Reference
Category : GAMS NOA library
Mainfile : edc2.gms
$onText
Economic load dispatch for 15 generator systems with transmission losses
modeled using B-matrix formulation (Kron).
EDC of a total power of 1980 MW using 15 power generating units.
$offText
Set i generating units /1*15/;
Set bou lower and upper /low, upp/;
Set coef coefficients in fuel cost of thermal generating unit /a,b,c/;
alias(i,j);
* The output of the minimum and maximum operation of the
* generating units in MW.
Table bound(i,bou)
low upp
* MW MW
1 100 655
2 100 455
3 20 130
4 20 130
5 150 470
6 135 460
7 135 465
8 100 300
9 25 165
10 25 460
11 20 80
12 20 80
13 25 85
14 15 55
15 15 55
* The cost coefficients of generator units.
Table data(i,coef)
a b c
* $/MW2 $/MW $
1 0.000299 10.100 671.130
2 0.000183 10.200 574.010
3 0.001126 8.814 374.110
4 0.001126 8.800 374.000
5 0.000205 10.400 461.000
6 0.000301 10.100 630.000
7 0.000364 9.800 548.000
8 0.000338 11.200 227.000
9 0.000807 11.200 173.000
10 0.001203 10.700 175.200
11 0.003586 10.200 186.000
12 0.005513 9.900 230.000
13 0.000371 13.100 225.000
14 0.001929 12.100 309.000
15 0.004447 12.400 323.100
* The loss coefficients
Table Losscoef(i,j)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1.4 1.2 0.7 0.1 0.3 0.1 0.1 0.1 0.3 0.5 0.3 0.2 0.4 0.3 0.1
2 1.2 1.5 1.3 0.0 0.5 0.2 0.0 0.1 0.2 0.4 0.4 0.0 0.4 1.0 0.2
3 0.7 1.3 7.6 0.1 1.3 0.9 0.1 0.0 0.8 1.2 1.7 0.0 2.6 11.1 2.8
4 0.1 0.0 0.1 3.4 0.7 0.4 1.1 5.0 2.9 3.2 1.1 0.0 0.1 0.1 2.6
5 0.3 0.5 1.3 0.7 9.0 1.4 0.3 1.2 1.0 1.3 0.7 0.2 0.2 2.4 0.3
6 0.1 0.2 0.9 0.4 1.4 1.6 0.0 0.6 0.5 0.8 1.1 0.1 0.2 1.7 0.3
7 0.1 0.0 0.1 1.1 0.3 0.0 1.5 1.7 1.5 0.9 0.5 0.7 0.0 0.2 0.8
8 0.1 0.1 0.0 5.0 1.2 0.6 1.7 16.8 8.2 7.9 2.3 3.6 0.1 0.5 7.8
9 0.3 0.2 0.8 2.9 1.0 0.5 1.5 8.2 12.9 11.6 2.1 2.5 0.7 1.2 7.2
10 0.5 0.4 1.2 3.2 1.3 0.8 0.9 7.9 11.6 20.0 2.7 3.4 0.9 1.1 8.8
11 0.3 0.4 1.7 1.1 0.7 1.1 0.5 2.3 2.1 2.7 14.0 0.1 0.4 3.8 16.8
12 0.2 0.0 0.0 0.0 0.2 0.1 0.7 3.6 2.5 3.4 0.1 5.4 0.1 0.4 2.8
13 0.4 0.4 2.6 0.1 0.2 0.2 0.0 0.1 0.7 0.9 0.4 0.1 10.3 10.1 2.8
14 0.3 1.0 11.1 0.1 2.4 1.7 0.2 0.5 1.2 1.1 3.8 0.4 10.1 57.8 9.4
15 0.1 0.2 2.8 2.6 0.3 0.3 0.8 7.8 7.2 8.8 16.8 2.8 2.8 9.4 128.3 ;
Scalar Load /1980/;
Variables P(i) optimal generation level of i
obj minimum cost;
Equations cost total generation cost
bal demand-supply balance ;
* Objective function:
cost.. obj =e= sum(i,data(i,'a')*POWER(p(i),2) +
data(i,'b')*P(i) +
data(i,'c'));
* Constraints:
bal.. sum(i,P(i))-sum((i,j),P(i)*Losscoef(i,j)*P(J)/10000) =e= Load;
* Bounds on variables:
P.lo(i) = bound(i,'low');
p.up(i) = bound(i,'upp');
p.l(i) = (bound(i,'low') + bound(i,'upp'))/2;
Model edc2 /all/;
Solve edc2 minimizing obj using nlp;
* End edc2