Description
With some effort GAMS produces a model instance with an empty row (no variables). The solver should still digest such a model instance and report infeasible. In a second instance the empty row is only slightly infeasible (rhs 1e-12) and the model should be declared optimal. Contributor: M. Bussieck, July 2019
Small Model of Type : LP
Category : GAMS Test library
Main file : empty2.gms
$title Empty Row Test (EMPTY2,SEQ=801)
$onText
With some effort GAMS produces a model instance with an empty row (no variables).
The solver should still digest such a model instance and report infeasible.
In a second instance the empty row is only slightly infeasible (rhs 1e-12) and
the model should be declared optimal.
Contributor: M. Bussieck, July 2019
$offText
Set
i 'canning plants' / seattle, san-diego /
j 'markets' / new-york, chicago, topeka /;
Parameter
a(i) 'capacity of plant i in cases'
/ seattle 350
san-diego 600 /
b(j) 'demand at market j in cases'
/ new-york 325
chicago 300
topeka 275 /;
Table d(i,j) 'distance in thousands of miles'
new-york chicago topeka
seattle 2.5 1.7 1.8
san-diego 2.5 1.8 1.4;
Scalar f 'freight in dollars per case per thousand miles' / 90 /;
Parameter c(i,j) 'transport cost in thousands of dollars per case';
c(i,j) = f*d(i,j)/1000;
Variable
x(i,j) 'shipment quantities in cases'
z 'total transportation costs in thousands of dollars';
Positive Variable x;
Equation
cost 'define objective function'
supply(i) 'observe supply limit at plant i'
demand(j) 'satisfy demand at market j';
cost.. z =e= sum((i,j), c(i,j)*x(i,j));
supply(i).. sum(j, x(i,j)) =l= a(i);
demand(j).. sum(i, x(i,j)) =g= b(j);
scalar rhs; equation dummy; dummy.. 0 =e= rhs;
Model transport / all /;
MaxExecError = 1;
option sys12 = 1;
rhs = 1;
solve transport using lp minimizing z;
abort$(transport.modelstat<>%modelStat.infeasible% and
transport.modelstat<>%modelStat.infeasibleNoSolution%) 'modelstatus not infeasible', transport.modelstat;
* Clear execError from previous model generation
execError = 0;
rhs = 1e-12;
solve transport using lp minimizing z;
abort$(transport.modelstat<>%modelStat.optimal% and transport.modelstat<>%modelStat.infeasible% and transport.modelstat<>%modelStat.infeasibleNoSolution%) 'modelstatus not optimal or infeasible', transport.modelstat;