batchsp.gms : Design of batch chemical plants with stochastic demand and price

Description

Subrahmanyam, Pekny, and Reklaitis describe the design of a batch
type chemical plant to produce products for which we do not know the
future demand.

We present here only half of the problem. We must decide how many
plants to build, of what type, when to build them, and how to operate
them.


Small Model of Type : SP


Category : GAMS EMP library


Main file : batchsp.gms

$title Design of batch chemical plants with stochastic demand and price (BATCHSP,SEQ=89)

$onText
Subrahmanyam, Pekny, and Reklaitis describe the design of a batch
type chemical plant to produce products for which we do not know the
future demand.

We present here only half of the problem. We must decide how many
plants to build, of what type, when to build them, and how to operate
them.


S. Subrahmanyam, J. F. Pekny, and G. V. Reklaitis. Design of batch
chemical plants under market uncertainty. Ind. Eng. Chem. Res., 33,
2688-2701, 1994.

Ariyawansa, K A, and Felt, A J, On a New Collection of Stochastic
Linear Programming Test Problems, INFORMS Journal on Computing 16(3),
291-299, 2004.
$offText


Sets
   i           tasks                  / i1*i4 /
   j           equipment types        / j1*j3 /
   t           time periods           / t1*t2 /
   s           resources              / s1*s7 /
   sb(s)       resources for purchase / s1,s2 /
   ss(s)       resources for sale     / s4,s7 /
   ijmap(i,j)  tasks that can be performed by equipment types j;

Alias(t,tt);

Parameter
   h(t)      length of time period t in days / t1 80, t2 80 /
   p(i,j)    processing time for task i with equipment type j
   m(i,j)    capacity of equipment type j to perform task i (measured in units of reaction per batch)
   q_s(ss,t) demand for resource s in time period t
   q_b(sb,t) maximum purchase of resource s in time period t
   vs(ss,t)  price for sold resources ss in time period t
   vb(sb,t)  price for bought resources sb in time period t
   budget(t) total operating budget per plant in time period t / #t 100 /
   cc(i,j,t) operating expense for using equipment type j for task i in time period t / #i.#j.#t 0 /;

Table ijData(i,j,*)
           procTime  capacity
   i1.j1       4        100
   i1.j2       4        200
   i2.j3       4        150
   i3.j3       4        150
   i4.j1       4        100
   i4.j2       4        200;

p(i,j) = ijData(i,j,'procTime');
m(i,j) = ijData(i,j,'capacity');
ijmap(i,j)$p(i,j) = yes;

Table ssData(ss,t,*)
        (t1*t2).demand t1.price  t2.price
   s4    150           58        59
   s7    200           80        81;

q_s(ss,t) = ssData(ss,t,'demand');
vs(ss,t) = ssData(ss,t,'price');

Table sbData(sb,t,*)
        (t1*t2).purchase t1.price  t2.price
   s1    200             23        24
   s2    250             25        26;

q_b(sb,t) = sbData(sb,t,'purchase');
vb(sb,t) = sbData(sb,t,'price');

Table c(j,t) capital investment cost for equipment type j at stage t
         t1      t2
   j1   2500    2600
   j2   3000    3100
   j3   2800    2900;

Table f(s,i) input-output coefficients
        i1      i2      i3      i4
   s1   -1
   s2    1              -1
   s3    1      -1
   s4            1
   s5            1      -1
   s6                    1      -1
   s7                            1;

Variables
   N(j,t)        new units of type j
   TOTALN(j,t)   cumulative number of units of type j
   Y(i,j,t)      number of times task i is performed by equipment type j during time period t
   A(s,t)        mass of resource s in inventory at the end of time period t
   B(i,j,t)      amount of task i performed on type j in time period t (measured in units of reaction)
   QS(s,t)       mass of resource s sold in time period t
   QS0(s,t)      mass of resource s sold in time period t below demand
   QSPLUS(s,t)   mass of resource s sold in time period t above demand
   QB(s,t)       mass of resource s bought in time period t
   Z             objective function value
   ;

Positive variables A,QB,QS,QS0,QSPLUS,B;
Integer variable n,totalN,y;

 Equations
   obj                   objective function
   procTime(j,t)         processing time
   opExp(t)              operating expense
   cumulUnits(j,t)       cumulative number of units
   matBal(s,t)           material balance
   tasklim(i,j,t)        task limit
   sales(ss,t)           sales
   salesLim(ss,t)        sales limit;

obj..                    Z =e=   sum((t,ss), vs(ss,t)*QS0(ss,t))
                               - sum((t,sb), vb(sb,t)*QB(sb,t))
                               - sum((j,t), N(j,t)*c(j,t))
                               - sum((i,j,t), cc(i,j,t)*Y(i,j,t));

procTime(j,t)..          sum(ijmap(i,j), p(i,j)*Y(i,j,t)) =l= h(t)*TOTALN(j,t) ;

opExp(t)..               sum(ijmap(i,j), cc(i,j,t)*Y(i,j,t)) =l= budget(t)*sum(j,TOTALN(j,t)) ;

cumulUnits(j,t)..        TOTALN(j,t) =e=  sum(tt$(ord(tt)<=ord(t)), N(j,tt)) ;

matBal(s,t)..            A(s,t) =e= A(s,t-1) + sum(ijmap(i,j), f(s,i)*B(i,j,t)) - QS(s,t)$ss(s) + QB(s,t)$sb(s) ;

taskLim(ijmap(i,j),t)..  B(i,j,t) =l= m(i,j)*Y(i,j,t) ;

sales(ss,t)..            QS(ss,t) =e= QS0(ss,t) + QSPLUS(ss,t) ;

salesLim(ss,t)..         QS0(ss,t) =l= q_s(ss,t) ;

model chem /all/;

A.up(s,t) = 400;
QB.up(sb,t) = q_b(sb,t);

Solve chem using mip maximizing Z ;

file emp / '%emp.info%' /; put emp '* problem %gams.i%'/;
$onPut
jrandvar q_s('s4','t1') q_s('s7','t1') vs('s4','t1') vs('s7','t1')
         0.4   0   0 51 70
         0.6 150 200 58 80
jrandvar q_s('s4','t2') q_s('s7','t2') vs('s4','t2') vs('s7','t2')
         0.4   0   0 50 71
         0.6 150 200 59 81
stage 2 q_s('s4','t1') q_s('s7','t1') vs('s4','t1') vs('s7','t1')
stage 3 q_s('s4','t2') q_s('s7','t2') vs('s4','t2') vs('s7','t2')
$offPut
loop(t,
   put / 'stage ' (ord(t)+1):0:0;
   if (ord(t)<card(t), loop(j, put N(j,t+1), TOTALN(j,t+1), cumulUnits(j,t+1)));
   loop(sb, put QB(sb,t));
   loop(ss, put QS(ss,t), QS0(ss,t), QSPLUS(ss,t) sales(ss,t) salesLim(ss,t));
   loop(s, put A(s,t) matBal(s,t));
   loop(ijmap(i,j), put Y(i,j,t) B(i,j,t) taskLim(i,j,t) );
   loop(j, put procTime(j,t) );
   put opexp(t);
);
putclose emp;

Set scen Scenarios / sc1*sc4 /;
Parameter
   sc_q_s(scen,ss,t)       demand by scenario
   sc_vs(scen,ss,t)        price for sellable resources by scenario
   sc_Y(scen,i,j,t)        number of times task i is performed by equipment type j during time period t by scenario
   sc_N(scen,j,t)          new units of type j by scenario
   sc_QS0(scen,s,t)        mass of resource s sold in time period t below demand by scenario
   sc_QSPLUS(scen,s,t)     mass of resource s sold in time period t below demand by scenario ;

Set dict / scen         .scenario.''
           q_s          .randvar.       sc_q_s
           vs           .randvar.       sc_vs
           Y            .level.         sc_Y
           N            .level.         sc_N
           QS0          .level.         sc_QS0
           QSPLUS       .level.         sc_QSPLUS /;

solve chem max Z use emp scenario dict;

display sc_q_s, sc_vs, sc_Y, sc_N, sc_QS0, sc_QSPLUS;