hark-monop.gms : SPE model from Harker - monopolist and competetive versions

Description

A spatial price equilibrium model is used to demonstrate different
ways of modeling market behavior.  In this version, we use EMP
to model competetive and monopolistic markets.

Harker, P T, Alternative Models of Spatial Competition. Operations
Research 34, 3 (1986), 410-425.

Harker model from GAMSLIB.

Contributor: Steven Dirkse, June 2011


Small Model of Type : EQUIL


Category : GAMS EMP library


Main file : hark-monop.gms   includes :  hark-data.inc [html]

$title SPE model from Harker - monopolist and competetive versions (HARK-MONOP,SEQ=64)

$onText

A spatial price equilibrium model is used to demonstrate different
ways of modeling market behavior.  In this version, we use EMP
to model competetive and monopolistic markets.

Harker, P T, Alternative Models of Spatial Competition. Operations
Research 34, 3 (1986), 410-425.

Harker model from GAMSLIB.

Contributor: Steven Dirkse, June 2011
$offText

$eolCom //

$include hark-data.inc

positive variables
  t(n,n)   transport quantity
  d(n)     demand quantity
  s(n)     supply quantity
  ;
variables
  obj      objective value
  price(n) demand price
  tc(n,n)  per unit transportation cost
  ;
equations  objDef, flowBal(n), priceDef(n), tcDef(n,n);

objDef..  obj =e=  sum{L, price(L) * d(L)}
                 - sum{L, alpha(L) * s(L) + beta(L)*sqr(s(L))}
                 - sum{arc(i,j), tc(i,j)*t(i,j)};

flowBal(n)..  s(n)$L(n) + sum{i$arc(i,n), t(i,n)} =g=
              d(n)$L(n) + sum{j$arc(n,j), t(n,j)};

priceDef(L)..  price(L) =e= rho(L) - eta(L)*d(L);

tcDef(arc(i,j))..  tc(i,j) =e= kappa(i,j) + nu(i,j)*sqr(t(i,j));

model hark  / objDef, flowBal, priceDef, tcDef /;

set dummy 'order reports like the paper' / cspe2, cspeE, monop2, monop1, monop1t /;
parameters rep1 transport summary
           rep2 supply demand and price summary
           tab6 table VI from page 422 Harker paper;

s.l(L) = 25; d.l(L)=25;

solve hark maximizing obj using nlp;
repMonop(monop1t);

file myinfo / '%emp.info%' /;

// full monopoly power - plain-vanilla NLP so empty info file
putclose myinfo '* monop1: no dual equations';
solve hark maximizing obj using emp;
repMonop(monop1);


// monopoly in the demand market but not in transportation, so we use dualEqu
// to force monopolist to act as a price-taker in the transportation market
put myinfo '* monop2: act as a price taker by assuming tc is fixed';
putclose myinfo / 'dualEqu tcDef tc';
solve hark maximizing obj using emp;
repMonop(monop2);

// Classic Spatial Price Equilibrium (CSPE) assumes no monopoly power,
// neither in the demand market nor in transportation, so use dualEqu for both
put myinfo '* CSPE2';
put myinfo / 'dualEqu';
put / '  tcDef tc';
put / '  priceDef price';
putclose;
solve hark maximizing obj using emp;
repMonop(cspe2);

put myinfo '* CSPE2';
put myinfo / 'equilibrium';
put / 'max obj t d s objDef flowbal';
put / 'vi';
put / '  tcDef tc';
put / '  priceDef price';
putclose;
solve hark using emp;
repMonop(cspeE);

display rep1, rep2, tab6;