Description
In this test we check how a solver behaves when there are many free variables and if it restarts from this optimal basis.
Small Model of Type : LP
Category : GAMS Test library
Main file : lp03.gms
$title Many free variables and restart (LP03,SEQ=68)
$onText
In this test we check how a solver behaves when there are many
free variables and if it restarts from this optimal basis.
$offText
$if not set MTYPE $set MTYPE lp
$if not set DEMOSIZE $set DEMOSIZE 0
$if not set GLOBALSIZE $set GLOBALSIZE 0
$if not set SKIPITER $set SKIPITER 0
$if not %DEMOSIZE% == 0 $set DEMOSIZE 1
$if not %GLOBALSIZE% == 0 $set GLOBALSIZE 1
$ set KK 20
$if %DEMOSIZE%%GLOBALSIZE% == 11 $set KK 3
$if not set SLOWOK $set SLOWOK 0
scalar slowOK 'slow solves are OK: just abort.noerror in this case' / %SLOWOK% /;
Sets
i canning plants / seattle, san-diego /
j markets / new-york, chicago, topeka /
k / 1*%KK% /;
Parameters
a(i) capacity of plant i in cases
/ seattle 350
san-diego 600 /
b(j) demand at market j in cases
/ new-york 325
chicago 300
topeka 275 / ;
Table d(i,j) distance in thousands of miles
new-york chicago topeka
seattle 2.5 1.7 1.8
san-diego 3.5 2.8 1.4 ;
Scalar f freight in dollars per case per thousand miles /90/ ;
Parameter c(i,j) transport cost in thousands of dollars per case ;
c(i,j) = f * d(i,j) / 1000 ;
Variables
xx(k) free variables
x(i,j) shipment quantities in cases
z total transportation costs in thousands of dollars ;
Positive Variable x ;
Equations
cost define objective function
supply(i) observe supply limit at plant i
demand(j) satisfy demand at market j
stuff silly equation;
cost .. z =e= sum((i,j), c(i,j)*x(i,j));
supply(i) .. sum(j, x(i,j)) =l= a(i) ;
demand(j) .. sum(i, x(i,j)) =g= b(j) ;
stuff.. sum(k, xx(k)) =e= 0;
Model lp03 /all/ ;
option limcol=0,limrow=0;
Solve lp03 using %MTYPE% minimizing z ;
abort.noError$[slowOK and %solveStat.resourceInterrupt% = lp03.solvestat] 'Solve too slow';
abort$( lp03.solvestat <> %solveStat.normalCompletion% or lp03.modelstat <> %modelStat.optimal%)
'wrong status codes', lp03.solvestat, lp03.modelstat;
abort$( sum(k, mapval(xx.m(k))=mapval(eps)) <> (card(k)-1)) 'wrong EPS';
Solve lp03 using %MTYPE% minimizing z ;
abort.noError$[slowOK and %solveStat.resourceInterrupt% = lp03.solvestat] 'Solve too slow';
abort$( lp03.solvestat <> %solveStat.normalCompletion% or lp03.modelstat <> %modelStat.optimal%)
'wrong status codes', lp03.solvestat, lp03.modelstat;
abort$( sum(k, mapval(xx.m(k))=mapval(eps)) <> (card(k)-1)) 'wrong EPS';
$if %SKIPITER% == 0 abort$( lp03.iterusd > 0) 'too many iters';