tvcsched.gms : Flow Formulation of the ISCI Rotator Problem

Description

Given N balls out of which n1 are of color 1, n2 are of color 2, ...
nk are of color k, find an assignment of the N balls to N ordered
slots such that balls of any one color are as much evenly spaced as
possible.

The paper by Bollapragada, Bussieck and Mallik lists 25 examples. Use the
command line option --curid n to select the nth example. If --curid is
missing we select problem number 12.

Adding the option --sparse 1 creates a sparse flow graph which might
result in an approximate solution only.

More information on this problem can be found at http://www.gams.com/~bussieck/isci


Large Model of Type : MIP


Category : GAMS Model library


Main file : tvcsched.gms

$title Flow Formulation of the ISCI Rotator Problem (TVCSCHED,SEQ=247)

$onText
Given N balls out of which n1 are of color 1, n2 are of color 2, ...
nk are of color k, find an assignment of the N balls to N ordered
slots such that balls of any one color are as much evenly spaced as
possible.

The paper by Bollapragada, Bussieck and Mallik lists 25 examples. Use the
command line option --curid n to select the nth example. If --curid is
missing we select problem number 12.

Adding the option --sparse 1 creates a sparse flow graph which might
result in an approximate solution only.

More information on this problem can be found at http://www.gams.com/~bussieck/isci


Bollapragada, S, Bussieck, M.R., and Mallik, S, Scheduling Commercial
Videotapes in Broadcast Television. Operations Research, 2003

Bollapragada, S, Cheng, H, Phillips, M, and Garbiras, M,
NBC's Optimization Systems Increase Its Revenues and Productivity.
Interfaces 31, 1 (2002).

Keywords: mixed integer linear programming, assignment problem, scheduling
          commercial videotapes, broadcast television
$offText

$if not set curid $set curid 12

Set
   sp    'slots plus initial' / 0*100 /
   s(sp) 'slots'
   c     'colors'             / R 'red', B 'blue', W 'white', G 'green', Y 'yellow' /
   id    'test set id'        / 1*25  /;

Table idc(id,c) 'number of colors'
         R   B   W   G  Y
    1    5   3
    2    4   2   2
    3    5   3   2
    4    6   3   2
    5    6   4   2
    6    4   3   3   2
    7    6   4   4
    8    6   5   4
    9    8   3   3   2
   10    7   6   4
   11    8   7   5
   12    8   7   3   2
   13    5   5   5   4  1
   14    8   6   6   5
   15    7   6   5   4  3
   16   10   8   7   5
   17    9   7   6   5  3
   18   17  10   8   5
   19   16  15  14
   20   25  13  12
   21   21  16  13
   22   26  12  10   2
   23   25  23  12
   24   27  25  14   9
   25   33  25  21  15  6;

Set preplace(id,sp,c) 'preplaced balls'
                      /  1. (6.B,  8.R)
                         2. (1.R,  2.B,  3.W)
                         3. (1.B,  2.W)
                         4. (1.B,  5.W,  6.B)
                         5. (1.R,  3.B)
                         6. (2.R,  3.R,  4.B,  6.W)
                         7. (1.R,  6.B, 14.W)
                         8. (1.B,  4.W,  7.R)
                         9. (1.R,  3.W,  5.G)
                        10. (1.B,  2.B, 15.W)
                        11. (1.W,  5.R, 10.B)
                        12. (1.W,  5.R, 10.B, 20.G)
                        13. (2.R, 10.R, 17.B)
                        14. (1.R,  6.G, 25.W)
                        15. (1.R,  5.R,  6.G, 25.W)
                        16. (3.R,  9.G, 15.B)
                        17. (3.R,  9.G, 15.B)
                        18. (1.W,  9.G, 17.R, 38.R)
                        19. (1.B,  5.B,  6.W)
                        20. (7.R, 15.B, 17.B, 20.W, 39.W)
                        21. (7.R, 15.B, 17.B, 20.W, 39.W)
                        22. (1.B,  9.R, 10.G, 20.R)
                        23. (1.W, 17.R, 30.B)
                        24. (1.R,  5.B, 11.G, 15.B, 25.G)
                        25. (1.B,  5.G,  6.R, 25.W, 41.Y) /;

Parameter nc(c) 'number of colors';
nc(c) = idc('%curid%',c);

Scalar n 'number of commercial';
n = sum(c,nc(c));

Parameter dc(c) 'ideal distance';
dc(c)$nc(c) = n/nc(c);

Alias (sp,i,j);

s(sp+1) = ord(sp) <= n;

* Build network
Set net(c,i,j) 'network connecting slots';

Parameter dev(c,i,j) 'deviation of distance i and j to ideal distance';

Scalar
   isf 'initial span factor'      / 2   /
   msf 'middle span factor range' / 0.1 /
   sf  'span factor';

$if set sparse $goTo dosparse

* Dense graph
loop(c$nc(c),
   loop(i$(ord(i) <= n+1),
     net(c,i,j)$(ord(j) > ord(i)) = yes;
   );
);

$label dosparse
loop(c$nc(c),
   net(c,'0',j)$(ord(j) > 1 and ord(j) <= min(n+1,1+isf*dc(c))) = yes;
   sf = msf;
   if(sf*dc(c) < 5, sf = 5/dc(c));
   loop(i$(ord(i) > 1 and ord(i) <= n+1),
      net(c,i,j)$(ord(j) >  max(ord(i),ord(i)+(1-sf)*dc(c)) and
                  ord(j) <= min(n+1,ord(i)+(1+sf)*dc(c))) = yes;
   );
);

* The arcs back to the source
net(c,s,'0') = yes;

dev(net(c,i,j))$(ord(i) > 1 and ord(j) > 1) = abs(ord(j) - ord(i) - dc(c));

* option dev:5:0:1; display dev;

* Model
Variable
   f(c,i,j) 'flow variable'
   p(c,i)   'placement variable'
   obj      'objective variable';

Binary   Variable p;
Positive Variable f;

Equation
   bal(c,i)     'flow balance equation'
   balinit(c)   'flow balance for node 0'
   defopen(c,i) 'close slots for different colors'
   defsump(c)   'number of open slots'
   covslot(i)   'slot cover requirement'
   defobj       'objective function';

bal(c,s)$nc(c)..     sum(net(c,j,s), f(net)) - sum(net(c,s,j), f(net)) =e= 0;

balinit(c)$nc(c)..   sum(net(c,'0',j), f(net)) =e= 1;

defopen(c,s)$nc(c).. sum(net(c,s,j), f(net)) =e= p(c,s);

defsump(c)$nc(c)..   sum(s, p(c,s)) =e= nc(c);

covslot(s)..         sum(c$nc(c), p(c,s)) =e= 1;

defobj..     obj =e= sum(net, dev(net)*f(net));

Model commercial / all /;

option optCr = 0, resLim = 300;

Set sol 'solution reporting set';

Parameter solrep;

* Try priorities
commercial.priorOpt = 1;
p.prior(c,s) = nc(c);

* Solve the preplaced model first
p.lo(c,s)$preplace('%curid%',s,c) = 1;
solve commercial min obj using mip;

sol('%curid%','PRE',s,c) = p.l(c,s);
solrep('PRE','obj') = obj.l;
solrep('PRE','bnd') = commercial.objEst;
solrep('PRE','res') = commercial.resUsd;

* Release the preplaced balls
p.lo(c,s)$preplace('%curid%',s,c) = 0;

* Lets start with the pre fixed solution if using CPLEX
* (uncomment next three lines)
* File fcpx / cplex.opt /;
* putClose fcpx 'mipStart 1';
* commercial.optFile = 1;

solve commercial min obj using mip;

sol('%curid%','FREE',s,c) = p.l(c,s);
solrep('FREE','obj') = obj.l;
solrep('FREE','bnd') = commercial.objEst;
solrep('FREE','res') = commercial.resUsd;

display sol, solrep;

* If you want a report with times, objs, and bnd useful for batchruns,
* uncomment the $exit
$exit

File fsol / allsol.txt /;
* Append to solution file, but not for the first one
fsol.ap$(not sameas('%curid%','1')) = 1;

put fsol 'Solution for Instance %curid%: obj_pre: ' solrep('PRE','obj'):12:5
                                    '   obj_free: ' solrep('FREE','obj'):12:5 /
         'Slot pre free' /;
loop(s(sp),
   put (ord(sp)-1):3:0 '   '
   loop(c$sol('%curid%','PRE' ,s,c), put c.tl:1 '   ';);
   loop(c$sol('%curid%','FREE',s,c), put c.tl:1 /;);
);

File ftim / alltim.txt /;
* Append to time file, but not for the first one
ftim.ap$(not sameas('%curid%','1')) = 1;
* put a header for the first one
put$sameas('%curid%','1') ftim
  '               Preplace balls                     no preplaced balls'     /
  'id       obj         bnd         res         obj         bnd         res'/;
put ftim (%curid%):2:0 solrep('PRE','obj'):12:5
                       solrep('PRE','bnd'):12:5
                       solrep('PRE','res'):12:5
                       solrep('FREE','obj'):12:5
                       solrep('FREE','bnd'):12:5
                       solrep('FREE','res'):12:5 /;