Description
Nonlinear least squares estimation problem of Mitcherlisch's law.
Small Model of Type : NLP
Category : GAMS Model library
Main file : least.gms
$title Nonlinear Regression Problem (LEAST,SEQ=24)
$onText
Nonlinear least squares estimation problem of Mitcherlisch's law.
Bracken, J, and McCormick, G P, Chapter 8.4. In Selected Applications of
Nonlinear Programming. John Wiley and Sons, New York, 1968, pp. 89-90.
Keywords: nonlinear programming, least square estimation, nonlinear regression,
econometrics
$offText
Set i 'observation number' / 1*6 /;
Table dat(i,*) 'basic data'
y x
1 127 -5
2 151 -3
3 379 -1
4 421 5
5 460 3
6 426 1;
Variable
ols 'ordinary least squares'
dev(i) 'deviation'
b1
b2
b3;
Equation
dols 'definition of ols'
ddev(i) 'definition of deviations'
sequ 'single equation definition';
dols.. ols =e= sum(i, sqr(dev(i)));
ddev(i).. dat(i,"y") =e= b1 + b2*exp(b3*dat(i,"x")) + dev(i);
sequ.. ols =e= sum(i, sqr(dat(i,"y")-b1-b2*exp(b3*dat(i,"x"))));
Model
least 'ordinary least squares' / dols, ddev /
single 'single equ definition' / sequ /;
b1.l = 500;
b2.l = -150;
b3.lo = -5.0;
b3.l = - .2;
b3.up = 5.0;
solve single minimizing ols using nlp;
solve least minimizing ols using nlp;