they don't scroll off the screen.

indexformat Custom format for index columns. By default this is an empty string.

valueformat Custom format for value columns. By default this is an empty string.

6.18 GDX2XLS 3057

An example of setting special values can be found in section Model gdx2xls4: special value mapping.

6.18.3.4 Colors section

A complete description for the [colors] section is:

[colors] Description

header The colorindex to be used as background for table headers. Default is 17.

body The colorindex to be used as background for table bodies. Default is 19.

italics The colorindex to be used for the font when writing explanatory text. The default is light
grey (color index 48).

The [xmlcolors] section is used to specify colors in the XML file to be generated.

6.18.3.5 Custom formats

The format strings consists of four pieces:

[format for $x>0$];[format for $x<0$];[format for $x=0$];[format for strings]

An example given in the Excel help is:

#,###.00_);[Red](#,###.00);0.00;"sales "@

The codes used here have the following meaning:

Formatting Characters Description

(number sign) displays only significant digits and does not display insignificant zeros.

, (comma) To display a comma as a thousands separator or to scale a number by a
multiple of one thousand, include a comma in the number format.

0 (zero) displays insignificant zeros if a number has fewer digits than there are
zeros in the format.

(underscore) To create a space the width of a character in a number format, include
an underscore, followed by the character. For example, when you follow
an underscore with a right parenthesis, such as), positive numbers line
up correctly with negative numbers that are enclosed in parentheses.

[color] One of [Black], [Blue], [Cyan], [Green], [Magenta], [Red], [White],
[Yellow].

@ (at sign) Include an at sign (@) in the section where you want to display any text
entered in the cell.

Additional formatting characters include:

3058 Tools Manuals

Formatting Characters Description

? (question mark) adds spaces for insignificant zeros on either side of the decimal point
so that decimal points align when formatted with a fixed-width font,
such as Courier New. You can also use ? for fractions that have varying
numbers of digits.

condition Conditions can be specified as follows: [Red][<=100];[Blue][>100].

exponent To display numbers in scientific format, use exponent codes in a section,
for example, E-, E+, e-, or e+.

A useful format is:

[settings]

valueformat=#.????

which aligns numbers on the decimal point and depicts zero's as dots just as the listing file is doing.

6.18.4 Examples

6.18.4.1 Model gdx2xls1: import trnsport.gdx

This example will solve the trnsport.gms model from the model library and generate a GDX file containing
the complete symbol table. This GDX file is exported to Excel and MS Excel is launched to inspect the
results. This is a small example that should run very quickly.

$onText

Test of GDX2XLS. Dumps all symbols of

trnsport.gms to trnsport.xlsx.

$offText

execute ’=gamslib trnsport’;

execute ’=gams trnsport lo=3 gdx=trnsport’;

execute ’=gdx2xls trnsport.gdx’;

executeTool ’win32.shellExecute trnsport.xlsx’;

Notes: the equal signs in from of the external programs indicate we don't go through a shell (e.g.
command.com orcmd.exe). This will improve reliability in case the external program is not found. In such
a case a proper error will be triggered. Without the '=' such errors go undetected and the GAMS model
will continue.

The command ‘executeTool 'win32.shellExecute trnsport.xlsx’;` will launch Excel to view the .XLSX file.

6.18.4.2 Model gdx2xls2: import indus89.gdx

This example will solve the indus89.gms model from the model library and generate a GDX file containing
the complete symbol table. This GDX file is exported to Excel and MS Excel is launched to inspect the
results. This is a fairly large GDX file, with many identifiers, resulting in many sheets in the workbook.

$onText

Test of GDX2XLS. Dumps all symbols of

indus89.gms to indus89.xlsx. This takes

longer as there is a large number of symbols.

$offText

execute ’=gamslib indus89’;

execute ’=gams indus89 lo=3 gdx=indus89’;

execute ’=gdx2xls indus89.gdx’;

executeTool ’win32.shellExecute indus89.xlsx’;

6.18 GDX2XLS 3059

6.18.4.3 Model gdx2xls3: a large table

This is an artificial example where we generate a large identifier in GAMS: a parameter with as many
elements as the number of rows that Excel can handle.

$onText

Test of GDX2XLS. Single symbol with 65536-3=65533 records.

Maximum rows that XLS can handle is 65536; an XLSX file allows for slightly more than a million rows.

$offText

Set i / i1*i65533 /;

Parameter p(i);

p(i) = uniform(-100,100);

execute_unload ’test.gdx’, p;

execute ’=gdx2xls test.gdx’;

executeTool ’win32.shellExecute test.xlsx’;

If you create a spreadsheet with too many rows, the XLSX file writer will return OLE error 800A03EC.
When generating an XML file, an error will occur when Excel loads the file.

6.18.4.4 Model gdx2xls4: special value mapping

To store special values like INF, EPS, NA in a numeric field in the database, GDX2XLS uses a mapping.
This mapping can be changed using an INI file.

$onText

Test of GDX2XLS.

Check special value mapping.

$offText

$onEcho > m.ini

[settings]

inf=1.0e100

mininf=-1.0e100

eps=0.0

na=#NA!

undf=#UNDF!

$offEcho

Parameter p(*) / i1 inf, i2 -inf, i3 eps, i4 na /;

p(’i5’) = 1/0;

display p;

* save parameter p in p.xlsx

* special values are translated to default values:

execute_unload "p.gdx", p;

execute ’=gdx2xls p.gdx’;

executeTool ’win32.shellExecute p.xlsx’;

* save parameter p in q.xls using new mapping

* INF -> 1.0e100 (numeric)

3060 Tools Manuals

* -INF -> -1.0e100 (numeric)

* EPS -> 0.0 (numeric)

* NA -> #NA! (string)

* UNDF -> #UNDF! (string)

*

execute_unload "q.gdx", p;

execute ’=gdx2xls q.gdx @m.ini’;

executeTool ’win32.shellExecute q.xlsx’;

Numeric values are important if you want Excel being able to operate on these numbers.

6.18.4.5 Model gdx2xls8: custom format

We use a custom value format to color the different values x<0, x=0, x>0 differently. Also align on the
decimal point.

$onText

GDX2XLS example: use of custom format

$offText

$onEcho > mexls.ini

[settings]

valueformat=[Blue]#.????;[Red]-#.????;[Green]0.????;[Magenta]

$offEcho

execute ’=gamslib mexls’;

execute ’=gams mexls lo=3 gdx=mexls’;

execute ’=gdx2xls mexls.gdx @mexls.ini’;

executeTool ’win32.shellExecute mexls.xlsx’;

6.18.4.6 Model gdx2xls9: custom format 2

This uses the more useful custom format valueformat=#.???? (see Figure 7).

$onText

GDX2XLS example: use of custom format

$offText

$onEcho > align.ini

[settings]

valueformat=#.????

$offEcho

execute ’=gamslib mexls’;

execute ’=gams mexls lo=3 gdx=mexls’;

execute ’=gdx2xls mexls.gdx @align.ini’;

executeTool ’win32.shellExecute align.xlsx’;

6.19 GDXCOPY 3061

6.19 GDXCOPY

GDX files from different GAMS version can possibly be incompatible. A current GAMS system can read
all older GDX file formats. The GDXCOPY utility provides a mechanism to convert GDX files to a format
that different GAMS systems can read.

6.19.1 Usage

gdxcopy option inFile outDir

or

gdxcopy option -Replace inFile

The first form copies the converted files to a directory; the second form replaces the original file(s).

inFile

Single file or a file pattern with .gdx file extension.

outDir

The output directory.

Instead of converting the files explicitly using the GDXCOPY utility, files can also be converted by using the
environment variable GDXCONVERT with values V5, V6 or V7. The values specified will be used together
with the value of the environment variable GDXCOMPRESS to call GDXCOPY as soon as a GDX file is created.

The values of the environment variables can also be set using the GAMS parameters GDXCONVERT and
GDXCOMPRESS.

Option:

Option Target format

-V5 Version 5

-V6U Version 6 uncompressed

-V6C Version 6 compressed

-V7U Version 7 uncompressed

-V7C Version 7 compressed

A current GAMS system can always handle older GDX file formats. The GDXCOPY utility provides a
mechanism to convert GDX files to a prior format, so an older GAMS system can read these files.

Notes:

• Version 7 formatted files were introduced with version 22.6 of GAMS; version 6 formatted files were
introduced with version 22.3 of GAMS. Prior versions used version 5.

3062 Tools Manuals

• Some features introduced in version 7 of the GDX file format cannot be represented in older formats.

6.20 GDXDIFF 3063

Feature Action taken

Dimension > 10 Symbol is ignored

Identifier longer than 31 characters Truncated to 31 characters

Unique element longer than 31 characters Truncated to 31 characters

Domain of a symbol Domain is ignored

Aliased symbol Symbol is entered as a set

Additional text for symbol Additional text is ignored

• The macOS systems do not support GDX conversion into format version 6 and version 5.

6.19.2 Example

In the example below we convert all GDX files to a compressed format for version 6.

dir

1,219 t1.gdx

1,740 t0.gdx

889,973 i.gdx

1,740 pv.gdx

894,672 bytes

gdxcopy -v6c *.gdx newdir

dir newdir

1,219 t1.gdx

1,219 t0.gdx

203,316 i.gdx

1,219 pv.gdx

206,973 bytes

6.20 GDXDIFF

The GDXDIFF tool compares the data of symbols with identical name, type and dimension in two GDX
files and writes the differences to a third GDX file. A summary report will be written to standard output.

6.20.1 Usage

gdxdiff file1 file2 {diffile} {options}

The .gdx file extension can be omitted. Files without a full path name are assumed to be in the current
directory when using a command prompt. When using the GAMS IDE, these files are assumed to be in the
current project directory. GDXDIFF requires two parameters, the file names of two GDX files. An optional
third parameter is the name of the GDX difference file. Without the third parameter, the difference file
will be diffile.gdx in the current directory.

diffile = fileName (default = diffile.gdx)

An optional name of the GDX difference file.

3064 Tools Manuals

6.20.2 Options

The following options can be used when calling GDXDIFF:

Option Default Description

Eps 0.0 Epsilon for comparison (absolute).

RelEps 0.0 Epsilon for comparison (relative).

field all Specify a single subfield (l, m, up, lo, prior, scale) of a variable or
equation to be compared.

fldOnly disabled Write variables and equations as parameters for the selected subfield.

id all Define specific identifiers of the GDX files to be compared.

diffOnly disabled Controls if differences of variables and equations will be written as param-
eters or not.

cmpDefaults disabled Enables the comparison of default values.

cmpDomains disabled Enables the comparison of symbol domains.

matrixFile disabled Enables the comparison of GAMS matrix files in GDX format.

ignoreOrder disabled Ignores UEL order of input files to reduce size of output file.

setDesc Y Control if associated text of matching set elements is compared.

Some more detailed remarks on the options:

Eps = value (default = 0.0)

Absolute difference for comparisons; see also Comparing numeric values. If the
difference between two values exceeds Eps, a difference will be reported. The valid
range is

RelEps = value (default = 0.0)

Relative difference for comparisons; see also Comparing numeric values. If the value
of RelEps is exceeded, a difference will be reported.

field = fieldName (default = all)

The specified subfield is the only field used for deciding if a variable or equation is
different. FieldName is one of the following: l, m, up, lo, prior, scale or all.

fldOnly (disabled by default)

Used in combination with the field option; The variables and equations will be
written as parameters for the selected subfield. This option cannot be used in
combination with diffOnly and requires field being set to an actual field name but
not to all.

id = identifier (default = all)

Limits the comparison to one or more symbols; symbols not specified will be ignored.
Multiple identifiers can be specified as: id=id1 id=id2 or as id="id1 id2". When
using GDXDIFF from the menu bar in the GAMS IDE (Utilities), this option is not
available.

diffOnly (disabled by default)

6.20 GDXDIFF 3065

Differences for variables and equations will be written as parameters; each parameter
will have an additional index which is used to store the field name. Only fields
that are different will be written. This option cannot be used in combination with
fldOnly.

cmpDefaults

Enables the comparison of default values. When using GDXDIFF from the menu bar
in the GAMS IDE (Utilities), this option is not available.

cmpDomains (disabled by default)

Enable the comparison of symbol domains. Note that the difference are not listed in
particular in the diffile. When using GDXDIFF from the menu bar in the GAMS IDE
(Utilities), this option is not available.

matrixFile

This activates a special mode to compare GAMS matrix files in GDX format. This
is mostly done for internal use. When using GDXDIFF from the menu bar in the
GAMS IDE (Utilities), this option is not available.

ignoreOrder

By default, GDXDiff preserves the UEL order of the input files. If this is set, this is
disabled so that records in the output file could show up in a different order than in
the input files. Doing this, the output file can be reduced in size.

setDesc = boolean (default = Y)

Enable or disable the comparison of associated texts for set elements.

Criterion for comparing numeric Values
The use of Eps and RelEps is best described by the code fragment below.

AbsDiff := Abs(V1 - V2);

if AbsDiff <= EpsAbsolute

then

Result := true

else

if EpsRelative > 0.0

then

Result := AbsDiff / (1.0 + DMin(Abs(V1), Abs(V2))) <= EpsRelative

else

Result := false;

Interpreting the Labels in the diffile
Only symbols with the same name, type and dimension will be compared. Tuples with different values are
written to the GDX difference file, and a dimension is added to describe the difference using the following
labels:

• ins1 indicates that the tuple only occurs in the first file.

• ins2 indicates that the tuple only occurs in the second file.

• dif1 indicates that the tuple occurs in both files; contains the value from the first file.

• dif2 indicates that the tuple occurs in both files; contains the value from the second file.

3066 Tools Manuals

6.20.3 Examples

6.20.3.1 Compares two GDX Files and writes the Differences to a third GDX File

In the following example, the [trnsport] model is solved twice with different capacity data. GDX files
are saved for each run, and compared afterwards using GDXDIFF. The shipments variable is loaded into a
new variable used for a display statement. We introduce four new unique elements that are used in the
difference file.

* solve and write to unmodified.gdx before manipulating the data

solve transport using lp minimizing z;

execute_unload ’unmodified.gdx’, a, x;

* manipulate the data and solve again, write to modified.gdx

a(’seattle’) = 1.2*a(’seattle’);

solve transport using lp minimizing z;

execute_unload ’modified.gdx’, a, x;

execute ’gdxdiff unmodified modified diffile > %system.nullfile%’;

* Declare symbols to hold the data for differences

Set difftags / dif1, dif2, ins1, ins2 /;

Variable xdif(i,j,difftags);

Parameter adif(i,difftags);

execute_load ’diffile’ adif=a, xdif=x;

display a, xdif.l;

The display statement generates the following output in the listing file:

---- 101 PARAMETER a capacity of plant i in cases

seattle 420.000, san-diego 600.000

---- 101 VARIABLE xdif.L

dif1 dif2

seattle .new-york 50.000 120.000

san-diego.new-york 275.000 205.000

Alternatively, one can open the diffile in GAMS Studio to display the differences.

This example is also part of the GAMS Data Utilities Library, see model [GDXDIFFExample16] for
reference.

6.21 GDXDUMP

GDXDUMP is a tool to write scalars, sets, parameters (tables), variables and equations from a GDX file
formatted as a GAMS program with data statements to standard output, GMS or CSV files. To write to
a file, use the output redirection '>' provided by the operating system or the output option of GDXDUMP.

6.21 GDXDUMP 3067

6.21.1 Usage

gdxdump filename {options}

The .gdx file extension can be omitted. Files without a full path name are assumed to be in the current
directory when using a command prompt. When using the GAMS IDE, these files are assumed to be in
the current project directory.

6.21.2 Options

The table summarizes the options of GDXDUMP. Running GDXDUMP without any arguments will write the
sets, parameters, scalars etc. to standard output formatted as a GAMS program with data statements.

Option Default Description

output none Specify the output filename.

version disabled Writing version information only.

symb none Specify a single identifier to be written from the GDX.

UelTable none Write all unique elements in the GDX to a single set.

delim if format=normal: period
if format=csv: comma

Specify a delimiter to separate elements in the output.

decimalSep period Specify a decimal separator.

noHeader disabled Suppress writing the header information.

header none Specify a new header when writing to CSV.

noData disabled Only write the headers of the symbols.

CSVAllFields disabled Controls the writing of subfields of a variable or equa-
tion to CSV.

CSVSetText disabled Controls the writing of set element text to CSV.

symbols disabled Generate an alphabetical list of all symbols in the
GDX file.

symbolsAsSet disabled Write some basic information for all symbols in the
GDX as set.

symbolsAsSetDI disabled Write some basic information including domain infor-
mation for all symbols in the GDX as set.

domainInfo disabled Generate an alphabetical list of all symbols in the
GDX file that includes domain information.

setText disabled Show the set text (aka the associated text) in the GDX
file.

format normal Specify the output file format.

dFormat normal Specify the numerical format in the output file.

cDim N Controls the writing of the column header when using
the CSV format.

filterDef Y Controls the writing of default values.

EpsOut EPS String to be used when writing the value for 'Epsilon'.
NaOut NA String to be used when writing the value for 'Not

Available'.
pInfOut +Inf String to be used when writing the value for 'Positive

Infinity'.
mInfOut -Inf String to be used when writing the value for 'Negative

Infinity'.
UndfOut Undf String to be used when writing the value for 'Unde-

fined'.
ZeroOut 0 String to be used when writing the value for 'Zero'.

3068 Tools Manuals

Some more detailed remarks on the options:

output = fileName (default=none)

Write the output to a file. The .gms resp. the .csv file extension must be added
when writing to GMS resp. CSV.

This option is demonstrated in Writing GDX to CSV.

-version (disabled by default)

Synonym: -v

Write version information only and terminate; all other options will be ignored.

symb = identifier (default=none)

Specify a single identifier in the GDX file to be written to standard output, GMS or
CSV. When writing to CSV, one must specify the symb option.

This option is demonstrated in Writing GDX to standard output and to GMS.

UelTable = identifier (default=none)

Write all unique elements found in the GDX file to a set using the identifier specified
as the name for the set.

This option is demonstrated in Writing GDX to standard output and to GMS.

delim = [period, comma, tab, blank, semiColon] (if format=normal: default=period, if
format=csv: default=comma)

Selects a different delimiter to separate unique elements; period is the default when
writing to standard output or GMS, while comma is the default when writing to
CSV.

This option is demonstrated in Writing GDX to CSV.

decimalSep = [period, comma] (default=period)

Specify a decimal separator.

This option is demonstrated in Writing GDX to CSV.

noHeader (disabled by default)

Suppress the header information when writing a single symbol; only the data for
the symbol will be written, not its declaration. The option is ignored when writing
all symbols. When writing to CSV, the header row can be suppressed by enabling
noHeader.

This option is demonstrated in Adding double Quotes to an user defined Header when writing to CSV.

header = string (default=none)

6.21 GDXDUMP 3069

The string supplied replaces the default header written by the program to a CSV
file. If an empty header is desired, the string can be empty; such a string can be
written using two single quotes (header=''), while in general it is best to enclose the
string with double quotes.

This option is demonstrated in Writing GDX to CSV and Adding double Quotes to an user defined Header when writing to CSV.

noData (disabled by default)

Only write the headers for the symbols; no data is written. The option is ignored
when writing to CSV.

CSVAllFields (disabled by default)

When writing a variable or equation to CSV, all fields (level, marginal, lower, upper,
and scale) will be written. Without this option, only the level will be written. When
writing a set the option control the writing of the element text.

This option is demonstrated in Writing GDX to CSV.

CSVSetText (disabled by default)

When writing a set to CSV, the set element text will be written as the last column
in the CSV file in addition to the set elements. Without this option, only the set
elements will be written.

This option is demonstrated in Writing GDX to CSV.

symbols (disabled by default)

Generate an alphabetical list of all symbols in the GDX file (not valid when writing
to CSV).

This option is demonstrated in Writing GDX to standard output and to GMS.

symbolsAsSet (disabled by default)

Generate a set declaration where the data represents basic information (symbol
identifier, dimension, type, explanatory text) of all symbols in the GDX file (not
valid when writing to CSV).

This option is demonstrated in Writing GDX to standard output and to GMS.

symbolsAsSetDI (disabled by default)

Generate a set declaration where the data represents basic information (symbol
identifier, dimension, type, domain information) of all symbols in the GDX file (not
valid when writing to CSV).

domainInfo (disabled by default)

Generate an alphabetical list of all symbols in the GDX file that includes domain
information (not valid when writing to CSV). The column DomInf can have the
following values:

N/A - The function to get the type of domain information is not available
None - No domain was specified (domain is the universe)
Relaxed - The domain is relaxed, i.e. the identifiers shown do not necessarily
represent one dimensional sets
Regular - Regular domain; the identifiers shown are one dimensional sets

This option is demonstrated in Writing GDX to standard output and to GMS.

3070 Tools Manuals

setText (disabled by default)

Show the set text (aka the associated set text or the set element text) in the GDX
file (not valid when writing to CSV).

GDX allows a string of text to be associated with each element of a set. The universe
of such strings stored for use in any particular GDX file (i.e. the set text list) can
be shown with this option.

format = [normal, gamsbas, CSV] (default=normal)

Change the output format and the symbols written.

When using the gamsbas format, the program will not write the declarations for
the symbols and only write the Level and Marginal assignment statements for the
variables, and the Marginal assignment statements for equations.

The CSV format adds column headers to the output. By enabling the cDim option
the unique elements of the last dimension of the symbol will be used as column
headers for the values. If domain information is available, the column headers will
be made unique if overlapping names have been used for the names of the index
positions. If no domain information is available, the index names used will be of the
form dim1, dim2, ...

In order to run GDXDUMP, one must specify a single symbol using the symb option
when writing to CSV.

The gamsbas and CSV format is demonstrated in Writing GDX to standard output and to GMS
resp. Writing GDX to CSV.

dFormat = [normal, hexponential, hexBytes] (default=normal)

Specify the numerical format in the output file.

cDim = [Y, N] (default = N)

Can be used when writing a CSV file; when enabled, the unique elements of the last
dimension will be used as column headers for the values.

This option is demonstrated in Writing GDX to CSV.

filterDef = [Y, N] (default = Y)

When enabled, default values will be filtered and not written. This option is enabled
by default. For example, if the Level field (.L) of a variable is zero, the value will
not be written.

EpsOut = string (default = EPS)

String to be used when writing the value for 'Epsilon'.

NaOut = string (default = NA)

String to be used when writing the value for 'Not Available'.

pInfOut = string (default = +Inf)

String to be used when writing the value for 'Positive Infinity'.

This option is demonstrated in Writing GDX to CSV.

mInfOut = string (default = -Inf)

String to be used when writing the value for 'Negative Infinity'.

UndfOut = string (default = Undf)

String to be used when writing the value for 'Undefined'.

zeroOut = string (default = 0)

String to be used when writing the value for 'Zero'.

Note that GDX files can also be viewed using the GAMS IDE or GAMS Studio.

6.21 GDXDUMP 3071

6.21.3 Examples

To demonstrate the features of GDXDUMP in the Writing GDX to standard output and to GMS and
Writing GDX to CSV examples, we execute the model trnsport.gms ([TRNSPORT] from GAMS Model

Library) initially to create the GDX file trnsport.gdx by using the GDX command line option. Afterwards,
some important features of GDXDUMP are demonstrated.

gams trnsport gdx=trnsport

The figure shows the symbol listing of the GDX file in total and the variable x in particular, since those
data is used quite often in the following examples:

All subfields of the variable x are shown in the next figure:

6.21.3.1 Writing GDX to standard output and to GMS

In this example, we will demonstrate the effect of some basic features of GDXDUMP.

While we write to standard output in the most sections of this example, one can also write the GDX file
contents into a GAMS file using the following command to redirect the output:

gdxdump trnsport.gdx > GDXContents.gms

Alternatively, the output option can be used to specify an output filename.

Option symbols
This listing shown above can also be written to standard output by using the symbols option of GDXDUMP:

gdxdump trnsport symbols

The GDXDUMP program writes the following output (except for the numbering and the records column, the
content is identical compared to the figure):

Symbol Dim Type Records Explanatory text

1 a 1 Par 2 capacity of plant i in cases

2 b 1 Par 3 demand at market j in cases

3 c 2 Par 6 transport cost in thousands of dollars per case

4 cost 0 Equ 1 define objective function

5 d 2 Par 6 distance in thousands of miles

6 demand 1 Equ 3 satisfy demand at market j

7 f 0 Par 1 freight in dollars per case per thousand miles

8 i 1 Set 2 canning plants

9 j 1 Set 3 markets

10 supply 1 Equ 2 observe supply limit at plant i

11 x 2 Var 6 shipment quantities in cases

12 z 0 Var 1 total transportation costs in thousands of dollars

Option domainInfo
We use the domainInfo option to write some basic information including domain information (column
DomInf) to standard output:

http://www.gams.com/modlib/libhtml/trnsport.htm
http://www.gams.com/modlib/modlib.htm
http://www.gams.com/modlib/modlib.htm

3072 Tools Manuals

gdxdump trnsport domainInfo

The GDXDUMP program writes the following output:

SyNr Type DomInf Symbol

3 Par Regular a(i)

4 Par Regular b(j)

7 Par Regular c(i, j)

10 Equ None cost

5 Par Regular d(i, j)

12 Equ Regular demand(j)

6 Par None f

1 Set None i(*)

2 Set None j(*)

11 Equ Regular supply(i)

8 Var Regular x(i, j)

9 Var None z

Check the domainInfo option explanation linked above to get a full list of possible values for DomInf and
their interpretation. In this example, the symbol dimensions were not specified (none) or they are defined
on the one dimensional sets i and j (regular).

Option symbolsAsSet
Using the symbolsAsSet option one can write the information displayed by enabling the symbols option
to a set declaration:

gdxdump trnsport symbolsAsSet

The GDXDUMP program writes the following:

alias (Symbol, Dim, Type, *)

set gdxitems(Symbol,Dim,Type) Items in the GDX file /

"i".1."Set" "canning plants",

"j".1."Set" "markets",

"a".1."Par" "capacity of plant i in cases",

"b".1."Par" "demand at market j in cases",

"d".2."Par" "distance in thousands of miles",

"f".0."Par" "freight in dollars per case per thousand miles",

"c".2."Par" "transport cost in thousands of dollars per case",

"x".2."Var" "shipment quantities in cases",

"z".0."Var" "total transportation costs in thousands of dollars",

"cost".0."Equ" "define objective function",

"supply".1."Equ" "observe supply limit at plant i",

"demand".1."Equ" "satisfy demand at market j"

/;

Option symb
One can write a single identifier from the GDX using the symb option:

gdxdump trnsport.gdx symb=x

The default output includes the declaration header and a data statement when writing a set or parameter.
When writing a variable, the output includes the level and marginal subfields:

6.21 GDXDUMP 3073

positive Variable x(i,j) shipment quantities in cases /

’seattle’.’new-york’.L 50,

’seattle’.’chicago’.L 300,

’seattle’.’topeka’.M 0.036,

’san-diego’.’new-york’.L 275,

’san-diego’.’chicago’.M 0.00900000000000001,

’san-diego’.’topeka’.L 275 /;

Note the default values are not written (for instance, zero values of the level or lower bound subfields are
missing).

Option UelTable
Using the UelTable option one can write a set (named allUELs in this example) containing all unique
elements of the GDX file:

gdxdump trnsport output=allUELs.gms UelTable=allUELs

The following set declaration will be part of the output file allUELs.gms:

Set allUELs /

’seattle’ ,

’san-diego’ ,

’new-york’ ,

’chicago’ ,

’topeka’ /;

Format gamsbas
Using the format option one can write a variable or equation in the gamsbas format, i.e. there will be no
declaration of the symbol and the level and marginal subfields will be written as assignments.

gdxdump trnsport format=gamsbas

GDXDUMP writes the following to standard output:

x.L (’seattle’.’new-york’) = 50 ;

x.L (’seattle’.’chicago’) = 300 ;

x.M (’seattle’.’topeka’) = 0.036 ;

x.L (’san-diego’.’new-york’) = 275 ;

x.M (’san-diego’.’chicago’) = 0.00900000000000001 ;

x.L (’san-diego’.’topeka’) = 275 ;

z.L = 153.675 ;

cost.M = 1 ;

supply.M (’seattle’) = Eps ;

demand.M (’new-york’) = 0.225 ;

demand.M (’chicago’) = 0.153 ;

demand.M (’topeka’) = 0.126 ;

3074 Tools Manuals

6.21.3.2 Writing GDX to CSV

Next we specify CSV as the output format and demonstrate some simple features available when writing
to CSV.

Writing to CSV
One can write to a CSV file by running the following command:

gdxdump trnsport.gdx output=varX.csv symb=x format=csv

By doing this, the level subfield of the variable x is written as a list to the file varX.csv specified in the
output statement. The header row contains the domain set identifiers i and j of x and the field ”Val”:

"i","j","Val"

"seattle","new-york",50

"seattle","chicago",300

"seattle","topeka",0

"san-diego","new-york",275

"san-diego","chicago",0

"san-diego","topeka",275

Option cDim
Using the cDim option one can write the data as a table since the right most dimension is used as the
column header:

gdxdump trnsport.gdx symb=x format=csv cDim=y

We did not specify an output file in this case, so the data will be written to standard output formatted as
CSV:

The GDXDUMP program writes the following:

"i","new-york","chicago","topeka"

"seattle",50,300,0

"san-diego",275,0,275

Note the elements new-work, chicago and topeka are written to the header row, since they are elements of
the most right dimension j.

Customizing the output: CSVAllFields, header, decimalSep, delim, pInfOut etc.
In this section, all subfields of the variable x are written to CSV and the representation is customized.
The writing of subfields is enabled by CSVAllFields. In addition, the header option is used to overwrite
the default header (as seen in the two previous paragraphs). For instance, we want to replace i with the
term 'canning plants', j with the term 'markets' and ”Val” with the term 'shipment quantities in cases',
while we are fine with the default column labels for the level, marginal etc. subfields, but they will be
overwritten, too. Therefore, we must specify them again manually in the header option. For some reason,
the field separator is changed from comma (default) to semicolon and the decimal separator from period
(default) to comma using the delim and decimalSep options. One can define the string written to CSV for
special values of GAMS like +INF by using the corresponding option pInfOut, which might be useful for
further processing of the CSV file.

gdxdump trnsport format=csv output=varX.csv symb=x CSVAllFields header="canning plants;markets;shipment quantities in cases;Level;Marginal;Lower;Upper;Scale" delim=semiColon decimalSep=comma pInfOut=1E+100

6.21 GDXDUMP 3075

GDXDUMP creates the following output:

canning plants;markets;shipment quantities in cases;Level;Marginal;Lower;Upper;Scale

"seattle";"new-york";50;0;0;1E+100;1

"seattle";"chicago";300;0;0;1E+100;1

"seattle";"topeka";0;0,036;0;1E+100;1

"san-diego";"new-york";275;0;0;1E+100;1

"san-diego";"chicago";0;0,00900000000000001;0;1E+100;1

"san-diego";"topeka";275;0;0;1E+100;1

Note that the fields in the header are not enclosed by double quotes. This problem is addressed in the
next section Adding double Quotes to an user defined Header when writing to CSV.

Customizing the output: CSVSetText
The set element text is the value of a set element. Often this is left out when defining sets, but for
descriptive models often set element text is provided. When dumping a set to a CSV file the set element
text is not written to the CSV file by default. The option CSVSetText enables the writing of the text.
The model mexss.gms ([MEXSS] from GAMS Model Library) has a set i of steel plants with set element
text

Set i ’steel plants’ / ahmsa ’altos hornos - monclova’

fundidora ’monterrey’

sicartsa ’lazaro cardenas’

hylsa ’monterrey’

hylsap ’puebla’ /;

When we create a GDX file and dump set i as CSV with defaults via the following commands

gamslib mexss

gams mexss a=c gdx=mexss

gdxdump mexss format=csv output=setI.csv symb=i header="steel_plants"

GDXDUMP creates the following output:

steel_plants

"ahmsa"

"fundidora"

"sicartsa"

"hylsa"

"hylsap"

If we add CSVSetText

gamslib mexss

gams mexss a=c gdx=mexss

gdxdump mexss format=csv output=setI.csv symb=i CSVSetText header="steel_plants,real_name"

GDXDUMP creates the following output:

steel_plants,real_name

"ahmsa","altos hornos - monclova"

"fundidora","monterrey"

"sicartsa","lazaro cardenas"

"hylsa","monterrey"

"hylsap","puebla"

http://www.gams.com/modlib/libhtml/mexss.htm
http://www.gams.com/modlib/modlib.htm

3076 Tools Manuals

6.21.4 Adding double Quotes to an user defined Header when writing to
CSV

This sections describes a possible workaround for the following problem: Suppose one wish to write a
parameter or variable from GDX to CSV, but with a non default header containing double quotes. For this
purpose, one might try to use the header option of GDXDUMP to specify an user defined header. Though,
there is no way to add double quotes enclosing the single fields using the header option, but this is a
quite common standard in CSV files (for instance, if the fields contain reserved characters).

Initially, define the header you want to write to the CSV file and redirect the line to your final CSV file
(which will be created at this point, an already existing file will be overwritten!). Note the double quotes
enclosing the field content. Adding the single quotes is necessary in order to run the following statement
from GAMS IDE (however, they will not be written to the file), while they must be omitted when using
the command prompt.

$echo ’"canning plants","markets","shipment quantities in cases"’ > quotedHeader.csv

Afterwards, call GDXDUMP by specifying the GDX file, the single symbol x we want to write, the output
format CSV and redirect the output to the file quotedHeader.csv:

$call gdxdump trnsport.gdx symb=x format=csv noHeader >> quotedHeader.csv

Appending the output of the recent GDXDUMP call to the already existing file quotedHeader.csv adds the
data of x to the file and creates the following CSV file (note that one must prevent GDXDUMP to write the
default header by using the command noHeader):

"canning plants","markets","shipment quantities in cases"

"seattle","new-york",50

"seattle","chicago",300

"seattle","topeka",0

"san-diego","new-york",275

"san-diego","chicago",0

"san-diego","topeka",275

6.22 GDXEncoding

Note

This tool is part of the GAMS Tools Library. Please inspect the general information about GAMS
Tools.

This converts the unique elements in the GDX file from one [encoding] (https://docs.python.org/3/library/codecs.html#standard-encodings)
to another one. The GDX string (a sequence of bytes) is decoded using encodingIn (default latin 1) into
a proper unicode string and afterwards encoded again into a GDX string (byte array) using encodingOut
(default utf 8). If verbose is set to 1 (default is 0) the converted unique elements are printed with new
and old GDX strings (byte arrays) to the GAMS log. If the number of conversions is necessary in GAMS,
a name of a scalar can be passed via numConv (default empty) which will hold the number of unique
elements converted.

https://docs.python.org/3/library/codecs.html#standard-encodings

6.23 GDXMERGE 3077

6.22.1 Usage

Command line:

gamstool [gdxservice.]GDXEncoding gdxFile [encodingIn=codeIn] [encodingOut=codeOut] [numConv=id gdxOut=fileOut.gdx]

Compile time:

$callTool [gdxservice.]GDXEncoding gdxFile [encodingIn=codeIn] [encodingOut=codeOut] [numConv=id]

Execution time:

executeTool ’[gdxservice.]GDXEncoding gdxFile [encodingIn=codeIn] [encodingOut=codeOut] [numConv=id]’;

Where:

| gdxFile | Name of GDX file. |

The following named parameters are available:

Argument Description

encodingIn=codeIn Input encoding of GDX string. Default is latin 1

encodingOut=codeOut Output encoding of GDX string. Default is utf 8.

numConv=id GAMS scalar symbol to store the number of actual conversions.

gdxOut=fileOut.gdx Name of GDX file that contains symbol numConv after execu-
tion. Mandatory if called from the command line with argument
numConv set, otherwise optional.

6.22.2 Example

* UTF-8 encoding

Set c / "côte d’ivoire-3" , "cote d’ivoire-3" /;

Scalar numConv /0/;

$gdxUnload c.gdx c

* Changes the label encoding from UTF-8 to Latin-1:

$callTool gdxservice.gdxEncoding c.gdx encodingIn=utf_8 encodingOut=latin_1 numConv=numConv trace=1

The complete example is also part of the GAMS Test Library, see model [gdxencoding1] for reference.

6.23 GDXMERGE

The program GDXMERGE combines multiple GDX files into a single GDX file. Symbols with the same name,
dimension and type are combined into a single symbol of a higher dimension. The added dimension has
the file name of the combined file as its unique element.

3078 Tools Manuals

6.23.1 Usage

gdxmerge filepattern1 filepattern2 filepatternN {options}

Each file pattern represents a file name or a wildcard representation using ? and ∗. A parameter of
the form @filename will process the commands from the text file specified. The result of the GDXMERGE

execution will be written to a file called merged.gdx, unless this default is overwritten by the output
option.

The .gdx file extension can be omitted. Files without a full path name are assumed to be in the current
directory when using a command prompt. When using the GAMS IDE, these files are assumed to be in
the current project directory.

6.23.2 Options

The following options can be specified:

id = <ident1>, <ident2>... (default = none)

Only merge the symbols ident1, ident2, ...

exclude = <ident1>, <ident2>... (default = none)

Merge all symbols except for ident1, ident2`, ...

big = <integer>

The size for big symbols.

strict = true|false (default = false)

The program terminates with an error (non-zero return code) if input files specified
cannot be found or a file pattern results in no files. An already existing output file
also triggers an error if strict is set to true.

output = fileName (default = merged.gdx)

The optional output file name.

All symbols with matching type and dimension will be merged. By specifying the parameter id=ident1
the merge process will only be performed for the identifier(s) specified, while exclude=ident1 indicates
that all symbols should be merged except for the ones specified in the exclude list. Note that the two
options id and exclude are mutually exclusive.

By default, the program reads all GDX once and stores all data in memory before writing the merged.gdx
file. The big parameter is used to specify a cutoff for symbols that will be written one at a time. Each
symbol that exceeds the size will be processed by reading each GDX file and only process the data for
that symbol. This can lead to reading the same GDX file many times, but it allows the merging of large
data sets. The formula used to calculate the cutoff is:

dimension ∗ totalNumberOfElements.

The calculated value is doubled for variables and equations.

In addition to the symbols written, a set is added to the GDX file representing all the files processed
during the merge operation. The name of the set is Merged set 1, and is made unique by changing the
number. The explanatory text for each set element contains the date and time of the GDX file processed.

Note

• The file merged.gdx, or the file specified with the output parameter, will never be used in a
merge operation even if the name matches a file pattern.

• Symbols with dimension 20 cannot be merged, because the resulting symbol will have dimension
21 which exceeds the maximum dimension allowed by GAMS.

6.23 GDXMERGE 3079

6.23.3 Examples

6.23.3.1 Merging several GDX Files

In this example, we solve the [trnsport] model from the GAMS Model Library using different LP solvers.
After each run, we write all symbols to a GDX file and merge the files into one file. The variable X is read
from the merged file and displayed.

$call gamslib trnsport

$call gams trnsport lp=cplex gdx=cplex

$call gams trnsport lp=xpress gdx=xpress

$call gams trnsport lp=conopt gdx=conopt

$call gams trnsport lp=minos gdx=minos

$call gams trnsport lp=snopt gdx=snopt

$call gdxmerge *.gdx

Variable AllX(*,*,*);

$gdxIn merged.gdx

$load AllX=X

$gdxIn

option AllX:5:1:2;

display AllX.L;

The display statement generates the following output in the listing file:

---- 22 VARIABLE AllX.L shipment quantities in cases

seattle seattle san-diego san-diego

new-york chicago new-york topeka

conopt 300.00000 325.00000 275.00000

cplex 50.00000 300.00000 275.00000 275.00000

minos 50.00000 300.00000 275.00000 275.00000

snopt 50.00000 300.00000 275.00000 275.00000

xpress 300.00000 325.00000 275.00000

Note that the different solutions are combined into a single symbol of a higher dimension. The filenames
(resp. the solver used) are added as unique elements.
Instead of using the display statement, we can also use the GAMS IDE or GAMS Studio to display the
merged.gdx file. The following figure shows the contents of merged.gdx after selecting the level subfield of
the variable to be displayed and arranging the display:

This example is also part of the GAMS Data Utilities Library, see model [GDXMERGEExample17]
for reference.

6.23.3.2 Recursively Merging GDX Files

Some users generate data scenarios for a model in a hierarchical way and store the results in a directory
tree: The following example demonstrates how to use three independent scenario scalars a, b, and c with
values low, medium, and high to generate 3∗3∗3=27 scenarios, store these in a directory tree, and merge
them recursively. The resulting GDX file has for each scenario scalar a new dimension which makes this
data especially suitable for viewing in a pivot table:

3080 Tools Manuals

---- 39 PARAMETER p commodity price

new-york chicago topeka

a_high.b_high.c_high.report 0.25 0.17 0.14

a_high.b_high.c_low .report 0.20 0.14 0.11

a_high.b_high.c_med .report 0.23 0.15 0.13

a_high.b_low .c_high.report 0.25 0.17 0.14

a_high.b_low .c_low .report 0.20 0.14 0.11

a_high.b_low .c_med .report 0.23 0.15 0.13

a_high.b_med .c_high.report 0.25 0.17 0.14

a_high.b_med .c_low .report 0.20 0.14 0.11

a_high.b_med .c_med .report 0.23 0.15 0.13

a_low .b_high.c_high.report 0.25 0.17 0.14

a_low .b_high.c_low .report 0.20 0.14 0.11

a_low .b_high.c_med .report 0.23 0.15 0.13

...

The GAMS program that creates the directory structure and runs the model for all 27 scenarios looks as
follows:

set a,b,c;

parameter

ascen(a<) / a_low 0.9, a_med 1.0, a_high 1.1 /

bscen(b<) / b_low 0.9, b_med 1.0, b_high 1.1 /

cscen(c<) / c_low 0.9, c_med 1.0, c_high 1.1 /;

loop((a,b,c),

put_utility ’shell’ / ’mkdir ’ a.tl:0 ’\’ b.tl:0 ’\’ c.tl:0

put_utility ’exec’ / ’gams t.gms lo=2 -idir "%gams.wdir%" -curdir ’ a.tl:0 ’/’ b.tl:0 ’/’ c.tl:0 ’ --a ’ ascen(a):3:1 ’ --b ’ bscen(b):3:1 ’ --c ’ cscen(c):3:1

);

The program creates the directory tree (by creating the leave nodes of the tree), changes into the leave
directory (curDir) and calls GAMS (using iDir to point to the starting location). The program t.gms is
almost an identical copy of the [trnsport] model with the last few lines changed:

* ...

a(i) = %a%*a(i);

b(j) = %b%*b(j);

c(i,j) = %c%*c(i,j);

solve transport using lp minimizing z;

scalar tmodelstat;

tmodelstat = transport.modelstat;

parameter p(j) ’commodity price’;

p(j) = demand.m(j);

execute ’test -d results || mkdir results’;

execute_unload ’results/input’, a, b, c;

execute_unload ’results/report’, x, z, p, tmodelstat;

This code saves the results of a run in to GDX files input.gdx and report.gdx in a results subdirectory.
After the program has executed the 27 runs of t.gms it executes some Python code that walks recursively
through the directory tree and merges GDX files it finds in a results folder in the leaf nodes percolates
the results up in the tree by calling gdxmerge on each high node level. The Python function os.walk

with argument topdown=False ensure the walking of the tree in the correct order. The complete example
can be found in the GAMS Model Library in model [scenmerge]:

6.24 GDXMRW 3081

embeddedCode Python:

import os

gd = -1

for root, dirs, files in os.walk(os.path.normpath(r"C:\Users\test\allscen\ ".rstrip()), topdown=False):

if ’results’ in dirs:

if gd == -1:

gd = root.count(os.path.sep)

gdr = root;

elif not gd == root.count(os.path.sep):

raise NameError(’results subdirs found at different depths in the tree: ’ + root + ’ and ’ + gdr)

cmd = ’cd "’ + root + ’" && gdxmerge results’ + os.path.sep + ’* output=’ + root.split(os.path.sep)[-1]

print(’Merging results in ’ + root)

if not 0 == os.system(cmd + ’>’ + os.devnull):

raise NameError(’problems running: ’ + cmd)

elif root.count(os.path.sep) < gd:

input = ’’

for d in dirs:

if os.path.isfile(os.path.join(root, d, d + ’.gdx’)):

input = input + ’ ’ + os.path.join(d, d + ’.gdx’)

if len(input):

cmd = ’cd "’ + root + ’" && gdxmerge’ + input + ’ output=’ + root.split(os.path.sep)[-1]

print(’Merging’ + input + ’ in ’ + root)

print(cmd)

if not 0 == os.system(cmd + ’>’ + os.devnull):

raise NameError(’problems running: ’ + cmd)

print(’All done. Final result file: ’ + root.split(os.path.sep)[-1] + ’.gdx’)

endEmbeddedCode

6.24 GDXMRW

Interfacing GAMS and MATLAB. This document briefly describes GDXMRW (GDX-Matlab Read/Write),
a suite of utilities to exchange data between GAMS and MATLAB. The software gives MATLAB users
the ability to use all the optimization capabilities of GAMS, and allows visualization of GAMS models
directly within MATLAB. The most recent version of GDXMRW is included as part of the current GAMS
Distribution.

Author

Steven Dirkse (sdirkse@gams.com), GAMS Development Corp.

Michael C. Ferris (ferris@cs.wisc.edu), Computer Sciences Department, University of Wisconsin
- Madison, 1210 West Dayton Street, Madison, Wisconsin 53706

Jagdish Ramakrishnan (jramakrishn2@wisc.edu), Wisconsin Institute for Discovery, University
of Wisconsin - Madison, 330 North Orchard Street, Madison, Wisconsin 53715

Date

August 1, 2014

Attention

GDXMRW is deprecated (see GAMS 38 GDXMRW release notes). Please use GAMS Transfer
Matlab instead.

mailto:sdirkse@gams.com
mailto:ferris@cs.wisc.edu
mailto:jramakrishn2@wisc.edu

3082 Tools Manuals

6.24.1 Introduction

Optimization is becoming widely used in many application areas as can be evidenced by its appearance in
software packages such as Excel and MATLAB. While the optimization tools in these packages are useful
for small-scale nonlinear models (and to some extent for large linear models), the lack of a capability to
compute automatic derivatives makes them impractical for large scale nonlinear optimization. In sharp
contrast, modeling languages such as GAMS and AMPL have had such a capability for many years, and
have been used in many practical large scale nonlinear applications.

On the other hand, while modeling languages have some capabilities for data manipulation and visualization
(e.g., Rutherford's GNUPLOT), specialized software tools like Excel and MATLAB are much better at
these tasks.

This paper describes a link between GAMS and MATLAB. The aim of this link is two-fold. Firstly, it
is intended to provide MATLAB users with a sophisticated nonlinear optimization capability. Secondly,
the visualization tools of MATLAB are made available to a GAMS modeler in an easy and extendable
manner so that optimization results can be viewed using any of the wide variety of plots and imaging
capabilities that exist in MATLAB.

In order to enable this link between GAMS and MATLAB, we have implemented MATLAB callable
functions that can efficiently import and export data to and from GAMS through GDX files. The simplest
read and write functions, irgdx and iwgdx, deal with indexed parameters. Without getting into their
precise meaning, these parameters are essentially indexed in each dimension by the sequence of integers
from 1 to the size of that dimension. As an example of the read function, the following command in
MATLAB will store the matrices A and B into the caller workspace after reading from the file foo1.gdx:

>> irgdx(’foo1’,’A’,’B’);

Similarly, the call

>> iwgdx(’foo2’,’C’,’D’);

would write the matrices C and D (located in the MATLAB workspace) as indexed parameters into a file
named foo2.gdx. Note that, many of the examples found in this manual are also part of the GAMS data
utilities models library, referred to here as datalib. The statements above can be found in datalib example
gdxmrw intro02 init. For reading and writing more complex data such as sets, variables, equations, and
non-indexed parameters, we can use the more sophisticated functions rgdx and wdgx. Further descriptions
of these functions together with advanced use of irgdx and iwgdx are detailed in the rest of this paper.

In Section Data Transfer, we discuss the data transfer utilities that allow importing and
exporting data between MATLAB and GDX files: irgdx, iwgdx, rgdx, wgdx. In Sec-
tion Extended use, we give a few examples of the MATLAB and GAMS interface. In
APPENDIX A - Configuring GDXMRW, we provide information about configuring GDXMRW and
testing the utilities. In APPENDIX B - Utility functions: gdxWhos and gdxInfo, we describe additional
utility functions, gdxWhos and gdxInfo, that allow viewing contents of GDX files in the MATLAB
console. Finally, in APPENDIX C - Calling GAMS model from MATLAB, we discuss the gams function
that with a single call initializes a GAMS model with MATLAB data, executes GAMS on the model, and
returns results back into MATLAB.

6.24 GDXMRW 3083

6.24.2 Data Transfer

This paper describes a suite of tools for exchanging data between GAMS and MATLAB. This data
exchange is accomplished via the GDX (i.e. the GAMS Data eXchange) interface and API. There are
many advantages to using GDX, including platform independence, space and time efficiency in storing
and accessing data, and a guarantee that all GDX data contains no duplicates and is free from any logical
or syntax errors that might prevent it from being read into GAMS. The GDX interface is well tested,
available to the public, and is the basis for most if not all of the GAMS data utilities.

In this section we discuss four MATLAB routines. The first two, irgdx and iwgdx, are the subject of
sections irgdx and iwgdx and are used to quickly and simply read indexed parameters from a GDX file into
MATLAB and vice versa. For an example use of these functions, a generic quadratic program function
that mimics MATLAB's quadprog function is provided in datalib example gdxmrw qp3. The rgdx and
wgdx routines (sections rgdx and wgdx) are more sophisticated versions of the first two that can read and
write more general GDX data, e.g. sets, variables, equations, and non-indexed parameters. To understand
the structure of this GDX data, the material in section Indexing with labels (UELs) is essential.

6.24.2.1 irgdx

irgdx is a specialized MATLAB function to do an efficient import of an indexed parameter from a GDX
file. The irgdx call will not read non-indexed parameters; it can only read data recognized as an indexed
data type. If a GDX file consists of both indexed and non-indexed data, irgdx can still read the indexed
data. To see whether particular parameters in a GDX file are indexed, the gdxWhos function described in
APPENDIX B - Utility functions: gdxWhos and gdxInfo can be used.

The syntax and functionality of irgdx closely resembles that of the MATLAB load function to import MAT-
LAB formatted data, i.e data stored in MAT files. In Basic syntax and Load symbols into output structure
we describe the basic modes of operation where the data read from GDX are either stored in the caller
workspace or into a MATLAB structure on the left-hand side of an assignment. In MATLAB sparse form,
we describe an optional specification that allows read results to be stored in MATLAB sparse form. Finally,
in Subsection Renaming, we describe a simple syntax that allows the renaming of variables/parameters
without the need to make expensive copies.

Basic syntax

The basic syntax for irgdx is

irgdx(’gdxFileName’, ’sym1’, ’sym2’, ...);

The above call will read the indexed parameters named sym1, sym2, and so on from the GDX file whose
name is specified in the first argument and store the results in the MATLAB caller workspace. Only the
GDX name argument is mandatory. If only this argument is specified (i.e. no symbol names are provided)
then all of the indexed parameters stored in the GDX file will be loaded into the workspace. The GDX
name can be specified with or without the '.gdx' extension. Note that all of the input arguments must
be specified in string form.

As an example of the above syntax, we can read the scalar a0, the vector a1, and the matrix a2 from the
file idx1 .gdx with the following command:

>> irgdx(’idx1_’,’a0’,’a1’,’a2’);

The three symbols are stored as MATLAB variables a0, a1, and a2 in the caller workspace. If we want to
read all the symbols from the file idx1 .gdx, we simply call irgdx with only the file name:

>> irgdx(’idx1_’);

3084 Tools Manuals

Load symbols into output structure

An alternative to storing the results in the MATLAB caller workspace is to return the results in a
MATLAB structure. Here, the syntax is:

s = irgdx(’gdxFileName’,’sym1’,’sym2’,...);

This call will return the indexed parameters named sym1, sym2, and so on in the structure s, with
fields s.sym1, s.sym2, and so on containing the values of the respective indexed parameters. The input
arguments must all be in string form. Only the GDX name is mandatory; if only this argument is specified,
all of the indexed parameters stored in the GDX file will be returned in the output structure. The GDX
name can be specified with or without the .gdx extension.

For example, the following call returns the values of parameter a2 in the structure s:

>> s = irgdx(’idx1_’,’a2’);

>> s.a2

ans =

50 50

50 50

To return all the indexed parameters in the fields of the structure s, we would simply call irgdx with
only the GDX name:

>> s = irgdx(’idx1_’);

See datalib example gdxmrw irgdx01 init.

MATLAB sparse form

By default, irgdx will store results in MATLAB dense form. However, it is possible to use MATLAB
sparse form for parameters with dimension less than or equal to 2; MATLAB's sparse storage scheme
cannot handle matrices with more than 2 dimensions. Using sparse storage will allow for efficient import
of especially large sparse indexed parameters. Note that in this context sparse does not refer to data
represented in the form [i,j,...,val] but rather to MATLAB's internal sparse storage scheme. To store a
particular symbol in MATLAB sparse form, one can simply append ':s' to that symbol's name in the
irgdx call. For example, the following call will store the parameter a2 into the caller's workspace in sparse
form:

>> irgdx(’idx1_’,’a2:s’);

Note that if we want to store all the indexed parameters from a specified file in MATLAB sparse form, we
would need to specify each symbol individually in order to append the ':s' to each symbol's name.

6.24 GDXMRW 3085

Renaming

The details of this section are rather involved; it can be skipped without loss of continuity.

While an irgdx call will typically store results in the caller workspace or create field names in the output
structure using the symbol names from the GDX file, it is possible to rename the outputs in MATLAB
without making potentially expensive copies. To rename a symbol, we can take advantage of MATLAB's
default copy-on-write mechanism: when an assignment occurs, the values assigned are not actually copied
until one of the values (the original or the copy) is actually changed. For example, after executing the
following two lines of code, the variable a2 new points to the same memory location as a2 and is not a
separate copy of a2:

>> irgdx(’idx1_’,’a2’);

>> a2_new = a2;

If however the value of a2 new were changed after executing the above lines, MATLAB would then need
to make a separate copy, at the cost of memory and time. Now, the command

>> clear a2;

immediately following the above code would complete the rename of a2 to a2 new as desired. Once a2 is
cleared, we can change a2 new without needing to make a copy. Similarly, we can do a rename when we
have an output structure:

>> s = irgdx(’idx1_’,’a2’);

>> s.a2_new = s.a2;

>> s = rmfield(s,’a2’);

To convince ourselves that this code indeed does not require a copy, we can run the commands in the
debug output format. That is, immediately after the assignment of s.a2 to s.a2 new in the above code
(before using the rmfield function), we can run the following commands:

>> format debug;

>> s.a2

ans =

Structure address = 8c1eda0

m = 2

n = 2

pr = 75fa88a0

pi = 0

50 50

50 50

>> s.a2_new

ans =

Structure address = 8c1eda0

m = 2

n = 2

pr = 75fa88a0

pi = 0

50 50

50 50

3086 Tools Manuals

Note that the pointer pr is the same for both outputs, implying that MATLAB does not make a separate
copy prior to a write. A similar test can also be done when parameters are stored in workspace variables
rather than a structure.

6.24.2.2 iwgdx

iwgdx is a function that creates a GDX file of indexed parameters from MATLAB data. Since iwgdx writes
only indexed parameters to GDX, the input MATLAB data is simplified: no labels are required or implied.
The input matrices can be stored in the usual (dense) scheme or using the MATLAB sparse scheme:
iwgdx detects and handles the two cases automatically. Note that matrices represented in [i,j,...,val]

form are not acceptable as iwgdx input.

While the iwgdx function is patterned after the save function in MATLAB, there are important differences.
Firstly, if only the file name is specified, the save function stores all variables in the caller workspace,
while iwgdx creates an empty GDX file. The behavior of iwgdx in this case also differs from that of
irgdx, which reads all parameters when only the file name is specified. Secondly, iwgdx has an additional
pass by reference and renaming syntax, in which the parameter string name and values are passed as two
consecutive arguments. In Subsection Basic syntax, we describe the basic syntax for iwgdx. In Subsection
Pass by reference syntax , we introduce the pass by reference and renaming syntax. Finally, in Subsection
Dimensionality specification, we describe an optional dimensionality specification that allows symbols to
be written with a larger dimensionality than the default.

Basic syntax

The basic syntax for iwgdx is:

iwgdx(’fileName’,’sym1’,’sym2’,...);

The above call will write the values of the variables sym1, sym2, and so on in the MATLAB caller
workspace into a GDX file with the name given by the first input argument. The file name can be
specified with or without the '.gdx' extension. If a GDX file with the same name already exists, it will be
overwritten. Note that a call with a single input argument (the GDX name) will raise a warning and
will create an empty GDX file. This contrasts to the MATLAB save function, which writes all of the
workspace variables when none are specified. In the basic form described here, all of the iwgdx input
arguments are strings.

To illustrate, suppose the matrices a2 and a3 exist in the MATLAB caller workspace. We can write the
results of these matrices into a file test.gdx with the following call:

>> iwgdx(’test’,’a2’,’a3’);

If the file test.gdx already exists, it will be overwritten. Specifying only the file name will create an empty
GDX file:

>> iwgdx(’test’);

Warning: an empty gdx file was created.

6.24 GDXMRW 3087

Pass by reference syntax

When using the basic iwgdx syntax, a copy of the workspace variable to be written to GDX is made as
part of the call. This is unavoidable: the MATLAB executable (MEX) interface only provides functions
that return copies of workspace variables, most likely to avoid overwriting or corrupting data. However,
an alternative, more efficient approach is possible by passing the numeric data as an argument. Essentially,
the pointer to the data values are passed by reference and no copy is made. This could be especially
useful when writing a large amount of data. An additional benefit of this syntax is the ability to write
GDX parameters with different names than used in the MATLAB caller workspace. For example:

>> iwgdx(’test’,’s1’,s1Mat,’s2’,s2Mat);

In the above command, s1 and s2 are strings holding the GDX parameter names, while s1Mat and s2Mat

are matrices containing the values to store. We can also use a mix of the basic syntax with the pass by
reference syntax. For example:

>> iwgdx(’test’,’anew’,a,’b’,’c’,c);

This call would save matrix a as anew in GDX without making a copy, would internally make a copy of b
while saving b to GDX, and would save c to GDX without renaming or making a copy.

We can do a timing test to see the performance difference between the basic syntax and the pass by
reference syntax. The following commands create a 5000x5000 dense matrix consisting of random values
in the workspace.

>> clear;

>> randMat = rand(5000);

First, we do a timing test using the basic syntax:

>> delete test.gdx; % delete file if it exists

>> tic;

>> iwgdx(’test’,’randMat’);

>> t1 = toc

t1 =

5.3346

Now, we do a timing test using the pass by reference syntax:

>> delete test.gdx; % delete file if it exists

>> tic;

>> iwgdx(’test’,’randMat’,randMat);

>> t2 = toc

t2 =

5.1636

For the above example, the improvement in time performance is about 3%. Of course, the pass by reference
call will also use only the half the memory compared to the basic call. We can expect further improvement
in performance time and memory use for even larger data.

3088 Tools Manuals

Dimensionality specification

It is possible to specify the number of dimensions (i.e. dimensionality) for the symbol written to GDX by
appending :n to the variable/symbol name, where n is the desired dimensionality of the GDX symbol.
This feature is motivated by two quirks of the MATLAB environment. Firstly, all scalars and vectors are
stored in MATLAB as 2-dimensional matrices. For example:

>> s0 = 100

>> s1 = [100]

results in two variables with identical storage schemes: 1x1 matrices. In the MATLAB environment this
isn't a problem: things behave as you would expect them to, and the isscalar, isvector, and ismatrix

calls are available to interrogate MATLAB about how it views variables. However, in GDX there is a
distinction between a scalar (something with 0 dimensions), a parameter with 1 dimension and length 1,
and a 1x1 parameter. We need to be able to create GDX files containing any or all of these.

Secondly, MATLAB ”flattens” all variables by removing trailing dimensions whose size is 1. For example,
after executing

>> B = ones(2,2,2)

>> C = ones(2,2,2,1,1)

B and C will be identical 3-dimensional MATLAB arrays, yet we need to be able to create a 2x2x2x1x1
indexed parameter in GDX.

By default, iwgdx creates GDX parameters that are consistent with the MATLAB view of the data passed
in. For example, executing

>> d0 = ones(1,1)

>> d1 = ones(3,1)

>> d2 = ones(3,3)

>> iwgdx(’dd’,’d0’,’d1’,’d2’)

results in indexed parameters with 0, 1, and 2 dimensions, respectively, being written to GDX. However, if
we want to write d0 as a vector or matrix or higher-dimensional array, we need to use the optional syntax
to specify the dimensionality of the resulting symbol in GDX. For example:

>> d0 = pi;

>> p1 = d0;

>> d1 = pi*ones(3,1);

>> p2 = d1;

>> d2 = pi*ones(3,3,1)

>> iwgdx(’pp’,’d0’,’p1:1’,’d1’,’p2:2’,’d2’,’p3:3’,d2)

will write the following symbols to GDX:

• The 0-dimensional symbol d0. This is the default behavior, consistent with the MATLAB view that
d0 is a scalar.

• The 1-dimensional symbol p1. The scalar variable p1 was promoted to a 1-dimensional symbol by
adding an additional singleton dimension.

6.24 GDXMRW 3089

• The 1-dimensional symbol d1. This is the default behavior, consistent with the MATLAB view that
d1 is a vector.

• The 2-dimensional symbol p2. The vector variable p2 was promoted to a 2-dimensional symbol by
adding an additional singleton dimension.

• The 2-dimensional symbol d2. This is the default behavior, consistent with the MATLAB view that
d2 is a matrix, i.e. the final singleton dimension is just removed.

• The 3-dimensional symbol p3. The matrix variable d2 was promoted to a 3-dimensional symbol by
adding an additional singleton dimension. Independently, call-by-reference was used to rename d2

to p3.

Note that the dimensionality specified must always be a promotion, i.e. the dimensionality of the resulting
GDX symbol is only increased from what it would be by default.

See datalib example gdxmrw iwgdx01 init.

6.24.2.3 Indexing with labels (UELs)

To this point we have been looking at functions to read (irgdx, Section irgdx) and write (iwgdx, Section
iwgdx) indexed parameters from and to GDX. Indexed parameters are convenient since their structure is
essentially identical to that of MATLAB matrices. This structure can be encapsulated very simply as
the number of dimensions and the size or extent of each dimension. Using indexed parameters, we do
not need to be very concerned with the structure of the data since little structure exists. However, there
is much more to GDX data than indexed parameters. If we want to read and write GDX data in more
generality we will need to understand how labels or strings are used to reference GDX data and how these
labels are organized within GDX.

In general, GAMS data is referenced with labels instead of with numbers, so that one references
demand('chicago') instead of demand(2) in a GAMS model. These labels are also called Unique
Elements, or UELs. The collection of UELs used in a model or in a GDX file is ordered internally and
often referred to as the universe of UELs. For efficiency, it is not necessary to use labels internally in
GDX or when using the GDX API. Instead, a correspondence or mapping between integers and labels
is established initially and/or built up as labels are introduced, so that integers can be used in place of
the UELs that reference the data. It is important to keep in mind that the labels are the key thing in
referencing GDX data: when integer maps are used the integers are only used to efficiently represent the
labels.

A similar scheme mapping integers to labels is used in the rgdx and wgdx routines for reading and writing
general GDX data. In addition to the actual data values being stored, there will be a mapping passed to
allow integers to be mapped to labels and vice versa. In some cases, where no mapping is passed and
data are written to GDX, a default mapping (1 to '1', 2 to '2', etc.) may be used. When reading, the
default mapping to use when passing back data is the universe mapping from the GDX, but it is possible
to apply a filter. A filter can reduce the amount of data returned and also change the order of that data.

6.24.2.4 rgdx

rgdx is a MATLAB utility to import data from a GDX file. It takes structural input and returns data
back in the form of a structure. This is a very flexible routine as it gives user control over the output data
structure. rgdx can read a set/parameter/equation/variable from a GDX file and display results in either
full/dense or sparse form. A user can also perform a filtered read to read only certain specific elements of
a symbol. It can also perform compression to remove extra zeros.

This routine can take up to two arguments. The first argument is a string input containing the GDX file
name. It can be with or without the '.gdx' file extension. If you call this routine with only the GDX file
name as an argument then the 'uels' field of output structure will be the global UEL of the GDX file
and the rest of the fields of the output structure will be NULL. The second argument is a structure input
containing information regarding the desired symbol. The syntax for this call looks like this:

3090 Tools Manuals

x = rgdx(’fileName’, structure);

As an example, we read a 3D parameter, 'test3' from 'sample.gdx'. Here we display this parameter in
full format but without redundant zeros:

>> s.name = ’test3’;

>> s.form = ’full’;

>> s.compress = true;

>> x = rgdx(’sample’, s)

x =

name: ’test3’

type: ’parameter’

dim: 3

val: [4x2x2 double]

form: ’full’

uels: {{1x4 cell} {1x2 cell} {1x2 cell}}

>> x.val

ans(:,:,1) =

3 4

4 5

5 6

6 7

ans(:,:,2) =

4 5

5 6

6 7

7 8

>> x.uels{1}

ans =

’1’ ’2’ ’3’ ’4’

>> x.uels{2}

ans =

’j1’ ’j2’

>> x.uels{3}

ans =

’k1’ ’k2’

In the following subsections we will explain the input and output structures. Please note that except for
the 'name' and 'uels' fields, all other string fields take case insensitive input. All boolean fields can also
be entered as string values as well.

6.24 GDXMRW 3091

Input structure

To read a symbol from a GDX file we just need to know its name in string format. Thus, the only
mandatory field of the input structure is 'name'. e.g.

>> s.name = ’test3’;

There are several other optional fields of the input structure that give user more control over the output
structure. These optional fields are as follows:

1. form
This field represents the form of the output data. Output data can be either in 'full' or 'dense'
form or it can be in [i, j,.., val] sparse form. We will label [i, j,.., val] as 'sparse'. A
user can enter it as string input with value 'full' or 'sparse'. e.g.

>> s.form = ’full’;

By default the data will be in 'sparse' format. Note that this sparse format differs from MATLAB's
internal sparse storage scheme that we referred to in prior sections for the irgdx and iwgdx functions.

2. compress
By default the uels in the output structure will be a global UEL of the GDX file and the 'val' field
data will be indexed to this UEL. The rgdx routine allows a user to remove rows and columns with
all zeros from the 'val' data matrix and re-indexes the uels accordingly. This is called compression
of the data. This can be achieved by setting compress as true in the input structure. Valid values
for this field are true and false, either in logical form or in string form. e.g.

>> s.compress = ’true’;

However, we note that compressing the data can be dangerous because the size of the matrix that
is read can be incorrect. Essentially, all zero rows and columns are removed, including those that
might actually be part of the data values in the symbol matrix.

3. uels
This input field is used to perform a filtered read, i.e. output data matrix will contain values only
corresponding to the entered uels. Filtered read is very useful if user just wants certain specific
set of data. Uels should be entered in cell array form. It has to be in 1xN form with each column
being a cell array representing the uels for that dimension. Each column can have strings, doubles
or combinations of both. It also allows a user to enter double data in shorthand notation or a
1 x N matrix. For example, in the previous example we can perform a filtered read to get data
corresponding to only the '1', '3' elements of the first index of the parameter 'test3'. The
following function is handy when one needs to generate a UEL listing for the input structure:

>> guel = @(s,v) strcat(s,strsplit(num2str(v)));

Using the above function, we can create a listing of strings consisting of the string s appended to
each number in the array v. Thus, instead of using the command

>> s.uels = {{’1’,’3’},{’j1’,’j2’},{’k1’,’k2’}};

we can conveniently use the command

>> s.uels = {guel(’’,[1,3]),guel(’j’,1:2),guel(’k’,1:2)};

The benefit of using the latter command will be more apparent when creating many elements in the
listing. Now, as an example, suppose we would like to do a filtered read on the parameter called
test2 in sample.gdx. We could use the following commands:

3092 Tools Manuals

>> s.name = ’test3’;

>> s.form = ’full’;

>> s.compress = false;

>> s.uels = {guel(’’,[1,3]),guel(’j’,1:2),guel(’k’,1:2)};

>> x = rgdx(’sample’,s)

x =

name: ’test3’

type: ’parameter’

dim: 3

val: [2x2x2 double]

form: ’full’

uels: {{1x2 cell} {1x2 cell} {1x2 cell}}

>> x.val

ans(:,:,1) =

3 4

5 6

ans(:,:,2) =

4 5

6 7

Here it should be noted that we turned off compression while performing the filtered read. This is
necessary because the filtered read will give data in accordance with the entered uels and the output
uels will be the same as the input uels; thus compression is not possible.

4. field
This field is required when variables or equations are to be read from a GDX file. Sets and parameters
in the GDX file do not have any field value but variables and equations have 5 fields namely, level,
marginal, lower, upper, and scale. Thus, it may be useful to enter field as an input when reading an
equation or a variable. A user can enter it as a string with valid values being 'l/m/up/lo/s'. e.g.

>> s.field = ’m’;

By default, the output will be the level value of a variable or an equation.

5. ts
This represents the text string associated with the symbol in the GDX file. If a user sets this field
to be 'true', then the output structure will have one more string field 'ts' that contains the text
string of the symbol. e.g.

>> s.ts = true;

6. te
GAMS allows a modeler to enter text elements for a set. Similarly to the 'ts' field, if a user
sets 'te' to be true in the input structure, then the output structure will contain one more field
representing the text elements for that symbol. Please note that text elements only exist for 'sets'.
e.g.

>> s.te = true;

6.24 GDXMRW 3093

Output Structure

As mentioned earlier, output of the rgdx routine will be in structure form. This structure is very similar
to the input structure. To get information regarding any symbol, we always need to display its basic
characteristics, such as its name, type, value, uels, form, etc. An output structure will always have these
fields:

1. name
It is same as that entered in the input structure name field, i.e., the symbol name in the GDX file.

2. val
It represents the the value matrix of the symbol. To save MATLAB memory by default it will be in
'sparse' format. e.g.

>> s = rmfield(s, ’form’);

>> s

s =

name: ’test3’

compress: 0

>> x = rgdx(’sample’, s)

x =

name: ’test3’

type: ’parameter’

dim: 3

val: [16x4 double]

form: ’sparse’

uels: {{1x8 cell} {1x8 cell} {1x8 cell}}

Here val is a 16x4 double matrix. As it is a parameter; thus the last column of the sparse matrix
will represent the value and the rest (i.e. the first three columns) will represent its index. Please
note that in the case of a 'set', the number of columns in the sparse matrix will be equal to its
dimension, i.e., it will not have a column representing its value. Here, the presence of each row in
the output 'val' field corresponds to the existence of a set element at that index. When a 'full'
matrix output is specified, a 1 represents existence of a set element and a 0 otherwise.

3. form
It represents the format in which the 'val' field is being displayed. As mentioned earlier it can be
either in 'full' or 'sparse' form.

4. type
While reading a symbol from a GDX file it is often very useful to know its type. The rgdx routine
is designed to read set, parameter, variable and equation. This field will store this information as a
string.

5. uels
This represents the unique element listing of the requested symbol in the form of a cell array. It is
a 1 x N cell array, where N is the dimension of the symbol. Each column of this array consists of
string elements. By default, the output uels will be the same as the global uel of the GDX file, but it
can be reduced to element specific local uels if compress is set to be true in the input structure. If a
user is using a filtered read, i.e. calling rgdx with input uels, then the output uels will be essentially
the same as the input uels.

6. dim
It is a scalar value representing the dimension of the symbol.

Apart from these necessary fields there are a few additional fields as well. They are as follows:

3094 Tools Manuals

7. field
If we are reading variables or equations, then it becomes useful to know which field we have read,
i.e., l/m/up/lo/s. This information is displayed via this field in the form of a string.

8. ts
It display the explanatory text string associated with the symbol. This field only exists in the output
structure if the 'ts' field is set as 'true' in the input structure.

9. te
It is an N dimensional cell array representing the text elements associated with each index of the set.
This field only exists in the output structure if the 'te' field is set as true in the input structure
and the symbol is a set.

See datalib example gdxmrw rgdx01 init.

6.24.2.5 wgdx

wgdx is a MATLAB routine to create a GDX file containing data from MATLAB. Similar to the rgdx

routine, it takes a structure input and can write multiple symbols into a single GDX file with one call.
The first argument is the file name of the GDX file to be created in string format; it can be with or
without the '.gdx' file extension. The rest of the arguments are structures, each containing data for
different symbols to be written into the GDX file. The syntax for the call is:

>> wgdx(’fileName’, s1, s2 ...);

If the GDX file already exists in the MATLAB current directory, wgdx will overwrite it; otherwise a new
file will be created. After a successful run, it doesn't return anything back into MATLAB. Most of the
fields of its input structures are the same as those of the rgdx output structure. In the example below, we
use the wgdx routine to create foo.gdx containing a set 'l' and a parameter 'par'.

>> s.name = ’l’;

>> s.uels = {{’i1’, ’i2’, ’i3’}, {’j1’, ’j2’}};

>> c.name = ’par’;

>> c.type = ’parameter’;

>> c.val = eye(3);

>> c.form = ’full’;

>> c.ts = ’3 x 3 identity’;

>> wgdx(’foo’, s, c)

The equivalent code in GAMS to create the above set 'l' is:

Set

a / i1*i3 /

b / j1*j2 /

l(a,b);

l(a,b) = yes;

In the next subsection we will explain the input fields in detail.

6.24 GDXMRW 3095

Input Structure

The necessary fields in an input structure to represent a symbol are given below:

1. name
It is a string representing the name of the symbol.

2. val
It represents the value matrix of the parameter or set. It can be entered in either full or sparse
format, whichever is convenient to the user; the corresponding format must be specified in the
'form' field. By default the value matrix is assumed to be in sparse format.

3. type
It is a string input to specify the type of the symbol. The wgdx routine can write a set or parameter
into the GDX file. In the previous example, we didn't specify the type for structure 's' because by
default it is assumed to be a set.

4. form
This is a string input representing the format in which the val matrix has been entered. By default
it is assumed that the data is specified in sparse format.

5. uels
Similar to the rgdx uels field, this represents the local unique element listing of the symbol in an 1
x N cell array form. Each column of this cell array can contain string or double or both. Again we
can make use of a handy function to create a UEL listing as mentioned previously in the section
about rgdx:

>> guel = @(s,v) strcat(s,strsplit(num2str(v)));

As an example, we create a set using this function and the wgdx routine:

>> s.name = ’l’;

>> s.uels = {guel(’i’,1:20),guel(’j’,1:40)};

>> wgdx(’foo’,s);

The above code will create foo.gdx that contains a 2 dimensional set 'l' with set elements for each
of the specified uels. If a user would like to create a set with set elements only at specified indices,
one could do so by entering the indices in the val field. e.g.

>> s.val = [1, 1; 2, 1; 3, 6; 4, 7];

>> wgdx(’foo’,s);

Now the above would result in a set with only elements existing in the indices specified in the val

field. If a user enters a structure with only two fields, name and uels, as in the example given in the
introduction of this section (structure s), then wgdx will create a full set corresponding to the global
uels.

The optional fields are:

6. dim
This field is useful when a user wants to write a zero dimensional or 1 dimensional data in full format.
As every data matrix in MATLAB is at least 2D, it becomes necessary to indicate its dimension for
writing purposes.

7. ts
This is the text string that goes with the symbol. If nothing is entered then 'MATLAB data from

GDXMRW' will be written in the GDX file.

See datalib example gdxmrw wgdx01 init.

3096 Tools Manuals

6.24.3 Extended use

In this section, we will discuss a few examples of the MATLAB and GAMS interface. We will give a
simple example of a nonlinear optimization problem that would benefit from this capability and describe
the steps that are needed in order to use our interface in this application.

• Special values
Following example shows how special values are handled by this interface. It can be seen that rgdx
can retrieve all these values from GDX file and display them appropriately in MATLAB.

>> s.name = ’special’;

>> s.form = ’full’;

>> s.compress = true;

>> x = rgdx(’sample’, s)

x =

name: ’special’

type: ’parameter’

dim: 1

val: [4x1 double]

form: ’full’

uels: {{1x4 cell}}

>> x.val

ans =

-Inf

NaN

3.141592653589793

Inf

• Variables and Equations
In an optimization problem, we are not only interested in level value of variables and equations but
also in their marginal values, lower and upper bounds. This interface gives its user ability to read
any of these values into MATLAB. By default rgdx and gams routines will read the level value of
equations and variables but this can be changed very easily by using 'field' in input structure. In
gams call user can also specify this in '$set matout' statement. e.g.

$set matout "’matsol.gdx’, x.m, dual.lo=dl ";

In this case the marginal value of variable 'x' will be read and lower bound of dual variable will be
read and stored in 'dl'.

• Text string and Text elements
GAMS allows its user to enter text string and explanatory text elements and all GDX file contain
this information as well. Following example shows how to get these text elements in MATLAB.

>> s1.name = ’el’;

>> s1.te = true;

>> s1.ts = true;

>> s1.compress = true

s1 =

name: ’el’

te: 1

6.24 GDXMRW 3097

ts: 1

compress: 1

>> z = rgdx(’sample’, s1)

z =

name: ’el’

type: ’set’

dim: 2

val: [3x2 double]

form: ’sparse’

uels: {{1x2 cell} {1x2 cell}}

ts: ’This is 2D set with text elements’

te: {2x2 cell}

>> z.te

ans =

’element1’ ’element2’

’2.j1’ []

>> z.val

ans =

1 1

1 2

2 1

• String elements
One piece of information that may be needed within MATLAB is the modelstat and solvestat values
generated by GAMS for the solves that it performed. This is easy to generate, and an example is
given in do status.m. This example is generated by taking the standard gamslib trnsport example,
and adding the following lines to the end:

$set matout "’matsol.gdx’, returnStat, str ";

Set

stat / modelstat, solvestat /

str / ’grunt’, ’%system.title%’ /;

Parameter returnStat(stat);

returnStat(’modelstat’) = transport.modelstat;

returnStat(’solvestat’) = transport.solvestat;

execute_unload %matout%;

Note that the relevant status numbers are stored in GAMS into the parameter returnStat which is
then written to matsol.gdx and read back into MATLAB using the rgdx call.

>> gamso.output = ’std’;

>> gamso.form = ’full’;

>> gamso.compress = true;

>> s = gams(’trnsport’)

s =

1

1

3098 Tools Manuals

See datalib example gdxmrw ext01 init.

• Advanced Use: Plotting
One of the key features of the GAMS/MATLAB interface is the ability to visualize optimization
results obtained via GAMS within MATLAB.
Some simple examples are contained with the program distribution. For example, a simple two dimen-
sional plot with four lines can be carried out as follows. First create the data in GAMS and export
it to MATLAB using the gams routine (see APPENDIX C - Calling GAMS model from MATLAB
for a detailed description of this routine).
We make an assumption that the user will write the plotting routines in the MATLAB environment.
To create the plot in MATLAB, the following sequence of MATLAB commands should be input
(saved as do plot.m).
gamso.output = ’std’;
gamso.compress = true;
gamso.form = ’full’;
[a,xlabels,legendset,titlestr] = gams(’simple’);
figure(1)
% Plot out the four lines contained in a;
% format using the third argument
plot(a,’+-’);
% only put labels on x axis at 5 year intervals
xtick = 1:5:length(xlabels{1});
xlabels{1} = xlabels{1}(xtick);
set(gca,’XTick’,xtick);
set(gca,’XTickLabel’,xlabels{1});
% Add title, labels to axes
title(titlestr{1});
xlabel(’Year -- time step annual’);
ylabel(’Value’);
% Add a legend, letting MATLAB choose positioning
legend(legendset{1},0);
% match axes to data, add grid lines to plot
axis tight
grid

The data is created using the following gams code.

$title Examples for plotting routines via MATLAB

$set matout "’matsol.gdx’, a, t, j, sys ";

Set

sys / ’%system.title%’ /

t / 1990*2030 /

j / a, b, c, d /;

Parameter a(t,j);

a("1990",j) = 1;

loop(t, a(t+1,j) = a(t,j)*(1 + 0.04*uniform(0.2,1.8)););

Parameter year(*);

year(t) = 1989 + ord(t);

* Omit some data in the middle of the graph:

a(t,j)$((year(t) > 1995)*(year(t) <= 2002)) = na;

execute_unload %matout%;

The following figure is an example created using this utility (and the MATLAB command print -djpeg

simple).

6.24 GDXMRW 3099

See datalib example GDXMRWPlotting01.

MATLAB supports extensive hard copy output or formats to transfer data to another application.
For example, the clipboard can be used to transfer meta files in the PC environment, or encapsulated
postscript files can be generated. The help print command in MATLAB details the possibilities on the
current computing platform.

Scaling of pictures is also most effectively carried out in the MATLAB environment. The following
code is an example of rescaling printed out. Note that the output of this routine is saved as a jpeg file
"rescale.jpg".
do plot;
fpunits = get(gcf,’PaperUnits’);
set(gcf,’PaperUnits’,’inches’);
figpos = get(gcf,’Position’);
pappos = get(gcf,’PaperPosition’);
newpappos(1) = 0.25;
newpappos(2) = 0.25;
newpappos(3) = 4.0;
% get the aspect ratio the same on the print out
newpappos(4) = newpappos(3)*figpos(4)/figpos(3);
set(gcf,’PaperPosition’,newpappos),
print -djpeg100 rescale.jpg
set(gcf,’PaperPosition’,pappos);
set(gcf,’PaperUnits’,fpunits);

Other examples of uses of the utility outlined in this paper can be found in the "m" files:
do ehl
plotngon

that are contained in the distribution.

6.24.4 Acknowledgements

The authors would like to thank Alexander Meeraus and Michael R. Bussieck of GAMS corporation for
constructive comments on the design and improvement of this tool. Thanks to Rishabh Jain for work on
an earlier version.

6.24.5 APPENDIX A - Configuring GDXMRW

6.24.5.1 Installation

This section describes the installation procedure for all types of machines. The following section describes
the testing procedure for verifying a correct installation.

First of all, you need to install both MATLAB and GAMS on your machine. For brevity, we will assume
that the GAMS system (installation) directory is (for Windows)

C:\GAMS

and for non-Windows systems:

/usr/local/gams

All of the utilities come as a part of the GAMS distribution, so to use them you have only to add the
GAMS directory to the MATLAB path. One way to do this is from the MATLAB command prompt, as
follows:

3100 Tools Manuals

>> addpath ’C:\GAMS’; savepath;

OR this can be done by following these steps:

1. Start MATLAB

2. Click on 'File' tab.

3. Now click on 'Set Path'

4. Click on 'Add Folder'

5. Select GAMS directory and click 'OK'.

6. Save it and then close it.

6.24.5.2 Testing

The GAMS system comes with some tests that you should run to verify the correct configuration and
operation of the GDXMRW utilities. In addition, these tests create a log file that can be useful when
things don't work as expected. To run the tests, carry out the following steps.

1. Create a directory to run the tests in, e.g.

% mkdir \tmp

2. Extract the test models and supporting files from the GAMS test library into the test directory.

% cd \tmp

% testlib gdxmrw03

% testlib gdxmrw04

% testlib gdxmrw05

% testlib gdxmrw06

% testlib gdxmrw07

3. Execute the GAMS files gdxmrw03, gdxmrw04, and gdxmrw06. The files gdxmrw03 and gdxmrw04

test that the rgdx and wgdx routines are working properly, and gdxmrw06 test irgdx and iwgdx.
In addition to calling MATLAB in batch mode, they verify that the data are read and written as
expected and give a clear indication of success or failure.

4. The GAMS file gdxmrw05 tests the gams MATLAB routine. Like the other tests, it can be run
in batch mode. You can also run it interactively by starting MATLAB, making tmp the current
directory, and running the script 'testinst.m'.

>> testinst

In addition to messages indicating success or failure, this test produces a log file testinstlog.txt

that will be useful in troubleshooting a failed test.

5. The GAMS file gdxmrw07 helps in basic testing if you find that GDXMRW is not functioning at
all.To use this, open Matlab, make tmp the current directory and run gdxmrwSupport. You can
then look over the outputs and identify if and where any errors or failures are occurring. Re-run the
commands that result in failures via cut-and-paste, and examine the tests and the output carefully:
perhaps a solution will present itself to you. If the issue persists, send the screen output and the
resulting log file gdxmrwSupport.txt (located in the created folder tmp gdxmrw) to GAMS Support
(support@gams.com).

mailto:support@gams.com

6.24 GDXMRW 3101

6.24.6 APPENDIX B - Utility functions: gdxWhos and gdxInfo

In this section, we'll describe two utilities, gdxWhos and gdxInfo, provided with GDXMRW that can
be called from the MATLAB command prompt. The gdxWhos function is patterned loosely after the
MATLAB function whos used to query .mat files. It provides information about symbols in a specified
GDX file. The only input argument is the name of a GDX file, which can be with or without the '.gdx'
extension. With no output argument, gdxWhos lists the symbols in the specified GDX file in the MATLAB
command prompt. When used with an output argument, information about the symbols in the GDX file
is returned as an array of structures. This meta-data can be used in a variety of ways and is especially
useful when programming.

An example GDXWhos call without an output argument is shown below:

>> gdxWhos(’idx1_.gdx’);

Symbol info of GDX idx1_.gdx

Index Type Dim NRecs Name

1 Parameter 0 1 a0

2 Parameter 1 3 a1(5)

3 Parameter 2 4 a2(2,2)

4 Parameter 3 6 a3(3,5,2)

5 Parameter 10 256 a10(3,5,2,2,2,2,2,2,2,2)

The above output indicates that there are five indexed parameters in the file 'idx1 .gdx'. The way we
can recognize an indexed parameter is by noticing numbered arguments of the parameters under the
'Name' column. For non-indexed data, the arguments will appear either as the name of a set or by a '∗'.
For example, the first three symbols are non-indexed and the last symbol is indexed in the output from
this call:

>> gdxWhos(’fake.gdx’);

Symbol info of GDX fake.gdx

Index Type Dim NRecs Name

1 Set 1 3 i(*)

2 Parameter 1 3 a(i)

3 Set 1 3 d_i_m__3(*)

4 Parameter 1 3 aa(3)

The GDXInfo function is patterned after the gdxdump utility in GAMS. It lists and dumps all of the data
values for each symbol in the specified GDX file to the MATLAB console. The only input argument is the
name of a GDX file, which can be with or without the '.gdx' extension. It accepts no output arguments.
It is especially useful to see the entire contents of smaller GDX files. To use the function, we could simply
enter a command such as gdxInfo('idx1 ') in the MATLAB command prompt, and the entire data
contents would be displayed in the console. Further information about what is displayed can be found in
the GAMS documentation of the gdxdump utility.

6.24.7 APPENDIX C - Calling GAMS model from MATLAB

Until now we have discussed the data Import/Export utility between MATLAB and GAMS. In this
section, we will discuss a new MATLAB utility 'gams' that initializes a GAMS model with MATLAB
data then executes GAMS on that model and bring the results back into MATLAB. This 'gams' routine
is based on the same design as rgdx and wgdx but instead it does everything in one call. This routine
can take multiple input arguments and can return multiple output arguments. Its standard syntax is as
follows:

3102 Tools Manuals

>> [x1, x2, x3] = gams(’model’, s1, s2.., c1, c2..);

Here note that the first argument of gams is the GAMS model name plus any user specific command line
settings. If a user wants to solve the given model (in this case found in qp.gms) using a different solver
then it can be done by adding that solver to the GAMS model name as "qp nlp=baron". This feature
allows a user to change the execution time behavior of the model.

The rest of the input arguments of GAMS are structures. Their positioning is not important. These
structures are of two kinds; one is similar to the input structure of wgdx and the other structure has just
two string fields, name and val. This latter structure is used to set or overwrite values in the model using
the "$set" variables syntax of GAMS. We will explain it in detail a later section.

The first step is to generate a working GAMS model. For example, we can set up a simple model file to
solve a quadratic program that minimizes 1

2 xTQx+cTx subject to Ax≥b and x≥0.

The GAMS model for this quadratic problem is as given in the following code.

$set matout "’matsol.gdx’, x, dual, obj, returnStat ";

Set

i / 1*2 /

j / 1*3 /;

Alias (j1,j);

Parameter

Q(j,j1) / 1 .1 1.0

2 .2 1.0

3 .3 1.0 /

A(i,j) / 1 .1 1.0

1 .2 1.0

1 .3 1.0

2 .1 -1.0

2 .3 1.0 /

b(i) / 1 1.0

2 1.0 /

c(j) / 1 2.0 /;

Variable obj;

Positive Variable x(j);

Equation cost, dual(i);

cost.. obj =e= 0.5*sum(j, x(j)*sum(j1, Q(j,j1)*x(j1))) + sum(j, c(j)*x(j));

dual(i).. sum(j, A(i,j)*x(j)) =g= b(i);

Model qp / cost, dual /;

$if exist matdata.gms $include matdata.gms

solve qp using nlp minimizing obj;

Set stat / modelStat, solveStat /;

Parameter returnStat(stat);

6.24 GDXMRW 3103

returnStat(’modelStat’) = qp.modelstat;

returnStat(’solveStat’) = qp.solvestat;

execute_unload %matout%;

This GAMS qp model can be executed directly at the command prompt using the following command

gams qp (for Unix/Linux)

or

gams.exe qp (for Windows)

or the user can simply hit the run button in the GAMSIDE. The optimal value is 0.5. In order to run
the same model within MATLAB and return the solution vector x back into the MATLAB workspace,
no change is required to the GAMS file. In MATLAB, all you have to do is to execute the following
command:

>> x = gams(’qp’);

This command will first collect the input structure data and create 'matdata.gdx' and 'matdata.gms'
that contains include statements for the symbols written in a file matdata.gdx. In the previous example
there is no structural input, so an empty 'matdata.gdx' file will be created and 'matdata.gms' will
have just have a load statement for the GDX file but no load statements for any symbol. This is done to
prevent any undesirable loading of data in the main model if there had already existed a 'matdata.gdx'
or 'matdata.gms file'. After creating these two files then the 'gams' routine will execute "gams qp"

using a system call. When this model is executed, another file 'matsol.gdx' will be created because of
the execute unload statement in the last line of the model. Here it should be noted that any model that
you want to execute using the MATLAB gams routine should contain something like

$set matout "’matsol.gdx’, x, dual, obj, returnStat ";

either as the first line, or somewhere near the start of the model file. This is a standard gams $set
statement, setting the value of the local variable 'matout'. The reason to have this statement near the
start of the gms file is that the gams routine searches the file from the beginning for "$set matout" in
the gms file. As these files can be very large, it is wise to have this statement near the start of the file. In
this statement 'fileName' is the gdx file name that will be created containing symbols 'x1', 'x2', etc.
These symbols can then be exported to MATLAB. The last line of the model should always be

execute_unload %matout%;

The purpose of setting the first and last line of the model in this manner is to specify what data the user
wants to export to MATLAB in a "header" of the model. As MATLAB does not give any information
about the output arguments except the number of expected arguments, we have to specify what data
to export to MATLAB in the GAMS model with minimum modification to the existing model. In the
previous example, there is only one output argument, thus the gams routine will get data for its first
element from the output gdx file and store it in the MATLAB output argument.

If there is more than one output argument, e.g.,

>> [x, u] = gams(’qp’);

then the gams routine will read the output gdx file and store its first element information of the GDX
file as the first output argument of MATLAB, i.e. 'x', and the second element information of the GDX
file in the second output argument of MATLAB, i.e. 'u' and so on. If the number of MATLAB output
arguments is greater than the number of elements in the GDX file then gams will throw an error.

See datalib example gdxmrw qp4.

3104 Tools Manuals

6.24.7.1 Input Structure

As mentioned earlier, the gams routine takes input arguments in structured form. It allows two different
types of structure input. One contains the symbol data similar to the wgdx input structure, to be exported
to the GDX file. The other structure will just have two string fields 'name' and 'value'. Example use:

>> s.name = ’Q’;

>> s.val = eye(3);

>> s.form = ’full’;

>> m = struct(’name’,’m’,’val’,’2’);

>> [x] = gams(’qpmcp’,s, m);

In this example both 's' and 'm' are structures but 'm' has only two fields and both are strings. The
gams routine will use the 's' structure to create a 'matdata.gdx' file and 'm' to modify the execution
command line to include ”--m=2” at the end i.e. a command that when executed will be ”gams qpmcp
--m=2”

The structure 's' is the same as the input structure for wgdx but with two important differences. Firstly,
it can be seen in the above example that 's' doesn't have a 'type' field. In wgdx we assume the type
to be 'set' by default, but in the gams routine the type is assumed to be 'parameter' by default. The
second change is an optional additional input field (in addition to those given in Section Input Structure)
called "load".

• load
It is a string input representing how the corresponding data will be loaded into the GAMS program.
Depending on the value of the global option "gamso.input" (see next section) the input data will
be read into GAMS in different ways. Suppose the input structure 's' has a 'name' field called
'foo'. By default (where gamso.input = 'compile'), the file matdata.gms will

$loadR foo

The GAMS parameter (or set) foo will be replaced by the data that is in the 'matdata.gdx'
container called 'foo'. If the data has been initialized before in the model, this will replace that
initial data with the new data from ‘matdata.gdx’. The option can also be explicitly set using

s.load = ‘replace’

There are two other compile time load options, namely 'initialize' and 'merge'. The first is
only valid if the parameter values have not been initialized in the GAMS file, otherwise an error is
thrown. It uses the GAMS syntax

$load foo

The merge option is valid when the GAMS file being run has already initialized the parameter values.
The new values in the MATLAB structure 's' are merged into the parameter simply overwriting
existing values with the new values given. Explicitly, the 'matdata.gms' file contains the statement

$loadM foo

to direct GAMS accordingly.
Finally, if gamso.input = ‘exec’, the loading will occur at execution time. In this case, s.load =

'initialize' is not a valid input, the default setting is s.load = 'replace' which carries out

execute_load "matdata.gdx" foo

and the alternative setting s.load = 'merge' carries out

execute_loadpoint "matdata.gdx" foo

In this way, the data is loaded at execution time and performs an appropriate replace or merge.

6.24 GDXMRW 3105

6.24.7.2 Global input to change default behavior

Until now we have seen how to specify different input to the gams routine and in this section we will see
how to change the default behavior of a gams call. This can be done by creating a structure 'gamso' in
the current workspace and adding different fields to that structure. There are currently nine fields that
can be set in that structure that affect the behavior of the program. Except the uels field, all other string
fields take case insensitive data. These are as follows:

• gamso.output

By default, output of the gams routine will be in structure form but it might be the case that a user
is only interested in the data matrix, i.e., the val field of that structure. This can be done by setting
gamso.output as 'std'. This will give only the value matrix as output. If this is not set to 'std'
then output will be in the structure form described in the wgdx section.

>> gamso.output = ’Std’;

>> x = gams(’qp nlp=baron’)

x =

0.5000

• gamso.input

By default, the interface updates data at compile time. Thus, if execution time updates are made
to the parameters before the line '$include matdata.gms' these may override the data that is
provided in 'matdata.gms' (i.e. from the command line). This may not be desirable. If you wish
to perform execution time updates to the data, you should set gamso.input to 'exec'.

• gamso.write data

If this is set to 'no', then all parameters on the call to gams are ignored, except the program name.
This is useful for dealing with large datasets. Consider the following invocation:

x = gams(’largedata’,’A’);

y = gams(’resolve’,’A’);

The first call generates a file 'matdata.gms' containing the elements of the matrix A for use in the
largedata.gms program. The second call rewrites a new 'matdata.gms' file that again contains A.
If we wish to save writing out A the second time we can use the following invocation:

x = gams(’largedata’,’A’);

gamso.write_data = ’no’;

y = gams(’resolve’,’A’);

clear gamso;

or the equivalent invocation:

x = gams(’largedata’,’A’);

gamso.write_data = ’no’;

y = gams(’resolve’);

clear gamso;

• gamso.show

This is only relevant on a Windows platform. This controls how the 'command box' that runs
GAMS appears on the desktop. The three possible values are:

– 'minimized' (default): The command prompt appears iconified on the taskbar.

– 'invisible' : No command prompt is seen.

– 'normal' : The command prompt appears on the desktop and focus is shifted to this box.

3106 Tools Manuals

• gamso.path

This option is used to specify fully qualified path for the gams executable. This is very useful if you
have multiple versions of GAMS installed on your system and want to make sure which version you
are running for the gams call. e.g.

>> gamso.path = ’C:\Program Files\GAMS23.4GAMS.exe’;

The output of gams is similar to rgdx but unlike the rgdx gams routine it doesn't take input specific to a
particular symbol. Thus it becomes important to implement a way to change the default behavior of the
output. This can be achieved by adding following field to the global structure 'gamso'. All these fields
behave similar to that described in rgdx and take the same input as of rgdx.

• gamso.compress

• gamso.form

• gamso.uels

• gamso.field

This is a global option however.

6.25 GDXRename

Note

This tool is part of the GAMS Tools Library. Please inspect the general information about GAMS
Tools.

This renames the labels in the GDX file using a two dimensional mapSet. The renaming of the labels only
affects the string stored for each label, and does not change the data order for the symbols in the GDX
file. Because no data is changing in the GDX file, only the strings for the labels are changed and applied
to the GDX file directly and no new GDX file is written. This replaces the labels in the GDX file by the
ones in the mapSet.

6.25.1 Usage

Command line:

gamstool [gdxservice.]GDXRename GDXFile mapSet [reverse=0|1]

Compile time:

$callTool [gdxservice.]GDXRename [-reverse=0|1] GDXFile mapSet

Execution time:

executeTool ’[gdxservice.]GDXRename [-reverse=0|1] GDXFile mapSet’;

Where:

6.26 GDXRRW 3107

Argument Description

GDXFile Name of GDX file.

mapSet Set of labels to be used for renaming mapSet(∗,∗).

The following named parameter is available:

Argument Description

reverse=0 or 1 Determines if mapSet with record a.b leads to a replace of a by b or to
a replace of b by a (default: 0).

6.25.2 Example

Set c / r, g, b, y /;

Parameter A(c) / r 1, g 2, b 3, y 4 /;

$gdxOut color.gdx

$unload c A

$gdxOut

Set map(c,*) / r.red, g.green, b.blue, y.yellow /;

$callTool gdxservice.GDXRename color.gdx map

The complete example is also part of the GAMS Test Library, see model [gdxrename1] for reference.

6.26 GDXRRW

Interfacing GAMS and R.

Author

Michael C. Ferris [(ferris@cs.wisc.edu)] (ferris@cs.wisc.edu), Computer Sciences Depart-
ment, University of Wisconsin - Madison, 1210 West Dayton Street, Madison, Wisconsin 53706

Steven Dirkse (sdirkse@gams.com) GAMS Development Corp.

Attention

GDXRRW is deprecated (see GAMS 41 GDXRRW release notes). Please use GAMS Transfer R
instead and contact support with any issues about the transition.

GDXRRW is a suite of utilities to import/export data between GAMS and R (both of which the user is
assumed to have already) and to call GAMS conveniently from R. The software gives R users the ability
to use all the optimization capabilities of GAMS, and allows visualization and other operations on GAMS
data directly within R.

The GDXRRW tool is unique among the GDX interface utilities in that it is an R extension made available
as an R package. As such, it is run as part of an R session or script, not as part of a GAMS run, and it
follows the usual R package conventions.

mailto:ferris@cs.wisc.edu
mailto:ferris@cs.wisc.edu
mailto:sdirkse@gams.com

3108 Tools Manuals

1. Installation: The R software is designed to be easily extended. Thousands of extension packages
are freely and conveniently available online and can be installed easily using a simple, standard
procedure. The GDXRRW package is one of these. The latest version is available on GitHub in
both source and binary form, along with a FAQ list, some hints and tips on common problems
and solutions, and other helpful content. For convenience, the source and binary packages are also
available in the gdxrrw directory of the GAMS distribution.

2. Documentation: The GDXRRW documentation is installed as part of the GDXRRW package and
is available from within R in the usual way. See the GDXRRW GitHub page for details and hints.

3. Examples, tests, and data: Like many R packages, GDXRRW comes with examples and data
that help a user get started using the package. The R help system and the GDXRRW GitHub

provide pointers to these. GDXRRW GitHub page also provides hints on finding and running the
thousands of lines of tests that come with the GDXRRW package.

6.27 GDXVIEWER

6.27.1 Overview

GDXVIEWER is a tool to view and convert data contained in GDX files.

Attention

GDXVIEWER is deprecated (see GAMS 42 GAMS IDE and GDXVIEWER release notes).

Besides inspecting a GDX file, gdxviewer allows you to export to a large number of data formats, including
ASCII text, CSV, HTML, XML, database, and spreadsheet formats.

This tool is designed as an interactive Windows program, but it can also be operated through command
line parameters.

6.27.2 Requirements

GDXVIEWER runs only on PC's running Windows (95/98/NT/XP).The DLL GDXCCLIB.DLL
needs to be in the same location as GDXVIEWER.EXE. If XLS files are saved, MS Excel needs to be
present. If MDB database files are saved, MS Access needs to be present.

If GDXCCLIB.DLL is not found in the same directory as the executable gdxviewer.exe, the following
window will be shown:

A simple way to make sure that GDXVIEWER has access to the GDXCCLIB.DLL dynamic load library
is to place gdxviewer.exe in the GAMS system directory, e.g. c:\program files\GAMS21.3.

https://github.com/GAMS-dev/gdxrrw
https://github.com/GAMS-dev/gdxrrw
https://github.com/GAMS-dev/gdxrrw

6.27 GDXVIEWER 3109

6.27.3 Creating GDX files

GDX files are binary data files. They can contain sets, parameters (including scalars), equations and
variables. These files can be generated by a number of tools: by GAMS itself, by utilities such as
MDB2GMS, SQL2GMS, GDXXRW.

To save all data from a GAMS model into a GDX file you can use the GDX=fln command line parameter:

C:\> gams trnsport.gms GDX=trnsport.gdx

From the IDE you can specify the command line parameter GDX=trnsport.gdx in the parameter edit box:

To selectively place identifiers in a GDX file you can use the execute unload statement:

Model transport / all /;

solve transport using lp minimizing z;

display x.l, x.m;

execute_unload ’results.gdx’, i, j, x;

In this example the sets i and j and the variable x are saved to the GDX file results.gdx.

Other ways to create GDX files include:

3110 Tools Manuals

• The MDB2GMS tool can be used to convert data stored in MS Access tables to GDX files

• The SQL2GMS tool can read data from virtually any SQL database (including any ODBC accessible
database) and can create GDX files.

• The tool GDXXRW allows data from an Excel spreadsheet to be stored in a GDX file.

• $GDXOUT allows you to write data to a GDX file during GAMS compile time. This is not as useful
as execute unload but may have its use in special cases.

• You can write your own program to write a GDX file. There is an API and bindings for different
languages such as Delphi, Kylix, VB6, VBA, VB.NET, C/C++, C#, Java, Fortran.

6.27.4 Viewing GDX files

After loading a GDX file in gdxviewer the content of the file is displayed in list view. The left-hand
side of the window shows the index of the GDX file organized in a tree structure. When clicking on an
identifier, the right-hand-side will display the actual data for the identifier.

When variables are shown, more information is available, such as bounds (lower and upper bounds) and
marginals.

The GDX file can be loaded interactively using the File|Open menu, or it can be launched from the
command line:

C:\> gdxviewer e:\models\trnsport.gdx

6.27 GDXVIEWER 3111

The command line specification can also be used to launch gdxviewer from within a GAMS model as in:

Model transport / all /;

solve transport using lp minimizing z;

display x.l, x.m;

execute_unload ’results.gdx’, i, j, x;

execute ’=gdxviewer results.gdx’;

In this case gdxviewer.exe was located in the GAMS system directory, such that execute had no
problems in finding it.

Note: there are alternative tools to view GDX files. The GAMS IDE has a built-in GDX file viewer (use
File|Open) and there is a command line utility called GDXDUMP.

6.27.5 Exporting an identifier

When the right mouse button is clicked on an identifier a pop-up menu is presented that allows you to
export an identifier to a number of target formats.

The same operation can be invoked from the File|Export menu:

3112 Tools Manuals

6.27.6 Exporting to a Text File

The text file export facility (File|Export|Text File) will write a GAMS identifier to a standard ASCII
text file. Such a text file can look like:

seattle new-york 2.5

seattle chicago 1.7

seattle topeka 1.8

san-diego new-york 2.5

san-diego chicago 1.8

san-diego topeka 1.4

The separator symbol can be set using the menu Options|Configuration|Text File:

Other options that involve the format of the text file being written are: Options|Configuration|Export
and Options|Configuration|Special Values. Currently there are no facilities to write fixed format text files.
If you need to write fixed format text files you can use the GAMS PUT statement.

6.27 GDXVIEWER 3113

6.27.7 Exporting to a CSV files

Comma-separated Values (File|Export|CSV File) is a popular format to exchange data between applica-
tions. An example of such a file is:

’new-york’,325

’chicago’,300

’topeka’,275

Strings are surrounded by quotes and each field is separated by a comma. The precise format can be
specified using the menu Options|Configuration|CSV File:

Other options that involve the format of the CSV file being written are: Options|Configuration|Export
and Options|Configuration|Special Values.

6.27.8 Exporting to an XLS file

A GAMS identifier can be exported directly to an MS Excel spreadsheet using File|Export|Excel XLS

File:

3114 Tools Manuals

There are a few options available for this operation. Under Options|Configuration|Excel the following
settings can be changed:

Other options that involve the format of the CSV file being written are: Options|Configuration|Export
and Options|Configuration|Special Values. Exporting to Excel is only available if you have Microsoft
Excel installed on your machine.

Note: We can write all symbols in the gdx file to Excel by specifying ID=∗ on the command line.

6.27 GDXVIEWER 3115

6.27.9 Exporting to an XLS Pivot Table

We can export to an XLS file and create a Pivot Table automatically (File|Export|Excel Pivot Table):

Pivot tables are a very convenient way to analyze multi-dimensional data.

The following options are available: Options|Configuration|Excel, Options|Configuration|Export and
Options|Configuration|Special Values.

6.27.10 Exporting to a GAMS Include Files

The option File|Export|GAMS Include file will export an identifier to a GAMS include file format. An
example of such an exported include file can look like:

Parameter d ’distance in thousands of miles’

/ seattle.new-york 2.5, san-diego.new-york 2.5

seattle.chicago 1.7, san-diego.chicago 1.8

seattle.topeka 1.8, san-diego.topeka 1.4 /;

3116 Tools Manuals

6.27.11 Exporting to an Access Tables

GDXVIEWER can export data directly to a table in an Access database using File|Export|Access (MDB

or ACCDB) File. The name of the table will be the name of the parameter. If the table already exists,
GDXVIEWER will try to create a new table with a slightly different name (e.g. d2, d3,. . .).

An option Options|Configuration|Access allows you to set the length of the text fields where the GAMS
indices are stored. This length is used when creating the table.

6.27 GDXVIEWER 3117

A feature added in version 2.9 is the possibility to use intermediate CSV (comma separated value) files
instead of using direct SQL INSERT statements. The CSV files can be read into Access using a bulk
operation and is therefore faster for large datasets. When using CSV files make sure double quotes are
used (if single quotes are used they will become part of the data). The temporary CSV files will be written
to the Windows TEMP directory (e.g. C:\WINDOWS\TEMP). When the import is done, these scratch files
will be removed automatically. If you want to look at the CSV files that are being fed into Access, export
the data to a CSV file.

6.27.12 Exporting to an SQL Table

It is possible to export data to SQL databases through ADO which includes all databases accessible through
ODBC. The configuration information can be specified in Options|Configuration|SQL Database.

3118 Tools Manuals

The Test Connection button will allow you to check the configuration and see if the database can be
connected to.

The SQL data for double precision number is no always the same for each database. E.g. for MS Access
you can use double while for MS SQL server you can use float.

When exporting data a new table is created with the name of the identifier. If such a table already exists,
names like name2, name3, are tried.

6.27.13 Exporting to MS SQL Server

We can export to Microsoft SQL Server through the standard SQL export facility. However a special
facility called BULK INSERT is only available through the specialized SQL Server export tool. BULK
INSERT writes a TAB delimited text file to the Windows TEMP directory and subsequently calls BULK
INSERT to load that file. This way is often much faster that using individual INSERT statements for
each record.

6.27.14 Exporting to SQL Insert script

An SQL script with INSERT statements like:

can be generated with File|Export|SQL Insert script. The following settings in Options|Configuration|SQL
Insert were used:

6.27 GDXVIEWER 3119

6.27.15 Exporting to SQL Update script

An SQL script with UPDATE statements like:

can be generated with File|Export|SQL Update script. The following settings in Options|Configuration|SQL
Update were used:

6.27.16 Exporting HTML

GDXVIEWER can write an identifier to an HTML file using File|Export|HTML File.

3120 Tools Manuals

The options relevant to this format are specified in Options|Configuration|HTML.

6.27.17 Exporting XML

GDXVIEWER can write an identifier to an XML file using File|Export|XML File.

6.27 GDXVIEWER 3121

The XML tags can be specified in Options|Configuration|XML.

3122 Tools Manuals

6.27.18 Exporting fields

The menu Options|Configuration|Export allows you to set which fields are exported.

Figure 6.53 400px

The following table gives the possibilities for exports:

set scalar parameter variable equation

Indices + + + +

Lower bound + +

Level/Value + + + +

Upper bound + +

Marginal + +

6.27.19 Special Values

GAMS data can assume so called special values: -INF, +INF, EPS, NA, and UNDF. The meaning of these
special values is as follows:

Value Description

-INF Minus infinity. Mostly used for non-binding lowerbounds.

+INF Plus infinity. Mostly used for non-binding upperbounds.

EPS Mostly used for marginals where it can indicate non-basic but numerically zero.

NA Not available. Not often used.

UNDF Undefined. Not often used.

When exporting GAMS identifiers we need to map such values to strings that the receiving program can
understand. E.g. we could map {INF to {1.0e10 and +INF to +1.0e10. A good choice for EPS would be
0.0.

The mapping can be specified in Options|Configuration|Special Values:

6.27 GDXVIEWER 3123

Figure 6.54 400px

When we export to a GAMS include file all special values are understood, so the mapping is not used.
The defaults button will reset the mapping to their default values.

6.27.20 Plotting Data

GDXVIEWER has a built-in facility to quickly plot data. It includes LINE, BAR and PIE charts, examples
are shown below. The plots can be made through the menu File|Plot.

3124 Tools Manuals

6.27 GDXVIEWER 3125

For multi-dimensional data it may be needed to take a “slice” of the data to make meaningful graphs. In
the example above we plotted a two dimensional quantity vf which looks like:

3126 Tools Manuals

In this case we want to plot a pie graph of vf(∗,’mexico-df’) which can be specified in the index-selection
tab:

6.27 GDXVIEWER 3127

6.27.21 Cube View

GDXVIEWER has a Cube View which allows to select rows and columns in a flexible way. In the example
below we show a six dimensional variable where three dimensions are fixed, one dimension is chosen for
the rows and two dimensions are chosen for the columns.

Below are some of the possibilities using parameter d(i,j) from the trnsport.gms model:

6.27.22 Exporting cubes

After creating a cube view, we can export that configuration by a right mouse click:

3128 Tools Manuals

Exporting a cube will only export the selected slice (if certain dimensions are held fixed) and depending
on the target format it will preserve the layout, e.g. an exported aligned text file can look like:

new-york chicago topeka

seattle 2.5 1.7 1.8

san-diego 2.5 1.8 1.4

Simarly, the XLS file can look like:

6.27.23 Commandline operation

The GDXViewer utility from version 2.3 accepts several command line parameters, so it can be used in a
batch environment. When running in batch mode, the same configuration and option settings are used as
for the interactive system and they can be changed by running GDXviewer interactively using the Options
menu (the settings are saved in an INI file). It is advised to first run the program interactively until the
results are as intended.

• Single parameter A single parameter is the filename of the GDX file. GDXViewer will load this
file, and will continue to run interactively. Example: .

Gdxviewer.exe test.gdx

• XLS writing To write an XLS file, one can use the syntax i=inputfile.gdx xls=outputfile.xls

id=x. If a path or filename contains blanks, the name can be surrounded by quotes (”). The 'id'
parameter indicates the variable or parameter to export from the GDX file. A complete example
is: @verbatim execute unload 'd:\tmp\result.gdx',x; execute 'gdxviewer.exe i=d:\tmp\result.gdx
xls=d:\tmp\result.xls id=x'; \endverbatim - Text file writing To write a text
file, one can use the syntax <tt>i=inputfile.gdx txt=outputfile.txt id=x</tt>. If a path or filename
contains blanks, the name can be surrounded by quotes (”). The 'id' parameter indicates the variable
or parameter to export from the GDX file. A complete example is:

execute_unload ’d:\tmp\result.gdx’,x;

execute ’gdxviewer.exe i=d:\tmp\result.gdx txt=d:\tmp\result.txt id=x’;

• CSV file writing To write a CSV file, one can use the syntax i=inputfile.gdx

csv=outputfile.csv id=x. If a path or filename contains blanks, the name can be surrounded
by quotes (”). The 'id' parameter indicates the variable or parameter to export from the
GDX file. A complete example is: @verbatim execute unload 'd:\tmp\result.gdx',x; execute
'gdxviewer.exe i=d:\tmp\result.gdx csv=d:\tmp\result.csv id=x'; \endverbatim - HTML
file writing To write an HTML file, one can use the syntax <tt>i=inputfile.gdx
html=outputfile.html id=x</tt>. If a path or filename contains blanks, the name can be sur-
rounded by quotes (”). The 'id' parameter indicates the variable or parameter to export from the
GDX file. A complete example is:

6.27 GDXVIEWER 3129

execute_unload ’d:\tmp\result.gdx’,x;

execute ’gdxviewer.exe i=d:\tmp\result.gdx html=d:\tmp\result.html id=x’;

• XML file writing To write an XML file, one can use the syntax i=inputfile.gdx

xml=outputfile.xml id=x. If a path or filename contains blanks, the name can be surrounded by
quotes (”). The 'id' parameter indicates the variable or parameter to export from the GDX file.
A complete example is: @verbatim execute unload 'd:\tmp\result.gdx',x; execute 'gdxviewer.exe
i=d:\tmp\result.gdx xml=d:\tmp\result.xml id=x'; \endverbatim - GAMS include file
writing To write a GAMS include file, one can use the syntax <tt>i=inputfile.gdx
inc=outputfile.inc id=x</tt>. If a path or filename contains blanks, the name can be surrounded
by quotes (”). The 'id' parameter indicates the variable or parameter to export from the GDX file.
A complete example is:

execute_unload ’d:\tmp\result.gdx’,x;

execute ’gdxviewer.exe i=d:\tmp\result.gdx inc=d:\tmp\result.inc id=x’;

• Access MDB file writing To write a Access MDB file, one can use the syntax i=inputfile.gdx

mdb=outputfile.mdb id=x. If a path or filename contains blanks, the name can be surrounded by
quotes (”). The 'id' parameter indicates the variable or parameter to export from the GDX file.
A complete example is: @verbatim execute unload 'd:\tmp\result.gdx',x; execute 'gdxviewer.exe
i=d:\tmp\result.gdx mdb=d:\tmp\result.mdb id=x'; \endverbatim - Excel Pivot Table
writing To write a file containing a pivot table, one can use the syntax <tt>i=inputfile.gdx
pivot=outputfile.xls id=x</tt>. If a path or filename contains blanks, the name can be surrounded
by quotes (”). The 'id' parameter indicates the variable or parameter to export from the GDX file.
A complete example is:

execute_unload ’d:\tmp\result.gdx’,x;

execute ’gdxviewer.exe i=d:\tmp\result.gdx pivot=d:\tmp\result.xls id=x’;

• SQL Database Table writing To write a table to an SQL database, first interactively configure
the connection to the database. The Export SQL Database option allows you to see if a connection
succeeded and if the correct database was accessed. The configuration information is written to the
SQLVIEWER.INI configuration file. The information in this file is used also when performing a
batch command-line operation. The syntax is: i=inputfile.gdx sql id=x. A complete example
is:

execute_unload ’d:\tmp\result.gdx’,x;

execute ’gdxviewer.exe i=d:\tmp\result.gdx sql id=x’;

If you need to access several different databases, you can copy the file SQLVIEWER.INI (located in the
directory where SQLVIEWER.EXE is placed). To tell GDXVIEWER to read a different INI file, you can say:

execute_unload ’d:\tmp\result.gdx’,x;

execute ’gdxviewer.exe i=d:\tmp\result.gdx ini=copy.ini sql id=x’;

GDXVIEWER uses the MS Access and MS Excel applications as COM Object to write files in XLS (both
XLS and PIVOT commands) or MDB format. Those applications may write to C:\My Documents in case
no full path is specified. Other formats use the default GAMS working directory. In case when running
under the IDE this is the location of the project file (∗.GPR).

If a path or file name contains a blank, then it is possible to surround the name by double quotes as in:

execute_unload ’result.gdx’,x;

execute ’gdxviewer.exe i=result.gdx csv="c:\my documents\result.csv" id=x’;

Under windows 98 ME the call

3130 Tools Manuals

execute ’gdxviewer.exe i=d:\tmp\result.gdx pivot=d:\tmp\result.xls id=x’;

will cause GAMS to continue while GDXVIEWER is executing. If we use:

execute ’=gdxviewer.exe i=d:\tmp\result.gdx pivot=d:\tmp\result.xls id=x’;

GAMS will wait until gdxviewer.exe is terminated before executing more statements. This situation is
different under other operating systems such as XP and NT.

6.27.24 Notes

GDX

GDX stands for Gams Data Exchange. It is a binary file format to get data in and out of GAMS.

6.28 GDXXRW

GDXXRW is a utility to read and write Excel spreadsheet data. GDXXRW can read multiple ranges in a
spreadsheet and write the data to a GDX file, or read from a GDX file, and write the data to different
ranges in a spreadsheet.

Note

• GDXXRW is available on Windows only. This is an important factor to consider when moving
an existing code to GAMS Engine.

• GDXXRW can also be used to read csv files. Please be aware that Excel files have a row and
column number limit and that rows and columns in csv files beyond this limit may be ignored.

6.28.1 Usage

gdxxrw inputFile {outputFile} {options} [symbols]

Options and symbol specifications can also be read from a text file; the use of an option file is indicated by
preceding the file name with a @ (At sign.). When reading from a text file, lines starting with an asterisk
(∗) will be ignored and act as a comment.

Options and symbol specifications can also be read from an area in a spreadsheet; see index below.

Files without a full path name are assumed to be in the current directory when using a command prompt.
When using the GAMS IDE, these files are assumed to be in the current project directory. The use of file
names with embedded blanks is allowed as long as the file name is enclosed in double-quotes (”).

Note

A libinclude tool is available to see if Excel is installed, to close an Excel file etc. See
Windows Only Tools (win32) for more details. To read data from an Excel file without Excel
installed see XLSDUMP.

6.28 GDXXRW 3131

6.28.2 Options

Describing the actions to be taken by GDXXRW requires passing a number of options and symbol specifications
to the program. The ability of GDXXRW to process multiple actions in a single call makes the option passing
and interpretation more complex.

There are four kinds of options:

1. Immediate Immediate options are recognized and processed before any other actions are taken
and can only be specified once. Examples are:

input= output= trace=

2. Global Global options are interpreted from left to right and affect every action that follows. The
same option can be used multiple times to affect the actions that follow. Examples are:

skipEmpty= epsOut=

3. Symbol A symbol definition introduces a new action for reading or writing a symbol. Examples
are:

par= set= dSet=

4. Symbol attributes Attributes specify additional information for the last symbol defined. Examples
are:

dim= cDim= merge clear

6.28.2.1 Immediate Options

Immediate options are recognized independent of their position on the command line. They are global
and they can only be specified once.

Option Default Description

input none Specify the input filename (required).

output inputFileName Specify the output filename.

log none Specify the log filename.

logAppend none Appending the log information to the file specified.

index none Indicates reading the options and symbols directly from the spread-
sheet.

password none Password for an encrypted input file.

rWait 0 Delay after opening a spreadsheet.

checkDate disabled Write GDX file only if the input file is more recent than the GDX
file.

useRC disabled Use Row-Column notation to specify cells and ranges.

reCalc N Controls if recalculations of cells inside Excel are executed after
writing to the spreadsheet.

trace 1 Controls the amount of information written to the log.

maxDupeErrors 0 Maximum number of duplicate records allowed for a symbol.

updLinks 0 Updating of cells that refer to other spreadsheets.

runMarcos 0 Execution of Excel Auto macros.

3132 Tools Manuals

Some more detailed remarks on the immediate options:

input = fileName (required, default = none)

Synonym: i

Either use the keywords input or i to specify the input file name anywhere on the
command line or just specify the input file name without keyword at the first position
behind GDXXRW. The file extension of the input file is required and determines the
action taken by the program.

The extension .gdx for the input file will read data from a GDX file and write data
to a spreadsheet. The extension .xls, .xlsx, .xlsm, or .xlsb for the input file will
read a spreadsheet and write the data to a .gdx file. In addition to the .xls, .xlsx,
.xlsm, or .xlsb input file extension, the following file extensions are also valid for
spreadsheet input files: .wk1, .wk2, .wk3 and .dbf.

A file sharing conflict will arise when writing to a spreadsheet with the target file
open in Excel. Either close the file in Excel before executing GDXXRW, or mark
the spreadsheet as a shared workbook in Excel. To change the shared status of a
workbook, use the Excel commands available under: Tools|Share Workbook.

Writing to a shared workbook can be painfully slow; simply closing the file and
reopen the file after GDXXRW has finished is often a better option.

output = fileName (default = inputFileName)

Synonym: o

When an output file is not specified, the output file will be derived from the input file
by changing the file extension of the input file and removing any path information.
The file type, i.e. the file extension, depends on the installed version of Excel.
Versions prior to Excel 2007 use the .xls file extension, later version use .xlsx, .xlsm,
and .xlsb. Excel 2007 can write .xls files, but in that case the output file has to be
specified with an .xls file extension.

log = fileName (default = none)

Specifies the filename of the log file. When omitted, log information will be written
to standard output. When using GDXXRW in a GAMS model that is started from the
GAMS IDE, the output will be written to the IDE process window.

logAppend = fileName (default = none)

Using logAppend will add the log information to the end of the file specified. If the
file does not exist yet, a new one will be created.

index = Excel Range

The index option is used to obtain the global options, symbols and symbol at-
tributes specified by reading them from the spreadsheet directly. The parameters
are read using the specified range, and treated as if they were specified directly
on the command line. The first three columns of the range have a fixed inter-
pretation: dataType, Symbol identifier and dataRange. The fourth and following
columns can be used for additional parameters. The column header contains the
keyword when necessary, and the cell content is used as the parameter value. See
Reading Spreadsheet using the Index Option for instance.

6.28 GDXXRW 3133

password = string (default = none)

Specifies a password for a protected spreadsheet file.

rWait = integer (default = 0)

Introduce a delay (in milliseconds) after opening a spreadsheet before accessing the
data. This parameter can be used to work around an issue we encountered that
Excel indicated it was not ready. The issue can arise during the data exchange with
Excel Sheets that contain macros, plots or pivot tables where GDXXRW attempts to
access a sheet while Excel is busy updating macros, graphs, and pivot tables.

checkDate (disabled by default)

When specified, no data will be written if the output file already exists and the file
date for the output file is more recent than the file date for the input file. Provides
a simple check to update the output file only if the input file has changed to save
resources.

useRC (disabled by default)

Specify that all cell and range references use RC notation. So, instead of specifying
the range Sheet1!A1:D6, one specifies Sheet1!R1C1:R6C4. When tracing is enabled,
ranges will be reported in RC notation. This is a global option and applies to all
cell references.

reCalc = flag (default = N)

Enable or disable the recalculations of cells inside Excel after writing to the spread-
sheet. If there are many formulas in the spreadsheet the recalculation of cells can
become very expensive and slowing down the writing process. By default, the
recalculation is disabled and can be enabled via this option.

trace = integer (default = 1)

Sets the amount of information written to the log (for a better debugging). Higher
values will generate more output. Valid range is 0..4.

0 Minimal information is included in the output
1 Message appears telling about each GDXXRW call indicating input file, output file
and execution time
2 Message appears giving the level 1 output plus a listing for each symbol specified,
indicating the type, sheet name, dimension, data range and the range of the row
and column headers
3 Message appears giving the level 2 output plus cell ranges affected by reading,
writing and clearing
4 Message appears giving the level 3 output plus cell addresses, and numerical or
string values for every cell worked with

maxDupeErrors = integer (default = 0)

Sets the maximum number of duplicate records that is allowed when reading a
spreadsheet and writing to a GDX file. The duplicate records for each symbol will
be reported in the logfile, and if their accumulated number does not exceed the
maximum specified using this option, the GDX file will not be deleted. This is a
global option and applies to each symbol read from the spreadsheet.

The option is demonstrated in Reading Set from Lists with Duplication.

3134 Tools Manuals

updLinks = integer (default = 0)

Specifies how links in a spreadsheet should be updated. The valid range is 0..3.

0 Doesn't update any references
1 Updates external references but not remote references
2 Updates remote references but not external references
3 Updates both remote and external references

runMacros = integer (default = 0)

This option controls the execution of the 'Auto open' and the 'Auto close' macros
when opening or closing a spreadsheet. Valid range is 0..3.

0 Doesn't execute any macros
1 Executes Auto open macro
2 Executes Auto close macro
3 Executes Auto open and Auto close macro

6.28.2.2 Global Options

The following options affect the symbols that follow the option. They remain in effect unless they are
redefined and used again for another symbol.

Option Default Description

acronyms 0 Controls the handling of acronyms.

cMerge 0 Controls the handling of merged Excel ranges.

dSetText N Read explanatory text for set elements of domain sets.

epsOut Eps String to be used when writing the value for 'Epsilon'.
filter 0 Set the Excel filter for symbols written to Excel.

incRC N Include Excel row and column indices when a symbol is written to the GDX
file.

mInfOut -Inf String to be used when writing the value for 'Negative infinity'.
NaIn none String to be used when reading a value for 'Not available'.
nameConv N Controls the interpretation of an Excel range.

NaOut NA String to be used when writing the value for 'Not available'.
pInfOut +Inf String to be used when writing the value for 'Positive infinity'.
resetOut disabled Reset the output strings for special values to their defaults.

squeeze Y Controls writing of default values of sub-fields of variables and equations resp.
the handling of zero values within parameters when reading from spreadsheet.

skipEmpty 1 Number of empty row or column cells to ignore before the next empty row
or column indicates the end of a block when reading from spreadsheet using
the top left cell specification.

UndfOut Undf String to be used when writing the value for 'Undefined'.
allUELs Y Controls the handling of UELs without associated values in the data range.

zeroOut 0 String to be used when writing the value for 'Zero'.

6.28 GDXXRW 3135

Some more detailed remarks on the global options:

acronyms = integer (default = 0)

A non-zero value indicates that acronyms can be expected and should be processed.

If no acronym processing takes place, reading an identifier in the data section of a
sheet will generate an error. Writing an acronym to a sheet will write the internal
numerical representation of the acronym.

Processing acronyms:

When reading a spreadsheet, an identifier in the data section of the sheet
will be interpreted as an acronym and will be written to the GDX file.

When writing to a spreadsheet, a data tuple containing an acronym will be
stored using the corresponding identifier of the acronym.

cMerge = integer (default = 0)

Option indicating how to read an empty cell that is part of a merged Excel range. See
Reading merged Excel Ranges with cMerge. Possible values and their interpretation
are:

0 Leave the cell empty
1 Use merged value in row and column headers only
2 Use merged value in all cells

dSetText = flag (default = N)

Valid only when reading a spreadsheet.

This controls the reading of explanatory text for set elements of domain sets. By
default, no text is read for domain sets. If this option is activated this is changed. If
an element appears more than once, the first one defines the explanatory text read.

epsOut = string (default = Eps)

String to be used when writing the value for 'Epsilon'. This option is demon-
strated in Reading Special Values from Spreadsheet and writing to Spreadsheet
and Writing Parameter to Spreadsheet including Zero Values.

filter = integer (default = 0)

Adds basic Excel filter to the columns of the spreadsheet to display only those
values matching some conditions. Using this option when reading an Excel file
will result in an error. Specifying filter=1 will set an Excel filter for the row
of labels that are closest to the data values. When there are multiple rows in a
column header (cDim > 1) we can specify filter=x where x is a number of the
range 2..cDim, indicating to use a row farther away from the data values. See also
Writing to Spreadsheet using a Filter.

incRC = flag (default = N)

Valid only when reading a spreadsheet.

Include Excel row and column indices when a symbol is written to the GDX file.
For example, when we write a parameter P with indices I and J, without this
option it will be written as P(I, J). When incRC is enabled, the parameter will be
written as P(Excel Rows, I, Excel Columns, J). Note that the sets Excel Rows

and Excel Columns will be added to the GDX file automatically.

3136 Tools Manuals

mInfOut = string (default = -Inf)

String to be used when writing the value for 'Negative infinity'. This option is demon-
strated in Reading Special Values from Spreadsheet and writing to Spreadsheet.

NaIn = string (default = none)

String to be used when reading a value for 'Not available'; this string is recognized
in addition to the string 'NA' and is not case-sensitive. This option is demonstrated
in Reading Special Values from Spreadsheet and writing to Spreadsheet.

nameConv = flag (default = N)

Synonym: nC

The naming convention parameter is used to change the interpretation of an Excel
range that does not contain an '!' (exclamation mark). For details see Excel Ranges
below.

NaOut = string (default = NA)

String to be used when writing the value for 'Not available'. This option is demon-
strated in Reading Special Values from Spreadsheet and writing to Spreadsheet.

pInfOut = string (default = +Inf)

String to be used when writing the value for 'Positive infinity'. This option is demon-
strated in Reading Special Values from Spreadsheet and writing to Spreadsheet.

resetOut (disabled by default)

Reset the output strings for special values to their defaults. This option is demon-
strated in Reading Special Values from Spreadsheet and writing to Spreadsheet.

squeeze = flag (default = Y)

Synonym: sq

Writing to a spreadsheet:

The squeeze option affects the writing of sub-fields of variables and equa-
tions. A value for the field that is the default value for that type of variable
or equation will not be written to the spreadsheet. For example, the default
for .l (level value) is 0.0, and therefore zero will not be written to the
spreadsheet. When we set squeeze=n, all values will be written to the
spreadsheet.

The squeeze option for writing data is demonstrated in Reading Data from Spreadsheet and writing Data to Spreadsheet after Solve
and Writing Parameter to Spreadsheet including Zero Values.

Reading a spreadsheet:

When the squeeze option is enabled, zero values for parameters will not
be written to the GDX file. When the squeeze option is disabled, zero
values will be written to the GDX file. In either case, empty cells, or cells
containing blanks only, will never be written to the GDX file.

The squeeze option for reading data is demonstrated in Reading Special Values from Spreadsheet and writing to Spreadsheet.

6.28 GDXXRW 3137

skipEmpty = integer (default = 1)

Synonym: sE

The skipEmpty option can be used when reading a spreadsheet and the range is
specified using the top left corner instead of a block range. The value defines the
number of empty row or column cells to ignore before the next empty row or column
signals the end of a block. Valid values are 0..n. If the range is specified using
a block range, skipEmpty will be ignored. Blank rows or columns will be skipped
automatically.

Note that skipEmpty is also valid when using the merge resp. clear options in order
to write data to spreadsheet (in a specific order determined by matching row and
column labels already stored in the spreadsheet).

See Skipping Empty Rows and Columns or Reading Multi-dimensional Parameter from Spreadsheet
for instance.

UndfOut = string (default = Undf)

String to be used when writing the value for 'Undefined'. This option is demonstrated
in Reading Special Values from Spreadsheet and writing to Spreadsheet.

allUELs = flag (default = Y)

Valid only when reading a spreadsheet.

When enabled, all unique elements found in a range will be entered in the GDX
file. When disabled, only those unique elements that are used in conjunction with a
value will be entered in the GDX file.

zeroOut = string (default = 0)

String to be used when writing the value for 'Zero'; by default this is '0'. This option is
demonstrated in Reading Special Values from Spreadsheet and writing to Spreadsheet.

6.28.2.3 Symbols

To write data to a spreadsheet or to a GDX file, one or more symbols and their associated Excel range
need to be specified. See also Excel Ranges.

The general syntax for a symbol specification is:

dataType=symbolName {symbolAttributes}

3138 Tools Manuals

dataTyp Description

Among the symbolAttributes, one specifies the dataRange, the dimensions of the symbol and some
additional symbolOptions in general.

dataType

dataTyp Description

par Declare the symbol as parameter and define a individual name when reading from
spreadsheet, or specify a parameter from a GDX file when writing to spreadsheet.

equ Specify a sub-field of a equation from a GDX file when writing to spreadsheet.

var Specify a sub-field of a variable from a GDX file when writing to spreadsheet.

set Declare the symbol as set and define a individual name when reading from spreadsheet,
or specify a set from a GDX file when writing to spreadsheet.

dSet Declare the symbol as domain set and define a individual name when reading from
spreadsheet, or specify a domain set from a GDX file when writing to spreadsheet.

text Write the text specified to spreadsheet. One can also create hyperlinks, using the
link resp. linkID statement.

textID Write the explanatory text of an identifier stored in the GDX file to spreadsheet.

hText Write sections of the text specified to different cells in the horizontal direction (row).

vText Write sections of the text specified to different cells in the vertical direction (column).

par = GAMS Parameter

Specify a GAMS parameter to be read from a GDX file and written to spreadsheet,
or to be read from a spreadsheet and written to a GDX file.

When writing to a spreadsheet, special values such as Eps, NA and Inf will be written
in ASCII. When reading data from a spreadsheet, the ASCII strings will be used to
write the corresponding special values to the GDX file.

This datatype is used in the most examples. Reading parameters is demonstrated in
Reading Parameter from Spreadsheet or Reading Multi-dimensional Parameter from Spreadsheet.
Writing parameters from GDX to spreadsheet is demonstrated in Writing Parameter to Spreadsheet.

equ = GAMS Equation
var = GAMS Variable

A sub-field of a variable or equation can be written to a spreadsheet and
should be specified as part of the symbolName. The fields recognized are .l

(level), .m (marginal), .lo (lower bound), .up (upper bound), .prior (prior-
ity), and .scale (scale). The sub-field names are not case-sensitive. See also
Reading Data from Spreadsheet and writing Data to Spreadsheet after Solve.

A sub-field of a variable or equation cannot be read from a spreadsheet and written
to a GDX file.

set = GAMS Set [values = valueType]

In GAMS we can define a set by specifying all its elements. In addition, each tuple
can have an associated text. To read a set from a spreadsheet, the values option is
used to indicate if there is any data, and if there is, if the data should be interpreted
as associated text or as an indicator whether the tuple should be included in the set
or not.

Reading sets is demonstrated in Reading Set from Spreadsheet or Reading Set Elements associated with Data or Text using the values Option
(focusing on the values option) for instance. Writing sets from GDX to spreadsheet
is demonstrated in Writing Set to Spreadsheet.

6.28 GDXXRW 3139

valueType Interpretation

auto Based on the range, row and column dimensions for the set, the
program decides on the valueType to be used. This is the default
for values.

noData There is no data range for the set; all tuples will be included.

YN Only those tuples will be included that have a data cell that is
not empty and does not contain '0', 'N' or 'No'.

sparse Only those tuples will be included that have a data cell that is not
empty. The string in the data cell will be used as the associated
text for the tuple.

dense All tuples will be included. A string in the data cell will be used
as the associated text for the tuple.

Due to backward compatibility, valueType=string or all are also recognized
and are synonyms for valueType=dense. The following table summarizes which
valueType will be used when reading a set, if a valueType was not specified:

Range specification rDim = 0 Or cDim =
0

rDim > 0 And cDim
> 0

Top left corner only dense YN

A block, but the data
range is empty

dense YN

A block, and there is a
data range

dense YN

When writing to a spreadsheet, the entire set is written to the spreadsheet and the
writing of the associated text is governed by the values option:

valueType Interpretation

auto If rDim=0 or cDim=0, auto means string, otherwise auto means
YN.

noData Neither associated text nor 'Y' is written for a set element.

YN A 'Y' is written for a set element.

string The associated text is written for a set element. If no text is
stored with set element the cell will be empty.

Due to backward compatibility, valueType=dense, sparse or all are also recognized
and are synonyms for valueType=string.

dSet = GAMS Set

A domain set is used to read the domain of a set from a spreadsheet row or column.
Either the row or the column dimension (rDim or cDim) should be set to '1' to
specify a row or column for the set, resulting in a one-dimensional set. Duplicate
labels in the range specified do not generate an error message. For instance, see also
Reading Set from Lists with Duplication.

Note that reading explanatory text of set elements is not supported by dSet. In
order to read explanatory text, use set instead. If there are duplicate set element
labels in your data, use the set symbol specification while increasing the value of
the immediate option maxDupeErrors to oppress an error message when reading
duplicates.

3140 Tools Manuals

text = ”String of characters” {dataRange}
textID = Identifier {dataRange}

Write the text to the cell specified in the DataRange. In addition, textID will write
the explanatory text of the Identifier in the cell to the right of the dataRange.

A Text directive can be followed by a link=Address or linkID=identifier directive.
Using link will create a hyperlink to an external page or to a cell in the spreadsheet,
while linkID will create a hyperlink to the top left corner of the symbol specified.
See Writing to Spreadsheet adding Text and Hyperlinks for instance.

hText = ”String of characters” {dataRange}
vText = ”String of characters” {dataRange}

Write a string of characters in the horizontal direction for hText or vertical direction
for vText. Text for the next cell is indicated by a comma. In order to write a
comma as part of the text, the comma needs to be preceded by a backslash. See
Writing Set to Spreadsheet for instance.

Symbol Attributes

The following options apply to the symbol preceding the option, and only affect that symbol:

Parameter Default Description

dataRange Cell A1 of the first sheet Specify the Exel range of the symbol for
reading from spreadsheet or for writing
to spreadsheet.

dim 2 when reading from spreadsheet
Defined by the symbol dimension stored
in the
GDX file when writing to spreadsheet

Total dimension of the sym-
bol. Please also refer to section
More about dimensions.

cDim 1 Column dimension of the sym-
bol. Please also refer to section
More about dimensions.

rDim dim-1 Row dimension of the sym-
bol. Please also refer to section
More about dimensions.

merge disabled When enabled, the data will be written
in a specific order determined by match-
ing row and column labels already stored
in the spreadsheet.

clear disabled In addition to the effect of merge, al-
ready existing values in the data range
of the spreadsheet are removed before
writing.

colMerge 0 Determines the columns for which non-
empty content of the previous cell will
be used as content for the empty cell of
a column.

intAsText Y Determines the cell format when writ-
ing unique elements that are a proper
integers to spreadsheet.

ignoreRows/Cols none Specify rows and columns to be ignored
when reading from spreadsheet.

6.28 GDXXRW 3141

Some more detailed remarks on the symbol attributes:

dataRange

rng = Excel Range

The Excel Range for the data for the symbol. Note that an empty range is
equivalent to the first cell of the first sheet.

dimensions

dim = integer

The total dimension for the symbol.

cDim = integer

Column dimension: the number of rows in the data range that will be used
to define the labels for the columns. The first cDim rows of the data range
will be used for labels.

rDim = integer

Row dimension: the number of columns in the data range that will be used
to define the labels for the rows. The first rDim columns of the data range
will be used for the labels.

More about dimensions:

The sum of cDim and rDim determine the dimension of the symbol: dim =

cDim + rDim.

Reading data from a GDX file and writing to a spreadsheet:
In this case, the dimension of the symbol is stored in the GDX file and
therefore known. cDim and/or rDim can be omitted. If both cDim and rDim

are omitted, the program assumes that cDim=1 and rDim=dim-1.

Reading a spreadsheet and writing data to a GDX file:
In this case, the dimension of the symbol is not known. If neither cdim

nor rdim are known, both default to 1 (hence the default value for dim is
2). If dim and either cdim or rdim are known, the missing dimension is
calculated using dim = cDim + rDim. If only cdim or rdim are known, but
dim is not, the missing dimension is set to 0.

symbolOptions

The options below are only valid when reading a GDX file and writing to a spread-
sheet.

By default, writing data to a spreadsheet will include the row and column labels in
addition to the data. The row and column labels will appear in the same order as
they appear in the GDX file.

merge (disabled by default)

3142 Tools Manuals

Using the merge option assumes that the row and column labels are in the
spreadsheet already. For each value read from the GDX file, the location
of the row and column labels is used to update the spreadsheet. Using
the merge option will force the data to be presented in a given order
using the row and column labels. Spreadsheet cells for which there is no
matching row/column pair will not be changed. The matching of labels
is not case-sensitive. See also Writing to Spreadsheet with merge Option
Example.

Note that the skipEmpty option value affects the reading of the row and
column labels from spreadsheet in case of top left range specification (while
skipEmpty is ignored in case of block range specification).

Warning: The merge or clear option will clear the Excel formulas in the
rectangle used, even if the cells do not have matching row/column headings
in the GDX file. Cells containing strings or numbers are not affected.

clear (disabled by default)

The clear option is similar as the merge option, except that the
data range will be cleared before any data is written. See also
Writing to Spreadsheet with clear Option Example.

colMerge = integer (default = 0)

The number of columns that will use a previous value in that column if
the cell is empty. Can only be used when reading from a spreadsheet. See
Reading empty Cells with colMerge.

intAsText = flag (default = Y)

Unique elements that are a proper integer can be written as text or as an
integer value. The default is Y, which will write the unique element as a
string. Note that this impacts the sorting order and can be used when using
an Excel filter on a data range.

Ignoring Rows and Columns when reading from a spreadsheet

ignoreRows = rownr, rownr, rownr:rownr
ignoreColumns = colnr, colnr, colnr:colnr

Row numbers are represented by integers. Column numbers are represented
by Excel column numbers, like A, CD, IV etc, or by integers.

Note

• Ignoring rows or columns is only allowed when reading a spreadsheet.
• The specification of ignored rows or columns follows the symbol specification

and only applies to that symbol.
• When ignoring a column that would be part of an index if the column was

not ignored, the range for the index will be extended for each column that
is ignored. The same holds for ignored rows that are part of an index.

See also Ignoring Rows and Columns.

6.28.2.4 Syntax Elements

The most options are specified by using an integer, a string or a flag. Note that the options useRC,
resetOut, checkDate, merge and clear are enabled or disabled by simply adding the keyword to your
GDXXRW statement.

6.28 GDXXRW 3143

Element Description

integer An unsigned integer

string A string of characters; a string can be quoted with single or double quotation marks.

flag True values: 1, Y or Yes
False values: 0, N or No
(not case-sensitive)

6.28.2.5 Excel Ranges

An Excel Range is specified using the standard Excel notation: SheetName!CellRange.

When the SheetName! is omitted, the first sheet will be used. A CellRange is specified by using the
TopLeft:BottomRight cell notation like A1:C12. When :BottomRight is omitted, the program will
extend the range as far down and to the right as possible. (Using '..' in stead of ':' is supported.)

Excel also allows for named ranges; a named range includes a sheet name and a cell range. Before
interpreting a range parameter, the string will be used to search for a pre-defined Excel range with that
name. See Reading Parameter from Spreadsheet using pre-defined Excel Named Ranges for instance.

When writing to a spreadsheet and a sheet name has been specified that does not exist, a new sheet will
be added to the workbook with that name. Reading a spreadsheet and using an unknown range or sheet
name will result in an error.

The following table summarizes all possible input combinations and their interpretation:

Input Sheet used Cell(s) used Condition

First sheet A1

! First sheet A1

Name First sheet Name When nc=0

Name Name A1 When nc=1

Name! Name A1

!Name First sheet Name

Name1!Name2 Name1 Name2

The term nc= refers to the nameConv option.

6.28.3 Return Codes

On success, GDXXRW will return 0 as error code. However, there might be an error which will be signaled
with a specific return code in addition to an error message.

Return Code Interpretation

0 No error

3144 Tools Manuals

Return Code Interpretation

1 Cannot write log

2 GDX error

3 No input file

4 Input file not found

5 Bad parameter

6 Read error

7 Problem loading GDX DLL

8 Symbol not found

9 Dimension different

10 Types different

11 Bad UELs

12 Bad output file

13 Problem opening Excel

14 Problem writing to Excel

15 Problem reading from Excel

16 Duplicate entry

17 Cannot add sheet

18 Bad cell value

19 Dimension conflict

20 Data exceeds range

21 Exceeds range or memory problem

22 Deprecated

23 Program aborted

24 Merge range empty

25 Too many columns skipped

26 Too many rows skipped

6.28.4 Warning

When executing GDXXRW twice and redirecting output to the same log file may result in a fatal error.

For example:

gdxxrw step1 parameters > logfile

gdxxrw step2 parameters > logfile

The execution of step2 may fail, because Excel will close the logfile in step1 in a delayed fashion, but
return control to GDXXRW immediately. Using the log or logAppend parameter will avoid this problem.

6.28 GDXXRW 3145

6.28.5 Reading from Spreadsheet - Examples:

6.28.5.1 Reading Set from Spreadsheet

Assuming we want to read set elements from the first sheet of the spreadsheet file exampleData.xlsx and
write the data to exampleData.gdx.

Either of the following two statements below reads the second row of set elements from the spreadsheet
above:

gdxxrw exampleData.xlsx set=i1 rng=readingSets!A2:C2 cDim=1

gdxxrw exampleData.xlsx dSet=i1a rng=readingSets!A2:C2 cDim=1

When the output file is not specified, the output file will be derived from the input file by changing
the file extension of the input file and removing any path information. Since all elements in the second
row are unique, there is no need of increasing the maxDupeErrors parameter to avoid an error message
when defining the symbol as set. By specifying the symbol directly as a dSet (domain set) in the second
statement, duplicate labels would be removed without throwing an error. We set cDim to one so that the
first row of the range is used for the labels of the set.

On the other hand if we want to read set elements listed in a column:

Either of the following two statements reads column A of set elements from the spreadsheet above:

gdxxrw exampleData.xlsx set=j1 rng=readingSets!A35:A37 rDim=1

gdxxrw exampleData.xlsx dSet=j1a rng=readingSets!A35:A37 rDim=1

Besides the range we also had to change the parameter rDim to indicate that the first column of the range
is to be used for the labels.

This example is also part of the GAMS Data Utilities Library, see model [GDXXRWExample18] for
reference.

6.28.5.2 Reading Set and Explanatory Text

Suppose we want to read the set elements in the ninth row and their associated text in the tenth row of
the following spreadsheet:

We can read the set elements and their explanatory text by executing the command:

gdxxrw exampleData.xlsx set=i3 rng=readingSets!A9:E10 cDim=1

To read the explanatory text, we simple include the tenth row within the range of the symbol i3 and
specify cDim=1. By doing this, the first row of the range, i.e. the elements of the ninth row, will be used
as the set elements, while the tenth row will be interpreted as their associated text (depending on the
values option specified. By default, the values option is set to dense in this example, i.e. all elements
will be included and the string in the associated data cell will be used as explanatory text. See also
Reading set elements associated with Data or Text for instance.).

Note here the explanatory text of the set element skipme2 is just a Y as it has a blank entry for the
explanatory text.

This example is also part of the GAMS Data Utilities Library, see model [GDXXRWExample18] for
reference.

3146 Tools Manuals

6.28.5.3 Reading Set Elements associated with Data or Text using the values Option

When reading set elements from spreadsheet, the values option can be used to control whether elements
and associated text are included in the set or not. We use the data displayed in the spreadsheet below to
demonstrate the yn, dense, sparse and noData specifications:

The set element names are stored in the first row, the associated data cells in the second row.

1. values=yn
Run the following command to load those element names associated with nonzero data or yes without
storing the data as explanatory text:

gdxxrw exampleData.xlsx set=A rng=readingWithValues!A1:M2 cDim=1 values=yn

The set A will contain the elements a, b, e, f, h, i, k and m, since the elements c, d, g, j and l are
associated with a zero, a blank or a no resp. N (case insensitive).

2. values=dense
This option must be specified, if we want to read all elements while using the strings in the data cells as
explanatory text.

gdxxrw exampleData.xlsx set=A rng=readingWithValues!A1:M2 cDim=1 values=dense

3. values=sparse
To read in all elements having a non-empty data cell while interpreting the string in the data cell as
explanatory text, run the following command:

gdxxrw exampleData.xlsx set=A rng=readingWithValues!A1:M2 cDim=1 values=sparse

The set A will contain all elements except for j, since the associated data cell is empty.

4. values=noData
This option must be used, if we want to read all set elements while ignoring the data range. Especially,
the data cells will not be interpreted as explanatory text. To read the elements from the range A1:M1,
one could run the following command:

gdxxrw exampleData.xlsx set=A rng=readingWithValues!A1:M1 cDim=1

While all elements a - m will be included this way, the second row will be automatically interpreted
as explanatory text (even though we specified only the first row within the rng statement). This
might be not desirable at all in some situations, e.g. when reading the city names in the next example
Reading Set from Data Tables, we do not want to have the numbers 5000, 6000 and 0 to be explanatory
text for the city names. Run the following command to include all elements in your set without interpreting
the cells in the second row as explanatory text:

gdxxrw exampleData.xlsx set=A rng=readingWithValues!A1:M1 cDim=1 values=noData

5. values=auto (default)
The second table within the description of the values options indicates which value type will be used
by default based on the rng, cDim and rDim specifications for the set. For instance, when running the
following command:

gdxxrw exampleData.xlsx set=A rng=readingWithValues!A1:M2 cDim=1

the value type used is dense, since we specified a block range with a data row and rDim equals zero.

This example is also part of the GAMS Data Utilities Library, see model [GDXXRWExample9] for
reference.

6.28 GDXXRW 3147

6.28.5.4 Reading Set from Data Tables

One may wish to load set elements from a data table. Given a spreadsheet segment like the following:

We can take the set across the top containing the elements cleveland, chicago and dallas with any of the
following commands:

gdxxrw exampleData.xlsx set=i6 rng=readingSets!B20:D20 cDim=1 values=noData

gdxxrw exampleData.xlsx dSet=i6a rng=readingSets!B20:D20 cDim=1

gdxxrw exampleData.xlsx set=i6c rng=readingSets!B20:D21 cDim=1 values=noData

Note the usage of the values option in order to avoid reading the numbers as explanatory text. See also
Reading set elements associated with Data or Text. However, this can also be avoided by declaring the
symbol as a domain set using the symbol declaration dSet.
We can also take a set vertically from column A as follows:

gdxxrw exampleData.xlsx dSet=j4 rng=readingSets!A21:A23 rDim=1

This example is also part of the GAMS Data Utilities Library, see model [GDXXRWExample18] for
reference.

6.28.5.5 Reading Set from Lists with Duplication

One may wish to extract set elements from a spreadsheet where there is no unique list of elements that
can be read but rather a list where some names are repeated. In the example below note that in rows 26
and 27 there are set element names but they are duplicated:

One can read this using dSet as follows:

gdxxrw exampleData.xlsx dSet=i7 rng=readingSets!B26:E26 cDim=1 dSet=i8 rng=readingSets!B27:E27 cDim=1

Both domain sets will be read within a single GDXXRW call. The rng and cDim specifications affect only
the symbol that they are following directly.

It may be favored in some situation to use the set symbol instead (e.g. for reading explanatory text). To
oppress an error message when reading sets with duplication, one must specify a sufficient large number
within the maxDupeErrors option.

gdxxrw exampleData.xlsx maxDupeErrors=4 set=i7 rng=readingSets!B26:E26 cDim=1 values=noData set=i8 rng=readingSets!B27:E27 cDim=1 values=noData

For the data in this example, four is a sufficient large number since there are two duplicates for the first
and two duplicates for the second set within each range. Note the usage of the values option in order to
avoid reading 'cleveland' as explanatory text for the elements of set i7 and to avoid reading the numbers
as explanatory text for the elements of i8. See also Reading set elements associated with Data or Text
for more informations about the values option.

This example is also part of the GAMS Data Utilities Library, see model [GDXXRWExample18] for
reference.

3148 Tools Manuals

6.28.5.6 Reading Parameter from Spreadsheet

Assuming we want to read parameter data1 from the file Test1.xlsx and write the data to Test1.gdx.

The following statement reads parameter data1 from the spreadsheet above (using the par data type):

gdxxrw Test1.xlsx par=data1 rng=A1:D3 cDim=1 rDim=1

The sheet name in a range can be omitted when it refers to the first sheet. The elements in the first row
and first column of the data range will be used as labels for the two dimensional parameter data1 by
defining cDim=1 and rDim=1 (see also cDim resp. rDim).

This example is also part of the GAMS Data Utilities Library, see model [GDXXRWExample5] for
reference.

6.28.5.7 Reading Parameter from Spreadsheet with Duplication

The same data as in the previous example, but organized differently. We use the dSet symbol specification
instead of set to read set I (in column A) and set A (in column B), since there are duplicate entries in
column A resp. column B.

The following statement reads parameter data2 from the spreadsheet above:

gdxxrw Test1.xlsx par=data2 rng=EX2!A1 rDim=2 dSet=I rng=EX2!A1 rDim=1 dSet=A rng=EX2!B1 rDim=1

By setting rDim=2 for the parameter data2 we indicate to use the first two columns of the data range as
the labels for the parameter values. Since the sheet does not contain further data, one can specify the
ranges using the top left cell notation without hesitation.
When using a few symbols, the command line can become too long to be practical. In such case, use a
text file to hold the parameters. A parameter file can contain multiple lines to increase readability and a
line starting with a '∗' will be ignored.

* file example6.txt

par =data2 rng=EX2!A1 rDim=2

dSet=I rng=EX2!A1 rDim=1

dSet=A rng=EX2!B1 rDim=1

An option file is indicated by preceding the file name with a @ (At sign.).

gdxxrw Test1.xlsx @example6.txt

This example is also part of the GAMS Data Utilities Library, see model [GDXXRWExample6] for
reference.

Note

• An option file can contain multiple lines to increase readability.

• When reading parameters from a text file, lines starting with an asterisk (∗) will be ignored
and act as a comment.

• An option file can also be written during the execution of a GAMS model using the
GAMS Put Facility and the subsequent GDXXRW commands must use execute command so
the put file is written before it is to be read (this would happen when using the compile time
command $call to run GDXXRW).

• Using an option file can be useful in reducing execution time by combining the options and
symbols from multiple GDXXRW calls in a single option file used in a single GDXXRW call.

6.28 GDXXRW 3149

6.28.5.8 Reading Multi-dimensional Parameter from Spreadsheet

This example illustrates how to read a four dimensional parameter from spreadsheet:

The strings in the first two columns and the first two rows of the data range A1:F6 shall be used as
labels for the parameter values. Therefore, we define rDim=2 and cDim=2 (see also rDim and cDim). The
parameter will be named data3 (within the par declaration). Run the following command to read the
data with GDXXRW:

gdxxrw Test1.xlsx par=data3 rng=EX3!A1:F6 rDim=2 cDim=2

Note that the data range was specified using the block range notation. However, it might be more
comfortable to specify only the top left corner sometimes, but empty rows or columns may affect the
reading process, i.e. GDXXRW might stop to early when encountering empty rows or columns or it will try
to read data separated by empty rows or columns not being part of the data you wish to read. When we
specify the range as a block, an empty row or column will always be ignored. When we specify the top
left cell only, the skipEmpty option can be used to ignore one or more empty rows or columns. However,
for the data in this example, we do not need to ignore empty rows or columns within the data range, but
suppose there is non-relevant data starting in column H. By default (skipEmpty=1), GDXXRW would try to
read the data starting in H. When we specify skipEmpty=0 and cells A7, B7, G1 and G2 are empty, the
range can be specified with the top left cell only in this example:

gdxxrw Test1.xlsx skipEmpty=0 par=data3 rng=EX3!A1 rDim=2 cDim=2

Since skipEmpty is a global option, affecting every symbol that follows, we define it before declaring the
parameter data3.

This example is also part of the GAMS Data Utilities Library, see model [GDXXRWExample7] for
reference.

6.28.5.9 Reading Spreadsheet using the Index Option

The index option is used to read a number of parameters and sets based on information stored in the
spreadsheet itself. By doing this, the GDXXRW command becomes quit short and the informations on how
to read the data can be written directly within the spreadsheet to increase readability. The first row of
the range is used for column headings indicating additional parameters. We will discuss the results only
briefly, because all other options used in this example were demonstrated before.

Suppose we want to read the parameters and sets from the following spreadsheet:

The informations about all parameters and sets are stored within the sheet index in the same spreadsheet
file exampleData.xlsx as testIndex above:

The following statement reads parameters and sets from the spreadsheets using the index option:

gdxxrw exampleData.xlsx output=gdxAll.gdx index=index!A1

We use the output option to write the data to gdxAll.gdx for demonstration here. By default, GDXXRW
would write to testIndex.gdx. Some brief remarks on the results:

3150 Tools Manuals

• Elements of set i1 and i1a: trains, cars and planes. There is no explanatory text, since the data
range (third row) is empty. We can use dim=1 equivalently to cDim=1 in this example, because by
default, cDim=1 and rDim=dim-1. See also dimensions.

• When reading the sets i2 and i3, we are defining which elements and explanatory text will be
stored by specifying the values option.

• The set i4 will contain all elements of the thirteenth row. Afterwards, skipEmpty is set to zero,
affecting the reading of i4a and i5. Unlike i4, the sets i4a and i5 will not contain the element
houston, since skipEmpty=0 and the empty column signals GDXXRW to stop reading (note that the
range is not defined using the block range specification). Since there is a data range for i5, the strings
city1 - city5 will be used as explanatory text by default. After reading i4a and i5, skipEmpty is
reset to one (default).

• Each of the sets i6, i6a and i6b will contain the elements cleveland, chicago and dallas. There
is no explanatory text for any of the sets in the GDX file, however, one must enforce this for the set
i6 with values=noData.

There are no interesting details for the remaining sets and parameters to discuss here. The complete
example and the results displayed within GAMS can be found in the GAMS Data Utilities Library, see
model [GDXXRWExample10] for reference.

Note

• The parameters and sets are read using the specifications within the myIndex sheet. They are
treated as if they appeared directly on the command line.

• In the spreadsheet, the first three columns of the range have a fixed interpretation: DataType
(par, set, dSet, equ, or var), Item name identifier and spreadsheet data range. The fourth and
following columns can be used for additional parameters like dim, rDim, cDim, merge, clear
and skipEmpty. The column header contains the keyword when necessary, and the cell content
is used as the option value.

• When an entry appears in a column without a heading then it is directly copied into the GDXXRW

option file. Thus in the example above the items in column G are directly copied into the file.

• Rows do not need to have entries in the first three columns if one just wants to enter persistent
options such as skipEmpty or some of the special character string re-definitions (as in row seven
and ten from the spreadsheet above).

6.28.5.10 Reading Data from Spreadsheet and Loading into GAMS

One can use $call to execute the GDXXRW command in the GAMS code to read from spreadsheet at
compilation time (the data is taken from the previous example):

$call gdxxrw testIndex.xlsx set=i9 rng=Sheet1!B20:C20 cDim=1 values=noData

Getting a set from the spreadsheet into a GDX file is only half the battle. One must also use commands
in GAMS to load the data as discussed in the chapter Using GAMS Data Exchange or GDX Files. At
compile time this is done using:

6.28 GDXXRW 3151

Set i9;

* read/load set from data at compile time

$call gdxxrw testIndex.xlsx set=i9 rng=Sheet1!B20:C20 cDim=1 values=noData

$gdxIn testIndex.gdx

$load i9

where the set must be declared in a set statement then one can if needed create the GDX file using GDXXRW,
then one uses a $gdxIn to identify the source file and a $load to bring in the data.

Some users may wish to load sets at execution time. However, this is limited to subsets that are dynamic
sets and cannot be used in domains. To do this one simply uses the statements as above, but substitutes
execute in place of $call as follows:

Set i9(i6a);

* read/load set from data at execution time

execute ’gdxxrw testIndex.xlsx set=i9 rng=Sheet1!B20:C20 cDim=1 values=noData’

execute_load ’testIndex’ i9;

where the set i9 must be declared as a subset in a set statement (of i6a in this case), then one can if
needed create the GDX file using execution time GDXXRW, and an execute load to bring in the data with
an identification of the GDX source file name. Note that we used the set ı̀6a as superset, fitting best to
the data from the previous example. However, one could also use the statement Set i9(∗);.

One can load the universe of labels from a GDX file into a set at run-time using the syntax:

execute_load ’someFile’, someSet=*;

Note

In doing this, only labels known to the GAMS program will be loaded.

6.28.5.11 Reading empty Cells with colMerge

Suppose we want to read the four dimensional parameter from the following spreadsheet:

The cells B4, B5, C4 and D5 might be empty to avoid duplication, i.e., the non-empty content of the
previous cell in the same column shall be used as content for the empty cell. In particular: the content of
B3 shall be used for the content of B4 and B5, the content of C3 for C4 and the content of D4 for cell D5.
Reading the above spreadsheet using the following GAMS statement:

gdxxrw exampleData.xlsx par=A_d rng=colMerge!B2 rDim=3 cDim=1

results in empty cells B4, B5, C4 and D5, causing troubles if you want to declare the parameter as
A(number,number,number,color) certainly:

Adding the symbol attribute colMerge, we use the non-empty content of the previous cell in the same
column as the content for the empty cell. Specifying colMerge=2 will do this for the first two columns for
instance.

gdxxrw exampleData.xlsx par=A_2 rng=colMerge!B2 rDim=3 cDim=1 colMerge=2

Only the two entries corresponding to the cell D5 are still empty, since we do not specify all three columns
within colMerge:

3152 Tools Manuals

Note

A blank field displayed in GAMS Studio indicates an empty UEL. In the GAMS IDE, there would
be an <empty> entry instead.

This example is also part of the GAMS Data Utilities Library, see model [GDXXRWExample20] for
reference.

6.28.5.12 Reading merged Excel Ranges with cMerge

Suppose we want to read the three dimensional parameter from the following spreadsheet:

Note that the label 'red' is centered over the merged cells B1, C1 and D1 and label 'green' over the merged
cells E1 and F1. Additionally, in the data range, the cells B3:C3 and B4:C4 are merged, too. The option
cMerge can be used to control the way merged cells are handled. We will discuss the effect of the possible
values for cMerge on the data presented above by running the following commands (an option file is used
to increase readability):

$onEcho > howToRead.txt

cMerge=0 par=B_d rng=cMerge!A1 rDim=1 cDim=2

cMerge=1 par=B_1 rng=cMerge!A1 rDim=1 cDim=2

cMerge=2 par=B_2 rng=cMerge!A1 rDim=1 cDim=2

$offEcho

$call gdxxrw exampleData.xlsx output=cMerge.gdx @howToRead.txt

We specify cMerge in advance, since it is a global option affecting every symbol that follows. Executing
the three statements will create three different output files, all displayed in GAMS Studio:

Note

A blank field displayed in GAMS Studio indicates an empty UEL. In the GAMS IDE, there would
be an <empty> entry instead.

Some remarks on the results:

cMerge=0 (default)
Empty cells being part of a merged Excel range will remain empty. Thus, the cells C1, D1, F1, C3 and
C4 from the spreadsheet above will remain empty when reading with GDXXRW. Since C3 and C4 are empty
while being part of the data range, they won't show up in the GDX file. The values in the last column of
the GDX file are useful to compare the results with the spreadsheet. For instance, the UELs of the value
5 are a, <empty> and two, since the cell F1 is empty, while A3 contains the string a and F2 the string two.

cMerge=1
The value of a merged range within a row or column header will be used for all cells being part of the
merged range. Thus, the string 'red' will be used for the cells in the column header C1 and D1 and the
string 'green' for the cell F1. Since C3 and C4 are part of the data range, they will remain empty and are
not displayed in the GDX file. As you can see, there is no longer an empty UEL.

6.28 GDXXRW 3153

cMerge=2
The value of a merged range will be used for all cells being part of the merged range, i.e. cMerge=1 is
extended to the data range. Therefore, the value 1 resp. 11 will be also used for the cell C3 resp. C4,
appearing in the GDX file for the first time. Since there is no change in handling merged cells within the
row or column header, all values have non-empty labels.

This example is also part of the GAMS Data Utilities Library, see model [GDXXRWExample20] for
reference.

6.28.5.13 Skipping Empty Rows and Columns

By using the skipEmpty option, we can control the way blank rows or columns are handled and causes
GDXXRW to either stop or skip over if a blank row or column is encountered when using the top left corner
range specification instead of a block range. If the range is specified using the TopLeft:BottomRight cell
notation (often refered as block range notation), empty rows or columns will be skipped automatically.
Suppose the data is stored in the following spreadsheet:

We can read this spreadsheet and skip blank rows and columns with the following command:

gdxxrw exampleData.xlsx par=A_d rng=skippingRC!A2 rDim=2 cDim=1

or

gdxxrw exampleData.xlsx se=1 par=A_1 rng=skippingRC!A2 rDim=2 cDim=1

Note that there will be no difference concerning the generated GDX files, since skipEmpty is set to one by
default. On the other hand, if skipEmpty is set to zero

gdxxrw exampleData.xlsx se=0 par=A_0 rng=skippingRC!A2 rDim=2 cDim=1

the blanks terminate the read not reading the rail column and the san francisco.chicago row. After
loading into GAMS the data become:

This example is also part of the GAMS Data Utilities Library, see model [GDXXRWExample21] for
reference.

Note

The skipEmpty option must appear before any par, set, dSet etc statements that use it and will
persist for the rest of the statements in a command unless it is set to another value.

3154 Tools Manuals

6.28.5.14 Ignoring Rows and Columns

We can use the options ignoreColumns and ignoreRows to ignore columns and rows when reading data
for a symbol. Suppose we want to ignore the red colored rows and columns of the following spreadsheet,
when reading the four dimensional parameter:

We can read this spreadsheet and ignore the red colored columns and rows with GDXXRW by running the
following command:

gdxxrw exampleData.xlsx par=A rng=ignoringRCC1 cDim=2 rDim=2 ignoreRows=2,6 ignoreColumns=D,G

The options ignoreRows and ignoreColumns are symbol options and therefore must appear after the
symbol specification, affecting only this particular symbol.

In the example above we ignored column D which would have been part of the index for the rows. So the
range for the row index was extended with column E. The E column is no longer part of the data range.
The treatment of the column index is similar. The second row would have been part of the column index,
and now that the row is ignored, the next row becomes part of the column index and the third row is no
longer part of the data range.

This example is also part of the GAMS Data Utilities Library, see model [GDXXRWExample21] for
reference.

Note

The ignoreColumns and ignoreRows options appear after any par, set, dSet etc GDXXRW command
instruction and only affect reading of that item.

6.28.5.15 Reading Parameter from Spreadsheet using pre-defined Excel Named Ranges

As mentioned in section Excel Ranges, the range of a symbol to be read can be defined by using
named ranges. To name a cell range within Excel, simply select the cell range and type in the name
you want to assign to this particular range by using the name-box next to the top left corner of
your spreadsheet. Suppose we want to read the data in the range A1:D3 taken from the example
Reading Parameter from Spreadsheet:

Instead of specifying the range explicitly by rng=A1:D3, we use the pre-defined named range 'parRange',
i.e. rng=parRange. GDXXRW uses the string specified to search for a matching pre-defined named range
first. In summary, run the following command to read the parameter data4 from the file Test1.xlsx:

gdxxrw Test1.xlsx par=data4 rng=parRange rDim=1 cDim=1

This example is also part of the GAMS Data Utilities Library, see model [GDXXRWExample5] for
reference.

Note

In Excel, one can assign a single name to several separated block ranges, e.g. assign the name
'disconnected' to the block ranges A1:D3 and F4:H5 (by holding 'Strg' while selecting the second
block range and using the name-box to assign the name). However, such disconnected data cannot
be read using the named-range specification.

6.28 GDXXRW 3155

6.28.6 Writing to Spreadsheet - Examples:

6.28.6.1 Unloading Data from GAMS before Writing to Spreadsheet

When writing to spreadsheet with GDXXRW, one must use commands in GAMS to place the data into the
GDX file at first (see also Using GAMS Data Exchange or GDX files). When reading data, it is often
desirable to use a $call command to run GDXXRW and the statements $gdxIn and $load afterwards to
load the data, allowing also domain definitions (at compile time) for instance. This is hardly ever desirable
or realizable when unloading and writing to a spreadsheet, for example, if one wish to write the solution
after solving a model to spreadsheet. This should generally not be done at compile time so one should
only use the execute and execute unload commands at execution time as follows:

execute_unload ’test.gdx’ someParameter;

execute ’gdxxrw test.gdx par=someParameter rng=A1’

where the execute unload tells what data to place in the GDX file and determines the GDX source
file name. The matching GDXXRW execution tells the name of the GDX file, the name of the spreadsheet
(optional) and identifies the data to write.

See also Writing Set to Spreadsheet and Writing Parameter to Spreadsheet for demonstration.

Note

• One must be careful when using GDXXRW as each time the command is executed the GDX file is
erased and only has the current contents and thus should be written just before if reusing the
name.

• One also obtains output of sets using the command execute unloaddi where the GDX file
automatically includes all sets associated with unloaded parameters, variables and equations
without need to list the set element names.

6.28.6.2 Writing Set to Spreadsheet

At fist, we will create a GDX file containing a simple set using the execute and execute unloading

directives. Most of the elements have an explanatory text:

Set x / element1 ’explanatory text’

element2

element3 ’previous element does not have explanatory text’ /;

execute_unload ’writingSet.gdx’ x;

Of course, in this particular code section above, one could also use $gdxOut and $unload. The values
option can be used to control whether explanatory text is written to the spreadsheet. We'll demonstrate
all three possible values explicitly within a single GDXXRW execution:

3156 Tools Manuals

$onEcho > howToWrite.txt

hText="values: noData,,,values: yn,,,values: string" rng=Sheet1!A1

set=x rng=Sheet1!A2 rDim=1 values=noData

set=x rng=Sheet1!D2 rDim=1 values=yn

set=x rng=Sheet1!G2 rDim=1 values=string

$offEcho

execute ’gdxxrw writingSet.gdx output=writingSet.xlsx @howToWrite.txt’

Before executing this example, check if the Excel file (writingSet.xlsx) is open. If you run GDXXRW for
writing a file sharing conflict will arise. To avoid this problem, either close the Excel file or use the Excel
Tools menu to make this a shared notebook. After writing to the spreadsheet (still opened), use the Excel
”File Save” command to verify the changes made.

By adding two additional commas within the hText statement, the cells B1, C1 and E1, F1 will be skipped
when writing the text to the first row of the spreadsheet. If values=noData, neither explanatory text nor
a Y are written to spreadsheet for the set elements. If values=yn, GDXXRW writes a Y for each set element
to spreadsheet. To write the explanatory text, specify values=string.

Since cDim=0, the default option is string (see values). Imagine a two dimensional set, one could write
the set in a table format, i.e. cDim=1 and rDim=1. By default, GDXXRW would write this set using the
values=yn format.

This example is also part of the GAMS Data Utilities Library, see model [GDXXRWExample11b] for
reference.

Note

• A workbook cannot in general be open unless you have made special provisions with an error
signaled indicating a file sharing conflict will arise when the target file is open in Excel.

• To avoid the sharing conflict error the user must either close the file or indicate that the
spreadsheet is a shared Excel workbook by using the Excel Tools Share Workbook dialogue.

• In an open shared workbook the contents are not updated until you have done a file save in
Excel.

• Writing to a shared workbook can be painfully slow.

• In general, it is best to close the workbook.

6.28.6.3 Writing Parameter to Spreadsheet

At first, we create a GDX file, containing some random data:

* file makeData.gms

Set

i / i1*i4 /

j / j1*j4 /

k / k1*k4 /;

Parameter V(i,j,k);

V(i,j,k)$(uniform(0,1) < 0.30) = uniform(0,1);

6.28 GDXXRW 3157

When we run this GAMS model from the command prompt using the following statement, the file
writingPar.gdx will be created at the end of the run.

GAMS makeData gdx=writingPar

Using the file writingPar.gdx, we can write to a spreadsheet:

Write parameter V to the first cell in the first sheet; because we only specify the top left corner
of the sheet, the complete sheet can be used to store the data. We do not specify the row and
column dimension, so they will be set to rDim=2 and cDim=1 by default. (See also dimensions)

By using the following command (remember to close an already existing file writingPar.xlsx in advance or
make it a shared notebook as discussed in the previous example):

gdxxrw writingPar.gdx output=writingPar.xlsx par=V rng=A1

The steps above can be combined in a single GAMS model using the execute unload and execute

statements as follows:

Set

i / i1*i4 /

j / j1*j4 /

k / k1*k4 /;

Parameter V(i,j,k);

V(i,j,k)$(uniform(0,1) < 0.30) = uniform(0,1);

execute_unload ’writingPar.gdx’, i, j, k, V;

execute ’gdxxrw writingPar.gdx par=V rng=A1’;

The resultant spreadsheet looks like:

Note that if we only want to write the parameter V, there is no need to unload the sets i, j and k explicitly.
The labels written to the columns A and B and to the first row are stored directly together with V in the
GDX file.

This example is also part of the GAMS Data Utilities Library, see model [GDXXRWExample11b] for
reference.

3158 Tools Manuals

6.28.6.4 Writing to Spreadsheet with merge Option

When writing to a spreadsheet one can control data handling and matching using the merge command
line option. When merge is active, the only data that will be written to the spreadsheet are those data for
which the element names match row and column labels that are in the spreadsheet already. Also under
merge, spreadsheet cells for which there is no matching row/column pair will not be changed. This option
might be very useful, e.g., if there is a fixed report layout/framework already in your spreadsheet file
which should not be changed when writing the data from GAMS.

Suppose we want to write the parameter A, already stored in data.gdx, to an existing spreadsheet:

In the following spreadsheet, there are row and column labels matching most of the data in the GDX file,
except for the additional column header 'horse' and the non existing row labels 'san francisco.chicago':

Use the following commands to write the data from GDX to spreadsheet twice to different ranges for
comparison:

gdxxrw data.gdx output=exampleData.xlsx par=A rng=merge_clear!B1:G4 rDim=2 cDim=1 merge

gdxxrw data.gdx output=exampleData.xlsx par=A rng=merge_clear!B8 rDim=2 cDim=1

Note that merge is a symbol option affecting only the symbol A. The resultant spreadsheet looks like:

The parameter is written to the range B8-F12 without merge enabled, while the option is enabled when
writing to the range B1:G4, respecting the data arrangement already existing. Note that the column
and row orders vary and the san francisco - chicago row is missing since it is not mentioned in the labels
within the spreadsheet before the merge operation, while the horse column is still present with it's data
left alone, not being overwritten by the parameter.

This example is also part of the GAMS Data Utilities Library, see model [GDXXRWExample12] for
reference.

Note

• Using the merge option will force the data to be presented in the order in which the row and
column labels are entered already.

• GDX file contents that do not have matching row/column pair of named elements in the
spreadsheet will be overlooked.

• A write under a merge option addressing a blank area of a spreadsheet will always be blank as
there will not be matching set elements at all.

• The matching of labels is not case-sensitive.

• Warning: Enabling the merge option will clear the Excel formulas in the rectangle used, even if
the cells do not have matching row/column headings in the GDX file. Cells containing strings
or numbers are not affected.

6.28 GDXXRW 3159

6.28.6.5 Writing to Spreadsheet with clear Option

When writing to a spreadsheet one can also use the clear option to control data handling and matching.
When clear is enabled, the only data that will be written to the spreadsheet are those data for which
the element names match row and column labels that are in the spreadsheet already but all data and
formulas in the target range will be removed.

Suppose the parameter A from the previous example is stored in data.gdx and there are row and column
labels matching most of the data in the GDX file, except for the additional column header 'horse' and the
non existing row labels 'san francisco.chicago':

Use the following command to write to exampleData.xlsx with clear enabled:

gdxxrw data.gdx output=exampleData.xlsx par=A rng=merge_clear!I1 rDim=2 cDim=1 clear

then the result is

The results are similar to those under merge but the old data in the column labeled 'horse' has been
removed.

This example is also part of the GAMS Data Utilities Library, see model [GDXXRWExample12] for
reference.

Note

• Using the clear option will force the data to be presented in the order in which the row and
column labels are entered already.

• GDX file contents that do not have matching row/column pair of named elements in the
spreadsheet will be overlooked.

• A write under a clear option addressing a blank area of a spreadsheet will always be blank as
there will not be matching set elements.

• The matching of labels is not case-sensitive.

• Warning: The clear option will clear all Excel formulas and values in the rectangle used, even
if the cells do not have matching row/column labels in the GDX file.

6.28.6.6 Writing to Spreadsheet using a Filter

In Excel, you can filter the data by some specified conditions so that only the data matching the conditions
is displayed. This might be useful in some cases, e.g. it helps you to focus on the most relevant data
within a large table of data. With GDXXRW you can add some basic filter to your spreadsheet when writing
data from a GDX file.
The following example creates a small GDX file with some random data, which is used to write the symbol
A to a spreadsheet later on with the filter option enabled.

Set

i / i1*i2 /

j / j1*j2 /

k / k1*k2 /;

Parameter A(i,j,k);

A(i,j,k) = uniform(0,1);

execute_unload ’test.gdx’, A;

execute ’gdxxrw test.gdx filter=1 par=A rDim=1 cDim=2 rng=Sheet1!A1’;

3160 Tools Manuals

Since filter is a global option, it must be specified in advance of the symbols for which you want to add
a filter. The default value is zero, i.e. no filter will be added. If there are multiple rows in the column
header, i.e. cDim is greater than zero, the valid range for the filter option is 1..cDim.

The screenshot above shows the filter in Excel. When we specify filter=2 in this example with two
dimensions for the column header, the row with the filter moves away from the data range as illustrated
below:

One could now filter the data, e.g. displaying only the values where the label of the first dimension is i1
by selecting this value exclusively within the drop down menu of column A.

This example is also part of the GAMS Data Utilities Library, see model [GDXXRWExample15] for
reference.

6.28.6.7 Writing to Spreadsheet adding Text and Hyperlinks

The following example illustrates the use of the text directive. Adding text and hyperlinks to your
spreadsheet is useful to customize the output and to navigate more quickly through the data.

First, we write some data to a GDX file and we use the text directive to write text to various cells in
the spreadsheet; some of the cells are hyperlinks to other locations. To increase readability, we'll use a
parameter file howToWrite.txt to shorten the GDXXRW statement.

Set

i / i1*i9 /

j / j1*j9 /;

Parameter A(i,j);

A(i,j) = 10*ord(i) + ord(j);

execute_unload ’pv.gdx’ A;

$onEcho > howToWrite.txt

text="Link to data" rng=Index!A2 linkID=A

text="Below the data for symbol A" rng=data!C2

par=A rng=data!C4

text="Back to index" rng=data!A1 link=Index!A1

text="For more information visit GAMS" rng=data!C1 link=http://www.gams.com

$offEcho

execute ’gdxxrw pv.gdx output=pv.xlsx @howToWrite.txt’

We will write the text ”Link to data” to the cell A2 of sheet Index. The option linkID is used to add a
hyperlink to the range of the symbol A. In addition, we create a hyperlink ”Back to index” in the cell A1
of sheet data using the link option pointing to the cell A1 of sheet Index. One can also specify links to
external sources. For demonstration, we add a link to the GAMS homepage.

Below a screen shot showing both sheets data and Index created by the commands above:

This example is also part of the GAMS Data Utilities Library, see model [GDXXRWExample16] for
reference.

6.28 GDXXRW 3161

6.28.7 Reading and Writing, Extended Use - Examples:

6.28.7.1 Reads a Table from Spreadsheet, manipulates the Data and writes back to
Spreadsheet

In the following example, we read data from a spreadsheet and save the data in a GDX file. Using the
$gdxIn and $load GAMS directives, we load the data from the GDX file into GAMS afterwards. The
GAMS program modifies the data and at the end of the run the data is saved in a new GDX file (tmp.gdx).
The last step updates the spreadsheet with the modified parameter.

We read the spreadsheet and load the data from the resultant GDX file at compile time. The data
modification and the unloading and writing process are done at execution time, using the execute unload

and execute directives:

$call gdxxrw test1.xlsx dSet=I rng=A2:A3 rDim=1 dSet=A rng=B1:D1 cDim=1 par=X rng=A1:D3 rDim=1 cDim=1

$gdxIn test1.gdx

Set I(*), A(*);

$load I A

Parameter X(I,A);

$load X

display I, A, X;

$gdxIn

X(I,A) = - X(I,A);

execute_unload ’tmp.gdx’, I, A, X;

execute ’gdxxrw tmp.gdx output=test1.xlsx par=X rng=EX6!A1:D3 rDim=1 cDim=1’;

The parameter is written to the sheet EX6. However, since we only write the parameter X, we do not
necessarily have to unload the set I and A.

This example is also part of the GAMS Data Utilities Library, see model [GDXXRWExample13] for
reference.

6.28.7.2 Reading Data from Spreadsheet and writing Data to Spreadsheet after Solve

In this example, we use a modified version of the [trnsport] model from the GAMS model library to
demonstrate the process of reading data, defining and solving the model and writing a solution report to
spreadsheet altogether. This example illustrates in particular:

• Compilation phase

• Read data from a spreadsheet and create a GDX file

• Loading sets from the GDX file

• Using the sets as a domain for additional declarations

• Reading additional data elements

3162 Tools Manuals

• Execution phase

• Solve the model

• Write solution to a GDX file

• Use GDX file to update spreadsheet

A parameter file howToRead.txt is used to increase the readability of the GDXXRW call. Note that the
dimension of the scalar we want to read is set to zero. The range of each parameter can be specified by
using the top left corner only, since there are two empty rows separating the data blocks from each other
and the default value of skipEmpty signals to stop reading if two empty rows occur.

$onEcho > howToRead.txt

dSet=i rng=A3:A4 rDim=1

dSet=j rng=B2:D2 cDim=1

par =d rng=A2 rDim=1 cDim=1

par =a rng=A8 rDim=1

par =b rng=A13 rDim=1

par =f rng=A19 dim=0

$offEcho

$call gdxxrw TrnsportData.xlsx @howToRead.txt

$gdxIn TrnsportData.gdx

Set

i(*) ’canning plants’

j(*) ’markets’;

$load i j

display i, j;

Parameter

a(i) ’capacity of plant i in cases’

b(j) ’demand at market j in cases’

d(i,j) ’distance in thousands of miles’;

Scalar f ’freight in dollars per case per thousand miles’;

$load d a b f

$gdxIn

Parameter c(i,j) ’transport cost in thousands of dollars per case’;

c(i,j) = f*d(i,j)/1000;

Variable

x(i,j) ’shipment quantities in cases’

z ’total transportation costs in thousands of dollars’;

Positive Variable x;

Equation

cost ’define objective function’

supply(i) ’observe supply limit at plant i’

demand(j) ’satisfy demand at market j’;

cost.. z =e= sum((i,j), c(i,j)*x(i,j));

supply(i).. sum(j, x(i,j)) =l= a(i);

demand(j).. sum(i, x(i,j)) =g= b(j);

6.28 GDXXRW 3163

Model transport / all /;

solve transport using lp minimizing z;

display x.l, x.m;

execute_unload ’TrnsportData.gdx’, x;

execute ’gdxxrw TrnsportData.gdx output=TrnsportData.xlsx squeeze=n var=x.l rng=Sheet2!A1’;

The solution is written to Sheet2 of the input file TrnsportData.xlsx by executing GDXXRW at execution
time. The var statement is used in the symbol specification to write out the level of variable x. In order
to write zero values, the squeeze option is disabled. Otherwise, the cells C4 and D3 remain blank.

This example is also part of the GAMS Data Utilities Library, see model [GDXXRWExample14] for
reference.

6.28.7.3 Reading Special Values from Spreadsheet and writing to Spreadsheet

This example demonstrates the reading and writing of special values with GDXXRW.

Reading Special Values
Assuming we want to read the special values stored in the spreadsheet below:

The following statement reads parameter vIN from the spreadsheet above:

gdxxrw exampleData.xlsx output=specialValues.gdx NaIn=N/A squeeze=n par=vIN cDim=1 rng=specialValues!A1:S2

To affect the parameter vIN, the global options NaIn and squeeze (to display zero values in the GDX file)
must be specified in advance.

The cells containing the strings Eps, +Inf, -Inf, Inf, NA and Undf are read in correctly. The division by
zero error in the spreadsheet will be written as Undf. We defined a new string - 'N/A' - within the option
NaIn to be recognized as NA additionally. Within GAMS, there is no directly comparable data type for
'None' and 'Null', so these strings will be interpreted as Undf. Note the importance of the cell format
specified within Excel. For instance, the values for v13 and v14 are different, although both fields contain
a Dollar sign, since the cell format of M2 is 'General', while the cell format of N2 is 'Currency'.
The boolean 'False' turns into zero after reading, while 'True' turns into -1. Note here, that this is
independent whether the booleans are written as plain text within Excel or by using the formulas '=True()'
resp. '=False()'. We disabled squeeze in order to display the zero values for the elements v16, v18 and
v19 in the GDX file.

Writing Special Values
Initially, we declare a parameter with special values and generate a GDX file from it:

$onUndf

Set v / v1*v7 /;

Parameter vOUT(v) / v1 Eps, v2 +Inf, v3 -Inf, v4 Inf, v5 Undf, v6 0.0, v7 NA /;

Scalar S / 0 /;

execute_unload ’specialValues.gdx’, v, vOUT, S;

3164 Tools Manuals

We will write the parameter vOUT to spreadsheet twice. At first to demonstrate the usage of EpsOut,
pInfOut, mInfOut, UndfOut, zeroOut and NaOut, the second time to show the default settings when
writing. Those output string options may be useful, if the GAMS default settings are not appropriate for
your Excel calculations later on or to customize the representation of the values in Excel in general. Note
that there is also a scalar declaration in order to demonstrate the different behavior when writing scalars
and parameter with zero values to Excel while using the zeroOut option.

$onEcho > howToWrite.txt

* defining new strings to be used when writing special values:

EpsOut=0 pInfOut=+1E+100 mInfOut=-1E+100 UndfOut=undefined zeroOut=zero NaOut=notAvailible

* now write parameter vOUT with merge to force the column F containing set element "v6" and vOUT("v6")

set=v rng=specialValues!A6:G6 cDim=1

par=vOUT rng=specialValues!A6:G7 cDim=1 merge

text="Special values of Parameter vOUT written with user defined output strings:" rng=specialValues!A5

text="Scalar S / 0 /:" rng=specialValues!I6

par=S rng=specialValues!I7

* reset the strings for special values back to default und write vOUT again

resetOut

set=v rng=specialValues!A10:G10 cDim=1

par=vOUT rng=specialValues!A10:G11 cDim=1 merge

text="Special values of Parameter vOUT written with default output strings:" rng=specialValues!A9

text="Scalar S / 0 /:" rng=specialValues!I10

par=S rng=specialValues!I11

$offEcho

execute ’gdxxrw specialValues.gdx output=exampleData.xlsx @howToWrite.txt’;

In order to increase readability when executing GDXXRW, we use a parameter file named howToWrite.txt
and additionally, we write some text out to structure the Excel file. The range for the non-default values
is A6:G7. We define the new strings to be used for the special values first, affecting the following symbols.
To write the default values to the range A10:G11, we use the resetOut option to reset the output strings
to default, otherwise, the new strings remain in effect, since they are global options.

As mentioned briefly above, the zeroOut option affects the scalar S and the parameter vOUT differ-
ently. While we get the expected result - 'zero' - for the scalar S, the cell F7 for the zero value of
vOUT remains empty, since zero values of parameters are not even part of the GDX file in general
(and cannot be added from your GAMS model; Note here, that the squeeze options only affects the
writing of sub-fields of variables and equations). Therefore, cell F11 has no value, too. Though scalars
with zero values are stored in the GDX file. We'll present a workaround for writing zero values of
a parameter to spreadsheet in the next example Writing Parameter to Spreadsheet including Zero Values.

The complete example is also part of the GAMS Data Utilities Library, see model [GDXXRWExample8]
for reference.

Note

• When writing to a spreadsheet, special values such as Eps, NA, Undf and Inf will be written
but this can be changed. When reading data from a spreadsheet, the ASCII strings for these
special character strings will be used to write corresponding special values to the GDX file.

• Cells that are empty or zero will not be written to the GDX file.

6.28 GDXXRW 3165

6.28.7.4 Writing Parameter to Spreadsheet including Zero Values

There is no straight way to write zero values of a GAMS parameter to spreadsheet from your model
using GDXXRW, since zero values of a parameter are not stored in the GDX file (see also the previous
example Reading Special Values from Spreadsheet and writing to Spreadsheet). However, instead of the
zero values one can store an EPS in the GDX file and instruct GDXXRW to use a zero when writing the value
for EPS using the epsOut option afterwards as demonstrated below:

Set i / i1*i9 /;

Parameter A(i), Amod(i);

A(i) = uniformInt(0,1);

* Amod(i) = A(i) if A(i) <> 0 and Amod(i) = EPS if A(i) = 0

Amod(i) = EPS$(not A(i)) + A(i);

* Unload the unmodified and modified parameter and write to spreadsheet using an option file

execute_unload ’zeroPar1.gdx’ A Amod;

$onEcho > howToWrite1.txt

text="Parameter A" rng=A1

par=A rng=A2

text="Modified Parameter Amod written with epsOut: 0" rng=A5

epsOut=0 par=Amod rng=A6

$offEcho

execute ’gdxxrw zeroPar1.gdx output=writingZeros.xlsx @howToWrite1.txt’;

This approach is impracticable in the unlikely event that there are already EPS values in your parameter
and you want to write these as EPS to your spreadsheet.

An alternate approach regarding variables while exploiting the squeeze option is demonstrated below
(parameter A and set i refer to the data above):

Variable dummyPar(i);

dummyPar.l(i) = A(i);

* In order to write every entry of dummyPar in the spreadsheet, one must allocate

* a non-zero value to one of the variable attributes .m, .lo or .up

dummyPar.up(i) = 1;

* Unload the dummy variable and write the .l subfield to spreadsheet while disabling squeeze

execute_unload ’zeroPar2.gdx’ dummyPar;

$onEcho > howToWrite2.txt

text="Variable dummyPar written with squeeze: n" rng=A9

squeeze=n var=dummyPar.l rng=A10

$offEcho

execute ’gdxxrw zeroPar2.gdx output=writingZeros.xlsx @howToWrite2.txt’;

Creating the additional variable and the allocation of a non-zero value to one of the other variable
attributes are the drawbacks of this approach. Note that we only declared the parameter Amod to keep the
original data of A untouched in order to run the code in a single model and to write A to spreadsheet, too.

This example is also part of the GAMS Data Utilities Library, see model [GDXXRWExample19] for
reference.

3166 Tools Manuals

6.28.7.5 Reading several Scalars from Spreadsheet

Suppose you want to read a large number of scalars (i.e. scalar names and their associated values) for your
model from a spreadsheet file as shown below. Originally, the data was taken from the model [indus89]
of the GAMS Model Library.

Natively, one could declare all scalars directly inside the model and read every single one of them with
GDXXRW afterwards (the following code is shortened for representation):

Scalar baseyear, repco;

$call gdxxrw exampleData.xlsx output=indus89Scalars.gdx par=baseyear rng=indus89Scalars!B2 dim=0 par repco rng=indus89Scalars!B3 dim=0 trace=0

$gdxIn indus89Scalars.gdx

$load baseyear repco

However, the code would become quit long and circumstantially for this example, especially the GDXXRW

statement, because every scalar must be specified individually. Therefore, we present a more sneaky way
to tackle the problem. At first, the file mkScalar.gms is written. We declare a set and a parameter to
hold the scalar names and their values. A simple GDXXRW call is used to read the names and values from
the file exampleData.xlsx. Afterwards, we load the data using $gdxIn and $load. The result of this is a
single parameter containing the scalar values defined over a set containing the scalar names. However,
this is not exactly what we are looking for. To transform this representation into several single scalar
definitions, we use a simple loop over the set scalarNames and the Put Writing Facility to generate a file
scalars.gms, containing those single scalar statements.

$onEchoV > mkScalar.gms

Set scalarNames;

Parameter scalarValues(scalarNames);

$call gdxxrw exampleData.xlsx output=indus89Scalars.gdx set=scalarNames rng=indus89Scalars!A2:A22 rDim=1 par=scalarValues rng=indus89Scalars!A2:B22 rDim=1

$ifE errorLevel<>0 $abort Problems reading sheet indus89Scalars with GDXXRW

$gdxIn indus89Scalars.gdx

$load scalarNames scalarValues

File fs / ’scalars.gms’ /;

put fs;

loop(scalarNames, put / ’Scalar ’ scalarNames.tl ’ / ’ scalarValues(scalarNames):>20:10 ’ /;’;);

$offEcho

$call gams mkScalar

$include scalars.gms

Calling the file mkScalar.gms will create the file scalars.gms, containing all those scalar statements
(shortened for representation):

Scalar baseyear / 1988.0000000000 /;

Scalar repco / 2.5000000000 /;

Finally, the file scalars.gms is included to your model.

This example is also part of the GAMS Data Utilities Library, see model [GDXXRWExample17] for
reference.

6.28 GDXXRW 3167

6.28.8 Changes in the Set Values Parameter

The following documents some changes that were made when reading a set using the values=string

option. Reading a domain or a parameter was not affected by these changes.

To illustrate the various behaviors in different versions of GDXXRW, we are using the spreadsheet data as
shown below, using the following call:

$call gdxxrw test.xlsx set=one rng=B2 rDim=1 values=string set=two rng=B1 rDim=1 cDim=1 values=string

We read the one dimensional set in column B by specifying the top-left corner of the data (cell B2) or the
full range (B2..B5). A two dimensional set is read using the top-left corner of the data (cell B1) or the
full range (B1..E5). Variations are introduced by specifying options for values to be string or yn or
noData. The option value all is only available in later versions of GDXXRW and was used to introduce the
same behavior as strings in earlier versions.

6.28.8.1 Chronological description of the changes made to the Values option:

• GAMS versions prior to version 24.3:

values=string results in reading the data dense. The contents of a cell is used for the
set associated text and an element is included even if the data cell is empty.

• GAMS version 24.3.1

We changed the interpretation of string to mean that the set element was only to be
included when the string data was not empty. Note below that element a4 is missing from
the one-dimensional set and so are a1.b1, a2.b2 etc from the two-dimensional set. For
the two-dimensional case this looked more or less how the GAMS compiler interprets a
table statement. Unfortunately, the interpretation of empty data cells was also applied to
one-dimensional sets leading to undesired results.

• GAMS version 24.4.1

Recognizing that reading a set dense was no longer available, we introduced a new option
values=all. This allowed us to read Excel data the same way as was possible before
version 24.3.1 using the values=string i.e. reading the data dense and including all cells
whether the data cell is empty or not and use the content of the data cell for the set
associated texts.

• GAMS version 24.4.6 (Current status)

We decided to remove some confusion with the interpretation of the values option by
introducing the options dense and sparse and flagging the options strings and all as
deprecated. Both strings and all are replaced with dense.

Backward compatibility issues.

With these changes we broke our in house rule not to introduce changes that break backward
compatibility. Because of this, the user needs to change the parameters for the GDXXRW call or
change the workbook data. The parameters for the call should be changed from values=string

to values=dense for one-dimensional sets where we specify the top-left corner only. In case
the data in the workbook needs to be changed, inserting a string to in the data cell will address
the issue. In the example on the top of the page, inserting a 'Y' in cell C5.

3168 Tools Manuals

6.29 Invert

Note

This tool is part of the GAMS Tools Library. Please inspect the general information about GAMS
Tools.

This calculates the inverse of a square matrix A: A∗AInv = I. The matrices A and AInv are indexed over
(i,i).

6.29.1 Usage

Command line:

gamstool [linalg.]Invert i A AInv gdxIn=fileIn.gdx gdxOut=fileOut.gdx

Compile time:

$callTool [linalg.]Invert i A AInv [gdxIn=fileIn.gdx] [gdxOut=fileOut.gdx]

Execution time:

executeTool ’[linalg.]Invert i A AInv [gdxIn=fileIn.gdx] [gdxOut=fileOut.gdx]’;

Where:

Argument Description

i Name of set used in matrix i(∗).

A Name of two-dimensional matrix parameter A(i,i).

AInv Name of two-dimensional parameter containing the inverse AInv(i,i).

The following parameters are available:

Parameter Description

gdxIn=fileIn.gdx Name of GDX file that contains symbols i and A. Mandatory if
called from the command line, otherwise optional.

gdxOut=fileOut.gdx Name of GDX file that contains symbol AInv after execution.
Mandatory if called from the command line, otherwise optional.

6.30 MDB2GMS 3169

6.29.2 Example

Set i /i1*i3 /;

Alias (i,j);

Table a(i,j) ’original matrix’

i1 i2 i3

i1 1 2 3

i2 1 3 4

i3 1 4 3;

Parameter inva(i,j) ’inverse of a’;

execute_unload ’a.gdx’, i, a;

executeTool.checkErrorLevel ’linalg.invert i a inva -gdxIn=a.gdx -gdxOut=b.gdx’;

execute_load ’b.gdx’, inva;

display a, inva;

6.30 MDB2GMS

Author

Erwin Kalvelagen

Attention

MDB2GMS is deprecated (see GAMS 40 MDB2GMS release notes). Please use Connect agent SQLReader
instead.

6.30.1 Overview

MDB2GMS is a tool to convert data from an Microsoft Access database into GAMS readable format. The
source is an MS Access database file (.mdb or .accdb) and the target is a GAMS Include File (.inc) or a
GAMS GDX File (.gdx).

When running the executable mdb2gms.exe without command-line arguments, the tool will run interactively
with a built-in GUI interface. Alternatively MDB2GMS can be run in batch mode, which is useful when
running it directly from a GAMS model without user intervention using the $call command at compile
time or the execute command at execution time.

Database tables can be considered as a generalization of a GAMS parameter. GAMS parameters have
multiple index columns but just one value column. If the table is organized as multi-valued table, a
UNION operation in the SQL statement can be used to generate the correct GAMS file.

There are no special requirements on the data types used in the database. The data is converted to strings,
which is almost always possible. Data types like LONG BINARY may not be convertible to a string, in
which case an exception will be raised. In general NULL's should not be allowed to get into a GAMS
data structure. The handling of NULL's can be specified in an option.

Besides parameters it is also possible to generate set data.

3170 Tools Manuals

6.30.2 Requirements

MDB2GMS runs only on Windows PC's and with MS Access installed. MS Access comes with certain
versions of MS Office, but some MS Office versions will not include Access. The actual retrieval of the
database records is performed by [DAO] (https://en.wikipedia.org/wiki/Data access object) or
Data Access Objects, an object layer for accessing the database. The actual database is the Jet engine,
which performs the queries and retrieves the data. Also consider to use SQL2GMS instead of MDB2GMS, if
MS Access is not installed on your system.

To use this tool effectively you will need to have a working knowledge of [SQL] (https://en.wikipedia.org/wiki/SQL)
in order to formulate proper database queries.

6.30.3 Batch Usage

MDB2GMS can be run in batch mode without user intervention from within the GAMS model by using the
$call resp. execute statements or directly from command prompt while specifying all arguments in the
command-line. A MDB2GMS batch call is of the following form:

mdb2gms inputFile outputFile queryString

A proper batch call will at least contain the following three command-line arguments:

1. The name of the MS Access database inputFile must be specified (.mdb or .accbd format). Use the
I argument to enter the file name, i.e. I=inputFile.

2. The name of outputFile, either an include file (.inc) or GDX file (.gdx), must be specified. Using an
include file to store the results of the query is indicated by the option O, i.e. O=outputFile.inc,
while the use of a GDX file is indicated by the option X, i.e. X=outputFile.gdx.

3. The SQL queryString, containing the SQL statement to be executed on the database, must be
specified within the option Q, i.e. Q=queryString.

See also Command-line Arguments below for a complete list of all possible command-line arguments.
Consider that the $call or execute usage is rather error prone and you will need to spend a little bit of
time to get the call correct and reliable. Alternatively, use the interactive built-in GUI interface or enter
the command-line arguments in an external text file in order to write a more structured and readable
command. The use of an external parameter file is indicated by preceding the file name with a @ (At sign).

Also consider to take a look at the section Strategies, mentioning some of the drawbacks of the batch
usage and how to overcome them.

If you only specify I=inputFile then the interactive user interface is started with an initial set-
ting of the input file name edit box equal to the name given in the command-line argument. Only
if an input file, an output file and a query string is provided, the call will be considered as batch invocation.

6.30.3.1 Command-line Arguments

The following table summarizes the command-line arguments that can be specified when using MDB2GMS

directly from the GAMS model or command prompt.

https://en.wikipedia.org/wiki/Data_access_object
https://en.wikipedia.org/wiki/SQL

6.30 MDB2GMS 3171

Argument Interpretation Default Description

I inputFile none Specify the name of the input file
(required).

O outputIncludeFile none Specify the name of the output file
(.inc). Either O= or X= must be
specified (or both).

On n-th outputIncludeFile none Match the nth query with the nth
output file (.inc format) if multiple
queries are used.

X outputGDXFile none Specify the name of the output file
(.gdx). Either O= or X= must be
specified (or both).

Q Query none This option can be used to specify
a SQL query (required).

Qn n-th Query none Match the nth query with the nth
output file (.inc) format or with
the nth set- or parameter name
when writing to GDX if multiple
queries are used.

S setName none If we write to a GDX file, use this
option to specify the name of a set
to be used inside the GDX file.

Sn n-th setName none Match the nth query with the nth
set in the GDX file if multiple
queries are used.

Y setName (with expl. text) none If we write to a GDX file, use this
option to specify the name of a
set to be used inside the GDX file.
Use this argument to store a set
with explanatory text.

Yn n-th setName (with expl. text) none Match the nth query with the nth
set (with explanatory text) in the
GDX file if multiple queries are
used.

P parameterName none If we write to a GDX file, use this
option to specify the name of a
parameter to be used inside the
GDX file.

Pn n-th parameterName none Match the nth query with the nth
parameter in the GDX file if mul-
tiple queries are used.

D Debug disabled Generate debug information.

B Quote Blanks disabled Quote strings if they contain
blanks or embedded quotes.

M Mute disabled Controls if additional information
is written to the log and include
file.

L Listing disabled Controls if the data is embedded
in the listing file.

@fileName ext. options file none Causes the program to read op-
tions from an external text file.

N iniFileName mdb2gms.ini Indicates the usage of a different
INI file.

F formatString none Specify a format string.

3172 Tools Manuals

Argument Interpretation Default Description

W Wiring none Maps database columns to GAMS
index positions.

R rowBatchSize 100 Row batch size; the default is 100
records.

Some more detailed remarks on the command-line arguments:

I = string (inputFile, default = none)

This option is required and specifies the name of the .mdb or .accbd file containing
the Access database. If the file contains blanks the name should be surrounded
by double quotes. It is advised to use absolute paths, so Access has no confusion
what file to open. On a network UNC Names can be used, and files from another
computer can be accessed, e.g.

"\\hostname\c\my documents\a.mdb."

This option is required for batch processing. To specify a path equal to the location
where the .gms file is located, you can use:

I=system.fpmydb.mdb

This option is demonstrated in most examples, see Example 1 - Reading a single valued Table
for instance.

O = string (outputIncludeFile, default = none)

This option specifies the name of the output file. The format of the output file will
be a GAMS include file for a parameter or set statement. Make sure the directory
is writable. UNC Names can be used. An output file must be specified for batch
operation: i.e. either O= or X= needs to be specified (or both). The include file
will be an ASCII file that can be read by GAMS using the $include command
within the data definition of a set, parameter or scalar. If the include file already
exists, it will be overwritten. This option is demonstrated in most examples, see
Example 1 - Reading a single valued Table for instance.

On = string (outputIncludeFile, default = none)

When using multiple queries in a single MDB2GMS call, you can append a number to
match a query with an output file, as an include file storing the results for multiples
queries cannot be interpreted later on in your GAMS model when using the include
file in a set or parameter definition:

Q1="SELECT a, b FROM table"

O1=ab.inc

Q2="SELECT c, d FROM table"

O2=cd.inc

See also section Multi-Query Batch Usage or Example 7 - Multi-Query Batch Example
for instance.

X = string (outputGDXFile, default = none)

6.30 MDB2GMS 3173

This option specifies the name of the output file. The format of the output file
will be a GAMS GDX file. Make sure the directory is writable. UNC names
can be used. If the GDX file already exists it will be overwritten - it is
not possible to append to a GDX file. An output file must be specified
for batch operation: i.e. either O= or X= needs to be specified (or both).
This option is demonstrated in Example 5 - Reading Set with Explanatory Text
or Example 7 - Multi-Query Batch Example for instance.

Q = string (Query, default = none)

This option can be used to specify an SQL query. Queries can contain spaces and
thus have to be surrounded by double quotes. For the exact syntax of the queries
that is accepted by Access we refer to the documentation that comes with MS Access.
The query is passed on directly to the Jet database engine, so the complete power
and expressiveness of Access SQL is available. For an exact description of allowed
expressions consult a text on MS Access.

One notable syntax feature is that when field names or table names contain blanks,
they can be specified in square brackets. Examples:

Q="SELECT ∗ FROM mytable"

Q="SELECT year, production FROM [production table]"

Q="SELECT [GAMS City], value FROM [example table], CityMapper

WHERE [Access City]=city"

This option is demonstrated in Example 1 - Reading a single valued Table for in-
stance

Qn = string (Query, default = none)

When using multiple queries in a single MDB2GMS call, you can append a number to
match a query with an output file, as an include file storing the results for multiples
queries cannot be interpreted later on in your GAMS model when using the include
file in a set or parameter definition. In addition, you can match the results of a
query with a specific set- or parameter name when writing to GDX.

Q1="SELECT a, b FROM table"

O1=ab.inc

Q2="SELECT c, d FROM table"

O2=cd.inc

or (GDX output file format - where several sets and parameters can be stored in a
single file):

Q1="SELECT a, b FROM table"

P1=abParameter

Q2="SELECT c FROM table"

S2=cSet

Note the usage of the arguments Pn resp. Sn in order to store the results as
parameter resp. set and to specify the name of the symbols. See also sec-
tion Multi-Query Batch Usage or Example 7 - Multi-Query Batch Example for in-
stance.

S = string (setName, default = none)

If we write to a GDX file, use this option to specify the name of a set to be stored
in the GDX file (containing the results of the query). This option is demonstrated
in Example 4 - Reading a multi dimensional Set.

3174 Tools Manuals

Sn = string (setName, default = none)

If multiple queries are used in a single MDB2GMS call while writing to a GDX file,
use this option to specify the name of the nth set to be stored in the GDX file
(containing the results of the nth query), e.g.

Q1="SELECT i FROM table"

S1=iSet

Q2="SELECT j FROM table"

S2=jSet

See also section Multi-Query Batch Usage or Example 7 - Multi-Query Batch Example
for instance.

Y = string (setName, default = none)

If we write to a GDX file, use this option to specify the name of a set to be used
inside the GDX file. The last column specified within the select clause in the
SQL statement will be used as explanatory text. This option is demonstrated in
Example 5 - Reading Sets with Explanatory Text for instance.

Yn = string (setName, default = none)

If multiple queries are used in a single MDB2GMS call while writing to a GDX file, use
this option to specify the name of the nth set (with explanatory text) to be stored
in the GDX file (containing the results of the nth query), e.g.

Q1="SELECT i, explTextForSeti FROM table"

Y1=iSet

Q2="SELECT j, explTextForSetj FROM table"

Y2=jSet

The last column specified within the select clause in the SQL statements will be
used as explanatory text.

P = string (parameterName, default = none)

If we write to a GDX file, use this option to specify the name of a parameter to be
stored the GDX file (containing the results of the query).

Pn = string (parameterName, default = none)

If multiple queries are used in a single MDB2GMS call while writing to a GDX file, use
this option to specify the name of the nth parameter to be stored in the GDX file
(containing the results of the nth query), e.g.

Q1="SELECT i, j, value FROM table"

A1=ijValue

Q2="SELECT n, m, value FROM table"

A2=nmValue

See also section Multi-Query Batch Usage or Example 7 - Multi-Query Batch Example
for instance.

D (Debug, default = disabled)

This option can be used for debugging purposes. If specified the import filter will
not run minimized but ”restored”, i.e. as a normal window. In addition the program
will not terminate until the user clicks the Close button. This allows you to monitor
possible errors during execution of MDB2GMS.

6.30 MDB2GMS 3175

B (Quote Blanks, default = disabled)

If this parameter is specified, strings that have blanks in them will be quoted. If
the string is already quoted this step is not performed. If the name contains an
embedded single quote, the surrounding quotes will be double quotes. If the name
already contains a double quote, the surrounding quotes will be single quotes. If
both single and double quotes are present in the string, then all double quotes are
replaced by single quotes and the surrounding quotes will be double quotes. By
default this option is turned off. For more information see subsection Quotes. This
option only applies to an output include file.

M (Mute, default = disabled)

Run in modest or mute mode: no additional information, such as version number,
number of rows in the data, elapsed time, used query etc. is written to the log and
include file.

L (Listing, default = disabled)

Embed the data between the $offListing and $onListing dollar control options,
so the data will not be listed in the listing file. This is a quick way to reduce the
size of the listing file when including very large data files into the model. Otherwise
the listing file would become too large to be handled comfortably.

@fileName = string (fileName, default = none)

Causes the program to read options from an external text file. If the file name
contains blanks, it can be surrounded by double quotes. The option file contains
one option per line, in the same syntax as if they were specified directly on the
command-line. See also Command Files for some further details.

N = string (fileName, default = mdb2gms.ini)

Use a different INI file than the standard mdb2gms.ini located in the same directory
as the executable mdb2gms.exe.

F = string (formatString, default = none)

In special cases we can apply a format string on the include file output (not for
GDX output). Each column in the result set is a string and can be represented by a
s in the format string.

W = string (wiring, default = none)

By using the W option, one can map database columns to GAMS index positions.
See model [Wiring] for reference.

R = integer (rowBatchSize, default = 100)

Row batch size; the default is 100 records. This option must be specified in an INI
file when using the interactive mode of MDB2GMS.

3176 Tools Manuals

6.30.3.2 Example 1 - Reading a single valued Table

Suppose we want to read the distances parameter of the [trnsport] model from the GAMS Model
Library. The data is stored in the Microsoft Access Database format (file Sample.mdb).

Figure 6.55 Table: distances

The data can be queried with a simple SQL statement:
SELECT city1, city2, distance
FROM distances

By running the following MDB2GMS statement, the connection to the database Sample.mdb is established.
In addition, the data will be queried and the results are written to a GAMS include file afterwards (.inc).

mdb2gms I=Sample.mdb Q="SELECT city1, city2, distance FROM distances" O=distances.inc

The MS Access database file name is specified using the argument I. Note that the string is enclosed by
quotes, as the string contains blanks. The arguments Q and O are used to specify the query and the
output file name (and format).

The generated include file distances.inc looks like:

* ---

* MDB2GMS 24.8.5 r61358 Released May 10, 2017 VS8 x86 32bit/MS Windows

* Erwin Kalvelagen, GAMS Development Corp

* ---

* DAO version: 14.0

* Jet version: 4.0

* Database: F:\datalib\Sample.mdb

* Query: SELECT city1, city2, distance FROM distances

* ---

SEATTLE.NEW-YORK 2.5

SAN-DIEGO.NEW-YORK 2.5

SEATTLE.CHICAGO 1.7

SAN-DIEGO.CHICAGO 1.8

SEATTLE.TOPEKA 1.8

SAN-DIEGO.TOPEKA 1.4

* ---

The commented header section summarizes some information about the MDB2GMS resp. GAMS version
and about the executed database query. The standard export format is to consider the last column as
the value column (containing the distances) and the previous columns as the indices (containing the city
names). The indices are separated by a dot, allowing the generated include file to be used as part of a
parameter declaration statement in your GAMS model.

Retrieving the data using MDB2GMS from the database and including the queried data in your GAMS model
within the parameter declaration statement (at compile time) can be combined in the following way:

6.30 MDB2GMS 3177

Set

i ’canning plants’ / seattle, san-diego /

j ’markets’ / new-york, chicago, topeka /;

$call mdb2gms I=Sample.mdb Q="SELECT city1, city2, distance FROM distances" O=distances.inc

Parameter d(i,j) ’distance in thousands of miles’ /

$include distances.inc

/;

display d;

Finally, the values of the parameter d are displayed:

new-york chicago topeka

seattle 2.500 1.700 1.800

san-diego 2.500 1.800 1.400

This example is also part of the GAMS Data Utilities Library, see model [Distances1] for reference.
Note that the query results are written to a GDX file in addition.

6.30.3.3 Example 2 - Reading a multi valued Table

In this scenario, we want two read the three index columns year, loc, prod and the value columns sales
and profit from the database file Sample.mdb. Therefore, we use two separate parameters and queries
or alternatively a parameter with an extra index position (for sales resp. profit) and a UNION select.

Consider the table with two value columns sales and profit:

Figure 6.56 Table: data (shortened for presentation)

Two separate Parameters

A simple way to import this into GAMS is to use two parameters and two SQL queries. The SQL queries
can look like:
SELECT year, loc, prod, sales
FROM data
SELECT year, loc, prod, profit
FROM data

We can generate a include file sales.inc by running the following command:

3178 Tools Manuals

mdb2gms I=Sample.mdb Q="SELECT year, loc, prod, sales FROM data" O=sales.inc

Note that we specify the first query in order to select the sales and the relevant index columns within the
Q argument. The query results are written to sales.inc using the O argument. Analogously we generate a
include file profit.inc by running the following command while specifying the second query in order to
obtain the profits and the relevant index columns:

mdb2gms I=Sample.mdb Q="SELECT year, loc, prod, profit FROM data" O=profit.inc

Retrieving the data using MDB2GMS from the database Sample.mdb and including the queried data in your
GAMS model within the parameter declaration statements of sales and profit (at compile time) can be
combined in the following way:

Set

year ’years’ / 1997*1998 /

loc ’locations’ / nyc, was, la, sfo /

prd ’products’ / hardware, software /;

$call mdb2gms I=Sample.mdb Q="SELECT year, loc, prod, sales FROM data" O=sales.inc

Parameter sales(year,loc,prd) /

$include sales.inc

/;

$call mdb2gms I=Sample.mdb" Q="SELECT year, loc, prod, profit FROM data" O=profit.inc

Parameter profit(year,loc,prd) /

$include profit.inc

/;

This example is also part of the GAMS Data Utilities Library, see model [SalesProfitDB1] for reference.

Single Parameter with extra Index Position

The operation can also be performed in one big swoop by using a different GAMS datastructure, i.e. a
single parameter is defined with an extra index type to indicate the data type (sales or profit). The index
and value columns will be selected by the following SQL statement. Note the UNION operation in order
to combine the results and the strings 'sales' resp. 'profit' to identify the data type later on.
SELECT year, loc, prod, ’sales’, sales
FROM data
UNION
SELECT year, loc, prod, ’profit’, profit
FROM data

The data is accessed, queried and written to data.inc by running the following command:

mdb2gms @howToRead.txt

Note that usage of the external parameter file howToRead.txt shown below in order to increase the
readability of the command (one argument per line, quotes can be omitted):

I=Sample.mdb

Q=SELECT year, loc, prod, ’sales’, sales FROM data UNION SELECT year, loc, prod, ’profit’, profit FROM data

O=data.inc

The generated include file data.inc looks like (shortened for presentation):

6.30 MDB2GMS 3179

* ---

* MDB2GMS 24.8.5 r61358 Released May 10, 2017 VS8 x86 32bit/MS Windows

* Erwin Kalvelagen, GAMS Development Corp

* ---

* DAO version: 14.0

* Jet version: 4.0

* Database: F:\datalib\Sample.mdb

* Query: SELECT year, loc, prod, ’sales’, sales FROM data UNION SELECT year, loc, prod, ’profit’, profit FROM data

* ---

1997.la.hardware.profit 8

1997.la.hardware.sales 80

1997.la.software.profit 16

1997.la.software.sales 60

1997.nyc.hardware.profit 5

1997.nyc.hardware.sales 110

1997.nyc.software.profit 10

1997.nyc.software.sales 100

1997.sfo.hardware.profit 9

1997.sfo.hardware.sales 80

1997.sfo.software.profit 10

1997.sfo.software.sales 50

1997.was.hardware.profit 7

1997.was.hardware.sales 120

1997.was.software.profit 20

1997.was.software.sales 70

1998.la.hardware.profit 6

1998.la.hardware.sales 70

* ---

Retrieving the data using MDB2GMS from the database and including the queried data in your GAMS
model within the parameter declaration (at compile time) can be combined in the following way (note
that the parameter has a fourth index type in order to access the data type sales resp. profit):

$onEcho > howToRead.txt

I=Sample.mdb

Q=SELECT year, loc, prod, ’sales’, sales FROM data UNION SELECT year, loc, prod, ’profit’, profit FROM data

O=data.inc

$offEcho

Set

year ’years’ / 1997*1998 /

loc ’locations’ / nyc, was, la, sfo /

prd ’products’ / hardware, software /

type ’data type’ / sales, profit /;

$call mdb2gms @howToRead.txt

Parameter data(year,loc,prd,type) /

$include data.inc

/;

This example is also part of the GAMS Data Utilities Library, see model [SalesProfitDB2c] for reference.

3180 Tools Manuals

6.30.3.4 Example 3 - Reading a one dimensional Set

This example demonstrates how to read set elements of a one dimensional set from a single column of
a MS Access database file. Suppose we want to read the column City1 (see table distances) in order to
define the set i in the GAMS model. Make sure elements are unique by using the distinct operation within
the SQL statement (otherwise there will be an error when including the file within the set definition in
the GAMS model, as some set elements will be redefined):
SELECT distinct(City1)
FROM distances

The include file city1.inc looks like (header informations are removed in order to shorten the representation):

* ---

SAN-DIEGO

SEATTLE

* ---

All steps (data access via MDB2GMS, set definition) can be combined:

$call mdb2gms I=Sample.mdb Q="SELECT distinct(city1) FROM distances" O=city_i.inc

Set i ’canning plants’ /

$include city_i.inc

/;

display i;

The display statement generates the following output in the listing file:

---- 56 SET i

seattle , san-diego

6.30.3.5 Example 4 - Reading a multi dimensional Set

When reading a multi dimensional set from database and writing the results to an include file by using
the O argument, one has to observe that the elements in the include file must have the correct format
in order to be interpreted as element of a multi dimensional set. For instance, a line containing a b c is
not recognized as a proper set element of a three dimensional set. In particular, one has to add periods
between the single elements, i.e. a.b.c will be interpreted correctly.

There are different ways to add these periods explicitly within the SQL statement. E.g. add a dummy
value field by adding a quoted blank to the select clause (index1, index2, index3 and dataTable are some
placeholders):
SELECT index1, index2, index3, " " FROM dataTable

or by adding the periods explicitly within the select clause (|| or & depending on DBMS):
SELECT index1&’.’&index2&’.’&index3 FROM dataTable
SELECT index1||’.’||index2||’.’||index3 FROM dataTable

For instance, suppose we want to define a two dimensional set

6.30 MDB2GMS 3181

Set ij(i,j) ’canning plants - markets’;

based on the data of the table distances stored in Sample.mdb. The following MDB2GMS statement connects
you to the database, queries the columns with the city names and adds an empty value field in order to
create periods between the set elements:

mdb2gms I=Sample.mdb Q="SELECT city1, city2, ’ ’ FROM distances" O=city_ij.inc

The include file city ij.inc looks like (header informations are removed in order to shorten the representa-
tion):

* ---

SEATTLE.NEW-YORK ’ ’

SAN-DIEGO.NEW-YORK ’ ’

SEATTLE.CHICAGO ’ ’

SAN-DIEGO.CHICAGO ’ ’

SEATTLE.TOPEKA ’ ’

SAN-DIEGO.TOPEKA ’ ’

* ---

Without adding the empty value field, the resulting include file would look like (shortened):

* ---

SEATTLE NEW-YORK

SAN-DIEGO NEW-YORK

* ---

Since the periods are missing, the lines are not recognized as valid elements of a two dimensional set. All
steps can be combined in the following way:

Set

i ’canning plants’ / seattle, san-diego /

j ’markets’ / new-york, chicago, topeka /;

$call mdb2gms I=Sample.mdb" Q="SELECT city1, city2, ’ ’ FROM distances" O=city_ij.inc

Set ij(i,j) ’two dimensional set’ /

$include city_ij.inc

/;

display ij;

The display statement generates the following output in the listing file:

---- 75 SET ij two dimensional set

new-york chicago topeka

SAN-DIEGO YES YES YES

SEATTLE YES YES YES

3182 Tools Manuals

Note that there is no need to add periods explicitly when reading multi dimensional sets, if the results are
written only to a GDX file by using the X and S resp. Y arguments, i.e. there is no need to modify the
query:
SELECT index1, index2, index3 FROM datatable

when using MDB2GMS in the following way:

mdb2gms I=Sample.mdb Q="SELECT index1, index2, index3 FROM datatable" X=setData.gdx S=setName

which will generate the file setData.gdx with a three dimensional set named setName containing the
results of the query.

6.30.3.6 Example 5 - Reading Sets with Explanatory Text

In this example, we will demonstrate how to read set elements with explanatory text from a MS Access
database file using MDB2GMS. In the first place, we are going to write the query results to an include file,
afterwards we use the Y argument in order to store the query results as a set with explanatory text in a
GDX file.

Figure 6.57 Table: setData

Note the blanks and the mixed quotes in the column containing the explanatory text. The data can be
accessed by the following query:
SELECT setElement, explText
FROM setData

Writing the Query Results in an include File
The last column in the select clause will be used as explanatory text. Take in mind to add the argument
B in order to handle text strings with embedded blanks or quotes. The following GAMS code accesses the
data and writes the results to an include file setData.inc:

$call mdb2gms I=Sample.mdb B Q="SELECT setElement, explText FROM setData" O=setData.inc

Set a /

$include setData.inc

/;

The resulting include file will look like (header informations are removed in order to shorten the represen-
tation):

6.30 MDB2GMS 3183

* ---

firstSetElement "Explanatory text for the first ’set element’"

secondSetElement ’Explanatory text for the second "set element"’

thirdSetElement "Explanatory text for the third ’set element’"

fourthSetElement ’Explanatory text for the fourth set element’

* ---

Note the handling of the quotes according to the description in B.

Writing the Query Results in a GDX File
When storing the results of the query as a set with explanatory text in a GDX file, there is no need to
observe embedded blanks or quotes manually, instead one can use the Y argument. The last column
specified in the select clause of the SQL statement will be interpreted as explanatory text. The following
GAMS code accesses the data and writes the results to a GDX file setData.inc:

$call mdb2gms I=Sample.mdb Q="SELECT setElement, explText FROM setData" X=setData.gdx Y=set_b

Set b;

$gdxIn setData.gdx

$load b = set_b

$gdxIn

Note that the name of the set in the GDX file is set b (specified within the Y argument), while the name
of the GDX file was specified within the X argument.

6.30.3.7 Example 6 - Index Mapping

In some cases the index elements used in the database are not the same as in the GAMS model. E.g.
consider the case where the GAMS model has defined a set as:

Set i / NY, DC, LA, SF /;

Now assume a data table looks like:

Figure 6.58 Table: example table

This means we have to map ‘new york' to ‘NY' etc. This mapping can be done in two places: either in
GAMS or in the database.

3184 Tools Manuals

Index Mapping done in GAMS

When we export the table directly, we get the following include file (header informations are removed in
order to shorten the representation):

* ---

’new york’ 100

’los angeles’ 120

’san francisco’ 105

’washington dc’ 102

* ---

Note that the single quotes are added by activating the option B (quote blanks), as the index elements
contain blanks. Accessing the data, importing the resulting include file and converting it to a different
index space can be done by the following GAMS code:

Set i / NY, DC, LA, SF /;

Set idb ’from database’ / ’new york’, ’washington dc’, ’los angeles’, ’san francisco’ /;

$call mdb2gms I=Sample.mdb B O="city1.inc" Q="SELECT city, value FROM [example table]"

Parameter dbdata(idb) /

$include city1.inc

/;

Set mapindx(i,idb) / NY.’new york’, DC.’washington dc’, LA.’los angeles’, SF.’san francisco’ /;

Parameter data(i);

data(i) = sum(mapindx(i,idb), dbdata(idb));

display data;

The display statement generates the following output in the listing file:

---- 47 PARAMETER data

NY 100.000, DC 102.000, LA 120.000, SF 105.000

This example is also part of the GAMS Data Utilities Library, see model [IndexMapping1] for reference.

Index mapping done in Database

The second approach is to handle the mapping inside the database. We can introduce a mapping table
that looks like:

6.30 MDB2GMS 3185

Figure 6.59 Table: CityMapper

This table can be used in a join to export the data in a format we can use by executing the query:
SELECT [GAMS City], value
FROM example table, CityMapper
WHERE CityMapper.[Access City]=example table.city

The resulting include file looks like (header informations are removed in order to shorten the representation):

* ---

la 120

ny 100

sf 105

dc 102

* ---

All steps can be combined in the GAMS model:

Set i / NY, DC, LA, SF /;

$onEcho > howToRead.txt

I=Sample.mdb

Q=SELECT [GAMS City], [value] FROM example_table, CityMapper WHERE CityMapper.[Access City]=example_table.city

O=city2.inc

$offEcho

$call mdb2gms @howToRead.txt

Parameter data(i) /

$include city2.inc

/;

display data;

The display statement generates the following output in the listing file:

---- 38 PARAMETER data

NY 100.000, DC 102.000, LA 120.000, SF 105.000

Note: MS Access allows table names with embedded blanks. In that case the table name can be
surrounded by square brackets. Other databases may not allow this.

This example is also part of the GAMS Data Utilities Library, see model [IndexMapping2] for reference.

3186 Tools Manuals

6.30.4 Multi-Query Batch Usage

In some cases a number of small queries need to be performed on the same database. However, several
individual MDB2GMS execution can become expensive, since there is significant overhead in starting Access
and opening the database. For these cases, we have added the option to do multiple queries in one call.
To execute several queries in a single MDB2GMS call and write several GAMS include files containing the
results of the queries, we can use the command-line arguments Qn and On. The structure of a multi-query
call looks like:

I=sample.mdb

Q1=firstQuery

O1=outputFileName.inc

Q2=secondQuery

O2=outputFileName.inc

Q3=thirdQuery

O3=outputFileName.inc

The terms firstQuery, secondQuery etc. are placeholders for some SQL statements. We see that the
argument Qn is matched by an argument On. That means that the results of the n-th query are written to
the n-th output file.

In case we want to store the results of a multi-query call to a single GDX file, we can use the command-line
arguments Qn, Sn, Pn and Yn. The structure of a multi-query call when writing to a GDX file looks like:

I=sample.mdb

X=sample.gdx

Q1=firstQuery

S1=setName

Q2=secondQuery

S2=setName

Q3=thirdQuery

A3=parameterName

Q4=fourthQuery

A4=setName

Again, the terms firstQuery, secondQuery etc. are placeholders for some SQL statements. Here we see
that a query Qn is matched by either a set name Sn or a parameter name Pn, i.e. the results of the first
query will be stored as a set whose name is specified within the S1 argument, the results of the third
query will be stored as a parameter whose name is specified within the P3 argument etc. The X argument
is used to specify the name of the GDX file.

For a complete example see section Example 7 - Multi-Query Batch Example.

6.30 MDB2GMS 3187

6.30.4.1 Example 7 - Multi-Query Batch Example

As an example database we use the following Access table (file Sample.mdb):

Figure 6.60 Table: data (shortened for presentation)

We want to extract the following information:

• The set year

• The set loc

• The set prd

• The parameter sales

• The parameter profit

Output: Several include Files

This can be accomplished using the following GAMS code with multiple queries in a single MDB2GMS call
(note the usage of the distinct operator in the select clauses of the queries whose results will be used as
sets in order to keep the set elements unique):

$onEcho > howToRead.txt

I=Sample.mdb

Q1=SELECT distinct(year) FROM data

O1=year.inc

Q2=SELECT distinct(loc) FROM data

O2=loc.inc

Q3=SELECT distinct(prod) FROM data

O3=prod.inc

3188 Tools Manuals

Q4=SELECT prod, loc, year, sales FROM data

O4=sales.inc

Q5=SELECT prod, loc, year, profit FROM data

O5=profit.inc

$offEcho

$call =mdb2gms @howToRead.txt

Set y ’years’ /

$include year.inc

/;

Set loc ’locations’ /

$include loc.inc

/;

Set prd ’products’ /

$include prod.inc

/;

Parameter sales(prd,loc,y) /

$include sales.inc

/;

display sales;

Parameter profit(prd,loc,y) /

$include profit.inc

/;

display profit;

This example is also part of the GAMS Data Utilities Library, see model [SalesProfitDB3] for reference.

Output: A single GDX File

The same example imported through a GDX file can look like:

$onEcho > howToRead.txt

I=Sample.mdb

X=Sample.gdx

Q1=SELECT distinct(year) FROM data

S1=year

Q2=SELECT distinct(loc) FROM data

S2=loc

Q3=SELECT distinct(prod) FROM data

S3=prd

Q4=SELECT prod, loc, year, sales FROM data

P4=sales

Q5=SELECT prod, loc, year, profit FROM data

P5=profit

$offEcho

6.30 MDB2GMS 3189

$call =mdb2gms @howToRead.txt

Set

y ’years’

loc ’locations’

prd ’products’;

Parameter

sales(prd,loc,y)

profit(prd,loc,y);

$gdxIn Sample.gdx

$load y=year prd loc sales profit

$gdxIn

display sales, profit;

The call of the GDXViewer will display the GDX file in the stand-alone GDX viewer. This example is
also part of the GAMS Data Utilities Library, see model [SalesProfitDB4] for reference.

6.30.5 Interactive Usage

When the tool is called without command-line parameters, it will startup interactively. Using it this way,
one can specify the database file (.mdb or .accbd file), the query and the final destination file (a GAMS
include file or a GDX file) using the built-in interactive environment. The main screen (see figure below)
contains a number of buttons and edit boxes, which are explained below.

3190 Tools Manuals

Figure 6.61 MDB2GMS - Graphical User Interface

• Input file (.mdb or .accbd). This is the combo box to specify the input file. See also inputFile
for some more detailed remarks. The browse button can be used to launch a file open dialog which
makes it easier to specify a file. The file may be located on a remote machine using the notation
\\machine\directory\file.mdb.

• Output GAMS Include file (∗.inc). If you want to create a GAMS include file, then specify
here the destination file. See also outputIncludeFile for some more detailed remarks.

6.30 MDB2GMS 3191

• Output GDX file (∗.gdx). As an alternative to a GAMS include file, the tool can also generate a
GDX file. One or both of the output files need to be specified. See also outputGDXFile for some
more detailed notes.

• SQL Query. The SQL Query box is the place to provide the query. Note that the actual area for
text can be larger than is displayed: use the cursor-keys to scroll. See also Q for some more detailed
remarks. For an exact description of allowed expressions consult a text on MS Access.

• Progress Memo. This memo field is used to show progress of the application. Also error messages
from the database are printed here. This is a read-only field.

• The edit boxes above all have a drop down list which can be used to access quickly file names and
queries that have been used earlier (even from a previous session).

• The Tables button will pop up a new window with the contents of the database file selected in
the input file edit line. This allows you to see all table names and field names needed to specify a
correct SQL query. An exception will be generated if no database file name is specified in the input
edit line.

3192 Tools Manuals

• The Options button will pop up a window where you can specify a number of options.

• Pressing the Help button will show this documentation.

• Pressing the OK button will execute the query and an include file or GDX file will be generated.

• Pressing the Batch button will give information on how the current query can be executed directly
from GAMS in a batch environment. The batch call will be displayed and can be copied to the
clipboard. In the IDE press Ctrl-C or choose Edit|Paste to copy the contents of the clipboard to a
GAMS text file.

• Pressing Close button will exit the application. The current settings will be saved in an INI file so
when you run MDB2GMS again all current settings will be restored.

6.30.5.1 Options

The Options window can be created by pressing the options button:

6.30 MDB2GMS 3193

Figure 6.62 Options Menu of the Graphical User Interface

The following options are available in the options window:

• Quote blanks: Quote strings if they contain blanks or embedded quotes. See also B for some more
detailed notes.

• Mute: Don't include the extra informational text (such as used query etc.) in the include file.

• No listing: Surround the include file by $offListing and $onListing so that the data will not
be echoed to the listing file. The equivalent command-line argument is L.

• Format SQL: If an SQL text is reloaded in the SQL Edit Box, it will be formatted: keywords will
be printed in CAPS and the FROM and WHERE clause will be printed on their own line. If this
check box is unchecked this formatting will not take place and SQL queries will be shown as is.

3194 Tools Manuals

The following options are only needed in special cases:

• NULL: This radio box determines how NULL's are handled. A NULL in an index position or a
value column will usually make the result of the query useless: the GAMS record will be invalid. To
alert you on NULL's the default to throw an exception is a safe choice. In special cases you may
want to map NULL's to an empty string or a 'NULL' string.

• Output Lines: By default output lines are created as follows: all first n-1 fields are considered
indices and the last n-th column is the value. The format corresponding to this situation is ‘%s.%s.%s
%s'` (for a three dimensional parameter). In special cases you may want to tinker with the format
string being used. The fields are all considered strings, so only use s as format placeholder. Make
sure you specify exactly the same number of s's as there are columns in the result set.

The buttons have an obvious functionality:

• OK button will accept the changes made.

• Cancel button wil ignore the changes made, and all option settings will revert to their previous
values.

6.30 MDB2GMS 3195

• Help button will show this help text.

6.30.6 Strategies

Including SQL statements to extract data from a database inside your model can lead to a number of
difficulties:

• The database can change between runs, leading to results that are not reproducible. A possible
scenario is a user calling you with a complaint: ”the model is giving strange results”. You run the
model to verify and now the results are ok. The reason may be because the data in the database
has changed.

• There is significant overhead in extracting data from a database. If there is no need to get new data
from the database it is better to use a snapshot stored locally in a format directly accessible by
GAMS.

• It is often beneficial to look at the extracted data. A first reason, is just to make sure the
data arrived correctly. Another argument is that viewing data in a different way may lead to a
better understanding of the data. A complete ”under-the-hood” approach may cause difficulties in
understanding certain model behavior.

Often it is a good strategy to separate the data extraction step from the rest of the model logic.

If the sub-models form a chain or a tree, like in:

Data Extraction --> Data Manipulation --> Model Definition --> Model Solution --> Report Writing

we can conveniently use the save/restart facility. The individual submodel are coded as:

• Step 0: sr0.gms

$onText

step 0: data extraction from database

execute as: > gams sr0 save=s0

$offText

Set

i ’suppliers’

j ’demand centers’;

Parameter

demand(j)

supply(i)

dist(i,j) ’distances’;

3196 Tools Manuals

$onEcho > howtoRead.txt

I=transportation.mdb

Q1=select name from suppliers

O1=i.inc

Q2=select name from demandcenters

O2=j.inc

Q3=select name,demand from demandcenters

O3=demand.inc

Q4=select name,supply from suppliers

O4=supply.inc

Q5=select supplier,demandcenter,distance from distances

O5=dist.inc

$offEcho

$call =mdb2gms.exe @howtoRead.txt

Set i /

$include i.inc

/;

Set j /

$include j.inc

/;

Parameter demand /

$include demand.inc

/;

Parameter supply /

$include supply.inc

/;

Parameter dist /

$include dist.inc

/;

display i, j, demand, supply, dist;

• Step 1: sr1.gms

$onText

step 1: data manipulation step

execute as: > gams sr1 restart=s0 save=s1

$offText

Scalar f ’freight in dollars per case per thousand miles’ / 90 /;

Parameter c(i,j) ’transport cost in thousands of dollars per case’;

c(i,j) = f*dist(i,j)/1000;

• Step 2: sr2.gms

$onText

step 2: model definition

6.30 MDB2GMS 3197

execute as: > gams sr2 restart=s1 save=s2

$offText

Variable

x(i,j) ’shipment quantities in cases’

z ’total transportation costs in thousands of dollars’;

Positive Variable x;

Equation

ecost ’define objective function’

esupply(i) ’observe supply limit at plant i’

edemand(j) ’satisfy demand at market j’;

ecost.. z =e= sum((i,j), c(i,j)*x(i,j));

esupply(i).. sum(j, x(i,j)) =l= supply(i);

edemand(j).. sum(i, x(i,j)) =g= demand(j);

• Step 3: sr3.gms

$onText

step 3: model solution

execute as: > gams sr3 restart=s2 save=s3

$offText

option lp = cplex;

Model transport / all /;

solve transport using lp minimizing z;

• Step 4: sr4.gms

$onText

step 4: report writing

execute as: > gams sr4 restart=s3

$offText

abort$(transport.modelStat <> 1) "model not solved to optimality";

display x.l, z.l;

A model that executes all steps can be written as:

execute ’=gams.exe sr0 lo=3 save=s0’;

abort$errorLevel "step 0 failed";

execute ’=gams.exe sr1 lo=3 restart=s0 save=s1’;

abort$errorLevel "step 1 failed";

execute ’=gams.exe sr2 lo=3 restart=s1 save=s2’;

abort$errorLevel "step 2 failed";

execute ’=gams.exe sr3 lo=3 restart=s2 save=s3’;

abort$errorLevel "step 3 failed";

execute ’=gams.exe sr4 lo=3 restart=s3’;

abort$errorLevel "step 4 failed";

3198 Tools Manuals

If you only change the reporting step, i.e. generating some output using PUT statements, then you only
need to change and re-execute step 4. If you change solver or solver options, then only steps 3 and 4 need
to be redone. For a small model like this, this exercise may not be very useful, but when the model is
large and every step is complex and expensive, this is a convenient way to achieve quicker turn-around
times in many cases.

The model [MDBSr5] is also part of the GAMS Data Utilities Library.

In some cases the save/restart facility is not appropriate. A more general approach is to save the data
from the database in a GDX file, which can then be used by other models. We can use the model from
step 0 to store the data in a GDX file:

MDB2GDX1.gms

execute ’=gams.exe sr0 lo=3 gdx=trnsport.gdx’;

abort$errorLevel "step 0 failed";

execute ’=gdxviewer.exe trnsport.gdx’;

The model [MDB2GDX1] is also part of the GAMS Data Utilities Library.

We can also let MDB2GMS create the GDX file:

MDB2GDX2.gms

This model demonstrates how to store data from Access database (file Transportation.mdb) into a GDX
file.

$onEcho > howToRead.txt

I=Transportation.mdb

X=Transportation.gdx

Q1=SELECT name FROM suppliers

S1=i

Q2=SELECT name FROM demandcenters

S2=j

Q3=SELECT name, demand FROM demandcenters

P3=demand

Q4=SELECT name, supply FROM suppliers

P4=supply

Q5=SELECT supplier, demandcenter, distance FROM distances

P5=dist

$offEcho

$call =mdb2gms.exe @howToRead.txt

The first approach has the advantage that a complete audit record is available from the data moved from
the database to the GDX file in the sr0.lst listing file. If someone ever wonders what came out of the
database and how this was stored in the GDX file, that file gives the answer.

The model [MDB2GDX2] is also part of the GAMS Data Utilities Library.

To load the GDX data the following fragment can be used:

GDXTRNSPORT.gms

This model demonstrates how to load the transportation data from GDX file at compile time.

6.30 MDB2GMS 3199

Set

i ’suppliers’

j ’demand centers’;

Parameter

demand(j)

supply(i)

dist(i,j) ’distances’;

$gdxIn transportation.gdx

$load i j demand supply dist

display i, j, demand, supply, dist;

DBTimestamp1.gms

In one application I had to retrieve data from the database each morning, at the first run of the model.
The rest of the day, the data extracted that morning could be used. The following logic can implement
this:

$onText

Retrieve data from data base first run each morning.

$offText

$onEcho > getdate.txt

I=%system.fp%transportation.mdb

Q=select day(now())

O=dbtimestamp.inc

$offEcho

$if not exist dbtimestamp.inc $call "echo 0 > dbtimestamp.inc"

Scalar dbtimestamp ’day of month when data was retrieved’ /

$include dbtimestamp.inc

/;

Scalar currentday ’day of this run’;

currentday = gday(jnow);

display "compare", dbtimestamp, currentday;

if(dbtimestamp <> currentday,

execute ’=gams.exe sr0 lo=3 gdx=transportation.gdx’;

abort$errorLevel "step 0 (database access) failed";

execute ’=mdb2gms.exe @getdate.txt’

);

The include file dbtimestamp.inc contains the day of the month (1,..,31) on which the data was extracted
from the database. If this file does not exist, we initialize it with 0. We then compare this number with
the current day of the month. If the numbers do not agree, we execute the database extraction step and
rewrite the dbtimestamp.inc file. This last operation could be done using a PUT statement, but in this
case we used an SQL statement.

The model [DBTimestamp1] is also part of the GAMS Data Utilities Library.

3200 Tools Manuals

6.30.7 Command Files

Parameters can be specified in a command file. This is important if the length of the command-line
exceeds 255 characters, which is a hard limit on the length that GAMS allows for command-lines. Instead
of specifying a long command-line as in:

$call =mdb2gms I="c:\My Documents\test.mdb" O="c:\My Documents\data.inc" Q="SELECT * FROM mytable"

we can use a command-line like:

$call =mdb2gms @"c:\My Documents\options.txt"

The command file

c:\My Documents\options.txt

can look like:

I=c:\My Documents\test.mdb

O=c:\My Documents\data.inc

Q=SELECT * FROM mytable

It is possible to write the command file from inside a GAMS model using the $echo command. The
following example will illustrate this:

$set cmdfile "c:\windows\temp\commands.txt"

$echo "I=E:\models\labordata.mdb" > "%cmdfile%"

$echo "O=E:\models\labor.INC" >> "%cmdfile%"

$echo "Q=SELECT * FROM labor" >> "%cmdfile%"

$call =mdb2gms @"%cmdfile%"

Parameter p /

$include "E:\models\labor.INC"

/;

display p;

Newer versions of GAMS allow the usage of the $onEcho and $offEcho commands:

$set cmdfile "c:\windows\temp\commands.txt"

$onEcho > "%cmdfile%"

I=E:\models\labordata.mdb

O=E:\models\labor.INC

Q=SELECT * FROM labor

$offEcho

$call =mdb2gms @"%cmdfile%"

Parameter p /

$include "E:\models\labor.INC"

/;

display p;

6.30 MDB2GMS 3201

Note that the quotes enclosing strings with blanks like Q=SELECT ∗ FROM labor can be omitted when
using an external parameter file.

If a query becomes very long, it is possible to spread it out over several lines. To signal a setting will
continue on the next line insert the character \ as the last character. E.g.:

Q=SELECT prod, loc, year, ’sales’, sales FROM data \

UNION \

SELECT prod, loc, year, ’profit’, profit FROM data

6.30.8 Notes

6.30.8.1 GDX Files

A GDX file contains GAMS data in binary format. The following GAMS commands will operate on GDX
files: $gdxIn, $load, execute load, execute unload. The GDX=filename command-line argument will save
all data to a GDX file. A GDX file can be viewed in the GAMS IDE using File|Open.

6.30.8.2 UNC Names

UNC means Unified Naming Convention. UNC names are a Microsoft convention to name files across a
network. The general format is:

\\<server>\<share>\<path>\<file>

Examples:

\\athlon\c\My Documents\MDB2GMS.rtf

6.30.8.3 Quotes

Examples of handling of indices when the option B for quoting strings containing blanks is used:

3202 Tools Manuals

6.30.8.4 $CALL Command

The $call command in GAMS will execute an external program at compile time. There are two forms:

The $call command in GAMS will execute an external program at compile time. There are two forms:

$call externalProgram

$call =externalProgram

The version without the leading '=' calls the external through the command processor (command.com or
cmd.exe). The second version with the '=' bypasses the command processor and directly executes the
external program. We mention some of the differences:

1. Some commands are not external programs but built-in commands of the command processor.
Examples are COPY, DIR, DEL, ERASE, CD, MKDIR, MD, REN, TYPE. If you want to execute
these commands you will need to use the form $call externalProgram which uses the command
processor.

2. If you want to execute a batch file (.bat or .cmd file) then you will need to use the form $call
externalProgram.

3. If it is important to stop with an appropriate error message if the external program does not exist,
only use the form $call =externalProgram. The other form is not reliable in this respect. This
can lead to surprising results and the situation is often difficult to debug, so in general we would
recommend to use the form: $call =externalProgram.

4. When calling pure Windows programs it is important to call the second form. The first form will
not wait until the external Windows program has finished. If it is important to use a command
processor in the invocation of a Windows program, use the START command, as in: $call start /w

externalWindowsProgram. Otherwise, it is preferred to use: $call =externalWindowsProgram.

Attention

In general it is recommended to use the $call =externalProgram version for its better error-
handling.

When command line arguments need to be passed to the external program, they can be added to the line,
separated by blanks:

$call externalProgram parameter1 parameter2

$call =externalProgram parameter1 parameter2

The total length of the command line can not exceed 255 characters. If the program name or the
parameters contain blanks or quotes you will need to quote them. You can use single or double quotes. In
general the following syntax will work:

$call ’"external program" "parameter 1" "parameter 2"’

$call ="external program" "parameter 1" "parameter 2"

It is noted that the first form needs additional quotes around the whole command line due to bugs in the
parsing of the $call in GAMS. The second form work without additional quotes only if the = appears
outside the double quotes.

6.31 MessageReceiverWindow 3203

6.30.8.5 Compile Time Commands

All $ commands in GAMS are performed at compile time. All other statements are executed at execution
time. This means that a compile time command will be executed before an execution time command,
even if it is below. As an example consider:

File batchfile / x.bat /;

putClose batchfile "dir"/;

$call x.bat

This fragment does not work correctly as already during compilation, the $call is executed, while the put
statements are only executed after the compilation phase has ended and GAMS has started the execution
phase. The above code can be fixed by moving the writing of the batch file to compilation time as in

$echo "dir" > x.bat

$call x.bat

or by moving the external program invocation to execution time:

File batchfile / x.bat /;

putClose batchfile "dir"/;

execute x.bat;

Notice that all $ commands do not include a semi-colon but are terminated by the end-of-line.

6.31 MessageReceiverWindow

6.31.1 Introduction

MessageReceiverWindow is a graphical tool that receives and displays Windows messages. The tool can
either be used with the put utility feature or with an arbitrary client (e.g. a Python program) that sends
messages to a previously spawned instance of MessageReceiverWindow.exe.

6.31.2 Usage

An instance of MessageReceiverWindow.exe can be started as follows:

MessageReceiverWindow <title>

3204 Tools Manuals

The optional argument title specifies the title of the MessageReceiverWindow instance. If the argument
is omitted, the instance gets the default title Form1. Windows messages of type WM COPYDATA that are
send to the spawned instance, appear in its message log. The Copy To Clipboard button allows to copy
the content of the message log to the clipboard. The Save As ... button can be used to save the content
to a file.

Figure 6.63 MessageReceiverWindow during the execution of Test Library model MRW01.

6.31.3 Special Commands

While arbitrary text messages are diplayed in the message log, there are special commands for controlling
special behavior of an instance of MessageReceiverWindow:

Message Action

@CopyToClipboard Copies the content of the message log to the clipboard

@SaveAs [file] Writes the content of the message log to [file]

@Terminate Terminates the MessageReceiverWindow executable

6.31.4 Usage With put utility

The put utility feature offers a convenient integration of MessageReceiverWindow. The example MRW01
shows how this works. First of all, an instance of MessagereceiverWindow needs to be spawned from
within GAMS:

$set title Form1

Execute.Async "MessageReceiverWindow.exe %title%";

6.32 MODEL2TEX 3205

As soon as the window is ready, text messages or special commands can be sent by using put utility

with the command winMsg:

file f;

put_utility f ’WinMsg’ / ’%title%’ / ’This is some Windows Message from GAMS’;

By sending @Terminate, the instance can be terminated:

put_utility f ’WinMsg’ / ’%title%’ / ’@Terminate’;

6.31.5 Usage With Python

The example MRW02 from the GAMS Test Library demonstrates the use of MessageReceiverWindow
from within Python. While it uses the Python programming language from within an Embedded Code
section, other programming languages can be used as long as they provide access to Windows messages.

First of all, a ctypes.Structure derived class is defined which is used for sending Windows message to a
MessageReceiverWindow instance:
class CopyDataStruct(ctypes.Structure):

fields = [(’dwData’, ctypes.c char p),
(’cbData’, ctypes.c ulong),
(’lpData’, ctypes.c char p)]

The function sendMessage() sends a message to the window with the title windowName. It makes use of
functions FindWindowA and SendMessageA from ctypes.windll.user32:
def sendMessage(windowName, message):

cs = CopyDataStruct()
receiver = ctypes.windll.user32.FindWindowA(None, bytes(windowName, ’utf-8’))
cmd = bytes(message, ’utf-8’)
cs.dwData = 1
cs.cbData = len(cmd)+1
cs.lpData = cmd
WM COPYDATA = 0x4A
ctypes.windll.user32.SendMessageA(receiver, WM COPYDATA, 0, ctypes.byref(cs))

Popen from the subprocess module is used in order to start an instance of MessageReceiverWindow.
The system directory property of a GamsWorkspace instance from the GAMS Python API is used for
finding a GAMS system directory:
windowName = ’MRW Python’
p = Popen([os.path.join(GamsWorkspace().system directory, ’MessageReceiverWindow.exe’), windowName])

As soon as the window is ready, text messages or special commands can be sent by using the previously
defined sendMessage function:
sendMessage(windowName, "This is some Windows Message from Python")

Sending @Terminate will terminate the running MessageReceiverWindow instance:
sendMessage(windowName, "@Terminate")

6.32 MODEL2TEX

A Tool to generate a documentation from GAMS source code in LaTeX format.

Author

Clemens Westphal

Special thanks to Ingmar Schlecht for supporting us and sharing his gamsToLatex implementation.

mailto:cwestphal@gams.com
http://ingmarschlecht.de/gamsToLatex/

3206 Tools Manuals

6.32.1 Introduction

MODEL2TEX is a tool to generate a documentation from GAMS source code in LaTeX format. This LaTeX
output can then be further processed in order to generate pretty output files like PDF. The tool can
be found in the root directory of GAMS. The tool allows to document one specific model symbol inside
of a GAMS program. The resulting documentation contains two parts. The first part shows a list of
symbols that are used by the model. The second part shows the actual algebra of the used equations and
information about the types of used variables. An optional third part can contain additional notes.

6.32.2 Usage

MODEL2TEX is a command line tool. The general command line usage is as follows:

model2tex baseName [-h] [-m MODEL] [-f] [-o OUTPUT]

Since it operates on output files generated by GAMS, the first step is to generate the required files using
the docfile option. In order to to that, execute the following command line:

gams myModel.gms docfile=myModel

The second step is to call MODEL2TEX: model2tex is distributed as Python source code (model2tex.py)
and is executed via model2tex.cmd on Windows and model2tex.sh on all other platforms.

Windows:

model2tex myModel [-m MODEL] [-f] [-o OUTPUT]

Linux/macOS:

model2tex.sh myModel [-m MODEL] [-f] [-o OUTPUT]

The output file myModel.tex can be further processed for example by calling pdflatex in order to generate
a PDF file.

pdflatex myModel.tex

6.32.3 Options

The following parameters can be used when calling MODEL2TEX:

Parameter Description

-m model Since MODEL2TEX generates documentation for one model symbol, the model name
needs to be specified explicitly, if the GAMS file contains more than one model symbol

-f MODEL2TEX does not allow the occurrence of suffixes in equations. This option can be
used in order to force the creation of the tex file by skipping the checks for suffixes.

-o output Use this name for the generated TeX file instead of the base name.

6.32 MODEL2TEX 3207

6.32.4 Using a JSON style file

MODEL2TEX automatically creates a JSON file that can be modified in order to customize the output. If
you want to get the default settings back, just delete the generated JSON file and let MODEL2TEX create it
again. The following list shows the available options in the JSON file:

Parameter Default Description

fontSize 11 The size of the used font

hrules true Horizontal rules are added between equations.

colors black Specifies the used colors in equations for variables, parame-
ters, and sets.

landscape false Allows to change the page format to landscape.

noPowerFunc false Beside a power operator, GAMS offers several power func-
tions. Setting this option to true will replace all power
functions with the power operator.

reduceFrac false Try to resolve unbalanced fractions. This means that frac-
tions with an unbalanced length of denominator and nu-
merator will be changed in order to shrink the fraction.

reduceFracRatio 5.0 This number has only effect when reduceFrac is set to true.
It specifies the ratio between denominator and numerator
that is used as a threshold for reduceFrac.

latexDescription false Explanatory text for symbols is expected to be arbitrary
text. In order to display the text correctly in LaTeX, some
automatic adjustments are applied. If all explanatory text
already contains valid LaTeX strings, this option can be
enabled.

nameMap the original names This map allows to specify alternative names for symbols.

extraSymbols empty list On default, only the required symbols in a GAMS model
symbol are contained in the generated LaTeX file. This list
can be used in order to specify further symbols that should
be included as well.

notes empty list Allows to specify additional notes for the documentation.
Each list element will result in a new line.

6.32.5 Example

This example creates a PDF file for the pump model from the GAMS Model Library.

1. Retrieve model pump from GAMS Model Library

gamslib pump

2. Generate required doc files

gams pump.gms docfile=pump

3. Generate the LaTex files

model2tex pump -m=pump

4. Generate PDF documentation

pdflatex pump.tex

3208 Tools Manuals

The following pictures show snippets from the resulting PDF file:

5. Customizing the JSON style file In order to change the appearance of the PDF file, the generated
JSON file pump.json can be modified. Changing the options in pump.json according to the picture
and executing the commands from step 3 and 4 again will result in a customized PDF output.

6.33 MPS2GMS 3209

6.33 MPS2GMS

Translates an MPS or LP file into an equivalent short generic GAMS program using a GDX file to store
data. A number of solver specific extensions are recognized.

The MPS file is first attempted to be read in free format (no spaces in names). If it seems that row or
column names have spaces but have at most 8 characters, parsing in fixed format is attempted. The MPS
and LP readers of the HiGHS solver are utilized. GAMS Data Exchange (GDX) files and matching GAMS
source is written.

Notes:

• Row, column, SOS (special ordered sets), and cone names can have up to 63 characters and are
tested for case sensitivity and uniqueness because these names become GAMS set members. If the
test fails, the tool attempts to modify the names.

• MPS files may contain multiple N rows. The first one will be used as objective function and
remaining ones will be ignored.

• If no optimization direction is given in a MPS file, minimization will be assumed.

• Variables in SOS must be continuous.

• SOS must not overlap. A variable cannot appear multiple times in the same SOS.

The MPS and LP formats have been extended in different forms by several solver vendors. Not all
extensions are supported by MPS2GMS.

The following MPS sections are recognized by the free format parser:

3210 Tools Manuals

• NAME

• OBJSENSE, MAX, MIN

• ROWS

• COLUMNS

• RHS

• BOUNDS

• RANGES

• QUADOBJ, QMATRIX

• QSECTION, QCMATRIX

• CSECTION with cone types QUAD and RQUAD

• SETS, SOS

• ENDATA

The fixed format parser also recognizes these sections except for QMATRIX, QSECTION, QCMATRIX,
CSECTION, SETS, and SOS.

For a description of the MPS format, see also

• the CPLEX manual,

• the FICO Xpress manual,

• the GUROBI manual,

• the MOSEK manual.

The following LP format features are recognized:

• Comments

• Single objective function: linear or quadratic only

• Constraints (Subject To section): linear or quadratic only

• Variable bounds and types (Bounds, Binaries, Generals, Semis section); to specify semi-integer
variables, they need to appear in sections Generals and Semis

• Special ordered sets (SOS section)

For a description of the LP format, see also

• the CPLEX manual

• the FICO Xpress manual

• the GUROBI manual

• the MOSEK manual

6.33.1 Usage

mps2gms mpsfile | lpfile [gdxfile [gmsfile]] { key=value }

If the first parameter is not of the form key=value and ends with .lp or .lp.gz, it is assumed to be the
name of an LP file, otherwise it is assumed to be the name of an MPS file. If no GDX filename is given,
the name of the MPS or LP file is used, with .mps/.lp (or .mps.gz/.lp.gz) extension replaced by .gdx,
or .gdx appended. If no GMS filename is given, the name of the GDX file is used, with .gdx extension
replaced by .gms, or .gms appended.

Guide to parameters:

https://www.ibm.com/docs/en/icos/22.1.0?topic=cplex-mps-file-format-industry-standard
https://www.fico.com/fico-xpress-optimization/docs/dms2022-01/solver/optimizer/HTML/chapter10_sec_section101.html
https://www.gurobi.com/documentation/9.5/refman/mps_format.html
https://docs.mosek.com/latest/capi/mps-format.html
https://www.ibm.com/docs/en/icos/22.1.0?topic=cplex-lp-file-format-algebraic-representation
https://www.fico.com/fico-xpress-optimization/docs/dms2022-01/solver/optimizer/HTML/chapter10_sec_section102.html
https://www.gurobi.com/documentation/9.5/refman/lp_format.html
https://docs.mosek.com/latest/capi/lp-format.html

6.34 MSAppAvail 3211

Key Description

MPS Name of MPS input file, can be compressed with GZIP

LP Name of LP input file, can be compressed with GZIP

GDX Name of GDX output file

GMS Name of GAMS program output file

CEQUATIONS Whether to write quadratic cones from CSECTION sections into deprecated
=C= equations.
Possible values: 0, N, 1, Y.
Default: 0

COLUMNINTVARSAREBINARY Whether integer variables that appear first in COLUMNS section should be
assumed to be binary variables.
Possible values: 0, N, 1, Y.
Default: 0.
Note that modern solvers assume binary variables, but for backward
compatibility the default is set to the original IBM interpretation.

DUPLICATES Whether to check and how to handle multiple coefficients for the same
variable or product in LP files.
If set to NOCHECK, then no checks for multiple coefficients are done. In
this case, writing the GDX file may fail. For performance reasons, this is
the default.
If set to ADD, then coefficient are added up.
If set to IGNORE, then additional coefficients are ignored and a warning
is printed to the log.
If set to ERROR, then warnings are printed to the log and MPS2GMS
terminates with a nonzero return code.

6.34 MSAppAvail

Note

This tool is part of the GAMS Tools Library. Please inspect the general information about GAMS
Tools.

Checks if a MS Office Application is available. The return code (errorLevel) signals if the application is
available (0) or not (not 0).

6.34.1 Usage

Command line:

gamstool [win32.]MSAppAvail Application

Compile time:

$callTool [win32.]MSAppAvail Application

Execution time:

executeTool ’[win32.]MSAppAvail Application’;

3212 Tools Manuals

Argument Description

Application MS Office application to check.

6.34.2 Example: Checking whether MS Access is available

This example checks if Microsoft Access is available on the system and quit without error if this is not the
case.

$callTool win32.msappavail Access

$if errorlevel 1 $abort.noError "No MS Access available"

6.35 Ordinary Least Squares (OLS)

Note

This tool is part of the GAMS Tools Library. Please inspect the general information about GAMS
Tools.

This estimates the unknown parameters in a linear regression model. The set i are the observations, the
set p are the estimates. The matrix A(i,p) contains the explanatory variable and y(i) the dependent
variable. On return the symbol estimate(p) will contain the estimated statistical coefficients. Other
statistical information parameters are available.

6.35.1 Usage

Command line:

gamstool [linalg.]OLS i p A y est [covar=id] [df=id] [fitted=id] [r2=id] [resid=id] [resvar=id] [rss=id] [se=id] [sigma=id] [tval=id] gdxIn=fileIn.gdx gdxOut=fileOut.gdx

Compile time:

$callTool [linalg.]OLS i p A y est [covar=id] [df=id] [fitted=id] [r2=id] [resid=id] [resvar=id] [rss=id] [se=id] [sigma=id] [tval=id] [gdxIn=fileIn.gdx] [gdxOut=fileOut.gdx]

Execution time:

executeTool ’[linalg.]OLS i p A y est [covar=id] [df=id] [fitted=id] [r2=id] [resid=id] [resvar=id] [rss=id] [se=id] [sigma=id] [tval=id] [gdxIn=fileIn.gdx] [gdxOut=fileOut.gdx]’;

Where:

6.36 GAMS Posix Utilities 3213

Argument Description

i Name of set of observations i(∗).

p Name of set of estimates p(∗).

A Name of two-dimensional explanatory variable matrix A(i,p).

y Name of one-dimensional dependent variable y(i).

est Name of one-dimensional estimated statistical coefficients est(p).

The following names parameters are available:

Parameter Description

covar=id Statistical info: variance-covariance matrix CoVar(p,p)

df=id Statistical info: degrees of freedom (scalar)

fitted=id Statistical info: fitted values for dependent variable fitted(i)

r2=id Statistical info: R squared (scalar)

resid=id Statistical info: residuals resid(i)

resvar=id Statistical info: residual variance (scalar)

rss=id Statistical info: residual sum of squares (scalar)

se=id Statistical info: standard errors se(p)

sigma=id Statistical info: standard error (scalar)

tval=id Statistical info: standard errors se(p)

gdxIn=fileIn.gdx Name of GDX file that contains symbols i, p, A, and y. Mandatory
if called from the command line, otherwise optional.

gdxOut=fileOut.gdx Name of GDX file that contains symbol est and statistical infor-
mation parameters after execution. Mandatory if called from the
command line, otherwise optional.

6.35.2 Example

For an example see model [LeastSquares] in the GAMS Data Utilities Library.

6.36 GAMS Posix Utilities

Starting with distribution 20.6 the GAMS system for Windows includes a collection of Posix utilities
which are usually available for the different Unix systems and therefore help to write platform independent
scripts. The following utilities are available:

• awk - Pattern scanning and processing language (1)

• cat - Concatenate and print files

• cksum - Write file checksums and sizes

• cmp - Compare two files

http://en.wikipedia.org/wiki/AWK
http://en.wikipedia.org/wiki/Cat_%28Unix%29
http://en.wikipedia.org/wiki/Cksum
http://en.wikipedia.org/wiki/Cmp_%28Unix%29

3214 Tools Manuals

• comm - Select or reject lines common to two files

• cp - Copy files

• cut - Cut out selected fields of each line of a file

• diff - Compare two files

• expr - Evaluate arguments as an expression

• fold - Fold lines

• gsort - Sort, merge, or sequence check text files (1)

• grep - File pattern searcher

• gdate - Write the date and time (1)

• gunzip - File decompression

• gzip - File compression

• head - Copy the first part of files

• join - Relational database operator

• make - Build automation tool

• mkdir - Create a new directory

• mv - Move files

• od - Dump files in various formats

• paste - Merge corresponding or subsequent lines of files

• printf - Write formatted output

• rm - Remove directory entries

• sed - Stream editor

• sleep - Suspend execution for an interval

• tail - Copy the last part of a file

• tar - Collect files into one archive file

• tee - Duplicate standard input

• test - Evaluate expression

• touch - Update access date and/or modification date of a file or directory

• tr - Translate characters

• uniq - Report or filter out repeated lines in a file

• wc - Word, line, and byte count

• xargs - Construct argument list(s) and invoke utility

(1) Please note that the utilities ”date” and ”sort” have been renamed to ”gdate” and ”gsort” to
avoid conflicts with the Windows commands ”date” and ”sort”. For compatibility reasons the GNU
implementation of awk called ”gawk” has been renamed to ”awk”.

The collection consists of native Windows ports of GNU implementation of these utilities taken from the
Sourceforge. Detailed descriptions of the utilities can be found at the GNU website.

The Posix tools and in particular the awk utility can be used to transform a variety of different text
inputs into GAMS readable input files. Examples can be found in the GAMS Model Library (Subject
”GAMS Tools”).

http://en.wikipedia.org/wiki/Comm
http://en.wikipedia.org/wiki/Cp_%28Unix%29
http://en.wikipedia.org/wiki/Cut_%28Unix%29
http://en.wikipedia.org/wiki/Diff_utility
http://en.wikipedia.org/wiki/Expr
http://en.wikipedia.org/wiki/Fold_%28Unix%29
http://en.wikipedia.org/wiki/Sort_%28Unix%29
http://en.wikipedia.org/wiki/Grep
https://en.wikipedia.org/wiki/Gzip
https://en.wikipedia.org/wiki/Gzip
http://en.wikipedia.org/wiki/Head_%28Unix%29
http://en.wikipedia.org/wiki/Join_%28Unix%29
https://en.wikipedia.org/wiki/Make_(software)
https://en.wikipedia.org/wiki/Mkdir
http://en.wikipedia.org/wiki/Mv
http://en.wikipedia.org/wiki/Od_%28Unix%29
http://en.wikipedia.org/wiki/Paste_%28Unix%29
http://en.wikipedia.org/wiki/Printf_format_string
http://en.wikipedia.org/wiki/Rm_%28Unix%29
http://en.wikipedia.org/wiki/Sed
http://en.wikipedia.org/wiki/Sleep_%28Unix%29
http://en.wikipedia.org/wiki/Tail_%28Unix%29
https://en.wikipedia.org/wiki/Tar_(computing)
http://en.wikipedia.org/wiki/Tee_%28command%29
http://en.wikipedia.org/wiki/Test_%28Unix%29
https://en.wikipedia.org/wiki/Touch_(command)
http://en.wikipedia.org/wiki/Tr_%28Unix%29
http://en.wikipedia.org/wiki/Uniq
http://en.wikipedia.org/wiki/Wc_%28Unix%29
http://en.wikipedia.org/wiki/Xargs
http://unxutils.sourceforge.net
http://unxutils.sourceforge.net
http://www.gnu.org/

6.37 Rank 3215

6.37 Rank

Note

This tool is part of the GAMS Tools Library. Please inspect the general information about GAMS
Tools.

This sorts one dimensional symbol sym and stores sorted indices in one dimensional parameter symIdx.

6.37.1 Usage

Command line:

gamstool [alg.]Rank sym symIdx gdxIn=fileIn.gdx gdxOut=fileOut.gdx

Compile time:

$callTool [alg.]Rank sym symIdx [gdxIn=fileIn.gdx] [gdxOut=fileOut.gdx]

Execution time:

executeTool ’[alg.]Rank sym symIdx [gdxIn=fileIn.gdx] [gdxOut=fileOut.gdx]’;

Where:

Argument Description

sym Name of parameter or set to be sorted sym(∗)
symIdx Name of parameter containing sort indexes symIdx(∗)

The following named parameters are available:

Parameter Description

gdxIn=fileIn.gdx Name of GDX file that contains symbol sym. Mandatory if called
from the command line, otherwise optional.

gdxOut=fileOut.gdx Name of GDX file that contains symbol symIdx after execution.
Mandatory if called from the command line, otherwise optional.

6.37.2 Example

set I /i1 * i6/;

3216 Tools Manuals

parameter A(I) /i1=+Inf, i2=-Inf, i3=Eps, i4= 10, i5=30, i6=20/;

parameter AIndex(i) ’permutation index’;

* sort symbol; result in parameter AIndex

$callTool.checkErrorLevel ’alg.Rank A AIndex’;

display AIndex;

The complete example is also part of the GAMS Data Utilities Library, see model [GDXRANKExample18]
for reference. The libInclude rank.gms uses this tool internally.

6.38 SCENRED

6.38.1 Release Notes

• May, 2002: Level 001 (GAMS Distribution 20.6)

– GAMS/SCENRED introduced.

6.38.2 Introduction

Stochastic programs with recourse employing a discrete distribution of the random parameters become
a deterministic programming problem. They can be solved by an appropriate optimization algorithm,
ignoring the stochastic nature of (some or all) parameters.

SCENRED is a tool for the reduction of scenarios modeling the random data processes. The scenario
reduction algorithms provided by SCENRED determine a scenario subset (of prescribed cardinality or
accuracy) and assign optimal probabilities to the preserved scenarios. The reduced problem is then solved
by a deterministic optimization algorithm provided by GAMS.

6.38.3 Scenario Reduction Algorithms

Many solution methods for stochastic programs employ discrete approximations of the uncertain data
processes by a set of scenarios (i.e., possible outcomes of the uncertain parameters) with corresponding
probabilities.

For most practical problems the optimization problem that contains all possible scenarios (the so-called
deterministic equivalent program) is too large. Due to computational complexity and to time limitations
this program is often approximated by a model involving a (much) smaller number of scenarios.

The reduction algorithms developed in [1,2] determine a subset of the initial scenario set and assign new
probabilities to the preserved scenarios. All deleted scenarios have probability zero.

SCENRED contains three reduction algorithms: The Fast Backward method, a mix of Fast Back-
ward/Forward methods and a mix of Fast Backward/Backward methods. In general, the computational
performance (accuracy, running time) of the methods differ. For huge scenario trees the Fast Backward
method has the best expected performance with respect to running time. The results of the Forward
and Backward methods are more accurate, but at the expense of higher computing time. The Forward
method is the best algorithm when comparing accuracy, but it can only be recommended if the number of
preserved scenarios is small (strong reduction). The combined methods improve the result of the Fast
Backward method if the Forward or Backward method, respectively, can be completed within the running

6.38 SCENRED 3217

time limit. If no reduction method is selected, the method with the best expected performance with
respect to running time is chosen.

The reduction algorithms exploit a certain probability distance of the original and the reduced probability
measure. The probability distance trades off scenario probabilities and distances of scenario values.
Therefore, deletion will occur if scenarios are close or have small probabilities.

The reduction concept is general and universal. No requirements on the stochastic data processes (e.g.
the dependency or correlation structure of the scenarios, the scenario probabilities or the dimension of the
process) or on the structure of the scenarios (e.g. tree-structured or not) are imposed. The reduction
algorithms can be tailored to the stochastic model if the user provides additional information (How many
decision stages are involved? Where do the random parameters enter the model – in objective and/or
right hand sides and/or technology matrices?) The information is used to choose the probability distances
(cf. Remark 1 in [1]).

References:

1. J. , N. Gröwe-Kuska, W. Römisch: Scenario reduction in stochastic programming: An approach
using probability metrics. Revised version to appear in Mathematical Programming.

2. H. Heitsch, W. Römisch: Scenario reduction algorithms in stochastic programming. Preprint 01-8,
Institut für Mathematik, Humboldt-Universität zu Berlin, 2001.

6.38.4 Using GAMS/SCENRED

The reduction algorithms require additional data preparation and reformulation of the GAMS program
for the stochastic programming model.

GAMS offers great flexibility with respect to the organization of data specification, model definition and
solve statements. The most common way to organize GAMS/SCENRED programs is shown below. Since
the initial scenarios and a number of input parameters have to be passed to SCENRED, the corresponding
components of the GAMS program have to be defined before the SCENRED call. The reduced scenarios
have to be defined before the equations of the (reduced) stochastic programming model are used in a solve
statement. Therefore the SCENRED call can be placed anywhere between the definitions of the GAMS
parameters and the solve statement of the reduced stochastic programming model.

When building or modifying a model for use with GAMS/SCENRED the following steps should be taken:

• Analyse the GAMS program of the stochastic programming model.
Since the initial scenarios and a number of input parameters have to be passed to SCENRED (see
Section The SCENRED Input File), one must identify the corresponding components of the GAMS
model and create or calculate them if they do not already exist.

• Reformulate the GAMS program.
Check if the model can handle varying scenario or node probabilities, and whether the equations are
defined in terms of a (possibly reduced) tree. If the model doesn't already contain a scenario tree,
one should be added. If it does, it is a simple task to rewrite the equation definitions (and possibly
other statements too) in terms of a subset of the original nodes or tree.

• Add the statements for passing the initial set of scenarios to SCENRED, for the execution of
SCENRED and for the import of the reduced scenarios from SCENRED.

A reduction of the initial scenarios makes sense only if we are able to generate that part of the model that
corresponds to the preserved scenarios (i.e. the reduced subtree). This is done by declaring a subset of
the nodes in the original tree. The parameters and equations are declared over the original node set, but
are defined over only the subtree. This will be illustrated by an example later in the section.

Further, one should verify that the model can handle changing probabilities. Many practical models
involve scenarios with equal probabilities. This property will not be maintained by the probabilities in the
reduced subtree.

ORGANIZATION OF GAMS/SCENRED PROGRAMS

3218 Tools Manuals

Component Contents

1. DATA ∗ set & parameter declarations and definitions
∗ $libinclude scenred.gms
∗ assignments displays

2. SCENRED CALL ∗ export the initial scenarios from GAMS to SCENRED
∗ execute SCENRED
∗ import the reduced scenarios from SCENRED to GAMS

3. MODEL ∗ variable declaration
∗ equation declarations
∗ equation definitions (using sets from reduced tree)
∗ model definition & solution

Prior to calling SCENRED, you should include the declaration of the SCENRED input and output
parameters and the definition of the sets they are indexed by from the GAMS include library:

$libinclude scenred.gms

Once you have created all the inputs to SCENRED and assigned values to them, you are ready to write
the SCENRED GDX data input file, write the SCENRED options file, call SCENRED, and read the
reduced tree data from the SCENRED GDX data output file (see Section The SCENRED Input File,
Section SCENRED Options and the Option File, and Section The SCENRED Output File). Assuming
your model is formulated to use a subtree of the original, you can now continue with the solve and any
subsequent reporting.

SCENRED is executed by issuing the statement

execute ’scenred optfilename’;

where optfilename is the name of the SCENRED option file.

As an example, consider the srkandw model in the GAMS model library, and the kand model upon which
it is based (get these from the modlib now!). To produce srkandw from kand, we first reformulate the
original to allow for solution over a reduced tree. To do this, we introduce a subset of the node set: set
sn(n) 'nodes in reduced tree'; For convenience and clarity, we introduce a second subset at the
same time, the set of leaf nodes: set leaf(n) 'leaf nodes in original tree'; as well as some code
to compute this set based on the existing time-node mapping. We also declare a new parameter, the
probabilities for the reduced tree: parameter sprob(n) 'node probability in reduced tree'; Once
these are declared, we can quickly edit the equation definitions so that they run only over the reduced
subtree: we simply substitute the reduced probabilities sprob for the original prob, and the reduced node
set sn for the original node set n. Note that the declaration of the equations does not change.

This example illustrates one other change that may be required: the stochastic data must be in parameters
having the node set as their last index. This is not the case in the kand model, so we simply reversed the
indices in the dem parameter to meet the requirement in srkandw. It is also possible to create a transposed
copy of the original data and pass that the SCENRED if the original data cannot be changed conveniently.

6.38.5 The SCENRED Input File

The SCENRED input file contains the initial scenarios and their stochastic parameter data, as well as
statistics describing this input and (possibly) options to control the SCENRED run. This input file has a
special binary format; it is a GDX (GAMS Data Exchange) file. The name of the SCENRED input file is
assigned in the option file (see Section SCENRED Options and the Option File).

The scalar inputs to SCENRED are collected in the one-dimensional parameter ScenRedParms, the first
parameter stored in the SCENRED input file. Some of the elements of ScenRedParms are required (e.g.
statistics for the input tree) while others are optional (e.g. the run time limit). SCENRED will stop if a
required element is missing or out of range.

Table 1 Required ScenRedParms elements

6.38 SCENRED 3219

Element Description

num leaves the number of initial scenarios or leaves of the scenario tree (i.e., before the reduction)

num nodes number of nodes in the initial tree (the number of scenarios if not tree-structured)

num random Number of random variables assigned to a scenario or node, i.e., the dimension of
the random data process

num time steps Length of a path from the root node to a leaf of the scenario tree, i.e., the number
of time steps involved

Table 2 Optional ScenRedParms elements

Element Description Default

red num leaves specifies the desired number of preserved scenarios
or leaves

none

red percentage specifies the desired reduction in terms of the
relative distance between the initial and reduced
scenario trees (a real between 0.0 and 1.0)

none

num stages Set the number of branching levels of the scenario
tree, i.e., the number of stages of the model -1.
Hence num stages=1 if no branching occurs, i.e.,
the values of the scenarios differ for all time steps

1

where random An integer indicating where the randomness
enters the model. The value is interpreted
as a digit map computed using the formula
100∗inObj + 10∗inRHS + inMatrix, where
inObj is 1 if the objective contains random
parameters and 0 otherwise, inRHS is 1 if the
right-hand side contains random parameters and
0 otherwise, and inMatrix is 1 if the constraint
matrix contains random coefficients and 0
otherwise.

10 (random right-hand side)

reduction method Select a reduction method:
0: automatic (best expected performance with
respect to running time)
1: Fast Backward method
2: Mix of Fast Backward/Forward methods
3: Mix of Fast Backward/Backward methods

0

run time limit Defines a limit on the running time in seconds none

report level Control the content of the SCENRED log file:
0: Standard SCENRED log file
1: Additional information about the tree

0

A few comments on the parameters red percentage and red num leaves are in order. At least one of
these values must be set. The value of red percentage will be ignored if the parameter red num leaves

is non-zero. Otherwise, the tree will not be reduced if red percentage=0, while the reduction of the tree
will be maximal (i.e. only one scenario will be kept) if red percentage=1. A numeric value of 0.5 means
that the reduced tree maintains 50% of the information contained in the original tree. The reduction
algorithms are skipped if red num leaves=num leaves or if red num leaves=0 and red percentage=0.
These values can be assigned if the user wishes to run the scenario tree diagnostic.

The second data element in the input file is the set of nodes making up the scenario tree. Note that the
cardinality of this set is part of ScenRedParms.

The third data element is the ancestor mapping between the nodes. This mapping determines the scenario
tree. Note that the mapping can be either an ancestor mapping (i.e. child-parent) or a successor mapping

3220 Tools Manuals

(parent-child). By default, SCENRED expects an ancestor mapping. If the check for this fails, it looks for
a successor mapping.

The fourth data element is the parameter of probabilities for the nodes in the original tree. It is only
required that probabilities for the scenarios (i.e. the leaf nodes) be provided, but the parameter can
contain probabilities for the non-leaf nodes as well.

The remaining elements in the input data file specify the parameter(s) that comprise the random values
assigned to the initial scenarios, or to the nodes of the scenario tree. There can be more than one such
parameter, included in any order. The only requirement is that the node set be the final index in each of
these parameters.

Table 3 summarizes the content of the SCENRED input file. Please keep in mind that the order of the
entries must not be altered!

Table 3 Content of the SCENRED Input File

No. Symbol Type Dimension Content

1 ScenRedParms Parameter 1 scalar SCENRED input

2 (any name) Set 1 nodes in the scenario tree

3 (any name) Set 2 the ancestor set

4 (any name) Parameter 1 node probabilities; at least for the leaves

≥ 5 (any name) Parameter ≥ 1 random values assigned to the nodes

To create the SCENRED data input file, the GAMS execute unload statement is used. This statement
is used to transfer GAMS data to a GDX file at execution time. As an example, to create a GDX file with
the 4 required input parameters and one parameter demand containing the stochastic data, you might
have the following statement:

execute_unload ’sr_input.gdx’, ScenRedParms, node, ancestor, prob, demand;

6.38.6 SCENRED Options and the Option File

When the SCENRED executable is run, it takes only one argument on the command line: the name of the
SCENRED option file. The option file is a plain text file. Typically, it is used to specify at least the names
of the SCENRED data input and output files. The option file must be created by the SCENRED user
(typically via the GAMS put facility during the GAMS run). The syntax for the SCENRED option file is

optname value or optname = value

with one option on each line. Comment lines start with an asterix and are ignored.

Some of the SCENRED options may be specified in two places: as elements of the ScenRedParms parameter
of the SCENRED input file, or as entries in the options file. These parameters have been summarized in
Table 2. If an option is set in both these places, the value in the option file takes precedence of over the
value from ScenRedParms. In addition, the parameters in Table 4 can only be specified in the option file.

Table 4 Options - optfile only

Option Description Default

input gdx Name of the SCENRED data input file xllink.gdx

output gdx Name of the SCENRED data output file scenred.gdx

log file Name of the SCENRED log file scenred.log

6.38 SCENRED 3221

6.38.7 The SCENRED Output File

The SCENRED output file contains the reduced scenario tree and the ScenRedReport parameter. Like
the input file, the output file has a special binary format; it is a GDX (GAMS Data Exchange) file.

The first data element in the output file is the ScenRedReport parameter containing the scalar outputs
and statistics from the SCENRED run. The elements of this parameter are summarized in Table 5. The
second data element is the parameter containing the probabilities of the nodes in the reduced scenario tree.
These node probabilities are required to construct the reduced tree. The third and final data element is
the ancestor map for the reduced scenario tree. This map can be read from the GDX file, or the reduced
tree can be built from the original one by using the reduced probabilities. The content of the data output
file is summarized in Table 6.

Table 5 ScenRedReport elements

Element Description

ScenRedWarnings number of SCENRED warnings

ScenRedErrors number of SCENRED errors

run time running time of SCENRED in sec.

orig nodes number of nodes in the initial scenario tree

orig leaves number of leaves (scenarios) in the initial scenario tree

red nodes number of nodes in the reduced scenario tree

red leaves number of leaves(scenarios) in the reduced tree

red percentage relative distance of initial and reduced scenario tree

red absolute absolute distance between initial and reduced scenario tree

reduction method reduction method used:
0: the program stopped before it could select a method
1: Fast Backward method
2: Mix of Fast Backward/Forward methods
3: Mix of Fast Backward/Backward methods

Table 6 Content of the SCENRED Output File

No. Symbol Type Dimension Content

1 ScenRedReport Parameter 1 report of the SCENRED run

2 red prob Parameter 1 node probabilities for the reduced scenarios

3 red ancestor Set 2 the ancestor map for the reduced scenarios

To read the SCENRED data output file, the GAMS execute load statement is used. This statement
is used to transfer GDX data to GAMS at execution time. As an example, to read a GDX file named
sr output.gdx created by SCENRED, you might have the following statement:

execute_load ’sr_output.gdx’, ScenRedReport, sprob=red_prob, sanc=red_ancestor;

In the statement above, the equal sign = is used to indicate that the data in the GDX parameter red prob

should be read into the GAMS parameter sprob, and the data in the GDX set red ancestor should be
read into the GAMS set sanc.

3222 Tools Manuals

6.38.8 Diagnostic Check of Scenario Trees

When SCENRED reads its input data, it performs a number of checks to verify that the data is correct.
The diagnostic checks of the input parameters include:

• consistency of the desired input parameters with the contents of the SCENRED input file (number
of nodes, number of leaves, number of time steps, number of random values assigned to a node)

• range check of desired input parameters and options

• check of scenario and node probabilities

• check of the ancestor matrix (check the orientation of the graph, check if the graph contains a cycle,
check if the graph contains incomplete forests or scenarios, check the consistency of the parameter
num time steps with the ancestor matrix)

The following errors in the specification of the scenario tree cause SCENRED to skip the reduction
algorithms:

• The input files cannot be opened.

• Not all required input parameters are given.

• The required input parameters are not consistent with the contents of the SCENRED input file.

• The required input parameters are out of range.

• Missing or negative scenario probabilities (probabilities of leaves).

• The ancestor set contains too many entries (more than 2∗num nodes).

• SCENRED detects a cycle in the ancestor set.

• SCENRED detects incomplete scenarios in the ancestor set.

• Run time limit reached

6.38.9 SCENRED Errors and Error Numbers

When SCENRED encounters a serious error in the input files or in the scenario tree, it sends an error
message to the screen and to the log file. These messages always start with

∗∗∗∗ SCENRED run-time error ...

The number of SCENRED errors are contained in the parameter ScenRedReport of the SCENRED output
file (if it could be created). The occurrence of an error can also be detected from the last line that
SCENRED sends to the screen:

∗∗∗∗ SCENRED ErrCode=...

The numerical values of ErrCode and their meaning are given below.

ErrCode Meaning

1 (for internal use)

2 fatal error while reading from SCENRED input file

3 fatal error while writing to SCENRED output file

4 fatal error while reading from SCENRED option file

6.38 SCENRED 3223

ErrCode Meaning

5 log file cannot be opened

6 a memory allocation error occurred

7 there are missing input parameters

8 could not access the GAMS names for the nodes

9 (for internal use)

10 ancestor set not given or contains too many entries

11 node probabilities cannot be not read or are wrong

12 random values for the nodes cannot be read

13 input parameters are out of range

14 ancestor set contains a cycle

15 incomplete scenarios or forests detected

16 fatal error in reduction algorithm (not enough memory)

17 running time limit reached

6.38.10 SCENRED Warnings

SCENRED warnings are caused by misspecification of the initial scenarios that can be possibly fixed.
When SCENRED encounters such an error in the input files or in the scenario tree, it sends a message to
the screen and to the log file. These messages always start with

∗∗∗∗ SCENRED Warning ...

The following list gives an overview of the cases that produce warnings, and the action taken by SCENRED
in these cases.

• The user assigned an option value that is out of range.
Action: Assign the default value.

• Both parameters red num leaves and red percentage are assigned nontrivial values.
Action: The value of red percentage will be ignored.

• The scenario probabilities (probabilities of leaves) do not sum up to 1.
Action: The scenario probabilities are rescaled. Assign new probabilities to the remaining (inner)
nodes that are consistent with the scenario probabilities.

• Missing probabilities of inner nodes.
Action: Assign node probabilities that are consistent with the scenario probabilities.

• The ancestor set contains more than one ancestor for a node.
Action: SCENRED assumes to be given a successor set instead of an ancestor set (i.e., the transpose
of an ancestor matrix. This means that the graph corresponding to the ancestor set has the wrong
orientation). SCENRED starts the tree diagnostic for the successor set. The reduced tree will be
defined in terms of a successor set as well (if the successor set passes the tree diagnostic and if
SCENRED locates no fatal error during the run).

• The fast backward method delivered a result, but the result cannot be improved by the forward or
backward method (running time limit reached).
Action: Use the result of the fast backward method.

3224 Tools Manuals

6.39 SCENRED2

6.39.1 Introduction

Scenred2 is a fundamental update of the well-known scenario reduction software Scenred. A lot of new
features come along with the latest release version. Beside updates and extensions concerning the control
of the scenario reduction action an all new device for scenario tree construction has been implemented in
Scenred2. Moreover, a lot of visualization functions to plot scenario trees and scenario processes linked to
the free Gnuplot plotting software are available with Scenred2 now.

Table: Summary of basic new functions in Scenred2

Description Section

Additional options for controlling the scenario reduction Scenario Reduction

New device of scenario tree construction Scenario Tree Construction

Visualization of scenario trees and processes Visualization

Command line interface and data export Command Line Interface

6.39.2 Using Gams/Scenred2

Successful applying Scenred or Scenred2 requires a special formulation of the stochastic programming
model within the Gams program. Probabilistic information must be given by a set of nodes implying
a certain ancestor structure including a well-defined root node. Note that the usage of Gams/Scenred2
is basically the same as the usage of Gams/Scenred. Hence, it is recommended for new users to look
at the Scenred documentation first. All details about how to organize your Gams program, how to run
Scenred from the Gams program by using the gdx interface, and, of course, examples can be found in that
documentation.

The Gams/Scenred2 link provides the same gdx interface. But, due to new features some small changes in
controlling the options are needed. Scenred2 supports now two types of option files. The first one is the
SR-Command-File which must be passed to Scenred2 together with the Scenred2 call. The second one,
the SR-Option-File includes more specific options to control the selected scenario reduction or scenario
construction methods and can be declared in the SR-Command-File.

6.39.2.1 SR-Command-File

The command file includes the basic specifications. These are input/output gdx file names, the log file
name, all other file names which are needed for diverse visualization and output options. It also includes
the name of the SR-Option-File.

Option Description Required

log file specify a log file name yes

input gdx specify the gdx input file for Scenred yes

output gdx specify the gdx output file of Scenred yes

sr option specify a SR-Option-File no

visual init specify a name for visualization of input tree no

visual red specify a name for visualization of reduced/constructed tree no

plot scen specify a name for visualization of scenario processes no

out scen specify a file for scenario data output in fan format no

out tree specify a file for scenario data output in tree format no

6.39 SCENRED2 3225

Example:

Scenred2 must be called together with a command file, which contains at least all required options. The
data exchange via the gdx interface and the Scenred2 call from the Gams program is of the form (be
careful with the meanings and right order of gdx symbols):

execute_unload ’srin.gdx’, ScenRedParms, n, ancestor, prob, random;

execute ’scenred2 scenred.cmd’;

execute_load ’srout.gdx’, ScenRedReport, ancestor=red_ancestor, prob=red_prob;

For example, the command file could be the following (note the compatible gdx file names):

* scenred command file ’scenred.cmd’

log_file sr.log

input_gdx srin.gdx

output_gdx srout.gdx

sr_option scenred.opt

visual_red tree

out_scen raw.dat

6.39.2.2 ScenRedParms

With the symbol list of the parameter ScenRedParms and the SR-Option-File all necessary information
regarding the Scenred2 run can be assigned. The Gams parameter ScenRedParms can easily included to
the Gams program by the statement:

$libInclude scenred2

Of course, the include must be stated before calling Scenred2. After that statement all supported
parameters can be assigned, but at least all required parameters regarding the input scenarios. By the
symbols of the parameter ScenRedParms you make also the decision of what features you exactly want to
use with Scenred2. Moreover, some other usefull parameters for the Scenred2 run are included in the
symbol list of the parameter ScenRedParms.

Table: Supported Scenred2 parameters in ScenRedParms

Symbol Description Required

num time steps path length from root to leaf yes

num leaves leaves/scenarios in the initial tree yes

num nodes nodes in the initial tree yes

num random random variables assigned to a scenario or node yes

red num leaves desired number of preserved scenarios or leaves no

red percentage desired relative distance (accuracy) no

reduction method desired reduction method no

construction method desired tree construction method no

num stages number stages no

run time limit time limit in seconds no

report level report level: more messages by higher values no

scen red scenario reduction command no

tree con tree construction command no

visual init visualization initial tree no

visual red visualization reduced (constructed) tree no

plot scen visualization scenario processes no

out scen output of scenario raw data no

out tree output of scenario tree data no

3226 Tools Manuals

To enable some options assign a value to the parameter. A parameter value of zero (default) disables an
option. Note that when running Scenred2 either scenario reduction or scenario tree construction can be
performed. Hence, only scen red or tree con should be used at once.

Example:

The following statements describe a possible example setup for proceeding the scenario tree construction
with visualization of the scenario tree and output of the scenarios to a raw data file afterwards. Note
that for the visualization and the scenario output the name of output files must be specified in the
SR-Command-File. Otherwise a warning will inform you about not selected file names.

* general parameters

ScenRedParms(’num_leaves’) = 100;

ScenRedParms(’num_nodes’) = 200;

ScenRedParms(’num_time_steps’) = 5;

ScenRedParms(’num_random’) = 2;

ScenRedParms(’report_level’) = 2;

ScenRedParms(’run_time_limit’) = 30;

* execution commands

ScenRedParms(’tree_con’) = 1;

ScenRedParms(’visual_red’) = 1;

ScenRedParms(’out_scen’) = 1;

Scenred2 can also be used for plotting tasks only. Disable both the scen red and tree con option and
use one ore more visualization options only (see also Section Visualization for more details regarding
visualizations).

6.39.2.3 SR-Option-File

The SR-Option-File is the more specific option file and will be passed to Scenred2 by thesr option

statement specified in the SR-Command-File. It serves as control unit for available methods provided by
Scenred2. The supported options depend on what kind of method is called with Scenred2. A detailed list
of all options together with examples are given below for both the scenario reduction and the scenario
construction devices (see Sections Scenario Reduction and Scenario Tree Construction, respectively). Note
that certain parameters can be assigned by using both ScenRedParms and the SR-Option-File. In case of
having parameters defined twice a warning by Scenred2 will generated to inform you.

6.39.3 Scenario Reduction

The scenario reduction device consists of approved methods for reducing the model size by reducing the
number of scenarios in an optimal way. Here it doesn't make any difference whether the input data is
structured as scenario tree or not. But note, the classical scenario reduction approach is actually developed
for two-stage models. Extensions for the multistage case are planed in the near future. To learn more
about the mathematical theory see, for example,

• H. Heitsch, W. Römisch, and C. Strugarek. Stability of multistage stochastic programs. SIAM
Journal on Optimization, 17, 2006.

• H. Heitsch and W. Römisch. A note on scenario reduction for two-stage stochastic programs.
Operations Research Letters, 35:731-738, 2007.

• H. Heitsch and W. Römisch. Scenario tree reduction for multistage stochastic programs. Computa-
tional Management Science, 6:117-133, 2009.

6.39 SCENRED2 3227

With Scenred2 the most popular and accurate reduction algorithms of forward and backward type are
maintained further on. New options make it possible to proceed with the scenario reduction more
individual. The most important new parameter is given by the option metric type which allows to
control the reduction process by different type of probability distances. Altogether three distances can
be selected (see Table below). All probability distances are associated with a special order specification
which can be set by the new option order. Both options replace the old option where random which is
not used any longer.

Table: SR Options - Scenario Reduction

Option Description

red num leaves desired number of scenarios (integer)

red percentage relative accuracy (number from 0.0 to 1.0)

reduction method 1 - Forward, 2 - Backward, 0 - Default

metric type 1 - Transport (default), 2 - Fortet-Mourier, 3 - Wasserstein

p norm choice of norm (example: 0 - max, 1 - sum, 2 - Euclidian)

scaling 0 - scaling off, 1 - scaling on (default)

order metric order (integer, default is 1)

Example:

For example, a valid SR-Option-File is the following:

* scenred option file

reduction_method 1

red_percentage 0.3

metric_type 2

order 2

p_norm 1

scaling 0

Lines starting with the star symbol (route symbol can be used too) provide comment lines. The star
symbol can also be used to out comment and disable certain options.

6.39.4 Scenario Tree Construction

Scenario tree construction is the outstanding all new device of Scenred2. It allows to construct scenario
trees as accurate input for multistage stochastic programs (cf. H. Heitsch and W. Römisch, Scenario tree
modeling for multistage stochastic programs, Mathematical Programming, 118:371–406, 2009). The input
are individual scenarios in form of a fan which must be allocated before calling Scenred2. A lot of options
are offered to control the tree construction process. Note that in some cases due to sensibility of certain
parameters some tuning is indispensable for producing good results.

Table: SR Options (basic) - Scenario Tree Construction

Option Description

construction method 1 - forward, 2 - backward

reduction method 1 - forward, 2 - backward, used within the iteration

first branch time period of first branch (integer)

red percentage relative accuracy (level from 0.0 to 1.0)

eps growth 1 - linear, 2 - exponential

eps evolution tree structure parameter (from 0.0 to 1.0)

scaling 0 - scaling off, 1 - scaling on (default)

order order of metric

3228 Tools Manuals

The Table above displays the main options to control the tree construction process. They are very similar
to the reduction options. The role of the option red percentage is here to prescribe a total epsilon
accuracy (level) for the approximation scheme. But the approximation scheme is based on stagewise
approximations which requires a splitting of the total level to the stages. Two strategies are offered by
Scenred2 a linear and an exponential mapping of the total level to the intermediate levels. Use option
eps growth to select one of them. Both strategies allow a second tuning parameter eps evolution which
effects the slope of the epsilon splitting.

Even though this kind of control may generate good results for many applications, sometimes a more
individual control can be needed. For example, some applications require a localization of branching
stages. Moreover, to setup approximation bounds directly to stages can be very useful. To this end the
standard options are extended by a new section environment.

6.39.4.1 Additional options - The section environment

An alternative control for the accurate constructions is provided by using the section environment. The
section environment aims to establish a better monitoring of the construction process. There are overall
three section types supported by Scenred2 with the same syntax.

Branching control:

This section environment allows to specify branching points, i.e., an explicit selection of stages serving for
branching. For example, use

section branching

2

4

6

end

to allow branching only at time period 2, 4, and 6. Note that each stage statement must be placed in one
line. But stages can be merged. A shorter formulation of the same contents can be written in closed form

section branching

2*6 2

end

This statement reads branching within time periods from period 2 to period 6 with increment 2 steps.
Both assignments can be combined and should be used together with the red percentage option.

Epsilon control:

In the similar way by the epsilon section it is possible to assign epsilon tolerances for the stage approxi-
mations explicitly. This environment overcomes difficulties at times coming across with the automatic
epsilon control. Note that this environment disables the option red percentage. For example, use

section epsilon

2 0.04

3*4 0.03

5 0.02

6 0.01

end

6.39 SCENRED2 3229

to control the approximation scheme by assigning different epsilon values per stage. Note that the value
0.03 is assigned to time period 3 and 4 in the example.

Node control:

The node control is the most specific control you have over the tree construction. With this environment
the number of nodes of the tree which will generated can be assigned for each time stage explicitly. For
example, use

section num_nodes

1 1

2*3 5

4*5 10

6 15

end

The syntax is the same as before. Note that only one section environment can be use at once. In particular,
only the first section environment detected in the option file is used. The section environment can be out
commented like a standard option too.

Experimental option:

There is one other useful option to speed up computations when building different scenario trees from
exactly the same input data. In this case the scenario distances needed to compute the trees could be
saved to a external file at the first run and reloaded at later runs. Hence, the distances must be calculated
only once. For example, use the option

write_distance dist.sr2

to save the computed distances to the file 'dist.sr2'. To reload them at next run use the option

read_distance dist.sr2

The option is classified as experimental since no validation of the input file takes place. Before using this
option, please ensure that the distances loaded with the read distance option are the right ones.

Example:

Finally, look at the following example to see a valid SR-Option-File which can be passed to the scenario
tree construction:

* tree construction option file

construction_method 2

reduction_method 1

order 1

scaling 0

section epsilon

2*4 0.1

5 0.2

6 0.1

end

3230 Tools Manuals

6.39.4.2 Example problems 'srtree.gms' and 'srpchase.gms'

Small example problems has been included to the GAMS Model Library.

The implementation can be found in the Gams programs 'srtree.gms' and 'srpchase.gms'. It might help
you to practice in building scenario trees using Gams/Scenred2. The problem 'srtree.gms' converts a
fan format scenario representation into a tree format representation and then reduces the tree size. The
problem 'srpchase.gms' is to solve a simple stochastic purchase problem involving three stages. Sample
scenarios which are generated from a fixed distribution using a random value generator serve as input for
the tree construction.

6.39.5 Visualization

Visualization is another all new feature of Scenred2. In this section an easy way for making plots of
scenario processes and tree structures is described. To this end you need the free Gnuplot software or any
other plotting software which allows plotting directly from simple data files.

The concept of plotting tasks is the following. For each plot two files are generated, a Gnuplot access
file (name.plt) and a raw data file (name.dat). The access file contains basic Gnuplot options and it can
be adjusted for individual liking afterwards. The default output is the display. The supported plotting
commands are

visual_init, visual_red, plot_scen

for plotting the initial tree structure, the reduced/constructed tree structure, and the scenario process(es),
respectively.

Example:

For example, to visualize the constructed tree use the option

visual_red tree

within the SR-Command-File to specify the name for the output and activate the ScenRedParms parameter

ScenRedParms(’visual_red’) = 1;

in the Gams program. The result are the output files 'tree.plt' and 'tree.dat'. To compute the picture now
you simply open the file 'tree.plt' with Gnuplot from the directory, where both output files are located
(that should be the working directory). Alternatively, from the command line prompt call

>gnuplot tree.plt

Gnuplot will automatically generate the picture. Feel free to change any option in the Gnuplot access
file for individual requirements. See also the Gnuplot manual for more details. In particular, to compute
a well-scaled encapsulated postscript picture (eps), you simply have to uncomment a few lines in the
Gnuplot option file above and to open it with Gnuplot once again.

With the command plot scen the scenario process(es) can be visualized. Note that Scenred2 generates
Gnuplot access and data files according to the number of random values.

6.39 SCENRED2 3231

6.39.6 Command Line Interface

The command line interface allows to run Scenred2 stand alone without using Gams. In this case the
input for scenario reduction and scenario tree construction is handled by special input data files. The
command file will be extended by the parameters having with the ScenRedParms otherwise.

To execute Scenred2 from the command line prompt together with a specified command file (which is
required again), for example, call

>scenred2 command.file -nogams

To avoid diverse error messages do not forget the '-nogams' option to switch off the Gams interface. The
command file can include some of the following options.

report_level <integer>

runtime_limit <integer>

read_scen <input file>

scen_red <option file>

tree_con <option file>

visual_init <name>

visual_red <name>

plot_scen <name>

out_scen <file name>

out_tree <file name>

The denotation is not accidental the same as in case of using the Gams interface. The meaning of a certain
option is maintained for the command line interface. To compute any scenario reduction or scenario tree
construction the same SR-Option-Files are supported. It remains to clarify the data input format which
comes across with the new read scen command.

6.39.6.1 Data input format

To feed Scenred2 with data the scenario parameters must be passed by the read scen command. Two
types of input file formats are accepted.

a) The tree format:

This file is a formated data file including all information of the input scenarios tree. It must have a header
with dimension information and the scenario data separated for each node. The header includes the type
declaration, the number of nodes, and the number of random values.

The data part starts with the key word DATA (do not forget). The tree data has to be ordered node
by node. For every node the following information is expected separated by white spaces: The unique
predecessor node (root node points to itself) followed by the node probability and followed by the assigned
number of random data values. All information to one node should be written to one line (only for
clearness reasons). Comment lines are allowed.

Match the following conventions:

• Nodes are identified by a sequence of integer numbers.

• The root node is expected to be the node '1'.

• The predecessor of root is '1' too, i.e., the root points to itself.

3232 Tools Manuals

• All nodes numbers require a canonical order by stages and scenarios (see example).

Example:

input tree example for scenred

TYPE TREE

NODES 9

RANDOM 4

DATA

* PRED PROB RAND-1 RAND-2 RAND-3 RAND-4

1 1.0 42.5 9.1 7.5 120.0

1 1.0 39.8 11.2 8.4 90.0

2 1.0 37.6 14.0 6.3 110.0

3 0.5 38.9 12.4 8.1 130.0

3 0.5 35.7 13.8 7.5 120.0

4 0.25 40.3 14.9 7.2 120.0

4 0.25 38.4 15.2 8.9 100.0

5 0.3 37.6 14.9 9.3 80.0

5 0.2 36.3 12.8 10.3 90.0

END

1 2 3

4

6

7

8

9

5

b) The fan format:

A scenario fan serves as input for the scenario tree construction but it can be used also for the scenario
reduction. The scenario fan represents a special form of a scenario tree, where we consider individual
scenarios merged to a collective root node (the root node can also be viewed here as some kind of artificial
node).

Accordingly, the fan input file is a formated data file including all information of the scenarios in individual
form now. It must have a similar header with dimension information and the scenario data separated now
for each scenario. The header gets the type declaration FAN instead of TREE and includes the number of
scenarios, the number of time periods, and the number of random values. The data part is opened again
with the DATA key word.

Every scenario is specified by a dataset including the scenario probability first followed by the different
random values in ascending order w.r.t. time periods. All entries must be separated by a white space.
Comment lines can be placed by the star and route symbols again. Note that in case of having an
undetermined root node the mean of random values will taken for the first time period to appoint a unique
root node. The example tree represented as input in scenario fan format is displayed in the next example.

Example:

6.39 SCENRED2 3233

input fan example for scenred

TYPE FAN

TIME 5

SCEN 4

RANDOM 4

DATA

0.2500

42.5 9.1 7.5 120.0

39.8 11.2 8.4 90.0

37.6 14.0 6.3 110.0

38.9 12.4 8.1 130.0

40.3 14.9 7.2 120.0

0.2500

42.5 9.1 7.5 120.0

39.8 11.2 8.4 90.0

37.6 14.0 6.3 110.0

38.9 12.4 8.1 130.0

38.4 15.2 8.9 100.0

0.3000

42.5 9.1 7.5 120.0

39.8 11.2 8.4 90.0

37.6 14.0 6.3 110.0

35.7 13.8 7.5 120.0

37.6 14.9 9.3 80.0

0.2000

42.5 9.1 7.5 120.0

39.8 11.2 8.4 90.0

37.6 14.0 6.3 110.0

35.7 13.8 7.5 120.0

36.3 12.8 10.3 90.0

END

Note that even though all scenarios coincide at the first three time periods, in this example, the scenarios
will represented by one node each for every time period by the fan input format. The exception is the first
time period, where a unique root node is expected in general and, therefore, only one node is assigned.
The following picture shows the structure of the scenario fan which is generated by the example input.

1

2

3

4

5

6

7

8

9

10 4

5

1612

13

11

1

1

17

3234 Tools Manuals

6.39.6.2 Data Export

Scenred2 allows to export scenario data after computing the scenario reduction or scenario tree construction
to external data files. Data export is available for both the Gams and the command line interface. To
export data from Scenred2 two output options out tree and out scen can be use. These options generate
data files according to the tree and fan format, respectively. The name of the data files will be specified in
the SR-Command-File. When using the Gams interface the options must be connected by activating the
corresponding ScenRedParms parameter, additionally.

6.39.7 A Simplified Interface to Scenred2: $libinclude runscenred2

While the previously described interface between GAMS and Scenred2 provides a maximum of flexibility,
it also is rather complex and error-prone. The GAMS utility runscenred2 tries to hide most of the
mechanics of the GAMS/Scenred2 interface. The call to runscenred2 looks as follows:

$libInclude runscenred2 myprefix tree_con n tree p rtree rp rv1 rv2

Table: runscenred2 Arguments:

Argument Description

1 myprefix base name for files used with Scenred2

2 tree con or scen red select Scenred2 action: tree construction or scenario reduction

3 n the set of nodes in the tree

4 tree the set of ancestor relations describing the tree

5 p the parameter containing the node probabilities

6 rtree the set of ancestor relations of the reduced tree (output)

7 rp the parameter containing the node probabilities for the reduced tree
(output)

8 rv1, rv2, ... parameters containing random values of the nodes

The table above describes the arguments of the runscenred2 call. Arguments 3, 4, 5, 8 and following
correspond to the symbols that need to be exported to the Scenred2 data input file (done with the
execute unload call in the complex interface). The output arguments 6 and 7 correspond to the symbols
imported from te Scenred2 data output file (done with the execute load call in the complex interface).
The parameters ScenRedParms and ScenRedReport are invisibly communicated with Scenred2.

The second argument instructs Scenred2 either to construct a tree (tree con) or to reduce a tree
(scen red).

Instead of providing an explicit name for all the different files in the Scenred2 command file, the first
argument determines the name of all files using a simple naming scheme. The following name scheme is
observed:

Filename Command option Description

sr2myprefix.log log file log file name

sr2myprefix in.gdx input gdx gdx input file name

sr2myprefix out.gdx output gdx gdx output file name

sr2myprefix.opt sr option option file name

sr2myprefix vi.plt visual init file name for visualization of input tree

6.40 ShellExecute 3235

Filename Command option Description

sr2myprefix vr.plt visual red file name for visualization of reduced/constructed tree

sr2myprefix plot.plt plot scen file name for visualization of scenario process

sr2myprefix raw.dat out scen file name for scenario data output in fan format

sr2myprefix tree.dat out tree file name for scenario data output in tree format

The first three files (log file, input gdx and output gdx) are always used. The only optional input file
sr option is read by Scenred2 if ScenRedParms('sroption')=1. When you create this file, make sure
to use the proper file name. The output files are created by Scenred2 if the corresponding option is set to
1 in ScenRedParms, e.g. ScenRedParms('out tree')=1.

In addition to a simpler communication of data between GAMS and Scenred2, the newer versions of
GAMS/Scenred2 (starting with GAMS distribution 23.1) release the user of setting required fields in the
ScenRedParms parameter: num time steps, num leaves, num nodes, and num random. GAMS/Scenred2
calculates these numbers from its input data. In case the user still sets these fields, Scenred2 will ensure
that the internally calculated numbers and the user provided numbers match.

6.40 ShellExecute

Note

This tool is part of the GAMS Tools Library. Please inspect the general information about GAMS
Tools.

This allows you to spawn an external program based on the file type of the document to open.

6.40.1 Usage

Command line:

gamstool [win32.]ShellExecute filename [arguments] [dir=workdir] [verb=open|edit|find|print|...] [showcmd=0..11]

Compile time:

$callTool [win32.]ShellExecute filename [arguments] [dir=workdir] [verb=open|edit|find|print|...] [showcmd=0..11]

Execution time:

executeTool ’[win32.]ShellExecute filename [arguments] [dir=workdir] [verb=open|edit|find|print|...] [showcmd=0..11]’;

Where

3236 Tools Manuals

Argument Description

filename Name of the file to open.

arguments Additional arguments, if needed.

Argument Description

dir=workdir This specifies the directory where the file to be opened is located.
Default: current directory.

verb=open or ... This specifies the action to be performed (default open). The allowed
actions are application dependent. Some commonly available verbs
include:

• edit: Launches an editor and opens the document for editing.

• find: Initiates a search starting from the specified directory.

• open: Launches an application. If this file is not an executable
file, its associated application is launched.

• print: Prints the document file.

• properties: Displays the object's properties.

-showcmd The optional argument showcmd specifies how an application
is to be displayed when it is opened. The map between nu-
merical values 0 to 11 and symbolic names can be found here:
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-showwindow.

6.40.2 Example: Opening MS Access database

This example uses the [trnsport] model from the model library. After solving the model, a couple of
symbols is exported to a Microsoft Access database using GAMS Connect. MS Access is then launched
to inspect the results. This is a small example that should run very quickly.

$call.checkErrorLevel gamslib -q trnsport

$call.checkErrorLevel gams trnsport gdx=trnsport.gdx

$onEmbeddedCode Connect:

- GDXReader:

file: trnsport.gdx

readAll: True

- SQLWriter:

connection: {’DRIVER’:’Microsoft Access Driver (*.mdb, *.accdb)’, ’DBQ’: ’%system.fp%trnsport.accdb’}

connectionType: access

symbols:

- name: a

tableName: capacity

ifExists: replace

- name: b

tableName: demand

ifExists: replace

- name: d

https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-showwindow
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-showwindow

6.41 SQL2GMS 3237

tableName: distance

ifExists: replace

$offEmbeddedCode

$callTool win32.ShellExecute trnsport.accdb

The command $callTool win32.ShellExecute trnsport.accdb will launch Access to view the ACCDB
file.

6.41 SQL2GMS

Author

Erwin Kalvelagen

Attention

SQL2GMS is deprecated (see GAMS 40 SQL2GMS release notes). Please use Connect agent SQLReader
instead.

6.41.1 Overview

SQL2GMS is a tool to convert data from an SQL database into GAMS readable format. The source is any
data source accessible through Microsoft's Data Access components including ADO, ODBC and OLEDB.
The target is a GAMS Include File (.inc) or a GAMS GDX File (.gdx).

When running the executable sql2gms.exe without command line arguments, the tool will run interactively
with a built-in GUI interface. Alternatively SQL2GMS can be run in batch mode, which is useful when
running it directly from a GAMS model without user intervention using the $call command at compile
time or the execute command at execution time.

Database tables can be considered as a generalization of a GAMS parameter. GAMS parameters have
multiple index columns but just one value column. If the table is organized as multi-valued table, a
UNION operation in the SQL statement can be used to generate the correct GAMS file.

There are no special requirements on the data types used in the database. The data is converted to strings,
which is almost always possible. Data types like LONG BINARY may not be convertible to a string, in
which case an exception will be raised. In general NULL's should not be allowed to get into a GAMS
data structure. The handling of NULL's can be specified in an option.

Besides parameters it is also possible to generate set data.

If you need to read data from an MS Access database or MS Excel spreadsheet, the accompanying tools
MDB2GMS or XLS2GMS resp. GDXXRW may be more appropriate. In some cases it may be more
useful to use SQL2GMS to read from Access and Excel data sources.

3238 Tools Manuals

6.41.2 Requirements

SQL2GMS runs only on Windows PC's with [MDAC] (https://en.wikipedia.org/wiki/Microsoft Data Access Components)
(Microsoft Data Objects) installed. In many cases this will be installed on your computer. Otherwise it can
be downloaded from the [Microsoft Download Center] (https://www.microsoft.com/en-in/download/details.aspx?id=21995)
(direct link to MDAC).

In order to use SQL2GMS effectively, you will need to have a working knowledge of [SQL] (
https://en.wikipedia.org/wiki/SQL) in order to formulate proper database queries. In addition you
will need some knowledge on how to connect to your database using ODBC or ADO.

6.41.3 Batch Usage

SQL2GMS can be run in batch mode without user intervention from within the GAMS model by using the
$call resp. execute statements or directly from command prompt while specifying all arguments in the
command-line. A SQL2GMS batch call is of the following form:

sql2gms connectionString outputFile queryString

A proper call will at least contain the following three command-line arguments:

1. The name of the database and the instruction for connecting to the database must be specified
within the connectionString, which is indicated by the option C. i.e. C=connectionString.

2. The name of outputFile, either an include file (.inc) or GDX file (.gdx), must be specified. Using an
include file to store the results of the query is indicated by the option O, i.e. O=outputFile.inc,
while the use of a GDX file is indicated by the option X, i.e. X=outputFile.gdx.

3. The SQL queryString, containing the SQL statement to be executed on the database, must be
specified within the option Q, i.e. Q=queryString.

See also Command-line Arguments below for a complete list of all possible command-line arguments.
Consider that the $call or execute usage is rather error prone and you will need to spend a little bit of
time to get the call correct and reliable. Alternatively, use the interactive built-in GUI interface or enter
the command-line arguments in an external text file in order to write a more structured and readable
command. The use of an external parameter file is indicated by preceding the file name with a @ (At sign).

Also consider to take a look at the section Strategies, mentioning some of the drawbacks of the batch
usage and how to overcome them.

6.41.3.1 Command-line Arguments

The following table summarizes the command-line arguments that can be specified when using SQL2GMS

directly from the GAMS model or command prompt.

https://en.wikipedia.org/wiki/Microsoft_Data_Access_Components
https://www.microsoft.com/en-in/download/details.aspx?id=21995
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/SQL

6.41 SQL2GMS 3239

Argument Interpretation Default Description

C connectionString none Specify the connectionString (required).

O outputIncludeFile none Specify the name of the output file (.inc).
Either O= or X= must be specified (or
both).

On nth outputIncludeFile none Match the nth query with the nth out-
put file (.inc format) if multiple queries
are used.

X outputGDXFile none Specify the name of the output file
(.gdx). Either O= or X= must be specified
(or both).

Q Query none This option can be used to specify a
SQL query (required).

Qn nth query none Match the nth query with the nth out-
put file (.inc) format or with the nth
set- or parameter name when writing to
GDX if multiple queries are used.

S setName none If we write to a GDX file, use this option
to specify the name of a set to be used
inside the GDX file.

Sn nth setName none Match the nth query with the nth set
in the GDX file if multiple queries are
used.

Y setName (with expl. text) none If we write to a GDX file, use this option
to specify the name of a set to be used
inside the GDX file. Use this argument
to store a set with explanatory text.

Yn nth setName (with expl. text) none Match the nth query with the nth set
(with explanatory text) in the GDX file
if multiple queries are used.

A parameterName none If we write to a GDX file, use this option
to specify the name of a parameter to
be used inside the GDX file.

An nth parameterName none Match the nth query with the nth pa-
rameter in the GDX file if multiple
queries are used.

L Listing disabled Controls if the data is embedded in the
listing file.

M Mute disabled Controls if additional information is
written to the log and include file.

B Quote Blanks disabled Quote strings if they contain blanks or
embedded quotes.

@fileName ext. options file none Causes the program to read options
from an external text file.

N iniFileName sql2gms.ini Indicates the usage of a different INI
file.

T1 connectionTimeOut 15 Indicates how long to wait while estab-
lishing a connection before terminating
the attempt and generating an error.

T2 commandTimeOut 30 Indicates how long to wait while execut-
ing a command before terminating the
attempt and generating an error.

T timeOut none Sets both T1 and T2.

D Debug disabled Generate debug information.

3240 Tools Manuals

Argument Interpretation Default Description

E Empty sets disabled Allow an empty result set; without this
option an empty result set will generate
an error.

R rowBatchSize 100 Row batch size; the default is 100
records.

P Password none Specify a password for the database.

W Wiring none Maps database columns to GAMS index
positions.

Some more detailed remarks on the command-line arguments:

C = string (connectionString, default = none)

This option is required and specifies which database is to be used and how SQl2GMS

talks to the database. A collection of valid connection strings can be found in
section Connection Strings. Often the connection string will need to be surrounded
by quotes, as in: C="DSN=sample". This option is demonstrated in all examples, see
Example 1 - Reading a single valued Table for instance.

O = string (outputIncludeFile, default = none)

This option specifies the name of the output file. The format of the output file will
be a GAMS include file for a parameter or set statement. Make sure the directory is
writable. UNC names can be used. An output file must be specified for batch opera-
tion: i.e. either O= or X= needs to be specified (or both). The include file will be an
ASCII file that can be read by GAMS using the $include command within the data
definition of a set, parameter or scalar. If the include file already exists, it will be over-
written. This option is demonstrated in Example 1 - Reading a single valued Table
for instance.

On = string (outputIncludeFile, default = none)

When using multiple queries in a single SQL2GMS call, you can append a number to
match a query with an output file, as an include file storing the results for multiples
queries cannot be interpreted later on in your GAMS model when using the include
file in a set or parameter definition:

Q1="SELECT a, b FROM table"

O1=ab.inc

Q2="SELECT c, d FROM table"

O2=cd.inc

See also section Multi-Query Batch Usage or Example 7 - Multi-Query Batch Example
for instance.

X = string (outputGDXFile, default = none)

This option specifies the name of the output file. The format of the output file
will be a GAMS GDX file. Make sure the directory is writable. UNC names
can be used. If the GDX file already exists it will be overwritten - it is
not possible to append to a GDX file. An output file must be specified
for batch operation: i.e. either O= or X= needs to be specified (or both).
This option is demonstrated in Example 5 - Reading Set with Explanatory Text
or Example 7 - Multi-Query Batch Example for instance.

6.41 SQL2GMS 3241

Q = string (query, default = none)

This option can be used to specify an SQL query. Queries can contain spaces and
thus have to be surrounded by double quotes. For the exact syntax of the queries
that is accepted by the database we refer to the documentation that comes with
your RDBMS (Relational DataBase Management System). The query is passed
on directly to the RDBMS so the complete power and expressiveness of SQL is
available including stored procedures etc. For an exact description of allowed
expressions consult a text on your database system. This option is demonstrated in
Example 1 - Reading a single valued Table for instance.

Qn = string (query, default = none)

When using multiple queries in a single SQL2GMS call, you can append a number to
match a query with an output file, as an include file storing the results for multiples
queries cannot be interpreted later on in your GAMS model when using the include
file in a set or parameter definition. In addition, you can match the results of a
query with a specific set- or parameter name when writing to GDX.

Q1="SELECT a, b FROM table"

O1=ab.inc

Q2="SELECT c, d FROM table"

O2=cd.inc

or (GDX output file format - where several sets and parameters can be stored in a
single file):

Q1="SELECT a, b FROM table"

A1=abParameter

Q2="SELECT c FROM table"

S2=cSet

Note the usage of the arguments An resp. Sn in order to store the results as
parameter resp. set and to specify the name of the symbols. See also sec-
tion Multi-Query Batch Usage or Example 7 - Multi-Query Batch Example for in-
stance.

S = string (setName, default = none)

If we write to a GDX file, use this option to specify the name of a set to be stored
in the GDX file (containing the results of the query). This option is demonstrated
in Example 4 - Reading a multi dimensional Set.

Sn = string (setName, default = none)

If multiple queries are used in a single SQL2GMS call while writing to a GDX file,
use this option to specify the name of the nth set to be stored in the GDX file
(containing the results of the nth query), e.g.

Q1="SELECT i FROM table"

S1=iSet

Q2="SELECT j FROM table"

S2=jSet

See section Multi-Query Batch Usage and Example 7 - Multi-Query Batch Example
for instance.

Y = string (setName, default = none)

3242 Tools Manuals

If we write to a GDX file, use this option to specify the name of a set to be used
inside the GDX file. The last column specified within the select clause in the
SQL statement will be used as explanatory text. This option is demonstrated in
Example 5 - Reading Sets with Explanatory Text for instance.

Yn = string (setName, default = none)

If multiple queries are used in a single SQL2GMS call while writing to a GDX file, use
this option to specify the name of the nth set (with explanatory text) to be stored
in the GDX file (containing the results of the nth query), e.g.

Q1="SELECT i, explTextForSeti FROM table"

Y1=iSet

Q2="SELECT j, explTextForSetj FROM table"

Y2=jSet

The last column specified within the select clause in the SQL statements will be
used as explanatory text.

A = string (parameterName, default = none)

If we write to a GDX file, use this option to specify the name of a parameter to be
stored the GDX file (containing the results of the query).
Note: MDB2GMS uses P, but P was already taken in SQL2GMS for specifying the
password.

An = string (parameterName, default = none)

If multiple queries are used in a single SQL2GMS call while writing to a GDX file, use
this option to specify the name of the nth parameter to be stored in the GDX file
(containing the results of the nth query), e.g.

Q1="SELECT i, j, value FROM table"

A1=ijValue

Q2="SELECT n, m, value FROM table"

A2=nmValue

See section Multi-Query Batch Usage and Example 7 - Multi-Query Batch Example
for instance. for instance.

L (Listing, disabled by default)

Embed the data between the $offListing and $onListing dollar control options,
so the data will not be listed in the listing file. This is a quick way to reduce the
size of the listing file when including very large data files into the model. Otherwise
the listing file would become too large to be handled comfortably.

M (Mute, disabled by default)

Controls if additional information (GAMS and SQL2GMS version numbers, number of
rows in the data, elapsed time, used query etc.) is written to the log and include file.

B (Quote Blanks, disabled by default)

Quote strings if they contain blanks or embedded quotes. If a string does not contain
a blank or embedded quotes, it will remain unquoted. If the string contains a single
quote the quotes applied will be double quotes and if the string contains already a
double quote, the surrounding quotes will be single quotes. In the special case that
the string contains both, the double quotes are replaced by single quotes. For more
information see subsection Quotes. This option only applies to an output include
file.

6.41 SQL2GMS 3243

@fileName = string (fileName, default = none)

Causes the program to read options from an external text file. If the file name
contains blanks, it can be surrounded by double quotes. The option file contains
one option per line, in the same syntax as if they were specified directly on the
command-line. See also Parameter Files for some further details.

N = string (fileName, default = none)

Use a different INI file than the standard sql2gms.ini located in the same directory
as the executable sql2gms.exe.

T1 = integer (connectionTimeOut, default = 15)

Indicates how long to wait while establishing a connection before terminating the
attempt and generating an error. The value sets, in seconds, how long to wait for
the connection to open. Default is 15. If you set the property to zero, ADO will
wait indefinitely until the connection is opened. A value of -1 indicates that the
default value is to be used. Note: the provider needs to support this functionality.

T2 = integer (commandTimeOut, default = 30)

Indicates how long to wait while executing a command before terminating the
attempt and generating an error. The value sets, in seconds, how long to wait for a
command to execute. Default is 30. If you set the property to zero, ADO will wait
indefinitely until the execution is complete. A value of -1 indicates that the default
value is to be used. Note: the provider needs to support this functionality.

T = integer (timeOut, default = none)

Sets both T1 and T2.

D (Debug, disabled by default)

Generate debug information. This option must be specified in an INI file when using
the interactive mode of SQL2GMS.

E (Empty sets, disabled by default)

Allow an empty result set; without this option an empty result set will generate an
error. This option must be specified in an INI file when using the interactive mode
of SQL2GMS.

R = integer (rowBatchSize, default = 100)

Row batch size; the default is 100 records. This option must be specified in an INI
file when using the interactive mode of SQL2GMS.

P = string (password, default = none)

Specify a password for the database.

W = string (wiring, default = none)

By using the W option, one can map database columns to GAMS index positions. See
model [Wiring] for reference (note that MDB2GMS is used to access the MS Access
database instead of SQL2GMS, however this does not affect the wiring specification).

3244 Tools Manuals

6.41.3.2 Example 1 - Reading a single valued Table

Suppose we want to read the distances parameter of the [trnsport] model from the GAMS Model
Library. The data is stored in the Microsoft Access Database format (file Sample.accdb).

Figure 6.64 Table: distances

The data can be queried with a simple SQL statement:
SELECT city1, city2, distance
FROM distances

By running the following SQL2GMS statement, the connection to the database Sample.accdb is established.
In addition, the data will be queried and the results are written to a GAMS include file afterwards (.inc).

sql2gms C="Provider=Microsoft.ACE.OLEDB.12.0;Data Source=Sample.accdb" Q="SELECT city1, city2, distance FROM distances" O=distances.inc

The connection string is specified using the argument C. Note that the string is enclosed by quotes, as
the string contains blanks. The database file name Sample.accdb is also specified within the connection
string. For more information on how to connect to your database, see section Connection Strings. The
arguments Q and O are used to specify the query and the output file name (and format).

The generated include file distances.inc looks like:

* ---

* SQL2GMS 3.0 25.2.0 r67636 ALFA Released 15Aug18 VS8 x86 32bit/MS Windows

* Erwin Kalvelagen, GAMS Development Corp

* ---

* ADO version: 10.0

* Connection string: Provider=Microsoft.ACE.OLEDB.12.0;Data Source=Sample.accdb

* Provider: MSDASQL

* Query: SELECT city1, city2, distance FROM distances

* ---

SEATTLE.NEW-YORK 2.5

SAN-DIEGO.NEW-YORK 2.5

SEATTLE.CHICAGO 1.7

SAN-DIEGO.CHICAGO 1.8

SEATTLE.TOPEKA 1.8

SAN-DIEGO.TOPEKA 1.4

* ---

6.41 SQL2GMS 3245

The commented header section summarizes some information about the SQl2GMS resp. GAMS version
and about the executed database query. The standard export format is to consider the last column as
the value column (containing the distances) and the previous columns as the indices (containing the city
names). The indices are separated by a dot, allowing the generated include file to be used as part of a
parameter declaration statement in your GAMS model.

Retrieving the data using SQL2GMS from the database and including the queried data in your GAMS model
within the parameter declaration statement (at compile time) can be combined in the following way:

Set

i ’canning plants’ / seattle, san-diego /

j ’markets’ / new-york, chicago, topeka /;

$call sql2gms C="Provider=Microsoft.ACE.OLEDB.12.0;Data Source=Sample.accdb" Q="SELECT city1, city2, distance FROM distances" O=distances.inc

Parameter d(i,j) ’distance in thousands of miles’ /

$include distances.inc

/;

display d;

Finally, the values of the parameter d are displayed:

new-york chicago topeka

seattle 2.500 1.700 1.800

san-diego 2.500 1.800 1.400

This example is also part of the GAMS Data Utilities Library, see model [Distances2] for reference.
Note that the query results are written to a GDX file in addition.

6.41.3.3 Example 2 - Reading a multi valued Table

In this scenario, we want two read the three index columns year, loc, prod and the value columns sales
and profit from the database file Sample.accdb. Therefore, we use two separate parameters and queries
or alternatively a parameter with an extra index position (for sales resp. profit) and a UNION select.

Consider the table with two value columns sales and profit:

Figure 6.65 Table: data (shortened for presentation)

3246 Tools Manuals

Two separate Parameters

A simple way to import this into GAMS is to use two parameters and two SQL queries. The SQL queries
can look like:
SELECT year, loc, prod, sales
FROM data
SELECT year, loc, prod, profit
FROM data

We can generate a include file sales.inc by running the following command:

sql2gms C="DRIVER={Microsoft Access Driver (*.mdb, *.accdb)};dbq=Sample.accdb" Q="SELECT year, loc, prod, sales FROM data" O=sales.inc

Note that we specify the first query in order to select the sales and the relevant index columns within the
Q argument. The query results are written to sales.inc using the O argument. Analogously we generate a
include file profit.inc by running the following command while specifying the second query in order to
obtain the profits and the relevant index columns:

sql2gms C="DRIVER={Microsoft Access Driver (*.mdb, *.accdb)};dbq=Sample.accdb" Q="SELECT year, loc, prod, profit FROM data" O=profit.inc

Retrieving the data using SQL2GMS from the database Sample.accdb and including the queried data in
your GAMS model within the parameter declaration statements of sales and profit (at compile time)
can be combined in the following way:

Set

year ’years’ / 1997*1998 /

loc ’locations’ / nyc, was, la, sfo /

prd ’products’ / hardware, software /;

$call sql2gms C="DRIVER={Microsoft Access Driver (*.mdb, *.accdb)};dbq=Sample.accdb" Q="SELECT year, loc, prod, sales FROM data" O=sales.inc

Parameter sales(year,loc,prd) /

$include sales.inc

/;

$call sql2gms C="DRIVER={Microsoft Access Driver (*.mdb, *.accdb)};dbq=Sample.accdb" Q="SELECT year, loc, prod, profit FROM data" O=profit.inc

Parameter profit(year,loc,prd) /

$include profit.inc

/;

Single Parameter with extra Index Position

The operation can also be performed in one big swoop by using a different GAMS datastructure, i.e. a
single parameter is defined with an extra index type to indicate the data type (sales or profit). The index
and value columns will be selected by the following SQL statement. Note the UNION operation in order
to combine the results and the strings 'sales' resp. 'profit' to identify the data type later on.
SELECT year, loc, prod, ’sales’, sales
FROM data
UNION
SELECT year, loc, prod, ’profit’, profit
FROM data

The data is accessed, queried and written to data.inc by running the following command:

sql2gms @howToRead.txt

Note that usage of the external parameter file howToRead.txt shown below in order to increase the
readability of the command (one argument per line, quotes can be omitted):

6.41 SQL2GMS 3247

C=DRIVER={Microsoft Access Driver (*.mdb, *.accdb)};dbq=Sample.accdb

Q=SELECT year, loc, prod, ’sales’, sales FROM data UNION SELECT year, loc, prod, ’profit’, profit FROM data

O=data.inc

The generated include file data.inc looks like (shortened for presentation):

* ---

* SQL2GMS 3.0 25.2.0 r67636 ALFA Released 15Aug18 VS8 x86 32bit/MS Windows

* Erwin Kalvelagen, GAMS Development Corp

* ---

* ADO version: 10.0

* Connection string: DRIVER={Microsoft Access Driver (*.mdb, *.accdb)};dbq=Sample.accdb

* Provider: MSDASQL

* Query: SELECT year, loc, prod, ’sales’, sales FROM data UNION SELECT year, loc, prod, ’profit’, profit FROM data

* ---

1997.la.hardware.profit 8

1997.la.hardware.sales 80

1997.la.software.profit 16

1997.la.software.sales 60

1997.nyc.hardware.profit 5

1997.nyc.hardware.sales 110

1997.nyc.software.profit 10

1997.nyc.software.sales 100

1997.sfo.hardware.profit 9

1997.sfo.hardware.sales 80

1997.sfo.software.profit 10

1997.sfo.software.sales 50

1997.was.hardware.profit 7

1997.was.hardware.sales 120

1997.was.software.profit 20

1997.was.software.sales 70

1998.la.hardware.profit 6

1998.la.hardware.sales 70

* ---

Retrieving the data using SQL2GMS from the database and including the queried data in your GAMS
model within the parameter declaration (at compile time) can be combined in the following way (note
that the parameter has a fourth index type in order to access the data type sales resp. profit):

$onEcho > howToRead.txt

C=DRIVER={Microsoft Access Driver (*.mdb, *.accdb)};dbq=Sample.accdb

Q=SELECT year, loc, prod, ’sales’, sales FROM data UNION SELECT year, loc, prod, ’profit’, profit FROM data

O=data.inc

$offEcho

Set

year ’years’ / 1997*1998 /

loc ’locations’ / nyc, was, la, sfo /

prd ’products’ / hardware, software /

type ’data type’ / sales, profit /;

$call sql2gms @howToRead.txt

Parameter data(year,loc,prd,type) /

$include data.inc

/;

This example is also part of the GAMS Data Utilities Library, see model [SalesProfitDB5] for reference.

3248 Tools Manuals

6.41.3.4 Example 3 - Reading a one dimensional Set

This example demonstrates how to read set elements of a one dimensional set from a single column of a
database file. Suppose we want to read the column City1 (see table distances) in order to define the set
i in the GAMS model. Make sure elements are unique by using the distinct operation within the SQL
statement (otherwise there will be an error when including the file within the set definition in the GAMS
model, as some set elements will be redefined):
SELECT distinct(City1)
FROM distances

The include file city1.inc looks like (header informations are removed in order to shorten the representation):

* ---

SAN-DIEGO

SEATTLE

* ---

All steps (data access via SQL2GMS, set definition) can be combined:

$call sql2gms C="Provider=MMicrosoft.ACE.OLEDB.12.0;Data Source=Sample.accdb" Q="SELECT distinct(city1) FROM distances" O=city_i.inc

Set i ’canning plants’ /

$include city_i.inc

/;

display i;

The display statement generates the following output in the listing file:

---- 56 SET i

seattle , san-diego

6.41.3.5 Example 4 - Reading a multi dimensional Set

When reading a multi dimensional set from database and writing the results to an include file by using
the O argument, one has to observe that the elements in the include file must have the correct format
in order to be interpreted as element of a multi dimensional set. For instance, a line containing a b c is
not recognized as a proper set element of a three dimensional set. In particular, one has to add periods
between the single elements, i.e. a.b.c will be interpreted correctly.

Depending on your DBMS (DataBase Management System), these periods must be added explicitly in a
different way within the SQL statement. E.g. add a dummy value field by adding a quoted blank to the
select clause (index1, index2, index3 and dataTable are some placeholders):
SELECT index1, index2, index3, " " FROM dataTable

or by adding the periods explicitly within the select clause (|| or & depending on DBMS):
SELECT index1&’.’&index2&’.’&index3 FROM dataTable
SELECT index1||’.’||index2||’.’||index3 FROM dataTable

For instance, suppose we want to define a two dimensional set

6.41 SQL2GMS 3249

Set ij(i,j) ’canning plants - markets’;

based on the data of the table distances stored in Sample.accdb. The following SQL2GMS statement
connects you to the database, queries the columns with the city names and adds an empty value field in
order to create periods between the set elements:

sql2gms C="Provider=Microsoft.ACE.OLEDB.12.0;Data Source=Sample.accdb" Q="SELECT city1, city2, ’ ’ FROM distances" O=city_ij.inc

The include file city ij.inc looks like (header informations are removed in order to shorten the representa-
tion):

* ---

SEATTLE.NEW-YORK ’ ’

SAN-DIEGO.NEW-YORK ’ ’

SEATTLE.CHICAGO ’ ’

SAN-DIEGO.CHICAGO ’ ’

SEATTLE.TOPEKA ’ ’

SAN-DIEGO.TOPEKA ’ ’

* ---

Without adding the empty value field, the resulting include file would look like (shortened):

* ---

SEATTLE NEW-YORK

SAN-DIEGO NEW-YORK

* ---

Since the periods are missing, the lines are not recognized as valid elements of a two dimensional set. All
steps can be combined in the following way:

Set

i ’canning plants’ / seattle, san-diego /

j ’markets’ / new-york, chicago, topeka /;

$call sql2gms C="Provider=Microsoft.ACE.OLEDB.12.0;Data Source=Sample.accdb" Q="SELECT city1, city2, ’ ’ FROM distances" O=city_ij.inc

Set ij(i,j) ’two dimensional set’ /

$include city_ij.inc

/;

display ij;

The display statement generates the following output in the listing file:

---- 75 SET ij two dimensional set

new-york chicago topeka

SAN-DIEGO YES YES YES

SEATTLE YES YES YES

3250 Tools Manuals

Note that there is no need to add periods explicitly when reading multi dimensional sets, if the results are
written only to a GDX file by using the X and S resp. Y arguments, i.e. there is no need to modify the
query:
SELECT index1, index2, index3 FROM datatable

when using SQL2GMS in the following way:

sql2gms C="Provider=Microsoft.ACE.OLEDB.12.0;Data Source=Sample.accdb" Q="SELECT index1, index2, index3 FROM datatable" X=setData.gdx S=setName

which will generate the file setData.gdx with a three dimensional set named setName containing the
results of the query.

6.41.3.6 Example 5 - Reading Sets with Explanatory Text

In this example, we will demonstrate how to read set elements with explanatory text from a database file
using SQL2GMS. In the first place, we are going to write the query results to an include file, afterwards we
use the Y argument in order to store the query results as a set with explanatory text in a GDX file.

Figure 6.66 Table: setData

Note the blanks and the mixed quotes in the column containing the explanatory text. The data can be
accessed by the following query:
SELECT setElement, explText
FROM setData

Writing the Query Results in an include File
The last column in the select clause will be used as explanatory text. Take in mind to add the argument
B in order to handle text strings with embedded blanks or quotes. The following GAMS code accesses the
data and writes the results to an include file setData.inc:

$call sql2gms C="Provider=Microsoft.ACE.OLEDB.12.0;Data Source=Sample.accdb" B Q="SELECT setElement, explText FROM setData" O=setData.inc

Set a /

$include setData.inc

/;

The resulting include file will look like (header informations are removed in order to shorten the represen-
tation):

6.41 SQL2GMS 3251

* ---

firstSetElement "Explanatory text for the first ’set element’"

secondSetElement ’Explanatory text for the second "set element"’

thirdSetElement "Explanatory text for the third ’set element’"

fourthSetElement ’Explanatory text for the fourth set element’

* ---

Note the handling of the quotes according to the description in B.

Writing the Query Results in a GDX File
When storing the results of the query as a set with explanatory text in a GDX file, there is no need to
observe embedded blanks or quotes manually, instead one can use the Y argument. The last column
specified in the select clause of the SQL statement will be interpreted as explanatory text. The following
GAMS code accesses the data and writes the results to a GDX file setData.inc:

$call sql2gms C="Provider=Microsoft.ACE.OLEDB.12.0;Data Source=Sample.accdb" Q="SELECT setElement, explText FROM setData" X=setData.gdx Y=set_b

Set b;

$gdxIn setData.gdx

$load b = set_b

$gdxIn

Note that the name of the set in the GDX file is set b (specified within the Y argument), while the name
of the GDX file was specified within the X argument.

6.41.3.7 Example 6 - Index Mapping

In some cases the index elements used in the database are not the same as in the GAMS model. E.g.
consider the case where the GAMS model has defined a set as:

Set i / NY, DC, LA, SF /;

Now assume a data table looks like:

Figure 6.67 Table: example table

This means we have to map ‘new york' to ‘NY' etc. This mapping can be done in two places: either in
GAMS or in the database.

3252 Tools Manuals

Index Mapping done in GAMS

When we export the table directly, we get the following include file (header informations are removed in
order to shorten the representation):

* ---

’new york’ 100

’los angeles’ 120

’san francisco’ 105

’washington dc’ 102

* ---

Note that the single quotes are added by activating the option B (quote blanks), as the index elements
contain blanks. Accessing the data, importing the resulting include file and converting it to a different
index space can be done by the following GAMS code:

Set i / NY, DC, LA, SF /;

Set idb ’from database’ / ’new york’, ’washington dc’, ’los angeles’, ’san francisco’ /;

$call sql2gms C="DRIVER={Microsoft Access Driver (*.mdb, *.accdb)};dbq=Sample.accdb" B O="city1.inc" Q="SELECT city, value FROM [example table]"

Parameter dbdata(idb) /

$include city1.inc

/;

Set mapindx(i,idb) / NY.’new york’, DC.’washington dc’, LA.’los angeles’, SF.’san francisco’ /;

Parameter data(i);

data(i) = sum(mapindx(i,idb), dbdata(idb));

display data;

The display statement generates the following output in the listing file:

---- 47 PARAMETER data

NY 100.000, DC 102.000, LA 120.000, SF 105.000

This example is also part of the GAMS Data Utilities Library, see model [IndexMapping3] for reference.

Index mapping done in Database

The second approach is to handle the mapping inside the database. We can introduce a mapping table
that looks like:

Figure 6.68 Table: CityMapper

6.41 SQL2GMS 3253

This table can be used in a join to export the data in a format we can use by executing the query:
SELECT [GAMS City], value
FROM example table, CityMapper
WHERE CityMapper.[Access City]=example table.city

The resulting include file looks like (header informations are removed in order to shorten the representation):

* ---

la 120

ny 100

sf 105

dc 102

* ---

All steps can be combined in the GAMS model:

Set i / NY, DC, LA, SF /;

$onEcho > howToRead.txt

C=DRIVER={Microsoft Access Driver (*.mdb, *.accdb)};dbq=Sample.accdb

Q=SELECT [GAMS City], [value] FROM example_table, CityMapper WHERE CityMapper.[Access City]=example_table.city

O=city2.inc

$offEcho

$call sql2gms @howToRead.txt

Parameter data(i) /

$include city2.inc

/;

display data;

The display statement generates the following output in the listing file:

---- 38 PARAMETER data

NY 100.000, DC 102.000, LA 120.000, SF 105.000

Note: MS Access allows table names with embedded blanks. In that case the table name can be
surrounded by square brackets. Other databases may not allow this.

This example is also part of the GAMS Data Utilities Library, see model [IndexMapping4] for reference.

6.41.4 Multi-Query Batch Usage

In some cases a number of small queries need to be performed on the same database. However, several
individual SQL2GMS execution can become expensive, since there is significant overhead in starting Access
and opening the database. For these cases, we have added the option to do multiple queries in one call.
To execute several queries in a single SQL2GMS call and write several GAMS include files containing the
results of the queries, we can use the command-line arguments Qn and On. The structure of a multi-query
call looks like:

3254 Tools Manuals

C=DRIVER={Microsoft Access Driver (*.mdb, *.accdb)};dbq=sample.accdb

Q1=firstQuery

O1=outputFileName.inc

Q2=secondQuery

O2=outputFileName.inc

Q3=thirdQuery

O3=outputFileName.inc

The terms firstQuery, secondQuery etc. are placeholders for some SQL statements. We see that the
argument Qn is matched by an argument On. That means that the results of the n-th query are written to
the n-th output file.

In case we want to store the results of a multi-query call to a single GDX file, we can use the command-line
arguments Qn, Sn, An and Yn. The structure of a multi-query call when writing to a GDX file looks like:

C=DRIVER={Microsoft Access Driver (*.mdb, *.accdb)};dbq=sample.accdb

X=sample.gdx

Q1=firstQuery

S1=setName

Q2=secondQuery

S2=setName

Q3=thirdQuery

A3=parameterName

Q4=fourthQuery

A4=setName

Again, the terms firstQuery, secondQuery etc. are placeholders for some SQL statements. Here we
see that a query Qn is matched by either a set name Sn or a parameter name An (the letter P was taken
already: it is used to specify a password), i.e. the results of the first query will be stored as a set whose
name is specified within the S1 argument, the results of the third query will be stored as a parameter
whose name is specified within the A3 argument etc. The X argument is used to specify the name of the
GDX file.

For a complete example see section Example 7 - Multi-Query Batch Example .

6.41.4.1 Example 7 - Multi-Query Batch Example

As an example database we use the following Access table (file Sample.mdb):

6.41 SQL2GMS 3255

Figure 6.69 Table: data (shortened for presentation)

We want to extract the following information:

• The set year

• The set loc

• The set prd

• The parameter sales

• The parameter profit

Output: Several include Files

This can be accomplished using the following GAMS code with multiple queries in a single SQL2GMS call
(note the usage of the distinct operator in the select clauses of the queries whose results will be used as
sets in order to keep the set elements unique):

$onEcho > howToRead.txt

C=DRIVER={Microsoft Access Driver (*.mdb, *.accdb)};dbq=Sample.accdb

Q1=SELECT distinct(year) FROM data

O1=year.inc

Q2=SELECT distinct(loc) FROM data

O2=loc.inc

Q3=SELECT distinct(prod) FROM data

O3=prod.inc

Q4=SELECT prod, loc, year, sales FROM data

O4=sales.inc

Q5=SELECT prod, loc, year, profit FROM data

O5=profit.inc

3256 Tools Manuals

$offEcho

$call =sql2gms @howToRead.txt

Set y ’years’ /

$include year.inc

/;

Set loc ’locations’ /

$include loc.inc

/;

Set prd ’products’ /

$include prod.inc

/;

Parameter sales(prd,loc,y) /

$include sales.inc

/;

display sales;

Parameter profit(prd,loc,y) /

$include profit.inc

/;

display profit;

This example is also part of the GAMS Data Utilities Library, see model [SalesProfitDB6] for reference.

Output: A single GDX File

The same example imported through a GDX file can look like:

$onEcho > howToRead.txt

C=Provider=Microsoft.ACE.OLEDB.12.0;Data Source=Sample.accdb

X=Sample.gdx

Q1=SELECT distinct(year) FROM data

S1=year

Q2=SELECT distinct(loc) FROM data

S2=loc

Q3=SELECT distinct(prod) FROM data

S3=prd

Q4=SELECT prod, loc, year, sales FROM data

A4=sales

Q5=SELECT prod, loc, year, profit FROM data

A5=profit

$offEcho

$call =sql2gms @howToRead.txt

$call ="%gams.sysdir%studio/studio" Sample.gdx

Set

y ’years’

loc ’locations’

6.41 SQL2GMS 3257

prd ’products’;

Parameter

sales(prd,loc,y)

profit(prd,loc,y);

$gdxIn sample.gdx

$load y=year prd loc sales profit

$gdxIn

display sales, profit;

The call of the GDXViewer will display the GDX file in the stand-alone GDX viewer. This example is
also part of the GAMS Data Utilities Library, see model [SalesProfitDB7] for reference.

6.41.5 Interactive Usage

When the tool is called without command-line arguments, it will startup interactively. Using it this way,
one can specify options such as the connection string, the query and the final destination file (a GAMS
include file or a GDX file) using the built-in interactive environment. The main screen (see figure below)
contains a number of buttons and edit boxes, which are explained below.

Figure 6.70 SQL2GMS - Graphical User Interface

3258 Tools Manuals

• Output GAMS Include file (∗.inc). If you want to create a GAMS include file, then specify
here the destination file. See also outputIncludeFile for some more detailed remarks.

• Output GDX file (∗.gdx). As an alternative to a GAMS include file, the tool can also generate a
GDX file. One or both of the output files need to be specified. See also outputGDXFile for some
more detailed notes.

• SQL Query. The SQL Query box is the place to provide the query. Note that the actual area for
text can be larger than is displayed: use the cursor-keys to scroll. See also Q for some more detailed
notes.

• Progress Memo. This memo field is used to show progress of the application. Also error messages
from the database are printed here. This is a read-only field.

6.41 SQL2GMS 3259

• The edit boxes above all have a drop down list which can be used to access quickly file names and
queries that have been used earlier (even from a previous session).

• The Tables button will pop up a new window with the contents of the database file selected in
the input file edit line. This allows you to see all table names and field names needed to specify a
correct SQL query. An exception will be generated if no database file name is specified in the input
edit line.

• The Options button will pop up a window where you can specify a number of options. The
connection string is an important option, which needs to be set correctly before a query can be
submitted successfully.

• Pressing the Help button will show this documentation.

• Pressing the OK button will execute the query and an output file will be generated.

• The Batch button will give information on how the current extract command can be executed
directly from GAMS in a batch environment. The batch call will be displayed and can be copied
onto the clipboard. In the IDE press Ctrl-C or choose Edit|Paste to copy the contents of the
clipboard to a GAMS text file.

• Pressing the Close button will exit the application. The current settings will be saved in an INI
file so when you run SQL2GMS again all current settings will be restored.

3260 Tools Manuals

6.41.5.1 Options

The Options window can be created by pressing the options button:

Figure 6.71 Options Menu of the Graphical User Interface

The following options are available in the options window:

• User name: Here you can specify the user name for logging in to the RDBMS. For databases
without user authentication, this can be left empty.

• Password: This edit box allows you to specify the password for the database system. The characters
are echoed as a '∗'.

6.41 SQL2GMS 3261

• Connection String: The connection string determines how SQL2GMS talks to the database. For
more informations see Connection Strings.

• ODBC Data Sources/Drivers: This drop down list can be used to compose a connection string
when an ODBC data source or driver is involved. The list will show all configured data sources and
all available ODBC drivers.

• Quote blanks: Quote strings if they contain blanks or embedded quotes. See also B for some more
detailed notes.

• Mute: Don't include the extra informational text (such as used query etc.) in the include file. The
equivalent command-line argument is M.

• No listing: Surround the include file by $offListing and $onListing so that the data will not
be echoed to the listing file. The equivalent command-line argument is L.

• Format SQL: If an SQL text is reloaded in the SQL Edit Box, it will be formatted: keywords will
be printed in CAPS and the FROM and WHERE clause will be printed on their own line. If this
check box is unchecked this formatting will not take place and SQL queries will be shown as is.

3262 Tools Manuals

The following options are only needed in special cases:

• NULL: This radio box determines how NULL's are handled. A NULL in an index position or a
value column will usually make the result of the query useless: the GAMS record will be invalid. To
alert you on NULL's the default to throw an exception is a safe choice. In special cases you may
want to map NULL's to an empty string or a 'NULL' string.

• Time-out values for connection time and command execution time expressed in seconds. If -1 is
specified then it will use the default value which is 15 seconds for the connection and 30 for the
commands. See also T1, T2 resp. T for some more detailed notes.

The following buttons have an obvious functionality:

• OK button will accept the changes made.

• Cancel button will ignore the changes made and all option settings will revert to their previous
values.

• Help button will show this documentation.

6.41 SQL2GMS 3263

• Test Connection will try to make a connection to the database using the given connection string.

If the settings are correct you will see something like:

The following options can only be specified in an INI file; there is no interactive equivalent:

Key Type Meaning

D Generate debug output

E Allow an empty result set; without this option an empty result set will generate an
error

R integer Row batch size; the default is 100 records

6.41.6 Connection Strings

The connection string determines to which database the tool will try to connect. You can give simply the
name of an ODBC Data Source or provide much more elaborate connection strings. Here is an example
list:

• ODBC Examples

• OLE DB Examples

• MS Remote Examples

For more information consult the documentation with your database driver. ODBC drivers can be had
from several sources: Microsoft delivers ODBC with a number of drivers; database providers may have
likely an ODBC driver for their RDBMS available and finally there are a number of third party ODBC
drivers available (e.g. from http://www.easysoft.com).

http://www.easysoft.com

3264 Tools Manuals

6.41.7 ODBC Examples

In this section we show a few examples using SQL2GMS with ODBC data sources.

6.41.7.1 ODBC Driver Manager

To configure ODBC data sources use the ODBC Data Source Administrator. This tool can be invoked
from the Start button menu: Settings|Control Panel, and click on the ODBC Data Sources icon:

Under Windows XP the sequence is: Control Panel|Performance and Maintenance|Administrative
Tools and click on the Data Sources (ODBC) icon. Under Windows 10, access the Control Panel at
first, type 'odbc' in the top right box and select either 'Set up ODBC data sources (32-bit)' or 'Set up
ODBC data sources (64-bit)'. The ODBC Data Source Administrator tool looks like:

To create a new data source, click the Add button, select a driver, give it a name (this is the DSN name)
and configure the data source.

6.41 SQL2GMS 3265

6.41.7.2 Example 8 - Reading from an MS Access Database

There are several ways to export data from an SQL database into a GAMS include file:

1. Export a CSV (Comma Separated Values) file using Access Export. See also CSV Files.

2. Use the MDB2GMS tool.

3. Use SQL2GMS with a configured ODBC data source. The connection string will look like:

"DSN=mydsn".

4. Use SQL2GMS with a DSN-less ODBC connection. In this case we need to specify both the driver
and the location of the database file explicitly in the connection string. The connection string will
look like:

"Driver=Microsoft Access Driver (*.mdb, *.accdb);dbq=D:\data\mydata.accdb".

5. Use SQL2GMS with an OLE DB driver. The connection string can look like:

"Microsoft.ACE.OLEDB.12.0;Data Source=D:\data\mydata.accdb"

6.41.7.3 Example 9 - Reading from an MS Excel Spreadsheet

There are numerous ways to export data from an Excel spreadsheet into a GAMS include file:

1. Export a CSV (Comma Separated Values) file using Excel Export.

2. Use the XLS2GMS tool.

3. Use the GDXXRW tool.

4. Use SQL2GMS with an Excel ODBC connection. An example is shown below.

Consider the spreadsheet ExcelDist.xls:

After configuring a data source ExcelDist that uses the Excel ODBC driver and points to the .xls file
containing the above sheet, we can use the connection string: "DSN=ExcelDist". With the database
browser we see:

3266 Tools Manuals

I.e. the table name is Sheet1$. We now can formulate the query: SELECT city1, city2, distance

FROM [Sheet1$]. We need the brackets to protect the funny table name. The result is (header removed
in order to shorten the presentation=:

* ---

SEATTLE.NEW-YORK 2.5

SAN-DIEGO.NEW-YORK 2.5

SEATTLE.CHICAGO 1.7

SAN-DIEGO.CHICAGO 1.8

SEATTLE.TOPEKA 1.8

SAN-DIEGO.TOPEKA 1.4

* ---

Although other tools are often more convenient to use, this approach is useful if you need to select a
subsection of the spreadsheet table. It is easy to select just a few columns or rows from a table using a
properly formulated SQL query. The skeleton would be: SELECT columns to extract FROM [sheet1$]
WHERE rows to extract.

An example of a more complex spreadsheet is (profit.xls):

6.41 SQL2GMS 3267

A DSN-less connection string would be: "DRIVER=Microsoft Excel Driver (∗.xls); DBQ=d:\gams
projects\sql2gms\ver2.0\profit.xls". The browser will show:

A possible query that maps the two value columns into a GAMS parameter is:

SELECT year, loc, prod, ’sales’, sales

FROM [profitdata$]
UNION

SELECT year, loc, prod, ’profit’, profit

FROM [profitdata$]

The result is (shortened for presentation):

* ---

1997.la.hardware.profit 8

1997.la.hardware.sales 80

1997.la.software.profit 16

1997.la.software.sales 60

1997.nyc.hardware.profit 5

1997.nyc.hardware.sales 110

1997.nyc.software.profit 10

1997.nyc.software.sales 100

1997.sfo.hardware.profit 9

1997.sfo.hardware.sales 80

1997.sfo.software.profit 10

1997.sfo.software.sales 50

1997.was.hardware.profit 7

1997.was.hardware.sales 120

1997.was.software.profit 20

1997.was.software.sales 70

1998.la.hardware.profit 6

1998.la.hardware.sales 70

* ---

This example is also part of the GAMS Data Utilities Library, see model [Excel] for reference.

3268 Tools Manuals

6.41.7.4 Example 10 - Reading from a Text File

Microsoft delivers ODBC with a text file driver which allows you to read a text file as if it is a database
table.

A fixed format file such as:

City1 City2 Distance

SEATTLE NEW-YORK 2.5

SAN-DIEGO NEW-YORK 2.5

SEATTLE CHICAGO 1.7

SAN-DIEGO CHICAGO 1.8

SEATTLE TOPEKA 1.8

SAN-DIEGO TOPEKA 1.4

can be read using Fixed Length setting of the text driver:

The resulting include file will look like:

* ---

* SQL2GMS Version 2.0, January 2004

* Erwin Kalvelagen, GAMS Development Corp

* ---

* ADO version: 2.7

* Connection string: DSN=text

* Query: SELECT city1, city2, distance FROM odbcdata.txt

* Provider: MSDASQL

* ---

6.41 SQL2GMS 3269

SEATTLE.NEW-YORK 2.5

SAN-DIEGO.NEW-YORK 2.5

SEATTLE.CHICAGO 1.7

SAN-DIEGO.CHICAGO 1.8

SEATTLE.TOPEKA 1.8

SAN-DIEGO.TOPEKA 1.4

* ---

Note that the text file is specified directly within the FROM clause.

A CSV file can be interpreted as a table as well, or any other separated format. We will try to read:

City1;City2;Distance

SEATTLE;NEW-YORK;2.5

SAN-DIEGO;NEW-YORK;2.5

SEATTLE;CHICAGO;1.7

SAN-DIEGO;CHICAGO;1.8

SEATTLE;TOPEKA;1.8

SAN-DIEGO;TOPEKA;1.4

This can be read using:

The actual formats used are stored by ODBC in an INI file schema.ini (located in the directory of the
data files) which can be inspected directly:

3270 Tools Manuals

[odbcdata.txt]

ColNameHeader=True

Format=FixedLength

MaxScanRows=25

CharacterSet=ANSI

Col1=city1 Char Width 11

Col2=city2 Char Width 11

Col3=distance Float Width 10

[odbcdata2.txt]

ColNameHeader=True

Format=Delimited(;)

MaxScanRows=25

CharacterSet=OEM

Col1=City1 Char Width 255

Col2=City2 Char Width 255

Col3=Distance Float

This example is also part of the GAMS Data Utilities Library, see model [Text] for reference.

6.41.8 Strategies

Including SQL statements to extract data from a database inside your model can lead to a number of
difficulties:

• The database can change between runs, leading to results that are not reproducible. A possible
scenario is a user calling you with a complaint: ”the model is giving strange results”. You run the
model to verify and now the results are ok. The reason may be because the data in the database
has changed.

• There is significant overhead in extracting data from a database. If there is no need to get new data
from the database it is better to use a snapshot stored locally in a format directly accessible by
GAMS.

• It is often beneficial to look at the extracted data. A first reason, is just to make sure the
data arrived correctly. Another argument is that viewing data in a different way may lead to a
better understanding of the data. A complete ”under-the-hood” approach may cause difficulties in
understanding certain model behavior.

Often it is a good strategy to separate the data extraction step from the rest of the model logic.

If the sub-models form a chain or a tree, like in:

Data Extraction --> Data Manipulation --> Model Definition --> Model Solution --> Report Writing

we can conveniently use the save/restart facility. The individual submodel are coded as:

• Step 0 - Data Extraction: sr0.gms

6.41 SQL2GMS 3271

$onText

step 0: data extraction from database

execute as: > gams sr0 save=s0

$offText

Set

i ’suppliers’

j ’demand centers’;

Parameter

demand(j)

supply(i)

dist(i,j) ’distances’;

$onEcho > howtoRead.txt

C=Provider=Microsoft.ACE.OLEDB.12.0;Data Source=%system.fp%transportation.accdb

Q1=SELECT name FROM suppliers

O1=i.inc

Q2=SELECT name FROM demandcenters

O2=j.inc

Q3=SELECT name,demand FROM demandcenters

O3=demand.inc

Q4=SELECT name, supply FROM suppliers

O4=supply.inc

Q5=SELECT supplier, demandcenter, distance FROM distances

O5=dist.inc

$offEcho

$call =sql2gms.exe @howtoRead.txt

Set i /

$include i.inc

/;

Set j /

$include j.inc

/;

Parameter demand /

$include demand.inc

/;

Parameter supply /

$include supply.inc

/;

Parameter dist /

$include dist.inc

/;

display i, j, demand, supply, dist;

• Step 1 - Data Manipulation: sr1.gms

3272 Tools Manuals

$onText

step 1: data manipulation step

execute as: > gams sr1 restart=s0 save=s1

$offText

Scalar f ’freight in dollars per case per thousand miles’ / 90 /;

Parameter c(i,j) ’transport cost in thousands of dollars per case’;

c(i,j) = f*dist(i,j)/1000;

• Step 2 - Model Definition: sr2.gms

$onText

step 2: model definition

execute as: > gams sr2 restart=s1 save=s2

$offText

Variable

x(i,j) ’shipment quantities in cases’

z ’total transportation costs in thousands of dollars’;

Positive Variable x;

Equation

ecost ’define objective function’

esupply(i) ’observe supply limit at plant i’

edemand(j) ’satisfy demand at market j’;

ecost.. z =e= sum((i,j), c(i,j)*x(i,j));

esupply(i).. sum(j, x(i,j)) =l= supply(i);

edemand(j).. sum(i, x(i,j)) =g= demand(j);

• Step 3 - Model Solution: sr3.gms

$onText

step 3: model solution

execute as: > gams sr3 restart=s2 save=s3

$offText

option lp = cplex;

Model transport / all /;

solve transport using lp minimizing z;

• Step 4 - Report Writing: sr4.gms

$onText

step 4: report writing

execute as: > gams sr4 restart=s3

$offtext

abort$(transport.modelStat <> 1) "model not solved to optimality";

display x.l, z.l;

A model that executes all steps can be written as:

6.41 SQL2GMS 3273

execute ’=gams.exe sr0 lo=3 save=s0’;

abort$errorLevel "step 0 failed";

execute ’=gams.exe sr1 lo=3 restart=s0 save=s1’;

abort$errorLevel "step 1 failed";

execute ’=gams.exe sr2 lo=3 restart=s1 save=s2’;

abort$errorLevel "step 2 failed";

execute ’=gams.exe sr3 lo=3 restart=s2 save=s3’;

abort$errorLevel "step 3 failed";

execute ’=gams.exe sr4 lo=3 restart=s3’;

abort$errorLevel "step 4 failed";

If you only change the reporting step, i.e. generating some output using PUT statements, then you only
need to change and re-execute step 4. If you change solver or solver options, then only steps 3 and 4 need
to be redone. For a small model like this, this exercise may not be very useful, but when the model is
large and every step is complex and expensive, this is a convenient way to achieve quicker turn-around
times in many cases.

The model [SQLSr5] is also part of the GAMS Data Utilities Library.

In some cases the save/restart facility is not appropriate. A more general approach is to save the data
from the database in a GDX file, which can then be used by other models. We can use the model from
step 0 to store the data in a GDX file:

SQL2GDX1.gms

$onText

Store data from Access database into a GDX file.

$offText

execute ’=gams.exe sr0 lo=3 gdx=trnsport.gdx’;

abort$errorLevel "step 0 failed";

execute ’=gdxviewer.exe trnsport.gdx’;

The model [SQL2GDX1] is also part of the GAMS Data Utilities Library.

We can also let SQL2GMS create the GDX file:

SQL2GDX2.gms

$onText

Store data from Access database into a GDX file.

$offText

$onEcho > howToRead.txt

C=Provider=Microsoft.ACE.OLEDB.12.0;Data Source=%system.fp%transportation.accdb

X=%system.fp%transportation.gdx

Q1=SELECT name FROM suppliers

S1=i

Q2=SELECT name FROM demandcenters

3274 Tools Manuals

S2=j

Q3=SELECT name, demand FROM demandcenters

A3=demand

Q4=SELECT name, supply FROM suppliers

A4=supply

Q5=SELECT supplier, demandcenter, distance FROM distances

A5=dist

$offEcho

$call =sql2gms.exe @howToRead.txt

The first approach has the advantage that a complete audit record is available from the data moved from
the database to the GDX file in the sr0.lst listing file. If someone ever wonders what came out of the
database and how this was stored in the GDX file, that file gives the answer.

The model [SQL2GDX2] is also part of the GAMS Data Utilities Library.

To load the GDX data the following fragment can be used:

GDXTRNSPORT.gms

This model demonstrates how to load the transportation data from GDX file at compile time.

Set

i ’suppliers’

j ’demand centers’;

Parameter

demand(j)

supply(i)

dist(i,j) ’distances’;

$gdxIn transportation.gdx

$load i j demand supply dist

$gdxIn

display i, j, demand, supply, dist;

DBTimestamp2.gms

In one application I had to retrieve data from the database each morning, at the first run of the model.
The rest of the day, the data extracted that morning could be used. The following logic can implement
this:

$onText

Retrieve data from data base first run each morning.

$offText

$onEcho > getdate.txt

C=Provider=Microsoft.ACE.OLEDB.12.0;Data Source=%system.fp%transportation.accdb

Q=select day(now())

O=dbtimestamp.inc

$offEcho

6.41 SQL2GMS 3275

$if not exist dbtimestamp.inc $call "echo 0 > dbtimestamp.inc"

Scalar dbtimestamp ’day of month when data was retrieved’ /

$include dbtimestamp.inc

/;

Scalar currentday ’day of this run’;

currentday = gday(jnow);

display "compare", dbtimestamp, currentday;

if(dbtimestamp<>currentday,

execute ’=gams.exe sr0 lo=3 gdx=transportation.gdx’;

abort$errorLevel "step 0 (database access) failed";

execute ’=sql2gms.exe @getdate.txt’

);

The include file dbtimestamp.inc contains the day of the month (1,..,31) on which the data was extracted
from the database. If this file does not exist, we initialize it with 0. We then compare this number with
the current day of the month. If the numbers do not agree, we execute the database extraction step and
rewrite the dbtimestamp.inc file. This last operation could be done using a PUT statement, but in this
case we used an SQL statement.

The model [DBTimestamp2] is also part of the GAMS Data Utilities Library.

6.41.9 Parameter Files

Parameters can be specified in an external parameter file. This is important if the length of the command-
line exceeds 255 characters, which is a hard limit on the length that GAMS allows for command-lines.
Instead of specifying a long command line as in:

$call =sql2gms C="DSN=sample" O="c:\My Documents\data.inc" Q="SELECT * FROM mytable"

we can use a command line like:

$call =sql2gms @"c:\My Documents\options.txt"

The parameter file

c:\My Documents\options.txt

can look like:

C=DSN=sample

O=c:\My Documents\data.inc

Q=SELECT * FROM mytable

3276 Tools Manuals

It is possible to write the parameter file from inside a GAMS model using the $echo command. The
following example will illustrate this:

$set cmdfile "c:\windows\temp\commands.txt"

$echo "C=DSN=sample" > "%cmdfile%"

$echo "O=E:\models\labor.INC" >> "%cmdfile%"

$echo "Q=SELECT * FROM labor" >> "%cmdfile%"

$call =sql2gms @"%cmdfile%"

Parameter p /

$include "E:\models\labor.INC"

/;

display p;

Newer versions of GAMS allow the usage of the $onEcho and $offEcho commands:

$set cmdfile "c:\windows\temp\commands.txt"

$onEcho > "%cmdfile%"

C=DSN=sample

O=E:\models\labor.INC

Q=SELECT * FROM labor

$offEcho

$call =sql2gms @"%cmdfile%"

Parameter p /

$include "E:\models\labor.INC"

/;

display p;

If a query becomes very long, it is possible to spread it out over several lines. To signal a setting will
continue on the next line insert the character \ as the last character. E.g.:

Q=SELECT prod, loc, year, ’sales’, sales FROM data \

UNION \

SELECT prod, loc, year, ’profit’, profit FROM data

6.41.10 Notes

6.41.10.1 ADO

ActiveX Data Objects. Microsoft's data-access object model. An object-oriented architecture for accessing
data stored in SQL databases and related data sources. Accessible from a large number of host languages
such as VB, C++, Delphi. Supersedes ODBC. Many SQL databases provide ADO access through either
OLEDB or ODBC.

6.41 SQL2GMS 3277

6.41.10.2 ODBC

An API and driver manager system for accessing data stored in an RDBMS. The API provides applications
a way to talk to databases while the driver manager application allows users to install, configure and
manage ODBC drivers for different databases.

6.41.10.3 OLEDB

Driver architecture for SQL databases. A driver is called a OLE DB provider. This is used from ADO.

6.41.10.4 UNC Names

UNC means Unified Naming Convention. UNC names are a Microsoft convention to name files across a
network. The general format is:

\\<server>\<share>\<path>\<file>

Examples:

\\athlon\c\My Documents\sql2gms.rtf

6.41.10.5 GDX Files

A GDX file contains GAMS data in binary format. The following GAMS commands will operate on GDX
files: $gdxIn, $load, execute load, execute unload. The GDX=filename command-line option will save all
data to a GDX file. A GDX file can be viewed in the GAMS IDE using File|Open.

6.41.10.6 MDB2GMS

MDB2GMS is a tool to import tables from MS Access databases. This utility directly uses MS Access and
DAO (Data Access Objects) resulting in a somewhat simpler interface. It is not needed to specify a
connection string, but just a .accdb or .mdb file. The query mechanism is similar: a query is sent as it is
to the database server and the result set is translated into a GAMS representation. For more information
see MDB2GMS.

6.41.10.7 XLS2GMS

XLS2GMS is a tool to import data from an Excel spreadsheet. It considers the content of a selected range
as GAMS source code. For more information XLS2GMS.

3278 Tools Manuals

6.41.10.8 GDXXRW

GDXXRW is a utility to read and write Excel spreadsheet data. GDXXRW can read multiple ranges in a
spreadsheet and write the data to a GDX file, or read from a GDX file, and write the data to different
ranges in a spreadsheet. For more information GDXXRW.

6.41.10.9 Quotes

Examples of handling of indices when the option B for quoting strings containing blanks is used:

6.41.10.10 $CALL Command

The $call command in GAMS will execute an external program at compile time. There are two forms:

$call externalProgram

$call =externalProgram

The version without the leading '=' calls the external through the command processor (command.com or
cmd.exe). The second version with the '=' bypasses the command processor and directly executes the
external program. We mention some of the differences:

1. Some commands are not external programs but built-in commands of the command processor.
Examples are COPY, DIR, DEL, ERASE, CD, MKDIR, MD, REN, TYPE. If you want to execute
these commands you will need to use the form $call externalProgram which uses the command
processor.

2. If you want to execute a batch file (.bat or .cmd file) then you will need to use the form $call
externalProgram.

3. If it is important to stop with an appropriate error message if the external program does not exist,
only use the form $call =externalProgram. The other form is not reliable in this respect. This
can lead to surprising results and the situation is often difficult to debug, so in general we would
recommend to use the form: $call =externalProgram.

4. When calling pure Windows programs it is important to call the second form. The first form will
not wait until the external Windows program has finished. If it is important to use a command
processor in the invocation of a Windows program, use the START command, as in: $call start /w

externalWindowsProgram. Otherwise, it is preferred to use: $call =externalWindowsProgram.

Attention

In general it is recommended to use the $call =externalProgram version for its better error-
handling.

When command-line arguments need to be passed to the external program, they can be added to the line,
separated by blanks:

$call externalProgram parameter1 parameter2

$call =externalProgram parameter1 parameter2

The total length of the command-line can not exceed 255 characters. If the program name or the
parameters contain blanks or quotes you will need to quote them. You can use single or double quotes. In
general the following syntax will work:

$call ’"external program" "parameter 1" "parameter 2"’

$call ="external program" "parameter 1" "parameter 2"

It is noted that the first form needs additional quotes around the whole command-line due to bugs in the
parsing of the $call in GAMS. The second form work without additional quotes only if the = appears
outside the double quotes.

6.42 XLS2GMS 3279

6.41.10.11 Compile Time Commands

All $ commands in GAMS are performed at compile time. All other statements are executed at execution
time. This means that a compile time command will be executed before an execution time command,
even if it is below. As an example consider:

File batchfile / x.bat /;

putClose batchfile "dir"/;

$call x.bat

This fragment does not work correctly as already during compilation, the $call is executed, while the put
statements are only executed after the compilation phase has ended and GAMS has started the execution
phase. The above code can be fixed by moving the writing of the batch file to compilation time as in

$echo "dir" > x.bat

$call x.bat

or by moving the external program invocation to execution time:

File batchfile / x.bat /;

putClose batchfile "dir"/;

execute x.bat;

Notice that all $ commands do not include a semi-colon but are terminated by the end-of-line.

6.42 XLS2GMS

Author

Erwin Kalvelagen, GAMS Development Corp

Version

2.4

Date

May 2004

6.42.1 Overview

Attention

XLS2GMS is deprecated (see GAMS 42 XLS2GMS release notes). Please use Connect agent ExcelReader
instead.

XLS2GMS is a tool to convert spreadsheet data from a Microsoft Excel spreadsheet into GAMS readable
format. The source is a MS Excel spreadsheet file (∗.XLS) and the target is a GAMS Include File.

When running the executable XLS2GMS.EXE without command line parameters the tool will run
interactively with a built-in GUI interface. Alternatively XLS2GMS can be run in batch mode which is
useful when calling it directly from a GAMS model using the $call command.

The philosophy of the tool is to consider the content of a spreadsheet as Text. This text can contain
GAMS statements, or parts of GAMS statements (e.g. the data part of a table statement). The text is
exported to a GAMS include file where some spacing is introduced to maintain cell boundaries. This
allows tables to be exported directly to GAMS include files.

3280 Tools Manuals

6.42.2 Requirements

XLS2GMS runs only on PC's running Windows (95/98/NT/XP) and with MS Excel installed. Microsoft
Excel is included in the MS Office suite.

6.42.3 Converting spreadsheet data to GAMS data

Spreadsheet data are often differently organized than is suitable for import into a GAMS model. In some
cases the data is scattered around different sheets, and in a format that is not compatible with a more
structured multi-dimensional parameter as are used in a GAMS model. To export spreadsheet data to
GAMS parameters, tools will either require a strict format to be used inside the spreadsheet or they will
need to offer a complex specification step where the data representation in the spreadsheet is described so
that it can be understood by the tool. This tool will use the first approach: the modeler is required to
lay-out the data in the spreadsheet in a well defined format. Instead of defining a new format, we use
the GAMS language syntax as the required representation. In effect the spreadsheet is considered as an
alternative editor for GAMS source code.

As an example consider the GAMS table in the model [TRNSPORT] which is part of the GAMS model

library:

Table d(i,j) ’distance in thousands of miles’

new-york chicago topeka

seattle 2.5 1.7 1.8

san-diego 2.5 1.8 1.4;

This table can be expressed comfortably in a spreadsheet as follows:

XLS2GMS can convert this table into a GAMS include file, which results in:

* ---

* XLS2GMS Version 2.4, May 2004

* Erwin Kalvelagen, GAMS Development Corp.

* ---

* Application: Microsoft Excel

* Version: 9.0

* Workbook: D:\gams projects\xls2gms\ver2.0\Book2.xls

* Sheet: Sheet1

* Range: A1:D3

* ---

new-york chicago topeka

seattle 2.5 1.7 1.8

san-diego 2.5 1.8 1.4

* ---

http://www.gams.com/modlib/libhtml/trnsport.htm
http://www.gams.com/modlib/modlib.htm
http://www.gams.com/modlib/modlib.htm

6.42 XLS2GMS 3281

The tool will try to keep cells in a column aligned so that table statements can be used in the GAMS
model. The above file book2.inc can be imported directly into a GAMS model by:

Table d(i,j) ’distance in thousands of miles’

$include book2.inc

;

As the tool does not expect any special formatting, we could have include the table statement in the
spreadsheet, as in:

This would result in:

* ---

* XLS2GMS Version 2.4, May 2004

* Erwin Kalvelagen, GAMS Development Corp.

* ---

* Application: Microsoft Excel

* Version: 9.0

* Workbook: D:\gams projects\xls2gms\ver2.0\Book3.xls

* Sheet: Sheet1

* Range: A1:D5

* ---

table d(i,j) ’distance in thousands of miles’

new-york chicago topeka

seattle 2.5 1.7 1.8

san-diego 2.5 1.8 1.4

;

* ---

In some cases the data will need to be copied and massaged to fit into the above format. It is convenient
to add a sheet dedicated for this purpose to your workbook. This interface sheet can be filled either
manually, with formulas that automatically update values, or by macro's (either recorded or programmed
in VBA).

6.42.4 Importing sets

Sets can be directly imported if they are organized vertically. The following picture shows a spreadsheet
with two sets with elements {a,b,c} organized vertically (A1:A3) and horizontally (B5:D5).

3282 Tools Manuals

The first set can be imported directly using:

Set i /

$call =xls2gms r=a1:a3 i=book4.xls o=set1.inc

$include set1.inc

/;

display i;

The second set is somewhat more difficult, as we need to add a separating comma between the elements.
This can be accomplished by:

Set j /

$call =xls2gms r=b5:d5 s="," i=book4.xls o=set2.inc

$include set2.inc

/;

display j;

This will generate the include file:

* ---

* XLS2GMS Version 2.4, May 2004

* Erwin Kalvelagen, GAMS Development Corp.

* ---

* Application: Microsoft Excel

* Version: 9.0

* Workbook: D:\gams projects\xls2gms\ver2.0\Book4.xls

* Sheet: Sheet1

* Range: B5:D5

* ---

a,b,c

* ---

6.42.5 Importing sets and tables

The table

6.42 XLS2GMS 3283

can be considered to contain three pieces of GAMS data:

• The set i (seattle, san-diego)

• The set j (new-york, chicago, topeka)

• The distances

All this information can be read as follows:

Set i /

$call =xls2gms r=a3:a4 i=book3.xls o=seti.inc

$include seti.inc

/;

Set j /

$call =xls2gms r=b2:d2 s="," i=book3.xls o=setj.inc

$include setj.inc

/;

Table d(i,j)

$call =xls2gms r=a2:d4 i=book3.xls o=pard.inc

$include pard.inc

;

display i, j, d;

The above $call statements can be combined onto one as follows:

$onEcho > book3a.txt

i=%system.fp%book3.xls

r1=a3:a4

o1=seti.inc

r2=b2:d2

o2=setj.inc

s2=","

r3=a2:d4

o3=pard.inc

$offEcho

$call =xls2gms @book3a.txt

Set i /

3284 Tools Manuals

$include seti.inc

/;

Set j /

$include setj.inc

/;

Table d(i,j)

$include pard.inc

;

display i, j, d;

The command file generated by the $onecho statement looks like:

i=E:\wtools\ver000\examples\book3.xls

r1=a3:a4

o1=seti.inc

r2=b2:d2

o2=setj.inc

s2=","

r3=a2:d4

o3=pard.inc

6.42.6 Multidimensional parameters

Consider the data table:

6.42 XLS2GMS 3285

In this spreadsheet the first two columns are index columns. To make this valid GAMS syntax we need to
insert a dot between the index elements. A simple way is to insert a (narrow) column with a dot in each
cell. This way we can import this table as:

Set

l ’livestock types’ / sheep, goat, angora, cattle, buffalo, mule, poultry /

cl ’livestk comm’ / meat, milk, wool, hide, egg /

ty ’time periods - years’ / 1974*1979 /;

$onEcho > yield.txt

I="%system.fp%yield.xls"

R=data!B2:J23

O=yield.inc

$offEcho

$call =xls2gms @yield.txt

Table yieldtl(l,cl,ty) ’livestock "yield" time series (kg per head)’

$include yield.inc

;

display yieldtl;

6.42.7 Interactive use

When the tool is called without command line parameters, it will startup interactively. Using it this way,
one can specify the spreadsheet file (.XLS file), the range and the final destination file (a GAMS include
file) using the built-in interactive environment. The main screen contains a number of buttons and edit
boxes, which are explained below.

• Input file (∗.XLS). This is the combo box to specify the input file. The file must be a valid MS
Excel spreadsheet file (∗.XLS). The browse button can be used to launch a file open dialog which
makes it easier to specify a file. The file may be located on a remote machine using the notation
\machine\directory\file.xls.

• Range. The range can be left empty in which case the whole first sheet is taken. Otherwise
the range can be a single cell (e.g. A1), a block (e.g. B2:J23), or a region within a sheet (e.g.
Sheet1!A1:C10). The range can also be a name if the spreadsheet contains named ranges. The
browse button will start Excel allowing you to interactively select a range.

• Output GAMS Include file (∗.INC). If you want to create a GAMS include file, then specify
here the destination file. The include file will be an ASCII file that can be read by GAMS using the
$include command. If the include file already exists, it will be overwritten.

3286 Tools Manuals

• Progress Memo. This memo field is used to show progress of the application. Also error messages
from the database are printed here. This is a read-only field.

• The edit boxes above all have a drop down list which can be used to access quickly file names and
queries that have been used earlier (even from a previous session).

• options button will pop up a window where you can specify a number of options.

• help button will show this help.

• the OK button is pressed the query will be executed and an include file will be generated.

• the batch button will give information on how the current extract command can be executed
directly from GAMS in a batch environment. The batch call will be displayed and can be copied onto
the clipboard. In the IDE press Ctrl-C or choose Edit|Paste to copy the contents of the clipboard to
a GAMS text file.

• close button will exit the application. The current settings will be saved in an INI file so when
you run XLS2GMS again all current settings will be restored.

6.42.8 Options

The Options window can be created by pressing the options button:

6.42 XLS2GMS 3287

The following options are available in the options window:

• Quote blanks: Quote strings if they contain blanks or embedded quotes. If a string does not
contain a blank or embedded quotes, it will remain unquoted. If the string contains a single quote
the quotes applied will be double quotes and if the string contains already a double quote, the
surrounding quotes will be single quotes. (In the special case the string contains both, double quotes
are replaced by single quotes). For more information see this example.

• Mute: Don't include the extra informational text (such as used query etc.) in the include file.

• No listing: Surround the include file by $offlisting and $onlisting so that the data will not
be echoed to the listing file. This can be useful for very large data files, where the listing file would
become too large to be handled comfortably.

• Separator. This option allows you to set a separator string to be written between cell entries. By
default this is a blank. In some cases it can be useful to make this a comma. See example for an
example where this is used to import sets. Note: when this option is set to an empty string, the
results may not be syntactically correct for GAMS. As it is difficult to see the difference between a
single blank and an empty string, the user interface will give some feedback for these cases. When
an empty string is used, a warning is written to the include file.

• Range Seperator. Multiple ranges can be separated by a range separator symbol. By default this
is a semi-colon. When certain non-US locales are used, the semi-colon is a list separator symbol
which can be used in multi-area ranges. In case of such a conflict, it is possible to change the range
separator symbol.

• Append. Append to the output file.

• Browse Read-Only. When the Browse Range button is pressed, we launch Excel and try to load
the currently specified input file. If this option is checked then the input file is loaded as read-only.
If this option is not checked the file is loaded normally, in which case you can change and save it.

The buttons have an obvious functionality:

• OK button will accept the changes made.

3288 Tools Manuals

• Cancel button will ignore the changes made, and all option settings will revert to their previous
values.

• Help button will show this help text.

6.42.9 Batch use

When calling XLS2GMS directly from GAMS we want to specify all command and options directly from
the command line or from a command file. An example is:

C:\tmp>xls2gms "I=c:\My Documents\test.xls" O=test.inc

This call will perform its task without user intervention. The batch facility can be used from inside a
GAMS model, e.g.:

Table c(i,j) ’data from spreadsheet’ /

$call =xls2gms I=C:\tmp\test.xls O=C:\tmp\data.inc R=B1:E10

$include C:\tmp\data.inc

/;

The $call statement is rather error prone and you will need to spend a little it of time to get the call
correct and reliable.

All the possible command line options are listed in command line arguments section. A proper batch call
will at least contain the following command line parameters:

1. I=inputfilename

2. O=outputincludefile

If you only specify I=inputfilename then the interactive user interface is started with an initial setting
of the input file name edit box equal to the name given in the command line argument. Only if an input
file and an output file is provided, the call will be considered a batch invocation.

6.42.10 Command-line Arguments

6.42 XLS2GMS 3289

Argument Description

I=inputfile This option is required and specifies the name of the .XLS file containing the
Access database. If the file contains blanks the name should be surrounded by
double quotes. It is advised to use absolute paths, so Access has no confusion
what file to open. If only the file name is used without a path, the file is
searched in the current directory (this is the project directory when running
under the IDE). On a network UNC names can be used, and files from another
computer can be accessed, e.g. "\\hostname\c\my documents\a.xls." This
option is required for batch processing.

O=outputincludefile option specifies the name of the output file. The format of the output file will
be a GAMS include file for a parameter statement. Make sure the directory is
writable. UNC names can be used. An output file must be specified for batch
operation.

R=range range is an optional argument. If not specified the whole first sheet is taken.
Otherwise the range can be a single cell (e.g. A1), a block (e.g. B2:J23), or
a region within a sheet (e.g. Sheet1!A1:C10). To specify a whole sheet use:
Sheet2!. The range can also be a name if the spreadsheet contains named ranges.
Both global names (e.g. R=rangename) and sheet specific range names (e.g.
R=Sheet2!rangename) are recognized.
To select multiple ranges in one go, you can specify: R=range1;range2;range3.
This is just a short-hand for three separate invocations of xls2gms. A multiple-
area range can be specified by R=area1,area2,area3. Before exporting, a new
range is created consisting of the union of the areas. This can be used to drop
certain rows or columns from a table.

D Debug. This option can be used for debugging purposes. If specified the import
filter will no run minimized but ”restored”, i.e. as a normal window. In addition
the program will not terminate until the user clicks the Close button. This
allows you to monitor possible errors during execution of xls2gms.

B If this parameter is specified, strings that have blanks in them will be quoted.
If the string is already quoted this step is not performed. If the name contains
an embedded single quote, the surrounding quotes will be double quotes. If the
name already contains a double quote, the surrounding quotes will be single
quotes. If both single and double quotes are present in the string, then all
double quotes are replaced by single quotes and the surrounding quotes will be
double quotes. By default this option is turned off.

M Run in modest or mute mode: no additional information, such as version number
etc. is written to the listing file.

L Embed the data in $offlisting, $onlisting. A quick way to reduce the size of the
listing file.

@filename
@”file name”

Causes the program to read options from a file. If the file name contains blanks,
it can be surrounded by double quotes. The option file contains one option per
line, in the same syntax as if it were specified on the command line.

N=inifilename Use a different Inifile than the standard xls2gms.ini located in the same
directory as the executable xls2gms.exe.

A Append to output files instead of overwriting them.

G=”x” Sets the range separator symbol

S=”x” Sets the output separator symbol

As invocations of xls2gms are reasonably expensive (a copy of Excel is started), there is a way to optimize
related calls. From version 1.4, xls2gms allows multiple ranges to be read and multiple include files to be
written in one swoop. The syntax is best explained by showing an illustrative example:

$call =xls2gms I=c:\tmp\x.xls R1=range1 R1=range2 R2=range3 O1=c:\tmp\f1.inc O2=c:\tmp\f2.inc

3290 Tools Manuals

In this example the ranges 'range1' and 'range2' are written to the file 'f1.inc' while the range 'range3'
will go to file 'f2.inc'. In general the ranges specified with Rn will be written to the file specified with On.
If multiple ranges are specified, they are written sequentially to the output file.

$call =xls2gms I=c:\tmp\x.xls R=range1 R=range2 O=c:\tmp\f1.inc

In this example the ranges 'range1' and 'range2' are written to 'f1.inc'.

6.42.11 $CALL command

The $CALL command in GAMS will execute an external program at compile time. There are two forms:

$call externalprogram

$call =externalprogram

The version without the leading '=' calls the external through the command processor (command.com or
cmd.exe). The second version with the '=', bypasses the command processor and directly executes the
external program. We mention some of the differences:

• Some commands are not external programs but built-in commands of the command processor.
Examples are COPY, DIR, DEL, ERASE, CD, MKDIR, MD, REN, TYPE.

• If you want to execute these commands you will need to use the form $call externalprogram

which uses the command processor. If you want to execute a batch file (.bat or .cmd file) then you
will need to use the form $call externalprogram.

• If it is important to stop with an appropriate error message if the external program does not exist,
only use the form $call =externalprogram. The other form is not reliable in this respect. This
can lead to surprising results and the situation is often difficult to debug, so in general we would
recommend to use the form: $call =externalprogram.

• When calling pure Windows programs it is important to call the second form. The first form will
not wait until the external Windows program has finished. If it is important to use a command
processor in the invocation of a Windows program, use the START command, as in: $call start /w

externalwindowsprogram. Otherwise, it is preferred to use: $call =externalwindowsprogram.

Attention

In general it is recommended to use the $call =externalprogram version for its better error-
handling.

When command line arguments need to be passed to the external program, they can be added to the line,
separated by blanks:

$call externalprogram parameter1 parameter2

$call =externalprogram parameter1 parameter2

The total length of the command line can not exceed 255 characters. If the program name or the
parameters contain blanks or quotes you will need to quote them. You can use single or double quotes. In
general the following syntax will work:

$call ’"external program" "parameter 1" "parameter 2"’

$call ="external program" "parameter 1" "parameter 2"

It is noted that the first form needs additional quotes around the whole command line due to bugs in the
parsing of the $call in GAMS. The second form work without additional quotes only if the = appears
outside the double quotes.

6.42 XLS2GMS 3291

6.42.12 Command files

Parameters can be specified in a command file. This is important if the length of the command line
exceeds 255 characters, which is a hard limit on the length that GAMS allows for command lines. Instead
of specifying a long command line as in:

$call =xls2gms I="c:\My Documents\test.xls" O="c:\My Documents\data.inc" R="Sheet2!A1:F15"

we can use a command line like:

$call =xls2gms @"c:\My Documents\options.txt"

The command file c:\My Documents\options.txt can look like:

I=c:\My Documents\test.xls

O=c:\My Documents\data.inc

R=Sheet2!A1:F15

It is possible to write the command file from inside a GAMS model using the $echo command. The
following example will illustrate this:

$set cmdfile "trnsport.txt"

$echo "I=trnsport.xls" > "%cmdfile%"

$echo "O=trnsport.inc" >> "%cmdfile%"

$call =xls2gms @"%cmdfile%"

$include trnsport.inc

Newer versions of GAMS allow:

$set cmdfile trnsport.txt

$onEcho > "%cmdfile%"

I=trnsport.xls

O=trnsport.inc

$offEcho

$call =xls2gms @"%cmdfile%"

$include trnsport.inc

6.42.13 Multiple-area ranges and post-processing

The following fragment is from a spreadsheet from Unesco:

3292 Tools Manuals

Assume we want to extract the 1990 percentage distribution of current expenditure for the countries
Algeria through Congo. The range to select is not a contiguous area but consists of several pieces. In
Excel we can use the mouse and the Ctrl key to make a multiple selection:

6.42 XLS2GMS 3293

The range is A10,E10:G10,A14:A19,E14:G19,A21:A26,E21:G26, where the comma's indicate the range
is a multiple-area range. In this case we have six pieces. It is important that Excel understands that the
union of the pieces forms a rectangular area. If this is not the case an error will be raised. (You can check
this yourself by selecting a multi-area range and copying it to a new sheet: this operation will fail if the
areas together don't form a rectangle).

The extracted text file will look like:

* ---

* XLS2GMS Version 2.3, March 2004

* Erwin Kalvelagen, GAMS Development Corp.

* ---

* Application: Microsoft Excel

* Version: 9.0

* Workbook: D:\gams projects\xls2gms\ver2.0\unesco.xls

* Sheet: Sheet1

* Range: A10,E10:G10,A14:A19,E14:G19,A21:A26,E21:G26

* ---

prim. Sec. Tert.

Algeria

Angola 96.3 ./. 3.7

Benin

Botswana 31.1 48.8 12.2

’Burkina Faso’ 41.7 25.8 32.1

Burundi 46.8 29.1 22

Cameroon 70.5 ./. 29.5

’Cape Verde’ 54.7 17.5 2.7

3294 Tools Manuals

’Central African Republic’ 52.7 14.6 21.5

Chad 47.1 20.9 8.2

Comoros 42.4 28.2 17.3

Congo

* ---

This file is not completely suitable for using in a GAMS model. The following edits would need to be
made:

1. The header labels should get rid of the trailing dot.

2. Cells with ... should be replaced by blanks.

3. Cells with ./. should be replaced by blanks

In the GAMS distribution a subdirectory gbin contains lots of interesting Unix utilities. Some of these
are very suited to do string processing on text files, such as sed and awk. In this case we can use sed
with some substitution commands:

Command Description

s/prim\./prim / Replace ”prim.” by ”prim ”. We need to be careful to keep the table alignment
correctly, so we replace the dot by a blank instead of just removing the dot. A
dot is a special character in sed (it means ”any character”) so we escape it by
specifying ”\.”.

s/Sec\./sec / Replace ”Sec.” by ”sec ”.

s/Tert\./tert / Replace ”Tert.” by ”tert ”.

s/\.\.\./ /g Replace ”...” by ” ”. The dots are escaped. We add g to indicate there there may
be multiple instances on a line that must be replaced.

s/\.\/\./ /g Replace ”./.” by ” ”. Both dots and '/' needs to be escaped.

The complete GAMS formulation can look like:

$onText

New version XLS2GMS ver 2.1 can handle

multiple-area ranges.

$offText

Set

c ’countries’

/ Algeria, Angola, Benin, Botswana, ’Burkina Faso’, Burundi, Cameroon

’Cape Verde’, ’Central African Republic’, Chad, Comoros, Congo /

exp ’percentage distribution of current expenditure’

/ prim, sec, tert /;

$onEcho > commands.txt

I=%system.fp%unesco.xls

R=A10,E10:G10,A14:A19,E14:G19

O=unesco.inc

B

$offEcho

$call =xls2gms @commands.txt

$onEcho > sedcommands.txt

6.43 XLSDUMP 3295

s/prim\./prim /

s/Sec\./sec /

s/Tert\./tert /

s/\.\.\./ /g

s/\.\/\./ /g

$offEcho

$call sed.exe -f sedcommands.txt unesco.inc > unescox.inc

Table distr(c,exp)

$include unescox.inc

;

display distr;

6.43 XLSDUMP

Attention

XLSDump is deprecated (see GAMS 42 XLSDump release notes). Please use Connect agent RawExcelReader
instead.

This program will write all worksheets of an Excel workbook to a gdx file. Unlike GDXXRW, the program
does not require that Excel is installed. Windows platforms only.

6.43.1 Usage

XLSDump infile outfile

where

infile

A valid Excel workbook

outfile

Optional. The output gdx file. If no output file is specified, the name of the input
file will be used to construct the name the output file.

6.43.2 Example

Consider the following working file 'test2.xlsx'.

Converting this workbook using xlsdump:

xlsdump test2.xlsx

Will generate the file test2.gdx. Showing this gdx file in the GAMS IDE:

The parameter VF:

3296 Tools Manuals

6.44 Multi-Objective Optimization (MOO)

6.44.1 Introduction

In Multi-Objective Optimization (MOO) there is more than one objective function and there is no single
optimal solution that simultaneously optimizes all the objective functions. In MOO the concept of
optimality is replaced by Pareto efficiency or optimality. Pareto efficient (or optimal, nondominated, etc.)
solutions are solutions that cannot be improved in one objective without deteriorating in at least one of
the other objectives. The mathematical definition of an efficient solution is the following:

Without loss of generality assume that all objective functions fk with k = 1, ..., p are for minimization.
A feasible solution x of a MOO problem is (strongly) efficient if there is no feasible solution x' such as
fk(x') ≤; fk(x) for k = 1, ..., p with at least one strict inequality. A feasible solution x is weakly efficient if
there is no feasible solution x' such as fk(x') < fk(x) for k = 1, ..., p.

In case of a non-convex feasible objective and decision space (e.g. MIP), the set of efficient solutions can
be further partitioned into supported and non-supported efficient solutions. Supported efficient solutions
are optimal solutions of the weighted sum single objective problem for any non-negative weights (corner
solutions of the feasible space). See the following graph that illustrates the difference between supported
and non-supported efficient solutions:

A simple MOO method is lexicographic optimization. Lexicographic optimization presumes that the
decision-maker has lexicographic preferences, ranking the efficient solutions to a lexicographic order of the
objective functions. A lexicographic minimization problem can be written as:

lex min f1(x), f2(x), ..., fp(x)
s.t.
x ∈ S

where x is the vector of decision variables, S is the feasible region, and f1(x), f2(x), ..., fp(x) are the p
objective functions ordered from the most to the least important. A lexicographic minimization problem
with p objective functions can be solved using a sequence of p single-objective optimization problems as
follows:

For i = 1, ..., p do

• Solve single-objective optimization problem:

min zi
s.t.
fk(x) = zk ∀k = 1, ..., i− 1
x ∈ S
where zk are the objective function variables

• Fix the value of objective function variable zi for the following iterations

End for

The MOO methods provided by this LibInclude file use lexicographic optimization to calculate a payoff table
to obtain e.g. ranges for the objectives. The p× p payoff table contains the results of p lexicographic opti-
mizations with orders {f1(x), f2(x), ..., fp(x)}, {f2(x), f3(x), ..., fp(x), f1(x)}, ..., {fp(x), f1(x), ..., fp−1(x)}.

This LibInclude file provides a collection of methods to generate Pareto efficient solutions for MOO models.
All implemented methods are so-called a-posteriori (or generation) methods for generating Pareto efficient
solutions. After the Pareto efficient set or a representative subset of the Pareto efficient set has been
generated, it is returned to the user, who then analyses the solutions and selects the most preferred among
the alternatives.

6.44 Multi-Objective Optimization (MOO) 3297

6.44.2 Usage

LibInclude file moo.gms provides methods for multi-objective optimization in GAMS and can be used as
follows:

$libinclude moo method modelName modelType objectiveSet direction objectiveVar points paretoPoints [optList]

Where:

Argument Description

method Specify the name of the method to use. Available methods are
EpsConstraint, RandomWeighting, and Sandwiching. See Methods for
details.

modelName Specify the name of the multi-objective optimization model that should
be solved.

modelType Specify the corresponding model type, e.g. LP.

objectiveSet Specify the set of objectives.

direction One-dimensional parameter that contains the optimization direction for
each objectiveSet element - min (-1) or max (+1).

objectiveVar Specify the objective function variable. Compared to the traditional scalar
objective function variable with a single objective optimization problem
in GAMS, this objective function variable is one-dimensional.

points Specify the set of pareto points. The number of members in the set defines
the maximum number of returned pareto points. Therefore, make sure to
define the set large enough.

paretoPoints Specify the two-dimensional (points,objectiveSet) parameter that will
be used to save the objective values of pareto points.

optList Optional list of -optkey=optval option pairs, e.g. -savepoint=1

-optfile main=99. See available options below.

Method Option Description

All: debug Set to 1 to activate debugging. This
will create additional information be-
ing written to the log as well as
creating files to support debugging,
e.g. if savepoint is activated a file
savepoint iteration map.csv is writ-
ten to the savepoint dir that contains
the mapping of savepoint files to the cor-
responding iteration. Default: 0.

optfile init Solver option file for initial solves. In par-
ticular, solves to calculate the payoff table.
Default: 0.

optfile main Solver option file for main solves, i.e. the
main part of the methods. Default: 0.

plot Set to 1 to activate plots for multi objec-
tive problems with two or three objective
functions, e.g. a plot of the pareto points.
Python package matplotlib needs to be
installed. Default: 0.

3298 Tools Manuals

Method Option Description

plot dir Set the directory where plots should be
saved. Per default the GAMS working
directory will be used.

pre Prefix for names of GAMS symbols used
in moo.gms. Allows to make GAMS
symbol names unique and avoids prob-
lems with redefined symbols. The de-
fault is MOO <MOO COUNTER>, where
MOO COUNTER is a (global) compile-time
variable that counts the MOO runs in the
GAMS program, so each run has unique
GAMS symbol names. This option allows
to change the default.

savepoint If set to 1, a point format GDX file that
contains information on the solution point
will be saved for each pareto point. De-
fault is 0, where no solution points will
be saved.

savepoint dir Set the directory where save point files
should be saved. Per default the GAMS
working directory will be used.

savepoint filename Set the (base) name of the save
point files. The file name gets ex-
tended by the points set to gen-
erate unique file names as follows:
<savepoint filename> <points>.gdx.
Per default this option is set to the name
of the method. If an empty string is
provided the file name matches exactly
with the points set: <points>.gdx.

solver Default solver for all model types that the
solver is capable to process.

EpsConstraint: gridpoints Specify the number of grid points per ob-
jective function used as a constraint (de-
fault: 10). As an example, consider a
model with three objective functions, the
Epsilon Constraint method will optimize
one objective function using the other two
as contraints. With 10 grid points (de-
fault) the maximum number of runs will
therefore be 10x10. In general, increasing
the number of grid points increases the
density of the approximation.

RandomWeighting: iterations Terminating condition in terms of itera-
tions. Default: inf.

seed Set the seed for the pseudo random num-
ber generator that generates the weights.
Set to None to set the seed to a random
number. Default: 3141.

time Terminating condition in terms of time in
seconds. Default: 3600.

6.44 Multi-Objective Optimization (MOO) 3299

Method Option Description

Sandwiching: gap Terminating condition in terms of a gap
(default: 0.01). The gap is calculated by
the current maximum distance between
the inner and outer approximation divided
by the initial maximum distance.

time Terminating condition in terms of time in
seconds. Default: 3600.

6.44.3 Methods

This section gives an introduction and details on the implemented methods for MOO. The implemented
methods are so-called a-posteriori (or generation) methods for generating Pareto efficient solutions. After
the Pareto efficient set or a representative subset of the Pareto efficient set has been generated, it is
returned to the user, who then analyses the solutions and selects the most preferred among the alternatives.

6.44.3.1 Augmented Epsilon Constraint [EpsConstraint]

The Epsilon Constraint method optimizes one of the objective functions using the other objective functions
as constraints. By parametrical variation in the Right-Hand Side (RHS) of the constrained objective
functions the efficient solutions of the problem are obtained. The implemented Augmented Epsilon
Constraint method is based on:

Mavrotas, G., Effective implementation of the eps-constraint method in Multi-Objective
Mathematical Programming problems. Applied Mathematics and Computation 213, 2 (2009),
455-465.

Mavrotas, G., and Florios, K., An improved version of the augmented eps-constraint method
(AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming
problems. Applied Mathematics and Computation 219, 18 (2013), 9652-9669

The Augmented Epsilon Constraint method is a variation of the Epsilon Constraint method that produces
only efficient solutions (no weakly efficient solutions) and also avoids redundant iterations as it can perform
early exit from the relevant loops (that lead to infeasible solutions) and exploits information from slack
variables in every iteration.

Compared to the Random Weighting method the runs are exploited more efficiently and almost every run
produces a different efficient solution, thus obtaining a better representation of the efficient set. Allowed
model types: LP, MIP as well as corresponding Non Linear cases. The method is able to find the exact
Pareto set for integer programming problems by appropriately tuning the number of grid points. The
Augmented Epsilon Constraint method is able to produce supported and unsupported efficient solutions.

Implementation details:

3300 Tools Manuals

• The Augmented Epsilon Constraint method optimizes one of the objective functions using the other
objective functions as constraints, incorporating the constraint part of the model as follows:

max(f1(x) + eps× (s2/r2 + 10−1 × s3/r3 + ...+ 10−(p−2) × sp/rp))
s.t.
f2(x)− s2 = e2

f3(x)− s3 = e3

...
fp(x)− sp = ep
x ∈ S and sk ∈ R+

where x is the vector of decision variables, S is the feasible region, and f1(x), f2(x), ..., fp(x) are the
p objective functions. ek are the parameters for the RHS for the specific iteration drawn from the
grid points of the objective functions k (k = 2, 3, ..., p). sk are slack or surplus variables, rk is the
range of the k-th objective function (calculated from the payoff table), and eps ∈ [10−6, 10−3].

• The method is implemented as follows: From the payoff table we obtain the range of the p − 1
objective functions that are used as constraints. The range of the k-th objective function is divided
into qk equal intervals using (qk − 1) intermediate equidistant grid points. Thus, we have in total
(qk + 1) grid points that are used to vary parametrically the RHS (ek) of the k-th objective. The
total number of runs becomes (q2 + 1)× (q3 + 1)× ...× (qp + 1).

The discretization step for objective function k:

stepk = rk/qk

The RHS of the corresponding constraint in the i-th iteration in the specific objective function will
be:

eki = fmink + ik × stepk
where fmink is the minimum obtained from the payoff table and ik the counter for the specific
objective function.

• At each iteration we check the surplus variable that corresponds to the innermost objective function
(in this case p = 2) and calculate the bypass coefficient as:

b = floor(s2/step2)

Where floor() is a function that always rounds down and returns the largest integer less than or
equal to a given number. When the surplus variable s2 is larger than the step2 it is implied that
in the next iteration the same solution will be obtained with the surplus variable being s2 − step2.
Therefore, the bypass coefficient actually indicates how many consecutive iterations can be bypassed.

• Early exit from the loop when the problem becomes infeasible for some combination of ek. The
bounding strategy for each one of the objective functions starts from the more relaxed formulation
(lower bound for maximization objective function or upper bound for a minimization) and move to
the most strict. If we arrive to an infeasible solution there is no need to perform the remaining runs
of the loop, as the problem will become even stricter.

6.44.3.2 Random Weighting [RandomWeighting]

With the Random Weighting method, the weighted sum of the objective functions is optimized. By
randomly varying the weights different pareto points are obtained.

Allowed model types: All model types with an objective variable, in particular LP, MIP, NLP, and
MINLP. Note that the Random Weighting method may spend a lot of runs that are redundant in the
sense that there can be a lot of combinations of weights that result in the same efficient point. Also note
that the Random Weighting method cannot produce unsupported efficient solutions.

Implementation details:

• For Random Weighting the scaling of the objective functions has a strong influence on the obtained
results. Therefore, the objective functions are scaled between 0 and 1 using the objective function
ranges obtained from the payoff table.

6.44 Multi-Objective Optimization (MOO) 3301

6.44.3.3 Sandwiching

Sandwiching algorithms are used to approximate the pareto front by sandwiching the nondominated
set between an inner and outer approximation. Sandwiching algorithms iteratively improve both the
Inner and Outer approximation of the Pareto Set (IPS and OPS) to minimize the distance between the
approximations. The implemented Sandwiching method is based on:

Koenen, M., Balvert, M., and Fleuren, HA. (2023). A Renewed Take on Weighted Sum in
Sandwich Algorithms: Modification of the Criterion Space. (Center Discussion Paper; Vol.
2023-012). CentER, Center for Economic Research.

An advantage of the Sandwiching method is that the distance between the IPS and OPS provides an upper
bound on the approximation error which can also be used as a termination criterion for the algorithm.
Please be aware that for more than two objectives the distance using the definition of the Koenen et al.
(2023) can sometimes increase over the iterations. Allowed model type: LP.

Implementation details:

• The Sandwiching algorithm of Koenen et al. (2023) is based on a weighted sum approach, i.e. the
weighted sum of the objective functions is optimized. By varying the weights at each iteration the
efficient points are obtained. The algorithm selects weights derived from the IPS that have the
potential to reduce the approximation error the most.

• The IPS is a convex hull encompassed in the objective space formed by a set of efficient points and
the OPS is formed by supporting halfspaces of those efficient points.

• The basic procedure of the algorithm can be described as follows:

1. Initialize the IPS and OPS using the pseudo nadir point and so called anchor points. The
pseudo nadir point and anchor points are obtained from the payoff table and also define the
initial bounding box of the objective space.

2. Expand the IPS based on its distance to the OPS. For each relevant hyperplane of the
convex hull of the IPS determine the distance to the OPS and find the hyperplane for which
the current distance from the IPS to the OPS is maximal. The normal of this hyperplane will
be used as weights in the current iteration. If a new efficient point is found, update the IPS and
OPS, otherwise set the distance of the current hyperplane to zero. The procedure is repeated
until a stopping criterion is met (see options gap or time).

• The calculation of the distance between IPS and OPS is based on SUB (see Koenen et al. (2023)).

• The scaling of the objective functions has a strong influence on the obtained results. Therefore, the
objective functions are scaled between 0 and 1 using the objective function ranges obtained from
the payoff table.

6.44.4 Examples

6.44.4.1 Example 1: Solve scalable multi-objective knapsack model

The following example demonstrates how to solve a multi-objective knapsack model (MIP) using the moo

LibInclude:

3302 Tools Manuals

$if not set NBITM $set NBITM 50

$if not set NBDIM $set NBDIM 2

$if not set NBOBJ $set NBOBJ 2

Set

i ’items’ / i1*i%NBITM% /

j ’weight dimensions’ / j1*j%NBDIM% /

k ’value dimensions’ / k1*k%NBOBJ% /

p ’pareto points’ / point1*point1000 /;

Parameter

a(i,j) ’weights of item i’

c(i,k) ’values of item i’

b(j) ’knapsack capacity for weight j’

dir(k) ’direction of the objective functions 1 for max and -1 for min’ / #k 1/

pareto_obj(p,k) ’objective values of the pareto points’

;

a(i,j) = UniformInt(1,100);

c(i,k) = UniformInt(1,100);

b(j) = UniformInt(1,100) * %NBITM%/4;

Variable

Z(k) ’objective variables’

X(i) ’decision variables’;

Binary Variable X;

Equation

objfun(k) ’objective functions’

con(j) ’capacity constraints’;

objfun(k).. sum(i, c(i,k)*X(i)) =e= Z(k);

con(j).. sum(i, a(i,j)*X(i)) =l= b(j);

Model example / all /;

$libinclude moo EpsConstraint example MIP k dir Z p pareto_obj -gridpoints=20

display pareto_obj;

The example is easily scalable by allowing to set the number of items, the number of weight dimensions and
the number of objectives through double dash parameters. This example is also part of the GAMS Data
Utilities Library, see model [moo01] for reference. The model is solved using EpsConstraint method
with 20 gridpoints. The objective function values of the pareto points found are saved in parameter
pareto obj:

---- 618 PARAMETER pareto_obj objective values of the pareto points

k1 k2

point1 953.000 1076.000

point2 956.000 1062.000

point3 972.000 1052.000

point4 1005.000 1037.000

point5 1030.000 1024.000

point6 1049.000 1004.000

6.44 Multi-Objective Optimization (MOO) 3303

point7 1063.000 990.000

point8 1088.000 955.000

point9 1091.000 946.000

point10 1105.000 932.000

point11 1121.000 876.000

point12 1130.000 827.000

point13 1137.000 783.000

If plot is set to 1 and Python package matplotlib is installed, a plot of the pareto points is generated:

Setting --NBOBJ=3 with model [moo01] allows to solve a knapsack problem with three objectives. These
are the resulting pareto points:

6.44.4.2 Example 2: Solve multi-objective power generation model

The following example demonstrates how to solve a multi-objective power generation model (LP) using
the moo LibInclude:

$inlineCom []

$if not set NBOBJ $set NBOBJ 2

$if not set METHOD $set METHOD Sandwiching

Set

p ’power generation units’ / Lignite, Oil, Gas, RES /

i ’load areas’ / base, middle, peak /

pi(p,i) ’availability of unit for load types’ / Lignite.(base,middle)

Oil.(middle,peak), Gas.set.i

RES.(base, peak) /

es(p) ’endogenous sources’ / Lignite, RES /

k ’objective functions’ / cost, CO2emission, endogenous /

points ’pareto points’ / point1*point1000 /;

$set min -1

$set max +1

Parameter dir(k) ’direction of the objective functions 1 for max and -1 for min’

/ cost %min%, CO2emission %min%, endogenous %max% /

pareto_obj(points,k) ’objective values of the pareto points’;

Set pheader / capacity, cost, CO2emission /;

Table pdata(pheader,p)

Lignite Oil Gas RES

capacity [GWh] 61000 25000 42000 20000

cost [$/MWh] 30 75 60 90

CO2emission [t/MWh] 1.44 0.72 0.45 0;

Parameter

ad ’annual demand in GWh’ / 64000 /

df(i) ’demand fraction for load type’ / base 0.6, middle 0.3, peak 0.1 /

demand(i) ’demand for load type in GWh’;

demand(i) = ad*df(i);

3304 Tools Manuals

Variable

z(k) ’objective function variables’;

Positive Variable

x(p,i) ’production level of unit in load area in GWh’;

Equation

objcost ’objective for minimizing cost in K$’

objco2 ’objective for minimizing CO2 emissions in Kt’

objes ’objective for maximizing endogenous sources in GWh’

defcap(p) ’capacity constraint’

defdem(i) ’demand satisfaction’;

objcost.. sum(pi(p,i), pdata(’cost’,p)*x(pi)) =e= z(’cost’);

objco2.. sum(pi(p,i), pdata(’CO2emission’,p)*x(pi)) =e= z(’CO2emission’);

objes.. sum(pi(es,i), x(pi)) =e= z(’endogenous’);

defcap(p).. sum(pi(p,i), x(pi)) =l= pdata(’capacity’,p);

defdem(i).. sum(pi(p,i), x(pi)) =g= demand(i);

Model example / all /;

Set kk(k) ’active objective functions’;

kk(k) = yes;

$if %NBOBJ%==2 kk(’endogenous’) = no;

$libinclude moo %METHOD% example LP kk dir z points pareto_obj -iterations=20 -gridpoints=5 -savepoint=1 -savepoint_filename= -savepoint_dir=savepoints

execute ’gdxmerge savepoints%system.DirSep%*.gdx > %system.NullFile%’;

display pareto_obj;

This example is also part of the GAMS Data Utilities Library, see model [moo02] for reference. The
model is solved using the Sandwiching method with a gap of 0.01 (default). The objective function values
of the pareto points found are saved in parameter pareto obj:

---- 1164 PARAMETER pareto_obj objective values of the pareto points

cost CO2emissi~

point1 2112000.000 85824.000

point2 3180000.000 50580.000

point3 4470000.000 20340.000

In addition, savepoint is activated and thus, for each pareto point a point format GDX file that contains
information on the solution point will be written. Using gdxmerge all savepoint GDX files can be merged
into a single GDX file.

If plot is set to 1 and Python package matplotlib is installed, a plot of the pareto front is generated:

The plot shows the pareto efficient extreme points as well as the lines connecting these points (the IPS).
An animation of the algorithm shows how the IPS and OPS are updated at each iteration:

Starting with the initial points from the payoff table, the IPS and the OPS are constructed (iteration 0).
In iteration 1, a new point is found and the IPS and OPS are updated. In the last two iterations no new

6.45 Model Instances (pyEmbMI) 3305

point is found but the OPS is updated so the upper bound on the approximation error (distance between
the IPS and OPS) decreases and the gap of 0.01 is reached.

Setting --NBOBJ=3 with model [moo02] allows to solve a power generation problem with three objectives.
This is the resulting pareto front:

6.45 Model Instances (pyEmbMI)

Libinclude file pyembpy.gms for the GAMS Python API class GAMSModelInstance. An instance of this
class provides access to a model instance that can be modified and resolved without regenerating the
model over and over.

Usage:

$libinclude pyEmbMI myPyMI ’solve statement’ [optlist] updateList

Where:

Argument Description

myPyMI Name of the GAMSModelInstance Python identifier.

solve statement Part of the solve statment that gives model name, solver type and
optimization direction / variable, e.g. transport minimize z us lp.

optlist Optional list of -optkey=optval option pairs, e.g. -reslim=100

-all model types=cplex that build update a GamsOption object used
in the instantiate call. See gams.control.options.GamsOptions
Class Reference for details.

updateList List of update tuples (see details below):
Variable update tuples: gmsModelVar.Lower|Upper|Fixed|Primal|Dual.gmsPar.Zero|BaseCase|Accumulate

Parameter update pairs: gmsModelPar.Zero|BaseCase|Accumulate

The update tuples contain instructions how to deal with updating variable/equation attributes (mostly
bounds) and parameters: If you want to change a parameter the entries holds the syntax: x.action

where x is the GAMS name of the parameter and action is the update type of the parameter. This
identifies how a parameter is updated if there is no data corresponding to the set intersection defining the
parameter.

• parametername.Zero will set all parameter values that are not explicitly set to zero.

• parametername.BaseCase will set all parameter values that are not explicitly set to the value from
the first model instantiation.

• parametername.Accumulate will keep all parameter values that are not explicitly set to their last
known value.

To update an attribute of a variable/equation 4 things need to be considered:

• What variable or equation to work with

3306 Tools Manuals

• What attribute to change (e.g. upper and lower corresponding bounds)

• What parameter contains the new values

• What to do with zeros which is the Zero, BaseCase, and Accumulate from above. This is expressed
in the tuple variableName.attribute.parameterWithNewValues.zeroKeyword. For example
x.Upper.xUp.BaseCase would reset upper bounds for x to the values in the parameter xup and set
the values that are not explicitly set to their last known value.

Hence a call to this include might look like this:

$libinclude pyEmbMI miTransport ’transport minimizing z using lp’ -all_model_types=cplex x.Upper.xUp.BaseCase b.zero

Embedded Code Model Instance Example

The GAMS Embedded Code facility allows to execute foreign code (e.g. Python) while GAMS runs and
to exchange data with GAMS without any disk access (e.g. GDX).

In this example we combine the power of the embedded code facility with the GAMS Python OO-API
class GAMSModelInstance. An instance of this class provides access to a model instance that can be
modified and resolved without regenerating the model over and over.

Here we generate the model instance once by using the libinclude pyEmbMI. The arguments to this call
provide all necessary information to instantiate an instance of a GAMSModelInstance. In particular we
provide the relevant part of the solve statement as well as a list of modifiers. These are the parameters in the
model that are subject to change. In addition we can provide some options belonging to a GAMS/Python
OO-API class GAMSOptions via the -key=value pairs. See more about the use of GAMSModelInstance
and GAMSOptions in the GAMS/Python OO-API.

Background:

A traditional GAMS implemenation of a scenario loop looks like this:

loop(ScenariosToRun,

a(i) = newsupply(ScenariosToRun,i);

b(j) = newdemand(ScenariosToRun,j);

solve transport using lp minimizing z;

resultantx(ScenariosToRun,i,j) = x.l(i,j)

);

With the embedded code/GAMSModelInstance solution this loop looks as follows:

$libInclude pyEmbMI tMI ’transport us lp min z’ -all_model_types=cplex a.Zero b.Zero

loop(ScenariosToRun,

a(i) = newsupply(ScenariosToRun,i);

b(j) = newdemand(ScenariosToRun,j);

continueEmbeddedCode:

gams.db[’a’].copy_symbol(tMI.sync_db[’a’])

gams.db[’b’].copy_symbol(tMI.sync_db[’b’])

tMI.solve()

tMI.sync_db[’x’].copy_symbol(gams.db[’x’])

pauseEmbeddedCode x

resultantx(ScenariosToRun,i,j) = x.l(i,j);

);

https://www.gams.com/latest/docs/apis/python/annotated.html

6.45 Model Instances (pyEmbMI) 3307

With a little helper function solveMI (see below) this code becomes even more similar:

$libInclude pyEmbMI tMI ’transport us lp min z’ -all_model_types=cplex a.Zero b.Zero

loop(ScenariosToRun,

a(i) = newsupply(ScenariosToRun,i);

b(j) = newdemand(ScenariosToRun,j);

continueEmbeddedCode:

solveMI(tMI,[’a’,’b’],[’x’])

pauseEmbeddedCode x

resultantx(ScenariosToRun,i,j) = x.l(i,j);

);

In contrast to GUSS/Scenario Solver here we implement the loop logic in GAMS and execute in the loop
body the solve method of the GAMSModelInstance class inside the embedded Python code. Rather than
using the gams.get|set method of the embedded code facility we use GAMSDatabase.copy symbol to
move data between GAMS (gams.db) and the GAMSModelInstance.sync db.

Note

Even though we don't exercise the ability in this example, the combination of GAMSModelInstance
and embedded code provides a way of defining the scenario n+1 based on the result (primal and
dual) of the nth scenario. This is not possible in GUSS/Scenario Solver.

Example:

* GMSPYTHONLIB gets automatically set to use the internal Python installation in sysdir/GMSPython.

$if not setEnv GMSPYTHONLIB $abort.noError Embedded code Python not ready to be used

$log --- Using Python library %sysEnv.GMSPYTHONLIB%

Set

i ’canning plants’ / seattle, san-diego /

j ’markets’ / new-york, chicago, topeka /;

Parameter

a(i) ’capacity of plant i in cases’

/ seattle 350

san-diego 600 /

b(j) ’demand at market j in cases’

/ new-york 325

chicago 300

topeka 275 /;

Table d(i,j) ’distance in thousands of miles’

new-york chicago topeka

seattle 2.5 1.7 1.8

san-diego 2.5 1.8 1.4;

Scalar f ’freight in dollars per case per thousand miles’ / 90 /;

Parameter c(i,j) ’transport cost in thousands of dollars per case’;

c(i,j) = f*d(i,j)/1000;

Variable

x(i,j) ’shipment quantities in cases’

3308 Tools Manuals

z ’total transportation costs in thousands of dollars’;

Positive Variable x;

Equation

cost ’define objective function’

supply(i) ’observe supply limit at plant i’

demand(j) ’satisfy demand at market j’;

cost.. z =e= sum((i,j), c(i,j)*x(i,j));

supply(i).. sum(j, x(i,j)) =l= a(i);

demand(j).. sum(i, x(i,j)) =g= b(j);

Model transport / all /;

Set s ’scenarios to run’ / base, run1, run2 /;

Table newsupply(s,i) ’updater for a (capacity)’

seattle san-diego

base 350 600

run1 300 650

run2 400 550;

Table newdemand(s,j) ’updater for b (demand)’

new-york chicago topeka

base 325 300 275

run1 325 300 275

run2 350 300 250;

$set solverlog

$if set useSolverLog $set solverlog output=sys.stdout

embeddedCode Python:

def solveMI(mi, symIn=[], symOut=[]):

for sym in symIn:

gams.db[sym].copy_symbol(mi.sync_db[sym])

mi.solve(%solverlog%)

for sym in symOut:

try:

gams.db[sym].clear() # Explicitly clear the symbol to ensure setting "writtenTo" flag for sym

mi.sync_db[sym].copy_symbol(gams.db[sym])

except:

pass

pauseEmbeddedCode

abort$execerror ’Python error. Check the log’;

$libInclude pyEmbMI tMI ’transport us lp min z’ -all_model_types=cplex a.Zero b.Zero

Parameter repX(s,i,j) ’collector for level of x’;

loop(s,

a(i) = newsupply(s,i);

b(j) = newdemand(s,j);

continueEmbeddedCode:

solveMI(tMI,[’a’,’b’],[’x’])

pauseEmbeddedCode x

repX(s,i,j) = x.l(i,j);

6.46 Sorting (rank) 3309

);

option repX:0:1:2;

display repX;

Set error(s) ’empty solution’;

error(s) = sum((i,j), repX(s,i,j)) = 0;

abort$card(error) ’Missing solution for some scenarios’, error;

The complete example is also part of the GAMS Model Library, see model [embmiex1] for reference.

6.46 Sorting (rank)

Libinclude file rank.gms for ranking one-dimensional numeric data.

Developed by Thomas F. Rutherford, Department of Economics, University of Colorado

Usage:

$libInclude rank v s r [p]

Where:

Type Argument Description

Input: v(s) Array of values to be ranked.

s A one-dimensional set, the domain
of array v.

Output: r(s) Rank order of element v(s), an inte-
ger between 1 and card(s), ranking
from smallest to largest.

Optional: (input and output) p(∗) On input this vector specifies per-
centile levels to be computed. On
output, it returns the linearly inter-
polated percentiles.

Note:

• rank only works for numeric data. You cannot sort sets.

• The first invocation must be outside of a loop or if block. This routine may be used within a loop

or if block only if it is first initialized with blank invocations ("$libInclude rank" in a context
where set and parameter declarations are permitted (See Example 3).

• The following names are used within these routines and may not be used in the calling program:

rank_tmp rank_u rank_p

• This routine returns rank values and does not return sorted vectors, however rank values are
easily used to produce a sorted array. This can be done using computed ”leads” and ”lags” in
GAMS' ordered set syntax, as illustrated in examples 1 and 3 below.

mailto:rutherford@colorado.edu

3310 Tools Manuals

6.46.1 Examples

6.46.1.1 Example 1: Rank a vector, and display the data in sorted order

Set

i ’Set on which random data are defined’ / a, b, d, c, e, f /

k ’Ordered set for displaying sorted data’ / 1*6 /;

Parameter

x(i) ’Random data to be sorted’

r(i) ’Rank values’

s(k,i) ’Sorted data’;

x(i) = uniform(0,1);

$libInclude rank x i r

display x;

* Generate a sorted list using the ordered set k.

* This assignment statement illustrates how the rank orders

* can be used to sort output for display in proper order. This

* statement uses GAMS support for computed "leads" and "lags"

* on the ordered set k. The loop is used to improve execution

* speed for larger dimensional sets:

loop(k$sameas(k,"1"),

s(k+(r(i)-1),i) = x(i);

);

option s:3:0:1;

display s;

This example is also part of the GAMS Data Utilities Library, see model [rank01] for reference. It writes
the following lines to ex1.lst:

---- 11 PARAMETER x Random data to be sorted

a 0.172, b 0.843, d 0.550, c 0.301, e 0.292, f 0.224

---- 75 PARAMETER s Sorted data

1.a 0.172

2.f 0.224

3.e 0.292

4.c 0.301

5.d 0.550

6.b 0.843

The rank libinclude can be used to also sort variable levels as the following example shows:

Set

i ’Set on which random data are defined’ / a, b, d, c, e, f /

6.46 Sorting (rank) 3311

k ’Ordered set for displaying sorted data’ / 1*6 /;

Variable

x(i) ’Random data to be sorted’

Parameter

r(i) ’Rank values’

s(k,i) ’Sorted data’;

x.l(i) = uniform(0,1);

$onDotL

$libInclude rank x i r

display x.l;

loop(k$sameas(k,"1"),

s(k+(r(i)-1),i) = x(i);

);

option s:3:0:1;

display s;

Before the "$libInclude rank" the dollar control option $onDotL needs to be activated.

6.46.1.2 Example 2: Generate percentiles for a random vector

Set

i ’Set on which random data are defined’ / a, b, d, c, e /

p ’Percentiles (all of them)’ / 0*100 /;

Parameter x(i) ’Random data to be sorted’;

* Generate the random data on set i:

x(i) = uniform(0,1);

display x;

Parameter

r(i) ’Rank values’

pct(*) ’Percentiles to be computed’ / 20 20.0, median 50.0, 75 75.0 /;

* Generate ranks and compute the specified percentiles (Note that

* the rank array, r, is required, even if the values are not used.)

$libInclude rank x i r pct

* Display three percentiles:

display pct;

This example is also part of the GAMS Data Utilities Library, see model [rank02] for reference. The
random data are displayed as follows in the listing file:

---- 11 PARAMETER x Random data to be sorted

a 0.172, b 0.843, d 0.550, c 0.301, e 0.292

3312 Tools Manuals

The interpolated percentiles are computed as follows:

---- 103 PARAMETER pct Percentiles

20 0.268, 75 0.550, median 0.301

The following code evaluates a full set of percentiles, from 1 to 100. The GAMS special value of EPS is
used to represent zero in the percentile calculation. (Percentiles between zero and one are not permitted
to avoid misunderstandings about how percentiles are scaled.) The code makes use of Tom Rutherfords
plot libInclude available at http://www.mpsge.org/gnuplot/index.html

pct(p) = (ord(p) - 1) + eps;

pct("median") = 0;

display pct;

$libInclude rank x i r pct

display pct;

* Plot the results using GNUPLOT:

Set pl(p) / 20, 40, 60, 80, 100 /;

$setGlobal domain p

$setGlobal labels pl

$libInclude plot pct

This is the generated plot:

6.46.1.3 Example 3: Use RANK to report multisectoral Monte Carlo results

One of the most perplexing challenges in economic modeling with GAMS is to present multisectoral results
in an easily interpreted format. One simple idea is to present sectoral results in a sorted sequence to
make it easier to identify the most seriously affected sectors. The presentation of results in a multisectoral
model is made even more challenging when model results are generated for a randomized set of scenarios.
A summary of Monte Carlo results involves reporting both mean results and their sensitivity. One means
of characterizing the sensitivity of model results is to report functions of the sample distribution such as
the upper and lower quartiles.

This example illustrates how rank can be used to help report results from the Monte Carlo analysis of a
multisectoral model.

The complete model used as example here is part of the GAMS Data Utilities Library, see model [rank03]
for reference. The following extract of that model generates the result we want to look at.

* Determine ranking of sectors by mean impact:

mean(i) = qvalue(i,"mean");

$libInclude rank mean i meanrank

* The following statement creates a tuple matching the ordered

* set, ki, to the set of sectors, i. In this tuple, the sequence of

* assignments corresponds to increasing mean impacts:

imap(ki+(meanrank(i)-ord(ki)),i) = yes;

* Evaluate quartiles of sectoral impacts for each sector:

http://www.mpsge.org/gnuplot/index.html

6.46 Sorting (rank) 3313

loop(i,

x(s) = v(s,i);

* Load quartile with the perctiles to be

* evaluated (25th, 50th and 75th):

quartile(qtl) = qv(qtl);

$ libInclude rank x s r quartile

* Save the quartile values:

qvalue(i,qtl) = quartile(qtl);

);

display qvalue;

Parameter results(ki,i,*) ’Summary of impacts (sorted)’;

results(ki,i,"mean")$imap(ki,i) = mean(i);

results(ki,i,qtl)$imap(ki,i) = qvalue(i,qtl);

display results;

The program produces the following display output:

q25 q50 q75 mean

1 .FOO -13.767 -12.110 -10.671 -12.259

2 .MWO -13.496 -11.982 -10.512 -12.035

3 .SCS -12.244 -10.418 -8.738 -10.588

4 .CLO -8.763 -7.407 -6.158 -7.480

5 .ADM -7.865 -5.601 -3.470 -5.812

6 .CNM -6.437 -5.320 -4.404 -5.461

7 .OTH -5.732 -4.781 -4.012 -4.892

8 .PIP -3.142 -1.930 -0.836 -2.145

9 .OIN -2.124 -1.339 -0.563 -1.358

10.TPP -2.527 -0.988 0.521 -1.041

11.GEO -1.542 -0.826 -0.196 -0.883

12.AGF -1.178 -0.624 -0.072 -0.625

13.ECM 0.137 0.466 0.796 0.441

14.SSM 0.303 0.711 1.079 0.684

15.CON 0.604 1.071 1.479 1.041

16.PST 0.814 1.924 2.966 1.858

17.RLW 1.885 2.787 3.632 2.738

18.OFU 2.789 3.300 3.829 3.330

19.OLE 3.155 3.553 3.964 3.554

20.ELE 3.480 3.896 4.318 3.892

21.PSM 3.733 4.134 4.591 4.168

22.CAT 3.216 4.417 5.461 4.369

23.TRO 3.953 5.123 6.549 5.282

24.OLP 4.614 5.262 5.909 5.295

25.TRD 5.694 6.454 7.250 6.476

26.AIR 5.227 7.182 9.276 7.320

27.FIN 4.919 7.301 10.175 7.640

28.COA 6.581 7.818 9.125 7.878

29.TMS 5.668 8.530 11.086 8.591

30.CHM 8.071 9.299 10.534 9.319

31.TRK 7.031 9.367 11.851 9.577

32.MAR 9.485 13.072 16.424 13.049

33.GAS 4.437 13.183 22.311 13.462

34.FME 14.794 16.617 18.382 16.642

35.NFM 23.299 26.398 29.281 26.263

3314 Tools Manuals

The tabular report is helpful, but it does not convey the results as immediately as a picture. GNUPLOT's
errorbar plot format is a convenient graphical format for portraying this information. The libinclude
interface to GNUPLOT does not support this type of plot, so the continuation of the program produces
the GNUPLOT command and data files before invoking the GNUPLOT program:

* Write out a GNUPLOT file to generate a chart of the results:

File kplt / ex3.gnu /;

put kplt;

kplt.lw = 0;

put "reset"/;

put ’set title "Sectoral Impacts with Quartiles"’/;

put "set linestyle 1 lt 8 lw 1 pt 8 ps 0.5"/;

put "set grid"/;

put ’set ylabel "% change"’/;

put "set xzeroaxis"/;

put "set bmargin 4"/;

put "set xlabel ’sector’"/;

put ’set xrange [1:’,card(i),’]’/;

put ’set xtics rotate (’;

loop(ki, loop(i$imap(ki,i), put ’\’/’ "’,i.tl,’" ’, ord(ki):0,’,’;));

put @(file.cc-1) ’)’/;

put "plot ’ex3.dat’ notitle with errorbars ls 1"/;

putClose;

File kpltdata / ex3.dat /;

put kpltdata;

kpltdata.nr = 2;

kpltdata.nw = 14;

kpltdata.nd = 6;

loop(ki, loop(i$imap(ki,i), put ord(ki):0,qvalue(i,"mean"), qvalue(i,"q25"), qvalue(i,"q75")/;));

putClose;

execute ’wgnupl32 ex3.gnu -’;

This is the generated plot:

6.46.1.4 Example 4: Repeated computation of percentiles within a loop

The following code extract shows how to do repeated computation of percentiles within a loop while the
data is changing. This is an extract of the model [rank04] from the GAMS Data Utilities Library.

* Do several iterations, computing percentiles in each step:

loop(iter,

* Substitute a call to the NLP solver by a call to the random

* number generator. In many applications, this substitution

* produces profoundly more sensible results.

*

* solve catchment using nlp maximizing max;

z(week) = uniform(0,1);

* If you want to retrieve percentile values, you need to reassign

6.46 Sorting (rank) 3315

* the percentiles that you wish to retrieve at this point in the

* program. If pct() were not reassigned at this point, the INPUT

* values would correspond to the OUTPUTs from the previous call.

pct(pctl) = pct0(pctl);

$ libInclude rank z week rnk pct

pctval(iter,pctl) = pct(pctl);

);

display pctval;

Output:

---- 58 Here are the INPUT values of PCT0 and PCT prior to the call to rank:

---- 58 PARAMETER pct0 Percentiles to be computed

50 50.000, 75 75.000, 80 80.000, 95 95.000

---- 58 PARAMETER pct Percentiles to be computed (input) and those values (output)

50 50.000, 75 75.000, 80 80.000, 95 95.000

---- 153 Here are the values of PCT0 and PCT after the call to rank:

---- 153 PARAMETER pct0 Percentiles to be computed

50 50.000, 75 75.000, 80 80.000, 95 95.000

---- 153 Note that rank has changed the OUTPUT value of pct

---- 153 PARAMETER pct Percentiles to be computed (input) and those values (output)

50 0.424, 75 0.662, 80 0.712, 95 0.864

---- 273 PARAMETER pctval Percentile values in successive iterations

50 75 80 95

iter1 0.345 0.594 0.638 0.922

iter2 0.385 0.633 0.672 0.941

iter3 0.474 0.705 0.766 0.962

iter4 0.627 0.796 0.823 0.978

iter5 0.428 0.682 0.793 0.904

iter6 0.422 0.690 0.729 0.958

iter7 0.558 0.716 0.756 0.902

iter8 0.451 0.638 0.726 0.942

iter9 0.464 0.704 0.755 0.916

iter10 0.564 0.805 0.831 0.974

3316 Tools Manuals

6.46.1.5 Example 5: Generating percentiles for heterogenous households.

$title Percentile ranking of household expenditure data with heterogenous household size

Set h / 0*100 /;

Parameter

y(h) ’Aggregate expenditure associated with household type h’

n(h) ’Number of persons associated with household type h’

ypc(h) ’Per-capita expenditure of household type h’

rank(h) ’Rank of household in per-capita expenditure’;

* Assign some random values:

y(h) = uniform(0.2,1.2);

n(h) = uniform(1,6);

ypc(h) = y(h)/n(h);

* Assign ranks to household based on per-capita expenditures:

$libInclude rank ypc h rank

* Now determine percentile ranking of the households taking into account

* differences in numbers of members and household representation:

Set r ’Temporary set used for ranking’ / r0*r100 /;

Parameter

pcttmp(r) ’Temporary array for computing percentiles’

pct(h) ’Percentile rankings for households’;

Set r0(r) / r0 /;

* First, create an array with households assigned

loop((r0(r),h), pcttmp(r+(rank(h)-1)) = n(h););

loop(r, pcttmp(r) = pcttmp(r) + pcttmp(r-1););

pcttmp(r) = pcttmp(r)/sum(h, n(h));

loop((r0(r),h), pct(h) = pcttmp(r+(rank(h)-1)););

Parameter ranking ’Ranking of households and expenditures’;

loop((r0(r),h),

ranking(r+(rank(h)-1),h,"n") = n(h);

ranking(r+(rank(h)-1),h,"ypc") = ypc(h);

ranking(r+(rank(h)-1),h,"pct") = pct(h);

);

display ranking;

This example is also part of the GAMS Data Utilities Library, see model [rank05] for reference. It
produces the following output:

n ypc pct

r0 .43 5.662 0.044 0.018

r1 .8 5.682 0.047 0.036

r2 .58 4.477 0.052 0.050

r3 .14 5.742 0.058 0.068

r4 .55 4.815 0.063 0.083

6.46 Sorting (rank) 3317

r5 .65 3.702 0.063 0.094

r6 .61 5.880 0.064 0.113

r7 .54 4.463 0.064 0.127

....

r98 .62 1.134 0.640 0.991

r99 .10 1.673 0.716 0.997

r100.73 1.053 1.076 1.000

3318 Tools Manuals

Chapter 7

Application Programming Interfaces

The Application Programing Interfaces (APIs) to GAMS allow the seamless integration of GAMS into an
application. The APIs by provides appropriate classes for the interaction with GAMS. The GAMSDatabase

class for in-memory representation of data can be used for convenient exchange of input data and model
results. Models written in GAMS can be run with the GAMSJob class and by using the GAMSModelInstance
class a sequence of closely related model instances can be solved in the most efficient way. Note that
the GAMS object-oriented API was not designed to offer modeling capability. The model needs to be
formulated in GAMS and passed on to the GAMSJob class.

Five versions of object-oriented GAMS APIs :

• .NET API with Target Framework Version 4.6.2,

• C++ API works with C++17 or later,

• Java API works with Java SE 11 or later. The non-mainstream version of Java API that works
with Java SE 8 is still available with maintenance support, but the functionality that is newer than
GAMS 43 will be not available in this version. See Java Release Notes and Java Tutorial for more
details.

• Python API works with Python 3.8 to 3.12.

• Matlab API works with Matlab 2017b (or later) and Octave 5.2 (or later).

In addition to the object-oriented GAMS APIs, there exist an R API and expert-level (or low-level) GAMS APIs
in which its usage requires advanced knowledge of GAMS component libraries.

See Executing GAMS from other Environments if you want to execute GAMS directly from an application
without using APIs.

7.1 Object-oriented APIs

The Reference Manuals give an overview of the features provides by GAMS APIs, release notes, and a
list of all classes with descriptions. The Tutorials provide an overview of the basic functionality of the
GAMS APIs and the Examples provides a list of examples available with GAMS distribution with detailed
description. See also Release Notes and Supported Platforms.

3320 Application Programming Interfaces

7.1.1 Reference Manuals

The GAMS APIs reference manuals give an overview of the features provides by GAMS APIs, release
notes, and a list of all classes with descriptions.

• .NET API

• C++ API

• Java API

• Python API

• Matlab API

7.1.2 Tutorials

GAMS API Tutorials provide an overview of basic functionalities of GAMS APIs and allow a user to get
started to work with the GAMS API.

• .NET API Tutorial

• C++ API Tutorial

• Java API Tutorial

• Python API Tutorial

• Matlab API Tutorial

7.1.3 Examples

There are several examples avaiable for the different programming languages: .NET, C++, Java, and
Python. Below we give a description of each example together with its link to the detailed page in different
languages.

Examples .NET C++ Java Python

Alias Alias Alias alias.py

Benders2Stage Benders2Stage,
Ben-
ders2StageMT

Benders2Stage,
Ben-
ders2StageMT

ben-
ders 2stage.py,
ben-
ders 2stage mt.py

Clad Clad Clad clad.py

CutStock Cutstock, Sim-
pleCutstock

Cutstock-
Model, Sim-
pleCutstock,
Cutstock

cut-
stock class.py,
sim-
ple cutstock.py,
cutstock.py

Domain Checking DomainCheck-
ing

domaincheck-
ing.cpp

DomainCheck do-
main checking.py

Graphical User Interface (GUI)

- CutstockGUI CutStockGUI

apis/dotnet/annotated.html
apis/cpp/annotated.html
apis/java/annotated.html
apis/python/annotated.html
apis/examples_dotnet/annotated.html
apis/examples_cpp/files.html
apis/examples_java/annotated.html
apis/examples_python/files.html
apis/examples_python/files.html

7.1 Object-oriented APIs 3321

Examples .NET C++ Java Python

- FarmGUI FarmGUI

- InterruptGUI InterruptGui InterruptGUI inter-
rupt gui.py

- TransportGUI TransportGUI TransportGUI

GAMS Remote ObjectGAMSServer,
GAMSClient

Interrupt Interrupt ConsoleInter-
rupt

interrupt.py

Markowitz Markowitz markowitz.py

MessageReceiver WindowMessageRe-
ceiverWindow

Special Values SpecialValues SpecialValues spe-
cial values.py

Transport Model SequenceTransport,
Transport1 -
Transport14

transport.cpp,
transport1.cpp
- trans-
port14.cpp

Transport-
Model, Trans-
port1 - Trans-
port14

trans-
port class.py,
transport1.py -
transport14.py

Traveling Salesman ProblemTsp Tsp tsp.py

Warehouse Warehouse warehouse.cpp Warehouse warehouse.py

Unit Test NUnitTest

These examples are available with the GAMS distribution in [Path/To/GAMS]/apifiles/ directory. In
that directory, the file readme.txt describes how to build and execute these examples. A GAMS script to
compile and execute each example is available in [Path/To/GAMS]/apilib ml/ directory with a table
of contents.

7.1.3.1 Alias

The Object-oriented API does not have the concept of a GAMS alias. An alias cannot be entered into a
GAMSDatabase by API methods. Nevertheless, if the GAMSDatabase is loaded from a GDX container
(e.g. the GAMSJob.OutDB), the database can contain aliases. Such an alias can be retrieved as a
GAMSSet and consists of the elements of the aliased set. The method to find out if a GAMSSet in a
GAMSDatabase is indeed an alias is to check if the symbol name is different from the lookup name (i.e.
bool isAlias = db.GetSet(”ii”).Name != ”ii”). This example model goes through the logic of how aliases
are handled in the Object-oriented API.

See Alias example in [.NET, Java, Python].

7.1.3.2 Benders2Stage

This example implements a simple Benders decomposition method for a stochastic linear program. The
underlying model implements a simple distribution system with stochastic demand data. This example
actually consists of two programs: A sequential and a parallel implementation. In the sequential version,
the master and the subproblems are implemented with the GAMSModelInstance object which allows
resolving the model with modified input without regenerating the model. A GAMSModelInstance has a
fixed model rim, so this provides a challenge for Benders master problem because every iteration adds
new constraints (the Benders cuts) to the master. We get around this limitation of GAMSModelInstance
by initializing the GAMSModelInstance of the master with a fixed number of empty (i.e. non-binding)
placeholders constraints and during the run of the algorithm turn these placeholder constraints into
valid Benders cuts. The parallel version extends the Benders2Stage example by solving the independent
subproblems in parallel. For that we need to instantiate a separate GAMSModelInstance for each parallel

3322 Application Programming Interfaces

worker. We use the efficient GAMSModelInstance. CopyInstance method to accomplish this in the most
effective way. The number of demand scenarios can be larger than the number of parallel workers. The
distribution of work is handles through a work queue. The parallel execution of the subproblems is done
in separate threads (the MT in the name of the example stands for Multi Threading), so there is very
little overhead from disk activity.

See Bender2Stage example in [.NET, Java, Python] and Bender2StageMT example in [.NET, Java,
Python].

7.1.3.3 Clad

This example demonstrates how to implement a complex termination criterion for a difficult MIP using
GAMS/Cplex. We would like to achieve a globally optimal solution (relative gap 0%) but if solution
time becomes larger than n1 seconds, we can compromise for a 10% gap, and if this is not achieved
after n2 seconds, we compromise for a 20% gap, and again if this is not accomplished in n3 seconds we
take whatever the solver has done so far and terminate the solve. This is implemented by executing
GAMSJob.run in an independent thread and providing new tolerances for the relative gap in the main
thread by supplying new GAMS/Cplex option files and triggers the processing of the new tolerance option
by GAMS/Cplex through the GAMSJob.Interrupt method.

See Clad example in [.NET, Java, Python].

7.1.3.4 CutStock

This example contains two programs that implement a column generation approach to solve the cutting
stock problem. In the program SimpleCutsock, the column generation scheme has been implemented in
GAMS. Moreover the GAMS model with the input and output data has been wrapped in a class that
separates all interaction with GAMS from the driving application. In the second example, the column
generation approach has been entirely implemented in the program using GAMSJob for the master and
GAMSModelInstance for the pricing problem. GAMS is used to build the master and pricing problems.
The logic of the column generation method is in the application program.

See Cutstock Model example in [.NET, Java, Python], SimpleCustock example in [.NET, Java,
Python], and Custock example in [.NET, Java, Python].

7.1.3.5 Domain Checking

Enforcing referential integrity also known in the GAMS lingo as domain checking is an essential and
important part of GAMS. The Object-oriented API does a delayed domain checking of symbols. So
you can add records to a domain controlled parameter (e.g. p(i)) even though the GAMSSet i does not
contain the label (yet). The user can trigger an explicit check of the referential integrity by calling the
GAMSDatabase.CheckDomains (or GAMSSymbol.CheckDomains). The Object-oriented API provides
methods to access the records that violate the referential integrity (see GAMSDatabaseDomainViolation
for details). Domain checking is implicitly done when the GAMSDatabase is exported to a GDX file
via the GAMSDatabase.Export method or for databases provided in the GAMSJob.Run method. The
implicit domain check can be suppressed (and left to GAMS when importing data) via the GAMS-
Database.SuppressAutoDomainChecking property. This example demonstrates how to trigger domain
checking and how to access the records that violate the referential integrity.

See Domain checking example in [.NET, C++, Java, Python].

7.1 Object-oriented APIs 3323

7.1.3.6 GUI Examples

Modern development frameworks like Microsoft's Visual Studio, Python, and Java allow to quickly build
graphical user interfaces. Every example consists of a simple GUI that provides data entry, executing of a
GAMSJob and graphically represents the results of a GAMS model.

• CutstockGUI: This example allows to either load data from a database or to enter data manually.
A cutting stock problem is solved by using both the GAMSJob and the GAMSModelInstance class
in order to implement a decomposition approach. See also CutStock Example. See this example in [
.NET].

• InterruptGUI: This small example demonstrates how to run a GAMS model in a graphical user
interface. This has all rudimentary features we know from the GAMS IDE: starting a job, capture
the GAMS log in a window, and providing a button to interrupt. The underlying mechanism
to interrupt the job is similar to the Interrupt Example (GAMSJob.Interrupt), but the trigger
mechanism is very different. See this example in [.NET, Java, Python].

• FarmGUI: For this farming model, the input data can be entered directly into several tables. The
GAMS model itself is executed by using one single GAMSJob instance. Results are displayed in
different charts and tables. See this example in [.NET].

• TransportGUI: In this example a series of transportation problems is solved using GAMSModelIn-
stance. Data can be entered into tables or can be loaded from a database. When data is entered
into a table, related tables are updated automatically. Results are shown in tables and/or a bar
chart. See also Transport Model Sequence Example. See this example in [.NET, Java].

7.1.3.7 GAMS Remote Object

This example demonstrates how to implement a simple GAMS Server. The example has two parts:
GAMSServer and GAMSClient. The example is configured to run the client and server on the same
machine, but can easily be altered to run on different machines. Both client and server need access to the
GAMSRemoteClass that implements the server. The method to communicate is very simple. The client
sets up the ingredients for a GAMSJob (model text, GDX input, parameters) and sends them serialized
(via a byte representation of the GDX and parameter file) to the server. The server recreates the GAMS
objects from the serialized representations, runs the model, and ships GAMSJob.OutDB serialized back
to the client for further processing.

See GAMSServer example in [.NET] and GAMSClient in [.NET].

7.1.3.8 Interrupt

Ctrl-C in a regular console application results in the interrupt of the entire job. GAMS users are used to
the fact that Ctrl-C interrupts a solve but then continues with the execution of the remaining GAMS job.
The example demonstrates how to alter some console properties to get this behavior of Ctrl-C.

See Interrupt example in [.NET, Java, Python].

7.1.3.9 Markowitz

This is a small graphical program that plots the efficient frontier of Markowitz' portfolio selection problem
with the two objectives return and risk. The example utilizes the GAMSModelInstance class to solve the
parameterized objective max lambda∗return - (1-lambda)∗risk in the most efficient way.

See Markowitz example in [.NET, Python].

3324 Application Programming Interfaces

7.1.3.10 MessageReceiver Window

The little example demonstrates how to implement a custom visual log. From GAMS one can send
messages to the form started by this program via the put utility ”winmsg”. The form also understands
some commands (a message that starts with @) to save the content of the form, to put the content
into the clipboard, or to terminate the program. The MessageReceiverWindow is also distributed as an
executable in the GAMS system directory ready to be used. The model mrw01 in the GAMS Test Library
demonstrates the use of the program.

See MessageReceiver Window example in [.NET].

7.1.3.11 Special Values

This example shows how special values of the programming language (e.g. infinity) percolate down to
GAMS. Infinity and NaN (not a number) are well defined. The GAMS Undefined and EPS need special
considerations.

See Special Values example in [.NET, Java, Python].

7.1.3.12 Transport Model Sequence

This set of examples demonstrates the use of the Object-oriented API on the simple transport model
trnsport.gms : A Transportation Problem [trnsport]. The detailed description of the various
examples is provided in the Object-oriented API tutorials in the GAMS documentation.

See Transport Model example in [.NET, C++, Java, Python].

7.1.3.13 Traveling Salesman Problem

This example demonstrates how to use a GAMSModelInstance to implement the subtour elimination
algorithm for the Traveling Salesman Problem (TSP) problem. Similar to Benders2Stage example, we
have a placeholder for the subtour elimination constraint that gets generated in each iteration of the
algorithm. In contrast to the Benders example, here we regenerate the GAMSModelInstance if the original
number of placeholders was not big enough. We continue this process until all subtours are eliminated.

See Traveling Salesman Problem example in [.NET, Java, Python].

7.1.3.14 Unit Test

This example contains all the unit tests we run on the .Net Object-oriented API. See Unit Test example
in [.NET].

7.1.3.15 Warehouse

This example demonstrates how to solve a simple GAMS model to assign stores to warehouses for different
data sets in parallel. The model has been parameterized. The data can be derived from a few numbers
namely the number of warehouses, stores, and some fixed cost scalar. The results of the model are written
into a single result database that is protected across the parallel threads via a mutex.

See Warehouse example in [.NET, C++, Java, Python].

7.2 Expert-Level APIs 3325

7.1.4 Release Notes

GAMS API Release Notes provide an overview of changes to the GAMS APIs in releases of the GAMS
distribution.

• Java API Release Notes

7.1.5 Supported Platforms

x86 64bit
MS Windows

x86 64bit
Linux

x86 64bit
macOS

arm 64bit
macOS

GAMS C++ X X X X
GAMS Java X X X X
GAMS.NET X X X X
GAMS Python X X X X

GAMS Matlab X X X X

7.2 Expert-Level APIs

In addition to the object-oriented GAMS API, there exist expert-level (or low-level) APIs to some
component libraries of the GAMS system. These APIs are used internally in GAMS for a long time and
help in the deployment of GAMS models. While they offer high performance and flexibility, they also
require advanced knowledge and it is recommended that the object-oriented GAMS API is used if possible.
The expert-level APIs are offered for C, C#, Delphi, Fortran, Java, Python, and Visual Basic.

The DCT, GEV, and GMO components are mainly used to build solver links to GAMS (see, e.g., the
GAMSLinks project. In fact, all professional GAMS solver links are based on these components. They
provide access to an instance of a model generated by a solve statement. If you plan to build advanced
algorithms for models or need to solve a sequence of very similar models these components might represent
an alternative to an implementing using the GAMS language.

While we also strive for backward compatibility with our component libraries, but programming interfaces
are commonly subject to change, so programs based on these APIs might require adjustment when
updating to a new GAMS version. The Release Notes have a section on these API changes.

Overviews of the exported function in pseudo code are available in the following summary pages:

• CFG API (GAMS Configuration Object)

• DCT API (GAMS Dictionary Object)

• GDX API (GAMS Data Exchange Object) which is also available as open source project on

GitHub with additional documentation.

• GEV API (GAMS Environment Object) with additional GAMS Environment Object Options.

https://github.com/coin-or/GAMSlinks
https://github.com/coin-or/GAMSlinks
apis/expert-level/cfgqdrep.html
apis/expert-level/dctqdrep.html
apis/expert-level/gdxqdrep.html
https://github.com/GAMS-dev/gdx
https://github.com/GAMS-dev/gdx
https://gams-dev.github.io/gdx/
apis/expert-level/gevqdrep.html

3326 Application Programming Interfaces

• GMO API (GAMS Modeling Object) with additional information on philosophy and design.

• IDX API (GAMS IDX Object)

• OPT API (GAMS Option Object)

• PAL API (GAMS Auditing and Licensing Object)

Note

Without having a GAMS system directory in the PATH environment variable, the xyzCreateD

functions (e.g. gdxCreateD, optCreateD, ...) might cause some issues finding libraries that are only
in the GAMS system directory on Windows.

7.2.1 Supported Platforms

x86 64bit
MS Windows

x86 64bit
Linux

x86 64bit
macOS

arm 64bit
macOS

C X X X X
C# X

Delphi X

Fortran∗ X X X X
Java X X X X
Python X X X X

VBA X
VB.NET X

∗ Fortran API files are based on C code to load dynamic libraries. For Windows pure Fortran API files
for Intel and Lahey Fortran compilers are included

7.3 C++ API

GAMS C++ API provides a convenient way to exchange input data and model results with in-memory
representation of data (GAMSDatabase), and to create and run GAMS models (GAMSJob) that
can be customized by GAMS options (GAMSOptions). Furthermore, they introduce a way to solve a
sequence of closely related model instances in a more efficient way (GAMSModelInstance).

7.4 Java API

GAMS Java API provides a Java programming interface to the General Algebraic Model System (GAMS).
GAMS Java API objects allow a convenient way to exchange input data and model results with in-memory
representation of data (GAMSDatabase), and to create and run GAMS models (GAMSJob) that can be

apis/expert-level/gmoqdrep.html
apis/expert-level/idxqdrep.html
apis/expert-level/optqdrep.html
apis/expert-level/palqdrep.html

7.5 Python API 3327

customized by GAMS options (GAMSOptions). Furthermore, they introduce a way to solve a sequence of
closely related model instances in a more efficient way (GAMSModelInstance).

The underlying GAMS engine relies to some extent on file based communication (e.g. the listing file)
and other unmanaged resources. The use of external resources in the Java environment requires special
attention. Hence, some objects need to be properly disposed before the Java garbage collector does its job.

A GAMS program can include other source files (e.g. $include), load data from GDX files (e.g. $GDXIN
or execute load), and create PUT files. All these files can be specified with a (relative) path and therefore
an anchor into the file system is required. The base object GAMSWorkspace manages the anchor to the
file system.

With the exception of GAMSWorkspace the objects in the gams namespace cannot be accessed across
different threads unless the instance is locked. The classes themselves are thread safe and multiple objects
of the class can be used from different threads (see below for restrictions on solvers that are not thread
safe within the GAMSModelInstance class).

Note

If you use multiple instances of the GAMSWorkspace in parallel, you should avoid using the same
WorkingDirectory. Otherwise you may end up with conflicting file names.

Currently only Cplex, Gurobi, and SoPlex fully utilize the power of solving GAMSModelInstances. Some
solvers will not work in a multi-threaded application using GAMSModelInstances. For some solvers this
is unavoidable because the solver library is not thread safe (e.g. MINOS), other solvers are in principle
thread safe but the GAMS link is not (e.g. SNOPT). Moreover, GAMSModelInstances are not available
for quadratic model types (QCP, MIQCP, RMIQCP).

This version of the GAMS Java API also does not provide support for the following GAMS components:
acronyms, GAMS compilation/execution errors, structured access to listing file, and solver options.

7.5 Python API

The GAMS API is a Python package that contains several sub-modules that enable the control of the
GAMS system as well as the movement of data between GAMS and Python. Currently the API supports
the Python versions 3.8 to 3.12. The following table gives an overview of all available sub-modules:

Sub-Module Description

connect (beta) Used primarily by GMSPython to digest YAML syntax to Extract, Transform and
Load (ETL) data into GAMS, but can be used in native Python environments.

control Enables full control of the GAMS System

core Core GAMS API tools used to connect to GDX, GMD, GMO and other GAMS
objects. Requires expert level knowledge.

engine GAMS Engine API (OpenAPI compliant), manages jobs with GAMS Engine

magic (beta) Enables the use of GAMS from within Jupyter notebooks

tools (beta) Code base for the GAMS tools library

transfer Data Only API – Allows GAMS data to be maintained outside a GAMS script

Note

Due to compatibility issues the GAMS Python API does not work with the Python interpreter from
the Microsoft Store.

https://www.gams.com/engine/engine-api.html

3328 Application Programming Interfaces

To install the API please visit: Getting Started.

7.5.1 Migrate import statements

With the release of GAMS 42 the GAMS Python ecosystem has been restructured – the new structure
has many benefits (easier/safer (un)installs, cleaner module namespaces, etc.).

Attention

The new API structure cannot be used to simply ”update” previous versions – users should build
new python environments from scratch before attempting to install.

Restructuring of the GAMS python API ecosystem was confined to the creation of the new nested structure
– class, method and other variables names were not modified. The import statements in legacy code will
need to be updated if using the new system. Best practice will be to use the new package structure to
import different sub-modules as needed (and avoid from <module name> import ∗ syntax). We provide
a mapping between the old syntax and the new to aid in the transition to the new API structure:

Old import statement New import recommendation(s)

from gams import GamsWorkspace from gams import GamsWorkspace

from gams import ∗ import gams

from gdxcc import ∗ from gams.core import gdx

-or-
import gams.core.gdx as gdx

from optcc import ∗ from gams.core import opt

-or-
import gams.core.opt as opt

import gamstransfer as gt from gams import transfer as gt

-or-
import gams.transfer as gt

import gams engine ‘import gams.engine’

Note

Jupyter users will need to migrate their reload ext gams magic -> reload ext gams.magic and
load ext gams magic -> load ext gams.magic

7.5.1.1 Testing for Old vs New API

Users may be running the same python code with different versions of the Python API. If this is the case,
it might be beneficial to include conditional import statements. It is possible to test for the GAMS major
version number with the GamsWorkspace.api major rel number property:
from gams import GamsWorkspace
if GamsWorkspace.api major rel number<42: # old API structure

import gdxcc as gdx
from gams import *
import gamstransfer as gt

else: # new API structure
import gams.core.gdx as gdx
from gams.control import *
import gams.transfer as gt

Attention

While conditional import statements can be helpful, users are strongly encouraged to modify their
code to use the new structure.

7.5 Python API 3329

7.5.2 GAMS Python API Structure

7.5.3 Magic (Jupyter Notebooks)

Note

This feature is currently in beta status.

7.5.3.1 Introduction

GAMS Jupyter Notebooks allow to use notebook technology in combination with GAMS. If you just want
to learn GAMS there are probably better ways doing this. Notebooks allow you to combine GAMS and
Python. The former works great with well structured data and optimization models, while the latter is
very rich in features to retrieve, manipulate, and visualize data that comes in all sort of ways. Combining
GAMS and Python in a notebook it is relatively easy to tell an optimization story with text, data, graphs,
math, and models.

7.5.3.2 Getting Started

The first step in getting started with GAMS Jupyter Notebooks is to make your Python 3 installation aware
of the GAMS Python API described in the Getting Started section of the API tutorial. We recommend
to follow the steps below which are specifically tailored for getting started with GAMS Jupyter notebooks.
While any Python 3.8 to 3.12 installation is supported, we recommend the use of miniconda Python
distributions.

Attention

All core third party dependencies will be installed if the user supplies the optional pip syntax (pip
install gamsapi[magic]).

In addition to the GAMS Python API collection (and the core magic dependencies), the examples located
in [PATH TO GAMS]/api/python/examples/magic will require the additional packages: jupyterlab,
matplotlib, and tabulate. The following code section shows how to create and set up a conda

environment for GAMS Jupyter notebooks:

The notebooks Millco.ipynb and Introduction.ipynb located in api/python/examples/magic are
good starting points to get familiar with Jupyter notebooks and GAMS. The remainder of this section
gives the dialog of the Introduction.ipynb notebook. Please see also the other notebook examples:

• PickStock Example

• Filling grids with (distinct) polyominos

• DICE Model from 2018 Nobel laureate William D. Nordhaus

• PickStock Analysis using R

https://nbviewer.jupyter.org/url/www.gams.com/external/jupyter_examples/Millco.ipynb
https://nbviewer.jupyter.org/url/www.gams.com/external/jupyter_examples/Introduction.ipynb
https://nbviewer.jupyter.org/url/www.gams.com/external/jupyter_examples/pickstock.ipynb
https://nbviewer.jupyter.org/url/www.gams.com/external/jupyter_examples/Polyomino.ipynb
https://nbviewer.jupyter.org/url/www.gams.com/external/jupyter_examples/nordhaus_dice.ipynb
https://nbviewer.jupyter.org/url/www.gams.com/external/jupyter_examples/PickStockAnalysisR.ipynb

3330 Application Programming Interfaces

7.5.3.3 Tutorial

7.5.3.4 Converting GAMS Jupyter Notebooks into Python Scripts

Sometimes it can be useful to execute the logic of a GAMS Jupyter notebook in a standalone Python
script. This can be achieved by using the gams.magic.GamsInteractive class which implements the
back-end logic of gams.magic and does require neither IPython nor jupyter. Translating GAMS magic
commands into Python method equivalents is stright forward. First, the Python equivalent of %reload ext

gams.magic needs to be added to the beginning of a Python script:
from gams.magic import GamsInteractive
gams = GamsInteractive()

Afterwards, each magic command or method available in GAMS Jupyter notebooks has an equiva-
lent in GamsInteractive with the same name. GAMS magic commands like %gams or %gams reset

can be translated into methods of the exact same name - in this case GamsInteractive.gams() and
GamsInteractive.gams reset(). Methods and properties which are accessed directly (without GAMS
magic command) in a Jupyter notebook like gams.exchange container or gams.activate() can be
used in the exact same way from within GamsInteractive. Options and parameters of GAMS magic
commands can be used with corresponding arguments of the equivalent methods.

While GAMS magic commands can be translated very easily, certain interactive functionality like chart
plotting might require a different mechanism when being translated. Also display() might need to
be changed into print() or similar to be working in a standalone Python script. In addition, Jupyter
notebooks display data which is returned by the last command of a Python cell. In Python we need to
use another print() of the return value to get it as output.

For a complete example of a translated GAMS Jupyter notebook see [PATH TO GAMS]/api/python/examples/magic/millco.py

which is a translation of the Millco.ipynb notebook.

7.5.4 Transfer

transfer is a tool to maintain GAMS data outside a GAMS script in a programming language like
Python or Matlab. It allows the user to add GAMS symbols (Sets, Aliases, Parameters, Variables and
Equations), to manipulate GAMS symbols, as well as read/write symbols to different data endpoints.
transfer’s main focus is the highly efficient transfer of data between GAMS and the target programming
language, while keeping those operations as simple as possible for the user. In order to achieve this,
symbol records – the actual and potentially large-scale data sets – are stored in native data structures of
the corresponding programming languages. The benefits of this approach are threefold: (1) The user is
usually very familiar with these data structures, (2) these data structures come with a large tool box for
various data operations, and (3) optimized methods for reading from and writing to GAMS can transfer
the data as a bulk – resulting in the high performance of this package. This documentation describes, in
detail, the use of transfer within a Python environment.

Data within transfer will be stored as Pandas DataFrame. The flexible nature of Pandas DataFrames
makes them ideal for storing/manipulating sparse data. Pandas includes advanced operations for
indexing and slicing, reshaping, merging and even visualization.

Pandas also includes a number of advanced data I/O tools that allow users to generate DataFrames
directly from CSV (.csv), JSON (.json), HTML (.html), Microsoft Excel (.xls, .xlsx), SQL , pickle
(.pkl), SPSS (.sav, .zsav), SAS (.xpt, .sas7bdat), etc.

Centering transfer around the Pandas DataFrame gives GAMS users (on a variety of platforms – macOS,
Windows, Linux) access to tools to move data back and forth between their favorite environments for use
in their GAMS models.

The goal of this documentation is to introduce the user to transfer and its functionality. This documen-
tation is not designed to teach the user how to effectively manipulate Pandas DataFrames; users seeking a
deeper understanding of Pandas are referred to the extensive documentation.

Experienced GAMS API users seeking detailed documentation and examples are directed to Main Classes
and Additional Topics.

https://nbviewer.jupyter.org/url/www.gams.com/external/jupyter_examples/Millco.ipynb
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html
https://pandas.pydata.org/docs/user_guide/reshaping.html
https://pandas.pydata.org/docs/user_guide/merging.html
https://pandas.pydata.org/docs/user_guide/visualization.html
https://pandas.pydata.org/docs/user_guide/io.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/index.html

7.5 Python API 3331

7.5.4.1 Recommended Import

Users can access the transfer sub-module with either of the following (equivalent) import statements
once the GAMS Python API has been installed:
import gams.transfer as gt
from gams import transfer as gt

7.5.4.2 Design

Storing, manipulating, and transforming sparse data requires that it lives within an environment – this
data can then be linked together to enable various operations. In transfer we refer to this ”environment”
as the Container, it is the main repository for storing and linking our sparse data. Symbols can be added
to the Container from a variety of GAMS starting points but they can also be generated directly within
the Python environment using convenient function calls that are part of the transfer package; a symbol
can only belong to one container at a time.

The process of linking symbols together within a container was inspired by typical GAMS workflows
but leverages aspects of object oriented programming to make linking data a natural process. Link-
ing data enables data operations like implicit set growth, domain checking, data format transforma-
tions (to dense/sparse matrix formats), etc – all of these features are enabled by the use of ordered
pandas.CategoricalDtype data types. All of these details will be discussed in the following sections.

7.5.4.3 Naming Conventions

Methods – functions that operate on a object – are all verbs (i.e., getMaxAbsValue(), getUELs(), etc.)
and use camel case for identification purposes. Methods are, by convention, tools that ”do things”; that is
they involve some, potentially expensive, computations. Some transfer methods accept arguments, while
others are simply called using the () notation. Plural arguments (columns) hint that they can accept
lists of inputs (i.e., a list of symbol names) while singular arguments (column) will only accept one input
at a time.

Properties – inherent attributes of an object – are all nouns (i.e., name, number records, etc.) and use
snake case (lower case words separated by underscores) for identification purposes. Object properties (or
”object attributes”) are fundamental to the object and therefore they are not called like methods; object
properties are simply accessed by other methods or user calls. By convention, properties only require
trival amounts of computation to access.

Classes – the basic structure of an object – are all singular nouns and use camel case (starting with a
capital first letter) for identification purposes.

7.5.4.4 Install

The user must download and install the latest version of GAMS in order to install transfer. transfer is
installed when the GAMS Python API is built and installed. The user is referred HERE for instructions
on how to install the Python API files. transfer and all GAMS Python API files are compatible with
environment managers such as Anaconda.

7.5.4.5 Examples

GDX Read

Reading in all symbols can be accomplished with one line of code (we reference data from the `trn-
sport.gms` example).
import gams.transfer as gt
m = gt.Container("trnsport.gdx")

All symbol data is organized in the data attribute – m.data[<symbol name>].records (the Container

is also subscriptable, m[<symbol name>].records is an equivalent statement) – records are stored as
Pandas DataFrames.

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.CategoricalDtype.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.CategoricalDtype.html

3332 Application Programming Interfaces

Write Symbol to CSV

Writing symbol records to a CSV can also be accomplished with one line.
m["x"].records.to csv("x.csv")

Write a New GDX

There are six symbol classes within transfer: 1) Sets, 2) Parameters, 3) Variables, 4) Equations, 5)
Aliases and 6) UniverseAliases. For purposes of this quick start, we show how to recreate the distance

data structure from the `trnsport.gms` model (the parameter d). This brief example shows how users
can achieve ”GAMS-like” functionality, but within a Python environment – transfer leverages the object
oriented programming to simplify syntax.
import gams.transfer as gt
import pandas as pd
m = gt.Container()
create the sets i, j
i = gt.Set(m, "i", records=["seattle", "san-diego"], description="supply")
j = gt.Set(m, "j", records=["new-york", "chicago", "topeka"], description="markets")
add "d" parameter -- domain linked to set objects i and j
d = gt.Parameter(m, "d", [i, j], description="distance in thousands of miles")
create some data as a generic DataFrame
dist = pd.DataFrame(

[
("seattle", "new-york", 2.5),
("seattle", "chicago", 1.7),
("seattle", "topeka", 1.8),
("san-diego", "new-york", 2.5),
("san-diego", "chicago", 1.8),
("san-diego", "topeka", 1.4),

],
columns=["from", "to", "thousand miles"],

)
setRecords will automatically convert the dist DataFrame into a standard DataFrame format
d.setRecords(dist)
write the GDX
m.write("out.gdx")

This example shows a few fundamental features of transfer:

1. An empty Container is analogous to an empty GDX file

2. Symbols will always be linked to a Container (notice that we always pass the Container reference m

to the symbol constructor)

3. Records can be added to a symbol with the setRecords() method or through the records con-
structor argument (internally calls setRecords()). transfer will convert many common Python
data structures into a standard format.

4. Domain linking is possible by passing domain set objects to other symbols

5. Writing a GDX file can be accomplished in one line with the write() method.

Full Example

It is possible to use everything we now know about transfer to recreate the `trnsport.gms` results in
GDX form. As part of this example we also introduce the write method (and generate new.gdx). We
will discuss it in more detail in the following section: GDX Read/Write.
import gams.transfer as gt
create an empty Container object
m = gt.Container()
add sets
i = gt.Set(m, "i", records=["seattle", "san-diego"], description="supply")
j = gt.Set(m, "j", records=["new-york", "chicago", "topeka"], description="markets")
add parameters
a = gt.Parameter(m, "a", ["*"], description="capacity of plant i in cases")
b = gt.Parameter(m, "b", j, description="demand at market j in cases")
d = gt.Parameter(m, "d", [i, j], description="distance in thousands of miles")

7.5 Python API 3333

f = gt.Parameter(
m, "f", records=90, description="freight in dollars per case per thousand miles"

)
c = gt.Parameter(

m, "c", [i, j], description="transport cost in thousands of dollars per case"
)
set parameter records
cap = pd.DataFrame([("seattle", 350), ("san-diego", 600)], columns=["plant", "n cases"])
a.setRecords(cap)
dem = pd.DataFrame(

[("new-york", 325), ("chicago", 300), ("topeka", 275)],
columns=["market", "n cases"],

)
b.setRecords(dem)
dist = pd.DataFrame(

[
("seattle", "new-york", 2.5),
("seattle", "chicago", 1.7),
("seattle", "topeka", 1.8),
("san-diego", "new-york", 2.5),
("san-diego", "chicago", 1.8),
("san-diego", "topeka", 1.4),

],
columns=["from", "to", "thousand miles"],

)
d.setRecords(dist)
c(i,j) = f * d(i,j) / 1000;
cost = d.records.copy(deep=True)
cost["value"] = f.records.loc[0, "value"] * cost["value"] / 1000
c.setRecords(cost)
add variables
q = pd.DataFrame(

[
("seattle", "new-york", 50, 0),
("seattle", "chicago", 300, 0),
("seattle", "topeka", 0, 0.036),
("san-diego", "new-york", 275, 0),
("san-diego", "chicago", 0, 0.009),
("san-diego", "topeka", 275, 0),

],
columns=["from", "to", "level", "marginal"],

)
x = gt.Variable(

m, "x", "positive", [i, j], records=q, description="shipment quantities in cases",
)
z = gt.Variable(

m,
"z",
records=pd.DataFrame(data=[153.675], columns=["level"]),
description="total transportation costs in thousands of dollars",

)
add equations
cost = gt.Equation(m, "cost", "eq", description="define objective function")
supply = gt.Equation(m, "supply", "leq", i, description="observe supply limit at plant i")
demand = gt.Equation(m, "demand", "geq", j, description="satisfy demand at market j")
set equation records
cost.setRecords(

pd.DataFrame(data=[[0, 1, 0, 0]], columns=["level", "marginal", "lower", "upper"])
)
supplies = pd.DataFrame(

[
("seattle", 350, "eps", float("-inf"), 350),
("san-diego", 550, 0, float("-inf"), 600),

],
columns=["from", "level", "marginal", "lower", "upper"],

)
supply.setRecords(supplies)
demands = pd.DataFrame(

[
("new-york", 325, 0.225, 325),
("chicago", 300, 0.153, 300),
("topeka", 275, 0.126, 275),

],
columns=["from", "level", "marginal", "lower"],

)
demand.setRecords(demands)
m.write("new.gdx")

7.5.4.6 Extended Examples

Get HTML data

import gams.transfer as gt

3334 Application Programming Interfaces

import pandas as pd
url = "https://www.fdic.gov/resources/resolutions/bank-failures/failed-bank-list"
dfs = pd.read html(url)
pandas will create a list of dataframes depending on the target URL, we just need the first one
df = dfs[0]
m = gt.Container()
b = gt.Set(m, "b", ["*"], records=df["Bank NameBank"].unique(), description="Bank Name")
s = gt.Set(

m,
"s",
["*"],
records=df["StateSt"].sort values().unique(),
description="States (alphabetical order)",

)
c = gt.Set(

m,
"c",
["*"],
records=df["CityCity"].sort values().unique(),
description="Cities (alphabetical order)",

)
c to s = gt.Set(

m,
"c to s",
[c, s],
records=df[["CityCity", "StateSt"]]
.drop duplicates()
.sort values(by=["StateSt", "CityCity"]),
description="City/State pair",

)
bf = gt.Parameter(

m,
"bf",
b,
records=df[["Bank NameBank", "FundFund"]]
.drop duplicates(subset="Bank NameBank")
.sort values(by=["Bank NameBank"]),
description="Bank Namd & Fund #",

)
In [1]: m.isValid()
Out[1]: True

Note

Users can chain Pandas operations together and pass those operations through to the records

argument or the setRecords method.

Get PostgreSQL data (w/ sqlalchemy)

import gams.transfer as gt
from sqlalchemy import create engine
import pandas as pd
connect to postgres (assuming a localhost)
engine = create engine("postgresql://localhost:5432/" + <database name>)
df = pd.read sql(<sql table name>, con=engine, index col=0)
create the Container and add symbol
m = Container()
p = Parameter(m, <sql table name>)
we need to figure out the symbol dimensionality (potentially from the shape of the dataframe)
r, c = df.shape
p.dimension = c - 1
set the records
p.setRecords(df)
write out the GDX file
m.write("out.gdx")

7.5.4.7 Main Classes

Container

The main object class within transfer is called Container. The Container is the vessel that allows
symbols to be linked together (through their domain definitions), it enables implicit set definitions, it
enables structural manipulations of the data (matrix generation), and it allows the user to perform
different read/write operations.

7.5 Python API 3335

Constructor

Constructor Arguments

Argument Type Description Required Default

load from str or PathLike

object, GMD
Object Handle,
GamsDatabase

object, Container

Points to the source
of the data be-
ing read into the
Container

No None

system directory str Absolute path to
GAMS system direc-
tory

No Attempts to find
the GAMS installa-
tion by creating a
GamsWorkspace ob-
ject and loading the
system directory

attribute.

Creating a Container is a simple matter of initializing an object. For example:
import gams.transfer as gt
m = gt.Container()

This new Container object, here called m, contains a number of convenient properties and methods that
allow the user to interact with the symbols that are in the Container. Some of these methods are used to
filter out different types of symbols, other methods are used to numerically characterize the data within
each symbol.

Properties

Property Description Type Special Setter Behavior

data main dictionary that is used
to store all symbol data (case
preserving)

CasePreservingDict -

modified Flag that identifies if
the Container has been
modified in some way.
Container.modifed=False

will reset this flag for all
symbols in the container as
well as the container itself.

bool -

summary returns a brief summary of the
Container

dict -

Symbols are organized in the Container under the data Container attribute. The dot notation (m.data)
is used to access the underlying dictionary. Symbols in this dictionary can then be retrieved with the
standard bracket notation (m.data[<symbol name>]). The Container is also subscriptable (i.e., m["i"]
will return the i Set object just as if the user called m.data["i"]). The behavior of the data dictionary
is has been customized to be case-insensitive (which mimics the behavior of GAMS) – m["i"] and m["I"]

will return the same object.
In [1]: m.data
Out[1]:
{’i’: <Set ‘i‘ (0x7f95b8d63e80)>,

3336 Application Programming Interfaces

’j’: <Set ‘j‘ (0x7f95b8d63a60)>,
’a’: <Parameter ‘a‘ (0x7f95b8d63ee0)>,
’b’: <Parameter ‘b‘ (0x7f95b8d63d00)>,
’d’: <Parameter ‘d‘ (0x7f95b8da86a0)>,
’f’: <Parameter ‘f‘ (0x7f95b8da8670)>,
’c’: <Parameter ‘c‘ (0x7f95b8da83d0)>,
’x’: <Positive Variable ‘x‘ (0x7f95b8da83a0)>,
’z’: <Free Variable ‘z‘ (0x7f95b8da8400)>,
’cost’: <Eq Equation ‘cost‘ (0x7f95b8da82b0)>,
’supply’: <Leq Equation ‘supply‘ (0x7f95b8da8280)>,
’demand’: <Geq Equation ‘demand‘ (0x7f95b8da8580)>}

Symbol existence in the Container can be tested with an overloaded Python in operator. The following
(case-insensitive) syntax is possible:
In [1]: ’i’ in m
Out[1]: True
In [2]: ’I’ in m
Out[2]: True
In [3]: i in m
Out[3]: True

Note

The final example assumes the existence of a separate symbol object called i.

The Container can also iterate through the symbols (will return a tuple of (symbol name,

symbol object) using a for-loop as in the following example. The list and dict methods can
be useful in creating lists and dictionaries of all symbols in the Container.
In [1]: m = gt.Container("out.gdx")
In [2]: for name, obj in m:

...: print(name, obj)

...:
i <Set ‘i‘ (0x7f9038533fa0)>
j <Set ‘j‘ (0x7f9038533fd0)>
a <Parameter ‘a‘ (0x7f9038533340)>
b <Parameter ‘b‘ (0x7f9038533f10)>
d <Parameter ‘d‘ (0x7f9038533f70)>
f <Parameter ‘f‘ (0x7f9038533160)>
c <Parameter ‘c‘ (0x7f90583b4bb0)>
x <Positive Variable ‘x‘ (0x7f90583b4070)>
z <Free Variable ‘z‘ (0x7f90583b5570)>
cost <Eq Equation ‘cost‘ (0x7f90583b44f0)>
supply <Leq Equation ‘supply‘ (0x7f9008c33df0)>
demand <Geq Equation ‘demand‘ (0x7f9008c33b80)>
In [3]: list(m)
Out[3]:
[(’i’, <Set ‘i‘ (0x7fced87d3790)>),
(’j’, <Set ‘j‘ (0x7fced882e530)>),
(’a’, <Parameter ‘a‘ (0x7fced882e9b0)>),
(’b’, <Parameter ‘b‘ (0x7fced882ebf0)>),
(’d’, <Parameter ‘d‘ (0x7fced882e800)>),
(’f’, <Parameter ‘f‘ (0x7fced882e9e0)>),
(’c’, <Parameter ‘c‘ (0x7fced882e320)>),
(’x’, <Positive Variable ‘x‘ (0x7fced882e650)>),
(’z’, <Free Variable ‘z‘ (0x7fced882e410)>),
(’cost’, <Eq Equation ‘cost‘ (0x7fcec8918640)>),
(’supply’, <Leq Equation ‘supply‘ (0x7fcec8918610)>),
(’demand’, <Geq Equation ‘demand‘ (0x7fcec89183a0)>)]
In [5]: dict(m)
Out[5]:
{’i’: <Set ‘i‘ (0x7fced87d3790)>,
’j’: <Set ‘j‘ (0x7fced882e530)>,
’a’: <Parameter ‘a‘ (0x7fced882e9b0)>,
’b’: <Parameter ‘b‘ (0x7fced882ebf0)>,
’d’: <Parameter ‘d‘ (0x7fced882e800)>,
’f’: <Parameter ‘f‘ (0x7fced882e9e0)>,
’c’: <Parameter ‘c‘ (0x7fced882e320)>,
’x’: <Positive Variable ‘x‘ (0x7fced882e650)>,
’z’: <Free Variable ‘z‘ (0x7fced882e410)>,
’cost’: <Eq Equation ‘cost‘ (0x7fcec8918640)>,
’supply’: <Leq Equation ‘supply‘ (0x7fcec8918610)>,
’demand’: <Geq Equation ‘demand‘ (0x7fcec89183a0)>}

Note

The len (length) function can be used to quickly find out how many symbols exist in the Container

(len(m)).

Methods

7.5 Python API 3337

Method Description Argu-
ments/Defaults

Returns

addAlias Container method to
add an Alias

name (str)
alias with (Set,
Alias)

Alias object

addEquation Container method to
add an Equation

name (str)
type (str)
domain=[] (str,
list)
records=None

(pandas.DataFrame,
numpy.ndarry, None)
domain forwarding=False

(bool)
description=""

(str)
uels on axes=False

(bool)

Equation object

addParameter Container method to
add a Parameter

name (str)
domain=None (str,
list, None)
records=None

(pandas.DataFrame,
numpy.ndarry, None)
domain forwarding=False

(bool)
description=""

(str)
uels on axes=False

(bool)

Parameter object

addSet Container method to
add a Set

name (str)
domain=None (str,
list, None)
is singleton=False

(bool)
records=None

(pandas.DataFrame,
numpy.ndarry, None)
domain forwarding=False

(bool)
description=""

(str)
uels on axes=False

(bool)

Set object

addUniverseAlias Container method to
add a UniverseAlias

name (str) UniverseAlias object

3338 Application Programming Interfaces

Method Description Argu-
ments/Defaults

Returns

addVariable Container method to
add an Variable

name (str)
type="free" (str)
domain=[] (str,
list)
records=None

(pandas.DataFrame,
numpy.ndarry, None)
domain forwarding=False

(bool)
description=""

(str)
uels on axes=False

(bool)

Variable object

capitalizeUELs will capitalize all UELs
in the Container

or a subset of speci-
fied symbols, can be
chained with other
∗UELs string operations

symbols=None (str,
list, None) - if None,
assumes all symbols

self

casefoldUELs will casefold all UELs in
the Container or a sub-
set of specified symbols,
can be chained with
other ∗UELs string op-
erations

symbols=None (str,
list, None) - if None,
assumes all symbols

self

countDomainViolations get the count of how
many records contain at
least one domain vio-
lation for symbols (if
symbols=None assume
all symbols)

symbols=None (str,
list, None)

dict

countDuplicateRecords returns the count
of how many du-
plicate records ex-
ist for symbols (if
symbols=None assume
all symbols)

symbols=None (str,
list, None)

dict

describeAliases create a summary table
with descriptive statis-
tics for Aliases

symbols=None (None,
str, list) - if None,
assumes all aliases

pandas.DataFrame

describEquations create a summary table
with descriptive statis-
tics for Equations

symbols=None (None,
str, list) - if None,
assumes all equations

pandas.DataFrame

describeParameters create a summary table
with descriptive statis-
tics for Parameters

symbols=None (None,
str, list) - if None,
assumes all parameters

pandas.DataFrame

describeSets create a summary table
with descriptive statis-
tics for Sets

symbols=None (None,
str, list) - if None,
assumes all sets

pandas.DataFrame

describeVariables create a summary table
with descriptive statis-
tics for Variables

symbols=None (None,
str, list) - if None,
assumes all variables

pandas.DataFrame

7.5 Python API 3339

Method Description Argu-
ments/Defaults

Returns

dropDomainViolations drop records that
have domain viola-
tions for symbols (if
symbols=None assume
all symbols)

symbols=None (str,
list, None)

None

dropDuplicateRecords drop records with du-
plicate domains from
symbols in the Con-
tainer – keep argument
can take values of ”first”
(keeps the first instance
of a duplicate record),
”last” (keeps the last in-
stance of a record), or
False (drops all dupli-
cates including the first
and last)

symbols=None (str,
list, None) - if None,
assumes all symbols
keep="first" (str,
False)

None

getAliases return all alias ob-
jects in the container
(is valid=None),
return all valid alias ob-
jects (is valid=True),
return all in-
valid alias objects
(is valid=False) in
the container

is valid=None (bool,
None)

list

getDomainViolations gets domain viola-
tions that exist in
the data for symbols

(if symbols=None as-
sume all symbols);
returns a list of
DomainViolation

objects (or None if no
violations)

symbols=None (str,
list, None)

list or None

getEquations return all equation ob-
jects (is valid=None),
return all valid
equation objects
(is valid=True),
return all invalid
equation objects
(is valid=False) in
the container

is valid=None (bool,
None)
types=None (list of
equation types) - if
None, assumes all types

list

getParameters return all parameter
objects in the container
(is valid=None),
return all valid pa-
rameter objects
(is valid=True),
return all invalid
parameter objects
(is valid=False) in
the container

is valid=None (bool,
None)

list

3340 Application Programming Interfaces

Method Description Argu-
ments/Defaults

Returns

getSets return all set ob-
jects in the container
(is valid=None),
return all valid set ob-
jects (is valid=True),
return all invalid set ob-
jects (is valid=False)
in the container

is valid=None (bool,
None)

list

getSymbols returns a list of object
references for symbols

symbols (str, list) list

getUELs gets UELs from
all symbols. If
symbols=None and
ignore unused=False,
return the full
universe set. If
symbols=None and
ignore unused=True,
return a universe set
that contains UELs
that only appear in
data.

symbols=None (str,
list, None)
ignore unused=False

(bool)

list

getVariables return all variable ob-
jects (is valid=None),
return all valid
variable objects
(is valid=True),
return all invalid
variable objects
(is valid=False)
in the container

is valid=None (bool,
None)
types=None (list of
variable types) - if None,
assumes all types

list

hasDomainViolations returns True if there are
domain violations in the
records for symbols (if
symbols=None assume
all symbols), returns
False if not.

symbols=None (str,
list, None)

bool

hasDuplicateRecords returns True if
there are duplicate
records for symbols (if
symbols=None assume
all symbols), False if
not.

symbols=None (str,
list, None)

bool

isValid True if symbols in the
Container are valid (if
symbols=None assume
all symbols)

symbols=None (str,
list, None)

bool

ljustUELs will left justify all
UELs in the Container
or a subset of speci-
fied symbols, can be
chained with other
∗UELs string operations

length (int)
fill character=None

- if None, assumes " "

symbols=None (int,
list, or None) - if None,
assumes all symbols

self

7.5 Python API 3341

Method Description Argu-
ments/Defaults

Returns

listAliases list all aliases
(is valid=None),
list all valid aliases
(is valid=True), list
all invalid aliases
(is valid=False) in
the container

is valid=None (bool,
None)

list

listEquations list all equations
(is valid=None), list
all valid equations
(is valid=True), list
all invalid equations
(is valid=False) in
the container

is valid=None (bool,
None)
types=None (list of
equation types) - if
None, assumes all types

list

listParameters list all parameters
(is valid=None), list
all valid parameters
(is valid=True), list
all invalid parameters
(is valid=False) in
the container

is valid=None (bool,
None)

list

listSets list all sets
(is valid=None),
list all valid sets
(is valid=True),
list all invalid sets
(is valid=False) in
the container

is valid=None (bool,
None)

list

listSymbols list all symbols
(is valid=None),
list all valid symbols
(is valid=True), list
all invalid symbols
(is valid=False) in
the container

is valid=None (bool,
None)

list

listVariables list all variables
(is valid=None), list
all valid variables
(is valid=True), list
all invalid variables
(is valid=False) in
the container

is valid=None (bool,
None)
types=None (list of
variable types) - if None,
assumes all types

list

lowerUELs will lowercase all UELs
in the Container

or a subset of speci-
fied symbols, can be
chained with other
∗UELs string operations

symbols=None (str,
list, None) - if None,
assumes all symbols

self

lstripUELs will left strip whites-
pace from all UELs in
the Container or a sub-
set of specified symbols,
can be chained with
other ∗UELs string op-
erations

symbols=None (str,
list, None) - if None,
assumes all symbols

self

3342 Application Programming Interfaces

Method Description Argu-
ments/Defaults

Returns

read main method to read
load from, can be pro-
vided with a list of
symbols to read in sub-
sets, records controls
if symbol records are
loaded or just metadata,
mode controls if data is
first read into categor-
ical data structures or
object type structures,
encoding specifies the
original file encoding

and to properly decode
special characters

load from (str or
PathLike object,
GMD Object Handle,
GamsDatabase object,
Container)
symbols="all" (str,
list)
records=True (bool)
mode="category"

(category or string)
encoding=None (str
or None)

None

removeSymbols symbols to remove
from the Container,
also sets the symbols
container to None.
If symbols=None, will
remove all symbols.

symbols=None (str,
list, None)

None

removeUELs removes UELs from all
symbols in all dimen-
sions. If uels is None

only unused UELs will
be removed. If symbols
is None UELs will be re-
moved from all symbols.

uels (str, list,
None)
symbols=None (str,
list, None)

None

renameSymbol rename a symbol in the
Container

old name (str),
new name (str)

None

renameUELs renames UELs (case-
sensitive) that appear
in symbols (for all
dimensions). If
symbols=None, rename
UELs in all symbols.
If allow merge=True,
the categorical object
will be re-created to
offer additional data
flexibility. ∗∗ All
trailing whitespace is
trimmed ∗∗

uels (dict)
symbols=None (str,
list, None)
allow merge=False

(bool)

None

reorderSymbols reorder symbols in or-
der to avoid domain vi-
olations

- None

rjustUELs will right justify all
UELs in the Container
or a subset of speci-
fied symbols, can be
chained with other
∗UELs string operations

length (int)
fill character=None

- if None, assumes " "

symbols=None (int,
list, or None) - if None,
assumes all symbols

self

https://docs.python.org/3/library/codecs.html#standard-encodings

7.5 Python API 3343

Method Description Argu-
ments/Defaults

Returns

rstripUELs will right strip whites-
pace from all UELs in
the Container or a sub-
set of specified symbols,
can be chained with
other ∗UELs string op-
erations

symbols=None (str,
list, None) - if None,
assumes all symbols

self

stripUELs will strip whitespace
from all UELs in the
Container or a sub-
set of specified symbols,
can be chained with
other ∗UELs string op-
erations

symbols=None (str,
list, None) - if None,
assumes all symbols

self

titleUELs will title (capitalize
all individual words)
in all UELs in the
Container or a subset
of specified symbols,
can be chained with
other ∗UELs string
operations

symbols=None (str,
list, None) - if None,
assumes all symbols

self

upperUELs will uppercase all
UELs in the Container
or a subset of speci-
fied symbols, can be
chained with other
∗UELs string operations

symbols=None (str,
list, None) - if None,
assumes all symbols

self

write main bulk write method
to a write to target

write to (str,
PathLike object,
GamsDatabase object,
GMD Object)
symbols=None (None,
str, list) - if None,
assumes all symbols
compress=False

(bool)
uel priority=None

(str, list)
merge symbols=None

(None, str, list)
mode=None (None,
string, category) - if
None, assumes string

mode writing
eps to zero=True

(bool) - default behav-
ior will convert all -0.0
(EPS) values into 0.0

(drop the sign bit)

None

Set

There are two different ways to create a GAMS set and add it to a Container.

3344 Application Programming Interfaces

1. Use Set constructor

2. Use the Container method addSet (which internally calls the Set constructor)

Constructor

Argument Type Description Required Default

container Container A reference to the
Container object that
the symbol is being
added to

Yes -

description str Description of symbol No ””

domain list, str, or
Set/Alias

List of domains given
either as string ('∗' for
universe set) or as refer-
ence to a Set/Alias ob-
ject

No ["∗"]

domain forwarding bool or list Flag that forces set ele-
ments to be recursively
included in all parent
sets (i.e., implicit set
growth). Can pass as
a list of bool to con-
trol which domains to
forward.

No False

is singleton bool Indicates if set is a sin-
gleton set (True) or not
(False)

No False

name str Name of symbol Yes -

records many Symbol records No None

uels on axes bool Instructs setRecords

to assume symbol do-
main information is con-
tained in the axes of the
Pandas object

No False

Note

Set records can be updated through the object constructor (a new object will not be created) if a
symbol of the same name already exists in the container, has the same domain, and has the same
is singleton and domain forwarding state. The symbol description will only be updated if new
text is provided.

Properties

Property Description Type Special Setter Be-
havior

container reference to the
Container that the
symbol belongs to

Container -

description description of symbol str -

7.5 Python API 3345

Property Description Type Special Setter Be-
havior

dimension dimension of symbol int setting is a shorthand
notation to create
["∗"] ∗ n domains in
symbol

domain list of domains given ei-
ther as string (∗ for uni-
verse set) or as reference
to the Set/Alias object

list, str, or
Set/Alias

-

domain forwarding flag that forces set ele-
ments to be recursively
included in all parent
sets (i.e., implicit set
growth). Can pass as
a list of bool to con-
trol which domains to
forward.

bool or list no effect after records
have been set

domain labels column headings for the
records DataFrame

list of str will add a
<dimension> tag

to user supplied column
names (if not unique)

domain names string version of domain
names

list of str -

domain type none, relaxed or
regular depending on
state of domain links

str -

is singleton bool if symbol is a sin-
gleton set

bool -

modified Flag that identifies if
the Set has been modi-
fied

bool -

name name of symbol str sets the GAMS name of
the symbol

number records number of symbol
records (i.e., returns
len(self.records) if
not None)

int -

records the main symbol
records

pandas.DataFrame responsive to
domain forwarding

state

summary output a dict of only
the metadata

dict -

Methods

Method Description Arguments/Defaults Returns

addUELs adds UELs to the sym-
bol dimensions. If
dimensions is None then
add UELs to all dimen-
sions. ∗∗ All trailing
whitespace is trimmed ∗∗

uels (str, list)
dimensions=None (int,
list, None)

None

3346 Application Programming Interfaces

Method Description Arguments/Defaults Returns

capitalizeUELs will capitalize all UELs
in the symbol or a subset
of specified dimensions,
can be chained with
other ∗UELs string oper-
ations

dimensions=None (int,
list, or None) - if None,
assumes all symbols

self

casefoldUELs will casefold all UELs in
the symbol or a subset
of specified dimensions,
can be chained with
other ∗UELs string oper-
ations

dimensions=None (int,
list, or None) - if None,
assumes all symbols

self

countDomainViolations returns the count of how
many records contain at
least one domain viola-
tion

- int

countDuplicateRecords returns the count of how
many (case insensitive)
duplicate records exist

- int

dropDomainViolations drop records from the
symbol that contain a do-
main violation

- None

dropDuplicateRecords drop records with (case
insensitive) duplicate do-
mains from the symbol –
keep argument can take
values of ”first” (keeps
the first instance of a
duplicate record), ”last”
(keeps the last instance
of a record), or False

(drops all duplicates in-
cluding the first and last)

keep="first" (str,
False)

None

equals Used to compare the
symbol to another sym-
bol. If check uels=True

then check both used
and unused UELs and
confirm same order, oth-
erwise only check used
UELs in data and do
not check UEL order. If
check element text=True

then check that all set
elements have the same
descriptive element
text, otherwise skip. If
check meta data=True

then check that symbol
name and description
are the same, otherwise
skip. If verbose=True

will return an exception
from the asserter describ-
ing the nature of the
difference.

check uels=True

(bool)
check element text=True

(bool)
check meta data=True

(bool)
verbose=False (bool)

bool

7.5 Python API 3347

Method Description Arguments/Defaults Returns

findDomainViolations get a view of the records
DataFrame that contain
any domain violations

- pandas.DataFrame

findDuplicateRecords get a view of the records
DataFrame that contain
any (case insensitive) du-
plicate domains – keep

argument can take values
of ”first” (finds all dupli-
cates while keeping the
first instance as unique),
”last” (finds all dupli-
cates while keeping the
last instance as unique),
or False (finds all dupli-
cates)

keep="first" (str,
False)

pandas.DataFrame

generateRecords convenience method
to set standard
pandas.DataFrame

formatted records given
domain set information.
Will generate records
with the Cartesian
product of all domain
sets. The density

argument can take any
value on the interval
[0,1]. If density

is <1 then randomly
selected records will be
removed. `density` will
accept a `list` of length
`dimension` -- allows
users to specify a density
per symbol dimension.
Random number state
can be set with `seed`
argument.

density=1.0 (float,
list)
seed=None (int, None)

None

getDomainViolations returns a list of
DomainViolation ob-
jects if any (None
otherwise)

- list or None

getSparsity get the sparsity of the
symbol w.r.t the cardinal-
ity

- float

3348 Application Programming Interfaces

Method Description Arguments/Defaults Returns

getUELs gets UELs from sym-
bol dimensions. If
dimensions is None

then get UELs from all
dimensions (maintains
order). The argument
codes accepts a list
of str UELs and will
return the correspond-
ing int; must specify
a single dimension if
passing codes. Returns
only UELs in the data
if ignore unused=True,
otherwise return all
UELs.

dimensions=None (int,
list, None)
codes=None (int, list,
None)
ignore unused=False

(bool)

list

hasDomainViolations returns True if there are
domain violations in the
records, returns False if
not.

- bool

hasDuplicateRecords returns True if there are
(case insensitive) dupli-
cate records in the sym-
bol, returns False if not.

- bool

isValid checks if the symbol
is in a valid format,
throw exceptions if
verbose=True, recheck
a symbol if force=True

verbose=False

force=True

bool

ljustUELs will left justify all UELs
in the symbol or a subset
of specified dimensions,
can be chained with
other ∗UELs string oper-
ations

length (int)
fill character=None -
if None, assumes " "

dimensions=None (int,
list, or None) - if None,
assumes all symbols

self

lowerUELs will lowercase all UELs
in the symbol or a subset
of specified dimensions,
can be chained with
other ∗UELs string oper-
ations

dimensions=None (int,
list, or None) - if None,
assumes all symbols

self

lstripUELs will left strip whitespace
from all UELs in the sym-
bol or a subset of speci-
fied dimensions, can be
chained with other ∗UELs
string operations

dimensions=None (int,
list, or None) - if None,
assumes all symbols

self

7.5 Python API 3349

Method Description Arguments/Defaults Returns

pivot Convenience function to
pivot records into a new
shape (only symbols with
>1D can be pivoted).
If index is None then
it is set to dimensions
[0..dimension-1]. If
columns is None then
it is set to the last di-
mension. Missing val-
ues in the pivot will take
the value provided by
fill value

index=None (str, list,
None)
columns=None (str,
list, None)
fill value=None (int,
float, str)

pd.DataFrame

renameUELs renames UELs (case-
sensitive) that appear in
the symbol dimensions.
If dimensions is None

then operate on all di-
mensions of the symbol.
If allow merge=True,
the categorical object
will be re-created to
offer additional data
flexibility. ∗∗ All trailing
whitespace is trimmed
∗∗

uels (str, list, dict)
dimensions (int, list,
None)
allow merge=False

(bool)

None

reorderUELs reorders the UELs in the
symbol dimensions. If
uels is None, reorder
UELs to data order and
append any unused cate-
gories. If dimensions is
None then reorder UELs
in all dimensions of the
symbol.

uels (str, list, dict,
None)
dimensions (int, list,
None)

None

removeUELs removes UELs that
appear in the symbol
dimensions, If uels

is None then remove
all unused UELs (cate-
gories). If dimensions

is None then operate on
all dimensions.

uels=None (str, list,
None)
dimensions=None (int,
list, None)

bool

rjustUELs will right justify all UELs
in the symbol or a subset
of specified dimensions,
can be chained with
other ∗UELs string oper-
ations

length (int)
fill character=None -
if None, assumes " "

dimensions=None (int,
list, or None) - if None,
assumes all symbols

self

rstripUELs will right strip whites-
pace from all UELs in
the symbol or a subset
of specified dimensions,
can be chained with
other ∗UELs string oper-
ations

dimensions=None (int,
list, or None) - if None,
assumes all symbols

self

3350 Application Programming Interfaces

Method Description Arguments/Defaults Returns

setRecords main convenience
method to set standard
pandas.DataFrame

formatted records. If
uels on axes=True

setRecords will assume
that all domain infor-
mation is contained in
the axes of the pandas
object – data will be
flattened (if necessary).

records (many types) None

setUELs set the UELs for sym-
bol dimensions. If
dimensions is None then
set UELs for all dimen-
sions. If rename=True,
then the old UEL names
will be renamed with the
new UEL names. ∗∗
All trailing whitespace is
trimmed ∗∗

uels (str, list)
dimensions=None (int,
list, None)
rename=False (bool)

None

stripUELs will strip whitespace
from all UELs in the
symbol or a subset of
specified dimensions,
can be chained with
other ∗UELs string
operations

dimensions=None (int,
list, or None) - if None,
assumes all symbols

self

titleUELs will title (capitalize all
individual words) in all
UELs in the symbol
or a subset of speci-
fied dimensions, can be
chained with other ∗UELs
string operations

dimensions=None (int,
list, or None) - if None,
assumes all symbols

self

toList convenience method to
return symbol records as
a Python list

include element text=False

(bool)
list

upperUELs will uppercase all UELs
in the symbol or a subset
of specified dimensions,
can be chained with
other ∗UELs string oper-
ations

dimensions=None (int,
list, or None) - if None,
assumes all symbols

self

Adding Set Records

Three possibilities exist to assign symbol records to a set (roughly ordered in complexity):

1. Setting the argument records in the set constructor/container method (internally calls setRecords)
- creates a data copy

2. Using the symbol method setRecords - creates a data copy

7.5 Python API 3351

3. Setting the property records directly - does not create a data copy

If the data is in a convenient format, a user may want to pass the records directly within the set constructor.
This is an optional keyword argument and internally the set constructor will simply call the setRecords

method. The symbol method setRecords is a convenience method that transforms the given data into an
approved Pandas DataFrame format (see Standard Data Formats). Many native Python data types can
be easily transformed into DataFrames, so the setRecords method for Set objects will accept a number
of different types for input. The setRecords method is called internally on any data structure that is
passed through the records argument. We show a few examples of ways to create differently structured
sets:

Example #1 - Create a 1D set from a list

import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i", records=["seattle", "san-diego"])
NOTE: the above syntax is equivalent to -
i = gt.Set(m, "i")
i.setRecords(["seattle", "san-diego"])
NOTE: the above syntax is also equivalent to -
m.addSet("i", records=["seattle", "san-diego"])
NOTE: the above syntax is also equivalent to -
i = m.addSet("i")
i.setRecords(["seattle", "san-diego"])
NOTE: the above syntax is also equivalent to -
m.addSet("i")
m["i"].setRecords(["seattle", "san-diego"])
In [1]: i.records
Out[1]:

uni element text
0 seattle
1 san-diego

Example #2 - Create a 1D set from a tuple

import gams.transfer as gt
m = gt.Container()
j = gt.Set(m, "j", records=("seattle", "san-diego"))
NOTE: the above syntax is equivalent to -
j = gt.Set(m, "j")
j.setRecords(("seattle", "san-diego"))
NOTE: the above syntax is also equivalent to -
m.addSet("j", records=("seattle", "san-diego"))
NOTE: the above syntax is also equivalent to -
j = m.addSet("j")
j.setRecords(("seattle", "san-diego"))
NOTE: the above syntax is also equivalent to -
m.addSet("j")
m["j"].setRecords(("seattle", "san-diego"))
In [1]: j.records
Out[1]:

uni element text
0 seattle
1 san-diego

Example #3 - Create a 2D set from a list of tuples

import gams.transfer as gt
m = gt.Container()
k = gt.Set(m, "k", ["*", "*"], records=[("seattle", "san-diego")])
NOTE: the above syntax is equivalent to -
k = gt.Set(m, "k", ["*", "*"])
k.setRecords([("seattle", "san-diego")])
NOTE: the above syntax is also equivalent to -
m.addSet("k", ["*","*"], records=[("seattle", "san-diego")])
NOTE: the above syntax is also equivalent to -
k = m.addSet("k", ["*","*"])
k.setRecords([("seattle", "san-diego")])
NOTE: the above syntax is also equivalent to -
m.addSet("k", ["*","*"])
m["k"].setRecords([("seattle", "san-diego")])
In [1]: k.records
Out[1]:

uni 0 uni 1 element text
0 seattle san-diego

3352 Application Programming Interfaces

Example #4 - Create a 1D set from a DataFrame slice + .unique()

import gams.transfer as gt
m = gt.Container()
note that the raw data is convenient to hold in a DataFrame
dist = pd.DataFrame(

[
("seattle", "new-york", 2.5),
("seattle", "chicago", 1.7),
("seattle", "topeka", 1.8),
("san-diego", "new-york", 2.5),
("san-diego", "chicago", 1.8),
("san-diego", "topeka", 1.4),

],
columns=["from", "to", "thousand miles"],

)
l = gt.Set(m, "l", records=dist["from"].unique())
NOTE: the above syntax is equivalent to -
l = gt.Set(m, "l")
l.setRecords(dist["from"].unique())
NOTE: the above syntax is also equivalent to -
m.addSet("l", records=dist["from"].unique())
NOTE: the above syntax is also equivalent to -
l = m.addSet("l")
l.setRecords(dist["from"].unique())
NOTE: the above syntax is also equivalent to -
m.addSet("l")
m["l"].setRecords(dist["from"].unique())
In [1]: l.records
Out[1]:

uni element text
0 seattle
1 san-diego

Note

The .unique() method preserves the order of appearance, unlike set().

Set element text is very handy when labeling specific set elements within a set. A user can add a set
element text directly with a set element. Note that it is not required to label all set elements, as can be
seen in the following example.

Example #5 - Add set element text

import gams.transfer as gt
m = gt.Container()
i = gt.Set(

m,
"i",
records=[

("seattle", "home of sub pop records"),
("san-diego",),
("washington dc", "former gams hq"),

],
)
NOTE: the above syntax is equivalent to -
#
i = gt.Set(m, "i")
i recs = [
("seattle", "home of sub pop records"),
("san-diego",),
("washington dc", "former gams hq"),
]
#
i.setRecords(i recs)
NOTE: the above syntax is also equivalent to -
m.addSet("i", records=i recs)
NOTE: the above syntax is also equivalent to -
i = m.addSet("i")
i.setRecords(i recs)
NOTE: the above syntax is also equivalent to -
m.addSet("i")
m["i"].setRecords(i recs)
In [1]: i.records
Out[1]:

uni element text
0 seattle home of sub pop records
1 san-diego
2 washington dc former gams hq

7.5 Python API 3353

Example #6 - Create a 1D set from a Pandas Series

import gams.transfer as gt
import pandas as pd
s = pd.Series(index=["a", "b"])
m = gt.Container()
i = gt.Set(m, "i", records=s, uels on axes=True)
NOTE: We pass the uels on axes=True argument in order to tell setRecords to reshape the data
In [1]: i.records
Out[1]:

uni element text
0 a
1 b
Now let’s add in some element text
s = pd.Series(index=["a", "b"], data=["node 1", "node 2"])
m = gt.Container()
i = gt.Set(m, "i", records=s, uels on axes=True)
In [2]: i.records
Out[2]:

uni element text
0 a node 1
1 b node 2
If uels on axes=False, setRecords will attempt to create a categorical data structure from s.values -- which cannot be

done successfully if there are NaN values in s.values.
s = pd.Series(index=["a", "b"])
m = gt.Container()
i = gt.Set(m, "i", records=s)
ValueError: Categorical categories cannot be null

Example #7 - Create a 2D set from a Pandas Series

s = pd.Series(
index=pd.MultiIndex.from tuples([("a", "b"), ("c", "d")]),
data=["link 1", "link 2"],

)
m = gt.Container()
i = gt.Set(m, "i", ["*", "*"], records=s, uels on axes=True)
Here is the raw pandas.Series object
In [1]: s
Out[1]:
a b link 1
c d link 2
dtype: object
When setting records the pandas.Series object will get converted into a pandas.DataFrame
In [2]: i.records
Out[2]:

uni 0 uni 1 element text
0 a b link 1
1 c d link 2

Attention

The order of the set element could be surprising depending on how the pandas MultiIndex is created.
Users should take care that the order of the elements returned from the getUELs method is correct.

Example #8 - Create a 2D set from a Pandas DataFrame with uels on axes=True

import gams.transfer as gt
import pandas as pd
Create some data first
dim1 = ["a", "b"]
dim2 = ["e", "f"]
dim3 = ["z", "x", "y"]
df = pd.DataFrame(

index=dim1, columns=pd.MultiIndex.from product([dim2, dim3]), dtype=bool
)
now remove all set elements that contain the "z" element in the 3rd dimension
df.loc[:, (slice(None), "z")] = False
now remove all set elements that contain the "a" element in the 1st dimension
df.loc["a", :] = False
In [1]: df
Out[1]:

e f

3354 Application Programming Interfaces

z x y z x y
a False False False False False False
b False True True False True True
create the Container and add records
m = gt.Container()
i = gt.Set(m, "i", ["*"] * 3, records=df, uels on axes=True)
In [2]: i.records
Out[2]:

uni 0 uni 1 uni 2 element text
0 b e x
1 b e y
2 b f x
3 b f y

Note

It not possible to set element text when uels on axes=True

Directly Set Records

The primary advantage of the setRecords method is that transfer will convert many different (and
convenient) data types into the standard data format (a Pandas DataFrame). Users that require higher
performance will want to directly pass the Container a reference to a valid Pandas DataFrame, thereby
skipping some of these computational steps. This places more burden on the user to pass the data in a
valid standard form, but it speeds the records setting process and it avoids making a copy of the data in
memory. In this section we walk the user through an example of how to set records directly.

Example #1 - Directly set records (1D set)

import gams.transfer as gt
import pandas as pd
m = gt.Container()
i = gt.Set(m, "i", description="supply")
create a standard format dataframe
df i = pd.DataFrame(

data=[("seattle", ""), ("san-diego", "")], columns=["uni", "element text"]
)
need to create categorical column type, referencing elements already in df i
df i["uni"] = df i["uni"].astype(

pd.CategoricalDtype(categories=df i["uni"].unique(), ordered=True)
)
set the records directly
i.records = df i
In [1]: i.isValid()
Out[1]: True

Stepping through this example we take the following steps:

1. Create an empty Container

2. Create a GAMS set i in the Container, but do not set the records

3. Create a Pandas DataFrame (manually, in this example) taking care to follow the standard format

4. The DataFrame has the right shape and column labels so we can proceed to set the records.

5. We need to cast the uni column as a categorical data type, so we create a custom ordered
categorty type using pandas.CategoricalDtype

6. Finally, we set the records directly by passing a reference to df i into the symbol records attribute.
The setter function of .records checks that a DataFrame is being set, but does not check validity.
Thus, as a final step we call the .isValid() method to verify that the symbol is valid.

7.5 Python API 3355

Attention

Users can debug their DataFrames by running <symbol name>.isValid(verbose=True) to get
feedback about their data.

Example #2 - Directly set records (1D subset)

import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i", records=["seattle", "san-diego"], description="supply")
j = gt.Set(m, "j", i, description="supply")
create a standard format dataframe
df j = pd.DataFrame(data=[("seattle", "")], columns=["i", "element text"])
create the categorical column type
df j["i"] = df j["i"].astype(i.records["uni"].dtype)
set the records
j.records = df j
In [1]: j.isValid()
Out[1]: True

This example is more subtle in that we want to create a set j that is a subset of i. We create the set i
using the setRecords method but then set the records directly for j. There are two important details to
note: 1) the column labels in df j now reflect the standard format for a symbol with a domain set (as
opposed to the universe) and 2) we create the categorical dtype by referencing the parent set (i) for the
categories (instead of referencing itself).

Generate Set Records

Generating the initial pandas.DataFrame object could be difficult for Set symbols that have a large
number of records and a small number of UELs – these higher dimensional symbols will benefit from
the generateRecords convenience function. Internally, generateRecords computes the dense Cartesian
product of all the domain sets that define a symbol (generateRecords will only work on symbols where
<symbol>.domain type == "regular").

Example #1 - Create a large (dense) 4D set

import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i", records=[f"i{i}" for i in range(50)])
j = gt.Set(m, "j", records=[f"j{i}" for i in range(50)])
k = gt.Set(m, "k", records=[f"k{i}" for i in range(50)])
l = gt.Set(m, "l", records=[f"l{i}" for i in range(50)])
create and define the symbol ‘a‘ with ‘regular‘ domains
a = gt.Set(m, "a", [i, j, k, l])
generate the records
a.generateRecords()
In [1]: a.isValid()
Out[1]: True
In [2]: a.records
Out[2]:

i j k l element text
0 i0 j0 k0 l0
1 i0 j0 k0 l1
2 i0 j0 k0 l2
3 i0 j0 k0 l3
4 i0 j0 k0 l4
...
6249995 i49 j49 k49 l45
6249996 i49 j49 k49 l46
6249997 i49 j49 k49 l47
6249998 i49 j49 k49 l48
6249999 i49 j49 k49 l49
[6250000 rows x 5 columns]

It is also possible to generate a sparse set (randomly selected rows are removed from the dense dataframe)
with the density argument to generateRecords.

3356 Application Programming Interfaces

Example #2 - Create a large (sparse) 4D set

import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i", records=[f"i{i}" for i in range(50)])
j = gt.Set(m, "j", records=[f"j{i}" for i in range(50)])
k = gt.Set(m, "k", records=[f"k{i}" for i in range(50)])
l = gt.Set(m, "l", records=[f"l{i}" for i in range(50)])
create and define the symbol ‘a‘ with ‘regular‘ domains
a = gt.Set(m, "a", [i, j, k, l])
generate the records
a.generateRecords(density=0.05)
In [1]: a.isValid()
Out[1]: True
In [2]: a.records
Out[2]:

i j k l element text
0 i0 j0 k1 l4
1 i0 j0 k1 l13
2 i0 j0 k1 l19
3 i0 j0 k1 l23
4 i0 j0 k2 l1
...
312495 i49 j49 k48 l27
312496 i49 j49 k48 l30
312497 i49 j49 k49 l7
312498 i49 j49 k49 l32
312499 i49 j49 k49 l42
[312500 rows x 5 columns]

Example #3 - Create a large 4D set w/ only 1 sparse dimension

import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i", records=[f"i{i}" for i in range(50)])
j = gt.Set(m, "j", records=[f"j{i}" for i in range(50)])
k = gt.Set(m, "k", records=[f"k{i}" for i in range(50)])
l = gt.Set(m, "l", records=[f"l{i}" for i in range(50)])
create and define the symbol ‘a‘ with ‘regular‘ domains
a = gt.Set(m, "a", [i, j, k, l])
generate the records
a.generateRecords(density=[1, 0.05, 1, 1])
In [1]: a.isValid()
Out[1]: True
In [2]: a.records
Out[2]:

i j k l element text
0 i0 j22 k0 l0
1 i0 j22 k0 l1
2 i0 j22 k0 l2
3 i0 j22 k0 l3
4 i0 j22 k0 l4
...
249995 i49 j36 k49 l45
249996 i49 j36 k49 l46
249997 i49 j36 k49 l47
249998 i49 j36 k49 l48
249999 i49 j36 k49 l49
[250000 rows x 5 columns]

Parameter

There are two different ways to create a GAMS parameter and add it to a Container.

1. Use Parameter constructor

2. Use the Container method addParameter (which internally calls the Parameter constructor)

Constructor

Constructor Arguments

7.5 Python API 3357

Argument Type Description Required Default

container Container A reference to the
Container object that
the symbol is being
added to

Yes -

description str Description of symbol No ””

domain list, str, or
Set/Alias

List of domains given
either as string ('∗' for
universe set) or as refer-
ence to a Set/Alias ob-
ject, an empty domain
list will create a scalar
parameter

No []

domain forwarding bool or list Flag that forces set ele-
ments to be recursively
included in all parent
sets (i.e., implicit set
growth). Can pass as
a list of bool to con-
trol which domains to
forward.

No False

name str Name of symbol Yes -

records many Symbol records No None

uels on axes bool Instructs setRecords

to assume symbol do-
main information is con-
tained in the axes of the
Pandas object

No False

Note

Parameter records can be updated through the object constructor (a new object will not be created)
if a symbol of the same name already exists in the container, has the same domain, and has the same
domain forwarding state. The symbol description will only be updated if new text is provided.

Properties

Property Description Type Special Setter Be-
havior

container reference to the
Container that the
symbol belongs to

Container -

description description of symbol str -

dimension dimension of symbol int setting is a shorthand
notation to create
["∗"] ∗ n domains in
symbol

domain list of domains given ei-
ther as string (∗ for uni-
verse set) or as reference
to the Set/Alias object

list, str, or
Set/Alias

-

3358 Application Programming Interfaces

Property Description Type Special Setter Be-
havior

domain forwarding flag that forces set ele-
ments to be recursively
included in all parent
sets (i.e., implicit set
growth). Can pass as
a list of bool to con-
trol which domains to
forward.

bool or list no effect after records
have been set

domain labels column headings for the
records DataFrame

list of str will add a
<dimension> tag

to user supplied column
names (if not unique)

domain names string version of domain
names

list of str -

domain type none, relaxed or
regular depending on
state of domain links

str -

is scalar True if the
len(self.domain)

= 0

bool -

modified Flag that identifies
if the Parameter has
been modified

bool -

name name of symbol str sets the GAMS name of
the symbol

number records number of symbol
records (i.e., returns
len(self.records) if
not None)

int -

records the main symbol
records

pandas.DataFrame responsive to
domain forwarding

state

shape a tuple describing
the array dimen-
sions if records

were converted with
.toDense()

tuple -

summary output a dict of only
the metadata

dict -

Methods

Method Description Argu-
ments/Defaults

Returns

addUELs adds UELs to the sym-
bol dimensions. If
dimensions is None

then add UELs to all
dimensions. ∗∗ All
trailing whitespace is
trimmed ∗∗

uels (str, list)
dimensions=None

(int, list, None)

None

7.5 Python API 3359

Method Description Argu-
ments/Defaults

Returns

capitalizeUELs will capitalize all UELs
in the symbol or a
subset of specified
dimensions, can be
chained with other
∗UELs string operations

dimensions=None

(int, list, or None)
- if None, assumes all
symbols

self

casefoldUELs will casefold all UELs
in the symbol or a
subset of specified
dimensions, can be
chained with other
∗UELs string operations

dimensions=None

(int, list, or None)
- if None, assumes all
symbols

self

countDomainViolations returns the count of
how many records con-
tain at least one domain
violation

- int

countDuplicateRecords returns the count of
how many (case insensi-
tive) duplicate records
exist

- int

countEps total number of
SpecialValues.EPS in
value column

- int or None

countNA total number of
SpecialValues.NA in
value column

- int or None

countNegInf total number of
SpecialValues.NEGINF

in value column

- int or None

countPosInf total number of
SpecialValues.POSINF

in value column

- int or None

countUndef total number of
SpecialValues.UNDEF

in value column

- int or None

dropDefaults an alias to dropZeros - None

dropDomainViolations drop records from the
symbol that contain a
domain violation

- None

dropDuplicateRecords drop records with (case
insensitive) duplicate
domains from the sym-
bol – keep argument
can take values of ”first”
(keeps the first instance
of a duplicate record),
”last” (keeps the last in-
stance of a record), or
False (drops all dupli-
cates including the first
and last)

keep="first" (str,
False)

None

dropEps drop records from the
symbol that are GAMS

EPS (zero 0.0 records
will be retained)

- None

3360 Application Programming Interfaces

Method Description Argu-
ments/Defaults

Returns

dropMissing drop records from the
symbol that are NaN

(includes both NA and
Undef special values)

- None

dropNA drop records from the
symbol that are GAMS

NA

- None

dropUndef drop records from the
symbol that are GAMS

Undef

- None

dropZeros drop records from the
symbol that are zero
(GAMS EPS (-0.0)
will not be dropped)

- None

equals Used to compare
the symbol to an-
other symbol. If
check uels=True then
check both used and un-
used UELs and confirm
same order, other-
wise only check used
UELs in data and do
not check UEL order. If
check meta data=True

then check that symbol
name and description
are the same, otherwise
skip. rtol (relative
tolerance) and atol

(absolute tolerance)
set equality tolerances.
If verbose=True will
return an exception
from the asserter de-
scribing the nature of
the difference.

check uels=True

(bool)
check meta data=True

(bool)
rtol=0.0 (float,
None)
atol=0.0 (float,
None)
verbose=False (bool)

bool

findDomainViolations get a view of the records
DataFrame that con-
tain any domain viola-
tions

- pandas.DataFrame

findDuplicateRecords get a view of the
records DataFrame that
contain any (case in-
sensitive) duplicate do-
mains – keep argu-
ment can take values of
”first” (finds all dupli-
cates while keeping the
first instance as unique),
”last” (finds all dupli-
cates while keeping the
last instance as unique),
or False (finds all du-
plicates)

keep="first" (str,
False)

pandas.DataFrame

7.5 Python API 3361

Method Description Argu-
ments/Defaults

Returns

findEps find positions of
SpecialValues.EPS in
value column

- pandas.DataFrame or
None

findNA find positions of
SpecialValues.NA in
value column

- pandas.DataFrame or
None

findNegInf find positions of
SpecialValues.NEGINF

in value column

- pandas.DataFrame or
None

findPosInf find positions of
SpecialValues.POSINF

in value column

- pandas.DataFrame or
None

findUndef find positions of
SpecialValues.Undef

in value column

- pandas.DataFrame or
None

generateRecords convenience method
to set standard
pandas.DataFrame

formatted records given
domain set information.
Will generate records
with the Cartesian
product of all domain
sets. The density

argument can take any
value on the interval
[0,1]. If density

is <1 then randomly
selected records will
be removed. `density`
will accept a `list` of
length `dimension` --
allows users to specify
a density per symbol
dimension. Random
number state can be set
with `seed` argument.

density=1.0 (float,
list)
func=numpy.random.uniform(0,1)

(callable)
seed=None (int, None)

None

getMaxAbsValue get the maximum abso-
lute value in value col-
umn

- float or None

getMaxValue get the maximum value
in value column

- float or None

getMeanValue get the mean value in
value column

- float or None

getMinValue get the minimum value
in value column

- float or None

getSparsity get the sparsity of the
symbol w.r.t the cardi-
nality

- float

3362 Application Programming Interfaces

Method Description Argu-
ments/Defaults

Returns

getUELs gets UELs from sym-
bol dimensions. If
dimensions is None

then get UELs from all
dimensions (maintains
order). The argument
codes accepts a list of
str UELs and will re-
turn the corresponding
int; must specify a sin-
gle dimension if passing
codes. Returns only
UELs in the data if
ignore unused=True,
otherwise return all
UELs.

dimensions=None

(int, list, None)
codes=None (int,
list, None)
ignore unused=False

(bool)

list

hasDomainViolations returns True if there are
domain violations in the
records, returns False

if not.

- bool

hasDuplicateRecords returns True if there are
(case insensitive) dupli-
cate records in the sym-
bol, returns False if
not.

- bool

isValid checks if the symbol
is in a valid format,
throw exceptions if
verbose=True, recheck
a symbol if force=True

verbose=False

force=True

bool

ljustUELs will left justify all
UELs in the symbol or
a subset of specified
dimensions, can be
chained with other
∗UELs string operations

length (int)
fill character=None

- if None, assumes " "

dimensions=None

(int, list, or None)
- if None, assumes all
symbols

self

lowerUELs will lowercase all UELs
in the symbol or a
subset of specified
dimensions, can be
chained with other
∗UELs string operations

dimensions=None

(int, list, or None)
- if None, assumes all
symbols

self

lstripUELs will left strip whites-
pace from all UELs
in the symbol or a
subset of specified
dimensions, can be
chained with other
∗UELs string operations

dimensions=None

(int, list, or None)
- if None, assumes all
symbols

self

7.5 Python API 3363

Method Description Argu-
ments/Defaults

Returns

pivot Convenience function
to pivot records into
a new shape (only
symbols with >1D
can be pivoted). If
index is None then it
is set to dimensions
[0..dimension-1]. If
columns is None then
it is set to the last
dimension. Missing
values in the pivot will
take the value provided
by fill value

index=None (str,
list, None)
columns=None (str,
list, None)
fill value=None (int,
float, str)

pd.DataFrame

removeUELs removes UELs that ap-
pear in the symbol
dimensions, If uels

is None then remove
all unused UELs (cate-
gories). If dimensions
is None then operate on
all dimensions.

uels=None (str, list,
None)
dimensions=None

(int, list, None)

bool

renameUELs renames UELs (case-
sensitive) that ap-
pear in the symbol
dimensions. If
dimensions is None

then operate on all di-
mensions of the symbol.
If allow merge=True,
the categorical object
will be re-created to
offer additional data
flexibility. ∗∗ All
trailing whitespace is
trimmed ∗∗

uels (str, list,
dict)
dimensions (int,
list, None)
allow merge=False

(bool)

None

reorderUELs reorders the UELs
in the symbol
dimensions. If uels is
None, reorder UELs to
data order and append
any unused categories.
If dimensions is None

then reorder UELs in
all dimensions of the
symbol.

uels (str, list, dict,
None)
dimensions (int,
list, None)

None

rjustUELs will right justify all
UELs in the symbol
or a subset of speci-
fied dimensions, can
be chained with other
∗UELs string operations

length (int)
fill character=None

- if None, assumes " "

dimensions=None

(int, list, or None)
- if None, assumes all
symbols

self

3364 Application Programming Interfaces

Method Description Argu-
ments/Defaults

Returns

rstripUELs will right strip whites-
pace from all UELs
in the symbol or a
subset of specified
dimensions, can be
chained with other
∗UELs string operations

dimensions=None

(int, list, or None)
- if None, assumes all
symbols

self

setRecords main convenience
method to set standard
pandas.DataFrame

records. If
uels on axes=True

setRecords will as-
sume that all domain
information is con-
tained in the axes of
the pandas object –
data will be flattened
(if necessary).

records (many types). None

setUELs set the UELs for sym-
bol dimensions. If
dimensions is None

then set UELs for
all dimensions. If
rename=True, then the
old UEL names will be
renamed with the new
UEL names. ∗∗ All
trailing whitespace is
trimmed ∗∗

uels (str, list)
dimensions=None

(int, list, None)
rename=False (bool)

None

stripUELs will strip whitespace
from all UELs in the
symbol or a subset of
specified dimensions,
can be chained with
other ∗UELs string op-
erations

dimensions=None

(int, list, or None)
- if None, assumes all
symbols

self

titleUELs will title (capitalize all
individual words) in all
UELs in the symbol
or a subset of speci-
fied dimensions, can
be chained with other
∗UELs string operations

dimensions=None

(int, list, or None)
- if None, assumes all
symbols

self

toDense convert symbol to a
dense numpy.array for-
mat

- numpy.array or None

7.5 Python API 3365

Method Description Argu-
ments/Defaults

Returns

toDict convenience method
to return symbol
records as a Python
dictionary, orient can
take values natural

or columns and will
control the shape of
the dict. Must use
orient="columns"

if attempting to set
symbol records with
setRecords

orient="natural" dict

toList convenience method to
return symbol records
as a Python list

- list

toSparseCoo convert symbol to a
sparse COOrdinate
numpy.array format

- sparse matrix format or
None

toValue convenience method to
return symbol records
as a Python float. Only
possible with scalar
symbols.

- float

upperUELs will uppercase all UELs
in the symbol or a
subset of specified
dimensions, can be
chained with other
∗UELs string operations

dimensions=None

(int, list, or None)
- if None, assumes all
symbols

self

whereMax find the domain entry
of records with a maxi-
mum value (return first
instance only)

- list of str or None

whereMaxAbs find the domain entry
of records with a maxi-
mum absolute value (re-
turn first instance only)

- list of str or None

whereMin find the domain entry
of records with a mini-
mum value (return first
instance only)

- list of str or None

Adding Parameter Records

Three possibilities exist to assign symbol records to a parameter (roughly ordered in complexity):

1. Setting the argument records in the set constructor/container method (internally calls setRecords)
- creates a data copy

2. Using the symbol method setRecords - creates a data copy

3. Setting the property records directly - does not create a data copy

3366 Application Programming Interfaces

If the data is in a convenient format, a user may want to pass the records directly within the parameter
constructor. This is an optional keyword argument and internally the parameter constructor will simply
call the setRecords method. The symbol method setRecords is a convenience method that transforms
the given data into an approved Pandas DataFrame format (see Standard Data Formats). Many native
Python data types can be easily transformed into DataFrames, so the setRecords method for Set objects
will accept a number of different types for input. The setRecords method is called internally on any
data structure that is passed through the records argument. We show a few examples of ways to create
differently structured parameters:

Example #1 - Create a GAMS scalar

import gams.transfer as gt
m = gt.Container()
pi = gt.Parameter(m, "pi", records=3.14159)
NOTE: the above syntax is equivalent to -
pi = gt.Parameter(m, "pi")
pi.setRecords(3.14159)
NOTE: the above syntax is also equivalent to -
m.addParameter("pi", records=3.14159)
NOTE: the above syntax is also equivalent to -
pi = m.addParameter("pi")
pi.setRecords(3.14159)
NOTE: the above syntax is also equivalent to -
m.addParameter("pi")
m["pi"].setRecords(3.14159)
In [14]: pi.records
Out[14]:

value
0 3.14159

Note

transfer will still convert scalar values to a standard format (i.e., a Pandas DataFrame with a
single row and column).

Example #2 - Create a 1D parameter (defined over ∗) from a list of tuples

import gams.transfer as gt
m = gt.Container()
i = gt.Parameter(m, "i", ["*"], records=[("i" + str(i), i) for i in range(5)])
NOTE: the above syntax is equivalent to -
i = gt.Parameter(m, "i")
i.setRecords([("i" + str(i), i) for i in range(5)])
NOTE: the above syntax is also equivalent to -
m.addParameter("i", records=[("i" + str(i), i) for i in range(5)])
NOTE: the above syntax is also equivalent to -
i = m.addParameter("i")
i.setRecords([("i" + str(i), i) for i in range(5)])
NOTE: the above syntax is also equivalent to -
m.addParameter("i")
m["i"].setRecords([("i" + str(i), i) for i in range(5)])
In [1]: i.records
Out[1]:

uni value
0 i0 0.0
1 i1 1.0
2 i2 2.0
3 i3 3.0
4 i4 4.0

Example #3 - Create a 1D parameter (defined over a set) from a list of tuples

7.5 Python API 3367

import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i", ["*"], records=["i" + str(i) for i in range(5)])
a = gt.Parameter(m, "a", i, records=[("i" + str(i), i) for i in range(5)])
NOTE: the above syntax is equivalent to -
i = gt.Set(m, "i")
i.setRecords(["i" + str(i) for i in range(5)])
a = gt.Parameter(m, "a", i)
a.setRecords([("i" + str(i), i) for i in range(5)])
NOTE: the above syntax is also equivalent to -
m.addSet("i", records=["i" + str(i) for i in range(5)])
m.addParameter("a", i, records=[("i" + str(i), i) for i in range(5)])
NOTE: the above syntax is also equivalent to -
i = m.addSet("i")
i.setRecords(["i" + str(i) for i in range(5)])
a = m.addParameter("a", i)
a.setRecords([("i" + str(i), i) for i in range(5)])
NOTE: the above syntax is also equivalent to -
m.addSet("i")
m["i"].setRecords(["i" + str(i) for i in range(5)])
m.addParameter("a", i)
m["a"].setRecords([("i" + str(i), i) for i in range(5)])
In [1]: a.records
Out[1]:

i value
0 i0 0.0
1 i1 1.0
2 i2 2.0
3 i3 3.0
4 i4 4.0

Example #4 - Create a 2D parameter (defined over a set) from a DataFrame slice

import gams.transfer as gt
import pandas as pd
dist = pd.DataFrame(

[
("seattle", "new-york", 2.5),
("seattle", "chicago", 1.7),
("seattle", "topeka", 1.8),
("san-diego", "new-york", 2.5),
("san-diego", "chicago", 1.8),
("san-diego", "topeka", 1.4),

],
columns=["from", "to", "thousand miles"],

)
m = gt.Container()
i = gt.Set(m, "i", ["*"], records=dist["from"].unique())
j = gt.Set(m, "j", ["*"], records=dist["to"].unique())
a = gt.Parameter(m, "a", [i, j], records=dist.loc[[0, 3], :])
NOTE: the above syntax is equivalent to -
i = gt.Set(m, "i")
i.setRecords(dist["from"].unique())
j = gt.Set(m, "j")
j.setRecords(dist["to"].unique())
a = gt.Parameter(m, "a", [i, j])
a.setRecords(dist.loc[[0, 3], :])
NOTE: the above syntax is also equivalent to -
m.addSet("i", records=dist["from"].unique())
m.addSet("j", records=dist["to"].unique())
m.addParameter("a", i, records=dist.loc[[0, 3], :])
In [1]: a.records
Out[1]:

i j value
0 seattle new-york 2.5
3 san-diego new-york 2.5

Note

The original indexing is preserved when a user slices rows out of a reference dataframe.

Example #5 - Create a 2D parameter (defined over a set) from a matrix

3368 Application Programming Interfaces

import gams.transfer as gt
import pandas as pd
dist = pd.DataFrame(

[
("seattle", "new-york", 2.5),
("seattle", "chicago", 1.7),
("seattle", "topeka", 1.8),
("san-diego", "new-york", 2.5),
("san-diego", "chicago", 1.8),
("san-diego", "topeka", 1.4),

],
columns=["from", "to", "thousand miles"],

)
m = gt.Container()
i = gt.Set(m, "i", ["*"], records=dist["from"].unique())
j = gt.Set(m, "j", ["*"], records=dist["to"].unique())
a = gt.Parameter(m, "a", [i, j], records=dist)
In [1]: a.toDense()
Out[1]:
array([[2.5, 1.7, 1.8],

[2.5, 1.8, 1.4]])
use a.toDense() to create a new (and identical) parameter a2
a2 = gt.Parameter(m, "a2", [i, j], records=a.toDense())
check that a is identical to a2
In [1]: a.equals(a2, check meta data=False)
Out[1]: True

Example #6 - Create a 2D parameter from an array using setRecords

import gams.transfer as gt
import numpy as np
import pandas as pd
m = gt.Container()
i = gt.Set(m, "i", records=["i" + str(i) for i in range(5)])
j = gt.Set(m, "j", records=["j" + str(j) for j in range(5)])
create the parameter with linked domains (these will control the .shape of the symbol)
a = gt.Parameter(m, "a", [i, j])
here we use the .shape property to easily generate a dense random array in numpy
a.setRecords(np.random.uniform(low=1, high=10, size=a.shape))
In [1]: a.toDense()
Out[1]:
array([[3.6694495 , 5.17395381, 1.99129484, 3.28315433, 1.44793791],

[1.06953243, 6.56331121, 5.26162554, 5.98098795, 8.30006],
[3.77213221, 5.82144901, 9.30035479, 9.12534285, 8.51970747],
[8.47965504, 7.84426304, 5.2442471 , 6.96666622, 6.55194415],
[5.62682779, 4.92509183, 8.94579609, 2.7724934 , 9.99576081]])

Example #7 - Create a 1D parameter from a pandas Series

import gams.transfer as gt
import pandas as pd
s = pd.Series(index=["a", "b", "c"], data=[i + 1 for i in range(3)])
m = gt.Container()
i = gt.Parameter(m, "i", ["*"], records=s, uels on axes=True)
In [1]: i.records
Out[1]:

uni value
0 a 1.0
1 b 2.0
2 c 3.0

Example #8 - Create a 2D parameter from a pandas Series

import gams.transfer as gt
import pandas as pd
dim1 = ["a", "b", "c"]
dim2 = ["z", "y", "x"]
s = pd.Series(

index=pd.MultiIndex.from product([dim1, dim2]),
data=[i + 1 for i in range(len(dim1) * len(dim2))],

)
m = gt.Container()
i = gt.Parameter(m, "i", ["*", "*"], records=s, uels on axes=True)
In [1]: i.records

7.5 Python API 3369

Out[1]:
uni 0 uni 1 value

0 a z 1.0
1 a y 2.0
2 a x 3.0
3 b z 4.0
4 b y 5.0
5 b x 6.0
6 c z 7.0
7 c y 8.0
8 c x 9.0
NOTE: the order of the second dimension is automatically put into lexicographical order by Pandas
This can be unexpected and undesirable from a GAMS perspective.
In [2]: s.index.levels[1]
Out[2]: Index([’x’, ’y’, ’z’], dtype=’object’)
gams.transfer goes through extra work to maintain data order in the categorical data structures
this can be see here where "z" is mapped to integer 0, "y" is mapped to 1 and "x" is mapped to 2
In [3]: i.records["uni 1"]
Out[3]:
0 z
1 y
2 x
3 z
4 y
5 x
6 z
7 y
8 x
Name: uni 1, dtype: category
Categories (3, object): [’z’ < ’y’ < ’x’]
In [4]: i.records["uni 1"].cat.codes
Out[4]:
0 0
1 1
2 2
3 0
4 1
5 2
6 0
7 1
8 2
dtype: int8

Example #9 - Create a 2D parameter from a DataFrame (uels on axes=True)

import gams.transfer as gt
import pandas as pd
import numpy as np
dim1 = [f"d{i}" for i in range(2)]
dim2 = [f"d{i}" for i in range(2)]
dim3 = [f"d{i}" for i in range(2)]
dim4 = [f"d{i}" for i in range(2)]
rng = np.random.default rng(seed=100)
df = pd.DataFrame(

data=rng.uniform(size=(2, 8)),
index=dim1,
columns=pd.MultiIndex.from product([dim2, dim3, dim4]),

)
In [1]: df
Out[1]:

d0 d1
d0 d1 d0 d1
d0 d1 d0 d1 d0 d1 d0 d1

d0 0.834982 0.596554 0.288863 0.042952 0.973654 0.596472 0.790263 0.910339
d1 0.688154 0.189991 0.981479 0.284740 0.629273 0.581036 0.599912 0.535248
m = gt.Container()
i = gt.Parameter(m, "i", ["*"] * 4, records=df, uels on axes=True)
In [2]: i.records
Out[2]:

uni 0 uni 1 uni 2 uni 3 value
0 d0 d0 d0 d0 0.834982
1 d0 d0 d0 d1 0.596554
2 d0 d0 d1 d0 0.288863
3 d0 d0 d1 d1 0.042952
4 d0 d1 d0 d0 0.973654
5 d0 d1 d0 d1 0.596472
6 d0 d1 d1 d0 0.790263
7 d0 d1 d1 d1 0.910339
8 d1 d0 d0 d0 0.688154
9 d1 d0 d0 d1 0.189991
10 d1 d0 d1 d0 0.981479
11 d1 d0 d1 d1 0.284740
12 d1 d1 d0 d0 0.629273

3370 Application Programming Interfaces

13 d1 d1 d0 d1 0.581036
14 d1 d1 d1 d0 0.599912
15 d1 d1 d1 d1 0.535248

Directly Set Records

As with sets, the primary advantage of the setRecords method is that transfer will convert many
different (and convenient) data types into the standard data format (a Pandas DataFrame). Users
that require higher performance will want to directly pass the Container a reference to a valid Pandas
DataFrame, thereby skipping some of these computational steps. This places more burden on the user to
pass the data in a valid standard form, but it speeds the records setting process and it avoids making a
copy of the data in memory. In this section we walk the user through an example of how to set records
directly.

Example #1 - Correctly set records (directly)

import gams.transfer as gt
import pandas as pd
import numpy as np
df = pd.DataFrame(

data=[
("h" + str(h), "m" + str(m), "s" + str(s))
for h in range(8760)
for m in range(60)
for s in range(60)

],
columns=["h", "m", "s"],

)
df["value"] = np.random.uniform(0, 100, len(df))
m = gt.Container()
hrs = gt.Set(m, "h", records=df["h"].unique())
mins = gt.Set(m, "m", records=df["m"].unique())
secs = gt.Set(m, "s", records=df["s"].unique())
df["h"] = df["h"].astype(hrs.records["uni"].dtype)
df["m"] = df["m"].astype(mins.records["uni"].dtype)
df["s"] = df["s"].astype(secs.records["uni"].dtype)
a = gt.Parameter(m, "a", [hrs, mins, secs])
set records
a.records = df
In [1]: a.isValid()
Out[1]: True

In this example we create a large parameter (31,536,000 records and 8880 unique domain elements – we
mimic data that is labeled for every second in one year) and assign it to a parameter with a.records.
transfer requires that all domain columns must be a categorical data type, furthermore, this categorical
must be ordered. The records setter function does very little work other than checking if the object being
set is a DataFrame. This places more responsibility on the user to create a DataFrame that complies with
the standard format. In Example #1 we take care to properly reference the categorical data types from
the domain sets – and in the end a.isValid() = True.

Users will need to use the .isValid(verbose=True) method to debug any structural issues. As an
example we incorrectly generate categorical data types by passing the DataFrame constructor the generic
dtype="category" argument. This creates categorical column types but they are not ordered and they
do not reference the underlying domain set. These errors result in a being invalid.

Example #2 - Incorrectly set records (directly)

import gams.transfer as gt
import pandas as pd
import numpy as np
df = pd.DataFrame(

data=[
("h" + str(h), "m" + str(m), "s" + str(s))
for h in range(8760)

7.5 Python API 3371

for m in range(60)
for s in range(60)

],
columns=["h", "m", "s"],
dtype="category"

)
df["value"] = np.random.uniform(0, 100, len(df))
m = gt.Container()
hrs = gt.Set(m, "h", records=df["h"].unique())
mins = gt.Set(m, "m", records=df["m"].unique())
secs = gt.Set(m, "s", records=df["s"].unique())
a = gt.Parameter(m, "a", [hrs, mins, secs])
set the records directly
a.records = df
In [1]: a.isValid()
Out[1]: False
In [2]: a.isValid(verbose=True)
Out[2]: Exception: Domain information in column ’h’ for ’records’ must be an ORDERED categorical type (i.e.,

<symbol object>.records["h"].dtype.ordered = True)

Generate Parameter Records

Generating the initial pandas.DataFrame object could be difficult for Parameter symbols that have a
large number of records and a small number of UELs – these higher dimensional symbols will benefit from
the generateRecords convenience function. Internally, generateRecords computes the dense Cartesian
product of all the domain sets that define a symbol (generateRecords will only work on symbols where
<symbol>.domain type == "regular").

Example #1 - Create a large (dense) 4D parameter

import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i", records=[f"i{i}" for i in range(50)])
j = gt.Set(m, "j", records=[f"j{i}" for i in range(50)])
k = gt.Set(m, "k", records=[f"k{i}" for i in range(50)])
l = gt.Set(m, "l", records=[f"l{i}" for i in range(50)])
create and define the symbol ‘a‘ with ‘regular‘ domains
a = gt.Parameter(m, "a", [i, j, k, l])
generate the records
a.generateRecords()
In [1]: a.isValid()
Out[1]: True
In [2]: a.records
Out[2]:

i j k l value
0 i0 j0 k0 l0 0.386390
1 i0 j0 k0 l1 0.671253
2 i0 j0 k0 l2 0.522057
3 i0 j0 k0 l3 0.037694
4 i0 j0 k0 l4 0.564205
...
6249995 i49 j49 k49 l45 0.573354
6249996 i49 j49 k49 l46 0.033717
6249997 i49 j49 k49 l47 0.410322
6249998 i49 j49 k49 l48 0.758310
6249999 i49 j49 k49 l49 0.920708
[6250000 rows x 5 columns]

Note

In Example #1 a large 4D parameter was generated – by default, the value of these records are
randomly drawn numbers from the interval [0,1] (uniform distribution).

As with Sets, it is possible to generate a sparse parameter with the density argument to generateRecords.
We extend this example by passing our own custom func argument that will control the behavior of the
value columns. The func argument accepts a callable (i.e., a reference to a function).

3372 Application Programming Interfaces

Example #2 - Create a large (sparse) 4D parameter with normally distributed values

import gams.transfer as gt
import numpy as np
create a custom function to pass to ‘generateRecords‘
def value dist(size):

return np.random.normal(loc=10.0, scale=2.3, size=size)
m = gt.Container()
i = gt.Set(m, "i", records=[f"i{i}" for i in range(50)])
j = gt.Set(m, "j", records=[f"j{i}" for i in range(50)])
k = gt.Set(m, "k", records=[f"k{i}" for i in range(50)])
l = gt.Set(m, "l", records=[f"l{i}" for i in range(50)])
create and define the symbol ‘a‘ with ‘regular‘ domains
a = gt.Parameter(m, "a", [i, j, k, l])
generate the records
a.generateRecords(density=0.05, func=value dist)
In [1]: a.isValid()
Out[1]: True
In [2]: a.records
Out[2]:

i j k l value
0 i0 j0 k0 l33 12.490579
1 i0 j0 k0 l43 9.460560
2 i0 j0 k0 l44 7.660337
3 i0 j0 k0 l47 8.811967
4 i0 j0 k1 l5 11.103291
...
312495 i49 j49 k48 l38 10.619791
312496 i49 j49 k48 l41 14.208250
312497 i49 j49 k48 l47 6.104145
312498 i49 j49 k49 l0 10.216812
312499 i49 j49 k49 l39 9.739771
[312500 rows x 5 columns]
In [3]: a.records["value"].mean()
Out[3]: 10.004072307451391
In [4]: a.records["value"].std()
Out[4]: 2.292569938350144

Note

The custom callable function reference must expose a size argument. It might be tedious to
know the exact number of the records that will be generated, especially if a fractional density is
specified; therefore, the generateRecords method will pass in the correct size automatically. Users
are encouraged to use the Numpy suite of random distributions when generating samples – custom
functions have the potential to be computationally burdensome if a symbol has a large number of
records.

Example #3 - Create a large 4D parameter with 1 sparse dimension

import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i", records=[f"i{i}" for i in range(50)])
j = gt.Set(m, "j", records=[f"j{i}" for i in range(50)])
k = gt.Set(m, "k", records=[f"k{i}" for i in range(50)])
l = gt.Set(m, "l", records=[f"l{i}" for i in range(50)])
create and define the symbol ‘a‘ with ‘regular‘ domains
a = gt.Parameter(m, "a", [i, j, k, l])
generate the records
a.generateRecords(density=[1, 0.05, 1, 1])
In [1]: a.isValid()
Out[1]: True
In [2]: a.records
Out[2]:

i j k l value
0 i0 j30 k0 l0 0.473084
1 i0 j30 k0 l1 0.192571
2 i0 j30 k0 l2 0.060711
3 i0 j30 k0 l3 0.655477
4 i0 j30 k0 l4 0.629535
...
249995 i49 j32 k49 l45 0.442380
249996 i49 j32 k49 l46 0.002444
249997 i49 j32 k49 l47 0.332731
249998 i49 j32 k49 l48 0.983800
249999 i49 j32 k49 l49 0.984322
[250000 rows x 5 columns]

7.5 Python API 3373

Example #4 - Create a large 4D parameter with a random number seed

import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i", records=[f"i{i}" for i in range(50)])
j = gt.Set(m, "j", records=[f"j{i}" for i in range(50)])
k = gt.Set(m, "k", records=[f"k{i}" for i in range(50)])
l = gt.Set(m, "l", records=[f"l{i}" for i in range(50)])
create and define the symbol ‘a‘ with ‘regular‘ domains
a = gt.Parameter(m, "a", [i, j, k, l])
a2 = gt.Parameter(m, "a2", [i, j, k, l])
generate the records
a.generateRecords(density=0.05, seed=123)
a2.generateRecords(density=0.05)
In [1]: a.equals(a2, check meta data=False)
Out[1]: False
In [2]: a2.generateRecords(density=0.05, seed=123)
In [3]: a.equals(a2, check meta data=False)
Out[3]: True

Note

The seed is an int that will set the random number generator state (enables reproducible sequences
of random numbers).

Variable

There are two different ways to create a GAMS variable and add it to a Container.

1. Use Variable constructor

2. Use the Container method addVariable (which internally calls the Variable constructor)

Constructor

Constructor Arguments

Argument Type Description Required Default

container Container A reference to the
Container object that
the symbol is being
added to

Yes -

description str Description of symbol No ””

domain list, str, or
Set/Alias

List of domains given
either as string (∗ for
universe set) or as refer-
ence to a Set/Alias ob-
ject, an empty domain
list will create a scalar
variable

No []

domain forwarding bool or list Flag that forces set ele-
ments to be recursively
included in all parent
sets (i.e., implicit set
growth). Can pass as
a list of bool to con-
trol which domains to
forward.

No False

3374 Application Programming Interfaces

Argument Type Description Required Default

name str Name of symbol Yes -

records many Symbol records No None

type str Type of variable be-
ing created [binary,
integer, positive,
negative, free,
sos1, sos2, semicont,
semiint]

No free

uels on axes bool Instructs setRecords

to assume symbol do-
main information is con-
tained in the axes of the
Pandas object

No False

Note

Variable records can be updated through the object constructor (a new object will not be created)
if a symbol of the same name already exists in the container, has the same domain, has the same
type, and has the same domain forwarding state. The symbol description will only be updated if
new text is provided.

Properties

Property Description Type Special Setter Be-
havior

container reference to the
Container that the
symbol belongs to

Container -

description description of symbol str -

dimension dimension of symbol int setting is a shorthand
notation to create
["∗"] ∗ n domains in
symbol

domain list of domains given ei-
ther as string (∗ for uni-
verse set) or as reference
to the Set/Alias object

list, str, or
Set/Alias

-

domain forwarding flag that forces set ele-
ments to be recursively
included in all parent
sets (i.e., implicit set
growth). Can pass as
a list of bool to con-
trol which domains to
forward.

bool or list no effect after records
have been set

domain labels column headings for the
records DataFrame

list of str will add a
<dimension> tag

to user supplied column
names (if not unique)

domain names string version of domain
names

list of str -

7.5 Python API 3375

Property Description Type Special Setter Be-
havior

domain type none, relaxed or
regular depending on
state of domain links

str -

is scalar True if the
len(self.domain)

= 0

bool -

modified Flag that identifies if
the Variable has been
modified

bool -

name name of symbol str sets the GAMS name of
the symbol

number records number of symbol
records (i.e., returns
len(self.records) if
not None)

int -

records the main symbol
records

pandas.DataFrame responsive to
domain forwarding

state

shape a tuple describing
the array dimen-
sions if records

were converted with
.toDense()

tuple -

summary output a dict of only
the metadata

dict -

type str type of variable str -

Methods

Method Description Argu-
ments/Defaults

Returns

addUELs adds UELs to the sym-
bol dimensions. If
dimensions is None

then add UELs to all
dimensions. ∗∗ All
trailing whitespace is
trimmed ∗∗

uels (str, list)
dimensions=None

(int, list, None)

None

capitalizeUELs will capitalize all UELs
in the symbol or a
subset of specified
dimensions, can be
chained with other
∗UELs string operations

dimensions=None

(int, list, or None)
- if None, assumes all
symbols

self

casefoldUELs will casefold all UELs
in the symbol or a
subset of specified
dimensions, can be
chained with other
∗UELs string operations

dimensions=None

(int, list, or None)
- if None, assumes all
symbols

self

countDomainViolations returns the count of
how many records con-
tain at least one domain
violation

- int

3376 Application Programming Interfaces

Method Description Argu-
ments/Defaults

Returns

countDuplicateRecords returns the count of
how many (case insensi-
tive) duplicate records
exist

- int

countEps total number of
SpecialValues.EPS

across all columns

columns="level"

(str, list)
int or None

countNA total number of
SpecialValues.NA

across all columns

columns="level"

(str, list)
int or None

countNegInf total number of
SpecialValues.NEGINF

across all columns

columns="level"

(str, list)
int or None

countPosInf total number of
SpecialValues.POSINF

across all columns

columns="level"

(str, list)
int or None

countUndef total number of
SpecialValues.UNDEF

across all columns

columns="level"

(str, list)
int or None

dropDefaults drop records that
are set to GAMS
default records (check
.default records

property for values)

- None

dropDomainViolations drop records from the
symbol that contain a
domain violation

- None

dropDuplicateRecords drop records with (case
insensitive) duplicate
domains from the sym-
bol – keep argument
can take values of ”first”
(keeps the first instance
of a duplicate record),
”last” (keeps the last in-
stance of a record), or
False (drops all dupli-
cates including the first
and last)

keep="first" (str,
False)

None

dropEps drop records from the
symbol that are GAMS

EPS (zero 0.0 records
will be retained)

- None

dropMissing drop records from the
symbol that are NaN

(includes both NA and
Undef special values)

- None

dropNA drop records from the
symbol that are GAMS

NA

- None

dropUndef drop records from the
symbol that are GAMS

Undef

- None

7.5 Python API 3377

Method Description Argu-
ments/Defaults

Returns

equals Used to compare the
symbol to another
symbol. The columns

argument allows the
user to numerically
compare only specified
variable attributes (de-
fault is to compare all).
If check uels=True

then check both used
and unused UELs and
confirm same order, oth-
erwise only check used
UELs in data and do
not check UEL order. If
check meta data=True

then check that symbol
name, description
and variable type are
the same, otherwise
skip. rtol (relative
tolerance) and atol

(absolute tolerance)
set equality tolerances;
can be different tol-
erances for different
variable attributes (if
specified as a dict).
If verbose=True will
return an exception
from the asserter de-
scribing the nature of
the difference.

columns=["level",

"marginal", "lower",

"upper", "scale"]

check uels=True

(bool)
check meta data=True

(bool)
rtol=0.0 (int, float,
None)
atol=0.0 (int, float,
None)
verbose=False (bool)

bool

findDomainViolations get a view of the records
DataFrame that con-
tain any domain viola-
tions

- pandas.DataFrame

findDuplicateRecords get a view of the
records DataFrame that
contain any (case in-
sensitive) duplicate do-
mains – keep argu-
ment can take values of
”first” (finds all dupli-
cates while keeping the
first instance as unique),
”last” (finds all dupli-
cates while keeping the
last instance as unique),
or False (finds all du-
plicates)

keep="first" (str,
False)

pandas.DataFrame

findEps find positions of
SpecialValues.EPS in
column

column="level" (str) pandas.DataFrame or
None

3378 Application Programming Interfaces

Method Description Argu-
ments/Defaults

Returns

findNA find positions of
SpecialValues.NA in
column

column="level" (str) pandas.DataFrame or
None

findNegInf find positions of
SpecialValues.NEGINF

in column

column="level" (str) pandas.DataFrame or
None

findPosInf find positions of
SpecialValues.POSINF

in column

column="level" (str) pandas.DataFrame or
None

findUndef find positions of
SpecialValues.Undef

in column

column="level" (str) pandas.DataFrame or
None

generateRecords convenience method
to set standard
pandas.DataFrame

formatted records given
domain set information.
Will generate records
with the Cartesian
product of all domain
sets. The density

argument can take any
value on the interval
[0,1]. If density

is <1 then randomly
selected records will
be removed. `density`
will accept a `list` of
length `dimension` --
allows users to specify
a density per symbol
dimension. Random
number state can be set
with `seed` argument.

density=1.0 (float,
list)
func=numpy.random.uniform(0,1)

(dict of callables)
seed=None (int, None)

None

getMaxValue get the maximum value
across all columns

columns="level"

(str, list)
float or None

getMinValue get the minimum value
across all columns

columns="level"

(str, list)
float or None

getMeanValue get the mean value
across all columns

columns="level"

(str, list)
float or None

getMaxAbsValue get the maximum ab-
solute value across all
columns

columns="level"

(str, list)
float

getSparsity get the sparsity of the
symbol w.r.t the cardi-
nality

- float

7.5 Python API 3379

Method Description Argu-
ments/Defaults

Returns

getUELs gets UELs from sym-
bol dimensions. If
dimensions is None

then get UELs from all
dimensions (maintains
order). The argument
codes accepts a list of
str UELs and will re-
turn the corresponding
int; must specify a sin-
gle dimension if passing
codes. Returns only
UELs in the data if
ignore unused=True,
otherwise return all
UELs.

dimensions=None

(int, list, None)
codes=None (int,
list, None)
ignore unused=False

(bool)

list

hasDomainViolations returns True if there are
domain violations in the
records, returns False

if not.

- bool

hasDuplicateRecords returns True if there are
(case insensitive) dupli-
cate records in the sym-
bol, returns False if
not.

- bool

isValid checks if the symbol
is in a valid format,
throw exceptions if
verbose=True, recheck
a symbol if force=True

verbose=False

force=True

bool

ljustUELs will left justify all
UELs in the symbol or
a subset of specified
dimensions, can be
chained with other
∗UELs string operations

length (int)
fill character=None

- if None, assumes " "

dimensions=None

(int, list, or None)
- if None, assumes all
symbols

self

lowerUELs will lowercase all UELs
in the symbol or a
subset of specified
dimensions, can be
chained with other
∗UELs string operations

dimensions=None

(int, list, or None)
- if None, assumes all
symbols

self

lstripUELs will left strip whites-
pace from all UELs
in the symbol or a
subset of specified
dimensions, can be
chained with other
∗UELs string operations

dimensions=None

(int, list, or None)
- if None, assumes all
symbols

self

3380 Application Programming Interfaces

Method Description Argu-
ments/Defaults

Returns

pivot Convenience function
to pivot records into
a new shape (only
symbols with >1D
can be pivoted). If
index is None then it
is set to dimensions
[0..dimension-1].
If columns is None

then it is set to the
last dimension. If
value is None then the
level values will be
pivoted. Missing values
in the pivot will take
the value provided by
fill value

index=None (str,
list, None)
columns=None (str,
list, None)
value (str)
fill value=None (int,
float, str)

pd.DataFrame

removeUELs removes UELs that ap-
pear in the symbol
dimensions, If uels

is None then remove
all unused UELs (cate-
gories). If dimensions
is None then operate on
all dimensions.

uels=None (str, list,
None)
dimensions=None

(int, list, None)

bool

renameUELs renames UELs (case-
sensitive) that ap-
pear in the symbol
dimensions. If
dimensions is None

then operate on all di-
mensions of the symbol.
If allow merge=True,
the categorical object
will be re-created to
offer additional data
flexibility. ∗∗ All
trailing whitespace is
trimmed ∗∗

uels (str, list,
dict)
dimensions (int,
list, None)
allow merge=False

(bool)

None

reorderUELs reorders the UELs
in the symbol
dimensions. If uels is
None, reorder UELs to
data order and append
any unused categories.
If dimensions is None

then reorder UELs in
all dimensions of the
symbol.

uels (str, list, dict,
None)
dimensions (int,
list, None)

None

7.5 Python API 3381

Method Description Argu-
ments/Defaults

Returns

rjustUELs will right justify all
UELs in the symbol
or a subset of speci-
fied dimensions, can
be chained with other
∗UELs string operations

length (int)
fill character=None

- if None, assumes " "

dimensions=None

(int, list, or None)
- if None, assumes all
symbols

self

rstripUELs will right strip whites-
pace from all UELs
in the symbol or a
subset of specified
dimensions, can be
chained with other
∗UELs string operations

dimensions=None

(int, list, or None)
- if None, assumes all
symbols

self

setRecords main convenience
method to set standard
pandas.DataFrame

records. If
uels on axes=True

setRecords will as-
sume that all domain
information is con-
tained in the axes of
the pandas object –
data will be flattened
(if necessary).

records (many types) None

setUELs set the UELs for sym-
bol dimensions. If
dimensions is None

then set UELs for
all dimensions. If
rename=True, then the
old UEL names will be
renamed with the new
UEL names. ∗∗ All
trailing whitespace is
trimmed ∗∗

uels (str, list)
dimensions=None

(int, list, None)
rename=False (bool)

None

stripUELs will strip whitespace
from all UELs in the
symbol or a subset of
specified dimensions,
can be chained with
other ∗UELs string op-
erations

dimensions=None

(int, list, or None)
- if None, assumes all
symbols

self

titleUELs will title (capitalize all
individual words) in all
UELs in the symbol
or a subset of speci-
fied dimensions, can
be chained with other
∗UELs string operations

dimensions=None

(int, list, or None)
- if None, assumes all
symbols

self

toDense convert column to a
dense numpy.array for-
mat

column="level" (str) numpy.array or None

3382 Application Programming Interfaces

Method Description Argu-
ments/Defaults

Returns

toDict convenience method
to return symbol
records as a Python
dictionary. columns

will control which
attributes to include in
the dict. orient can
take values natural

or columns and will
control the shape of
the dict. Must use
orient="columns"

if attempting to set
symbol records with
setRecords.

columns="level"

(str)
orient="natural"

(str)

dict

toList convenience method to
return symbol records
as a Python list, the
columns argument will
control with attributes
to include in the list

columns="level" (str) list

toSparseCoo convert column to a
sparse COOrdinate
numpy.array format

column="level" (str) sparse matrix format or
None

toValue convenience method to
return symbol records
as a Python float. Only
possible with scalar
symbols. Attribute
can be specified with
column argument.

column="level" (str) float

upperUELs will uppercase all UELs
in the symbol or a
subset of specified
dimensions, can be
chained with other
∗UELs string operations

dimensions=None

(int, list, or None)
- if None, assumes all
symbols

self

whereMax find the domain entry
of records with a maxi-
mum value (return first
instance only)

column="level" (str) list of str or None

whereMaxAbs find the domain entry
of records with a maxi-
mum absolute value (re-
turn first instance only)

column="level" (str) list of str or None

whereMin find the domain entry
of records with a mini-
mum value (return first
instance only)

column="level" (str) list of str or None

Adding Variable Records

Three possibilities exist to assign symbol records to a variable (roughly ordered in complexity):

7.5 Python API 3383

1. Setting the argument records in the set constructor/container method (internally calls setRecords)
- creates a data copy

2. Using the symbol method setRecords - creates a data copy

3. Setting the property records directly - does not create a data copy

If the data is in a convenient format, a user may want to pass the records directly within the variable
constructor. This is an optional keyword argument and internally the variable constructor will simply call
the setRecords method. In contrast to the setRecords methods in in either the Set or Parameter classes
the setRecords method for variables will only accept Pandas DataFrames and specially structured dict

for creating records from matrices. This restriction is out of necessity because to properly set a record for
a Variable the user must pass data for the level, marginal, lower, upper and scale attributes. That
said, any missing attributes will be filled in with the GAMS default record values (see: Variable Types),
default scale value is always 1, and the default level and marginal values are 0 for all variable types).
We show a few examples of ways to create differently structured variables:

Example #1 - Create a GAMS scalar variable

import gams.transfer as gt
m = gt.Container()
pi = gt.Variable(m, "pi", records=pd.DataFrame(data=[3.14159], columns=["level"]))
NOTE: the above syntax is equivalent to -
pi = gt.Variable(m, "pi", "free")
pi.setRecords(pd.DataFrame(data=[3.14159], columns=["level"]))
NOTE: the above syntax is also equivalent to -
m.addVariable("pi", "free", records=pd.DataFrame(data=[3.14159], columns=["level"]))
In [1]: pi.records
Out[1]:

level marginal lower upper scale
0 3.14159 0.0 -inf inf 1.0

Example #2 - Create a 1D variable (defined over ∗) from a list of tuples

In this example we only set the marginal values.
import gams.transfer as gt
m = gt.Container()
v = gt.Variable(

m,
"v",
"free",
domain=["*"],
records=pd.DataFrame(

data=[("i" + str(i), i) for i in range(5)], columns=["domain", "marginal"]
),

)
In [1]: v.records
Out[1]:

uni level marginal lower upper scale
0 i0 0.0 0.0 -inf inf 1.0
1 i1 0.0 1.0 -inf inf 1.0
2 i2 0.0 2.0 -inf inf 1.0
3 i3 0.0 3.0 -inf inf 1.0
4 i4 0.0 4.0 -inf inf 1.0

Example #3 - Create a 1D variable (defined over a set) from a list of tuples

import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i", ["*"], records=["i" + str(i) for i in range(5)])
v = gt.Variable(

m,
"v",
"free",
domain=i,

3384 Application Programming Interfaces

records=pd.DataFrame(
data=[("i" + str(i), i) for i in range(5)], columns=["domain", "marginal"]

),
)
In [1]: v.records
Out[1]:

i level marginal lower upper scale
0 i0 0.0 0.0 -inf inf 1.0
1 i1 0.0 1.0 -inf inf 1.0
2 i2 0.0 2.0 -inf inf 1.0
3 i3 0.0 3.0 -inf inf 1.0
4 i4 0.0 4.0 -inf inf 1.0

Example #4 - Create a 2D positive variable, specifying no numerical data

import gams.transfer as gt
import pandas as pd
m = gt.Container()
v = gt.Variable(

m,
"v",
"positive",
["*", "*"],
records=pd.DataFrame([("seattle", "san-diego"), ("chicago", "madison")]),

)
In [1]: v.records
Out[1]:

uni 0 uni 1 level marginal lower upper scale
0 seattle san-diego 0.0 0.0 0.0 inf 1.0
1 chicago madison 0.0 0.0 0.0 inf 1.0

Example #5 - Create a 2D variable (defined over a set) from a matrix

import gams.transfer as gt
import pandas as pd
import numpy as np
m = gt.Container()
i = gt.Set(m, "i", ["*"], records=["i" + str(i) for i in range(5)])
j = gt.Set(m, "j", ["*"], records=["j" + str(i) for i in range(5)])
a = gt.Parameter(

m,
"a",
[i, j],
records=[("i" + str(i), "j" + str(j), i + j) for i in range(5) for j in range(5)],

)
create a free variable and set the level and marginal attributes from matricies
v = gt.Variable(

m, "v", domain=[i, j], records={"level": a.toDense(), "marginal": a.toDense()}
)
if not specified, the toDense() method will convert the level values to a matrix
In [1]: v.toDense()
Out[1]:
array([[0., 1., 2., 3., 4.],

[1., 2., 3., 4., 5.],
[2., 3., 4., 5., 6.],
[3., 4., 5., 6., 7.],
[4., 5., 6., 7., 8.]])

Example #6 - Create a 1D variable from a pandas Series

import gams.transfer as gt
import pandas as pd
s = pd.Series(index=["a", "b", "c"], data=[i + 1 for i in range(3)])
m = gt.Container()
v = gt.Variable(m, "v", domain=["*"], records=s, uels on axes=True)
In [1]: v.records
Out[1]:

uni level marginal lower upper scale
0 a 1.0 0.0 -inf inf 1.0
1 b 2.0 0.0 -inf inf 1.0
2 c 3.0 0.0 -inf inf 1.0

7.5 Python API 3385

Note

transfer will assume that the level value is being set if attributes cannot be found in the axes

Example #7 - Create a 1D variable from a pandas Series (set only the marginal)

import gams.transfer as gt
import pandas as pd
NOTE: we include the "marginal" label in level 1 of the MultiIndex
s = pd.Series(

index=pd.MultiIndex.from product([["a", "b", "c"], ["marginal"]]),
data=[i + 1 for i in range(3)],

)
m = gt.Container()
v = gt.Variable(m, "v", domain=["*"], records=s, uels on axes=True)
In [1]: v.records
Out[1]:

uni level marginal lower upper scale
0 a 0.0 1.0 -inf inf 1.0
1 b 0.0 2.0 -inf inf 1.0
2 c 0.0 3.0 -inf inf 1.0

Note

transfer will search the axes for any variable attributes and set those attributes provided. It is
necessary to include all attributes into the same axes level (if a MultiIndex) without any other UELs
– if other UELs are found in the same level then all element will be interpreted as UELs and could
result in GAMS domain violations.

Example #8 - Create a 2D variable from a DataFrame (uels on axes=True)

import gams.transfer as gt
import pandas as pd
import numpy as np
dim1 = [f"d{i}" for i in range(2)]
dim2 = [f"e{i}" for i in range(2)]
dim3 = [f"f{i}" for i in range(2)]
dim4 = [f"g{i}" for i in range(2)]
rng = np.random.default rng(seed=100)
df = pd.DataFrame(

data=rng.uniform(size=(4, 4)),
index=pd.MultiIndex.from product([dim1, dim2]),
columns=pd.MultiIndex.from product([dim3, dim4]),

)
In [1]: df
Out[1]:

f0 f1
g0 g1 g0 g1

d0 e0 0.834982 0.596554 0.288863 0.042952
e1 0.973654 0.596472 0.790263 0.910339

d1 e0 0.688154 0.189991 0.981479 0.284740
e1 0.629273 0.581036 0.599912 0.535248

m = gt.Container()
v = gt.Variable(m, "v", domain=["*"] * 4, records=df, uels on axes=True)
In [8]: v.records
Out[8]:

uni 0 uni 1 uni 2 uni 3 level marginal lower upper scale
0 d0 e0 f0 g0 0.834982 0.0 -inf inf 1.0
1 d0 e0 f0 g1 0.596554 0.0 -inf inf 1.0
2 d0 e0 f1 g0 0.288863 0.0 -inf inf 1.0
3 d0 e0 f1 g1 0.042952 0.0 -inf inf 1.0
4 d0 e1 f0 g0 0.973654 0.0 -inf inf 1.0
5 d0 e1 f0 g1 0.596472 0.0 -inf inf 1.0
6 d0 e1 f1 g0 0.790263 0.0 -inf inf 1.0
7 d0 e1 f1 g1 0.910339 0.0 -inf inf 1.0
8 d1 e0 f0 g0 0.688154 0.0 -inf inf 1.0
9 d1 e0 f0 g1 0.189991 0.0 -inf inf 1.0
10 d1 e0 f1 g0 0.981479 0.0 -inf inf 1.0
11 d1 e0 f1 g1 0.284740 0.0 -inf inf 1.0
12 d1 e1 f0 g0 0.629273 0.0 -inf inf 1.0
13 d1 e1 f0 g1 0.581036 0.0 -inf inf 1.0
14 d1 e1 f1 g0 0.599912 0.0 -inf inf 1.0
15 d1 e1 f1 g1 0.535248 0.0 -inf inf 1.0

3386 Application Programming Interfaces

Directly Set Records

As with sets, the primary advantage of the setRecords method is that transfer will convert many
different (and convenient) data types into the standard data format (a Pandas DataFrame). Users
that require higher performance will want to directly pass the Container a reference to a valid Pandas
DataFrame, thereby skipping some of these computational steps. This places more burden on the user to
pass the data in a valid standard form, but it speeds the records setting process and it avoids making a
copy of the data in memory. In this section we walk the user through an example of how to set records
directly.

Example #1 - Correctly set records (directly)

import gams.transfer as gt
import pandas as pd
import numpy as np
df = pd.DataFrame(

data=[
("h" + str(h), "m" + str(m), "s" + str(s))
for h in range(8760)
for m in range(60)
for s in range(60)

],
columns=["h", "m", "s"],

)
it is necessary to specify all variable attributes if setting records directly
NOTE: all numeric data must be type float
df["level"] = np.random.uniform(0, 100, len(df))
df["marginal"] = 0.0
df["lower"] = gt.SpecialValues.NEGINF
df["upper"] = gt.SpecialValues.POSINF
df["scale"] = 1.0
m = gt.Container()
hrs = gt.Set(m, "h", records=df["h"].unique())
mins = gt.Set(m, "m", records=df["m"].unique())
secs = gt.Set(m, "s", records=df["s"].unique())
df["h"] = df["h"].astype(hrs.records["uni"].dtype)
df["m"] = df["m"].astype(mins.records["uni"].dtype)
df["s"] = df["s"].astype(secs.records["uni"].dtype)
a = gt.Variable(m, "a", domain=[hrs, mins, secs])
set records
a.records = df
In [1]: a.isValid()
Out[1]: True

Attention

All numeric data in the records will need to be type float in order to maintain a valid symbol.

In this example we create a large variable (31,536,000 records and 8880 unique domain elements – we
mimic data that is labeled for every second in one year) and assign it to a variable with a.records.
transfer requires that all domain columns must be a categorical data type, furthermore this categorical
must be ordered. The records setter function does very little work other than checking if the object being
set is a DataFrame. This places more responsibility on the user to create a DataFrame that complies with
the standard format. In Example #1 we take care to properly reference the categorical data types from
the domain sets – and in the end a.isValid() = True. As with Set and Parameters, users can use the
.isValid(verbose=True) method to debug any structural issues.

Generate Variable Records

Generating the initial pandas.DataFrame object could be difficult for Variable symbols that have a large
number of records and a small number of UELs – these higher dimensional symbols will benefit from
the generateRecords convenience function. Internally, generateRecords computes the dense Cartesian
product of all the domain sets that define a symbol (generateRecords will only work on symbols where
<symbol>.domain type == "regular").

7.5 Python API 3387

Example #1 - Create a large (dense) 4D variable

import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i", records=[f"i{i}" for i in range(50)])
j = gt.Set(m, "j", records=[f"j{i}" for i in range(50)])
k = gt.Set(m, "k", records=[f"k{i}" for i in range(50)])
l = gt.Set(m, "l", records=[f"l{i}" for i in range(50)])
create and define the symbol ‘a‘ with ‘regular‘ domains
a = gt.Variable(m, "a", "free", [i, j, k, l])
generate the records
a.generateRecords()
In [1]: a.isValid()
Out[1]: True
In [2]: a.records
Out[2]:

i j k l level marginal lower upper scale
0 i0 j0 k0 l0 0.470248 0.0 -inf inf 1.0
1 i0 j0 k0 l1 0.924286 0.0 -inf inf 1.0
2 i0 j0 k0 l2 0.347550 0.0 -inf inf 1.0
3 i0 j0 k0 l3 0.937009 0.0 -inf inf 1.0
4 i0 j0 k0 l4 0.050716 0.0 -inf inf 1.0
...
6249995 i49 j49 k49 l45 0.385032 0.0 -inf inf 1.0
6249996 i49 j49 k49 l46 0.029305 0.0 -inf inf 1.0
6249997 i49 j49 k49 l47 0.440716 0.0 -inf inf 1.0
6249998 i49 j49 k49 l48 0.432931 0.0 -inf inf 1.0
6249999 i49 j49 k49 l49 0.157107 0.0 -inf inf 1.0
[6250000 rows x 9 columns]

Note

In Example #1 a large 4D variable was generated – by default, only the level value of these records
are randomly drawn from the interval [0,1] (uniform distribution). Other variable attributes take
the default record value.

As with Parameters, it is possible to generate a sparse variable with the density argument to
generateRecords. We extend this example by passing our own custom func argument that will control
the behavior of the value columns. The func argument accepts a dict of callables (i.e., a reference to
a function).

Example #2 - Create a large (sparse) 4D variable with normally distributed values

import gams.transfer as gt
import numpy as np
create a custom function to pass to ‘generateRecords‘
def level dist(size):

return np.random.normal(loc=10.0, scale=2.3, size=size)
def marginal dist(size):

return np.random.normal(loc=0.5, scale=0.1, size=size)
m = gt.Container()
i = gt.Set(m, "i", records=[f"i{i}" for i in range(50)])
j = gt.Set(m, "j", records=[f"j{i}" for i in range(50)])
k = gt.Set(m, "k", records=[f"k{i}" for i in range(50)])
l = gt.Set(m, "l", records=[f"l{i}" for i in range(50)])
create and define the symbol ‘a‘ with ‘regular‘ domains
a = gt.Variable(m, "a", "free", [i, j, k, l])
generate the records
a.generateRecords(density=0.05, func={"level":level dist, "marginal":marginal dist})
In [1]: a.isValid()
Out[1]: True
In [12]: a.records
Out[12]:

i j k l level marginal lower upper scale
0 i0 j0 k0 l36 11.105235 0.468989 -inf inf 1.0
1 i0 j0 k0 l40 5.697361 0.478019 -inf inf 1.0
2 i0 j0 k1 l17 11.900784 0.473814 -inf inf 1.0
3 i0 j0 k1 l24 10.105931 0.456925 -inf inf 1.0
4 i0 j0 k1 l31 8.444142 0.490966 -inf inf 1.0
...
312495 i49 j49 k47 l17 11.523186 0.508001 -inf inf 1.0
312496 i49 j49 k47 l20 9.341183 0.739237 -inf inf 1.0
312497 i49 j49 k47 l26 10.705808 0.581103 -inf inf 1.0
312498 i49 j49 k47 l32 7.910963 0.479655 -inf inf 1.0

3388 Application Programming Interfaces

312499 i49 j49 k49 l8 11.800414 0.628040 -inf inf 1.0
[312500 rows x 9 columns]
In [3]: a.records["level"].mean()
Out[3]: 10.004072307451391
In [4]: a.records["level"].std()
Out[4]: 2.292569938350144
In [5]: a.records["marginal"].mean()
Out[5]: 0.49970172269778
In [6]: a.records["marginal"].std()
Out[6]: 0.09998772109802055

Note

The custom callable function reference must expose a size argument. It might be tedious to
know the exact number of the records that will be generated, especially if a fractional density is
specified; therefore, the generateRecords method will pass in the correct size automatically. Users
are encouraged to use the Numpy suite of random distributions when generating samples – custom
functions have the potential to be computationally burdensome if a symbol has a large number of
records.

Equation

There are two different ways to create a GAMS equation and add it to a Container.

1. Use Equation constructor

2. Use the Container method addEquation (which internally calls the Equation constructor)

Constructor

Constructor Arguments

Argument Type Description Required Default

container Container A reference to the
Container object that
the symbol is being
added to

Yes -

description str Description of symbol No ””

domain list, str, or
Set/Alias

List of domains given
either as string (∗ for
universe set) or as refer-
ence to a Set/Alias ob-
ject, an empty domain
list will create a scalar
equation

No []

domain forwarding bool or list Flag that forces set ele-
ments to be recursively
included in all parent
sets (i.e., implicit set
growth). Can pass as
a list of bool to con-
trol which domains to
forward.

No False

name str Name of symbol Yes -

records many Symbol records No None

7.5 Python API 3389

Argument Type Description Required Default

type str Type of equation be-
ing created [eq (or
E/e), geq (or G/g), leq
(or L/l), nonbinding

(or N/n), external (or
X/x)]

Yes -

uels on axes bool Instructs setRecords

to assume symbol do-
main information is con-
tained in the axes of the
Pandas object

No False

Note

Equation records can be updated through the object constructor (a new object will not be created)
if a symbol of the same name already exists in the container, has the same domain, has the same
type, and has the same domain forwarding state. The symbol description will only be updated if
new text is provided.

Properties

Property Description Type Special Setter Be-
havior

container reference to the
Container that the
symbol belongs to

Container -

description description of symbol str -

dimension dimension of symbol int setting is a shorthand
notation to create
["∗"] ∗ n domains in
symbol

domain list of domains given ei-
ther as string (∗ for uni-
verse set) or as reference
to the Set/Alias object

list, str, or
Set/Alias

-

domain forwarding flag that forces set ele-
ments to be recursively
included in all parent
sets (i.e., implicit set
growth). Can pass as
a list of bool to con-
trol which domains to
forward.

bool or list no effect after records
have been set

domain labels column headings for the
records DataFrame

list of str will add a
<dimension> tag

to user supplied column
names (if not unique)

domain names string version of domain
names

list of str -

domain type none, relaxed or
regular depending on
state of domain links

str -

3390 Application Programming Interfaces

Property Description Type Special Setter Be-
havior

is scalar True if the
len(self.domain)

= 0

bool -

modified Flag that identifies if
the Equation has been
modified

bool -

name name of symbol str sets the GAMS name of
the symbol

number records number of symbol
records (i.e., returns
len(self.records) if
not None)

int -

records the main symbol
records

pandas.DataFrame responsive to
domain forwarding

state

shape a tuple describing
the array dimen-
sions if records

were converted with
.toDense()

tuple -

summary output a dict of only
the metadata

dict -

type str type of variable str -

Methods

Method Description Argu-
ments/Defaults

Returns

addUELs adds UELs to the sym-
bol dimensions. If
dimensions is None

then add UELs to all
dimensions. ∗∗ All
trailing whitespace is
trimmed ∗∗

uels (str, list)
dimensions=None

(int, list, None)

None

capitalizeUELs will capitalize all UELs
in the symbol or a
subset of specified
dimensions, can be
chained with other
∗UELs string operations

dimensions=None

(int, list, or None)
- if None, assumes all
symbols

self

casefoldUELs will casefold all UELs
in the symbol or a
subset of specified
dimensions, can be
chained with other
∗UELs string operations

dimensions=None

(int, list, or None)
- if None, assumes all
symbols

self

countDomainViolations returns the count of
how many records con-
tain at least one domain
violation

- int

7.5 Python API 3391

Method Description Argu-
ments/Defaults

Returns

countDuplicateRecords returns the count of
how many (case insensi-
tive) duplicate records
exist

- int

countEps total number of
SpecialValues.EPS

across all columns

columns="level"

(str, list)
int or None

countNA total number of
SpecialValues.NA

across all columns

columns="level"

(str, list)
int or None

countNegInf total number of
SpecialValues.NEGINF

across all columns

columns="level"

(str, list)
int or None

countPosInf total number of
SpecialValues.POSINF

across all columns

columns="level"

(str, list)
int or None

countUndef total number of
SpecialValues.UNDEF

across all columns

columns="level"

(str, list)
int or None

dropDefaults drop records that
are set to GAMS
default records (check
.default records

property for values)

- None

dropDomainViolations drop records from the
symbol that contain a
domain violation

- None

dropDuplicateRecords drop records with (case
insensitive) duplicate
domains from the sym-
bol – keep argument
can take values of ”first”
(keeps the first instance
of a duplicate record),
”last” (keeps the last in-
stance of a record), or
False (drops all dupli-
cates including the first
and last)

keep="first" (str,
False)

None

dropEps drop records from the
symbol that are GAMS

EPS (zero 0.0 records
will be retained)

- None

dropMissing drop records from the
symbol that are NaN

(includes both NA and
Undef special values)

- None

dropNA drop records from the
symbol that are GAMS

NA

- None

dropUndef drop records from the
symbol that are GAMS

Undef

- None

3392 Application Programming Interfaces

Method Description Argu-
ments/Defaults

Returns

equals Used to compare the
symbol to another
symbol. The columns

argument allows the
user to numerically
compare only specified
equation attributes (de-
fault is to compare all).
If check uels=True

then check both used
and unused UELs and
confirm same order, oth-
erwise only check used
UELs in data and do
not check UEL order. If
check meta data=True

then check that symbol
name, description and
equation type are
the same, otherwise
skip. rtol (relative
tolerance) and atol

(absolute tolerance)
set equality tolerances;
can be different tol-
erances for different
equation attributes (if
specified as a dict).
If verbose=True will
return an exception
from the asserter de-
scribing the nature of
the difference.

columns=["level",

"marginal", "lower",

"upper", "scale"]

check uels=True

(bool)
check meta data=True

(bool)
rtol=0.0 (int, float,
None)
atol=0.0 (int, float,
None)
verbose=False (bool)

bool

findDomainViolations get a view of the records
DataFrame that con-
tain any domain viola-
tions

- pandas.DataFrame

findDuplicateRecords get a view of the
records DataFrame that
contain any (case in-
sensitive) duplicate do-
mains – keep argu-
ment can take values of
”first” (finds all dupli-
cates while keeping the
first instance as unique),
”last” (finds all dupli-
cates while keeping the
last instance as unique),
or False (finds all du-
plicates)

keep="first" (str,
False)

pandas.DataFrame

findEps find positions of
SpecialValues.EPS in
column

column="level" (str) pandas.DataFrame or
None

7.5 Python API 3393

Method Description Argu-
ments/Defaults

Returns

findNA find positions of
SpecialValues.NA in
column

column="level" (str) pandas.DataFrame or
None

findNegInf find positions of
SpecialValues.NEGINF

in column

column="level" (str) pandas.DataFrame or
None

findPosInf find positions of
SpecialValues.POSINF

in column

column="level" (str) pandas.DataFrame or
None

findUndef find positions of
SpecialValues.Undef

in column

column="level" (str) pandas.DataFrame or
None

generateRecords convenience method
to set standard
pandas.DataFrame

formatted records given
domain set information.
Will generate records
with the Cartesian
product of all domain
sets. The density

argument can take any
value on the interval
[0,1]. If density

is <1 then randomly
selected records will
be removed. `density`
will accept a `list` of
length `dimension` --
allows users to specify
a density per symbol
dimension. Random
number state can be set
with `seed` argument.

density=1.0 (float,
list)
func=numpy.random.uniform(0,1)

(dict of callables)
seed=None (int, None)

None

getMaxAbsValue get the maximum ab-
solute value across all
columns

columns="level"

(str, list)
float or None

getMaxValue get the maximum value
across all columns

columns="level"

(str, list)
float or None

getMeanValue get the mean value
across all columns

columns="level"

(str, list)
float or None

getMinValue get the minimum value
across all columns

columns="level"

(str, list)
float or None

getSparsity get the sparsity of the
symbol w.r.t the cardi-
nality

- float

3394 Application Programming Interfaces

Method Description Argu-
ments/Defaults

Returns

getUELs gets UELs from sym-
bol dimensions. If
dimensions is None

then get UELs from all
dimensions (maintains
order). The argument
codes accepts a list of
str UELs and will re-
turn the corresponding
int; must specify a sin-
gle dimension if passing
codes. Returns only
UELs in the data if
ignore unused=True,
otherwise return all
UELs.

dimensions=None

(int, list, None)
codes=None (int,
list, None)
ignore unused=False

(bool)

list

hasDomainViolations returns True if there are
domain violations in the
records, returns False

if not.

- bool

hasDuplicateRecords returns True if there are
(case insensitive) dupli-
cate records in the sym-
bol, returns False if
not.

- bool

isValid checks if the symbol
is in a valid format,
throw exceptions if
verbose=True, recheck
a symbol if force=True

verbose=False

force=True

bool

ljustUELs will left justify all
UELs in the symbol or
a subset of specified
dimensions, can be
chained with other
∗UELs string operations

length (int)
fill character=None

- if None, assumes " "

dimensions=None

(int, list, or None)
- if None, assumes all
symbols

self

lowerUELs will lowercase all UELs
in the symbol or a
subset of specified
dimensions, can be
chained with other
∗UELs string operations

dimensions=None

(int, list, or None)
- if None, assumes all
symbols

self

lstripUELs will left strip whites-
pace from all UELs
in the symbol or a
subset of specified
dimensions, can be
chained with other
∗UELs string operations

dimensions=None

(int, list, or None)
- if None, assumes all
symbols

self

7.5 Python API 3395

Method Description Argu-
ments/Defaults

Returns

pivot Convenience function
to pivot records into
a new shape (only
symbols with >1D
can be pivoted). If
index is None then it
is set to dimensions
[0..dimension-1].
If columns is None

then it is set to the
last dimension. If
value is None then the
level values will be
pivoted. Missing values
in the pivot will take
the value provided by
fill value

index=None (str,
list, None)
columns=None (str,
list, None)
value (str)
fill value=None (int,
float, str)

pd.DataFrame

removeUELs removes UELs that ap-
pear in the symbol
dimensions, If uels

is None then remove
all unused UELs (cate-
gories). If dimensions
is None then operate on
all dimensions.

uels=None (str, list,
None)
dimensions=None

(int, list, None)

bool

renameUELs renames UELs (case-
sensitive) that ap-
pear in the symbol
dimensions. If
dimensions is None

then operate on all di-
mensions of the symbol.
If allow merge=True,
the categorical object
will be re-created to
offer additional data
flexibility. ∗∗ All
trailing whitespace is
trimmed ∗∗

uels (str, list,
dict)
dimensions (int,
list, None)
allow merge=False

(bool)

None

reorderUELs reorders the UELs
in the symbol
dimensions. If uels is
None, reorder UELs to
data order and append
any unused categories.
If dimensions is None

then reorder UELs in
all dimensions of the
symbol.

uels (str, list, dict,
None)
dimensions (int,
list, None)

None

3396 Application Programming Interfaces

Method Description Argu-
ments/Defaults

Returns

rjustUELs will right justify all
UELs in the symbol
or a subset of speci-
fied dimensions, can
be chained with other
∗UELs string operations

length (int)
fill character=None

- if None, assumes " "

dimensions=None

(int, list, or None)
- if None, assumes all
symbols

self

rstripUELs will right strip whites-
pace from all UELs
in the symbol or a
subset of specified
dimensions, can be
chained with other
∗UELs string operations

dimensions=None

(int, list, or None)
- if None, assumes all
symbols

self

setRecords main convenience
method to set standard
pandas.DataFrame

records. If
uels on axes=True

setRecords will as-
sume that all domain
information is con-
tained in the axes of
the pandas object –
data will be flattened
(if necessary).

records (many types) None

setUELs set the UELs for sym-
bol dimensions. If
dimensions is None

then set UELs for
all dimensions. If
rename=True, then the
old UEL names will be
renamed with the new
UEL names. ∗∗ All
trailing whitespace is
trimmed ∗∗

uels (str, list)
dimensions=None

(int, list, None)
rename=False (bool)

None

stripUELs will strip whitespace
from all UELs in the
symbol or a subset of
specified dimensions,
can be chained with
other ∗UELs string op-
erations

dimensions=None

(int, list, or None)
- if None, assumes all
symbols

self

titleUELs will title (capitalize all
individual words) in all
UELs in the symbol
or a subset of speci-
fied dimensions, can
be chained with other
∗UELs string operations

dimensions=None

(int, list, or None)
- if None, assumes all
symbols

self

toDense convert column to a
dense numpy.array for-
mat

column="level" (str) numpy.array or None

7.5 Python API 3397

Method Description Argu-
ments/Defaults

Returns

toDict convenience method
to return symbol
records as a Python
dictionary. columns

will control which
attributes to include in
the dict. orient can
take values natural

or columns and will
control the shape of
the dict. Must use
orient="columns"

if attempting to set
symbol records with
setRecords.

columns="level"

(str)
orient="natural"

(str)

dict

toList convenience method to
return symbol records
as a Python list, the
columns argument will
control with attributes
to include in the list

columns="level" (str) list

toSparseCoo convert column to a
sparse COOrdinate
numpy.array format

column="level" (str) sparse matrix format or
None

toValue convenience method to
return symbol records
as a Python float. Only
possible with scalar
symbols. Attribute
can be specified with
column argument.

column="level" (str) float

upperUELs will uppercase all UELs
in the symbol or a
subset of specified
dimensions, can be
chained with other
∗UELs string operations

dimensions=None

(int, list, or None)
- if None, assumes all
symbols

self

whereMax find the domain entry
of records with a maxi-
mum value (return first
instance only)

column="level" (str) list of str or None

whereMaxAbs find the domain entry
of records with a maxi-
mum absolute value (re-
turn first instance only)

column="level" (str) list of str or None

whereMin find the domain entry
of records with a mini-
mum value (return first
instance only)

column="level" (str) list of str or None

Adding Equation Records

Adding equation records mimics that of variables – three possibilities exist to assign symbol records to an
equation (roughly ordered in complexity):

3398 Application Programming Interfaces

1. Setting the argument records in the set constructor/container method (internally calls setRecords)
- creates a data copy

2. Using the symbol method setRecords - creates a data copy

3. Setting the property records directly - does not create a data copy

Setting equation records require the user to be explicit with the type of equation that is being created; in
contrast to setting variable records (where the default variable is considered to be free).

If the data is in a convenient format, a user may want to pass the records directly within the equation
constructor. This is an optional keyword argument and internally the equation constructor will simply
call the setRecords method. In contrast to the setRecords methods in in either the Set or Parameter
classes the setRecords method for variables will only accept Pandas DataFrames and specially structured
dict for creating records from matrices. This restriction is out of necessity because to properly set
a record for an Equation the user must pass data for the level, marginal, lower, upper and scale

attributes. That said, any missing attributes will be filled in with the GAMS default record values (level
= 0.0, marginal = 0.0, lower = -inf, upper = inf, scale = 1.0). We show a few examples of ways
to create differently structured variables:

Example #1 - Create a GAMS scalar equation

import gams.transfer as gt
m = gt.Container()
here we create an equality (=E=) equation
z = gt.Equation(m, "z", "eq", records=pd.DataFrame(data=[3.14159], columns=["level"]))
NOTE: the above syntax is equivalent to -
pi = gt.Equation(m, "pi", "eq")
pi.setRecords(pd.DataFrame(data=[3.14159], columns=["level"]))
NOTE: the above syntax is also equivalent to -
m.addEquation("pi", "eq", records=pd.DataFrame(data=[3.14159], columns=["level"]))
In [1]: pi.records
Out[1]:

level marginal lower upper scale
0 3.14159 0.0 -inf inf 1.0

Example #2 - Create a 1D Equation (defined over ∗) from a list of tuples

In this example we only set the marginal values.
import gams.transfer as gt
m = gt.Container()
here we define a greater than or equal (=G=) equation
i = gt.Equation(

m,
"i",
"geq",
domain=["*"],
records=pd.DataFrame(

data=[("i" + str(i), i) for i in range(5)], columns=["domain", "marginal"]
),

)
In [1]: i.type
Out[1]: ’geq’
In [2]: i.records
Out[2]:

uni level marginal lower upper scale
0 i0 0.0 0.0 -inf inf 1.0
1 i1 0.0 1.0 -inf inf 1.0
2 i2 0.0 2.0 -inf inf 1.0
3 i3 0.0 3.0 -inf inf 1.0
4 i4 0.0 4.0 -inf inf 1.0

7.5 Python API 3399

Example #3 - Create a 1D Equation (defined over a set) from a list of tuples

import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i", ["*"], records=["i" + str(i) for i in range(5)])
here we define a less than or equal (=L=) equation
e = gt.Equation(

m,
"e",
"leq",
domain=i,
records=pd.DataFrame(

data=[("i" + str(i), i) for i in range(5)], columns=["domain", "marginal"]
),

)
In [1]: i.type
Out[1]: ’leq’
In [5]: e.records
Out[5]:

i level marginal lower upper scale
0 i0 0.0 0.0 -inf inf 1.0
1 i1 0.0 1.0 -inf inf 1.0
2 i2 0.0 2.0 -inf inf 1.0
3 i3 0.0 3.0 -inf inf 1.0
4 i4 0.0 4.0 -inf inf 1.0

Example #4 - Create a 2D equation, specifying no numerical data

import gams.transfer as gt
import pandas as pd
m = gt.Container()
e = gt.Equation(

m,
"e",
"eq",
["*", "*"],
records=pd.DataFrame([("seattle", "san-diego"), ("chicago", "madison")]),

)
In [1]: e.records
Out[1]:

uni 0 uni 1 level marginal lower upper scale
0 seattle san-diego 0.0 0.0 -inf inf 1.0
1 chicago madison 0.0 0.0 -inf inf 1.0

Example #5 - Create a 2D equation (defined over a set) from a matrix

import gams.transfer as gt
import pandas as pd
import numpy as np
m = gt.Container()
i = gt.Set(m, "i", ["*"], records=["i" + str(i) for i in range(5)])
j = gt.Set(m, "j", ["*"], records=["j" + str(i) for i in range(5)])
a = gt.Parameter(

m,
"a",
[i, j],
records=[("i" + str(i), "j" + str(j), i + j) for i in range(5) for j in range(5)],

)
create a nonbinding (=N=) equation and set the level and marginal attributes from matricies
e = gt.Equation(

m, "e", "nonbinding", domain=[i, j], records={"level": a.toDense(), "marginal": a.toDense()}
)
In [1]: e.records
Out[1]:

i j level marginal lower upper scale
0 i0 j1 1.0 1.0 -inf inf 1.0
1 i0 j2 2.0 2.0 -inf inf 1.0
2 i0 j3 3.0 3.0 -inf inf 1.0
3 i0 j4 4.0 4.0 -inf inf 1.0
4 i1 j0 1.0 1.0 -inf inf 1.0
5 i1 j1 2.0 2.0 -inf inf 1.0
6 i1 j2 3.0 3.0 -inf inf 1.0
7 i1 j3 4.0 4.0 -inf inf 1.0
8 i1 j4 5.0 5.0 -inf inf 1.0
9 i2 j0 2.0 2.0 -inf inf 1.0
10 i2 j1 3.0 3.0 -inf inf 1.0

3400 Application Programming Interfaces

11 i2 j2 4.0 4.0 -inf inf 1.0
12 i2 j3 5.0 5.0 -inf inf 1.0
13 i2 j4 6.0 6.0 -inf inf 1.0
14 i3 j0 3.0 3.0 -inf inf 1.0
15 i3 j1 4.0 4.0 -inf inf 1.0
16 i3 j2 5.0 5.0 -inf inf 1.0
17 i3 j3 6.0 6.0 -inf inf 1.0
18 i3 j4 7.0 7.0 -inf inf 1.0
19 i4 j0 4.0 4.0 -inf inf 1.0
20 i4 j1 5.0 5.0 -inf inf 1.0
21 i4 j2 6.0 6.0 -inf inf 1.0
22 i4 j3 7.0 7.0 -inf inf 1.0
23 i4 j4 8.0 8.0 -inf inf 1.0
if not specified, the toDense() method will convert the level values to a matrix
In [2]: e.toDense()
Out[2]:
array([[0., 1., 2., 3., 4.],

[1., 2., 3., 4., 5.],
[2., 3., 4., 5., 6.],
[3., 4., 5., 6., 7.],
[4., 5., 6., 7., 8.]])

Example #6 - Create a 1D equation from a pandas Series

import gams.transfer as gt
import pandas as pd
s = pd.Series(index=["a", "b", "c"], data=[i + 1 for i in range(3)])
m = gt.Container()
e = gt.Equation(m, "e", "eq", domain=["*"], records=s, uels on axes=True)
In [1]: e.records
Out[1]:

uni level marginal lower upper scale
0 a 1.0 0.0 -inf inf 1.0
1 b 2.0 0.0 -inf inf 1.0
2 c 3.0 0.0 -inf inf 1.0

Note

transfer will assume that the level value is being set if attributes cannot be found in the axes
(same behavior when setting Variables)

Example #7 - Create a 1D equation from a pandas Series (set only the marginal)

import gams.transfer as gt
import pandas as pd
NOTE: we include the "marginal" label in level 1 of the MultiIndex
s = pd.Series(

index=pd.MultiIndex.from product([["a", "b", "c"], ["marginal"]]),
data=[i + 1 for i in range(3)],

)
m = gt.Container()
e = gt.Equation(m, "e", "eq", domain=["*"], records=s, uels on axes=True)
In [1]: v.records
Out[1]:

uni level marginal lower upper scale
0 a 0.0 1.0 -inf inf 1.0
1 b 0.0 2.0 -inf inf 1.0
2 c 0.0 3.0 -inf inf 1.0

Example #8 - Create a 2D equation from a DataFrame (uels on axes=True)

import gams.transfer as gt
import pandas as pd
import numpy as np
dim1 = [f"d{i}" for i in range(2)]
dim2 = [f"e{i}" for i in range(2)]
dim3 = [f"f{i}" for i in range(2)]
dim4 = [f"g{i}" for i in range(2)]
rng = np.random.default rng(seed=100)
df = pd.DataFrame(

7.5 Python API 3401

data=rng.uniform(size=(4, 4)),
index=pd.MultiIndex.from product([dim1, dim2]),
columns=pd.MultiIndex.from product([dim3, dim4]),

)
In [1]: df
Out[1]:

f0 f1
g0 g1 g0 g1

d0 e0 0.834982 0.596554 0.288863 0.042952
e1 0.973654 0.596472 0.790263 0.910339

d1 e0 0.688154 0.189991 0.981479 0.284740
e1 0.629273 0.581036 0.599912 0.535248

m = gt.Container()
e = gt.Equation(m, "e", "eq", domain=["*"] * 4, records=df, uels on axes=True)
In [8]: e.records
Out[8]:

uni 0 uni 1 uni 2 uni 3 level marginal lower upper scale
0 d0 e0 f0 g0 0.834982 0.0 -inf inf 1.0
1 d0 e0 f0 g1 0.596554 0.0 -inf inf 1.0
2 d0 e0 f1 g0 0.288863 0.0 -inf inf 1.0
3 d0 e0 f1 g1 0.042952 0.0 -inf inf 1.0
4 d0 e1 f0 g0 0.973654 0.0 -inf inf 1.0
5 d0 e1 f0 g1 0.596472 0.0 -inf inf 1.0
6 d0 e1 f1 g0 0.790263 0.0 -inf inf 1.0
7 d0 e1 f1 g1 0.910339 0.0 -inf inf 1.0
8 d1 e0 f0 g0 0.688154 0.0 -inf inf 1.0
9 d1 e0 f0 g1 0.189991 0.0 -inf inf 1.0
10 d1 e0 f1 g0 0.981479 0.0 -inf inf 1.0
11 d1 e0 f1 g1 0.284740 0.0 -inf inf 1.0
12 d1 e1 f0 g0 0.629273 0.0 -inf inf 1.0
13 d1 e1 f0 g1 0.581036 0.0 -inf inf 1.0
14 d1 e1 f1 g0 0.599912 0.0 -inf inf 1.0
15 d1 e1 f1 g1 0.535248 0.0 -inf inf 1.0

Directly Set Records

As with set, parameters and variables, the primary advantage of the setRecords method is that transfer
will convert many different (and convenient) data types into the standard data format (a Pandas
DataFrame). Users that require higher performance will want to directly pass the Container a reference
to a valid Pandas DataFrame, thereby skipping some of these computational steps. This places more
burden on the user to pass the data in a valid standard form, but it speeds the records setting process
and it avoids making a copy of the data in memory. In this section we walk the user through an example
of how to set records directly.

Example #1 - Correctly set records (directly)

import gams.transfer as gt
import pandas as pd
import numpy as np
df = pd.DataFrame(

data=[
("h" + str(h), "m" + str(m), "s" + str(s))
for h in range(8760)
for m in range(60)
for s in range(60)

],
columns=["h", "m", "s"],

)
it is necessary to specify all variable attributes if setting records directly
NOTE: all numeric data must be type float
df["level"] = np.random.uniform(0, 100, len(df))
df["marginal"] = 0.0
df["lower"] = gt.SpecialValues.NEGINF
df["upper"] = gt.SpecialValues.POSINF
df["scale"] = 1.0
m = gt.Container()
hrs = gt.Set(m, "h", records=df["h"].unique())
mins = gt.Set(m, "m", records=df["m"].unique())
secs = gt.Set(m, "s", records=df["s"].unique())
df["h"] = df["h"].astype(hrs.records["uni"].dtype)
df["m"] = df["m"].astype(mins.records["uni"].dtype)
df["s"] = df["s"].astype(secs.records["uni"].dtype)
a = gt.Equation(m, "a", "eq", domain=[hrs, mins, secs])
set records
a.records = df
In [1]: e.isValid()
Out[1]: True

3402 Application Programming Interfaces

Attention

All numeric data in the records will need to be type float in order to maintain a valid symbol.

In this example we create a large equation (31,536,000 records and 8880 unique domain elements) and
assign it to a variable with a.records. transfer requires that all domain columns must be a categorical
data type, furthermore this categorical must be ordered. The records setter function does very little work
other than checking if the object being set is a DataFrame. This places more responsibility on the user to
create a DataFrame that complies with the standard format. In Example #1 we take care to properly
reference the categorical data types from the domain sets – and in the end a.isValid() = True. As with
Set and Parameters, users can use the .isValid(verbose=True) method to debug any structural issues.

Generate Equation Records

Generating the initial pandas.DataFrame object could be difficult for Equation symbols that have a large
number of records and a small number of UELs – these higher dimensional symbols will benefit from
the generateRecords convenience function. Internally, generateRecords computes the dense Cartesian
product of all the domain sets that define a symbol (generateRecords will only work on symbols where
<symbol>.domain type == "regular").

Example #1 - Create a large (dense) 4D equation

import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i", records=[f"i{i}" for i in range(50)])
j = gt.Set(m, "j", records=[f"j{i}" for i in range(50)])
k = gt.Set(m, "k", records=[f"k{i}" for i in range(50)])
l = gt.Set(m, "l", records=[f"l{i}" for i in range(50)])
create and define the symbol ‘a‘ with ‘regular‘ domains
a = gt.Equation(m, "a", "eq", [i, j, k, l])
generate the records
a.generateRecords()
In [1]: a.isValid()
Out[1]: True
In [2]: a.records
Out[2]:

i j k l level marginal lower upper scale
0 i0 j0 k0 l0 0.470248 0.0 -inf inf 1.0
1 i0 j0 k0 l1 0.924286 0.0 -inf inf 1.0
2 i0 j0 k0 l2 0.347550 0.0 -inf inf 1.0
3 i0 j0 k0 l3 0.937009 0.0 -inf inf 1.0
4 i0 j0 k0 l4 0.050716 0.0 -inf inf 1.0
...
6249995 i49 j49 k49 l45 0.385032 0.0 -inf inf 1.0
6249996 i49 j49 k49 l46 0.029305 0.0 -inf inf 1.0
6249997 i49 j49 k49 l47 0.440716 0.0 -inf inf 1.0
6249998 i49 j49 k49 l48 0.432931 0.0 -inf inf 1.0
6249999 i49 j49 k49 l49 0.157107 0.0 -inf inf 1.0
[6250000 rows x 9 columns]

Note

In Example #1 a large 4D equation was generated – by default, only the level value of these records
are randomly drawn from the interval [0,1] (uniform distribution). Other variable attributes take
the default record value.

As with Variables, it is possible to generate a sparse variable with the density argument to
generateRecords. We extend this example by passing our own custom func argument that will control
the behavior of the value columns. The func argument accepts a dict of callables (i.e., a reference to
a function).

7.5 Python API 3403

Example #2 - Create a large (sparse) 4D equation with normally distributed values

import gams.transfer as gt
import numpy as np
create a custom function to pass to ‘generateRecords‘
def level dist(size):

return np.random.normal(loc=10.0, scale=2.3, size=size)
def marginal dist(size):

return np.random.normal(loc=0.5, scale=0.1, size=size)
m = gt.Container()
i = gt.Set(m, "i", records=[f"i{i}" for i in range(50)])
j = gt.Set(m, "j", records=[f"j{i}" for i in range(50)])
k = gt.Set(m, "k", records=[f"k{i}" for i in range(50)])
l = gt.Set(m, "l", records=[f"l{i}" for i in range(50)])
create and define the symbol ‘a‘ with ‘regular‘ domains
a = gt.Equation(m, "a", "eq", [i, j, k, l])
generate the records
a.generateRecords(density=0.05, func={"level":level dist, "marginal":marginal dist})
In [1]: a.isValid()
Out[1]: True
In [12]: a.records
Out[12]:

i j k l level marginal lower upper scale
0 i0 j0 k0 l36 11.105235 0.468989 -inf inf 1.0
1 i0 j0 k0 l40 5.697361 0.478019 -inf inf 1.0
2 i0 j0 k1 l17 11.900784 0.473814 -inf inf 1.0
3 i0 j0 k1 l24 10.105931 0.456925 -inf inf 1.0
4 i0 j0 k1 l31 8.444142 0.490966 -inf inf 1.0
...
312495 i49 j49 k47 l17 11.523186 0.508001 -inf inf 1.0
312496 i49 j49 k47 l20 9.341183 0.739237 -inf inf 1.0
312497 i49 j49 k47 l26 10.705808 0.581103 -inf inf 1.0
312498 i49 j49 k47 l32 7.910963 0.479655 -inf inf 1.0
312499 i49 j49 k49 l8 11.800414 0.628040 -inf inf 1.0
[312500 rows x 9 columns]
In [3]: a.records["level"].mean()
Out[3]: 10.004072307451391
In [4]: a.records["level"].std()
Out[4]: 2.292569938350144
In [5]: a.records["marginal"].mean()
Out[5]: 0.49970172269778
In [6]: a.records["marginal"].std()
Out[6]: 0.09998772109802055

Note

The custom callable function reference must expose a size argument. It might be tedious to
know the exact number of the records that will be generated, especially if a fractional density is
specified; therefore, the generateRecords method will pass in the correct size automatically. Users
are encouraged to use the Numpy suite of random distributions when generating samples – custom
functions have the potential to be computationally burdensome if a symbol has a large number of
records.

Alias

There are two different ways to create a GAMS alias and add it to a Container.

1. Use Alias constructor

2. Use the Container method addAlias (which internally calls the Alias constructor)

Constructor

Constructor Arguments

3404 Application Programming Interfaces

Argument Type Description Required Default

alias with Set object set object from which to create an alias Yes -

container Container A reference to the Container object that the
symbol is being added to

Yes -

name str Name of symbol Yes -

Note

The Alias property alias with can be updated through the object constructor (a new object will
not be created) if a symbol of the same name already exists in the container.

Example - Creating an alias from a set

transfer only stores the reference to the parent set as part of the alias structure – most properties that
are called from an alias object simply point to the properties of the parent set (with the exception of
container, name, and alias with). It is possible to create an alias from another alias object. In this
case a recursive search will be performed to find the root parent set – this is the set that will ultimately
be stored as the alias with property. We can see this behavior in the following example:
import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i", records=["i" + str(i) for i in range(5)])
ip = gt.Alias(m, "ip", i)
ipp = gt.Alias(m, "ipp", ip)
In [1]: ip.alias with.name
Out[1]: ’i’
In [2]: ipp.alias with.name
Out[2]: ’i’

Properties

Property Description Type Special Setter Be-
havior

alias with aliased object Set -

container reference to the
Container that the
symbol belongs to

Container -

description description of symbol str -

dimension dimension of symbol int setting is a shorthand
notation to create
["∗"] ∗ n domains in
symbol

domain list of domains given ei-
ther as string (∗ for uni-
verse set) or as reference
to the Set/Alias object

list, str, or
Set/Alias

-

domain forwarding flag that forces set ele-
ments to be recursively
included in all parent
sets (i.e., implicit set
growth). Can pass as
a list of bool to con-
trol which domains to
forward.

bool or list no effect after records
have been set

7.5 Python API 3405

Property Description Type Special Setter Be-
havior

domain labels column headings for the
records DataFrame

list of str will add a
<dimension> tag

to user supplied column
names (if not unique)

domain names string version of domain
names

list of str -

domain type none, relaxed or
regular depending on
state of domain links

str -

is singleton if symbol is a singleton
set

bool -

modified Flag that identifies if
the Alias has been
modified

bool -

name name of symbol str sets the GAMS name of
the symbol

number records number of symbol
records (i.e., returns
len(self.records) if
not None)

int -

records the main symbol
records

pandas.DataFrame responsive to
domain forwarding

state

summary output a dict of only
the metadata

dict -

Methods

Method Description Arguments/Defaults Returns

addUELs adds UELs to the par-
ent set dimensions. If
dimensions is None then
add UELs to all dimen-
sions. ∗∗ All trailing
whitespace is trimmed ∗∗

uels (str, list)
dimensions=None (int,
list, None)

None

3406 Application Programming Interfaces

Method Description Arguments/Defaults Returns

equals Used to compare the
symbol to another sym-
bol. If check uels=True

then check both used
and unused UELs and
confirm same order, oth-
erwise only check used
UELs in data and do
not check UEL order. If
check element text=True

then check that all set
elements have the same
descriptive element
text, otherwise skip. If
check meta data=True

then check that symbol
name and description
are the same, otherwise
skip. If verbose=True

will return an exception
from the asserter describ-
ing the nature of the
difference.

check uels=True

(bool)
check element text=True

(bool)
check meta data=True

(bool)
verbose=False (bool)

bool

capitalizeUELs will capitalize all UELs in
the parent set or a subset
of specified dimensions

in the parent set, can be
chain with other ∗UELs
string operations

dimensions=None (int,
list, or None) - if None,
assumes all symbols

self

casefoldUELs will casefold all UELs in
the parent set or a subset
of specified dimensions

in the parent set, can be
chain with other ∗UELs
string operations

dimensions=None (int,
list, or None) - if None,
assumes all symbols

self

countDomainViolations returns the count of how
many records in the par-
ent set contain at least
one domain violation

- int

countDuplicateRecords returns the count of how
many (case insensitive)
duplicate records exist in
the parent set

- int

dropDomainViolations drop records from the
parent set that contain
a domain violation

- None

7.5 Python API 3407

Method Description Arguments/Defaults Returns

dropDuplicateRecords drop records with (case
insensitive) duplicate do-
mains from the parent set
– keep argument can take
values of ”first” (keeps
the first instance of a
duplicate record), ”last”
(keeps the last instance
of a record), or False

(drops all duplicates in-
cluding the first and last)

keep="first" (str,
False)

None

findDomainViolations get a view of the records
DataFrame that contain
any domain violations

- pandas.DataFrame

findDuplicateRecords get a view of the records
DataFrame from the par-
ent set that contain any
(case insensitive) dupli-
cate domains – keep ar-
gument can take values
of ”first” (finds all dupli-
cates while keeping the
first instance as unique),
”last” (finds all dupli-
cates while keeping the
last instance as unique),
or False (finds all dupli-
cates)

keep="first" (str,
False)

pandas.DataFrame

getDomainViolations returns a list of
DomainViolation ob-
jects if any (None
otherwise)

- list or None

getSparsity get the sparsity of the
symbol w.r.t the cardinal-
ity

- float

getUELs gets UELs from the
parent set dimensions.
If dimensions is None

then get UELs from all
dimensions (maintains
order). The argument
codes accepts a list
of str UELs and will
return the correspond-
ing int; must specify
a single dimension if
passing codes. Returns
only UELs in the data
if ignore unused=True,
otherwise return all
UELs.

dimensions=None (int,
list, None)
codes=None (int, list,
None)
ignore unused=False

(bool)

list

hasDomainViolations returns True if there are
domain violations in the
records of the parent set,
returns False if not.

- bool

3408 Application Programming Interfaces

Method Description Arguments/Defaults Returns

hasDuplicateRecords returns True if there are
(case insensitive) dupli-
cate records in the parent
set, returns False if not.

- bool

isValid checks if the symbol
is in a valid format,
throw exceptions if
verbose=True, re-check
a symbol if force=True

verbose=False

force=True

bool

ljustUELs will left justify all UELs
in the parent set or
a subset of specified
dimensions in the par-
ent set, can be chain with
other ∗UELs string oper-
ations

length (int)
fill character=None -
if None, assumes " "

dimensions=None (int,
list, or None) - if None,
assumes all symbols

self

lowerUELs will lowercase all UELs in
the parent set or a subset
of specified dimensions

in the parent set, can be
chain with other ∗UELs
string operations

dimensions=None (int,
list, or None) - if None,
assumes all symbols

self

lstripUELs will left strip whitespace
from all UELs in the par-
ent set or a subset of spec-
ified dimensions in the
parent set, can be chain
with other ∗UELs string
operations

dimensions=None (int,
list, or None) - if None,
assumes all symbols

self

pivot Convenience function to
pivot records into a new
shape (only symbols with
>1D can be pivoted).
If index is None then
it is set to dimensions
[0..dimension-1]. If
columns is None then
it is set to the last di-
mension. Missing val-
ues in the pivot will take
the value provided by
fill value

index=None (str, list,
None)
columns=None (str,
list, None)
fill value=None (int,
float, str)

pd.DataFrame

removeUELs removes UELs that ap-
pear in the parent set
dimensions, If uels is
None then remove all un-
used UELs (categories).
If dimensions is None

then operate on all di-
mensions.

uels=None (str, list,
None)
dimensions=None (int,
list, None)

bool

7.5 Python API 3409

Method Description Arguments/Defaults Returns

renameUELs renames UELs (case-
sensitive) that ap-
pear in the parent
set dimensions. If
dimensions is None

then operate on all di-
mensions of the symbol.
If allow merge=True,
the categorical object
will be re-created to
offer additional data
flexibility. ∗∗ All trailing
whitespace is trimmed
∗∗

uels (str, list, dict)
dimensions (int, list,
None)
allow merge=False

(bool)

None

reorderUELs reorders the UELs in the
parent set dimensions.
If uels is None, reorder
UELs to data order and
append any unused cate-
gories. If dimensions is
None then reorder UELs
in all dimensions of the
parent set.

uels (str, list, dict,
None)
dimensions (int, list,
None)

None

rjustUELs will right justify all UELs
in the parent set or
a subset of specified
dimensions in the par-
ent set, can be chain with
other ∗UELs string oper-
ations

length (int)
fill character=None -
if None, assumes " "

dimensions=None (int,
list, or None) - if None,
assumes all symbols

self

rstripUELs will right strip whites-
pace from all UELs in
the parent set or a subset
of specified dimensions

in the parent set, can be
chain with other ∗UELs
string operations

dimensions=None (int,
list, or None) - if None,
assumes all symbols

self

setRecords main convenience
method to set standard
pandas.DataFrame

formatted records. If
uels on axes=True

setRecords will assume
that all domain infor-
mation is contained in
the axes of the pandas
object – data will be
flattened (if necessary).

records (many types) None

3410 Application Programming Interfaces

Method Description Arguments/Defaults Returns

setUELs set the UELs for par-
ent set dimensions. If
dimensions is None then
set UELs for all dimen-
sions. If rename=True,
then the old UEL names
will be renamed with the
new UEL names. ∗∗
All trailing whitespace is
trimmed ∗∗

uels (str, list)
dimensions=None (int,
list, None)
rename=False (bool)

None

stripUELs will strip whitespace
from all UELs in the
parent set or a subset of
specified dimensions in
the parent set, can be
chain with other ∗UELs
string operations

dimensions=None (int,
list, or None) - if None,
assumes all symbols

self

titleUELs will title (capitalize all
individual words) in all
UELs in the parent set
or a subset of specified
dimensions in the par-
ent set, can be chain with
other ∗UELs string oper-
ations

dimensions=None (int,
list, or None) - if None,
assumes all symbols

self

toList convenience method to
return symbol records as
a Python list

include element text=False

(bool)
list

upperUELs will uppercase all UELs
in the parent set or
a subset of specified
dimensions in the par-
ent set, can be chain with
other ∗UELs string oper-
ations

dimensions=None (int,
list, or None) - if None,
assumes all symbols

self

Adding Alias Records

The linked structure of Aliases offers some unique opportunities to access some of the setter functionality
of the parent set. Specifically, transfer allows the user to change the domain, description, dimension,
and records of the underlying parent set as a shorthand notation. We can see this behavior if we look at
a modified Example #1 from Adding Set Records.

Example - Creating set records through an alias link

import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i")
ip = gt.Alias(m, "ip",i)
ip.description = "adding new descriptive set text"
ip.domain = ["*", "*"]
ip.setRecords([("i" + str(i), "j" + str(j)) for i in range(3) for j in range(3)])
In [1]: i.description
Out[1]: ’adding new descriptive set text’
In [2]: i.domain
Out[2]: [’*’, ’*’]
In [3]: i.records

7.5 Python API 3411

Out[3]:
uni 0 uni 1 element text

0 i0 j0
1 i0 j1
2 i0 j2
3 i1 j0
4 i1 j1
5 i1 j2
6 i2 j0
7 i2 j1
8 i2 j2

Note

An alias .isValid()=True when the underlying parent set is also valid – if the parent set is removed
from the Container the alias will no longer be valid.

UniverseAlias

There are two different ways to create a GAMS UniverseAlias (an alias to the universe) and add it to a
Container.

1. Use UniverseAlias constructor

2. Use the Container method addUniverseAlias (which internally calls the UniverseAlias construc-
tor)

Constructor

Constructor Arguments

Argument Type Description Required Default

container Container A reference to the Container object that the
symbol is being added to

Yes -

name str Name of symbol Yes -

Example - Creating an alias to the universe

In GAMS it is possible to create aliases to the universe (i.e., the entire list of UELs) with the syntax:

set i / i1, i2 /;

alias(h,*);

set j / j1, j2 /;

In this small example, h would be associated with all four UELs (i1, i2, j1 and j2) even though set j

was defined after the alias declaration. transfer mimics this behavior with the UniverseAlias class.
Internally, the records attribute will always call the <Container>.getUELs() and build the Pandas
DataFrame on the fly. The UniverseAlias class is fundamentally different from the Alias class because
it does not point to a parent set at all; it is not possible to perform operations (like setRecords or

3412 Application Programming Interfaces

findDomainViolations) on the parent set through a UniverseAlias (because there is no parent set).
This means that a UniverseAlias can be created by only defining the symbol name. We can see this
behavior in the following example:
import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i", records=["i1", "i2"])
h = gt.UniverseAlias(m, "h")
j = gt.Set(m, "j", records=["j1", "j2"])
-- alternative syntax --
m = gt.Container()
m.addSet("i", records=["i1", "i2"])
m.addUniverseAlias("h")
m.addSet("j", records=["j1", "j2"])
In [1]: m.data
Out[1]:
{’i’: <Set ‘i‘ (0x7f9598a3bd90)>,
’h’: <UniverseAlias ‘h‘ (0x7f9598a61690)>,
’j’: <Set ‘j‘ (0x7f95b9359cc0)>}

In [2]: h.records
Out[2]:

uni
0 i1
1 i2
2 j1
3 j2

Note

Unlike other sets, the universe does not hold on to set element text, thus the returned DataFrame

for the UniverseAlias will only have 1 column.

Properties

Property Description Type Special Setter Behavior

alias with always ∗ str -

container reference to the Container

that the symbol belongs to
Container -

description always Aliased with ∗ str -

dimension always 1 int -

domain always ["∗"] list of str -

domain labels always ["∗"] list of str -

domain names always ["∗"] list of str -

domain type always none str -

is singleton always False bool -

modified flag that identifies if the
UniverseAlias has been
modified

bool -

name name of symbol str sets the GAMS name of the
symbol

number records number of symbol records
(i.e., returns len(records) if
not None)

int -

records the main symbol records pandas.DataFrame -

summary output a dict of only the
metadata

dict -

Methods

7.5 Python API 3413

Method Description Arguments/Defaults Returns

equals Used to compare the sym-
bol to another symbol. If
check uels=True then check
both used and unused UELs and
confirm same order, otherwise
only check used UELs in data
and do not check UEL order.
If check element text=True

then check that all set elements
have the same descriptive ele-
ment text, otherwise skip. If
check meta data=True then
check that symbol name and
description are the same, other-
wise skip. If verbose=True will
return an exception from the
asserter describing the nature of
the difference.

check uels=True (bool)
check element text=True

(bool)
check meta data=True (bool)
verbose=False (bool)

bool

getSparsity always 0.0 - float

getUELs gets UELs from the Container.
Returns only UELs in the data if
ignore unused=True, otherwise
return all UELs.

ignore unused=False (bool) list

isValid checks if the symbol is in a
valid format, throw exceptions if
verbose=True, re-check a symbol
if force=True

verbose=False

force=True

bool

pivot Convenience function to pivot
records into a new shape
(only symbols with >1D can
be pivoted). If index is None

then it is set to dimensions
[0..dimension-1]. If columns

is None then it is set to the last
dimension. Missing values in the
pivot will take the value provided
by fill value

index=None (str, list, None)
columns=None (str, list,
None)
fill value=None (int, float,
str)

pd.DataFrame

toList convenience method to return
symbol records as a Python list

- list

DomainViolation

DomainViolation objects are convenient containers that store information about the location of domain
violations in a symbol. These objects are computed dynamically with the getDomainViolations method
and should not be instantiated by the user (they are read-only, to the extent that this is possible in
Python). However, the user may be interested in some of the information that they contain.

Constructor

Constructor Arguments/Properties

3414 Application Programming Interfaces

Argument Type Description Required Default

symbol Symbol A reference to the Symbol

object that has a domain vi-
olation

Yes -

dimension int An index to the dimension
of the symbol where the do-
main violation exists

Yes -

domain Set, Alias or
UniverseAlias

A reference to the symbol do-
main that is the source of the
domain violation

Yes -

violations list A list of all the domain ele-
ments that are causing viola-
tions

Yes -

7.5.4.8 Additional Topics

Validating Data

transfer requires that the records for all symbols exist in a standard format (Standard Data Formats)
in order for them to be understood by the Container. It is certainly possible that the data could end up
in a state that is inconsistent with the standard format (especially if setting symbol attributes directly).
transfer includes the .isValid() method in order to determine if a symbol is structurally valid – this
method returns a bool. This method does not guarantee that a symbol will be successfully written to
either GDX or GMD, other data errors (duplicate records, long UEL names, or domain violations) could
exist that are not tested in .isValid().

For example, we create two valid sets and then check them with .isValid() to be sure.

Note

It is possible to run .isValid() on both the Container as well as the symbol object – .isValid()

will also return a bool if there are any invalid symbols in the Container object.

Example (valid data)

import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i", records=["seattle", "san-diego", "washington dc"])
j = gt.Set(m, "j", i, records=["san-diego", "washington dc"])
In [1]: i.isValid()
Out[1]: True
In [2]: j.isValid()
Out[2]: True
In [3]: m.isValid()
Out[3]: True

The .isValid() method checks:

1. If the symbol belongs to a Container

2. If all domain set symbols exist in the Container

3. If all domain set symbols objects are valid

4. If any domain set is also a singleton set (not allowed in GAMS)

5. If records are a DataFrame (or None)

7.5 Python API 3415

6. If the records DataFrame is the right number of columns (based on symbol dimension)

7. If the symbol is a scalar, then ensure there is only one record (row) in the DataFrame

8. If records column headings are unique

9. If any symbol attribute columns are missing or out of order

10. If all domain columns are type category

11. If all domain categories are type str

12. If all data columns are type float

Custom Column Headings

The names of the domain columns are flexible, but transfer requires unique column names. Users are
encouraged to change the column headings of the underlying dataframe by using the domain labels prop-
erty. Using this property will ensure that unique column names are generated by adding a <dimension>
tag to the end of any user supplied column names. The following examples show this behavior.

Attention

All ∗ domains are recast as uni. This allows users to access the column data with both the Pandas
bracket and/or dot notation (i.e., df["uni"] or df.uni).

Column heading behavior at symbol instantiation

The setRecords (which is called internally at symbol instantiation) method will set default domain labels

if they were not provided by the user. The only way for a user to provide domain labels with setRecords

is by passing in a Pandas DataFrame object. The <dimension> tag will be added to all domain labels in
order to make all domain names unique – this tag is added to all dimensions if any subset of the domain
names are non-unique.
import gams.transfer as gt
import pandas as pd
m = gt.Container()
i = gt.Set(m, "i", records=["i1", "i2", "i3"])
define a symbol with unique domain names
a = gt.Parameter(

m, "a", [i, "*"], records=[("i1", "u1", 1), ("i2", "u2", 1), ("i3", "u3", 1)]
)
define a symbol with NON-unique domain names
b = gt.Parameter(

m, "b", [i, i], records=[("i1", "i1", 1), ("i2", "i2", 1), ("i3", "i3", 1)]
)
define a symbol from a dataframe that already has column names
df = pd.DataFrame(

[("i1", "i1", 1), ("i2", "i2", 1), ("i3", "i3", 1)],
columns=["from", "to", "distance"],

)
c = gt.Parameter(m, "c", [i, i], records=df)
In [1]: m.isValid()
Out[1]: True
In [2]: i.records
Out[2]:

uni element text
0 i1
1 i2
2 i3
In [3]: a.records
Out[3]:

i uni value
0 i1 u1 1.0
1 i2 u2 1.0
2 i3 u3 1.0
In [4]: b.records

3416 Application Programming Interfaces

Out[4]:
i 0 i 1 value

0 i1 i1 1.0
1 i2 i2 1.0
2 i3 i3 1.0
In [5]: c.records
Out[5]:

from to value
0 i1 i1 1.0
1 i2 i2 1.0
2 i3 i3 1.0

Customizing column headings

Many users may want to output the GAMS DataFrame directly to another format (CSV, etc.) and may
wish to create customized DataFrame column headings for readability. User can do this by directly setting
the domain labels property, as seen in the following example.

Attention

Users are encouraged to use the <symbol>.domain labels property instead of setting the
<DataFrame>.columns directly. The avoids the possibility of out-of-sync symbol validity. The
domain labels property does not store anything, calling this property simply returns the exact
domain labels from the DataFrame.

import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i", records=["i1", "i2", "i3"])
define a symbol with unique domain names
a = gt.Parameter(

m, "a", [i, "*"], records=[("i1", "u1", 1), ("i2", "u2", 1), ("i3", "u3", 1)]
)
customize the headings to allow more friendly output (to csv, etc.)
a.domain labels = ["start", "destination"]
In [1]: m.isValid()
Out[1]: True
In [2]: a.records
Out[2]:

start destination value
0 i1 u1 1.0
1 i2 u2 1.0
2 i3 u3 1.0

Converting Records

All data in transfer will be stored as a Pandas DataFrame – however, it is desirable to have easy access
to data without the additional infrastructure that comes with the DataFrame object. We include to∗
methods (available for all symbol types) that will return other data structures. The following examples
show the behavior of toValue, toList, and toDict (previous examples showed examples of toDense and
toSparseCoo).

Examples of toList

import gams.transfer as gt
import pandas as pd
m = gt.Container()
i = gt.Set(m, "i", records=["i0", "i1", "i2"])
ii = gt.Set(

m, "ii", ["*", "*"], records=[(f"i{i}", f"i{i}", f"element text for i{i}") for i in range(3)]
)
s = gt.Set(m, "s", i, is singleton=True, records="i1")
u = gt.UniverseAlias(m, "u")
ip = gt.Alias(m, "ip", i)
a0 = gt.Parameter(m, "a0", records=1)
a1 = gt.Parameter(m, "a1", i, records=[("i1", 1), ("i2", 2)])

7.5 Python API 3417

a2 = gt.Parameter(m, "a2", [i, i], records=[("i1", "i1", 1), ("i2", "i1", 2)])
v0 = gt.Variable(m, "v0", "free", records=1)
v1 = gt.Variable(

m,
"v1",
"free",
i,
records=pd.DataFrame([("i1", 1), ("i2", 2)], columns=["i", "level"]),

)
v2 = gt.Variable(

m,
"v2",
"free",
[i, i],
records=(

pd.DataFrame(
[("i1", "i1", 1), ("i2", "i1", 2)],
columns=["i", "i", "level"],

)
),

)
In [1]: i.toList()
Out[1]: [’i0’, ’i1’, ’i2’]
In [2]: ii.toList()
Out[2]: [(’i0’, ’i0’), (’i1’, ’i1’), (’i2’, ’i2’)]
In [3]: ii.toList(include element text=True)
Out[3]:
[(’i0’, ’i0’, ’element text for i0’),
(’i1’, ’i1’, ’element text for i1’),
(’i2’, ’i2’, ’element text for i2’)]

In [4]: s.toList()
Out[4]: [’i1’]
In [5]: u.toList()
Out[5]: [’i0’, ’i1’, ’i2’]
In [6]: ip.toList()
Out[6]: [’i0’, ’i1’, ’i2’]
In [7]: a0.toList()
Out[7]: [1.0]
In [8]: a1.toList()
Out[8]: [(’i1’, 1.0), (’i2’, 2.0)]
In [9]: a2.toList()
Out[9]: [(’i1’, ’i1’, 1.0), (’i2’, ’i1’, 2.0)]
In [10]: v0.toList() # default is to include only the "level"
Out[10]: [1.0]
In [11]: v0.toList("marginal")
Out[11]: [0.0]
In [12]: v1.toList() # default is to include only the "level"
Out[12]: [(’i1’, 1.0), (’i2’, 2.0)]
In [13]: v1.toList(["level", "marginal"])
Out[13]: [(’i1’, 1.0, 0.0), (’i2’, 2.0, 0.0)]

Examples of toValue

In [1]: a0.toValue()
Out[1]: 1.0
In [2]: a1.toValue()
Out[2]: TypeError: Cannot extract value data for non-scalar symbols (symbol dimension is 1)
In [3]: v0.toValue() # default is to only include the "level"
Out[3]: 1.0
In [4]: v0.toValue("marginal")
Out[4]: 0.0

Examples of toDict

In [1]: i.toDict()
Out[1]: AttributeError: ’Set’ object has no attribute ’toDict’
In [2]: a0.toDict()
Out[2]: TypeError: Symbol ‘a0‘ is a scalar and cannot be converted into a dict.
In [3]: a1.toDict()
Out[3]: {’i1’: 1.0, ’i2’: 2.0}
In [4]: a2.toDict()
Out[4]: {(’i1’, ’i1’): 1.0, (’i2’, ’i1’): 2.0}
In [5]: v1.toDict() # default is to only include the "level"
Out[5]: {’i1’: 1.0, ’i2’: 2.0}
In [6]: v1.toDict(["level","marginal"])
Out[6]: {’i1’: {’level’: 1.0, ’marginal’: 0.0}, ’i2’: {’level’: 2.0, ’marginal’: 0.0}}
In [7]: v1.toDict(orient="columns") # this format is useful for recreating Pandas DataFrames
Out[7]: {’i’: {0: ’i1’, 1: ’i2’}, ’level’: {0: 1.0, 1: 2.0}}

3418 Application Programming Interfaces

Comparing Symbols

Sparse GAMS data is inherently unordered. The concept of order is GAMS is governed by the order of
the UELs in the universe set not the order of the records. This differs from the sparse data structures
that we use in transfer (Pandas DataFrames) because each record (i.e., DataFrame row) has an index
(typically 0..n) and can be sorted by this index. Said a slightly different way, two GDX files will be
equivalent if their universe order is the same and the records are the same, however when creating the
GDX file, it is of no consequence what order the records are written in. Therefore, in order to calculate
an equality between two symbols in transfer we must perform a merge operation on the symbol domain
labels – an operation that could be computationally expensive for large symbols.

Attention

The nature of symbol equality in transfer means that a potentially expensive merge operation is
performed, we do not recommend that the equals method be used inside loops or when speed is
critical. It is, however, very useful for data debugging.

A quick example shows the syntax of equals:
m = gt.Container()
i = gt.Set(m, "i", records=[f"i{i}" for i in range(5)], description="set i")
j = gt.Set(m, "j", records=[f"i{i}" for i in range(5)], description="set j")
In [1]: i.equals(j)
Out[1]: False

By default, equals takes the strictest view of symbol ”equality” – everything must be the same. In this
case, the symbol names and descriptions differ between the two sets i and j. We can relax the view of
equality with a combination of argument flags. Comparing the two symbols again, but ignoring the meta
data (i.e., ignoring the symbol name, description and type (if a Variable or Equation)):
In [1]: i.equals(j, check meta data=False)
Out[1]: True

It is also possible to ignore the set element text in equals:
m = gt.Container()
i = gt.Set(m, "i", records=[(f"i{i}", "arlington") for i in range(5)])
j = gt.Set(m, "j", records=[f"i{i}" for i in range(5)])
In [1]: i.records
Out[1]:

uni element text
0 i0 arlington
1 i1 arlington
2 i2 arlington
3 i3 arlington
4 i4 arlington
In [2]: j.records
Out[2]:

uni element text
0 i0
1 i1
2 i2
3 i3
4 i4
In [3]: i.equals(j, check meta data=False, check element text=False)
Out[3]: True

The check uels argument will ensure that the symbol ”universe” is the same (in order and content)
between two symbols, as illustrated in the following example:
m = gt.Container()
i = gt.Set(m, "i", records=["i1", "i2", "i3"])
ip = gt.Set(m, "ip", records=["i3", "i2", "i1"])

Clearly, the two sets i and ip have the same records, but the UEL order is different. If check uels=True

the resulting symbols will not be considered equal – turning this flag off results in equality.
In [1]: i.getUELs()
Out[1]: [’i1’, ’i2’, ’i3’]
In [2]: ip.getUELs()
Out[2]: [’i3’, ’i2’, ’i1’]
In [3]: i.equals(ip, check meta data=False)
Out[3]: False
In [4]: i.equals(ip, check meta data=False, check uels=False)
Out[4]: True

7.5 Python API 3419

Numerical comparisons are enabled for Parameters, Variables and Equations – equality can be flexibly
defined through the equals method arguments. Again, the strictest view of equality is taken as the
default behavior of equals (no numerical tolerances, some limitations exist – see: numpy.isclose for
more details).
m = gt.Container()
i = gt.Set(m, "i", records=["i1", "i2", "i3"])
a = gt.Parameter(m, "a", i, records=[("i1", 1), ("i2", 2), ("i3", 3)])
ap = gt.Parameter(m, "ap", i, records=[("i1", 1 + 1e-9), ("i2", 2), ("i3", 3)])
In [1]: a.equals(ap, check meta data=False)
Out[1]: False
In [2]: a.equals(ap, check meta data=False, atol=1e-8)
Out[2]: True

Attention

The numerical comparison is handled by numpy.isclose, more details can be found in the Numpy
documentation.

In the case of variables and equations, it is possible for the user to confine the numerical comparison
to certain certain attributes (level, marginal, lower, upper and scale) by specifying the columns

argument as the following example illustrates:
m = gt.Container()
a = gt.Variable(m, "a", "free", records=100)
ap = gt.Variable(m, "ap", "free", records=101)
In [1]: a.records
Out[1]:

level marginal lower upper scale
0 100.0 0.0 -inf inf 1.0
In [2]: ap.records
Out[2]:

level marginal lower upper scale
0 101.0 0.0 -inf inf 1.0
In [3]: a.equals(ap, check meta data=False)
Out[3]: False
In [4]: a.equals(ap, check meta data=False, columns="level")
Out[4]: False
In [5]: a.equals(ap, check meta data=False, columns="marginal")
Out[5]: True

Domain Forwarding

GAMS includes the ability to define sets directly from data using the implicit set notation (see:
Implicit Set Definition (or: Domain Defining Symbol Declarations)). This notation has an analogue in
transfer called domain forwarding.

Note

It is possible to recursively update a subset tree in transfer.

Domain forwarding is available as an argument to all symbol object constructors; the user would simply
need to pass domain forwarding=True.

In this example we have raw data that in the dist DataFrame and we want to send the domain information
into the i and j sets – we take care to pass the set objects as the domain for parameter c.
import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i")
j = gt.Set(m, "j")
dist = pd.DataFrame(

[
("seattle", "new-york", 2.5),
("seattle", "chicago", 1.7),
("seattle", "topeka", 1.8),
("san-diego", "new-york", 2.5),
("san-diego", "chicago", 1.8),
("san-diego", "topeka", 1.4),

],
columns=["from", "to", "thousand miles"],

)

https://numpy.org/doc/stable/reference/generated/numpy.isclose.html
https://numpy.org/doc/stable/reference/generated/numpy.isclose.html

3420 Application Programming Interfaces

c = gt.Parameter(m, "c", [i, j], records=dist, domain forwarding=True)
In [1]: i.records
Out[1]:

uni element text
0 seattle
1 san-diego
In [2]: j.records
Out[2]:

uni element text
0 new-york
1 chicago
2 topeka
In [3]: c.records
Out[3]:

i j value
0 seattle new-york 2.5
1 seattle chicago 1.7
2 seattle topeka 1.8
3 san-diego new-york 2.5
4 san-diego chicago 1.8
5 san-diego topeka 1.4

Note

The element order in the sets i and j mirrors that in the raw data.

In this example we show that domain forwarding will also work recursively to update the entire set lineage
– the domain forwarding occurs at the creation of every symbol object. The correct order of elements in
set i is [z, a, b, c] because the records from j are forwarded first, and then the records from k are
propagated through (back to i).
import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i")
j = gt.Set(m, "j", i, records=["z"], domain forwarding=True)
k = gt.Set(m, "k", j, records=["a", "b", "c"], domain forwarding=True)
In [1]: i.records
Out[1]:

uni element text
0 z
1 a
2 b
3 c
In [2]: j.records
Out[2]:

i element text
0 z
1 a
2 b
3 c
In [3]: k.records
Out[3]:

j element text
0 a
1 b
2 c

It is also possible to forward to specific domain sets by passing a list of bool to the domain forwarding

property, as seen in the following example:
import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i")
j = gt.Set(m, "j")
k = gt.Set(m, "k")
ijk = gt.Parameter(

m,
"ijk",
[i, j, k],
records=[("i", "j", "k", 1)],

domain forwarding=[True, False, True],
)
In [1]: i.records
Out[1]:

uni element text
0 i
In [2]: j.records is None
Out[2]: True
In [3]: k.records
Out[3]:

uni element text
0 k

7.5 Python API 3421

Domain Violations

Domain violations occur when domain labels appear in symbol data but they do not appear in the
parent set which the symbol is defined over – attempting to execute a GAMS model when there do-
main violations will lead to compilation errors. Domain violations are found dynamically with the
<Symbol>.findDomainViolations() method.

Note

the findDomainViolations method can be computationally expensive – UELs in GAMS are case
preserving (just like symbol names); additionally, GAMS ignores all trailing white space in UELs
(leading white space is considered significant). As a result, transfer must lowercase all UELs
and then strip any trailing white space before doing the set comparison to locate (and create) any
DomainViolation objects. findDomainViolations should not be used in a loop (nor should any of
its related methods: hasDomainViolations, countDomainViolations, getDomainViolations, or
dropDomainViolations).

In the following example we intentionally create data with domain violations in the a parameter:
m = gt.Container()
i = gt.Set(m, "i", records=["a", "b", "c"])
a = gt.Parameter(m, "a", i, records=[("aa", 1), ("c", 2)])
In [1]: a.findDomainViolations()
Out[1]:

i value
0 aa 1.0
In [2]: a.hasDomainViolations()
Out[2]: True
In [3]: a.countDomainViolations()
Out[3]: 1
In [4]: a.getDomainViolations()
Out[4]: [<DomainViolation at 0x7fb6b83d9630>]

Dynamically locating domain violations allows transfer to return a view of the underlying pandas
dataframe with the problematic domain labels still intact – at this point the user is free to correct issues in
the UELs with any of the ∗UELs methods or by simply dropping any domain violations from the dataframe
completely (the dropDomainViolations method is a convenience function for this operation).

Attention

It is not possible to create a GDX file if symbols have domain violations.

Unused UELs will not result in domain violations.

Attempting to write this container to a GDX file will result in an exception.
m = gt.Container()
i = gt.Set(m, "i", records=["a", "b", "c"])
a = gt.Parameter(m, "a", i, records=[("aa", 1), ("c", 2)])
m.write("out.gdx")
Exception: Encountered data errors with symbol ‘a‘. Possible causes are from duplicate records and/or domain violations.
Use ’hasDuplicateRecords’, ’findDuplicateRecords’, ’dropDuplicateRecords’, and/or ’countDuplicateRecords’ to find/resolve

duplicate records.
Use ’hasDomainViolations’, ’findDomainViolations’, ’dropDomainViolations’, and/or ’countDomainViolations’ to find/resolve

domain violations.
GDX file was not created successfully.

Duplicate Records

Duplicate records can easily appear in large datasets – locating and fixing these records is straightforward
with transfer. transfer includes find∗, has∗, count∗ and drop∗ methods for duplicate records, just
as it has for domain violations.

3422 Application Programming Interfaces

Note

the findDuplicateRecords method can be computationally expensive – UELs in GAMS are case
preserving (just like symbol names); additionally, GAMS ignores all trailing white space in UELs
(leading white space is considered significant). As a result, transfer must lowercase all UELs and
then strip any trailing white space before doing the set comparison to locate duplicate records.
findDuplicateRecords should not be used in a loop (nor should any of its related methods:
hasDuplicateRecords, countDuplicateRecords, or dropDuplicateRecords).

Dynamically locating duplicate records allows transfer to return a view of the underlying pandas
dataframe with the problematic domain labels still intact – at this point the user is free to correct issues in
the UELs with any of the ∗UELs methods or by simply dropping any duplicate records from the dataframe
completely (the dropDuplicateRecords method is a convenience function for this operation).
m = gt.Container()
a = gt.Parameter(

m,
"a",
["*"],
records=[("i" + str(i), float(i)) for i in range(4)]
+ [("j" + str(i), i) for i in range(4)]
+ [("I" + str(i), i) for i in range(4)],

)

Note

The user can decide which duplicate records they would like keep with keep="first" (default),
keep="last", or keep=False (which returns all duplicate records)

In [1]: a.records
Out[1]:

uni value
0 i0 0.0
1 i1 1.0
2 i2 2.0
3 i3 3.0
4 j0 0.0
5 j1 1.0
6 j2 2.0
7 j3 3.0
8 I0 0.0
9 I1 1.0
10 I2 2.0
11 I3 3.0
In [2]: a.findDuplicateRecords()
Out[2]:

uni value
8 I0 0.0
9 I1 1.0
10 I2 2.0
11 I3 3.0
In [3]: a.findDuplicateRecords(keep="last")
Out[3]:

uni value
0 i0 0.0
1 i1 1.0
2 i2 2.0
3 i3 3.0
In [4]: a.findDuplicateRecords(keep=False)
Out[4]:

uni value
0 i0 0.0
1 i1 1.0
2 i2 2.0
3 i3 3.0
8 I0 0.0
9 I1 1.0
10 I2 2.0
11 I3 3.0

Attention

It is not possible to create a GDX file if symbols have duplicate records.

Attempting to write this container to a GDX file will result in an exception.
m = gt.Container()

7.5 Python API 3423

a = gt.Parameter(
m,
"a",
["*"],
records=[("i" + str(i), float(i)) for i in range(4)]
+ [("j" + str(i), i) for i in range(4)]
+ [("I" + str(i), i) for i in range(4)],

)
m.write("out.gdx")
Exception: Encountered data errors with symbol ‘a‘. Possible causes are from duplicate records and/or domain violations.
Use ’hasDuplicateRecords’, ’findDuplicateRecords’, ’dropDuplicateRecords’, and/or ’countDuplicateRecords’ to find/resolve

duplicate records.
Use ’hasDomainViolations’, ’findDomainViolations’, ’dropDomainViolations’, and/or ’countDomainViolations’ to find/resolve

domain violations.
GDX file was not created successfully.

Pivoting Data

It might be convenient to pivot data into a multi-dimensional data structure rather than maintaining the
flat structure in records. A convenience method called pivot is provided for all symbol classes and will
return a pivoted pandas.DataFrame. Pivoting is only available for symbols with more than one dimension.

Example #1 - Pivot a 2D Set

import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i", records=[f"i{i}" for i in range(5)])
j = gt.Set(m, "j", records=[f"j{i}" for i in range(5)])
ij = gt.Set(m, "ij", [i, j])
ij.generateRecords(density=0.25, seed=123)
In [1]: ij.pivot()
Out[1]:

j0 j1 j3 j4
i0 True True False False
i1 True False False False
i2 False False True True
i4 False True False False

Example #2 - Pivot a 3D Set

import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i", records=[f"i{i}" for i in range(5)])
j = gt.Set(m, "j", records=[f"j{i}" for i in range(5)])
iji = gt.Set(m, "iji", [i, j, i])
iji.generateRecords(density=0.25, seed=123)
In [1]: iji.pivot()
Out[1]:

i0 i1 i2 i3 i4
i0 j0 False True True False False

j1 True False False False False
j3 False False False True False
j4 False False True False False

i1 j0 True True False True False
j1 True True False False True
j2 False True False False False
j4 False False False True False

i2 j0 True False False False False
j1 False False True False True
j3 True False False False False

i3 j2 False True True False True
j3 False True False False False
j4 True False True True True

i4 j0 False True False True False
j1 False False False True False
j3 False False False True False
j4 False False False True True

In [2]: iji.pivot(fill value="")
Out[2]:

i0 i1 i2 i3 i4
i0 j0 True True

j1 True
j3 True

3424 Application Programming Interfaces

j4 True
i1 j0 True True True

j1 True True True
j2 True
j4 True

i2 j0 True
j1 True True
j3 True

i3 j2 True True True
j3 True
j4 True True True True

i4 j0 True True
j1 True
j3 True
j4 True True

Note

When pivoting symbols with >2 dimensions, the first [0..(dimension-1)] dimensions will be set to
the index and the last dimension will be pivoted into the columns. This behavior can be customized
with the index and columns arguments.

Example #3 - Pivot a 3D Parameter w/ a fill value

import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i", records=[f"i{i}" for i in range(5)])
j = gt.Set(m, "j", records=[f"j{i}" for i in range(5)])
iji = gt.Parameter(m, "iji", [i, j, i])
iji.generateRecords(density=0.05, seed=123)
In [1]: iji.pivot(fill value="NONE")
Out[1]:

i1 i2 i3 i4
i0 j1 0.682352 NONE NONE NONE

j2 0.053821 NONE 0.22036 NONE
i1 j1 NONE NONE NONE 0.184372
i2 j0 NONE 0.175906 NONE NONE
i3 j4 NONE NONE 0.812095 NONE
In [2]: iji.pivot(fill value=0)
Out[2]:

i1 i2 i3 i4
i0 j1 0.682352 0.000000 0.000000 0.000000

j2 0.053821 0.000000 0.220360 0.000000
i1 j1 0.000000 0.000000 0.000000 0.184372
i2 j0 0.000000 0.175906 0.000000 0.000000
i3 j4 0.000000 0.000000 0.812095 0.000000
In [3]: iji.pivot(fill value=gt.SpecialValues.EPS)
Out[3]:

i1 i2 i3 i4
i0 j1 0.682352 -0.000000 -0.000000 -0.000000

j2 0.053821 -0.000000 0.220360 -0.000000
i1 j1 -0.000000 -0.000000 -0.000000 0.184372
i2 j0 -0.000000 0.175906 -0.000000 -0.000000
i3 j4 -0.000000 -0.000000 0.812095 -0.000000

Example #4 - Pivot (only the marginal values) of a 3D Variable

import gams.transfer as gt
NOTE: custom functions should expose a ’seed’ argument
def marginal values(seed, size):

rng = np.random.default rng(seed)
return rng.normal(5, 1.2, size=size)

m = gt.Container()
i = gt.Set(m, "i", records=[f"i{i}" for i in range(5)])
j = gt.Set(m, "j", records=[f"j{i}" for i in range(5)])
iji = gt.Variable(m, "iji", "free", [i, j, i])
iji.generateRecords(density=0.05, func={"marginal": marginal values}, seed=123)
In [1]: iji.records
Out[1]:

i 0 j 1 i 2 level marginal lower upper scale
0 i0 j1 i1 0.0 3.813054 -inf inf 1.0
1 i0 j2 i1 0.0 4.558656 -inf inf 1.0
2 i0 j2 i3 0.0 6.545510 -inf inf 1.0
3 i1 j1 i4 0.0 5.232769 -inf inf 1.0

7.5 Python API 3425

4 i2 j0 i2 0.0 6.104277 -inf inf 1.0
5 i3 j4 i3 0.0 5.692525 -inf inf 1.0
In [2]: iji.pivot(value="marginal")
Out[2]:

i1 i3 i4 i2
i0 j1 3.813054 0.000000 0.000000 0.000000

j2 4.558656 6.545510 0.000000 0.000000
i1 j1 0.000000 0.000000 5.232769 0.000000
i2 j0 0.000000 0.000000 0.000000 6.104277
i3 j4 0.000000 5.692525 0.000000 0.000000

Describing Data

The methods describeSets, describeParameters, describeVariables, and describeEquations allow
the user to get a summary view of key data statistics. The returned DataFrame aggregates the output
for a number of other methods (depending on symbol type). A description of each Container method is
provided in the following subsections:

describeSets

Argument Type Description Required Default

symbols list, str, NoneType A list of sets in the
Container to include
in the output. de-
scribeSets will include
aliases if they are ex-
plicitly passed by the
user.

No None (if None specified,
will assume all sets –
not aliases)

Returns: pandas.DataFrame

The following table includes a short description of the column headings in the return.

Property / Statistic Description

name name of the symbol

is singleton bool if the set/alias is a singleton set (or an alias of a singleton set)

alias with [OPTIONAL if users passes an alias name as part of symbols] name of the
parent set (for alias only), None otherwise

domain domain labels for the symbol

domain type none, relaxed or regular depending on the symbol state

dimension dimension

number records number of records in the symbol

sparsity 1 - number records/cardinality

Example #1

import gams.transfer as gt
m = gt.Container("trnsport.gdx")
In [1]: m.describeSets()
Out[1]:

name is singleton domain domain type dimension number records sparsity
0 i False [*] none 1 2 None
1 j False [*] none 1 3 None

3426 Application Programming Interfaces

Example #2 – with aliases

import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i", records=["i" + str(i) for i in range(1, 10)])
j = gt.Set(m, "j", records=["j" + str(i) for i in range(1, 10)])
ip = gt.Alias(m, "ip", i)
jp = gt.Alias(m, "jp", j)
In [1]: m.describeSets()
Out[1]:

name is singleton domain domain type dimension number records sparsity
0 i False [*] none 1 9 None
1 j False [*] none 1 9 None
In [2]: m.describeSets(m.listSets() + m.listAliases())
Out[2]:

name is singleton is alias alias with domain domain type dimension number records sparsity
0 i False False None [*] none 1 9 None
1 ip False True i [*] none 1 9 None
2 j False False None [*] none 1 9 None
3 jp False True j [*] none 1 9 None

describeParameters

Argument Type Description Required Default

symbols list, str, NoneType A list of parameters in
the Container to in-
clude in the output

No None (if None specified,
will assume all param-
eters)

Returns: pandas.DataFrame

The following table includes a short description of the column headings in the return.

Property / Statistic Description

name name of the symbol

domain domain labels for the symbol

domain type none, relaxed or regular depending on the symbol state

dimension dimension

number records number of records in the symbol

min min value in data

mean mean value in data

max max value in data

where min domain of min value (if multiple, returns only first occurrence)

where max domain of max value (if multiple, returns only first occurrence)

sparsity 1 - number records/cardinality

Example

import gams.transfer as gt
m = gt.Container("trnsport.gdx")
In [1]: m.describeParameters()
Out[1]:

name domain domain type dimension number records min mean max where min where max
sparsity

0 a [i] regular 1 2 350.000 475.000 600.000 [seattle] [san-diego]
0.0

1 b [j] regular 1 3 275.000 300.000 325.000 [topeka] [new-york]
0.0

7.5 Python API 3427

2 c [i, j] regular 2 6 0.126 0.176 0.225 [san-diego, topeka] [seattle, new-york]
0.0

3 d [i, j] regular 2 6 1.400 1.950 2.500 [san-diego, topeka] [seattle, new-york]
0.0

4 f [] none 0 1 90.000 90.000 90.000 None None
None

describeVariables

Argument Type Description Required Default

symbols list, str, NoneType A list of variables in
the Container to in-
clude in the output

No None (if None specified,
will assume all vari-
ables)

Returns: pandas.DataFrame

The following table includes a short description of the column headings in the return.

Property / Statistic Description

name name of the symbol

type type of variable (i.e., binary, integer, positive, negative, free, sos1,
sos2, semicont, semiint)

domain domain labels for the symbol

domain type none, relaxed or regular depending on the symbol state

dimension dimension

number records number of records in the symbol

sparsity 1 - number records/cardinality

min level min value in the level

mean level mean value in the level

max level max value in the level

where max abs level domain of max(abs(level)) in data

Example

import gams.transfer as gt
m = gt.Container("trnsport.gdx")
In [1]: m.describeVariables()
Out[1]:

name type domain domain type dimension number records sparsity min level mean level max level
where max abs level

0 x positive [i, j] regular 2 6 0.0 0.000 150.000 300.000 [seattle,
chicago]

1 z free [] none 0 1 None 153.675 153.675 153.675
None

describeEquations

Argument Type Description Required Default

symbols list, str, NoneType A list of equations in
the Container to in-
clude in the output

No None (if None specified,
will assume all equa-
tions)

3428 Application Programming Interfaces

Returns: pandas.DataFrame

The following table includes a short description of the column headings in the return.

Property / Statistic Description

name name of the symbol

type type of variable (i.e., binary, integer, positive, negative, free, sos1,
sos2, semicont, semiint)

domain domain labels for the symbol

domain type none, relaxed or regular depending on the symbol state

dimension dimension

number records number of records in the symbol

sparsity 1 - number records/cardinality

min level min value in the level

mean level mean value in the level

max level max value in the level

where max abs level domain of max(abs(level)) in data

Example

import gams.transfer as gt
m = gt.Container("trnsport.gdx")
In [1]: m.describeEquations()
Out[1]:

name type domain domain type dimension number records sparsity min level mean level max level where max abs level
0 cost eq [] none 0 1 None -0.0 0.0 -0.0

None
1 demand geq [j] regular 1 3 0.0 275.0 300.0 325.0

[new-york]
2 supply leq [i] regular 1 2 0.0 350.0 450.0 550.0

[san-diego]

describeAliases

Argument Type Description Required Default

symbols list, str, NoneType A list of alias (only)
symbols in the
Container to include
in the output

No None (if None specified,
will assume all aliases
– not sets)

Returns: pandas.DataFrame

The following table includes a short description of the column headings in the return. All data is referenced
from the parent set that the alias is created from.

Property / Statistic Description

name name of the symbol

alias with name of the parent set (for alias only), None otherwise

is singleton bool if the set/alias is a singleton set (or an alias of a singleton set)

domain domain labels for the symbol

domain type none, relaxed or regular depending on the symbol state

7.5 Python API 3429

Property / Statistic Description

dimension dimension

number records number of records in the symbol

sparsity 1 - number records/cardinality

Example

import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i", records=["i" + str(i) for i in range(5)])
j = gt.Set(m, "j", records=["j" + str(j) for j in range(10)])
ip = gt.Alias(m, "ip", i)
ipp = gt.Alias(m, "ipp", ip)
jp = gt.Alias(m, "jp", j)
In [1]: m.describeAliases()
Out[1]:

name alias with is singleton domain domain type dimension number records sparsity
0 ip i False [*] none 1 5 None
1 ipp i False [*] none 1 5 None
2 jp j False [*] none 1 10 None

Matrix Generation

transfer stores data in a ”flat” format, that is, one record entry per DataFrame row. However, it is
often necessary to convert this data format into a matrix format – transfer enables users to do this with
relative ease using the toDense and the toSparseCoo symbol methods. The toDense method will return
a dense N-dimensional numpy array with each dimension corresponding to the GAMS symbol dimension;
it is possible to output an array up to 20 dimensions (a GAMS limit). The toSparseCoo method will
return the data in a sparse scipy COOrdinate format, which can then be efficiently converted into other
sparse matrix formats.

Attention

Both the toDense and toSparseCoo methods do not transform the underlying DataFrame in any
way, they only return the transformed data.

Note

toSparseCoo will only convert 2-dimensional data to the scipy COOrdinate format. A user interested
in sparse data for an N-dimensional symbol will need to decide how to reshape the dense array in
order to generate the 2D sparse format.

Attention

In order to use the toSparseCoo method the user will need to install the scipy package. Scipy is not
provided with GMSPython.

Both the toDense and toSparseCoo method leverage the indexing that comes along with using
categorical data types to store domain information. This means that linking symbols together (by
passing symbol objects as domain information) impacts the size of the matrix. This is best demonstrated
by a few examples.

3430 Application Programming Interfaces

Example (1D data w/o domain linking (i.e., a relaxed domain))

import gams.transfer as gt
m = gt.Container()
a = gt.Parameter(m, "a", "i", records=[("a", 1), ("c", 3)])
In [1]: a.records
Out[1]:

i value
0 a 1.0
1 c 3.0
In [2]: a.toDense()
Out[2]: array([1., 3.])
In [3]: a.toSparseCoo()
Out[3]:
<1x2 sparse matrix of type ’<class ’numpy.float64’>’

with 2 stored elements in COOrdinate format>

Note that the parameter a is not linked to another symbol, so when converting to a matrix, the indexing
is referenced to the data structure in a.records. Defining a sparse parameter a over a set i allows us
to extract information from the i domain and construct a very different dense matrix, as the following
example shows:

Example (1D data w/ domain linking (i.e., a regular domain))

import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i", records=["a", "b", "c", "d"])
a = gt.Parameter(m, "a", i, records=[("a", 1), ("c", 3)])
In [1]: i.records
Out[1]:

uni element text
0 a
1 b
2 c
3 d
In [2]: a.records
Out[2]:

i value
0 a 1.0
1 c 3.0
In [3]: a.toDense()
Out[3]: array([1., 0., 3., 0.])
In [4]: a.toSparseCoo()
Out[4]:
<1x4 sparse matrix of type ’<class ’numpy.float64’>’

with 2 stored elements in COOrdinate format>

Example (2D data w/ domain linking)

import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i", records=["a", "b", "c", "d"])
a = gt.Parameter(m, "a", [i, i], records=[("a", "a", 1), ("c", "c", 3)])
In [1]: i.records
Out[1]:

uni element text
0 a
1 b
2 c
3 d
In [2]: a.records
Out[2]:

i 0 i 1 value
0 a a 1.0
1 c c 3.0
In [3]: a.toDense()
Out[3]:
array([[1., 0., 0., 0.],

[0., 0., 0., 0.],
[0., 0., 3., 0.],
[0., 0., 0., 0.]])

In [4]: a.toSparseCoo()
Out[4]:
<4x4 sparse matrix of type ’<class ’numpy.float64’>’

with 2 stored elements in COOrdinate format>

7.5 Python API 3431

The Universe Set

A Unique Element (UEL) is an (i,s) pair where i (or index) is an identification number for a (string)
label s. GAMS uses UELs to efficiently store domain entries of a record by storing the UEL ID i of a
domain entry instead of the actual string s. This avoids storing the same string multiple times. The
concept of UELs also exists in Python/Pandas and is called a ”categorical series”. transfer leverages
these types in order to efficiently store strings and enable domain checking within the Python environment.

Each domain column in a DataFrame can be assigned a unique categorical type, the effect is that each sym-
bol maintains its own list of UELs per dimension. It is possible to convert a categorical column to its ID num-
ber representation by using the categorical accessor x.records[<domain column label>].cat.codes;
however, this type of data manipulation is not necessary within transfer, but could be handy when
debugging data.

Pandas offers the possibility to create categorical column types that are ordered or not; transfer relies
exclusively on ordered categorical data types (in order for a symbol to be valid it must have only ordered

categories). By using ordered categories, transfer will order the UEL such that elements appear in the
order in which they appeared in the data (which is how GAMS defines the UEL). transfer allows the
user to reorder the UELs with the uel priority argument in the .write() method.

transfer does not actually keep track of the UEL separately from other symbols in the Container, it
will be created internal to the .write() method and is based on the order in which data is added to the
container. The user can access the current state of the UEL with the .getUELs() container method. For
example, we set a two dimensional set:
import gams.transfer as gt
m = gt.Container()
j = gt.Set(m, "j", ["*", "*"], records=[("i" + str(n), "j" + str(n)) for n in range(2)])
In [1]: j.records
Out[1]:

uni 0 uni 1 element text
0 i0 j0
1 i1 j1
In [2]: m.getUELs()
Out[2]: [’i0’, ’i1’, ’j0’, ’j1’]

Pandas also includes a number of methods that allow categories to be renamed, appended, etc. These
methods may be useful for advanced users, but most users will probably find that modifying the original
data structures and resetting the symbol records provides a simpler solution. The design of transfer
should enable the user to quickly move data back and forth, without worrying about the deeper mechanics
of categorical data.

Customize the Universe Set

The concept of a universe set is fundamental to GAMS and has consequences in many areas of GAMS
programming including the order of loop execution. For example:

set final_model_year / 2030 /;

set t "all model years" / 2022*2030 /;

singleton set my(t) "model solve year";

loop(t,

my(t) = yes;

display my;

);

https://pandas.pydata.org/docs/user_guide/categorical.html

3432 Application Programming Interfaces

The loop will execute model solve year 2030 first because the UEL 2030 was defined in the set
final model year before it was used again in the definition of set t. This could lead to some sur-
prising behavior if model time periods are linked together. Many GAMS users would create a dummy set
(perhaps the first line of their model file) that contained all the UELs that had a significant order tom
combat this behavior. transfer allows for full control (renaming as well as ordering) over the universe
set through the ∗UELS methods, briefly described here:

Quick summary table of UELs functions

7.5 Python API 3433

Method Brief Description

addUELs Adds UELS to a symbol dimension(s). This function does not have a container
level implementation.

capitalizeUELs Capitalize all UELs in the symbol or a subset of specified dimensions, can be
chained with other ∗UELs string operations

casefoldUELs Casefold all UELs in the symbol or a subset of specified dimensions, can be chained
with other ∗UELs string operations

getUELs Gets the UELs in a over either a symbol dimension, the entire symbol or the entire
container. Unused UELs do not show up in symbol data but will show up in the
GAMS UEL list.

ljustUELs Left justify all UELs in the symbol or a subset of specified dimensions, can be
chained with other ∗UELs string operations

lowerUELs Lowercase all UELs in the symbol or a subset of specified dimensions, can be
chained with other ∗UELs string operations

lstripUELs Left strip whitespace from all UELs in the symbol or a subset of specified
dimensions, can be chained with other ∗UELs string operations

removeUELs Removes UELs from a symbol dimension, the entire symbol, the entire container
(or just a subset of symbols). If a used UEL is removed the DataFrame record will
show a NaN.

renameUELs Renames UELs in a symbol dimension, the entire symbol, the entire container (or
just a subset of symbols). Very handy for harmonizing UEL labeling of data that
might have originated from different sources.

reorderUELs Reorders UELs in a symbol dimension(s). This function does not have a container
level implementation.

rjustUELs Right justify all UELs in the symbol or a subset of specified dimensions, can be
chained with other ∗UELs string operations

rstripUELs Right strip whitespace from all UELs in the symbol or a subset of specified
dimensions, can be chained with other ∗UELs string operations

setUELs Sets UELs for a symbol dimension(s). Equivalent results could be obtained with
a combination of renameUELs and reorderUELs, but this one call may have some
performance advantage.

stripUELs Strip whitespace from all UELs in the symbol or a subset of specified dimensions,
can be chained with other ∗UELs string operations

titleUELs Title (capitalize all individual words) in all UELs in the symbol or a subset of
specified dimensions, can be chained with other ∗UELs string operations

upperUELs Uppercase all UELs in the symbol or a subset of specified dimensions, can be
chained with other ∗UELs string operations

These tools are extremely useful when data is arriving at a model from a variety of data sources. We will
describe each of these functions in detail and provide examples in the following sections.

Attention

GAMS is insensitive to trailing whitespaces, the ∗UELs methods will automatically trim any trailing
whitespace when creating the new UELs.

getUELs Examples

getUELs is a method of all GAMS symbol classes as well as the Container class. This allows the user to
retrieve (ordered) UELs from the entire container or just a specific symbol dimension. For example:
m = gt.Container()
i = gt.Set(m, "i", records=["i1", "i2", "i3"])
j = gt.Set(m, "j", i, records=["j1", "j2", "j3"])

3434 Application Programming Interfaces

a = gt.Parameter(m, "a", [i, j], records=[(f"i{i}", f"j{i}", i) for i in range(4)])
In [1]: i.getUELs()
Out[1]: [’i1’, ’i2’, ’i3’]
In [2]: m.getUELs()
Out[2]: [’i1’, ’i2’, ’i3’, ’j1’, ’j2’, ’j3’, ’i0’, ’j0’]
In [3]: m.getUELs("j")
Out[3]: [’j1’, ’j2’, ’j3’]

addUELs Examples

addUELs is a method of all GAMS symbol classes. This method allows the user to add in new UELs labels
to a specific dimension of a symbol – the user can add UELs that do not exist in the symbol records.
For example:
m = gt.Container()
i = gt.Set(m, "i", records=["i1", "i2", "i3"])
j = gt.Set(m, "j", i, records=["j1", "j2", "j3"])
a = gt.Parameter(m, "a", [i, j], records=[(f"i{i}", f"j{i}", i) for i in range(1,4)])
i.addUELs("ham")
a.addUELs("and", 0)
a.addUELs("cheese", 1)
In [1]: i.getUELs()
Out[1]: [’i1’, ’i2’, ’i3’, ’ham’]
In [2]: a.getUELs()
Out[2]: [’i1’, ’i2’, ’i3’, ’and’, ’j1’, ’j2’, ’j3’, ’cheese’]

In this example we have added three new (unused) UELs: ham, and, cheese. These three UELs will now
appear in the GAMS universe set (accessible with m.getUELs()). The addition of unused UELs does not
impact the validity of the symbols (i.e., unused UELs will not trigger domain violations).

removeUELs Examples

removeUELs is a method of all GAMS symbol classes as well as the Container class. As a result, this
method allows the user to clean up unwanted or simply unused UELs in a symbol dimension(s), over
several symbols, or over the entire container. The previous example added three unused UELs (ham, and,
cheese), but now we want to remove these UELs in order to clean up the GAMS universe set. We can
accomplish this several ways:
m = gt.Container()
i = gt.Set(m, "i", records=["i1", "i2", "i3"])
j = gt.Set(m, "j", i, records=["j1", "j2", "j3"])
a = gt.Parameter(m, "a", [i, j], records=[(f"i{i}", f"j{i}", i) for i in range(1,4)])
i.addUELs("ham")
a.addUELs("and", 0)
a.addUELs("cheese", 1)
remove symbol UELs explicitly by dimension
i.removeUELs("ham", 0)
a.removeUELs("and", 0)
a.removeUELs("cheese", 1)
remove symbol UELs for the entire symbol
i.removeUELs("ham")
a.removeUELs(["and", "cheese"])
remove ONLY unused UELs from each symbol, independently
i.removeUELs()
a.removeUELs()
remove ONLY unused UELs from the entire container (all symbols)
m.removeUELs()

In all cases the resulting universe set will be:
In [1]: m.getUELs()
Out[1]: [’i1’, ’i2’, ’i3’, ’j1’, ’j2’, ’j3’]

If a user removes a UEL that appears in data, that data will be lost permanently. The domain label will
be transformed into an NaN as seen in this example:
m = gt.Container()
i = gt.Set(m, "i", records=["i1", "i2", "i3"])
j = gt.Set(m, "j", i, records=["j1", "j2", "j3"])
a = gt.Parameter(m, "a", [i, j], records=[(f"i{i}", f"j{i}", i) for i in range(1,4)])
m.removeUELs("i1")
In [1]: i.records
Out[1]:

uni element text
0 NaN

7.5 Python API 3435

1 i2
2 i3
In [2]: a.records
Out[2]:

i j value
0 NaN j1 1.0
1 i2 j2 2.0
2 i3 j3 3.0

Attention

A container cannot be written if there are NaN entries in any of the domain columns (in any symbol)
– an Exception is raised if there are missing domain labels.

renameUELs Examples

renameUELs is a method of all GAMS symbol classes as well as the Container class. This method allows
the user to rename UELs in a symbol dimension(s), over several symbols, or over the entire container.
This particular method is very handy when attempting to harmonize labeling schemes between data
structures that originated from different sources. For example:
m = gt.Container()
a = gt.Parameter(

m,
"a",
["*", "*"],
records=[("WI", "IL", 10), ("IL", "IN", 12.5), ("WI", "IN", 8.7)],
description="shipment quantities",

)
b = gt.Parameter(

m,
"b",
["*"],
records=[("wisconsin", 1.2), ("illinois", 1.7), ("indiana", 1.2)],
description="multipliers",

)

...results in the following records:
In [1]: a.records
Out[1]:

uni 0 uni 1 value
0 WI IL 10.0
1 IL IN 12.5
2 WI IN 8.7
In [2]: b.records
Out[2]:

uni value
0 wisconsin 1.2
1 illinois 1.7
2 indiana 1.2

However, two different data sources were used to generate the parameters a and b – one data source used
the uppercase postal abbreviation of the state name and the other source used a lowercase full state name
as the unique identifier. With the following syntax the user would be able to harmonize to a mixed case
postal code labeling scheme (without losing any of the original UEL ordering).
m.renameUELs(
{

"WI": "Wi",
"IL": "Il",
"IN": "In",
"wisconsin": "Wi",
"illinois": "Il",
"indiana": "In",

}
)

...results in the following records (and the universe set):
In [1]: a.records
Out[1]:

uni 0 uni 1 value
0 Wi Il 10.0
1 Il In 12.5
2 Wi In 8.7
In [2]: b.records
Out[2]:

3436 Application Programming Interfaces

uni value
0 Wi 1.2
1 Il 1.7
2 In 1.2

The universe set will now be:
In [1]: m.getUELs()
Out[1]: [’Wi’, ’Il’, ’In’]

It is possible that some data needs to be cleaned and multiple UELs need to be mapped to a single label
(within a single dimension). This is not allowed under default behavior because transfer assumes that
the provided UELs are truly unique (logically and lexicographically) – however, it might be necessary
recreate the underlying categorical object to combine n (previously unique) UELs into one to establish
the necessary logical set links. For example:
m = gt.Container()
a = gt.Parameter(

m,
"a",
["*", "*"],
records=[("WISCONSIN", "iowa", 10), ("WI", "illinois", 12)],

)
In [1]: a.records
Out[1]:

uni 0 uni 1 value
0 WISCONSIN iowa 10.0
1 WI illinois 12.0

The records are unique for a, but logically, there might be a need to rename WI to WISCONSIN.
In [1]: a.renameUELs({"WI": "WISCONSIN"})
Out[1]: Exception: Could not rename UELs (categories) in ‘a‘ dimension ‘0‘. Reason: Categorical categories must be unique

In order achieve the desired behavior it is necessary to pass allow merge=True to renameUELs:
In [1]: a.renameUELs({"WI": "WISCONSIN"}, allow merge=True)
In [2]: a.records
Out[2]:

uni 0 uni 1 value
0 WISCONSIN iowa 10.0
1 WISCONSIN illinois 12.0
In [3]: a.getUELs()
Out[3]: [’WISCONSIN’, ’iowa’, ’illinois’]

reorderUELs Examples

reorderUELs is a method of all GAMS symbol classes. This method allows the user to reorder UELs
of a specific symbol dimension – reorderUELs will not all any new UELs to be create nor can they be
removed. For example:
m = gt.Container()
i = gt.Set(m, "i", records=["i1", "i2", "i3"])
j = gt.Set(m, "j", i, records=["j1", "j2", "j3"])
a = gt.Parameter(m, "a", [i, j], records=[(f"i{i}", f"j{i}", i) for i in range(1,4)])
In [1]: i.getUELs()
Out[1]: [’i1’, ’i2’, ’i3’]
In [2]: m.getUELs()
Out[2]: [’i1’, ’i2’, ’i3’, ’j1’, ’j2’, ’j3’]

But perhaps we want to reorder the UELs i1, i2, i3 to i3, i2, i1.
In [1]: i.reorderUELs([’i3’, ’i2’, ’i1’])
In [2]: i.getUELs()
Out[2]: [’i3’, ’i2’, ’i1’]
In [3]: i.records
Out[3]:

uni element text
0 i1
1 i2
2 i3

Note

This example does not change the indexing scheme of the Pandas DataFrame at all, it only changes
the underlying integer numbering scheme for the categories. We can see this by looking at the
Pandas codes:

In [1]: i.records["uni"].cat.codes
Out[1]:
0 2
1 1
2 0
dtype: int8

7.5 Python API 3437

setUELs Examples

reorderUELs is a method of all GAMS symbol classes. This method allows the user to create new UELs,
rename UELs, and reorder UELs all in one method. For example:
m = gt.Container()
i = gt.Set(m, "i", records=["i1", "i2", "i3"])

A user could accomplish a UEL reorder operation with setUELs:
In [1]: i.setUELs(["i3", "i2", "i1"])
In [2]: i.getUELs()
Out[2]: [’i3’, ’i2’, ’i1’]
In [3]: i.records
Out[3]:

uni element text
0 i1
1 i2
2 i3

A user could accomplish a UEL reorder + add UELs operation with setUELs:
In [1]: i.setUELs(["i3", "i2", "i1", "j1", "j2"])
In [2]: i.getUELs()
Out[2]: [’i3’, ’i2’, ’i1’, ’j1’, ’j2’]
In [3]: i.records
Out[3]:

uni element text
0 i1
1 i2
2 i3
In [4]: i.records["uni"].cat.codes
Out[4]:
0 2
1 1
2 0
dtype: int8

A user could accomplish a UEL reorder + add + rename with setUELs:
In [1]: i.setUELs(["j3", "j2", "j1", "ham", "cheese"], rename=True)
In [2]: i.getUELs()
Out[2]: [’j3’, ’j2’, ’j1’, ’ham’, ’cheese’]
In [3]: i.records
Out[3]:

uni element text
0 j3
1 j2
2 j1
In [4]: i.records["uni"].cat.codes
Out[4]:
0 0
1 1
2 2
dtype: int8

Note

This example does not change the indexing scheme of the Pandas DataFrame at all, but the
rename=True flag means that the records will get updated just as if a renameUELs call had been
made.

If a user wanted to set new UELs on top of this data, without renaming, they would need to be careful
to include the current UELs in the UELs being set. It is possible to loose these labels if they are not
included (which will prevent the data from being written to GDX/GMD).
m = gt.Container()
i = gt.Set(m, "i", records=["i1", "i2", "i3"])
i.setUELs(["j1", "i2", "j3", "ham", "cheese"])
In [1]: i.getUELs()
Out[1]: [’j1’, ’i2’, ’j3’, ’ham’, ’cheese’]
In [2]: i.records
Out[2]:

uni element text
0 NaN
1 i2
2 NaN

3438 Application Programming Interfaces

String Manipulation on UELs

It is easy to perform common string manipulations on UELs at the dimension, symbol and container levels
with a series of convenience functions: lowerUELs, upperUELs, lstripUELs, rstripUELs, stripUELs,
capitalizeUELs, casefoldUELs, titleUELs, ljustUELs, rjustUELs. These methods are wrappers
around Python's built in string methods and are designed to efficiently perform bulk UEL transformations
on your GAMS data.

The following example shows operations on the entire container:
m = gt.Container()
i = gt.Set(m, "i", ["*", "*"], records=[(f"i{i}", f"j{i}") for i in range(3)])
k = gt.Set(m, "k", records=[(f"aaa{i}") for i in range(3)])
In [1]: m.getUELs()
Out[1]: [’i0’, ’i1’, ’i2’, ’j0’, ’j1’, ’j2’, ’aaa0’, ’aaa1’, ’aaa2’]
In [2]: m.upperUELs()
Out[2]: <GAMS Transfer Container (0x7f8110719e10)>
In [3]: m.getUELs()
Out[3]: [’I0’, ’I1’, ’I2’, ’J0’, ’J1’, ’J2’, ’AAA0’, ’AAA1’, ’AAA2’]
In [4]: m.lowerUELs("i")
Out[4]: <GAMS Transfer Container (0x7f8110719e10)>
In [5]: m.getUELs()
Out[5]: [’i0’, ’i1’, ’i2’, ’j0’, ’j1’, ’j2’, ’AAA0’, ’AAA1’, ’AAA2’]
In [6]: m.upperUELs().rjustUELs(4, " ")
Out[6]: <GAMS Transfer Container (0x7f8110719e10)>
In [7]: m.getUELs()
Out[7]: [’ I0’, ’ I1’, ’ I2’, ’ J0’, ’ J1’, ’ J2’, ’AAA0’, ’AAA1’, ’AAA2’]

Note

The ljustUELs and rjustUELs methods require the user to specify the final string length and the
fill character used to pad the string to achieve the final length.

Similar operations can be performed at the dimension and symbol levels as can be seen in the following
examples:
In [1]: i.upperUELs(0)
Out[1]: <Set ‘i‘ (0x7f8121661930)>
In [2]: i.getUELs()
Out[2]: [’I0’, ’I1’, ’I2’, ’j0’, ’j1’, ’j2’]
In [3]: i.casefoldUELs()
Out[3]: <Set ‘i‘ (0x7f8121661930)>
In [4]: i.getUELs()
Out[4]: [’i0’, ’i1’, ’i2’, ’j0’, ’j1’, ’j2’]

Note

Symbol dimension is indexed from zero (per Python convention)

Reordering Symbols

The order of the Container file requires the symbols to be sorted such that, for example, a Set used
as domain of another symbol appears before that symbol. The Container will try to establish a valid
ordering when writing the data. This type of situation could be encountered if the user is adding and
removing many symbols (and perhaps rewriting symbols with the same name) – users should attempt
to only add symbols to a Container once, and care must be taken when creating symbol names. The
method reorderSymbols attempts to fix symbol ordering problems. The following example shows how
this can occur:

7.5 Python API 3439

Example Symbol reordering

import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i", records=["i" + str(i) for i in range(5)])
j = gt.Set(m, "j", i, records=["i" + str(i) for i in range(3)])
In [1]: m.data
Out[1]: {’i’: <Set ‘i‘ (0x7f7e98907e50)>, ’j’: <Set ‘j‘ (0x7f7e987fb580)>}
now we remove the set i and recreate the data
m.removeSymbols("i")
i = gt.Set(m, "i", records=["i" + str(i) for i in range(5)])

The symbols are now out of order in .data and must be reordered:
In [1]: m.data
Out[1]: {’j’: <Set ‘j‘ (0x7f7e987fb580)>, ’i’: <Set ‘i‘ (0x7f7e9885a140)>}
calling reorderSymbols() will order the dictionary properly, but the domain reference in j is now broken
m.reorderSymbols()
fix the domain reference in the set j
j.domain = i
In [1]: m.isValid()
Out[1]: True

Rename Symbols

It is possible to rename a symbol even after it has been added to a Container. There are two methods
that can be used to achieve the desired outcome:

• using the container method renameSymbol

• directly changing the name symbol property

We create a Container with two sets:
import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i", records=["seattle", "san-diego"])
j = gt.Set(m, "j", records=["new-york", "chicago", "topeka"])

Example #1 - Change the name of a symbol with the container method

In [1]: m.renameSymbol("i","h")
In [2]: m.data
Out[2]: {’h’: <Set ‘h‘ (0x7f7e988582e0)>, ’j’: <Set ‘j‘ (0x7f7e801240d0)>}

Example #2 - Change the name of a symbol with the .name attribute

In [1]: i.name = "h"
In [2]: m.data
Out[2]: {’h’: <Set ‘h‘ (0x7f7e98907520)>, ’j’: <Set ‘j‘ (0x7f7ea84bb0d0)>}

Note

Note that the renamed symbols maintain the original symbol order, this will prevent unnecessary
reordering operations later in the workflow.

Removing Symbols

Removing symbols from a container is easy when using the removeSymbols container method; this method
accepts either a str or a list of str.

Attention

Once a symbol has been removed, it is possible to have hanging references as domain links in other
symbols. The user will need to repair these other symbols with the proper domain links in order to
avoid validity errors.

3440 Application Programming Interfaces

GAMS Special Values

The GAMS system contains five special values: UNDEF (undefined), NA (not available), EPS (epsilon),
+INF (positive infinity), -INF (negative infinity). These special values must be mapped to their Python
equivalents. transfer follows the following convention to generate the 1:1 mapping:

• +INF is mapped to float("inf")

• -INF is mapped to float("-inf")

• EPS is mapped to -0.0 (mathematically identical to zero)

• NA is mapped to a special NaN

• UNDEF is mapped to float("nan")

transfer syntax is designed to quickly get data into a form that is usable in further analyses or
visualization; this mapping also highlights the preference for data that is of type float, which offers
performance benefits within Pandas/NumPy. The user does not need to remember these constants as
they are provided within the class SpecialValues as SpecialValues.POSINF, SpecialValues.NEGINF,
SpecialValues.EPS, SpecialValues.NA, and SpecialValues.UNDEF. The SpecialValues class also
contains methods to test for these special values. Some examples are shown below; already, we, begin to
introduce some of the transfer syntax.

Example (special values in a parameter)

import gams.transfer as gt
m = gt.Container()
x = gt.Parameter(

m,
"x",
["*"],
records=[

("i1", 1),
("i2", gt.SpecialValues.POSINF),
("i3", gt.SpecialValues.NEGINF),
("i4", gt.SpecialValues.EPS),
("i5", gt.SpecialValues.NA),
("i6", gt.SpecialValues.UNDEF),

],
description="special values",

)

The following DataFrame for x would look like:
In [1]: x.records
Out[1]:

uni value
0 i1 1.0
1 i2 inf
2 i3 -inf
3 i4 -0.0
4 i5 NaN
5 i6 NaN

The user can now easily test for specific special values in the value column of the DataFrame (returns a
boolean array):
In [1]: gt.SpecialValues.isNA(x.records["value"])
Out[1]: array([False, False, False, False, True, False])

Other data structures can be passed into these methods as long as these structures can be converted into
a numpy array with dtype=float. It follows that:
In [1]: gt.SpecialValues.isEps(gt.SpecialValues.EPS)
Out[1]: True
In [2]: gt.SpecialValues.isPosInf(gt.SpecialValues.POSINF)
Out[2]: True
In [3]: gt.SpecialValues.isNegInf(gt.SpecialValues.NEGINF)
Out[3]: True

7.5 Python API 3441

In [4]: gt.SpecialValues.isNA(gt.SpecialValues.NA)
Out[4]: True
In [5]: gt.SpecialValues.isUndef(gt.SpecialValues.UNDEF)
Out[5]: True
In [6]: gt.SpecialValues.isUndef(gt.SpecialValues.NA)
Out[6]: False
In [6]: gt.SpecialValues.isNA(gt.SpecialValues.UNDEF)
Out[6]: False

Pandas DataFrames allow data columns to exist with mixed type (dtype=object) – transfer leverages
this convenience feature to enable users to import string representations of EPS, NA, and UNDEF. transfer
is tolerant of any mixed-case special value string representation. Python offers additional flexibility when
representing negative/positive infinity. Any string x where float(x) == float("inf") evaluates to True
can be used to represent positive infinity. Similarly, any string x where float(x) == float("-inf")

evaluates to True can be used to represent negative infinity. Allowed values include inf, +inf, INFINITY,
+INFINITY, -inf, -INFINITY and all mixed-case equivalents.

Example (special values defined by strings)

import gams.transfer as gt
m = gt.Container()
x = gt.Parameter(

m,
"x",
["*"],
records=[

("i1", 1),
("i2", "+inf"),
("i3", "-infinity"),
("i4", "eps"),
("i5", "na"),
("i6", "undef"),

],
description="special values",

)

These special strings will be immediately mapped to their float equivalents from the SpecialValues

class in order to ensure that all data entries are float types.

Standard Data Formats

This section is meant to introduce the standard format that transfer expects for symbol records. It has
already been mentioned that we store data as a Pandas DataFrame, but there is an assumed structure
to the column headings and column types that will be important to understand. transfer includes
convenience functions in order to ease the burden of converting data from a user-centric format to one
that is understood by transfer. However, advanced users will want to convert their data first and add it
directly to the Container to avoid making extra copies of (potentially large) data sets.

Set Records Standard Format

All set records (including singleton sets) are stored as a Pandas DataFrame with n number of columns,
where n is the dimensionality of the symbol + 1. The first n-1 columns include the domain elements while
the last column includes the set element explanatory text. Records are organized such that there is one
record per row.

The names of the domain columns are flexible, but transfer requires unique column names. Users are
encouraged to change the column headings of the underlying dataframe by using the domain labels prop-
erty. Using this property will ensure that unique column names are generated by adding a <dimension>
tag to the end of any user supplied column names. The explanatory text column is called element text

and must take the last position in the DataFrame.

3442 Application Programming Interfaces

All domain columns must be a categorical data type and the element text column must be a object

type. Pandas allows the categories (basically the unique elements of a column) to be various data types
as well, however transfer requires that all these are type str. All rows in the element text column
must be type str.

Some examples:
import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i", records=["seattle", "san-diego"])
j = gt.Set(m, "j", [i, "*"], records=[("seattle", "new-york"), ("san-diego", "st-louis")])
k = gt.Set(m, "k", [i], is singleton=True, records=["seattle"])
In [1]: i.records
Out[1]:

uni element text
0 seattle
1 san-diego
In [2]: j.records
Out[2]:

i uni element text
0 seattle new-york
1 san-diego st-louis
In [3]: k.records
Out[3]:

i element text
0 seattle

Parameter Records Standard Format

All parameter records (including scalars) are stored as a Pandas DataFrame with n number of columns,
where n is the dimensionality of the symbol + 1. The first n-1 columns include the domain elements while
the last column includes the numerical value of the records. Records are organized such that there is one
record per row. Scalar parameters have zero dimension, therefore they only have one column and one row.

By default, the names of the domain columns follow a pattern of <set name>; a symbol dimension that
is referenced to the universe is labeled uni. The domain labels can be customized. Users are encouraged
to change the column headings of the underlying dataframe by using the domain labels property. Using
this property will ensure that unique column names are generated (if not currently unique) by adding a
<dimension> tag to the end of any user supplied column names. The value column is called value and

must take the last position in the DataFrame.

All domain columns must be a categorical data type and the value column must be a float type. Pandas
allows the categories (basically the unique elements of a column) to be various data types as well, however
transfer requires that all these are type str.

Some examples:
import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i", records=["seattle", "san-diego"])
a = gt.Parameter(m, "a", ["*"], records=[("seattle", 50), ("san-diego", 100)])
b = gt.Parameter(

m,
"b",
[i, "*"],
records=[("seattle", "new-york", 32.2), ("san-diego", "st-louis", 123)],

)
c = gt.Parameter(m, "c", records=90)
In [1]: a.records
Out[1]:

uni value
0 seattle 50.0
1 san-diego 100.0
In [2]: b.records
Out[2]:

i uni value
0 seattle new-york 32.2
1 san-diego st-louis 123.0
In [3]: c.records
Out[3]:

value
0 90.0

7.5 Python API 3443

Variable/Equation Records Standard Format

Variables and equations share the same standard data format. All records (including scalar vari-
ables/equations) are stored as a Pandas DataFrame with n number of columns, where n is the dimensionality
of the symbol + 5. The first n-5 columns include the domain elements while the last five columns include
the numerical values for different attributes of the records. Records are organized such that there is one
record per row. Scalar variables/equations have zero dimension, therefore they have five columns and one
row.

By default, the names of the domain columns follow a pattern of <set name>; a symbol dimension that
is referenced to the universe is labeled uni. The domain labels can be customized. Users are encouraged
to change the column headings of the underlying dataframe by using the domain labels property. Using
this property will ensure that unique column names are generated (if not currently unique) by adding a
<dimension> tag to the end of any user supplied column names. The attribute columns are called level,
marginal, lower, upper, and scale. These attribute columns must appear in this order. Attributes that
are not supplied by the user will be assigned the default GAMS values for that variable/equation type; it
is possible to not pass any attributes, transfer would then simply assign default values to all attributes.

All domain columns must be a categorical data type and all the attribute columns must be a float type.
Pandas allows the categories (basically the unique elements of a column) to be various data types as well,
however transfer requires that all these are type str.

Some examples:
import gams.transfer as gt
import pandas as pd
m = gt.Container()
i = gt.Set(m, "i", records=["seattle", "san-diego"])
a = gt.Variable(

m,
"a",
"free",
domain=[i],
records=pd.DataFrame(

[("seattle", 50), ("san-diego", 100)], columns=["city", "level"]
),

)
In [1]: a.records
Out[1]:

i level marginal lower upper scale
0 seattle 50.0 0.0 -inf inf 1.0
1 san-diego 100.0 0.0 -inf inf 1.0

GDX Read/Write

Up until now, we have been focused on using transfer to create symbols in an empty Container using
the symbol constructors (or their corresponding container methods). These tools will enable users to
ingest data from many different formats and add them to a Container – however, it is also possible to
read in symbol data directly from GDX files using the read container method. In the following sections,
we will discuss this method in detail as well as the write method, which allows users to write out to new
GDX files.

Read GDX

There are two main ways to read in GDX based data.

• Pass the file path directly to the Container constructor (will read all symbols and records)

• Pass the file path directly to the read method (default read all symbols, but can read partial files)

The first option here is provided for convenience and will, internally, call the read method. This method
will read in all symbols as well as their records. This is the easiest and fastest way to get data out of a
GDX file and into your Python environment. For the following examples we leverage the GDX output
generated from the `trnsport.gms` model file.

3444 Application Programming Interfaces

Example (reading full data w/ Container constructor)

import gams.transfer as gt
m = gt.Container("trnsport.gdx")
In [1]: m.data
Out[1]:
{’i’: <Set ‘i‘ (0x7f95b8d63e80)>,
’j’: <Set ‘j‘ (0x7f95b8d63a60)>,
’a’: <Parameter ‘a‘ (0x7f95b8d63ee0)>,
’b’: <Parameter ‘b‘ (0x7f95b8d63d00)>,
’d’: <Parameter ‘d‘ (0x7f95b8da86a0)>,
’f’: <Parameter ‘f‘ (0x7f95b8da8670)>,
’c’: <Parameter ‘c‘ (0x7f95b8da83d0)>,
’x’: <Positive Variable ‘x‘ (0x7f95b8da83a0)>,
’z’: <Free Variable ‘z‘ (0x7f95b8da8400)>,
’cost’: <Eq Equation ‘cost‘ (0x7f95b8da82b0)>,
’supply’: <Leq Equation ‘supply‘ (0x7f95b8da8280)>,
’demand’: <Geq Equation ‘demand‘ (0x7f95b8da8580)>}
In [1]: m.describeParameters()
Out[1]:
name domain domain type dimension number records min mean max where min where max

sparsity
0 a [i] regular 1 2 350.000 475.000 600.000 [seattle] [san-diego]

0.0
1 b [j] regular 1 3 275.000 300.000 325.000 [topeka] [new-york]

0.0
2 c [i, j] regular 2 6 0.126 0.176 0.225 [san-diego, topeka] [seattle, new-york]

0.0
3 d [i, j] regular 2 6 1.400 1.950 2.500 [san-diego, topeka] [seattle, new-york]

0.0
4 f [] none 0 1 90.000 90.000 90.000 None None

None

A user could also read in data with the read method as shown in the following example.

Example (reading full data w/ read method)

import gams.transfer as gt
m = gt.Container()
m.read("trnsport.gdx")
In [1]: m.data
Out[1]:
{’i’: <Set ‘i‘ (0x7f95b8d63e80)>,
’j’: <Set ‘j‘ (0x7f95b8d63a60)>,
’a’: <Parameter ‘a‘ (0x7f95b8d63ee0)>,
’b’: <Parameter ‘b‘ (0x7f95b8d63d00)>,
’d’: <Parameter ‘d‘ (0x7f95b8da86a0)>,
’f’: <Parameter ‘f‘ (0x7f95b8da8670)>,
’c’: <Parameter ‘c‘ (0x7f95b8da83d0)>,
’x’: <Positive Variable ‘x‘ (0x7f95b8da83a0)>,
’z’: <Free Variable ‘z‘ (0x7f95b8da8400)>,
’cost’: <Eq Equation ‘cost‘ (0x7f95b8da82b0)>,
’supply’: <Leq Equation ‘supply‘ (0x7f95b8da8280)>,
’demand’: <Geq Equation ‘demand‘ (0x7f95b8da8580)>}

It is also possible to read in a partial GDX file with the read method, as shown in the following example:
m = gt.Container()
m.read("trnsport.gdx", "x")
In [1]: m.data
Out[1]: {’x’: <Positive Variable ‘x‘ (0x7f9598a38dc0)>}
In [2]: m.data["x"].records
Out[2]:

i j level marginal lower upper scale
0 seattle new-york 50.0 0.000 0.0 inf 1.0
1 seattle chicago 300.0 0.000 0.0 inf 1.0
2 seattle topeka 0.0 0.036 0.0 inf 1.0
3 san-diego new-york 275.0 0.000 0.0 inf 1.0
4 san-diego chicago 0.0 0.009 0.0 inf 1.0
5 san-diego topeka 275.0 0.000 0.0 inf 1.0

This syntax assumes that the user will always want to read in both the metadata as well as the actual
data records, but it is possible to skip the reading of the records by passing the argument records=False.
m = gt.Container()
m.read("trnsport.gdx", "x", records=False)
In [1]: m.data
Out[1]: {’x’: <Positive Variable ‘x‘ (0x7f9598a3a200)>}
In [2]: m["x"].summary

7.5 Python API 3445

Out[2]:
{’name’: ’x’,
’description’: ’shipment quantities in cases’,
’type’: ’positive’,
’domain’: [’i’, ’j’],
’domain type’: ’regular’,
’dimension’: 2,
’number records’: 6}

In [3]: type(m["x"].records)
Out[3]: <class ’NoneType’>

Attention

The read method attempts to link the domain objects together (in order to have a ”regular”
domain type) but if domain sets are not part of the read operation there is no choice but to default
to a ”relaxed” domain type. This can be seen in the last example where we only read in the variable
x and not the domain sets (i and j) that the variable is defined over. All the data will be available
to the user, but domain checking is no longer possible. The symbol x will remain with ”relaxed”
domain type even if the user were to read in sets i and j in a second read call.

Write GDX

A user can write data to a GDX file by simply passing a file path (as a string). The write method will
then create the GDX and write all data in the Container.

Example

m.write("path/to/file.gdx")

Example (write a compressed GDX file)

m.write("path/to/file.gdx", compress=True)

By default, all symbols in the Container will be written, however it is possible to write a subset of the
symbols to a GDX file with the symbols argument. If a domain set is not included in the symbols list
then the symbol will automatically be relaxed (but will retain the domain set's name as a string label – it
does not get relaxed to ∗). This behavior can be seen in the following example.
import gams.transfer as gt
m = gt.Container()
i = gt.Set(m, "i", records=["i1", "i2"])
a = gt.Parameter(

m,
"a",
[i, i],
records=[("i1", "i1", 10), ("i2", "i2", 12)],

)
m.write("out.gdx", "a")
create a new container and read in the GDX
m2 = gt.Container("out.gdx")
look at all the data
In [1]: m2.data
Out[1]: {’a’: <Parameter ‘a‘ (0x7f9598a61510)>}
notice that ‘a‘ has a relaxed domain type now
In [2]: m2["a"].domain type
Out[2]: ’relaxed’
‘a‘ retains the labels from the original domain sets
In [3]: m2["a"].domain
Out[3]: [’i’, ’i’]
The original container ‘m‘ retains its original state before writing
In [4]: m["a"].domain
Out[4]: [<Set ‘i‘ (0x7f9598a39a80)>, <Set ‘i‘ (0x7f9598a39a80)>]

In line 4 we can see that the auto-relaxation of the domain for a is only temporary for writing (in this
case, from Container object m) and will be restored so as not to disturb the Container state.

Advanced users might want to specify an order to their UEL list (i.e., the universe set); recall that the
UEL ordering follows that dictated by the data. As a convenience, it is possible to prepend the UEL list
with a user specified order using the uel priority argument.

3446 Application Programming Interfaces

Example (change the order of the UEL)

m = gt.Container()
i = gt.Set(m, "i", records=["a", "b", "c"])
m.write("foo.gdx", uel priority=["a", "c"])

The original UEL order for this GDX file would have been ["a", "b", "c"], but this example reorders
the UEL with uel priority – the positions of b and c have been swapped. This can be verified with the
gdxdump utility (using the uelTable argument):

gdxdump foo.gdx ueltable=foo

Set foo /

’a’ ,

’c’ ,

’b’ /;

$onEmpty

Set i(*) /

’a’,

’c’,

’b’ /;

$offEmpty

GamsDatabase Read/Write

We have discussed how to create symbols in an empty Container and we have discussed how to exchange
data with GDX files, however it is also possible to read and write data directly in memory by interacting
with a GamsDatabase/GMD object – this allows transfer to be used to read/write data within an
Embedded Python Code environment or in combination with the Python OO API. There are some
important differences when compared to data exchange with GDX since we are working with data
representations in memory.

Read GamsDatabases

Just as with a GDX, there are two main ways to read in data that is in a GamsDatabase/GMD object.

• Pass the GamsDatabase/GMD object directly to the Container constructor (will read all symbols
and records)

• Pass the GamsDatabase/GMD object directly to the read method (default read all symbols, but
can read partial files)

The first option here is provided for convenience and will, internally, call the read method. This method
will read in all symbols as well as their records. This is the easiest and fastest way to get data out of
a GamsDatabase/GMD object and into your Python environment. While it is possible to generate a
custom GamsDatabase/GMD object from scratch (using the gmdcc API), most users will be interacting
with a GamsDatabase/GMD object that has already been instantiated internally when he/she is using
Embedded Python Code or the GamsDatabase class in the Python OO API. Our examples will show how
to access the GamsDatabase/GMD object – we leverage the some of the data from the `trnsport.gms`
model file.

7.5 Python API 3447

Example (reading full data w/ Container constructor)

m = gt.Container(gams.db)

Note

Embedded Python Code users will want pass the GamsDatabase object that is part of the GAMS
Database object – this will always be referenced as gams.db regardless of the model file.

The following example uses embedded Python code to create a new Container, read in all symbols, and
display some summary statistics as part of the gams log output.

Set

i ’canning plants’ / seattle, san-diego /

j ’markets’ / new-york, chicago, topeka /;

Parameter

a(i) ’capacity of plant i in cases’

/ seattle 350

san-diego 600 /

b(j) ’demand at market j in cases’

/ new-york 325

chicago 300

topeka 275 /;

Table d(i,j) ’distance in thousands of miles’

new-york chicago topeka

seattle 2.5 1.7 1.8

san-diego 2.5 1.8 1.4;

$onembeddedCode Python:

import gams.transfer as gt

m = gt.Container(gams.db)

print(m.describeSets())

print(m.describeParameters())

$offEmbeddedCode

The gams log output will then look as such (the extra print calls are just providing nice spacing for this
example):

GAMS 43.1.0 Copyright (C) 1987-2023 GAMS Development. All rights reserved

--- Starting compilation

--- matrix.gms(29) 3 Mb

--- Initialize embedded library libembpycclib64.dylib

--- Execute embedded library libembpycclib64.dylib

name is_singleton domain domain_type dimension number_records sparsity

0 i False [*] none 1 2 None

1 j False [*] none 1 3 None

name domain domain_type dimension number_records min mean max where_min where_max sparsity

0 a [i] regular 1 2 350.000 475.000 600.000 [seattle] [san-diego] 0.0

3448 Application Programming Interfaces

1 b [j] regular 1 3 275.000 300.000 325.000 [topeka] [new-york] 0.0

2 d [i, j] regular 2 6 1.400 1.950 2.500 [san-diego, topeka] [seattle, new-york] 0.0

--- Starting execution - empty program

*** Status: Normal completion

[3 rows x 16 columns]

--- Starting execution - empty program

*** Status: Normal completion

A user could also read in a subset of the data located in the GamsDatabase object with the read

method as shown in the following example. Here we only read in the sets i and j, as a result the
.describeParameters() method will return None.

Example (reading subset of full data w/ read method)

Set

i ’canning plants’ / seattle, san-diego /

j ’markets’ / new-york, chicago, topeka /;

Parameter

a(i) ’capacity of plant i in cases’

/ seattle 350

san-diego 600 /

b(j) ’demand at market j in cases’

/ new-york 325

chicago 300

topeka 275 /;

Table d(i,j) ’distance in thousands of miles’

new-york chicago topeka

seattle 2.5 1.7 1.8

san-diego 2.5 1.8 1.4;

$onembeddedCode Python:

import gams.transfer as gt

m = gt.Container()

m.read(gams.db, symbols=["i","j"])

gams.printLog("")

print(m.describeSets())

print(m.describeParameters())

$offEmbeddedCode

GAMS 43.1.0 Copyright (C) 1987-2023 GAMS Development. All rights reserved

--- Starting compilation

--- matrix.gms(29) 3 Mb

--- Initialize embedded library libembpycclib64.dylib

--- Execute embedded library libembpycclib64.dylib

--- name is_singleton domain domain_type dimension number_records sparsity

0 i False [*] none 1 2 None

7.5 Python API 3449

1 j False [*] none 1 3 None

None

--- Starting execution - empty program

*** Status: Normal completion

All the typical functionality of the Container exists when working with GamsDatabase/GMD objects.
This means that domain linking, matrix conversion, and other more advanced options are available to
the user at either compilation time or execution time (depending on the Embedded Code syntax being
used, see: Syntax). The next example generates a 1000x1000 matrix and then takes its inverse using the
Numpy linalg package.

Example (Matrix Generation and Inversion)

set i / i1*i1000 /;

alias(i,j);

parameter a(i,j);

a(i,j) = 1 / (ord(i)+ord(j) - 1);

a(i,i) = 1;

embeddedCode Python:

import gams.transfer as gt

import numpy as np

import time

gams.printLog("")

s = time.time()

m = gt.Container(gams.db)

gams.printLog(f"read data: {round(time.time() - s, 3)} sec")

s = time.time()

A = m["a"].toDense()

gams.printLog(f"create matrix A: {round(time.time() - s, 3)} sec")

s = time.time()

invA = np.linalg.inv(A)

gams.printLog(f"generate inv(A): {round(time.time() - s, 3)} sec")

endEmbeddedCode

Note

In this example, the assignment of the a parameter is done during execution time so we must use
the execution time syntax for embedded code in order to get the numerical records properly.

GAMS 43.1.0 Copyright (C) 1987-2023 GAMS Development. All rights reserved

--- Starting compilation

--- test.gms(27) 3 Mb

--- Starting execution: elapsed 0:00:00.003

--- test.gms(9) 36 Mb

--- Initialize embedded library libembpycclib64.dylib

3450 Application Programming Interfaces

--- Execute embedded library libembpycclib64.dylib

--- read data: 1.1 sec

--- create matrix A: 0.02 sec

--- generate inv(A): 0.031 sec

*** Status: Normal completion

We will extend this example in the next section to write the inverse matrix A back into a GAMS parameter.

Write to GamsDatabases

A user can write to a GamsDatabase/GMD object with the .write() method just as he/she would write
a GDX file – however there are some important differences. When a user writes a GDX file the entire
GDX file represents a complete data environment (all domains have been resolved, etc.) thus, transfer
does not need to worry about merge/replace operations. It is possible to merge/replace symbol records
when a user is writing data to in-memory data representations with GamsDatabase/GMD. We show a few
examples to illustrate this behavior.

Example (Populating a set in GAMS)

* note that we need to declare the set i over "*" in order to provide hints about the symbol dimensionality

set i(*);

$onembeddedCode Python:

import gams.transfer as gt

m = gt.Container()

i = gt.Set(m, "i", records=["i"+str(i) for i in range(10)])

m.write(gams.db)

$offEmbeddedCode i

embeddedCode Python:

import gams.transfer as gt

m = gt.Container(gams.db)

gams.printLog("")

print(m["i"].records)

endEmbeddedCode

Note

In general, it is possible to use transfer to create new symbols in a GamsDatabase and GMD object
(and not necessarily merge symbols) but embedded code best practices necessitate the declaration of
any GAMS symbols on the GAMS side first, then the records can be filled with transfer.

If we break down this example we can see that the set i is declared within GAMS (with no records) and
then the records for i are set by writing a Container to the gams.db GamsDatabase object (we do this
at compile time). The second embedded Python code block runs at execution time and is simply there to
read all the records on the set i – printing the sets this way adds the output to the .log file (we could
also use the more common display i; operation in GAMS to display the set elements in the LST file).

7.5 Python API 3451

GAMS 43.1.0 Copyright (C) 1987-2023 GAMS Development. All rights reserved

--- Starting compilation

--- test.gms(10) 2 Mb

--- Initialize embedded library libembpycclib64.dylib

--- Execute embedded library libembpycclib64.dylib

--- test.gms(20) 3 Mb

--- Starting execution: elapsed 0:00:01.464

--- test.gms(13) 4 Mb

--- Initialize embedded library libembpycclib64.dylib

--- Execute embedded library libembpycclib64.dylib

--- uni element_text

0 i0

1 i1

2 i2

3 i3

4 i4

5 i5

6 i6

7 i7

8 i8

9 i9

*** Status: Normal completion

Example (Merging set records)

set i / i1, i2 /;

$onmulti

$onembeddedCode Python:

import gams.transfer as gt

m = gt.Container()

i = gt.Set(m, "i", records=["i"+str(i) for i in range(10)])

m.write(gams.db, merge_symbols="i")

$offEmbeddedCode i

$offmulti

embeddedCode Python:

import gams.transfer as gt

m = gt.Container(gams.db)

gams.printLog("")

print(m["i"].records)

endEmbeddedCode

In this example we need to make use of $onMulti/$offMulti in order to merge new set elements into the
the set i (the same would be true if we were merging other symbol types) – any symbol that already has
records defined (in GAMS) and is being added to with Python (and transfer) must be wrapped with
$onMulti/$offMulti. As with the previous example, the second embedded Python code block runs at
execution time and is simply there to read all the records on the set i. Note that the UEL order will be
different in this case (i1 and i2 come before i0).

3452 Application Programming Interfaces

GAMS 43.1.0 Copyright (C) 1987-2023 GAMS Development. All rights reserved

--- Starting compilation

--- test.gms(11) 3 Mb

--- Initialize embedded library libembpycclib64.dylib

--- Execute embedded library libembpycclib64.dylib

--- test.gms(21) 3 Mb

--- Starting execution: elapsed 0:00:01.535

--- test.gms(14) 4 Mb

--- Initialize embedded library libembpycclib64.dylib

--- Execute embedded library libembpycclib64.dylib

--- uni element_text

0 i1

1 i2

2 i0

3 i3

4 i4

5 i5

6 i6

7 i7

8 i8

9 i9

*** Status: Normal completion

Example (Replacing set records)

set i / x1, x2 /;

$onmultiR

$onembeddedCode Python:

import gams.transfer as gt

m = gt.Container()

i = gt.Set(m, "i", records=["i"+str(i) for i in range(10)])

m.write(gams.db)

$offEmbeddedCode i

$offmulti

embeddedCode Python:

import gams.transfer as gt

m = gt.Container(gams.db)

gams.printLog("")

print(m["i"].records)

endEmbeddedCode

In this example we want to replace the x1 and x2 set elements and built up a totally new element list with
set elements from the Container. Instead of $onMulti/$offMulti we must use $onMultiR/$offMulti to
ensure that the replacement happens in GAMS; we also need to remove the set i from the merge symbols

argument.

7.5 Python API 3453

Attention

If the user seeks to replace all records in a symbol they must use the $onMultiR syntax. It is
not sufficient to simply remove them from the merge symbols argument in transfer. If the user
mistakenly uses $onMulti the symbols will end up merging without total replacement.

GAMS 43.1.0 Copyright (C) 1987-2023 GAMS Development. All rights reserved

--- Starting compilation

--- test.gms(11) 3 Mb

--- Initialize embedded library libembpycclib64.dylib

--- Execute embedded library libembpycclib64.dylib

--- test.gms(21) 3 Mb

--- Starting execution: elapsed 0:00:01.482

--- test.gms(14) 4 Mb

--- Initialize embedded library libembpycclib64.dylib

--- Execute embedded library libembpycclib64.dylib

--- uni element_text

0 i0

1 i1

2 i2

3 i3

4 i4

5 i5

6 i6

7 i7

8 i8

9 i9

*** Status: Normal completion

Example (Merging parameter records)

set i;

parameter a(i<) /

i1 1.23

i2 5

/;

$onmulti

$onembeddedCode Python:

import gams.transfer as gt

m = gt.Container()

i = gt.Set(m, "i", records=["i"+str(i) for i in range(10)])

a = gt.Parameter(m, "a", domain=i, records=[("i"+str(i),i) for i in range(10)])

m.write(gams.db, merge_symbols="a")

$offEmbeddedCode i, a

$offmulti

embeddedCode Python:

import gams.transfer as gt

m = gt.Container(gams.db)

gams.printLog("")

print(m["a"].records)

endEmbeddedCode

3454 Application Programming Interfaces

In this example we also need to make use of $onMulti/$offMulti in order to merge new set elements
into the the set i, however the set i also needs to contain the elements that are defined in the parameter –
here we make use of the < operator that will add the set elements from a(i) into the set i

Note

It would also be possible to run this example by explicitly defining the set i /i1, i2/; before the
parameter declaration.

Attention

transfer will overwrite all duplicate records when merging. The original values of a("i1") and
a("i2") have been replaced with their new values when writing the Container in this example (see
output below).

GAMS 43.1.0 Copyright (C) 1987-2023 GAMS Development. All rights reserved

--- Starting compilation

--- test.gms(16) 3 Mb

--- Initialize embedded library libembpycclib64.dylib

--- Execute embedded library libembpycclib64.dylib

--- test.gms(25) 3 Mb

--- Starting execution: elapsed 0:00:01.467

--- test.gms(19) 4 Mb

--- Initialize embedded library libembpycclib64.dylib

--- Execute embedded library libembpycclib64.dylib

--- i value

0 i1 1.0

1 i2 2.0

2 i3 3.0

3 i4 4.0

4 i5 5.0

5 i6 6.0

6 i7 7.0

7 i8 8.0

8 i9 9.0

*** Status: Normal completion

Example (Advanced Matrix Generation and Inversion w/ Write Operation)

set i / i1*i1000 /;

alias(i,j);

parameter a(i,j);

a(i,j) = 1 / (ord(i)+ord(j) - 1);

a(i,i) = 1;

parameter inv_a(i,j);

parameter ident(i,j);

embeddedCode Python:

import gams.transfer as gt

import numpy as np

7.5 Python API 3455

import time

gams.printLog("")

gams.printLog("")

s = time.time()

m = gt.Container(gams.db)

gams.printLog(f"read data: {round(time.time() - s, 3)} sec")

s = time.time()

A = m["a"].toDense()

gams.printLog(f"create matrix A: {round(time.time() - s, 3)} sec")

s = time.time()

invA = np.linalg.inv(A)

gams.printLog(f"calculate inv(A): {round(time.time() - s, 3)} sec")

s = time.time()

m["inv_a"].setRecords(invA)

gams.printLog(f"convert matrix to records for inv(A): {round(time.time() - s, 3)} sec")

s = time.time()

I = np.dot(A,invA)

tol = 1e-9

I[np.where((I<tol) & (I>-tol))] = 0

gams.printLog(f"calculate A*invA + small number cleanup: {round(time.time() - s, 3)} sec")

s = time.time()

m["ident"].setRecords(I)

gams.printLog(f"convert matrix to records for I: {round(time.time() - s, 3)} sec")

s = time.time()

m.write(gams.db, ["inv_a","ident"])

gams.printLog(f"write to GamsDatabase: {round(time.time() - s, 3)} sec")

gams.printLog("")

endEmbeddedCode inv_a, ident

display ident;

In this example we extend the example shown in Read GamsDatabases to read data from GAMS, calculate
a matrix inversion, do the matrix multiplication, and then write both the A∧-1 and A∗A∧-1 (i.e., the
identity matrix) back to GAMS for display in the LST file. This data round trip highlights the benefits of
using a transfer Container (and the linked symbol structure) as the mechanism to move data – converting
back and forth from a records format to a matrix format can be cumbersome, but here, transfer takes
care of all the indexing for the user.

The first few lines of GAMS code generates a 1000x1000 A matrix as a parameter (at execution time), we
then define two more parameters that we will fill with results of the embedded Python code – specifically
we want to fill a parameter with the matrix A∧-1 and we want to verify that another parameter (ident)
contains the identity matrix (i.e., I). Stepping through the code:

1. We start the embedded Python code section (execution time) by importing both transfer and
Numpy and by reading all the symbols that currently exist in the GamsDatabase. We must read in
all this information in order to get the domain set information – transfer needs these domain sets
in order to generate matricies with the proper size.

2. Generate the matrix A by calling .toDense() on the symbol object in the Container.

3456 Application Programming Interfaces

3. Take the inverse of A with np.linalg.inv().

4. The Parameter symbol for inv a already exists in the Container, but it does not have any records
(i.e., m["inv a"].records is None will evaluate to True). We use .setRecords() to convert the
invA back into a records format.

5. We continue the computations by performing the matrix multiplication using np.dot() – we must
clean up a lot of small numbers in I.

6. The Parameter symbol for ident already exists in the Container, but it does not have any records.
We use .setRecords() to convert I back into a records format.

7. Since we are calculating these parameter values at execution time, it is not possible to modify the
domain set information (or even merge/replace it). Therefore we only want to write the parameter
values to GAMS. We achieve this by writing a subset of the Container symbols out with the
m.write(gams.db, ["inv a","ident"]) call. This partial write preserves symbol validity in the
Container and it does not violate other GAMS requirements.

8. Finally, we can verify that the (albeit large) identity matrix exists in the LST file (or in another
GDX file).

Note

It was not possible to just use np.round because small negative numbers that round to -0.0 will be
interpreted by transfer as the GAMS EPS special value.

The output for this example is shown below:

GAMS 43.1.0 Copyright (C) 1987-2023 GAMS Development. All rights reserved

--- Starting compilation

--- matrix.gms(52) 3 Mb

--- Starting execution: elapsed 0:00:00.004

--- matrix.gms(11) 36 Mb

--- Initialize embedded library libembpycclib64.dylib

--- Execute embedded library libembpycclib64.dylib

--- read data: 1.083 sec

--- create matrix A: 0.016 sec

--- calculate inv(A): 0.032 sec

--- convert matrix to records for inv(A): 0.176 sec

--- calculate A*invA + small number cleanup: 0.027 sec

--- convert matrix to records for I: 0.17 sec

--- write to GamsDatabase: 1.937 sec

--- matrix.gms(52) 68 Mb

*** Status: Normal completion

Container Read

Containers can read from other Container instances. The syntax and behavior is much the same as
reading from GDX and GMD sources. It is important to note that a deepcopy of all data is made when
reading from these sources. The container object can be passed into the constructor (to be consistent
with the shorthand notation) or the object can be passed as a argument to the .read() method.
import gams.transfer as gt
m = gt.Container("trnsport.gdx")
In [1]: m.data
Out[1]:

7.5 Python API 3457

{’i’: <Set ‘i‘ (0x7fc1d86d8e80)>,
’j’: <Set ‘j‘ (0x7fc1d86d8e50)>,
’a’: <Parameter ‘a‘ (0x7fc1d86d8df0)>,
’b’: <Parameter ‘b‘ (0x7fc1d86d8fa0)>,
’d’: <Parameter ‘d‘ (0x7fc1d86d84c0)>,
’f’: <Parameter ‘f‘ (0x7fc1d86d9000)>,
’c’: <Parameter ‘c‘ (0x7fc1d86d9120)>,
’x’: <Positive Variable ‘x‘ (0x7fc1d86d90f0)>,
’z’: <Free Variable ‘z‘ (0x7fc1d86d8fd0)>,
’cost’: <Eq Equation ‘cost‘ (0x7fc1d86d8cd0)>,
’supply’: <Leq Equation ‘supply‘ (0x7fc1d86d8c40)>,
’demand’: <Geq Equation ‘demand‘ (0x7fc1d86d8c10)>}

m2 = gt.Container()
m2.read(m)
equivalent to m2 = gt.Container(m)
In [7]: m2.data
Out[7]:
{’i’: <Set ‘i‘ (0x7fc1c8153fa0)>,
’j’: <Set ‘j‘ (0x7fc1c8153730)>,
’a’: <Parameter ‘a‘ (0x7fc1c8153cd0)>,
’b’: <Parameter ‘b‘ (0x7fc1d86fc790)>,
’d’: <Parameter ‘d‘ (0x7fc1f87dd240)>,
’f’: <Parameter ‘f‘ (0x7fc1c8153eb0)>,
’c’: <Parameter ‘c‘ (0x7fc1f87ddb40)>,
’x’: <Positive Variable ‘x‘ (0x7fc1c81536a0)>,
’z’: <Free Variable ‘z‘ (0x7fc1f87ddc60)>,
’cost’: <Eq Equation ‘cost‘ (0x7fc1c81539a0)>,
’supply’: <Leq Equation ‘supply‘ (0x7fc1f87dcd00)>,
’demand’: <Geq Equation ‘demand‘ (0x7fc1d86ff700)>}

Combining two containers

In this example we create two containers (which could have been populated from GDX files) and add in
all symbol that do not currently exist in the first Container
import gams.transfer as gt
m1 = gt.Container()
i = gt.Set(m1, "i", records=[f"i{i}" for i in range(10)])
j = gt.Set(m1, "j", records=[f"j{i}" for i in range(10)])
k = gt.Set(m1, "k", records=[f"k{i}" for i in range(10)])
m2 = gt.Container()
a = gt.Set(m2, "a", records=[f"a{i}" for i in range(10)])
b = gt.Set(m2, "b", records=[f"b{i}" for i in range(10)])
k = gt.Set(m2, "k", records=[f"k{i}" for i in range(10)])
now read in everything from m2 that does not exist in m1 (will read ‘a‘ and ‘b‘)
m1.read(m2, [symname for symname, obj in m2 if symname not in m1])
In [1]: m1.data
Out[1]:
{’i’: <Set ‘i‘ (0x7f9e504231c0)>,
’j’: <Set ‘j‘ (0x7f9e3043cc10)>,
’k’: <Set ‘k‘ (0x7f9e509bcd00)>,
’a’: <Set ‘a‘ (0x7f9e50423760)>,
’b’: <Set ‘b‘ (0x7f9e508ed0c0)>}

In [2]: m1.isValid()
Out[2]: True

7.5.5 Getting Started

Users have many options to manage their Python installation; in many cases it is advantageous to create
a Python ”environment” to sandbox an instance of Python (something which can be done with venv

or conda). We recommend that users download a version of miniconda. We direct users to the conda

documentation for installation issues. After the user has installed miniconda (or conda) we will:

• Verify that conda is working

• Create a new scratch Python environment

• Enter the new environment and verify the python version

• Install the GAMS API with pip

https://docs.conda.io/en/latest/miniconda.html

3458 Application Programming Interfaces

Note

miniconda and conda are synonymous – both are package + environment managers – however,
conda comes preloaded with a number of useful data science-related packages. We emphasize
miniconda because of the smaller install size. The terminal commands we used here apply to both
miniconda and conda versions. The remaining documentation will only use the term conda.

Attention

The new API structure cannot be used to simply ”update” previous versions – users should build
new Python environments from scratch before attempting to install.

7.5.5.1 Verify Conda Installation

To verify that conda is accessible from the terminal we simply need to check for the version number. Your
version of conda may differ. The installation of the GAMS API does not depend on the conda version.

7.5.5.2 Create a New Conda Environment

Conda can create, manage, and delete Python environments easily – this flexibility allows users to
experiment quickly with different tools. If experiments fail, the entire environment can be removed without
damaging the rest of the system. In short, each conda environment is an isolated sandbox. We will now
create a new conda environment called gams that we will used when installing the GAMS API.

Note

Best practice is to use an environment rather than install into conda's base environment

Note

It is necessary to specify the version of Python to install into the new conda environment. The
GAMS API currently supports Python 3.8 to 3.12.

We must now ”activate” the conda environment (i.e., enter the Python sandbox).

Once in the activated environment we should verify the Python version is the one that was specified at
creation.

7.5.5.3 Install

The GAMS Python API is distributed through the Python Package Index. The gamsapi package
comes with several install options (via pip extras) that change how dependencies are resolved. pip will
not install any third-party dependencies if an extra label was not provided. For example, to install the
transfer data tool (and its dependencies to pandas and scipy).

Note

xx.y.z represents your installed GAMS version number (e.g., 46.2.0)

The extras that are available for the GAMS Python API are:

https://pypi.org/project/gamsapi/

7.5 Python API 3459

extra Third-party Dependencies to Install

connect pandas, pyyaml, openpyxl, sqlalchemy, cerberus, pyodbc, psycopg2-binary, pymysql,
pymssql

control urllib3

core ply

engine python dateutil, urllib3

magic ipython, pandas

tools pandas

transfer pandas, scipy

all installs all third-party dependencies for all sub-modules – a complete install

Attention

Users can chain several extras together (separated by commas) in one pip install command to
install dependencies from several sub-modules at once.

7.5.5.4 macOS Compatibility

The default shell for macOS 10.15+ (Catalina) is zsh. Users that wish to install the gamsapi will need to
modify their install syntax slightly (note the quotations).

Note

xx.y.z represents your installed GAMS version number (e.g., 46.2.0)

Apple M1/M2

Apple users that have a M1/M2 (arm) chipset must be careful to match build architectures (i.e., x86 or
arm) of both the GAMS system and miniconda (Python). Ideally, M1/M2 users will only install native
arm compatible programs. Apple's Rosetta 2 does allow users to install and run x86 compiled programs
on M1/M2. However, mixed installations (i.e., an arm GAMS system but a x86 miniconda or vice versa)
will fail because the gamsapi will not be able to properly load the necessary shared libraries.

The gams audit tool will return the GAMS build architecture (x86 or arm will be in the returned string):

The build architecture of the Python installation is available with the following command:

Attention

The user must reinstall either a GAMS or Python system if these two returns do not match.

7.5.5.5 Verify the GAMS API

pip provides feedback that suggests that the GAMS API was successfully installed, however, it is still
wise to verify this. The best way to test is to actually create a short Python script that imports gams.
The following 1 line will run an import operation and, if successful, will output the API version number.
The API was not successfully installed if an import error is raised.

Attention

Example problems can be found in the [PATH TO GAMS]/api/python/examples folder (organized
by sub-module).

3460 Application Programming Interfaces

7.5.5.6 Uninstall the GAMS API

Removal of the GAMS API is straightforward with pip:

7.5.5.7 Remove Conda Environment

Removal of the entire conda environment is also straightforward with the following operations:

7.5.5.8 Other Useful Conda Commands

Users are directed to the full conda documentation but some useful commands are provided here as a
quick reference.

Conda Command Description

conda env list List all conda environments

conda list List all installed packages in the active environment

conda deactivate Deactivate the current Python environment

conda remove --name XXX --all Remove the XXX environment, must be deactivated first

conda install XXX Install package XXX with the conda system, not all packages can
be installed from conda directly

7.5.5.9 Python Virtual Environment (venv)

This documentation assumed users will want to use conda to manage their Python environments, but
other tools such as venv can be used to manage separate Python environments. The details of the venv

setup, activation, deactivation and removal differ from conda, but the pip install commands are the same
as in conda. Interested users are referred to the official venv documentation for details on how to create
a virtual environment. Users are also directed to additional documentation on: Installing packages

using pip and virtual environments.

7.5.5.10 Working with Python and multiple GAMS Installations

Some users may want to run multiple versions of GAMS on their system – we recommend that users
create separate Python environments in order to compare the behavior between versions of the Python
API.

7.5.5.11 A note on using Python site package

Previous API versions could be used by a Python interpreter if the path to the API directory was included
in a sitecustomize.py script that resided in the site-packages directory. This type of installation
allows customized packages to be found and used, but not necessarily copied into Python's directory
structure. Previous versions of the API benefited from this type of installation, we recommend that users
create a separate Python environment and actually install the GAMS API into the environment with
pip. Users that were using the sitecustomize.py installation method might experience issues with pip

installations if their Python finds an old sitecustomize.py file that includes a path to old GAMS API
files (pip might report that the requirement is already satisfied). Users can find out where the
USER SITE directory is located by running the following command:

Once this directory has been found, it is necessary to remove all paths (in the sitecustomize.py file)
that point to previous GAMS API folders and reattempt the pip install process.

https://docs.conda.io/projects/conda/en/stable/
https://docs.python.org/3/library/venv.html
https://packaging.python.org/en/latest/guides/installing-using-pip-and-virtual-environments/
https://packaging.python.org/en/latest/guides/installing-using-pip-and-virtual-environments/

7.6 Matlab API 3461

7.6 Matlab API

The GAMS Matlab API is a Matlab package that contains several sub-packages that enable the control
of the GAMS system as well as the movement of data between GAMS and Matlab. The following table
gives an overview of all available sub-packages:

Sub-Package Description

gams.control Enables full control of the GAMS System

gams.transfer Data Only API – Allows GAMS data to be maintained outside a GAMS script

Attention

Don't use the data exchange tool GDXMRW anymore and switch to gams.transfer instead.

7.6.1 Control

The GAMS Matlab Control API provides a Matlab programming interface to the General Algebraic Model
System (GAMS). GAMS Matlab Control API objects allow a convenient way to exchange input data and
model results with in-memory representation of data (Database), and to create and run GAMS models
(Job) that can be customized by GAMS options (Options). Furthermore, they introduce a way to
solve a sequence of closely related model instances in a more efficient way (ModelInstance).

Note

If you only want to exchange data between Matlab and GAMS, use GAMS Transfer Matlab as
it is very likely to be more efficient than GAMS Matlab Control API in case of exchanging very
large data sets.

The underlying GAMS engine relies to some extent on file based communication (e.g. the listing file) and
other unmanaged resources. Since the GAMS Matlab Control API is based on the GAMS Java API, the
use of external resources in the Java environment requires special attention. Hence, some objects need to
be properly disposed before the Java garbage collector does its job.

A GAMS program can include other source files (e.g. $include), load data from GDX files (e.g. $GDXIN
or execute load), and create PUT files. All these files can be specified with a (relative) path and therefore
an anchor into the file system is required. The base object Workspace manages the anchor to the file
system.

With the exception of Workspace the objects in the gams package cannot be accessed across different
threads unless the instance is locked. The classes themselves are thread safe and multiple objects of the
class can be used from different threads (see below for restrictions on solvers that are not thread safe
within the ModelInstance class).

Note

If you use multiple instances of the Workspace in parallel, you should avoid using the same
working directory. Otherwise you may end up with conflicting file names.

Currently only Cplex, Gurobi, and SoPlex fully utilize the power of solving ModelInstances. Some
solvers will not work in a multi-threaded application using ModelInstances. For some solvers this is
unavoidable because the solver library is not thread safe (e.g. MINOS). Moreover, ModelInstances are
not available for quadratic model types (QCP, MIQCP, RMIQCP).

This version of the GAMS Matlab Control API also does not provide support for the following GAMS
components: acronyms, GAMS compilation/execution errors, structured access to listing file, and solver
options.

To get started, see Getting Started.

3462 Application Programming Interfaces

7.6.1.1 New Class Names

With GAMS 46 the GAMS Matlab Control API has been restructured and classes have been renamed.
The following lists a mapping of old to new class names:

• GAMS.AbstractRunParameters: gams.control.AbstractRunParameters

• GAMS.GAMSCheckpoint: gams.control.Checkpoint

• GAMS.GAMSDatabase: gams.control.Database

• GAMS.GAMSDatabaseDomainViolation: gams.control.DatabaseDomainViolation

• GAMS.GAMSEngineConfiguration: gams.control.engine.Configuration

• GAMS.GAMSEngineJob: gams.control.engine.Job

• GAMS.GAMSEngineJobBuilder: gams.control.engine.JobBuilder

• GAMS.GAMSEngineRunParameters: gams.control.engine.RunParameters

• GAMS.GAMSEquation: gams.control.Equation

• GAMS.GAMSEquationRecord: gams.control.EquationRecord

• GAMS.GAMSGlobals: gams.control.Globals

• GAMS.DebugLevel: gams.control.globals.DebugLevel

• GAMS.UpdateAction: gams.control.globals.UpdateAction

• GAMS.ModelStat: gams.control.globals.ModelStat

• GAMS.SolveStat: gams.control.globals.SolveStat

• GAMS.SetType: gams.control.globals.SetType

• GAMS.VarType: gams.control.globals.VarType

• GAMS.EquType: gams.control.globals.EquType

• GAMS.ArchType: gams.control.globals.ArchType

• GAMS.OSType: gams.control.globals.OSType

• GAMS.GAMSJob: gams.control.Job

• GAMS.GAMSModelInstance: gams.control.ModelInstance

• GAMS.SymbolUpdateType: gams.control.globals.SymbolUpdateType

• GAMS.GAMSModelInstanceOpt: gams.control.ModelInstanceOpt

• GAMS.GAMSModifier: gams.control.Modifier

• GAMS.GAMSOptions: gams.control.Options

• GAMS.ZeroResRep: gams.control.options.ZeroResRep

• GAMS.TraceOpt: gams.control.options.TraceOpt

• GAMS.TFormat: gams.control.options.TFormat

• GAMS.SysOut: gams.control.options.SysOut

• GAMS.Sys11: gams.control.options.Sys11

• GAMS.Sys10: gams.control.options.Sys10

7.6 Matlab API 3463

• GAMS.Suppress: gams.control.options.Suppress

• GAMS.SuffixAlgebraVars: gams.control.options.SuffixAlgebraVars

• GAMS.SuffixDLVars: gams.control.options.SuffixDLVars

• GAMS.StringChk: gams.control.options.StringChk

• GAMS.strictSingleton: gams.control.options.strictSingleton

• GAMS.StepSum: gams.control.options.StepSum

• GAMS.SolveOpt: gams.control.options.SolveOpt

• GAMS.SolveLink: gams.control.options.SolveLink

• GAMS.SolPrint: gams.control.options.SolPrint

• GAMS.ShowOSMemory: gams.control.options.ShowOSMemory

• GAMS.SavePoint: gams.control.options.SavePoint

• GAMS.Replace: gams.control.options.Replace

• GAMS.ReferenceLineNo: gams.control.options.ReferenceLineNo

• GAMS.PyMultInst: gams.control.options.PyMultInst

• GAMS.PutNR: gams.control.options.PutNR

• GAMS.ProcTreeMemMonitor: gams.control.options.ProcTreeMemMonitor

• GAMS.PreviousWork: gams.control.options.PreviousWork

• GAMS.PrefixLoadPath: gams.control.options.PrefixLoadPath

• GAMS.PageContr: gams.control.options.PageContr

• GAMS.On115: gams.control.options.On115

• GAMS.NoNewVarEqu: gams.control.options.NoNewVarEqu

• GAMS.MIIMode: gams.control.options.MIIMode

• GAMS.LstTitleLeftAligned: gams.control.options.LstTitleLeftAligned

• GAMS.LogLine: gams.control.options.LogLine

• GAMS.Listing: gams.control.options.Listing

• GAMS.Keep: gams.control.options.Keep

• GAMS.IntVarUp: gams.control.options.IntVarUp

• GAMS.InteractiveSolver: gams.control.options.InteractiveSolver

• GAMS.ImplicitAssign: gams.control.options.ImplicitAssign

• GAMS.HoldFixedAsync: gams.control.options.HoldFixedAsync

• GAMS.HoldFixed: gams.control.options.HoldFixed

• GAMS.gdxUels: gams.control.options.gdxUels

• GAMS.gdxConvert: gams.control.options.gdxConvert

• GAMS.gdxCompress: gams.control.options.gdxCompress

• GAMS.FreeEmbeddedPython: gams.control.options.FreeEmbeddedPython

• GAMS.ForceWork: gams.control.options.ForceWork

3464 Application Programming Interfaces

• GAMS.Filtered: gams.control.options.Filtered

• GAMS.FileCase: gams.control.options.FileCase

• GAMS.FDOpt: gams.control.options.FDOpt

• GAMS.ExecMode: gams.control.options.ExecMode

• GAMS.ErrMsg: gams.control.options.ErrMsg

• GAMS.Empty: gams.control.options.Empty

• GAMS.ECImplicitLoad: gams.control.options.ECImplicitLoad

• GAMS.DumpParms: gams.control.options.DumpParms

• GAMS.DumpOpt: gams.control.options.DumpOpt

• GAMS.Digit: gams.control.options.Digit

• GAMS.DFormat: gams.control.options.DFormat

• GAMS.CheckErrorLevel: gams.control.options.CheckErrorLevel

• GAMS.CharSet: gams.control.options.CharSet

• GAMS.LstCase: gams.control.options.LstCase

• GAMS.CaptureModelInstance: gams.control.options.CaptureModelInstance

• GAMS.AsyncSolLst: gams.control.options.AsyncSolLst

• GAMS.AppendOut: gams.control.options.AppendOut

• GAMS.AppendExpand: gams.control.options.AppendExpand

• GAMS.Action: gams.control.options.Action

• GAMS.GAMSParameter: gams.control.Parameter

• GAMS.GAMSParameterRecord: gams.control.ParameterRecord

• GAMS.GAMSRunParameters: gams.control.RunParameters

• GAMS.GAMSSet: gams.control.Set

• GAMS.GAMSSetRecord: gams.control.SetRecord

• GAMS.GAMSSymbol: gams.control.Symbol

• GAMS.GAMSSymbolDomainViolation: gams.control.SymbolDomainViolation

• GAMS.GAMSSymbolRecord: gams.control.SymbolRecord

• GAMS.GAMSVariable: gams.control.Variable

• GAMS.GAMSVariableRecord: gams.control.VariableRecord

• GAMS.GAMSWorkspace: gams.control.Workspace

• GAMS.GAMSWorkspaceInfo: gams.control.WorkspaceInfo

7.6.1.2 Getting Started

The GAMS Matlab Control API is built on top of the GAMS Java Control API and provides convenient
access to GAMS from within Matlab (2017b or later) and Octave (5.2 or later).

7.7 R API 3465

Install

The Matlab API is located in api/matlab. Add this directory to the Matlab path:
addpath("[PathToGAMS]/api/matlab")

Furthermore, make Matlab aware of the GAMS Java API (see also GAMS Java API below):
javaaddpath("[PathToGAMS]/apifiles/Java/api/GAMSJavaAPI.jar")

GAMS Java API

Instead of adding the GAMS Java API dynamically as done above, it is also possible to add it statically. For
this, locate javaclasspath.txt and add the path [PathToGAMS]/apifiles/Java/api/GAMSJavaAPI.jar.
You can find the location with cd(prefdir) in Matlab or which javaclasspath in Octave. Finally,
restart Matlab or Octave. Adding the GAMS Java API statically is more efficient.

Attention

Since GAMS 44.1.0, the GAMS Java API requires at least Java SE 11 to compile and run. Matlab
usually ships Java SE 8. In that case use GAMSJavaAPI-8.jar instead of GAMSJavaAPI.jar. However,
new or updated functionalities that are released after GAMS 43 are not avaiable in this Java API
version. Since Matlab R2023a, Matlab does support Java SE 11 (although it may have to be installed
by the user). You can use jenv system to use the Java installed on the system instead of Matlab's
shipped Java.

Important Classes

This section provides a quick overview of some fundamental classes of the GAMS Control package.
Their usage is demonstrated by an extensive set of examples (located in api/matlab/examples). All
GAMS Matlab Control API classes are contained within the package gams.control (with subpackages
gams.control.globals, gams.control.engine and gams.control.options). The package provides
objects to interact with the General Algebraic Modeling System (GAMS). Objects in this package allow
convenient exchange of input data and model results (Database) and help to create and run GAMS
models (Job), that can be customized by GAMS options (Options). Furthermore, it introduces a way
to solve a sequence of closely related models in the most efficient way (ModelInstance).

7.7 R API

The R API consists of GAMS Transfer R.

7.7.1 GAMS Transfer R

GAMS Transfer is a package to maintain GAMS data outside a GAMS script in a programming language
like Python, Matlab, or R. It allows the user to add GAMS symbols (Sets, Aliases, Parameters, Variables
and Equations), to manipulate GAMS symbols, as well as read/write symbols to different data endpoints.
GAMS Transfer's main focus is the highly efficient transfer of data between GAMS and the target
programming language, while keeping those operations as simple as possible for the user. In order to
achieve this, symbol records - the actual and potentially large-scale data sets - are stored in native data
structures of the corresponding programming languages. The benefits of this approach are threefold: (1)
The user is usually very familiar with these data structures, (2) these data structures come with a large
tool box for various data operations, and (3) optimized methods for reading from and writing to GAMS
can transfer the data as a bulk - resulting in the high performance of this package.

3466 Application Programming Interfaces

7.7.1.1 Getting Started

Install

The user must download and install the latest version of GAMS in order to install GAMS Transfer R.
GAMS Transfer R can then be installed from either the source package or from the binary package.
Installing using binary package is recommended for the new users since it is easier and does not involve
compiling the package source.

The binary packages are platform dependent and the instructions for each supported platform are shown
below.

Windows
install.packages("[PathToGAMS]/apifiles/R/gamstransfer/binary/gamstransfer.zip", type="binary")

Linux
install.packages("[PathToGAMS]/apifiles/R/gamstransfer/binary/gamstransfer.tar.gz")

macOS (same for ARM64 CPUs)
install.packages("[PathToGAMS]/apifiles/R/gamstransfer/binary/gamstransfer.tgz", type="binary")

GAMS Transfer R depends on packages R6, R.utils, and Rcpp, collections.

Installation using the source package can be done with the following command.
install.packages("[PathToGAMS]/apifiles/R/gamstransfer/source/gamstransfer r.tar.gz", dependencies=TRUE)

When building from source, GAMS Transfer R also requires the library zlib. The user can point to zlib

by adding the directory containing zlib to the environment variable PATH or by using configure.vars

argument of install.packages().

Examples

GDX Read

Reading in all symbols can be accomplished with one line of code (we reference data from the trnsport.gms
example).
library(gamstransfer)
m = Container$new("trnsport.gdx")

All symbols are internally stored in the Container data field (dictionary). The users should never have to
access or modify the data field. The symbols can be accessed via m[<symbol name>] and the records
can be accessed via m[<symbol name>]$records. Symbol records are stored in the data frame format.

GDX Write

There are five symbol classes within GAMS Transfer R: Sets, Parameters, Variables, Equations, and
Aliases. For purposes of this quick start, we show how to recreate the distance data structure from the
trnsport.gms model (the parameter d). This brief example shows how users can achieve ”GAMS-like”
functionality, but within an R environment. GAMS Transfer R leverages the object oriented programming
to simplify the syntax.
library(gamstransfer)
m = Container$new()
create the sets i, j
i = Set$new(m, "i", records = c("seattle", "san-diego"), description = "supply")
j = Set$new(m, "j", records = c("new-york", "chicago", "topeka"), description = "markets")
add "d" parameter -- domain linked to set objects i and j
d = Parameter$new(m, "d", c(i, j), description = "distance in thousands of miles")
create some data as a generic data frame
dist = data.frame(

7.7 R API 3467

from = c("seattle", "seattle", "seattle",
"san-diego", "san-diego", "san-diego"),
to = c("new-york", "chicago", "topeka",

"new-york", "chicago", "topeka"),
thousand miles = c(2.5, 1.7, 1.8, 2.5, 1.8, 1.4)

)
setRecords will automatically convert the dist data frame into
a standard data frame format
d$setRecords(dist)
write the GDX
m$write("out.gdx")

This example shows a few fundamental features of GAMS Transfer R:

1. A Container is analogous to a GDX file

2. Symbols will always be linked to a Container (notice that we always pass the Container reference m

to the symbol constructor)

3. Records can be added to a symbol with the setRecords() method, through the records constructor
argument (internally calls setRecords()), or through directly setting the records field. GAMS
Transfer R will convert many common R data structures into a standard format.

4. Domain linking is possible by passing domain set objects to other symbols.

5. Writing a GDX file can be accomplished in one line with the write() method.

Full Example

It is possible to use GAMS Transfer R to recreate the trnsport.gms results in GDX form. As part of
this example, we also introduce the write() method (and generate new.gdx). We will discuss it in more
detail in the following section: Data Exchange with GDX.
library(gamstransfer)
create an empty Container object
m = Container$new()
add sets
i = Set$new(m, "i", records=c("seattle", "san-diego"), description="supply")
j = Set$new(m, "j", records=c("new-york", "chicago", "topeka"), description="markets")
add parameters
a = Parameter$new(m, "a", c("*"), description="capacity of plant i in cases")
b = Parameter$new(m, "b", j, description="demand at market j in cases")
d = Parameter$new(m, "d", c(i, j), description="distance in thousands of miles")
f = Parameter$new(

m, "f", records=90, description="freight in dollars per case per thousand miles"
)
c = Parameter$new(

m, "c", c(i, j), description="transport cost in thousands of dollars per case"
)
set parameter records
cap = data.frame(plant = c("seattle", "san-diego"), n cases = c(350, 600))
a$setRecords(cap)
dem = data.frame(market = c("new-york","chicago", "topeka"), n cases = c(325, 300, 275))
b$setRecords(dem)
dist = data.frame(

from = c("seattle", "seattle", "seattle",
"san-diego", "san-diego", "san-diego"),
to = c("new-york", "chicago", "topeka",

"new-york", "chicago", "topeka"),
thousand miles = c(2.5, 1.7, 1.8, 2.5, 1.8, 1.4)

)
d$setRecords(dist)
c(i,j) = f * d(i,j) / 1000;
cost = d$records
cost$value = f$records$value * cost$value/1000
c$setRecords(cost)
add variables
q = data.frame(

from = c("seattle", "seattle", "seattle",
"san-diego", "san-diego", "san-diego"),
to = c("new-york", "chicago", "topeka",

"new-york", "chicago", "topeka"),
level = c(50, 300, 0, 275, 0, 275),
marginal = c(0, 0, 0.036, 0, 0.009, 0)

)
x = Variable$new(m, "x", "positive", c(i, j), records=q, description="shipment quantities in cases")

3468 Application Programming Interfaces

z = Variable$new(
m,
"z",
records=data.frame(level = 153.675),
description="total transportation costs in thousands of dollars"
)

add equations
cost = Equation$new(m, "cost", "eq", description="define objective function")
supply = Equation$new(m, "supply", "leq", i, description="observe supply limit at plant i")
demand = Equation$new(m, "demand", "geq", j, description="satisfy demand at market j")
set equation records
cost$setRecords(data.frame(level = 0, marginal = 1, lower = 0, upper = 0))
supplies = data.frame(

from = c("seattle", "san-diego"),
level = c(350, 550),
marginal = c(SpecialValues$EPS, 0),
lower = c(SpecialValues$NEGINF, SpecialValues$NEGINF),
upper = c(350, 600)

)
supply$setRecords(supplies)
demands = data.frame(

from = c("new-york", "chicago", "topeka"),
level = c(325, 300, 275),
marginal = c(0.225, 0.153, 0.126),
lower = c(325, 300, 275)

)
demand$setRecords(demands)
m$write("new.gdx")

It can be observed from the above example that a typical work flow for writing using GAMS Transfer R is
creating a container, filling it with symbols (Sets, Parameters, Variables, Equations, and Aliases), and
write it to a GDX file. To read a GDX file, a Container can simply be initialized with the GDX file name
as an argument.

These examples introduced the reader to the GAMS Transfer R syntax. In the remaining sections, we will
present details about the core functionality and dig further into the syntax.

7.7.1.2 Manual

Container

Storing, manipulating, and transforming sparse data requires that it lives within an environment. This
data can then be linked together to enable various operations. In GAMS Transfer R, we refer to this
”environment” as the Container, it is the main repository for storing and linking our data. Linking data
enables data operations such as implicit set growth, domain checking, and data format transformations
(to dense/sparse matrix formats). A Container also enables different read/write operations.

Creating a Container is a simple matter of initializing an object. For example:
library(gamstransfer)
m = Container$new()

This new Container object, here called m, contains a number of convenient fields and methods that allow
the user to interact with the symbols that are in the Container. Some of these methods are simply used
to filter out different types of symbols, other methods are used to numerically characterize the data within
each symbol.

The Container constructor arguments are:

Argument Type Description Required Default

loadFrom string, Container Name of the GDX file being read into
the Container

No NULL

7.7 R API 3469

Container fields

Field Description Type

data main dict that is used to store all symbol data dict (collections package)

summary output a list containing the container information list

Symbols are organized in the Container under the data field. The users should never have to access the
data field. Symbols in the container can be accessed via m[<symbol name>].

Container methods

Method Description Argu-
ments/Defaults

Returns

addAlias add an Alias name (string)
aliasWith

(Set,Alias)

Alias object

addUniverseAlias add a UniverseAlias name (string) UniverseAlias object

addEquation add an Equation name (string)
type (string)
domain=NULL

(string,list)
records=NULL (data
frame,vector,NULL)
domainForwarding=FALSE

(logical)
description=""

(string)

Equation object

addParameter add a Parameter name (string)
domain=NULL

(string,list)
records=NULL (data
frame,array, matrix)
domainForwarding=FALSE

(logical)
description=""

(string)

Parameter object

addSet add a Set name (string)
domain="∗"
(string,list)
isSingleton=FALSE

(logical)
records=NULL (data
frame,array,matrix)
domainForwarding=FALSE

(logical)
description=""

(string)

Set object

3470 Application Programming Interfaces

Method Description Argu-
ments/Defaults

Returns

addVariable add a Variable name (string)
type="free"

(string)
domain=NULL

(string,list)
records=NULL (data
frame,array,matrix)
domainForwarding=FALSE

(logical)
description=""

(string)

Variable object

copy copies symbols to the
destination container.
overwrite=TRUE over-
writes the symbols
with the same name in
destination. Symbol
domains are relaxed

if destination Con-
tainer does not contain
equivalent domain sets

destination

(Container),
symbols=NULL(character),
overwrite=FALSE (log-
ical)

NULL

countDomainViolations returns a named list
containing number of
domain violations sym-
bols with non-zero do-
main violations

symbols=NULL

(character) - if NULL,
assumes all symbols

list

countDuplicateRecords returns a named list
containing number of
duplicate records for
symbols with non-zero
duplicate records

symbols=NULL

(character) - if NULL,
assumes all symbols

list

describeAliases create a summary table
with descriptive statis-
tics for Aliases

symbols=NULL

(string) - if NULL,
assumes all Aliases

data frame

describeEquations create a summary table
with descriptive statis-
tics for Equations

symbols=NULL

(string) - if NULL,
assumes all equations

data frame

describeParameters create a summary table
with descriptive statis-
tics for Parameters

symbols=NULL

(string) - if NULL,
assumes all parameters

data frame

describeSets create a summary table
with descriptive statis-
tics for Sets

symbols=NULL

(string) - if NULL,
assumes all sets

data frame

describeVariables create a summary table
with descriptive statis-
tics for Variables

symbols=NULL

(string) - if NULL,
assumes all variables

data frame

dropDomainViolations drops domain violations
for symbols in the Con-
tainer

symbols=NULL

(character) - if NULL,
assumes all symbols

-

dropDuplicateRecords drops duplicate records
for symbols in the Con-
tainer

symbols=NULL

(character) - if NULL,
assumes all symbols,
keep= first/last

-

7.7 R API 3471

Method Description Argu-
ments/Defaults

Returns

equals Check if two Container
objects are equal

other (Container),
verbose=FALSE

logical

getAliases returns a list of object
references for Aliases

that are isValid

isValid=NULL

(logical)
list

getDomainViolations gets domain violations
for symbols in the Con-
tainer

symbols=NULL

(character) - if NULL,
assumes all symbols

list of
DomainViolation

getEquations returns a list of ob-
ject references for
Equations that are
isValid

isValid=NULL

(logical)
list

getParameters returns a list of ob-
ject references for
Parameters that are
isValid

isValid=NULL

(logical)
list

getSets returns a list of object
references for Sets that
are isValid

isValid=NULL

(logical)
list

getSymbolNames returns the original
symbol names for a
vector names of any
case

names (character) character

getSymbols returns a list of object
references for symbols

symbols (character) -
if NULL assumes all sym-
bols

list

getVariables returns a list of ob-
ject references for
Variables that are
isValid

isValid=NULL

(logical)
list

getUELs returns the UELs used
in the Container

symbols=NULL (charac-
ter), ignoreUnused =

FALSE

character vector

hasDomainViolations returns TRUE if any
symbol in the container
has domain violations,
FALSE otherwise

symbols=NULL

(character) - if NULL,
assumes all symbols

logical

hasDuplicateRecords returns TRUE if any
symbol in the container
has duplicate records,
FALSE otherwise

symbols=NULL

(character) - if NULL,
assumes all symbols

logical

hasSymbols checks if symbol names
for a vector names ex-
ists in the container

names (character) logical

isValid TRUE if all symbols in
the Container are valid

symbols=NULL

(character) - if
NULL, assumes all sym-
bols, verbose=FALSE

(logical)
force=FALSE

(logical)

logical

3472 Application Programming Interfaces

Method Description Argu-
ments/Defaults

Returns

listAliases list all aliases
(isValid=NULL),
list all valid aliases
(isValid=TRUE), list
all invalid aliases
(isValid=FALSE) in
the container

isValid=NULL

(logical)
vector

listEquations list all equations
(isValid=NULL), list
all valid equations
(isValid=TRUE), list
all invalid equations
(isValid=FALSE) in
the container

isValid=NULL

(logical)
types=NULL

(character of eqau-
tion types) - if NULL,
assumes all types

vector

listParameters list all parameters
(isValid=NULL), list
all valid parameters
(isValid=TRUE), list
all invalid parameters
(isValid=FALSE) in
the container

isValid=NULL

(logical)
vector

listSets list all sets
(isValid=NULL),
list all valid sets
(isValid=TRUE),
list all invalid sets
(isValid=FALSE) in
the container

isValid=NULL

(logical)
vector

listSymbols list all symbols
(isValid=NULL), list
all valid symbols
(isValid=TRUE), list
all invalid symbols
(isValid=FALSE) in
the container

isValid=NULL

(logical)
vector

listVariables list all variables
(isValid=NULL), list
all valid variables
(isValid=TRUE), list
all invalid variables
(isValid=FALSE) in
the container

isValid=NULL

(logical)
types=NULL

(character of vari-
able types) - if NULL,
assumes all types

vector

read main method to read
loadFrom, can be pro-
vided with a list of
symbols to read in sub-
sets, records controls
if symbol records are
loaded or just metadata

loadFrom (string,
Container)
symbols=NULL

(string)
records=TRUE

(logical)

NULL

7.7 R API 3473

Method Description Argu-
ments/Defaults

Returns

removeSymbols symbols to remove
from the Container,
also sets the symbols'
container to NULL;
removes symbol links
from the Container;
Aliases are also re-
moved if the parent set
is removed

symbols (string) - if
NULL assumes all sym-
bols

NULL

removeUELs removes uels from all
symbols the Container

uels=NULL (character),
symbols=NULL (charac-
ter). If Symbols is NULL
UELs are removed for
all symbols.

NULL

renameSymbol rename a symbol
oldName in the
Container

oldName (string),
newName (string)

NULL

renameUELs renames uels in the
Container

uels (named charac-
ter), symbols=NULL

(character),
allowMerge=FALSE

(logical). If
allowMerge = TRUE,
the underlying integer
mapping of a factor
is allowed to change
to offer additional
data flexibility. If
Symbols is NULL
UELs are renamed for
all symbols.

NULL

reorderSymbols reorder symbols in or-
der to avoid domain vi-
olations

- NULL

write main bulk write method
to a writeTo target

writeTo (string)
symbols=NULL

(character) - if NULL,
assumes all symbols
compress=FALSE

(logical)
uelPriority=NULL

(string)
mode="mapped"

(character ”string” or
”mapped”)

NULL

Symbols

In GAMS Transfer R, a symbol is either a GAMS Set, Parameter, Variable, Equation, Alias. In GAMS
Transfer R, a symbol cannot live on its own, but is always part of a Container.

3474 Application Programming Interfaces

Create a symbol

There are two different ways to create a GAMS set and add it to a Container.

1. Use symbol constructor for Set, Parameter, Variable, Equation, Alias
library(gamstransfer)
m = Container$new()
p = Parameter$new(m, "p")

2. Use the Container methods addSet, addParameter, addVariable, addEquation, addAlias (which
internally calls the symbol constructor)
library(gamstransfer)
m = Container$new()
p = m$addParameter("p")

Add Symbol Records

Three possibilities exist to assign symbol records:

1. Setting the argument records in the symbol constructor/Container method (internally calls
setRecords)

2. Using the symbol method setRecords

3. Setting the field records directly

If the data is in a convenient format, a user may want to pass the records directly within the set
constructor. This is an optional keyword argument and internally the symbol constructor will simply call
the setRecords method. The symbol method setRecords is a convenience method that transforms the
given data into an approved data frame format (see Standard Data Formats). Many native R data types
can be easily transformed into data frames, so the setRecords method will accept a number of different
types for input. The setRecords method is called internally on any data structure that is passed through
the records argument.

The examples of setting records using the above-mentioned methods can be found in the respective
documentation for each symbol (Set, Parameter, Variable, Equation, and Alias).

Set

Set Constructor

Argument Type Description Required Default

container Container A reference to the
Container object that
the symbol is being
added to

Yes -

name string Name of symbol Yes -

7.7 R API 3475

Argument Type Description Required Default

domain list String, List of domains
given either as a string
(”∗” for universe set) or
as a reference to a Set ob-
ject

No ”∗”

isSingleton logical Indicates if set is a sin-
gleton set (TRUE) or not
(FALSE)

No FALSE

records string vector, data frame Symbol records No NULL

domainForwarding logical Flag or a vector of
flags that forces set ele-
ments to be recursively
included in correspond-
ing parent sets (i.e.,
implicit set definition)

No FALSE

description string Description of symbol No ””

Set Fields

Field Description Type

description description of symbol string

dimension dimension of symbol, setting dimension is a shorthand notation
to set domain to a list of size n containing ”∗”

integer

domain list of domains given either as string (∗ for universe set) or as
reference to the Set/Alias object

list

domainForwarding flag or a vector of flags that forces set elements to
be recursively included in corresponding parent sets (i.e.,
implicit set definition)

logical

domainLabels column headings for the records data frame list of string

domainNames string version of domain names list of string

domainType none, relaxed or regular depending on state of domain links string

isSingleton logical if symbol is a singleton set logical

name name of symbol string

numberRecords number of symbol records (i.e., returns nrow(self$records)
if not NULL)

integer

records the main symbol records data frame

container reference to the Container that the symbol belongs to Container

summary output a list of only the metadata list

Set Methods

Method Description Argu-
ments/Defaults

Returns

addUELs adds UELs to the sym-
bol

uels (character),
dimension=NULL

NULL

3476 Application Programming Interfaces

Method Description Argu-
ments/Defaults

Returns

copy copies the symbol to the
destination container.
overwrite=TRUE over-
writes the symbol with
the same name in
destination. Symbol
domains are relaxed

if destination Con-
tainer does not contain
equivalent domain sets

destination

(Container),
overwrite=FALSE

NULL

countDomainViolations returns the number of
domain violations for
the symbol

- numeric

countDuplicateRecords returns the number of
duplicate records for
the symbol

- numeric

findDomainViolations get a view of records
data frame that contain
any domain violations

- data.frame

findDuplicateRecords get a view of records
data frame that contain
duplicate records. keep
= "first" (finds all
duplicates while keep-
ing the first instance as
unique), keep="last"

(finds all duplicates
while keeping the last
instance as unique), or
keep=FALSE (finds all
duplicates)

keep= first data.frame

dropDomainViolations drops domain violations
for the symbol

- -

dropDuplicateRecords drops duplicate records
for the Symbol

keep= first/last -

equals Check if two Symbol ob-
jects are equal

other (Symbol),
checkUELs=TRUE,
checkElementText=TRUE,
checkMetaData=TRUE,
verbose=FALSE

logical

7.7 R API 3477

Method Description Argu-
ments/Defaults

Returns

generateRecords convenience method
to set standard
data.frame formatted
records. Will gener-
ate records with the
Cartesian product of
all domain sets. The
density argument
can take any value on
the interval [0,1]. If
density is < 1, then
randomly selected
records will be removed.
density will accept a
numeric of length 1
or dimension. This
allows users to specify
a density per symbol
dimension (when vec-
tor) or density of the
records dataframe.
Random number state
can be set with seed

argument.

density=1.0

(numeric)
seed=NULL (integer)

NULL

getDomainViolations gets domain violations
for the symbol

- list of
DomainViolation

getSparsity get the sparsity of the
symbol w.r.t the size of
full cartesian product of
the domain sets

- numeric

getUELs returns the UELs used
in the Symbol

dimension = NULL,
codes = NULL,
ignoreUnused=FALSE

character vector

hasDomainViolations returns TRUE if the
symbol contains do-
main violations, FALSE
otherwise

- logical

hasDuplicateRecords returns TRUE if the
symbol contains dupli-
cate records, FALSE
otherwise

- logical

isValid checks if the symbol
is in a valid format,
throw exceptions if
verbose=TRUE, recheck
a symbol if force=TRUE

verbose=FALSE

force=FALSE

logical

removeUELs removes UELs from the
symbol

uels=NULL (character),
dimension=NULL

NULL

3478 Application Programming Interfaces

Method Description Argu-
ments/Defaults

Returns

renameUELs renames UELs in the
symbol

uels(character of same
length as current UELs
or named character vec-
tor), dimension=NULL,
allowMerge=FALSE

(logical). If
allowMerge = TRUE,
the underlying integer
mapping of a factor is
allowed to change to
offer additional data
flexibility

NULL

reorderUELs reorders UELs in
the symbol that ap-
pear in the symbol
dimensions. If uels

is NULL, the UELs are
reordered based on
symbol records, unused
UELs are moved to the
end. If dimensions

is NULL then reorder
UELs in all dimensions
of the symbol

uels=NULL(NULL or
character of same
length as current UELs
or named character vec-
tor), dimension=NULL

(numeric)

NULL

setRecords main convenience
method to set standard
data frame formatted
records

records (string vector,
list, data frame)

NULL

setUELs sets UELs for the Sym-
bol

uels(character),
dimension,
rename=FALSE

NULL

Adding Set Records

Three possibilities exist to assign symbol records to a set: We show a few examples of ways to create
differently structured sets.

Example #1 - Create a 1D set from a vector

library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records = c("seattle", "san-diego"))
NOTE: the above syntax is equivalent to -
i = Set$new(m, "i")
i$setRecords(c("seattle", "san-diego"))
NOTE: the above syntax is also equivalent to -
m$addSet("i", records= c("seattle", "san-diego"))
NOTE: the above syntax is also equivalent to -
i = m$addSet("i")
i$setRecords(c("seattle", "san-diego"))
NOTE: the above syntax is also equivalent to -
m$addSet("i")
m["i"]$setRecords(c("seattle", "san-diego"))
> i$records

uni
1 seattle
2 san-diego

7.7 R API 3479

Example #2 - Create a 2D set from a list

library(gamstransfer)
m = Container$new()
k = Set$new(m, "k", c("*", "*"), records=list("seattle", "san-diego"))
NOTE: the above syntax is equivalent to -
k = Set$new(m, "k", c("*", "*"))
k$setRecords(list("seattle", "san-diego"))
NOTE: the above syntax is also equivalent to -
m$addSet("k", c("*","*"), records=list("seattle", "san-diego"))
NOTE: the above syntax is also equivalent to -
k = m$addSet("k", c("*","*"))
k$setRecords(list("seattle", "san-diego"))
NOTE: the above syntax is also equivalent to -
m$addSet("k", c("*", "*"))
m["k"]$setRecords(list("seattle", "san-diego"))
> k$records

uni 1 uni 2
1 seattle san-diego

Example #3 - Create a 1D set from a data frame slice

library(gamstransfer)
m = Container$new()
dist = data.frame(

from = c("seattle", "seattle", "seattle",
"san-diego", "san-diego", "san-diego"),
to = c("new-york", "chicago", "topeka",

"new-york", "chicago", "topeka"),
thousand miles = c(2.5, 1.7, 1.8, 2.5, 1.8, 1.4)

)
l = Set$new(m, "l", records = unique(dist[["from"]]))
NOTE: the above syntax is equivalent to -
l = Set$new(m, "l")
l$setRecords(unique(dist[["from"]]))
NOTE: the above syntax is also equivalent to -
m$addSet("l", records=unique(dist[["from"]]))
NOTE: the above syntax is also equivalent to -
l = m$addSet("l")
l$setRecords(unique(dist[["from"]]))
NOTE: the above syntax is also equivalent to -
m$addSet("l")
m["l"]$setRecords(unique(dist[["from"]]))
> l$records

uni
1 seattle
2 san-diego

Set element text is very handy when labeling specific set elements within a set. A user can add a set
element text directly with a set element. Note that it is not required to label all set elements, as can be
seen in the following example.

Example #4 - Add set element text

library(gamstransfer)
m = Container$new()
i = Set$new(m, "i",
records = data.frame(city=c("seattle", "san-diego", "washington dc"),
text=c("home of sub pop records", "", "former gams hq")))
NOTE: the above syntax is equivalent to -
#
i = Set$new(m, "i")
i recs = data.frame(city=c("seattle", "san-diego", "washington dc"),
text=c("home of sub pop records", "", "former gams hq"))
#
i$setRecords(i recs)
NOTE: the above syntax is also equivalent to -
m$addSet("i", records=i recs)
NOTE: the above syntax is also equivalent to -
i = m$addSet("i")
i$setRecords(i recs)
NOTE: the above syntax is also equivalent to -
m$addSet("i")
m["i"]$setRecords(i recs)
> i$records

city element text
1 seattle home of sub pop records

3480 Application Programming Interfaces

2 san-diego
3 washington dc former gams hq

The primary advantage of the setRecords method is that GAMS Transfer R will convert many different
(and convenient) data types into the standard data format (a data frame). Users that require higher
performance will want to directly pass the Container a reference to a valid data frame, thereby skipping
some of these computational steps. This places more burden on the user to pass the data in a valid
standard form, but it speeds the records setting process.
In this section, we walk the user through an example of how to set records directly.

Example #5 - Directly set records (1D set)

library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", description = "supply")
create a standard format data frame
df i = data.frame(uni 1 = c("seattle", "san-diego"),
element text = c("", ""))
need to create categorical column type, referencing elements already in df i
df i$uni 1 = factor(df i$uni 1, ordered = TRUE)
set the records directly
i$records = df i
> i$isValid()
[1] TRUE

Stepping through this example we take the following steps:

1. Create an empty Container

2. Create a GAMS set i in the Container, but do not set the records

3. Create a data frame (manually, in this example) taking care to follow the standard format

4. The data frame has the right shape and column labels so we can proceed to set the records.

5. We need to cast the uni 1 column as a factor, so we create a custom ordered category type using
factor

6. Finally, we set the records directly by passing a reference to df i into the symbol records attribute.
The setter function of records checks that a data frame is being set, but does not check validity.
Thus, as a final step, we call the $isValid() method to verify that the symbol is valid.

Note

Users can debug their data frames by running <symbol name>$isValid(verbose=TRUE) to get
feedback about their data.

Example #6 - Directly set records (1D subset)

library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records=c("seattle", "san-diego"), description="supply")
j = Set$new(m, "j", i, description="supply")
create a standard format data frame
df j = data.frame(i 1 = c("seattle"), "element text" = c(""))
create the categorical column type
df j$i 1 = factor(df j$i 1, levels = i$records[, 1], ordered = TRUE)
set the records
j$records = df j
> j$isValid()
[1] TRUE

This example is more subtle in that we want to create a set j that is a subset of i. We create the set i
using the setRecords method but then set the records directly for j. There are two important details to
note: 1) the column labels in df j now reflect the standard format for a symbol with a domain set (as
opposed to the universe) and 2) we create the factors by referencing the parent set (i) for the levels

(instead of referencing itself).

7.7 R API 3481

Note

One can also use the genereateRecords() method to automatically populate randomly generated
symbol records in the standard format.

Parameter

Parameter Constructor

Argument Type Description Required Default

container Container A reference to the Container object that
the symbol is being added to

Yes -

name string Name of symbol Yes -

domain list List of domains given either as a string
(”∗” for universe set) or as a reference
to a Set object, an empty domain list
will create a scalar parameter

No NULL

records many Symbol records No NULL

domainForwarding logical Flag or a vector of flags that forces
parameter elements to be recursively
included in corresponding parent sets
(i.e.,implicit set definition)

No FALSE

description string Description of symbol No ””

Parameter Fields

Field Description Type

container reference to the Container that the symbol belongs to Container

defaultValues default values for the symbol numeric

description description of symbol character

dimension dimension of symbol, setting dimension is a shorthand nota-
tion to set domain to a list of size n containing ”∗”

numeric,integer

domain list of domains given either as a string ("∗" for universe set)
or as a reference to the Set/Alias object

list

domainForwarding Flag or a vector of flags that forces parameter elements
to be recursively included in corresponding parent sets
(i.e.,implicit set definition)

logical

domainLabels column headings for the records data frame list of string

domainNames string version of domain names list of string

domainType none, relaxed or regular depending on state of domain
links

string

isScalar TRUE if self$dimension = 0 logical

name name of symbol string

numberRecords number of symbol records (i.e., returns
nrow(self$records) if not NULL)

integer

records the main symbol records data frame

3482 Application Programming Interfaces

Field Description Type

shape a vector describing the array dimensions if records were
converted with $toDense()

vector

summary output a list of only the metadata list

Parameter Methods

Method Description Argu-
ments/Defaults

Returns

addUELs adds UELs to the sym-
bol

uels (character),
dimension=NULL

NULL

copy copies the symbol to the
destination container.
overwrite=TRUE over-
writes the symbol with
the same name in
destination. Symbol
domains are relaxed

if destination Con-
tainer does not contain
equivalent domain sets

destination

(Container),
overwrite=FALSE

NULL

countDomainViolations returns the number of
domain violations for
the symbol

- numeric

countDuplicateRecords returns the number of
duplicate records for
the symbol

- numeric

countEps total number of
SpecialValues$EPS in
value column

- integer

countNA total number of
SpecialValues[["NA"]]

in value column

- integer

countNegInf total number of
SpecialValues$NEGINF
in value column

- integer

countPosInf total number of
SpecialValues$POSINF
in value column

- integer

countUndef total number of
SpecialValues$UNDEF
in value column

- integer

dropDomainViolations drops domain violations
for the symbol

- -

7.7 R API 3483

Method Description Argu-
ments/Defaults

Returns

dropDuplicateRecords drops duplicate records
for the Symbol. keep

= "first" (drops all
duplicates while keep-
ing the first instance as
unique), keep="last"

(drops all duplicates
while keeping the last
instance as unique), or
keep=FALSE (drops all
duplicates)

keep = "first" -

equals Check if two Symbol ob-
jects are equal

other (Symbol),
checkUELs=TRUE,
checkMetaData=TRUE,
rtol=0 (relative
tolernace), atol=0

(absolute tolerance),
verbose=FALSE

logical

findDomainViolations get a view of records
data frame that contain
any domain violations

- data.frame

findDuplicateRecords get a view of records
data frame that contain
duplicate records. keep
= "first" (finds all
duplicates while keep-
ing the first instance as
unique), keep="last"

(finds all duplicates
while keeping the last
instance as unique), or
keep=FALSE (finds all
duplicates)

keep= first data.frame

3484 Application Programming Interfaces

Method Description Argu-
ments/Defaults

Returns

generateRecords convenience method
to set standard
data.frame formatted
records. Will gener-
ate records with the
Cartesian product of
all domain sets. The
density argument
can take any value on
the interval [0,1]. If
density is < 1, then
randomly selected
records will be removed.
density will accept a
numeric of length 1
or dimension. This
allows users to specify
a density per symbol
dimension (when vec-
tor) or the density of
records dataframe.
Random numbers can
be generated by passing
a user-defined function
func(size) to func

argument (runif()
by default). Random
number state can be set
with seed argument.

density=1.0

(numeric)
func=runif()

seed=NULL (integer)

NULL

getDomainViolations gets domain violations
for the symbol

- list of
DomainViolation

getMaxValue get the maximum value
in value column

- numeric

getMaxAbsValue get the maximum abso-
lute value in value col-
umn

- numeric

getMeanValue get the mean value in
value column

- numeric

getMinValue get the minimum value
in value column

- numeric

getSparsity get the sparsity of the
symbol w.r.t the size of
full cartesian product of
the domain sets

- numeric

getUELs returns the UELs used
in the Symbol

dimension = NULL,
codes = NULL,
ignoreUnused=FALSE

character vector

hasDomainViolations returns TRUE if the
symbol contains do-
main violations, FALSE
otherwise

- logical

hasDuplicateRecords returns TRUE if the
symbol contains dupli-
cate records, FALSE
otherwise

- logical

7.7 R API 3485

Method Description Argu-
ments/Defaults

Returns

isValid checks if the symbol
is in a valid format,
throw exceptions if
verbose=TRUE, recheck
a symbol if force=TRUE

verbose=FALSE

force=FALSE

logical

removeUELs removes UELs from the
symbol

uels=NULL (character),
dimension=NULL

NULL

renameUELs renames UELs in the
symbol

uels(character of same
length as current UELs
or named character vec-
tor), dimension=NULL,
allowMerge=FALSE

(logical). If
allowMerge = TRUE,
the underlying integer
mapping of a factor is
allowed to change to
offer additional data
flexibility

NULL

reorderUELs reorders UELs in
the symbol that ap-
pear in the symbol
dimensions. If uels

is NULL, the UELs are
reordered based on
symbol records, unused
UELs are moved to the
end. If dimensions

is NULL then reorder
UELs in all dimensions
of the symbol

uels=NULL(NULL or
character of same
length as current UELs
or named character vec-
tor), dimension=NULL

(numeric)

NULL

setRecords main convenience
method to set standard
data frame records

records (many types) NULL

setUELs sets UELs for the Sym-
bol

uels(character),
dimension,
rename=FALSE

NULL

toDense convert value column
of a symbol to a dense
matrix or array for-
mat

- array or matrix

whereMax find the row number in
records data frame with
a maximum value (re-
turn the first instance
only)

- integer

whereMaxAbs find the row number
in records data frame
with a maximum abso-
lute value (return the
first instance only)

- integer

3486 Application Programming Interfaces

Method Description Argu-
ments/Defaults

Returns

whereMin find the row number in
records data frame with
a minimum value (re-
turn the first instance
only)

- integer

Adding Parameter Records

Three possibilities exist to assign symbol records to a parameter: We show a few examples of ways to
create differently structured parameters:

Example #1 - Create a GAMS scalar

library(gamstransfer)
m = Container$new()
pi = Parameter$new(m, "pi", records = 3.14159)
NOTE: the above syntax is equivalent to -
pi = Parameter$new(m, "pi")
pi$setRecords(3.14159)
NOTE: the above syntax is also equivalent to -
m$addParameter("pi", records=3.14159)
NOTE: the above syntax is also equivalent to -
pi = m$addParameter("pi")
pi$setRecords(3.14159)
NOTE: the above syntax is also equivalent to -
m$addParameter("pi")
m["pi"]$setRecords(3.14159)
> pi$records

value
1 3.14159

Note

GAMS Transfer R will still convert scalar values to a standard format (i.e., a data frame with a
single row and column).

Example #2 - Create a 2D parameter (defined over a set) from a

data frame slice

library(gamstransfer)
dist = data.frame(

from = c("seattle", "seattle", "seattle",
"san-diego", "san-diego", "san-diego"),
to = c("new-york", "chicago", "topeka",

"new-york", "chicago", "topeka"),
thousand miles = c(2.5, 1.7, 1.8, 2.5, 1.8, 1.4)

)
m = Container$new()
i = Set$new(m, "i", "*", records = unique(dist$from))
j = Set$new(m, "j", "*", records = unique(dist$to))
a = Parameter$new(m, "a", c(i, j), records = dist)
> a$toDense()

[,1] [,2] [,3]
[1,] 2.5 1.7 1.8
[2,] 2.5 1.8 1.4
use a$toDense() to create a new (and identicial) parameter a2
a2 = Parameter$new(m, "a2", c(i, j), records = a$toDense())
> a2$records

i j value
1 seattle new-york 2.5
2 seattle chicago 1.7
3 seattle topeka 1.8
4 san-diego new-york 2.5
5 san-diego chicago 1.8
6 san-diego topeka 1.4

7.7 R API 3487

Example #3 - Create a 2D parameter from an array using setRecords

library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records=paste0("i ", 1:5))
j = Set$new(m, "j", records=paste0("j ", 1:5))
create the parameter with linked domains (these will control the
$shape of the symbol)
a = Parameter$new(m, "a", c(i, j))
here we use the $shape field to easily generate a dense random array
a$setRecords(array(runif(prod(a$shape()), min = 1, max = 10),
dim = a$shape()))
> a$toDense()

[,1] [,2] [,3] [,4] [,5]
[1,] 3.837345 3.632743 9.003275 4.097475 8.608477
[2,] 7.217257 2.465452 3.286330 2.366017 8.822535
[3,] 8.421044 8.546226 5.403918 2.286660 6.319740
[4,] 3.960100 8.538932 2.210829 2.437113 5.324722
[5,] 1.333846 4.508688 7.411279 5.653044 7.248775

As with Sets, the primary advantage of the setRecords method is that GAMS Transfer will convert many
different (and convenient) data types into the standard data format (data frame). Users that require
higher performance will want to directly pass the Container a reference to a valid data frame, thereby
skipping some of these computational steps. This places more burden on the user to pass the data in a
valid standard form, but it speeds the records setting process. In this section, we walk the user through
an example of how to set records directly.

Example #4 - Correctly set records (directly)

library(gamstransfer)
df = data.frame(h 1 = paste0("h", 1:8760), m 2 = paste0("m", 1:60),
s 3 = paste0("s", 1:60))
df$value = runif(nrow(df), min = 0, max = 100)
m = Container$new()
hrs = Set$new(m, "h", records = unique(df$h 1))
mins = Set$new(m, "m", records = unique(df$m 2))
secs = Set$new(m, "s", records = unique(df$s 3))
df$h 1 = factor(df$h 1, ordered = TRUE)
df$m 2 = factor(df$m 2, ordered = TRUE)
df$s 3 = factor(df$s 3, ordered = TRUE)
a = Parameter$new(m, "a", c(hrs, mins, secs))
set records
a$records = df
> a$isValid()
[1] TRUE

In this example, we create a large parameter (31,536,000 records and 8880 unique domain elements. We
mimic data that is labeled for every second in one year) and assign it to a parameter with a$records.
GAMS Transfer R requires that all domain columns must be ordered factors. The records setter function
does very little work other than checking if the object being set is a data frame. This places more
responsibility on the user to create a data frame that complies with the standard format. In Example #1,
we take care to properly reference the factor from the domain sets, and ensure that the symbol a is valid
with a$isValid() = TRUE.

Users will need to use the $isValid(verbose=TRUE) method to debug any structural issues. As an
example, we incorrectly generate categorical data types by passing the data frame constructor the generic
factor argument. This creates factor columns, but they are not ordered and they do not reference the
underlying domain set. These errors result in a being invalid.

Example #5 - Incorrectly set records (directly)

3488 Application Programming Interfaces

library(gamstransfer)
df = data.frame(h 1 = paste0("h", 1:8760), m 2 = paste0("m", 1:60),
s 3 = paste0("s", 1:60))
df$value = runif(nrow(df), min = 0, max = 100)
m = Container$new()
hrs = Set$new(m, "h", records = unique(df$h 1))
mins = Set$new(m, "m", records = unique(df$m 2))
secs = Set$new(m, "s", records = unique(df$s 3))
df$h 1 = factor(df$h 1)
df$m 2 = factor(df$m 2)
df$s 3 = factor(df$s 3)
a = Parameter$new(m, "a", c(hrs, mins, secs))
set records
a$records = df
> a$isValid()
[1] FALSE
> a$isValid(verbose=TRUE)
Domain information in column h 1 must be an ORDERED factor
[1] FALSE

Note

One can also use the genereateRecords() method to automatically populate randomly generated
symbol records in the standard format.

Variable

Variable Constructor

Argument Type Description Required Default

container Container A reference to the Container object
that the symbol is being added to

Yes -

name string Name of symbol Yes -

type string Type of variable being created
[binary, integer, positive,
negative, free, sos1, sos2,
semicont, semiint]

No free

domain list, vector List, vector of domains given either
as a string ("∗" for universe set) or as
a reference to a Set object, an empty
domain list will create a scalar vari-
able

No NULL

records many Symbol records No NULL

domainForwarding logical Flag or a vector of flags that forces
variable elements to be recursively
included in corresponding parent sets
(i.e.,implicit set definition)

No FALSE

description string Description of symbol No ””

Variable Fields

Field Description Type

container reference to the Container that the symbol belongs
to

Container

defaultValues default values for the symbol numeric (named vector)

7.7 R API 3489

Field Description Type

description description of symbol string

dimension dimension of symbol, setting dimension is a shorthand
notation to set domain to a list of size n containing
”∗”

integer

domain list of domains given either as string (∗ for universe
set) or as reference to the Set/Alias object

list

domainForwarding Flag or a vector of flags that forces variable elements
to be recursively included in corresponding parent
sets (i.e.,implicit set definition)

logical

domainLabels column headings for the records data frame list of string

domainNames string version of domain names list of string

domainType none, relaxed or regular depending on state of
domain links

string

isScalar TRUE if self$dimension = 0 logical

name name of symbol string

numberRecords number of symbol records (i.e., returns
nrow(self$records) if not NULL)

integer

records the main symbol records data frame

shape a vector describing the array dimensions if records
were converted with $toDense()

vector

summary output a list of only the metadata list

type string type of variable list

Variable Methods

Method Description Argu-
ments/Defaults

Returns

addUELs adds UELs to the sym-
bol

uels (character),
dimension=NULL

NULL

copy copies the symbol to the
destination container.
overwrite=TRUE over-
writes the symbol with
the same name in
destination. Symbol
domains are relaxed

if destination Con-
tainer does not contain
equivalent domain sets

destination

(Container),
overwrite=FALSE

NULL

countDomainViolations returns the number of
domain violations for
the symbol

- numeric

countDuplicateRecords returns the number of
duplicate records for
the symbol

- numeric

countEps total number of
SpecialValues$EPS
across all columns

columns = "level" integer

countNA total number of
SpecialValues[["NA"]]

across all columns

columns = "level" integer

3490 Application Programming Interfaces

Method Description Argu-
ments/Defaults

Returns

countNegInf total number of
SpecialValues$NEGINF
across all columns

columns = "level" integer

countPosInf total number of
SpecialValues$POSINF
across all columns

columns = "level" integer

countUndef total number of
SpecialValues$UNDEF
across all columns

columns = "level" integer

dropDomainViolations drops domain violations
for the symbol

- -

dropDuplicateRecords drops duplicate records
for the Symbol. keep

= "first" (drops all
duplicates while keep-
ing the first instance as
unique), keep="last"

(drops all duplicates
while keeping the last
instance as unique), or
keep=FALSE (drops all
duplicates)

keep = "first" -

equals Check if two Symbol ob-
jects are equal

other (Symbol),
columns=NULL (char-
acter) (if NULL all
columns are compared),
checkUELs=TRUE,
checkMetaData=TRUE,
rtol=0 (relative
tolernace), atol=0

(absolute tolerance),
verbose=FALSE

logical

findDomainViolations get a view of the records
data frame that contain
any domain violations

- data.frame

findDuplicateRecords get a view of records
data frame that contain
duplicate records. keep
= "first" (finds all
duplicates while keep-
ing the first instance as
unique), keep="last"

(finds all duplicates
while keeping the last
instance as unique), or
keep=FALSE (finds all
duplicates)

keep= first data.frame

7.7 R API 3491

Method Description Argu-
ments/Defaults

Returns

generateRecords convenience method
to set standard
data.frame formatted
records. Will gener-
ate records with the
Cartesian product of
all domain sets. The
density argument
can take any value on
the interval [0,1]. If
density is < 1, then
randomly selected
records will be removed.
density will accept a
numeric of length 1
or dimension. This
allows users to specify
a density per symbol
dimension (when vec-
tor) or the density of
records dataframe.
Random numbers can
be generated by passing
a user-defined function
func(size) to func

argument (runif()
by default). Random
number state can be set
with seed argument.

density=1.0

(numeric)
func=runif() (named
list of functions, func-
tion, NULL)
seed=NULL (integer)

NULL

getDomainViolations gets domain violations
for the symbol

- list of
DomainViolation

getMaxValue get the maximum value
across all columns

columns = "level" numeric

getMaxAbsValue get the maximum ab-
solute value across all
columns

columns = "level" numeric

getMinValue get the minimum value
across all columns

columns = "level" numeric

getMeanValue get the mean value
across all columns

columns = "level" numeric

getSparsity get the sparsity of the
symbol w.r.t the size of
full cartesian product of
the domain sets

- numeric

getUELs returns the UELs used
in the Symbol

dimension = NULL,
codes = NULL,
ignoreUnused=FALSE

character vector

hasDomainViolations returns TRUE if the
symbol contains do-
main violations, FALSE
otherwise

- logical

hasDuplicateRecords returns TRUE if the
symbol contains dupli-
cate records, FALSE
otherwise

- logical

3492 Application Programming Interfaces

Method Description Argu-
ments/Defaults

Returns

isValid checks if the symbol
is in a valid format,
throw exceptions if
verbose=TRUE, recheck
a symbol if force=TRUE

verbose=FALSE

force=FALSE

logical

removeUELs removes UELs from the
symbol

uels=NULL (character),
dimension=NULL

NULL

renameUELs renames UELs in the
symbol

uels(character of same
length as current UELs
or named character vec-
tor), dimension=NULL,
allowMerge=FALSE

(logical). If
allowMerge = TRUE,
the underlying integer
mapping of a factor is
allowed to change to
offer additional data
flexibility

NULL

reorderUELs reorders UELs in
the symbol that ap-
pear in the symbol
dimensions. If uels

is NULL, the UELs are
reordered based on
symbol records, unused
UELs are moved to the
end. If dimensions

is NULL then reorder
UELs in all dimensions
of the symbol

uels=NULL(NULL or
character of same
length as current UELs
or named character vec-
tor), dimension=NULL

(numeric)

NULL

setRecords main convenience
method to set standard
data frame records

records (many types) NULL

setUELs sets UELs for the Sym-
bol

uels(character),
dimension,
rename=FALSE

NULL

toDense convert symbol to a
dense matrix or array

format

column = level array or matrix

whereMax find the row number in
records data frame with
a maximum value (re-
turn the first instance
only)

column = "level" integer

whereMaxAbs find the row number
in records data frame
with a maximum abso-
lute value (return the
first instance only)

column = "level" integer

7.7 R API 3493

Method Description Argu-
ments/Defaults

Returns

whereMin find the row number in
records data frame with
a minimum value (re-
turn the first instance
only)

column = "level" integer

Adding Variable Records

Three possibilities exist to assign symbol records to a variable: We show a few examples of ways to create
differently structured variables:

Example #1 - Create a GAMS scalar variable

library(gamstransfer)
m = Container$new()
pi = Variable$new(m, "pi", records = data.frame(level = 3.14159))
NOTE: the above syntax is equivalent to -
pi = Variable$new(m, "pi", "free")
pi$setRecords(data.frame(level = 3.14159))
NOTE: the above syntax is also equivalent to -
m$addVariable("pi", "free", records=data.frame(level = 3.14159))
> pi$records

level
1 3.14159

Example #2 - Create a 2D positive variable, specifying no numerical data

library(gamstransfer)
m = Container$new()
v = Variable$new(m, "v", "positive", c("*", "*"), records =
data.frame(from=c("seattle", "chicago"), to=c("san-diego", c("madison"))))
> v$records

from to
1 seattle san-diego
2 chicago madison

Example #3 - Create a 2D variable (defined over a set) from a matrix

library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", "*", records = paste0("i", 1:5))
j = Set$new(m, "j", "*", records = paste0("j", 1:5))
creating records for parameter a
ij = list(i 1 = paste0("i", 1:5), j 2 = paste0("j", 1:5))
df = rev(expand.grid(rev(ij)))
df$value = 1:25
a = Parameter$new(m, "a", c(i, j), records = df)
create a free variable and set the level and marginal attributes from matricies
v = Variable$new(m, "v", domain = c(i, j), records = list(level = a$toDense(), marginal = a$toDense()))
if not specified, the toDense() method will convert the level values to a matrix
> v$toDense()

[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
[2,] 6 7 8 9 10
[3,] 11 12 13 14 15
[4,] 16 17 18 19 20
[5,] 21 22 23 24 25

As with Sets, the primary advantage of the setRecords method is that GAMS Transfer will convert many
different (and convenient) data types into the standard data format (data frame). Users that require
higher performance will want to directly pass the Container a reference to a valid data frame, thereby
skipping some of these computational steps. This places more burden on the user to pass the data in a
valid standard form, but it speeds the records setting process. In this section, we walk the user through
an example of how to set records directly.

3494 Application Programming Interfaces

Example #4 - Correctly set records (directly)

library(gamstransfer)
df = data.frame(h 1 = paste0("h", 1:8760), m 2 = paste0("m", 1:60),
s 3 = paste0("s", 1:60))
df$level = runif(nrow(df), min = 0, max = 100)
df$marginal = 0.0
df$lower = SpecialValues$NEGINF
df$upper = SpecialValues$POSINF
df$scale = 1.0
m = Container$new()
hrs = Set$new(m, "h", records = unique(df$h 1))
mins = Set$new(m, "m", records = unique(df$m 2))
secs = Set$new(m, "s", records = unique(df$s 3))
df$h 1 = factor(df$h 1, ordered = TRUE)
df$m 2 = factor(df$m 2, ordered = TRUE)
df$s 3 = factor(df$s 3, ordered = TRUE)
a = Variable$new(m, "a", domain = c(hrs, mins, secs))
set records
a$records = df
> a$isValid()
[1] TRUE

In this example, we create a large variable (31,536,000 records and 8880 unique domain elements. We
mimic data that is labeled for every second in one year) and assign it to a variable with a$records. GAMS
Transfer R requires that all domain columns must be ordered factors. The records setter function does
very little work other than checking if the object being set is a data frame. This places more responsibility
on the user to create a data frame that complies with the standard format. In Example #1, we take
care to properly reference the factor from the domain sets and ensure that the symbol a is valid with
a$isValid() = TRUE.

As with Set and Parameters, users can use the $isValid(verbose=TRUE) method to debug any structural
issues.

Note

One can also use the genereateRecords() method to automatically populate randomly generated
symbol records in the standard format.

Equation

Equation Constructor

Argument Type Description Required Default

container Container A reference to the Container object
that the symbol is being added to

Yes -

name string Name of symbol Yes -

type string Type of equation being created [eq
(or E/e), geq (or G/g), leq (or L/l),
nonbinding (or N/n), external (or
X/x)]

No free

domain list, vector List, vector of domains given either
as a string ("∗" for universe set) or as
a reference to a Set object, an empty
domain list will create a scalar equa-
tion

No NULL

records many Symbol records No NULL

domainForwarding logical Flag or a vector of flags that forces
equation elements to be recursively
included in corresponding parent sets
(i.e.,implicit set definition)

No FALSE

description string Description of symbol No ””

7.7 R API 3495

Equation Fields

Field Description Type

container reference to the Container that the symbol belongs
to

Container

defaultValues default values for the symbol numeric (named vector)

description description of symbol string

dimension dimension of symbol, setting dimension is a shorthand
notation to set domain to a list of size n containing
”∗”

integer

domain list of domains given either as string (∗ for universe
set) or as reference to the Set/Alias object

list

domainForwarding Flag or a vector of flags that forces equation elements
to be recursively included in corresponding parent
sets (i.e.,implicit set definition)

logical

domainLabels column headings for the records data frame list of string

domainNames string version of domain names list of string

domainType none, relaxed or regular depending on state of
domain links

string

isScalar TRUE if self$dimension = 0 logical

name name of symbol string

numberRecords number of symbol records (i.e., returns
nrow(self$records) if not NULL)

integer

records the main symbol records data frame

shape a vector describing the array dimensions if records
were converted with $toDense()

vector

summary output a list of only the metadata list

type string type of equation list

Equation Methods

Method Description Argu-
ments/Defaults

Returns

addUELs adds UELs to the sym-
bol

uels (character),
dimension=NULL

NULL

copy copies the symbol to the
destination container.
overwrite=TRUE over-
writes the symbol with
the same name in
destination. Symbol
domains are relaxed

if destination Con-
tainer does not contain
equivalent domain sets

destination

(Container),
overwrite=FALSE

NULL

countDomainViolations returns the number of
domain violations for
the symbol

- numeric

3496 Application Programming Interfaces

Method Description Argu-
ments/Defaults

Returns

countDuplicateRecords returns the number of
duplicate records for
the symbol

- numeric

countEps total number of
SpecialValues$EPS
across all columns

columns = "level" integer

countNA total number of
SpecialValues[["NA"]]

across all columns

columns = "level" integer

countNegInf total number of
SpecialValues$NEGINF
across all columns

columns = "level" integer

countPosInf total number of
SpecialValues$POSINF
across all columns

columns = "level" integer

countUndef total number of
SpecialValues$UNDEF
across all columns

columns = "level" integer

dropDomainViolations drops domain violations
for the symbol

- -

dropDuplicateRecords drops duplicate records
for the Symbol. keep

= "first" (drops all
duplicates while keep-
ing the first instance as
unique), keep="last"

(drops all duplicates
while keeping the last
instance as unique), or
keep=FALSE (drops all
duplicates)

keep = "first" -

equals Check if two Symbol ob-
jects are equal

other (Symbol),
columns=NULL (char-
acter) (if NULL all
columns are compared),
checkUELs=TRUE,
checkMetaData=TRUE,
rtol=0 (relative
tolernace), atol=0

(absolute tolerance),
verbose=FALSE

logical

findDomainViolations get a view of records
data frame that contain
any domain violations

- data.frame

7.7 R API 3497

Method Description Argu-
ments/Defaults

Returns

findDuplicateRecords get a view of records
data frame that contain
duplicate records. keep
= "first" (finds all
duplicates while keep-
ing the first instance as
unique), keep="last"

(finds all duplicates
while keeping the last
instance as unique), or
keep=FALSE (finds all
duplicates)

keep= first data.frame

generateRecords convenience method
to set standard
data.frame formatted
records. Will gener-
ate records with the
Cartesian product of
all domain sets. The
density argument
can take any value on
the interval [0,1]. If
density is < 1, then
randomly selected
records will be removed.
density will accept a
numeric of length 1
or dimension. This
allows users to specify
a density per symbol
dimension (when vec-
tor) or the density of
records dataframe.
Random numbers can
be generated by passing
a user-defined function
func(size) to func

argument (runif()
by default). Random
number state can be set
with seed argument.

density=1.0

(numeric)
func=runif() (named
list of functions, func-
tion, NULL)
seed=NULL (integer)

NULL

getDomainViolations gets domain violations
for the symbol

- list of
DomainViolation

getMaxValue get the maximum value
across all columns

columns = "level" numeric

getMaxAbsValue get the maximum ab-
solute value across all
columns

columns = "level" numeric

getMinValue get the minimum value
iacross all columns

columns = "level" numeric

getMeanValue get the mean value
across all columns

columns = "level" numeric

3498 Application Programming Interfaces

Method Description Argu-
ments/Defaults

Returns

getSparsity get the sparsity of the
symbol w.r.t the size of
full cartesian product of
the domain sets

- numeric

getUELs returns the UELs used
in the Symbol

dimension = NULL,
codes = NULL,
ignoreUnused=FALSE

character vector

hasDomainViolations returns TRUE if the
symbol contains do-
main violations, FALSE
otherwise

- logical

hasDuplicateRecords returns TRUE if the
symbol contains dupli-
cate records, FALSE
otherwise

- logical

isValid checks if the symbol
is in a valid format,
throw exceptions if
verbose=TRUE, recheck
a symbol if force=TRUE

verbose=FALSE

force=FALSE

logical

removeUELs removes UELs from the
symbol

uels=NULL (character),
dimension=NULL

NULL

renameUELs renames UELs in the
symbol

uels(character of same
length as current UELs
or named character vec-
tor), dimension=NULL,
allowMerge=FALSE

(logical). If
allowMerge = TRUE,
the underlying integer
mapping of a factor is
allowed to change to
offer additional data
flexibility

NULL

reorderUELs reorders UELs in
the symbol that ap-
pear in the symbol
dimensions. If uels

is NULL, the UELs are
reordered based on
symbol records, unused
UELs are moved to the
end. If dimensions

is NULL then reorder
UELs in all dimensions
of the symbol

uels=NULL(NULL or
character of same
length as current UELs
or named character vec-
tor), dimension=NULL

(numeric)

NULL

setRecords main convenience
method to set standard
data frame records

records (many types) NULL

setUELs sets UELs for the Sym-
bol

uels(character),
dimension,
rename=FALSE

NULL

toDense convert symbol to a
dense matrix or array

format

column = "value" array or matrix

7.7 R API 3499

Method Description Argu-
ments/Defaults

Returns

whereMax find the row number in
records data frame with
a maximum value (re-
turn the first instance
only)

column="level" integer

whereMaxAbs find the row number
in records data frame
with a maximum abso-
lute value (return the
first instance only)

column="level" integer

whereMin find the row number in
records data frame with
a minimum value (re-
turn the first instance
only)

column="level" integer

Adding Equation Records

Three possibilities exist to assign symbol records to an equation: We show a few examples of ways to
create differently structured equations:

Example #1 - Create a GAMS scalar equation

library(gamstransfer)
m = Container$new()
pi = Equation$new(m, "pi", type="eq", records = data.frame(level = 3.14159))
NOTE: the above syntax is equivalent to -
pi = Equation$new(m, "pi", type="eq")
pi$setRecords(data.frame(level = 3.14159))
NOTE: the above syntax is also equivalent to -
m$addEquation("pi", type="eq", records=data.frame(level = 3.14159))
> pi$records

level
1 3.14159

Example #2 - Create a 2D positive equation, specifying no numerical data

library(gamstransfer)
m = Container$new()
e = Equation$new(m, "e", "eq", c("*", "*"), records =
data.frame(from=c("seattle", "chicago"), to=c("san-diego", c("madison"))))
> e$records

from to
1 seattle san-diego
2 chicago madison

Example #3 - Create a 2D equation (defined over a set) from a matrix

3500 Application Programming Interfaces

library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", "*", records = paste0("i", 1:5))
j = Set$new(m, "j", "*", records = paste0("j", 1:5))
creating records for parameter a
ij = list(i 1 = paste0("i", 1:5), j 2 = paste0("j", 1:5))
df = rev(expand.grid(rev(ij)))
df$value = 1:25
a = Parameter$new(m, "a", c(i, j), records = df)
create a free variable and set the level and marginal attributes from matrices
e = Equation$new(m, "e", "nonbinding", domain = c(i, j), records = list(level = a$toDense(), marginal = a$toDense()))
> e$records

i j level marginal
1 i1 j1 1 1
2 i2 j1 6 6
3 i3 j1 11 11
4 i4 j1 16 16
5 i5 j1 21 21
6 i1 j2 2 2
7 i2 j2 7 7
8 i3 j2 12 12
9 i4 j2 17 17
10 i5 j2 22 22
11 i1 j3 3 3
12 i2 j3 8 8
13 i3 j3 13 13
14 i4 j3 18 18
15 i5 j3 23 23
16 i1 j4 4 4
17 i2 j4 9 9
18 i3 j4 14 14
19 i4 j4 19 19
20 i5 j4 24 24
21 i1 j5 5 5
22 i2 j5 10 10
23 i3 j5 15 15
24 i4 j5 20 20
25 i5 j5 25 25
if not specified, the toDense() method will convert the level values to a matrix
> e$toDense()

[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
[2,] 6 7 8 9 10
[3,] 11 12 13 14 15
[4,] 16 17 18 19 20
[5,] 21 22 23 24 25

As with sets, parameters, and variables the primary advantage of the setRecords method is that GAMS
Transfer will convert many different (and convenient) data types into the standard data format (data
frame). Users that require higher performance will want to directly pass the Container a reference to a
valid data frame, thereby skipping some of these computational steps. This places more burden on the
user to pass the data in a valid standard form, but it speeds the records setting process. In this section,
we walk the user through an example of how to set records directly.

Example #4 - Correctly set records (directly)

library(gamstransfer)
df = data.frame(h 1 = paste0("h", 1:8760), m 2 = paste0("m", 1:60),
s 3 = paste0("s", 1:60))
df$level = runif(nrow(df), min = 0, max = 100)
df$marginal = 0.0
df$lower = SpecialValues$NEGINF
df$upper = SpecialValues$POSINF
df$scale = 1.0
m = Container$new()
hrs = Set$new(m, "h", records = unique(df$h 1))
mins = Set$new(m, "m", records = unique(df$m 2))
secs = Set$new(m, "s", records = unique(df$s 3))
df$h 1 = factor(df$h 1, ordered = TRUE)
df$m 2 = factor(df$m 2, ordered = TRUE)
df$s 3 = factor(df$s 3, ordered = TRUE)
a = Equation$new(m, "a", "eq", domain = c(hrs, mins, secs))
set records
a$records = df
> a$isValid()
[1] TRUE

In this example, we create a large equation (31,536,000 records and 8880 unique domain elements. We
mimic data that is labeled for every second in one year) and assign it to an equation with a$records.

7.7 R API 3501

GAMS Transfer R requires that all domain columns must be ordered factors. The records setter function
does very little work other than checking if the object being set is a data frame. This places more
responsibility on the user to create a data frame that complies with the standard format. In Example #1,
we take care to properly reference the factor from the domain sets and ensure that the symbol a is valid
in the end with a$isValid() = TRUE.

As with sets, parameters, and variables, users can use the $isValid(verbose=TRUE) method to debug
any structural issues.

Note

One can also use the genereateRecords() method to automatically populate randomly generated
symbol records in the standard format.

Alias

Alias Constructor

Argument Type Description Required Default

container Container A reference to the Container object that the
symbol is being added to

Yes -

name string Name of symbol Yes -

aliasWith Set object set object to create an alias for Yes -

Example - Creating an alias from a set

GAMS Transfer R only stores the reference to the parent set as part of the alias structure. Most properties
that are called from an alias object simply point to the properties of the parent set (with the exception of
container, name, and aliasWith). It is possible to create an alias from another alias object. In this case,
a recursive search will be performed to find the root parent set. This is the set that will ultimately be
stored as the aliasWith field. We can see this behavior in the following example:
library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records = paste0("i", 1:5))
ip = Alias$new(m, "ip", i)
ipp = Alias$new(m, "ipp", ip)
> ip$aliasWith$name
[1] "i"
> ipp$aliasWith$name
[1] "i"

Alias Fields

Field Description Type

aliasWith aliased object Set

description description of symbol string

dimension dimension of symbol, setting dimension is a shorthand notation
to set domain to a list of size n containing ”∗”

integer

3502 Application Programming Interfaces

Field Description Type

domainForwarding Flag or a vector of flags that forces Alias elements
to be recursively included in corresponding parent sets
(i.e.,implicit set definition)

logical

domainLabels column headings for the records data frame list of string

domainNames string version of domain names list of string

domainType none, relaxed or regular depending on state of domain links string

isSingleton logical if symbol is a singleton set logical

name name of symbol string

numberRecords number of symbol records (i.e., returns nrow(self$records)
if not NULL)

integer

records the main symbol records data frame

container reference to the Container that the symbol belongs to Container

summary output a list of only the metadata list

Alias Methods

Method Description Argu-
ments/Defaults

Returns

addUELs adds UELs to the sym-
bol

uels (character),
dimension=NULL

NULL

copy copies the Alias and
the parent Set to the
destination container.
overwrite=TRUE over-
writes the symbol with
the same name in
destination. Symbol
domains are relaxed

if destination Con-
tainer does not contain
equivalent domain sets

destination

(Container),
overwrite=FALSE

NULL

countDomainViolations returns the number of
domain violations for
the symbol

- numeric

countDuplicateRecords returns the number of
duplicate records for
the symbol

- numeric

dropDomainViolations drops domain violations
for the symbol

- -

dropDuplicateRecords drops duplicate records
for the Symbol. keep

= "first" (drops all
duplicates while keep-
ing the first instance as
unique), keep="last"

(drops all duplicates
while keeping the last
instance as unique), or
keep=FALSE (drops all
duplicates)

keep = "first" -

7.7 R API 3503

Method Description Argu-
ments/Defaults

Returns

equals Check if two Symbol ob-
jects are equal

other (Symbol),
checkUELs=TRUE,
checkElementText=TRUE,
checkMetaData=TRUE,
verbose=FALSE

logical

findDomainViolations get a view of records
data frame that contain
any domain violations

- data.frame

findDuplicateRecords get a view of records
data frame that contain
duplicate records. keep
= "first" (finds all
duplicates while keep-
ing the first instance as
unique), keep="last"

(finds all duplicates
while keeping the last
instance as unique), or
keep=FALSE (finds all
duplicates)

keep= first data.frame

generateRecords convenience method
to set standard
data.frame formatted
records. Will gener-
ate records with the
Cartesian product of
all domain sets. The
density argument
can take any value on
the interval [0,1]. If
density is < 1, then
randomly selected
records will be removed.
density will accept a
numeric of length 1
or dimension. This
allows users to specify
a density per symbol
dimension (when vec-
tor) or the density of
records dataframe.
Random number state
can be set with seed

argument.

density=1.0

(numeric)
seed=NULL (integer)

NULL

getDomainViolations gets domain violations
for the symbol

- list of
DomainViolation

getSparsity get the sparsity of the
symbol w.r.t the size of
full cartesian product of
the domain sets

- numeric

getUELs returns the UELs used
in the Symbol

dimension = NULL,
codes = NULL,
ignoreUnused=FALSE

character vector

3504 Application Programming Interfaces

Method Description Argu-
ments/Defaults

Returns

hasDomainViolations returns TRUE if the
symbol contains do-
main violations, FALSE
otherwise

- logical

hasDuplicateRecords returns TRUE if the
symbol contains dupli-
cate records, FALSE
otherwise

- logical

isValid checks if the symbol
is in a valid format,
throw exceptions if
verbose=TRUE, recheck
a symbol if force=TRUE

verbose=FALSE

force=FALSE

logical

removeUELs removes UELs from the
symbol

uels=NULL (character),
dimension=NULL

NULL

renameUELs renames UELs in the
symbol

uels(character of same
length as current UELs
or named character vec-
tor), dimension=NULL,
allowMerge=FALSE

(logical). If
allowMerge = TRUE,
the underlying integer
mapping of a factor is
allowed to change to
offer additional data
flexibility

NULL

reorderUELs reorders UELs in the
parent set that ap-
pear in the parent set
dimensions. If uels is
NULL, the UELs are re-
ordered based on sym-
bol records, unused
UELs are moved to the
end. If dimensions is
NULL then reorder UELs
in all dimensions of the
symbol

uels=NULL(NULL or
character of same
length as current UELs
or named character vec-
tor), dimension=NULL

(numeric)

NULL

setRecords main convenience
method to set standard
data frame formatted
records

records (string vector,
list, data frame)

NULL

setUELs sets UELs for the Sym-
bol

uels(character),
dimension,
rename=FALSE

NULL

Adding Alias Records

The linked structure of Aliases offers some unique opportunities to access some of the setter functionality
of the parent set. Specifically, GAMS Transfer allows the user to change the domain, description,
dimension, and records of the underlying parent set as a shorthand notation. We can see this behavior
if we look at a modified Example #1 from adding set records.

7.7 R API 3505

Example - Creating set records through an alias link

library(gamstransfer)
m = Container$new()
i = Set$new(m, "i")
ip = Alias$new(m, "ip", i)
ip$description = "adding new descriptive set text"
ip$domain = c("*", "*")
ij = list(paste0("i", 1:3), paste0("j", 1:3))
ip recs = rev(expand.grid(rev(ij)))
colnames(ip recs) = c("i", "j")
ip$setRecords(ip recs)
> i$domain
[1] "*" "*"
> i$records

i j
1 i1 j1
2 i1 j2
3 i1 j3
4 i2 j1
5 i2 j2
6 i2 j3
7 i3 j1
8 i3 j2
9 i3 j3

Note

An alias $isValid()=TRUE when the underlying parent set is also valid. If the parent set is removed
from the Container the alias will no longer be valid.

One can also use the genereateRecords() method to automatically populate randomly generated
symbol records in the standard format.

UniverseAlias

UniverseAlias Constructor

Argument Type Description Required Default

container Container A reference to the Container object that the
symbol is being added to

Yes -

name string Name of symbol Yes -

Example - Creating an alias for the Universe

In GAMS it is possible to create aliases to the universe (i.e., the entire list of UELs) with the syntax:

set i / i1, i2 /;

alias(h,*);

set j / j1, j2 /;

GAMS Transfer R allows creating aliases to the universe set.

In this small example, h would be associated with all four UELs (i1, i2, j1 and j2) even though set j was
defined after the alias declaration. GAMS Transfer mimics this behavior with the UniverseAlias class.
Internally, the records attribute will always call the <Container>$getUELs(). The UniverseAlias

class is fundamentally different from the Alias class because it does not point to a parent set object.
It is not possible to perform operations (like setRecords or findDomainViolations) on the parent set

3506 Application Programming Interfaces

through a UniverseAlias (because there is no parent set object). This means that a UniverseAlias can
be created by only defining the symbol name. We can see this behavior in the following example:
library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records = c("i1", "i2"))
h = UniverseAlias$new(m, "h")
j = Set$new(m, "j", records = c("j1","j2"))
> m$listSymbols()
[1] "i" "h" "j"
> m["h"]
GAMS Transfer: R6 object of class UniverseAlias.

Use h$summary for details
> h$records
uni

1 i1
2 i2
3 j1
4 j2

Note

Unlike other sets, the universe does not hold on to set element text, thus the returned data frame

for the UniverseAlias will only have one column.

UniverseAlias Fields

Field Description Type

aliasWith always "∗" string

description always Aliased with ∗ string

dimension always 1 integer

domainLabels always "uni" character vector

domainNames always "∗" character vector

domainType always none string

isSingleton always FALSE logical

name name of symbol string

numberRecords number of symbol records (i.e., returns nrow(self$records)
if not NULL)

integer

records the main symbol records data frame

container reference to the Container that the symbol belongs to Container

summary output a list of only the metadata list

UniverseAlias Methods

Method Description Arguments/Defaults Returns

equals Check if two Symbol objects
are equal

other (Symbol),
checkMetaData=TRUE,
verbose=FALSE

logical

copy copies the symbol to the
destination container.
overwrite=TRUE overwrites
the symbol with the same
name in destination.

destination (Container),
overwrite=FALSE

NULL

7.7 R API 3507

Method Description Arguments/Defaults Returns

getSparsity always 0 - numeric

getUELs returns the UELs from
the Container. Returns
only UELs in the data if
ignoreUnused=TRUE, other-
wise returns all UELs

ignoreUnused=FALSE character vector

isValid checks if the symbol is in
a valid format, throw excep-
tions if verbose=TRUE, recheck
a symbol if force=TRUE

verbose=FALSE

force=FALSE

logical

7.7.1.3 Additional Features

Validating Data

GAMS Transfer R requires that the records for all symbols exist in a standard format
(Standard Data Formats) in order for them to be understood by the Container. It is possible that the
data could end up in a state that is inconsistent with the standard format (especially if setting symbol
attributes directly). GAMS Transfer R includes the $isValid() method in order to determine if a
symbol is valid. This method returns a logical. This method does not guarantee that a symbol will be
successfully written to GDX. Other data errors (duplicate records, long UEL names, or domain violations)
could exist that are not tested in $isValid(). For example, we create two valid sets and then check them
with $isValid() to be sure.

It is possible to run $isValid() on both the Container as well as the symbol object. The Container
method $isValid() will also return FALSE if there are any invalid symbols in the Container object. In
addition, the Container$isValid() method also detects broken Container references in symbols and
inconsistent symbol naming between the Container$data field and the symbol objects.

Example (valid data)

library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records = c("seattle", "san-diego", "washington dc"))
j = Set$new(m, "j", i, records = c("san-diego", "washington dc"))
> i$isValid()
[1] TRUE
> j$isValid()
[1] TRUE
> m$isValid()
[1] TRUE

Now we create some data that is invalid due to incorrect column names in the records for set j.
library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records = c("seattle", "san-diego", "washington dc"))
j = Set$new(m, "j", i)
j$records = data.frame(cities=c("grayslake", "washington dc"))
> i$isValid()
[1] TRUE
> j$isValid()
[1] FALSE
> m$isValid()
[1] FALSE

In this example, we use records field of the symbol j to set the records. As mentioned in setting the
records, when setting records directly, users must adhere to Standard Data Formats. In this example,
symbol j does not have the correct number of columns. Moreover, the column headings do not follow the
convention (should be ”i 1”). The user can get more detailed error reporting if the verbose argument is
set to TRUE. For example:
> j$isValid(verbose=TRUE)
Symbol ’records’ does not have the correct number of columns (<symbol dimension> + 1)
[1] FALSE

The $isValid() method checks:

3508 Application Programming Interfaces

• If the symbol belongs to a Container

• If all domain set symbols exist in the Container

• If all domain set symbols objects are valid

• If all domain sets are one dimensional and not singleton sets

• If records are a data frame (or NULL)

• If the records domainLabels are unique

• The shape of the records is congruent with the dimensionality of the symbol

• That all data columns are type numeric

• To make sure that all domain categories are type string

Note

Calling $isValid() too often may have a significant impact on the performance.

Comparing GAMS Transfer objects

Equivalence between two symbols or between two containers can be tested using equals method. Since
the order of records in the records data frame is not important from a GDX point of view, equals
method compares symbol records independently from the order in which they are stored in the records
data frame. As this requires a merge operation over the domain columns, equals is a computationally
expensive call.

Attention

We do not recommend using equals method inside large loops or when performance is critical. It is,
however, very useful for data debugging.

A quick example shows the syntax of equals:
library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records=paste0("i",1:5), description="set i")
j = Set$new(m, "j", records=paste0("i",1:5), description="set j")
> i$equals(j)
[1] FALSE

One can debug the reason for inequality using the option verbose.
> i$equals(j, verbose=TRUE)
Symbol names do not match i != j
[1] FALSE

By default, equals takes the strictest view of symbol ”equality”, i.e., everything must be equal. In this
case, the symbol names and descriptions differ between the two sets i and j. We can relax this with
a combination of argument flags. Comparing the two symbols again, but ignoring the meta data (i.e.,
ignoring the symbol name, description and type (if a Variable or Equation)):
> i$equals(j, checkMetaData=FALSE)
[1] TRUE

The checkUELs argument will ensure that the symbol ”universe” is the same (in order and content)
between two symbols, as illustrated in the following example:
library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records=c("i1","i2","i3"))
ip = Set$new(m, "ip", records=c("i1","i3","i2"))
> i$equals(ip, checkMetaData=FALSE)
[1] FALSE
> i$equals(ip, checkMetaData=FALSE, checkUELs=FALSE)
[1] TRUE

7.7 R API 3509

Numerical comparisons are enabled for Parameters, Variables and Equations. Equality can be flexibly
defined through the equals method arguments. Again, the strictest view of equality is taken as the
default behavior of equals.
library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records=c("i1","i2","i3"))
a = Parameter$new(m, "a", i, records=data.frame(c("i1","i2","i3"), c(1,2,3)))
ap = Parameter$new(m, "ap", i, records=data.frame(c("i1","i2","i3"), c(1+1e-9,2,3)))
> a$equals(ap, checkMetaData=FALSE)
[1] FALSE
> a$equals(ap, checkMetaData=FALSE, verbose=TRUE)
Symbol records contain numeric differences in the value attribute that are outside the specified tolerances

rtol=0, atol=0
> a$equals(ap, checkMetaData=FALSE, atol=1e-8)
[1] TRUE

In the case of variables and equations, it is possible for the user to confine the numerical comparison to
certain attributes (level, marginal, lower, upper and scale) by specifying the columns argument as
the following example illustrates:
library(gamstransfer)
m = Container$new()
a = Variable$new(m, "a", "free", records=data.frame(level=100))
ap = Variable$new(m, "ap", "free", records=data.frame(level=101))
> a$records

level
1 100
> ap$records

level
1 101
> a$equals(ap, checkMetaData=FALSE)
[1] FALSE
> a$equals(ap, checkMetaData=FALSE, columns="level")
[1] FALSE
> a$equals(ap, checkMetaData=FALSE, columns="marginal")
[1] TRUE

Similar to symbols, one can compare two Container objects using the equals method. When comparing
Containers, the data fields are compared and if the same symbol keys exist in the Containers under
comparison, symbol equals method is used to compare the symbols. Here is a brief example:
> library(gamstransfer)
> m = Container$new()
> i = Set$new(m, "i")
> m1 = Container$new()
> i1 = Set$new(m1, "i")
> m$equals(m1)
[1] TRUE
> j = Set$new(m1, "j")
> m$equals(m1)
[1] FALSE
> m$equals(m1, verbose=TRUE)
Error in m$equals(m1, verbose = TRUE) :

Containers contain different number of symbols.
self: 1
other :2

> k = Set$new(m, "k")
> m$equals(m1)
[1] FALSE
> m$equals(m1,verbose=TRUE)
Error in m$equals(m1, verbose = TRUE) :

Container ‘data‘ field keys do not match. Keys not present in ‘other‘ :k

Domain Forwarding

GAMS includes the ability to define sets directly from data using the implicit set notation (see:
Implicit Set Definition (or: Domain Defining Symbol Declarations)). This notation has an analogue in
GAMS Transfer R called domainForwarding.

Note

It is possible to recursively update a subset tree in GAMS Transfer R.

3510 Application Programming Interfaces

Domain forwarding is available as an argument to all symbol object constructors; the user would simply
need to pass domainForwarding=TRUE to forward domain across all dimensions or as a logical vector
domainForwarding=c(TRUE, FALSE,....) to forward domain across selected dimensions.

In this example, we have raw data that is in the dist data frame, and we want to send the domain
information into the i and j sets. We take care to pass the set objects as the domain for parameter c.
library(gamstransfer)
m = Container$new()
i = Set$new(m, "i")
j = Set$new(m, "j")
dist = data.frame(

from = c("seattle", "seattle", "seattle",
"san-diego", "san-diego", "san-diego"),
to = c("new-york", "chicago", "topeka",

"new-york", "chicago", "topeka"),
thousand miles = c(2.5, 1.7, 1.8, 2.5, 1.8, 1.4)

)
c = Parameter$new(m, "c", c(i, j), records = dist, domainForwarding = TRUE)
> i$records

uni
1 seattle
2 san-diego
> j$records

uni
1 new-york
2 chicago
3 topeka
> c$records

from to value
1 seattle new-york 2.5
2 seattle chicago 1.7
3 seattle topeka 1.8
4 san-diego new-york 2.5
5 san-diego chicago 1.8
6 san-diego topeka 1.4

Note

The element order in the sets i and j mirrors that in the raw data.

We can also selectively use domainForwarding for part of the domain by passing a logical vector to the
domainForwarding argument as shown in the following example. The domain records are forwarded only
to the domain set i but not to the domain set j.
library(gamstransfer)
m = Container$new()
i = Set$new(m, "i")
j = Set$new(m, "j")
dist = data.frame(

from = c("seattle", "seattle", "seattle",
"san-diego", "san-diego", "san-diego"),
to = c("new-york", "chicago", "topeka",

"new-york", "chicago", "topeka"),
thousand miles = c(2.5, 1.7, 1.8, 2.5, 1.8, 1.4)

)
c = Parameter$new(m, "c", c(i, j), records = dist, domainForwarding = c(TRUE, FALSE))
> i$records

uni
1 seattle
4 san-diego
> j$records
NULL
> c$records

from to value
1 seattle new-york 2.5
2 seattle chicago 1.7
3 seattle topeka 1.8
4 san-diego new-york 2.5
5 san-diego chicago 1.8
6 san-diego topeka 1.4

In this example, we show that domain forwarding will also work recursively to update the entire set lineage.
The domain forwarding occurs at the creation of every symbol object. The correct order of elements in
set i is (z, a, b, c) because the records from j are forwarded first, and then the records from k are
propagated through (back to i).
library(gamstransfer)
m = Container$new()
i = Set$new(m, "i")

7.7 R API 3511

j = Set$new(m, "j", i, records = c("z"), domainForwarding = TRUE)
k = Set$new(m, "k", j, records = c("a", "b", "c"), domainForwarding = TRUE)
> i$records

uni
1 z
2 a
3 b
4 c
> j$records

i
1 z
2 a
3 b
4 c
> k$records

j
1 a
2 b
3 c

Describing Data

The methods describeSets, describeParameters, describeVariables, and describeEquations allow the user
to get a summary view of key data statistics. The returned data frame aggregates the output for a number
of other methods (depending on symbol type). A description of each Container method is provided in the
following subsections:

describeSets

Argument Type Description Required Default

symbols list, string A list of sets in the
Container to include in the
output. describeSets will
include aliases if they are
explicitly passed by the
user.

No NULL (if NULL specified,
will assume all sets)

Returns: data frame

The following table includes a short description of the column headings in the return.

Field / Statistic Description

name name of the symbol

isSingleton logical if the set is a singleton set

domain domain labels for the symbol

domainType none, relaxed or regular depending on the symbol state

dimension dimension

numberRecords number of records in the symbol

sparsity 1 - numberRecs/dense where dense is the size of full cartesian product of the
domain sets

Example #1

library(gamstransfer)
m = Container$new("trnsport.gdx")
> m$describeSets()

name isSingleton domain domainType dimension numberRecords sparsity
1 i FALSE * none 1 2 NA
2 j FALSE * none 1 3 NA

3512 Application Programming Interfaces

Example #2 – with aliases

library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records=paste0("i", 1:10))
j = Set$new(m, "j", records=paste0("j", 1:10))
ip = Alias$new(m, "ip", i)
jp = Alias$new(m, "jp", j)
> m$describeSets()

name isSingleton domain domainType dimension numberRecords sparsity
1 i FALSE * none 1 10 NA
2 j FALSE * none 1 10 NA
> m$describeSets(append(m$listSets(), m$listAliases()))

name isSingleton domain domainType dimension numberRecords sparsity
1 i FALSE * none 1 10 NA
3 ip FALSE * none 1 10 NA
2 j FALSE * none 1 10 NA
4 jp FALSE * none 1 10 NA

describeParameters

Argument Type Description Required Default

symbols list, string A list of parameters in the
Container to include in the
output

No NULL (if NULL specified,
will assume all parameters)

Returns: data frame

The following table includes a short description of the column headings in the return.

Field / Statistic Description

name name of the symbol

domain domain labels for the symbol

domainType none, relaxed or regular depending on the symbol state

dimension dimension

numberRecords number of records in the symbol

min min value in data

mean mean value in data

max max value in data

whereMin row number min value (if multiple, returns only first occurrence)

sparsity 1 - numRecs/dense where where dense is the size of full cartesian product of
the domain sets

library(gamstransfer)
m = Container$new("trnsport.gdx")
> name domain domainType dimension numberRecords min mean max
1 a i regular 1 2 350.000 475.0000 600.000
2 b j regular 1 3 275.000 300.0000 325.000
5 c i j regular 2 6 0.126 0.1755 0.225
3 d i j regular 2 6 1.400 1.9500 2.500
4 f NA none 0 1 90.000 90.0000 90.000

whereMin whereMax sparsity
1 1 2 0
2 3 1 0
5 6 1 0
3 6 1 0
4 1 1 NA

describeVariables

7.7 R API 3513

Argument Type Description Required Default

symbols list, string A list of variables in the
Container to include in the
output

No NULL (if NULL specified,
will assume all variables)

Returns: data frame

The following table includes a short description of the column headings in the return.

Field / Statistic Description

name name of the symbol

type type of variable (i.e., binary,integer,positive,negative,free,sos1,sos2,semicont,semiint)

domain domain labels for the symbol

domainType none, relaxed or regular depending on the symbol state

dimension dimension

numberRecords number of records in the symbol

sparsity 1 - numRecs/dense, where dense is the size of full cartesian product of the
domain sets

minLevel min value in the level column

meanLevel mean value in the level column

maxLevel max value in the level column

whereMaxAbsLevel max absolute value in the level column

library(gamstransfer)
m = Container$new("trnsport.gdx")
> m$describeVariables()

name type domain domainType dimension numberRecords sparsity minLevel
1 x positive i j regular 2 6 0 0.000
2 z free NA none 0 1 NA 153.675

meanLevel maxLevel whereMaxAbsLevel
1 150.000 300.000 2
2 153.675 153.675 1

describeEquations

Argument Type Description Required Default

symbols list, string A list of equations in the
Container to include in the
output

No NULL (if NULL specified,
will assume all variables)

Returns: data frame

The following table includes a short description of the column headings in the return.

Field / Statistic Description

name name of the symbol

type type of variable (i.e., binary,integer,positive,negative,free,sos1,sos2,semicont,semiint)

domain domain labels for the symbol

domainType none, relaxed or regular depending on the symbol state

dimension dimension

numberRecords number of records in the symbol

3514 Application Programming Interfaces

Field / Statistic Description

sparsity 1 - numRecs/dense, where dense is the size of full cartesian product of the
domain sets

minLevel min value in the level column

meanLevel mean value in the level column

maxLevel max value in the level column

whereMaxAbsLevel max absolute value in the level column

library(gamstransfer)
m = Container$new("trnsport.gdx")
> m$describeEquations()

name type domain domainType dimension numberRecords sparsity minLevel
1 cost eq NA none 0 1 NA 0
3 demand geq j regular 1 3 0 275
2 supply leq i regular 1 2 0 350

meanLevel maxLevel whereMaxAbsLevel
1 0 0 1
3 300 325 1
2 450 550 2

describeAliases

Argument Type Description Required Default

symbols list, string A list of aliases in the
Container to include in the
output.

No NULL (if NULL specified,
will assume all aliases)

Returns: data frame

The following table includes a short description of the column headings in the return.

Field / Statistic Description

name name of the symbol

aliasWith name of the parent set

isSingleton logical if an alias of a singleton set

domain domain labels for the symbol

domainType none, relaxed or regular depending on the symbol state

dimension dimension

numberRecords number of records in the symbol

sparsity 1 - numberRecs/dense, where dense is the size of full cartesian product of the
domain sets

Example #1

library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records = paste0("i",1:5))
j = Set$new(m, "j", records = paste0("j",1:10))
ip = Alias$new(m, "ip", i)
ipp = Alias$new(m, "ipp", ip)
jp = Alias$new(m, "jp", j)
> m$describeAliases()

name aliasWith isSingleton domain domainType dimension numberRecords sparsity
1 ip i FALSE * none 1 5 NA
2 ipp i FALSE * none 1 5 NA
3 jp j FALSE * none 1 10 NA

7.7 R API 3515

Matrix Generation

GAMS Transfer R stores data in a ”flat” format, that is, one record entry per data frame row. However,
it is often necessary to convert this data format into a matrix/array format. GAMS Transfer R enables
users to do this with relative ease using the toDense symbol methods This method will return a dense
N-dimensional array (matrix for 2-Dimensions) with each dimension corresponding to the GAMS symbol
dimension; it is possible to output an array up to 20 dimensions (a GAMS limit).

Example (1D data w/o domain linking (i.e., a relaxed domain))

library(gamstransfer)
m = Container$new()
a = Parameter$new(m, "a", "i", records = data.frame(uni=c("a","c"), element text=c(1,3)))
> a$toDense()
[1] 1 3

Note that the parameter a is not linked to another symbol, so when converting to a matrix, the indexing
is referenced to the data structure in a$records. Defining a sparse parameter a over a set i allows us
to extract information from the i domain and construct a very different dense matrix, as the following
example shows:
library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records = c("a", "b", "c", "d"))
a = Parameter$new(m, "a", i, records = data.frame(c("a","c"), c(1,3)))
> a$toDense()
[1] 1 0 3 0

Example (2D data w/ domain linking)

library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records = c("a", "b", "c", "d"))
a = Parameter$new(m, "a", c(i, i), records =
data.frame(i=c("a","c"), i=c("a","c"), c(1,3)))
> i$records

uni
1 a
2 b
3 c
4 d
> a$records

i i.1 value
1 a a 1
2 c c 3
> a$toDense()

[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0 0 0 0
[3,] 0 0 3 0
[4,] 0 0 0 0

Note

If there are unused UELs in the domain symbol, toDense() requires that the unused UELs are at
the end of UEL list. One can achieve this by calling the reorderUELs() method for the domain
symbol. Similarly, if the symbol records are in a different order than that of domain symbol UEL,
UELs should be reordered to follow the record order. This can also be achived using reorderUELs()

symbol method.

3516 Application Programming Interfaces

The Universe Set

A Unique Element (UEL) is an (i,s) pair where i is an identification number for a string s. A list of all
UELs is also known as 'the universe' or 'the universe set'. GAMS uses UELs to efficiently store domain
entries of a record by storing the UEL ID i of a domain entry instead of the actual string s. This avoids
storing the same string multiple times. The concept of UELs also exists in R and is called a ”factor”.
GAMS Transfer R leverages these types in order to efficiently store strings and enable domain checking
within the R environment.

Each domain column in a data frame can be a factor, the effect is that each symbol maintains its own
list of UELs per dimension. R lets the user choose if levels in a factor should be regarded as ordered.
GAMS Transfer R relies exclusively on ordered factors. By using ordered factors, GAMS Transfer R
will order the UELs such that elements appear in the order in which they appeared in the data (which is
how GAMS defines the UELs). GAMSTransfer allows the user to reorder the UELs with the uelPriority

argument in the $write() method.

GAMS Transfer R does not keep track of the UELs separately from other symbols in the Container, it
will be created internal to the $write() method and is based on the order in which data is added to the
container. The user can access the current state of UELs with the $getUELs() container method. For
example, we set a two dimensional set:
library(gamstransfer)
m = Container$new()
j = Set$new(m, "j", c("*", "*"), records = data.frame(i=c("i1","i2"), j=c("j1","j2")))
> j$records

i j
1 i1 j1
2 i2 j2
> m$getUELs()
[1] "i1" "i2" "j1" "j2"

Customize The Universe Set

GAMS Transfer R allows the users to customize the Universe Set with the help of Symbol UELs methods
shown in the following table.

Method Description Arguments/Defaults Returns

addUELs adds UELs to the symbol uels (character),
dimension=NULL

NULL

getUELs returns the UELs used in the
Symbol

dimension = NULL, codes =

NULL, ignoreUnused=FALSE
character vector

removeUELs removes UELs from the symbol uels=NULL (character),
dimension=NULL

NULL

renameUELs renames UELs in the symbol uels(character of same
length as current UELs
or named character vec-
tor), dimension=NULL,
allowMerge=FALSE (logi-
cal). If allowMerge = TRUE,
the underlying integer map-
ping of a factor is allowed to
change to offer additional data
flexibility

NULL

reorderUELs reorders UELs in the sym-
bol that appear in the sym-
bol dimensions. If uels is
NULL, the UELs are reordered
based on symbol records, un-
used UELs are moved to the
end. If dimensions is NULL

then reorder UELs in all dimen-
sions of the symbol

uels=NULL(NULL or character
of same length as current UELs
or named character vector),
dimension=NULL (numeric)

NULL

7.7 R API 3517

Method Description Arguments/Defaults Returns

setUELs sets UELs for the Symbol uels(character), dimension,
rename=FALSE

NULL

Note

Symbols should be valid in order to use these methods.

when dimension argument is optional, the method is applied to all dimensions

Some of these methods are also available as Container methods as shown in the following table. Container
methods internally call the corresponding Symbol methods.

Method Description Arguments/Defaults Returns

getUELs returns the UELs used in the
Container

symbols=NULL (character),
ignoreUnused = FALSE

character vector

removeUELs removes uels from all symbols
the Container

uels=NULL (character) NULL

renameUELs renames uels in the Container uels (named character),
allowMerge=FALSE (logical).
If allowMerge = TRUE, the
underlying integer mapping of
a factor is allowed to change to
offer additional data flexibility

NULL

getUELs Examples

library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records=c("i1","i2","i3"))
j = Set$new(m, "j", records=c("j1","j2","j3"))
a = Parameter$new(m, "a", c(i, j), records=data.frame(paste0("i",1:4), paste0("j",1:4), 1:4))
> i$getUELs()
[1] "i1" "i2" "i3"
> m$getUELs()
[1] "i1" "i2" "i3" "j1" "j2" "j3" "i4" "j4"
> m$getUELs("j")
[1] "j1" "j2" "j3"

addUELs Examples

library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records=c("i1","i2","i3"))
j = Set$new(m, "j", records=c("j1","j2","j3"))
a = Parameter$new(m, "a", c(i, j), records=data.frame(paste0("i",1:3), paste0("j",1:3), 1:3))
i$addUELs("ham")
a$addUELs("and", 1)
a$addUELs("cheese", 2)
> i$getUELs()
[1] "i1" "i2" "i3" "ham"
> a$getUELs()
[1] "i1" "i2" "i3" "and" "j1" "j2" "j3" "cheese"

In this example we have added three new (unused) UELs: ham, and, cheese. These three UELs will now
appear in the GAMS universe set (accessible with m$getUELs()). The addition of unused UELs does not
impact the validity of the symbols (i.e., unused UELs will not trigger domain violations).

3518 Application Programming Interfaces

removeUELs Examples

library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records=c("i1","i2","i3"))
j = Set$new(m, "j", records=c("j1","j2","j3"))
a = Parameter$new(m, "a", c(i, j), records=data.frame(paste0("i",1:3), paste0("j",1:3), 1:3))
i$addUELs("ham")
a$addUELs("and", 1)
a$addUELs("cheese", 2)
remove symbol UELs explicitly by dimension
i$removeUELs("ham", 1)
a$removeUELs("and", 1)
a$removeUELs(c("and", "cheese"), 2)
remove symbol UELs for the entire symbol
i$removeUELs("ham")
a$removeUELs(c("and", "cheese"))
remove ONLY unused UELs from each symbol, independently
i$removeUELs()
a$removeUELs()
remove ONLY unused UELs from the entire container (all symbols)
m$removeUELs()
> m$getUELs()
[1] "i1" "i2" "i3" "j1" "j2" "j3"

If a user removes a UEL that appears in data, that data will be lost perminately. The domain label will
be transformed into an NA as seen in this example:
library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records=c("i1","i2","i3"))
j = Set$new(m, "j", records=c("j1","j2","j3"))
a = Parameter$new(m, "a", c(i, j), records=data.frame(i=paste0("i",1:3), j=paste0("j",1:3), 1:3))
m$removeUELs("i1")
> i$records

uni
1 <NA>
2 i2
3 i3
> a$records

i j value
1 <NA> j1 1
2 i2 j2 2
3 i3 j3 3

Attention

A container cannot be written if there are NA entries in any of the domain columns (in any symbol).
An error is thrown if there are missing domain labels.

renameUELs Examples

renameUELs is a method of all GAMS Symbol classes as well as the Container class. This method
allows the user to rename UELs in a symbol dimension(s), over several symbols, or over the entire
container. This method is handy when attempting to harmonize labeling schemes between data
structures that originated from different sources. For example:

library(gamstransfer)
m = Container$new()
a = Parameter$new(m, "a", c("*","*"),
records = data.frame(from=c("WI","IL","WI"),
to=c("IL", "IN", "IN"), quantity=c(10, 12.5, 8.7)),
description = "shipment quantities")
b = Parameter$new(m, "b", c("*"),
records = data.frame(state=c("wisconsin","illinois","indiana"),
c(1.2, 1.7, 1.2)), description = "multipliers")

results in the following records:
> a$records

from to value
1 WI IL 10.0
2 IL IN 12.5
3 WI IN 8.7
> b$records

state value
1 wisconsin 1.2

7.7 R API 3519

2 illinois 1.7
3 indiana 1.2

However, two different data sources were used to generate the parameters a and b – one data source used
the uppercase postal abbreviation of the state name and the other source used a lowercase full state name
as the uniqe identifier. With the following syntax the user can harmonize to a mixed case postal code
labeling scheme (without losing any of the original UEL ordering).
m$renameUELs(c("WI"="Wi", "IL"="Il", "IN"="In",
"wisconsin"="Wi", "illinois"="Il","indiana"="In"))

This results in the following records and the universe set:
> a$records

from to value
1 Wi Il 10.0
2 Il In 12.5
3 Wi In 8.7
> b$records

state value
1 Wi 1.2
2 Il 1.7
> m$getUELs()
[1] "Wi" "Il" "In"

reorderUELs Examples

reorderUELs is a method of all GAMS symbol classes. This method allows the user to reorder UELs of a
specific symbol dimension. reorderUELs will not add/remove any UELs. For example:
library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records=c("i1","i2","i3"))
> i$getUELs()
[1] "i1" "i2" "i3"
> m$getUELs()
[1] "i1" "i2" "i3" "j1" "j2" "j3"

But perhaps we want to reorder the UELs i1, i2, i3 to i3, i2, i1.
i$reorderUELs(c("i3","i2","i1"))
> i$getUELs()
[1] "i3" "i2" "i1"
> i$records

uni
1 i1
2 i2
3 i3

Note

This example does not change the indexing scheme of the data frame. It only changes the underlying
integer numbering scheme for the factor levels.
We can see this by looking at the levels:

> as.integer(i$records$uni)
[1] 3 2 1

When reorderUELs() is used without the uels argument, the UELs are rearranged based on the records
order as illustrated in the following example.
library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records=c("i1","i2","i3"))
i$setUELs(c("i2","i3","i1"))
> i$getUELs()
[1] "i2" "i3" "i1"
> i$reorderUELs()
> i$getUELs()
[1] "i1" "i2" "i3"

Moreover, if there are unused UELs, they are moved to the end as shown below. Here, i4 is the unused
UELs that gets moved to the end after using reorderUELs.
> i$setUELs(c("i2","i3","i4","i1"))
> i$getUELs()
[1] "i2" "i3" "i4" "i1"
> i$reorderUELs()
> i$getUELs()
[1] "i1" "i2" "i3" "i4"

3520 Application Programming Interfaces

setUELs Examples

setUELs is a method of all GAMS symbol classes. This method allows the user to create new UELs,
rename UELs, and reorder UELs all in one method. For example:

library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records=c("i1","i2","i3"))

A user could accomplish a UEL reorder operation with setUELs:
> i$setUELs(c("i3","i2","i1"))
> i$getUELs()
[1] "i3" "i2" "i1"
> i$records

uni
1 i1
2 i2
3 i3

A user could accomplish a UEL reorder + add UELs operation with setUELs:
> i$setUELs(c("i3", "i2", "i1", "j1", "j2"))
> i$getUELs()
[1] "i3" "i2" "i1" "j1" "j2"
> i$records

uni
1 i1
2 i2
3 i3
> as.integer(i$records$uni)
[1] 3 2 1

A user could accomplish a UEL reorder + add + rename with setUELs:
> i$setUELs(c("j3", "j2", "j1", "ham", "cheese"), rename=TRUE)
> i$setUELs(c("j3", "j2", "j1", "ham", "cheese"), rename=TRUE)
> i$getUELs()
[1] "j3" "j2" "j1" "ham" "cheese"
> i$records

uni
1 j1
2 j2
3 j3
> as.integer(i$records$uni)
[1] 3 2 1

Note

This example does not change the indexing scheme of the data frame, but the rename=TRUE flag
means that the records will get updated as if a renameUELs call had been made.

If a user wanted to set new UELs on top of this data, without renaming, they would need to be careful to
include the current UELs in the UELs being set. It is possible to lose these labels if they are not included
(which will prevent the data from being written to GDX).
library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records=c("i1","i2","i3"))
i$setUELs(c("j1", "i2", "j3", "ham", "cheese"))
> i$getUELs()
[1] "j1" "i2" "j3" "ham" "cheese"
> i$records

uni 1
1 <NA>
2 i2
3 <NA>

Removing Symbols

Removing symbols from a Container is easy when using the removeSymbols container method; this
method accepts either a string or a list of string.

7.7 R API 3521

Reordering Symbols

In order to write the contents of the Container, it is required that the symbols are sorted such that, for
example, a Set used as a domain of another symbol appears before that symbol. The Container will try
to establish a valid ordering when writing the data. This type of situation could be encountered if the
user is adding and removing many symbols (and perhaps rewriting symbols with the same name). Users
should attempt to only add symbols to a Container once, and care must be taken when naming. The
method reorderSymbols attempts to fix symbol ordering problems. The following example shows how
this can occur:

Example Symbol reordering

library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records = paste0("i", 1:5))
j = Set$new(m, "j", i, records = paste0("i", 1:3))
> m$listSymbols()
[1] "i" "j"
now we remove the set i and recreate the data
m$removeSymbols("i")
i = Set$new(m, "i", records = paste0("i", 1:5))
> m$isValid()
[1] TRUE

Since the link to i is broken, Set j is now invalid. The user has to manually set the domain again.
fix the domain reference in the set j
j$domain = i
> m$listSymbols()
[1] "j" "i"

Now even though j is valid, the symbols are out of order. The order can be fixed as follows.
calling reorderSymbols() will order the list properly,
but the domain reference in j is now broken
m$reorderSymbols()
> m$listSymbols()
[1] "i" "j"
> m$isValid()
[1] TRUE

Domain Violations

Domain violations occur when a symbol uses other Sets as domain(s) – and is thus of domain type regular,
see Symbol Domain – and uses a domain entry in its records that is not present in the corresponding
referenced domain set. Such a domain violation will lead to a GDX error when writing the data.

For example, the symbol j in the following example contains domain violations because j is defined over
domain set i and the records entry ”grayslake” is not present in i.
library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records = c("seattle", "san-diego", "washington dc"))
j = Set$new(m, "j", i)
records = data.frame(cities=c("grayslake", "washington dc"))
j$setRecords(records)

Trying to write this container to a GDX file will fail. To ask for domain violations, call the method
Symbol$getDomainViolations(). It returns a list of DomainViolation objects with respect to each
dimension of the symbol. This list can then be used to resolve the domain violations.
> dv = j$getDomainViolations()
> dv
[[1]]
GAMS Transfer: DomainViolation with properties:
Symbol: j
dimension:
domain: i
violations: grayslake

The GAMS Transfer R feature of domain forwarding offers an automatic expansion of the domain set
with the violated entries in order to eliminate domain violations.

3522 Application Programming Interfaces

Note

Checking for domain violations is not a part of Symbol$isValid() for performance reasons.

The method for automatically resolving the domain violations can be convenient, but it effectively
disables domain checking, which is a valuable tool for error detection. We encourage to use
domain forwarding as rarely as possible. The same holds for using relaxed domain informaiton
when regular domain information would be possible.

GAMS Special Values

The GAMS system contains five special values: UNDEF (undefined), NA (not available), EPS (epsilon), +INF
(positive infinity), -INF (negative infinity). These special values must be mapped to their R equivalents.
GAMS Transfer R follows the following convention to generate the 1:1 mapping:

• +INF is mapped to Inf

• -INF is mapped to -Inf

• EPS is mapped to -0.0 (mathematically identical to zero)

• NA is mapped to a NA

• UNDEF is mapped to NaN

GAMS Transfer R syntax is designed to quickly get data into a form that is usable in further analyses
or visualization. The user does not need to remember these constants as they are provided within
the class SpecialValues as SpecialValues$POSINF, SpecialValues$NEGINF, SpecialValues$EPS,
SpecialValues[["NA"]], and SpecialValues$UNDEF. Some examples are shown below.
library(gamstransfer)
m = Container$new()
x = Parameter$new(

m, "x", c("*"),
records = data.frame(uni=paste0("i", 1:6), c(1, SpecialValues[["POSINF"]],
SpecialValues[["NEGINF"]], SpecialValues[["EPS"]], SpecialValues[["NA"]],
SpecialValues[["UNDEF"]])),
description = "special values"
)

The following data frame for x would look like:
> x$records

uni value
1 i1 1
2 i2 Inf
3 i3 -Inf
4 i4 0
5 i5 NA
6 i6 NaN

The user can now easily test for specific special values in the value column of the DataFrame (returns a
logical vector):
> SpecialValues$isNA(x$records$value)
[1] FALSE FALSE FALSE FALSE TRUE FALSE
> SpecialValues$isNA(x$records$value)
[1] FALSE FALSE FALSE FALSE TRUE FALSE
> SpecialValues$isEps(SpecialValues$EPS)
[1] TRUE
> SpecialValues$isPosInf(SpecialValues$POSINF)
[1] TRUE
> SpecialValues$isNegInf(SpecialValues$NEGINF)
[1] TRUE
> SpecialValues$isNA(SpecialValues$NEGINF)
SpecialValues$isNA
> SpecialValues$isNA(SpecialValues[["NA"]])
[1] TRUE
> SpecialValues$isUndef(SpecialValues$UNDEF)
[1] TRUE
> SpecialValues$isUndef(SpecialValues[["NA"]])
[1] FALSE
> SpecialValues$isNA(SpecialValues$UNDEF)
[1] FALSE

7.7 R API 3523

Note

The syntax SpecialValues$NA is not allowed in R. Therefore, to access NA, one has to use
SpecialValues[["NA"]]. As shown in the example above, double bracket syntax works for other
special values too.

Standard Data Formats

This section is meant to introduce the standard format that GAMS Transfer R expects for symbol records.
It has already been mentioned that we store data as a data frame, but there is an assumed structure to
the column headings and column types that will be important to understand. GAMS Transfer R includes
convenience functions in order to ease the burden of converting data from a user-centric format to one
that is understood by GAMS Transfer R. However, advanced users will want to convert their data first
and add it directly to the Container.

Set Records Standard Format

All set records (including singleton sets) are stored as a data frame with n or n+1 number of columns,
where n is the dimensionality of the symbol. The first n columns include the domain elements while
the last column, if present, includes the set element text. Records are organized such that there is
one record per row.

The names of the domain columns (domain labels) are unique. If the domain labels are non-unique, they
are converted to follow a pattern of <user domain label> <index position> by domainLabels setter.
If the records are passed in a non-data frame format (vector, matrix etc.), domain labels follow a pattern
of <domain name> <index position>. A symbol dimension that is referenced to the universe is labeled
uni. The explanatory text column is called element text and must take the last position in the data
frame.

All domain columns must be factors and the element text column must be a string type.

Some examples:
library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records=c("seattle", "san-diego"))
j = Set$new(m, "j", c(i, "*"), records=data.frame(i=c("seattle", "san-diego"), uni=c("new-york", "st-louis")))
k = Set$new(m, "k", i, isSingleton=TRUE, records=c("seattle"))
> i$records

uni
1 seattle
2 san-diego
> j$records

i uni
1 seattle new-york
2 san-diego st-louis
> k$records

i
1 seattle

Parameter Records Standard Format

All parameter records (including scalars) are stored as a data frame with n or n + 1 number of
columns, where n is the dimensionality of the symbol. The first n columns include the domain
elements while the last column, if present, includes the numerical value of the records. Records are
organized such that there is one record per row. Scalar parameters have zero dimension, therefore
they only have one column and one row. In cases where the value columns is not present for a
parameter, it is assumed that the value is the default parameter value (i.e., 0). Scalar parameters
with an empty data frame as records is assumed to contain the default value of 0.

3524 Application Programming Interfaces

The names of the domain columns (domain labels) are unique. If the domain labels are non-unique, they
are converted to follow a pattern of <user domain label> <index position> by domainLabels setter.
If the records are passed in a non-data frame format (vector, matrix etc.), domain labels follow a pattern
of <domain name> <index position>. A symbol dimension that is referenced to the universe is labeled
uni <index position>. The value column is called value and must take the last position in the data
frame.

All domain columns must be factors and the value column must be a numeric type. GAMS Transfer R
requires that all the factor levels are of type string.

Some examples:
library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records=c("seattle", "san-diego"))
a = Parameter$new(

m, "a", "*", records=data.frame(c("seattle", "san-diego"), c(50, 100))
)

b = Parameter$new(
m,
"b",
c(i, "*"),
records= data.frame(i=c("seattle", "san-diego"),
uni=c("new-york", "st-louis"), c(32.2, 123))

)
c = Parameter$new(m, "c", records=90)
> a$records

uni value
1 seattle 50
2 san-diego 100
> b$records

i uni value
1 seattle new-york 32.2
2 san-diego st-louis 123.0
> c$records

value
1 90

Variable/Equation Records Standard Format

Variables and equations share the same standard data format. All records (including scalar vari-
ables/equations) are stored as a data frame with n to n + 5 number of columns, where n is the di-
mensionality of the symbol. The first n columns include the domain elements while the remaining columns
include the numerical values for different attributes of the records. Records are organized such that there
is one record per row. Scalar variables/equations have zero dimension, therefore they have one row. In
cases where the records data frame has missing attribute columns, it is assumed that the column contains
the default value. Similarly, if the records data frame for a scalar is empty, it is assumed that all the
attribute values are at their default. Default values for variables and equations depend on their type.

The names of the domain columns (domain labels) are unique. If the domain labels are non-unique, they
are converted to follow a pattern of <user domain label> <index position> by domainLabels setter.
If the records are passed in a non-data frame format (vector, matrix etc.), domain labels follow a pattern
of <domain name> <index position>. A symbol dimension that is referenced to the universe is labeled
uni <index position>. The attribute columns are called level, marginal, lower, upper, and scale.
These attribute columns must appear in this order. Attributes that are not supplied by the user will be
assigned the default GAMS values for that variable/equation type. It is possible to not pass any attributes,
GAMS Transfer R would then simply assign default values to all attributes.

All domain columns must be factors and the attribute columns must be a numeric type. GAMS Transfer
R requires that all the factor levels are of type string.

Some examples:
library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records=c("seattle", "san-diego"))
a = Variable$new(

m,

7.7 R API 3525

"a",
"free",
domain= i,
records=data.frame(

city = c("seattle", "san-diego"),
level = c(50, 100)

)
)
> a$records

city level
1 seattle 50
2 san-diego 100

Generate Records

Container symbol records in standard format can also be generated using the convenience method
generateRecords(). This method generates records with the cartesian product of domain all sets. If the
argument density is less than 1, randomly selected records are removed. For symbols that are not scalar,
using this method requires that the symbol domain type is ”regular” (i.e., <symbol name>$domainType
= "regular"). A few examples using the method generateRecords() for each type of Container symbol
are provided below.

Set

Example #1 Create a large (dense) 4D set

Generating the initial data.frame could be difficult for Set symbols that have a large number of records
and a small number of UELs. These higher dimensional symbols will benefit from the generateRecords
convenience method.
library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records=paste0("i", 1:50))
j = Set$new(m, "j", records=paste0("j", 1:50))
k = Set$new(m, "k", records=paste0("k", 1:50))
l = Set$new(m, "l", records=paste0("l", 1:50))
create and define the symbol ‘a‘ with ‘regular‘ domains
a = Set$new(m, "a", c(i, j, k, l))
generate the records
a$generateRecords()
> a$isValid()
[1] TRUE
> head(a$records)

i j k l element text
1 i1 j1 k1 l1
2 i2 j1 k1 l1
3 i3 j1 k1 l1
4 i4 j1 k1 l1
5 i5 j1 k1 l1
6 i6 j1 k1 l1
> tail(a$records)

i j k l element text
6249995 i45 j50 k50 l50
6249996 i46 j50 k50 l50
6249997 i47 j50 k50 l50
6249998 i48 j50 k50 l50
6249999 i49 j50 k50 l50
6250000 i50 j50 k50 l50

Example #2 Create a large (sparse) 4D set

3526 Application Programming Interfaces

It is also possible to generate a sparse set (randomly selected rows are removed from the dense dataframe)
with the density argument to generateRecords.
library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records=paste0("i", 1:50))
j = Set$new(m, "j", records=paste0("j", 1:50))
k = Set$new(m, "k", records=paste0("k", 1:50))
l = Set$new(m, "l", records=paste0("l", 1:50))
create and define the symbol ‘a‘ with ‘regular‘ domains
a = Set$new(m, "a", c(i, j, k, l))
generate the records
a$generateRecords(density = 0.05)
> a$isValid()
[1] TRUE
> head(a$records)

i j k l element text
1 i15 j1 k1 l1
2 i41 j1 k1 l1
3 i37 j2 k1 l1
4 i17 j3 k1 l1
5 i21 j3 k1 l1
6 i37 j3 k1 l1
> tail(a$records)

i j k l element text
312495 i6 j48 k50 l50
312496 i9 j49 k50 l50
312497 i14 j49 k50 l50
312498 i41 j49 k50 l50
312499 i44 j49 k50 l50
312500 i35 j50 k50 l50

Example #3 Create a large 4D set with 1 sparse dimension

library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records=paste0("i", 1:50))
j = Set$new(m, "j", records=paste0("j", 1:50))
k = Set$new(m, "k", records=paste0("k", 1:50))
l = Set$new(m, "l", records=paste0("l", 1:50))
create and define the symbol ‘a‘ with ‘regular‘ domains
a = Set$new(m, "a", c(i, j, k, l))
generate the records
a$generateRecords(density = c(1, 0.05, 1, 1))
> a$isValid()
[1] TRUE
> head(a$records)

i j k l element text
1 i1 j29 k1 l1
2 i2 j29 k1 l1
3 i3 j29 k1 l1
4 i4 j29 k1 l1
5 i5 j29 k1 l1
6 i6 j29 k1 l1
> tail(a$records)

i j k l element text
249995 i45 j45 k50 l50
249996 i46 j45 k50 l50
249997 i47 j45 k50 l50
249998 i48 j45 k50 l50
249999 i49 j45 k50 l50
250000 i50 j45 k50 l50

Parameter

Example #1 Create a large (dense) 4D Parameter

Generating the initial data.frame could be difficult for Parameter symbols that have a large number
of records and a small number of UELs. These higher dimensional symbols will benefit from the
generateRecords convenience method.
library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records=paste0("i", 1:50))
j = Set$new(m, "j", records=paste0("j", 1:50))

7.7 R API 3527

k = Set$new(m, "k", records=paste0("k", 1:50))
l = Set$new(m, "l", records=paste0("l", 1:50))
create and define the symbol ‘a‘ with ‘regular‘ domains
a = Parameter$new(m, "a", c(i, j, k, l))
generate the records
a$generateRecords()
> a$isValid()
[1] TRUE
> head(a$records)

i j k l value
1 i1 j1 k1 l1 0.47998665
2 i2 j1 k1 l1 0.20015289
3 i3 j1 k1 l1 0.57701174
4 i4 j1 k1 l1 0.73032070
5 i5 j1 k1 l1 0.08637669
6 i6 j1 k1 l1 0.45913994
> tail(a$records)

i j k l value
6249995 i45 j50 k50 l50 0.91182978
6249996 i46 j50 k50 l50 0.79016549
6249997 i47 j50 k50 l50 0.77912069
6249998 i48 j50 k50 l50 0.63232201
6249999 i49 j50 k50 l50 0.04274219
6250000 i50 j50 k50 l50 0.71523280

Note

In Example #1 a large 4D parameter was generated. by default, the value of these records are
randomly drawn numbers from the interval [0,1] (uniform distribution).

Example #2 - Create a large (sparse) 4D parameter with normally distributed values

library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records=paste0("i", 1:50))
j = Set$new(m, "j", records=paste0("j", 1:50))
k = Set$new(m, "k", records=paste0("k", 1:50))
l = Set$new(m, "l", records=paste0("l", 1:50))
create and define the symbol ‘a‘ with ‘regular‘ domains
a = Parameter$new(m, "a", c(i, j, k, l))
create a custom function to pass to ‘generateRecords‘
value dist = function(size) {

return(rnorm(n=size, mean = 10, sd = 2.3))
}
generate the records
a$generateRecords(density = 0.05, func = value dist)
> a$isValid()
[1] TRUE
> head(a$records)

i j k l value
1 i50 j1 k1 l1 12.499060
2 i6 j2 k1 l1 12.009952
3 i14 j2 k1 l1 9.931126
4 i49 j2 k1 l1 13.073977
5 i7 j3 k1 l1 5.330898
6 i22 j3 k1 l1 7.887725
> tail(a$records)

i j k l value
312495 i14 j48 k50 l50 10.213841
312496 i20 j48 k50 l50 4.831503
312497 i26 j48 k50 l50 8.129577
312498 i17 j49 k50 l50 11.570570
312499 i48 j49 k50 l50 11.321228
312500 i35 j50 k50 l50 1.714614
> mean(a$records$value)
[1] 10.00273
> sd(a$records$value)
[1] 2.303193

Note

The custom function passed to the argument func must expose a size argument. It might be tedious
to know the exact number of the records that will be generated, especially if a fractional density is
specified; therefore, the generateRecords method will pass in the correct size automatically.

3528 Application Programming Interfaces

Example #3 - Create a large 4D parameter with a random number seed

library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records=paste0("i", 1:50))
j = Set$new(m, "j", records=paste0("j", 1:50))
k = Set$new(m, "k", records=paste0("k", 1:50))
l = Set$new(m, "l", records=paste0("l", 1:50))
create and define the symbol ‘a‘ with ‘regular‘ domains
a = Parameter$new(m, "a", c(i, j, k, l))
a2 = Parameter$new(m, "a2", c(i, j, k, l))
generate the records
a$generateRecords(density = 0.05, seed = 123)
a2$generateRecords(density = 0.05)
> a$equals(a2, checkMetaData = FALSE)
[1] FALSE
a2$generateRecords(density = 0.05, seed = 123)
> a$equals(a2, checkMetaData = FALSE)
[1] TRUE

Note

The seed is an int that will set the random number generator state (enables reproducible sequences
of random numbers).

Variable and Equation

Generating records for the symbol types Variable and Equation is similar to that of previously shown
examples of parameters and sets. However, since there are more than one attributes to variables and
equations, there are a few differences. By default, the random sampling is done is only for the level

attribute with default values being passed to the other attributes. To randomly generate other attributes,
one can use the custom func argument. This is shown in the following example.

Example #1 Create a large (sparse) 4D variable and Equation

library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records=paste0("i", 1:50))
j = Set$new(m, "j", records=paste0("j", 1:50))
k = Set$new(m, "k", records=paste0("k", 1:50))
l = Set$new(m, "l", records=paste0("l", 1:50))
create and define the symbol ‘a‘ with ‘regular‘ domains
av = Variable$new(m, "av", "free", c(i, j, k, l))
ae = Equation$new(m, "ae", "eq", c(i, j, k, l))
user can pass the function in-line as follows
av$generateRecords(density=0.05,
func=list(level= function(size) rnorm(n=size, mean=10, sd=2.3),
marginal = function(size) rnorm(n=size, mean=0.5, sd=0.1)))
functions can also be defined first and then passed
uniform distr = function(size) return(runif(size))
normal distr = function(size) return(rnorm(n=size))
ae$generateRecords(density=0.05, func=list(level=uniform distr, marginal=normal distr))
> head(av$records)

i j k l level marginal lower upper scale
1 i23 j1 k1 l1 12.244702 0.5587150 -Inf Inf 1
2 i29 j1 k1 l1 8.265612 0.4242353 -Inf Inf 1
3 i2 j2 k1 l1 14.164058 0.4166124 -Inf Inf 1
4 i17 j2 k1 l1 13.786874 0.5993234 -Inf Inf 1
5 i22 j2 k1 l1 8.489724 0.4924503 -Inf Inf 1
6 i36 j2 k1 l1 7.962292 0.4757125 -Inf Inf 1
> tail(av$records)

i j k l level marginal lower upper scale
312495 i33 j48 k50 l50 6.648296 0.4870270 -Inf Inf 1
312496 i37 j48 k50 l50 10.012486 0.5478388 -Inf Inf 1
312497 i20 j49 k50 l50 7.931512 0.4221189 -Inf Inf 1
312498 i41 j49 k50 l50 10.869332 0.5191488 -Inf Inf 1
312499 i42 j49 k50 l50 9.316445 0.4263974 -Inf Inf 1
312500 i44 j49 k50 l50 8.153729 0.6101864 -Inf Inf 1
> head(ae$records)

i j k l level marginal lower upper scale
1 i5 j1 k1 l1 0.74525909 0.8910060 0 0 1

7.7 R API 3529

2 i10 j1 k1 l1 0.72308699 1.6090443 0 0 1
3 i22 j1 k1 l1 0.70425801 -1.2204379 0 0 1
4 i47 j1 k1 l1 0.06490871 0.7270846 0 0 1
5 i24 j2 k1 l1 0.94752455 0.7864338 0 0 1
6 i35 j2 k1 l1 0.08555602 -0.2912885 0 0 1
> tail(ae$records)

i j k l level marginal lower upper scale
312495 i5 j49 k50 l50 0.7844452 -0.569529636 0 0 1
312496 i46 j49 k50 l50 0.2224596 -0.182441937 0 0 1
312497 i11 j50 k50 l50 0.9291730 -0.474982758 0 0 1
312498 i16 j50 k50 l50 0.3347919 0.009303616 0 0 1
312499 i20 j50 k50 l50 0.3590295 -0.533782269 0 0 1
312500 i27 j50 k50 l50 0.7681852 -1.126704380 0 0 1

Alias

The method generateRecords for an alias simply calls the corresponding method for its referenced set.

Example #1 Create a large (dense) 4D set from an Alias

library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records=paste0("i", 1:50))
j = Set$new(m, "j", records=paste0("j", 1:50))
k = Set$new(m, "k", records=paste0("k", 1:50))
l = Set$new(m, "l", records=paste0("l", 1:50))
create and define the symbol ‘a‘ with ‘regular‘ domains
a = Set$new(m, "a", c(i, j, k, l))
create an Alias ap for the set a
ap = Alias$new(m, "ap", a)
generate the records
ap$generateRecords()
> ap$isValid()
[1] TRUE
> head(ap$records)

i j k l element text
1 i1 j1 k1 l1
2 i2 j1 k1 l1
3 i3 j1 k1 l1
4 i4 j1 k1 l1
5 i5 j1 k1 l1
6 i6 j1 k1 l1
> tail(ap$records)

i j k l element text
6249995 i45 j50 k50 l50
6249996 i46 j50 k50 l50
6249997 i47 j50 k50 l50
6249998 i48 j50 k50 l50
6249999 i49 j50 k50 l50
6250000 i50 j50 k50 l50

Data Exchange with GDX

Up until now, we have been focused on using GAMS Transfer R to create symbols in an empty Container
using the symbol constructors (or their corresponding container methods). These tools will enable users
to ingest data from many different formats and add them to a Container. However, it is also possible to
read in symbol data directly from GDX files using the read container method. In the following sections,
we will discuss this method in detail as well as the write method, which allows users to write out to new
GDX files.

Reading from GDX

There are two main ways to read in GDX based data.

• Pass the file path directly to the Container constructor (will read all symbols and records)

3530 Application Programming Interfaces

• Pass the file path directly to the read method (default read all symbols, but can read partial files)

The first option here is provided for convenience and will, internally, call the read method. For the
following examples, we leverage the GDX output generated from the trnsport.gms model file.

Example (reading full data into a Container using the constructor)

library(gamstransfer)
m = Container$new("trnsport.gdx")
> m$listSymbols()
[1] "i" "j" "a" "b" "d" "f" "c" "x"
[9] "z" "cost" "supply" "demand"

> m$describeParameters()
name domain domainType dimension numberRecords min mean max

1 a i regular 1 2 350.000 475.0000 600.000
2 b j regular 1 3 275.000 300.0000 325.000
5 c i j regular 2 6 0.126 0.1755 0.225
3 d i j regular 2 6 1.400 1.9500 2.500
4 f NA none 0 1 90.000 90.0000 90.000

whereMin whereMax sparsity
1 1 2 0
2 3 1 0
5 6 1 0
3 6 1 0
4 1 1 NA

A user could also read in data with the read method as shown in the following example.

Example (reading full data into a Container with read method)

library(gamstransfer)
m = Container$new()
m$read("trnsport.gdx")
> m$listSymbols()
[1] "i" "j" "a" "b" "d" "f" "c" "x"
[9] "z" "cost" "supply" "demand"

It is also possible to read in a partial GDX file with the read method, as shown in the following example:
library(gamstransfer)
m = Container$new()
m$read("trnsport.gdx", "x")
> m$listSymbols()
[1] "x"
> m["x"]$records

i j level marginal lower upper scale
1 seattle new-york 50 0.000 0 Inf 1
2 seattle chicago 300 0.000 0 Inf 1
3 seattle topeka 0 0.036 0 Inf 1
4 san-diego new-york 275 0.000 0 Inf 1
5 san-diego chicago 0 0.009 0 Inf 1
6 san-diego topeka 275 0.000 0 Inf 1

This syntax assumes that the user will always want to read in both the metadata as well as the actual
data records, but it is possible to skip the reading of the records by passing the argument records=FALSE.
library(gamstransfer)
m = Container$new()
m$read("trnsport.gdx", "x", records = FALSE)
> m$listSymbols()
[1] "x"
> m["x"]$summary
$name
[1] "x"
$description
[1] "shipment quantities in cases"
$type
[1] "positive"
$domain
[1] "i" "j"
$domainType
[1] "relaxed"
$dimension
[1] 2
$numberRecords
[1] 0
> m["x"]$records
NULL

7.7 R API 3531

Attention

The read method attempts to preserve the symbol domain type from the source but if domain sets
are not part of the read operation there is no choice but to default to a ”relaxed” domainType. This
can be seen in the last example where we only read in the variable x and not the domain sets (i and
j) that the variable is defined over. All the data will be available to the user, but domain checking
is no longer possible. The symbol x will remain with ”relaxed” domain type even if the user were to
read in sets i and j in a second read call.

Writing to GDX

A user can write data to a GDX file by simply passing a file path (as a string). The write method will
then create the GDX and write all data in the Container.

Note

It is not possible to write the Container when any of its symbols are invalid. If any symbols are
invalid an error will be raised and the user will need to inspect the problematic symbols (perhaps
using a combination of the listSymbols(isValid=FALSE) and isValid(verbose=TRUE) methods).

Example

m$write("path/to/file.gdx")

Example (write a compressed GDX file)

m$write("path/to/file.gdx", compress = TRUE)

Advanced users might want to specify an order to their UELs (i.e., the universe set); recall that the UEL
ordering follows that dictated by the data. As a convenience, it is possible to prepend the list of UELs
with a user specified order using the uelPriority argument.

Example (change the order of the UEL)

library(gamstransfer)
m = Container$new()
i = Set$new(m, "i", records=c("a", "b", "c"))
m$write("foo.gdx", uelPriority=c("a", "c"))

The original UEL order for this GDX file would have been c("a", "b", "c"), but since this example
reorders the UELs with uelPriority, the positions of b and c have been swapped. This can be verified
with the gdxdump utility (using the uelTable argument):

gdxdump foo.gdx ueltable=foo

Set foo /

’a’ ,

’c’ ,

’b’ /;

$onEmpty

Set i(*) /

’a’,

’c’,

’b’ /;

$offEmpty

3532 Application Programming Interfaces

Data Exchange between Containers

GAMS Transfer R allows data exchange between two Containers with the help of read and copy methods.

Data exchange with read

Similar to reading from a GDX file, a Container can read from another Container object. Following
examples demonstrate this with the help of the GDX output generated from trnsport.gms model file.

Example (reading data from Container)

> library(gamstransfer)
> c = Container$new("trnsport.gdx")
> c$listSymbols()
[1] "i" "j" "a" "b" "d" "f" "c" "x"
[9] "z" "cost" "supply" "demand"

> m = Container$new(c)
> m$listSymbols()
[1] "i" "j" "a" "b" "d" "f" "c" "x"
[9] "z" "cost" "supply" "demand"

> m = Container$new()
> m$read(c)
> m$listSymbols()
[1] "i" "j" "a" "b" "d" "f" "c" "x"
[9] "z" "cost" "supply" "demand"

> m = Container$new()
> m$read(c, symbols=c("d","f"))
> m$listSymbols()
[1] "d" "f"

Example (reading data when symbol with the same name already exists)

> library(gamstransfer)
> c = Container$new()
> i = Set$new(c, "i")
> p = Parameter$new(m, "p")
> m = Container$new()
> i = Set$new(m, "i")
> m$read(c, symbols="i")
Error in private$.containerRead(loadFrom, symbols, records) :

Attempting to add symbol i, however, one already exists in the Container. Symbol replacement is only possible if the
symbol is first removed from theContainer with the removeSymbols() method.

The container read method does not allow reading from another source (Container, or a GDX file) when a
symbol with the same name already exists. The existing symbol must be removed or renamed.

Data exchange with copy

Symbol copy method provides an alternative way to exchange data between Containers. Following
examples demonstrate this starting from a Container containing data from GDX output generated from
trnsport.gms model file.

Example (copy symbol from one container to another)

> library(gamstransfer)
> c = Container$new("trnsport.gdx")
> c$listSymbols()
[1] "i" "j" "a" "b" "d" "f" "c" "x"
[9] "z" "cost" "supply" "demand"

> m = Container$new()
> c["f"]$copy(m)
> m$listSymbols()
[1] "f"

The above example copies symbol f from Container c to Container m. If one copies a symbol with domain
that does not exist in the destination Container, domain is relaxed as shown in the following example.

7.8 Tutorial 3533

Example (copy symbol to another container without domain symbols)

> library(gamstransfer)
> c = Container$new("trnsport.gdx")
> c$listSymbols()
[1] "i" "j" "a" "b" "d" "f" "c" "x"
[9] "z" "cost" "supply" "demand"

m = Container$new()
> c["d"]$copy(m)
> m$listSymbols()
[1] "d"
> m["d"]$domain
[1] "i" "j"
> m["d"]$domainType
[1] "relaxed"

Example (copy symbol to another container with overwrite)

> library(gamstransfer)
> c = Container$new()
> i = Set$new(c, "i", records=c("i1","i2"))
> i$records

uni
1 i1
2 i2
> m = Container$new()
> i = Set$new(m, "i", records= c("i3","i4"))
> i$records

uni
1 i3
2 i4
the following command throws an error
> c["i"]$copy(m)
Error in private$.copy(destination, overwrite) :

Symbol i already exists in ‘destination‘
> c["i"]$copy(m, overwrite = TRUE)
> m["i"]$records

uni
1 i1
2 i2

Example (bulk copy operation via Container copy method)

A bulk operation is also possible via Container copy method as shown in the following example.
> library(gamstransfer)
> c = Container$new("trnsport.gdx")
> c$listSymbols()
[1] "i" "j" "a" "b" "d" "f" "c" "x"
[9] "z" "cost" "supply" "demand"

> m = Container$new()
> c$copy(m) # copy all symbols
> c$listSymbols()
[1] "i" "j" "a" "b" "d" "f" "c" "x"
[9] "z" "cost" "supply" "demand"

> m = Container$new()
> c$copy(m, symbols=c("a","b","d")) # copy a subset of symbols
> m$listSymbols()
[1] "a" "b" "d"
> c$copy(m, symbols="a", overwrite = TRUE) # copy symbols with overwrite
> m$listSymbols()
[1] "a" "b" "d"

7.8 Tutorial

The goal of this tutorial is to provide a compact overview of the basic functionality of the GAMS C# API.
It allows the user to start immediately working with the API by providing a set of small examples based
on the well-known transportation problem. These examples introduce several API features step by
step.

• Getting Started A quick introduction about how to create and configure C# project

• Important Classes of the API Overview of some fundamental classes of the GAMS C# API

• How to use API An extensive set of examples how to use API components

http://www.gams.com/docs/example.htm

3534 Application Programming Interfaces

7.8.1 Getting Started

This section takes you through the basic steps of creating and configuring a C# project in Visual Studio
2010 for use with the GAMS C# API. At the end of this section there is also a paragraph about Mono as
an alternative to Microsoft Visual Studio.

7.8.1.1 Open a new Project

After opening Microsoft Visual Studio you can open the New Project wizard by choosing File > New >
Project from the ribbon menu and type a name for your application, e.g. GAMSApplication.

7.8.1.2 Add a Reference to a Project

Once you opened the project add a reference by a right click on References inside the solution explorer.
Then choose Add Reference.. and select the Browse tab. Next navigate to the location where you
installed GAMS.net4.dll, typically the GAMS system directory, e.g. C:\GAMS\win64\46.2. Then choose
GAMS.net4.dll and click OK.

7.8 Tutorial 3535

7.8.1.3 Solving your first Model

This section illustrates how a model from the GAMS model library can be imported and solved.

Open a new project and reference the GAMS.net4.dll in your project as explained above. Open
Program.cs which should be part of your project and replace the content by:
using System;
using System.IO;
using System.Collections.Generic;
using System.Text;
using GAMS;
namespace TransportSeq
{

class Transport0
{

static void Main(string[] args)
{

GAMSWorkspace ws = new GAMSWorkspace();
ws.GamsLib("trnsport");
// create a GAMSJob from file and run it with default settings
GAMSJob t0 = ws.AddJobFromFile("trnsport.gms");
t0.Run();
Console.WriteLine("Ran with Default:");
foreach (GAMSVariableRecord rec in t0.OutDB.GetVariable("x"))

Console.WriteLine("x(" + rec.Keys[0] + "," + rec.Keys[1] + "): level=" + rec.Level + " marginal=" +
rec.Marginal);

Console.WriteLine("z=" + t0.OutDB.GetVariable("z").LastRecord().Level);
}

}
}

Then click the highlighted button from figure (a) down below or press F5 to start debugging. You can also
start the program without debugging by pressing Control + F5 or choosing Debug > Start Without
Debugging from the ribbon menu as illustrated in figure (b).

3536 Application Programming Interfaces

Figure (a)

Figure(b)

By following the latter instruction the command line shell remains open and show the produced output.

7.8.1.4 Mono

The GAMS .NET API works also on non-Windows platforms where no Visual Studio is available. It
can be used for example with the open source .Net framework Mono (http://www.mono-project.com).
Mono offers a IDE that could be used similarly to Visual Studio. If one prefers to compile and execute
from a shell, the following code shows how this can be done using the example Transport1 which comes
with the GAMS system (this assumes that xbuild and mono are in the PATH):
cd <GAMS Dir>/apifiles/CSharp/Transport1
xbuild /t:rebuild /p:Configuration=Release Transport1.csproj
mono bin/Release/Transport1.exe ../../..

7.8.2 Important Classes of the API

This section provides a quick overview of some fundamental classes of the GAMS Namespace. Their usage
is demonstrated by an extensive set of examples.

• GAMS Namespace

• GAMSWorkspace Class

• GAMSJob Class

• GAMSDatabase Class

• GAMSOptions Class

• GAMSModelInstance Class

7.8.3 How to use API

In the GAMS system directory there are some examples provided that illustrate the usage of the C# API.
<GAMS system directory>\apifiles\CSharp contains a file TransportSeq.sln that can be opened in
Microsoft Visual Studio. The contained projects deal with the well-known transportation problem. In
further course of this tutorial we discuss these examples step by step and introduce new elements of the
API in detail.

We recommend to open the aforementioned files to gain a complete overview of the examples. Down below
we explain the examples with the help of selected code snippets.

• How to choose the GAMS system (Transport1)

• How to export data to GDX (TransportGDX)

• How to import data from GDX (TransportGDX)

• How to run a GAMSJob from file (Transport1)

• How to specify the solver (Transport1)

• How to run a job with a solver option file and capture its log output (Transport1)

http://www.mono-project.com

7.8 Tutorial 3537

• How to use include files (Transport2)

• How to read data from string and export to GDX (Transport3)

• How to run a job using data from GDX (Transport3)

• How to run a job using implicit database communication (Transport3)

• How to define data using C# data structures (Transport4)

• How to prepare a GAMSDatabase from C# data structures (Transport4)

• How to initialize a GAMSCheckpoint by running a GAMSJob (Transport5)

• How to initialize a GAMSJob from a GAMSCheckpoint (Transport5)

• How to run multiple GAMSJobs in parallel using a GAMSCheckpoint (Transport6)

• How to create a GAMSModelInstance from a GAMSCheckpoint (Transport7)

• How to modify a parameter of a GAMSModelInstance using GAMSModifier (Transport7)

• How to modify a variable of a GAMSModelInstance using GAMSModifier (Transport7)

• How to use a queue to solve multiple GAMSModelInstances in parallel (Transport8)

• How to fill a GAMSDatabase by reading from MS Access (Transport9)

• How to fill a GAMSDatabase by reading from MS Excel (Transport10)

• How to create and use a save/restart file (Transport11)

7.8.3.1 How to choose the GAMS system (Transport1)

By default the GAMS system is determined automatically. In case of having multiple GAMS systems on
your machine, the desired system can be specified via an additional argument when the workspace is created.
When running the examples, we can provide an additional command line argument in order to define the
GAMS system directory that should be used. By executing Transport1.exe with C:/GAMS/win64/46.2
we use the 64-bit version of GAMS 46.2 to run Transport1 even if our default GAMS system might be a
different one. This is managed by the following code:
...
GAMSWorkspace ws;
if (Environment.GetCommandLineArgs().Length > 1)

ws = new GAMSWorkspace(systemDirectory: Environment.GetCommandLineArgs()[1]);
else

ws = new GAMSWorkspace();
...

Remember that the bitness of the GAMS system has to match the bitness of your .NET program.

7.8.3.2 How to export data to GDX (TransportGDX)

Although the Object-oriented .NET API offers much more than exchanging data between .NET and
GDX, a common use case is the export and import of GDX files. The central class for this purpose is
GAMSDatabase. We assume that the data to be exported is available in .NET data structures.
...
List<string> plants = new List<string>()
{

"Seattle", "San-Diego"
};
List<string> markets = new List<string>()
{

"New-York", "Chicago", "Topeka"
};
Dictionary<string, double> capacity = new Dictionary<string, double>()
{
{ "Seattle", 350.0 }, { "San-Diego", 600.0 }

3538 Application Programming Interfaces

};
Dictionary<string, double> demand = new Dictionary<string, double>()
{
{ "New-York", 325.0 }, { "Chicago", 300.0 }, { "Topeka", 275.0 }
};
Dictionary<Tuple<string, string>, double> distance = new Dictionary<Tuple<string, string>, double>()
{
{ new Tuple<string,string> ("Seattle", "New-York"), 2.5 },
{ new Tuple<string,string> ("Seattle", "Chicago"), 1.7 },
{ new Tuple<string,string> ("Seattle", "Topeka"), 1.8 },
{ new Tuple<string,string> ("San-Diego", "New-York"), 2.5 },
{ new Tuple<string,string> ("San-Diego", "Chicago"), 1.8 },
{ new Tuple<string,string> ("San-Diego", "Topeka"), 1.4 }
};
...

Different GAMS symbols are represented using different .NET data structures. The data for the GAMS
sets is represented using lists of strings (e.g. plants and markets). On the other hand, GAMS parameters
are represented by dictionaries (e.g. capacity and demand). Note that the representation of the two
dimensional parameter distance uses tuples for storing the keys. The choice of data structures can also
be different, but the used structures in this example fit well for representing GAMS data with .NET data
structures.

A new GAMSDatabase instance can be created using GAMSWorkspace.AddDatabase.
...
// prepare a GAMSDatabase with data from the C# data structures
GAMSDatabase db = ws.AddDatabase();
...

We start adding GAMS sets using the method GAMSDatabase.AddSet which takes the name and the dimen-
sion as arguments. The third argument is an optional explanatory text. A foreach-loop iterates through
plants and adds new records to the recently created GAMSSet instance i using GAMSSet.AddRecord.
...
// add 1-dimensional set ’i’ with explanatory text ’canning plants’ to the GAMSDatabase
GAMSSet i = db.AddSet("i", 1, "canning plants");
foreach (string p in plants)

i.AddRecord(p);
...

GAMSParameter instances can be added by using the method GAMSDatabase.AddParameter. It has the
same signature as GAMSDatabase.AddSet. Anyhow, in this example we use an overload of the method
which takes a list of GAMSSet instances instead of the dimension for creating a parameter with domain
information.
...
// add parameter ’a’ with domain ’i’
GAMSParameter a = db.AddParameter("a", "capacity of plant i in cases", i);
foreach (string p in plants)

a.AddRecord(p).Value = capacity[p];
...

As soon as all data is prepared in the GAMSDatabase, the method GAMSDatabase.Export can be used
to create a GDX file.
...
// export the GAMSDatabase to a GDX file with name ’data.gdx’ located in the ’workingDirectory’ of the GAMSWorkspace
db.Export("data.gdx");
...

7.8.3.3 How to import data from GDX (TransportGDX)

Data can be imported from a GDX file using GAMSWorkspace.AddDatabaseFromGDX. The method takes a
path to a GDX file and creates a GAMSDatabase instance.
...
// add a new GAMSDatabase and initialize it from the GDX file just created
GAMSDatabase db2 = ws.AddDatabaseFromGDX("data.gdx");
...

Reading the data from the GAMSSet i into a list can be done as follows:
...
// read data from symbols into .NET data structures
List<string> plants2 = new List<string>();
foreach (GAMSSetRecord item in db2.GetSet("i"))

7.8 Tutorial 3539

plants2.Add(item.Key(0));
...

A new list plants2 is created. i is retrieved by calling GAMSDatabase.GetSet on db2. The returned
GAMSSet object can be iterated using a foreach-loop to access the records of the set. Each record is of
type GAMSSetRecord and can be asked for its keys.

You can do the same for GAMSParameters. Instead of creating a list, we want to have the data in the form
of a dictionary. GAMSParameterRecords can not only be asked for their keys, but also for their value. The
following code snippet shows how to read the one dimensional parameter a into a Dictionary<string,
double>.
...
Dictionary<string, double> capacity2 = new Dictionary<string, double>();
foreach (GAMSParameterRecord item in db2.GetParameter("a"))

capacity2.Add(item.Key(0), item.Value);
...

For multi dimensional symbols, we choose the dictionary keys to be tuples instead of string.
...
Dictionary<Tuple<string, string>, double> distance2 = new Dictionary<Tuple<string, string>, double>();
foreach (GAMSParameterRecord item in db2.GetParameter("d"))

distance2.Add(new Tuple<string, string>(item.Key(0), item.Key(1)), item.Value);
...

7.8.3.4 How to run a GAMSJob from file (Transport1)

Here we load the model trnsport from the GAMS Model Library. In doing so it is made available in the
current working directory and can be loaded by the GAMSWorkspace.AddJobFromFile Method afterwards.
Apparently this method also works with any other gms file you might have created on your own as long
as it is located in the current working directory. Then the GAMSJob t1 is defined from that file and run
by the GAMSJob.Run method.

The following lines create the solution output and illustrate the usage of the GAMSJob.OutDB property to
get access to the GAMSDatabase created by the Run method. To retrieve the content of variable x we use
the GAMSVariableRecord class and the GAMSDatabase.GetVariable method.
...
ws.GamsLib("trnsport");
// create a GAMSJob from file and run it with default settings
GAMSJob t1 = ws.AddJobFromFile("trnsport.gms");
t1.Run();
Console.WriteLine("Ran with Default:");
foreach (GAMSVariableRecord rec in t1.OutDB.GetVariable("x"))

Console.WriteLine("x(" + rec.Keys[0] + "," + rec.Keys[1] + "): level=" + rec.Level + " marginal=" + rec.Marginal);
...

7.8.3.5 How to specify the solver (Transport1)

The solver can be specified via the GAMSOptions class and the GAMSWorkspace.AddOptions method.
The GAMSOptions.AllModelTypes property sets xpress as default solver for all model types which the
solver can handle.
...
// run the job again with another solver
using (GAMSOptions opt = ws.AddOptions())
{

opt.AllModelTypes = "xpress";
t1.Run(opt);

}
...

3540 Application Programming Interfaces

7.8.3.6 How to run a job with a solver option file and capture its log output (Transport1)

At first we use the StreamWriter to create the file xpress.opt which will be used as solver option file and
is stored in the current working directory. Then we write algorithm=barrier to this file and specify the
barrier algorithm as algorithm before we close the solver option file. We choose xpress as solver just like
in the preceding example and set the GAMSOptions.OptFile Property to 1 to tell the solver to look for a
solver option file. In addition, we specify the argument output in order to write the log of the GAMSJob
into the file transport1 xpress.log.
...
using (StreamWriter optFile = new StreamWriter(Path.Combine(ws.WorkingDirectory, "xpress.opt")))
using (TextWriter logFile = new StreamWriter(Path.Combine(ws.WorkingDirectory, "transport1 xpress.log")))
using (GAMSOptions opt = ws.AddOptions())
{

optFile.WriteLine("algorithm=barrier");
optFile.Close();
opt.AllModelTypes = "xpress";
opt.OptFile = 1;
t1.Run(opt, output: logFile);

}
...

Instead of writing the log output to a file, it can be written into any TextWriter. In order to write the
log directly to Console.Out, we can use the following code:
...

t1.Run(opt, output: Console.Out);
...

7.8.3.7 How to use include files (Transport2)

In this example, as in many succeeding, the data text and the model text are separated into two different
strings. Note that these strings GetDataText and GetModelText are using GAMS syntax.

At first we write an include file tdata.gms that contains the data but not the model text:
...
using (StreamWriter writer = new StreamWriter(ws.WorkingDirectory + Path.DirectorySeparatorChar + "tdata.gms"))
{

writer.Write(GetDataText());
}
...

Afterwards we create a GAMSJob using the GAMSWorkspace.AddJobFromString method. The
GAMSOptions.Defines field is used like the 'double dash' GAMS parameters, i.e. it corresponds
to --incname=tdata on the command line.
...
using (GAMSOptions opt = ws.AddOptions())
{

GAMSJob t2 = ws.AddJobFromString(GetModelText());
opt.Defines.Add("incname", "tdata");
t2.Run(opt);
...

}
...

Note that the string GetModelText contains the following lines to read in the data.
...
$if not set incname $abort ’no include file name for data file provided’
$include %incname%
...

7.8.3.8 How to read data from string and export to GDX (Transport3)

We read the data from the string GetDataText as we did in the preceding example. Note that this
contains no solve statement but only data definition in GAMS syntax. By running the corresponding
GAMSJob a GAMSDatabase is created that is available via the GAMSJob.OutDb property. We can use the
GAMSDatabase.Export method to write the content of this database to a gdx file tdata.gdx.
...
GAMSJob t3 = ws.AddJobFromString(GetDataText());
t3.Run();
t3.OutDB.Export(ws.WorkingDirectory + Path.DirectorySeparatorChar + "tdata.gdx");
...

7.8 Tutorial 3541

7.8.3.9 How to run a job using data from GDX (Transport3)

This works quite similar to the usage of an include file explained in Transport2 - How to use include files (Transport2).
...
t3 = ws.AddJobFromString(GetModelText());
using (GAMSOptions opt = ws.AddOptions())
{

opt.Defines.Add("gdxincname", "tdata");
opt.AllModelTypes = "xpress";
t3.Run(opt);
...

}
...

Note that there are some changes in GetModelText due to the usage of a GDX file instead of an include
file.
...
$if not set gdxincname $abort ’no include file name for data file provided’
$gdxin %gdxincname%
$load i j a b d f
$gdxin
...

7.8.3.10 How to run a job using implicit database communication (Transport3)

This example does basically the same as the two preceding examples together. We create two GAMSJobs
t3a and t3b where the first one contains only the data and the second one contains only the model
without data. After running t3a the corresponding OutDB can be read in directly just like a gdx file. Note
that the database needs to be passed to the GAMSJob.Run method as additional argument.
...
using (GAMSOptions opt = ws.AddOptions())
{

GAMSJob t3a = ws.AddJobFromString(GetDataText());
GAMSJob t3b = ws.AddJobFromString(GetModelText());
t3a.Run();
opt.Defines.Add("gdxincname", t3a.OutDB.Name);
opt.AllModelTypes = "xpress";
t3b.Run(opt, t3a.OutDB);
...

}
...

7.8.3.11 How to define data using C# data structures (Transport4)

We use the List<T> class, the Dictionary<TKey, TValue> class and the Tuple<T1, T2> class to
define C# data structures that correspond to the sets, parameters and tables used for the data definition
in GAMS.
...
List<string> plants = new List<string>()
{

"Seattle", "San-Diego"
};
List<string> markets = new List<string>()
{

"New-York", "Chicago", "Topeka"
};
Dictionary<string, double> capacity = new Dictionary<string, double>()
{
{ "Seattle", 350.0 }, { "San-Diego", 600.0 }

};
Dictionary<string, double> demand = new Dictionary<string, double>()
{
{ "New-York", 325.0 }, { "Chicago", 300.0 }, { "Topeka", 275.0 }

};
Dictionary<Tuple<string,string>, double> distance = new Dictionary<Tuple<string,string>, double>()
{
{ new Tuple<string,string> ("Seattle", "New-York"), 2.5 },
{ new Tuple<string,string> ("Seattle", "Chicago"), 1.7 },
{ new Tuple<string,string> ("Seattle", "Topeka"), 1.8 },
{ new Tuple<string,string> ("San-Diego", "New-York"), 2.5 },
{ new Tuple<string,string> ("San-Diego", "Chicago"), 1.8 },
{ new Tuple<string,string> ("San-Diego", "Topeka"), 1.4 }

};
...

3542 Application Programming Interfaces

7.8.3.12 How to prepare a GAMSDatabase from C# data structures (Transport4)

At first we create an empty GAMSDatabase db using the GAMSWorkspace.AddDatabase method. Af-
terwards we prepare the database. To add a set to the database we use the GAMSSet class and the
GAMSDatabase.AddSet method with arguments describing the identifier, dimension and explanatory text.
To add the records to the database we iterate over the elements of our C# data structure and add them
by using the GAMSSet.AddRecord method.

For parameters the procedure is pretty much the same. Note that the table that specifies the distances in
GAMS can be treated as parameter with dimension 2.

The GAMSJob can be run like explained in the preceding example about implicit database communication.
...
GAMSDatabase db = ws.AddDatabase();
GAMSSet i = db.AddSet("i", 1, "canning plants");
foreach (string p in plants)

i.AddRecord(p);
...
GAMSParameter a = db.AddParameter("a", 1, "capacity of plant i in cases");
foreach (string p in plants)

a.AddRecord(p).Value = capacity[p];
...
GAMSParameter d = db.AddParameter("d", 2, "distance in thousands of miles");
foreach(Tuple<string,string> t in distance.Keys)

d.AddRecord(t.Item1,t.Item2).Value = distance[t];
GAMSParameter f = db.AddParameter("f", 0, "freight in dollars per case per thousand miles");
f.AddRecord().Value = 90;
// run a job using data from the created GAMSDatabase
GAMSJob t4 = ws.AddJobFromString(GetModelText());
using (GAMSOptions opt = ws.AddOptions())
{

opt.Defines.Add("gdxincname", db.Name);
opt.AllModelTypes = "xpress";
t4.Run(opt, db);
...

}
...

7.8.3.13 How to initialize a GAMSCheckpoint by running a GAMSJob (Transport5)

The following two lines of code conduct several operations. While the first line simply creates a GAMS
Checkpoint, the second one uses the GAMSWorkspace.AddJobFromString method to create a GAMSJob

containing the model text and data but no solve statement. In contrast to the preceding examples it runs
the job immediately using the GAMSJob.Run method. Furthermore, it passes an additional checkpoint
argument to the Run method. That means the GAMSCheckpoint cp captures the state of the GAMSJob.
...
GAMSCheckpoint cp = ws.AddCheckpoint();
...
ws.AddJobFromString(GetModelText()).Run(cp);
...

This creates the same checkpoint as for example the following code snippet:
GAMSCheckpoint cp = ws.AddCheckpoint();
GAMSJob t5a = ws.AddJobFromString(GetModelText());
t5a.Run(cp);

7.8.3.14 How to initialize a GAMSJob from a GAMSCheckpoint (Transport5)

Note that the string returned from function GetModelText() contains the entire model and data definition
plus an additional demand multiplier and scalars for model and solve status but no solve statement:
...
Scalar bmult demand multiplier /1/;
...
demand(j) .. sum(i, x(i,j)) =g= bmult*b(j) ;
...
Scalar ms ’model status’, ss ’solve status’;
...

7.8 Tutorial 3543

We create a list with eight different values for this demand multiplier.
double[] bmultlist = new double[] { 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3 };

For each entry of that list we create a GAMSJob t5 using the GAMSWorkspace.AddJobFromString method.
Besides the string which resets the demand multiplier bmult, specifies the solve statement and assigns
values to the scalars ms and ss we pass the checkpoint cp as additional argument. This results in a
GAMSJob combined from the checkpoint plus the content provided by the string.

We run the GAMSJob and echo some interesting data from the OutDB using the GAMSDatabase.GetParameter
and GAMSDatabase.GetVariable methods, the GAMSParameter.FindRecord and GAMSVariable.FindRecord

methods plus the GAMSParameterRecord.Value property and the GAMSVariableRecord.Level property.
...
foreach (double b in bmultlist)
{

GAMSJob t5 = ws.AddJobFromString("bmult=" + b + "; solve transport min z use lp; ms=transport.modelstat;
ss=transport.solvestat;", cp);

t5.Run();
Console.WriteLine("Scenario bmult=" + b + ":");
Console.WriteLine(" Modelstatus: " + t5.OutDB.GetParameter("ms").FindRecord().Value);
Console.WriteLine(" Solvestatus: " + t5.OutDB.GetParameter("ss").FindRecord().Value);
Console.WriteLine(" Obj: " + t5.OutDB.GetVariable("z").FindRecord().Level);
}
...

Note

Some of demand multipliers cause infeasibility. Nevertheless, GAMS keeps the incumbent objective
function value. Therefore the model status and the solve status provide important information for a
correct solution interpretation.

7.8.3.15 How to run multiple GAMSJobs in parallel using a GAMSCheckpoint
(Transport6)

This example illustrates how to run the jobs known from Transport5 in parallel. We initialize the
GAMSCheckpoint cp and introduce a demand multiplier as we did before :
...
GAMSCheckpoint cp = ws.AddCheckpoint();
ws.AddJobFromString(GetModelText()).Run(cp);
double[] bmultlist = new double[] { 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3 };
...

Furthermore, we introduce a new object ioMutex that will be used to avoid mixed up output from the
parallel jobs. For each element b from the list of demand multipliers we call a delegate of the function
RunScenario. Note that these calls are parallel!
...
// run multiple parallel jobs using the created GAMSCheckpoint
Object ioMutex = new Object();
System.Threading.Tasks.Parallel.ForEach(bmultlist, delegate(double b) { RunScenario(ws, cp, ioMutex, b); });
...

In function RunScenario a GAMSJob is created and run just like in the preceding example of Transport5.
The output section is also the same except for the fact that it is marked as critical section by the lock

keyword. That means the delegates of RunScenario are running in parallel but the output block of
different delegates cannot be executed in parallel since it is 'locked' by the same object ioMutex for all
delegates.
...
static void RunScenario(GAMSWorkspace ws, GAMSCheckpoint cp, object ioMutex, double b)
{

GAMSJob t6 = ws.AddJobFromString("bmult=" + b + "; solve transport min z use lp; ms=transport.modelstat;
ss=transport.solvestat;", cp);

t6.Run();
// we need to make the ouput a critical section to avoid messed up report information
lock (ioMutex)
{

Console.WriteLine("Scenario bmult=" + b + ":");
Console.WriteLine(" Modelstatus: " + t6.OutDB.GetParameter("ms").FindRecord().Value);
Console.WriteLine(" Solvestatus: " + t6.OutDB.GetParameter("ss").FindRecord().Value);
Console.WriteLine(" Obj: " + t6.OutDB.GetVariable("z").FindRecord().Level);

}
}

3544 Application Programming Interfaces

...

While the output in Transport5 is strictly ordered subject to the order of the elements of bmultlist, in
Transport6 the output blocks might change their order but the blocks describing one scenario are still
appearing together due to the lock keyword.

If you want a further impression of the impact of the lock keyword, just rerun Transport6 but comment
out the lock as follows and compare the output.
...

//lock (ioMutex)
//{

Console.WriteLine("Scenario bmult=" + b + ":");
Console.WriteLine(" Modelstatus: " + t6.OutDB.GetParameter("ms").FindRecord().Value);
Console.WriteLine(" Solvestatus: " + t6.OutDB.GetParameter("ss").FindRecord().Value);
Console.WriteLine(" Obj: " + t6.OutDB.GetVariable("z").FindRecord().Level);

//}
...

7.8.3.16 How to create a GAMSModelInstance from a GAMSCheckpoint (Transport7)

In Transport7 the usage of GAMS::GAMSModelInstance is demonstrated.

At first checkpoint cp is created as in the preceding examples. Then we create the GAMSModelInstance
mi using the GAMSCheckpoint.AddModelInstance method. Note that the GAMSJob again contains no
solve statement and the demand multiplier is already included with default value 1.
...
GAMSCheckpoint cp = ws.AddCheckpoint();
GAMSJob t7 = ws.AddJobFromString(GetModelText());
t7.Run(cp);
GAMSModelInstance mi = cp.AddModelInstance();
...

7.8.3.17 How to modify a parameter of a GAMSModelInstance using GAMSModifier
(Transport7)

A GAMSModelInstance uses a SyncDB to maintain the data. We define bmult as GAMSParameter using the
GAMSDatabase.AddParameter method and specify gurobi as solver. Afterwards the GAMSModelInstance

is instantiated with arguments opt and GAMSModifier bmult. The GAMSModifier means that bmult is
modifiable while all other parameters, variables and equations of ModelInstance mi stay unchanged. We
use the GAMSParameter.AddRecord method to assign a value to bmult that can be varied afterwards using
the GAMSParameter.FirstRecord method to reproduce our well-known example with different demand
multipliers.
...
GAMSParameter bmult = mi.SyncDB.AddParameter("bmult", 0, "demand multiplier");
GAMSOptions opt = ws.AddOptions();
opt.AllModelTypes = "gurobi";
mi.Instantiate("transport use lp min z", opt, new GAMSModifier(bmult));
bmult.AddRecord().Value = 1.0;
double[] bmultlist = new double[] { 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3 };
foreach (double b in bmultlist)
{

bmult.FirstRecord().Value = b;
mi.Solve();
Console.WriteLine("Scenario bmult=" + b + ":");
Console.WriteLine(" Modelstatus: " + mi.ModelStatus);
Console.WriteLine(" Solvestatus: " + mi.SolveStatus);
Console.WriteLine(" Obj: " + mi.SyncDB.GetVariable("z").FindRecord().Level);

}
...

7.8 Tutorial 3545

7.8.3.18 How to modify a variable of a GAMSModelInstance using GAMSModifier
(Transport7)

We create a GAMSModelInstance just like in the next to last example. We define x as GAMSVariable and
its upper bound as GAMSParameter xup. At the following instantiate method GAMSModifier has three
arguments. The first one says that x is modifiable, the second determines which part of the variable (lower
bound, upper bound or level) can be modified and the third specifies the GAMSParameter that holds the
new value.

In the following loops we set the upper bound of one link of the network to zero, which means that
no transportation between the corresponding plant and market is possible, and solve the modified
transportation problem.
...
mi = cp.AddModelInstance();
GAMSVariable x = mi.SyncDB.AddVariable("x", 2, VarType.Positive, "");
GAMSParameter xup = mi.SyncDB.AddParameter("xup", 2, "upper bound on x");
mi.Instantiate("transport use lp min z", modifiers: new GAMSModifier(x,UpdateAction.Upper,xup));
foreach (GAMSSetRecord i in t7.OutDB.GetSet("i"))

foreach (GAMSSetRecord j in t7.OutDB.GetSet("j"))
{

xup.Clear();
xup.AddRecord(i.Keys[0],j.Keys[0]).Value = 0;
mi.Solve();
Console.WriteLine("Scenario link blocked: " + i.Keys[0] + " - " + j.Keys[0]);
Console.WriteLine(" Modelstatus: " + mi.ModelStatus);
Console.WriteLine(" Solvestatus: " + mi.SolveStatus);
Console.WriteLine(" Obj: " + mi.SyncDB.GetVariable("z").FindRecord().Level);

}
...

7.8.3.19 How to use a queue to solve multiple GAMSModelInstances in parallel
(Transport8)

We initialize a GAMSCheckpoint cp from a GAMSJob. Then we define a queue that represents the different
values of the demand multiplier. A queue follows the first-in-first-out-principle. The objects queueMutex
and ioMutex are used later to avoid messed up output. Then we call two delegates of the function
ScenSolve in parallel that get the same queue as argument.
...
GAMSCheckpoint cp = ws.AddCheckpoint();
ws.AddJobFromString(GetModelText()).Run(cp);
Queue<double> bmultQueue = new Queue<double>(new double[] { 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3 });
Object queueMutex = new Object();
Object ioMutex = new Object();
Parallel.For(0, 2, delegate(int i) { ScenSolve(ws, cp, bmultQueue, queueMutex, ioMutex); });
...

In function ScenSolve we create and instantiate a GAMSModelInstance as in the preceding examples
and make bmult modifiable. The two delegates of the function extract the elements of the queue using
bmultQueue.Dequeue. Note that we chose cplex as solver because it is thread safe (gurobi would also be
possible). Once the queue is empty the loop terminates.
private static void ScenSolve(GAMSWorkspace ws, GAMSCheckpoint cp, Queue<double> bmultQueue, Object queueMutex, Object

ioMutex, int i)
{

GAMSModelInstance mi = cp.AddModelInstance();
GAMSParameter bmult = mi.SyncDB.AddParameter("bmult", 0, "demand multiplier");
GAMSOptions opt = ws.AddOptions();
opt.AllModelTypes = "cplex";
mi.Instantiate("transport use lp min z", opt, new GAMSModifier(bmult));
bmult.AddRecord().Value = 1.0;
while (true)
{

double b;
// dynamically get a bmult value from the queue instead of passing it to the different threads at creation time
lock (queueMutex)
{

if(0 == bmultQueue.Count)
return;

b = bmultQueue.Dequeue();
}

bmult.FirstRecord().Value = b;
mi.Solve();
// we need to make the output a critical section to avoid messed up report informations

3546 Application Programming Interfaces

lock (ioMutex)
{

Console.WriteLine("Scenario bmult=" + b + ":");
Console.WriteLine(" Modelstatus: " + mi.ModelStatus);
Console.WriteLine(" Solvestatus: " + mi.SolveStatus);
Console.WriteLine(" Obj: " + mi.SyncDB.GetVariable("z").FindRecord().Level);

}
}

}

7.8.3.20 How to fill a GAMSDatabase by reading from MS Access (Transport9)

This example illustrates how to import data from Microsoft Access to a GAMSDatabase. We call a function
ReadFromAccess that finally returns a GAMSDatabase as shown below.
...
GAMSDatabase db = ReadFromAccess(ws);
...

The data we are going to read can be found in<GAMS system directory>\apifiles\Data\transport.accdb.
It might be helpful to open this file for a better understanding. The function begins with the creation
of an empty GAMSDatabase. Afterwards we connect to the MS Access database by first specifying the
provider and then defining the aforementioned file as data source. The OleDbConnection represents
an open connection to a data source. The following lines initialize the connection and use a try and a
catch block for potential exceptions, i.e. errors that occur during application execution. To finally read
in GAMS sets and parameters we call the functions ReadSet and ReadParameter. We will use several
classes of the System.Data.OleDb namespace that are documented here. Furthermore, we recommend
the OLE DB Tutorial.
static GAMSDatabase ReadFromAccess(GAMSWorkspace ws)
{

GAMSDatabase db = ws.AddDatabase();
// connect to database
string strAccessConn = @"Provider=Microsoft.ACE.OLEDB.12.0;Data Source=..\..\..\..\Data\transport.accdb";
OleDbConnection connection = null;
try
{

connection = new OleDbConnection(strAccessConn);
}
catch (Exception ex)
{

Console.WriteLine("Error: Failed to create a database connection. \n{0}", ex.Message);
Environment.Exit(1);

}
// read GAMS sets
ReadSet(connection, db, "SELECT Plant FROM Plant", "i", 1, "canning plants");
ReadSet(connection, db, "SELECT Market FROM Market", "j", 1, "markets");
// read GAMS parameters
ReadParameter(connection, db, "SELECT Plant,Capacity FROM Plant", "a", 1, "capacity of plant i in cases");
ReadParameter(connection, db, "SELECT Market,Demand FROM Market", "b", 1, "demand at market j in cases");
ReadParameter(connection, db, "SELECT Plant,Market,Distance FROM Distance", "d", 2, "distance in thousands of miles");
return db;

}

The function ReadSet incorporates a try and a catch block. In the try block we prepare the reading from
the MS Access file. Then we add a set symbol to the GAMSDatabase that is filled with the data from the
MS Access file afterwards. The function ReadParameter works quite similar.
static void ReadSet(OleDbConnection connect, GAMSDatabase db, string strAccessSelect, string setName, int setDim, string

setExp = "")
{

try
{

OleDbCommand cmd = new OleDbCommand(strAccessSelect, connect);
connect.Open();
OleDbDataReader reader = cmd.ExecuteReader();
if (reader.FieldCount != setDim)
{

Console.WriteLine("Number of fields in select statement does not match setDim");
Environment.Exit(1);

}
GAMSSet i = db.AddSet(setName, setDim, setExp);
string[] keys = new string[setDim];
while (reader.Read())
{

for (int idx = 0; idx < setDim; idx++)
keys[idx] = reader.GetString(idx);

i.AddRecord(keys);

http://msdn.microsoft.com/en-us/library/aa288452%28v=VS.71%29.aspx

7.8 Tutorial 3547

}
}
catch (Exception ex)
{

Console.WriteLine("Error: Failed to retrieve the required data from the DataBase.\n{0}", ex.Message);
Environment.Exit(1);

}
finally
{

connect.Close();
}
}

Once we read in all the data we can create a GAMSJob from the GAMSDatabase and run it as usual.

7.8.3.21 How to fill a GAMSDatabase by reading from MS Excel (Transport10)

This example illustrates how to read data from Excel, or to be more specific, from <GAMS system

directory>\apifiles\Data\transport.xlsx. The model is given as string without data like in in
many examples before. At first we have to add
using Excel = Microsoft.Office.Interop.Excel;

to the preamble to be able to use the Microsoft.Office.Interop.Excel namespace. Then we define
excelApp as Excel application using the implicit variable type var, use the aforementioned file as workbook
wb and define the Excel range that can represent a cell, a row, a column, a selection of cells containing
one or more contiguous blocks of cells, or a 3-D range.
...
var excelApp = new Excel.Application();
Excel.Workbook wb = excelApp.Workbooks.Open(Directory.GetCurrentDirectory() + @"\..\..\..\..\Data\transport.xlsx");
Excel.Range range;
...

The following lines address the different worksheets and read in the contained data. Afterwards we make
an errorcheck to ensure that the number of plants and markets is the same in all worksheets.
...
Excel.Worksheet capacity = (Excel.Worksheet)wb.Worksheets.get Item("capacity");
range = capacity.UsedRange;
Array capacityData = (Array)range.Cells.Value;
int iCount = capacity.UsedRange.Columns.Count;
Excel.Worksheet demand = (Excel.Worksheet)wb.Worksheets.get Item("demand");
range = demand.UsedRange;
Array demandData = (Array)range.Cells.Value;
int jCount = range.Columns.Count;
Excel.Worksheet distance = (Excel.Worksheet)wb.Worksheets.get Item("distance");
range = distance.UsedRange;
Array distanceData = (Array)range.Cells.Value;
// number of markets/plants have to be the same in all spreadsheets
Debug.Assert((range.Columns.Count - 1) == jCount && (range.Rows.Count - 1) == iCount,

"Size of the spreadsheets doesn’t match");
wb.Close();
...

If you have problems to see through the steps above, adding the following output section right after
wb.Close() might be helpful to understand where which data is stored.
...
for (int ii = 1; ii <= iCount; ii++)
{

Console.WriteLine("capacityData(1, " + ii + ") = " + capacityData.GetValue(1, ii));
Console.WriteLine("capacityData(2, " + ii + ") = " + capacityData.GetValue(2, ii));
}
for (int jj = 1; jj <= jCount; jj++)
{

Console.WriteLine("demandData(1, " + jj + ") = " + demandData.GetValue(1, jj));
Console.WriteLine("demandData(2, " + jj + ") = " + demandData.GetValue(2, jj));
}
for (int ii = 1; ii <= iCount; ii++)
{

for (int jj = 1; jj <= jCount; jj++)
Console.WriteLine("distanceData("+ (ii+1) + "," + (jj+1) +") = " + distanceData.GetValue(ii+1, jj+1));

}
...

Now we can create the GAMSWorkspace as usual and afterwards create a GAMSDatabase and fill it with
the workbook data as follows:

3548 Application Programming Interfaces

...
GAMSDatabase db = ws.AddDatabase();
GAMSSet Set1 = db.AddSet("i", 1, "Plants");
GAMSSet j = db.AddSet("j", 1, "Markets");
GAMSParameter capacityParam = db.AddParameter("a", 1, "Capacity");
GAMSParameter demandParam = db.AddParameter("b", 1, "Demand");
GAMSParameter distanceParam = db.AddParameter("d", 2, "Distance");
for (int ic = 1; ic <= iCount; ic++)
{

Set1.AddRecord((string)capacityData.GetValue(1, ic));
capacityParam.AddRecord((string)capacityData.GetValue(1, ic)).Value = (double)capacityData.GetValue(2, ic);

}
for (int jc = 1; jc <= jCount; jc++)
{

j.AddRecord((string)demandData.GetValue(1, jc));
demandParam.AddRecord((string)demandData.GetValue(1, jc)).Value = (double)demandData.GetValue(2, jc);
for (int ic = 1; ic <= iCount; ic++)
{

distanceParam.AddRecord((string)distanceData.GetValue(ic + 1, 1), (string)distanceData.GetValue(1, jc + 1)).Value =
(double)distanceData.GetValue(ic + 1, jc + 1);

}
}
...

Note that we can name sets and parameters just like in the database but we don't have to. Now we finally
set up the database and can run our GAMSJob as usual.
...
using (GAMSOptions opt = ws.AddOptions())
{

GAMSJob t10 = ws.AddJobFromString(GetModelText());
opt.Defines.Add("gdxincname", db.Name);
opt.AllModelTypes = "xpress";
t10.Run(opt, db);
foreach (GAMSVariableRecord rec in t10.OutDB.GetVariable("x"))

Console.WriteLine("x(" + rec.Keys[0] + "," + rec.Keys[1] + "): level=" + rec.Level + " marginal=" + rec.Marginal);
}
...

7.8.3.22 How to create and use a save/restart file (Transport11)

In Transport11 we demonstrate how to create and use a save/restart file. Usually such a file should be
supplied by an application provider but in this example we create one for demonstration purpose. Note
that the restart is launched from a GAMSCheckpoint.

In the main function we start with the creation of a folder called tmp that internally is denoted as wDir.
Then we call the function CreateSaveRestart.
...
string wDir = Path.Combine(".", "tmp");
CreateSaveRestart(Path.Combine(wDir, "tbase"));
...

In function CreateSaveRestart we choose the path of the file given as argument as working direc-
tory, so it should be wDir. Then we create a GAMSJob from a string. Note that the string given via
GetBaseModelText() contains the basic definitions of sets without giving them a content (that is what
$onempty is used for). Afterwards we specify a GAMSOption to only compile the job but do not execute
it. Then we create a checkpoint cp that is initialized by the following run of the GAMSJob and stored in
the file given as argument to the function. This becomes possible because the AddCheckpoint method
accepts identifiers as well as file names as argument.
static void CreateSaveRestart(string cpFileName)
{

GAMSWorkspace ws;
if (Environment.GetCommandLineArgs().Length > 1)

ws = new GAMSWorkspace(workingDirectory: Path.GetDirectoryName(cpFileName), systemDirectory:
Environment.GetCommandLineArgs()[1]);

else
ws = new GAMSWorkspace(workingDirectory: Path.GetDirectoryName(cpFileName));

GAMSJob j1 = ws.AddJobFromString(GetBaseModelText());
GAMSOptions opt = ws.AddOptions();
opt.Action = GAMSOptions.EAction.CompileOnly;
GAMSCheckpoint cp = ws.AddCheckpoint(Path.GetFileName(cpFileName));
j1.Run(opt, cp);
opt.Dispose();
}

7.9 Tutorial 3549

So what you should keep in mind before we return to further explanations of the main function is, that
now the file tbase in folder tmp which is denoted as wDir contains a checkpoint. Now in the main function
we define some data using C# data structures as we already did in Transport4 before we create the
GAMSWorkspace with working directory wDir.
...
GAMSWorkspace ws;
if (Environment.GetCommandLineArgs().Length > 1)

ws = new GAMSWorkspace(workingDirectory: wDir, systemDirectory: Environment.GetCommandLineArgs()[1]);
else

ws = new GAMSWorkspace(workingDirectory: wDir);
...

Afterwards we set up the GAMSDatabase like we already did in Transport4. Once this is done we run a
GAMSJob using this data plus the checkpoint stored in file tbase.
...
GAMSCheckpoint cpBase = ws.AddCheckpoint("tbase");
using (GAMSOptions opt = ws.AddOptions())
{

GAMSJob t4 = ws.AddJobFromString(GetModelText(), cpBase);
opt.Defines.Add("gdxincname", db.Name);
opt.AllModelTypes = "xpress";
t4.Run(opt, db);
foreach (GAMSVariableRecord rec in t4.OutDB.GetVariable("x"))

Console.WriteLine("x(" + rec.Keys[0] + "," + rec.Keys[1] + "): level=" + rec.Level + " marginal=" + rec.Marginal);
}
...

Note that the string from which we create job t4 is different to the one used to prepare the checkpoint
stored in tbase and is only responsible for reading in the data from the GAMSDatabase correctly. The
entire model definition is delivered by the checkpoint cpBase which is equal to the one we saved in tbase.

7.9 Tutorial

The goal of this tutorial is to provide a compact overview of the basic functionality of the GAMS C++
API. It allows the user to start working immediately with the API by providing a set of small examples
based on the well-known transportation problem. These examples introduce several API features step
by step. The GAMS distribution comes with a pre compiled binary version of the GAMS C++ API on
Windows, macOS and Linux. Furthermore, the C++ API itself and the provided examples are published
under MIT license and are hosted at the GAMS GitHub organization. Therefore it is possible to compile
the library manually (e.g. if a certain compiler is required) The GAMS C++ API is implemented and
compatible with C++17.

• Getting Started A quick introduction about how to create and configure a C++ project using Qt
Creator

• Important Classes of the API Overview of some fundamental classes of the GAMS C++ API

• How to use API An extensive set of examples how to use API components

7.9.1 Getting Started

This section guides you through the basic steps of compiling and running a program from scratch using
either Qt Creator, Microsoft Visual Studio or Xcode. If you want to have a look at the API itself you can
directly start with the How to use API section instead. While this tutorial uses Qt Creator, Microsoft
Visual Studio and Xcode, other IDE's can be used as well.

http://www.gams.com/docs/example.htm
https://github.com/GAMS-dev

3550 Application Programming Interfaces

Note

When using the pre compiled binary distribution of the GAMS C++ API as done in this section,
one needs to use a compiler that is compatible with the one that was used during compilation of the
library. Depending on the platform, different versions of the pre build binaries can be found under
<GAMS system directory>/apifiles/C++/lib. In GAMS versions before 25.0 the binaries can
be found under <GAMS system directory>. The distributed libraries use the following compilers:

• Windows: MSVC2017 and MSVC2019

• MacOS (x86 64): GCC and Clang

• MacOS (ARM64): Clang

• Linux: GCC

Note that the compiler needs at least full C++17 support in order to be able to use the GAMS C++ API.

7.9.1.1 Getting Started using Qt Creator

After opening Qt Creator click on File > New File or Project. Choose Non-Qt Project > Plain
C++ Application and click on Choose.... On the next page fill in the name and the location of the new
project and click Next. As a build system we recommend using CMake, which should be the default for
recent Qt Creator versions. Afterwards, select the kits you want to use for the project and click again on
Next. If you use the precompiled library on Windows, you need to use MSVC2017 or MSVC2019. Confirm
the creation of the new project by clicking on Finish.

As soon as the project is created open the file CMakeLists.txt located in the root folder of your project.
Add the following lines to the file:
set(GAMS INSTALLATION "C:/GAMS/41")
set(VSVERSION "vs2019" CACHE STRING "Visual Studio version")
include directories("${GAMS INSTALLATION}/apifiles/C/api"

"${GAMS INSTALLATION}/apifiles/C++/api")
if (WIN32)

target link libraries(${PROJECT NAME} "${GAMS INSTALLATION}/apifiles/C++/lib/${VSVERSION}/gamscpp.lib")
else()

target link libraries(${PROJECT NAME} "${GAMS INSTALLATION}/apifiles/C++/lib/libgamscpp.so")
endif()

Note

Depending on your operating system and the location of your GAMS system you might need
to adjust the path to GAMS and Visual Studio version. Furthermore, all pre build bina-
ries are always located at <GAMS system directory>\apifiles\C++\lib, if GAMS 25.0 (or
higher) is used. This location may contain additional sub directories, like <GAMS system

directory>\apifiles\C++\lib\vs2019. In case a previous version of GAMS is used the binaries
are located at <GAMS system directory>.

Save the changes, right click on the project and choose Run CMake.

The last step of creating a first small example is to write code that makes use of the GAMS C++ API.
Open the file main.cpp and replace the content of the file with the following lines of code:
#include "gams.h"
#include <iostream>
using namespace gams;
using namespace std;
int main(int argc, char* argv[])
{

GAMSWorkspace ws;
ws.gamsLib("trnsport");
// create a GAMSJob from file and run it with default settings
GAMSJob t1 = ws.addJobFromFile("trnsport.gms");
t1.run();
for (GAMSVariableRecord rec : t1.outDB().getVariable("x"))

cout << "x(" << rec.key(0) << "," << rec.key(1) << "):" << " level=" << rec.level() << " marginal=" <<
rec.marginal() << endl;

}

Make sure that MSVC2019 64bit is chosen as kit using the Release mode.

Click on the play button below to run (and compile) the small example. If everything works, you should
see the output of the example displaying results of the solved transportation problem.

7.9 Tutorial 3551

7.9.1.2 Getting Started using Visual Studio 2019

After opening Visual Studio click on File > New > Project

Choose Console App and fill in the name and the location of the project and click on Ok.

As soon as the project is loaded, open the Configuration Manager:

Change the Active solution configuration to Release and the Active solution platform to x64.

The next step is to configure the project to find the GAMS C++ API. Rigth click on the project and
choose Properties from the context menue. Go to Configuration Properties > C/C++ > General
and add <GAMS system directory>\apifiles\C++\api to Additional Include Directories.

Select Configuration Properties > C/C++ > Precompiled Headers on the left. On the right open
the dropdown of Precompiled Header and select Not Using Precompiled Headers.

Go to Configuration Properties > Linker > General and add the apifiles path to the matching version
of your Visual Studio (e.g. <GAMS system directory>\apifiles\C++\lib\vs2017) to Additional
Library Directories:

Note

Please mind that the pre build binaries for older GAMS versions (before GAMS 25.0) are located at
<GAMS system directory>.

Choose Input and add gamscpp.lib; to Additional Dependencies. Make sure that all previous entries
including %(AdditionalDependencies) are present as well.

The last required configuration step is to add a post-build event that copies required files next to the
generated executable. Click on Build Events > Post-Build Event and add the following code to
Command Line. It is helpful to select <Edit...> from the dropdown box as there are two command
lines. Note that you might need to adjust the used path depending on the location of your GAMS
installation:
xcopy /Y "C:\gams\36\apifiles\C++\lib\vs2017\gamscpp.dll" "$(OutDir)"

Open the file GAMSApplication.cpp and replace its content by the following code:
#include "gams.h"
#include <iostream>
using namespace gams;
using namespace std;
int main(int argc, char* argv[])
{

GAMSWorkspace ws;
ws.gamsLib("trnsport");
// create a GAMSJob from file and run it with default settings
GAMSJob t1 = ws.addJobFromFile("trnsport.gms");
t1.run();
for (GAMSVariableRecord rec : t1.outDB().getVariable("x"))

cout << "x(" << rec.key(0) << "," << rec.key(1) << "):" << " level=" << rec.level() << " marginal=" <<
rec.marginal() << endl;

}

Click on Debug > Start Without Debugging in order to compile and run the example. If everything
works, you should see the output of the example displaying results of the solved transportation problem.

3552 Application Programming Interfaces

7.9.1.3 Getting Started using Xcode

After starting Xcode select ”Create a new Xcode project” in the welcome screen.

As a platform pick macOS and ”Command Line Tool” as Application type.

Give your application a name, an organization identifier and select ”C++” as language.

On the next screen pick a location for your new project.

In your project settings go to the ”Build Phases” tab add the following entry for ”Compile Sources”:

• /Library/Frameworks/GAMS.framework/Versions/Current/Resources/apifiles/C++/api

Then, under ”Link Binary With Libraries” add libgamscpp.dylib. On the system for x86 64, this library
is shipped in two versions, a GCC and a Clang version:

• The GCC library can be found in the /Library/Frameworks/GAMS.framework/Versions/Current/Resources/apifiles/C++/api
directory.

• The Clang version is only supported from macOS 10.15 onwards and can be found at
/Library/Frameworks/GAMS.framework/Versions/Current/Resources/apifiles/C++/api/Clang.

On the system for ARM64, only the Clang version is available and can be found at /Library/Frameworks/GAMS.framework/Versions/Current/Resources/apifiles/C++/api.

Open the file main.cpp and replace its content by the following code:
#include "gams.h"
#include <iostream>
using namespace gams;
using namespace std;
int main(int argc, char* argv[])
{

GAMSWorkspace ws;
ws.gamsLib("trnsport");
// create a GAMSJob from file and run it with default settings
GAMSJob t1 = ws.addJobFromFile("trnsport.gms");
t1.run();
for (GAMSVariableRecord rec : t1.outDB().getVariable("x"))

cout << "x(" << rec.key(0) << "," << rec.key(1) << "):" << " level=" << rec.level() << " marginal=" <<
rec.marginal() << endl;

}

7.9.2 Important Classes of the API

This section provides a quick overview of some fundamental classes of the gams namespace. Their usage
is demonstrated by an extensive set of examples.

• gams Namespace

• gams::GAMSWorkspace Class

• gams::GAMSJob Class

• gams::GAMSDatabase Class

• gams::GAMSOptions Class

• gams::GAMSModelInstance Class

• gams::GAMSSymbol Class

7.9 Tutorial 3553

7.9.3 How to use API

In the GAMS system directory there are some examples provided that illustrate the usage of the C++
API. <GAMS system directory>\apifiles\C++ contains several Visual Studio solutions for different
versions of Visual Studio (e.g. examples-vs2017.sln, examples-vs2019.sln). The code snippets that
are explained in this tutorial are taken from these examples. Furthermore there is a CMakeLists.txt file
that can be used for building the examples using CMake.

Note

When using CMake on macOS the Clang library is used by default. There is an option to switch to
the GCC library: Add -D USE-GCC="ON" to your CMake command.

The well-known transportation problem is discussed step by step and each example introduces new
elements of the GAMS C++ API.

We recommend to open the aforementioned files to gain a complete overview of the examples. Down below
we explain the examples with the help of selected code snippets.

• How to choose the GAMS system (Transport1)

• How to export data to GDX (TransportGDX)

• How to import data from GDX (TransportGDX)

• How to run a GAMSJob from file (Transport1)

• How to specify the solver (Transport1)

• How to run a job with a solver option file (Transport1)

• How to use include files (Transport2)

• How to read data from string and export to GDX (Transport3)

• How to run a job using data from GDX (Transport3)

• How to run a job using implicit database communication (Transport3)

• How to define data using C++ data structures (Transport4)

• How to prepare a GAMSDatabase from C++ data structures (Transport4)

• How to initialize a GAMSCheckpoint by running a GAMSJob (Transport5)

• How to initialize a GAMSJob from a GAMSCheckpoint (Transport5)

• How to run multiple GAMSJobs in parallel using a GAMSCheckpoint (Transport6)

• How to create a GAMSModelInstance from a GAMSCheckpoint (Transport7)

• How to modify a parameter of a GAMSModelInstance using GAMSModifier (Transport7)

• How to modify a variable of a GAMSModelInstance using GAMSModifier (Transport7)

• How to use a queue to solve multiple GAMSModelInstances in parallel (Transport8)

• How to fill a GAMSDatabase by reading from MS Access (Transport9)

• How to fill a GAMSDatabase by reading from MS Excel (Transport10)

• How to create and use a save/restart file (Transport11)

3554 Application Programming Interfaces

7.9.3.1 How to choose the GAMS system (Transport1)

By default the GAMS system is determined automatically. In case of having multiple GAMS systems
on your machine, the desired system can be specified via an additional argument when the workspace is
created. When running the examples, we can provide an additional command line argument in order to
define the GAMS system directory that should be used. By executing Transport1.exe with C:/GAMS/46
we use the 64-bit version of GAMS 46.2 to run Transport1 even if our default GAMS system might be a
different one. This is managed by the following code:
...
GAMSWorkspaceInfo wsInfo;
if (argc > 1)

wsInfo.setSystemDirectory(argv[1]);
GAMSWorkspace ws(wsInfo);
...

Remember that the bitness of the GAMS system has to match the bitness of your C++ program.

7.9.3.2 How to export data to GDX (TransportGDX)

Although the Object-oriented C++ API offers much more than exchanging data between C++ and
GDX, a common use case is the export and import of GDX files. The central class for this purpose is
GAMSDatabase. We assume that the data to be exported is available in C++ data structures.
...
vector<string> plants = {

"Seattle", "San-Diego"
};
vector<string> markets = {

"New-York", "Chicago", "Topeka"
};
map<string, double> capacity = {
{ "Seattle", 350.0 }, { "San-Diego", 600.0 }

};
map<string, double> demand = {
{ "New-York", 325.0 }, { "Chicago", 300.0 }, { "Topeka", 275.0 }

};
map<tuple<string, string>, double> distance = {
{ make tuple("Seattle", "New-York"), 2.5 },
{ make tuple("Seattle", "Chicago"), 1.7 },
{ make tuple("Seattle", "Topeka"), 1.8 },
{ make tuple("San-Diego", "New-York"), 2.5 },
{ make tuple("San-Diego", "Chicago"), 1.8 },
{ make tuple("San-Diego", "Topeka"), 1.4 }

};
...

Different GAMS symbols are represented using different C++ data structures. The data for the GAMS
sets is represented using vectors of strings (e.g. plants and markets). On the other hand, GAMS
parameters are represented by maps (e.g. capacity and demand). Note that the representation of the
two dimensional parameter distance uses tuples for storing the keys. The choice of data structures can
also be different, but the used structures in this example fit well for representing GAMS data with C++
data structures.

A new GAMSDatabase instance can be created using GAMSWorkspace.addDatabase.
...
// create new GAMSDatabase instance
GAMSDatabase db = ws.addDatabase();
...

We start adding GAMS sets using the method GAMSDatabase.addSet which takes the name and the
dimension as arguments. The third argument is an optional explanatory text. A for-loop iterates through
plants and adds new records to the recently created GAMSSet instance i using GAMSSet.addRecord.
...
// add 1-dimensional set ’i’ with explanatory text ’canning plants’ to the GAMSDatabase
GAMSSet i = db.addSet("i", 1, "canning plants");
for (string p: plants)

i.addRecord(p);
...

GAMSParameter instances can be added by using the method GAMSDatabase.addParameter. It has the
same signature as GAMSDatabase.addSet. Anyhow, in this example we use an overload of the method

7.9 Tutorial 3555

which takes a list of GAMSSet instances instead of the dimension for creating a parameter with domain
information.
...
// add parameter ’a’ with domain ’i’
GAMSParameter a = db.addParameter("a", "capacity of plant i in cases", i);
for (string p: plants)

a.addRecord(p).setValue(capacity[p]);
...

As soon as all data is prepared in the GAMSDatabase, the method GAMSDatabase.doExport can be
used to create a GDX file.
...
// export the GAMSDatabase to a GDX file with name ’data.gdx’ located in the ’workingDirectory’ of the GAMSWorkspace
db.doExport("data.gdx");
...

7.9.3.3 How to import data from GDX (TransportGDX)

Data can be imported from a GDX file using GAMSWorkspace.addDatabaseFromGDX. The method takes a
path to a GDX file and creates a GAMSDatabase instance.
...
// add a new GAMSDatabase and initialize it from the GDX file just created
GAMSDatabase db2 = ws.addDatabaseFromGDX("data.gdx");
...

Reading the data from the GAMSSet i into a vector can be done as follows:
...
// read data from symbols into C++ data structures
vector<string> iNew;
for(GAMSSetRecord rec : db2.getSet("i"))

iNew.push back(rec.key(0));
...

A new vector iNew is created. i is retrieved by calling GAMSDatabase.getSet on db2. The returned
GAMSSet object can be iterated using a for-loop to access the records of the set. Each record is of type
GAMSSetRecord and can be asked for its keys.

You can do the same for GAMSParameters. Instead of creating a vector, we want to have the data in
the form of a map. GAMSParameterRecords can not only be asked for their keys, but also for their
value. The following code snippet shows how to read the one dimensional parameter a into a map<string,
double>.
...
map<string, double> aNew;
for(GAMSParameterRecord rec : db2.getParameter("a"))

aNew[rec.key(0)] = rec.value();
...

For multi dimensional symbols, we choose the map keys to be tuples instead of string. We access the
individual keys by index and generate a tuple using make tuple.
...
map<tuple<string, string>, double> dNew;
for(GAMSParameterRecord rec : db2.getParameter("d"))

dNew[make tuple(rec.key(0), rec.key(1))] = rec.value();
...

Scalars can be read into a variable of type double by accessing the value of the first and only record.
...
double fNew = db2.getParameter("f").firstRecord().value();
...

3556 Application Programming Interfaces

7.9.3.4 How to run a GAMSJob from file (Transport1)

At first we create a GAMSWorkspace. Afterwards we load the model trnsport from the GAMS Model
Library. In doing so it is made available in the current working directory and can be loaded by the
GAMSWorkspace.AddJobFromFile Method afterwards. Apparently this method also works with any other
gms file you might have created on your own as long as it is located in the current working directory.
Then the GAMSJob t1 is defined from that file and run by the GAMSJob.run method. The following
lines create the solution output and illustrate the usage of the GAMSJob.outDB method to get access
to the GAMSDatabase created by the run method. To retrieve the content of variable x we use the
GAMSVariableRecord class and the GAMSDatabase.getVariable method.
...
GAMSWorkspace ws;
ws.gamsLib("trnsport");
// create a GAMSJob from file and run it with default settings
GAMSJob t1 = ws.addJobFromFile("trnsport.gms");
// Default run
t1.run();
cout << "Ran with Defaults:" << endl;
for (GAMSVariableRecord rec : t1.outDB().getVariable("x"))

cout << "x(" << rec.key(0) << "," << rec.key(1) << "):" << " level=" << rec.level() << " marginal=" << rec.marginal()
<< endl;

...

7.9.3.5 How to specify the solver (Transport1)

The solver can be specified via the GAMSOptions class and the GAMSWorkspace.addOptions method.
The GAMSOptions.setAllModelTypes method sets xpress as default solver for all model types which the
solver can handle.
...
// Run the job again with another solver
GAMSOptions opt = ws.addOptions();
opt.setAllModelTypes("xpress");
t1.run(opt);
...

7.9.3.6 How to run a job with a solver option file (Transport1)

At first create the file xpress.opt with content algorithm=barrier which will be used as solver option
file and is stored in the current working directory. We choose xpress as solver just like in the preceding
example and call GAMSOptions.setOptFile in order to tell the solver to look for a solver option file.
...
// Run the job with a solver option file
ofstream xpressopt(ws.workingDirectory() + cPathSep + "xpress.opt");
xpressopt << "algorithm=barrier" << endl;
xpressopt.close();
opt.setAllModelTypes("xpress");
opt.setOptFile(1);
t1.run(opt);
...

7.9.3.7 How to use include files (Transport2)

In this example, as in many succeeding, the data text and the model text are separated into two different
strings. Note that these strings provided by the methods getDataText and getModelText are using
GAMS syntax.

At first we write an include file tdata.gms that contains the data but not the model text:
...
ofstream tdata(ws.workingDirectory() + cPathSep + "tdata.gms");
tdata << getDataText();
tdata.close();
...

7.9 Tutorial 3557

Afterwards we create a GAMSJob using the GAMSWorkspace.addJobFromString method. The
GAMSOptions.setDefine method is used like the 'double dash' GAMS parameters, i.e. it corresponds to
--incname=tdata on the command line.
...
GAMSOptions opt = ws.addOptions();
GAMSJob t2 = ws.addJobFromString(getModelText());
opt.setDefine("incname", "tdata");
t2.run(opt);
...

Note that the string provided by getModelText contains the following lines to read in the data.
...
$if not set incname $abort ’no include file name for data file provided’
$include %incname%
...

7.9.3.8 How to read data from string and export to GDX (Transport3)

We read the data from the string provided by getDataText as we did in the preceding example. Note that
this contains no solve statement but only data definition in GAMS syntax. By running the corresponding
GAMSJob a GAMSDatabase is created that is available via the GAMSJob.outDb method. We can use the
GAMSDatabase.doExport method to write the content of this database to a gdx file tdata.gdx.
...
// data from a string with GAMS syntax with explicit export to GDX file
GAMSJob t3 = ws.addJobFromString(getDataText());
t3.run();
t3.outDB().doExport(ws.workingDirectory() + cPathSep + "tdata.gdx");
...

7.9.3.9 How to run a job using data from GDX (Transport3)

This works quite similar to the usage of an include file explained in Transport2 - How to use include files (Transport2).
...
t3 = ws.addJobFromString(getModelText());
GAMSOptions opt = ws.addOptions();
opt.setDefine("gdxincname", "tdata");
opt.setAllModelTypes("xpress");
t3.run(opt);
...

Note that there are some changes in getModelText due to the usage of a GDX file instead of an include
file.
...
$if not set gdxincname $abort ’no include file name for data file provided’
$gdxin %gdxincname%
$load i j a b d f
$gdxin
...

7.9.3.10 How to run a job using implicit database communication (Transport3)

This example does basically the same as the two preceding examples together. We create two GAMSJobs
t3a and t3b where the first one contains only the data and the second one contains only the model
without data. After running t3a the corresponding outDB can be read in directly just like a gdx file. Note
that the database needs to be passed to the GAMSJob.run method as additional argument.
...
GAMSJob t3a = ws.addJobFromString(getDataText());
GAMSJob t3b = ws.addJobFromString(getModelText());
t3a.run();
opt.setDefine("gdxincname", t3a.outDB().name());
t3b.run(opt, t3a.outDB());
...

3558 Application Programming Interfaces

7.9.3.11 How to define data using C++ data structures (Transport4)

We use the vector<T> and map<Key, Value> to define C++ data structures that correspond to the
sets, parameters and tables used for the data definition in GAMS.
...
vector<string> plants = {

"Seattle", "San-Diego"
};
vector<string> markets = {

"New-York", "Chicago", "Topeka"
};
map<string, double> capacity = {
{ "Seattle", 350.0 }, { "San-Diego", 600.0 }

};
map<string, double> demand = {
{ "New-York", 325.0 }, { "Chicago", 300.0 }, { "Topeka", 275.0 }

};
map<tuple<string, string>, double> distance = {
{ make tuple("Seattle", "New-York"), 2.5 },
{ make tuple("Seattle", "Chicago"), 1.7 },
{ make tuple("Seattle", "Topeka"), 1.8 },
{ make tuple("San-Diego", "New-York"), 2.5 },
{ make tuple("San-Diego", "Chicago"), 1.8 },
{ make tuple("San-Diego", "Topeka"), 1.4 }

};
...

7.9.3.12 How to prepare a GAMSDatabase from C++ data structures (Transport4)

At first we create an empty GAMSDatabase db using the GAMSWorkspace.addDatabase method. Af-
terwards we prepare the database. To add a set to the database we use the GAMSSet class and the
GAMSDatabase.addSet method with arguments describing the identifier, dimension and explanatory text.
To add the records to the database we iterate over the elements of our C++ data structure and add them
by using the GAMSSet.addRecord method. We do pretty much the same thing for the parameters.

Note that the table that specifies the distances in GAMS can be treated as parameter with dimension 2
and that the scalars can be treated as parameter with dimension 0.

The GAMSJob can be run like explained in the preceding example about implicit database communication.
...
GAMSDatabase db = ws.addDatabase();
GAMSSet i = db.addSet("i", 1, "canning plants");
for (string p: plants)

i.addRecord(p);
...
GAMSParameter a = db.addParameter("a", "capacity of plant i in cases", i);
for (string p: plants)

a.addRecord(p).setValue(capacity[p]);
...
GAMSParameter d = db.addParameter("d", "distance in thousands of miles", i, j);
for (auto t : distance)

d.addRecord(get<0>(t.first), get<1>(t.first)).setValue(t.second);
GAMSParameter f = db.addParameter("f", "freight in dollars per case per thousand miles");
f.addRecord().setValue(90);
// run a job using data from the created GAMSDatabase
GAMSJob t4 = ws.addJobFromString(getModelText());
GAMSOptions opt = ws.addOptions();
opt.setDefine("gdxincname", db.name());
opt.setAllModelTypes("xpress");
t4.run(opt, db);
...

7.9.3.13 How to initialize a GAMSCheckpoint by running a GAMSJob (Transport5)

The following two lines of code conduct several operations. While the first line simply creates a GAMS
checkpoint, the second one uses the GAMSWorkspace.addJobFromString method to create a GAMSJob

containing the model text and data but no solve statement. In contrast to the preceding examples it runs
the job immediately using the GAMSJob.run method. Furthermore, it passes an additional checkpoint
argument to the run method. That means the GAMSCheckpoint cp captures the state of the GAMSJob.
...
GAMSCheckpoint cp = ws.addCheckpoint();
...
ws.addJobFromString(getModelText()).run(cp);
...

7.9 Tutorial 3559

7.9.3.14 How to initialize a GAMSJob from a GAMSCheckpoint (Transport5)

Note that the string returned from function getModelText() contains the entire model and data definition
plus an additional demand multiplier and scalars for model and solve status but no solve statement:
...
Scalar bmult demand multiplier /1/;
...
demand(j) .. sum(i, x(i,j)) =g= bmult*b(j) ;
...
Scalar ms ’model status’, ss ’solve status’;
...

We create a vector with eight different values for this demand multiplier.
vector<double> bmultlist = { 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3 };

For each entry of the vector we create a GAMSJob t5 using the GAMSWorkspace.addJobFromString

method. Besides the string which resets the demand multiplier bmult, specifies the solve statement and
assigns values to the scalars ms and ss we pass the checkpoint cp as additional argument. This results in
a GAMSJob combined from the checkpoint plus the content provided by the string.

We run the GAMSJob and echo some interesting data from the outDB using the GAMSDatabase.getParameter
and GAMSDatabase.getVariable methods, the GAMSParameter.findRecord and GAMSVariable.findRecord

methods plus the GAMSParameterRecord.value and the GAMSVariableRecord.level methods.
...
for (double b : bmultlist)
{

GAMSJob t5 = ws.addJobFromString("bmult=" + to string(b) + "; solve transport min z use lp; ms=transport.modelstat;
ss=transport.solvestat;", cp);

t5.run();
cout << "Scenario bmult=" << b << ":" << endl;
cout << " Modelstatus: " << t5.outDB().getParameter("ms").findRecord().value() << endl;
cout << " Solvestatus: " << t5.outDB().getParameter("ss").findRecord().value() << endl;
cout << " Obj: " << t5.outDB().getVariable("z").findRecord().level() << endl;

}
...

Note

Some of demand multipliers cause infeasibility. Nevertheless, GAMS keeps the incumbent objective
function value. Therefore the model status and the solve status provide important information for a
correct solution interpretation.

7.9.3.15 How to run multiple GAMSJobs in parallel using a GAMSCheckpoint
(Transport6)

This example illustrates how to run the jobs we already know from Transport5 in parallel. We create
a GAMSCheckpoint cp and initialize it by running a GAMSJob. Furthermore we introduce a demand
multiplier as we did before.
...
GAMSCheckpoint cp = ws.addCheckpoint();
ws.addJobFromString(getModelText()).run(cp);
vector<double> bmultlist = { 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3 };
...

Furthermore, we introduce a new object ioMutex that will be used to avoid mixed up output from the
parallel jobs. For each element b from the vector of demand multipliers we create a thread executing the
runScenario method.
...
// run multiple parallel jobs using the created GAMSCheckpoint
mutex ioMutex;
vector<thread> v;
for(double b : bmultlist)

v.emplace back([&ws, cp, &ioMutex, b]{runScenario(&ws, cp,&ioMutex,b);});
for (auto& t : v)

t.join();
...

3560 Application Programming Interfaces

In function runScenario a GAMSJob is created and run just like in the preceding example of Transport5.
The output section is also the same except for the fact that it is locked by using a lock guard on the
ioMutex. That means the threads of runScenario are running in parallel but the output block of different
threads cannot be executed in parallel since it is locked using the same ioMutex.
...
void Transport6::runScenario(GAMSWorkspace* ws, const GAMSCheckpoint& cp, mutex* ioMutex, double b)
{

auto t6 = ws->addJobFromString("bmult=" + to string(b) + "; solve transport min z use lp; ms=transport.modelstat;
ss=transport.solvestat;", cp);

t6.run();
// we need to make the ouput a critical section to avoid messed up report information
lock guard<mutex> lck(*ioMutex);
cout << "Scenario bmult=" << b << ":" << endl;
cout << " Modelstatus: " << t6.outDB().getParameter("ms").findRecord().value() << endl;
cout << " Solvestatus: " << t6.outDB().getParameter("ss").findRecord().value() << endl;
cout << " Obj: " << t6.outDB().getVariable("z").findRecord().level() << endl;

}
...

While the output in Transport5 is strictly ordered subject to the order of the elements of bmultlist, in
Transport6 the output blocks might change their order but the blocks describing one scenario are still
appearing together due to the lock guard mechanism.

If you want a further impression of the impact of the lock guard, just rerun Transport6 but comment
out the lock guard as follows and compare the output.
...
void Transport6::runScenario(GAMSWorkspace* ws, const GAMSCheckpoint& cp, mutex* ioMutex, double b)
{

auto t6 = ws->addJobFromString("bmult=" + to string(b) + "; solve transport min z use lp; ms=transport.modelstat;
ss=transport.solvestat;", cp);

t6.run();
// we need to make the ouput a critical section to avoid messed up report information
// lock guard<mutex> lck(*ioMutex);
cout << "Scenario bmult=" << b << ":" << endl;
cout << " Modelstatus: " << t6.outDB().getParameter("ms").findRecord().value() << endl;
cout << " Solvestatus: " << t6.outDB().getParameter("ss").findRecord().value() << endl;
cout << " Obj: " << t6.outDB().getVariable("z").findRecord().level() << endl;

}
...

7.9.3.16 How to create a GAMSModelInstance from a GAMSCheckpoint (Transport7)

In Transport7 the usage of gams::GAMSModelInstance is demonstrated.

At first we create a checkpoint cp as in the preceding examples. Then we create the GAMSModelInstance
mi using the GAMSCheckpoint.addModelInstance method. Note that the GAMSJob again contains no
solve statement and the demand multiplier is already included with default value 1.
...
GAMSCheckpoint cp = ws.addCheckpoint();
GAMSJob t7 = ws.addJobFromString(getModelText());
t7.run(cp);
GAMSModelInstance mi = cp.addModelInstance();
...

7.9.3.17 How to modify a parameter of a GAMSModelInstance using GAMSModifier
(Transport7)

A GAMSModelInstance uses a syncDB to maintain the data. We define bmult as GAMSParameter using the
GAMSDatabase.addParameter method and specify cplex as solver. Afterwards the GAMSModelInstance

is instantiated with three arguments: the solve statement, the GAMSOptions object opt and bmult. The
GAMSModifier means that bmult is modifiable while all other parameters, variables and equations of
GAMSModelInstance mi stay unchanged.

We use the GAMSParameter.addRecord method to assign a value to bmult that can be varied afterwards
using the GAMSParameter.firstRecord method to reproduce our well-known example with different
demand multipliers.
...

7.9 Tutorial 3561

GAMSModelInstance mi = cp.addModelInstance();
GAMSParameter bmult = mi.syncDb().addParameter("bmult", 0, "demand multiplier");
GAMSOptions opt = ws.addOptions();
opt.setAllModelTypes("cplex");
// instantiate the GAMSModelInstance and pass a model definition and GAMSModifier to declare bmult mutable
mi.instantiate("transport use lp min z", opt, GAMSModifier(bmult));
bmult.addRecord().setValue(1.0);
vector<double> bmultlist = { 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3 };
for (double b : bmultlist) {

bmult.firstRecord().setValue(b);
mi.solve();
cout << "Scenario bmult=" << b << ":" << endl;
cout << " Modelstatus: " << mi.modelStatusAsString() << endl;
cout << " Solvestatus: " << mi.solveStatusAsString() << endl;
cout << " Obj: " << mi.syncDb().getVariable("z").findRecord().level() << endl;

}
...

7.9.3.18 How to modify a variable of a GAMSModelInstance using GAMSModifier
(Transport7)

We create a GAMSModelInstance and define x as GAMSVariable and its upper bound as GAMSParameter

xup. At the following instantiate method GAMSModifier has three arguments. The first one says that x is
modifiable, the second determines which part of the variable (lower bound, upper bound or level) can be
modified and the third specifies the GAMSParameter that holds the new value.

In the following loops we set the upper bound of one link of the network to zero, which means that
no transportation between the corresponding plant and market is possible, and solve the modified
transportation problem.
...
mi = cp.addModelInstance();
GAMSVariable x = mi.syncDb().addVariable("x", 2, GAMSEnum::VarType::Positive, "");
GAMSParameter xup = mi.syncDb().addParameter("xup", 2, "upper bound on x");
// instantiate the GAMSModelInstance and pass a model definition and GAMSModifier to declare upper bound of X mutable
mi.instantiate("transport use lp min z", GAMSModifier (x, GAMSEnum::SymbolUpdateAction::Upper, xup));
for (GAMSSetRecord i : t7.outDB().getSet("i")) {

for (GAMSSetRecord j : t7.outDB().getSet("j")) {
xup.clear();
xup.addRecord(i.key(0), j.key(0)).setValue(0);
mi.solve();
cout << "Scenario link blocked=" << i.key(0) << "-" << j.key(0) << endl;
cout << " Modelstatus: " << mi.modelStatusAsString() << endl;
cout << " Solvestatus: " << mi.solveStatusAsString() << endl;
cout << " Obj: " << mi.syncDb().getVariable("z").findRecord().level() << endl;

}
}
...

7.9.3.19 How to use a queue to solve multiple GAMSModelInstances in parallel
(Transport8)

We initialize a GAMSCheckpoint cp from a GAMSJob. Then we define a vector that represents the
different values of the demand multiplier. While ioMutex is used to avoid messed up output, vectorMutex
synchronizes the access to the vector. Then we start multiple thread executing the method scenSolve.
The number of parallel executed threads is specified by nrThreads. All trheads share the same vector

that provides the different values for bmult.
...
GAMSCheckpoint cp = ws.addCheckpoint();
ws.addJobFromString(getModelText()).run(cp);
vector<double> bmultVector = { 1.3, 1.2, 1.1, 1.0, 0.9, 0.8, 0.7, 0.6 };
int nrThreads = 2;
std::mutex vectorMutex;
std::mutex ioMutex;
vector<thread> v;
for (int i = 0; i < nrThreads; i++)

v.emplace back([&ws, &cp, &bmultVector, &vectorMutex, &ioMutex] {scenSolve(&ws, &cp, &bmultVector, &vectorMutex,
&ioMutex);});

for (auto& t : v)
t.join();

...

3562 Application Programming Interfaces

In scenSolve we create and instantiate a GAMSModelInstance as in the preceding examples and make
bmult modifiable. As long as bmultVector is not empty, an elements is taken and removed from the
vector. The value is used for the scalar bmult. Note that we chose cplex as solver because it is thread
safe (gurobi would also be possible). Once the vector is empty the loop terminates.
void Transport8::scenSolve(GAMSWorkspace* ws, GAMSCheckpoint* cp, vector<double>* bmultVector, std::mutex* vectorMutex,

std::mutex* ioMutex)
{

unique lock<mutex> vectorLock(*vectorMutex);
GAMSModelInstance mi = cp->addModelInstance();
vectorLock.unlock();
GAMSParameter bmult = mi.syncDb().addParameter("bmult", "demand multiplier");
GAMSOptions opt = ws->addOptions();
opt.setAllModelTypes("cplex");
// instantiate the GAMSModelInstance and pass a model definition and GAMSModifier to declare bmult mutable
mi.instantiate("transport use lp min z", opt, GAMSModifier(bmult));
bmult.addRecord().setValue(1.0);
while (true)
{

double b;
// dynamically get a bmult value from the vector instead of passing it to the different threads at creation time
vectorLock.lock();
if (bmultVector->empty())

return;
b = bmultVector->back();
bmultVector->pop back();
vectorLock.unlock();
bmult.firstRecord().setValue(b);
mi.solve();
// we need to make the output a critical section to avoid messed up report informations
unique lock<mutex> ioLock(*ioMutex);
cout << "Scenario bmult=" << b << ":" << endl;
cout << " Modelstatus: " << mi.modelStatus() << endl;
cout << " Solvestatus: " << mi.solveStatus() << endl;
cout << " Obj: " << mi.syncDb().getVariable("z").findRecord().level() << endl;
ioLock.unlock();

}
}

7.9.3.20 How to fill a GAMSDatabase by reading from MS Access (Transport9)

This example illustrates how to import data from Microsoft Access to a GAMSDatabase. It can only be
run on Windows since it makes use of the Microsoft Access Driver. Furthermore the example makes
use of the Qt SQL module. Note that you need to have Microsoft Access installed and that its bitness
needs to match the bitness of your GAMS version. In the example we call a function readFromAccess

that finally returns a GAMSDatabase as shown below.
...
GAMSDatabase db = readFromAccess(ws);
...

The data we are going to read can be found in<GAMS system directory>\apifiles\Data\transport.accdb.
It might be helpful to open this file for a better understanding. The function begins with the creation of
an empty GAMSDatabase. Afterwards we create a QSqlDatabase, specify the connection string and open
the connection to the database. If opening the connection was successful, data is read from the database
into the GAMSDatabase using the methods readSet and readParameter.
GAMSDatabase readFromAccess(GAMSWorkspace ws)
{

GAMSDatabase db = ws.addDatabase();
QSqlDatabase sqlDb = QSqlDatabase::addDatabase("QODBC", "readConnection");
QString strAccessConn = ("Driver={Microsoft Access Driver (*.mdb, *.accdb)};DSN=’’;DBQ=" + ws.systemDirectory() \

+ cPathSep + "apifiles" + cPathSep + "Data" + cPathSep + "transport.accdb").c str();
sqlDb.setDatabaseName(strAccessConn);
if(sqlDb.open())
{

// read GAMS sets
readSet(sqlDb, db, "SELECT Plant FROM Plant", "i", 1, "canning plants");
readSet(sqlDb, db, "SELECT Market FROM Market", "j", 1, "markets");
// read GAMS parameters
readParameter(sqlDb, db, "SELECT Plant,Capacity FROM Plant", "a", 1, "capacity of plant i in cases");
readParameter(sqlDb, db, "SELECT Market,Demand FROM Market", "b", 1, "demand at market j in cases");
readParameter(sqlDb, db, "SELECT Plant,Market,Distance FROM Distance", "d", 2, "distance in thousands of miles");
sqlDb.close();

}
else
{

cout << "Error: Failed to create a database connection. " << sqlDb.lastError().text().toStdString() << endl;
exit(1);

http://doc.qt.io/qt-5/qtsql-index.html

7.9 Tutorial 3563

}
return db;

}

The function readSet creates a QSqlQuery that reads data from a table of the Access database. A
GAMSSet is created and populated with the data.
void readSet(QSqlDatabase sqlDb, GAMSDatabase db, string strAccessSelect, string setName, int setDim, string setExp = "")
{

QSqlQuery query(sqlDb);
if (!query.exec(strAccessSelect.c str()))
{

cout << "Error executing query on set ’" << setName << "’" << endl;
cout << query.lastError().text().toStdString() << endl;
exit(1);

}
if (query.size() && (query.record().count() != setDim))
{

cout << "Number of fields in select statement does not match setDim" << endl;
exit(1);

}
GAMSSet i = db.addSet(setName, setDim, setExp);
vector<string> keys = vector<string>(setDim);
while (query.next())
{

for (int idx = 0; idx < setDim; idx++)
keys[idx] = query.value(idx).toString().toStdString();

i.addRecord(keys);
}

}

Once we read in all the data we can create a GAMSJob from the GAMSDatabase and run it as usual. Finally
the results are written to transport.accdb.

7.9.3.21 How to fill a GAMSDatabase by reading from MS Excel (Transport10)

This example illustrates how to read data from Excel, or to be more specific, from <GAMS system

directory>\apifiles\Data\transport.xlsx. It can only be run on Windows. Note that you need to
have Microsoft Excel installed and that its bitness needs to match the bitness of your GAMS version.
The model is given as string without data like in in many examples before. At first we have to add
#include <QAxObject>
#include <Windows.h>

to be able to use the QAxObject class, which serves as a wrapper for COM objects. Furthermore we include
Windows.h to access the functions CoInitialize and CoUninitialize. In the main function we open
the aforementioned file to get access to its content. Note that we need to call CoInitialize(0) first in
order to initialize ActiveX. We create an instance of the class QAxObject and use the querySubObject

method multiple times to get to the sheets of the workbook.
...
QAxObject* excel = new QAxObject("Excel.Application", 0);
QAxObject* workbooks = excel->querySubObject("Workbooks");
QAxObject* workbook = workbooks->querySubObject("Open(const QString&)", fileName);
QAxObject* sheets = workbook->querySubObject("Worksheets");
...

The method sheetToParameter is used in order to transfer data from the workbook into GAMSParameter

instances. In order to determine from which sheet the actual data needs to be read, the method takes the
QAxObject instance referring to the sheets and the actual sheet name. A new GAMSParameter is added to
the GAMSDatabase object db using set1 and set2 as domains. The next step is to determine the number
of columns and the number of rows used. The for loop reads the actual data, adds the records to the
new GAMSParameter and sets their values.
...
GAMSParameter sheetToParameter(QAxObject* sheets, string sheetName, GAMSDatabase db, string paramName, string paramText,

GAMSSet set1, GAMSSet set2)
{

QAxObject* sheet = sheets->querySubObject("Item(string)", sheetName.c str());
vector<GAMSDomain> sets {set1, set2};
GAMSParameter param = db.addParameter(paramName, paramText, sets);
QAxObject* usedrange = sheet->querySubObject("UsedRange");
QAxObject * columns = usedrange->querySubObject("Columns");
int intCols = columns->property("Count").toInt();
QAxObject * rows = usedrange->querySubObject("Rows");
int intRows = rows->property("Count").toInt();

3564 Application Programming Interfaces

for (int j = 2; j <= intCols; j++) {
string namej = sheet->querySubObject("Cells(int, int)", 1, j)->dynamicCall("Value()").toString().toStdString();
for (int i = 2; i <= intRows; ++i) {

string namei = sheet->querySubObject("Cells(int, int)", i,
1)->dynamicCall("Value()").toString().toStdString();

GAMSParameterRecord rec = param.addRecord(namei, namej);
double value = sheet->querySubObject("Cells(int, int)", i, j)->dynamicCall("Value()").toDouble();
rec.setValue(value);

}
}
return param;

}
...

After all required data was read from the workbook, we need to close it and quit the Excel application.
...
workbook->dynamicCall("Close()");
excel->dynamicCall("Quit()");
...

Now we can create und run the GAMSJob using the created GAMSDatabase as usual.
...
GAMSOptions opt = ws.addOptions();
GAMSJob t10 = ws.addJobFromString(getModelText());
opt.setDefine("gdxincname", db.name());
opt.setAllModelTypes("xpress");
t10.run(opt, db);
for (GAMSVariableRecord record : t10.outDB().getVariable("x"))

cout << "x(" << record.key(0) << "," << record.key(1) << "): level=" << record.level() <<
" marginal=" << record.marginal() << endl;

...

Finally we need to call ‘CoUninitialize’ in order to close the COM library.
...
::CoUninitialize();
...

7.9.3.22 How to create and use a save/restart file (Transport11)

In Transport11 we demonstrate how to create and use a save/restart file. Usually such a file should be
supplied by an application provider but in this example we create one for demonstration purpose. Note
that the restart is launched from a GAMSCheckpoint. We start by creating the save/restart file by calling
createSaveRestart.
...
std::string cpName = "tbase";
createSaveRestart(argc, argv, cpName);
...

In function createSaveRestart we choose the checkpointName as relative path to the current directory
in order to create a GAMSWorkspace. Then we create a GAMSJob from a string. Note that the string given
via getBaseModelText() contains the basic definitions of sets without giving them a content (that is what
$onempty is used for). Afterwards we specify a GAMSOption to only compile the job without executing
it. Then we create a checkpoint cp that is initialized by the following run of the GAMSJob and stored in
the file given as argument to the function. This becomes possible because the addCheckpoint method
accepts identifiers as well as file names as argument.
void createSaveRestart(int argc, char* argv[], const string &checkpointName)
{

GAMSWorkspaceInfo wsInfo;
if (argc > 1)

wsInfo.setSystemDirectory(argv[1]);
wsInfo.setWorkingDirectory("." +(cPathSep+ checkpointName));
GAMSWorkspace ws(wsInfo);
GAMSJob j1 = ws.addJobFromString(getBaseModelText());
GAMSOptions opt = ws.addOptions();
opt.setAction(GAMSOptions::EAction::CompileOnly);
auto checkpoint = ws.workingDirectory() + cPathSep + checkpointName;
GAMSCheckpoint cp = ws.addCheckpoint(checkpoint);
j1.run(opt, cp);

}

So what you should keep in mind before we return to further explanations of the main function is, that
now the file tbase in folder tbase contains a checkpoint. Now in the main function we define some data
using C++ data structures as we already did in Transport4 before we create another GAMSWorkspace.

7.9 Tutorial 3565

...
GAMSWorkspaceInfo wsInfo;
if (argc > 1)

wsInfo.setSystemDirectory(argv[1]);
wsInfo.setWorkingDirectory("." +(cPathSep+ cpName));
GAMSWorkspace ws(wsInfo);
...

Afterwards we set up the GAMSDatabase like we already did in Transport4. Once this is done we run a
GAMSJob using this data plus the checkpoint stored in file tbase.
...
GAMSCheckpoint cpBase = ws.addCheckpoint("tbase");
GAMSOptions opt = ws.addOptions();
GAMSJob t4 = ws.addJobFromString(getModelText(), cpBase);
opt.setDefine("gdxincname", db.name());
opt.setAllModelTypes("xpress");
t4.run(opt, db);
for (auto record : t4.outDB().getVariable("x"))

cout << "x(" << record.key(0) << "," << record.key(1) << "): level=" << record.level() <<
" marginal=" << record.marginal() << endl;

...

Note that the string from which we create job t4 is different to the one used to prepare the checkpoint
stored in tbase and is only responsible for reading in the data from the GAMSDatabase correctly. The
entire model definition is delivered by the checkpoint cpBase which is equal to the one we saved in tbase.

7.9.4 How to use the pre configured example projects

Depending on the operating system, the GAMS C++ API comes with example project configurations for
CMake and Visual Studio. They provide an easy way of building and running the distributed GAMS
C++ examples and are located in <GAMS system directory>\apifiles\C++.

7.9.4.1 CMake

Windows:

Create build directory

cd <GAMS system directory>\apifiles\C++

mkdir build && cd build

Run CMake and build project

cmake -G "Visual Studio 16 2019" -DCMAKE_BUILD_TYPE=Release -DVSVERSION:STRING=vs2019 ..

msbuild.exe examples.sln /p:Configuration=Release

Note

For other Visual Studio versions, the generator-name (-G) needs to be adjusted (see cmake docu-
mentation).

All generated executables can now be found in the CMake build directory. The exact path depends on
the project name and the config setting. Assuming the solution was build with -config Release, a
transport1.exe executable is located in<GAMS system directory>\apifiles\C++\build\transport1\Release.
Therefore you can use the following commands to execute the transport1 example:In order to execute an
example (e.g. transport1) run the following commands:

3566 Application Programming Interfaces

cd transport1\Release

set PATH=%PATH%;<GAMS system directory>\apifiles\C++\lib\vs2019

transport1.exe

Linux:

Create build directory

cd <GAMS system directory>/apifiles/C++

mkdir build && cd build

Run CMake and build project

cmake ..

make

All generated executables can now be found in the CMake build directory. For every project a subdirectory
is created. Assuming you want to execute the transport1 example, use the following commands:

cd transport1

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<GAMS system directory>/apifiles/C++/lib

./transport1

macOS:

Create build directory

cd <GAMS system directory>/apifiles/C++

mkdir build && cd build

Run CMake and build project.

Note

By default, Clang is used as a compiler. If GCC was used to build the gamscpp library, then use -D

USE-GCC="ON" to select the correct gamscpp library from your GAMS folder. Otherwise, the build
will fail.

cmake ..

make

All generated executables can now be found in the CMake build directory. For every project a subdirectory
is created. Assuming you want to execute the transport1 example, use the following commands:

cd transport1

export DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:<GAMS system directory>/apifiles/C++/lib

./transport1

7.10 Tutorial 3567

7.9.4.2 Microsoft Visual Studio

The Visual Studio solutions are available for Windows only. Open the solution file that matches the version
of your Visual Studio installation (e.g. <GAMS system directory>\apifiles\C++\examples-vs2017.sln).

As soon as the solution is loaded, click on Build > Configuration Manager and adjust the Active

solution configuration and the Active solution platform. The solution configuration needs to be
set to Release for using the distributed binaries of the GAMS C++ API. Note that the platform needs
to match the version of your GAMS installation.

The examples Transport9 and Transport10 require a Qt installation. If you do not have one, you need
to disable these projects. Right click on a project in the Solution Explorer and choose Unload Project
from the context menu.

Click on Build > Build Solution in order to compile and link the examples.

Note

In some cases the build might return with xcopy errors. Just build the project again. Make sure
that you don't do a rebuild.

In order to run an example, click on Debug > Start Without Debugging. This will execute the
current StartUp project. Changing the StartUp project can be achieved by right clicking on a project in
the Solution Explorer and choosing Set as StartUp Project.

7.10 Tutorial

The goal of this tutorial is to provide a compact overview of the basic functionality of the GAMS Java
API. It allows the user to start immediately working with the API by providing a set of small examples
based on the well-known transportation problem. These examples introduce several API features step
by step.

• Getting started A quick introduction about how to compile and run a program from command line
or an IDE

• Important Classes of the API Overview of some fundamental classes of the GAMS Java API

• How to use API An extensive set of examples describing how to use API components

7.10.1 Getting started

Since GAMS 44.1.0, a Java program that uses GAMS Java API requires at least Java SE 11 to compile
and run. For a Java program that still requires Java SE 8 to compile and run, it is possible to use a
separate version of GAMS Java API that targets Java SE 8, but the new or updated functionalities that
are released after GAMS 43 are not avaiable in this Java API version.

For all platforms, assume GAMS system has been installed at [PathToGAMS] directory, called GAMS
directory. The directory [PathToGAMS] denotes the path setting according to your GAMS installation on
targeted platforms. For instance

• on Windows-based platforms with GAMS distribution 46.2 installed, [PathToGAMS] denotes
C:\GAMS\win64\46.2

3568 Application Programming Interfaces

• on Unix-based platforms with GAMS distribution 46.2 installed, [PathToGAMS] denotes
/usr/gams/gams46.2 linux x64 64 sfx

All GAMS Java API classes are contained within one single jar file GAMSJavaAPI.jar (or
GAMSJavaAPI-8.jar for Java SE 8) with a namespace com.gams.api. The jar files are distributed with
the current GAMS distribution and located at

• on Windows-based platforms:

[PathToGAMS]\apifiles\Java\api\GAMSJavaAPI.jar

• on Unix-based platforms:

[PathToGAMS]/apifiles/Java/api/GAMSJavaAPI.jar

Note

Since GAMS 44.1.0, GAMS Java API has an additional dependency on JSON.simple, a simple
Java library for JSON processing, read and write JSON data. Compiling and running a pro-
gram that uses GAMSJavaAPI.jar requires json-simple-1.1.1.jar to be in the same directory as
GAMSJavaAPI.jar (This is not the case for GAMSJavaAPI-8.jar). Missing json-simple-1.1.1.jar

from the same directory might raise runtime exception when using related functionality in the GAMS
Java API.

There are two different approaches of how to use the GAMS Java API. Either the Java source files can
be edited with any common editor and compiled from command line or a Java IDE can be used. The
following sections give a quick introduction about the different possibilities.

7.10.1.1 Compiling a Program

To compile a Java program, one usually provides the following information to Java compiler:

• the directory(ies) containing all required Java class files

• the directory to place the generated class files

• the name of the Java source file

A Java program that uses GAMS Java API requires class files that are contained in GAMSJavaAPI.jar for
compilation (or in GAMSJavaAPI-8.jar for Java SE 8).

Compiling a Program from Command Line

To compile a Java program that uses GAMS Java API, for instance HelloAPI.java, at the command line:

javac -cp [CLASSPATH] -d [TARGETDIR] HelloAPI.java

where

[CLASSPATH] is ’GAMSJavaAPI.jar’ (or ‘GAMSJavaAPI-8.jar‘ for Java SE 8) with its location,

as it contains class files that are used by ’HelloAPI.java’.

On Windows-based platform, [CLASSPATH] denotes

[PathToGAMS]\apifiles\Java\api\GAMSJavaAPI.jar

On Unix-based platforms, [CLASSPATH] denotes

[PathToGAMS]/apifiles/Java/api/GAMSJavaAPI.jar

[TARGETDIR] is the directory to place the generated classe file.

https://github.com/fangyidong/json-simple

7.10 Tutorial 3569

Note

• it is possible to add [CLASSPATH] to your CLASSPATH environment variable of the operating
system as an alternative to specifying -cp [CLASSPATH].

• -d [TARGETDIR] is optional. In case -d [TARGETDIR] is omited and the compilation is suc-
cessful, the class file will be generated and located under the current directory.

• GAMSJavaAPI.jar has an additional dependency on json-simple-1.1.1.jar (not the case
for GAMSJavaAPI-8.jar). Though it is not necessary to add json-simple-1.1.1.jar to
[CLASSPATH] as it already been added into the GAMSJavaAPI.jar's Classpath. It is important,
however, for json-simple-1.1.1.jar to be in the same directory as GAMSJavaAPI.jar.

To compile other programs, change the arguments accordingly. See also How to compile and run examples from the GAMS system directory.

Compiling a Program from Java IDE

In case of compiling a program under a Java IDE (for instance, Eclipse, NetBeans, or IntelliJ), the location
of the jar file GAMSJavaAPI.jar (or GAMSJavaAPI-8.jar for Java SE 8) shall be added into the Java build
path of the IDE's project properties.

For an Eclipse user, see How to import an Eclipse Java Project from the GAMS system directory.

7.10.1.2 Running a Program

To run a Java program, one usually provide the following information to Java Virtual Machine:

• the directory(ies) containing all required Java classes

• the directory(ies) containing all required shared libraries

• the name of an entry point class (in most case containing main method)

A Java program that uses GAMS Java API requires a number of shared libraries for establishing a
connection with GAMS software components during run time. These shared libraries are platform
dependent and they are located at [PathToGAMS]/apifiles/Java/api directory.

Running a Program from Command Line

To run a Java program that uses GAMS Java API, for instance HelloAPI.class containing in [TARGETDIR]

directory, at the command line type:

java -cp [CLASSPATH] HelloAPI

where

[CLASSPATH] is the list of two paths, a path of ’GAMSJavaAPI.jar’ (or ‘GAMSJavaAPI-8.jar‘ for Java SE 8)

and a path of targeted directory containing ’HelloAPI.class’, separated by path separator

on the targeted platform.

On Windows-based platform, [CLASSESPATHS] denotes

[PathToGAMS]\apifiles\Java\api\GAMSJavaAPI.jar;[TARGETDIR]

On Unix-based platform, [CLASSESPATHS] denotes

[PathToGAMS]/apifiles/Java/api/GAMSJavaAPI.jar:[TARGETDIR]

HelloAPI is the name of an entry point class containing main method

Please note that it is possible to add [CLASSPATH] to your CLASSPATH environment variable of the
operating system as an alternative to specify -cp [CLASSPATH].

3570 Application Programming Interfaces

Attention

Most operations performed by GAMS Java API such as gdx or options operations require shared
libraries (located in the folder [PathToGAMS]/apifiles/Java/api by default) when running a
program. It is recommended to specify the path to shared libraries when running a program. In case
no java.library.path has been specified when running a program, the Java API will determine
the path of the shared libraries from the java class path containing GAMSJavaAPI.jar.

It is possible to specify the path to shared libraries by passing the following argument to Java Virtual
Machine:

-Djava.library.path=[LIBRARYPATH]

where [LIBRARYPATH] describes the list of paths containing all required shared libraries (as previously
mentioned, it is [PathToGAMS]/apifiles/Java/api by default). In such case, the Java API will give
priority to the java library path when loading all required JNI libraries during run time. The java API
will raise an exception when either the java virtual machine fails to load the required libraries from the
specified java library path or there is a version conflict of shared libraries during run time.

To run other programs, change the arguments accordingly. See also How to compile and run examples from the GAMS system directory.

Running a Program from Java IDE

In case of running a program under a Java IDE (for instance, Eclipse, NetBeans, or IntelliJ), it is possible
to set the nessary arguments via the properties of the IDE project.

For an Eclipse user, see How to import an Eclipse Java Project from the GAMS system directory.

7.10.1.3 Setting Up Your Environment

Since 24.3, the GAMS system directory can be specified within the program during run time. Therefore
the setting up of execution environment before running a program is no longer required (see also
Release Notes 24.3).

Nevertheless, it is still possible to preconfigure the GAMS system directory before running a program and
use the default workspace setting within a program. In the default setting, GAMS system directory is not
specified by a user within the program. The directory will be searched during run time from environment
variable in the following order (depends on the target platform):

• On Windows-based platform: first from PATH environment variable. If not found, from the platform
windows registry gams.location,

• On macOS-based platform: first from PATH environment variable. If not found, from
DYLD LIBRARY PATH,

• On other Unix-based platfrom: from PATH environment variable. If not found, from LD LIBRARY PATH.

The following examples illustrate how to add [PathToGAMS] into the environment variable PATH on
different platforms:

• On Windows 2000, XP, Vista, or Windows 7 desktop:

7.10 Tutorial 3571

> right-click on ’My Computer’

> choose ’Properties’ (alternatively, click on ’System’ icon in the control panel)

> click on ’Advanced’ tab (or ’Advance system settings’)

> click on ’Environment Variables’

> edit ’PATH’ by adding [PathToGAMS] to the variable using a semi-colon as a separator.

• On Window-based platform via command line terminal:

set PATH=[PathToGAMS];%PATH%

• On Unix-based platform via command line terminal using Bourne shell and its derivatives:

export PATH=[PathToGAMS]:${PATH}

• On Unix-based platform via command line terminal using C Shell:

setenv PATH [PathToGAMS]:${PATH}

7.10.1.4 How to compile and run examples from the GAMS system directory

GAMS provides several examples to demonstrate how to use GAMS Java API. These examples are
located in the [PathToGAMS]/apifiles/Java directory containing various examples based on the different
optimization problems. The following explanations guide you through the compilation and execution
process of one example based on the well-known transportation problem, assuming that Java Runtime
System is already installed on your machine.

For instance, Transport1.java under the directory [PathToGAMS]/apifiles/Java/transport demon-
strates how to retrieve GAMS transport model from GAMS Model Library, execute the model with various
GAMS options, and extract results after execution.

To compile Transport1.java at the command line under the directory [PathToGAMS]/apifiles/Java/transport:

javac -cp [CLASSPATH] -d [TARGETDIR] Transport1.java

where

[CLASSPATH] is a location of ’GAMSJavaAPI.jar’ (or ‘GAMSJavaAPI-8.jar‘ for Java SE 8),

as it contains classes files that are used by ’Transport1.java’.

On Windows-based platform, [CLASSPATH] denotes

[PathToGAMS]\apifiles\Java\api\GAMSJavaAPI.jar;

On Unix-based platforms, [CLASSESPATHS] denotes

[PathToGAMS]/apifiles/Java/api/GAMSJavaAPI.jar

[TARGETDIR] is the destination directory to place the generated classed file.

As Transport1.java is declared under package com.gams.examples.transport, the output class file
will be located in [TARGETDIR] under the directory structure corresponding to package information. This
means the compiled output file Transport1.class is located under:

• [TARGETDIR]\com\gams\examples\transport on Windows-based platform, or

• [TARGETDIR]/com/gams/examples/transport on Unix-based platforms.

To run Transport1.class from the command line:

3572 Application Programming Interfaces

java -cp [CLASSPATH] com.gams.examples.transport.Transport1

where

[CLASSPATH] is the list of two paths, ’GAMSJavaAPI.jar’ (or ‘GAMSJavaAPI-8.jar‘

for Java SE 8) with its path and a directory containing ’Transport1.class’

and (in this case [TARGETDIR] from the compliation step), separated by

path separator on the targeted platform.

On Windows-based platform, [CLASSESPATHS] denotes

[PathToGAMS]\apifiles\Java\api\GAMSJavaAPI.jar;[TARGEDIR]

On Unix-based platforms, [CLASSESPATHS] denotes

[PathToGAMS]/apifiles/Java/api/GAMSJavaAPI.jar:[TARGEDIR]

Please note that the path [TARGETDIR] can be either absolute or relative path representing the directory
that contains Transport1.class.

To compile and run other examples under the directory [PathToGAMS]/apifiles/Java, adjust the
arguments accordingly.

See How to use API for detailed explanations on the series of transportation problem examples
located in the folder [PathToGAMS]/apifiles/Java/transport.

7.10.1.5 How to import an Eclipse Java Project from the GAMS system directory

Since GAMS version 24.2 there is an prepared Java project that can be imported into Eclipse. The project
is located in folder [PathToGAMS]/apifiles/Java/Eclipse and contains the examples based on the
transportation problem. The following explanations guide you through the import and preparation
process, assuming that the Eclipse Java IDE is already installed on your machine.

To import the project located in folder [PathToGAMS]/apifiles/Java/Eclipse into the workspace:

1. open the Eclipse IDE with the chosen workspace location, click on File menu and choose Import.

2. In the Import window, choose General > Existing Projects into Workspace then click Next.

3. In the next page of Import window, click Browse.. and select the folder with the prepared project
([PathToGAMS]/apifiles/Java/Eclipse) as root directory.

We recommend to check for option Copy projects into workspace. Click Finish to finish the
Import window.

4. Now the project is imported, and appears in the Package Explorer window on the left hand side
of of the IDE (shown below with its elements expanded).

5. As every example in the project requires GAMS Java API classes files to compile (all classes are
packaged in GAMSJavaAPI.jar located in the folder [PathToGAMS]/apifiles/Java/api), you need
to tell eclipse where to find GAMSJavaAPI.jar. To do this, either click on the project then choose
Project > Properties or right click on the project name and choose Properties .

6. The Properties window of the proejct appears. Click Java Build Path on the left of the window,
choose Libraries tab, choose Add External JARs....

select GAMSJavaAPI.jar located in the folder [PathToGAMS]/apifiles/Java/api to be opened.

and click OK to finish addding [PathToGAMS]/apifiles/Java/api/GAMSJavaAPI.jar to Java
Build Path.

7.10 Tutorial 3573

7. Now all the java files should be successfully compiled without errors except for Transport10

(unsuccessful compilation is denoted with red x mark in front of the file name). This is because
Transport10 requires an additional jexcelapi JAR file jxl.jar from jexcelapi. It can be
downloaded and unzipped the downloaded archive into a local directory e.g. C:\tools. Then the
jar file C:\tools\jexcelapi\jxl.jar can be added to the the Java Build Path of the project in a
similar way as explained in 6.

8. To run a transport example, for example Transport1, you need to create a Run Configuration.

To do this, either click Run menu and choose Run Configurations...

or open the drop down menu next to the run button and click on Run Configurations....

Then create a new run configuration by either press the New button in the left hand side of the
window or right click at Java Application in the left hand side of the window and choose New.

9. The run configuration for Transport1 appears.

For each run configuration it is possible to configure the execution of a program, such as the
arguments of the virtual machine, class paths, environment variables and so on.

For instance, to specify the java.library.path for Transport1 run configuration, choose Argu-
ments tab in the run configuration and specify -Djava.library.path=[PathToGAMS]/apifiles/Java/api

as one of the VM arguments. Then Click Apply and Run.

Note that the run configuration described in 8. and 9. is needed to be set for every single example. Once
this is done you should be able to use the run configuration to repeat the execution of all the transport
examples.

For a more detailed explanations on each transport examples see How to use API.

7.10.2 Important Classes of the API

This section provides a quick overview of some fundamental classes of the GAMS Namespace. Their
usage is demonstrated by an extensive set of examples. All GAMS Java API classes are contained
within one single jar file GAMSJavaAPI.jar (or GAMSJavaAPI-8.jar for Java SE 8) with a namespace
com.gams.api. It provides objects to interact with the General Algebraic Modeling System (GAMS).
Objects in this namespace allow convenient exchange of input data and model results (GAMSDatabase)
and help to create and run GAMS models (GAMSJob), that can be customized by GAMS options (
GAMSOptions). Furthermore, it introduces a way to solve a sequence of closely related models in the
most efficient way (GAMSModelInstance).

Other classes are GAMSWorkspace, GAMSOptions, GAMSSymbol, and GAMSException.

7.10.3 How to use API

In the GAMS system directory there are some examples provided that illustrate the usage of the Java
API. [PathToGAMS]/apifiles/Java/transport contains multiple examples dealing with the well-known
transportation problem. In further course of this tutorial we discuss these examples step by step and
introduce new elements of the API in detail.

We recommend to open the aforementioned files to gain a complete overview of the examples. Down below
we explain the examples with the help of selected code snippets.

• How to choose the GAMS system (Transport1)

• How to export data to GDX (TransportGDX)

http://jexcelapi.sourceforge.net/

3574 Application Programming Interfaces

• How to import data from GDX (TransportGDX)

• How to run a GAMSJob from file (Transport1)

• How to retrieve a solution from an output database (Transport1)

• How to specify the solver using GAMSOptions (Transport1)

• How to run a job with a solver option file and capture its log output (Transport1)

• How to use include files (Transport2)

• How to set a non-default working directory (Transport3)

• How to read data from string and export to GDX (Transport3)

• How to run a job using data from GDX (Transport3)

• How to run a job using implicit database communication (Transport3)

• How to define data using Java data structures (Transport4)

• How to prepare a GAMSDatabase from Java data structures (Transport4)

• How to initialize a GAMSCheckpoint by running a GAMSJob (Transport5)

• How to initialize a GAMSJob from a GAMSCheckpoint (Transport5)

• How to run multiple GAMSJobs in parallel using a GAMSCheckpoint (Transport6)

• How to create a GAMSModelInstance from a GAMSCheckpoint (Transport7)

• How to modify a parameter of a GAMSModelInstance using GAMSModifier (Transport7)

• How to modify a variable of a GAMSModelInstance using GAMSModifier (Transport7)

• How to use a queue to solve multiple GAMSModelInstances in parallel (Transport8)

• How to fill a GAMSDatabase by reading from MS Access (Transport9)

• How to fill a GAMSDatabase by reading from MS Excel (Transport10)

• How to create and use a save/restart file (Transport11)

7.10.3.1 How to choose the GAMS system (Transport1)

By default the GAMS system is determined automatically. In case of having multiple GAMS systems on
your machine, the desired system can be specified via an additional argument when the workspace is created.
When running the examples, we can provide an additional command line argument in order to define the
GAMS system directory that should be used. By executing Transport1 with C:/GAMS/win64/46.2 we
use the 64-bit version of GAMS 46.2 to run Transport1 even if our default GAMS system might be a
different one. This is managed by the following code:
...

GAMSWorkspaceInfo wsInfo = new GAMSWorkspaceInfo();
if (args.length > 0)

wsInfo.setSystemDirectory(args[0]);
GAMSWorkspace ws = new GAMSWorkspace(wsInfo);

...

Remember that the bitness of the GAMS system has to match the bitness of your Java Runtime
Environment.

7.10 Tutorial 3575

7.10.3.2 How to export data to GDX (TransportGDX)

Although the Object-oriented Java API offers much more than exchanging data between Java and
GDX, a common use case is the export and import of GDX files. The central class for this purpose is
GAMSDatabase. We assume that the data to be exported is available in Java data structures.
...

List<String> plants = Arrays.asList("Seattle", "San-Diego");
List<String> markets = Arrays.asList("New-York", "Chicago", "Topeka");
Map<String, Double> capacity = new HashMap<String, Double>();
{

capacity.put("Seattle", Double.valueOf(350.0));
capacity.put("San-Diego", Double.valueOf(600.0));
}
Map<String, Double> demand = new HashMap<String, Double>();
{

demand.put("New-York", Double.valueOf(325.0));
demand.put("Chicago", Double.valueOf(300.0));
demand.put("Topeka", Double.valueOf(275.0));
}
Map<Vector<String>, Double> distance = new HashMap<Vector<String>, Double>();
{

distance.put(new Vector<String>(Arrays.asList(new String[]{"Seattle", "New-York"})), Double.valueOf(2.5));
distance.put(new Vector<String>(Arrays.asList(new String[]{"Seattle", "Chicago"})), Double.valueOf(1.7));
distance.put(new Vector<String>(Arrays.asList(new String[]{"Seattle", "Topeka"})), Double.valueOf(1.8));
distance.put(new Vector<String>(Arrays.asList(new String[]{"San-Diego", "New-York"})), Double.valueOf(2.5));
distance.put(new Vector<String>(Arrays.asList(new String[]{"San-Diego", "Chicago"})), Double.valueOf(1.8));
distance.put(new Vector<String>(Arrays.asList(new String[]{"San-Diego", "Topeka"})), Double.valueOf(1.4));
}

...

Different type of GAMS symbols are represented using different Java data structures. The data for the
GAMS sets is represented using List of Strings (e.g. plants and markets). On the other hand, GAMS
parameters are represented by Map (e.g. capacity and demand). Note that the representation of the two
dimensional parameter distance uses Vectors for storing the keys. The choice of data structures can also
be different, but the used structures in this example fit well for representing GAMS data with Java data
structures.

A new GAMSDatabase instance can be created using GAMSWorkspace.addDatabase.
...

// create new GAMSDatabase instance
GAMSDatabase db = ws.addDatabase();

...

We start adding GAMS sets using the method GAMSDatabase.addSet which takes the name and the
dimension as arguments. The third argument is an optional explanatory text. A for-loop iterates through
plants and adds new records to the recently created GAMSSet instance i using GAMSSet.addRecord.
...

GAMSSet i = db.addSet("i", 1, "canning plants");
for(String p : plants)

i.addRecord(p);
...

GAMSParameter instances can be added by using the method GAMSDatabase.addParameter. In this
example we use the overloaded method which takes a list of GAMSSet instances instead of the dimension
for creating a parameter with domain information.
...

GAMSParameter a = db.addParameter("a", "capacity of plant i in cases", i);
for (String p : plants)

a.addRecord(p).setValue(capacity.get(p));
...

As soon as all data is prepared in the GAMSDatabase, the method GAMSDatabase.export can be used to
create a GDX file.
...

db.export("data.gdx");
...

3576 Application Programming Interfaces

7.10.3.3 How to import data from GDX (TransportGDX)

Data can be imported from a GDX file using GAMSWorkspace.addDatabaseFromGDX. The method takes a
path to a GDX file and creates a GAMSDatabase instance.
...

GAMSDatabase gdxdb = ws.addDatabaseFromGDX("data.gdx");
...

Reading the data from the GAMSSet i into a List of Strings can be done as follows:
...

List<String> gdxPlants = new ArrayList<String>();
for(GAMSSetRecord rec : gdxdb.getSet("i"))

gdxPlants.add(rec.getKey(0));
...

A new List gdxPlants is created. i is retrieved by calling GAMSDatabase.getSet on gdxdb. The returned
GAMSSet object can be iterated using a for-loop to access the records of the set. Each record is of type
GAMSSetRecord and can be asked for its keys.

You can do the same for GAMSParameter. Instead of creating a List, we want to have the data in the
form of a Map. GAMSParameterRecord can not only be asked for its keys, but also for its value. The
following code snippet shows how to read the one dimensional parameter a into a Map<String, Double>.
...

Map<String, Double> gdxCapacity = new HashMap<String, Double>();
for(GAMSParameterRecord rec : gdxdb.getParameter("a"))

gdxCapacity.put(rec.getKey(0), rec.getValue());
...

For a key of multi dimensional symbol, we choose Vector of String instead of String.
...

Map<Vector<String>, Double> gdxDistance = new HashMap<Vector<String>, Double>();
for(GAMSParameterRecord rec : gdxdb.getParameter("d"))

gdxDistance.put(new Vector<String>(Arrays.asList(new String[]{rec.getKey(0), rec.getKey(1)})), rec.getValue());
...

Scalar can be read into a variable of type double by accessing the value of the first and only record.
...

double gdxFreight = gdxdb.getParameter("f").getFirstRecord().getValue();
...

7.10.3.4 How to run a GAMSJob from file (Transport1)

At first we create our workspace using GAMSWorkspace ws = new GAMSWorkspace();. Afterward
we can create a GAMSJob t1 using the addJobFromGamsLib method and run it.

Apparently you can create a GAMSJob with any other gms file you might have created on your own as
long as it is located in the current working directory. Then the GAMSJob t1 can be defined using the
GAMSJob.addJobFromFile method.
...

// create GAMSWorkspace "ws" with default working directory
// (the directory named with current date and time under System.getProperty("java.io.tmpdir"))
GAMSWorkspace ws = new GAMSWorkspace();
// create GAMSJob "t1" from "trnsport" model in GAMS Model Libraries
GAMSJob t1 = ws.addJobFromGamsLib("trnsport");
// run GAMSJob "t1"
t1.run();

...

See also Transport1.java.

7.10 Tutorial 3577

7.10.3.5 How to retrieve a solution from an output database (Transport1)

The following lines create the solution output and illustrate the usage of the GAMSJob.OutDB
property to get access to the GAMSDatabase created by the run method. To retrieve the content of
variable x we use the getVariable method and the GAMSVariableRecord class.
...

// retrieve GAMSVariable "x" from GAMSJob’s output databases
System.out.println("Ran with Default:");
GAMSVariable x = t1.OutDB().getVariable("x");
for (GAMSVariableRecord rec : x)
{

System.out.print("x(" + rec.getKeys()[0] + ", " + rec.getKeys()[1] + "):");
System.out.print(", level = " + rec.getLevel());
System.out.println(", marginal = " + rec.getMarginal());

}
...

See also Transport1.java.

7.10.3.6 How to specify the solver using GAMSOptions (Transport1)

The solver can be specified via the GAMSOptions class and the GAMSWorkspace.addOptions
method. The GAMSOptions.setAllModelTypes property sets xpress as default solver for all model types
which the solver can handle. Then we run our GAMSJob t1 with the new GAMSOptions.
...

// create GAMSOptions "opt1"
GAMSOptions opt1 = ws.addOptions();
// set all model types of "opt1" for "xpress"
opt1.setAllModelTypes("xpress");
// run GAMSJob "t1" with GAMSOptions "opt1"
t1.run(opt1);

...

See also Transport1.java.

7.10.3.7 How to run a job with a solver option file and capture its log output (Transport1)

At first we create the file xpress.opt with content algorithm=barrier which will be used as solver
option file and is stored in the current working directory. Afterward we use a GAMSOptions just
like in the preceding example and GAMSOptions.setOptFile property to 1 to tell the solver to look for
a solver option file. We specify the argument output in order to stream the log of the GAMSJob into
the file transport1 xpress.log. When the output argument is omitted then the log will be written to
standard output.
...

// write file "xpress.opt" under GAMSWorkspace’s working directory
try {

BufferedWriter optFile = new BufferedWriter(new FileWriter(
ws.workingDirectory() + GAMSGlobals.FILE SEPARATOR + "xpress.opt"

));
optFile.write("algorithm=barrier");
optFile.close();

} catch(IOException e) {
e.printStackTrace();
System.exit(-1);

}
// create GAMSOptions "opt2"
GAMSOptions opt2 = ws.addOptions();
// set all model types of "opt2" for "xpress"
opt2.setAllModelTypes("xpress");
// for "opt2", use "xpress.opt" as solver’s option file
opt2.setOptFile(1);
try {

// run GAMSJob "t2" with GAMSOptions "opt2" and capture log into "transport1 xpress.log".
PrintStream output = new PrintStream(new File(ws.workingDirectory() + GAMSGlobals.FILE SEPARATOR
+"transport1 xpress.log"));
t1.run(opt2, output);

} catch (FileNotFoundException e) {
// run GAMSJob "t2" with GAMSOptions "opt2" and log is written to standard output
t1.run(opt2);

}
...

See also Transport1.java.

3578 Application Programming Interfaces

7.10.3.8 How to use include files (Transport2)

In this example, as in many succeeding, the data text and the model text are separated into two different
strings. Note that these strings data and model are using GAMS syntax.

At first we write an include file tdata.gms that contains the data but not the model text:
...

try {
BufferedWriter file = new BufferedWriter(new FileWriter(

ws.workingDirectory() + GAMSGlobals.FILE SEPARATOR + "tdata.gms"
));

file.write(data);
file.close();

} catch(IOException e) {
e.printStackTrace();
System.exit(-1);

}
...

Afterwards we create a GAMSJob using the GAMSWorkspace.addJobFromString method.
GAMSOptions.defines is used like the 'double dash' GAMS parameters, i.e. it corresponds to
--incname=tdata on the command line where incname is used as name for the include file in the
model string.
...

// create GAMSJob "t2" from the "model"
GAMSJob t2 = ws.addJobFromString(model);
// create GAMSOption "opt" and define "incname" as "tdata"
GAMSOptions opt = ws.addOptions();
opt.defines("incname", "tdata");
// run GAMSJob "t2" with GAMSOptions "opt"
t2.run(opt);

...

The string model contains the following lines to read in the data.
...
$if not set incname $abort ’no include file name for data file provided’
$include %incname%
...

See also Transport2.java.

7.10.3.9 How to set a non-default working directory (Transport3)

At first we create a new directory. Once this is done we can use this directory when creating the
GAMSWorkspace and make it the working directory.
...

// create a directory
File workingDirectory = new File(System.getProperty("user.dir"), "Transport3");
workingDirectory.mkdir();
// create a workspace
GAMSWorkspaceInfo wsInfo = new GAMSWorkspaceInfo();
wsInfo.setWorkingDirectory(workingDirectory.getAbsolutePath());
GAMSWorkspace ws = new GAMSWorkspace(wsInfo);

...

See also Transport3.java.

7.10.3.10 How to read data from string and export to GDX (Transport3)

We read the data from the string data. Note that this contains no model but only data definition in GAMS
syntax. By running the corresponding GAMSJob a GAMSDatabase is created that is available via
the GAMSJob.OutDB property. We can use the GAMSDatabase.export method to write the
content of this database to a gdx file tdata.gdx.
...

// Create and run a job from a data file, then explicitly export to a GDX file
GAMSJob t3 = ws.addJobFromString(data);
t3.run();
t3.OutDB().export(ws.workingDirectory() + GAMSGlobals.FILE SEPARATOR + "tdata.gdx");

...

See also Transport3.java.

7.10 Tutorial 3579

7.10.3.11 How to run a job using data from GDX (Transport3)

This works quite similar to the usage of an include file explained in Transport2 - How to use include files (Transport2)
.
...

// run a job using an instance of GAMSOptions that defines the data include file
t3 = ws.addJobFromString(model);
GAMSOptions opt = ws.addOptions();
opt.defines("gdxincname", "tdata");
t3.run(opt);

...

Note that there are some minor changes in model due to the usage of a gdx instead of an include file.
...
$if not set gdxincname $abort ’no include file name for data file provided’
$gdxin %gdxincname%
$load i j a b d f
$gdxin
...

See also Transport3.java.

7.10.3.12 How to run a job using implicit database communication (Transport3)

This example does basically the same as the two preceding examples together. We create two GAMSJobs
t3a and t3b where the first one contains only the data and the second one contains only the model
without data. After running t3a the corresponding OutDB can be read in directly just like a gdx file.
Note that the database needs to be passed to the GAMSJob.run method as additional argument.
...

GAMSVariable x = t3.OutDB().getVariable("x");
for (GAMSVariableRecord rec : x)

System.out.println("x(" + rec.getKeys()[0] + ", " +rec.getKeys()[1] + "): level=" + rec.getLevel() + " marginal=" +
rec.getMarginal());

System.out.println();
// similar to the previous run but without exporting database into a file
GAMSJob t3a = ws.addJobFromString(data);
GAMSJob t3b = ws.addJobFromString(model);
opt = ws.addOptions();
t3a.run();
opt.defines("gdxincname", t3a.OutDB().getName());
t3b.run(opt, t3a.OutDB());

...

See also Transport3.java.

7.10.3.13 How to define data using Java data structures (Transport4)

We use the List<E> class and the Map<Key,Value>to define Java data structures that correspond to
the sets, parameters and tables used for the data definition in GAMS.
...

// prepare input data
List<String> plants = Arrays.asList("Seattle", "San-Diego");
List<String> markets = Arrays.asList("New-York", "Chicago","Topeka");
Map<String, Double> capacity = new HashMap<String, Double>();
{

capacity.put("Seattle", Double.valueOf(350.0));
capacity.put("San-Diego", Double.valueOf(600.0));

}
Map<String, Double> demand = new HashMap<String, Double>();
{

demand.put("New-York", Double.valueOf(325.0));
demand.put("Chicago", Double.valueOf(300.0));
demand.put("Topeka", Double.valueOf(275.0));

}
Map<Vector<String>, Double> distance = new HashMap<Vector<String>, Double>();
{

distance.put(new Vector<String>(Arrays.asList(new String[]{"Seattle", "New-York"})), Double.valueOf(2.5));
distance.put(new Vector<String>(Arrays.asList(new String[]{"Seattle", "Chicago"})), Double.valueOf(1.7));
distance.put(new Vector<String>(Arrays.asList(new String[]{"Seattle", "Topeka"})), Double.valueOf(1.8));
distance.put(new Vector<String>(Arrays.asList(new String[]{"San-Diego", "New-York"})), Double.valueOf(2.5));
distance.put(new Vector<String>(Arrays.asList(new String[]{"San-Diego", "Chicago"})), Double.valueOf(1.8));
distance.put(new Vector<String>(Arrays.asList(new String[]{"San-Diego", "Topeka"})), Double.valueOf(1.4));

}
...

See also Transport4.java.

3580 Application Programming Interfaces

7.10.3.14 How to prepare a GAMSDatabase from Java data structures (Transport4)

At first we create an empty GAMSDatabase db using the GAMSWorkspace.addDatabase method.
Afterwards we prepare the database. To add a set to the database we use the GAMSSet class and the
GAMSDatabase.addSet method with arguments describing the identifier, dimension and explanatory
text. To add the records to the database we iterate over the elements of our Java data structure and add
them by using the GAMSSet.addRecord method.

For parameters the procedure is pretty much the same. Note that the table that specifies the distances in
GAMS can be treated as parameter with dimension 2 and that scalars can be treated as parameter with
dimension 0.

The GAMSJob can be run like explained in the preceding example about implicit database communica-
tion.
...

// add a database and add input data into the database
GAMSDatabase db = ws.addDatabase();
GAMSSet i = db.addSet("i", 1, "canning plants");
for(String p : plants)

i.addRecord(p);
GAMSSet j = db.addSet("j", 1, "markets");
for(String m : markets)

j.addRecord(m);
GAMSParameter a = db.addParameter("a", 1, "capacity of plant i in cases");
for (String p : plants)

a.addRecord(p).setValue(capacity.get(p));
GAMSParameter b = db.addParameter("b", 1, "demand at market j in cases");
for(String m : markets)

b.addRecord(m).setValue(demand.get(m));
GAMSParameter d = db.addParameter("d", 2, "distance in thousands of miles");
for(Vector<String> vd : distance.keySet())

d.addRecord(vd).setValue(distance.get(vd).doubleValue());
GAMSParameter f = db.addParameter("f", 0, "freight in dollars per case per thousand miles");
f.addRecord().setValue(90);
// create and run a job from the model and read gdx include file from the database
GAMSJob t4 = ws.addJobFromString(model);
GAMSOptions opt = ws.addOptions();
opt.defines("gdxincname", db.getName());
t4.run(opt, db);

...

See also Transport4.java.

7.10.3.15 How to initialize a GAMSCheckpoint by running a GAMSJob (Transport5)

The following lines of code conduct several operations. While the first line simply creates a GAM-
SCheckpoint, the second one uses the GAMSWorkspace.addJobFromString method to create a
GAMSJob containing the model text and data but no solve statement. Afterwards the run method gets
the GAMSCheckpoint as argument. That means the GAMSCheckpoint cp captures the state of
the GAMSJob.
...

GAMSCheckpoint cp = ws.addCheckpoint();
GAMSJob t5 = ws.addJobFromString(model);
t5.run(cp);

...

See also Transport5.java.

7.10.3.16 How to initialize a GAMSJob from a GAMSCheckpoint (Transport5)

Note that the string returned from function model contains the entire model and data definition plus an
additional demand multiplier and scalars for model and solve status but no solve statement:
...
Scalar bmult demand multiplier /1/;
...
demand(j) .. sum(i, x(i,j)) =g= bmult*b(j) ;
...

7.10 Tutorial 3581

Scalar ms ’model status’, ss ’solve status’;
...

In Transport5 we create a list with eight different values for this demand multiplier.
...

double[] bmultlist = new double[] { 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3 };
...

For each entry of that list we create a GAMSJob t5 using the GAMSWorkspace.addJobFromString
method. Besides another string which resets the demand multiplier bmult, specifies the solve state-
ment and assigns values to the scalars ms and ss we pass the checkpoint cp as additional argu-
ment. This results in a GAMSJob combined from the checkpoint plus the content provided by
the string. We run the GAMSJob and echo some interesting data from the OutDB using the
GAMSDatabase.getParameter and GAMSDatabase.getVariable methods, the GAMSPa-
rameter.findRecord and GAMSVariable.findRecord methods plus the GAMSParameter-
Record.getValue property and the GAMSVariableRecord.getLevel method.
...
// create a new GAMSJob that is initialized from the GAMSCheckpoint
for(double b : bmultlist)
{

t5 = ws.addJobFromString(
"bmult=" + b + "; solve transport min z use lp; ms=transport.modelstat; ss=transport.solvestat;",
cp

);
t5.run();

System.out.println("Scenario bmult=" + b + ":");
System.out.println(

" Modelstatus: " + GAMSGlobals.ModelStat.lookup(
(int) t5.OutDB().getParameter("ms").findRecord().getValue()

)
);

System.out.println(
" Solvestatus: " + GAMSGlobals.SolveStat.lookup(

(int)t5.OutDB().getParameter("ss").findRecord().getValue()
)

);
System.out.println(" Obj: " + t5.OutDB().getVariable("z").findRecord().getLevel());

}
...

Note

Some of demand multipliers cause infeasibility. Nevertheless, GAMS keeps the incumbent objective
function value. Therefore the model status and the solve status provide important information for a
correct solution interpretation.

See also Transport5.java.

7.10.3.17 How to run multiple GAMSJobs in parallel using a GAMSCheckpoint
(Transport6)

This example illustrates how to run the jobs known from Transport5 in parallel. We initialize the
GAMSCheckpoint cp and introduce a demand multiplier as we did before :
...

GAMSJob t6 = ws.addJobFromString(model);
t6.run(cp);
double[] bmultlist = new double[] { 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3 };

...

Furthermore, we introduce a new object lockObject that will be used to avoid mixed up output from the
parallel jobs. We create one scenario for each entry of bmultlist and cause a thread to begin execution.
...

// run multiple parallel jobs using the created checkpoint
Object lockObject = new Object();
Scenario[] scenarios = new Scenario[bmultlist.length];
for (int i=0; i<bmultlist.length; i++)
{

scenarios[i] = new Scenario(ws, cp, lockObject, bmultlist[i]);
scenarios[i].start();

3582 Application Programming Interfaces

}
...

In class Scenario a GAMSJob t6 is created and run just like in the preceding example of Transport5.
The output section is also the same except for the fact that it is 'locked' by the object lockObject which
means that the output section cannot be executed simultaneously for multiple demand multipliers.
...
static class Scenario extends Thread
{

GAMSWorkspace workspace;
GAMSCheckpoint checkpoint;
Object lockObject;
double bmult;
public Scenario(GAMSWorkspace ws, GAMSCheckpoint cp, Object lockObj, double b)
{

workspace = ws;
checkpoint = cp;
lockObject = lockObj;
bmult = b;

}
public void run()
{

GAMSJob t6 = workspace.addJobFromString(
"bmult=" + bmult +"; solve transport min z use lp; ms=transport.modelstat;ss=transport.solvestat;",
checkpoint

);
t6.run();
// we need to make the output a critical section to avoid messed up report information
synchronized (lockObject)
{

System.out.println("Scenario bmult=" + bmult + ":");
System.out.println(

" Modelstatus: " + GAMSGlobals.ModelStat.lookup(
(int) t6.OutDB().getParameter("ms").findRecord().getValue()

)
);
System.out.println(

" Solvestatus: " + GAMSGlobals.SolveStat.lookup(
(int)t6.OutDB().getParameter("ss").findRecord().getValue()

)
);
System.out.println(" Obj: " + t6.OutDB().getVariable("z").findRecord().getLevel());

}
}

}
...

While the output in Transport5 is strictly ordered subject to the order of the elements of bmultlist in
Transport6 the output blocks might change their order but the blocks describing one scenario are still
appearing together due to the lockObject.

If you want a further impression of the impact of the lockObject, just rerun Transport6 but comment
out the lock as follows and compare the output.
...

// synchronized (lockObject)
// {

System.out.println("Scenario bmult=" + bmult + ":");
System.out.println(

" Modelstatus: " + GAMSGlobals.ModelStat.lookup(
(int) t6.OutDB().getParameter("ms").findRecord().getValue()

)
);
System.out.println(

" Solvestatus: " + GAMSGlobals.SolveStat.lookup(
(int)t6.OutDB().getParameter("ss").findRecord().getValue()

)
);
System.out.println(" Obj: " + t6.OutDB().getVariable("z").findRecord().getLevel());

// }
...

See also Transport6.java.

7.10.3.18 How to create a GAMSModelInstance from a GAMSCheckpoint (Transport7)

In Transport7 the usage of com::gams::api::GAMSModelInstance is demonstrated.

7.10 Tutorial 3583

At first checkpoint cp is created as in the preceding examples. Then we create the GAMSModelInstance
mi using the GAMSCheckpoint.addModelInstance method. Note that the GAMSJob again
contains no solve statement and the demand multiplier is already included with default value 1.
...

GAMSCheckpoint cp = ws.addCheckpoint();
// initialize a checkpoint by running a job
GAMSJob t7 = ws.addJobFromString(model);
t7.run(cp);
GAMSModelInstance mi = cp.addModelInstance();
...

See also Transport7.java.

7.10.3.19 How to modify a parameter of a GAMSModelInstance using GAMSModifier
(Transport7)

A GAMSModelInstance uses a SyncDB to maintain the data. We define bmult as GAMSParameter
using the GAMSParameter method and specify gurobi as solver. Afterwards the GAMSModelIn-
stance is instantiated with 3 arguments, the solve statement, GAMSOptions opt and GAMSModifier
bmult. The GAMSModifier means that bmult is modifiable while all other parameters, variables and
equations of ModelInstance mi stay unchanged. We use the GAMSParameter.addRecord method
and the setValue function to assign a value to bmult. That value can be varied afterwards using
the GAMSParameter.getFirstRecord method to reproduce our well-known example with different
demand multipliers.
...

GAMSParameter bmult = mi.SyncDB().addParameter("bmult", 0,"demand multiplier");
GAMSOptions opt = ws.addOptions();
opt.setAllModelTypes("gurobi");
// instantiate the ModelInstance and pass a model definition and Modifier to declare bmult mutable
mi.instantiate("transport use lp min z", opt, new GAMSModifier(bmult));
bmult.addRecord().setValue(1.0);
double[] bmultlist = new double[] { 0.6, 0.7 , 0.8, 0.9, 1.0,1.1, 1.2, 1.3 };
for (double b : bmultlist)
{

bmult.getFirstRecord().setValue(b);
mi.solve();
System.out.println("Scenario bmult=" + b + ":");
System.out.println(" Modelstatus: " + mi.getModelStatus());
System.out.println(" Solvestatus: " + mi.getSolveStatus());
System.out.println(" Obj: " + mi.SyncDB().getVariable("z").findRecord().getLevel());

}
...

See also Transport7.java.

7.10.3.20 How to modify a variable of a GAMSModelInstance using GAMSModifier
(Transport7)

We create a GAMSModelInstance just like in the next to last example. We define x as GAMSVariable
and its upper bound as GAMSParameter xup. At the following instantiate method GAMSModifier
has 3 arguments. The first one says that x is modifiable, the second determines which part of the variable
(lower bound, upper bound or level) can be modified and the third specifies the GAMSParameter that
holds the new value.

In the following loops we set the upper bound of one link of the network to zero, which means that
no transportation between the corresponding plant and market is possible, and solve the modified
transportation problem.
...

mi = cp.addModelInstance();
GAMSVariable x = mi.SyncDB().addVariable("x", 2, GAMSGlobals.VarType.POSITIVE, "");
GAMSParameter xup = mi.SyncDB().addParameter("xup", 2, "upper bound on x");
// instantiate the ModelInstance and pass a model definition and Modifier to declare upper bound of X mutable
mi.instantiate("transport use lp min z", new GAMSModifier(x, GAMSGlobals.UpdateAction.UPPER, xup));
for (GAMSSetRecord i : t7.OutDB().getSet("i"))
{

for (GAMSSetRecord j : t7.OutDB().getSet("j"))
{

3584 Application Programming Interfaces

xup.clear();
String[] keys = { i.getKeys()[0], j.getKeys()[0] };
xup.addRecord(keys).setValue(0);
mi.solve();
System.out.println("Scenario link blocked: " + i.getKeys()[0] + " - " + j.getKeys()[0]);
System.out.println(" Modelstatus: " + mi.getModelStatus());
System.out.println(" Solvestatus: " + mi.getSolveStatus());
System.out.println(" Obj: " + mi.SyncDB().getVariable("z").findRecord().getLevel());

}
}

...

See also Transport7.java.

7.10.3.21 How to use a queue to solve multiple GAMSModelInstances in parallel
(Transport8)

We initialize a GAMSCheckpoint cp from a GAMSJob. Then we define a queue that represents
the different values of the demand multiplier. A queue follows the first-in-first-out principle The object
IOLockObject is used later to avoid messed up output. Then we call Scenarios multiple times in parallel.
The number of parallel calls is specified by numberOfWorkers.
...

GAMSJob t8 = ws.addJobFromString(model);
t8.run(cp);
Queue<Double> bmultQueue = new LinkedList<Double>(

Arrays.asList(Double.valueOf(0.6), Double.valueOf(0.7),
Double.valueOf(0.8), Double.valueOf(0.9),
Double.valueOf(1.0), Double.valueOf(1.1),
Double.valueOf(1.2), Double.valueOf(1.3))

);
// solve multiple model instances in parallel
Object IOLockObject = new Object();
int numberOfWorkers = 2;
Scenarios[] scenarios = new Scenarios[numberOfWorkers];
for (int i=0; i<numberOfWorkers; i++)
{

scenarios[i] = new Scenarios(ws, cp, bmultQueue, IOLockObject, i);
scenarios[i].start();

}
...

In class Scenarios we create and instantiate a GAMSModelInstance as in the preceding examples
and make parameter bmult modifiable. Note that we chose cplex as solver because it is thread safe
(gurobi would also be possible). Once the queue is empty the loop terminates.
...
static class Scenarios extends Thread
{

GAMSWorkspace workspace;
GAMSCheckpoint checkpoint;
Object IOLockObject;
Queue<Double> bmultQueue;
int workerNumber;
public Scenarios(GAMSWorkspace ws, GAMSCheckpoint cp, Queue<Double> que, Object IOLockObj, int i)
{

workspace = ws;
checkpoint = cp;
IOLockObject = IOLockObj;
bmultQueue = que;
workerNumber = i;

}
public void run()
{

GAMSModelInstance mi = checkpoint.addModelInstance();
{

GAMSParameter bmult = mi.SyncDB().addParameter("bmult", 0, "demand multiplier");
GAMSOptions opt = workspace.addOptions();
opt.setAllModelTypes("cplex");
// instantiate the GAMSModelInstance and pass a model definition and GAMSModifier to declare bmult mutable
mi.instantiate("transport use lp min z", opt, new
GAMSModifier(bmult));
bmult.addRecord().setValue(1.0);
while (true)

double b = 0.0;
// dynamically get a bmult value from the queue instead of passing it to the different threads at creation

time
synchronized (bmultQueue)

if (bmultQueue.isEmpty())
break;

7.10 Tutorial 3585

else
b = bmultQueue.remove();

}
bmult.getFirstRecord().setValue(b);
mi.solve();
// we need to make the output a critical section to avoid messed up report informations
synchronized (IOLockObject)
{

System.out.println("#"+workerNumber+":Scenario bmult=" + b + ":");
System.out.println(" Modelstatus: " + mi.getModelStatus());
System.out.println(" Solvestatus: " + mi.getSolveStatus());
System.out.println(" Obj: " + mi.SyncDB().getVariable("z").findRecord().getLevel());

}
}

}
}

}
...

See also Transport8.java.

7.10.3.22 How to fill a GAMSDatabase by reading from MS Access (Transport9)

This example illustrates how to import data from Microsoft Access to a GAMSDatabase (on Windows
platform only). There are a few prerequisites required to run Transport9 successfully.

• Install a Microsoft access driver on your machine (if none is available) as the driver must be loaded
at runtime to connect to a data source file.

• To access the data source file go to Control Panel\System and Security\Administrative
Tools\Data Sources (ODBC) and set up a data source name (DSN) as ”transportdsn”, leave
out user ID and password, and select [PathToGAMS]/apfiles/Data/tansport.accdb as the data
source file.

• Note that an architecture mismatch between the Driver and Application might cause problems.

We call a function readDataFromAccess that finally returns a GAMSDatabase as shown below.
...

GAMSDatabase db = readDataFromAccess(ws);
...

The function readDataFromAccess begins with the creation of an empty database. Afterwards we set up
a connection to the MS Access database by specifying the aforementioned data source name (DSN). To
finally read in GAMS sets and parameters we call the functions readSet and readParameter.
static GAMSDatabase readDataFromAccess(GAMSWorkspace ws)
{

GAMSDatabase db = ws.addDatabase();
try {

// loading the jdbc odbc driver
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
// creating connection to database
Connection c = DriverManager.getConnection("jdbc:odbc:transportdsn","","");
// read GAMS sets
readSet(c, db, "SELECT Plant FROM Plant", "i", 1, "canning plants");
readSet(c, db, "SELECT Market FROM Market", "j", 1, "markets");
// read GAMS parameters
readParameter(c, db, "SELECT Plant, Capacity FROM Plant", "a", 1, "capacity of plant i in cases");
readParameter(c, db, "SELECT Market,Demand FROM Market", "b", 1, "demand at market j in cases");
readParameter(c, db, "SELECT Plant,Market,Distance FROM Distance", "d", 2, "distance in thousands of miles");
c.close();

} catch (ClassNotFoundException e) {
System.err.println("Error: Failed to find a driver for the database.");
e.printStackTrace();
System.exit(-1);

} catch (SQLException e) {
System.err.println("Error: Failed to retrieve data from the database.");
e.printStackTrace();
System.exit(-1);

}
return db;

}

3586 Application Programming Interfaces

The function readSet adds a set to the GAMSDatabase that is filled with the data from the MS
Access file afterwards. The function readParameter works quite similar.
static void readSet(Connection c, GAMSDatabase db, String queryString, String setName, int setDimension, String

setExplanatoryText) throws SQLException
{

Statement st = c.createStatement();
ResultSet rs = st.executeQuery(queryString);
ResultSetMetaData rsmd = rs.getMetaData();
if (rsmd.getColumnCount() != setDimension)
{

System.err.println("Error: Number of fields in select statement does not match setDimemsion.");
c.close();
System.exit(-1);

}
GAMSSet set = db.addSet(setName, setDimension, setExplanatoryText);
String[] keys = new String[setDimension];
while (rs.next())
{

for (int idx=0; idx < setDimension; idx++)
keys[idx] = rs.getString(idx+1);

set.addRecord(keys);
}
st.close();

}

Once we read in all the data we can create a GAMSJob from the GAMSDatabase and run it as
usual.

See also Transport9.java.

7.10.3.23 How to fill a GAMSDatabase by reading from MS Excel (Transport10)

This example illustrates how to read data from Excel, or to be more specific, from [PathToGAMS]\apifiles\Data\transport.xlsx.

At first we have to add an additional jar file to the [CLASSESPATH] since we use the Java
Excel API which can be donwnloaded from jexcelapi. We unzipped the Java Excel API
folder in C:\tools. To compile and run on a Windows platform from the command line go to
C:\GAMS\win64\24.1\apifiles\Java\transport and use:

javac -cp C:\GAMS\win64\GAMS_VERSION\apifiles\Java\api\GAMSJavaAPI.jar;C:\tools\jexcelapi\jxl.jar;. -d . Transport10.java

and

java -cp C:\GAMS\win64\GAMS_VERSION\apifiles\Java\api\GAMSJavaAPI.jar;C:\tools\jexcelapi\jxl.jar;. com.gams.examples.transport.Transport10

If you are using an IDE like Eclipse add C:\tools\jexcelapi\jxl.jar to the class path as explained in
the Compiling a Program from Java IDE and Running a Program from Java IDE section.

The model is given as string without data like in many examples before and the Excel file transport.xlsx
is located at [gamsdir]\apifiles\Data.

At first we define the input string and create the corresponding input file.
...

String input = gamsdir + "apifiles" +
GAMSGlobals.FILE SEPARATOR + "Data" + GAMSGlobals.FILE SEPARATOR + "transport.xlsx";
File inputFile = new File(input);

...

The following lines address the different worksheets and read in the contained data.
...

int iCount = 0;
int jCount = 0;
String[][] capacityData = null;
String[][] demandData = null;
String[][] distanceData = null;
Workbook w;

http://jexcelapi.sourceforge.net/

7.10 Tutorial 3587

try {
w = Workbook.getWorkbook(inputFile);
Sheet capacity = w.getSheet("capacity");
capacityData = new String[capacity.getRows()][capacity.getColumns()];
iCount = capacity.getColumns();
for (int j = 0; j < capacity.getColumns(); j++)

for (int i = 0; i < capacity.getRows(); i++)
capacityData[i][j] = capacity.getCell(j, i).getContents();

Sheet demand = w.getSheet("demand");
demandData = new String[demand.getRows()][demand.getColumns()];
jCount = demand.getColumns();
for (int j = 0; j < demand.getColumns(); j++)

for (int i = 0; i < demand.getRows(); i++)
demandData[i][j] = demand.getCell(j, i).getContents();

Sheet distance = w.getSheet("distance");
distanceData = new String[distance.getRows()][distance.getColumns()];
for (int j = 0; j < distance.getColumns(); j++)

for (int i = 0; i < distance.getRows(); i++)
distanceData[i][j] = distance.getCell(j, i).getContents();

w.close();
} catch (IOException e) {

e.printStackTrace();
} catch (BiffException e) {

e.printStackTrace();
}

...

Now we can create the GAMSWorkspace as usual and afterwards create a GAMSDatabase and fill
it with the workbook data as follows:
...

GAMSDatabase db = ws.addDatabase();
GAMSSet i = db.addSet("i", 1, "Plants");
GAMSSet j = db.addSet("j", 1, "Markets");
GAMSParameter capacityParam = db.addParameter("a", 1, "Capacity");
GAMSParameter demandParam = db.addParameter("b", 1, "Demand");
GAMSParameter distanceParam = db.addParameter("d", 2, "Distance");
for (int ic = 0; ic < iCount; ic++)
{

i.addRecord(capacityData[0][ic]);
capacityParam.addRecord(capacityData[0][ic]).setValue(Double.valueOf(capacityData[1][ic]).doubleValue());
}
for (int jc = 0; jc < jCount; jc++)
{

j.addRecord(demandData[0][jc]);
demandParam.addRecord(demandData[0][jc]).setValue(Double.valueOf(demandData[1][jc]).doubleValue());
String[] data = null;
for (int ic = 0; ic < iCount; ic++)
{

data = new String[] { distanceData[ic+1][0], distanceData[0][jc+1] };
distanceParam.addRecord(data).setValue(Double.valueOf(distanceData[ic+1][jc+1]));

}
}

Note that we can name sets and parameters just like in the database but we don't have to. Now we can
run our GAMSJob as usual.
...

GAMSOptions opt = ws.addOptions();
GAMSJob t10 = ws.addJobFromString(model);
opt.defines("gdxincname", db.getName());
opt.setAllModelTypes("xpress");
t10.run(opt, db);
for (GAMSVariableRecord rec : t10.OutDB().getVariable("x"))

System.out.println("x(" + rec.getKeys()[0] + "," + rec.getKeys()[1] + "): level=" + rec.getLevel() + " marginal=" +
rec.getMarginal());

...

See also Transport10.java.

7.10.3.24 How to create and use a save/restart file (Transport11)

In Transport11 we demonstrate how to create and use a save/restart file. Usually such a file should be
supplied by an application provider but in this example we create one for demonstration purpose. Note
that the restart is launched from a GAMSCheckpoint. From the main function we call the function
CreateSaveRestart giving it the current working directory and the desired file name as arguments.
...

CreateSaveRestart(workingDirectory, "tbase");
...

3588 Application Programming Interfaces

In function CreateSaveRestart create a workspace with the given working directory. Then we create
a GAMSJob from a string. Note that the string given via baseModel contains the basic definitions
of sets without giving them a content (that is what $onempty is used for). Afterwards we specify a
GAMSOptions to only compile the job but do not execute it. Then we create a checkpoint cp that is
initialized by the following run of the GAMSJob and stored in the file given as argument to the function,
in our case tbase. This becomes possible because the addCheckpoint method accepts identifiers as
well as file names as argument.
static void CreateSaveRestart(File workingDirectory, String cpFileName)
{

GAMSWorkspaceInfo wsInfo = new GAMSWorkspaceInfo();
wsInfo.setWorkingDirectory(workingDirectory.getAbsolutePath());
GAMSWorkspace ws = new GAMSWorkspace(wsInfo);
GAMSJob j1 = ws.addJobFromString(baseModel);
GAMSOptions opt = ws.addOptions();
opt.setAction(GAMSOptions.EAction.CompileOnly);
GAMSCheckpoint cp = ws.addCheckpoint(cpFileName);
j1.run(opt, cp);
opt.dispose();

}

So what you should keep in mind before we return to further explanations of the main function is, that
the file tbase is now in the current working directory and contains a checkpoint. Now in the main function
we define some data using Java data structures as we already did in Transport4 before we create the
GAMSWorkspace and a GAMSDatabase.
...

GAMSWorkspaceInfo wsInfo = new GAMSWorkspaceInfo();
wsInfo.setWorkingDirectory(workingDirectory.getAbsolutePath());
GAMSWorkspace ws = new GAMSWorkspace(wsInfo);
GAMSDatabase db = ws.addDatabase();

...

Afterwards we set up the GAMSDatabase like we already did in Transport4. Once this is done we
run a GAMSJob using this data plus the checkpoint stored in file tbase.
...

GAMSCheckpoint cpBase = ws.addCheckpoint("tbase");
GAMSOptions opt = ws.addOptions();
GAMSJob t11 = ws.addJobFromString(model, cpBase);
opt.defines("gdxincname", db.getName());
opt.setAllModelTypes("xpress");
t11.run(opt, db);

...

Note that the string from which we create job t11 is different to the one used to prepare the checkpoint
stored in tbase and is only responsible for reading in the data from the GAMSDatabase correctly. The
entire model definition is delivered by the checkpoint cpBase which is equal to the one we saved in tbase.

See also Transport11.java.

7.11 Control

GAMS control is a sub-module of the Python API that allows for full control over the GAMS system
(data, model instances, and solving). It can be used in conjunction with other Python API sub-modules
(numpy and transfer) to boost performance when pushing/pulling data to/from a GAMS model. The
gams.control package provides objects to interact with the General Algebraic Modeling System (GAMS).
Objects in this package allow convenient exchange of input data and model results (GamsDatabase), help
to create and run GAMS models (GamsJob), that can be customized by GAMS options (GamsOptions).
Furthermore, it introduces a way to solve a sequence of closely related model instances in the most efficient
way (GamsModelInstance).

A GAMS program can include other source files (e.g. $include), load data from GDX files (e.g. $GDXIN
or execute load), and create PUT files. All these files can be specified with a (relative) path and therefore
an anchor into the file system is required. The base class GamsWorkspace manages the anchor to the
file system. If external file communication is not an issue in a particular Python application, temporary
directories and files will be managed by objects in the namespace.

With the exception of GamsWorkspace the objects in the gams.control package cannot be accessed
across different threads unless the instance is locked. The classes themself are thread safe and multiple
objects of the class can be used from different threads (see below for restrictions on solvers that are not
thread safe within the GamsModelInstance class).

7.11 Control 3589

Note

If you use multiple instances of the GamsWorkspace in parallel, you should avoid using the same
working directory. Otherwise you may end up with conflicting file names.

The GAMS control Python API lacks support for the following GAMS components: Acronyms, support
for GAMS compilation/execution errors (GamsJob.run just throws an exception), structured access to
listing file, and proper support for solver options.

Currently only Cplex, Gurobi, and SoPlex fully utilize the power of solving GamsModelInstances. Some
solvers will not even work in a multi-threaded application using GamsModelInstances. For some solvers
this is unavoidable because the solver library is not thread safe (e.g. MINOS), other solvers are in principle
thread safe but the GAMS link is not (e.g. SNOPT). Moreover, GamsModelInstances are not available
for quadratic model types (QCP, MIQCP, RMIQCP).

7.11.1 Recommended Import

GAMS control is available with the following import statement once the API has been installed:

Other sub-modules must be imported with separate import statements.

7.11.1.1 Specifying a GAMS System Directory

There are several ways to specify which system directory should be used. On all platforms, the system
directory can be specified in the GamsWorkspace constructor. If no system directory is specified by the
user, The API tries to find one automatically:

• Windows: Try to find a system directory in the Windows registry.

• Linux: Try to find a system directory in the PATH first. If none was found, search LD LIBRARY PATH.

• OS X: Try to find a system directory in the PATH first. If none was found, search DYLD LIBRARY PATH.

The environment variable PATH can be set as follows on Linux and macOS:
export PATH=<Path/To/GAMS>:$PATH

Note

On Linux and macOS it is recommended to specify the PATH only instead of (DY)LD LIBRARY PATH

since this might cause problems loading the correct version of certain modules (e.g. gdx).

7.11.2 Important Classes of the API

This section provides a quick overview of some fundamental classes of the GAMS control API. Their
usage is demonstrated by an extensive set of examples in the How to use the API section.

• gams::control::workspace::GamsWorkspace Class

• gams::control::execution::GamsJob Class

• gams::control::database::GamsDatabase Class

• gams::control::options::GamsOptions Class

• gams::control::execution::GamsModelInstance Class

3590 Application Programming Interfaces

7.11.3 How to use the API

The GAMS distribution provides several examples that illustrate the usage of the API. [GAMSDIR]\api\python\examples\control
contains multiple examples dealing with the well-known transportation problem. In further course of
this tutorial we discuss these examples step by step and introduce new elements of the API in detail.

We recommend to open the aforementioned files to gain a complete overview of the examples. Down below
we explain the examples with the help of selected code snippets.

• How to import packages/modules from the GAMS control API (transport1.py)

• How to choose the GAMS system (transport1.py)

• How to export data to GDX (transport gdx.py)

• How to import data from GDX (transport gdx.py)

• How to run a GamsJob from file (transport1.py)

• How to retrieve a solution from an output database (transport1.py)

• How to specify the solver using GamsOptions (transport1.py)

• How to run a job with a solver option file and capture its log output (transport1.py)

• How to use include files (transport2.py)

• How to read data from string and export to GDX (transport3.py)

• How to run a job using data from GDX (transport3.py)

• How to run a job using implicit database communication (transport3.py)

• How to define data using Python data structures (transport4.py)

• How to prepare a GamsDatabase from Python data structures (transport4.py)

• How to initialize a GamsCheckpoint by running a GamsJob (transport5.py)

• How to initialize a GamsJob from a GamsCheckpoint (transport5.py)

• How to run multiple GamsJobs in parallel using a GamsCheckpoint (transport6.py)

• How to create a GamsModelInstance from a GamsCheckpoint (transport7.py)

• How to modify a parameter of a GamsModelInstance using GamsModifier (transport7.py)

• How to modify a variable of a GamsModelInstance using GamsModifier (transport7.py)

• How to use a queue to solve multiple GamsModelInstances in parallel (transport8.py)

• How to fill a GamsDatabase by reading from MS Access (transport9.py)

• How to fill a GamsDatabase by reading from MS Excel (transport10.py)

• How to create and use a save/restart file (transport11.py)

7.11.3.1 How to import packages/modules from the GAMS control API (transport1.py)

Before we can start using the GAMS control API, it needs to be installed by following the instructions
from the Getting Started section. Afterwards we can use the API by importing the GamsWorkspace class
like this:
from gams import GamsWorkspace

Conventional Python packages/modules can by imported like that:
import os
import sys

http://www.gams.com/docs/example.htm

7.11 Control 3591

7.11.3.2 How to choose the GAMS system (transport1.py)

By default the GAMS system is determined automatically. In case of having multiple GAMS systems
on your machine, the desired system can be specified via an additional argument when the workspace is
created. If we type python transport1.py C:/GAMS/42 we use GAMS 42 to run transport1.py even if
our default GAMS system might be a different one. This is managed by the following code:
...
sys dir = sys.argv[1] if len(sys.argv) > 1 else None
ws = GamsWorkspace(system directory=sys dir)
...

7.11.3.3 How to export data to GDX (transport gdx.py)

Although the GAMS control Python API offers much more than exchanging data between Python and
GDX, a common use case is the export and import of GDX files. The central class for this purpose is
GamsDatabase. We assume that the data to be exported is available in Python data structures.
...

plants = ["Seattle", "San-Diego"]
markets = ["New-York", "Chicago", "Topeka"]
capacity = {"Seattle": 350.0, "San-Diego": 600.0}
demand = {"New-York": 325.0, "Chicago": 300.0, "Topeka": 275.0}
distance = {

("Seattle", "New-York"): 2.5,
("Seattle", "Chicago"): 1.7,
("Seattle", "Topeka"): 1.8,
("San-Diego", "New-York"): 2.5,
("San-Diego", "Chicago"): 1.8,
("San-Diego", "Topeka"): 1.4,

}
...

Different GAMS symbols are represented using different Python data structures. The data for the
GAMS sets is represented using Python lists of strings (e.g. plants and markets). On the other hand,
GAMS parameters are represented by Python dictionaries (e.g. capacity and demand). Note that
the representation of the two dimensional parameter distance uses Python tuples for storing the keys.
The choice of data structures can also be different, but the used structures in this example fit well for
representing GAMS data with standard Python data structures.

A new GamsDatabase instance can be created using GamsWorkspace.add database.
...

create new GamsDatabase instance
db = ws.add database()

...

We start adding GAMS sets using the method GamsDatabase.add set which takes the name and the
dimension as arguments. The third argument is an optional explanatory text. A for-loop iterates through
plants and adds new records to the recently created GamsSet instance i using GamsSet.add record.
...

add 1-dimensional set ’i’ with explanatory text ’canning plants’ to the GamsDatabase
i = db.add set("i", 1, "canning plants")
for p in plants:

i.add record(p)
...

GamsParameter instances can be added by using the method GamsDatabase.add parameter. It
has the same signature as GamsDatabase.add set. Anyhow, in this example we use Gams-
Database.add parameter dc instead which takes a list of GamsSet instances instead of the dimension for
creating a parameter with domain information.
...

add parameter ’a’ with domain ’i’
a = db.add parameter dc("a", [i], "capacity of plant i in cases")
for p in plants:

a.add record(p).value = capacity[p]
...

As soon as all data is prepared in the GamsDatabase, the method GamsDatabase.export can be used to
create a GDX file.
...

export the GamsDatabase to a GDX file with name ’data.gdx’ located in the ’working directory’ of the GamsWorkspace
db.export("data.gdx")

...

3592 Application Programming Interfaces

7.11.3.4 How to import data from GDX (transport gdx.py)

Data can be imported from a GDX file using GamsWorkspace.add database from gdx. The method takes
a path to a GDX file and creates a GamsDatabase instance.
...

add a new GamsDatabase and initialize it from the GDX file just created
db2 = ws.add database from gdx("data.gdx")

...

Reading the data from the GamsSet i into a list can be done as follows:
...

read data from symbols into Python data structures
i = [rec.keys[0] for rec in db2["i"]]

...

A Python list is created using list comprehensions. i is retrieved by querying the GamsDatabase db2.
The returned GamsSet object can be iterated using a for-loop to access the records of the set. Each record
is of type GamsSetRecord and can be asked for its keys.

You can do the same for GamsParameters. Instead of creating a Python list, we want to have the data in
the form of a Python dictionary. GamsParameterRecords can not only be asked for their keys, but also
for their value. The following code snippet shows how to read the one dimensional parameter a into a
Python dictionary using dict comprehensions.
...

a = {rec.keys[0]: rec.value for rec in db2["a"]}
...

For multi dimensional symbols, we choose the Python dictionary keys to be tuples instead of string. We
access the keys as usual, but do not address a specific key. Instead, we take the whole list of keys and
turn it into a tuple.
...

d = {tuple(rec.keys): rec.value for rec in db2["d"]}
...

Scalars can be read into a Python identifier by accessing the value of the first and only record.
...

f = db2["f"].first record().value
...

7.11.3.5 How to run a GamsJob from file (transport1.py)

At first we create our workspace using ws = GamsWorkspace(). Afterwards we load the trnsport model
from the GAMS model library which puts the corresponding gms file in our working directory. Note that
you can create a GamsJob with any other gms file you might have created on your own as long as it is
located in the current working directory. Then the GamsJob job can be defined using the add job from file
method and afterwards we run the job.
...

ws.gamslib("trnsport")
job = ws.add job from file("trnsport.gms")
job.run()

...

7.11.3.6 How to retrieve a solution from an output database (transport1.py)

The following lines create the solution output and illustrate the usage of the GamsJob.out db property to
get access to the GamsDatabase created by the run method. To retrieve the content of variable x we use
squared brackets that internally call the get symbol method.
...

for rec in job.out db["x"]:
print(

f"x({rec.key(0)},{rec.key(1)}): level={rec.level} marginal={rec.marginal}"
)

...

Note that instead of using the squared brackets we could also use
...

for rec in job.out db.get symbol("x"):
...

7.11 Control 3593

7.11.3.7 How to specify the solver using GamsOptions (transport1.py)

The solver can be specified via the GamsOptions class and the GamsWorkspace.add options method.
The GamsOptions.all model types property sets xpress as default solver for all model types that can be
handled by the solver. Then we run our GamsJob job with the new GamsOption.
...

opt = ws.add options()
opt.all model types = "xpress"
job.run(opt)

...

7.11.3.8 How to run a job with a solver option file and capture its log output
(transport1.py)

At first we create the file xpress.opt with content algorithm=barrier which will be used as solver
option file and is stored in the current working directory. Afterwards we use a GamsOption just like in
the preceding example and set GamsOption.optfile property to 1 to tell the solver to look for a solver
option file. In addition, we specify the argument output in order to write the log of the GamsJob into
the file transport1 xpress.log.
...

with open(os.path.join(ws.working directory, "xpress.opt"), "w") as file:
file.write("algorithm=barrier")

opt.optfile = 1
with open("transport1 xpress.log", "w") as log:

job.run(opt, output=log)
...

Instead of writing the log output to a file, any object that provides the functions write and flush can be
used. In order to write the log directly to stdout, we can use the following code:
...

job.run(opt, output=sys.stdout)
...

7.11.3.9 How to use include files (transport2.py)

In this example, as in many succeeding, the data text and the model text are separated into two different
strings. Note that these strings accessed via GAMS DATA and GAMS MODEL are using GAMS syntax. At
first we write an include file tdata.gms that contains the data but not the model text and save it in our
current working directory.
...

with open(os.path.join(ws.working directory, "tdata.gms"), "w") as file:
file.write(GAMS DATA)

...

Afterwards we create a GamsJob using the GamsWorkspace.add job from string method. GamsOp-
tions.defines is used like the 'double dash' GAMS parameters, i.e. it corresponds to --incname=tdata on
the command line where incname is used as name for the include file in GAMS MODEL as shown below.
...

job = ws.add job from string(GAMS MODEL)
opt = ws.add options()
opt.defines["incname"] = "tdata"
job.run(opt)

...

The string GAMS MODEL contains the following lines to read in the data.
...
$if not set incname $abort ’no include file name for data file provided’
$include %incname%
...

3594 Application Programming Interfaces

7.11.3.10 How to read data from string and export to GDX (transport3.py)

We read the data from the string GAMS DATA. Note that this contains no model but only data definition in
GAMS syntax. By running the corresponding GamsJob a GamsDatabase is created that is available via
the GamsJob.out db property. We can use the GamsDatabase.export method to write the content of this
database to a GDX file tdata.gdx in the current working directory.
...

job = ws.add job from string(GAMS DATA)
job.run()
job.out db.export(os.path.join(ws.working directory, "tdata.gdx"))

...

7.11.3.11 How to run a job using data from GDX (transport3.py)

This works quite similar to the usage of an include file explained in How to use include files (transport2.py).
...

job = ws.add job from string(GAMS MODEL)
opt = ws.add options()
opt.defines["gdxincname"] = "tdata"
opt.all model types = "xpress"
job.run(opt)

...

Note that there are some minor changes in GAMS MODEL compared to preceding examples due to the usage
of a GDX instead of an include file.
...
$if not set gdxincname $abort ’no include file name for data file provided’
$gdxIn %gdxincname%
$load i j a b d f
$gdxIn
...

7.11.3.12 How to run a job using implicit database communication (transport3.py)

This example does basically the same as the two preceding examples together. We create two GamsJobs
job data and job model where the first one contains only the data and the second one contains only the
model without data. After running job data the corresponding out db can be read in directly just like a
GDX file. Note that the database needs to be passed to the GamsJob.run method as additional argument.
...

job data = ws.add job from string(GAMS DATA)
job model = ws.add job from string(GAMS MODEL)
job data.run()
opt.defines["gdxincname"] = job data.out db.name
job model.run(opt, databases=job data.out db)

...

7.11.3.13 How to define data using Python data structures (transport4.py)

We use Python lists to define the sets and Python dictionaries for the parameter definition.
...

plants = ["Seattle", "San-Diego"]
markets = ["New-York", "Chicago", "Topeka"]
capacity = {"Seattle": 350.0, "San-Diego": 600.0}
demand = {"New-York": 325.0, "Chicago": 300.0, "Topeka": 275.0}
distance = {

("Seattle", "New-York"): 2.5,
("Seattle", "Chicago"): 1.7,
("Seattle", "Topeka"): 1.8,
("San-Diego", "New-York"): 2.5,
("San-Diego", "Chicago"): 1.8,
("San-Diego", "Topeka"): 1.4,

}
...

7.11 Control 3595

7.11.3.14 How to prepare a GamsDatabase from Python data structures (transport4.py)

At first we create an empty GamsDatabase db using the GamsWorkspace.add database method. Af-
terwards we prepare the database. To add a set to the database we use the GamsSet class and the
GamsDatabase.add set method with arguments describing the identifier, dimension and explanatory text.
To add the records to the database we iterate over the elements of our Python data structure and add
them by using the GamsSet.add record method.

For parameters the procedure is pretty much the same. Note that the table that specifies the distances in
GAMS can be treated as parameter with dimension 2.

The GamsJob can be run like explained in the preceding example How to run a job using implicit database communication (transport3.py).
...

db = ws.add database()
i = db.add set("i", 1, "canning plants")
for p in plants:

i.add record(p)
j = db.add set("j", 1, "markets")
for m in markets:

j.add record(m)
a = db.add parameter dc("a", [i], "capacity of plant i in cases")
for p in plants:

a.add record(p).value = capacity[p]
b = db.add parameter dc("b", [j], "demand at market j in cases")
for m in markets:

b.add record(m).value = demand[m]
d = db.add parameter dc("d", [i, j], "distance in thousands of miles")
for k, v in distance.items():

d.add record(k).value = v
f = db.add parameter("f", 0, "freight in dollars per case per thousand miles")
f.add record().value = 90
job = ws.add job from string(GAMS MODEL)
opt = ws.add options()
opt.defines["gdxincname"] = db.name
opt.all model types = "xpress"
job.run(opt, databases=db)

...

7.11.3.15 How to initialize a GamsCheckpoint by running a GamsJob (transport5.py)

The following lines of code conduct several operations. While the first line simply creates a GamsCheckpoint,
the second one uses the GamsWorkspace.add job from string method to create a GamsJob containing the
model text and data but no solve statement. Afterwards the run method gets the GamsCheckpoint as
argument. That means the GamsCheckpoint cp captures the state of the GamsJob.
...

cp = ws.add checkpoint()
job = ws.add job from string(GAMS MODEL)
job.run(checkpoint=cp)

...

7.11.3.16 How to initialize a GamsJob from a GamsCheckpoint (transport5.py)

Note that the string GAMS MODEL contains the entire model and data definition plus an additional demand
multiplier and scalars for model and solve status but no solve statement:
...

bmult ’demand multiplier’ / 1 /;
...

demand(j) ’satisfy demand at market j’;
...
Scalar ms ’model status’, ss ’solve status’;
...

In transport5.py we create a list with eight different values for this demand multiplier.
...

bmult = [0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3]
...

For each entry of that list we create a GamsJob using the GamsWorkspace.add job from string method.
Besides another string which resets the demand multiplier bmult, specifies the solve statement and assigns

3596 Application Programming Interfaces

values to the scalars ms and ss we pass the checkpoint cp as additional argument. This results in a
GamsJob combined from the checkpoint plus the content provided by the string.

We run the GamsJob and print some interesting data from the out db.
...

for b in bmult:
job = ws.add job from string(

f"bmult={b}; solve transport min z use lp; ms=transport.modelstat; ss=transport.solvestat;",
cp,

)
job.run()
print(f"Scenario bmult={b}:")
print(f" Modelstatus: {job.out db[’ms’].find record().value}")
print(f" Solvestatus: {job.out db[’ss’].find record().value}")
print(f" Obj: {job.out db[’z’].find record().level}")

...

NOTE: Some of the demand multipliers cause infeasibility. Nevertheless, GAMS keeps the incumbent
objective function value. Therefore the model status and the solve status provide important information
for a correct solution interpretation.

7.11.3.17 How to run multiple GamsJobs in parallel using a GamsCheckpoint
(transport6.py)

With the exception of GamsWorkspace the objects in the gams.control package cannot be accessed
across different threads unless the instance is locked. The classes themselves are thread safe and multiple
objects of the class can be used from different threads (see below for restrictions on solvers that are not
thread safe within the GamsModelInstance class).

Note

If you use multiple instances of the GamsWorkspace in parallel, you should avoid using the same
working directory. Otherwise you may end up with conflicting file names.

Currently only Cplex, Gurobi, and SoPlex fully utilize the power of solving GamsModelInstances. Some
solvers will not even work in a multi-threaded application using GamsModelInstances. For some solvers
this is unavoidable because the solver library is not thread safe (e.g. MINOS), other solvers are in principle
thread safe but the GAMS link is not (e.g. SNOPT). Moreover, GamsModelInstances are not available
for quadratic model types (QCP, MIQCP, RMIQCP).

This example illustrates how to run the jobs known from transport5.py in parallel. We initialize the
GamsCheckpoint cp and introduce a demand multiplier as we did before:
...

cp = ws.add checkpoint()
job = ws.add job from string(GAMS MODEL)
job.run(checkpoint=cp)
bmult = [0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3]

...

Furthermore, we introduce a lock object io lock that will be used to avoid mixed up output from the
parallel jobs. We create one scenario for each entry of bmultlist and cause a thread to begin execution.
...

io lock = Lock()
threads = {}
for b in bmult:

threads[b] = Thread(target=run scenario, args=(ws, cp, io lock, b))
threads[b].start()

for b in bmult:
threads[b].join()

...

In function run scenario a GamsJob is created and run just like in the preceding example of transport5.py.
The output section is also the same except for the fact that it is 'locked' by the object io lock which
means that the output section cannot be executed simultaneously for multiple demand multipliers.
...
def run scenario(workspace, checkpoint, io lock, b):

7.11 Control 3597

job = workspace.add job from string(
f"bmult={b}; solve transport min z use lp; ms=transport.modelstat; ss=transport.solvestat;",
checkpoint,

)
job.run()
we need to make the ouput a critical section to avoid messed up report informations
io lock.acquire()
print(f"Scenario bmult={b}:")
print(f" Modelstatus: {job.out db[’ms’].first record().value}")
print(f" Solvestatus: {job.out db[’ss’].first record().value}")
print(f" Obj: {job.out db[’z’].first record().level}")
io lock.release()

...

While the output in transport5.py is strictly ordered subject to the order of the elements of bmult in
transport6.py the output blocks might change their order but the blocks describing one scenario are still
appearing together due to the io lock object.

7.11.3.18 How to create a GamsModelInstance from a GamsCheckpoint (transport7.py)

In transport7.py the usage of GamsModelInstance is demonstrated.

At first checkpoint cp is created as in the preceding examples. Note that the GamsJob job again contains
no solve statement and the demand multiplier is already included with default value 1. We create the
GamsModelInstance mi using the GamsCheckpoint.add modelinstance method.
...

cp = ws.add checkpoint()
job = ws.add job from string(GAMS MODEL)
job.run(checkpoint=cp)
mi = cp.add modelinstance()

...

7.11.3.19 How to modify a parameter of a GamsModelInstance using GamsModifier
(transport7.py)

A GamsModelInstance uses a sync db to maintain the data. We define bmult as GamsParameter using the
GamsDatabase.add parameter method and specify gurobi as solver. Afterwards the GamsModelInstance
is instantiated with 3 arguments, the solve statement, GamsModifier bmult and GamsOptions opt. The
GamsModifier means that bmult is modifiable while all other parameters, variables and equations of
GamsModelInstance mi stay unchanged. We use the GamsParameter.add record method to assign a value
to bmult. That value can be varied afterwards using the GamsParameter.first record method to reproduce
our well-known example with different demand multipliers.
...

bmult = mi.sync db.add parameter("bmult", 0, "demand multiplier")
opt = ws.add options()
opt.all model types = "cplex"
mi.instantiate("transport use lp min z", GamsModifier(bmult), opt)
bmult.add record().value = 1.0
bmult list = [0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3]
for b in bmult list:

bmult.first record().value = b
mi.solve()
print(f"Scenario bmult={b}:")
print(f" Modelstatus: {mi.model status}")
print(f" Solvestatus: {mi.solver status}")
print(f" Obj: {mi.sync db[’z’].first record().level}")

...

7.11.3.20 How to modify a variable of a GamsModelInstance using GamsModifier
(transport7.py)

We create a GamsModelInstance using the GamsCheckpoint.add modelinstance method. Afterwards we
define x as GamsVariable and a GamsParameter xup that will be used as upper bound for x. At the
following instantiate method GamsModifier has 3 arguments. The first one says that x is modifieable, the

3598 Application Programming Interfaces

second determines which part of the variable (lower bound, upper bound or level) can be modified and
the third specifies the GamsParameter that holds the new value, in this case xup.

In the following loops we set the upper bound of one link of the network to zero, which means that
no transportation between the corresponding plant and market is possible, and solve the modified
transportation problem.
...

mi = cp.add modelinstance()
x = mi.sync db.add variable("x", 2, VarType.Positive)
xup = mi.sync db.add parameter("xup", 2, "upper bound on x")
instantiate the GamsModelInstance and pass a model definition and GamsModifier to declare upper bound of x mutable
mi.instantiate("transport use lp min z", GamsModifier(x, UpdateAction.Upper, xup))
mi.solve()
for i in job.out db["i"]:

for j in job.out db["j"]:
xup.clear()
xup.add record((i.key(0), j.key(0))).value = 0
mi.solve()
print(f"Scenario link blocked: {i.key(0)} - {j.key(0)}")
print(f" Modelstatus: {mi.model status}")
print(f" Solvestatus: {mi.solver status}")
print(f" Obj: {mi.sync db[’z’].find record().level}")

...

7.11.3.21 How to use a queue to solve multiple GamsModelInstances in parallel
(transport8.py)

We initialize a GamsCheckpoint cp from a GamsJob. Then we define a list that represents the different
values of the demand multiplier. That list will be used like a queue where we extract the last element first.
The objects list lock and io lock are used later to avoid multiple reading of one demand multiplier
and messed up output. Then we call function scen solve multiple times in parallel. The number of
parallel calls is specified by nr workers.
...

cp = ws.add checkpoint()
job = ws.add job from string(GAMS MODEL)
job.run(checkpoint=cp)
bmult list = [1.3, 1.2, 1.1, 1.0, 0.9, 0.8, 0.7, 0.6]
list lock = Lock()
io lock = Lock()
start 2 threads
nr workers = 2
threads = {}
for i in range(nr workers):

threads[i] = Thread(
target=scen solve, args=(cp, bmult list, list lock, io lock)

)
threads[i].start()

for i in range(nr workers):
threads[i].join()

In function scen solve we create and instantiate a GamsModelInstance as in the preceding examples and
make parameter bmult modifiable. Note that we choose cplex as solver because it is thread safe (gurobi
would also be possible).

We have two critical sections that are locked by the objects list lock and io lock. Note that the pop
method removes and returns the last element from the list and deletes it. Once the list is empty the loop
terminates.
...
def scen solve(checkpoint, bmult list, list lock, io lock):

list lock.acquire()
mi = checkpoint.add modelinstance()
list lock.release()
bmult = mi.sync db.add parameter("bmult", 0, "demand multiplier")
opt = ws.add options()
opt.all model types = "cplex"
instantiate the GamsModelInstance and pass a model definition and GamsModifier to declare bmult mutable
mi.instantiate("transport use lp min z", GamsModifier(bmult), opt)
bmult.add record().value = 1.0
while True:

dynamically get a bmult value from the queue instead of passing it to the different threads at creation time
list lock.acquire()
if not bmult list:

list lock.release()
return

7.11 Control 3599

b = bmult list.pop()
list lock.release()
bmult.first record().value = b
mi.solve()
we need to make the ouput a critical section to avoid messed up report informations
io lock.acquire()
print(f"Scenario bmult={b}:")
print(f" Modelstatus: {mi.model status}")
print(f" Solvestatus: {mi.solver status}")
print(f" Obj: {mi.sync db[’z’].first record().level}")
io lock.release()

...

7.11.3.22 How to fill a GamsDatabase by reading from MS Access (transport9.py)

This example illustrates how to import data from Microsoft Access to a GamsDatabase. There are a few
prerequisites required to run transport9.py successfully.

• We import pyodbc.

• Note that an architecture mismatch might cause problems. The bitness of your MS Access, Python,
pyodbc and GAMS should be identical (64 bit).

We call a function read data from access that finally returns a GamsDatabase as shown below.
...

db = read from access(ws)
...

The function read from access begins with the creation of an empty database. Afterwards we set up a con-
nection to the MS Access database transport.accdb which can be found in [GAMSDIR]\apifiles\Data.
To finally read in GAMS sets and parameters we call the functions read set and read parameter that
are explained down below.
...
def read from access(ws):

db = ws.add database()
connect to database
str access conn = r"DRIVER={Microsoft Access Driver (*.mdb, *.accdb)};DBQ=..\..\..\..\apifiles\Data\transport.accdb"
try:

connection = pyodbc.connect(str access conn)
except Exception as e:

raise Exception(f"Error: Failed to create a database connection.\n{e}")
read GAMS sets
read set(connection, db, "SELECT Plant FROM plant", "i", 1, "canning plants")
read set(connection, db, "SELECT Market FROM Market", "j", 1, "markets")
read GAMS parameters
read parameter(

connection,
db,
"SELECT Plant,Capacity FROM Plant",
"a",
1,
"capacity of plant i in cases",

)
read parameter(

connection,
db,
"SELECT Market,Demand FROM Market",
"b",
1,
"demand at market j in cases",

)
read parameter(

connection,
db,
"SELECT Plant,Market,Distance FROM Distance",
"d",
2,
"distance in thousands of miles",

)
connection.close()
return db

...

The function read set adds a set to the GamsDatabase that is filled with the data from the MS Access
file afterwards. The function read parameter works quite similar.

3600 Application Programming Interfaces

...
def read set(connection, db, query string, set name, set dim, set exp=""):

try:
cursor = connection.cursor()
cursor.execute(query string)
data = cursor.fetchall()
if len(data[0]) != set dim:

raise Exception(
"Number of fields in select statement does not match setDim"

)
i = db.add set(set name, set dim, set exp)
for row in data:

keys = []
for key in row:

keys.append(str(key))
i.add record(keys)

except Exception as ex:
raise Exception(

"Error: Failed to retrieve the required data from the database.\n{0}".format(
ex

)
)

finally:
cursor.close()

...

Once we read in all the data we can create a GamsJob from the GamsDatabase and run it as usual.

7.11.3.23 How to fill a GamsDatabase by reading from MS Excel (transport10.py)

This example illustrates how to read data from Excel, or to be more specific, from [GAMSDIR]\apifiles\Data\transport.xlsx.

At first you have to download the openpyxl package:

pip install openpyxl

Now you should be able to run transport10.py.

In transport10.py the model is given as string without data like in many examples before and the Excel
file transport.xlsx is located at [GAMSDIR]\apifiles\Data. At first we define the workbook to read
from and the different sheet names. To ensure to have the same number of markets and plants in all
spreadsheets, we conduct a little test that checks for the number of rows and columns. Our workspace is
only created if this test yields no errors.
...

wb = load workbook(
os.path.join(*[os.pardir] * 4, "apifiles", "Data", "transport.xlsx")

)
capacity = wb["capacity"]
demand = wb["demand"]
distance = wb["distance"]
number of markets/plants have to be the same in all spreadsheets
if (

distance.max column - 1 != demand.max column
or distance.max row - 1 != capacity.max row

):
raise Exception("Size of the spreadsheets doesn’t match")

...

Now we can create a GamsDatabase and read in the data contained in the different worksheets. We
iterate over the columns and read in the set names and the corresponding parameter values.
...

db = ws.add database()
i = db.add set("i", 1, "Plants")
j = db.add set("j", 1, "Markets")
capacity param = db.add parameter dc("a", [i], "Capacity")
demand param = db.add parameter dc("b", [j], "Demand")
distance param = db.add parameter dc("d", [i, j], "Distance")
for c in capacity.iter cols():

key = c[0].value
i.add record(key)
capacity param.add record(key).value = c[1].value

for c in demand.iter cols():
key = c[0].value
j.add record(key)
demand param.add record(key).value = c[1].value

7.11 Control 3601

for c in range(2, distance.max column + 1):
for r in range(2, distance.max row + 1):

keys = (
distance.cell(row=r, column=1).value,
distance.cell(row=1, column=c).value,

)
v = distance.cell(row=r, column=c).value
distance param.add record(keys).value = v

...

Note that we can name sets and parameters just like in the database but we don't have to. Now we can
run our GamsJob as usual.
...

job = ws.add job from string(GAMS MODEL)
opt = ws.add options()
opt.defines["gdxincname"] = db.name
opt.all model types = "xpress"
job.run(opt, databases=db)
for rec in job.out db["x"]:

print(
f"x({rec.key(0)},{rec.key(1)}): level={rec.level} marginal={rec.marginal}"

)
...

7.11.3.24 How to create and use a save/restart file (transport11.py)

In transport11.py we demonstrate how to create and use a save/restart file. Usually such a file should be
supplied by an application provider but in this example we create one for demonstration purpose. Note
that the restart is launched from a GamsCheckpoint.

We create a directory tmp with internal identifier w dir in the directory we are currently in. This file will
be used as working directory later. From the main function we call the function create save restart

giving it directory tmp and the desired name for the save/restart file (tbase) as arguments.
...

working dir = os.path.join(os.curdir, "tmp")
create save restart(sys dir, os.path.join(working dir, "tbase"))

...

In function create save restart we create a workspace with the given working directory (w dir refers
to tmp). Then we create a GamsJob from a string. Note that the string given via get base model text

contains the basic definitions of sets without giving them a content (that is what $onempty is used for).
Afterwards we specify a GamsOption to only compile the job but do not execute it. Then we create
a checkpoint cp that is initialized by the following run of the GamsJob and stored in the file given as
argument to the function, in our case tbase. This becomes possible because the add checkpoint method
accepts identifiers as well as file names as argument.
...
def create save restart(sys dir, cp file name):

ws = GamsWorkspace(os.path.dirname(cp file name), sys dir)
job 1 = ws.add job from string(GAMS BASE MODEL)
opt = ws.add options()
opt.action = Action.CompileOnly
cp = ws.add checkpoint(os.path.basename(cp file name))
job 1.run(opt, cp)

...

So what you should keep in mind before we return to further explanations of the main function is, that
the file tbase is now in the current working directory and contains a checkpoint that will work exactly
like a restart file.

In the main function we define some data using Python data structures as we already did in [transport4.py]
(How to define data using Python data structures (transport4.py)) before we create the GamsWorkspace
and a GamsDatabase.
...

sys dir = sys.argv[1] if len(sys.argv) > 1 else None
working dir = os.path.join(os.curdir, "tmp")
ws = GamsWorkspace(working dir, sys dir)
db = ws.add database()

...

3602 Application Programming Interfaces

Afterwards we set up the GamsDatabase like we already did in [transport4.py] (How to prepare a GamsDatabase from Python data structures (transport4.py)).
Once this is done we run a GamsJob using this data plus the checkpoint stored in file tbase.
...

cp base = ws.add checkpoint("tbase")
job = ws.add job from string(GAMS MODEL, cp base)
opt = ws.add options()
opt.defines["gdxincname"] = db.name
opt.all model types = "xpress"
job.run(opt, databases=db)

...

Note that the string from which we create job is different to the one used to prepare the checkpoint stored
in tbase and is only responsible for reading in the data from the GamsDatabase correctly. The entire
model definition is delivered by the checkpoint cp base which is equal to the one we saved in tbase.

7.12 Tutorial

The goal of this tutorial is to provide a compact overview of the basic functionality of the GAMS Matlab
Control API. It allows the user to start immediately working with the API by providing a set of examples
based on the well-known transportation problem. Those examples are also part of the GAMS system
directory, see [PathToGAMS]/api/matlab/examples/control. These examples introduce several API
features step by step.

We recommend to open the aforementioned files to gain a complete overview of the examples. Down below
we explain the examples with the help of selected code snippets.

• Choose the GAMS system

• Export data to GDX

• Import data from GDX

• Run a Job from file

• Retrieve a solution from an output database

• Specify solver using Options

• Run Job with solver option file and capture log

• Use include files

• Set non-default working directory

• Read data from string and export to GDX

• Run Job using data from GDX

• Run Job using implicit database communication

• Define data using Matlab data structures

• Prepare Database from Matlab data structures

• Initialize Checkpoint by running Job

• Initialize Job from Checkpoint

• Create ModelInstance from Checkpoint

• Modify parameter of ModelInstance using Modifier

• Modify variable of ModelInstance using Modifier

• Create and use save/restart file

7.12 Tutorial 3603

7.12.1 Choose the GAMS system

Example: transport1

By default the GAMS system is determined automatically. In case of having multiple GAMS systems
on your machine, the desired system can be specified via an additional argument when the workspace is
created. When running the examples, we can provide an additional command line argument in order to
define the GAMS system directory that should be used. By executing transport1 with C:/GAMS/46 we
use GAMS 46.2 to run transport1 even if our default GAMS system might be a different one. This is
managed by the following code:
wsInfo = gams.control.WorkspaceInfo();
if nargin > 0

wsInfo.systemDirectory = varargin{1};
end
ws = gams.control.Workspace(wsInfo);

Note

The API can detect GAMS automatically from the PATH environment variable. Please note that
this is not the MATLABPATH. You can inspect the PATH with getenv("PATH").

In Matlab you can import the GAMS Control package by import gams.control.∗. Then, you
don't need to call the GAMS classes with the preceding gams.control..

7.12.2 Export data to GDX

Example: transport gdx

Although the Matlab Control API offers much more than exchanging data between Matlab and GDX, a
common use case is the export and import of GDX files. The central class for this purpose is Database.
We assume that the data to be exported is available in Matlab data structures.
plants = {’Seattle’, ’San-Diego’};
markets = {’New-York’, ’Chicago’, ’Topeka’};
capacity = containers.Map();
capacity(’Seattle’) = 350;
capacity(’San-Diego’) = 600;
demand = containers.Map();
demand(’New-York’) = 325;
demand(’Chicago’) = 300;
demand(’Topeka’) = 275;
distance = containers.Map();
distance(’Seattle.New-York’) = 2.5;
distance(’Seattle.Chicago’) = 1.7;
distance(’Seattle.Topeka’) = 1.8;
distance(’San-Diego.New-York’) = 2.5;
distance(’San-Diego.Chicago’) = 1.8;
distance(’San-Diego.Topeka’) = 1.4;

Different type of GAMS symbols are represented using different Matlab data structures. The data for
the GAMS sets is represented using a cell of strings (e.g. plants and markets). On the other hand,
GAMS parameters are represented by a containers.Map (e.g. capacity and demand). Note that the
representation of the two dimensional parameter distance uses a dot notation for storing the keys.
The choice of data structures can also be different, but the used structures in this example fit well for
representing GAMS data with Matlab data structures.

A new Database instance can be created using Workspace.addDatabase.
db = ws.addDatabase();

We start adding GAMS sets using the method Database.addSet which takes the name and the dimension
as arguments. The third argument is an optional explanatory text. A for-loop iterates through plants

and adds new records to the recently created Set instance i using Set.addRecord.
i = db.addSet(’i’, 1, ’canning plants’);
for p = plants

i.addRecord(p{1});
end

3604 Application Programming Interfaces

Parameter instances can be added by using the method Database.addParameter. In this example
we use the overloaded method which takes a list of Set instances instead of the dimension for creating a
parameter with domain information.
a = db.addParameter(’a’, ’capacity of plant i in cases’, i);
for p = plants

rec = a.addRecord(p{1});
rec.value = capacity(p{1});

end

As soon as all data is prepared in the Database, the method Database.export can be used to create
a GDX file.
db.export(’data.gdx’);

7.12.3 Import data from GDX

Example: transport gdx

Data can be imported from a GDX file using Workspace.addDatabaseFromGDX. The method takes
a path to a GDX file and creates a Database instance.
gdxdb = ws.addDatabaseFromGDX(’data.gdx’);

Reading the data from the Set i into a cell of strings can be done as follows:
gdxPlantsRecords = gdxdb.getSet(’i’).records;
gdxPlants = cell(size(gdxPlantsRecords));
for i = 1:numel(gdxPlants)

gdxPlants{i} = gdxPlantsRecords{i}.key(1);
end

i is retrieved by calling Database.getSet on gdxdb. The returned Set object has an attribute records
with an cell array of SetRecords. Each record can be asked for its keys.

You can do the same for Parameter. Instead of creating a cell, we want to have the data in the form of
a containers.Map. ParameterRecord can not only be asked for its keys, but also for its value. The
following code snippet shows how to read the one dimensional parameter a into a map.
gdxCapacity = containers.Map();
for rec = gdxdb.getParameter(’a’).records

gdxCapacity(rec{1}.key(1)) = rec{1}.value;
end

For a key of multi dimensional symbol, we choose a dot based concatenation of keys.
gdxDistance = containers.Map();
for rec = gdxdb.getParameter(’d’).records

gdxCapacity([rec{1}.key(1), ’.’, rec{1}.key(2)]) = rec{1}.value;
end

Scalar can be read into a variable of type double by accessing the value of the first and only record.
gdxFreight = gdxdb.getParameter(’f’).record.value;

7.12.4 Run a Job from file

Example: transport1

At first we create our workspace using Workspace ws = gams.control.Workspace();. Afterwards,
we can create a Job t1 using the Workspace.addJobFromGamsLib method and run it.

Apparently you can create a Job with any other gms file you might have created on your own as
long as it is located in the current working directory. Then the Job t1 can be defined using the
Workspace.addJobFromFile method.
% create Workspace "ws" with default working directory
ws = gams.control.Workspace();
% create Job "t1" from "trnsport" model in GAMS Model Libraries
t1 = ws.addJobFromGamsLib(’trnsport’);
% run Job "t1"
t1.run();

7.12 Tutorial 3605

7.12.5 Retrieve a solution from an output database

Example: transport1

The following lines create the solution output and illustrate the usage of the Job.outDB property to get
access to the Database created by the Job.run method. To retrieve the content of variable x we use
the Database.getVariable method and the VariableRecord class.
% retrieve Variable "x" from Job’s output databases
fprintf(’Ran with Default:\n’);
for x = t1.outDB.getVariable(’x’).records

fprintf(’x(%s,%s): level=%g marginal=%g\n’, x{1}.keys{:}, x{1}.level, x{1}.marginal);
end

7.12.6 Specify solver using Options

Example: transport1

The solver can be specified via the Options class and the Workspace.addOptions method. The
Options.setAllModelTypes property sets xpress as default solver for all model types which the solver
can handle. Then we run our Job t1 with the new Options.
% create Options ’opt1’
opt1 = ws.addOptions();
% set all model types of ’opt1’ for ’xpress’
opt1.setAllModelTypes(’xpress’);
% run Job ’t1’ with Options ’opt1’
t1.run(opt1);

7.12.7 Run Job with solver option file and capture log

Example: transport1

At first we create the file xpress.opt with content algorithm=barrier which will be used as solver option
file and is stored in the current working directory. Afterward we use Options just like in the preceding
example and Options.optFile property to 1 to tell the solver to look for a solver option file. We specify
the argument output in order to stream the log of the Job into the file transport1 xpress.log. When
the output argument is omitted then the log will be written to standard output.
% write file ’xpress.opt’ under Workspace’s working directory
fid = fopen(fullfile(ws.workingDirectory, ’xpress.opt’), ’w’);
fprintf(fid, ’algorithm=barrier’);
fclose(fid);
% create Options ’opt2’
opt2 = ws.addOptions();
% set all model types of ’opt2’ for ’xpress’
opt2.setAllModelTypes(’xpress’);
% for ’opt2’, use ’xpress.opt’ as solver’s option file
opt2.optFile = 1;
% run Job ’t2’ with Options ’opt2’ and capture log into ’transport1 xpress.log’.
output = gams.control.PrintStream(fullfile(ws.workingDirectory, ’transport1 xpress.log’));
t1.run(opt2, output);

7.12.8 Use include files

Example: transport2

In this example, as in many succeeding, the data text and the model text are separated into two different
strings. Note that these strings data and model are using GAMS syntax.

At first we write an include file tdata.gms that contains the data but not the model text:
% write ’data’ into file ’tdata.gms’ under Workspace’s working directory
fid = fopen(fullfile(ws.workingDirectory, ’tdata.gms’), ’w’);
fprintf(fid, data);
fclose(fid);

3606 Application Programming Interfaces

Afterwards we create a Job using the Workspace.addJobFromString method. Options.defines
is used like the the 'double dash' GAMS parameters, i.e. it corresponds to --incname=tdata on the
command line where incname is used as name for the include file in the model string.
% create Job ’t2’ from the ’model’ string variable
t2 = ws.addJobFromString(model);
% create Options ’opt’ and define ’incname’ as ’tdata’
opt = ws.addOptions();
opt.defines(’incname’, ’tdata’);
% run Job ’t2’ with Options ’opt’
t2.run(opt);

The string model contains the following lines to read in the data.
$if not set incname $abort ’no include file name for data file provided’
$include %incname%

7.12.9 Set non-default working directory

Example: transport3

At first we create a new directory. Once this is done we can use this directory when creating the
Workspace and make it the working directory.
% create a directory
workingDirectory = fullfile(pwd, ’transport3’);
mkdir(workingDirectory);
% create a workspace
wsInfo = gams.control.WorkspaceInfo();
wsInfo.workingDirectory = workingDirectory;
ws = gams.control.Workspace(wsInfo);

7.12.10 Read data from string and export to GDX

Example: transport3

We read the data from the string data. Note that this contains no model but only data definition in
GAMS syntax. By running the corresponding Job a Database is created that is available via the
Job.outDB property. We can use the Database.export method to write the content of this database
to a gdx file tdata.gdx.
% create and run a job from a data file, then explicitly export to a GDX file
t3 = ws.addJobFromString(data);
t3.run();
t3.outDB.export(fullfile(ws.workingDirectory, ’tdata.gdx’));

7.12.11 Run Job using data from GDX

Example: transport3

This works quite similar to the usage of an include file explained in transport2 - Use include files .
% run a job using an instance of Options that defines the data include file
t3 = ws.addJobFromString(model);
opt = ws.addOptions();
opt.defines(’gdxincname’, ’tdata’);
t3.run(opt);

Note that there are some minor changes in the model due to the usage of a gdx instead of an include file.
$if not set gdxincname $abort ’no include file name for data file provided’
$gdxin %gdxincname%
$load i j a b d f
$gdxin

7.12 Tutorial 3607

7.12.12 Run Job using implicit database communication

Example: transport3

This example does basically the same as the two preceding examples together. We create two Jobs t3a

and t3b where the first one contains only the data and the second one contains only the model without
data. After running t3a the corresponding Job.outDB can be read in directly just like a gdx file. Note
that the database needs to be passed to the Job.run method as additional argument.
t3a = ws.addJobFromString(data);
t3b = ws.addJobFromString(model);
opt = ws.addOptions();
t3a.run();
opt.defines(’gdxincname’, t3a.outDB.name);
t3b.run(opt, t3a.outDB);

7.12.13 Define data using Matlab data structures

Example: transport4

We use cell arrays and containers.Map to define Matlab data structures that correspond to the sets,
parameters and tables used for the data definition in GAMS.
plants = {’Seattle’, ’San-Diego’};
markets = {’New-York’, ’Chicago’, ’Topeka’};
capacity = containers.Map();
capacity(’Seattle’) = 350;
capacity(’San-Diego’) = 600;
demand = containers.Map();
demand(’New-York’) = 325;
demand(’Chicago’) = 300;
demand(’Topeka’) = 275;
distance = containers.Map();
distance(’Seattle.New-York’) = 2.5;
distance(’Seattle.Chicago’) = 1.7;
distance(’Seattle.Topeka’) = 1.8;
distance(’San-Diego.New-York’) = 2.5;
distance(’San-Diego.Chicago’) = 1.8;
distance(’San-Diego.Topeka’) = 1.4;

7.12.14 Prepare Database from Matlab data structures

Example: transport4

At first we create an empty Database db using the Workspace.addDatabase method. Afterwards
we prepare the database. To add a set to the database we use the Set class and the Database.addSet
method with arguments describing the identifier, dimension and explanatory text. To add the records
to the database we iterate over the elements of our Matlab data structure and add them by using the
Set.addRecord method.

For parameters the procedure is pretty much the same. Note that the table that specifies the distances in
GAMS can be treated as parameter with dimension 2 and that scalars can be treated as parameter with
dimension 0.

The Job can be run like explained in the preceding example about implicit database communication.
db = ws.addDatabase();
i = db.addSet(’i’, 1, ’canning plants’);
for p = plants

i.addRecord(p{1});
end
j = db.addSet(’j’, 1, ’markets’);
for m = markets

j.addRecord(m{1});
end
a = db.addParameter(’a’, ’capacity of plant i in cases’, i);
for p = plants

rec = a.addRecord(p{1});
rec.value = capacity(p{1});

3608 Application Programming Interfaces

end
b = db.addParameter(’b’, ’demand at market j in cases’, j);
for m = markets

rec = b.addRecord(m{1});
rec.value = demand(m{1});

end
d = db.addParameter(’d’, ’distance in thousands of miles’, i, j);
for p = plants

for m = markets
rec = d.addRecord(p{1}, m{1});
rec.value = distance([p{1}, ’.’, m{1}]);

end
end
f = db.addParameter(’f’, ’freight in dollars per case per thousand miles’);
rec = f.addRecord();
rec.value = 90;
% create and run a job from the model and read gdx include file from the database
t4 = ws.addJobFromString(model);
opt = ws.addOptions();
opt.defines(’gdxincname’, db.name);
t4.run(opt, db);

7.12.15 Initialize Checkpoint by running Job

Example: transport5

The following lines of code conduct several operations. While the first line simply creates a Checkpoint,
the second one uses the Workspace.addJobFromString method to create a Job containing the model
text and data but no solve statement. Afterwards the run method gets the Checkpoint as argument.
That means the Checkpoint cp captures the state of the Job.
cp = ws.addCheckpoint();
t5 = ws.addJobFromString(model);
t5.run(cp);

7.12.16 Initialize Job from Checkpoint

Example: transport5

Note that the string returned from function model contains the entire model and data definition plus an
additional demand multiplier and scalars for model and solve status but no solve statement:
Scalar bmult demand multiplier /1/;
...
demand(j) .. sum(i, x(i,j)) =g= bmult*b(j) ;
...
Scalar ms ’model status’, ss ’solve status’;

In transport5 we create a list with eight different values for this demand multiplier.
bmultlist = [0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3];

For each entry of that list we create a Job t5 using the Workspace.addJobFromString method.
Besides another string which resets the demand multiplier bmult, specifies the solve statement and
assigns values to the scalars ms and ss we pass the checkpoint cp as additional argument. This results
in a Job combined from the checkpoint plus the content provided by the string. We run the Job
and echo some interesting data from the Job.outDB using the Database.getParameter and
Database.getVariable methods and the Symbol.record attribute plus the ParameterRecord.value
and the VariableRecord.level properties.
for i = 1:numel(bmultlist)

job = sprintf(’bmult=%f; solve transport min z use lp; ms=transport.modelstat; ss=transport.solvestat;’, bmultlist(i));
t5 = ws.addJobFromString(job, cp);
t5.run();
fprintf(’Scenario bmult=%f:\n’, bmultlist(i));
fprintf(’ Modelstatus: %s\n’, gams.control.globals.ModelStat(t5.outDB.getParameter(’ms’).record.value).select);
fprintf(’ Solvestatus: %s\n’, gams.control.globals.SolveStat(t5.outDB.getParameter(’ss’).record.value).select);
fprintf(’ Obj: %f\n’, t5.outDB.getVariable(’z’).record.level);

end

Note

Some of the demand multipliers cause infeasibility. Nevertheless, GAMS keeps the incumbent objec-
tive function value. Therefore the model status and the solve status provide important information
for a correct solution interpretation.

7.12 Tutorial 3609

7.12.17 Create ModelInstance from Checkpoint

Example: transport7

In transport7 the usage of matlab::gams::control::ModelInstance is demonstrated.

At first Checkpoint cp is created as in the preceding examples. Then we create the ModelInstance
mi using the Checkpoint.addModelInstance method. Note that the Job again contains no solve
statement and the demand multiplier is already included with default value 1.
cp = ws.addCheckpoint();
% initialize a checkpoint by running a job
t7 = ws.addJobFromString(model);
t7.run(cp);
% create a ModelInstance and solve it multiple times with different scalar bmult
mi = cp.addModelInstance();

7.12.18 Modify parameter of ModelInstance using Modifier

Example: transport7

A ModelInstance uses a matlab::gams::control::ModelInstance::syncDB ModelInstance.syncDB

to maintain the data. We define bmult as Parameter using the Parameter method and specify cplex as
solver. Afterwards the ModelInstance is instantiated with 3 arguments, the solve statement, Options
opt and Modifier bmult. The Modifier means that bmult is modifiable while all other parameters,
variables and equations of ModelInstance mi stay unchanged. We use the Parameter.addRecord
method and the ParameterRecord.value property to assign a value to bmult. That value can be
varied afterwards using the Symbol.record property to reproduce our well-known example with different
demand multipliers.
bmult = mi.syncDB.addParameter(’bmult’, ’demand multiplier’);
opt = ws.addOptions();
opt.setAllModelTypes(’cplex’);
% instantiate the ModelInstance and pass a model definition and Modifier to declare bmult mutable
mi.instantiate(’transport use lp min z’, opt, gams.control.Modifier(bmult));
rec = bmult.addRecord();
rec.value = 1.0;
bmultlist = [0.6, 0.7 , 0.8, 0.9, 1.0, 1.1, 1.2, 1.3];
for i = 1:numel(bmultlist)

rec.value = bmultlist(i);
mi.solve();
fprintf(’Scenario bmult=%f:\n’, bmultlist(i));
fprintf(’ Modelstatus: %s\n’, mi.modelStatus);
fprintf(’ Solvestatus: %s\n’, mi.solveStatus);
fprintf(’ Obj: %f\n’, mi.syncDB.getVariable(’z’).record.level);

end

7.12.19 Modify variable of ModelInstance using Modifier

Example: transport7

We create a ModelInstance just like in the next to last example. We define x as Variable and its
upper bound as Parameter xup. At the following ModelInstance.instantiate method Modifier
has 3 arguments. The first one says that x is modifiable, the second determines which part of the variable
(lower bound, upper bound or level) can be modified and the third specifies the Parameter that holds
the new value.

In the following loops we set the upper bound of one link of the network to zero, which means that
no transportation between the corresponding plant and market is possible, and solve the modified
transportation problem.
mi = cp.addModelInstance();
x = mi.syncDB.addVariable(’x’, 2, gams.control.globals.VarType.POSITIVE, ’’);
xup = mi.syncDB.addParameter(’xup’, 2, ’upper bound on x’);
% instantiate the ModelInstance and pass a model definition and Modifier to declare upper bound of X mutable
mi.instantiate(’transport use lp min z’, gams.control.Modifier(x, gams.control.globals.UpdateAction.UPPER, xup));
for i = t7.outDB.getSet(’i’).records

3610 Application Programming Interfaces

for j = t7.outDB.getSet(’j’).records
xup.clear();
keys = {i{1}.key(1), j{1}.key(1)};
rec = xup.addRecord(keys);
rec.value = 0;
mi.solve();
fprintf(’Scenario link blocked: %s - %s\n’, keys{:});
fprintf(’ Modelstatus: %s\n’, mi.modelStatus);
fprintf(’ Solvestatus: %s\n’, mi.solveStatus);
fprintf(’ Obj: %f\n’, mi.syncDB.getVariable(’z’).record.level);

end
end

7.12.20 Create and use save/restart file

Example: transport11

In transport11 we demonstrate how to create and use a save/restart file. Usually such a file should
be supplied by an application provider but in this example we create one for demonstration purpose.
Note that the restart is launched from a Checkpoint. From the main function we call the function
create save restart giving it the current workspace settings and the desired file name as arguments.
create save restart(ws.workingDirectory, ws.systemDirectory, ws.debugLevel, ’tbase’);

In function create save restart we create a workspace with the given workspace settings. Then we
create a Job from a string. Note that the string given via basemodel contains the basic definitions of
sets without giving them a content (that is what $onempty is used for). Afterwards we specify a Options
to only compile the job but do not execute it. Then we create a Checkpoint cp that is initialized by
the following run of the Job and stored in the file given as argument to the function, in our case tbase.
This becomes possible because the Workspace.addCheckpoint method accepts identifiers as well as
file names as argument.
ws = gams.control.Workspace(workdir, systemdir, debuglevel);
j1 = ws.addJobFromString(basemodel);
opt = ws.addOptions();
opt.action = gams.control.options.Action.CompileOnly;
cp = ws.addCheckpoint(’tbase’);
j1.run(opt, cp);
opt.dispose();
j1.outDB.dispose();

So what you should keep in mind before we return to further explanations of the main function is, that
the file tbase is now in the current working directory and contains a checkpoint. Now in the main function
we define some data using Matlab data structures as we already did in transport4 before we create the
Workspace and a Database.
ws = gams.control.Workspace(wsInfo);
db = ws.addDatabase();

Afterwards we set up the Database like we already did in transport4. Once this is done we run a Job
using this data plus the checkpoint stored in file tbase.
cpBase = ws.addCheckpoint(’tbase’);
opt = ws.addOptions();
t11 = ws.addJobFromString(model, cpBase);
opt.defines(’gdxincname’, db.name);
opt.setAllModelTypes(’xpress’);
t11.run(opt, db);

Note that the string from which we create Job t11 is different to the one used to prepare the checkpoint
stored in tbase and is only responsible for reading in the data from the Database correctly. The entire
model definition is delivered by the Checkpoint cpBase which is equal to the one we saved in tbase.

7.13 Release Notes

7.13.1 44.1.0 (July 2023)

• Added method runEngine to GAMSJob class to run jobs on GAMS Engine.

7.13 Release Notes 3611

• since GAMS 44.1.0

– all classes in GAMSJavaAPI.jar require Java SE 11 or later to run. GAMSJavaAPI.jar has addi-
tional dependency on json-simple-1.1.1.jar. GAMSJavaAPI.jar and json-simple-1.1.1.jar

are required to be in the same directory to run.

– all classes that work with Java SE 8 are in GAMSJavaAPI-8.jar but without updated function-
alities that are released after GAMS 43. Only corrective maintenance support will be provided
for this version in the future.

– all jar files are located under the [Path/To/GAMS]/apifiles/Java/api/ directory.

7.13.2 43.1.0 (April 2023)

• GAMSModelInstance of this version is no longer compatible with GAMS 33 or older.

7.13.3 39.1.0 (April 2022)

• Added GAMSSet.getSetType returning property to distinguish between multi and singleton sets.

• Added GAMSDatabase.addSet allowing to set type of Set.

• Fixed defined enumerated value for options FDOpt and DumpOpt.

7.13.4 35.1.0 (April 2021)

• Fixed GAMSOptions.setOutput parameter being ignored in GAMSJob.run().

7.13.5 32.1.0 (July 2020)

• On windows platform, change of window registry configuration used for finding the in-
stalled GAMS directory from: [HKEY CURRENT USER|HKEY CLASSES ROOT]\gams.location to:
[HKEY CURRENT USER|HKEY LOCAL MACHINE]\Software\Classes\gams.location, effective only
when the installed GAMS directory is not found from ”PATH” environment variable.

7.13.6 29.1.0 (November 2019)

• Increase the minimum version requirement of the Java Runtime Environment to Java SE 8.

• The remove operation GAMSDatabaseIterator.remove is no longer supported. The method now
throws an instance of java.lang.UnsupportedOperationException and performs no other actions.
(To remove all records of the current iterating symbol, use the method GAMSSymbol.clear
instead.)

• Fixed the behavior of the remove operation GAMSSymbolIterator.remove. The method now
removes all records of the last GAMSSymbol element returned by an instance of GAMSSymbol-
Iterator and can be called only once per call to GAMSSymbolIterator.next. The behavior of
an iterator is unspecified if the underlying collection is modified while the iteration is in progress in
any way other than by calling the method.

3612 Application Programming Interfaces

7.13.7 28.2.0 (August 2019)

• Added new method GAMSSymbolRecord.dispose for on-demand release of external resources
hold by non-java library.

7.13.8 28.1.0 (August 2019)

• Announced a plan to increase the minimum version requirement of the Java Runtime Environment
to Java SE 8 with the next major release.

7.13.9 25.1.1 (May 2018)

• Changed the naming scheme of a temporary working directory to be created from yyyyMMdd HHmmss

to the prefixed gams (defined by GAMSGlobals.workingDirectoryPrefix), in case no working
directory has been specified.

• Fixed the behavior when GAMSDatabase is added with the name that already exists, now GAM-
SException will be raised. (see GAMSWorkspace.addDatabase(String databaseName) and
GAMSWorkspace.addDatabaseFromGDX(String gdxFileName, String databaseName))

• Calls on GAMSWorkspace.finalize and GAMSSymbolIterator.finalize are no longer available.
As calling a finalizer method can arbitrarily delay the reclamation of object instances and potentially
create unpredictable outcome. Whenever the object is no longer needed it is recommened to
explicitly dispose the object rather than to rely on the Java garbage collector to do the job. See
GAMSDatabase.dispose, GAMSModelInstance.dispose, and GAMSOptions.dispose.

• All Java native interfaces to Expert-Level APIs are now included in the distributed
GAMSJavaAPI.jar, located under the [Path/To/GAMS]/apifiles/Java/api/ directory.

7.13.10 25.0.1 (January 2018)

• The minimum version requirement of Java Runtime Environment for using with GAMS Java API is
now Java SE 7.

• New TransportGDX example to demonstrate how to import and export GDX files.

• Removed GAMSSymbol.compact, deprecated since 24.8.1 (December 2016).

• Changed equivalence behavior of GAMSSymbol and GAMSSymbolRecord objects. As a result, two
symbol objects with the same internal reference are now equivalent, similar to symbol record objects:

– Two symbols are equivalent if and only if they have the same internal reference.

– Two symbol records are equivalent if and only if they have the same internal reference.

The behavior of operator == remains unchanged. The following exmaple illustrates the new equiva-
lence behavior:
GAMSVariable x1 = db.getVariable("x");
GAMSVariable x2 = db.getVariable("x");
GAMSVariable x3 = x1;
assertTrue(x1.equals(x2)); // true, previously false
assertFalse(x1 == x2); // false, previously false
assertTrue(x1.equals(x3)); // true, previously true
assertTrue(x1 == x3); // true, previously true

7.13 Release Notes 3613

7.13.11 24.8.1 (December 2016)

• Deprecated GAMSSymbol.compact and the method will be removed in the next major release

• an exception or an error thrown by GAMSWorkspace.finalize and GAMSSymbolIterator.finalize now
must be caught or declared to be thrown. Note that an explicit call on one of these two methods is
not recommended unless it is necessary to do so.

7.13.12 24.7.4 (September 2016)

• GAMSModelInstance.instantiate: Skip creation of GDX file, which was unreachable from
within the API anyway

7.13.13 24.7.1 (March 2016)

• Fixed a bug with the property GAMSOptions.defines : When too many entries were added, all of
them were ignored.

7.13.14 24.5.1 (August 2015)

• New examples

– Clad at [Path/To/GAMS]/apifiles/Java/clad/Clad.java

– SpecialValues at [Path/To/GAMS]/apifiles/Java/specialvalues/SpecialValues.java

• New functions GAMSWorkspace.addJobFromApiLib and GAMSWorkspace.addJobFromNoaLib
that can be used to retrieve models from GAMS API Library and Nonlinear Optimization
Applications Library.

7.13.15 24.4.2 (March 2015)

• New property GAMSSymbol.getDomainsAsStrings: get domains of symbol, each element is a
string
Note: If the domain is an alias in GAMS, this call will return the name of the alias, not the name of
the aliased set.

• Disable unwanted debug output from Couenne when running with GAMSModelInstance

• Change naming scheme of gdx oputput scratch file to sequence number.

7.13.16 24.4.1 (December 2014)

• Modify the handling of GAMS Aliases in the object oriented APIs:

– If we ask for the number of GAMSSymbol in a GAMSDatabase, the Aliases will be
excluded.

– If we iterate over all GAMSSymbol in a GAMSDatabase, Aliases will be skipped.

– If we ask explicitly for an Alias in a GAMSDatabase (GAMSDatabase.getSet(”a”) with
a being an Alias) we will get a reference to the GAMSSet referenced by the Alias, not the
Alias itself.

– Note:

∗ Aliases can appear in a GAMSDatabase only, if it was initialized by a GDX file
containing an Alias.

∗ The new example Alias at [Path/To/GAMS]/apifiles/Java/alias/Alias.java demon-
strates this new behavior.

3614 Application Programming Interfaces

7.13.17 24.3.3 (September 2014)

Fixed

• a location of listing file when creating a job from (full-path) file without giving a job name

7.13.18 24.3.2 (August 2014)

• Make more GAMS options available through the GAMSOptions class:

– GAMSOptions.EAppendExpand (enum, getter, and setter): Expand file append option

– GAMSOptions.EAppendOut (enum, getter, and setter): Output file append option

– GAMSOptions.EDumpOpt (enum, getter, and setter): Writes preprocessed input to the
file input.dmp

– GAMSOptions.EDumpParms (enum, getter, and setter): GAMS parameter logging

– GAMSOptions.EErrMsg (enum, getter, and setter): Placing of compilation error messages

– GAMSOptions.EAppendExpand (getter, and setter): Expanded (include) input file name

– GAMSOptions.FErr (getter, and setter): Alternative error message file

– GAMSOptions.JobTrace (getter, and sette): Job trace string to be written to the trace file at
the end of a Gams job

– GAMSOptions.LimCol (getter, and setter): Maximum number of columns listed in one
variable block

– GAMSOptions.LimRow (getter, and setter): Maximum number of rows listed in one equation
block

– GAMSOptions.ELogLine (enum, getter, and setter): Amount of line tracing to the log file

– GAMSOptions.EOn115 (enum, getter, and setter): Generate errors for unknown unique
element in an equation

– GAMSOptions.Output (getter, and setter): Output file

– GAMSOptions.EPageContr (enum, getter, and setter): Output file page control option

– GAMSOptions.PageSize (getter, and setter): Output file page size (=0 no paging)

– GAMSOptions.PageWidth (getter, and setter): Output file page width

– GAMSOptions.Reference (getter, and setter): Symbol reference file

– GAMSOptions.ScriptExit (getter, and setter): Program or script to be executed at the end
of a GAMS run

– GAMSOptions.ESuppress (enum, getter, and setter): Compiler listing option

– GAMSOptions.Symbol (getter, and setter): Symbol table file

– GAMSOptions.TraceLevel (getter, and setter): Solvestat threshold used in conjunction with
a=GT

7.13.19 24.3.1 (July 2014)

New

• Transport14 example at [Path/To/GAMS]/apifiles/Java/transport/Transport14.java.

• GAMSSymbolRecord.getKey method: to retrieve key of GAMSWorkspace on specified
position index.

7.13 Release Notes 3615

Changed

• no longer necessary to set up environment variable before running a program

– possible to specify the GAMS system directory during run time using GAMSWorkspace-
Info.setSystemDirectory(String directory) and GAMSWorkspace(GAMSWorkspaceInfo
info)

• no longer necessary to specify -Djava.library.path when running a program

– if java.library.path is specified, the shared libraries will be loaded from java.library.path

– otherwise the shared libraries will be loaded from the class path that contains GAMSJavaAPI.jar.

• when exporting a database to GDX: a symbol with real domains from now on will be registered

• in GAMSJob.run : always creates output database OutDB even if GAMSExecutionException
has been raised.

• in GAMSSymbol.copySymbol when copy into the Universe symbol (GAMS-
Database.getSet(”∗”)) of a GAMSDatabase : merge operation will be performed.

• in GAMSWorkspace default constructor: API will apply the default setting, that is, finding
GAMS system directory from environment variable in the following order (depends on the target
platform):

– Windows: first from PATH environment variable. If not found, from the platform windows
registry gams.location,

– macOS: first from PATH environment variable. If not found, from DYLD LIBRARY PATH,

– Unix: from PATH environment variable. If not found, from LD LIBRARY PATH.

• in non-default GAMSWorkspace constructor:

– user can specify a GAMS system directory during run time, API will not search for a GAMS
system directory from an environment variable.

– in case the specified system directory is null or user speicify other workspace attributes but
a system directory, API will apply the default setting (see changed in GAMSWorkspace
default constructor above).

Fixed

• API memory leak issue in GAMSDatabaseIterator.

• a bug when reading an option file on Unix platform with non-standard locale

Removed

• all deprecated classes and methods since 24.1.

7.13.20 24.2.3 (May 2014)

Fixed

• API memory leak issue in GAMSDatabase.

• a bug in GAMSDatabase.getDatabaseDomainViolations.

3616 Application Programming Interfaces

7.13.21 24.2.2 (March 2014)

Changed

• null string is treated as an invalid key for all record operations of GAMSSymbol.

Fixed

• a bug when creating GAMSDatabase from source database.

• a bug when initializing a variable type in GAMSVariable.

• a bug in GAMSSymbol: methods getVarType and getEquType.

• a bug in GAMSWorkspaceInfo : method getSystemDirectory.

• exit codes in GAMSGlobals.ExitCodeMessage. Improved

• GAMSModelInstance.instantiate: make sure that the method does not solve the model, but
only prepares everything required for the following GAMSModelInstance.solve.

7.13.22 24.2.1 (December 2013)

New

• tutorial: (GAMS java Tutorial.pdf) under <Path/To/GAMS>/docs/API. From the GAMSIDE this
document can be accessed at Help -> Docs -> API.

• method in GAMSGlobals.SpecialValues : setValue, to set a GAMS special value

• method in GAMSOptions: export, to write an option into a parameter file

• methods in GAMSWorkspace : addOptions to create a GAMSOptions object from either
another object or an option file

• methods in GAMSWorkspace: getAPIVersion, getAPIMajorReleaseNumber,
getAPIMinorReleaseNumber, and getAPIGoldReleaseNumber, to retrieve API ver-
sion number

Changed

• default value of GAMSGlobals.SpecialValues: NAN, PLUS INF, MINUS INF, and
EPS

• deprecated GAMSGlobals.ModelStat.NONOPTIMAL INTERMED, replaced by GAMSGlob-
als.ModelStat.FEASIBLE

• deprecated GAMSOptions.PoolFree4, replaced by GAMSOptions.EIntVarUp

• deprecated the type of GAMSOptions.NoNewVarEqu, replaced by enum GAMSOptions.ENoNewVarEqu

Fixed

• a bug when running a job with an input directory IDir added into GAMSOptions object.

7.13 Release Notes 3617

7.13.23 24.1.3 (July 2013)

Improve data iterator

• New classes:

– GAMSDatabaseIterator implements java.util.Iterator

– GAMSSymbolIterator implements java.util.Iterator

• Deprecated Interface:

– GAMSSymbolIterable, replaced by GAMSDatabaseIterator and GAMSSymbolIterator

• Changes in GAMSDatabase :

– GAMSDatabase implements GAMSDatabaseIterator instead of GAMSSymbolIterable

– deprecated the implemented methods of GAMSSymbolIterable: next(), hasnext(), and remove()

• Changes in GAMSSymbol:

– GAMSSymbol implements GAMSSymbolIterator instead of GAMSSymbolIterable

– deprecated the implemented methods of GAMSSymbolIterable: next(), hasnext(), and remove()

• New methods in GAMSSymbolRecord:

– moveNext: to iterate to the next record using the current data iterator criterion

– movePrevious : to iterate to the previous record using the current data iterator criterion

Update example:

• Transport12 at [Path/To/GAMS]/apifiles/Java/transport/Transport12.java

7.13.24 24.1.1 (May 2013)

Changes in GAMSDatabase:

• deprecates the compact method, as it has no effect anymore.

Changes in GAMSGlobals:

• the default value of working directory has been changed from System.getProperty("user.dir")

to System.getProperty("java.io.tmpdir").

Changes in GAMSModelInstance :

• deprecates the instantiate(GAMSOptions options), instantiate(GAMSModifier[]), and instanti-
ate(GAMSOptions, GAMSModifier[]) methods and replaced by instantiate(String, GAMSModifier
...) and instantiate(String, GAMSOptions, GAMSModifier ...) methods

Changes in GAMSWorkspace and GAMSWorkspaceInfo:

3618 Application Programming Interfaces

• deprecates boolean debug flag and replaced by a debug level flag (type of a new class GAMSGlob-
als.DebugLevel).

• allows an override of debug level flag from an environment variable GAMSOOAPIDEBUG

New methods in GAMSDatabase:

• GAMSDatabase.addEquation, addParameter, addSet, and addVariable: to add symbols
with domain information.

• checkDomains: to check whether or not all records of all symbols are within the specified domain
of the symbols.

• getDatabaseDomainViolations: to retrieve a domain violation information as a list of GAMS-
DatabaseDomainViolation objects.

• isAutoDomainCheckingSuppressed and suppressAutoDomainChecking: to control
whether domain checking will be called when exporting a database.

New class GAMSDatabaseDomainViolation:

• contains domain violation information of all symbols (if any) in the database.

• returns call from a new method GAMSDatabase.getDatabaseDomainViolations.

New enumeration class GAMSGlobals.DebugLevel:

• defines values of different GAMS Debug Levels.

New methods in GAMSModelInstance:

• copyModelInstance: to copy a GAMSModelInstance object.

• interrupt : to send an interrupt signal to a running GAMSModelInstance object.

New enumerated value of GAMSModelInstance.SymbolUpdateType:

• GAMSModelInstance.SymbolUpdateType.INHERIT: to specify GAMSModelIn-
stance.SymbolUpdateType separately for each GAMSModifier.

New methods in GAMSModifier:

• constructor: to specify SymbolUpdateType for each GAMSModifier object.

• getUpdateType: to retrieve SymbolUpdateType property of the object.

New methods in GAMSSymbol:

• checkDomains: to check whether or not all records of the symbol are within the specified domain.

• getDomains: to retrieve a list of domains of the symbol, each element is either a GAMSSet
(real domain) or a String (relaxed domain).

7.13 Release Notes 3619

• getSymbolDomainViolations: to retrieve a domain violation information as a list of
GAMSSymbolDomainViolation objects.

• mergeRecord: to add a new symbol record in case the record does not exist.

New class GAMSSymbolDomainViolation:

• contains domain violation information of the symbol (if any).

• returns call from a new method GAMSSymbol.getSymbolDomainViolations.

New methods in GAMSWorkspace

• getGAMSVersion: to retrieve information about GAMS Version.

• getGoldReleaseNumber: to retrieve GAMS GOLD Release Number.

• getMajorReleaseNumber: to retrieve GAMS Major Release Number.

• getMinorReleaseNumber: to retrieve GAMS Minor Release Number.

Fixed a bug when iterating through the records of a GAMSSymbol

Changes of location of examples:

• Bender Examples: from [Path/To/GAMS]/apifiles/Java/Benders∗.java to [Path/To/GAMS]/apifiles/Java/benders/Benders∗.java

• Cutstock: from [Path/To/GAMS]/apifiles/Java/Custock.java to [Path/To/GAMS]/apifiles/Java/cutstock/Cutstock.java

• ConsoleInterrupt: from [Path/To/GAMS]/apifiles/Java/ConsoleInterrupt.java to
[Path/To/GAMS]/apifiles/Java/interrupt/ConsoleInterrupt.java

• Transport Examples: from [Path/To/GAMS]/apifiles/Java/Transport∗.java to
[Path/To/GAMS]/apifiles/Java/transport/Transport∗.java

• Warehouse: from [Path/To/GAMS]/apifiles/Java/Warehouse.java to [Path/To/GAMS]/apifiles/Java/warehouse/Warehouse.java

New examples :

• SimpleCutstock at [Path/To/GAMS]/apifiles/Java/cutstock/SimpleCutstock.java

• DomainCheck at [Path/To/GAMS]/apifiles/Java/domain/DomainCheck.java

• Transport13 at `[Path/To/GAMS]/apifiles/Java/transport/Transport13.java

• Tsp at [Path/To/GAMS]/apifiles/Java/tsp/Tsp.java

7.13.25 24.0.2 (February 2013)

New method in GAMSSymbol

• added new method copySymbol.

3620 Application Programming Interfaces

7.13.26 24.0.1 (December 2012)

This release contains a beta version of the object-oriented Java API that can be used to control GAMS
from a Java program. It allows the seamless integration of GAMS into Java by providing appropriate
classes for the interaction with GAMS. GAMS Java API objects allow a convenient way to exchange
input data and model results with in-memory representation of data (GAMSDatabase), and to create
and run GAMS models (GAMSJob) that can be customized by GAMS options (GAMSOptions).
Furthermore, they introduce a way to solve a sequence of closely related model instances in the more
efficient way (GAMSModelInstance).

• A Java program that uses object-oriented Java API requires at least Java SE 5 to compile and run.

• All classes are distributed within one single jar file GAMSJavaAPI.jar with a namespace
com.gams.api, located under the [Path/To/GAMS]/apifiles/Java/api/ directory.

• Java program examples are distributed with namespace com.gams.examples, located under
[Path/To/GAMS]/apifiles/Java/ directory.

• Installation and detailed documents can be found in [Path/To/GAMS]/apifiles/readme.txt and
[Path/To/GAMS]/docs/API/GAMS java.pdf.

• Javadoc for GAMSJavaAPI.jar can be found under [Path/To/GAMS]/apifiles/java/api/javadoc
directory.

7.14 GAMS Environment Object Options

Option Description Default

AlgFileType
File type of scratch files 1

Cheat
optCheat solver default
Range: [-∞, ∞]

0

CurSolver
Solver id of the last gevcallsolver 0

CutOff
CutOff solver default
Range: [-∞, ∞]

0

DomLim
Domain violation limit solver default 0

FDDelta
Step size for finite differences
Range: [1e-9, 1]

1e-5

FDOpt
Options for finite differences
Range: [0, 14]

0

GamsVersion
GAMS CMEX Version 999

GenSolver
Indicator for generic solver executable 0

HeapLimit
Maximum Heap size allowed 1e20

IDEFlag
IDE Flag
0 unknown environment
1 runs under GAMS IDE

0

Integer1
Range: [-∞, ∞]

0

Integer2
Range: [-∞, ∞]

0

Integer3
Range: [-∞, ∞]

0

7.14 GAMS Environment Object Options 3621

Option Description Default

Integer4
Range: [-∞, ∞]

0

Integer5
Range: [-∞, ∞]

0

IterLim
Iteration limit solver default 2000000000

Keep
Keep scratch directory
Range: [0, 1]

0

License1
License line 1

License2
License line 2

License3
License line 3

License4
License line 4

License5
License line 5

LogOption
Log option
0 no log output
1 log output to screen (console)
2 log output to logfile
3 log output to standard output
4 log output to logfile and standard output

1

NameCtrFile
Control file name

NameCurDir
Current directory

NameExtFFile
External Function file name

NameGamsDate
GAMS Date

NameGamsTime
GAMS Time

NameInstr
Instruction file name

NameLogFile
Log file name

NameMatrix
Matrix file name

NameParams
Parameter file name

NameScenFile
Scenario file name

NameScrDir
Scratch directory

NameScrExt
Scratch extension dat

NameStaFile
Status file name

NameSysDir
System directory

NameWrkDir
Working directory

NodeLim
Node limit solver default 0

OptCA
optAbsolute Optimality criterion solver default 0

OptCR
optRelative Optimality criterion solver default 0.1

PageSize
Output file page size 78

PageWidth
Output file page width 123

3622 Application Programming Interfaces

Option Description Default

Real1
Range: [-∞, ∞]

0

Real2
Range: [-∞, ∞]

0

Real3
Range: [-∞, ∞]

0

Real4
Range: [-∞, ∞]

0

Real5
Range: [-∞, ∞]

0

Reform
Reform option 100

ResLim
Resource (CPU) solver default limit 1000

SysOut
Solver Status file reporting option
Range: [0, 1]

0

ThreadsRaw
Range: [-∞, ∞]

1

TryInt
TryInt solver default 0

UseCheat
UseCheat solver default 0

UseCutOff
UseCutOff solver default 0

WorkFactor
Work space multiplier for some solvers 1

WorkSpace
Work space for some solvers 0

7.15 GAMS Modeling Object Design

This document gives a brief introduction to GAMS' new model-solver API, including a description of its
design goals and philosophy. This document is not intended to be used as a user's manual but rather to
give a picture of what the new API can do and a description of some of the conceptual underpinnings for
the new API.

Further material: Presentation at ICS 2011

7.15.1 Introduction

Historically, there have been a number of different GAMS solver interface libraries, i.e. libraries that
enabled a solver to get all required information from a GAMS model, compute the solution, and return
the solution, status information, and other information (e.g. solver log messages, nonlinear function
evaluation error messages, node counts, time used) to GAMS. Each library was unique in some way,
e.g. in the computer language or subset of GAMS model types it supported. Each library had its own
advantages and disadvantages, but all of them were feature-poor and supported a limited scheme of
operation: GAMS/Base would write scratch files containing the model to be solved, the GAMS solver link
executable would use one of the solver interface libraries to read the model from scratch file and write a
solution file, and GAMS/Base would read this solution file. While this scheme worked for many years it
was inconvenient for the library user, difficult to maintain, slow, and a barrier to further development.

To address these issues and others, GAMS developed a new model-solver interface library, called GMO
(GAMS Model Object), and a companion library called GEV (GAMS Environment Object). The two
libraries are distinct and help to separate the purely model-specific tasks and information handled by

http://www.gams.com/presentations/ics2011_gmo.pdf

7.15 GAMS Modeling Object Design 3623

GMO from the computing and solver environment that the model will be solved in, handled by GEV. The
two libraries are typically used together and we will sometimes refer to them as simply GMO. For legacy
reasons the new libraries support the old file-based scheme to communicate a model through scratch files.

In what follows, we first describe the basic structure, organization, and usage of GMO
(Basic organization). Client applications can be split into two types: those defining or updating
the model (Modeler Access to GMO) and those passing the model to a solver (Solver Access to GMO).
We next describe some ways to update a model in Updating a GMO instance.

7.15.2 Basic organization

In this section we outline the basic organization of GMO. GMO is implemented as a shared library that
interfaces to different languages via language-specific header files and interface code. The header files and
code are included in source form with the GAMS distribution. Since the interface code employs dynamic
loading, each GMO session begins with a call to initialize the required shared library (i.e. load it and all
its symbols) and return an empty model object.

The next step is to load a model into the model object. This is typically done with a single wrapper
call, as in the case of loading a model from model scratch files prior to solving in one of the GAMS
solver links. It is also possible build up a model from scratch with a sequence of calls to provide the
model column-wise or row-wise. If the model is built up column-wise or row-wise, additional information
(e.g. about nonlinearities) may be passed to the object after the basic structure is built up. Once the
model is complete, a finalization routine is called. This routine prepares the model object for efficient
access by the user. Typically the model does not change after this point. There are exceptions to this
(see Updating a GMO instance), but they usually involve small modifications to the existing model (like
adding alternative bounds) or the addition of constraints and variables that require the re-finalization of
the model.

When a model is fully loaded, the GMO client can start accessing the model. Typically the GMO client
doing this will be a solver, but other clients (e.g. the CONVERT solver, the Examiner utility, or a model
structure browser) exist also. In addition to querying the model, the client can also request that the
model be presented or viewed in various different ways. For example, GMO can be requested to use an
objective function or an objective variable. Most types of information are available immediately when the
model is loaded, but some type of queries (e.g. Hessians, alternative QP forms) are less common and
relatively expensive in time and/or space: these require that an initialization routine be called before the
information is requested. Once the client has completed its work it reports on the solution found, if any.
Typically, the model object is destroyed at this point. Model access by a client, especially solvers, is an
important topic that is discussed in Solver Access to GMO.

The variety of data that go into the interface library when a model is defined and that a solver can request
during solution is large, but the data can be divided into two types - data defining the model (e.g. number
of rows and columns, coefficients, nonlinear functions) and data defining the solver environment (e.g.
available and default GAMS solvers, license info, algorithm tolerances and limits). It is sometimes useful to
separate these two types of data, so that it is possible to define and work with a model without specifying
anything about the environment it exists in. The environment can be specified separately, and multiple
models can make use of the same basic environment. To facilitate this, the solver interface is in two parts:
the GMO interface deals with model-specific information and the GEV interface with information about
the environment. The two environments are linked, since they are typically used together, with one (or
multiple) models existing in one environment, but the separation makes it possible to define a model
without defining its environment, etc. Since the bulk of the information and the code lies with GMO,
we usually speak of the two libraries as one, called GMO, but it is worth remembering that GEV is a
separate object.

3624 Application Programming Interfaces

7.15.3 Solver Access to GMO

One of the primary purposes of GMO is to provide convenient, efficient access to the model. GAMS links
to many solvers, each solver link using GMO to access the model in different ways, so there is a wide
array of possible methods to access the model in GMO. We describe them in this section.

There are multiple but equivalent views possible for the same model. For example, the model can be
formulated with an objective function or with an objective variable. Free rows can be removed or left
in, and the rows and/or columns can be permuted. Prior to accessing the model, the solver link can
choose what view it would like to use. The view can be changed later, but since this can obviate the data
obtained previously, the choice of view is usually made early on and left unchanged. Moreover, a view can
be stored and restored in case multiple users access the same model.

All solvers will need to get basic information about a model - simple things like row and column counts,
nonzero counts, etc. These are available via simple access routines. Since the model is essentially fixed
(assuming the view does not change), basic information is pre-computed when the model takes its final
form and is available at essentially no cost. Information about the rows and columns (e.g. variable level
values, marginal values, variable priorities, row types) is also available, either for single rows/cols or in an
array for all rows/cols at once.

For linear models, the only information left to get is the matrix of coefficients. This is available in a
number of different forms e.g. column-wise or row-wise, either as a complete matrix returned with one call
or as separate rows or columns returned via many calls. For nonlinear models, there are more variants on
this theme: calls to return the function value or the function value and derivatives, calls for constraints and
calls for the objective function. You can request that the nonlinear model be treated as its linearization
around a certain point. There are also routines to do interval evaluations of functions and gradients. The
GMO library prepares the model object to handle all these calls efficiently when the model takes its final
form.

Nonlinear models present several additional challenges. When NL functions are evaluated, mathematical
errors can occur (e.g. sqrt(-1)). GMO supports different ways to log and handle these errors. Some
algorithms will require or want 2nd-order information. Since this can be relatively expensive to compute,
the solver must first call an initialization routine specifying what is desired (e.g. only Hessian-vector
products, Lagrangian Hessian, single-row Hessians) and potentially a limit on the memory dedicated to
computing Hessians. After this initialization, 2nd-order information is available.

Once the solver finishes, the solution (if any) and related status values must be reported back to GMO.
There are a number of convenience routines included in GMO for this purpose.

A convenient interface was and is an important design goal for GMO, especially in the area of solver
access to the model. Convenience takes many forms: a number of ways to get the same model data in
order to support a variety of different solver libraries, self-contained calls with minimal requirements on
previous setup for correct behavior,and a modern interface adhering to design principles like information
hiding, encapsulation, and an object model. By keeping these goals at the fore when designing GMO we
have made accessing the model convenient and efficient, which greatly simplifies the task of building a
correctly-functioning solver link.

In addition to providing convenient access to the model, a solver link needs to expose a particular API to
be recognized by the GAMS system. This is not directly connected to the GMO API itself but knowledge
about the expected solver link library API is required so we include it here.

GAMS calls a solver through the GEV API function gevCallSolver which eventually results in a sequence
of calls to functions in the solver link library. GAMS loads solver link libraries dynamically at run time.
The name of the library is specified in the configuration file together with the three letter audit code, e.g.,
cpx for CPLEX. All functions in the solver link library are prefixed by this audit code (we use xyz in this
example). The following functions are recognized:

• void xyzInitialize(void) (optional): Function called when loading the solver link library.

7.15 GAMS Modeling Object Design 3625

• void xyzFinalize(void) (optional): Function called when unloading the solver link library.

• int xyzCreate(void∗∗ handle, char∗ msg, int sizeBuf): Function to create a solver link ob-
ject. Returns 0 and stores a non-NULL pointer to the object in handle on success, otherwise an
error message should be stored in msg.

• void xyzFree(void∗∗ handle): Function to destroy a solver link object.

Depending on the solver interface type (again communicated as part of the configuration file) different
functions need to be in the API. For solver interface type 1 we have:

• int xyzReadyAPI(void∗ handle, void∗ gmoHandle): Function to set up the model instance in
the solver space. Returns 0 on success.

• int xyzCallSolver(void∗ handle): Function to do the actual solve and solution reporting. Re-
turns 0 on success.

• int xyzModifyProblem(void∗ handle) (optional): Function to modify the problem. Returns 0 on
success.

For solver interface type 2 we only have a single call:

• int xyzCallSolver(void∗ handle, void∗ gmoHandle): Function to setup and solve. Returns 0
on success.

Usually, a solve in GAMS triggers the following sequence of function: xyzCreate, xyzReadyAPI,
xyzCallSolver, xyzFree (interface type 1) or xyzCreate, xyzCallSolver, xyzFree (interface type
2) and the separation of xyzReadyAPI and xyzCallSolver seems unnecessary.

With Gather-Update-Solve-Scatter (GUSS) and the GAMSModelInstance class in various APIs we re-
peatedly solve a model with the same rim but different data (bounds, rhs, matrix coefficients). In
this case the sequence of solves results in a sequence of function calls. Without the presence of
xyzModifyProblem the following sequences will be called: xyzCreate, xyzReadyAPI, xyzCallSolver,
xyzReadyAPI, xyzCallSolver, xyzReadyAPI, xyzCallSolver, ..., xyzFree (interface type 1) or
xyzCreate, xyzCallSolver, xyzCallSolver, xyzCallSolver, ..., xyzFree (interface type 2). So,
again there is little point (but possible) to split the link work in xyzReadyAPI and xyzCallSolver without
the presence of xyzModifyProblem. If xyzModifyProblem is present (only with flavor 1) the following
sequences will be called: xyzCreate, xyzReadyAPI, xyzCallSolver, xyzModifyProblem, xyzCallSolver,
xyzModifyProblem, xyzCallSolver, ..., xyzFree.

7.15.4 Modeler Access to GMO

In normal operation the modeler creates a model in GAMS source form and the GAMS/Base module
handles all the details necessary to build up model instances in GMO. However, there are cases (e.g.
solving a model many times over with different scenario data) where it is useful to access and modify
a GMO instance outside of GAMS/Base. GMO provides routines to support this, specifically routines
to update the model (see Updating a GMO instance), solve the model with one of the GAMS solvers
available as part of the GAMS environment and GEV, and retrieve the solution.

Access to a GMO instance is usually done using integer indices, [1..m] for the rows and [1..n] for
the columns. However, it is also possible to reference rows and columns using the notation from the
original GAMS model, e.g. x('seattle','topeka') or demand('chicago'). This is more convenient
when specifying what data should be updated to define a new scenario. In order to update a model
instance in this case, it is useful to have a convenient, efficient way to translate row and column indices
from one form to the other. This translation is done by the model dictionary interface DCT.

3626 Application Programming Interfaces

The DCT API provides information about the variables, equations, and sets used to define the GMO
model instance. In addition, given a row or column index, it will translate this index into the equation or
variable name and the list of set labels that correspond to this index. It will also do the inverse operation,
translating an equation/variable name and list of labels into a row or column index. GAMS builds models
in a way that makes this translation very efficient.

This organization is also useful when updating models to create new scenarios. Models are organized so
that:

• There is one ordered universe of all labels appearing in the variables and equations of a given model.
The order for the labeling does not change from symbol to symbol within a model.

• All of the columns in a model corresponding to a given variable are contiguous. (Ditto for rows and
equations)

• The columns corresponding to a given variable are sorted by their index labels, using the universal
order, with the left-most index varying slowest. (Ditto for rows and equations)

• GDX data is sorted in the same way: sorted by index label order, left-most index varying slowest.
This can be very useful, provided the model and the GDX data use the same label ordering.

Using the various GAMS component libraries, it is possible to create a model updating interface that is
both convenient for the user (by using the symbolic names referenced in the GAMS source) and efficient
in updating the model data.

7.15.5 Updating a GMO instance

There are several possible ways to modify a model contained in a GMO instance. By updating, we mean
an actual model change, rather than a change in the view that doesn't alter the set of solutions.

In perhaps the simplest case, the user can specify alternate variable bounds, as is useful when implementing
a branch and bound code. The original bounds are retained in this case, so that the model can be reverted
to the original bounds with a single call.

It is possible to linearize a model around a given point. This requires no information from the point to
linearize around and can be undone easily. This is almost a change in view but since the solutions of the
original and linearized models may be quite different we can also consider this a model update.

Many algorithms (e.g. outer approximation, Benders decomposition, Danzig-Wolfe decomposition) involve
the addition of rows, and columns incident on these rows, to a core model. Such algorithms can be
implemented effectively using GMO by taking advantage of GMO facilities to add rows and columns.
There will be only a small amount of work required to prepare the GMO instance for use after each round
of additional rows and columns. Note that all the changes to the model in this case are additions: the
existing structure and data are left as is.

Finally, there are facilities in GMO to update variable bounds (as mentioned before), variable types (e.g.
to relax single discrete variables), and the right-hand-side of constraints. The user cannot directly modify
matrix coefficients. There is a much better way to safely update exogenous data in a model: GAMS can
provide a model instance in which GAMS parameters are visible and can be updated. A reevaluation of
the expressions in the models provides the updated matrix elements. The underlying concept is also used
in Gather-Update-Solve-Scatter (GUSS) and described in more detail in this paper. This is a powerful
tool to efficiently do e.g. Monte-Carlo simulation without the need for GAMS to regenerate the entire
model over and over.

http://www.gams.com/modlib/adddocs/gusspaper.pdf

Chapter 8

Appendix

• Glossary - An alphabetical list of GAMS terms.

• Third-Party Codes - A list of third-party codes that are included in the GAMS distribution.

• Bibliography

8.1 Glossary

acronym A GAMS data type used for storing non-numeric (aka logical or
categorical) data. For more details, see section Acronyms.

alias
An alternative name for a set, used to have multiple indices
running over a common set. For more information, see section
The Alias Statement: Multiple Names for a Set.

algorithm
A sequence of actions to perform in order to solve a problem. GAMS
solvers contain algorithm implementations, so the two terms are
sometimes used interchangeably.

assignment
The statement used to assign values to an identifier. For a detailed
introduction, see section The Assignment Statement.

basic
A column is basic if it is in the basis maintained by the solution
method for the problem in question (e.g. by the simplex method
for LP). A row is basic if the elementary column associated with
its slack variable is basic. For more details, see Mathematical

Programming Glossary

binding
An inequality constraint or variable bound is binding when the
value of the associated slack is zero, i.e. when it is satisfied as an
equality. See also Mathematical Programming Glossary

bounds
Upper and lower limits on the possible values that a column may
assume in a feasible solution. May be infinite, i.e. no limit is
imposed.

column
An individual decision variable in the model passed to a solver. Also
called a single variable in the GAMS listing file. An indexed
GAMS variable typically contains many columns.

citelist.html
http://glossary.informs.org/ver2/mpgwiki/index.php?title=Basic
http://glossary.informs.org/ver2/mpgwiki/index.php?title=Basic
http://glossary.informs.org/ver2/mpgwiki/index.php?title=Binding_constraint

3628 Appendix

compilation
The initial phase of GAMS processing, when the program is being
checked for syntax and consistency.

compile-time constant
A compile-time constant is a string that will be replaced at compile-
time with a fixed value. These constants are usually related to a
function, model attribute or option and are used for their mnemonic
and descriptive value. See section Compile-Time Constants.

compile-time variable
Special variables that are substituted with their values at compile-
time. For further information, see section Compile-Time Variables.

constraint
A relationship between variables that must hold in a
feasible solution. A constraint can refer to a single relationship (i.e.
a row) or to a collection of rows, such as an equation. For further
details, see Mathematical Programming Glossary

continuous
Used to describe functions (in the usual mathematical way) and
variables. Roughly speaking, a function is continuous if its graph
has no breaks or jumps in it. A continuous variable may assume any
value within its bounds, in contrast to binary or integer variables.

controlling sets
See driving sets.

data types
Each symbol or identifier must be declared as one of the avail-
able data types, e.g set, parameter, equation, or model. Note
that scalars and tables are not separate data types, but con-
venient input formats for certain parameters. See also section
Data Types and Definitions.

decision variable
A decision variable (aka endogenous variable) represents a decision
to be made, e.g. the amount to produce or consume or the unit
price to charge. Decision variables are the unknowns of a mathe-
matical programming model. In contrast, exogenous variables or
parameters are outside of the decision maker's control. See also
the Mathematical Programming Glossary.

declaration
The introduction of an identifier along with the specification of its
data type. A declaration may also include the specification of data
or initial values, in which case it also acts as a definition. See also
section Classification of GAMS Statements.

default
The value used, or the action taken, if the user provides no infor-
mation.

definition
A statement specifying the content or data associated with a GAMS
identifier, e.g. the equations in a model, the algebra of an equa-
tion, the elements of a set, or the initial values of a parameter.
Definitions are processed during compilation. See also section
Classification of GAMS Statements.

direction
The direction of optimization, i.e. maximization or minimization.

discontinuous
A function is discontinuous if it is not continuous. Sometimes, we
call a function discontinuous if its derivatives are not continuous,
i.e. it is nonsmooth.

discrete
A discrete variable is any variable that is not continuous. For
example, binary and integer variables are discrete. For more details,
see section Types of Discrete Variables.

http://glossary.informs.org/ver2/mpgwiki/index.php?title=Constraint
http://glossary.informs.org/ver2/mpgwiki/index.php?title=Decision_variable

8.1 Glossary 3629

dollar control option
Directives or options used to control input or output details asso-
ciated with the GAMS compiler. They are introduced in chapter
Dollar Control Options.

dollar operator
An operator used to indicate and define conditional expressions in
assignment statements and equation definitions. For more informa-
tion, see section The Dollar Condition.

domain checking
A system of checks that ensures that operations and relationships
involving sets and domains are logically consistent. For example, ref-
erencing pop(t,city) when we have a declaration of pop(city,t)
is a logical error that domain checking will catch. For more infor-
mation, see section Domain Checking.

domain of definition
The set of tuples (i.e. label combinations) for which an indexed
equation is defined. When a solve statement is executed, a row
of the equation is generated for each member of the domain of
definition.

domain restriction condition
The narrowing of the domain of definition with a dollar operator.
When used in this way, the dollar operator occurs on the left of
the symbol '..' in an equation definition. For more details, see
section Dollar Control over the Domain of Definition.

driving set
The set or list of sets that an indexed operation or domain
runs or is defined over. Loops, indexed operations like sum, and
domains of definition all make use of driving sets.

dynamic set
A set is dynamic if it has been changed with an assignment
statement. Dynamic sets cannot be used with lag operations
or in domain declarations. For more information, see chapter
Dynamic Sets.

echo print
In the output file, the echo print is a listing of the in-
put with added line numbers. Details are given in section
The Echo Print of the Input File.

endogenous
Endogenous variables are used in economics, statistics, and
other disciplines. In the GAMS context, they are synony-
mous with variables, i.e. values that change when a solve
statement is processed. See also the discussion in section
Functions in Equation Definitions.

equation
The GAMS data type used to specify required relationships between
activity levels of variables. They are introduced and discussed in
detail in chapter Equations.

execution
The second phase of GAMS processing, when GAMS is actually
carrying out data transformations or generating a model.

execution statements
Instructions to carry out actions such as data transformations,
model solves and report generation. Examples include the
assignment statement, the loop statement and the solve statement.
For a full list, see section Classification of GAMS Statements.

3630 Appendix

exogenous Exogenous variables are used in economics, statistics, and other
disciplines. In the GAMS context, they are synonymous with
constants, i.e. values that do not change when a solve state-
ment is processed. These are most often parameters but any
variable or equation field will be treated exogenously when it
appears in an equation. See also the discussion in section
Functions in Equation Definitions.

explanatory text
See text.

extended arithmetic
In GAMS, the usual computer arithmetic is extended to include
special values (e.g. inf) and the results of operations and functions
that use them. For example, 6 + inf is inf and min(6, inf)

is 6. See section Extended Range Arithmetic and Error Handling
for details.

external equation
An equation defined in an external module. For example, on
Windows systems, external equations are defined by a DLL. See
section External Equations for details.

extrinsic function
A function that is imported into a GAMS program from an external
function library. Once imported, extrinsic functions can be used in
the same way as intrinsic functions like cos and exp. See section
Extrinsic Functions for details.

e-format
A convenient text-based (i.e. unsuperscripted) way to represent
numbers in scientific notation in which the exponent of the 10 is
prefixed by the letter e. For example, one US mile = 1.609344e+03
meters.

feasible
Often used to describe a model (or a subset of constraints within
a model) that has at least one feasible solution, but also used to
describe a point that satisfies a set of constraints. For more in-
formation, see Mathematical Programming Glossary. See also
infeasible.

feasible solution
A solution to a model in which all column activity levels are
within the bounds and all the constraints are satisfied. For more
information, see Mathematical Programming Glossary.

identifier
The name given to a data entity in a GAMS program. Also called
a symbol. See section Identifiers for further details.

indexed operation
An operation (e.g. sum or max) that is performed over one or more
indices. See also section Indexed Operations.

inequality constraint
A constraint in which the imposed relationship between the columns
is not specified with an equality but instead with an inequality (e.g.
”greater than or equal to”, ”less than or equal to”). The GAMS
syntax =G= and =L= is used in equation definitions to specify these
relationships.

infeasible
Not feasible. Used to describe either a model that has no
feasible solution or an intermediate solution or point that is not
feasible (although feasible solutions may exist).

http://glossary.informs.org/ver2/mpgwiki/index.php?title=Feasible_direction
http://glossary.informs.org/ver2/mpgwiki/index.php?title=Feasible_direction

8.1 Glossary 3631

initialization
Associating or assigning initial values to an identifier as part of the
declaration or definition of the identifier. We typically talk about
the initialization of only those identifiers (e.g. sets and parameters)
that can be assigned different values later. For identifiers like
models and equations, we say they are defined, not initialized.

intrinsic function
Functions that are provided by and part of GAMS, including
mathematical, string, logical, time/calendar, and utility functions.
Contrast to extrinsic functions.

label
Sets are built up from labels (aka elements). One-dimensional sets
are collections of labels, while multi-dimensional sets contain tuples
of labels. See section Labels for details.

list
See list format.

list format
GAMS data may be initialized by data in list format, i.e. a list
where each tuple of labels in the data is specified in full. Data may
also be displayed in list format, in which case each nondefault value
is displayed via a fully-specified tuple of labels.

macro A macro is a fragment of code that has been given a name: whenever
the name is used, that name is replaced by the contents of the macro
(i.e. the fragment of code). This is useful for defining and automat-
ing structured text replacement, e.g. to replace the text MYOBJ(x)
with [sqr(x) + exp(x-2)/7]. See section Macros in GAMS for
details.

marginal
Marginal values (aka ”dual values”, ”reduced costs”, ”shadow
prices”, or ”multipliers”) are stored in the ".m" variable attribute
or equation attribute. The GAMS sign convention is this: the
marginal value represents the amount and direction of change in
the objective value given a unit increase in the binding constant
(e.g. an active variable bound or right-hand side). For further
information, see Mathematical Programming Glossary

matrix element
See nonzero element.

model generation
An initial step in processing a solve statement, where a model
instance is generated (based on the equation definitions and the
data referenced by those definitions) for the solver.

model list
The list of equations that are part of the model, as speci-
fied in the model statement. For further details, see section
The Model Statement.

model status
An integer returned by the solver that gives information about
the model (e.g. INFEASIBLE), about the point returned by the
solver (e.g. LOCALLY INFEASIBLE), or both (UNBOUNDED
NO SOLUTION RETURNED). For an overview of all values, see
section Model Status.

nonbasic
A column that is not basic and (in nonlinear problems) not
superbasic. Typically, nonbasic columns behave or are treated
as if they are fixed at a bound. If the solution is feasible, the value
of a nonbasic column will equal a finite bound (or zero if there are
no finite bounds).

http://glossary.informs.org/ver2/mpgwiki/index.php?title=Marginal_price

3632 Appendix

nonlinear nonzero
In a linear programming problem, the nonzero elements of the
constraint matrix are constant. In a nonlinear problem, elements of
the Jacobian matrix vary where variables appear nonlinearly. These
non-constant Jacobian elements are called nonlinear nonzeros.

nonoptimal
Not optimal. A solution is nonoptimal if other solutions exist with
better objective values. A variable is nonoptimal if its marginal
(aka reduced cost) has the wrong sign. For example, in a mini-
mization, a variable at lower bound having a negative marginal is
nonoptimal. In the simplex method, a variable is nonoptimal if it
is nonbasic and would improve the objective if it entered the basis.

nonsmooth
A function is nonsmooth if it is not smooth, i.e. if the function itself
or its derivatives are not continuous. For example, the absolute
value function is nonsmooth because of the kink at the origin: its
derivative is not continuous there.

nonzero element
An element or coefficient of a matrix (e.g. the constraint matrix of
an LP or the Jacobian matrix of an NLP) that is not zero. Most
mathematical programming problems are sparse, i.e. only a small
proportion of the elements in the constraint or Jacobian matrix are
nonzero.

objective row (or function)
Solver systems often require the specification of a row or (for non-
linear systems) a function whose value will be optimized. A GAMS
model, in contrast, is solved by specifying a scalar objective variable
to be optimized.

objective value
The current value of the objective row or of the objective variable.

objective variable
The variable to be optimized, as specified in the solve statement.

optimal
A feasible solution in which the objective value is the best possible.
For more details, see Mathematical Programming Glossary.

optimality gap
The optimality gap is a metric for the distance (or an upper
bound on the distance) between the objective value of the current
feasible solution and the optimal objective value. For more infor-
mation, see Mathematical Programming Glossary. In GAMS,
MIP and global solvers terminate when the optimality gap is suffi-
ciently reduced: see the options optCA and optCR for details.

option
A control that allows users to change or influence the behavior
or parameters in many different parts of the system. Options in
GAMS may be set in three different ways: with model attributes,
command line parameters, and option statements. A full list
of all options with detailed descriptions is given in section
Detailed Descriptions of All Options.

ordered set
A one-dimensional set is ordered if the definition or initializa-
tion of the elements in the set corresponds to the order of the
labels in the universe. Only sets that are ordered (and static)
can be treated as sequences, i.e. used in lags and leads and
with Ord-type operations. For more information, see chapter
Sets as Sequences: Ordered Sets.

output file
A file, also called the listing file, produced (by default) by the run
of a GAMS program. It contains output that describes or logs the
run in question. For details see chapter GAMS Output.

http://glossary.informs.org/ver2/mpgwiki/index.php?title=Optimal
https://glossary.informs.org/ver2/mpgwiki/index.php?title=Optimality_gap

8.1 Glossary 3633

parameter
A data type in GAMS used to store (indexed) con-
stant data. For details on parameters, see chapter
Data Entry: Parameters, Scalars and Tables.

problem type
A class of models that is characterized or defined by the type
of algebra accepted (e.g. linear or nonlinear), the GLOS-
SARY variable type ”variable types” allowed (e.g. continuous vs.
discrete), and the definition of what it means to solve the model or
problem (e.g. optimization vs. MCP). A list of all problem types
in GAMS is given in section Classification of Models.

program A GAMS input file. Typically a program defines a model and solves
it, but programs can also work only with data or act as scripts that
call other programs.

relational operator
This term may be used in two ways. First, in an equation def-
inition, it describes the type of relationship that the equation
specifies. An example is equality, as specified with the symbol
=e=. For more information, see Table Equation Types. Second, in
a logical expression, a relational operator compares two numerical
expressions and returns a logical value. For details see section
Logical Conditions: Numerical Relational Operators.

right-hand side
The value of the constant term in a constraint.

row An individual constraint in the model passed to a solver. Also
called a single equation in the GAMS listing file. An indexed
GAMS equation typically contains many rows.

scalar
An un-indexed parameter, or the statement used to declare or
define this parameter. See also section Scalars.

set
A collection of elements (aka labels) or element tuples. The set
statement is used to declare and define a set. Sets are introduced
and discussed in detail in chapter Set Definition.

simplex method
An algorithm often used to solve linear programming problems.
For more details, see Mathematical Programming Glossary

singleton set
A special set that has at most one element (zero elements are
allowed as well). For more information, see section Singleton Sets.

slack
The amount by which an inequality constraint or variable bound
is not binding.

slack variable
A non-negative variable introduced to represent the slack in an
inequality constraint and to convert the inequality into an equal-
ity. For further information, see Mathematical Programming

Glossary

smooth
A function that is continuous and whose derivatives are all continu-
ous is smooth. Sometime we consider a function smooth if enough
of its derivatives are continuous.

solver
An implementation of an algorithm or algorithms for solving
models of a given problem type or types. An example is
MINOS and QUADMINOS, which is used to solve both linear and
nonlinear programming problems.

http://glossary.informs.org/ver2/mpgwiki/index.php?title=Simplex_method
http://glossary.informs.org/ver2/mpgwiki/index.php?title=Slack_variable
http://glossary.informs.org/ver2/mpgwiki/index.php?title=Slack_variable

3634 Appendix

solver status
An integer returned by the solver that indicates the solver termina-
tion condition, i.e. why the solver stopped. For details, see section
Solver Status.

statements
Statements (aka units or sentences) are the fundamental building
blocks of GAMS programs: each program is a sequence of state-
ments. Statements are used to declare identifiers, define equations,
create loops, and solve models. A full list of GAMS statements is
given in section Classification of GAMS Statements.

static set
Used in two slightly different ways: a set is static if it has not
changed (i.e. it is not dynamic) or if it cannot change, i.e. it is
immutable. Usually, sets are either used in ways that make them
immutable (e.g. as domains or with lags and leads) or in ways
that make them dynamic (i.e. by assigning to them): in such cases,
static is synonymous with immutable.

superbasic
Some algorithms for nonlinear programming make use of superbasic
variables that are neither basic (i.e. in the basis) nor nonbasic (i.e.
temporarily fixed at a bound). These algorithms often search in the
space defined by these superbasic variables. For further information,
see Mathematical Programming Glossary

symbol
An identifier.

table
A table statement is often a convenient way to define a parameter
having two or more dimensions. For details see section Tables.

text
An optional description associated with an identifier or with an
element of a set. For details see section Text.

unique element
A label used to define set membership.

universe
Also called the universal set, it is denoted by the symbol '∗' and
contains all the labels that have been declared in the program plus
any labels used as if they were declared (e.g. link('sink',j) =

NO;). If an identifier is declared using the universe, that effectively
turns off or limits domain checking for that identifier. For more
details, see section The Universal Set: ∗ as Set Identifier.

variable type
Variables are classified or typed based on their default bounds
and the values they are allowed to take. This latter classification
partitions variables into continuous or discrete. For example, free
variables have no default bounds and can take any value between
their bounds: they are continuous. In contrast, binary variables
can take only the values zero and one. See section Variable Types
for details.

zero default
Some GAMS data (e.g. parameters, lower bounds for positive
variables) have a default value of zero. These default zero values
are not stored. However, unless other values are provided via
initialization or assignment, zero will be used when the data value
is taken.

8.2 Third-Party Codes

The following table lists third-party codes that are included in the GAMS distribution.

http://glossary.informs.org/ver2/mpgwiki/index.php?title=Superbasic_variable

8.2 Third-Party Codes 3635

Software Version Description License

Addict
3.4 Spell Checker proprietary

ALPHAECP
2.11.01 Mixed-Integer Non-

linear Programming
Solver

proprietary

ANTIGONE
1.1 Mixed-Integer Non-

linear Programming
Solver

proprietary

BARON
24.03.01 Mixed-Integer Non-

linear Programming
Solver

proprietary

BLISS
0.77 Compute canonical la-

belings and automor-
phism groups of graphs

LGPL 3.0

Boost
1.84 Portable C++ source li-

braries
Boost 1.0

CBC
2.10.11 Mixed-Integer Linear

Optimization Solver
EPL 2.0

Cerberus
1.3.5 Data validation library ISC

certifi
2023.11.17 Mozilla's bundle of Cer-

tificate Authority cer-
tificates

MPL 2.0

Cgl
0.60.8 Cut Generators for

Mixed-Integer Linear
Optimization

EPL 2.0

cJSON
1.7.12 Ultralightweight JSON

parser in ANSI C
MIT

Clp
1.17.9 Linear Optimization

Solver
EPL 2.0

CoinUtils
2.11.10 Classes and helper func-

tions used by COIN-OR
projects

EPL 2.0

CONOPT 3
3.17O Nonlinear Program-

ming Solver
proprietary

CONOPT 4
4.33 Nonlinear Program-

ming Solver
proprietary

COPT
7.0.6 Mixed-Integer Lin-

ear and Quadratic
Programming Solver

proprietary

CPLEX
22.1.1.0 Mixed-Integer Lin-

ear and Quadratic
Programming Solver

proprietary

CppAD (in SCIP)
20180000.0 C++ Automatic Differ-

entiation
EPL 2.0

CppAD (in SHOT)
20210606 C++ Automatic Differ-

entiation
EPL 2.0

cpr 1.10.2 C++ Requests: Curl
for People, a spiritual
port of Python Re-
quests

MIT

Curl
8.6.0 transferring data with

URLs
curl

D6OnHelpFix
Fixes OnHelp events in
Delphi 6 and 7

proprietary

https://www.minlp.com
https://users.aalto.fi/~tjunttil/bliss/
licenses/lgpl_3.0.txt
https://www.boost.org/
licenses/boost.txt
https://github.com/coin-or/Cbc
licenses/epl_2.0.txt
https://docs.python-cerberus.org/
licenses/cerberus.txt
https://github.com/certifi/python-certifi
licenses/mpl_2.0.txt
https://github.com/coin-or/Cgl/
licenses/epl_2.0.txt
https://github.com/DaveGamble/cJSON
licenses/mit.txt
https://github.com/coin-or/Clp/
licenses/epl_2.0.txt
https://github.com/coin-or/CoinUtils/
licenses/epl_2.0.txt
https://www.conopt.com
https://www.conopt.com
https://www.shanshu.ai/copt
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://github.com/coin-or/CppAD
licenses/epl_2.0.txt
https://github.com/coin-or/CppAD
licenses/epl_2.0.txt
https://github.com/libcpr/cpr
licenses/mit.txt
https://curl.se/
licenses/curl.txt

3636 Appendix

Software Version Description License

DataTables
1.13.4 Advanced Features for

HTML Tables
MIT

DECISC
Solver for two-stage
stochastic LPs with re-
course

proprietary

DECISM
Solver for two-stage
stochastic LPs with re-
course

proprietary

Delphi
Borland Runtime Pack-
age

Borland

DIERCKX/FITPACK
Calculation of smooth-
ing splines for various
kinds of data and ge-
ometries, with auto-
matic knot selection

public domain

Doxygen Awesome
2.1.0 CSS theme for Doxygen

HTML-documentation
MIT

Doxygen Output
1.8.13 Doxygen HTML-

documentation Style
and JavaScript Files

none

Dream
Editor proprietary

dtoa
Conversion between
decimal and binary
format of floating point
numbers

MIT-like

EC Software Help

Suite

Help Viewer proprietary

Eigen
3.3.90 C++ template library

for linear algebra
MPL 2.0

et-xmlfile
1.1.0 Creation of XML files MIT

f2clib
Runtime library for pro-
grams converted with
f2c

unnamed

Fast Memory

Manager

4.73 A fast replacement
memory manager

MPL 1.1

finlib
Models from A. Con-
siglio, S.S. Nielsen and
S.A. Zenios, Practical
Financial Optimization:
A library of GAMS
models, John Wiley,
UK, 2009

none

FMT
6.1.2 C++ string formatting

library
MIT

freetds
1.3.18 Implementation of

Sybase's DB-, CT-, and
ODBC libraries

LGPL 2.0

GAMS-Kestrel
Kestrel solver for re-
mote solver execution

MIT

GAMSCHK
1.3 A system for examin-

ing the structure and
solution properties of
GAMS model instances

proprietary

https://datatables.net/
licenses/mit.txt
https://infanger.com/software/decis.html
https://infanger.com/software/decis.html
https://www.embarcadero.com
licenses/delphi.txt
https://www.netlib.org/dierckx/
https://jothepro.github.io/doxygen-awesome-css/
licenses/mit.txt
https://www.doxygen.nl
https://www.netlib.org/fp
licenses/dtoa.txt
http://www.ec-software.com
http://www.ec-software.com
https://eigen.tuxfamily.org
licenses/mpl_2.0.txt
https://foss.heptapod.net/openpyxl/et_xmlfile/
licenses/mit.txt
http://www.netlib.org/f2c/
licenses/f2clib.txt
https://github.com/pleriche/FastMM4
https://github.com/pleriche/FastMM4
licenses/mpl_1.1.txt
https://www.wiley.com/en-us/Practical+Financial+Optimization%3A+A+Library+of+GAMS+Models-p-9781444317237
https://github.com/fmtlib/fmt
licenses/mit.txt
https://www.freetds.org/
licenses/lgpl_2.0.txt
https://github.com/NEOS-Server/GAMS-Kestrel
licenses/mit.txt

8.2 Third-Party Codes 3637

Software Version Description License

GCC
13.2.0 C++ and Fortran com-

piler runtime libraries
GPL 3.0 +

exception

GKLib
METIS-v5.1.1-
DistDGL-0.5

Helper Routines and
Frameworks used by
METIS

Apache 2.0

GNU Awk
3.1.0 Pattern Scanning and

Processing Language
GPL 2

GNU diffutils
2.7 Find Differences be-

tween Files
GPL 2

GNU fileutils
3.16 File Management Utili-

ties
GPL 2

GNU grep
2.4 Search one or more in-

put files for lines con-
taining a match to a
specified pattern

GPL 2

GNU Gzip
1.2.4 Data Compression GPL 2

GNU Make
3.78.1 Control the generation

of executables and other
non-source files from
source files

GPL 2

GNU sed
3.02 Non-interactive

Command-line Text
Editor

GPL 2

GNU shellutils
1.9.4 (1.13 for date) Shell-manipulation Util-

ities
GPL 2

GNU Tar
1.12 Archiving Utility GPL 2

GNU textutils
2.0 (2.1 for md5sum) Shell Utilities for Text

File Processing
GPL 2

GNU xargs
4.1 Build and Execute

Command Lines from
Standard Input

GPL 2

greenlet
3.0.3 Concurrent program-

ming
MIT

Gurobi
11.0.0 Mixed-Integer Lin-

ear and Quadratic
Programming Solver

proprietary

HiGHS
1.6.0 (c070f1253) Mixed-Integer Linear

Optimization Solver
MIT

HSL MA27
2003-03-19 Sparse Linear Equa-

tions System Solver
proprietary

HSL MA57
3.11.0 Sparse Linear Equa-

tions System Solver
proprietary

HSL MA86
1.6.0 Sparse Linear Equa-

tions System Solver
proprietary

HSL MA97
2.6.0 Sparse Linear Equa-

tions System Solver
proprietary

HSL MC19
1989-03-09 Scaling Linear Equa-

tion Systems
proprietary

HSL MC68
3.3.3 Elimination Ordering

for Sparse Direct Solver
proprietary

HTMLHelpViewer
HTML Help Viewer proprietary

https://gcc.gnu.org
licenses/gcc.txt
licenses/gcc.txt
https://github.com/KarypisLab/GKlib
licenses/apache_2.0.txt
https://www.gnu.org/software/gawk
licenses/gpl_2.txt
https://www.gnu.org/software/diffutils
licenses/gpl_2.txt
https://www.gnu.org/software/fileutils
licenses/gpl_2.txt
https://www.gnu.org/software/grep
licenses/gpl_2.txt
https://www.gnu.org/software/gzip
licenses/gpl_2.txt
https://www.gnu.org/software/make
licenses/gpl_2.txt
https://www.gnu.org/software/sed
licenses/gpl_2.txt
https://www.gnu.org/software/shellutils
licenses/gpl_2.txt
https://www.gnu.org/software/tar
licenses/gpl_2.txt
https://www.gnu.org/software/textutils
licenses/gpl_2.txt
https://www.gnu.org/software/findutils
licenses/gpl_2.txt
https://greenlet.readthedocs.io/en/latest/
licenses/mit.txt
https://www.gurobi.com
https://highs.dev
licenses/mit.txt
https://www.hsl.rl.ac.uk/
https://www.hsl.rl.ac.uk/
https://www.hsl.rl.ac.uk/
https://www.hsl.rl.ac.uk/
https://www.hsl.rl.ac.uk/
https://www.hsl.rl.ac.uk/
http://www.helpscribble.com/

3638 Appendix

Software Version Description License

HTMLLITE
7.7 HTML Viewer MIT

Icono
1.3.0 Icon Pack in CSS MIT

Intel Compiler
2021.2.0 C/C++ and Fortran

compiler runtime li-
braries

Intel EULA

Ipopt
3.14.14 Nonlinear Optimization

Solver
EPL 2.0

Jinja2
3.1.3 Templating engine BSD-3-Clause

JQuery
3.5.1 JavaScript Utilities Li-

brary
MIT

Json.NET
13.0.2 High-performance

JSON framework for
.NET

MIT

JSON.simple
1.1.1 A simple Java library

for JSON process, read
and write JSON data

Apache 2.0

Knitro
14.0.0 Mixed-Integer and Con-

tinuous Nonlinear Pro-
gramming Solver

proprietary

krb5
1.20.1 Network authentication MIT

libiconv
1.16 Conversion of character

encodings
LGPL 2.1

LibYAML
0.2.2 A C library for parsing

and emitting YAML
MIT

LINDO API
14.0 Stochastic and global

MINLP solver
proprietary

Lunr
2.3.6 Search Engine in

JavaScript
MIT

madCollection
1.6f Collection of Delphi

utility functions
proprietary

MarkupSafe
2.1.4 Escapes characters for

safe use in HTML and
XML

BSD-3-Clause

MathJax
3.2.2 JavaScript Display En-

gine for Mathematics
Apache 2.0

MC++
2.0.1 Toolkit for Bounding

Factorable Functions
EPL 1.0

McCarl GAMS User

Guide

A GAMS User Guide
written by Bruce Mc-
Carl

public domain

METIS
5.2.1 Serial Graph Partition-

ing and Fill-reducing
Matrix Ordering

Apache 2.0

MILES
MCP solver proprietary

MINOS
5.6 Nonlinear Program-

ming Solver
proprietary

MKL
2023.1 (2021.2 on Win-
dows)

Math Functions opti-
mized for Intel CPUs
and GPUs

ISSL

MOSEK
10.1.27 Mixed-Integer Conic

Programming Solver
proprietary

licenses/mit.txt
https://saeedalipoor.github.io/icono/
licenses/mit.txt
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/overview.html
licenses/intel_compiler.txt
https://github.com/coin-or/Ipopt
licenses/epl_2.0.txt
https://palletsprojects.com/p/jinja/
licenses/bsd-3-clause.txt
https://jquery.com/
licenses/mit.txt
https://www.newtonsoft.com/json
licenses/mit.txt
https://github.com/fangyidong/json-simple
licenses/apache_2.0.txt
https://www.artelys.com/solvers/knitro/
http://web.mit.edu/kerberos/
licenses/mit.txt
https://www.gnu.org/software/libiconv/
licenses/lgpl_2.1.txt
https://github.com/yaml/libyaml
licenses/mit.txt
https://www.lindo.com/index.php/products/lindo-api-for-custom-optimization-application
http://lunrjs.com
licenses/mit.txt
http://www.madshi.net
https://palletsprojects.com/p/markupsafe/
licenses/bsd-3-clause.txt
https://www.mathjax.org/
licenses/apache_2.0.txt
https://github.com/omega-icl/mcpp
licenses/epl_1.0.txt
https://forum.gamsworld.org/viewtopic.php?t=11522
https://forum.gamsworld.org/viewtopic.php?t=11522
https://github.com/KarypisLab/METIS
licenses/apache_2.0.txt
https://web.stanford.edu/group/SOL/research_application_constrained_optimization.html
https://software.intel.com/oneapi/onemkl
licenses/mkl.txt
https://www.mosek.com

8.2 Third-Party Codes 3639

Software Version Description License

MPSGE
Mathematical Program-
ming System for Gen-
eral Equilibrium

proprietary

MSVC 2019
14.29.30133 Visual C/C++ com-

piler runtime libraries
MS EULA

MUMPS
5.6.2 Multifrontal massively

parallel sparse direct
solver

CeCILL-C 1.0

nauty
2.8.8 Graph canonical label-

ing and automorphism
group computation

Apache 2.0

nlohmann::json
v3.11.2 JSON for Modern C++ MIT

noalib
Models from Neculai
Andrei, Nonlinear Op-
timization Applications
Using the GAMS Tech-
nology, Springer Opti-
mization and Its Appli-
cations, Springer, edi-
tion 127, 2013

none

numpy 1.26.3 Scientific computing in
Python

BSD-3-Clause

ODHeuristics
7.0.7 Primal Heuristics for

Mixed-Integer Linear
Optimization

proprietary

oneTBB
2021.11.0 Multithreading Library Apache 2.0

oneTBB (Windows)
2021.2.0 Multithreading library ISSL

OpenMP (Intel)
Library for high-level
parallelism in Fortran
and C/C++

BSD-3-Clause

OpenMP (LLVM)
16.0.5 Library for high-level

parallelism in Fortran
and C/C++

MIT

openpyxl
3.1.2 Read and write Excel

2010 xlsx/xlsm files
MIT

OpenSSL
3.0.12 Toolkit for General-

Purpose Cryptography
and Secure Communica-
tion

Apache 2.0

Osi
0.108.9 Abstract base class to a

generic linear program-
ming (LP) solver

EPL 2.0

pandas
2.1.4 Data analysis and ma-

nipulation in Python
BSD-3-Clause

PaPILO
2.1.4.0 (ee0677c4) Parallel Presolve for In-

teger and Linear Opti-
mization

LGPL 3.0

PATH
5.0.07 MCP solver proprietary

PDQSort
Pattern-defeating quick-
sort

zlib

ply
3.11 lex and yacc implemen-

tation in Python
BSD-3-Clause

https://learn.microsoft.com/en-us/visualstudio/windows
licenses/msvc_2019.txt
https://mumps-solver.org
licenses/mumps.txt
https://pallini.di.uniroma1.it/
licenses/apache_2.0.txt
https://github.com/nlohmann/json
licenses/mit.txt
https://link.springer.com/book/10.1007/978-1-4614-6797-7
https://numpy.org/
licenses/numpy.txt
https://www.optimizationdirect.com/odheuristics/
https://oneapi-src.github.io/oneTBB
licenses/onetbb.txt
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html
licenses/onetbb_windows_.txt
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-9/openmp-support-libraries.html
licenses/openmp_intel_.txt
https://openmp.llvm.org/
licenses/mit.txt
https://openpyxl.readthedocs.io/en/stable/
licenses/mit.txt
https://www.openssl.org/
licenses/apache_2.0.txt
https://github.com/coin-or/Osi/
licenses/epl_2.0.txt
https://pandas.pydata.org/
licenses/bsd-3-clause.txt
https://github.com/scipopt/papilo
licenses/lgpl_3.0.txt
https://pages.cs.wisc.edu/~ferris/path.html
https://github.com/orlp/pdqsort
licenses/zlib.txt
https://www.dabeaz.com/ply/
licenses/bsd-3-clause.txt

3640 Appendix

Software Version Description License

Prism
1.29.0 JavaScript Syntax High-

lighter
MIT

psoptlib
Models from Alireza
Soroudi, Power system
optimization modeling
in GAMS, Springer,
2017

none

psycopg2-binary
2.9.9 PostgreSQL adapter LGPL 3.0

pthreads-win32
2.9.1 POSIX threads library

for Microsoft Windows
LGPL 2.1

PyExcelerate
0.10.0 Excel XLSX writing BSD-2-Clause

pymssql
2.2.10 (2.2.8 on macOS
on ARM64)

DB-API interface to Mi-
crosoft SQL Server

LGPL 2.1

PyMySQL
1.1.0 MySQL Driver MIT

pyodbc
5.0.1 Access to ODBC

databases
MIT

Python
3.12.1 Scripting language PSF

python-dateutil
2.8.2 Extensions to the stan-

dard Python datetime
module

Apache 2.0

pytz
2023.3.post1 World timezone defini-

tions
MIT

pywin32
306 Python for Window Ex-

tensions
BSD-3-Clause

PyYAML
6.0.1 YAML parser and emit-

ter
MIT

Qt
6.5.1 Toolkit for creating

cross-platform graphi-
cal user interfaces and
applications

LGPL 3.0

quadMINOS
5.6 Quad-Precision Non-

linear Programming
Solver

proprietary

Rave Reports
5.1.4 Components for

database reporting
proprietary

sassy 1.1 Preprocessor for sym-
metry detection

MIT

SBB
Mixed-Integer Non-
linear Programming
Solver

proprietary

SCENRED
05/08/2002 Scenario tree reduction

tool for Stochastic Pro-
gramming

proprietary

SCENRED 2
12/12/2008 Scenario tree construc-

tion and reduction tool
for Stochastic Program-
ming

proprietary

SCIP
8.1.0 (0dff9f8a3e) Constraint Integer Pro-

gramming Framework
Apache 2.0

scipy
1.11.4 Fundamental algo-

rithms for scientific
computing

BSD-3-Clause

https://prismjs.com/
licenses/mit.txt
https://link.springer.com/book/10.1007/978-3-319-62350-4
https://www.psycopg.org/
licenses/lgpl_3.0.txt
https://sourceware.org/pthreads-win32/
licenses/pthreads_win32.txt
https://github.com/kz26/PyExcelerate
licenses/bsd-2-clause.txt
https://github.com/pymssql/pymssql
licenses/lgpl_2.1.txt
https://github.com/PyMySQL/PyMySQL
licenses/mit.txt
https://github.com/mkleehammer/pyodbc
licenses/mit.txt
https://www.python.org/
licenses/python.txt
https://github.com/dateutil/dateutil
licenses/apache_2.0.txt
https://pythonhosted.org/pytz/
licenses/mit.txt
https://github.com/mhammond/pywin32
licenses/bsd-3-clause.txt
https://pyyaml.org/
licenses/mit.txt
https://www.qt.io
licenses/lgpl_3.0.txt
https://web.stanford.edu/group/SOL/research_application_constrained_optimization.html
https://www.nevrona.com/
https://github.com/markusa4/sassy
licenses/mit.txt
https://www.scipopt.org
licenses/apache_2.0.txt
https://scipy.org/
licenses/scipy.txt

8.2 Third-Party Codes 3641

Software Version Description License

SendMail
Send e-mails proprietary

SHOT
1.1.0 (424b5e48) Mixed-Integer Non-

linear Programming
Solver

EPL 2.0

six
1.16.0 Python 2 and 3 compat-

ibility utilities
MIT

SKA
2c46874 Hashtables Boost 1.0

SNOPT
7.7.7 Nonlinear Program-

ming Solver
proprietary

SNOPT (in

ANTIGONE)

5.3-5 Nonlinear Program-
ming Solver

proprietary

SoPlex
6.0.4 (5a9b664d) Linear Programming

Solver
Apache 2.0

SPDLog
1.8.2 C++ Logging Library MIT

SQLAlchemy
1.4.51 Database Abstraction

Library
MIT

sqlalchemy-access
1.1.4 MS Access for

SQLAlchemy
MIT

sqlite
3.8.5 SQL database engine public domain

TeeTree
2.0 Diagram and

FlowChart Controls
proprietary

TFileDrag
Support dropping files
from explorer onto a
Delphi form

proprietary

TFolderDialog
Wrap Shell32 dialog
'Browse For Folder' into
a Delphi component

LGPL 2.0

TinyCThread
1.2 C11 Threads API imple-

mentation
zlib

TinyExpr
4dfb202c Tiny recursive descent

parser and evaluation
engine

zlib

TinyXML
2.6.2 XML parser zlib

TinyXML2
7.1.0 C++ XML parser zlib

TOneInstance
1.02 Prevent application to

be started more than
once

freeware

TStringAlignGrid
2.0 Text alignment in Del-

phi forms
freeware

TurboPower Orpheus
4.05 UI toolkit for Borland

Delphi
MPL 1.1

TurboPower

ShellShock

1.02 Customize applications MPL 1.1

TurboPower

SysTools

4.02 Library of utility rou-
tines & classes for Bor-
land Delphi

MPL 1.1

tzdata
2023.4 Compiled IANA time

zone database
Apache 2.0

http://www.scalabium.com
https://shotsolver.dev/
licenses/epl_2.0.txt
https://github.com/benjaminp/six
licenses/mit.txt
https://github.com/skarupke/flat_hash_map
licenses/ska.txt
https://ccom.ucsd.edu/~optimizers/solvers/snopt
https://ccom.ucsd.edu/~optimizers/solvers/snopt/
https://ccom.ucsd.edu/~optimizers/solvers/snopt/
https://soplex.zib.de
licenses/apache_2.0.txt
https://github.com/gabime/spdlog
licenses/mit.txt
https://www.sqlalchemy.org/
licenses/mit.txt
https://github.com/gordthompson/sqlalchemy-access
licenses/mit.txt
https://www.sqlite.org
https://www.steema.com/
licenses/lgpl_2.0.txt
https://tinycthread.github.io/
licenses/zlib.txt
https://codeplea.com/tinyexpr
licenses/zlib.txt
https://www.sourceforge.net/projects/tinyxml
licenses/zlib.txt
https://github.com/leethomason/tinyxml2
licenses/zlib.txt
http://www.bome.com
licenses/toneinstance.txt
http://www.hoerstemeier.com/grid.htm
licenses/tstringaligngrid.txt
https://sourceforge.net/projects/tporpheus
licenses/mpl_1.1.txt
https://sourceforge.net/projects/tpshellshock
https://sourceforge.net/projects/tpshellshock
licenses/mpl_1.1.txt
https://sourceforge.net/projects/tpsystools
https://sourceforge.net/projects/tpsystools
licenses/mpl_1.1.txt
https://github.com/python/tzdata
licenses/apache_2.0.txt

3642 Appendix

Software Version Description License

unixodbc
2.3.11 ODBC for Unix plat-

forms
LGPL 2.1

UnZip
6.0-28 (6.00 on Win-
dows)

Decompression tool Info-ZIP

urllib3
2.1.0 HTTP library MIT

Virtual Treeview
4.8.6 Treeview control MPL 1.1

XLSReadWriteII
5.20.30 Excel Reader and

Writer
proprietary

XlsxWriter
3.1.9 Creation of Excel XLSX

files
BSD-2-Clause

Xpress
41.01.03 Mixed-Integer Lin-

ear and Nonlinear
Programming Solver

proprietary

yaml-cpp
0.7.0 A YAML parser and

emitter in C++
MIT

Zip
3.0-13 (3.1c02 BETA on
Windows)

Compression tool Info-ZIP

zlib
1.3.1 Compression Library zlib

zstr
1.0.5 C++ Zlib Wrapper MIT

https://github.com/lurcher/unixODBC
licenses/lgpl_2.1.txt
http://www.info-zip.org
licenses/unzip.txt
https://github.com/urllib3/urllib3
licenses/mit.txt
https://soft-gems.net/
licenses/mpl_1.1.txt
http://www.axolot.com
https://github.com/jmcnamara/XlsxWriter
licenses/bsd-2-clause.txt
https://www.fico.com/en/products/fico-xpress-optimization
https://github.com/jbeder/yaml-cpp
licenses/mit.txt
http://www.info-zip.org
licenses/zip.txt
https://www.zlib.net
licenses/zlib.txt
https://github.com/mateidavid/zstr
licenses/mit.txt

Index

**, reserved non-alphanumeric symbol, 775
*.GCK file

GAMSCHK, 1997
*.GCK file, comments

GAMSCHK, 2000
*.GCK file, page width

GAMSCHK, 2000
++, circular operator, 811
++, reserved non-alphanumeric symbol, 775
–, circular operator, 811
–, reserved non-alphanumeric symbol, 775
->, reserved non-alphanumeric symbol, 775
.., reserved non-alphanumeric symbol, 775
.ap

suffixes, put-file, 1249
.bm

suffixes, put-file, 1249
.case

suffixes, put-file, 1249
.cc

suffixes, put-file, 1249
.cr

suffixes, put-file, 1249
.errors

suffixes, put-file, 1249
.first

set attributes, set, 793
.fx

suffixes, variable, 858
.grad

suffixes, function, 838
.gradH

suffixes, function, 838
.gradL

suffixes, function, 838
.gradn

suffixes, function, 838
.hdcc

suffixes, put-file, 1249
.hdcr

suffixes, put-file, 1250
.hdll

suffixes, put-file, 1250
.hess

suffixes, function, 838
.hessn

suffixes, function, 838
.high

suffixes, function, 838

.infeas
suffixes, equation, 873
suffixes, variable, 860

.l
suffixes, equation, 872
suffixes, variable, 858

.last
set attributes, set, 793

.lcase
suffixes, put-file, 1250

.len
set attributes, set, 793

.lj
suffixes, put-file, 1250

.ll
suffixes, put-file, 1250

.lm
suffixes, put-file, 1250

.lo
suffixes, equation, 872
suffixes, variable, 858

.low
suffixes, function, 838

.lp
suffixes, put-file, 1250

.lw
suffixes, put-file, 1250

.m
suffixes, equation, 872
suffixes, variable, 858

.nd
suffixes, put-file, 1251

.nj
suffixes, put-file, 1251

.nr
suffixes, put-file, 1251

.nw
suffixes, put-file, 1251

.nz
suffixes, put-file, 1251

.off
set attributes, set, 793

.ord
set attributes, set, 793

.pc
suffixes, put-file, 1252

.pdir
suffixes, put-file, 1251

.pos

3644 INDEX

set attributes, set, 793
.prior

suffixes, variable, 858
.ps

suffixes, put-file, 1253
.pw

suffixes, put-file, 1253
.range

suffixes, equation, 873
suffixes, variable, 859

.rev
set attributes, set, 793

.scale
suffixes, equation, 872
suffixes, variable, 858

.sj
suffixes, put-file, 1253

.slack
suffixes, equation, 873
suffixes, variable, 860

.slacklo
suffixes, equation, 873
suffixes, variable, 860

.slackup
suffixes, equation, 873
suffixes, variable, 860

.stage
suffixes, equation, 872
suffixes, variable, 858

.sw
suffixes, put-file, 1253

.te
suffixes, identifier (put context), 1263
suffixes, string type, 832

.tf
suffixes, put-file, 1254

.tj
suffixes, put-file, 1254

.tl
suffixes, identifier (put context), 1262
suffixes, string type, 832

.tlcc
suffixes, put-file, 1254

.tlcr
suffixes, put-file, 1254

.tlen
set attributes, set, 793

.tlll
suffixes, put-file, 1254

.tm
suffixes, put-file, 1255

.tn
suffixes, identifier (put context), 1263

.ts
suffixes, identifier (put context), 1262
suffixes, string type, 832

.tval
set attributes, set, 793

.tw
suffixes, put-file, 1255

.uel
set attributes, set, 793

.up
suffixes, equation, 872
suffixes, variable, 858

.val
set attributes, set, 793

.value
suffixes, function, 838

.ws
suffixes, put-file, 1255

/, cursor control, 1258
=b=, reserved non-alphanumeric symbol, 775
=c=, reserved non-alphanumeric symbol, 775
=e=, reserved non-alphanumeric symbol, 775
=g=, reserved non-alphanumeric symbol, 775
=l=, reserved non-alphanumeric symbol, 775
=n=, reserved non-alphanumeric symbol, 775
=x=, reserved non-alphanumeric symbol, 775
@n, cursor control, 1258
#n, cursor control, 1258
$GDXIN, example, 684
$LOAD, example, 684
$abort, dollar control option, 1126
$abort.noError, dollar control option, 1126
$batInclude, dollar control option, 1127
$call, dollar control option, 1128
$call.Async, dollar control option, 1129
$call.AsyncNC, dollar control option, 1129
$call.checkErrorLevel, dollar control option, 1130
$calltool, dollar control option, 1130
$calltool.checkErrorLevel, dollar control option,

1130
$clear, dollar control option, 1131
$clearError, dollar control option, 1132
$clearErrors, dollar control option, 1132
$comment, dollar control option, 1132
$compress, dollar control option, 1132
$declareAndLoad, dollar control option, 1133
$decompress, dollar control option, 1134
$dollar, dollar control option, 1134
$double, dollar control option, 1135
$drop, dollar control option, 1135
$dropEnv, dollar control option, 1135
$dropGlobal, dollar control option, 1136
$dropLocal, dollar control option, 1136
$echo, dollar control option, 1136
$echoN, dollar control option, 1137
$eject, dollar control option, 1137
$else, dollar control option, 1138
$elseif, dollar control option, 1138
$elseifE, dollar control option, 1138
$elseifI, dollar control option, 1138
$encrypt, dollar control option, 1139
$endif, dollar control option, 1139
$eolCol, dollar control option, 1139

INDEX 3645

$error, dollar control option, 1140
$escape, dollar control option, 1140
$eval, dollar control option, 1142
$eval.Set, dollar control option, 1143
$evalGlobal, dollar control option, 1144
$evalGlobal.Set, dollar control option, 1144
$evalLocal, dollar control option, 1144
$evalLocal.Set, dollar control option, 1144
$exit, dollar control option, 1145
$expose, dollar control option, 1145
$funcLibIn, dollar control option, 1145
$gdxIn, dollar control option, 1145
$gdxLoad, dollar control option, 1146
$gdxLoadAll, dollar control option, 1146
$gdxOut, dollar control option, 1147
$gdxUnload, dollar control option, 1147
$goto, dollar control option, 1147
$hidden, dollar control option, 1148
$hiddenCall, dollar control option, 1148
$hiddenCall.Async, dollar control option, 1148
$hiddenCall.AsyncNC, dollar control option, 1148
$hiddenCall.checkErrorLevel, dollar control option,

1149
$hiddenCallTool, dollar control option, 1149
$hiddenCallTool.checkErrorLevel, dollar control op-

tion, 1149
$hide, dollar control option, 1149
$if, dollar control option, 1149
$ifE, dollar control option, 1150
$ifThen, dollar control option, 1150
$ifThenE, dollar control option, 1151
$ifThenI, dollar control option, 1152
$ifi, dollar control option, 1150
$include, 675
$include, dollar control option, 1152
$inlineCom, dollar control option, 1153
$kill, dollar control option, 1153
$label, dollar control option, 1154
$libinclude, dollar control option, 1154
$lines, dollar control option, 1155
$load, dollar control option, 1155
$loadDC, dollar control option, 1158
$loadDCM, dollar control option, 1158
$loadDCR, dollar control option, 1159
$loadFiltered, dollar control option, 1159
$loadFilteredM, dollar control option, 1160
$loadFilteredR, dollar control option, 1160
$loadIdx, dollar control option, 1161
$loadM, dollar control option, 1161
$loadR, dollar control option, 1162
$log, 678
$log, dollar control option, 1162
$macro, dollar control option, 1163
$maxCol, dollar control option, 1163
$maxGoto, dollar control option, 1164
$minCol, dollar control option, 1164
$offCheckErrorLevel, dollar control option, 1165
$offDelim, dollar control option, 1165

$offDigit, dollar control option, 1166
$offDollar, dollar control option, 1167
$offDotL, dollar control option, 1167
$offDotScale, dollar control option, 1168
$offECImplicitLoad, dollar control option, 1169
$offEcho, dollar control option, 1168
$offEchoS, dollar control option, 1168
$offEchoV, dollar control option, 1168
$offEmbedded, dollar control option, 1170
$offEmbeddedCode, dollar control option, 1170
$offEmpty, dollar control option, 1173
$offEnd, dollar control option, 1174
$offEolCom, dollar control option, 1175
$offEps, dollar control option, 1175
$offEpsToZero, dollar control option, 1177
$offExpand, dollar control option, 1178
$offExternalInput, dollar control option, 1178
$offExternalOutput, dollar control option, 1180
$offFiltered, dollar control option, 1181
$offGlobal, dollar control option, 1182
$offIDCProtect, dollar control option, 1182
$offImplicitAssign, dollar control option, 1182
$offInclude, dollar control option, 1183
$offInline, dollar control option, 1183
$offListing, dollar control option, 1184
$offLocal, dollar control option, 1185
$offLog, dollar control option, 1186
$offMacro, dollar control option, 1186
$offMargin, dollar control option, 1187
$offMulti, dollar control option, 1187
$offNestCom, dollar control option, 1190
$offOEIXRef, dollar control option, 1199
$offOrder, dollar control option, 1191
$offPut, dollar control option, 1191
$offPutS, dollar control option, 1191
$offPutV, dollar control option, 1191
$offRecurse, dollar control option, 1193
$offStrictSingleton, dollar control option, 1194
$offSuffixAlgebraVars, dollar control option, 1195
$offSuffixDLVars, dollar control option, 1194
$offSymList, dollar control option, 1196
$offSymXRef, dollar control option, 1197
$offText, dollar control option, 1197
$offTroll, dollar control option, 1198
$offUElList , dollar control option, 1199
$offUNDF, dollar control option, 1200
$offUni, dollar control option, 1200
$offUpper, dollar control option, 1192
$offVerbatim, dollar control option, 1201
$offWarning, dollar control option, 1202
$onCheckErrorLevel, dollar control option, 1165
$onDelim, dollar control option, 1165
$onDigit, dollar control option, 1166
$onDollar, dollar control option, 1167
$onDotL, dollar control option, 1167
$onDotScale, dollar control option, 1168
$onECImplicitLoad, dollar control option, 1169
$onEcho, dollar control option, 1168

3646 INDEX

$onEchoS, dollar control option, 1168
$onEchoV, dollar control option, 1168
$onEmbedded, dollar control option, 1170
$onEmbeddedCode, dollar control option, 1170
$onEmpty, dollar control option, 1173
$onEnd, dollar control option, 1174
$onEolCom, dollar control option, 1175
$onEps, dollar control option, 1175
$onEpsToZero, dollar control option, 1177
$onExpand, dollar control option, 1178
$onExternalInput, dollar control option, 1178
$onExternalOutput, dollar control option, 1180
$onFiltered, dollar control option, 1181
$onGlobal, dollar control option, 1182
$onIDCProtect, dollar control option, 1182
$onImplicitAssign, dollar control option, 1182
$onInclude, dollar control option, 1183
$onInline, dollar control option, 1183
$onListing, dollar control option, 1184
$onLocal, dollar control option, 1185
$onLog, dollar control option, 1186
$onMacro, dollar control option, 1186
$onMargin, dollar control option, 1187
$onMulti, dollar control option, 1187
$onMultiR, dollar control option, 1189
$onNestCom, dollar control option, 1190
$onOEIXRef, dollar control option, 1199
$onOrder, dollar control option, 1191
$onPut, dollar control option, 1191
$onPutS, dollar control option, 1191
$onPutV, dollar control option, 1191
$onRecurse, dollar control option, 1193
$onStrictSingleton, dollar control option, 1194
$onSuffixAlgebraVars, dollar control option, 1195
$onSuffixDLVars, dollar control option, 1194
$onSymList, dollar control option, 1196
$onSymXRef, dollar control option, 1197
$onText, dollar control option, 1197
$onTroll, dollar control option, 1198
$onUElList , dollar control option, 1199
$onUNDF, dollar control option, 1200
$onUni, dollar control option, 1200
$onUpper, dollar control option, 1192
$onVerbatim, dollar control option, 1201
$onWarning, dollar control option, 1202
$phantom, dollar control option, 1203
$prefixPath, dollar control option, 1204
$protect, dollar control option, 1204
$purge, dollar control option, 1205
$remark, dollar control option, 1205
$sTitle, dollar control option, 1216
$save, dollar control option, 1205
$scratchFileName, dollar control option, 1206
$set, dollar control option, 1206
$setArgs, dollar control option, 1207
$setComps, dollar control option, 1208
$setDDList, dollar control option, 1209
$setEnv, dollar control option, 1210

$setGlobal, dollar control option, 1210
$setLocal, dollar control option, 1210
$setNames, dollar control option, 1211
$shift, dollar control option, 1212
$show, dollar control option, 1213
$showFiles, dollar control option, 1214
$showMacros, dollar control option, 1214
$showVariables, dollar control option, 1214
$single, dollar control option, 1214
$splitOption, dollar control option, 1215
$stars, dollar control option, 1216
$stop, dollar control option, 1217
$sysInclude, dollar control option, 1217
$terminate, dollar control option, 1217
$title, dollar control option, 1218
$unLoad, dollar control option, 1218
$use205, dollar control option, 1220
$use225, dollar control option, 1221
$use999, dollar control option, 1221
$version, dollar control option, 1221
$warning, dollar control option, 1222
<=>, reserved non-alphanumeric symbol, 775

abort, keyword, 772
abs, function, 826
ACCESS, data exchange

MDB2GMS, 3169
acronym, 767
acronym, keyword, 772
acronyms, keyword, 772
activity level (.l)

in equation listing, 997
use, 860
variable attribute, 858

aggregation, 945
ALAN, example from GAMSlib, 987
algorithm

Implementation of non-standard, 895
alias, 767

statement, 784
alias, keyword, 772
all, defining a model, 997
all, keyword, 772
alpha-BB

ANTIGONE, 1682
AlphaECP

convex, 1656, 1661, 1670
Cutting Plane, 1656, 1661
ECP, 1656
Extended Cutting Plane, 1656, 1659, 1660
linearization, 1660, 1661
pseudo-convex, 1656, 1661, 1670
Solver manual, 1656

AlphaECP, solver, 1656
ALUM, example from GAMSlib, 786
and, keyword, 772
and, relational operator, 899
ANDEAN, example from GAMSlib, 824, 908
ANTIGONE

INDEX 3647

alpha-BB, 1682
branch and bound global optimization, 1683
concavity, 1682
convex relaxation, 1671
convexity, 1682
edge-concavity, 1682
edge-convexity, 1682
expression tree reformulation, 1682
logfile, 1672
RLT, 1682

ANTIGONE, solver, 1671
ap

suffixes, put-file, 1249
API

expert-level APIs, 3325
Object-oriented APIs, 3319
Examples, 3320
Reference Manuals, 3319
Tutorials, 3320

arccos, function, 827
arcsin, function, 827
arctan, function, 827
arctan2, function, 827
arithmetic operations, 822, 1009

addition, 822
division, 822
exponentiation, 822
multiplication, 822
subtraction, 822

ask, tool, 2925
assigned, reference type, 991
assignment

conditional, 903
indexed, 819
issues with controlling indices, 821
over subsets, 820
scalar, 818
sparse assignments, 904
statement, 818
using labels explicitly, 820

asterisk
in set definitions, 783
marking errors, 997, 1007
use in comments, 779

attributes, set, 792
automated tuning

GUROBI, 2021

BARON
complementarity constraints, 1691
global optimization, 1683
IIS, 1690
irreducibly inconsistent system(IIS), 1690
logfile, 1685
model statuses, 1686
solution pool, 1688
solver statuses, 1686
termination messages, 1686
variable bounds, 1684

BARON, solver, 1683
barrier algorithm

CPLEX, 1845
GUROBI, 2018

barrier method
CPLEX, 1846

BCH, examples
Solver Usage, 1304

Benders’ Decomposition
DECIS, 1946

best practice, approximating non-smooth functions
DICOPT, 1973

best practice, avoiding function domain errors
CONOPT, 1736
DICOPT, 1974

best practice, avoiding function evaluation errors
CONOPT, 1736
DICOPT, 1974

best practice, formulating a good model
CONOPT, 1738

best practice, good starting point
CONOPT, 1738
DICOPT, 1971

best practice, intermediate variables
CONOPT, 1740

best practice, introducing slack variables
DICOPT, 1990

best practice, model debugging
DICOPT, 1991

best practice, scaling
DICOPT, 1971

best practice, scaling
CONOPT, 1741

best practice, scaling intermediate variables
CONOPT, 1742

best practice, scaling with GAMS scale option
CONOPT, 1743

best practice, setting bounds
DICOPT, 1971

best practice, setting bounds
CONOPT, 1739

best practice, simple expressions
CONOPT, 1740

best practice, small big M
DICOPT, 1973

best practice, solving the relaxed model first
DICOPT, 1971

best practice, stopping criteria
DICOPT, 1989

best practice, using different MIP solvers
DICOPT, 1990

best practice, using different NLP solvers
DICOPT, 1990

beta distribution
GAMS Stochastic Library, 1414
LINDO Sampling Library, 1417

beta, function, 827
betaReg, function, 827

3648 INDEX

bilevel programs
EMP, 1482
JAMS, 2168

binary, keyword, 772
binomial distribution

GAMS Stochastic Library, 1415
LINDO Sampling Library, 1418

binomial, function, 827
bm

suffixes, put-file, 1249
bool and, function, 833
bool eqv, function, 833
bool imp, function, 833
bool not(x), function, 833
bool or, function, 833
bool xor, function, 833
boolean,operations, 907
branch and bound global optimization

ANTIGONE, 1683
branch-and-bound algorithm

SBB, 2515
branch-and-cut algorithm

CPLEX, 1846
branch-and-cut optimizer

MOSEK, 2367
Branch-and-Cut-and-Heuristic facility (BCH)

Solver Usage, 1300
branching priority value, variable (.prior), 858
break, keyword, 772

capability problems, solver status, 1002
card, function, 832
card, keyword, 772
card, operator on sets, 811
case

suffixes, put-file, 1249
cauchy distribution

GAMS Stochastic Library, 1414
LINDO Sampling Library, 1417

CBC, 1699
CBC, solver, 1699
cc

suffixes, put-file, 1249
cdfBVN, function, 1424
cdfTVN, function, 1424
cdfUVN, function, 1424
ceil, function, 827
centropy, function, 827
CFG API, expert-level API, 3325
chance constraints, 1518

DE, 1932
CHENERY, example from GAMSlib, 862, 908
chiSquare distribution

GAMS Stochastic Library, 1414
LINDO Sampling Library, 1417

CNS, model type, 878
collections of models

GUSS, 2077
column listing, GAMS output, 997

comma
in data lists, 778
in put statements, 1244

command line parameters, list, 1033
comment

using $eolcom, 779
using $inlinecom, 780

compilation
errors, 1007
errors at ... time, 1008
output, 988

compile-time constant, 1030
compile-time variable, 1027
complement, set operation, 802
complementarity constraints

BARON, 1691
compress, 1235
compute server

GUROBI, 2022
concavity

ANTIGONE, 1682
concurrent optimizer

CPLEX, 1845
GUROBI, 2022

conditional compilation, 1222
conditional expressions

numerical values, 902
operator precedence, 902
using set membership, 900
with logical operators, 899
with numerical relationship operators, 897

confidence interval
DECIS, 1945

Conflict refiner
CPLEX, 1845

connect editor, GAMS Studio, 2990
CONOPT

best practice, good starting point, 1738
best practice, avoiding function domain errors,

1736
best practice, avoiding function evaluation er-

rors, 1736
best practice, formulating a good model, 1738
best practice, intermediate variables, 1740
best practice, scaling, 1741
best practice, scaling intermediate variables,

1742
best practice, scaling with GAMS scale option,

1743
best practice, setting bounds, 1739
best practice, simple expressions, 1740
CONOPT algorithm, 1749
CONOPT algorithm, crash procedure, 1757
CONOPT algorithm, definitional equations,

1758
CONOPT algorithm, initial feasible solution,

1760
CONOPT algorithm, linear mode, 1761

INDEX 3649

CONOPT algorithm, loss of feasibility, 1769
CONOPT algorithm, nonlinear mode, 1761
CONOPT algorithm, pre-processing, 1751
CONOPT algorithm, preprocessing and func-

tion evaluation errors, 1758
CONOPT algorithm, scaling, 1759
CONOPT algorithm, SLP procedure, 1762
CONOPT algorithm, SQP procedure , 1763
CONOPT algorithm, starting point, 1751
CONOPT algorithm, steepest edge procedure ,

1763
constrained nonlinear system (CNS), 1768
diagnostics, 1733
DNLP models, problems, 1745
DNLP models, reformulations, 1745
DNLP models, smooth approximations, 1746
DNLP models, smooth examples, 1747
external equations, 1772
extrinsic functions, 1772
GRG algorithm , 1749
models for which CONOPT is a good solver,

1791
NLP models, non-smooth examples, 1748
non-default options, selecting, 1765
Sequential Linear Programming (SLP), 1763
Sequential Quadratic Programming (SQP),

1763
Steepest Edge Algorithm , 1763
termination message, NaN (Not A Number),

1771
termination message, overflow, 1771
termination message, stalling, 1770
termination messages, 1733
triangular models, 1766

CONOPT algorithm
CONOPT, 1749

CONOPT algorithm, crash procedure
CONOPT, 1757

CONOPT algorithm, definitional equations
CONOPT, 1758

CONOPT algorithm, initial feasible solution
CONOPT, 1760

CONOPT algorithm, linear mode
CONOPT, 1761

CONOPT algorithm, loss of feasibility
CONOPT, 1769

CONOPT algorithm, nonlinear mode
CONOPT, 1761

CONOPT algorithm, pre-processing
CONOPT, 1751

CONOPT algorithm, preprocessing and function
evaluation errors

CONOPT, 1758
CONOPT algorithm, scaling

CONOPT, 1759
CONOPT algorithm, SLP procedure

CONOPT, 1762
CONOPT algorithm, SQP procedure

CONOPT, 1763
CONOPT algorithm, starting point

CONOPT, 1751
CONOPT algorithm, steepest edge procedure

CONOPT, 1763
CONOPT, solver, 1791
CONOPT3, solver, 1730
CONOPT4, solver, 1791
constrained nonlinear system (CNS)

CONOPT, 1768
constraint, 867
continue, keyword, 772
control, reference type, 991
controlling

index, 819
set, 924

CONVERT
dictionary file, 1829
model algebra, 1829
scalar model, 1829

CONVERT, solver, 1829
convex

AlphaECP, 1656, 1661, 1670
convex relaxation

ANTIGONE, 1671
convexity

ANTIGONE, 1682
core model

DECIS, 1946
cos, function, 827
cosh, function, 827
cosine, function, 1423
CPLEX

barrier algorithm, 1845
barrier method, 1846
branch-and-cut algorithm, 1846
concurrent optimizer, 1845
Conflict refiner, 1845
CPLEX-Link, 1929
dual simplex algorithm, 1845
feasible relaxation, 1847
IIS, 1845
Infeasibility Finder, 1845
Irreducibly inconsistent set of constraints (IIS),

1845
limited memory, 1864
network optimizer, 1845
post-optimality analysis, 1868
refactorization, 1864
sensitivity analysis, 1868
sifting algorithm, 1845
simplex algorithm, 1845
solution pool, 1847
solution pool, accessing, 1850
solution pool, enumerating all solutions, 1848
solution pool, filtering, 1849
solution pool, populating, 1847
starting solution for MIPs, 1866

3650 INDEX

CPLEX as optimizer
DECIS, 1956

CPLEX, solver, 1845
CPLEX-Link

CPLEX, 1929
cr

suffixes, put-file, 1249
CRAZY, example from GAMSlib, 840, 1009
cross validation

GUSS, 2081
cross validation, ten-fold

GUSS, 2081
cross validation, ten-fold, example

GUSS, 2081
CSV, data exchange, 676
csv2gdx, tool, 2938
Cutting Plane

AlphaECP, 1656, 1661
cvPower, function, 827

data
entered as parameters, 844
entered as tables, 847
entry, 842
manipulations with parameters, 818
type, 769

Data Envelopment Analysis (DEA) with GUSS
GUSS, 2087

data exchange
DB2, 688
MS Access, 690
MySQL, 697
Oracle, 701
SQL Server, 704
SyBase, 710

data exchange, ACCESS
MDB2GMS, 3169

data exchange, EXCEL
GDX2XLS, 3054
XLS2GMS, 3279
XLSDump, 3295

data exchange, GAMS
GDX, 1440

databases, data exchange, 688
DCT API, expert-level API, 3325
DE

chance constraints, 1932
deterministic equivalent, 1930
expected value problem (EVP), 1932
logfile, 1936
probability distributions, continuous, 1931
probability distributions, discrete, 1931
probability distributions, joint, 1930
random variables, 1930
reformulation techniques, 1933
reformulation, chance constraints, 1935
reformulation, CVaR, 1936
reformulation, VaR, 1935
risk measures, 1932

sampling, 1931
scenario tree, 1930
scenarios, 1930
stages, 1930
stochastic linear program, two-stage, 1933
stochastic programming, 1929
stochastic programming, EMP, 1929

DE, solver, 1929
DEA modeling with GUSS

GUSS, 2088
decalaration

acronym, 853
decimals, global option, 916
DECIS

Benders’ Decomposition, 1946
confidence interval, 1945
core model, 1946
CPLEX as optimizer, 1956
decision stages, 1948
deterministic equivalent, 1942
error messages, 1965
example models, 1960
expected value problem, 1944
MINOS as optimizer, 1955
Monte-Carlo pre-sampling, 1945
Monte-Carlo sampling, 1945
output, 1956
probability distributions, 1948
random parameter, 1943
regularization, 1946
stochastic linear program, 1942
stochastic linear programs, two-stage, 1942
stochastic parameters, dependent, 1952
stochastic parameters, independent, 1948
Stochastic programming, 1942
uncertainty, 1943
universe problem, 1944

DECIS, solver, 1942
decision stages

DECIS, 1948
declaration

alias, 784
equation, 864
file, 1242
function, 1411
model, 875
parameter, 844
scalar, 843
set, 782
statements, 767
table, 847
variable, 854

decompress, 1235
defined, reference type, 991
definition

of a model, 875
of data, 769
of scalars, 844

INDEX 3651

of symbols, 771
statements, 767

deterministic equivalent
DE, 1930
DECIS, 1942

diag, 901
diag, keyword, 772
diag, predefined symbol, 841
diagnostic tags

IPOPT, 2106
diagnostics

CONOPT, 1733
DICOPT

best practice, approximating non-smooth func-
tions, 1973

best practice, avoiding function domain errors,
1974

best practice, avoiding function evaluation er-
rors, 1974

best practice, good starting point, 1971
best practice, introducing slack variables, 1990
best practice, model debugging, 1991
best practice, scaling, 1971
best practice, setting bounds, 1971
best practice, small big M, 1973
best practice, solving the relaxed model first,

1971
best practice, stopping criteria, 1989
best practice, using different MIP solvers, 1990
best practice, using different NLP solvers, 1990
DICOPT algorithm, 1969

DICOPT algorithm
DICOPT, 1969

DICOPT, solver, 1968
dictionary file

CONVERT, 1829
difference, set operation, 802
direction of optimization, 891
discrete variables

details, 968
in models, 877
overview, 855

disjunctive programming
EMP, 1487
JAMS, 2179

display
controls local, 917
example, 913
generating data in list format, 919
global controls, 916
introduction, 912
label order, 914
syntax, 912

display control, 943
display, keyword, 773
distributed optimization

GUROBI, 2022
distributions

beta, 1414, 1417
binomial, 1415, 1418
cauchy, 1414, 1417
chiSquare, 1414, 1417
exponential, 1414, 1417
f, 1414, 1417
gamma, 1414, 1417
geometric, 1415
gumbel, 1414, 1417
hyperGeo, 1415, 1418
invGaussian, 1414
laplace, 1414, 1417
logarithmic, 1415, 1418
logistic, 1414, 1417
logNormal, 1414, 1417
negBinomial, 1415, 1418
normal, 1414, 1417
pareto, 1414, 1417
poisson, 1415, 1418
rayleigh, 1414
studentT, 1414, 1417
triangular), 1414, 1417
uniform, 1414, 1417
uniformInt, 1415
weibull, 1414, 1417

div, function, 827
div0, function, 827
DNLP models, problems

CONOPT, 1745
DNLP models, reformulations

CONOPT, 1745
DNLP models, smooth approximations

CONOPT, 1746
DNLP models, smooth examples

CONOPT, 1747
DNLP, model type, 878
do, keyword, 773
dollar condition, 896

control over the domain of definition, 908
dollar operator, 896
example, 897
in indexed operations, 906
nested, 903
on the left, 904
on the right, 905
with dynamic sets, 803
within the algebra, 907

dollar control option
Detailed Descriptions, 1126
Introduction, 1119
Lists, 1119
Syntax, 1119

dollar control options, 1119
$abort, 1126
$abort.noError, 1126
$batInclude, 1127
$call, 1128
$call.Async, 1129

3652 INDEX

$call.AsyncNC, 1129
$call.checkErrorLevel, 1130
$calltool, 1130
$calltool.checkErrorLevel, 1130
$clear, 1131
$clearError, 1132
$clearErrors, 1132
$comment, 1132
$compress, 1132
$declareAndLoad, 1133
$decompress, 1134
$dollar, 1134
$double, 1135
$drop, 1135
$dropEnv, 1135
$dropGlobal, 1136
$dropLocal, 1136
$echo, 1136
$echoN, 1137
$eject, 1137
$else, 1138
$elseif, 1138
$elseifE, 1138
$elseifI, 1138
$encrypt, 1139
$endif, 1139
$eolCol, 1139
$error, 1140
$escape, 1140
$eval, 1142
$eval.Set, 1143
$evalGlobal, 1144
$evalGlobal.Set, 1144
$evalLocal, 1144
$evalLocal.Set, 1144
$exit, 1145
$expose, 1145
$funcLibIn, 1145
$gdxIn, 1145
$gdxLoad, 1146
$gdxLoadAll, 1146
$gdxOut, 1147
$gdxUnload, 1147
$goto, 1147
$hidden, 1148
$hiddenCall, 1148
$hiddenCall.Async, 1148
$hiddenCall.AsyncNC, 1148
$hiddenCall.checkErrorLevel, 1149
$hiddenCallTool, 1149
$hiddenCallTool.checkErrorLevel, 1149
$hide, 1149
$if, 1149
$ifE, 1150
$ifThen, 1150
$ifThenE, 1151
$ifThenI, 1152
$ifi, 1150

$include, 1152
$inlineCom, 1153
$kill, 1153
$label, 1154
$libinclude, 1154
$lines, 1155
$load, 1155
$loadDC, 1158
$loadDCM, 1158
$loadDCR, 1159
$loadFiltered, 1159
$loadFilteredM, 1160
$loadFilteredR, 1160
$loadIdx, 1161
$loadM, 1161
$loadR, 1162
$log, 1162
$macro, 1163
$maxCol, 1163
$maxGoto, 1164
$minCol, 1164
$offCheckErrorLevel, 1165
$offDelim, 1165
$offDigit, 1166
$offDollar, 1167
$offDotL, 1167
$offDotScale, 1168
$offECImplicitLoad, 1169
$offEcho, 1168
$offEchoS, 1168
$offEchoV, 1168
$offEmbedded, 1170
$offEmbeddedCode, 1170
$offEmpty, 1173
$offEnd, 1174
$offEolCom, 1175
$offEps, 1175
$offEpsToZero, 1177
$offExpand, 1178
$offExternalInput, 1178
$offExternalOutput, 1180
$offFiltered, 1181
$offGlobal, 1182
$offIDCProtect, 1182
$offImplicitAssign, 1182
$offInclude, 1183
$offInline, 1183
$offListing, 1184
$offLocal, 1185
$offLog, 1186
$offMacro, 1186
$offMargin, 1187
$offMulti, 1187
$offNestCom, 1190
$offOEIXRef, 1199
$offOrder, 1191
$offPut, 1191
$offPutS, 1191

INDEX 3653

$offPutV, 1191
$offRecurse, 1193
$offStrictSingleton, 1194
$offSuffixAlgebraVars, 1195
$offSuffixDLVars, 1194
$offSymList, 1196
$offSymXRef, 1197
$offText, 1197
$offTroll, 1198
$offUElList, 1199
$offUNDF, 1200
$offUni, 1200
$offUpper, 1192
$offVerbatim, 1201
$offWarning, 1202
$onCheckErrorLevel, 1165
$onDelim, 1165
$onDigit, 1166
$onDollar, 1167
$onDotL, 1167
$onDotScale, 1168
$onECImplicitLoad, 1169
$onEcho, 1168
$onEchoS, 1168
$onEchoV, 1168
$onEmbedded, 1170
$onEmbeddedCode, 1170
$onEmpty, 1173
$onEnd, 1174
$onEolCom, 1175
$onEps, 1175
$onEpsToZero, 1177
$onExpand, 1178
$onExternalInput, 1178
$onExternalOutput, 1180
$onFiltered, 1181
$onGlobal, 1182
$onIDCProtect, 1182
$onImplicitAssign, 1182
$onInclude, 1183
$onInline, 1183
$onListing, 1184
$onLocal, 1185
$onLog, 1186
$onMacro, 1186
$onMargin, 1187
$onMulti, 1187
$onMultiR, 1189
$onNestCom, 1190
$onOEIXRef, 1199
$onOrder, 1191
$onPut, 1191
$onPutS, 1191
$onPutV, 1191
$onRecurse, 1193
$onStrictSingleton, 1194
$onSuffixDLVars, 1194
$onSuffixVars, 1195

$onSymList, 1196
$onSymXRef, 1197
$onText, 1197
$onTroll, 1198
$onUElList, 1199
$onUNDF, 1200
$onUni, 1200
$onUpper, 1192
$onVerbatim, 1201
$onWarning, 1202
$prefixPath, 1204
$protect, 1204
$purge, 1205
$remark, 1205
$sTitle, 1216
$save, 1205
$scratchFileName, 1206
$set, 1206
$setArgs, 1207
$setComps, 1208
$setDDList, 1209
$setEnv, 1210
$setGlobal, 1210
$setLocal, 1210
$setNames, 1211
$shift, 1212
$show, 1213
$showFiles, 1214
$showMacros, 1214
$showVariables, 1214
$single, 1214
$splitOption, 1215
$stars, 1216
$stop, 1217
$sysInclude, 1217
$terminate, 1217
$title, 1218
$unLoad, 1218
$use205, 1220
$use225, 1221
$use999, 1221
$version, 1221
$warning, 1222
$phantom, 1203

dollar operator, 896
domain checking, 794
domain restriction condition, 908
dot

in level and marginal listings, 1005
in many to many mappings, 787
in parameter definition, 846
in set definition, 786
in sets, 786
in tables, 849

double dash parameters, 1025
dual simplex algorithm

CPLEX, 1845
GUROBI, 2018

3654 INDEX

dual value, variable (.m), 858
dynamic set

assigning membership to, 798
assigning membership to singleton sets, 801
dollar assignments, 803
equations defined over the domain of, 800
example, 799
in equations, 806
indexed operations, 804
introduction, 798
syntax, 799
using dollar controls with, 803
with multiple indices, 800

e-format, 916
echo print, GAMS output, 989
ECP

AlphaECP, 1656
edge-concavity

ANTIGONE, 1682
edge-convexity

ANTIGONE, 1682
eDist, function, 827
else, keyword, 773
elseif, keyword, 773
Embedded Code

Building your own Embedded Python Code
Library, 1344

Concept, 1322
Connect, 1344
embeddedCode, 1328
Encodings, 1338
endEmbeddedCode, 1328
Exchange via Files and Environment Variables,

1336
Extending GMSPython, 1342
GAMS, 1346
Motivation, 1322
Multiple Independent Python Sessions, 1338
Performance Considerations of Embedded

Python Code, 1341
Python, 1330
Simple Example, 1323
Simple Example Connect, 1325
Simple Example GAMS, 1327
Simple Example Python, 1323
Syntax, 1328
Troubleshooting Embedded Python Code, 1338
Using an External Python 3 Installation, 1343
Using the Control API, 1335

embedded complementarity systems
EMP, 1474
JAMS, 2172

embeddedHandle, function, 835
EMP, 1459

bilevel programs, 1482
DE, 1929
disjunctive programming, 1487
embedded complementarity systems, 1474

EMP annotations, 1460
EMP keywords, list of, 1528
equilibrium problems, 1468
equilibrium problems with shared constraints,

1476
equilibrium problems with shared variables,

1478
JAMS, 2163
quasi-variational inequalities (QVI), 1466
soft constraints, 1461
stochastic programming, 1492
variational inequalities (VI), 1463

EMP Stochastic Programming, 1492
DE, 1929

EMP, model type, 878
emphasis settings

SCIP, 2526
empinfo file

EMP, 1460
JAMS, 2180

encrypt, 1237
end of line, 777, 847
endecrypt, tool, 2957
endfor, keyword, 773
endif, keyword, 773
endloop, keyword, 773
endogenous, 870
endwhile, keyword, 773
ENLP

JAMS, 2174
ENLP, example

JAMS, 2177
entropy, function, 827
environment variables in GAMS, 1029
eps

definition, 839
marginal value, 1005
used with variables, 1005

eps, keyword, 773
eq, keyword, 775
equation, 864

attributes, 872
declaration, 864
definition, 866
functions in equation definitions, 870
indexed equations, 867
listing, 995
logic equations, 869
scalar equations, 867
suffixes, 872
types, 866

equation, keyword, 773
equations, keyword, 773
equilibrium problems with shared constraints, EMP,

1476
equilibrium problems with shared variables, EMP,

1478
equilibrium problems, EMP, 1468

INDEX 3655

eqv, keyword, 775
error

arithmetic errors, 633
debugging, 641
exceeding GAMS limits, 634
finding compilation errors, 617
finding execution errors, 633
fixing compilation errors, 619
fixing execution errors, 633
handling, 839
list of common compilation errors, 619
messages, 573
put errors, 1283
reporting, 1006
reporting compilation errors, 1007
reporting compilation time errors, 1008
reporting execution errors, 1009
reporting solve errors, 1009
resolving model generation errors, 635
resolving solve errors, 637
using execError, 640

error internal solver failure, solver status, 1003
error no solution, model status, 1001
error setup failure, solver status, 1003
error solver failure, solver status, 1003
error system failure, solver status, 1003
error unknown, model status, 1001
errorf, function, 828
errorLevel, function, 835
errors

suffixes, put-file, 1249
evaluation interrupt, solver status, 1002
EXAMINER, solver, 1992
example models

DECIS, 1960
EXCEL, data exchange

GDX2XLS, 3054
XLS2GMS, 3279
XLSDump, 3295

exceldump, tool, gams tools, exceldump, 2957
exception handling in equations, 907
exception, see dollar condition, 896
execError, function, 835
execSeed, function, 828
execute, keyword, 773
execute load, keyword, 773
execute loaddc, keyword, 773
execute loadhandle, keyword, 773
execute loadpoint, keyword, 773
execute unload, example, 681
execute unload, keyword, 773
execute unloaddi, keyword, 773
execute unloadidx, keyword, 773
exogenous, 870
exp, function, 828
expected value problem (EVP)

DE, 1932
DECIS, 1944

expert-level APIs, 3325
CFG API, 3325
DCT API, 3325
GDX API, 3325
GEV API, 3325
GMO API, 3325
IDX API, 3326
OPT API, 3326
PAL API, 3326

explanatory text, 855
exponent, 823
exponential distribution

GAMS Stochastic Library, 1414
LINDO Sampling Library, 1417

expression tree reformulation
ANTIGONE, 1682

extended arithmetic, 839
Extended Cutting Plane

AlphaECP, 1656, 1659, 1660
Extended Mathematical Programming, see EMP,

1459
extended range values, 839

eps, 839
inf, 839
na, 839
undf, 839

external equations, 1426
CONOPT, 1772

extrinsic functions
build your own library, 1422
CONOPT, 1772
CPP Library, 1423
Fitpack Library, 1412
introduction, 1411
LINDO Sampling Library, 1416
Mutex Library, 1420
Piecewise Polynomial Library, 1413
Stochastic Library, 1414
using function libraries, 1411
vs. external equations, 1425

f distribution
GAMS Stochastic Library, 1414
LINDO Sampling Library, 1417

fact, function, 828
Farkas certificate

MOSEK, 2369
feasible relaxation

CPLEX, 1847
GUROBI, 2020

feasible solution, model status, 1001
FERTD, example from GAMSlib, 906
file

defining, 1242
statement, 1242

file summary, GAMS output, 1006
file, keyword, 773
files, keyword, 773
first order optimality conditions

3656 INDEX

JAMS, 2166
fitFunc,function, 1412
fitParam,function, 1412
floor, function, 828
for

example, 929
statement, 928
syntax, 929

for, keyword, 773
frac, function, 828
free, keyword, 773
function, 825

extrinsic, 1411
intrinsic, 825

function suffixes, see suffixes, function, 838
function, keyword, 773
functions, 825

abs, 826
arccos, 827
arcsin, 827
arctan, 827
arctan2, 827
beta, 827
betaReg, 827
binomial, 827
bool and, 833
bool eqv, 833
bool imp, 833
bool not(x), 833
bool or, 833
bool xor, 833
card, 832
cdfBVN, 1424
cdfTVN, 1424
cdfUVN, 1424
ceil, 827
centropy, 827
cos, 827
cosh, 827
cosine, 1423
cvPower, 827
div, 827
div0, 827
eDist, 827
embeddedHandle, 835
entropy, 827
errorf, 828
errorLevel, 835
execError, 835
execSeed, 828
exp, 828
fact, 828
fitFunc, 1412
fitParam, 1412
floor, 828
frac, 828
gamma, 828
gammaReg, 828

gamsRelease, 835
gamsVersion, 836
gday, 835
gdow, 835
ghour, 835
gleap, 835
gmillisec, 835
gminute, 835
gmonth, 835
gsecond, 835
gyear, 835
handleCollect, 836
handleDelete, 836
handleStatus, 836
handleSubmit, 836
heapFree, 836
heapLimit, 836
heapSize, 836
ifThen, 834
jdate, 835
jnow, 835
jobHandle, 836
jobKill, 836
jobStatus, 836
jobTerminate, 836
jstart, 835
jtime, 835
licenseLevel, 837
licenseStatus, 837
log, 828
log10, 828
log2, 828
logBeta, 828
logGamma, 828
logit, 828
lsemax, 828
lsemaxsc, 828
lsemin, 829
lseminsc, 829
mapVal, 837
max, 829
maxExecError, 837
min, 829
mod, 829
ncpCM, 829
ncpF, 829
ncpVUpow, 829
ncpVUsin, 829
normal, 829
numCores, 837
ord, 832
pdfBVN, 1424
pdfTVN, 1424
pdfUVN, 1424
pi, 829, 1423
platformCode, 837
poly, 829
power, 829

INDEX 3657

pwpFunc, 1413
randBinomial, 830
randLinear, 830
randTriangle, 830
readyCollect, 837
rel eq, 834
rel ge, 834
rel gt, 834
rel le, 834
rel lt, 834
rel ne, 834
round, 830
rPower, 830
setMode, 1423
sigmoid, 830
sign, 830
signPower, 830
sin, 830
sine, 1423
sinh, 830
sleep, 837
slexp, 830
sllog10, 830
slrec, 831
sqexp, 831
sqlog10, 831
sqr, 831
sqrec, 831
sqrt, 831
tan, 831
tanh, 831
timeClose, 837
timeComp, 837
timeElapsed, 837
timeExec, 837
timeStart, 838
trunc, 831
uniform, 831
uniformInt, 831
vcPower, 831

functions, keyword, 773
fx

suffixes, variable, 858

gamma distribution
GAMS Stochastic Library, 1414
LINDO Sampling Library, 1417

gamma, function, 828
gammaReg, function, 828
GAMS call

Introduction, 1016
specifying options, 1018
specifying options with spaces in value, 1018

GAMS command line parameters, 1033
GAMS dot options for solvers

Solver Usage, 1290
GAMS language items, 770

characters, 771
comments, 778

delimiters, 778
identifiers, 775
keywords, 772
labels, 776
Numbers, 777
reserved words, 772
text, 777

GAMS log, 1013
GAMS options for solvers

Solver Usage, 1288
GAMS output, 987

column listing, 997
compilation output, 988
customizing, 1011
echo print, 989
equation listing, 995
error reporting, 1006
example, 987
execution output, 995
file summary, 1006
final execution summary, 1006
include file summary, 993
listing file, 987
model generation output, 995
model statistics, 998
model status, 1000
output file, 987
range statistics, 998
report summary, 1005
solution listing, 1003
solution report, 999
solve summary, 1000
solver report, 1003
solver status, 1002
symbol listing map, 992
symbol reference map, 990
unique element listing map, 993

GAMS Studio, Tool, 2961
GAMSCHK

*.GCK file, 1997
*.GCK file, comments, 2000
*.GCK file, page width, 2000
cheatsheet, 2015
known bugs, workaround, 2008
nonlinear terms, 2000
options file, 2006
procedures, model schematic for components

(PICTURE), 2004
procedures, diagnosing infeasible models

(NONOPT), 2005
procedures, diagnosing unbounded models

(NONOPT), 2005
procedures, displaying coefficients (DIS-

PLAYCR), 2001
procedures, listing characteristics of items per

block (BLOCKLIST), 2003
procedures, model schematic per block

(BLOCKPIC), 2003

3658 INDEX

procedures, post optimality computations
(POSTOPT), 2004

procedures, retrieving characteristics of items
(MATCHIT), 2002

procedures, summary information on scaling
per block (BLOCKPIC), 2003

procedures, testing bounds (ADVISORY), 2005
procedures, testing for specification errors

(ANALYSIS), 2003
reserved names, 2014

GAMSCHK, solver, 1996
GAMSlib, Model Libraries, 1532
gamsRelease, function, 835
gamsVersion, function, 836
gday, function, 835
gdow, function, 835
GDX

read gdx file, 1440
viewer, 2968
write gdx file, 1448

GDX API, expert-level API, 3325
GDX Viewer, GAMS Studio, 2968
gdx2access, tool, 3037
gdx2sqlite, tool, 3045
gdx2veda, tool, 3051
GDX2XLS

colors, 3057
custom formats, 3057
example, detailed, 3054
examples, 3058
filter, 3055
ini file, 3055
options, 3055
settings, 3056

GDX2XLS, tool, 3054
gdxcopy, tool, 3061
gdxdiff, tool, 3063
gdxdump, tool, 3066
gdxLoad, keyword, 773
gdxmerge, tool, 3077
gdxmrw, tool, 3081
gdxrrw, tool, 3107
gdxservice, tool, gams tools, gdxencoding, 3076
gdxservice, tool, gams tools, gdxenrename, 3106
gdxviewer, tool, 3108
gdxxrw, tool, 3130
ge, keyword, 775
geometric, distribution, 1415
GEV API, expert-level API, 3325
ghour, function, 835
gleap, function, 835
global optimization

BARON, 1683
LINDO, 2241

global solver
LINDO, 2241

gmillisec, function, 835
gminute, function, 835

GMO API, expert-level API, 3325
gmonth, function, 835
grad

suffixes, function, 838
gradH

suffixes, function, 838
gradL

suffixes, function, 838
gradn

suffixes, function, 838
GRG algorithm

CONOPT, 1749
grid computing, 956
gsecond, function, 835
gt, keyword, 775
GTM, example from GAMSlib, 906, 908
gumbel distribution

GAMS Stochastic Library, 1414
LINDO Sampling Library, 1417

GUROBI
automated tuning, 2021
barrier algorithm, 2018
compute server, 2022
concurrent optimizer, 2022
distributed optimization, 2022
dual simplex algorithm, 2018
feasible relaxation, 2020
GUROBI-Link, 2074
IIS, 2018
Irreducibly inconsistent set of constraints (IIS),

2018
parameter tuning, 2021
sensitivity analysis, 2018
starting solution for MIPs, 2018

GUROBI, solver, 2017
GUROBI-Link

GUROBI, 2074
GUSS

Data Envelopment Analysis (DEA) with GUSS,
2087

collections of models, 2077
cross validation, 2081
cross validation, ten-fold, 2081
cross validation, ten-fold, example, 2081
DEA modeling with GUSS, 2088
model instance, 2077
options in dictionary set, 2079
quadratic programming, example, 2086
set dictionary, 2077
subsolvers not compatible with GUSS, 2077
symbol mapping information, 2077
updating parts of a model iteratively, 2077

GUSS, solver, 2077
gyear, function, 835

handleCollect, function, 836
handleDelete, function, 836
handleStatus, function, 836
handleSubmit, function, 836

INDEX 3659

hdcc
suffixes, put-file, 1249

hdcr
suffixes, put-file, 1250

hdll
suffixes, put-file, 1250

heapFree, function, 836
heapLimit, function, 836
heapSize, function, 836
hess

suffixes, function, 838
hessn

suffixes, function, 838
high

suffixes, function, 838
HIGHS, solver, 2093
hyperGeo distribution

GAMS Stochastic Library, 1415
LINDO Sampling Library, 1418

IDX API, expert-level API, 3326
if, keyword, 773
if-elseif-else

a statement, 921
example, 922
syntax, 922

ifThen, function, 834
IIS

BARON, 1690
CPLEX, 1845
GUROBI, 2018
LINDO, 2243

imp, keyword, 775
impl-asn, reference type, 991
index matching, 943
indexed operations, 823

prod, 823
sand, 823
smax, 823
smin, 823
sor, 823
sum, 823

indicators
SCIP, 2526

indices, controlling, 824
INDUS, example from GAMSlib, 850
inf

extended range value, 839
variable bound, 855

inf, keyword, 773
infeas

suffixes, equation, 873
suffixes, variable, 860

Infeasibility Finder
CPLEX, 1845

infeasibility report
MOSEK, 2369

infeasible, 997, 1005
infeasible - no solution, model status, 1002

infeasible, model status, 1001
infes, solution marker, 1005
initial values, 767, 861, 862
initialization

of data, 843
of parameters, 844

integer
variable, 860
variables, 877

integer infeasible, model status, 1001
integer solution, model status, 1001
integer, keyword, 773
interior-point optimizer

MOSEK, 2367
intermediate infeasible, model status, 1001
intermediate non-integer, model status, 1001
intersection, set operation, 802
intrinsic functions, 825

GAMS utility and performance, 835
logical, 833
mathematical, 826
string manipulation, 832
time and calendar, 834

invGaussian distribution
GAMS Stochastic Library, 1414

IPOPT, solver, 2100
IPOPTO

diagnostic tags, 2106
logfile, 2103

Irreducibly inconsistent set of constraints (IIS)
CPLEX, 1845
GUROBI, 2018

irreducibly inconsistent system (IIS)
BARON, 1690

iteration
default limit, 1000

iteration interrupt, solver status, 1002
IUS

LINDO, 2243

JAMS
bilevel programs, 2168
disjunctive programming, 2179
embedded complementarity systems, 2172
EMP, 2163
empinfo file, 2180
ENLP, 2174
ENLP, example, 2177
Extended Mathematical Programming, 2163
first order optimality conditions, 2166
KKT conditions, 2166
Lagrangian, 2166
Lagrangian, extended form, 2176
LogMIP, 2179
modeling discrete choices, 2179
MOPEC, 2174
Multiple Optimization Problems with Equilib-

rium Constraints (MOPECs), 2174
multiple optimizing agents, 2174

3660 INDEX

Nash Games, 2174
penalization, 2174
penalty, quadratic, 2175
reformulation, 2163
reformulation, bilevel as MPCC, 2168
reformulation, ENLP as MCP, 2166
reformulation, ENLP as NLP, 2166
reformulation, ENLP as NLP, theory, 2178
reformulation, ENLP as VI, 2176
reformulation, NLP as MCP, 2166
reformulation, VI as complementarity problem,

2170
scalar model, 2163
subsolver, 2163
variational inequalities (VIs), 2170

JAMS, solver, 2163
jdate, function, 835
jnow, function, 835
jobHandle, function, 836
jobKill, function, 836
jobStatus, function, 836
jobTerminate, function, 836
jstart, function, 835
jtime, function, 835

KESTREL, solver, 2181
keywords, 772

abort, 772
acronym, 772
acronyms, 772
alias, 772
all, 772
and, 772
binary, 772
break, 772
card, 772
continue, 772
diag, 772
display, 773
do, 773
else, 773
elseif, 773
endfor, 773
endif, 773
endloop, 773
endwhile, 773
eps, 773
eq, 775
equation, 773
equations, 773
eqv, 775
execute, 773
execute load, 773
execute loaddc, 773
execute loadhandle, 773
execute loadidx, 773
execute loadpoint, 773
execute unload, 773
execute unloaddi, 773

file, 773
files, 773
for, 773
free, 773
function, 773
functions, 773
gdxLoad, 773
ge, 775
gt, 775
if, 773
imp, 775
inf, 773
integer, 773
le, 775
logic, 773
loop, 773
lt, 775
maximizing, 775
minimizing, 775
model, 773
models, 773
na, 773
ne, 775
negative, 773
no, 773
nonnegative, 773
not, 773
option, 773
options, 773
or, 773
ord, 774
parameter, 774
parameters, 774
positive, 774
prod, 774
put, 774
put utilities, 774
putclear, 774
putclose, 774
putfmcl, 774
puthd, 774
putheader, 774
putpage, 774
puttitle, 774
puttl, 774
repeat, 774
sameas, 774
sand, 774
scalar, 774
scalars, 774
scenario, 775
semicont, 774
semiint, 774
set, 774
sets, 774
singleton, 774
smax, 774
smin, 774

INDEX 3661

solve, 774
sor, 774
sos1, 774
sos2, 774
sum, 774
system, 774
table, 774
then, 774
undf, 774
until, 774
using, 775
variable, 774
variables, 774
while, 775
xor, 775
yes, 775

KKT conditions
JAMS, 2166

KNITRO, solver, 2183
KORPET, example from GAMSlib, 848

l
suffixes, equation, 872
suffixes, variable, 858

label, 776
in set definitions, 783
in table definitions, 849
order data displays in list format, 920
order in mult-dimensional identifier displays,

914
quoted, 776
unquoted, 776

Lagrangian
JAMS, 2166

Lagrangian, extended form
JAMS, 2176

laplace distribution
GAMS Stochastic Library, 1414
LINDO Sampling Library, 1417

LaTeX
MODEL2TEX, 3205

lcase
suffixes, put-file, 1250

le, keyword, 775
legal characters, 771
lic problem - no solution, model status, 1001
licenseCodes, predefined symbol, 841
licenseLevel, function, 837
licenseStatus, function, 837
licensing problems, solver status, 1002
limited memory

CPLEX, 1864
linalg, tool, gams tools, cholesky, 2936
linalg, tool, gams tools, eigenvalue, 2954
linalg, tool, gams tools, eigenvector, 2955
linalg, tool, gams tools, invert, 3168
linalg, tool, gams tools, ols, 3212
LINDO

global optimization procedure, 2241

global solver, 2241
IIS, 2243
IUS, 2243
linearization, 2241
Nonlinear functions, supported, 2243
Stochastic Programming, 2313

LINDO, solver, 2241
LINDOGLOBAL, solver, 2241
linearization

AlphaECP, 1660, 1661
LINDO, 2241

list
of labels using Asterisks, 783

listing viewer, GAMS Studio, 2967
lj

suffixes, put-file, 1250
ll

suffixes, put-file, 1250
lm

suffixes, put-file, 1250
lo

suffixes, equation, 872
suffixes, variable, 858

locally infeasible, model status, 1001
locally optimal, model status, 1001
log, function, 828
log10, function, 828
log2, function, 828
logarithmic distribution

GAMS Stochastic Library, 1415
LINDO Sampling Library, 1418

logBeta, function, 828
logfile

ANTIGONE, 1672
BARON, 1685
DE, 1936
IPOPT, 2103
MOSEK, 2382

logGamma, function, 828
logic, keyword, 773
logical condition, 897

dollar operator, 896
logical operators, 899
mixed, 902
nested, 903
numerical expressions, 897
numerical relational operators, 898
numerical values, 902
predefined symbols, 901
set functions, 901
set membership, 900
set operators, 901

logical operators, 899
logistic distribution

GAMS Stochastic Library, 1414
LINDO Sampling Library, 1417

logit, function, 828
LogMIP

3662 INDEX

JAMS, 2179
logNormal distribution

GAMS Stochastic Library, 1414
LINDO Sampling Library, 1417

loop
example, 924
statement, 923
syntax, 923

loop, keyword, 773
low

suffixes, function, 838
lower bound, variable (.lo), 858
lp

suffixes, put-file, 1250
LP, model type, 877
lsemax, function, 828
lsemaxsc, function, 828
lsemin, function, 829
lseminsc, function, 829
lt, keyword, 775
lw

suffixes, put-file, 1250

m
suffixes, equation, 872
suffixes, variable, 858

macOS Installation Notes, 538
macro, 1230
mapping sets, 786
maps

symbol listing, 992
symbol reference, 990
unique element listing (UEL), 993

mapVal, function, 837
MARCO, example from GAMSlib, 894
marginal, 1005
marginal value, variable (.m), 858
max, function, 829
maxExecError, function, 837
maximizing, 891
maximizing, keyword, 775
MCP, model type, 878
MDB2GMS

$CALL command, 3201
ACCESS, data exchange, 3169
best practice, 3195
command files, 3199
command-line arguments, 3170
example, multi-query batch, 3186
example, multi-valued table, 3177
example, single-valued table, 3175
index mapping, 3183
options, 3192
requirements, 3169
use, batch, 3170
use, batch, multi-query, 3185
use, interactive, 3189

mdb2gms, tool, 3169
MEXSS, example from GAMSlib, 1284

MILES, solver, 2314
min, function, 829
minimizing, 891
minimizing, keyword, 775
MINLP, model type, 878
MINOS as optimizer

DECIS, 1955
MINOS, solver, 2334
MIP, model type, 878
MIQCP, model type, 878
mod, function, 829
model, 874

attributes, 887
library, 1531
Limited domain for variables, 876
syntax of statement, 874
types, 877

model algebra
CONVERT, 1829

model classification
CNS, 878
DNLP, 878
EMP, 878
LP, 877
MCP, 878
MINLP, 878
MIP, 878
MIQCP, 878
MPEC, 878
NLP, 878
QCP, 878
RMINLP, 878
RMIP, 878
RMIQCP, 878
RMPEC, 878

model documentation
MODEL2TEX, 3205

model instance
GUSS, 2077

model library
access, 1531
explorer, 3023

model library explorer, GAMS Studio, 3023
model statistics, GAMS output, 998
model status, 1000

error no solution, 1001
error unknown, 1001
feasible solution, 1001
infeasible, 1001
infeasible - no solution, 1002
integer infeasible, 1001
integer solution, 1001
intermediate infeasible, 1001
intermediate non-integer, 1001
lic problem - no solution, 1001
locally infeasible, 1001
locally optimal, 1001
no solution returned, 1001

INDEX 3663

optimal, 1001
solved, 1002
solved singular, 1002
solved unique, 1002
unbounded, 1001
unbounded - no solution, 1002

model statuses
BARON, 1686

model, keyword, 773
MODEL2TEX

example, 3207
JSON file, 3207
options, 3206
usage, 3206

model2tex, tool, 3205
modeling discrete choices

JAMS, 2179
models for which CONOPT is a good solver

CONOPT, 1791
models, keyword, 773
Monte-Carlo pre-sampling

DECIS, 1945
Monte-Carlo sampling

DECIS, 1945
moo, tool, libinclude, 3296
MOPEC

JAMS, 2174
MOSEK

branch-and-cut optimizer, 2367
Farkas certificate, 2369
infeasibility report, 2369
interior-point optimizer, 2367
logfile, 2382
MOSEK-Link, 2423
parallel optimization, 2368
simplex optimizer, 2367

MOSEK, solver, 2367
MOSEK-Link

MOSEK, 2423
MPEC, model type, 878
mps2gms, tool, 3209
Multiple Optimization Problems with Equilibrium

Constraints (MOPECs)
JAMS, 2174

multiple optimizing agents
EMP, 1468
JAMS, 2174

multiple solves, 894

na, extended range value, 839
na, keyword, 773
Nash Games

JAMS, 2174
ncpCM, function, 829
ncpF, function, 829
ncpVUpow, function, 829
ncpVUsin, function, 829
nd

suffixes, put-file, 1251

ne, keyword, 775
negative, keyword, 773
negBinomial distribution

GAMS Stochastic Library, 1415
LINDO Sampling Library, 1418

network optimizer
CPLEX, 1845

nj
suffixes, put-file, 1251

NLP models, non-smooth examples
CONOPT, 1748

NLP, model type, 878
NLPEC, solver, 2424
no solution returned, model status, 1001
no, keyword, 773
non-default options, selecting

CONOPT, 1765
nonlinear

equations, 997
programming, 877

Nonlinear functions, supported
LINDO, 2243

nonnegative, keyword, 773
nopt, solution marker, 1005
normal completion, solver status, 1002
normal distribution

GAMS Stochastic Library, 1414
LINDO Sampling Library, 1417

normal, function, 829
not, keyword, 773
nr

suffixes, put-file, 1251
number of rows and columns in display, 916
numCores, function, 837
nw

suffixes, put-file, 1251
nz

suffixes, put-file, 1251

objective value, 1000
objective variable, 891
ODHCPLEX, solver, 2436
OPT API, expert-level API, 3326
optimal, model status, 1001
optimality gap, 3632
option

aggregation, 945
display control, 943
index matching, 943
introduction, 936
permutation, 948
projection, 945
syntax, 936

option, keyword, 773
options in dictionary set

GUSS, 2079
options, global

Solver Usage, 1288
options, keyword, 773

3664 INDEX

options, model-specific
Solver Usage, 1288

options, solver
Solver Usage, 1288

or, keyword, 773
ORANI, example from GAMSlib, 784
ord, function, 832
ord, keyword, 774
ordered set

card operator, 811
circular lag and lead operator, 814
introduction, 808
lags and leads in assignments, 812
lags and leads in equations, 815
linear lag and lead operator, 813
ord operator, 810

output
DECIS, 1956

PAL API, expert-level API, 3326
parallel optimization

MOSEK, 2368
parameter, 843

constant evaluation, 850
entry by assignment, 851
examples, 845
higher dimensions, 846
statement, 844
syntax, 844

parameter tuning
GUROBI, 2021

parameter, formats, 843
parameter, keyword, 774
parameters, keyword, 774
parameters, see parameter, 843
pareto distribution

GAMS Stochastic Library, 1414
LINDO Sampling Library, 1417

PATH, solver, 2480
PATHNLP, solver, 2476
pc

suffixes, put-file, 1252
PDF

MODEL2TEX, 3205
pdfBVN, function, 1424
pdfTVN, function, 1424
pdfUVN, function, 1424
pdir

suffixes, put-file, 1251
penalization

JAMS, 2174
penalty, quadratic

JAMS, 2175
permutation, 948
pi, function, 829, 1423
platformCode, function, 837
poisson distribution

GAMS Stochastic Library, 1415
LINDO Sampling Library, 1418

poly, function, 829
positive, keyword, 774
posix, tool, 3213
post-optimality analysis

CPLEX, 1868
power, function, 829
precision, fixed, 1005
predefined symbols

diag, 841
licenseCodes, 841
sameAs, 841
solverCapabilities, 841
solvers, 841
sortedUels, 841

prior
suffixes, variable, 858

priorities for branching
example, 973
introduction, 973

probability distributions
DECIS, 1948

probability distributions, continuous
DE, 1931

probability distributions, discrete
DE, 1931

probability distributions, joint
DE, 1930

problem types, 877
prod, keyword, 774
prod, operator, 823
product operator

in set definition, 787
in sets, 787

projection, 945
PROLOG, example from GAMSlib, 875, 893
ps

suffixes, put-file, 1253
pseudo costs

SBB, 2515
pseudo-convex

AlphaECP, 1656, 1661, 1670
put, 679

appending to a file, 1247
closing a file, 1246
command line parameters, 1269
cursor control, 1258
defining files, 1242
errors, 1283
example, 1243, 1272
exception handling, 1282
global item formatting, 1270
local item formatting, 1274
numeric items, 1265
output items, 1261
page format, 1257
page sections, 1255
paging control, 1257
positioning the cursor on a page, 1258

INDEX 3665

set value items, 1267
syntax, 1242
system suffixes, 1268
text items, 1261

put current cursor control
.cc, 1259
.cr, 1260
.hdcc, 1259
.hdcr, 1260
.tlcc, 1259
.tlcr, 1260

put, keyword, 774
put utilities, keyword, 774
putclear, keyword, 774
putclose, keyword, 774
putfmcl, keyword, 774
puthd, keyword, 774
putheader, keyword, 774
putpage, keyword, 774
puttitle, keyword, 774
puttl, keyword, 774
pw

suffixes, put-file, 1253
pwpFunc, function, 1413
pyembmi, tool, libinclude, 3305

QCP, model type, 878
quadratic programming, example

GUSS, 2086
quasi-variational inequalities (QVI), EMP, 1466
quoted

names of sets, 783
text, 777

quotes, 783

RAMSEY, example from GAMSlib, 854
randBinomial, function, 830
randLinear, function, 830
random parameter

DECIS, 1943
random variables

DE, 1930
randTriangle, function, 830
range

suffixes, equation, 873
suffixes, variable, 859

range of numbers, 778
range statistics, GAMS output, 998
rank, tool, gams tools, rank, 3215
rank, tool, libinclude, 3309
rayleigh, distribution, 1414
readyCollect, function, 837
ref, reference type, 991
refactorization

CPLEX, 1864
reference file viewer, GAMS Studio, 2978
reformulation

disjunctive program as MCP, 1489
bilevel as MPCC, JAMS, 2168

chance constraints, DE, 1935
chance constraints, EMP, 1519
CVaR, DE, 1936
CVaR, EMP, 1514
ENLP as MCP, JAMS, 2166
ENLP as NLP, JAMS, 2166
ENLP as NLP, theory, JAMS, 2178
ENLP as VI, JAMS, 2176
JAMS, 2163
NLP as MCP, JAMS, 2166
techniques, DE, 1933
VaR, DE, 1935
VaR, EMP, 1512
VI as complementarity problem, JAMS, 2170

regularization
DECIS, 1946

rel eq, function, 834
rel ge, function, 834
rel gt, function, 834
rel le, function, 834
rel lt, function, 834
rel ne, function, 834
repeat

example, 931
statement, 930
syntax, 930

repeat, keyword, 774
report summary, GAMS output, 1005
reporting format

for compilation errors, 1008
for compilation time errors, 1009

reserved non-alphanumeric symbols, 775
**, 775
++, 775
–, 775
->, 775
.., 775
=b=, 775
=c=, 775
=e=, 775
=g=, 775
=l=, 775
=n=, 775
=x=, 775
<=>, 775

reserved words, see also keywords, 772
resource interrupt, solver status, 1002
return codes, error codes, 1439
risk measures

DE, 1932
EMP, 1505

RLT
ANTIGONE, 1682

RMINLP, model type, 878
RMIP, model type, 878
RMIQCP, model type, 878
RMPEC, model type, 878
round, function, 830

3666 INDEX

rPower, function, 830
rules

constructing tables, 847
formating tables, 847

sameas, 901
sameas, keyword, 774
sameAs, predefined symbol, 841
sampling

DE, 1931
EMP, 1499
GAMS Stochastic Library, 1416
LINDO Sampling Library, 1416

sand, keyword, 774
sand, operator, 823
SBB

branch-and-bound algorithm, 2515
pseudo costs, 2515
SBB and DICOPT comparison, 2524

SBB and DICOPT comparison
SBB, 2524

SBB, solver, 2515
scalar, 843

example, 844
statement, 843
syntax, 843

scalar model
CONVERT, 1829
JAMS, 2163

scalar, keyword, 774
scalars, keyword, 774
scale

option, 976
suffixes, equation, 872
suffixes, variable, 858

scaling
models, 976
of a variable, 976
of an equation, 977
of derivate, 978

scenario analysis, 894
scenario tree

DE, 1930
scenario, keyword, 775
scenarios

DE, 1930
EMP, 1496

scenred, tool, 3216
scenred2, tool, 3224
SCIP

emphasis settings, 2526
indicators, 2526
SCIP interactive shell, 2526
solution pool, 2528
tracing the solving process, 2528

SCIP interactive shell
SCIP, 2526

SCIP, solver, 2525
semi-continuous variables

Definition, 971
Example, 971

semi-integer variables
definition, 972
example, 972

semicolon, 777
semicont, keyword, 774
semiint, keyword, 774
sensitivity analysis

CPLEX, 1868
GUROBI, 2018

Sequential Linear Programming (SLP)
CONOPT, 1763

Sequential Quadratic Programming (SQP)
CONOPT, 1763

set, 781
arithmetic, 802
associated text, 783
attributes, 792
conditional, 906
declaration for multiple sets, 783
definition, 781
domain defining symbol declarations, 796
dynamic, 798
elements, 782
implicit set definition, 796
matching operator, 787
multi-dimensional, 786
multi-dimensional many to many, 786
multi-dimensional one-to-one mapping, 786
names, 782
sequences as set elements, 783
simple, 781
singleton, 789
static, 799
syntax, 782
universal, 790
using previously defined sets in set definitions,

784
set attributes, 792
set dictionary

GUSS, 2077
set operations

complement, 802
difference, 802
intersection, 802
union, 802

set, keyword, 774
setMode, function, 1423
sets, keyword, 774
sets, see set, 781
SHALE, example from GAMSlib, 783
SHOT, solver, 2718
sifting algorithm

CPLEX, 1845
sigmoid, function, 830
sign, function, 830
signPower, function, 830

INDEX 3667

simple assignment, 818
simplex algorithm

CPLEX, 1845
simplex optimizer

MOSEK, 2367
sin, function, 830
sine, function, 1423
singleton, keyword, 774
sinh, function, 830
sj

suffixes, put-file, 1253
slack

suffixes, equation, 873
suffixes, variable, 860

slacklo
suffixes, equation, 873
suffixes, variable, 860

slackup
suffixes, equation, 873
suffixes, variable, 860

slash, delimiter, 778, 1244
sleep, function, 837
slexp, function, 830
sllog10, function, 830
slrec, function, 831
smax, keyword, 774
smax, operator, 823
smin, keyword, 774
smin, operator, 823
SNOPT, solver, 2731
soft constraints, EMP, 1461
solution listing, GAMS output, 1003
solution pool

BARON, 1688
CPLEX, 1847
SCIP, 2528

solution pool, CPLEX, 1847
accessing, 1850
enumerating all solutions, 1848
filtering, 1849
populating, 1847

solution report, GAMS output, 999
solve

error messages, 1008
errors, 1009

solve processing skipped, solver status, 1003
solve statement, 890

actions triggered by, 891
loop, 893
requirements, 891
several in a program, 892
several models, 892
syntax, 890

solve summary, GAMS output, 1000
evaluation errors, 1000
iteration count, 1000
model status, 1000
objective summary, 1000

resource usage, 1000
solver status, 1002

solve trace
Solver Usage, 1299

solve, keyword, 774
solved singular, model status, 1002
solved unique, model status, 1002
solved, model status, 1002
solver option editor, GAMS Studio, 2980
solver option file

solver option editor, 2980
Solver Usage, 1288

solver status, 1002
capability problems, 1002
error internal solver failure, 1003
error setup failure, 1003
error solver failure, 1003
error system failure, 1003
evaluation interrupt, 1002
iteration interrupt, 1002
licensing problems, 1002
normal completion, 1002
resource interrupt, 1002
solve processing skipped, 1003
terminated by solver, 1002
user interrupt, 1002

solver statuses
BARON, 1686

Solver Usage
BCH, examples, 1304
Branch-and-Cut-and-Heuristic facility (BCH),

1300
GAMS dot options for solvers, 1290
GAMS options for solvers, 1288
options, global, 1288
options, model-specific, 1288
options, solver, 1288
solve trace, 1299
solver option file, 1288

solverCapabilities, predefined symbol, 841
solvers, 1653

AlphaECP, 1656
ANTIGONE, 1671
BARON, 1683
CBC, 1699
CONOPT, 1791
CONOPT3, 1730
CONOPT4, 1791
CONVERT, 1829
CPLEX, 1845
DE, 1929
DECIS, 1942
DICOPT, 1968
EXAMINER, 1992
GAMSCHK, 1996
GUROBI, 2017
GUSS, 2077
HIGHS, 2093

3668 INDEX

IPOPT, 2100
JAMS, 2163
KESTREL, 2181
KNITRO, 2183
LINDO, 2241
LINDOGLOBAL, 2241
MILES, 2314
MINOS, 2334
MOSEK, 2367
NLPEC, 2424
ODHCPLEX, 2436
PATH, 2480
PATHNLP, 2476
SBB, 2515
SCIP, 2525
SHOT, 2718
SNOPT, 2731
SOPLEX, 2767
XPRESS, 2772

solvers, predefined symbol, 841
SOPLEX, solver, 2767
sor, keyword, 774
sor, operator, 823
sortedUels, predefined symbol, 841
sos1, keyword, 774
sos2, keyword, 774
special ordered sets

type 1 - definition, 969
type 1 -example, 970
type 2 - definition, 970

sqexp, function, 831
sql2gms, tool, 3237
sqlog10, function, 831
sqr, function, 831
sqrec, function, 831
sqrt, function, 831
stage

suffixes, equation, 872
suffixes, variable, 858

stages
DE, 1930
EMP, 1493

Standard Locations, 549
starting solution for MIPs

CPLEX, 1866
GUROBI, 2018

statements, list of, 767
static set, 799
Steepest Edge Algorithm

CONOPT, 1763
stochastic linear program

DE, 1929
DECIS, 1942
EMP, 1493

stochastic linear program, two-stage
DE, 1933
DECIS, 1942

stochastic parameters, dependent

DECIS, 1952
stochastic parameters, independent

DECIS, 1948
Stochastic Programming

LINDO, 2313
Stochastic programming

DECIS, 1942
stochastic programming

DE, 1929
EMP, 1492

stochastic programming, EMP, 1492
DE, 1929

studentT distribution
GAMS Stochastic Library, 1414
LINDO Sampling Library, 1417

Studio, GAMS Tool, 2961
subsets, 820
subsolver

JAMS, 2163
subsolvers not compatible with GUSS

GUSS, 2077
suffix

function, 838
put-file, 1248
variable, 858

suffixes, equation, 872
.infeas, 873
.l, 872
.lo, 872
.m, 872
.range, 873
.scale, 872
.slack, 873
.slacklo, 873
.slackup, 873
.stage, 872
.up, 872

suffixes, function, 838
.grad, 838
.gradH, 838
.gradL, 838
.gradn, 838
.hess, 838
.hessn, 838
.high, 838
.low, 838
.value, 838

suffixes, identifier (put context), 1262
.te, 1263
.tl, 1262
.tn, 1263
.ts, 1262

suffixes, put-file, 1248
.ap, 1249
.bm, 1249
.case, 1249
.cc, 1249
.cr, 1249

INDEX 3669

.errors, 1249

.hdcc, 1249

.hdcr, 1250

.hdll, 1250

.lcase, 1250

.lj, 1250

.ll, 1250

.lm, 1250

.lp, 1250

.lw, 1250

.nd, 1251

.nj, 1251

.nr, 1251

.nw, 1251

.nz, 1251

.pc, 1252

.pdir, 1251

.ps, 1253

.pw, 1253

.sj, 1253

.sw, 1253

.tf, 1254

.tj, 1254

.tlcc, 1254

.tlcr, 1254

.tlll, 1254

.tm, 1255

.tw, 1255

.ws, 1255
suffixes, string type, 832

.te, 832

.tl, 832

.ts, 832
suffixes, variable, 858

.fx, 858

.infeas, 860

.l, 858

.lo, 858

.m, 858

.prior, 858

.range, 859

.scale, 858

.slack, 860

.slacklo, 860

.slackup, 860

.stage, 858

.up, 858
sum, keyword, 774
sum, operator, 823
superbasic variable, 1005
sw

suffixes, put-file, 1253
symbol listing map, GAMS output, 992
symbol mapping information

GUSS, 2077
symbol reference map, GAMS output, 990

acrnm, 991
assigned, 991

control, 991
declared, 991
defined, 991
equ, 991
file, 991
impl-asn, 991
model, 991
param, 991
ref, 991
set, 991
var, 991

system
attributes, 950

system, keyword, 774

table, 846
condensing, 850
continued, 848
example, 848
long row labels, 850
more than two dimensions, 849
rules for constructing, 847
rules for formating, 847
statement, 847
syntax, 847

table, keyword, 774
tan, function, 831
tanh, function, 831
te

suffixes, identifier (put context), 1263
suffixes, string type, 832

terminated by solver, solver status, 1002
termination message, NaN (Not A Number)

CONOPT, 1771
termination message, overflow

CONOPT, 1771
termination message, stalling

CONOPT, 1770
termination messages

BARON, 1686
CONOPT, 1733

TeX
MODEL2TEX, 3205

tf
suffixes, put-file, 1254

then, keyword, 774
timeClose, function, 837
timeComp, function, 837
timeElapsed, function, 837
timeExec, function, 837
timeStart, function, 838
tj

suffixes, put-file, 1254
tl

suffixes, identifier (put context), 1262
suffixes, string type, 832

tlcc
suffixes, put-file, 1254

tlcr

3670 INDEX

suffixes, put-file, 1254
tlll

suffixes, put-file, 1254
tm

suffixes, put-file, 1255
tn

suffixes, identifier (put context), 1263
tools, 2919, 2921, 2924

ask, 2921
cholesky, 2921
csv2gdx, 2921
eigenvalue, 2921
eigenvector, 2921
endecrypt, 2921
exceldump, 2921
excelmerge, 2921
exceltalk, 2921
findthisgams, 2921
GAMS IDE, 2921
GAMS Studio, 2921
gdx2access, 2921
gdx2sqlite, 2921
gdx2veda, 2921
gdx2xls, 2921
gdxcopy, 2921
gdxdiff, 2921
gdxdump, 2921
gdxencoding, 2921
gdxmerge, 2921
gdxmrw, 2921
gdxrename, 2921
gdxrrw, 2921
gdxviewer, 2921
gdxxrw, 2921
gmsunzip, 2921
gmszip, 2921
idecmds, 2921
invert, 2921
mdb2gms, 2921
model2tex, 2921
mps2gms, 2921
msappavail, 2921
msgrwin, 2921
ols, 2921
posix, 2921
rank, 2921
scenred, 2921
scenred2, 2921
shellexecute, 2921
sql2gms, 2921
xls2gms, 2921
xlsdump, 2921

Trace Features, 1292
Trace File, 1292

Trace File
Trace Features, 1292
Trace Records, 1293
Trace Report, 1296

Trace Record Fields
Trace Records, 1293

Trace Records
Trace File, 1293
Trace Record Fields, 1293

Trace Report
Trace File, 1296

tracing the solving process
SCIP, 2528

triangular distribution
GAMS Stochastic Library, 1414
LINDO Sampling Library, 1417

triangular models
CONOPT, 1766

trunc, function, 831
ts

suffixes, identifier (put context), 1262
suffixes, string type, 832

Tutorials
.NET API Tutorial, 3533
C++ API Tutorial, 3549
GAMS Tutorials, 557
Java API Tutorial, 3567

tw
suffixes, put-file, 1255

type
of discrete variables, 968

unbounded, 1005
unbounded - no solution, model status, 1002
unbounded, model status, 1001
uncertainty

DECIS, 1943
undf, extended range value, 839
undf, keyword, 774
uniform distribution

GAMS Stochastic Library, 1414
LINDO Sampling Library, 1417

uniform, function, 831
uniformInt, distribution, 1415
uniformInt, function, 831
union, of sets, 802
unique element listing map, GAMS output, 993
universal set, 790
universe, 790
universe problem

DECIS, 1944
UNIX Installation Notes, 544
until, keyword, 774
up

suffixes, equation, 872
suffixes, variable, 858

updating parts of a model iteratively
GUSS, 2077

user interrupt, solver status, 1002
using, 891
using, keyword, 775

value

INDEX 3671

suffixes, function, 838
variable

binary, 855
discrete, 855
free, 855
integer, 855
negative, 855
positive, 855
statement, 854
statements, 855
styles for declaration, 857
suffix, 858
syntax of declaration, 854
types, 855

variable attributes, see suffixes, variable, 858
variable bounds, 860

activity level, 860
BARON, 1684
fixing, 860
lower, 860

variable, keyword, 774
variables, keyword, 774
variational inequalities (VI), EMP, 1463
variational inequalities (VIs)

JAMS, 2170
vcPower, function, 831

weibull distribution
GAMS Stochastic Library, 1414
LINDO Sampling Library, 1417

while
example, 927
statement, 927
syntax, 927

while, keyword, 775
win32, tool, gams tool, excelmerge, 2958
win32, tool, gams tool, exceltalk, 2959
win32, tool, gams tool, msappavail, 3211
win32, tool, gams tool, shellexecute, 3235
Windows Installation Notes, 546
ws

suffixes, put-file, 1255

XLS2GMS
$CALL command, 3290
command files, 3290
example, simple, 3280
multiple area ranges, 3291
post processing, 3291
sets, importing, 3281
tables, importing, 3282
tables, multidimensional, importing, 3284
use, command line, 3288
use, interactive, 3285

xls2gms, tool, 3279
xlsdump, tool, 3295
xor, keyword, 775
XPRESS

XPRESS-Link, 2918

XPRESS, solver, 2772
XPRESS-Link

XPRESS, 2918

yes, keyword, 775

Bibliography

[1] T. Achterberg. Constraint Integer Programming. PhD thesis, Technische Universität Berlin, 2007.
URL http://nbn-resolving.de/urn:nbn:de:0297-zib-11129.

[2] T. Achterberg. SCIP: Solving Constraint Integer Programs. Mathematical Programming Computa-
tions, 1(1):1–41, 2009. URL http://doi.org/10.1007/s12532-008-0001-1.

[3] T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Operations Research Letters, 33
(1):42–54, 2005. URL http://doi.org/10.1016/j.orl.2004.04.002.

[4] T. Achterberg, T. Berthold, T. Koch, and K. Wolter. Constraint integer programming: A new
approach to integrate CP and MIP. In L. Perron and M.A. Trick, editors, Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 5th
International Conference, CPAIOR 2008, volume 5015 of LNCS, pages 6–20. Springer, 2008. URL
http://doi.org/10.1007/978-3-540-68155-7_4.

[5] C. S. Adjiman, I. P. Androulakis, and C. A. Floudas. A global optimization method, αBB, for general
twice differentiable NLPs – II. Implementation and computational results. Computers & Chemical
Engineering, 22(9):1159–1179, 1998. URL http://doi.org/10.1016/S0098-1354(98)00218-X.

[6] C. S. Adjiman, S. Dallwig, C. A. Floudas, and A. Neumaier. A global optimization method, αBB,
for general twice differentiable NLPs – I. Theoretical advances. Computers & Chemical Engineering,
22(9):1137–1158, 1998. URL http://doi.org/10.1016/S0098-1354(98)00027-1.

[7] S. Ahmed, M. Tawarmalani, and N. V. Sahinidis. A finite branch-and-bound algorithm for two-
stage stochastic integer programs. Mathematical Programming, 100(2):355–377, 2004. URL http:

//doi.org/10.1007/s10107-003-0475-6.

[8] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous multifrontal solver
using distributed dynamic scheduling. SIAM Journal of Matrix Analysis and Applications, 23(1):
15–24, 2001. URL http://doi.org/10.1137/S0895479899358194.

[9] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. Hybrid scheduling for the parallel
solution of linear systems. Parallel Computing, 32(2):136–156, 2006. URL http://doi.org/10.

1016/j.parco.2005.07.004.

[10] I. P. Androulakis, C. D. Maranas, and C. A. Floudas. αBB: A global optimization method for
general constrained nonconvex problems. Journal of Global Optimization, 7(4):337–363, 1995. URL
http://doi.org/10.1007/BF01099647.

[11] C. Audet, P. Hansen, B. Jaumard, and G. Savard. A branch and cut algorithm for nonconvex
quadratically constrained quadratic programming. Mathematical Programming, 87(1):131–152, 2000.
URL http://doi.org/10.1007/s101079900106.

[12] X. Bao, N. V. Sahinidis, and M. Tawarmalani. Multiterm polyhedral relaxations for nonconvex,
quadratically-constrained quadratic programs. Optimization Methods and Software, 24(4-5):485–504,
2009. URL http://doi.org/10.1080/10556780902883184.

[13] X. Bao, N. V. Sahinidis, and M. Tawarmalani. Semidefinite relaxations for quadratically constrained
quadratic programming: A review and comparisons. Mathematical Programming, 129(1):129–157,
2011. URL http://doi.org/10.1007/s10107-011-0462-2.

http://nbn-resolving.de/urn:nbn:de:0297-zib-11129
http://doi.org/10.1007/s12532-008-0001-1
http://doi.org/10.1016/j.orl.2004.04.002
http://doi.org/10.1007/978-3-540-68155-7_4
http://doi.org/10.1016/S0098-1354(98)00218-X
http://doi.org/10.1016/S0098-1354(98)00027-1
http://doi.org/10.1007/s10107-003-0475-6
http://doi.org/10.1007/s10107-003-0475-6
http://doi.org/10.1137/S0895479899358194
http://doi.org/10.1016/j.parco.2005.07.004
http://doi.org/10.1016/j.parco.2005.07.004
http://doi.org/10.1007/BF01099647
http://doi.org/10.1007/s101079900106
http://doi.org/10.1080/10556780902883184
http://doi.org/10.1007/s10107-011-0462-2

3674 BIBLIOGRAPHY

[14] X. Bao, A. Khajavirad, N. V. Sahinidis, and M. Tawarmalani. Global optimization of nonconvex
problems with multilinear intermediates. Mathematical Programming Computation, 7(1):1–37, 2015.
ISSN 1867-2949. URL http://doi.org/10.1007/s12532-014-0073-z.

[15] J. F. Bard. Practical bilevel optimization: Algorithms and applications, volume 30 of Nonconvex
optimization and its applications. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998.
URL http://doi.org/10.1007/978-1-4757-2836-1.

[16] R. H. Bartels. A stabilization of the simplex method. Numerische Mathematik, 16(5):414–434, 1971.
URL http://doi.org/10.1007/BF02169151.

[17] R. H. Bartels and G. H. Golub. The simplex method of linear programming using the LU decompo-
sition. Communications of the ACM, 12(5):266–268, 1969. URL http://doi.org/10.1145/362946.

362974.

[18] P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. Branching and bounds tightening
techniques for non-convex MINLP. Optimization Methods and Software, 24(4–5):597–634, 2009.
URL http://doi.org/10.1080/10556780903087124.

[19] D. E. Bernal, S. Vigerske, F. Trespalacios, and I. E. Grossmann. Improving the perfor-
mance of DICOPT in convex MINLP problems using a feasibility pump, 2017. URL http:

//www.optimization-online.org/DB_HTML/2017/08/6171.html.

[20] T. Berthold. Heuristic algorithms in global MINLP solvers. PhD thesis, TU Berlin, 2014.

[21] T. Berthold, S. Heinz, and S. Vigerske. Extending a CIP framework to solve MIQCPs. In
Jon Lee and Sven Leyffer, editors, Mixed Integer Nonlinear Programming, volume 154 of The
IMA Volumes in Mathematics and its Applications, pages 427–444. Springer, 2012. URL http:

//doi.org/10.1007/978-1-4614-1927-3_15.

[22] Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz, Jasper
van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros Gleixner, Leona Gottwald,
Christoph Graczyk, Katrin Halbig, Alexander Hoen, Christopher Hojny, Rolf van der Hulst, Thorsten
Koch, Marco Lübbecke, Stephen J. Maher, Frederic Matter, Erik Mühmer, Benjamin Müller, Marc E.
Pfetsch, Daniel Rehfeldt, Steffan Schlein, Franziska Schlösser, Felipe Serrano, Yuji Shinano, Boro
Sofranac, Mark Turner, Stefan Vigerske, Fabian Wegscheider, Philipp Wellner, Dieter Weninger,
and Jakob Witzig. The SCIP Optimization Suite 8.0. ZIB Report 21-41, Zuse Institute Berlin, 2021.
URL https://nbn-resolving.org/urn:nbn:de:0297-zib-85309.

[23] L. T. Biegler. Nonlinear Programming: Concepts, Algorithms and Applications to Chemical Processes.
MOS-SIAM Series on Optimization. SIAM, Philadelphia, 2010. URL http://doi.org/10.1137/1.

9780898719383.

[24] S. C. Billups. Algorithms for Complementarity Problems and Generalized Equations. PhD thesis,
University of Wisconsin–Madison, Madison, Wisconsin, 1995. URL http://pages.cs.wisc.edu/

~ferris/theses/StephenBillups.pdf.

[25] S. C. Billups. Improving the robustness of descent-based methods for semismooth equations
using proximal perturbations. Mathematical Programming, 87(1):153–175, 2000. URL http:

//doi.org/10.1007/s101079900105.

[26] S. C. Billups and M. C. Ferris. QPCOMP: A quadratic program based solver for mixed comple-
mentarity problems. Mathematical Programming, 76(3):533–562, 1997. URL http://doi.org/10.

1007/BF02614397.

[27] A. Bompadre and A. Mitsos. Convergence rate of McCormick relaxations. Journal of Global
Optimization, 52(1):1–28, 2011. URL http://doi.org/10.1007/s10898-011-9685-2.

[28] P. Bonami, G. Cornuéjols, A. Lodi, and F. Margot. A feasibility pump for mixed integer nonlinear
programs. Mathematical Programming, 119(2):331–352, 2009. URL http://doi.org/10.1007/

s10107-008-0212-2.

[29] J. Bracken and J. T. McGill. Mathematical programs with optimization problems in the constraints.
Operations Research, 21(1):37–44, 1973. URL http://doi.org/10.1287/opre.21.1.37.

http://doi.org/10.1007/s12532-014-0073-z
http://doi.org/10.1007/978-1-4757-2836-1
http://doi.org/10.1007/BF02169151
http://doi.org/10.1145/362946.362974
http://doi.org/10.1145/362946.362974
http://doi.org/10.1080/10556780903087124
http://www.optimization-online.org/DB_HTML/2017/08/6171.html
http://www.optimization-online.org/DB_HTML/2017/08/6171.html
http://doi.org/10.1007/978-1-4614-1927-3_15
http://doi.org/10.1007/978-1-4614-1927-3_15
https://nbn-resolving.org/urn:nbn:de:0297-zib-85309
http://doi.org/10.1137/1.9780898719383
http://doi.org/10.1137/1.9780898719383
http://pages.cs.wisc.edu/~ferris/theses/StephenBillups.pdf
http://pages.cs.wisc.edu/~ferris/theses/StephenBillups.pdf
http://doi.org/10.1007/s101079900105
http://doi.org/10.1007/s101079900105
http://doi.org/10.1007/BF02614397
http://doi.org/10.1007/BF02614397
http://doi.org/10.1007/s10898-011-9685-2
http://doi.org/10.1007/s10107-008-0212-2
http://doi.org/10.1007/s10107-008-0212-2
http://doi.org/10.1287/opre.21.1.37

BIBLIOGRAPHY 3675

[30] R. H. Byrd, M. E. Hribar, and J. Nocedal. An interior point algorithm for large scale nonlinear
programming. SIAM Journal on Optimization, 9(4):877–900, 1999. URL http://doi.org/10.

1137/S1052623497325107.

[31] R. H. Byrd, J. C. Gilbert, and J. Nocedal. A trust region method based on interior point techniques
for nonlinear programming. Mathematical Programming, 89(1):149–185, 2000. URL http://doi.

org/10.1007/PL00011391.

[32] R. H. Byrd, J. Nocedal, and R. A. Waltz. Feasible interior methods using slacks for nonlinear
optimization. Computational Optimization and Applications, 26(1):35–61, 2003. URL http://doi.

org/10.1023/A:1025136421370.

[33] R. H. Byrd, N. I. M. Gould, J. Nocedal, and R. A. Waltz. An algorithm for nonlinear optimization
using linear programming and equality constrained subproblems. Mathematical Programming, Series
B, 100(1):27–48, 2004. URL http://doi.org/10.1007/s10107-003-0485-4.

[34] R. H. Byrd, N. I. M. Gould, J. Nocedal, and R. A. Waltz. On the convergence of successive
linear-quadratic programming algorithms. SIAM Journal on Optimization, 16(2):471–489, 2005.
URL http://doi.org/10.1137/S1052623403426532.

[35] R. M. Chamberlain, M. J. D. Powell, and C. Lemaréchal. The watchdog technique for forcing conver-
gence in algorithms for constrained optimization, volume 16 of Mathematical Programming Studies,
pages 1–17. Springer, Berlin, Heidelberg, 1982. URL http://doi.org/10.1007/BFb0120945.

[36] Y. Chang and N. V. Sahinidis. Global optimization in stabilizing controller design. Journal of
Global Optimization, 38(4):509–526, 2007. URL http://doi.org/10.1007/s10898-006-9092-2.

[37] V. Chvátal. Linear Programming. W. H. Freeman and Compan, New York, 1983.

[38] A. R. Conn. Constrained optimization using a nondifferentiable penalty function. SIAM Journal on
Numerical Analysis, 10(4):760–784, 1973. URL http://doi.org/10.1137/0710063.

[39] R. W. Cottle and G. B. Dantzig. Complementary pivot theory of mathematical programming. Linear
Algebra and its Applications, 1(1):103–125, 1968. URL http://doi.org/10.1016/0024-3795(68)

90052-9.

[40] R. W. Cottle, J. S. Pang, and R. E. Stone. The Linear Complementarity Problem. Academic Press,
Boston, 1992.

[41] G. B. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton, New
Jersey, 1963.

[42] S. Devarajan, J. D. Lewis, and S. Robinson. Policy lessons from trade-focused, two-sector models.
Journal of Policy Modeling, 12(4):625–657, 1990. URL http://doi.org/10.1016/0161-8938(90)

90002-V.

[43] Paul Dierckx. Curve and Surface Fitting with Splines. Oxford University Press, 1993. ISBN
0-19-853441-8.

[44] S. P. Dirkse. Robust Solution of Mixed Complementarity Problems. PhD thesis, Computer Sciences
Department, University of Wisconsin, Madison, Wisconsin, 1994. URL ftp://ftp.cs.wisc.edu/

math-prog/tech-reports/94-12.ps.

[45] S. P. Dirkse and M. C. Ferris. MCPLIB: a collection of nonlinear mixed complementarity prob-
lems. Optimization Methods and Software, 5(4):319–345, 1995. URL http://doi.org/10.1080/

10556789508805619.

[46] S. P. Dirkse and M. C. Ferris. A path search damped Newton method for computing general equilibria.
Annals of Operations Research, 68(2):211–232, 1996. URL http://doi.org/10.1007/BF02209613.

[47] S. P. Dirkse and M. C. Ferris. Crash techniques for large-scale complementarity problems. In M. C.
Ferris and J. S. Pang, editors, Complementarity and Variational Problems: State of the Art, pages
40–61. SIAM Publications, 1997.

http://doi.org/10.1137/S1052623497325107
http://doi.org/10.1137/S1052623497325107
http://doi.org/10.1007/PL00011391
http://doi.org/10.1007/PL00011391
http://doi.org/10.1023/A:1025136421370
http://doi.org/10.1023/A:1025136421370
http://doi.org/10.1007/s10107-003-0485-4
http://doi.org/10.1137/S1052623403426532
http://doi.org/10.1007/BFb0120945
http://doi.org/10.1007/s10898-006-9092-2
http://doi.org/10.1137/0710063
http://doi.org/10.1016/0024-3795(68)90052-9
http://doi.org/10.1016/0024-3795(68)90052-9
http://doi.org/10.1016/0161-8938(90)90002-V
http://doi.org/10.1016/0161-8938(90)90002-V
ftp://ftp.cs.wisc.edu/math-prog/tech-reports/94-12.ps
ftp://ftp.cs.wisc.edu/math-prog/tech-reports/94-12.ps
http://doi.org/10.1080/10556789508805619
http://doi.org/10.1080/10556789508805619
http://doi.org/10.1007/BF02209613

3676 BIBLIOGRAPHY

[48] S. P. Dirkse and M. C. Ferris. Traffic modeling and variational inequalities using GAMS. In K. Tanczos
Ph. L. Toint, M. Labbe and G. Laporte, editors, Operations Research and Decision Aid Methodologies
in Traffic and Transportation Management, volume 166, pages 136–163. NATO ASI Series F,
Philadelphia, Pennsylvania, 1998. URL http://doi.org/10.1007/978-3-662-03514-6_6.

[49] F. Domes and A. Neumaier. Constraint propagation on quadratic constraints. Constraints, 15(3):
404–429, 2010. URL http://doi.org/10.1007/s10601-009-9076-1.

[50] F. Domes and A. Neumaier. Rigorous enclosures of ellipsoids and directed cholesky factorizations.
SIAM Journal on Matrix Analysis and Applications, 32(1):262–285, 2011. URL http://doi.org/

10.1137/090778110.

[51] M. C. Dorneich and N. V. Sahinidis. Global optimization algorithms for chip layout and
compaction. Engineering Optimization, 25(2):131–154, 1995. URL http://doi.org/10.1080/

03052159508941259.

[52] Marco A. Duran and Ignacio E. Grossmann. An outer-approximation algorithm for a class of
mixed-integer nonlinear programs. Mathematical Programming, 36(3):307–339, 1986. URL http:

//doi.org/10.1007/BF02592064.

[53] Marco A. Duran and Ignacio E. Grossmann. A mixed-integer nonlinear programming algorithm for
process systems synthesis. AIChE Journal, 32(4):592–606, 1986. URL http://doi.org/10.1002/

aic.690320408.

[54] S. K. Eldersveld. Large-scale sequential quadratic programming algorithms. PhD thesis, Department
of Operations Research, Stanford University, Stanford, CA, 1991.

[55] R. Ericson and A. Pakes. Markov perfect industry dynamics: A framework for empirical analysis.
The Review of Economic Studies, 62(1):53–82, 1995. URL http://doi.org/10.2307/2297841.

[56] M. C. Ferris and S. Lucidi. Nonmonotone stabilization methods for nonlinear equations. Journal
of Optimization Theory and Applications, 81(1):53–71, 1994. URL http://doi.org/10.1007/

BF02190313.

[57] M. C. Ferris and T. S. Munson. Interfaces to PATH 3.0: Design, implementation and usage.
Computational Optimization and Applications, 12(1-3):207–227, 1999. URL http://doi.org/10.

1023/A:1008636318275.

[58] M. C. Ferris and T. S. Munson. Preprocessing complementarity problems. In Michael C. Ferris,
Olvi L. Mangasarian, and Jong-Shi Pang, editors, Complementarity: Applications, Algorithms
and Extensions, pages 143–164. Springer US, Boston, MA, 2001. URL http://doi.org/10.1007/

978-1-4757-3279-5_7.

[59] M. C. Ferris and J. S. Pang, editors. Complementarity and Variational Problems: State of the Art.
SIAM Publications, Philadelphia, Pennsylvania, 1997.

[60] M. C. Ferris and J. S. Pang. Engineering and economic applications of complementarity problems.
SIAM Review, 39(4):669–713, 1997. URL http://doi.org/10.1137/S0036144595285963.

[61] M. C. Ferris, C. Kanzow, and T. S. Munson. Feasible descent algorithms for mixed complementarity
problems. Mathematical Programming, 86(3):475–497, 1999. URL http://doi.org/10.1007/

s101070050101.

[62] M. C. Ferris, A. Meeraus, and T. F. Rutherford. Computing Wardropian equilibria in a
complementarity framework. Optimization Methods and Software, 10(5):669–685, 1999. URL
http://doi.org/10.1080/10556789908805733.

[63] A. Fischer. A special Newton–type optimization method. Optimization, 24(3-4):269–284, 1992. URL
http://doi.org/10.1080/02331939208843795.

[64] R. Fletcher. An `1 penalty method for nonlinear constraints. In P. T. Boggs, R. H. Byrd, and R. B.
Schnabel, editors, Numerical Optimization 1984, pages 26–40, Philadelphia, 1985. SIAM.

[65] C. A. Floudas. Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications. Oxford
University Press, New York, NY, 1995. ISBN 0195100565.

http://doi.org/10.1007/978-3-662-03514-6_6
http://doi.org/10.1007/s10601-009-9076-1
http://doi.org/10.1137/090778110
http://doi.org/10.1137/090778110
http://doi.org/10.1080/03052159508941259
http://doi.org/10.1080/03052159508941259
http://doi.org/10.1007/BF02592064
http://doi.org/10.1007/BF02592064
http://doi.org/10.1002/aic.690320408
http://doi.org/10.1002/aic.690320408
http://doi.org/10.2307/2297841
http://doi.org/10.1007/BF02190313
http://doi.org/10.1007/BF02190313
http://doi.org/10.1023/A:1008636318275
http://doi.org/10.1023/A:1008636318275
http://doi.org/10.1007/978-1-4757-3279-5_7
http://doi.org/10.1007/978-1-4757-3279-5_7
http://doi.org/10.1137/S0036144595285963
http://doi.org/10.1007/s101070050101
http://doi.org/10.1007/s101070050101
http://doi.org/10.1080/10556789908805733
http://doi.org/10.1080/02331939208843795

BIBLIOGRAPHY 3677

[66] C. A. Floudas. Deterministic Global Optimization: Theory, Algorithms and Applications, volume 37 of
Nonconvex Optimization and Its Applications. Kluwer Academic Publishers, Dordrecht, Netherlands,
2000. ISBN 978-0-7923-6014-8.

[67] C. A. Floudas and C. E. Gounaris. A review of recent advances in global optimization. Journal of
Global Optimization, 45(1):3–38, 2009. URL http://doi.org/10.1007/s10898-008-9332-8.

[68] C. A. Floudas, I. G. Akrotirianakis, S. Caratzoulas, C. A. Meyer, and J. Kallrath. Global optimization
in the 21st century: Advances and challenges. Computers & Chemical Engineering, 29(6):1185–1202,
2005. URL http://doi.org/10.1016/j.compchemeng.2005.02.006.

[69] R. Fourer. Solving staircase linear programs by the simplex method – 1: Inversion. Mathematical
Programming, 23(1):274–313, 1982. URL http://doi.org/10.1007/BF01583795.

[70] Robert Fourer, Jun Ma, and Kipp Martin. OSiL: An instance language for optimization. Com-
putational Optimization and Applications, 45(1):181–203, 2010. URL http://doi.org/10.1007/

s10589-008-9169-6.

[71] J. Fourtany-Amat and B. McCarl. A representation and economic interpretation of a two-level
programming problem. Journal of the Operational Research Society, 32(9):783–792, 1981. URL
http://doi.org/10.1057/jors.1981.156.

[72] K. Furman and I. P. Androulakis. A novel MINLP-based representation of the original complex
model for predicting gasoline emissions. Computers & Chemical Engineering, 32(12):2857–2876,
2008. URL http://doi.org/10.1016/j.compchemeng.2008.02.002.

[73] K. Furman, N. Sawaya, and I. E. Grossmann. A computationally useful algebraic representation of
nonlinear disjunctive convex sets using the perspective function. E-Print 5544, Optimization Online,
2016. URL http://www.optimization-online.org/DB_HTML/2016/07/5544.html.

[74] Gerald Gamrath, Tobias Fischer, Tristan Gally, Ambros M. Gleixner, Gregor Hendel, Thorsten Koch,
Stephen J. Maher, Matthias Miltenberger, Benjamin Müller, Marc E. Pfetsch, Christian Puchert,
Daniel Rehfeldt, Sebastian Schenker, Robert Schwarz, Felipe Serrano, Yuji Shinano, Stefan Vigerske,
Dieter Weninger, Michael Winkler, Jonas T. Witt, and Jakob Witzig. The SCIP Optimization Suite
3.2. ZIB Report 15-60, Zuse Institute Berlin, 2016. URL http://nbn-resolving.de/urn:nbn:de:

0297-zib-57675.

[75] Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime
Gasse, Patrick Gemander, Ambros Gleixner, Leona Gottwald, Katrin Halbig, Gregor Hendel,
Christopher Hojny, Thorsten Koch, Pierre Le Bodic, Stephen J. Maher, Frederic Matter, Matthias
Miltenberger, Erik Mühmer, Benjamin Müller, Marc Pfetsch, Franziska Schlösser, Felipe Serrano,
Yuji Shinano, Christine Tawfik, Stefan Vigerske, Fabian Wegscheider, Dieter Weninger, and Jakob
Witzig. The SCIP Optimization Suite 7.0. ZIB Report 20-10, Zuse Institute Berlin, 2020. URL
http://nbn-resolving.de/urn:nbn:de:0297-zib-78023.

[76] E. P. Gatzke, J. E. Tolsma, and P. I. Barton. Construction of convex relaxations using automated
code generation techniques. Optimization and Engineering, 3(3):305–326, 2002. URL http://doi.

org/10.1023/A:1021095211251.

[77] A. M. Geoffrion. Elements of Large-Scale Mathematical Programming – I. Concepts. Management
Science, 16(11):652–675, 1970. URL http://doi.org/10.1287/mnsc.16.11.652.

[78] V. Ghildyal. Design and development of a global optimization system. Master’s thesis, Department
of Mechanical & Industrial Engineering, University of Illinois, Urbana, IL, 1997.

[79] V. Ghildyal and N. V. Sahinidis. Solving global optimization problems with BARON. In A. Migdalas,
P. M. Pardalos, and P. Värbrand, editors, From Local to Global Optimization, volume 53 of
Nonconvex Optimization and Its Applications, chapter 10, pages 205–230. Springer, 2001. URL
http://doi.org/10.1007/978-1-4757-5284-7_10.

[80] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. Two step-length algorithms for numerical
optimization. Technical Report SOL 79–25, Department of Operations Research, Stanford University,
Stanford, California, 1979.

http://doi.org/10.1007/s10898-008-9332-8
http://doi.org/10.1016/j.compchemeng.2005.02.006
http://doi.org/10.1007/BF01583795
http://doi.org/10.1007/s10589-008-9169-6
http://doi.org/10.1007/s10589-008-9169-6
http://doi.org/10.1057/jors.1981.156
http://doi.org/10.1016/j.compchemeng.2008.02.002
http://www.optimization-online.org/DB_HTML/2016/07/5544.html
http://nbn-resolving.de/urn:nbn:de:0297-zib-57675
http://nbn-resolving.de/urn:nbn:de:0297-zib-57675
http://nbn-resolving.de/urn:nbn:de:0297-zib-78023
http://doi.org/10.1023/A:1021095211251
http://doi.org/10.1023/A:1021095211251
http://doi.org/10.1287/mnsc.16.11.652
http://doi.org/10.1007/978-1-4757-5284-7_10

3678 BIBLIOGRAPHY

[81] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. User’s guide for NPSOL (Version 4.0): a
Fortran package for nonlinear programming. Technical Report SOL 86–2, Department of Operations
Research, Stanford University, Stanford, CA, 1986.

[82] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. Maintaining LU factors of a general
sparse matrix. Linear Algebra and its Applications, 88-89:239–270, 1987. URL http://doi.org/10.

1016/0024-3795(87)90112-1.

[83] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. A practical anti-cycling procedure
for linearly constrained optimization. Mathematical Programming, 45(1-3):437–474, 1989. URL
http://doi.org/10.1007/BF01589114.

[84] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. Some theoretical properties of an
augmented Lagrangian merit function. In P. M. Pardalos, editor, Advances in Optimization and
Parallel Computing, pages 101–128. Elsevier Science Inc, 1992.

[85] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for large-scale constrained
optimization. SIAM Journal on Optimization, 12(4):979–1006, 2002. URL http://doi.org/10.

1137/S1052623499350013.

[86] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for large-scale con-
strained optimization. SIAM Review, 47(1):99–131, 2005. URL http://doi.org/10.1137/

S0036144504446096.

[87] P. E. Gill, W. Murray, and M. A. Saunders. User’s guide for SQOPT version 7: Software for large-
scale linear and quadratic programming. Numerical analysis report, Department of Mathematics,
University of California, San Diego, La Jolla, CA, 2006.

[88] Ambros Gleixner, Leon Eifler, Tristan Gally, Gerald Gamrath, Patrick Gemander, Robert Lion
Gottwald, Gregor Hendel, Christopher Hojny, Thorsten Koch, Matthias Miltenberger, Benjamin
Müller, Marc E. Pfetsch, Christian Puchert, Daniel Rehfeldt, Franziska Schlösser, Felipe Serrano,
Yuji Shinano, Jan Merlin Viernickel, Stefan Vigerske, Dieter Weninger, Jonas T. Witt, and Jakob
Witzig. The SCIP Optimization Suite 5.0. ZIB Report 17-61, Zuse Institute Berlin, 2017. URL
http://nbn-resolving.de/urn:nbn:de:0297-zib-66297.

[89] Ambros Gleixner, Michael Bastubbe, Leon Eifler, Tristan Gally, Gerald Gamrath, Robert Lion
Gottwald, Gregor Hendel, Christopher Hojny, Thorsten Koch, Marco E. Lübbecke, Stephen J. Maher,
Matthias Miltenberger, Benjamin Müller, Marc E. Pfetsch, Christian Puchert, Daniel Rehfeldt,
Franziska Schlösser, Christoph Schubert, Felipe Serrano, Yuji Shinano, Jan Merlin Viernickel,
Matthias Walter, Fabian Wegscheider, Jonas T. Witt, and Jakob Witzig. The SCIP Optimization
Suite 6.0. ZIB-Report 18-26, Zuse Institute Berlin, 2018. URL http://nbn-resolving.de/urn:

nbn:de:0297-zib-69361.

[90] L. Grippo, F. Lampariello, and S. Lucidi. A nonmonotone line search technique for Newton’s
method. SIAM Journal on Numerical Analysis, 23(4):707–716, 1986. URL http://doi.org/10.

1137/0723046.

[91] L. Grippo, F. Lampariello, and S. Lucidi. A class of nonmonotone stabilization methods in
unconstrained optimization. Numerische Mathematik, 59(1):779–805, 1991. URL http://doi.org/

10.1007/BF01385810.

[92] Computational Mathematics Group. HSL 2002 – a catalogue of subroutines. Technical report, STFC
Rutherford Appleton Laboratory, Harwell Oxford, 2002.

[93] R. A. Gutiérrez and N. V. Sahinidis. A branch-and-bound approach for machine selection in
just-in-time manufacturing systems. International Journal of Production Research, 34(3):797–818,
1996. URL http://doi.org/10.1080/00207549608904935.

[94] P. T. Harker and J. S. Pang. Finite-dimensional variational inequality and nonlinear complementarity
problems: A survey of theory, algorithms and applications. Mathematical Programming, 48(1-3):
161–220, 1990. URL http://doi.org/10.1007/BF01582255.

http://doi.org/10.1016/0024-3795(87)90112-1
http://doi.org/10.1016/0024-3795(87)90112-1
http://doi.org/10.1007/BF01589114
http://doi.org/10.1137/S1052623499350013
http://doi.org/10.1137/S1052623499350013
http://doi.org/10.1137/S0036144504446096
http://doi.org/10.1137/S0036144504446096
http://nbn-resolving.de/urn:nbn:de:0297-zib-66297
http://nbn-resolving.de/urn:nbn:de:0297-zib-69361
http://nbn-resolving.de/urn:nbn:de:0297-zib-69361
http://doi.org/10.1137/0723046
http://doi.org/10.1137/0723046
http://doi.org/10.1007/BF01385810
http://doi.org/10.1007/BF01385810
http://doi.org/10.1080/00207549608904935
http://doi.org/10.1007/BF01582255

BIBLIOGRAPHY 3679

[95] G. W. Harrison, T. F. Rutherford, and D. Tarr. Quantifying the Uruguay round. The Economic
Journal, 107(444):1405–1430, 1997. URL http://doi.org/10.1111/j.1468-0297.1997.tb00055.

x.

[96] Alain Haurie and Jacek B. Krawczyk. Optimal charges on river effluent from lumped and distributed
sources environmental modeling and assessment. Environmental Modeling & Assessment, 2(3):
177–189, 1997. URL http://doi.org/10.1023/A:1019049008557.

[97] J. Huang and J. S. Pang. Option pricing and linear complementarity. Journal of Computational
Finance, 2(1):31–60, 1998. URL http://doi.org/10.21314/JCF.1998.018.

[98] Q. Huangfu and J. A. J. Hall. Parallelizing the dual revised simplex method. Mathematical Program-
ming Computation, 10(1):119–142, 2018. URL http://doi.org/10.1007/s12532-017-0130-5.

[99] P. J. Huber. Robust statistics. John Wiley & Sons, New York, 1981.

[100] G. Infanger. DECIS User’s Guide. 1590 Escondido Way, Belmont, CA 94002, 1997.

[101] N. H. Josephy. Newton’s method for generalized equations. Technical Summary Report 1965,
Mathematics Research Center, University of Wisconsin, Madison, Wisconsin, 1979.

[102] W. Karush. Minima of functions of several variables with inequalities as side conditions. Master’s
thesis, Department of Mathematics, University of Chicago, 1939.

[103] George Karypis and Vipin Kumar. A fast and highly quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1999. URL http://doi.

org/10.1137/S1064827595287997.

[104] Yoshiaki Kawajir, Carl Laird, and Andreas Wächter. Introduction to Ipopt: A tutorial for download-
ing, installing, and using Ipopt, 2087 edition, February 2012. https://github.com/coin-or/Ipopt.

[105] J. E. Kelley. The cutting-plane method for solving convex programs. Journal of the Society for
Industrial and Applied Mathematics, 8(4):703–712, 1960. URL http://doi.org/10.1137/0108053.

[106] A. Khajavirad and N. V. Sahinidis. Convex envelopes of products of convex and component-wise
concave functions. Journal of Global Optimization, 52(3):391–409, 2012. URL http://doi.org/10.

1007/s10898-011-9747-5.

[107] A. Khajavirad and N. V. Sahinidis. Convex envelopes generated from finitely many compact
convex sets. Mathematical Programming, 137(1-2):371–408, 2013. URL http://doi.org/10.1007/

s10107-011-0496-5.

[108] A. Khajavirad, J. J. Michalek, and N. V. Sahinidis. Relaxations of factorable functions with
convex-transformable intermediates. Mathematical Programming, 144(1-2):107–140, 2014. URL
http://doi.org/10.1007/s10107-012-0618-8.

[109] Y. Kim and M.C. Ferris. Solving equilibrium problems using extended mathematical programming,
2017.

[110] G. R. Kocis and I. E. Grossmann. Relaxation strategy for the structural optimization of process
flowsheets. Industrial & Engineering Chemistry Research, 26(9):1869–1880, 1987. URL http:

//doi.org/10.1021/ie00069a026.

[111] Jacek B. Krawczyk and Stanislav Uryasev. Relaxation algorithms to find nash equilibria with
economic applications. Environmental Modeling & Assessment, 5(1):63–73, 2000. URL http:

//doi.org/10.1023/A:1019097208499.

[112] J. Kronqvist, A. Lundell, and T. Westerlund. The extended supporting hyperplane algorithm for
convex mixed-integer nonlinear programming. Journal of Global Optimization, 64(2):249–272, 2016.
doi: 10.1007/s10898-015-0322-3.

[113] J. Kronqvist, D. E. Bernal, A. Lundell, and I. E. Grossmann. A review and comparison of solvers for
convex minlp. Optimization and Engineering, 20(2):397–455, 2019. doi: 10.1007/s11081-018-9411-8.

http://doi.org/10.1111/j.1468-0297.1997.tb00055.x
http://doi.org/10.1111/j.1468-0297.1997.tb00055.x
http://doi.org/10.1023/A:1019049008557
http://doi.org/10.21314/JCF.1998.018
http://doi.org/10.1007/s12532-017-0130-5
http://doi.org/10.1137/S1064827595287997
http://doi.org/10.1137/S1064827595287997
https://github.com/coin-or/Ipopt
http://doi.org/10.1137/0108053
http://doi.org/10.1007/s10898-011-9747-5
http://doi.org/10.1007/s10898-011-9747-5
http://doi.org/10.1007/s10107-011-0496-5
http://doi.org/10.1007/s10107-011-0496-5
http://doi.org/10.1007/s10107-012-0618-8
http://doi.org/10.1021/ie00069a026
http://doi.org/10.1021/ie00069a026
http://doi.org/10.1023/A:1019097208499
http://doi.org/10.1023/A:1019097208499

3680 BIBLIOGRAPHY

[114] H. W. Kuhn and A. W. Tucker. Nonlinear programming. In J. Neyman, editor, Proceedings of the
Second Berkeley Symposium on Mathematical Statistics and Probability, pages 481–492, Berkeley
and Los Angeles, 1951. University of California Press.

[115] B. Lanz and T. F. Rutherford. Gtapingams: Multiregional and small open economy models. Journal
of Global Economic Analysis, 1(2):1–77, 2016. URL http://doi.org/10.21642/JGEA.010201AF.

[116] Y. Lebbah, C. Michel, and M. Rueher. A rigorous global filtering algorithm for quadratic constraints.
Constraints, 10(1):47–65, 2005. URL http://doi.org/10.1007/s10601-004-5307-7.

[117] C. E. Lemke and J. T. Howson, Jr. Equilibrium points of bimatrix games. Journal of the Society for
Industrial and Applied Mathematics, 12(2):413–423, 1964. URL http://doi.org/10.1137/0112033.

[118] L. Liberti and C. C. Pantelides. Convex envelopes of monomials of odd degree. Journal of Global
Optimization, 25(2):157–168, 2003. URL http://doi.org/10.1023/A:1021924706467.

[119] L. Liberti and C. C. Pantelides. An exact reformulation algorithm for large nonconvex NLPs
involving bilinear terms. Journal of Global Optimization, 36(2):161–189, 2006. URL http://doi.

org/10.1007/s10898-006-9005-4.

[120] M.-L. Liu, N. V. Sahinidis, and J. P. Shectman. Planning of chemical process networks via global
concave minimization. In I. E. Grossmann, editor, Global Optimization in Engineering Design,
volume 9 of Nonconvex Optimization and Its Applications, pages 195–230. Springer, 1996. URL
http://doi.org/10.1007/978-1-4757-5331-8_7.

[121] A. Lundell and J. Kronqvist. On solving nonconvex MINLP problems with SHOT. In Le Thi H.,
Le H., and Pham Dinh T., editors, Optimization of Complex Systems: Theory, Models, Algorithms
and Applications, volume 991 of Advances in Intelligent Systems and Computing. Springer, Cham.,
2019.

[122] A. Lundell and J. Kronqvist. Polyhedral approximation strategies for nonconvex mixed-integer
nonlinear programming in SHOT. Journal of Global Optimization, 2021. URL https://doi.org/

10.1007/s10898-021-01006-1.

[123] A. Lundell and T. Westerlund. Convex underestimation strategies for signomial functions.
Optimization Methods and Software, 24(4-5):505–522, 2009. URL http://doi.org/10.1080/

10556780802702278.

[124] A. Lundell and T. Westerlund. Global optimization of mixed-integer signomial programming
problems. In J. Lee and S. Leyffer, editors, Mixed Integer Nonlinear Programming, volume 154 of
The IMA Volumes in Mathematics and its Applications, pages 349–369. Springer New York, 2012.
URL http://doi.org/10.1007/978-1-4614-1927-3_12.

[125] A. Lundell, J. Westerlund, and T. Westerlund. Some transformation techniques with applications
in global optimization. Journal of Global Optimization, 43(2-3):391–405, 2009. URL http://doi.

org/10.1007/s10898-007-9223-4.

[126] A. Lundell, J. Kronqvist, and T. Westerlund. The supporting hyperplane optimization toolkit: A
polyhedral outer approximation based convex minlp solver utilizing a single branching tree approach.
Technical report, Optimization Online, 2018. URL http://www.optimization-online.org/DB_

FILE/2018/06/6680.pdf.

[127] Stephen J. Maher, Tobias Fischer, Tristan Gally, Gerald Gamrath, Ambros Gleixner, Robert Lion
Gottwald, Gregor Hendel, Thorsten Koch, Marco E. Lübbecke, Matthias Miltenberger, Benjamin
Müller, Marc E. Pfetsch, Christian Puchert, Daniel Rehfeldt, Sebastian Schenker, Robert Schwarz,
Felipe Serrano, Yuji Shinano, Dieter Weninger, Jonas T. Witt, and Jakob Witzig. The SCIP
Optimization Suite 4.0. ZIB Report 17-12, Zuse Institute Berlin, 2017. URL http://nbn-resolving.

de/urn:nbn:de:0297-zib-62170.

[128] C. D. Maranas and C. A. Floudas. Finding all solutions of nonlinearly constrained systems of
equations. Journal of Global Optimization, 7(2):143–182, 1995. URL http://doi.org/10.1007/

BF01097059.

http://doi.org/10.21642/JGEA.010201AF
http://doi.org/10.1007/s10601-004-5307-7
http://doi.org/10.1137/0112033
http://doi.org/10.1023/A:1021924706467
http://doi.org/10.1007/s10898-006-9005-4
http://doi.org/10.1007/s10898-006-9005-4
http://doi.org/10.1007/978-1-4757-5331-8_7
https://doi.org/10.1007/s10898-021-01006-1
https://doi.org/10.1007/s10898-021-01006-1
http://doi.org/10.1080/10556780802702278
http://doi.org/10.1080/10556780802702278
http://doi.org/10.1007/978-1-4614-1927-3_12
http://doi.org/10.1007/s10898-007-9223-4
http://doi.org/10.1007/s10898-007-9223-4
http://www.optimization-online.org/DB_FILE/2018/06/6680.pdf
http://www.optimization-online.org/DB_FILE/2018/06/6680.pdf
http://nbn-resolving.de/urn:nbn:de:0297-zib-62170
http://nbn-resolving.de/urn:nbn:de:0297-zib-62170
http://doi.org/10.1007/BF01097059
http://doi.org/10.1007/BF01097059

BIBLIOGRAPHY 3681

[129] C. D. Maranas and C. A. Floudas. Global optimization in generalized geometric program-
ming. Computers & Chemical Engineering, 21(4):351–369, 1997. URL http://doi.org/10.1016/

S0098-1354(96)00282-7.

[130] J. Markusen and T. F. Rutherford. MPSGE: A user’s guide, February 2004. URL https://www.

scribd.com/document/212467121/MPSGE-Users-Guide. Lecture Notes Prepared for the UNSW
Workshop.

[131] L. Mathiesen. Computation of economic equilibria by a sequence of linear complementarity problems.
In Alan S. Manne, editor, Economic Equilibrium: Model Formulation and Solution, volume 23
of Mathematical Programming Studies, pages 144–162. Springer, Berlin, Heidelberg, 1985. URL
http://doi.org/10.1007/BFb0121030.

[132] L. Mathiesen. An algorithm based on a sequence of linear complementarity problems applied to a
Walrasian equilibrium model: An example. Mathematical Programming, 37(1):1–18, 1987. URL
http://doi.org/10.1007/BF02591680.

[133] C. A. Meyer and C. A. Floudas. Convex envelopes for edge-concave functions. Mathematical
Programming, 103(2):207–224, 2005. URL http://doi.org/10.1007/s10107-005-0580-9.

[134] R. Misener and C. A. Floudas. Global optimization of mixed-integer quadratically-constrained
quadratic programs (MIQCQP) through piecewise-linear and edge-concave relaxations. Mathematical
Programming, 136(1):155–182, 2012. URL http://doi.org/10.1007/s10107-012-0555-6.

[135] R. Misener and C. A. Floudas. GloMIQO: Global Mixed-Integer Quadratic Optimizer. Journal of
Global Optimization, 57(1):3–50, 2013. URL http://doi.org/10.1007/s10898-012-9874-7.

[136] R. Misener and C. A. Floudas. A framework for globally optimizing mixed-integer signomial
programs. Journal of Optimization Theory and Applications, 161(3):905–932, 2014. URL http:

//doi.org/10.1007/s10957-013-0396-3.

[137] R. Misener and C. A. Floudas. ANTIGONE: Algorithms for coNTinuous / Integer Global Opti-
mization of Nonlinear Equations. Journal of Global Optimization, 59(2-3):503–526, 2014. URL
http://doi.org/10.1007/s10898-014-0166-2.

[138] R. Misener, J. B. Smadbeck, and C. A. Floudas. Dynamically generated cutting planes for
mixed-integer quadratically constrained quadratic programs and their incorporation into GloMIQO
2. Optimization Methods and Software, 30(1):215–249, 2015. URL http://doi.org/10.1080/

10556788.2014.916287.

[139] B. A. Murtagh and M. A. Saunders. Large-scale linearly constrained optimization. Mathematical
Programming, 14(1):41–72, 1978. URL http://doi.org/10.1007/BF01588950.

[140] B. A. Murtagh and M. A. Saunders. A projected Lagrangian algorithm and its implementation for
sparse nonlinear constraints. In A. G. Buckley and J.-L. Goffin, editors, Algorithms for Constrained
Minimization of Smooth Nonlinear Functions, volume 16 of Mathematic Programming Studies, pages
84–117. Springer, Berlin, Heidelberg, 1982. URL http://doi.org/10.1007/BFb0120949.

[141] B. A. Murtagh and M. A. Saunders. Minos 5.5 user’s guide. Technical Report SOL 83-20R,
Department of Operations Research, Stanford University, Stanford, CA, 1983. Revised 1998.

[142] B. A. Murtagh and M. A. Saunders. Minos user’s guide. Technical Report SOL 83-20, Department
of Operations Research, Stanford University, Stanford, CA, 1983.

[143] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations Research.
Springer, 1999. URL http://doi.org/10.1007/978-0-387-40065-5.

[144] Jorge Nocedal, Andreas Wächter, and Richard A. Waltz. Adaptive barrier strategies for nonlinear
interior methods. SIAM Journal on Optimization, 19(4):1674–1693, 2008. URL http://doi.org/

10.1137/060649513.

[145] Ray Pörn and Tapio Westerlund. A cutting plane method for minimizing pseudo-convex functions
in the mixed integer case. Computers & Chemical Engineering, 24(12):2655–2665, 2000. URL
http://doi.org/10.1016/S0098-1354(00)00622-0.

http://doi.org/10.1016/S0098-1354(96)00282-7
http://doi.org/10.1016/S0098-1354(96)00282-7
https://www.scribd.com/document/212467121/MPSGE-Users-Guide
https://www.scribd.com/document/212467121/MPSGE-Users-Guide
http://doi.org/10.1007/BFb0121030
http://doi.org/10.1007/BF02591680
http://doi.org/10.1007/s10107-005-0580-9
http://doi.org/10.1007/s10107-012-0555-6
http://doi.org/10.1007/s10898-012-9874-7
http://doi.org/10.1007/s10957-013-0396-3
http://doi.org/10.1007/s10957-013-0396-3
http://doi.org/10.1007/s10898-014-0166-2
http://doi.org/10.1080/10556788.2014.916287
http://doi.org/10.1080/10556788.2014.916287
http://doi.org/10.1007/BF01588950
http://doi.org/10.1007/BFb0120949
http://doi.org/10.1007/978-0-387-40065-5
http://doi.org/10.1137/060649513
http://doi.org/10.1137/060649513
http://doi.org/10.1016/S0098-1354(00)00622-0

3682 BIBLIOGRAPHY

[146] I. Quesada and I. E. Grossmann. A global optimization algorithm for linear fractional and bilinear
programs. Journal of Global Optimization, 6(1):39–76, 1995. URL http://doi.org/10.1007/

BF01106605.

[147] J. K. Reid. Fortran subroutines for handling sparse linear programming bases. Technical Report
Report R8269, Atomic Energy Research Establishment, Harwell, England, 1976.

[148] J. K. Reid. A sparsity-exploiting variant of the Bartels-Golub decomposition for linear programming
bases. Mathematical Programming, 24(1):55–69, 1982. URL http://doi.org/10.1007/BF01585094.

[149] L. M. Rios and N. V. Sahinidis. Portfolio optimization for wealth-dependent risk preferences. Annals
of Operations Research, 177(1):63–90, 2010. URL http://doi.org/10.1007/s10479-009-0592-6.

[150] S. M. Robinson. A quadratically-convergent algorithm for general nonlinear programming problems.
Mathematical Programming, 3(1):145–156, 1972. URL http://doi.org/10.1007/BF01584986.

[151] S. M. Robinson. Normal maps induced by linear transformations. Mathematics of Operations
Research, 17(3):691–714, 1992. URL http://doi.org/10.1287/moor.17.3.691.

[152] R. T. Rockafellar. Linear-quadratic programming and optimal control. SIAM Journal on Control
and Optimization, 25(3):781–814, 1987. URL http://doi.org/10.1137/0325045.

[153] R. T. Rockafellar. Lagrange multipliers and optimality. SIAM Review, 35(2):183–238, 1993. URL
http://doi.org/10.1137/1035044.

[154] R. T. Rockafellar. Extended nonlinear programming. In Gianni Di Pillo and Franco Giannessi,
editors, Nonlinear Optimization and Related Topics, volume 36 of Applied Optimization, pages
381–399. Springer, Boston, MA, 1999. URL http://doi.org/10.1007/978-1-4757-3226-9_20.

[155] T. F. Rutherford. Extensions of GAMS for complementarity problems arising in applied economic
analysis. Journal of Economic Dynamics and Control, 19(8):1299–1324, 1995. URL http://doi.

org/10.1016/0165-1889(94)00831-2.

[156] T. F. Rutherford. Applied general equilibrium modeling with mpsge as a gams subsystem: An
overview of the modeling framework and syntax. Computational Economics, 14(1-2):1–46, 1999.
URL http://doi.org/10.1023/A:1008655831209.

[157] H. S. Ryoo and N. V. Sahinidis. Global optimization of nonconvex NLPs and MINLPs with
applications in process design. Computers & Chemical Engineering, 19(5):551–556, 1995. URL
http://doi.org/10.1016/0098-1354(94)00097-2.

[158] H. S. Ryoo and N. V. Sahinidis. A branch-and-reduce approach to global optimization. Journal of
Global Optimization, 8(2):107–138, 1996. URL http://doi.org/10.1007/BF00138689.

[159] H. S. Ryoo and N. V. Sahinidis. Analysis of bounds for multilinear functions. Journal of Global
Optimization, 19(4):403–424, 2001. URL http://doi.org/10.1023/A:1011295715398.

[160] H. S. Ryoo and N. V. Sahinidis. Global optimization of multiplicative programs. Journal of Global
Optimization, 26(4):387–418, 2003. URL http://doi.org/10.1023/A:1024700901538.

[161] N. V. Sahinidis. BARON: A general purpose global optimization software package. Journal of
Global Optimization, 8(2):201–205, 1996. URL http://doi.org/10.1007/BF00138693.

[162] N. V. Sahinidis. Global optimization and constraint satisfaction: The branch-and-reduce approach. In
Ch. Bliek, Ch. Jermann, and A. Neumaier, editors, Global Optimization and Constraint Satisfaction,
volume 2861 of Lecture Notes in Computer Science, pages 1–16. Springer, 2003. URL http:

//doi.org/10.1007/978-3-540-39901-8_1.

[163] N. V. Sahinidis and M. Tawarmalani. Applications of global optimization to process and molecular
design. Computers & Chemical Engineering, 24(9-10):2157–2169, 2000. URL http://doi.org/10.

1016/S0098-1354(00)00583-4.

[164] N. V. Sahinidis and M. Tawarmalani. Accelerating branch-and-bound through a modeling language
construct for relaxation-specific constraints. Journal of Global Optimization, 32(2):259–280, 2005.
ISSN 0925-5001. URL http://doi.org/10.1007/s10898-004-2705-8.

http://doi.org/10.1007/BF01106605
http://doi.org/10.1007/BF01106605
http://doi.org/10.1007/BF01585094
http://doi.org/10.1007/s10479-009-0592-6
http://doi.org/10.1007/BF01584986
http://doi.org/10.1287/moor.17.3.691
http://doi.org/10.1137/0325045
http://doi.org/10.1137/1035044
http://doi.org/10.1007/978-1-4757-3226-9_20
http://doi.org/10.1016/0165-1889(94)00831-2
http://doi.org/10.1016/0165-1889(94)00831-2
http://doi.org/10.1023/A:1008655831209
http://doi.org/10.1016/0098-1354(94)00097-2
http://doi.org/10.1007/BF00138689
http://doi.org/10.1023/A:1011295715398
http://doi.org/10.1023/A:1024700901538
http://doi.org/10.1007/BF00138693
http://doi.org/10.1007/978-3-540-39901-8_1
http://doi.org/10.1007/978-3-540-39901-8_1
http://doi.org/10.1016/S0098-1354(00)00583-4
http://doi.org/10.1016/S0098-1354(00)00583-4
http://doi.org/10.1007/s10898-004-2705-8

BIBLIOGRAPHY 3683

[165] N. V. Sahinidis, M. Tawarmalani, and M. Yu. Design of alternative refrigerants via global optimization.
AIChE Journal, 49(7):1761–1775, 2003. URL http://doi.org/10.1002/aic.690490714.

[166] Olaf Schenk and Klaus Gärtner. Solving unsymmetric sparse systems of linear equations with
pardiso. Journal of Future Generation Computer Systems, 20(3):475–487, 2004. URL http:

//doi.org/10.1016/j.future.2003.07.011.

[167] Olaf Schenk and Klaus Gärtner. On fast factorization pivoting methods for sparse symmetric
indefinite systems. Electronic Transactions on Numerical Analysis, 23:158–179, 2006.

[168] J. P. Shectman and N. V. Sahinidis. A finite algorithm for global minimization of separable concave
programs. Journal of Global Optimization, 12(1):1–36, 1998. URL http://doi.org/10.1023/A:

1008241411395.

[169] H. Sherali, E. Dalkiran, and L. Liberti. Reduced RLT representations for nonconvex polynomial
programming problems. Journal of Global Optimization, 52(3):447–469, 2012. URL http://doi.

org/10.1007/s10898-011-9757-3.

[170] H. D. Sherali and W. P. Adams. A Reformulation-Linearization Technique for Solving Discrete
and Continuous Nonconvex Problems, volume 31 of Nonconvex Optimization and Its Applications.
Springer, Boston, MA, 1999. URL http://doi.org/10.1007/978-1-4757-4388-3.

[171] H. D. Sherali and A. Alameddine. A new reformulation-linearization technique for bilinear
programming problems. Journal of Global Optimization, 2(4):379–410, 1992. URL http:

//doi.org/10.1007/BF00122429.

[172] H. D. Sherali and C. H. Tuncbilek. A reformulation-convexification approach for solving nonconvex
quadratic-programming problems. Journal of Global Optimization, 7(1):1–31, 1995. URL http:

//doi.org/10.1007/BF01100203.

[173] H. D. Sherali and C. H. Tuncbilek. New reformulation linearization/convexification relaxations for
univariate and multivariate polynomial programming problems. Operations Research Letters, 21(1):
1–9, 1997. URL http://doi.org/10.1016/S0167-6377(97)00013-8.

[174] Claus Still and Tapio Westerlund. Extended cutting plane algorithm. In C. A. Floudas and
P. Pardalos, editors, Encyclopedia of Optimization, pages 593–601. Kluwer Academic Publishers,
2001. URL http://doi.org/10.1007/0-306-48332-7_126.

[175] F. Tardella. On a class of functions attaining their maximum at the vertices of a polyhedron. Discrete
Applied Mathematics, 22(2):191–195, 1988/89. URL http://doi.org/10.1016/0166-218X(88)

90093-5.

[176] F. Tardella. On the existence of polyhedral convex envelopes. In C. A. Floudas and P. M.
Pardalos, editors, Frontiers in Global Optimization, volume 74 of Nonconvex Optimization and Its
Applications, pages 563–573. Kluwer Academic Publishers, 2004. URL http://doi.org/10.1007/

978-1-4613-0251-3_30.

[177] F. Tardella. Existence and sum decomposition of vertex polyhedral convex envelopes. Optimization
Letters, 2(3):363–375, 2008. URL http://doi.org/10.1007/s11590-007-0065-2.

[178] M. Tawarmalani and N. V. Sahinidis. Semidefinite relaxations of fractional programs via novel
convexification techniques. Journal of Global Optimization, 20(2):133–154, 2001. ISSN 0925-5001.
URL http://doi.org/10.1023/A:1011233805045.

[179] M. Tawarmalani and N. V. Sahinidis. Convex extensions and envelopes of lower semi-continuous
functions. Mathematical Programming, 93(2):247–263, 2002. URL http://doi.org/10.1007/

s10107-002-0308-z.

[180] M. Tawarmalani and N. V. Sahinidis. Convexification and Global Optimization in Continuous and
Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, volume 65
of Nonconvex Optimization and Its Applications. Kluwer Academic Publishers, 2002. URL http:

//doi.org/10.1007/978-1-4757-3532-1.

http://doi.org/10.1002/aic.690490714
http://doi.org/10.1016/j.future.2003.07.011
http://doi.org/10.1016/j.future.2003.07.011
http://doi.org/10.1023/A:1008241411395
http://doi.org/10.1023/A:1008241411395
http://doi.org/10.1007/s10898-011-9757-3
http://doi.org/10.1007/s10898-011-9757-3
http://doi.org/10.1007/978-1-4757-4388-3
http://doi.org/10.1007/BF00122429
http://doi.org/10.1007/BF00122429
http://doi.org/10.1007/BF01100203
http://doi.org/10.1007/BF01100203
http://doi.org/10.1016/S0167-6377(97)00013-8
http://doi.org/10.1007/0-306-48332-7_126
http://doi.org/10.1016/0166-218X(88)90093-5
http://doi.org/10.1016/0166-218X(88)90093-5
http://doi.org/10.1007/978-1-4613-0251-3_30
http://doi.org/10.1007/978-1-4613-0251-3_30
http://doi.org/10.1007/s11590-007-0065-2
http://doi.org/10.1023/A:1011233805045
http://doi.org/10.1007/s10107-002-0308-z
http://doi.org/10.1007/s10107-002-0308-z
http://doi.org/10.1007/978-1-4757-3532-1
http://doi.org/10.1007/978-1-4757-3532-1

3684 BIBLIOGRAPHY

[181] M. Tawarmalani and N. V. Sahinidis. Global optimization of mixed-integer nonlinear programs:
A theoretical and computational study. Mathematical Programming, 99(3):563–591, 2004. URL
http://doi.org/10.1007/s10107-003-0467-6.

[182] M. Tawarmalani and N. V. Sahinidis. A polyhedral branch-and-cut approach to global opti-
mization. Mathematical Programming, 103(2):225–249, 2005. URL http://doi.org/10.1007/

s10107-005-0581-8.

[183] M. Tawarmalani, S. Ahmed, and N. V. Sahinidis. Global optimization of 0-1 hyperbolic pro-
grams. Journal of Global Optimization, 24(4):385–416, 2002. URL http://doi.org/10.1023/A:

1021279918708.

[184] M. Tawarmalani, S. Ahmed, and N. V. Sahinidis. Product disaggregation in global optimization
and relaxations of rational programs. Optimization and Engineering, 3(3):281–303, 2002. ISSN
1389-4420. URL http://doi.org/10.1023/A:1021043227181.

[185] P. Tseng. Growth behavior of a class of merit functions for the nonlinear complementarity problem.
Journal of Optimization Theory and Applications, 89(1):17–37, 1996. URL http://doi.org/10.

1007/BF02192639.

[186] M. Türkay and I. E. Grossmannn. Logic-based MINLP algorithms for the optimal synthesis of
process networks. Computers & Chemical Engineering, 20(8):959–978, 1996. URL http://doi.

org/10.1016/0098-1354(95)00219-7.

[187] J. G. VanAntwerp, R. D. Braatz, and N. V. Sahinidis. Globally optimal robust control for systems
with time-varying nonlinear perturbations. Computers & Chemical Engineering, 21, Supplement:
S125–S130, 1997. URL http://doi.org/10.1016/S0098-1354(97)87490-X.

[188] J. G. VanAntwerp, R. D. Braatz, and N. V. Sahinidis. Globally optimal robust process control.
Journal of Process Control, 9(5):375–383, 1999. URL http://doi.org/10.1016/S0959-1524(99)

00012-8.

[189] A. Vecchietti and I. E. Grossmannn. LOGMIP: a disjunctive 0-1 non-linear optimizer for process
system models. Computers & Chemical Engineering, 23(4-5):555–565, 1999. URL http://doi.org/

10.1016/S0098-1354(98)00293-2.

[190] A. Vecchietti, S. Lee, and I. E. Grossmannn. Modeling of discrete/continuous optimization problems:
Characterizaton and formulations of disjunctions and their relaxations. Computers & Chemical
Engineering, 27(3):433–448, 2003. URL http://doi.org/10.1016/S0098-1354(02)00220-X.

[191] Stefan Vigerske. Decomposition of Multistage Stochastic Programs and a Constraint Integer Pro-
gramming Approach to Mixed-Integer Nonlinear Programming. PhD thesis, Humboldt-Universität
zu Berlin, 2013. URL http://nbn-resolving.de/urn:nbn:de:kobv:11-100208240.

[192] Stefan Vigerske and Ambros Gleixner. SCIP: Global optimization of mixed-integer nonlinear
programs in a branch-and-cut framework. ZIB Report 16-24, Zuse Institute Berlin, 2016. URL
http://nbn-resolving.de/urn:nbn:de:0297-zib-59377.

[193] J. Viswanathan and I. E. Grossmann. A combined penalty function and outer approximation
method for minlp optimization. Computers & Chemical Engineering, 14(7):769–782, 1990. URL
http://doi.org/10.1016/0098-1354(90)87085-4.

[194] Andreas Wächter. An Interior Point Algorithm for Large-Scale Nonlinear Optimization with
Applications in Process Engineering. PhD thesis, Carnegie Mellon University, Pittsburgh, PA,
January 2002.

[195] Andreas Wächter and Lorenz T. Biegler. Line search filter methods for nonlinear programming:
Motivation and global convergence. SIAM Journal on Optimization, 16(1):1–31, 2005. URL
http://doi.org/10.1137/S1052623403426556.

[196] Andreas Wächter and Lorenz T. Biegler. Line search filter methods for nonlinear programming:
Local convergence. SIAM Journal on Optimization, 16(1):32–48, 2005. URL http://doi.org/10.

1137/S1052623403426544.

http://doi.org/10.1007/s10107-003-0467-6
http://doi.org/10.1007/s10107-005-0581-8
http://doi.org/10.1007/s10107-005-0581-8
http://doi.org/10.1023/A:1021279918708
http://doi.org/10.1023/A:1021279918708
http://doi.org/10.1023/A:1021043227181
http://doi.org/10.1007/BF02192639
http://doi.org/10.1007/BF02192639
http://doi.org/10.1016/0098-1354(95)00219-7
http://doi.org/10.1016/0098-1354(95)00219-7
http://doi.org/10.1016/S0098-1354(97)87490-X
http://doi.org/10.1016/S0959-1524(99)00012-8
http://doi.org/10.1016/S0959-1524(99)00012-8
http://doi.org/10.1016/S0098-1354(98)00293-2
http://doi.org/10.1016/S0098-1354(98)00293-2
http://doi.org/10.1016/S0098-1354(02)00220-X
http://nbn-resolving.de/urn:nbn:de:kobv:11-100208240
http://nbn-resolving.de/urn:nbn:de:0297-zib-59377
http://doi.org/10.1016/0098-1354(90)87085-4
http://doi.org/10.1137/S1052623403426556
http://doi.org/10.1137/S1052623403426544
http://doi.org/10.1137/S1052623403426544

BIBLIOGRAPHY 3685

[197] Andreas Wächter and Lorenz T. Biegler. On the implementation of a primal-dual interior point
filter line search algorithm for large-scale nonlinear programming. Mathematical Programming,
106(1):25–57, 2006. URL http://doi.org/10.1007/s10107-004-0559-y. http://github.com/

coin-or/Ipopt.

[198] R. A. Waltz, J. L. Morales, J. Nocedal, and D. Orban. An interior algorithm for nonlinear
optimization that combines line search and trust region steps. Mathematical Programming, 107(3):
391–408, 2006. URL http://doi.org/10.1007/s10107-004-0560-5.

[199] Tapio Westerlund and Frank Petterson. An extended cutting plane method for solving convex
MINLP problems. Computers & Chemical Engineering, 19(suppl.):131–136, 1995. URL http:

//doi.org/10.1016/0098-1354(95)87027-X.

[200] Tapio Westerlund and Ray Pörn. Solving pseudo-convex mixed integer optimization problems
by cutting plane techniques. Optimization and Engineering, 3(3):253–280, 2002. URL http:

//doi.org/10.1023/A:1021091110342.

[201] Tapio Westerlund, Hans Skrifvars, Iiro Harjunkoski, and Ray Pörn. An extended cutting plane
method for solving a class of non-convex minlp problems. Computers & Chemical Engineering, 22
(3):357–365, 1998. URL http://doi.org/10.1016/S0098-1354(97)00000-8.

[202] H. P. Williams. Model Building in Mathematical Programming. Wiley, 4th edition, 1999. ISBN
978-1-118-44333-0.

[203] P. Wolfe. The reduced gradient method. RAND Corporation, 1962.

[204] Kati Wolter. Implementation of cutting plane separators for mixed integer programs. Diploma
thesis, Technische Universität Berlin, 2006.

[205] S. J. Wright. Primal-Dual Interior-Point Methods. Other Titles in Applied Mathematics. Society
for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, 1997. URL http://doi.org/

10.1137/1.9781611971453.

[206] Roland Wunderling. Paralleler und objektorientierter Simplex-Algorithmus. PhD thesis, Technische
Universität Berlin, 1996. URL http://nbn-resolving.de/urn:nbn:de:0297-zib-5386. http:

//soplex.zib.de.

[207] Maryam Yashtini and Alaeddin Malek. Solving complementarity and variational inequalities problems
using neural networks. Applied Mathematics, 190(1):216–230, 2007. URL http://doi.org/10.

1016/j.amc.2007.01.036.

[208] K. Zorn and N. V. Sahinidis. Computational experience with applications of bilinear cutting planes.
Industrial & Engineering Chemistry Research, 52(22):7514–7525, 2013. URL http://doi.org/10.

1021/ie3033763.

[209] K. Zorn and N. V. Sahinidis. Global optimization of general non-convex problems with intermediate
bilinear substructures. Optimization Methods and Software, 29(3):442–462, 2014. URL http:

//doi.org/10.1080/10556788.2013.783032.

[210] K. Zorn and N. V. Sahinidis. Global optimization of general nonconvex problems with intermediate
polynomial substructures. Journal of Global Optimization, 59(2-3):673–693, 2014. URL http:

//doi.org/10.1007/s10898-014-0190-2.

http://doi.org/10.1007/s10107-004-0559-y
http://github.com/coin-or/Ipopt
http://github.com/coin-or/Ipopt
http://doi.org/10.1007/s10107-004-0560-5
http://doi.org/10.1016/0098-1354(95)87027-X
http://doi.org/10.1016/0098-1354(95)87027-X
http://doi.org/10.1023/A:1021091110342
http://doi.org/10.1023/A:1021091110342
http://doi.org/10.1016/S0098-1354(97)00000-8
http://doi.org/10.1137/1.9781611971453
http://doi.org/10.1137/1.9781611971453
http://nbn-resolving.de/urn:nbn:de:0297-zib-5386
http://soplex.zib.de
http://soplex.zib.de
http://doi.org/10.1016/j.amc.2007.01.036
http://doi.org/10.1016/j.amc.2007.01.036
http://doi.org/10.1021/ie3033763
http://doi.org/10.1021/ie3033763
http://doi.org/10.1080/10556788.2013.783032
http://doi.org/10.1080/10556788.2013.783032
http://doi.org/10.1007/s10898-014-0190-2
http://doi.org/10.1007/s10898-014-0190-2

	1 GAMS Documentation Center
	1.1 Model Libraries
	1.2 Further Help

	2 Preface
	3 Release Notes
	3.1 Release Types
	3.2 Release History
	3.3 46 Distribution
	3.3.1 46.1.0 Major release (February 17, 2024)
	3.3.2 46.2.0 Minor release (March 05, 2024)

	3.4 45 Distribution
	3.4.1 45.1.0 Major release (October 14, 2023)
	3.4.2 45.2.0 Minor release (October 30, 2023)
	3.4.3 45.3.0 Minor release (November 11, 2023)
	3.4.4 45.4.0 Minor release (November 27, 2023)
	3.4.5 45.5.0 Minor release (December 14, 2023)
	3.4.6 45.6.0 Minor release (January 04, 2024)
	3.4.7 45.7.0 Minor release (January 18, 2024)

	3.5 44 Distribution
	3.5.1 44.1.0 Major release (July 20, 2023)
	3.5.2 44.1.1 Maintenance release (August 03, 2023)
	3.5.3 44.2.0 Minor release (August 17, 2023)
	3.5.4 44.3.0 Minor release (September 01, 2023)
	3.5.5 44.4.0 Minor release (September 19, 2023)

	3.6 43 Distribution
	3.6.1 43.1.0 Major release (April 27, 2023)
	3.6.2 43.2.0 Minor release (May 04, 2023)
	3.6.3 43.3.0 Minor release (May 18, 2023)
	3.6.4 43.3.1 Maintenance release (June 01, 2023)
	3.6.5 43.4.0 Minor release (June 15, 2023)
	3.6.6 43.4.1 Maintenance release (June 22, 2023)

	3.7 42 Distribution
	3.7.1 42.1.0 Major release (February 01, 2023)
	3.7.2 42.2.0 Minor release (February 16, 2023)
	3.7.3 42.3.0 Minor release (March 02, 2023)
	3.7.4 42.4.0 Minor release (March 16, 2023)
	3.7.5 42.5.0 Minor release (March 30, 2023)

	3.8 41 Distribution
	3.8.1 41.1.0 Major release (October 28, 2022)
	3.8.2 41.2.0 Minor release (November 14, 2022)
	3.8.3 41.3.0 Minor release (November 28, 2022)
	3.8.4 41.4.0 Minor release (December 14, 2022)
	3.8.5 41.5.0 Minor release (January 03, 2023)

	3.9 40 Distribution
	3.9.1 40.1.0 Major release (August 01, 2022)
	3.9.2 40.1.1 Maintenance release (August 16, 2022)
	3.9.3 40.2.0 Minor release (September 01, 2022)
	3.9.4 40.3.0 Minor release (September 16, 2022)
	3.9.5 40.4.0 Minor release (October 03, 2022)

	3.10 39 Distribution
	3.10.1 39.1.0 Major release (May 03, 2022)
	3.10.2 39.1.1 Maintenance release (May 18, 2022)
	3.10.3 39.2.0 Minor release (June 02, 2022)
	3.10.4 39.2.1 Maintenance release (June 21, 2022)
	3.10.5 39.3.0 Minor release (July 07, 2022)

	3.11 38 Distribution
	3.11.1 38.1.0 Major release (January 31, 2022)
	3.11.2 38.2.0 Minor release (February 17, 2022)
	3.11.3 38.2.1 Maintenance release (February 19, 2022)
	3.11.4 38.3.0 Minor release (April 05, 2022)

	3.12 37 Distribution
	3.12.1 37.1.0 Major release (November 11, 2021)

	3.13 36 Distribution
	3.13.1 36.1.0 Major release (August 02, 2021)
	3.13.2 36.2.0 Minor release (September 03, 2021)

	3.14 35 Distribution
	3.14.1 35.1.0 Major release (April 29, 2021)
	3.14.2 35.2.0 Minor release (June 02, 2021)

	3.15 34 Distribution
	3.15.1 34.1.0 Major release (January 29, 2021)
	3.15.2 34.2.0 Minor release (February 05, 2021)
	3.15.3 34.3.0 Minor release (February 25, 2021)

	3.16 33 Distribution
	3.16.1 33.1.0 Major release (November 01, 2020)
	3.16.2 33.2.0 Minor release (December 01, 2020)

	3.17 32 Distribution
	3.17.1 32.1.0 Major release (July 31, 2020)
	3.17.2 32.2.0 Minor release (August 26, 2020)

	3.18 31 Distribution
	3.18.1 31.1.0 Major release (May 01, 2020)
	3.18.2 31.1.1 Maintenance release (May 16, 2020)
	3.18.3 31.2.0 Minor release (June 19, 2020)

	3.19 30 Distribution
	3.19.1 30.1.0 Major release (January 10, 2020)
	3.19.2 30.2.0 Minor release (February 07, 2020)
	3.19.3 30.3.0 Minor release (March 06, 2020)

	3.20 29 Distribution
	3.20.1 29.1.0 Major release (November 15, 2019)

	3.21 28 Distribution
	3.21.1 28.1.0 Major release (August 02, 2019)
	3.21.2 28.2.0 Minor release (August 19, 2019)

	3.22 27 Distribution
	3.22.1 27.1.0 Major release (April 24, 2019)
	3.22.2 27.2.0 Minor release (May 23, 2019)
	3.22.3 27.3.0 Minor release (July 04, 2019)

	3.23 26 Distribution
	3.23.1 26.1.0 Major release (February 02, 2019)

	3.24 25.1 Distribution
	3.24.1 25.1.1 Major release (May 19, 2018)
	3.24.2 25.1.2 Minor release (August 01, 2018)
	3.24.3 25.1.3 Minor release (October 30, 2018)

	3.25 25.0 Distribution
	3.25.1 25.0.1 Major release (January 17, 2018)
	3.25.2 25.0.2 Maintenance release (January 31, 2018)
	3.25.3 25.0.3 Minor release (March 21, 2018)

	3.26 24.9 Distribution
	3.26.1 24.9.1 Major release (August 30, 2017)
	3.26.2 24.9.2 Minor release (November 14, 2017)

	3.27 24.8 Distribution
	3.27.1 24.8.1 Major release (December 21, 2016)
	3.27.2 24.8.2 Maintenance release (January 03, 2017)
	3.27.3 24.8.3 Minor release (January 28, 2017)
	3.27.4 24.8.4 Minor release (April 10, 2017)
	3.27.5 24.8.5 Maintenance release (May 10, 2017)

	3.28 24.7 Distribution
	3.28.1 24.7.1 Major release (March 14, 2016)
	3.28.2 24.7.2 Minor release (July 07, 2016)
	3.28.3 24.7.3 Maintenance release (July 11, 2016)
	3.28.4 24.7.4 Minor release (September 19, 2016)

	3.29 24.6 Distribution
	3.29.1 24.6.1 Major release (January 18, 2016)

	3.30 24.5 Distribution
	3.30.1 24.5.1 Major release (September 23, 2015)
	3.30.2 24.5.2 Maintenance release (September 29, 2015)
	3.30.3 24.5.3 Maintenance release (October 01, 2015)
	3.30.4 24.5.4 Maintenance release (October 15, 2015)
	3.30.5 24.5.5 Maintenance release (November 25, 2015)
	3.30.6 24.5.6 Maintenance release (November 27, 2015)

	3.31 24.4 Distribution
	3.31.1 24.4.1 Major release (December 20, 2014)
	3.31.2 24.4.2 Minor release (March 15, 2015)
	3.31.3 24.4.3 Maintenance release (April 02, 2015)
	3.31.4 24.4.4 Maintenance release (May 12, 2015)
	3.31.5 24.4.5 Maintenance release (May 26, 2015)
	3.31.6 24.4.6 Minor release (June 26, 2015)

	3.32 24.3 Distribution
	3.32.1 24.3.1 Major release (July 31, 2014)
	3.32.2 24.3.2 Minor release (August 29, 2014)
	3.32.3 24.3.3 Minor release (September 19, 2014)

	3.33 24.2 Distribution
	3.33.1 24.2.1 Major release (December 09, 2013)
	3.33.2 24.2.2 Maintenance release (March 04, 2014)
	3.33.3 24.2.3 Maintenance release (May 22, 2014)

	3.34 24.1 Distribution
	3.34.1 24.1.1 Major release (May 30, 2013)
	3.34.2 24.1.2 Maintenance release (June 16, 2013)
	3.34.3 24.1.3 Maintenance release (July 26, 2013)

	3.35 24.0 Distribution
	3.35.1 24.0.1 Major release (December 24, 2012)
	3.35.2 24.0.2 Maintenance release (February 14, 2013)

	3.36 23.9 Distribution
	3.36.1 23.9.1 Major release (July 04, 2012)
	3.36.2 23.9.2 Maintenance release (August 29, 2012)
	3.36.3 23.9.3 Maintenance release (September 26, 2012)
	3.36.4 23.9.4 Maintenance release (October 20, 2012)
	3.36.5 23.9.5 Maintenance release (November 09, 2012)

	3.37 23.8 Distribution
	3.37.1 23.8.1 Major release (March 17, 2012)
	3.37.2 23.8.2 Maintenance release (April 05, 2012)

	3.38 23.7 Distribution
	3.38.1 23.7.1 Major release (July 14, 2011)
	3.38.2 23.7.2 Maintenance release (July 22, 2011)
	3.38.3 23.7.3 Maintenance release (August 23, 2011)

	3.39 23.6 Distribution
	3.39.1 23.6.2 Major release (December 13, 2010)
	3.39.2 23.6.3 Maintenance release (February 15, 2011)
	3.39.3 23.6.4 Maintenance release (April 01, 2011)
	3.39.4 23.6.5 Maintenance release (April 08, 2011)

	3.40 23.5 Distribution
	3.40.1 23.5.1 Major release (July 05, 2010)
	3.40.2 23.5.2 Maintenance release (August 18, 2010)

	3.41 23.4 Distribution
	3.41.1 23.4.1 Major release (May 21, 2010)
	3.41.2 23.4.3 Maintenance release (May 24, 2010)

	3.42 23.3 Distribution
	3.42.1 23.3.1 Major release (November 01, 2009)
	3.42.2 23.3.2 Maintenance release (November 18, 2009)
	3.42.3 23.3.3 Maintenance release (December 17, 2009)

	3.43 23.2 Distribution
	3.43.1 23.2.1 Minor release (August 14, 2009)

	3.44 23.1 Distribution
	3.44.1 23.1.1 Major release (July 13, 2009)
	3.44.2 23.1.2 Maintenance release (July 23, 2009)

	3.45 23.0 Distribution
	3.45.1 23.0.2 Major release (February 14, 2009)

	3.46 22.9 Distribution
	3.46.1 22.9.2 Major release (December 01, 2008)

	3.47 22.8 Distribution
	3.47.1 22.8.1 Major release (August 01, 2008)

	3.48 22.7 Distribution
	3.48.1 22.7.1 Major release (May 01, 2008)
	3.48.2 22.7.2 Maintenance release (May 13, 2008)

	3.49 22.6 Major release (December 24, 2007)
	3.49.1 Acknowledgements
	3.49.2 New Platforms
	3.49.3 GAMS System
	3.49.4 Solvers

	3.50 22.5 Major release (June 01, 2007)
	3.50.1 Acknowledgements
	3.50.2 GAMS System
	3.50.3 Solvers

	3.51 22.4 Major release (February 12, 2007)
	3.51.1 Acknowledgements
	3.51.2 GAMS System
	3.51.3 Solvers

	3.52 22.3 Major release (November 27, 2006)
	3.52.1 Acknowledgements
	3.52.2 GAMS System
	3.52.3 Solvers

	3.53 22.2 Minor release (April 21, 2006)
	3.53.1 Acknowledgements
	3.53.2 GAMS System
	3.53.3 Solvers

	3.54 22.1 Major release (March 15, 2006)
	3.54.1 GAMS System
	3.54.2 Solvers

	3.55 22.0 Major release (August 01, 2005)
	3.55.1 New platforms supported
	3.55.2 Updated build for the Linux platform
	3.55.3 GAMS System
	3.55.4 Solvers

	3.56 21.7 Major release (April 01, 2005)
	3.56.1 Acknowledgements
	3.56.2 New platforms supported
	3.56.3 GAMS System
	3.56.4 Solvers

	3.57 21.6 Minor release (January 26, 2005)
	3.57.1 Acknowledgements
	3.57.2 Solvers
	3.57.3 GAMS System
	3.57.4 Documentation

	3.58 21.5 Minor release (November 11, 2004)
	3.58.1 Acknowledgements
	3.58.2 Solvers
	3.58.3 GAMS System

	3.59 21.4 Major release (September 06, 2004)
	3.59.1 Acknowledgements
	3.59.2 GAMS System
	3.59.3 Pricing
	3.59.4 Solvers

	3.60 21.3 Major release (January 19, 2004)
	3.60.1 GAMS System
	3.60.2 Solvers

	3.61 21.2 Maintenance release (September 03, 2003)
	3.62 21.1 Maintenance release (June 02, 2003)
	3.63 21.0 Major release (May 15, 2003)
	3.63.1 GAMS System
	3.63.2 Solvers
	3.63.3 Documentation

	3.64 20.7 Maintenance release (June 14, 2002)
	3.65 20.6 Major release (May 25, 2002)
	3.65.1 GAMS System
	3.65.2 Solvers
	3.65.3 Beta Solvers

	3.66 20.5 Maintenance release (January 28, 2002)
	3.67 20.4 Maintenance release (January 21, 2002)
	3.68 20.3 Major release (December 24, 2001)
	3.68.1 GAMS System
	3.68.2 Solvers

	3.69 20.2 Maintenance release (November 22, 2001)
	3.69.1 Solvers

	3.70 20.1 Major release (October 31, 2001)
	3.70.1 GAMS System
	3.70.2 Solvers
	3.70.3 Solvers in Beta Version

	4 User's Guide
	4.1 Installation and Licensing
	4.2 Tutorials and Examples
	4.3 GAMS Language and Environment
	4.4 Glossary
	4.5 Supported Platforms
	4.6 Installation Notes for macOS
	4.6.1 Installation using the PKG installer (GAMS46.2.0.pkg)
	4.6.2 Uninstall PKG installation
	4.6.3 Installation using the self-extracting archive (osx_x64_64_sfx.exe or osx_arm64_sfx.exe)

	4.7 Installation Notes for Unix
	4.7.1 Installation
	4.7.2 Access to GAMS

	4.8 Installation Notes for Windows
	4.8.1 Installation
	4.8.2 Visual C++ Redistributable Dependency
	4.8.3 Command Line Use of GAMS
	4.8.4 Warning from Microsoft SmartScreen Filter

	4.9 Standard Locations
	4.9.1 Standard Locations on macOS
	4.9.2 Standard Locations on Unix
	4.9.3 Standard Locations on Windows

	4.10 Licensing
	4.10.1 General Information
	4.10.2 GAMS Community License
	4.10.3 GAMS Licenses
	4.10.4 Installing or updating a license file
	4.10.5 License Problems
	4.10.6 Warnings
	4.10.7 The GAMS/BASE Module
	4.10.8 Additional Limits for the Demo and Community License

	4.11 A GAMS Tutorial by Richard E. Rosenthal
	4.11.1 Introduction
	4.11.2 Structure of a GAMS Model
	4.11.3 Sets
	4.11.4 Data
	4.11.5 Variables
	4.11.6 Equations
	4.11.7 Objective Function
	4.11.8 Model and Solve Statements
	4.11.9 Display Statements
	4.11.10 The .lo, .l, .up, .m Database
	4.11.11 GAMS Output
	4.11.12 Summary

	4.12 Quick Start Tutorial
	4.12.1 Three Basic Models
	4.12.2 Components of the Example Models
	4.12.3 Running a GAMS Job
	4.12.4 Examining The Output
	4.12.5 Exploiting the Algebraic Structure
	4.12.6 Components of the Revised Example Models
	4.12.7 Documenting the GAMS Code
	4.12.8 Guidelines on Ordering GAMS Statements and Formatting GAMS Programs
	4.12.9 Adding Complexity
	4.12.10 Advantages of Algebraic Modeling in General

	4.13 Good Coding Practices
	4.13.1 Using Longer Names and Descriptive Text
	4.13.2 Including Comments on Procedures and the Nature and Sources of Data
	4.13.3 Choosing Raw Data Instead Of Computed Data
	4.13.4 Avoiding the Universal Set in the Context of Data Input
	4.13.5 Defining Sets and Subsets Wisely
	4.13.6 Structuring and Formatting Files to Improve Readability
	4.13.7 Other Suggestions

	4.14 Fixing Compilation Errors
	4.14.1 Preliminary Remarks
	4.14.2 Resolving Common Compilation Errors

	4.15 Finding and Fixing Execution Errors and Performance Problems
	4.15.1 Resolving Execution Errors
	4.15.2 Small to Large: Aid in Development and Debugging
	4.15.3 Increasing Efficiency: Reducing GAMS Execution Time
	4.15.4 Increasing Efficiency: Reducing Memory Use

	4.16 Comparative Analyses with GAMS
	4.16.1 Manual Approach
	4.16.2 An Automated Approach - Avoiding Repeated Work
	4.16.3 Ranging analysis

	4.17 Good NLP Formulations
	4.17.1 Specifying Initial Values
	4.17.2 Setting Variable Bounds
	4.17.3 Avoiding Expressions in Nonlinear Functions
	4.17.4 Scaling Variables and Equations
	4.17.5 Blocking Degenerate Cycling
	4.17.6 Reformulating DNLP Models

	4.18 Data Exchange with Other Applications
	4.18.1 Data Exchange with Text Files
	4.18.2 Data Exchange with Microsoft Excel
	4.18.3 Data Exchange with Databases

	4.19 Executing GAMS from other Environments
	4.19.1 Some General Comments
	4.19.2 Spawning GAMS from VBA
	4.19.3 Spawning GAMS from C
	4.19.4 Spawning GAMS from Visual Basic
	4.19.5 Spawning GAMS from Delphi
	4.19.6 Spawning GAMS from Visual C++
	4.19.7 Spawning GAMS from C#
	4.19.8 Spawning GAMS from Java
	4.19.9 Spawning GAMS from a Web Server
	4.19.10 Spawning GAMS from PHP

	4.20 Using GAMS Studio
	4.20.1 What Is It?
	4.20.2 Installation
	4.20.3 Using STUDIO after Installation
	4.20.4 The Welcome and Explorer Windows
	4.20.5 Fixing Compilation Errors
	4.20.6 Ways to find and/or replace text strings
	4.20.7 Matching Parentheses
	4.20.8 Moving Blocks
	4.20.9 Syntax Coloring
	4.20.10 Showing where a symbol appears
	4.20.11 Accessing Documentation Via the Help
	4.20.12 Making GDX files
	4.20.13 Examining GDX files
	4.20.14 A difficulty you will have
	4.20.15 Command Line Parameters
	4.20.16 Solver Option Files
	4.20.17 Using Libraries
	4.20.18 Using reference files - Listing and Unraveling Data items
	4.20.19 Editing Solver Option Files
	4.20.20 When is it Not Worth Using?
	4.20.21 What does it not do?
	4.20.22 What does it not do so well?

	4.21 Introduction
	4.21.1 Summary
	4.21.2 The Origins of GAMS
	4.21.3 Background and Motivation
	4.21.4 Design Goals and Changing Focus

	4.22 GAMS Programs
	4.22.1 Introduction
	4.22.2 The Structure of GAMS Programs
	4.22.3 Data Types and Definitions
	4.22.4 Language Items
	4.22.5 Summary

	4.23 Set Definition
	4.23.1 Introduction
	4.23.2 Simple Sets
	4.23.3 The Alias Statement: Multiple Names for a Set
	4.23.4 Subsets
	4.23.5 Multi-Dimensional Sets
	4.23.6 Singleton Sets
	4.23.7 The Universal Set: as Set Identifier
	4.23.8 Set and Set Element Referencing
	4.23.9 Set Attributes
	4.23.10 Finding Sets from Data
	4.23.11 Domain Checking
	4.23.12 Implicit Set Definition (or: Domain Defining Symbol Declarations)
	4.23.13 Summary

	4.24 Dynamic Sets
	4.24.1 Introduction
	4.24.2 Assigning Membership to Dynamic Sets
	4.24.3 Set Operations
	4.24.4 Using Dollar Controls with Dynamic Sets

	4.25 Sets as Sequences: Ordered Sets
	4.25.1 Introduction
	4.25.2 Ordered and Unordered Sets
	4.25.3 Sorting a Set
	4.25.4 Ord and Card Operators
	4.25.5 Lag and Lead Operators
	4.25.6 Summary

	4.26 Data Manipulations with Parameters
	4.26.1 Introduction
	4.26.2 The Assignment Statement
	4.26.3 Expressions
	4.26.4 Functions
	4.26.5 Extended Range Arithmetic and Error Handling
	4.26.6 Predefined Symbols
	4.26.7 Summary

	4.27 Data Entry: Parameters, Scalars and Tables
	4.27.1 Introduction
	4.27.2 Scalars
	4.27.3 Parameters
	4.27.4 Tables
	4.27.5 Constant Evaluation
	4.27.6 Data Entry by Assignment
	4.27.7 Acronyms
	4.27.8 Summary

	4.28 Variables
	4.28.1 Introduction
	4.28.2 Variable Declarations
	4.28.3 Variable Attributes
	4.28.4 Variables in Display and Assignment Statements
	4.28.5 Summary

	4.29 Equations
	4.29.1 Introduction
	4.29.2 Declaring Equations
	4.29.3 Defining Equations
	4.29.4 Expressions in Equation Definitions
	4.29.5 Equation Attributes
	4.29.6 Summary and Quick Reference

	4.30 Model and Solve Statements
	4.30.1 Introduction
	4.30.2 The Model Statement
	4.30.3 The Solve Statement
	4.30.4 Programs with Several Solve Statements
	4.30.5 Choosing a Solver
	4.30.6 Making New Solvers Available with GAMS

	4.31 Conditional Expressions, Assignments and Equations
	4.31.1 Introduction
	4.31.2 The Dollar Condition
	4.31.3 Logical Conditions
	4.31.4 Conditional Assignments
	4.31.5 Conditional Indexed Operations
	4.31.6 Conditional Equations
	4.31.7 Filtering Sets

	4.32 The Display Statement
	4.32.1 Introduction
	4.32.2 The Syntax
	4.32.3 Displaying Multi-Dimensional Identifiers: Label Order
	4.32.4 Display Controls
	4.32.5 Conditional Displays

	4.33 Programming Flow Control Features
	4.33.1 Introduction
	4.33.2 The If Statement
	4.33.3 The Loop Statement
	4.33.4 The While Statement
	4.33.5 The For Statement
	4.33.6 The Repeat Statement
	4.33.7 The Break Statement
	4.33.8 The Continue Statement
	4.33.9 The Abort Statement

	4.34 The Option Statement
	4.34.1 Introduction
	4.34.2 List of Options

	4.35 System Attributes
	4.35.1 Introduction
	4.35.2 System Suffixes
	4.35.3 System Data
	4.35.4 Access to Hidden Functions

	4.36 The Grid and Multi-Threading Solve Facility
	4.36.1 Introduction
	4.36.2 The Grid Facility: Basic Concepts
	4.36.3 The Grid Facility: A First Example
	4.36.4 Advanced Use of Grid Features
	4.36.5 Summary of Grid Features
	4.36.6 The Grid Facility: Architecture and Customization
	4.36.7 Multi-Threading

	4.37 Special Features for Mathematical Programs
	4.37.1 Introduction
	4.37.2 Special Mixed Integer Programming (MIP) Features
	4.37.3 Model Scaling - The Scale Option
	4.37.4 Conic Programming in GAMS
	4.37.5 Indicator Constraints

	4.38 GAMS Output
	4.38.1 Introduction
	4.38.2 An Illustrative Model
	4.38.3 Compilation Output
	4.38.4 Execution Output
	4.38.5 Model Generation Output
	4.38.6 The Solution Report
	4.38.7 Post-Solution Output
	4.38.8 Error Reporting
	4.38.9 Customizing the Output File

	4.39 GAMS Log
	4.39.1 Introduction
	4.39.2 Header
	4.39.3 Compilation Log
	4.39.4 Execution Output

	4.40 The GAMS Call and Command Line Parameters
	4.40.1 The Generic GAMS Call
	4.40.2 Double Dash Parameters, Compile-Time Variables and Environment Variables
	4.40.3 Compile-Time Constants
	4.40.4 GAMS Compile Time and Execution Time Phase
	4.40.5 List of Command Line Parameters
	4.40.6 Detailed Descriptions of All Options
	4.40.7 Executing an External Program
	4.40.8 Executing a GAMS Tool

	4.41 Dollar Control Options
	4.41.1 Introduction
	4.41.2 List of Dollar Control Options
	4.41.3 Detailed Description of Dollar Control Options
	4.41.4 Conditional Compilation
	4.41.5 Macros in GAMS
	4.41.6 Compressing and Decompressing Files
	4.41.7 Encrypting Files

	4.42 The Put Writing Facility
	4.42.1 Introduction
	4.42.2 The Syntax
	4.42.3 A First Example
	4.42.4 Put Files
	4.42.5 Put File Pages
	4.42.6 Output Items
	4.42.7 The Put_Utility Statement
	4.42.8 Conditional Put Statements
	4.42.9 Errors Associated with Put Statements
	4.42.10 Creating a Report for the Model MEXSS

	4.43 Solver Usage
	4.43.1 Controlling a Solver via GAMS Options
	4.43.2 The Solver Options File
	4.43.3 Starting Point and Initial Basis
	4.43.4 Trace Features
	4.43.5 Branch-and-Cut-and-Heuristic Facility (BCH)
	4.43.6 Choosing an appropriate Solver

	4.44 The Save and Restart Feature
	4.44.1 Basic Usage
	4.44.2 Use Cases
	4.44.3 Secure Work Files
	4.44.4 Obfuscated Work Files

	4.45 Embedded Code Facility
	4.45.1 Motivation
	4.45.2 Concept
	4.45.3 Simple Example
	4.45.4 Syntax
	4.45.5 Python
	4.45.6 Connect
	4.45.7 GAMS

	4.46 GAMS Connect
	4.46.1 Concept
	4.46.2 Usage
	4.46.3 Connect Agents Summary
	4.46.4 Getting Started
	4.46.5 Connect Agents
	4.46.6 Examples
	4.46.7 Text Substitutions in YAML File
	4.46.8 Use Connect Agents in Custom Python Code
	4.46.9 Command Line Utility gamsconnect

	4.47 Extrinsic Functions
	4.47.1 Introduction
	4.47.2 Using Function Libraries
	4.47.3 Libraries that are included in the GAMS Distribution
	4.47.4 Build Your Own Library
	4.47.5 Extrinsic Functions vs. External Equations

	4.48 External Equations
	4.48.1 Examples in the GAMS Test Library
	4.48.2 Model Interface
	4.48.3 Programming Interface
	4.48.4 Implementation

	4.49 GAMS Return Codes
	4.49.1 List of the Error/Return Codes

	4.50 GAMS Data eXchange (GDX)
	4.50.1 Reading a GDX file
	4.50.2 Writing a GDX file
	4.50.3 Inspecting contents of a GDX file
	4.50.4 General notes on GDX files
	4.50.5 GAMS Data eXchange Tools

	4.51 Extended Mathematical Programming (EMP)
	4.51.1 EMP Annotations: the EMP Info File
	4.51.2 Soft Constraints
	4.51.3 Variational Inequalities (VI)
	4.51.4 Quasi-Variational Inequalities (QVI)
	4.51.5 Equilibrium Problems
	4.51.6 Embedded Complementarity Systems
	4.51.7 Equilibrium Problems with Shared Constraints
	4.51.8 Equilibrium Problems with Shared Variables
	4.51.9 Bilevel Programs
	4.51.10 Disjunctive Programming
	4.51.11 Stochastic Programming
	4.51.12 EMP Keywords

	4.52 Accessing Model Libraries
	4.52.1 Usage

	4.53 Mathematical Programming System for General Equilibrium analysis (MPSGE)
	4.53.1 Introduction to MPSGE
	4.53.2 MPSGE Models in GAMS
	4.53.3 Demand Theory and General Equilibrium: An Intermediate Level Introduction to MPSGE
	4.53.4 Constant Elasticity of Substitution Functions: Some Hints and Useful Formulae

	5 Solver Manuals
	5.1 Model Types
	5.2 Supported Platforms
	5.3 AlphaECP
	5.3.1 Introduction
	5.3.2 GAMS/AlphaECP Output
	5.3.3 Notes about Options
	5.3.4 Summary of AlphaECP Options
	5.3.5 Detailed Descriptions of AlphaECP Options
	5.3.6 FAQ

	5.4 ANTIGONE
	5.4.1 Introduction
	5.4.2 GAMS/ANTIGONE Output
	5.4.3 Summary of ANTIGONE Options
	5.4.4 Detailed Descriptions of ANTIGONE Options
	5.4.5 ANTIGONE Algorithmic Features

	5.5 BARON
	5.5.1 Introduction
	5.5.2 Model requirements
	5.5.3 BARON output
	5.5.4 Some BARON features
	5.5.5 The BARON options

	5.6 CBC
	5.6.1 Usage
	5.6.2 List of Options
	5.6.3 Detailed Options Description

	5.7 CONOPT 3
	5.7.1 Introduction
	5.7.2 Iteration Output
	5.7.3 CONOPT Termination Messages
	5.7.4 Function Evaluation Errors
	5.7.5 The CONOPT Options File
	5.7.6 Hints on Good Model Formulation
	5.7.7 NLP and DNLP Models
	5.7.8 APPENDIX A: Algorithmic Information
	5.7.9 APPENDIX B - Options
	5.7.10 APPENDIX C: References

	5.8 CONOPT
	5.8.1 Introduction
	5.8.2 The CONOPT Algorithm
	5.8.3 Iteration Output
	5.8.4 Termination Messages
	5.8.5 Preprocessor
	5.8.6 Adjust Initial Point
	5.8.7 Phase 0 - Finding an Initial Feasible Solution
	5.8.8 Transition between SLP and SQP
	5.8.9 Bad Iterations
	5.8.10 Saddle Points and Directions of Negative Curvature
	5.8.11 Alternative Sub-Models
	5.8.12 Scaling
	5.8.13 CNS Models
	5.8.14 Multiple Threads
	5.8.15 Loss of Feasibility
	5.8.16 Stalling
	5.8.17 APPENDIX A - Options

	5.9 CONVERT
	5.9.1 Introduction
	5.9.2 How to use CONVERT
	5.9.3 The GAMS Scalar Format
	5.9.4 The OSiL Format
	5.9.5 User-Specified Options

	5.10 COPT
	5.10.1 Usage
	5.10.2 List of COPT Options

	5.11 CPLEX
	5.11.1 Introduction
	5.11.2 How to Run a Model with Cplex
	5.11.3 Overview of Cplex
	5.11.4 GAMS Options
	5.11.5 Summary of CPLEX Options
	5.11.6 Special Notes
	5.11.7 GAMS/Cplex Log File
	5.11.8 Detailed Descriptions of CPLEX Options
	5.11.9 Setting up a GAMS/Cplex-Link license

	5.12 Deterministic Equivalent (DE)
	5.12.1 Introduction
	5.12.2 Random Variables
	5.12.3 Sampling Procedures
	5.12.4 The Expected Value Problem
	5.12.5 What types of models can DE handle?
	5.12.6 Reformulation Techniques
	5.12.7 Logfile
	5.12.8 Summary of DE Options
	5.12.9 Detailed Descriptions of DE Options

	5.13 DECIS
	5.13.1 DECIS
	5.13.2 GAMS/DECIS
	5.13.3 Description of GAMS/DECIS Options
	5.13.4 Appendix A - GAMS/DECIS Illustrative Examples
	5.13.5 Appendix B - Error Messages
	5.13.6 DECIS License and Warranty

	5.14 DICOPT
	5.14.1 Introduction
	5.14.2 Requirements
	5.14.3 How to Run a Model with GAMS/DICOPT
	5.14.4 Overview of DICOPT
	5.14.5 The Algorithm
	5.14.6 Modeling
	5.14.7 GAMS Options
	5.14.8 DICOPT Options
	5.14.9 DICOPT Output
	5.14.10 Special Notes

	5.15 EXAMINER
	5.15.1 Introduction
	5.15.2 Usage
	5.15.3 Options

	5.16 GAMSCHK
	5.16.1 GAMSCHK USER DOCUMENTATION
	5.16.2 General Notes on Package Usage
	5.16.3 Use of the Procedures
	5.16.4 Options File
	5.16.5 Known Bugs
	5.16.6 Tables
	5.16.7 Appendix A: Reserved Names
	5.16.8 Appendix B: GAMSCHK One Page Summary
	5.16.9 Appendix C: Summary of GAMSCHK Options
	5.16.10 GAMSCHK References

	5.17 Gurobi
	5.17.1 Introduction
	5.17.2 How to Run a Model with Gurobi
	5.17.3 Overview of GAMS/Gurobi
	5.17.4 GAMS Options
	5.17.5 Summary of GUROBI Options
	5.17.6 GAMS/Gurobi Log File
	5.17.7 Detailed Descriptions of GUROBI Options
	5.17.8 Setting up a GAMS/Gurobi-Link license

	5.18 Gather-Update-Solve-Scatter (GUSS)
	5.18.1 Introduction
	5.18.2 Design Methodology
	5.18.3 GUSS Options
	5.18.4 Implementation Details
	5.18.5 Applications

	5.19 HiGHS
	5.19.1 Usage
	5.19.2 List of HiGHS Options

	5.20 IPOPT and IPOPTH
	5.20.1 Available linear solvers
	5.20.2 The linear algebra library
	5.20.3 Usage
	5.20.4 Output
	5.20.5 List of IPOPT Options
	5.20.6 Detailed Options Description

	5.21 JAMS and LogMIP
	5.21.1 Introduction
	5.21.2 JAMS: a reformulation tool
	5.21.3 Forming Optimality Conditions: NLP2MCP
	5.21.4 Soft Constraints
	5.21.5 Bilevel Programs
	5.21.6 Variational Inequalities
	5.21.7 Embedded Complementarity Systems
	5.21.8 MOPECs
	5.21.9 Extended Nonlinear Programs
	5.21.10 Disjunctive Programs (LogMIP)
	5.21.11 Empinfo file details

	5.22 KESTREL - Remote Solver Execution on NEOS Servers
	5.22.1 Background
	5.22.2 Using GAMS/KESTREL

	5.23 KNITRO
	5.23.1 Introduction
	5.23.2 Usage
	5.23.3 GAMS Options
	5.23.4 Summary of Knitro Options
	5.23.5 Detailed Descriptions of Knitro Options
	5.23.6 Knitro Termination Test and Optimality
	5.23.7 Knitro Output
	5.23.8 Algorithm Options
	5.23.9 Other Knitro special features

	5.24 LINDO and LINDOGlobal
	5.24.1 Introduction
	5.24.2 Supported nonlinear functions
	5.24.3 Diagnosis of Infeasible or Unbounded Models
	5.24.4 GAMS/LINDO output
	5.24.5 The GAMS/LINDO Options
	5.24.6 Summary of GAMS/Lindo Options
	5.24.7 Detailed Descriptions of GAMS/Lindo Options
	5.24.8 Stochastic Programming (SP) in GAMS/Lindo

	5.25 MILES
	5.25.1 Abstract
	5.25.2 Introduction
	5.25.3 The Newton Algorithm
	5.25.4 Lemke's Method with Implicit Bounds
	5.25.5 The Options File
	5.25.6 Log File Output
	5.25.7 Status File Output
	5.25.8 Termination Messages
	5.25.9 References

	5.26 MINOS and QUADMINOS
	5.26.1 Introduction
	5.26.2 How to Run a Model with GAMS/MINOS
	5.26.3 Overview of GAMS/MINOS
	5.26.4 Modeling Issues
	5.26.5 GAMS Options
	5.26.6 Summary of MINOS Options
	5.26.7 Special Notes
	5.26.8 The GAMS/MINOS Log File
	5.26.9 Detailed Description of MINOS Options
	5.26.10 Exit Conditions

	5.27 MOSEK
	5.27.1 Introduction
	5.27.2 Solver Options
	5.27.3 The MOSEK Log File
	5.27.4 Semidefinite Programming with GAMS/MOSEK (experimental)
	5.27.5 Detailed Descriptions of MOSEK Options
	5.27.6 Setting up a GAMS/MOSEK-Link license

	5.28 NLPEC
	5.28.1 Introduction
	5.28.2 Usage
	5.28.3 Reformulation
	5.28.4 Options
	5.28.5 Open Architecture

	5.29 ODHCPLEX
	5.29.1 Introduction
	5.29.2 Specifying Model Structure
	5.29.3 Heuristic Parameters
	5.29.4 Parallel execution using multiple threads
	5.29.5 Determinism
	5.29.6 Detailed Descriptions of ODHCLPEX Options

	5.30 PATHNLP
	5.30.1 Introduction
	5.30.2 Usage
	5.30.3 Options

	5.31 PATH
	5.31.1 Complementarity
	5.31.2 PATH
	5.31.3 PATH Options
	5.31.4 Advanced Topics
	5.31.5 Case Study: Von Thunen Land Model

	5.32 quadMINOS
	5.33 SBB
	5.33.1 Introduction
	5.33.2 The Branch and Bound Algorithm
	5.33.3 SBB with Pseudo Costs
	5.33.4 The SBB Options
	5.33.5 The SBB Log File
	5.33.6 Comparison of SBB and other MINLP Solvers

	5.34 SCIP
	5.34.1 Usage
	5.34.2 Special Features
	5.34.3 Components
	5.34.4 List of SCIP Options

	5.35 SHOT
	5.35.1 Algorithm
	5.35.2 Usage
	5.35.3 List of SHOT Options

	5.36 SNOPT
	5.36.1 Introduction
	5.36.2 Description of the method
	5.36.3 Starting points and advanced bases
	5.36.4 GAMS Options
	5.36.5 SNOPT Options
	5.36.6 The SNOPT log

	5.37 SoPlex
	5.37.1 Usage
	5.37.2 List of SoPlex Options

	5.38 XPRESS
	5.38.1 Introduction
	5.38.2 Usage
	5.38.3 Summary of XPRESS Options
	5.38.4 Detailed Descriptions of XPRESS Options
	5.38.5 Helpful Hints
	5.38.6 Setting up a GAMS/XPRESS-Link license

	6 Tools Manuals
	6.1 Tools Category
	6.1.1 GAMS Integrated Development Environments
	6.1.2 GAMS Tools Library
	6.1.3 Data Exchange
	6.1.4 GDX Service
	6.1.5 Data Transformation
	6.1.6 Other Tools

	6.2 List of Tools
	6.3 Supported Platforms
	6.3.1 LibInclude Tools Library

	6.4 ASK
	6.4.1 Usage
	6.4.2 Calling ASK utility from GAMS
	6.4.3 Radio Button
	6.4.4 Combo Box
	6.4.5 List and Checklist Box
	6.4.6 File Open Dialog Box

	6.5 Cholesky
	6.5.1 Usage
	6.5.2 Examples

	6.6 CSV2GDX
	6.6.1 Usage
	6.6.2 Options
	6.6.3 Advances and limitations
	6.6.4 Getting Started
	6.6.5 Additional Examples for extended Use

	6.7 Eigenvalue
	6.7.1 Usage
	6.7.2 Example

	6.8 Eigenvector
	6.8.1 Usage
	6.8.2 Example

	6.9 ENDECRYPT
	6.9.1 Usage

	6.10 ExcelDump
	6.10.1 Usage
	6.10.2 example

	6.11 ExcelMerge
	6.11.1 Usage
	6.11.2 Example

	6.12 ExcelTalk
	6.12.1 Usage
	6.12.2 Example: Save and close an Excel workbook

	6.13 FINDTHISGAMS
	6.13.1 Introduction
	6.13.2 Usage
	6.13.3 Registry Keys

	6.14 GAMS Studio
	6.14.1 Motivation
	6.14.2 Central Widgets
	6.14.3 Further Studio Widgets
	6.14.4 Debugger
	6.14.5 MIRO
	6.14.6 NEOS
	6.14.7 GAMS Engine
	6.14.8 Dialogs and Actions
	6.14.9 Terminal
	6.14.10 Command Line Options
	6.14.11 General Shortcuts
	6.14.12 Usage Hints
	6.14.13 System Requirements
	6.14.14 Comparing GAMS Studio and GAMSIDE

	6.15 GDX2ACCESS
	6.15.1 Overview
	6.15.2 Usage
	6.15.3 Options
	6.15.4 Examples
	6.15.5 References

	6.16 GDX2SQLITE
	6.16.1 Introduction
	6.16.2 Usage
	6.16.3 How data is stored
	6.16.4 SQLite Browsers and compatible software

	6.17 GDX2VEDA
	6.17.1 Usage
	6.17.2 Examples
	6.17.3 Detailed Help Message

	6.18 GDX2XLS
	6.18.1 Overview
	6.18.2 AutoFilter
	6.18.3 Options
	6.18.4 Examples

	6.19 GDXCOPY
	6.19.1 Usage
	6.19.2 Example

	6.20 GDXDIFF
	6.20.1 Usage
	6.20.2 Options
	6.20.3 Examples

	6.21 GDXDUMP
	6.21.1 Usage
	6.21.2 Options
	6.21.3 Examples
	6.21.4 Adding double Quotes to an user defined Header when writing to CSV

	6.22 GDXEncoding
	6.22.1 Usage
	6.22.2 Example

	6.23 GDXMERGE
	6.23.1 Usage
	6.23.2 Options
	6.23.3 Examples

	6.24 GDXMRW
	6.24.1 Introduction
	6.24.2 Data Transfer
	6.24.3 Extended use
	6.24.4 Acknowledgements
	6.24.5 APPENDIX A - Configuring GDXMRW
	6.24.6 APPENDIX B - Utility functions: gdxWhos and gdxInfo
	6.24.7 APPENDIX C - Calling GAMS model from MATLAB

	6.25 GDXRename
	6.25.1 Usage
	6.25.2 Example

	6.26 GDXRRW
	6.27 GDXVIEWER
	6.27.1 Overview
	6.27.2 Requirements
	6.27.3 Creating GDX files
	6.27.4 Viewing GDX files
	6.27.5 Exporting an identifier
	6.27.6 Exporting to a Text File
	6.27.7 Exporting to a CSV files
	6.27.8 Exporting to an XLS file
	6.27.9 Exporting to an XLS Pivot Table
	6.27.10 Exporting to a GAMS Include Files
	6.27.11 Exporting to an Access Tables
	6.27.12 Exporting to an SQL Table
	6.27.13 Exporting to MS SQL Server
	6.27.14 Exporting to SQL Insert script
	6.27.15 Exporting to SQL Update script
	6.27.16 Exporting HTML
	6.27.17 Exporting XML
	6.27.18 Exporting fields
	6.27.19 Special Values
	6.27.20 Plotting Data
	6.27.21 Cube View
	6.27.22 Exporting cubes
	6.27.23 Commandline operation
	6.27.24 Notes

	6.28 GDXXRW
	6.28.1 Usage
	6.28.2 Options
	6.28.3 Return Codes
	6.28.4 Warning
	6.28.5 Reading from Spreadsheet - Examples:
	6.28.6 Writing to Spreadsheet - Examples:
	6.28.7 Reading and Writing, Extended Use - Examples:
	6.28.8 Changes in the Set Values Parameter

	6.29 Invert
	6.29.1 Usage
	6.29.2 Example

	6.30 MDB2GMS
	6.30.1 Overview
	6.30.2 Requirements
	6.30.3 Batch Usage
	6.30.4 Multi-Query Batch Usage
	6.30.5 Interactive Usage
	6.30.6 Strategies
	6.30.7 Command Files
	6.30.8 Notes

	6.31 MessageReceiverWindow
	6.31.1 Introduction
	6.31.2 Usage
	6.31.3 Special Commands
	6.31.4 Usage With put_utility
	6.31.5 Usage With Python

	6.32 MODEL2TEX
	6.32.1 Introduction
	6.32.2 Usage
	6.32.3 Options
	6.32.4 Using a JSON style file
	6.32.5 Example

	6.33 MPS2GMS
	6.33.1 Usage

	6.34 MSAppAvail
	6.34.1 Usage
	6.34.2 Example: Checking whether MS Access is available

	6.35 Ordinary Least Squares (OLS)
	6.35.1 Usage
	6.35.2 Example

	6.36 GAMS Posix Utilities
	6.37 Rank
	6.37.1 Usage
	6.37.2 Example

	6.38 SCENRED
	6.38.1 Release Notes
	6.38.2 Introduction
	6.38.3 Scenario Reduction Algorithms
	6.38.4 Using GAMS/SCENRED
	6.38.5 The SCENRED Input File
	6.38.6 SCENRED Options and the Option File
	6.38.7 The SCENRED Output File
	6.38.8 Diagnostic Check of Scenario Trees
	6.38.9 SCENRED Errors and Error Numbers
	6.38.10 SCENRED Warnings

	6.39 SCENRED2
	6.39.1 Introduction
	6.39.2 Using Gams/Scenred2
	6.39.3 Scenario Reduction
	6.39.4 Scenario Tree Construction
	6.39.5 Visualization
	6.39.6 Command Line Interface
	6.39.7 A Simplified Interface to Scenred2: $libinclude runscenred2

	6.40 ShellExecute
	6.40.1 Usage
	6.40.2 Example: Opening MS Access database

	6.41 SQL2GMS
	6.41.1 Overview
	6.41.2 Requirements
	6.41.3 Batch Usage
	6.41.4 Multi-Query Batch Usage
	6.41.5 Interactive Usage
	6.41.6 Connection Strings
	6.41.7 ODBC Examples
	6.41.8 Strategies
	6.41.9 Parameter Files
	6.41.10 Notes

	6.42 XLS2GMS
	6.42.1 Overview
	6.42.2 Requirements
	6.42.3 Converting spreadsheet data to GAMS data
	6.42.4 Importing sets
	6.42.5 Importing sets and tables
	6.42.6 Multidimensional parameters
	6.42.7 Interactive use
	6.42.8 Options
	6.42.9 Batch use
	6.42.10 Command-line Arguments
	6.42.11 $CALL command
	6.42.12 Command files
	6.42.13 Multiple-area ranges and post-processing

	6.43 XLSDUMP
	6.43.1 Usage
	6.43.2 Example

	6.44 Multi-Objective Optimization (MOO)
	6.44.1 Introduction
	6.44.2 Usage
	6.44.3 Methods
	6.44.4 Examples

	6.45 Model Instances (pyEmbMI)
	6.46 Sorting (rank)
	6.46.1 Examples

	7 Application Programming Interfaces
	7.1 Object-oriented APIs
	7.1.1 Reference Manuals
	7.1.2 Tutorials
	7.1.3 Examples
	7.1.4 Release Notes
	7.1.5 Supported Platforms

	7.2 Expert-Level APIs
	7.2.1 Supported Platforms

	7.3 C++ API
	7.4 Java API
	7.5 Python API
	7.5.1 Migrate import statements
	7.5.2 GAMS Python API Structure
	7.5.3 Magic (Jupyter Notebooks)
	7.5.4 Transfer
	7.5.5 Getting Started

	7.6 Matlab API
	7.6.1 Control

	7.7 R API
	7.7.1 GAMS Transfer R

	7.8 Tutorial
	7.8.1 Getting Started
	7.8.2 Important Classes of the API
	7.8.3 How to use API

	7.9 Tutorial
	7.9.1 Getting Started
	7.9.2 Important Classes of the API
	7.9.3 How to use API
	7.9.4 How to use the pre configured example projects

	7.10 Tutorial
	7.10.1 Getting started
	7.10.2 Important Classes of the API
	7.10.3 How to use API

	7.11 Control
	7.11.1 Recommended Import
	7.11.2 Important Classes of the API
	7.11.3 How to use the API

	7.12 Tutorial
	7.12.1 Choose the GAMS system
	7.12.2 Export data to GDX
	7.12.3 Import data from GDX
	7.12.4 Run a Job from file
	7.12.5 Retrieve a solution from an output database
	7.12.6 Specify solver using Options
	7.12.7 Run Job with solver option file and capture log
	7.12.8 Use include files
	7.12.9 Set non-default working directory
	7.12.10 Read data from string and export to GDX
	7.12.11 Run Job using data from GDX
	7.12.12 Run Job using implicit database communication
	7.12.13 Define data using Matlab data structures
	7.12.14 Prepare Database from Matlab data structures
	7.12.15 Initialize Checkpoint by running Job
	7.12.16 Initialize Job from Checkpoint
	7.12.17 Create ModelInstance from Checkpoint
	7.12.18 Modify parameter of ModelInstance using Modifier
	7.12.19 Modify variable of ModelInstance using Modifier
	7.12.20 Create and use save/restart file

	7.13 Release Notes
	7.13.1 44.1.0 (July 2023)
	7.13.2 43.1.0 (April 2023)
	7.13.3 39.1.0 (April 2022)
	7.13.4 35.1.0 (April 2021)
	7.13.5 32.1.0 (July 2020)
	7.13.6 29.1.0 (November 2019)
	7.13.7 28.2.0 (August 2019)
	7.13.8 28.1.0 (August 2019)
	7.13.9 25.1.1 (May 2018)
	7.13.10 25.0.1 (January 2018)
	7.13.11 24.8.1 (December 2016)
	7.13.12 24.7.4 (September 2016)
	7.13.13 24.7.1 (March 2016)
	7.13.14 24.5.1 (August 2015)
	7.13.15 24.4.2 (March 2015)
	7.13.16 24.4.1 (December 2014)
	7.13.17 24.3.3 (September 2014)
	7.13.18 24.3.2 (August 2014)
	7.13.19 24.3.1 (July 2014)
	7.13.20 24.2.3 (May 2014)
	7.13.21 24.2.2 (March 2014)
	7.13.22 24.2.1 (December 2013)
	7.13.23 24.1.3 (July 2013)
	7.13.24 24.1.1 (May 2013)
	7.13.25 24.0.2 (February 2013)
	7.13.26 24.0.1 (December 2012)

	7.14 GAMS Environment Object Options
	7.15 GAMS Modeling Object Design
	7.15.1 Introduction
	7.15.2 Basic organization
	7.15.3 Solver Access to GMO
	7.15.4 Modeler Access to GMO
	7.15.5 Updating a GMO instance

	8 Appendix
	8.1 Glossary
	8.2 Third-Party Codes

	Index
	Bibliography

