Description
This is a simple general equilibrium model with multiple (three) isolated equilibria. There are four commodities, two Leontief production activities, and four consumers with Cobb- Douglas preferences.
Small Model of Types : MPSGE mcp
Category : GAMS Model library
Main file : kehomge.gms
$title Multiple Equilibria in a simple GE Model (KEHOMGE,SEQ=149)
$onText
This is a simple general equilibrium model with multiple (three)
isolated equilibria. There are four commodities, two
Leontief production activities, and four consumers with Cobb-
Douglas preferences.
Kehoe, T, A Numerical Investigation of the Multiplicity of Equilibria.
Mathematical Programming Study 23 (1985), 240-258.
MILES may find any of the three equilibria depending
on the starting point.
Keywords: mixed complementarity problem, general equilibrium model, fixed-point index,
genericity, activity analysis
$offText
Set
G 'goods' / G1*G4 /
S 'sectors' / S1,S2 /
C 'consumers' / C1*C4 /
EQ 'equilibria' / EQ1*EQ3 /;
Table SP(G,EQ) 'starting points for finding various equilibria.'
EQ1 EQ2 EQ3
G1 1 1 1
G2 1 1 0.8
G3 1 0.2 0.7
G4 0.2 1 1 ;
Table E(G,C) 'factor endowments'
C1 C2 C3 C4
G1 5
G2 5
G3 40
G4 40;
Table ALPHA(G,C) 'budget shares'
C1 C2 C3 C4
G1 0.52 0.86 0.50 0.06
G2 0.40 0.10 0.20 0.25
G3 0.04 0.02 0.2975 0.0025
G4 0.04 0.02 0.0025 0.6875;
Table A(G,S) 'activity analysis matrix'
S1 S2
G1 6 -1
G2 -1 3
G3 -4 -1
G4 -1 -1;
$onText
$MODEL:KEHOE
$SECTORS:
Y(S)
$COMMODITIES:
P(G)
$CONSUMERS:
H(C)
$DEMAND:H(C) s: 1.00
E:P(G) Q:E(G,C)
D:P(G) Q:ALPHA(G,C)
$PROD:Y(S)
O:P(G)$(A(G,S) > 0) Q:A(G,S)
I:P(G)$(A(G,S) < 0) Q:(-A(G,S))
$offText
$sysInclude mpsgeset KEHOE
Parameter PRICES(G,EQ), LEVELS(S,EQ);
loop(EQ,
$ include KEHOE.GEN
P.l(G) = SP(G,EQ);
solve KEHOE using mcp;
PRICES(G,EQ) = P.l(G);
LEVELS(S,EQ) = Y.l(S);
);
display PRICES, LEVELS;