Description
This test makes sure that the extrinsic cosine and sine (both using rad and grad) implemented in a Delphi library work in the same way as the intrinsic versions. Additionally the functions are used in a simple model. Contributor: L. Westermann
Small Model of Type : GAMS
Category : GAMS Test library
Main file : trilib02.gms includes : compiled.inc [html] precomp.inc [html]
$title Test extrinsic functions in tridclib (TRILIB02,SEQ=522)
$onText
This test makes sure that the extrinsic cosine and sine (both using rad and
grad) implemented in a Delphi library work in the same way as the intrinsic
versions.
Additionally the functions are used in a simple model.
Contributor: L. Westermann
$offText
* We don't have a Delphi Compiler on Unix
$if %system.filesys% == UNIX $set nocomp true
$ifThen set nocomp
* Use precompiled library provided by testlib
$ batInclude precomp.inc tridclib
$else
* Compile library from source code
$ batInclude compiled.inc tri
$endIf
function myCos / myLib.Cosine /
mySin / myLib.Sine /
myPi / myLib.Pi /;
set g / 1*360 /
h / CosInt Cosine Intrinsic
CosExtRad Cosine Extrinsic (Radian)
CosExtDeg Cosine Extrinsic (Degree)
SinInt Sine Intrinsic
SinExtRad Sine Extrinsic (Radian)
SinExtDeg Sine Extrinsic (Degree) /
hh / F Function Value
G Gradient Value
H Hessian Value
GN Gradient numeric
HN Hessian numeric /;
parameter Deg(g) Degree Value
Rad(g) Radian Value
Test(g,h,hh);
Deg(g) = ord(g);
Rad(g) = ord(g)*pi/180;
option FDDelta=1e-3;
Test(g,'CosInt' ,'F') = cos (Rad(g));
Test(g,'CosExtRad','F') = mycos(Rad(g));
Test(g,'CosExtDeg','F') = mycos(Deg(g),1);
Test(g,'SinInt' ,'F') = sin (Rad(g));
Test(g,'SinExtRad','F') = mysin(Rad(g));
Test(g,'SinExtDeg','F') = mysin(Deg(g),1);
Test(g,'CosInt' ,'G') = cos.grad (1: Rad(g));
Test(g,'CosExtRad','G') = mycos.grad(1: Rad(g));
Test(g,'CosExtDeg','G') = mycos.grad(1: Deg(g),1)*180/pi;
Test(g,'SinInt' ,'G') = sin.grad (1: Rad(g));
Test(g,'SinExtRad','G') = mysin.grad(1: Rad(g));
Test(g,'SinExtDeg','G') = mysin.grad(1: Deg(g),1)*180/pi;
Test(g,'CosInt' ,'H') = cos.hess (1:1: Rad(g));
Test(g,'CosExtRad','H') = mycos.hess(1:1: Rad(g));
Test(g,'CosExtDeg','H') = mycos.hess(1:1: Deg(g),1)*180/pi*180/pi;
Test(g,'SinInt' ,'H') = sin.hess (1:1: Rad(g));
Test(g,'SinExtRad','H') = mysin.hess(1:1: Rad(g));
Test(g,'SinExtDeg','H') = mysin.hess(1:1: Deg(g),1)*180/pi*180/pi;
Test(g,'CosInt' ,'GN') = cos.gradn (1: Rad(g));
Test(g,'CosExtRad','GN') = mycos.gradn(1: Rad(g));
Test(g,'CosExtDeg','GN') = mycos.gradn(1: Deg(g),1)*180/pi;
Test(g,'SinInt' ,'GN') = sin.gradn (1: Rad(g));
Test(g,'SinExtRad','GN') = mysin.gradn(1: Rad(g));
Test(g,'SinExtDeg','GN') = mysin.gradn(1: Deg(g),1)*180/pi;
Test(g,'CosInt' ,'HN') = cos.hessn (1:1: Rad(g));
Test(g,'CosExtRad','HN') = mycos.hessn(1:1: Rad(g));
Test(g,'CosExtDeg','HN') = mycos.hessn(1:1: Deg(g),1)*180/pi*180/pi;
Test(g,'SinInt' ,'HN') = sin.hessn (1:1: Rad(g));
Test(g,'SinExtRad','HN') = mysin.hessn(1:1: Rad(g));
Test(g,'SinExtDeg','HN') = mysin.hessn(1:1: Deg(g),1)*180/pi*180/pi;
scalar
error01 'mypi <> pi';
set error02 'cos/sin <> mycos/mysin (rad)'
error03 'cos/sin <> mycos/mysin (grad)';
error01 = abs(pi <> mypi) > 1e-12;
error02(g,'cos',hh) = abs(Test(g,'CosInt',hh) - Test(g,'CosExtRad',hh)) > 1e-5;
error02(g,'sin',hh) = abs(Test(g,'SinInt',hh) - Test(g,'SinExtRad',hh)) > 1e-5;
error03(g,'cos',hh) = abs(Test(g,'CosInt',hh) - Test(g,'CosExtDeg',hh)) > 1e-5;
error03(g,'sin',hh) = abs(Test(g,'SinInt',hh) - Test(g,'SinExtDeg',hh)) > 1e-5;
abort$(error01+card(error02)+card(error03))
error01, error02, error03;
********************************************************************************
Scalar trimode /0/;
variable x;
equation e;
e.. sqr(mysin(x,trimode)) + sqr(mycos(x,trimode)) =e= 1;
model m /e/;
x.lo = 0; x.l=3*pi
solve m min x using nlp;
abort$(abs(x.l-0)>1e-12) 'x<>0';
* Now do the same using degree instead of radian
trimode = 1;
x.lo = 0; x.l=540;
solve m min x using nlp;
abort$(abs(x.l-0)>1e-12) 'x<>0';