Description
Further speedup by simplifying the nonlinear terms. Additional information can be found at: http://www.gams.com/modlib/adddocs/qp3doc.htm
Large Model of Type : NLP
Category : GAMS Model library
Main file : qp3.gms includes : qpdata.inc
$title Standard QP Model - intermediate Variables (QP3,SEQ=173)
$onText
Further speedup by simplifying the nonlinear terms.
Additional information can be found at:
http://www.gams.com/modlib/adddocs/qp3doc.htm
Kalvelagen, E, Model Building with GAMS. forthcoming
de Wetering, A V, private communication.
Keywords: nonlinear programming, quadratic programming, finance
$offText
$include qpdata.inc
Set
d(days) 'selected days'
s(stocks) 'selected stocks';
Alias (s,t);
* select subset of stocks and periods
d(days) = ord(days) > 1 and ord(days) < 31;
s(stocks) = ord(stocks) < 51;
Parameter
mean(stocks) 'mean of daily return'
dev(stocks,days) 'deviations'
covar(stocks,sstocks) 'covariance matrix of returns (upper)'
covarx(stocks,sstocks) 'covariance matrix - variation (upper)'
totmean 'total mean return';
mean(s) = sum(d, return(s,d))/card(d);
dev(s,d) = return(s,d)-mean(s);
* calculate covariance
* to save memory and time we only compute the uppertriangular
* part as the covariance matrix is symmetric
covar(upper(s,t)) = sum(d, dev(s,d)*dev(t,d))/(card(d) - 1);
covarx(s,t) = 2*covar(s,t);
covarx(s,s) = covar(s,s);
totmean = sum(s, mean(s))/(card(s));
Variable
z 'objective variable'
x(stocks) 'investments'
y(stocks) 'intermediate variable';
Positive Variable x;
Equation
obj 'objective'
budget
retcon 'return constraint'
ydefa(stocks) 'not exploiting symmetry'
ydefb(stocks) 'exploiting symmetry';
obj.. z =e= sum(s, y(s)*x(s));
ydefa(t).. y(t) =e= sum(upper(s,t), x(s)*covar(s,t))
+ sum(lower(s,t), x(s)*covar(t,s));
ydefb(t).. y(t) =e= sum(s, x(s)*covarx(s,t));
budget.. sum(s, x(s)) =e= 1.0;
retcon.. sum(s, mean(s)*x(s)) =g= totmean*1.25;
Model
qp3a / obj, ydefa, budget, retcon /
qp3b / obj, ydefb, budget, retcon /;
solve qp3a using nlp minimizing z;
display x.l;
ydefb.m(t) = ydefa.m(t);
solve qp3b using nlp minimizing z;
display x.l;