File : fnset_xyz.inc used by : fnncpf.gms [html] fnncpf2.gms [html] fnncpcm.gms [html] fnncpcm2.gms [html] fnncpvus.gms [html] fnncpvup.gms [html] fnncpvux.gms [html]
$onText
How is relative accuracy defined? Given:
1. a point x,
2. the computed value f(x), and
3. the known value fbar,
we can compute the relative accuracy of f vis-a-vis fbar in two ways:
1. |f-fbar| <= reps * |fbar|
2. |f-fbar| <= reps * max(1,|x|)
The first case is the most common, but for some functions
the second is more appropriate (e.g. sin(x)).
We can also pass a test if the absolute accuracy is within some
tolerance aeps:
1. |f-fbar| <= aeps
Contributor: Steven Dirkse, October 2004
$offText
set V / x, y, z
f, f_, f_a, f_r
fx, fx_, fx_a, fx_r
fy, fy_, fy_a, fy_r
fz, fz_, fz_a, fz_r
fxx, fxx_, fxx_a, fxx_r
fxy, fxy_, fxy_a, fxy_r
fxz, fxz_, fxz_a, fxz_r
fyx, fyx_, fyx_a, fyx_r
fyy, fyy_, fyy_a, fyy_r
fyz, fyz_, fyz_a, fyz_r
fzx, fzx_, fzx_a, fzx_r
fzy, fzy_, fzy_a, fzy_r
fzz, fzz_, fzz_a, fzz_r
rc, rc_, rc_e
ec, ec_, ec_e
/;
scalar aeps 'absolute error tolerance';
scalar aeps0 'absolute error tolerance, function';
scalar aeps1 'absolute error tolerance, first derivative';
scalar aeps2 'absolute error tolerance, second derivative';
scalar reps 'relative error tolerance';
scalar reps0 'relative error tolerance, function';
scalar reps1 'relative error tolerance, first derivative';
scalar reps2 'relative error tolerance, second derivative';
scalar relToInput 'reps is relative to input (not output) magnitude';
set T;
parameter data(T,V), tmp(T);