Description
Test indicator constraints where indicators are specified indexed equations and variables using explicit labels. This is the second model from the Fixed Charge Transportation Problem from https://www.gams.com/latest/docs/UG_LanguageFeatures.html#UG_LanguageFeatures_IndicatorConstraintsExample Contributed by Stefan Vigerske, August 2014
Large Model of Type : MIP
Category : GAMS Test library
Main file : indic04.gms
$title Test of indicator constraints with explicit labels (INDIC04,SEQ=663)
$onText
Test indicator constraints where indicators are specified indexed
equations and variables using explicit labels.
This is the second model from the Fixed Charge Transportation Problem from
https://www.gams.com/latest/docs/UG_LanguageFeatures.html#UG_LanguageFeatures_IndicatorConstraintsExample
Contributed by Stefan Vigerske, August 2014
$offText
$title Fixed Charge Transportation Problem with Indicator Constraints
Sets
i canning plants / seattle, san-diego /
j markets / new-york, chicago, topeka / ;
Parameters
a(i) capacity of plant i in cases
/ seattle 350
san-diego 600 /
b(j) demand at market j in cases
/ new-york 325
chicago 300
topeka 275 / ;
Table d(i,j) distance in thousands of miles
new-york chicago topeka
seattle 2.5 1.7 1.8
san-diego 2.5 1.8 1.4 ;
Scalar f freight in dollars per case per thousand miles /90/ ;
Parameter c(i,j) transport cost in thousands of dollars per case ;
c(i,j) = f * d(i,j) / 1000 ;
Parameter fixcost(i,j) fixed cost in thousands of dollars ;
fixcost(i,j) = 10*d(i,j) / 1000 ;
Scalar minshipping minimum shipping of cases /100/;
Variables
x(i,j) shipment quantities in cases
use(i,j) is 1 if arc is used in solution
z total transportation costs in thousands of dollars ;
Positive Variable x;
Binary Variable use;
Equations
cost define objective function
supply(i) observe supply limit at plant i
demand(j) satisfy demand at market j
iminship(i,j) ensure minimum shipping
imaxship(i,j) ensure zero shipping if use variable is 0;
cost .. z =e= sum((i,j), c(i,j)*x(i,j) + fixcost(i,j)*use(i,j)) ;
supply(i) .. sum(j, x(i,j)) =l= a(i) ;
demand(j) .. sum(i, x(i,j)) =g= b(j) ;
iminship(i,j).. x(i,j) =g= minshipping;
imaxship(i,j).. x(i,j) =e= 0;
Model indicatorModel /all/ ;
* write indicator options file for COPT
file fcopt COPT Option file / copt.opt /;
loop((i,j),
put fcopt 'indic ' iminship.tn(i,j) '$' use.tn(i,j) yes
/ 'indic ' imaxship.tn(i,j) '$' use.tn(i,j) no / );
putclose fcopt;
* write indicator options file for CPLEX
file fcpx Cplex Option file / cplex.opt /;
loop((i,j),
put fcpx 'indic ' iminship.tn(i,j) '$' use.tn(i,j) yes
/ 'indic ' imaxship.tn(i,j) '$' use.tn(i,j) no / );
putclose fcpx;
* write indicator options file for GUROBI
file fgrb Gurobi Option file / gurobi.opt /;
loop((i,j),
put fgrb 'indic ' iminship.tn(i,j) '$' use.tn(i,j) yes
/ 'indic ' imaxship.tn(i,j) '$' use.tn(i,j) no / );
putclose fgrb;
* write indicator options file for XPRESS
file fxpr Xpress Option file / xpress.opt /;
loop((i,j),
put fxpr 'indic ' iminship.tn(i,j) '$' use.tn(i,j) yes
/ 'indic ' imaxship.tn(i,j) '$' use.tn(i,j) no / );
putclose fxpr;
* write indicator options file for SCIP
file fscip SCIP Option file / scip.opt /;
put fscip 'gams/indicatorfile = "cplex.opt"' /;
putclose fscip;
indicatorModel.optfile = 1;
Option limrow=0, limcol=0, optcr=0;
Solve indicatorModel using mip minimizing z ;
abort$(indicatorModel.modelstat <> %modelStat.optimal%) 'not solved to optimality'
abort$(abs(z.l - 153.7310) > 1e-6) 'wrong optimal value'