circlen.gms : Circle Enclosing Points n dimensional

Description

This is an example from the GAMS/SNOPT manual. Find the smallest
circle that contains a number of given points. This is extended to an
n-dimensional ball.

http://en.wikipedia.org/wiki/Smallest_circle_problem


Small Model of Type : NLP


Category : GAMS Test library


Main file : circlen.gms

$title Circle Enclosing Points n dimensional (CIRCLEN,SEQ=551)
$onText

This is an example from the GAMS/SNOPT manual. Find the smallest
circle that contains a number of given points. This is extended to an
n-dimensional ball.

http://en.wikipedia.org/wiki/Smallest_circle_problem


Gill, P E, Murray, W, and Saunders, M A, GAMS/SNOPT: An SQP Algorithm
for Large-Scale Constrained Optimization, 1988.

Extended model from GAMS Model library

Contributor: Michael Bussieck

$offText

$if not set TESTTOL       $set TESTTOL    1e-6

$if not set DEMOSIZE      $set DEMOSIZE   0
$if not set GLOBALSIZE    $set GLOBALSIZE 0
$if not %DEMOSIZE% == 0   $set DEMOSIZE   1
$if not %GLOBALSIZE% == 0 $set GLOBALSIZE 1

$if %DEMOSIZE%%GLOBALSIZE% == 11 $set dim 9

$if not set size $set size 10
$if not set dim  $set dim 10
$ifE %dim%>10 $abort GAMS functions can't have more than 10 arguments

set i points /p1*p%size%/
    d dimension /d1*d%dim%/;

* Build scalar edist argument list based on dim
$set edistarg x(i,'d1')-a('d1')
$set cnt 1
$label addarg
$if %cnt%==%dim% $goTo cont
$eval cnt %cnt%+1
$set edistarg %edistarg%,x(i,'d%cnt%')-a('d%cnt%')
$goTo addarg
$label cont

parameters
   x(i,d)  coordinates;

* fill with random data
x(i,d) = uniform(1,10);

variables
   a(d)    coordinate of center of circle
   df(i,d) difference x and a
   r       radius
   rx(i)   copy of radius for SOCP;
positive variable rx; r.lo=0;

equations
   e(i)      points must be inside circle with edist
   e2(i)     points must be inside circle with sqr and sqrt
   ddf(i,d)  define difference
   drx(i)    define copy of r
   cone(i)   SOCP;

e(i)..      edist(%edistarg%) =l= r;
e2(i)..     sqrt(sum(d, sqr(x(i,d)-a(d)))) =l= r;
ddf(i,d)..  df(i,d) =e= a(d) - x(i,d);
drx(i)..    rx(i) =e= r;
cone(i)..   sqr(rx(i)) =g= sum(d,sqr(df(i,d)));

parameters xmin(d),xmax(d);
xmin(d) = smin(i, x(i,d));
xmax(d) = smax(i, x(i,d));

* set starting point
a.l(d) = (xmin(d)+xmax(d))/2;
r.l = sqrt(sum(d,sqr(a.l(d)-xmin(d))));

model m /e/;
model m2 /e2/;
model mSOCP /ddf, drx,cone/;

solve m using nlp minimizing r;

if {(m.solvestat = %solveStat.capabilityProblems%),
  abort$[m.modelstat <> %modelStat.noSolutionReturned%] 'Wrong status codes',
  m.solvestat, m.modelstat;
  abort.NoError 'Capability problem';
else
  if (m.modelstat <> %modelStat.optimal% and
      m.modelstat <> %modelStat.locallyOptimal% and
      m.modelstat <> %modelStat.feasibleSolution%,
      abort 'Wrong status codes');
}

parameter repm, repm2, repmSOCP;

repm('r') = r.l;
repm(d)   = a.l(d);

* reset starting point
a.l(d) = (xmin(d)+xmax(d))/2;
r.l = sqrt(sum(d,sqr(a.l(d)-xmin(d))));

solve m2 using nlp minimizing r;

if (m2.modelstat <> %modelStat.optimal% and
    m2.modelstat <> %modelStat.locallyOptimal% and
    m2.modelstat <> %modelStat.feasibleSolution%,
    abort 'Wrong status codes');

repm2('r') = r.l;
repm2(d)   = a.l(d);

* Check primal values
abort$(abs(repm('r')-repm2('r'))>%TESTTOL%) 'r different', repm, repm2;
abort$(sum(d,abs(repm(d)-repm2(d)))>%TESTTOL%) 'point different', repm, repm2;

* Try solving as SOCP
* reset starting point
a.l(d) = (xmin(d)+xmax(d))/2;
r.l = sqrt(sum(d,sqr(a.l(d)-xmin(d))));

solve mSOCP using qcp minimizing r;

* This should only happen with SOCP solvers (and global solvers)
if (mSOCP.modelstat = %modelStat.optimal%,
  repmSOCP('r') = r.l;
  repmSOCP(d)   = a.l(d);

  abort$(abs(repm('r')-repmSOCP('r'))>%TESTTOL%) 'r different', repm, repmSOCP;
  abort$(sum(d,abs(repm(d)-repmSOCP(d)))>%TESTTOL%) 'point different', repm, repmSOCP;
);