Reference
Category : GAMS PSOPT library
Mainfile : TransportationOn-Off.gms
$title Transportation model with On/off state modeling of production side
$onText
For more details please refer to Chapter 2 (Gcode2.12), of the following book:
Soroudi, Alireza. Power System Optimization Modeling in GAMS. Springer, 2017.
--------------------------------------------------------------------------------
Model type: MINLP
--------------------------------------------------------------------------------
Contributed by
Dr. Alireza Soroudi
IEEE Senior Member
email: alireza.soroudi@gmail.com
We do request that publications derived from the use of the developed GAMS code
explicitly acknowledge that fact by citing
Soroudi, Alireza. Power System Optimization Modeling in GAMS. Springer, 2017.
DOI: doi.org/10.1007/978-3-319-62350-4
$offText
Set
i / s1*s3 /
j / d1*d4 /;
Table c(i,j)
d1 d2 d3 d4
s1 0.0755 0.0655 0.0498 0.0585
s2 0.0276 0.0163 0.096 0.0224
s3 0.068 0.0119 0.034 0.0751;
Table data(i,*)
'Pmin' 'Pmax'
s1 100 450
s2 50 350
s3 30 500;
Parameter demand(j) / d1 217, d2 150, d3 145, d4 244 /;
Variable of, x(i,j), P(i);
Binary Variable U(i);
Equation eq1, eq2(i), eq3(i), eq4(j), eq5(i);
eq1.. of =e= sum((i,j), c(i,j)*sqr(x(i,j)));
eq2(i).. P(i) =l= data(i,'Pmax')*U(i);
eq3(i).. P(i) =g= data(i,'Pmin')*U(i);
eq4(j).. sum(i, x(i,j)) =g= demand(j);
eq5(i).. sum(j, x(i,j)) =e= P(i);
P.lo(i) = 0;
P.up(i) = data(i,'Pmax');
x.lo(i,j) = 0;
x.up(i,j) = 100;
Model minlp1 / all /;
solve minlp1 using minlp minimizing of;