Description
Test problem 9.3.8 in Handbook of Test Problems in Local and Global Optimization Test problem 9.2.7 on http://titan.princeton.edu/TestProblems/chapter9.html References: Floudas, C A, Pardalos, P M, Adjiman, C S, Esposito, W R, Gumus, Z H, Harding, S T, Klepeis, J L, Meyer, C A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization. Kluwer Academic Publishers, 1999 Visweswaran, V., C. Floudas, M. Ierapetritou, and E. Pistikopoulos, A Decomposition Based Global Optimization Approach for Solving Bilevel Linear and Nonlinear Quadratic Programs. In Floudas and Pardalos (eds.), State of the Art in Global Optimization: Computational Methods and Applications. Kluwer Academic Publishers, 1996. Contributor: Jan-H. Jagla, January 2010
Small Model of Type : BP
Category : GAMS EMP library
Main file : flds927.gms
$title Princeton Bilevel Optimization Example 9.2.7 (FLDS927,SEQ=42)
$onText
Test problem 9.3.8 in Handbook of Test Problems in Local and Global Optimization
Test problem 9.2.7 on http://titan.princeton.edu/TestProblems/chapter9.html
References:
Floudas, C A, Pardalos, P M, Adjiman, C S, Esposito, W R, Gumus, Z H, Harding,
S T, Klepeis, J L, Meyer, C A, and Schweiger, C A, Handbook of Test Problems in
Local and Global Optimization. Kluwer Academic Publishers, 1999
Visweswaran, V., C. Floudas, M. Ierapetritou, and E. Pistikopoulos, A
Decomposition Based Global Optimization Approach for Solving Bilevel Linear and
Nonlinear Quadratic Programs. In Floudas and Pardalos (eds.), State of the Art
in Global Optimization: Computational Methods and Applications. Kluwer Academic
Publishers, 1996.
Contributor: Jan-H. Jagla, January 2010
$offText
*Solution of problem 9.2.7 on the web
scalar x_l / 1 /
y_l / 0 /
tol / 1e-6 /;
variables z, z_in, y; positive variable x;
equations ob, c0, c1, c2, c3, c4;
ob.. sqr(x - 5) + sqr(2*y + 1) =e= z;
c0.. sqr(y-1) - 1.5*x*y =e= z_in;
c1.. -3*x + y =l= -3;
c2.. x - 0.5*y =l= 4;
c3.. x + y =l= 7;
c4.. - y =l= 0;
model bilevel / all /;
$echo bilevel x min z_in y c0 c1 c2 c3 c4 > "%emp.info%"
*Start from reported solution
x.l = x_l;
y.l = y_l;
solve bilevel using EMP minimizing z;
abort$( (abs(x.l - x_l) > tol)
or (abs(y.l - y_l) > tol) ) 'Deviated from reported solution';