Reference
Category : GAMS NOA library
Mainfile : camshape.gms
$onText
Maximize the area of the valve opening for one rotation of a
convex cam with constraints on the curvature and on the radius
of the cam.
This model is from the COPS benchmarking suite.
See http://www-unix.mcs.anl.gov/~more/cops/.
The number of discretization points can be specified using the command
line parameter --n.
COPS performance tests have been reported for n = 100, 200, 400, 800
References:
Dolan, E D, and More, J J, Benchmarking Optimization Software with COPS.
Tech. rep., Mathematics and Computer Science Division, 2000.
Anitescu, M, and Serban, R, A Sparse Superlinearly Convergent SQP
with Applications to Two-Dimensional Shape Optimization.
Tech. rep., Argonne National Laboratory, 1998.
Neculai Andrei, "Models, Test Problems and Applications for
Mathematical Programming". Technical Press, Bucharest, 2003.
Application A8, page 352.
$offText
$if not set n $set n 1000
Set i discretization points /i1 * i%n%/;
Alias (i,j);
Scalar R_v design parameter related to the valve shape /1/
R_max maximum allowed radius of the cam /2/
R_min minimum allowed radius of the cam /1/
pi
alpha curvature limit parameter /1.5/
d_theta angle between discretization points;
pi = 2*arctan(inf);
d_theta = 2*pi/(5*(%n%+1));
set first(i), last(i), middle(i);
first('i1') = yes;
last('i%n%') = yes;
middle(i) = yes; middle(first) = no; middle(last) = no;
Variables r(i) radius of the cam at discretization points
rdiff(i) intermediate
area valve area;
* Bounds
r.lo(i) = R_min;
r.up(i) = R_max;
rdiff.lo(i(j+1)) = -alpha*d_theta;
rdiff.up(i(j+1)) = alpha*d_theta;
r.lo('i1') = max(-alpha*d_theta + R_min, r.lo('i1'));
r.up('i1') = min( alpha*d_theta + R_min, r.up('i1'));
r.lo('i%n%') = max(R_max - alpha*d_theta, r.lo('i%n%'));
r.up('i%n%') = min(R_max + alpha*d_theta, r.up('i%n%'));
r.up('i1') = min( R_min/(2*cos(d_theta)-1), r.up('i1'));
* Initial values
r.l(i) = (R_min+R_max)/2;
Equations obj objective
convexity(i)
convex_edge1(i)
convex_edge3(i)
convex_edge4(i)
eqrdiff(i);
obj.. area =e= ((pi*R_v)/%n%) * sum(i, r(i));
convexity(middle(i)).. -r(i-1)*r(i) - r(i)*r(i+1) +
2*r(i-1)*r(i+1)*cos(d_theta) =l= 0;
convex_edge1(first(i)).. -R_min*r(i) - r(i)*r(i+1) +
2*R_min*r(i+1)*cos(d_theta) =l= 0;
convex_edge3(last(i)).. -r(i-1)*r(i) - r(i)*R_max +
2*r(i-1)*R_max*cos(d_theta) =l= 0;
convex_edge4(last(i)).. -2*R_max*r(i) +
2*sqr(r(i))*cos(d_theta) =l= 0;
eqrdiff(j(i+1)).. rdiff(i) =e= r(i+1) - r(i);
model camshape /all/;
$ifThenI x%mode%==xbook
camshape.iterlim=50000;
camshape.workspace=200;
$endIf
solve camshape using nlp maximizing area;
$ifThenI x%mode%==xbook
file rez /camshape.dat/;
put rez
loop(i, put r.l(i):10:5, put/)
$endIf
*------------------------- Numerical Experiments ---------------------
* January 15, 2011
* Variant 1:
* 12001 constraints, 12000 variables
* CONOPT3: 85 iterations, 23.714 seconds
* vfo=4.2725254070
* KNITRO: 51 iterations, 56 functions evaluations, 14 seconds
* vfo=4.270589910
*
* Varinat 2:
* 16001 constraints, 16000 variables
* CONOPT3: 75 iterations, 32.607 seconds
* vfo=4.2726091788
* KNITRO: 52 iterations, 57 functions evaluations, 25.21 seconds
* vfo=4.2697038802
*
* Variant 3:
* 20001 constraints, 20000 variables
* CONOPT3: 46 iterations, 23.204 seconds
* vfo=4.2726594376
* KNITRO: 54 iterations, 59 functions evaluations, 33.19 seconds
* vfo=4.2688342488
*----------------------------------------------------------------------
* End Camshape