Description
A larger example with several constraints. More information at http://www.wolfram.com/products/applications/mathoptimizer/
Small Model of Type : NLP
Category : GAMS Model library
Main file : mathopt3.gms
$title MathOptimizer Example 3 (MATHOPT3,SEQ=257)
$onText
A larger example with several constraints.
More information at http://www.wolfram.com/products/applications/mathoptimizer/
Mathematica, MathOptimizer - An Advanced Modeling and Optimization System
for Mathematica Users, http://www.wolfram.com/products/applications/mathoptimizer/
Janos D Pinter, Global Optimization in Action, Kluwer Academic Publishers,
Dordrecht/Boston/London, 1996.
Janos D Pinter, Computational Global Optimization in Nonlinear Systems,
Lionheart Publishing, Inc., Atlanta, GA, 2001
Keywords: nonlinear programming, mathematics, global optimization
$offText
Variable x1, x2, x3, x4, x5, x6, obj;
Equation defobj, eq1, eq2, eq3, eq4, ineq1, ineq2, ineq3;
defobj.. obj =e= sqr(x1 + x2) + sqr(x3 - x5) + sqr(x6 - x4)
+ 2*sqr(x1 + x3 - x4) + sqr(x2 - x1 + x3 - x4)
+ 10*sqr(sin[x5 - x6 + x1]);
eq1.. sqr(x1) - sin[x2] - x4 + x5 + x6 =e= 0;
eq2.. x1*x3 - x2*x4*x1 - x5 - sin[x6 - x1 - x3] =e= 0;
eq3.. x2*x6*cos[x5] - sin[x3*x4] + x2 - x5 =e= 0;
eq4.. x1*x2 - sqr(x3) - x4*x5 - sqr(x6) =e= 0;
ineq1.. 2*x1 + 5*x2 + x3 + x4 - 1 =l= 0;
ineq2.. 3*x1 - 2*x2 + x3 - 4*x4 =l= 0;
ineq3.. x1 + x2 + x3 + x4 + x5 + x6 - 2 =l= 0;
Model m / all /;
* most local solvers will find the global solution from this starting point
* x1.l = 1; x2.l = -2; x3.l = 1; x4.l = 2; x5.l = 1; x6.l = -1;
* solve m using nlp min obj;
x1.l = 10; x2.l = -10; x3.l = 10; x4.l = 10; x5.l = 10; x6.l = -10;
solve m using nlp min obj;
Parameter report 'diff from global solution';
report('x1') = round(0 - x1.l,6);
report('x2') = round(0 - x2.l,6);
report('x3') = round(0 - x3.l,6);
report('x4') = round(0 - x4.l,6);
report('x5') = round(0 - x5.l,6);
report('x6') = round(0 - x6.l,6);
display report;