Description
Generate and solves random linear multiplicative models of "Type 3." Problem instances are generated as proposed by Benson and Boger. Model developed by N. Sahinidis.
Large Model of Type : NLP
Category : GAMS Model library
Main file : lmp3.gms
$title Linear Multiplicative Programs - Type 3 (LMP3,SEQ=253)
$onText
Generate and solves random linear multiplicative models of
"Type 3." Problem instances are generated as proposed by
Benson and Boger. Model developed by N. Sahinidis.
H. P. Benson and G. M. Boger, "Multiplicative programming problems:
Analysis and efficient point search heuristic",
Journal of Optimization Theory and Applications, 94(487-510), 1997.
M. Tawarmalani and N. Sahinidis, Convexification and Global
Optimization in Continuous and Mixed-Integer Nonlinear
Programming: Theory, Algorithms, Software, and Applications,
Kluwer Academic Publishers, 2002.
Keywords: nonlinear programming, linear multiplicative programming,
global optimization, concave minimization
$offText
option optCr = 0, optCa = 1.e-6, limRow = 0, limCol = 0, solPrint = off;
Set
mm / m1*m220 /
nn / n1*n200 /
pp / p1*p4 /;
Set
m(mm) 'constraints'
n(nn) 'variables'
p(pp) 'products'
c 'cases' / c1*c9 /
i 'instances' / i1*i5 /;
* For each case to be solved, we use a different (m,n,p) triplet
Table cases(c,*)
m n p
c1 20 30 2
c2 120 100 2
c3 220 200 2
c4 20 30 3
c5 120 120 3
c6 200 180 3
c7 20 30 4
c8 100 100 4
c9 200 200 4;
Parameter
cc(pp,nn) 'cost coefficients'
A(mm,nn) 'constraint coefficients'
b(mm) 'left-hand-side'
rep(c,*) 'summary report'
mactual
nactual
pactual
ResMin
Resmax
NodMin
Nodmax;
Variable
y(pp)
x(nn)
obj;
Equation
Objective
Constraints(mm)
Products(pp);
Objective.. obj =e= prod(p, y(p));
Products(p).. y(p) =e= sum(n, cc(p,n)*x(n));
Constraints(m).. b(m) =l= sum(n, A(m,n)*x(n));
x.lo(nn) = 1;
Model lmp3 / all /;
lmp3.workSpace = 32;
rep(c,'AvgResUsd') = 0;
rep(c,'AvgNodUsd') = 0;
loop(c,
m(mm) = ord(mm)<= cases(c,'m');
n(nn) = ord(nn)<= cases(c,'n');
p(pp) = ord(pp)<= cases(c,'p');
mactual = cases(c,'m');
nactual = cases(c,'n');
pactual = cases(c,'p');
ResMin = inf;
Resmax = 0;
NodMin = inf;
Nodmax = 0;
loop(i,
cc(p,n) = round(uniform(1,10));
A(m,n) = round(uniform(1,10));
b(m) = sum(n, A(m,n)**2);
x.up(n) = smax(m, b(m));
* Set initial starting point for all models to 0
x.l(n) = 0;
y.l(p) = 0;
Solve lmp3 minimizing obj using nlp;
rep(c,'AvgResUsd') = rep(c,'AvgResUsd') + lmp3.resUsd;
rep(c,'AvgNodUsd') = rep(c,'AvgNodUsd') + lmp3.nodUsd;
ResMin = min(ResMin, lmp3.resUsd);
NodMin = min(NodMin, lmp3.nodUsd);
ResMax = max(ResMax, lmp3.resUsd);
NodMax = max(NodMax, lmp3.nodUsd);
);
rep(c,'MinResUsd') = ResMin;
rep(c,'MaxResUsd') = ResMax;
rep(c,'MinNodUsd') = NodMin;
rep(c,'MaxNodUsd') = NodMax;
);
rep(c,'AvgResUsd') = rep(c,'AvgResUsd')/card(i);
rep(c,'AvgNodUsd') = rep(c,'AvgnodUsd')/card(i);
display rep;