Description
This is an example from the GAMS/SNOPT manual. Find the smallest circle that contains a number of given points. This is extended to an n-dimensional ball. http://en.wikipedia.org/wiki/Smallest_circle_problem
Small Model of Type : NLP
Category : GAMS Test library
Main file : circlen.gms
$title Circle Enclosing Points n dimensional (CIRCLEN,SEQ=551)
$onText
This is an example from the GAMS/SNOPT manual. Find the smallest
circle that contains a number of given points. This is extended to an
n-dimensional ball.
http://en.wikipedia.org/wiki/Smallest_circle_problem
Gill, P E, Murray, W, and Saunders, M A, GAMS/SNOPT: An SQP Algorithm
for Large-Scale Constrained Optimization, 1988.
Extended model from GAMS Model library
Contributor: Michael Bussieck
$offText
$if not set TESTTOL $set TESTTOL 1e-6
$if not set DEMOSIZE $set DEMOSIZE 0
$if not set GLOBALSIZE $set GLOBALSIZE 0
$if not %DEMOSIZE% == 0 $set DEMOSIZE 1
$if not %GLOBALSIZE% == 0 $set GLOBALSIZE 1
$if %DEMOSIZE%%GLOBALSIZE% == 11 $set dim 9
$if not set size $set size 10
$if not set dim $set dim 10
$ifE %dim%>10 $abort GAMS functions can't have more than 10 arguments
set i points /p1*p%size%/
d dimension /d1*d%dim%/;
* Build scalar edist argument list based on dim
$set edistarg x(i,'d1')-a('d1')
$set cnt 1
$label addarg
$if %cnt%==%dim% $goTo cont
$eval cnt %cnt%+1
$set edistarg %edistarg%,x(i,'d%cnt%')-a('d%cnt%')
$goTo addarg
$label cont
parameters
x(i,d) coordinates;
* fill with random data
x(i,d) = uniform(1,10);
variables
a(d) coordinate of center of circle
df(i,d) difference x and a
r radius
rx(i) copy of radius for SOCP;
positive variable rx; r.lo=0;
equations
e(i) points must be inside circle with edist
e2(i) points must be inside circle with sqr and sqrt
ddf(i,d) define difference
drx(i) define copy of r
cone(i) SOCP;
e(i).. edist(%edistarg%) =l= r;
e2(i).. sqrt(sum(d, sqr(x(i,d)-a(d)))) =l= r;
ddf(i,d).. df(i,d) =e= a(d) - x(i,d);
drx(i).. rx(i) =e= r;
cone(i).. sqr(rx(i)) =g= sum(d,sqr(df(i,d)));
parameters xmin(d),xmax(d);
xmin(d) = smin(i, x(i,d));
xmax(d) = smax(i, x(i,d));
* set starting point
a.l(d) = (xmin(d)+xmax(d))/2;
r.l = sqrt(sum(d,sqr(a.l(d)-xmin(d))));
model m /e/;
model m2 /e2/;
model mSOCP /ddf, drx,cone/;
solve m using nlp minimizing r;
if {(m.solvestat = %solveStat.capabilityProblems%),
abort$[m.modelstat <> %modelStat.noSolutionReturned%] 'Wrong status codes',
m.solvestat, m.modelstat;
abort.NoError 'Capability problem';
else
if (m.modelstat <> %modelStat.optimal% and
m.modelstat <> %modelStat.locallyOptimal% and
m.modelstat <> %modelStat.feasibleSolution%,
abort 'Wrong status codes');
}
parameter repm, repm2, repmSOCP;
repm('r') = r.l;
repm(d) = a.l(d);
* reset starting point
a.l(d) = (xmin(d)+xmax(d))/2;
r.l = sqrt(sum(d,sqr(a.l(d)-xmin(d))));
solve m2 using nlp minimizing r;
if (m2.modelstat <> %modelStat.optimal% and
m2.modelstat <> %modelStat.locallyOptimal% and
m2.modelstat <> %modelStat.feasibleSolution%,
abort 'Wrong status codes');
repm2('r') = r.l;
repm2(d) = a.l(d);
* Check primal values
abort$(abs(repm('r')-repm2('r'))>%TESTTOL%) 'r different', repm, repm2;
abort$(sum(d,abs(repm(d)-repm2(d)))>%TESTTOL%) 'point different', repm, repm2;
* Try solving as SOCP
* reset starting point
a.l(d) = (xmin(d)+xmax(d))/2;
r.l = sqrt(sum(d,sqr(a.l(d)-xmin(d))));
solve mSOCP using qcp minimizing r;
* This should only happen with SOCP solvers (and global solvers)
if (mSOCP.modelstat = %modelStat.optimal%,
repmSOCP('r') = r.l;
repmSOCP(d) = a.l(d);
abort$(abs(repm('r')-repmSOCP('r'))>%TESTTOL%) 'r different', repm, repmSOCP;
abort$(sum(d,abs(repm(d)-repmSOCP(d)))>%TESTTOL%) 'point different', repm, repmSOCP;
);