Reference
Category : GAMS NOA library
Mainfile : speed.gms
$onText
Minimization of the weight of a speed reducer.
The weight of the speed reducer is to be minimized subject to constraints
on bending stress of the gear teeth, surface stress, transverse deflections
of the shafts and stresses in the shaft.
Datseris, P., Weight minimization of a speed reducer by heuristic
and decomposition technique. Mechanism and Machine Theory, vol.17, 1982,
pp. 255-262.
Aguirre, A.H., Munoz Zavala, A.E., Villa Diharce, E., Botello Rionada, S.,
COPSO: Constrained optimization via PSO algorithm. Comunicacion Tecnica
No I-07-04/22-02-2007. Center for Research in Mathematics (CIMAT), Mexico.
$offText
Variables x1, x2, x3, x4, x5, x6, x7, obj;
Equations g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g;
* Objective function to be minimized:
g.. obj =e= 0.7854*x1*POWER(x2,2)*(3.3333*POWER(x3,2) + 14.9334*x3 -
43.0934) - 1.508*x1*(POWER(x6,2)+POWER(X7,2)) +
7.4777*(POWER(x6,3)+POWER(x7,3))+
0.7854*(x4*POWER(x6,2)+x5*POWER(x7,2));
* Constraints:
g1.. 27/(x1*POWER(x2,2)*x3) - 1 =l= 0;
g2.. 397.5/(x1*POWER(x2,2)*POWER(x3,2)) - 1 =l= 0;
g3.. (1.93*POWER(x4,3))/(x2*x3*POWER(x6,4)) - 1 =l= 0;
g4.. (1.93*POWER(x5,3))/(x2*x3*POWER(x7,4)) - 1 =l= 0;
g5.. (sqrt(POWER((745*x4)/(x2*x3),2)+16900000))/(110*POWER(x6,3)) - 1 =l= 0;
g6.. (sqrt(POWER((745*x5)/(x2*x3),2)+15750000))/(85*POWER(x7,3)) - 1 =l= 0;
g7.. (x2*x3)/40 - 1 =l= 0;
g8.. (5*x2)/x1 - 1 =l= 0;
g9.. x1/(12*x2) - 1 =l= 0;
g10.. (1.5*x6 + 1.9)/x4 - 1 =l= 0;
g11.. (1.1*x7 + 1.9)/x5 - 1 =l= 0;
* Bounds on variables
x1.lo = 2.6; x1.up = 3.6;
x2.lo = 0.7; x2.up = 0.8;
x3.lo = 17; x3.up = 28;
x4.lo = 7.3; x4.up = 8.3;
x5.lo = 7.8; x5.up = 8.3;
x6.lo = 2.9; x6.up = 3.9;
x7.lo = 5.0; x7.up = 5.5;
Model speed /all/;
Solve speed minimizing obj using nlp;
* End speed