funcs4.gms : Rules for getting derivs/intervals of intrinsics

Description

In this model we test the syntax and symantics for getting the
derivatives and intervals for the GAMS intrinsic functions

For a given function func, GAMS has always allowed its use as:

f = func(x)

We can now test the derivatives and intervals that are defined
along with function func using GAMS syntax (new with Rev 139):

 df = func.grad(x)   - gradient of func
 df = func.gradn(x)  - gradient of func, computed numerically
d2f = func.hess(x)   - Hessian of func
d2f = func.hessn(x)      - Hessian of func, computed numerically
  L = func.low(xlo:xup)  - lower bound for func(x) on [xlo,xup]
  H = func.high(xlo:xup)  - upper bound for func(x) on [xlo,xup]
 gL = func.gradl(xlo:xup)  - lower bound for gradient on [xlo,xup]
 gH = func.gradh(xlo:xup)  - upper bound for gradient on [xlo,xup]

An extended syntax from that above allows for multivariate functions
and is illustrated below.

Contributor: Steven Dirkse, July 2004

  the following requires at least version 139


Small Model of Type : GAMS


Category : GAMS Test library


Main file : funcs4.gms

$title rules for getting derivs/intervals of intrinsics (FUNCS4,SEQ=148)

$onText
In this model we test the syntax and symantics for getting the
derivatives and intervals for the GAMS intrinsic functions

For a given function func, GAMS has always allowed its use as:

f = func(x)

We can now test the derivatives and intervals that are defined
along with function func using GAMS syntax (new with Rev 139):

 df = func.grad(x)   - gradient of func
 df = func.gradn(x)  - gradient of func, computed numerically
d2f = func.hess(x)   - Hessian of func
d2f = func.hessn(x)      - Hessian of func, computed numerically
  L = func.low(xlo:xup)  - lower bound for func(x) on [xlo,xup]
  H = func.high(xlo:xup)  - upper bound for func(x) on [xlo,xup]
 gL = func.gradl(xlo:xup)  - lower bound for gradient on [xlo,xup]
 gH = func.gradh(xlo:xup)  - upper bound for gradient on [xlo,xup]

An extended syntax from that above allows for multivariate functions
and is illustrated below.

Contributor: Steven Dirkse, July 2004
$offText

* the following requires at least version 139
$version 139

Set i / i1 * i6 /;
Set j / j1 * j6 /;

* first check using a scalar function

* set delta for computing gradients numerically
* this is a better value than the default for exp(x)
option FDDelta=1e-4;

$onUNDF
scalar undef / UNDF /;
$offUNDF
scalar ntol / 1e-8 /;
scalar x, f, df, d2f, L, H, gL, gH;

  x = 0;
  f = exp(x);              abort$(  f ne 1) 'should get 1';
 df = exp.grad(1:x);       abort$( df ne 1) 'should get 1';
 df = exp.gradn(1:x);      abort$(abs(df-1) gt ntol) 'should get near 1';
d2f = exp.hess(1:1:x);     abort$(d2f ne 1) 'should get 1';
d2f = exp.hessn(1:1:x);    abort$(abs(d2f-1)gt ntol) 'should get near 1';
  L = exp.low(x:x+1);      abort$(  L ne 1) 'should get 1';
  H = exp.high(x-1:x);     abort$(  H ne 1) 'should get 1';
 gL = exp.gradl(1:x:x+1);  abort$( gL ne 1) 'should get 1';
 gH = exp.gradh(1:x-1:x);  abort$( gH ne 1) 'should get 1';

$onText
set k / 1 * 16 /;
parameter dat(k,*);
scalar delta / 1 /;
loop {k,
  delta = delta * .1;
  option optcr = delta;
  option FDDelta = delta;
  dat(k,'delta') = delta;
  df = exp.gradn(x);
  dat(k,'df') = df;
  dat(k,'dfm1') = df-1;
};
option decimals = 8;
option FDDelta = 1e-1;
dat('1','delta') = 1e-1;
df = exp.hessn(x);
dat('1','df') = df;
dat('1','dfm1') = df-1;

option FDDelta = 1e-2;
dat('2','delta') = 1e-2;
df = exp.hessn(x);
dat('2','df') = df;
dat('2','dfm1') = df-1;

option FDDelta = 1e-3;
dat('3','delta') = 1e-3;
df = exp.hessn(x);
dat('3','df') = df;
dat('3','dfm1') = df-1;

option FDDelta = 1e-4;
dat('4','delta') = 1e-4;
df = exp.hessn(x);
dat('4','df') = df;
dat('4','dfm1') = df-1;

option FDDelta = 1e-5;
dat('5','delta') = 1e-5;
df = exp.hessn(x);
dat('5','df') = df;
dat('5','dfm1') = df-1;

option FDDelta = 1e-6;
dat('6','delta') = 1e-6;
df = exp.hessn(x);
dat('6','df') = df;
dat('6','dfm1') = df-1;

option FDDelta = 1e-7;
dat('7','delta') = 1e-7;
df = exp.hessn(x);
dat('7','df') = df;
dat('7','dfm1') = df-1;

display dat;
$offText

* if no index list is given, 1's are assumed
 df = exp.grad(x);         abort$( df ne 1) 'should get 1';
 df = exp.gradn(x);        abort$(abs(df-1) gt ntol) 'should get near 1';
d2f = exp.hess(x);         abort$(d2f ne 1) 'should get 1';
d2f = exp.hessn(x);        abort$(abs(d2f-1)gt ntol) 'should get near 1';
d2f = exp.hess(1:x);       abort$(d2f ne 1) 'should get 1';
d2f = exp.hessn(1:x);      abort$(abs(d2f-1)gt ntol) 'should get near 1';
 gL = exp.gradl(x:x+1);    abort$( gL ne 1) 'should get 1';
 gH = exp.gradh(x-1:x);    abort$( gH ne 1) 'should get 1';

* if index list values are out of range, 0 is returned sometimes
* and sometimes, UNDF is returned
 df = exp.grad(-1:x);      abort$( df ne 0) 'should get 0';
 df = exp.gradn(0:x);      abort$( df ne 0) 'should get 0';
 df = exp.gradn(2:x);      abort$( df ne 0) 'should get 0';
 df = exp.gradn(INF:x);    abort$( df ne 0) 'should get 0';
d2f = exp.hess(1:0:x);     abort$(d2f ne 0) 'should get 0';
d2f = exp.hessn(0:1:x);    abort$(d2f ne 0) 'should get 0';
 gH = exp.gradh(INF:x-1:x);abort$( gH ne undef) 'should get UNDF';
 gL = exp.gradl(NA:x:x+1); abort$( gL ne undef) 'should get UNDF';

* EPS works like 0, for funcs & derivs & ranges
  x = EPS;
  f = exp(x);              abort$(  f ne 1) 'should get 1';
 df = exp.grad(1:x);       abort$( df ne 1) 'should get 1';
 df = exp.gradn(1:x);      abort$(abs(df-1) gt ntol) 'should get near 1';
d2f = exp.hess(1:1:x);     abort$(d2f ne 1) 'should get 1';
d2f = exp.hessn(1:1:x);    abort$(abs(d2f-1)gt ntol) 'should get near 1';
  L = exp.low(x:x+1);      abort$(  L ne 1) 'should get 1';
  H = exp.high(x-1:x);     abort$(  H ne 1) 'should get 1';
 gL = exp.gradl(1:x:x+1);  abort$( gL ne 1) 'should get 1';
 gH = exp.gradh(1:x-1:x);  abort$( gH ne 1) 'should get 1';


* do some tests with non-EPS special values
x = NA;

* function vals work one way - they take special vals as input
f = exp(x);              abort$(f ne NA) 'should get NA';

* derivatives do not work like the functions vis-a-vis special vals
* if special values are used as input, we get execution errors
abort$(execerror>0) 'no previous errors expected';
 df = exp.grad(x);  abort$(execerror=0) 'execErrorExpected'; execerror = 0;
 df = exp.gradn(x); abort$(execerror=0) 'execErrorExpected'; execerror = 0;
d2f = exp.hess(x);  abort$(execerror=0) 'execErrorExpected'; execerror = 0;
d2f = exp.hessn(x); abort$(execerror=0) 'execErrorExpected'; execerror = 0;
  L = exp.low(x:x+1);  abort$(execerror=0) 'execErrorExpected'; execerror = 0;
  H = exp.high(x-1:x); abort$(execerror=0) 'execErrorExpected'; execerror = 0;
 gL = exp.gradl(x:x+1); abort$(execerror=0) 'execErrorExpected'; execerror = 0;
 gH = exp.gradh(x-1:x); abort$(execerror=0) 'execErrorExpected'; execerror = 0;