blend.gms : Blending Problem I

Description

A company wishes to produce a lead-zinc-tin alloy at minimal cost.
The problem is to blend a new alloy from other purchased alloys.


Small Model of Type : LP


Category : GAMS Model library


Main file : blend.gms

$title Blending Problem I (BLEND,SEQ=2)

$onText
A company wishes to produce a lead-zinc-tin alloy at minimal cost.
The problem is to blend a new alloy from other purchased alloys.


Dantzig, G B, Chapter 3.4. In Linear Programming and Extensions.
Princeton University Press, Princeton, New Jersey, 1963.

Keywords: linear programming, blending problem, manufacturing, alloy blending
$offText

Set
   alloy 'products on the market' / a*i /
   elem  'required elements'      / lead, zinc, tin /;

Table compdat(*,alloy) 'composition data (pct and price)'
            a    b    c    d    e    f    g    h    i
   lead    10   10   40   60   30   30   30   50   20
   zinc    10   30   50   30   30   40   20   40   30
   tin     80   60   10   10   40   30   50   10   50
   price  4.1  4.3  5.8  6.0  7.6  7.5  7.3  6.9  7.3;

Parameter
   rb(elem)  'required blend' / lead 30, zinc 30, tin 40 /
   ce(alloy) 'composition error (pct-100)';

ce(alloy) = sum(elem, compdat(elem,alloy)) - 100;
display ce;

Variable
   v(alloy) 'purchase of alloy (pounds)'
   phi      'total cost';

Positive Variable v;

Equation
   pc(elem) 'purchase constraint'
   mb       'material balance'
   ac       'accounting: total cost';

pc(elem).. sum(alloy, compdat(elem,alloy)*v(alloy)) =e= rb(elem);

mb..       sum(alloy, v(alloy)) =e= 1;

ac..       phi =e= sum(alloy, compdat("price",alloy)*v(alloy));

Model
   b1 'problem without mb' / pc,     ac /
   b2 'problem with mb'    / pc, mb, ac /;

Parameter report(alloy,*) 'comparison of model 1 and 2';

solve b1 minimizing phi using lp;
report(alloy,"blend-1") = v.l(alloy);

solve b2 minimizing phi using lp;
report(alloy,"blend-2") = v.l(alloy);

display report;