lp03.gms : Many free variables and restart

Description

In this test we check how a solver behaves when there are many
free variables and if it restarts from this optimal basis.


Small Model of Type : LP


Category : GAMS Test library


Main file : lp03.gms

$title Many free variables and restart (LP03,SEQ=68)

$onText
In this test we check how a solver behaves when there are many
free variables and if it restarts from this optimal basis.
$offText

$if not set MTYPE         $set MTYPE lp
$if not set DEMOSIZE      $set DEMOSIZE   0
$if not set GLOBALSIZE    $set GLOBALSIZE 0
$if not set SKIPITER      $set SKIPITER   0
$if not %DEMOSIZE% == 0   $set DEMOSIZE   1
$if not %GLOBALSIZE% == 0 $set GLOBALSIZE 1

$                                 set KK  20
$if %DEMOSIZE%%GLOBALSIZE% == 11 $set KK  3
$if not set SLOWOK $set SLOWOK 0
scalar slowOK 'slow solves are OK: just abort.noerror in this case' / %SLOWOK% /;


  Sets
       i   canning plants   / seattle, san-diego /
       j   markets          / new-york, chicago, topeka /
       k                    / 1*%KK% /;

  Parameters

       a(i)  capacity of plant i in cases
         /    seattle     350
              san-diego   600  /

       b(j)  demand at market j in cases
         /    new-york    325
              chicago     300
              topeka      275  / ;

  Table d(i,j)  distance in thousands of miles
                    new-york       chicago      topeka
      seattle          2.5           1.7          1.8
      san-diego        3.5           2.8          1.4  ;

  Scalar f  freight in dollars per case per thousand miles  /90/ ;

  Parameter c(i,j)  transport cost in thousands of dollars per case ;

            c(i,j) = f * d(i,j) / 1000 ;

  Variables
       xx(k)   free variables
       x(i,j)  shipment quantities in cases
       z       total transportation costs in thousands of dollars ;

  Positive Variable x ;


  Equations
       cost        define objective function
       supply(i)   observe supply limit at plant i
       demand(j)   satisfy demand at market j
       stuff       silly equation;

  cost ..        z  =e=  sum((i,j), c(i,j)*x(i,j));

  supply(i) ..   sum(j, x(i,j))  =l=  a(i) ;

  demand(j) ..   sum(i, x(i,j))  =g=  b(j) ;

  stuff.. sum(k, xx(k)) =e= 0;

  Model lp03 /all/ ;

option limcol=0,limrow=0;

Solve lp03 using %MTYPE% minimizing z ;
abort.noError$[slowOK and %solveStat.resourceInterrupt% = lp03.solvestat] 'Solve too slow';
abort$( lp03.solvestat <> %solveStat.normalCompletion% or lp03.modelstat <> %modelStat.optimal%)
  'wrong status codes', lp03.solvestat, lp03.modelstat;
abort$( sum(k, mapval(xx.m(k))=mapval(eps)) <> (card(k)-1)) 'wrong EPS';

Solve lp03 using %MTYPE% minimizing z ;
abort.noError$[slowOK and %solveStat.resourceInterrupt% = lp03.solvestat] 'Solve too slow';
abort$( lp03.solvestat <> %solveStat.normalCompletion% or lp03.modelstat <> %modelStat.optimal%)
  'wrong status codes', lp03.solvestat, lp03.modelstat;
abort$( sum(k, mapval(xx.m(k))=mapval(eps)) <> (card(k)-1)) 'wrong EPS';
$if %SKIPITER% == 0 abort$( lp03.iterusd > 0) 'too many iters';