indic04.gms : Test of indicator constraints with explicit labels

Description

Test indicator constraints where indicators are specified indexed
equations and variables using explicit labels.

This is the second model from the Fixed Charge Transportation Problem from
https://www.gams.com/latest/docs/UG_LanguageFeatures.html#UG_LanguageFeatures_IndicatorConstraintsExample

Contributed by Stefan Vigerske, August 2014


Large Model of Type : MIP


Category : GAMS Test library


Main file : indic04.gms

$title Test of indicator constraints with explicit labels (INDIC04,SEQ=663)

$onText
Test indicator constraints where indicators are specified indexed
equations and variables using explicit labels.

This is the second model from the Fixed Charge Transportation Problem from
https://www.gams.com/latest/docs/UG_LanguageFeatures.html#UG_LanguageFeatures_IndicatorConstraintsExample

Contributed by Stefan Vigerske, August 2014
$offText

$title  Fixed Charge Transportation Problem with Indicator Constraints

Sets
    i   canning plants   / seattle, san-diego /
    j   markets          / new-york, chicago, topeka / ;

Parameters

    a(i)  capacity of plant i in cases
      /    seattle     350
           san-diego   600  /

    b(j)  demand at market j in cases
      /    new-york    325
           chicago     300
           topeka      275  / ;

Table d(i,j)  distance in thousands of miles
                 new-york       chicago      topeka
   seattle          2.5           1.7          1.8
   san-diego        2.5           1.8          1.4  ;

Scalar f  freight in dollars per case per thousand miles  /90/ ;

Parameter c(i,j)  transport cost in thousands of dollars per case ;

         c(i,j) = f * d(i,j) / 1000 ;


Parameter fixcost(i,j)  fixed cost in thousands of dollars ;

         fixcost(i,j) = 10*d(i,j) / 1000 ;

Scalar minshipping minimum shipping of cases /100/;

Variables
    x(i,j)   shipment quantities in cases
    use(i,j) is 1 if arc is used in solution
    z        total transportation costs in thousands of dollars ;

Positive Variable x;
Binary   Variable use;

Equations
    cost          define objective function
    supply(i)     observe supply limit at plant i
    demand(j)     satisfy demand at market j
    iminship(i,j) ensure minimum shipping
    imaxship(i,j) ensure zero shipping if use variable is 0;

cost ..        z  =e=  sum((i,j), c(i,j)*x(i,j) + fixcost(i,j)*use(i,j)) ;

supply(i) ..   sum(j, x(i,j))  =l=  a(i) ;

demand(j) ..   sum(i, x(i,j))  =g=  b(j) ;

iminship(i,j).. x(i,j) =g= minshipping;

imaxship(i,j).. x(i,j) =e= 0;

Model indicatorModel /all/ ;

* write indicator options file for COPT
file fcopt COPT Option file / copt.opt /;
loop((i,j),
  put fcopt 'indic ' iminship.tn(i,j) '$' use.tn(i,j) yes
          / 'indic ' imaxship.tn(i,j) '$' use.tn(i,j) no / );
putclose fcopt;

* write indicator options file for CPLEX
file fcpx Cplex Option file / cplex.opt /;
loop((i,j),
  put fcpx 'indic ' iminship.tn(i,j) '$' use.tn(i,j) yes
         / 'indic ' imaxship.tn(i,j) '$' use.tn(i,j) no / );
putclose fcpx;

* write indicator options file for GUROBI
file fgrb Gurobi Option file / gurobi.opt /;
loop((i,j),
  put fgrb 'indic ' iminship.tn(i,j) '$' use.tn(i,j) yes
         / 'indic ' imaxship.tn(i,j) '$' use.tn(i,j) no / );
putclose fgrb;

* write indicator options file for XPRESS
file fxpr Xpress Option file / xpress.opt /;
loop((i,j),
  put fxpr 'indic ' iminship.tn(i,j) '$' use.tn(i,j) yes
         / 'indic ' imaxship.tn(i,j) '$' use.tn(i,j) no / );
putclose fxpr;

* write indicator options file for SCIP
file fscip SCIP Option file / scip.opt /;
put fscip 'gams/indicatorfile = "cplex.opt"' /;
putclose fscip;

indicatorModel.optfile = 1;
Option limrow=0, limcol=0, optcr=0;
Solve indicatorModel using mip minimizing z ;

abort$(indicatorModel.modelstat <> %modelStat.optimal%) 'not solved to optimality'
abort$(abs(z.l - 153.7310) > 1e-6)  'wrong optimal value'