Description
Simple 2 x 2 x 2 General Equilibrium Model. Shoven, J, and Whalley, J, Applied G.E. Models. Journal of Economic Literature 22 (1984). Keywords: mixed complementarity problem, general equilibrium model
Small Model of Type : MCP
Category : GAMS Model library
Main file : two3mcp.gms
$title Simple 2 x 2 x 2 General Equilibrium Model (TWO3MCP,SEQ=131)
$onText
Simple 2 x 2 x 2 General Equilibrium Model.
Shoven, J, and Whalley, J, Applied G.E. Models. Journal of Economic
Literature 22 (1984).
Keywords: mixed complementarity problem, general equilibrium model
$offText
Set
f 'factors' / labor, capital /
s 'sectors' / mfrs, nonmfrs /
h 'households' / rich, poor /;
Alias (s,ss), (f,ff);
* demand function parameters.
Parameter sigmac(h) / rich 1.5, poor 0.75 /;
Table alpha(s,h)
rich poor
mfrs 0.5 0.3
nonmfrs 0.5 0.7;
Table e(f,h)
rich poor
labor 60
capital 25 ;
* production function parameters.
Parameter phi(s) / mfrs 1.5, nonmfrs 2.0 /;
Table delta(f,s) 'factor share coefficients'
mfrs nonmfrs
labor 0.6 0.7
capital 0.4 0.3;
Parameter
sigma(s) 'elasticities of factor substitution' / mfrs 2.0, nonmfrs 0.5 /
tshr(h) 'share of tax revenue'
t(f,s) 'ad-valorem tax rates';
tshr(h) = 0;
t(f,s) = 0;
Positive Variable
W(f) 'factor price'
P(s) 'commodity price'
Y(s) 'production level'
I(h) 'income';
Equation
fmkt(f) 'factor market'
cmkt(s) 'commodity market'
profit(s) 'zero profit'
income(h) 'income equation';
fmkt(f)..
sum(h, e(f,h)) =g= sum(s, Y(s)*phi(s)**(sigma(s) - 1)
* (delta(f,s)*(sum(ff, delta(ff,s)**sigma(s)
* (W(ff)*(1 + t(ff,s)))**(1 - sigma(s)))
** (1/(1 - sigma(s)))/phi(s))
/ (W(f)*(1 + t(f,s))))**sigma(s));
cmkt(s)..
Y(s) =g= sum(h, (i(h)/sum(ss, alpha(ss,h)*P(ss)**(1 - sigmac(h))))*alpha(s,h)*(1/P(s))**sigmac(h));
profit(s)..
sum(f, delta(f,s)**sigma(s)*(W(f)*(1 + t(f,s)))**(1 - sigma(s)))**(1/(1 - sigma(s)))/phi(s) =g= P(s);
income(h)..
I(h) =g= sum(f, E(f,h)*W(f)) + tshr(h)
* sum((s,f), t(f,s)*W(f)*Y(s)*phi(s)**(sigma(s) - 1)
* (delta(f,s)*(sum(ff, delta(ff,s)**sigma(s)
* (W(ff)*(1 + t(ff,s)))**(1 - sigma(s)))
** (1/(1 - sigma(s)))/phi(s))/(W(f)*(1 + t(f,s))))**sigma(s));
Model jel / fmkt.W, cmkt.P, profit.Y, income.I /;
* compute solution for this dimension problem:
W.lo(f) = 0.0001;
P.lo(s) = 0.0001;
W.l(f) = 1;
P.l(s) = 1;
Y.l(s) = 10;
I.l(h) = sum(f, W.l(f)*E(f,h));
* solve the reference case:
W.fx("labor") = 1;
solve jel using mcp;
* apply tax in test problem:
tshr("rich") = 0.4;
tshr("poor") = 1 - tshr("rich");
t("capital","mfrs") = 0.5;
solve jel using mcp;