Reference
Category : GAMS PSOPT library
Mainfile : DED-LP.gms
$title Linearized Dynamic Economic Load Dispatch
$onText
For more details please refer to Chapter 4 (Gcode4.7), of the following book:
Soroudi, Alireza. Power System Optimization Modeling in GAMS. Springer, 2017.
--------------------------------------------------------------------------------
Model type: LP
--------------------------------------------------------------------------------
Contributed by
Dr. Alireza Soroudi
IEEE Senior Member
Email: alireza.soroudi@gmail.com
We do request that publications derived from the use of the developed GAMS code
explicitly acknowledge that fact by citing
Soroudi, Alireza. Power System Optimization Modeling in GAMS. Springer, 2017.
DOI: doi.org/10.1007/978-3-319-62350-4
$offText
Set
t 'hours' / t1*t24 /
i 'thermal units' / p1*p4 /
k / 1*100 /;
Table gendata(i,*) 'generator cost characteristics and limits'
a b c d e f Pmin Pmax RU0 RD0
p1 0.12 14.80 89 1.2 -5 3 28 200 40 40
p2 0.17 16.57 83 2.3 -4.24 6.09 20 290 30 30
p3 0.15 15.55 100 1.1 -2.15 5.69 30 190 30 30
p4 0.19 16.21 70 1.1 -3.99 6.2 20 260 50 50;
Parameter demand(t) / t1 510, t2 530, t3 516, t4 510, t5 515, t6 544
t7 646, t8 686, t9 741, t10 734, t11 748, t12 760
t13 754, t14 700, t15 686, t16 720, t17 714, t18 761
t19 727, t20 714, t21 618, t22 584, t23 578, t24 544 /;
Variable
OF 'objective (revenue)'
p(i,t) 'power generated by thermal power plant'
Pk(i,t,k);
Parameter data(k,i,*);
data(k,i,'DP') = (gendata(i,"Pmax") - gendata(i,"Pmin"))/card(k);
data(k,i,'Pini') = (ord(k) - 1)*data(k,i,'DP') + gendata(i,"Pmin");
data(k,i,'Pfin') = data(k,i,'Pini') + data(k,i,'DP');
data(k,i,'Cini') = gendata(i,"a")*power(data(k,i,'Pini'),2)
+ gendata(i,"b")*data(k,i,'Pini') + gendata(i,"c");
data(k,i,'Cfin') = gendata(i,"a")*power(data(k,i,'Pfin'),2)
+ gendata(i,"b")*data(k,i,'Pfin') + gendata(i,"c");
data(k,i,'s') = (data(k,i,'Cfin') - data(k,i,'Cini'))/data(k,i,'DP');
p.up(i,t) = gendata(i,"Pmax");
p.lo(i,t) = gendata(i,"Pmin");
Pk.up(i,t,k) = data(k,i,'DP');
Pk.lo(i,t,k) = 0;
Equation eq1, eq2, eq3, eq4, eq5;
eq1.. OF =e= sum((t,i), gendata(i,'a')*power(gendata(i,"Pmin"),2)
+ gendata(i,'b')*gendata(i,"Pmin")
+ gendata(i,'c') + sum(k, data(k,i,'s')*pk(i,t,k)));
eq2(i,t).. p(i,t+1) - p(i,t) =l= gendata(i,'RU0');
eq3(i,t).. p(i,t-1) - p(i,t) =l= gendata(i,'RD0');
eq4(t).. sum(i,p(i,t)) =g= demand(t);
eq5(i,t).. p(i,t) =e= gendata(i,"Pmin") + sum(k, Pk(i,t,k));
Model DEDLP / all /;
solve DEDLP using lp minimizing OF;
display p.l