Description
Generates and solves random linear multiplicative models of "Type 1." Problem instances are generated as proposed by Konno and Kuno. Model developed by N. Sahinidis.
Large Model of Type : NLP
Category : GAMS Model library
Main file : lmp1.gms
$title Linear Multiplicative Programs - Type 1 (LMP1,SEQ=251)
$onText
Generates and solves random linear multiplicative models of
"Type 1." Problem instances are generated as proposed by
Konno and Kuno. Model developed by N. Sahinidis.
H. Konno and T. Kuno, "Linear multiplicative programming",
Mathematical Programming, 56(51-64), 1992.
M. Tawarmalani and N. Sahinidis, Convexification and Global
Optimization in Continuous and Mixed-Integer Nonlinear
Programming: Theory, Algorithms, Software, and Applications,
Kluwer Academic Publishers, 2002.
Keywords: nonlinear programming, linear multiplicative programming, mathematics,
non-convex quadratic programming, global optimization,
parametric simplex algorithm
$offText
option optCr = 0, optCa = 1.e-6, limRow = 0, limCol = 0, solPrint = off;
Set
mm / m1*m220 /
nn / n1*n200 /
pp / p1*p5 /;
Set
m(mm) 'constraints'
n(nn) 'variables'
p(pp) 'products'
c 'cases' / c1*c10 /
i 'instances' / i1*i5 /;
* For each case to be solved, we use different (m,n,p) triplets
Table cases(c,*)
m n p
c1 20 30 2
c2 120 100 2
c3 220 200 2
c4 20 30 3
c5 120 120 3
c6 200 180 3
c7 20 30 4
c8 100 100 4
c9 200 200 4
c10 200 200 5;
Parameter
cc(pp,nn) 'cost coefficients'
A(mm,nn) 'constraint coefficients'
b(mm) 'left-hand-side'
rep(c,*) 'summary report'
ResMin
Resmax
NodMin
Nodmax;
Variable
y(pp)
x(nn)
obj;
Equation
Objective
Constraints(mm)
Products(pp);
Objective.. obj =e= prod(p, y(p));
Products(p).. y(p) =e= sum(n, cc(p,n)*x(n));
Constraints(m).. b(m) =l= sum(n, A(m,n)*x(n));
x.lo(nn) = 0;
Model lmp1 / all /;
lmp1.workSpace = 32;
rep(c,'AvgResUsd') = 0;
rep(c,'AvgNodUsd') = 0;
loop(c,
m(mm) = ord(mm) <= cases(c,'m');
n(nn) = ord(nn) <= cases(c,'n');
p(pp) = ord(pp) <= cases(c,'p');
ResMin = inf;
Resmax = 0;
NodMin = inf;
Nodmax = 0;
loop(i,
cc(p,n) = uniform(0,100);
A(m,n) = uniform(0,100);
b(m) = uniform(0,100);
* Set initial starting point for all models to 0
x.l(n) = 0;
y.l(p) = 0;
solve lmp1 minimizing obj using nlp;
rep(c,'AvgResUsd') = rep(c,'AvgResUsd') + lmp1.resUsd;
rep(c,'AvgNodUsd') = rep(c,'AvgNodUsd') + lmp1.nodUsd;
ResMin = min(ResMin, lmp1.resUsd);
NodMin = min(NodMin, lmp1.nodUsd);
ResMax = max(ResMax, lmp1.resUsd);
NodMax = max(NodMax, lmp1.nodUsd);
);
rep(c,'MinResUsd') = ResMin;
rep(c,'MaxResUsd') = ResMax;
rep(c,'MinNodUsd') = NodMin;
rep(c,'MaxNodUsd') = NodMax;
);
rep(c,'AvgResUsd') = rep(c,'AvgResUsd')/card(i);
rep(c,'AvgNodUsd') = rep(c,'AvgNodUsd')/card(i);
display rep;