Description
extremely simple MPEC model with some useful features: a) it has a unique solution b) all matched vars are doubly-bounded Contributor: Steve Dirkse, Sep 2013
Small Model of Type : MPEC
Category : GAMS Test library
Main file : mpec07.gms
$title simple MPEC unique solution doubly-bounded matches (MPEC07,SEQ=618)
$onText
extremely simple MPEC model with some useful features:
a) it has a unique solution
b) all matched vars are doubly-bounded
Contributor: Steve Dirkse, Sep 2013
$offText
$if not set TESTTOL $set TESTTOL 1e-4
scalars
tol / %TESTTOL% /
c1 / -4 /
c2 / 8 /
c3 / 8 /
;
free variables
x1 / lo -1, up 1 /
x2 / lo 1, up 3 /
x3 / lo -100, up 100 /
y / up 0 /
;
free variable z;
equation f1, f2, f3, o;
f1 .. 3*x1 + x2 + y + c1 =N= 0;
f2 .. x1 + 3*x2 + x3 + y + c2 =G= 0;
f3 .. x2 + 3*x3 + y + c3 =N= 0;
o .. sqr(x1-5) + sqr(x2-2) + sqr(x3-2) + sqr(y) =E= z;
model m / f1.x1, f2.x2, f3.x3, o /;
solve m using mpec min z;
if {(m.solvestat = %solveStat.capabilityProblems%),
abort$[m.modelstat <> %modelStat.noSolutionReturned%] 'Wrong status codes',
m.solvestat, m.modelstat;
abort.noerror 'no solution, no point in checking further';
else
abort$[not((m.solvestat = %solveStat.normalCompletion%) and (m.modelstat = %modelStat.optimal% or
m.modelstat = %modelStat.locallyOptimal% or m.modelstat = %modelStat.feasibleSolution%))] 'Wrong status codes',
m.solvestat, m.modelstat;
};
scalars r1, r2, r3;
r1 = 3*x1.l + x2.l + y.l + c1;
r2 = x1.l + 3*x2.l + x3.l + y.l + c2;
r3 = x2.l + 3*x3.l + y.l + c3;
file log / '' /;
putclose log
' ' /
'F1 := ', r1:6:2, ' perp x1 ', x1.lo:8:2, ' <= ', x1.L:6:2 ' <= ', x1.up:6:2 /
'F2 := ', r2:6:2, ' perp x2 ', x2.lo:8:2, ' <= ', x2.L:6:2 ' <= ', x2.up:6:2 /
'F3 := ', r3:6:2, ' perp x3 ', x3.lo:8:2, ' <= ', x3.L:6:2 ' <= ', x3.up:6:2 /
' y = ', y.L:6:2 /
' ' / ;
abort$(abs(x1.l-1.0) > tol) 'var x1.l should be 1.0', x1.l;
abort$(abs(x2.l-1.0) > tol) 'var x2.l should be 1.0', x2.l;
abort$(abs(x3.l+2.5) > tol) 'var x3.l should be -2.5', x3.l;
abort$(abs( y.l+1.5) > tol) 'var y.l should be -1.5', y.l;
abort$(abs( z.l-39.5)> tol) 'var z.l should be 39.5', z.l;
abort$(abs(f1.l+1.5) > tol) 'equ f1.l should be -1.5', f1.l;
abort$(abs(f2.l-0.0) > tol) 'equ f2.l should be 0.0', f2.l;
abort$(abs(f3.l-0.0) > tol) 'equ f3.l should be 0.0', f3.l;
abort$(abs( o.l-0 ) > tol) 'equ o.l should be 0' , o.l;