Description
Maximize the area of the valve opening for one rotation of a convex cam with constraints on the curvature and on the radius of the cam. This model is from the COPS benchmarking suite. See http://www-unix.mcs.anl.gov/~more/cops/. The number of discretization points can be specified using the command line parameter --n. COPS performance tests have been reported for n = 100, 200, 400, 800
Large Model of Type : NLP
Category : GAMS Model library
Main file : camshape.gms
$title Shape Optimization of a Cam COPS 2.0 #4 (CAMSHAPE,SEQ=232)
$onText
Maximize the area of the valve opening for one rotation of a
convex cam with constraints on the curvature and on the radius
of the cam.
This model is from the COPS benchmarking suite.
See http://www-unix.mcs.anl.gov/~more/cops/.
The number of discretization points can be specified using the command
line parameter --n. COPS performance tests have been reported for n =
100, 200, 400, 800
Dolan, E D, and More, J J, Benchmarking Optimization
Software with COPS. Tech. rep., Mathematics and Computer
Science Division, 2000.
Anitescu, M, and Serban, R, A Sparse Superlinearly
Convergent SQP with Applications to Two-Dimensional Shape
Optimization. Tech. rep., Argonne National Laboratory, 1998.
Keywords: nonlinear programming, engineering, shape optimization, cam design problem
$offText
$if not set n $set n 100
Set i 'discretization points' / i1*i%n% /;
Alias (i,j);
Scalar
R_v 'design parameter related to the valve shape' / 1 /
R_max 'maximum allowed radius of the cam' / 2 /
R_min 'minimum allowed radius of the cam' / 1 /
alpha 'curvature limit parameter' / 1.5 /
d_theta 'angle between discretization points';
d_theta = 2*pi/(5*(%n% + 1));
Set first(i), last(i), middle(i);
first('i1') = yes;
last('i%n%') = yes;
middle(i) = yes;
middle(first) = no;
middle(last) = no;
Variable
r(i) 'radius of the cam at discretization points'
rdiff(i) 'intermediate'
area 'valve area';
Equation
obj 'objective'
convexity(i)
convex_edge1(i)
convex_edge3(i)
convex_edge4(i)
eqrdiff(i);
obj.. area =e= ((pi*R_v)/%n%) * sum(i, r(i));
convexity(middle(i)).. -r(i-1)*r(i) - r(i)*r(i+1) + 2*r(i-1)*r(i+1)*cos(d_theta) =l= 0;
convex_edge1(first(i)).. -R_min*r(i) - r(i)*r(i+1) + 2*R_min*r(i+1)*cos(d_theta) =l= 0;
convex_edge3(last(i)).. -r(i-1)*r(i) - r(i)*R_max + 2*r(i-1)*R_max*cos(d_theta) =l= 0;
convex_edge4(last(i)).. -2*R_max*r(i) + 2*sqr(r(i))*cos(d_theta) =l= 0;
eqrdiff(j(i+1)).. rdiff(i) =e= r(i+1) - r(i);
r.lo(i) = R_min;
r.up(i) = R_max;
rdiff.lo(i(j+1)) = -alpha*d_theta;
rdiff.up(i(j+1)) = alpha*d_theta;
r.lo('i1') = max(-alpha*d_theta + R_min, r.lo('i1'));
r.up('i1') = min( alpha*d_theta + R_min, r.up('i1'));
r.lo('i%n%') = max(R_max - alpha*d_theta, r.lo('i%n%'));
r.up('i%n%') = min(R_max + alpha*d_theta, r.up('i%n%'));
r.up('i1') = min(R_min/(2*cos(d_theta) - 1), r.up('i1'));
r.l(i) = (R_min+R_max)/2;
Model camshape / all /;
$if set workSpace camshape.workSpace = %workSpace%
solve camshape using nlp maximizing area;