Description
An affine VI is to find x in X: F(x) (y - x) >= 0, for all y in X Here F is an affine (linear) function and X is polyhedral: e.g. X = { x >= 0 | Ax >= b } This can be reformulated as an MCP: 0 <= F(x) - A'u perpendicular to x >= 0 0 <= Ax - b perpendicular to u >= 0 Contributor: Michael Ferris, February 2010
Small Model of Type : VI
Category : GAMS EMP library
Main file : affinevi.gms
$title Affine Variational Inequality (AFFINEVI,SEQ=48)
$onText
An affine VI is to find x in X:
F(x) (y - x) >= 0, for all y in X
Here F is an affine (linear) function and X is polyhedral:
e.g. X = { x >= 0 | Ax >= b }
This can be reformulated as an MCP:
0 <= F(x) - A'u perpendicular to x >= 0
0 <= Ax - b perpendicular to u >= 0
Contributor: Michael Ferris, February 2010
$offText
sets
I / i1 /
J / j1 * j2 /
;
alias(J,K);
table A(I,J)
j1 j2
i1 -1 -1
;
parameter b(I) /
i1 -1
/;
table M(J,J)
j1 j2
j1 1
j2 1 1
;
parameter q(J) /
j1 2
j2 -3
/;
positive variables
x(J) 'primal vars, perp to f(J)'
;
equations
F(J)
g(I)
;
F(J).. sum(K, M(J,K)* x(K)) + q(J) =N= 0 ;
g(I).. sum {j, A(I,J)*x(J)} =g= b(I) ;
model affVI / F, g/;
file fx /"%emp.info%"/;
putclose fx 'vi F x g';
solve affVI using emp;