Description
Regret.gms: Regret models. Consiglio, Nielsen and Zenios. PRACTICAL FINANCIAL OPTIMIZATION: A Library of GAMS Models, Section 5.4 Last modified: Apr 2008.
Category : GAMS FIN library
Mainfile : Regret.gms includes : Corporate.inc WorldIndices.inc Index.inc
$title Regret models
* Regret.gms: Regret models.
* Consiglio, Nielsen and Zenios.
* PRACTICAL FINANCIAL OPTIMIZATION: A Library of GAMS Models, Section 5.4
* Last modified: Apr 2008.
* Uncomment one of the following lines to include a data file
*$include "Corporate.inc"
$include "WorldIndices.inc"
SCALARS
Budget Nominal investment budget
EpsRegret Tolerance allowed for epsilon regret models
MU_TARGET Target portfolio return
MU_STEP Target return step
MIN_MU Minimum return in universe
MAX_MU Maximum return in universe
RISK_TARGET Bound on expected regret (risk);
Budget = 100.0;
PARAMETERS
pr(l) Scenario probability
P(i,l) Final values
EP(i) Expected final values;
pr(l) = 1.0 / CARD(l);
P(i,l) = 1 + AssetReturns ( i, l );
EP(i) = SUM(l, pr(l) * P(i,l));
MIN_MU = SMIN(i, EP(i));
MAX_MU = SMAX(i, EP(i));
* Assume we want 20 portfolios in the frontier
MU_STEP = (MAX_MU - MIN_MU) / 20;
PARAMETER
TargetIndex(l) Target index returns;
* To test the model with a market index, uncomment the following two lines.
* Note that, this index can be used only with WorldIndexes.inc.
*$include "Index.inc";
*TargetIndex(l) = Index(l);
POSITIVE VARIABLES
x(i) Holdings of assets in monetary units (not proportions)
Regrets(l) Measures of the negative deviations or regrets;
VARIABLES
z Objective function value;
EQUATIONS
BudgetCon Equation defining the budget contraint
ReturnCon Equation defining the portfolio return constraint
ExpRegretCon Equation defining the expected regret allowed
ObjDefRegret Objective function definition for regret minimization
ObjDefReturn Objective function definition for return mazimization
RegretCon(l) Equations defining the regret constraints
EpsRegretCon(l) Equations defining the regret constraints with tolerance threshold;
BudgetCon .. SUM(i, x(i)) =E= Budget;
ReturnCon .. SUM(i, EP(i) * x(i)) =G= MU_TARGET * Budget;
ExpRegretCon .. SUM(l, pr(l) * Regrets(l)) =L= RISK_TARGET;
RegretCon(l) .. Regrets(l) =G= TargetIndex(l) * Budget - SUM(i, P(i,l) * x(i));
EpsRegretCon(l) .. Regrets(l) =G= (TargetIndex(l) - EpsRegret) * Budget - SUM(i, P(i,l) * x(i));
ObjDefRegret .. z =E= SUM(l, pr(l) * Regrets(l));
ObjDefReturn .. z =E= SUM(i, EP(i) * x(i));
MODEL MinRegret 'PFO Model 5.4.1' /BudgetCon, ReturnCon, RegretCon, ObjDefRegret/;
MODEL MaxReturn /BudgetCon, ExpRegretCon, EpsRegretCon, ObjDefReturn/;
FILE FrontierHandle /"RegretFrontiers.csv"/;
FrontierHandle.pc = 5;
FrontierHandle.pw = 1048;
PUT FrontierHandle;
PUT "Status","Regret","Mean";
LOOP (i, PUT i.tl);
PUT "","Status","Regret","Mean"/;
* Comment the following line if you want to
* track the market index.
TargetIndex(l) = 1.01;
EpsRegret = 0.0;
* The two models are equivalent. Indeed, they yield the
* same efficient frontier.
FOR (MU_TARGET = MIN_MU TO MAX_MU BY MU_STEP,
SOLVE MinRegret MINIMIZING z USING LP;
PUT MinRegret.MODELSTAT:0:0,z.L:6:5,(MU_TARGET * Budget):8:3;
LOOP (i, PUT x.L(i):6:2);
RISK_TARGET = z.L;
PUT "";
SOLVE MaxReturn MAXIMIZING z USING LP;
PUT MaxReturn.MODELSTAT:0:0,RISK_TARGET:6:5,z.L:8:3;
LOOP (i, PUT x.L(i):6:2);
PUT /;
);