Description
An application from quantum mechanics: Find energy eigenvalues of the anharmonic oscillator with g = 1 in the Gaussian and Post-Gaussian variational methods.
Small Model of Type : DNLP
Category : GAMS Model library
Main file : quantum.gms
$title An Application from Quantum Mechanics (QUANTUM,SEQ=300)
$onText
An application from quantum mechanics:
Find energy eigenvalues of the anharmonic oscillator with g = 1
in the Gaussian and Post-Gaussian variational methods.
Erwin Kalvelagen, May 2004
Ogura, A, Post-Gaussian variational method for quantum anharmonic
oscillator, 1999. Laboratory of Physics, College of Science and
Technology, Nihon University,arXiv:physics/9905056 v1 28 May 1999
Keywords: nonlinear programming, discontinuous derivatives, quantum mechanics,
statistics, energy eigenvalues, quantum anharmonic oscillator
$offText
Variable
ham 'expected value of hamiltonian'
alpha 'variational parameter'
n 'variational parameter (n = 1: Gaussian trial function)';
Equation hamiltonian;
Scalar g / 1 /;
hamiltonian..
ham =e= (sqr(n)/2)*(gamma(2 - 1/(2*n))/gamma(1/(2*n)))*(alpha**(1/n))
+ (1/2)*(gamma(3/(2*n))/gamma(1/(2*n)))*(alpha**(-1/n))
+ g*(gamma(5/(2*n))/gamma(1/(2*n)))*(alpha**(-2/n));
alpha.lo = 0.0001;
alpha.up = 10;
alpha.l = 1;
* gaussian variational method
n.fx = 1;
Model m / hamiltonian /;
solve m minimizing ham using dnlp;
Parameter results(*,*);
results('Gaussian','Ground') = ham.l;
results('Gaussian','alpha') = alpha.l;
results('Gaussian','n') = n.l;
* post-gaussian variational method
n.lo = 0.001;
n.up = 10;
solve m minimizing ham using dnlp;
results('Post-Gaussian','Ground') = ham.l;
results('Post-Gaussian','alpha') = alpha.l;
results('Post-Gaussian','n') = n.l;
option decimals = 6;
display results;