Description
Analyze the flow of a fluid during injection into a long vertical channel, assuming that the flow is modeled by the boundary value problem u''''=R (u'u''-uu''), 0<=t<=1, u(0) =0, u(1)=1, u'(0)=u'(1)=0, where u is the potential function, u' is the tangential velocity of the fluid, and R is the Reynolds number. This model is from the COPS benchmarking suite. See http://www-unix.mcs.anl.gov/~more/cops/. The number of discretization points can be specified using the command line parameter --nh. COPS performance tests have been reported for nh = 50, 100, 200, 400 The model can be solved as an NLP (with a dummy objective) or as a CNS. Select command line parameter --cns to solve the CNS model. Dolan, E D, and More, J J, Benchmarking Optimization Software with COPS. Tech. rep., Mathematics and Computer Science Division, 2000. Ascher, U M, Mattheij, R M M, and Russell, R D, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. SIAM, 1995. Keywords: nonlinear programming, engineering, boundary value problem, fluid velocity, fluid dynamics
Large Model of Type : NLP
Category : GAMS Model library
Main file : flowchan.gms
$title Flow in a Channel COPS 2.0 #7 (FLOWCHAN,SEQ=235)
$onText
Analyze the flow of a fluid during injection into a long vertical
channel, assuming that the flow is modeled by the boundary value
problem
u''''=R (u'u''-uu''), 0<=t<=1,
u(0) =0, u(1)=1, u'(0)=u'(1)=0,
where u is the potential function, u' is the tangential velocity of
the fluid, and R is the Reynolds number.
This model is from the COPS benchmarking suite.
See http://www-unix.mcs.anl.gov/~more/cops/.
The number of discretization points can be specified using the command
line parameter --nh. COPS performance tests have been reported for nh
= 50, 100, 200, 400
The model can be solved as an NLP (with a dummy objective) or as a
CNS. Select command line parameter --cns to solve the CNS model.
Dolan, E D, and More, J J, Benchmarking Optimization
Software with COPS. Tech. rep., Mathematics and Computer
Science Division, 2000.
Ascher, U M, Mattheij, R M M, and Russell, R D, Numerical
Solution of Boundary Value Problems for Ordinary
Differential Equations. SIAM, 1995.
Keywords: nonlinear programming, engineering, boundary value problem, fluid
velocity, fluid dynamics
$offText
$if set n $set nh %n%
$if not set nh $set nh 50
$set nc 4
$set nd 4
Set
nc 'collocation points' / 1*%nc% /
nh 'partition intervals' / 1*%nh% /
nd 'order of the differential equation' / 1*%nd% /;
Scalar
tf 'ODEs defined in [0 tf]' / 1 /
R 'Reynolds number' / 10.0 /
h 'uniform interval length';
h = tf/%nh%;
Parameter
bc(nd,*) 'boundary condition' / 1.Start 0
1.End 1
2.Start 0
2.End 0 /
rho(nc) 'roots of k-th degree Legendre polynomial' / 1 0.06943184420297
2 0.33000947820757
3 0.66999052179243
4 0.93056815579703 /;
* The collocation approximation u is defined by the parameters v and w.
* uc[i,j] is u evaluated at the collocation points.
* Duc[i,j,s] is the (s-1)-th derivative of u at the collocation points.
Variable
v(nh,nd)
w(nh,nc)
Duc(nh,nc,nd);
Equation
Ducdef(nh,nc,nd)
bc_3
bc_4
continuity(nh,nd)
collocation(nh,nc);
Alias (nh,i), (nc,j,kj), (nd,s,ks);
Ducdef{i,j,s}..
Duc(i,j,s) =e= sum{ks$(ord(ks)-ord(s)>=0), v[i,ks]*power(rho[j]*h,ord(ks)-ord(s))/fact[ord(ks)-ord(s)]}
+ power(h,%nd%-ord(s)+1)*sum{kj, w[i,kj]*power(rho[j],ord(kj)+%nd%-ord(s))/fact[ord(kj)+%nd%-ord(s)]};
* Boundary conditions
v.fx('1','1') = bc('1','Start');
v.fx('1','2') = bc('2','Start');
bc_3..
sum{ks, v['%nh%',ks]*power(h,ord(ks)-1)/fact[ord(ks)-1]} + power(h,%nd%)
* sum{kj, w['%nh%',kj]/fact[ord(kj)+%nd%-1]}
=e= bc('1','End');
bc_4..
sum{ks$(ord(ks)-2>=0), v['%nh%',ks]*power(h,ord(ks)-2)/fact[ord(ks)-2]}
+ power(h,%nd%-1)*sum{kj, w['%nh%',kj]/fact[ord(kj)+%nd%-2]}
=e= bc('2','End');
continuity(i+1,s)..
sum{ks$(ord(ks)-ord(s)>=0), v[i,ks]*power(h,ord(ks)-ord(s))/fact[ord(ks)-ord(s)]}
+ power(h,%nd%-ord(s)+1)*sum{kj, w[i,kj]/fact[ord(kj)+%nd%-ord(s)]}
=e= v[i+1,s];
collocation(i,j)..
sum{kj, w[i,kj]*power(rho[j],ord(kj)-1)/fact[ord(kj)-1]} =e=
R*(Duc[i,j,'2']*Duc[i,j,'3'] - Duc[i,j,'1']*Duc[i,j,'4']);
* initial values
Parameter t(nh) 'partition';
t(i) = (ord(i) - 1)*h;
v.l[i,'1'] = sqr(t[i])*(3 - 2*t[i]);
v.l[i,'2'] = 6*t[i]*(1 - t[i]);
v.l[i,'3'] = 6*(1.0 - 2*t[i]);
v.l[i,'4'] = -12;
Duc.l{i,j,s} = sum{ks$(ord(ks)-ord(s)>=0), v.l[i,ks]*power(rho[j]*h,ord(ks)-ord(s))/fact[ord(ks)-ord(s)]};
$if not set cns $goTo nlp
Model channel / all /;
$if set workSpace channel.workSpace = %workSpace%;
solve channel using cns;
$goTo continue
$label nlp
Variable obj 'dummy objective';
Equation defobj;
defobj.. obj =e= 0.0;
Model channel / all /;
$if set workSpace channel.workSpace = %workSpace%
solve channel minimizing obj using nlp;
$label continue
Parameter uc(nh,nc,nd) 'summary report';
uc(i,j,s) = v.l[i,s] + h*sum{kj, w.l[i,kj]*power(rho[j],ord(kj))/fact[ord(kj)]};
display uc;