mws.gms : Computation of Horowitz's work-trip mode choice model estimates

Description

For a sample of 842 persons in Washington DC in the late 1960's Horowitz
modeled the 'work-trip mode choice' decision (automobile or other) for the
daily trip from home to work.

We compute the max (weighted) score estimators using a MIP formulation due to
Florios and Skouras.


Large Model of Type : MIP


Category : GAMS Model library


Main file : mws.gms   includes :  worktrip.inc

$title Computation of Horowitz's work-trip mode choice model estimates (MWS,SEQ=331)

$onText
For a sample of 842 persons in Washington DC in the late 1960's Horowitz
modeled the 'work-trip mode choice' decision (automobile or other) for the
daily trip from home to work.

We compute the max (weighted) score estimators using a MIP formulation due to
Florios and Skouras.


Florios, K, and Skouras, S, A note on exact computation of max weighted score
estimators by mixed integer programming. Tech. rep., National Technical
University of Athens & Athens University of Economics and Business, 2007

Horowitz, J L, Semiparametric estimation of a work-trip mode choice model.
Journal of Econometrics 58(1-2), 49-70, 1993

Keywords: mixed integer linear programming, econometrics, estimator computation,
          work-trip mode choice, maximum score
$offText

Set
   p 'explanatory variables'
     / DCOST  "transit fare minus automobile travel cost"
       CARS   "cars owned by the traveler's household"
       DOVTT  "transit out-of-vehicle minus automobile out-of-vehicle time"
       DIVTT  "transit in-vehicle minus automobile in-vehicle time"
       INTCPT "intercept"                                                   /
   T 'sample size (households)' / 1*842 /;

Parameter y(T) 'value of binary dependent variable';

Table X(T,*) 'explanatory and dependent variables'
$offListing
$include worktrip.inc
$onListing
;

y(T) = X(T,'DEPEND');

$if not set normalize_X $set normalize_X 1
Parameter
   delta     'domain for every parameter to be estimated' / 10 /
   Xnms(T,p) 'matrix X, normalized all variances equal to 1 if %normalizeX%==1'
   mean(p)   'average of X(T.p) over T for mu sigma normalization'
   stdev(p)  'stdev   of X(T.p) over T etc'
   omega(T)  'tight valid big M coefficient for disjunctive constraints';

mean(p)  = sum(T, X(T,p))/card(T);
stdev(p) = sqrt(sum(T, sqr(X(T,p) - mean(p)))/(card(T) - 1));

Xnms(T,p) = X(T,p);
$if %normalize_X% == 1 Xnms(T,p) = 1; Xnms(T,p)$stdev(p) = (X(T,p) - mean(p))/stdev(p);

omega(T) = sum(p$(ord(p) = 1), abs(Xnms(T,p))) + delta*sum(p$(ord(p) > 1), abs(Xnms(T,p)));

Variable
   z(T)    'indicates if sign coincidence for y and linear comb. of X'
   beta(p) 'vector components to estimate in max weighted score'
   mws     'objective variable';

Binary Variable z;

Equation
   objfun  'objective function is (weighted) number of sign coincidences'
   cosg(T) 'sign coincidence constraint between y and X*b';

objfun..  mws =e= sum(T, z(T));

cosg(T).. (1 - 2*y(T))*sum(p, beta(p)*Xnms(T,p)) =l= omega(T)*(1 - z(T));

Model MaxWeightedScore / all /;

beta.lo(p) = -delta;
beta.up(p) =  delta;
beta.fx(p)$(ord(p) = 1) = 1;

option optCr = 0;

solve MaxWeightedScore using mip max mws;

Parameter ffbeta(p) 'parameter vector components';

ffbeta(p) = beta.l(p);
$if not %normalize_X% == 1 $goTo display

Parameter fbeta(p) 'intermediate vector';

Alias (p,pp);

fbeta(p)          = -sum(pp$stdev(pp), beta.l(pp)*mean(pp)/stdev(pp)) + beta.l(p);
fbeta(p)$stdev(p) =  beta.l(p)/stdev(p);
ffbeta(p)         =  fbeta(p)/sum(pp$(ord(pp) = 1), fbeta(pp));

$label display
display beta.l, ffbeta;