flds915.gms : Princeton Bilevel Optimization Example 9.1.5

Description

Test problem 9.2.6 in Handbook of Test Problems in Local and Global Optimization
Test problem 9.1.5 on http://titan.princeton.edu/TestProblems/chapter9.html

References:

Floudas, C A, Pardalos, P M, Adjiman, C S, Esposito, W R, Gumus, Z H, Harding,
S T, Klepeis, J L, Meyer, C A, and Schweiger, C A, Handbook of Test Problems in
Local and Global Optimization. Kluwer Academic Publishers, 1999.

Bard J F, Some properties of the bilevel programming problem, Journal of
Optimization Theory and Applications, v.68 n.2, p.371-378, Feb. 1991

Contributor: Alex Meeraus and Jan-H. Jagla, December 2009


Small Model of Type : BP


Category : GAMS EMP library


Main file : flds915.gms

$title Princeton Bilevel Optimization Example 9.1.5 (FLDS915,SEQ=31)

$onText

  Test problem 9.2.6 in Handbook of Test Problems in Local and Global Optimization
  Test problem 9.1.5 on http://titan.princeton.edu/TestProblems/chapter9.html

References:

Floudas, C A, Pardalos, P M, Adjiman, C S, Esposito, W R, Gumus, Z H, Harding,
S T, Klepeis, J L, Meyer, C A, and Schweiger, C A, Handbook of Test Problems in
Local and Global Optimization. Kluwer Academic Publishers, 1999.

Bard J F, Some properties of the bilevel programming problem, Journal of
Optimization Theory and Applications, v.68 n.2, p.371-378, Feb. 1991

Contributor: Alex Meeraus and Jan-H. Jagla, December 2009

$offText

*Solution of problem 9.1.5 on the web
scalar  x_l /    1 /
       y1_l /    0 /
       y2_l /    0 /
        tol / 1e-6 /;

variables z, z_in; positive variable x, y1, y2;
equations ob, ob_in, c1, c2, c3;

ob..      - x + 10*y1 - y2 =e= z;

ob_in ..      -    y1 - y2 =e= z_in;
c1..        x +    y1      =l= 1;
c2..        x         + y2 =l= 1;
c3..        y1        + y2 =l= 1;


model bilevel / all /;

$echo bilevel x min z_in y1 y2 ob_in c1 c2 c3 > "%emp.info%"

*Start from reported solution
x.l  = x_l ;
y1.l = y1_l;
y2.l = y2_l;

solve bilevel using EMP minimizing z;

abort$(   (abs( x.l -  x_l) > tol)
       or (abs(y1.l - y1_l) > tol)
       or (abs(y2.l - y2_l) > tol) ) 'Deviated from reported solution';