Description
Start with the trnsport model, but add stuff as needed. - use an acronym Contributor: Steve Dirkse
Small Model of Type : GAMS
Category : GAMS Test library
Main file : save2.gms
$title 'Test restart from new (Rev 142 & later) workfiles' (SAVE2,SEQ=216)
$onText
Start with the trnsport model, but add stuff as needed.
- use an acronym
Contributor: Steve Dirkse
$offText
$onText
This problem finds a least cost shipping schedule that meets
requirements at markets and supplies at factories.
Dantzig, G B, Chapter 3.3. In Linear Programming and Extensions.
Princeton University Press, Princeton, New Jersey, 1963.
This formulation is described in detail in:
Rosenthal, R E, Chapter 2: A GAMS Tutorial. In GAMS: A User's Guide.
The Scientific Press, Redwood City, California, 1988.
The line numbers will not match those in the book because of these
comments.
$offText
Sets
i canning plants / seattle, san-diego /
j markets / new-york, chicago, topeka / ;
Acronym aaaa;
Parameter t(j) / new-york aaaa, chicago 1, topeka aaaa /;
Parameters
a(i) capacity of plant i in cases
/ seattle 350
san-diego 600 /
b(j) demand at market j in cases
/ new-york 325
chicago 300
topeka 275 / ;
Table d(i,j) distance in thousands of miles
new-york chicago topeka
seattle 2.5 1.7 1.8
san-diego 2.5 1.8 1.4 ;
Scalar f freight in dollars per case per thousand miles /90/ ;
Parameter c(i,j) transport cost in thousands of dollars per case ;
c(i,j) = f * d(i,j) / 1000 ;
Variables
x(i,j) shipment quantities in cases
z total transportation costs in thousands of dollars ;
Positive Variable x ;
Equations
cost define objective function
supply(i) observe supply limit at plant i
demand(j) satisfy demand at market j ;
cost .. z =e= sum((i,j), c(i,j)*x(i,j)) ;
supply(i) .. sum(j, x(i,j)) =l= a(i) ;
demand(j) .. sum(i, x(i,j)) =g= b(j) ;
Model transport /all/ ;
Solve transport using lp minimizing z ;
Display x.l, x.m ;