emp07.gms : Test of EMP based on trnsport model

Description

Reformulate a modified version of trnsport using EMP, and check for
correct solutions.  Modifications to the original model:
  1. Adjust the data to make some supply constraints slack and remove
  degeneracy.
  2. Adjust equations to make NLP duals (i.e. the prices) positive -
  re-orientation is left for another discussion and another test (emp08)
  3. Adjust it to be an NLP

Contributor: Steven Dirkse, January 2010


Small Model of Type : GAMS


Category : GAMS Test library


Main file : emp07.gms

$title Test of EMP based on trnsport model (EMP07,SEQ=470)

$onText
Reformulate a modified version of trnsport using EMP, and check for
correct solutions.  Modifications to the original model:
  1. Adjust the data to make some supply constraints slack and remove
  degeneracy.
  2. Adjust equations to make NLP duals (i.e. the prices) positive -
  re-orientation is left for another discussion and another test (emp08)
  3. Adjust it to be an NLP

Contributor: Steven Dirkse, January 2010

$offText


Sets
     i   canning plants   / seattle, san-diego /
     j   markets          / new-york, chicago, topeka / ;

Parameters
     a(i)  capacity of plant i in cases
       /    seattle     350
            san-diego   600  /
     b(j)  demand at market j in cases
       /    new-york    325
            chicago     300
            topeka      275  /
     esub(j) price elasticity of demand (at prices equal to unity) /
            new-york    1.5
            chicago     1.2
            topeka      2.0  / ;

Table d(i,j)  distance in thousands of miles
                  new-york       chicago      topeka
    seattle          1.5           0.7          1.8
    san-diego        2.5           1.8          1.4  ;

Scalar f  freight in dollars per case per thousand miles  /90/ ;

Parameter c(i,j)  transport cost in thousands of dollars per case ;
          c(i,j) = f * d(i,j) / 1000 ;

* ------------- optimal values -----------------
parameters
  costMarg   'objective eqn marginal' / 1 /
  costLev    'objective eqn level'    / 0 /
  sPrice(i)  'optimal supply price' /
    seattle      0.09
    san-diego    0
  /
  sLev(i)    'optimal supply level' /
    seattle      -350
    san-diego    -550
  /
  dPrice(j)  'optimal demand price' /
    new-york     0.2250
    chicago      0.1530
    topeka       0.1260
  /
  dLev(j)    'optimal demand level' /
    new-york     325
    chicago      300
    topeka       275
  /
  zLev       'optimal z level'    / 122.175 /
  xMarg(i,j) 'optimal x marginal' /
    seattle  .new-york     0
    seattle  .chicago      0
    seattle  .topeka       0.126
    san-diego.new-york     0
    san-diego.chicago      0.009
    san-diego.topeka       0
  /
  xLev(i,j)  'optimal x level' /
    seattle  .new-york    50
    seattle  .chicago    300
    seattle  .topeka       0
    san-diego.new-york   275
    san-diego.chicago      0
    san-diego.topeka     275
  /
  ;

positive variables
  x(i,j)  shipment quantities in cases
  sPr(i) 'supply price'
  dPr(j) 'demand price'
  ;
variable
  z       total transportation costs in thousands of dollars ;
  ;

equations
  cost         define objective function
  supply(i)    observe supply limit at plant i
  demand(j)    satisfy demand at market j
  nldemand(j)  'satisfy price-responsive demand at market j'
  profit(i,j)
  ;

cost ..          z  =e=  sum((i,j), c(i,j)*x(i,j)) ;

supply(i) ..     a(i)  =g=  sum(j, x(i,j)) ;

demand(j) ..     sum(i, x(i,j))  =g=  b(j) ;
nldemand(j) ..   sum(i, x(i,j))  =g=  b(j)*(dPrice(j)/dPr(j))**esub(j) ;

profit(i,j) ..   sPr(i) + c(i,j)  =g=  dPr(j);

model translp   / cost, supply, demand / ;
model transmcp  / supply.sPr, nldemand.dPr, profit.x / ;
model transemp 'solve using emp' / cost, supply, nldemand /;

file fx / '%emp.info%' /;

* ------------- solve/check LP -----------------
Solve translp using lp minimizing z ;

abort$[abs(costMarg-cost.m) > 1e-5] 'bad cost marginal',
  cost.m, costMarg;
abort$[smax{i, abs(sPrice(i)-supply.m(i))} > 1e-5] 'bad supply price',
  supply.m, sPrice;
abort$[smax{j, abs(dPrice(j)-demand.m(j))} > 1e-5] 'bad demand price',
  demand.m, dPrice;

abort$[abs(costLev-cost.l) > 1e-5] 'bad cost level',
  cost.l, costLev;
abort$[smax{i, abs(sLev(i)-supply.l(i))} > 1e-5] 'bad supply level',
  supply.l, sLev;
abort$[smax{j, abs(dLev(j)-demand.l(j))} > 1e-5] 'bad demand level',
  demand.l, dLev;

abort$[abs(z.m) > 1e-5] 'bad z marginal - not zero', z.m;
abort$[smax{(i,j), abs(xMarg(i,j)-x.m(i,j))} > 1e-5] 'bad x marginal',
  x.m, xMarg;

abort$[abs(zLev-z.l) > 1e-5] 'bad z level',
  z.l, zLev;
abort$[smax{(i,j), abs(xLev(i,j)-x.l(i,j))} > 1e-5] 'bad x level',
  x.l, xLev;


* ------------- solve/check MCP -----------------
dPr.l(j) = dPrice(j);
Solve transmcp using mcp;

abort$[smax{i, abs(sPrice(i)-supply.m(i))} > 1e-5] 'bad supply price',
  supply.m, sPrice;
abort$[smax{j, abs(dPrice(j)-nldemand.m(j))} > 1e-5] 'bad demand price',
  nldemand.m, dPrice;

abort$[smax{i, abs(sLev(i)-supply.l(i))} > 1e-5] 'bad supply level',
  supply.l, sLev;
abort$[smax{j, abs(nldemand.l(j))} > 1e-5] 'bad MCP demand level',
  nldemand.l;

abort$[smax{(i,j), abs(xMarg(i,j)-x.m(i,j))} > 1e-5] 'bad x marginal',
  x.m, xMarg;

abort$[smax{(i,j), abs(xLev(i,j)-x.l(i,j))} > 1e-5] 'bad x level',
  x.l, xLev;
abort$[smax{i, abs(sPrice(i)-sPr.l(i))} > 1e-5] 'bad supply price',
  sPr.l, sPrice;
abort$[smax{j, abs(dPrice(j)-dPr.l(j))} > 1e-5] 'bad demand price',
  dPr.l, dPrice;


* ------------- solve/check EMP w/ dualvar -----------------
* use the EMP info file to define the demand price to be equal to the
* dual of the demand equation
put fx '* dPr(j) = nldemand.m(j)';
loop{j, put / 'dualvar' dPr(j) nldemand(j)};
putclose;
Solve transemp using emp minimizing z ;

abort$[abs(costMarg-cost.m) > 1e-5] 'bad cost marginal',
  cost.m, costMarg;
abort$[smax{i, abs(sPrice(i)-supply.m(i))} > 1e-5] 'bad supply price',
  supply.m, sPrice;
abort$[smax{j, abs(dPrice(j)-nldemand.m(j))} > 1e-5] 'bad demand price',
  nldemand.m, dPrice;

abort$[abs(costLev-cost.l) > 1e-5] 'bad cost level',
  cost.l, costLev;
abort$[smax{i, abs(sLev(i)-supply.l(i))} > 1e-5] 'bad supply level',
  supply.l, sLev;
abort$[smax{j, abs(nldemand.l(j))} > 1e-5] 'bad DualEqu demand level',
  nldemand.l;

abort$[abs(z.m) > 1e-5] 'bad z marginal - not zero', z.m;
abort$[smax{(i,j), abs(xMarg(i,j)-x.m(i,j))} > 1e-5] 'bad x marginal',
  x.m, xMarg;

abort$[abs(zLev-z.l) > 1e-5] 'bad z level',
  z.l, zLev;
abort$[smax{(i,j), abs(xLev(i,j)-x.l(i,j))} > 1e-5] 'bad x level',
  x.l, xLev;
abort$[smax{j, abs(dPrice(j)-dPr.l(j))} > 1e-5] 'bad demand price',
  dPr.l, dPrice;


* ------------- solve/check EMP w/ equilibrium -----------------
* use the EMP info file to set up an equilibrium model in EMP
put fx;
put 'equilibrium' /;
put 'min z *  cost' /;
loop{i,
  put supply(i) /;
};
loop{j,
  put nldemand(j) /;
};
loop{j,
  put 'dualVar' dPr(j) nldemand(j) /;
};
putclose;
Solve transemp using emp;

abort$[abs(costMarg-cost.m) > 1e-5] 'bad cost marginal',
  cost.m, costMarg;
abort$[smax{i, abs(sPrice(i)-supply.m(i))} > 1e-5] 'bad supply price',
  supply.m, sPrice;
abort$[smax{j, abs(dPrice(j)-nldemand.m(j))} > 1e-5] 'bad demand price',
  nldemand.m, dPrice;

abort$[abs(costLev-cost.l) > 1e-5] 'bad cost level',
  cost.l, costLev;
abort$[smax{i, abs(sLev(i)-supply.l(i))} > 1e-5] 'bad supply level',
  supply.l, sLev;
abort$[smax{j, abs(nldemand.l(j))} > 1e-5] 'bad DualEqu demand level',
  nldemand.l;

abort$[abs(z.m) > 1e-5] 'bad z marginal - not zero', z.m;
abort$[smax{(i,j), abs(xMarg(i,j)-x.m(i,j))} > 1e-5] 'bad x marginal',
  x.m, xMarg;

abort$[abs(zLev-z.l) > 1e-5] 'bad z level',
  z.l, zLev;
abort$[smax{(i,j), abs(xLev(i,j)-x.l(i,j))} > 1e-5] 'bad x level',
  x.l, xLev;
abort$[smax{j, abs(dPrice(j)-dPr.l(j))} > 1e-5] 'bad demand price',
  dPr.l, dPrice;

* ================================================================
* Do the same tests again but now using non-indexed emp.info files
* ================================================================

* ------------- solve/check EMP w/ dualvar -----------------
* use the EMP info file to define the demand price to be equal to the
* dual of the demand equation
put fx '* dPr(j) = nldemand.m(j)';
putclose / 'dualvar dPr nldemand';
Solve transemp using emp minimizing z ;

abort$[abs(costMarg-cost.m) > 1e-5] 'bad cost marginal',
  cost.m, costMarg;
abort$[smax{i, abs(sPrice(i)-supply.m(i))} > 1e-5] 'bad supply price',
  supply.m, sPrice;
abort$[smax{j, abs(dPrice(j)-nldemand.m(j))} > 1e-5] 'bad demand price',
  nldemand.m, dPrice;

abort$[abs(costLev-cost.l) > 1e-5] 'bad cost level',
  cost.l, costLev;
abort$[smax{i, abs(sLev(i)-supply.l(i))} > 1e-5] 'bad supply level',
  supply.l, sLev;
abort$[smax{j, abs(nldemand.l(j))} > 1e-5] 'bad DualEqu demand level',
  nldemand.l;

abort$[abs(z.m) > 1e-5] 'bad z marginal - not zero', z.m;
abort$[smax{(i,j), abs(xMarg(i,j)-x.m(i,j))} > 1e-5] 'bad x marginal',
  x.m, xMarg;

abort$[abs(zLev-z.l) > 1e-5] 'bad z level',
  z.l, zLev;
abort$[smax{(i,j), abs(xLev(i,j)-x.l(i,j))} > 1e-5] 'bad x level',
  x.l, xLev;
abort$[smax{j, abs(dPrice(j)-dPr.l(j))} > 1e-5] 'bad demand price',
  dPr.l, dPrice;


* ------------- solve/check EMP w/ equilibrium -----------------
* use the EMP info file to set up an equilibrium model in EMP
put fx   'equilibrium' /;
put      'min z * cost supply nldemand' /;
putclose 'dualVar dPr nldemand' /;
Solve transemp using emp;

abort$[abs(costMarg-cost.m) > 1e-5] 'bad cost marginal',
  cost.m, costMarg;
abort$[smax{i, abs(sPrice(i)-supply.m(i))} > 1e-5] 'bad supply price',
  supply.m, sPrice;
abort$[smax{j, abs(dPrice(j)-nldemand.m(j))} > 1e-5] 'bad demand price',
  nldemand.m, dPrice;

abort$[abs(costLev-cost.l) > 1e-5] 'bad cost level',
  cost.l, costLev;
abort$[smax{i, abs(sLev(i)-supply.l(i))} > 1e-5] 'bad supply level',
  supply.l, sLev;
abort$[smax{j, abs(nldemand.l(j))} > 1e-5] 'bad DualEqu demand level',
  nldemand.l;

abort$[abs(z.m) > 1e-5] 'bad z marginal - not zero', z.m;
abort$[smax{(i,j), abs(xMarg(i,j)-x.m(i,j))} > 1e-5] 'bad x marginal',
  x.m, xMarg;

abort$[abs(zLev-z.l) > 1e-5] 'bad z level',
  z.l, zLev;
abort$[smax{(i,j), abs(xLev(i,j)-x.l(i,j))} > 1e-5] 'bad x level',
  x.l, xLev;
abort$[smax{j, abs(dPrice(j)-dPr.l(j))} > 1e-5] 'bad demand price',
  dPr.l, dPrice;