Description
The task is to cut out some paper products of different sizes from a large raw paper roll, in order to meet a customer's order. The objective is to minimize the required number of paper rolls.
Small Model of Type : MIP
Category : GAMS Model library
Main file : cutstock.gms
$title Cutting Stock - A Column Generation Approach (CUTSTOCK,SEQ=294)
$onText
The task is to cut out some paper products of different sizes from a
large raw paper roll, in order to meet a customer's order. The objective
is to minimize the required number of paper rolls.
P. C. Gilmore and R. E. Gomory, A linear programming approach to the
cutting stock problem, Part I, Operations Research 9 (1961), 849-859.
P. C. Gilmore and R. E. Gomory, A linear programming approach to the
cutting stock problem, Part II, Operations Research 11 (1963), 863-888.
Keywords: mixed integer linear programming, cutting stock, column generation,
paper industry
$offText
Set i 'widths' / w1*w4 /;
Parameter
r 'raw width' / 100 /
w(i) 'width' / w1 45, w2 36, w3 31, w4 14 /
d(i) 'demand' / w1 97, w2 610, w3 395, w4 211 /;
* Gilmore-Gomory column generation algorithm
Set
p 'possible patterns' / p1*p1000 /
pp(p) 'dynamic subset of p';
Parameter aip(i,p) 'number of width i in pattern growing in p';
* Master model
Variable
xp(p) 'patterns used'
z 'objective variable';
Integer Variable xp;
xp.up(p) = sum(i, d(i));
Equation
numpat 'number of patterns used'
demand(i) 'meet demand';
numpat.. z =e= sum(pp, xp(pp));
demand(i).. sum(pp, aip(i,pp)*xp(pp)) =g= d(i);
Model master / numpat, demand /;
* Pricing problem - Knapsack model
Variable y(i) 'new pattern';
Integer Variable y;
y.up(i) = ceil(r/w(i));
Equation
defobj
knapsack 'knapsack constraint';
defobj.. z =e= 1 - sum(i, demand.m(i)*y(i));
knapsack.. sum(i, w(i)*y(i)) =l= r;
Model pricing / defobj, knapsack /;
* Initialization - the initial patterns have a single width
pp(p) = ord(p) <= card(i);
aip(i,pp(p))$(ord(i) = ord(p)) = floor(r/w(i));
*display aip;
Set pi(p) 'set of the last pattern';
pi(p) = ord(p) = card(pp) + 1;
option optCr = 0, limRow = 0, limCol = 0, solPrint = off;
while(card(pp) < card(p),
solve master using rmip minimizing z;
solve pricing using mip minimizing z;
break$(z.l >= -0.001);
* pattern that might improve the master model found
aip(i,pi) = round(y.l(i));
pp(pi) = yes;
pi(p) = pi(p-1);
);
display 'lower bound for number of rolls', master.objVal;
option solPrint = on;
solve master using mip minimizing z;
Parameter
patrep 'solution pattern report'
demrep 'solution demand supply report';
patrep('# produced',p) = round(xp.l(p));
patrep(i,p)$patrep('# produced',p) = aip(i,p);
patrep(i,'total') = sum(p, patrep(i,p));
patrep('# produced','total') = sum(p, patrep('# produced',p));
demrep(i,'produced') = sum(p, patrep(i,p)*patrep('# produced',p));
demrep(i,'demand') = d(i);
demrep(i,'over') = demrep(i,'produced') - demrep(i,'demand');
display patrep, demrep;